
Edith Cowan University Edith Cowan University

Research Online Research Online

ECU Publications Pre. 2011

2005

AD2US: An Automated Approach to Generating Usage Scenarios AD2US: An Automated Approach to Generating Usage Scenarios

from UML Activity Diagrams from UML Activity Diagrams

Robert Chandler
Edith Cowan University

Chiou Peng Lam
Edith Cowan University

Huaizhong Li
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks

 Part of the Computer Sciences Commons

10.1109/APSEC.2005.25
This is an Author's Accepted Manuscript of: Chandler, R. W., Lam, C. P., & Li, H. (2005). AD2US: An Automated
Approach to Generating Usage Scenarios from UML Activity Diagrams. Proceedings of 12th Asia-Pacific Software
Engineering Conference. (pp. 9-16). Taipei, Taiwan. IEEE Computer Society. Available here
© 2005 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.
This Conference Proceeding is posted at Research Online.
https://ro.ecu.edu.au/ecuworks/2971

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online @ ECU

https://core.ac.uk/display/41533875?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworks
https://ro.ecu.edu.au/ecuworks?utm_source=ro.ecu.edu.au%2Fecuworks%2F2971&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ro.ecu.edu.au%2Fecuworks%2F2971&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1109/APSEC.2005.25
http://dx.doi.org/10.1109/APSEC.2005.25

AD2US: An Automated Approach to Generating
Usage Scenarios from UML Activity Diagrams

Robert Chandler
Edith Cowan University

School of Computing
and Information Science

2 Bradford Street, Mt Lawley
Western Australia

robert.chandler@ecu.edu.au

Chiou Peng Lam
Edith Cowan University

Huaizhong Li
Edith Cowan University

Abstract

Although attention has been given to the use of UML
(Unified Modelling Language) activity diagrams in the gen-
eration of scenarios, thin-threads and test-cases, the pro-
cesses described in the literature rely heavily on manual
intervention either in the information extraction process or
in the process of transforming them to an alternate struc-
ture. This paper introduces an approach that will cap-
ture, store and output usage scenarios derived automati-
cally from UML activity diagrams.

1. Introduction

In evaluating large, complex UML (Unified Modelling
Language) analysis and design models, Berenbach[4] ar-
gues that the ultimate goal of requirements analysts is to
be able to develop a complete set of requirements without
complex tools or extremely specialized competencies. He
states that some researchers have “adopted approaches that
require mathematical skills beyond those that a business an-
alyst might ordinarily be expected to possess”[4].

UML Activity Diagrams (AD)s are commonly used to
model business processes, basic control and data flow in
software systems and they require little technical expertise
to develop and understand. A Cutter IT[9] review of an
Armstrong article suggests that ADs can help reduce the
incidence of the “blank page” syndrome encountered by
some requirements analysts and modellers. ADs can be
used as simple flow-charts or for detailed representations
of behavioural logic[13]; making them versatile enough to
be used by novices and professionals alike.

Barros[3] suggests that while reviewing the literature re-
garding the UML, it is easy to notice that when compared

to the other UML diagram types, ADs have been given little
attention. He suggests that this is possibly due to ADs asso-
ciation with state diagrams in earlier versions of the UML
1.x [3]. In the UML 2.0, ADs are finally separated from the
state machine specification and are more closely associated
with Petri-nets. Barros[3] predicts that this change along
with the added activity node types and definitions, will in-
crease the capabilities of AD modelling and he believes that
this added modelling power will give rise to more frequent
use of ADs[3].

Kösters[14] points out that of the behavioural diagrams
which are administered by the UML, only the AD is capable
of successfully specifying an entire set of use-case scenar-
ios in a single diagram. In addition, ADs can help to val-
idate the completeness and correctness of both textual and
graphical use-cases[9]. They are potentially a rich source of
test related information in both business and software-based
models, which can be harvested early in the design phase.
[9] points out that ADs can be used to identify candidate
test cases that represent typical usage scenarios “such that a
minimum number of test-cases provide the largest amount
of requirements coverage”[9].

Regnell[20] states that an obvious motivation for com-
bining scenario-based requirements engineering with ver-
ification and validation is “the opportunity to minimize
modelling effort by using the same information for several
purposes”[20]. They assume that combining scenario-based
requirements engineering with verification and validation
will promote traceability from requirements, through design
to testing. They conclude that using scenarios for testing is
an important area for further study; bearing in mind that this
conclusion is made prior to the release of the UML 1.5 and
long before UML 2.0. Hence, the importance of AD based
research must now be paramount.

Deriving all the possible USs (Usage Scenarios) from

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

each activity diagram in a UML model, is a very time con-
suming activity when performed manually. In addition, the
literature indicates that deriving scenario-based information
from ADs, for any purpose, is a complex process and many
of the techniques described in the literature use some form
of manual intervention [2, 16, 23]. This not only extends
the time needed for the tasks being performed, but also in-
creases the risk of introducing faults.

This paper presents an approach, dubbed AD2US, that
automatically extracts USs from ADs; thereby extending
the time available for other activities such as test-case gen-
eration or the verification of consistency between ADs, use-
cases and usage scenarios. Currently, this study is concen-
trating on the collection and storage of data while main-
taining the context of its source; then using information to
generate a list of USs that can be viewed in tree and table
format.

The rest of this paper is structured as follows; in section 2
a brief review of relevant works is presented and section 3
is a background to the area of study. Section 4 offers an out-
line of our solution and a discussion of the significance and
benefits of this work. Finally, section 5 contains our conclu-
sions and an introduction to possible future works extending
this research.

2 Related Work

Usage scenarios are derived from software models for
various purposes, including assisting in the transition from
requirements to design[1, 12] as well as for requirements or
design validation[20, 14] and for test case generation[2, 5,
15, 11].

2.1 From Requirements to Design

Amyot[1] describes an approach to transforming Use
Case Maps to other scenario based definitions such as Mes-
sage Sequence Charts using XSLT (XML Stylesheet Lan-
guage Transformations). They suggest that their process
will be useful for the early validation and synthesis of de-
sign models. Although, neither the graphical source or the
target representations used in this research are related to
the UML, which is rapidly becoming the pseudo modelling
standard for the software development industry[21].

Jarke[12] gives us an insight into the important part that
scenarios play in the development of good design models.
Scenario usage-technique selection is one of the most cru-
cial topics to be addressed according to Jarke and should be
“based on sound cost-benefit analysis”[12]1.

1Page 48.

2.2 Design Validation

Regnell[20] discusses the need for combining scenario
analysis with Validation and Verification. He suggests that
a major reason scenarios are not more commonly used in
testing, is that the scenarios generated during requirements
analysis are “out of date by the time a system is ready for
testing”[20]. Therefore, having an automated method of
capturing usage scenarios could improve the quality of the
final product. While also helping to update the status of the
documented scenarios captured during early phases in the
development life-cycle.

Kösters[14] introduces a method for the proper coupling
of structural and behavioural aspects of a UML design again
for validation and verification purposes, using refined ADs.
ADs can depict control and data flow, Kösters suggests that
coverage criteria for program testing be carried over to the
validation of use case models. Furthermore, he suggests
that the validation of an AD “should not stop before 100%
of Vertex coverage has been achieved. Therefore, having an
automated way of generating every possible scenario, for
each use case, which provides adequate coverage for walk-
through analysis must be worthwhile.

2.3 Test Case Generation

Briand[5] presents an approach to UML-based system
testing using UML ADs to capture the sequence of usage-
scenarios related to each of the use-cases (UCs) within a
system model. The UC based AD is then manually trans-
formed into a weighted graph, which makes the informa-
tion more amenable to graph analysis. Once the sequence
of USs is identified, they are able to determine which paths
are active throughout each scenario’s operation and should
therefore undergo testing.

Tsai[22] offers an approach for End-to-End (E2E) In-
tegration Testing, described originally by Paul [19], with
user-oriented test scenarios for functional regression test-
ing. The test scenarios are derived from textual scenario de-
scriptions rather than from graphical representations such
as UML UCs and ADs.

Bai [2] presents an approach that reduces UML ADs to
a type of activity hypergraph, which was originally intro-
duced by Eshuis and Weiringa [10]. Bai’s algorithm re-
quires a manual pre-process stage which is performed prior
to the generation of a thin-thread tree, a condition tree and
a data-object tree.

3 Background

Firstly, let us define UCs and scenarios. A use-case is a
collection of possible scenarios representing a set of inter-
actions between an actor and the subject system [7]. The

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

possible scenarios are representative of both successful and
unsuccessful interactions, where the interaction goal is ei-
ther achieved or fails. A scenario is a series of actions
that occur under specific conditions that result in a partic-
ular outcome; again representative of either a successful or
unsuccessful outcome with regard to the interaction goal of
a particular UC.

One method of defining UCs is to textually describe
them using a template to ensure that all possible scenarios
and usage interactions are defined. Cockburn[6] provides
various formats of a popular template on his website. An-
other method of defining UCs produces them as UML UC
diagrams. The UC diagram depicts an actor/s interacting
with a system and describes the purpose or goal of that in-
teraction. Each UC typically has multiple scenarios as pre-
viously mentioned and there are a number of ways to depict
them. Each individual scenario can be portrayed textually
or graphically using an interaction diagram; such as a se-
quence diagram, communication diagram or an AD.

ADs can also represent all the possible outcomes or sce-
narios of a UC using the one diagram; making them useful
for verifying the consistency, completeness and correctness
of both textual and graphical UCs and scenarios alike[14].

UML ADs are developed using elements that are divided
into two groups; Nodes2 and Edges. The OMG’s UML
2.0 superstructure specification [18]3 defines three types
of Nodes; Action nodes, Object nodes and Control nodes;
while Edges are defined as the transitions that represent con-
trol flow and data flow between nodes. The basic UML AD
elements are depicted in figure 1.

Figure 1. A snapshot of activity diagram ele-
ments

The UML 2.0 describes the elements depicted in figure 1
in the following manner:

• An Action node is a ‘fundamental unit of executable
functionality in an Activity.’ Actions have incoming
and outgoing edges that signify control flow and/or
data flow from and to other nodes respectively. A
Compound Activity is a node in an AD, which is a
condensed set of nodes and edges depicted in a sepa-
rate diagram.

• An Object node is a node that indicates an instance of

2The OMG uses the term Node, whereas in general activity graph terms
they are referred to as Vertices or an individual Vertex

3page 303.

a particular classifier, that may be available at a partic-
ular point in the activity.

• A Control node is used to coordinate the flow of data
and control between other nodes. ‘Control nodes’ in-
clude decision and merge nodes, fork and join nodes,
initial nodes and final nodes4.

The UML 2.0 superstructure[18]5 also describes several
levels of activity modelling; Basic, Intermediate, Complete,
Structured, Complete-Structured and Extra-Structured.

Figure 2 is an AD at the basic level of design, which rep-
resents a simplified ATM login and session creation activity.

The activity begins at the Ready initial node and pro-
gresses toward one of the final nodes depending on the eval-
uation of the conditions that are met during the activity. For
instance, the first scenario can leave the initial node and
progress through the ATM Card object to the Get Card De-
tails action and then, depending on the condition set on this
node’s outgoing edge, end at the Final State 1 final node;
so completing the activity. However, the next scenario can
begin the same way, but instead of progressing toward Fi-
nal State 1, the system can progress from the Get Card De-
tails action towards the Get USER PIN action and end at the
Final State 2 final node.

The conditions that may be associated with edges in this
type of diagram, use the factor format t[g]/e, where t = trig-
ger, g = guard and e = effect; incidently, each of these fac-
tors is considered optional. In addition, OCL[17] (Object
Constraint Language) constraints can be applied to activi-
ties in general, or to individual actions within an activity. In
the next section, we introduce the AD2US process.

4 The AD2US Process

Firstly, we discuss the modelling and exporting related
processes followed by the the capture and storage of the
required data. This is then followed by a discussion of the
the scenario generation process.

4.1 Modelling and Exporting

Poseidon 2.4.1 is the selected modelling tool for design-
ing and exporting UML activity-diagram-based model; al-
though this version has limitations relating to compliance
with the UML 2.0 and activity modelling, it does provide
the functionality to produce the level of diagrams desired.
Furthermore, it provides efficient XMI-format exporting.
The structure of the exported data produced by this version
of Poseidon is common to other versions and tools; such
as the community edition of Poseidon, ArgoUML and it is

4activity final and flow final
5page 265.

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

Ready

Get Card Details
anATMcard:ATMcard

[CARD_DETAILS_OK = false]/CardReader.EJECT = true

Get USER PIN

Final_State_1

Final_State_2

[WAIT_TIME >= TIME_OUT]/CARD.eject()

Final_State_3

[USER.cancelled = true]/CARD.eject()

PIN Wait

Validate PIN

[WAIT_TIME < TIME_OUT]

Final_State_4

[USER.PIN <> Card.PIN and times >= 3]/CARDREADER.retainCard()

Check PIN

/times = times + 1

[USER.PIN <> CARD.PIN and times < 3]

[USER.PIN = CARD.PIN and times < 3]

Select Transaction Activity

Figure 2. create a session activity diagram example

similar to the exported output produced by Together Control
Center. This makes the focused nature of data capture rea-
sonably generic, showing that the approach can be applied
to other modelling tools.

4.2 Data Capture and Storage

Once a UML model has been exported and is ready for
processing, the file is read into a DOM (Document Object
Model) using the Java programming language. The rea-
son DOM based processing is used instead of SAX based
processing, is that the information within an XMI file is
not necessarily sequential. For instance, AD information
is spread over several regions in the document. An AD’s
identifier, name and graphical meta-data occupy a section
that is quite early in the document.

This graphical section has an identifier attribute that di-
rects processing to a much later section in the document
containing the activity graph information. This is where the
node and edge details are held. Toward the very end of the
document is where any OCL-based constraints are located.
The constraint objects contain an identifier that directs us
back to the activity graph or the element that it constrains.
The DOM parser allows us to move around the document to
locate objects or elements that we are processing; whereas
SAX-based parsing is a one-way process; hence, we would
be unable to jump around the document to locate the objects
for which we are searching.

As an AD is encountered in the DOM, AD2US captures
the details of the diagram; such as its identifier and name,
and then searches the XMI structure for the corresponding
activity graph. When the appropriate activity graph is lo-
cated, the details of each diagram element are extracted and
deposited into a data structure that is associated with the

specific diagram’s identifiers.
The structure used for this storage is a kind of dynamic

array called a Vector, which makes manipulation of the con-
tents quite easy. This capture/storage process is applied to
each AD found in the model resulting in a structure contain-
ing only information relating to diagram elements and their
attributes and projected associates. Their associates include
incoming and outgoing edges for all node types; and source,
target, guard, trigger and effects for all edges. Along with
this information, local constraints and activity-based con-
straints can also be captured and stored.

Although the information is already contained in an ex-
ported XMI file, tracing the relationships between the ele-
ments of an activity is difficult due to the size and structure
of XMI files. In some cases, an XMI file can carry hundreds
of thousands of elements, most of which are related to the
model’s graphical meta-data. With the XMI validation DTD
being quite loose, modelling tools can also include propri-
etary information throughout an XMI file, making the task
of locating information and the readability of the file’s con-
tents difficult.

Only a small percentage of the data contained in an XMI
file describes the actual AD elements themselves; for ex-
ample, the name, id, type of element and the associated in-
coming and outgoing identifiers or other edge details. In
fact, one of the models designed for use in this research is
of a simple Automated Teller Machine (ATM); this model
contains eight UC diagrams, seventeen class diagrams, one
sequence diagram, six state diagrams, two deployment dia-
grams and six structured-level ADs.

When this model was exported to XMI, the resultant file
contained more than 159,000 elements. Once filtered for
the information associated with the ADs, the total number
of elements was reduced to 700. It was then determined that

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

we could reduce the processing time required for automat-
ing the filtering and manipulation of the data in an XMI file
significantly, by capturing and storing this information sep-
arately. Therefore, the information is not only stored in a
local Vector for manipulation throughout the process, but it
is also stored in an XML file for use in external processes,
such as US generation.

4.3 Usage Scenario Generation

AD2US applies a modified version of the DFS (Depth-
First Search) algorithm[8]. This is an elementary graph
processing algorithm which uses recursion to trace paths
through the vertices and edges in either a directed or undi-
rected graph; making it very compatible with XML/XMI
processing. During the AD2US process described in sec-
tion 4.2, as each element in the activity graph is encoun-
tered, the outgoing or target identifiers and/or the incoming
or source identifiers are stored with the element.

Each element directs processing to the next element in
the scenario, using the identifier associated with the current
element’s outward bound item/s. For instance, an edge must
contain only a single source identifier and a single target el-
ement identifier; whereas various nodes can have both mul-
tiple incoming edges and/or multiple outgoing edges. Such
as action and object nodes, which allow both multiple in-
coming and outgoing edges; while fork and decision nodes
have a single incoming and multiple outgoing edges. Merge
and join nodes on the other hand, have multiple incoming
edges and a single outgoing edge. Obviously, initial nodes
can have only one outgoing edge, while final nodes can have
only one incoming edge. A simplified representation of the
approach is depicted in figure 3.

The approach continues while there are unprocessed
ADs in the XMI file. It traces the AD’s associated Activity
Graph and begins by locating the Initial node within each
diagram. Next, we follow the outgoing edge’s target ID to
the next node. When a final node is encountered, the pro-
cess outputs the scenario. Otherwise, the details of other
nodes are stored and then each outgoing edge is followed.
The algorithm relies upon the tagging of encountered ele-
ments, both vertices and edges, with one of three descrip-
tors. These descriptors are: UNDISCOVERED; DISCOV-
ERED and FINISHED. Each element is initialized with the
UNDISCOVERED tag when it is added to the storage vec-
tor. Figure 4 depicts the modified algorithm in pseudo-code.

When the US capture process begins, as each element in
the vector is encountered, an object of that element’s type is
instantiated and its status attribute is set to DISCOVERED
(line 10). In the example, the figure then shows the ele-
ment being output in some way at line 11. The algorithm
then tests for the elements type; as edges must have only

Input XMI source

Get Next AD

Get Activity Graph

Capture AG Elements

Store AD & Elements

Get Initial Node Details

Get Outgoing Edge Details

Get Edge Target

Get Target Details

hasOutgoing

Get Final Node Details
[false]

Get Node Details

[true]

allScenariosCaptured

[true]

[false]

anotherDiagram

[true]

ProcessComplete

[false]

Store Scenario

Figure 3. Simplified Approach AD

1. findInitialNode()
2. for each element in the Vector
3. if element.type == “initial”
4. element.status = DISCOVERED
5. processThisElement(element.id)

6. processThisElement(ID _id)
7. for each element in the Vector
8. if element.id == _id
9. element.status = DISCOVERED
11. output element.scenario /*A string representation*/
12. if element.type == “edge”
13. processThisElement(element.target.id)
14. else
15. for each outgoing edge
16. processThisElement(element.outgoing.id)
17. if element.status == DISCOVERED
18. output element.scenario
19. if element.type == “edge”
20. processThisElement(element.target.id)
21. else
22. for each outgoing edge
23. processThisElement(element.outgoing.id)
24. element.status = FINISHED
25. if element.status == FINISHED
26. /* do nothing */

Figure 4. modified depth-first search algo-
rithm

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

one target identifier, this edge’s target id is sent to be pro-
cessed next. If on the other hand the element is not an edge,
AD2US then processes any and all of this vertex’s outgoing
edges.

At lines 15, 16 and again at lines 22 and 23, AD2US
calls the processThisElement procedure, passing it the id for
each outgoing edge that belongs to the current node. That
way, all the edges leading from each node in the activity are
traversed and thereby given the opportunity to be discovered
and finished. If however, the current element happens to be
an edge, then the processThisElement procedure calls itself
this time passing the target id of the current edge. Once the
final node in a scenario is processed, the algorithm steps to
line 24 setting its status attribute to FINISHED; and thereby
locking that element from future processing iterations.

An issue that was encountered during scenario genera-
tion relates to a kind of scenario explosion. However, it
does not relate directly to the kind of scenario explosion
described by [7], where an analyst tries to list all possible
interactions with a system. We use the term to describe the
situation where an AD can include designed-in iteration or
recursion. In these situations AD2US could fall into an in-
finite loop where the process cannot escape traversing an
edge that returns to an earlier node in the scenario; such as
that depicted in figure 2 after the checkPIN control node.

Without some way of breaking the loop the process
reaches this edge and hence continues to iterate. Each cycle
through this set of nodes and edges may be seen as part of a
new scenario by AD2US. In the diagram, a guard condition
([USER.PIN �� CARD.PIN and times � 3]) is offered.
The system being developed can use this to ensure that the
edge is not traversed endlessly, but AD2US must break the
cycle without understanding this expression. The problem
we recognised is that not all guard conditions could be used
to stop this scenario explosion.

Although part of the guard condition demands that times
� 3, for AD2US to use guard conditions, it would ei-
ther need to replace variables with values like [22], or it
would need to parse and recognise guard expressions; then
it would need to create and instantiate variables according
to their type, name and value ranges, as well as then incre-
ment/decrement them as required. A prospect that would
significantly extend the scope and time available for this
component of the study.

Instead, we determined that it is possible to capture all
the scenarios by calculating the number of final nodes that
are downstream of a node where there is a convergance of
incoming paths such as that in the action node depicted in
figure 2 as Get USER PIN. This method works fine in all sit-
uations where there is only one edge that directs the activity
to an already processed node.

For brevity, a shortened sample of AD2US output is pre-
sented in figure 5; the model used in the example incorpo-

rates the AD depicted in figure 2. The process produces nine
scenarios from the activity depicted in figure 2 without iter-
ating through the edge between the Check PIN control node
and the Get USER PIN action node, more than the number
of final nodes that exist downstream of the converging Get
USER PIN action.

This ensures that the process only enters such an edge a
limited number of times rather than risk being allowed to
progress by a guard expression that may result in infinite
recursion and hence, scenario explosion by our definition.
Figure 5 represents the output from the process applied to
the AD in figure 2.

For each of the ADs in the model being processed,
an XML element tag is produced. The first tag identi-
fies this as an AD and in this case the diagram name is
“Create Session Activity” and the diagram’s identifier is
“di$6e85c53c:10566e36a51:-7388” are included as values
in their appropriate attributes. The process then adds a sce-
nario tag with an identifier inside the AD tags for each sce-
nario that is developed. Within this opening and closing set
of scenario tags the process then adds the sequence of el-
ements that belong to each scenario. Each element in the
scenario can be identified by type and contains other useful
information belonging to that element.

This output is structured in such a way that it may
be used for several purposes and in many different ways.
For instance, it may be processed using XSLT (Extensible
Style-sheet Language Transformations) to output the sce-
narios in HTML format for reporting purposes. Alterna-
tively, it may be used to verify that usage-scenarios have
been identified and documented during the requirements
analysis phase and during regression design and develop-
ment phases. In addition, it may be used to develop test-
cases using the edge conditions and activity or local con-
straints that are included in a model. Therefore, the output
of our process may become the input for various other use-
ful purposes.

AD2US has processed several UML models and activity
diagrams of various levels. Another example of the process
is shown using the diagram depicted in figure 6, which is
a hypothetical UC-based AD used for its complexity level
rather than its implied functionality.

The UC depicted by the AD in figure 6 produces only
two scenarios; even though it appears that there should be
more. The fact is that control is passed from the Branch 1
control node to either Object Flow 1 OR to Action State 2.

Therefore, regardless of the concurrency portrayed by
the fork and join nodes, processing can traverse only one of
the two possible paths. The control node named “Branch 2”
is actually a merge node which, unlike a join node, does not
have to wait for a condition to be met before proceeding to
its outgoing edge.

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

Begin Scenario Processing...
<ActivityDiagram name="Create Session Activity" id="di$6e85c53c:10566e36a51:-7388"/>
 <scenario id=0>

<Initial id="sm$6e85c53c:10566e36a51:-6f48" name="Ready"/>
<Edge id="sm$6e85c53c:10566e36a51:-6f31" name="" type="Edge"/>
<ObjectFlow id="sm$6e85c53c:10566e36a51:-6f49" name="anATMcard"/>
<Edge id="sm$6e85c53c:10566e36a51:-6f30" name="" type="Edge"/>
<Action id="sm$6e85c53c:10566e36a51:-6f4a" name="get_cardDetails"/>
<Edge id="sm$6e85c53c:10566e36a51:-6f32" name="" type="Edge" guard="[CARD_DETAILS_OK = false]"/>
<Final id="sm$6e85c53c:10566e36a51:-6f44" name="Final_State_1"/>

 </scenario>
 <scenario id=1>

<Initial id="sm$6e85c53c:10566e36a51:-6f48" name="Ready"/>
<Edge id="sm$6e85c53c:10566e36a51:-6f31" name="" type="Edge"/>
<ObjectFlow id="sm$6e85c53c:10566e36a51:-6f49" name="anATMcard"/>
<Edge id="sm$6e85c53c:10566e36a51:-6f30" name="" type="Edge"/>
<Action id="sm$6e85c53c:10566e36a51:-6f4a" name="get_cardDetails"/>
<Edge id="sm$6e85c53c:10566e36a51:-6f2f" name="" type="Edge"/>
<Action id="sm$6e85c53c:10566e36a51:-6f45" name="Get USER PIN"/>
<Edge id="sm$6e85c53c:10566e36a51:-6f25" name="" type="Edge" guard="[USER.cancelled = true]"/>
<Final id="sm$6e85c53c:10566e36a51:-6f42" name="Final_State_3"/>

 </scenario>
 <scenario id=2>

...
</ActivityDiagram>

Figure 5. formatted scenario output sample

Initial_State_1

Action_State_1

Branch_1

Action_State_2

[an_int < 3]

Fork_1

Action_State_4Action_State_5

Join_1

thread_1 thread_2

Branch_2

[an_int >= 3]

Action_State_6

Final_State_1

Object_Flow_1

Figure 6. structured level activity diagram

However, the UML 2.0 superstructure rules that a join
node must wait until all of its incoming edges have been fi-
nalised before its outgoing edge can be traversed. It does
this using an AND condition in relation to the names as-
sociated with all of the join’s incoming edges. Only when
that condition is met, can the system enter, or put a token
onto, the join’s outgoing edge. Hence, we have a situa-
tion where no matter how many threads of operation are
depicted within fork and join nodes, continuation is not al-
lowed until each thread has completed.

When processing this situation, AD2US reaches the fork
node and begins processing the threads one at a time un-
til the join node is reached. Then, it processes the fork’s
next outgoing edge and so on until all threads are processed.
When no more threads are left, AD2US then proceeds on
the join node’s outgoing edge.

AD2US first identifies the AD being dealt with, then it
captures the initial node in the AD. The AD2US algorithm
then locates the ID for the initial node’s outgoing edge and
then process this edge. The target of the first edge in the
scenario directs AD2US to the Action 1 node. Following
this procedure, AD2US eventually finds the Branch 1 con-
trol node, which has multiple outgoing edges. In the first
scenario (id=0) AD2US traverses the outgoing edge from
the branch node which directs processing toward the Ob-
ject Flow 1 node and onto the Branch 2 Merge node. The
second scenario with an id=1 traverses the alternate edge
toward the Action State 2 node.

From this point AD2US continues to the join node where
it processes this region in the manner described earlier in
this section. It can be seen that as each thread in the concur-
rent region is finished, processing returns to the fork node
and finds the next thread. When all the threads are com-
pleted, AD2US continues along the join node’s outgoing
edge, through to the Final State 1 final node.

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

5 Conclusion and Future Work

The AD2US automated process of capturing the scenar-
ios from ADs, offers a designer an efficient and effective
method of producing usage based scenarios that can be used
for validating whether all possible scenarios have been cov-
ered in the current design; and whether an initial test suite
includes sufficient control and data flow coverage for all
possible USs.

As a design evolves from UCs through other behavioural
aspects of a proposed system to structural aspects, changes
that are made to the behavioural design may effect activi-
ties or behaviour. The automatically produced set of scenar-
ios, that result from our process, can be compared with the
UC realizations which are created very early in the require-
ments gathering process, to determine whether latter design
changes have created extra paths or possible scenarios that
have not been included in data and control flow-based test
cases and/or test suites.

In future work, we intend to use the output of this pro-
cess to assist development of AD diagram completeness
templates and in the production of test cases; this may be
achieved using the guard, trigger and effect conditions that
can be associated with the activity edges, as well as any ac-
tivity or local action-based OCL constraints. In the future,
as the output will be in XML-based structure, we may de-
velop XSLT style-sheets to transformation the information
into more designer friendly formats, for instance HTML.

References

[1] D. Amyot, X. He, Y. He, and D. Y. Cho. Generating scenar-
ios from use case map specifications. In 3rd International
Conference on Quality Software (QSIC’03), pages 108–115,
Dallas, USA, 2003. IEEE Computer.

[2] X. Bai, C. P. Lam, and H. Li. An approach to generate the
thin-threads from the UML diagrams. In 28th Annual Inter-
national Computer Software and Applications Conference
(COMPSAC’04), pages 546–552, Hong Kong, 2004.

[3] J. P. Barros and L. Gomes. Towards the support for cross-
cutting concerns in activity diagrams: a graphical approach.
In 6th International Conference on the UML, page 8, San
Francisco, USA, 2003.

[4] B. Berenbach. The evaluation of large, complex uml analy-
sis and design models. In ICSE ’04: Proceedings of the 26th
International Conference on Software Engineering, pages
232–241. IEEE Computer Society, 2004.

[5] L. Briand and Y. Labiche. A UML-based approach to sys-
tem testing. In 4th International Conference on the Uni-
fied Modelling Language (UML’2001), volume 2185, pages
194–208, Toronto, Canada, 2001. LNCS.

[6] A. Cockburn. Resources for writing use cases. WWW, 2005.
Accessed Aug’05.

[7] A. Cockburn. Structuring use-cases with goals. WWW, ND.
Accessed Aug’05.

[8] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Al-
gorithms. McGraw-Hill, New York, USA, 1990.

[9] CutterIT. E-business test modeling with UML. WWW,
2001. Visited Aug 05.

[10] R. Eshuis and R. Wieringa. An execution algorithm for
UML activity graphs. Lecture Notes in Computer Science,
2185:47–??, 2001.

[11] J. Heumann. Generating test cases from use cases. WWW,
2001. Accessed: August 05.

[12] M. Jarke. Scenarios for modelling. Communications of the
ACM, 42(1):47–48, January 1999.

[13] P. Kamthan. Usage scenarios for uml diagram types, 2005.
Accessed 19th August 2005.

[14] G. Kosters, H.-W. Six, and M. Winter. Coupling use cases
and class models as a means for validation and verification
of requirements specification. Requirements Engineering,
6(1):14, 2001.

[15] W. Linzhang, Y. Jiesong, Y. Xiaofeng, H. Jun, L. Xuandong,
and Z. Guoliang. Generating test cases from uml activity
diagram based on gray-box method. In 11th Asia-Pacific
Software Engineering Conference (APSEC’04), pages 284–
291, Busan, Korea, Nov.30 - Dec.3 2004. IEEE Computer
Society.

[16] M. Liu, M. Jin, and C. Liu. Design of testing scenario gener-
ation based on UML activity diagram. Computer Engineer-
ing and Application, 2002(12):pp 122–124, 2002.

[17] OMG. OCL 2.0 - OMG final adopted specification. Stan-
dard - Technical Report ptc/03-10-14, Object Management
Group, October 2003 2003.

[18] OMG. Unified Modelling Language, v2.0 superstructure.
Standard - Technical Report ptc/03-08-02, Object Manage-
ment Group, April 2004.

[19] R. Paul. End-to-end integration testing 2. In 25th Annual
International Computer Software and Applications Confer-
ence (COMPSAC’01), pages 286–290, Chicago, Illinois,
2001. IEEE.

[20] B. Regnell and P. Runeson. Combining scenario-based re-
quirements with static verification and dynamic testing. In
E. Dubois, A. L. Opdahl, and K. Pohl, editors, Proceedings
of the Fourth International Workshop on Requirements En-
gineering - Foundations for Software Quality (REFSQ’98),
Pisa, Italy, 1998.

[21] SoftwareEngineer.org. A community for software engi-
neers: Methods and techniques, 2005. Visited: 19th August
05.

[22] W. T. Tsai, X. Bai, R. Paul, and L. Yu. Scenario-based
functional regression testing. In 25th Annual International
Computer Software and Applications Conference (COMP-
SAC’01), pages 496–501, Chicago, Illinois, Oct 2001. IEEE
Computer Society.

[23] M. Zhang, C. Liu, and C. Sun. Automated test case genera-
tion based on UML activity diagram model. Journal of Bei-
jing Universit y of Aeronautics and Astronautics, 27(4):pp
433–437, 2001.

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

	AD2US: An Automated Approach to Generating Usage Scenarios from UML Activity Diagrams
	untitled

