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RedTNet: A Network Model for Strategy Games

Philip Hingston, Senior Member, IEEE and Mike Preuss, Member, IEEE and Daniel Spierling, Member, IEEE

Abstract— In this work, we develop a simple, graph-based
framework, RedTNet, for computational modeling of strategy
games and simulations. The framework applies the concept
of red teaming as a means by which to explore alternative
strategies. We show how the model supports computer-based
red teaming in several applications: realtime strategy games
and critical infrastructure protection, using an evolutionary
algorithm to automatically detect good and often surprising
strategies.

I. INTRODUCTION

In this paper, we are concerned with using computational
models to investigate strategies for competing teams of
agents. Whether it be in the context of a realtime strat-
egy game or a real-world simulation, many aspects of the
problem are the same, and a similar framework and similar
methods can be used to explore the various strategies and
tradeoffs available.

What is a strategy? Depending on who is asked, one
may receive very different answers. In game theory, there
is usually a fixed set of options available from which the
strategy is chosen. For more complex games as e.g. realtime
strategy games, the term may rather apply to a high-level
plan which is employed as a general guideline followed until
a faction either succeeds, or finds that its strategy becomes
unsuitable due to unforeseen developments. In automated red
teaming, which may be applied in military (e.g. wargaming)
and civilian (e.g. critical infrastructure protection or CIP)
scenarios, the first answer appears too restrictive as the
setting can be too complex to investigate all possible options.
So one may find oneself somewhere inbetween the two
extremes, where a strategy could be a plan, but with much
fewer degrees of freedom than in a full-fledged video game.

Classical military literature sees strategy as the way to set
up a battle whereas the battle itself is dominated by tactics
[1] (SunTzu). In a slight variation of this view, Clausewitz
[2] demands that strategy must define the task of a battle, the
reason why it is fought. Transferred to a CIP or RTS setting,
it is up to the strategy to bring a specific set of units at a
specific time to a point of interest, whereas it is up to tactics
to win the resulting battle against the encountered enemy
forces. Tactics thus cannot be modeled without detailed
information about the setting, such as e.g. unit strengths and
ranges or terrain properties. Attempts to do this possibly
started with Reiswitz [3] and led to modern table top and
computer war games and simulations. All these aspire to
model reality as closely as possible. However, for strategy
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exploration, this degree of detail seems unsuitable and a
much simpler setting is needed that carries only the most
important aspects of the modeled situation.

In this work, we suggest RedTNet (for automated red
teaming network game), a framework for exploring strategies
in a simple, graph-based representation. We demonstrate
that CIP as well as RTS settings can be mapped easily
into RedTNet, and that optimization algorithms such as
evolutionary algorithms (EA) are useful for learning good
strategies to win the game. These strategies can then be
analysed to obtain an improved understanding of the strategic
situation.

The structure of the paper is as follows. In the next
section, we provide background and review related work in
automated red teaming, particularly in regards its application
to two important application domains: critical infrastructure
protection and realtime strategy games. In section III, we in-
troduce our proposed framework, RedTNet. We then outline
the requirements for agents to play RedTNet, and describe
the player representation that we use for this study. Next,
we describe a series of computational experiments that we
carried out to test and validate our proposed framework. The
results of these experiments are described and discussed, and
in the last section, we review our findings and outline some
likely areas for future work, based on what we learned in
these experiments.

II. BACKGROUND

A. Red Teaming

Red teaming is a method for assessing vulnerabilities in
systems or structures. Two factions or teams – red and blue –
are posited or formed. The red team is charged with attacking
the system or structure being defended by the blue team. The
role of the red team is to challenge the implicit assumptions
in blue team defences. Although the idea originated in the
context of military simulations or wargaming, it can be
applied more broadly to, for example, civil defence scenarios,
security assessment, business decision-making, and computer
network vulnerability assessment. In the context of games,
red teaming is a natural way to think about attack plans in
realtime strategy games (RTS).

1) Automated Red Teaming: Traditionally, red teaming
has been done manually, either in a manual simulation on
a board or table, or in physical wargaming, or with real
teams physically infiltrating a secure facility. More recently,
computer-based simulations are also used, and have the ad-
vantage that many scenarios can be simulated and analysed.

The first to suggest using evolutionary algorithms and
agent-based simulation for automated red teaming may have
been Upton et al. [10]. Their application was testing proposed
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security procedures. Details are sketchy, but an Evolutionary
Programming algorithm was used to evolve the parameters
of a red team strategy to defeat a fixed blue team strategy
for defence of a fixed structure. This idea has been taken
up and developed into the ART framework by researchers
at Singapore’s DSO and Nanyang Technological University
[9], [11], [7]. The ART framework integrates an optimisation
algorithm with an agent-based simulation. It currently sup-
ports particle swarm optimisation and a multi-objective evo-
lutionary algorithm as the optimiser, and several simulations
models, chiefly MANA[15]. ART has been used in a series
of data farming workshops [12], [13], [14] for applications
including urban operations, maritime defence and anchorage
protection, and is claimed to be able to discover non-intuitive
tactics that are superior to those obtained by manual red
teaming.

Some work has also been done by Ang et al. [8] using
a simple (1+1) Evolution Strategy algorithm, coupled with
WISDOM, a low-resolution simulation model for military
simulations. The aim of their study was to investigate the
nature of the fitness landscape taking into account the per-
sonalities of the red and blue teams. The early part of the
paper provides a useful survey of computational tools and
techniques that are available for defence games.

To date, most work in automated red teaming has been
in defence related application, but there are many potential
applications in civilian settings. One important application
where automated red teaming could have great benefits is in
critical infrastructure protection.

B. Critical Infrastructure Protection

Critical infrastructure protection is an increasingly im-
portant security issue in modern society, with threats from
natural disasters and terrorist groups. Critical infrastucture is
“The array of physical assets, processes and organizations
across which [essential goods and services] move” [5]. Ex-
amples include power plants and distribution networks, trans-
portation systems, computer-based control systems, computer
networks and so on. One of the aims of this work is to
develop a red teaming framework that can be applied in the
domain of critical infrastructure protection, as well as in RTS
games and other applications.

When analysing requirements for critical infrastructure
protection, it is important to take into account interdependen-
cies between infrastructure. An example is described in [4]
– In July 2001 a freight train derailed in a tunnel Baltimore.
This started a fire, which broke a water main, causing local
flooding which cut the electricity supply. Fibre optic cables
were also damaged, affecting telecommunications, and so
on. These interdependecies can be modelled using a layered
network of nodes and connections, as in Figure 1. Nodes in
each layer represent infrastructure assets, such as a water
main, or a police station, or a telephone exchange. Not
only are there connections within layers (the dotted lines),
between, say, a pump and a water main, but there are
connections between layers (the solid lines with arrows),
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E

Fig. 1. An example of an infrastructure dependency network with a
location layer added. Each infrastructure node is connected to a location
node indicating that control of the location gives control of the infrastructure.
Critical subnetworks of the infrastructure network (shown using large green
nodes) thus induce critical subnetworks of the location network. RedTNet
is played on the location network.

for example a police station may depend on a telephone
exchange for communications.

Suppose that a dissident or terrorist group wanted to
disrupt an infrastructure network by physically attacking
and destroying, damaging or taking control of nodes in
the network. To model this kind of scenario, we propose
to add an additional “location” layer. Nodes in this layer
represent physical locations from which infrastructure assets
can be controlled. Connections within this layer represent
pathways for movement between locations. Every infrastruc-
ture asset node is connected to a physical location node,
and a single physical node may be connected to several
infrastructure nodes, either in the same or different layers,
or both (for example, node A in the figure). Some physical
nodes may be connected to no infrastructure nodes, but
represent “waypoints” that must be passed through to move
between locations.

From the network of interdependencies, it is possible to
determine certain “critical subnetworks”, such that a failure
of all the nodes in a subnetwork would cause a catastrophic
failure of the whole system. For example, a failure of both
the police station (E) and the communications hub (D) in
Figure 1 might prevent an effective police response. This
critical subset induces a corresponding critical subnetwork
in the location network (nodes B and C).

In order to apply automated red teaming to critical in-
frastructure protection, a framework is needed that includes
support for modeling interdependencies, including critical
subnetworks. We introduce such a framework in Section III
below.

We are not aware of any existing automated red teaming
work in the CIP domain, however, Permann [6] proposes to



use agent-based simulation to model critical infrastructure
networks, along with genetic algorithms to optimise deci-
sions on which assets to protect and restore in the event of
an attack or other disaster.

C. Realtime Strategy Games

If one breaks down a concrete RTS game into the strate-
gical challenges it offers the player (and the game AI), the
situation is not much different from the CIP context. Most
RTS games have very obvious critical points: The home bases
and the satelite bases possibly built during the game. Losing
them usually leads to instant defeat (e.g. in Starcraft a faction
without buildings cannot exist). Some recent games explicitly
utilize more critical points. Conquering these makes more
ressources available (e.g. Dawn of War, Battle for Mid-
dleearth) or triggers an explicit termination criterion (Dawn
of War).

A ‘strategy machine’ such as the RedTNet framework
introduced in Section III could be a very valuable tool for the
game designer as well as for online adaptation of the game
towards the gamer’s needs. Instead of test playing a designed
level to see if it is doable, one may try to automatically obtain
a strategy that beats a defending strategy. If the AI strategy
employed in the real game is transferred to the framework,
obtaining a good opponent strategy can be formulated as
an optimization problem. Depending on the hardness of
this problem, which may be detected experimentally just by
applying an optimization algorithm, one may judge if the AI
strategy is good enough to cope with many different player
strategies. Of course it is still possible that a strategy exists
that beats the AI, but many of the strategies the optimization
algorithm is allowed to try are automatically tested this way.
One may even set up a scenario in a way that it provides a
predefined approximate level of difficulty for the opponent,
thus balancing the chances of AI and player via changes in
the setup (more/less units, more/less critical points etc).

Of course, a similar method may also be used for obtaining
a good attacking strategy. If, for a fixed scenario, the size and
distribution of forces of the defending faction is known at
least approximately, one may try to simulate different strate-
gies (or do that automatically via an optimization algorithm)
and take the best one available. What ’best’ actually means
is a matter of the concrete tasks, which should be modeled
after the game winning conditions.

III. REDTNET FRAMEWORK: THE RED TEAMING
NETWORK GAME

A. Rules of the Game

As suggested in Figure 1, RedTNet is played on a single
network layer, consisting of a set of nodes G and edges E. A
number r of red (attacking) agents is placed on a specific red
home base node, and b blue (defending) agents is put onto
a specific blue home base node. It is also possible to place
agents on other nodes at the start and to define multiple home
base nodes. Figures 2 and 3 show two example networks—
these are described in more detail below. We assume that all

nodes and edges have infinite capacity and that edges are bi-
directional, so that any number of agents can travel from any
node to any other neighboring node. The only nodes which
cannot be visited by the opposing faction are the opponent’s
home base nodes. The home base nodes resemble locations
outside the game – their edges characterize where the agents
of a faction can enter the network.

Some of the nodes are marked as belonging to critical
subsets. There may be one or several critical subsets with
one or more nodes each. Possession of these nodes decides
the game: If the red faction manages to conquer all nodes of
any critical subset and concurrently holds them, it wins. If
this does not take place before a predefined time is over, blue
wins (it managed to defend the critical subsets). We denote
each critical subset by Ci, i being the number of the subset.

The game is played in rounds, but as e.g. in the Diplomacy
game (see section VI), factions move simultaneously. Thus,
the rounds may be interpreted as planning breaks in which
the targetted moves can be set up. Each round consists of
three phases:

1) Either faction moves any number of its own agents to
their neighboring nodes or lets them stay where they
are.

2) For all nodes, the network is updated simultaneously.
Movements of either side are executed tentatively and
then for every node, conflicts are resolved in the
following way: The faction with the majority of agents
wins the node, and the agents of the opposing faction
are removed from the game. In case the forces of both
factions are equally strong, blue wins the node and the
red forces are eliminated.

3) If red owns all nodes of any critical subset, it wins.
If this is not the case and the predefined number of
rounds is over, blue wins. In any other case, the game
continues with phase 1.

For the time being, we assume perfect information con-
cerning the current status of each node, which is node
possession and the number of agents on the node. However,
the opponent cannot see the planned moves of the other
faction before the network is updated. Note that the game
is asymmetric: The start and winning conditions for red and
blue are not identical. A strategy working well for red may
completely fail for blue and vice versa.

B. Example scenario 1: DoubleCrit - a simple CIP-inspired
network

The first example (Figure 2) resembles a critical infrastruc-
ture protection scenario. There is only one critical subset with
two nodes, I and H. Blue starts with 35 agents distributed
over three nodes (10 on F, 10 on I, and 15 on J), and does
not have a home base, red starts with 20 agents on the red
home base and 10 on node E.

Blue does not have sufficient forces to defend both critical
nodes at the same time against a full force red attack,
so he cannot simply sit and wait. On the other hand, red
does not have sufficient forces to overwhelm a critical node



Fig. 2. The network definition for Scenario 1, DoubleCrit. Nodes occupied
by any faction are shown in the appropriate color. Nodes with a surrounding
green circle belong to a critical subset (here, we have only one critical subset,
with two nodes). Other nodes with a surrounding circle indicate a home base
node.

Fig. 3. The network definition for Scenario 2, an 8x8 RTS-style grid.

defended with more than 20 agents. Thus, neither player has
an obviously trivial winning strategy.

C. Example scenario 2: RTS-inspired grid

The second example (Figure 3) has some resemblance to
the first example, but models an RTS game map with its
typical rectangular grid. We employ it in two sizes, 8x8
and 10x10. Again, there is only one critical subset with two
nodes, 0-7 and 7-0, and 0-9 and 9-0, respectively. Red and
blue both have 10 agents, red starting with all agents its
home base 0-0, blue starting in two middle locations 3-3
and 4-4, and 4-4 and 5-5, respectively, having 5 agents on
each starting point. Note that red does not have sufficient
agents to attack the full force of blue agents at once.

IV. PLAYERS AND STRATEGIES FOR REDTNET

In order to detect vulnerabilities in defence strategies, the
behaviour of the red team has to be unpredictable, preventing

A B

DC E

F G

A B

DC E

F G

Fig. 4. Two possible attacks for a player that attacks directly.

an optimisation of the blue team towards one special offense
tactic. For this reason, we developed several different player
types. This also allows us to test the behavior of the blue
team in extreme cases. Each of these player types operates
using a similar principle:
• for each move, a random set of agent movements is

generated by iterating over all nodes occupied by this
player’s agents, selecting a fraction to be moved, and
selecting a valid adjacent node to move them to. Note
that for some nodes, the fraction may be zero;

• these sets of movements are analysed with respect to
some criteria and a “quality” function value is calcu-
lated;

• the best set of movements is selected, based on this
quality function value.

This procedure provides unpredictability in the selected
moves of all player types. Different kinds of quality function
produce different player types.

A. Critical Weight Player
A common strategy to attack an opponent is to focus on

the target directly. In this process all the agents concentrate
on achieving their subtargets together. In general a path
with the shortest distance is chosen to realise this intention.
Unpredictability with this strategy comes from the selection
of random fractions of agents, as well as from random se-
lection between equal length paths. Figure 4 shows different
attack paths for a red team starting from two different nodes.
The combination of concentrated power and unpredictability
make it difficult to defend against this kind of opponent. This
strategy is realised in the Critical Weight Player (CWplayer).

The quality function for the CWplayer f itCW (m) calculates
quality by evaluating the positions of all its own squads
si ∈ Sown as in Equation 1. Positions are rated using the
minimum and average values of the distances dc(si) of each
squad to the next critical node. These values are multiplied
with two weights wmin and wavg, which are initialised with
1 and adjusted during the optimisation.

QCW (m) = wavg×
∑si∈Sown dc(si)

∑si∈Sown |si| +

wmin×min({d(si)|si ∈ Sown})
(1)
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Fig. 5. Splitting and merging can be used to spread danger and then
concentrate it again.

B. Local Weight Player

In contrast to the straightforward CWplayer, a more com-
plicated strategy is to split the attacking force into several
squads. This approach spreads the danger for the defender
over more locations. Rather than attacking head-on, detours
can be made without losing sight of the general intention.
Figure 5 gives such an example. Three squads are formed,
two of which merge again later, after passing through nodes
that might not be considered otherwise.This combination of
spreading and consolidation makes defense very difficult.

Two player types, the Local Weight Player (LWplayer) and
Target Weight Player (TWplayer) are designed to be able to
use these kinds of stategies. The difference between them is
that TWplayer concentrates on few nodes whether LWplayer
considers the full network.

The quality function for the LWplayer QLW (m) is shown
in Equation 2. All nodes n j ∈ N are assigned two weights,
representing how important it is to own them – one weight for
oneself wown(n j) and one for the opponent wopp(n j). Here,
o(s) denotes the node which is occupied by squad s.

QLW (m) = QCW (m)+

∑n∈{o(s)|s∈Sown}wown(n)+

∑n∈{o(s)|s∈Sopp}wopp(n)

(2)

C. Target Weight Player

The quality function for the TWplayer (see equation 3)
takes account of the cohesiveness of the squads by cal-
culating the distance to the next friendly node down(si) in
relationship with the longest path of the network l p(N).
The influence of the distance to the next critical node is
multiplied by an adjustable weight wdc and l p(N). The
quality calculation includes a term for every node the player
occupies, allowing the player to respond to the game sit-
uation. In addition, a term representing the distance to the
enemy dopp(n) in relationship with the longest path in the
network, is multiplied with a “threat” weight wthreat(n) for
the opponent owning the node.

QTW (m) = ∑si∈Sown
l p(N)−down(si)

l p(N) ×wown(o(si))+

∑si∈Sown wdc×l p(N)×dc(si)

∑si∈Sown
l p(N)−dopp(si)

l p(N) ×wthreat(o(si))

(3)

D. Blue team strategies

All the above players can also be used to play blue team
strategies. The CWplayer attempts to controls the critical
nodes by concentrating its forces at them. Both other players
attempt to dominate the regions around critical nodes.

V. EXPERIMENTS

To demonstrate the usefulness of our framework as a
development, search and testing engine for strategies, we
undertake two experiments, one on a CIP-type network, and
one on an RTS-type network. As our players use real-valued
representations, we chose a CMA-ES [19] to learn a good
red team strategy. The general learning scheme tests every
generated strategy in 100 games and computes the fitness (to
be minimized) as the fraction of blue wins. See sect. IV for a
description of the representation. We are generally interested
in the possibility of automatically learning good red team
strategies against different opponents and regard it as success
if the red team beats the blue team in more than 50% of the
cases. However, the theoretical limits for each combination
of players under the given agent numbers and time limits
are not known, so that 50% could be unreachable. In these
cases, we at least require a visible improvement over the
initial (random initialization) success rate.

Experiment: Can we evolve a strategy beating a nearly arbi-
trary static opponent in a CIP-network via an EA?
Pre-experimental planning. During initial experimentation,
we tried different simple networks and decided to use the
DoubleCrit network with one critical subset of two nodes
(Figure 2) as it poses a certain strategic challenge without
being too complex. The CMA-ES was run with different
amounts of fitness evaluations, finding a run length of 500
evaluations sufficient to obtain reasonable progress. Attempts
to find a good value for the number of targets in a red
TWplayer led to a compromise value of 5, which seems to
work well for many different networks.
Task. We test the hypothesis that by learning, we can obtain
a red player variant that reliably beats all static blue players
yet defined. Therefore, we require that the finally obtained
players are a) statistically different from the best of the
randomly initialized players in the starting population, and
b) play significantly better than 50% success rates. Statistical
difference shall be measured by Wilcoxon-ranksum tests (U-
tests).
Setup. We run 21 repeats of CMA-ES runs of the following
player combinations (red-blue): TWplayer vs. CWplayer,
TWplayer vs. TWplayer, LWplayer vs. TWplayer, and LW-
player vs. CWplayer. Each individual is allowed 20 test
moves in each iteration and is tested with 100 games. The



maximum number of iterations of each game is 20. The
CMA-ES parameters are set to default, except the population
size (µ = 20) and the initial stepsize σ = 0.2. The blue
players are run in default configuration, which is weights of
{0.5,0.5} for the CWplayer, and one target for each critical
node for the TWplayer. The number of targets for the red
TWplayer is set to 5.
Results/Visualization. Table I reports the median and best
fitness values of the initial populations (of 20) and the final
best fitness, all averages of 21 runs. P-values of significance
tests between initial best and final best are all around or
below 10−4, and the same holds true for the tests of the final
best against the winning rate of 50%, with the exception
of LWplayer against TWplayer, which is significantly worse
than 50%. Additionally, figure 6 visualizes one of the best
TWplayers against a CWplayer (first combination). The
learned weights of the TWplayer are depicted in table II.

TABLE I
BLUE WINNING RATES (=FITNESS) OF DIFFERENT PLAYER

COMBINATIONS PRIOR TO AND AFTER OPTIMIZATION.

Red player blue player median init best init best final

TWplayer CWplayer 0.992 0.509 0.123

TWplayer TWplayer 0.984 0.735 0.276

LWplayer TWplayer 0.995 0.803 0.677

LWplayer CWplayer 0.998 0.259 0.083

TABLE II
LEARNED WEIGHTS OF ONE OF THE BEST TWPLAYERS FROM GAMES

AGAINST THE CWPLAYER.

targets t 1 t 2 t 3 t 4 t 5

Target nodes I C D E B

posession weights -0.084 0.422 0.054 -0.003 0.753

threat weights 0.627 1.0 0.624 0.456 0.619

Observations. The median initial fitnesses of all four combi-
nations are near 1, meaning that a random individual usually
cannot beat the blue adversary. Furthermore, the ordering
of the combinations induced by the best initial fitnesses is
consistent with the one induced by the final best fitnesses.
The TWplayer seems to be harder to beat than the CWplayer
(both final fitness values are worse for the TW).
Discussion. We assert that by learning, the red team strategy
is improved considerably in all cases, beating the blue
strategy with probability p > 0.5, except for the LWplayer
against the TWplayer. As the largest conceptual difference
of CWplayer and TWplayer is that the latter takes enemy
movements into account to a certain extent, which are
ignored by the CWplayer, it may be this property that makes
the TWplayer stronger and harder to beat. It should also
be remembered that the LWplayer needs to adapt a larger
set of variables (2 + 2 · #nodes = 24) than the TWplayer

Fig. 6. Accumulated games of one of the best TWplayers against a
CWplayer on the DoubleCrit network. The nodes hold the average number
of agents (b=blue, r=red) when the game was finished, the edges hold two
different pieces of movement information. Widths reflect the number of
(all factions) agents moving through an edge per game, log10-scaled. The
numbers indicate the faction that accumulated more moves, positive for red
and negative for blue (absolute values are also log10-scaled. Recall that blue
starts at F (10 agents), I (15), and J (15), red at the red home node (20) and
E (10). The two critical nodes are I and H

(3 ·#targets = 15) so that learning a good strategy may take
more time. Interestingly, the strategy optimization problem
is seemingly not deceptive — one may get a first impression
of its difficulty from a small random sample.

To get an impression of how a successful player looks
after learning, we discuss the TWplayer of table II, who
is able to beat a default value CWplayer in about 90% of
the cases. The CWplayer largely concentrates on protecting
the critical subset nodes H and I and does not react to red
agents moving towards it. In the board values used for the
internal move composition of the TWplayer, small values
are better. Thus, low possession weights mean that a node
is interesting, whatsoever other agent may be on, and high
values mean that it is to be avoided. The threat weights mean
that a node is to be avoided if the value is high and there
are some enemy agents on (and is attractive if enemy agents
are on and the value is negative). For the given network, the
TWplayer is largely built to avoid nodes instead of moving
to them. Only the built-in reward for minimizing the distance
to critical nodes induces a direction to move to. By means of
the weights, the TWplayer learns a way by learning where
NOT to go. It avoids B and C at all cost, and additionally I,



TABLE III
BLUE WINNING RATES (=FITNESS) OF DIFFERENT PLAYER

COMBINATIONS, 8X8 AND 10X10 RTS NETWORK

Network red player blue player med.init best init best final

8x8 TWplayer CWplayer 0.999 0.823 0.293

8x8 TWplayer TWplayer 0.996 0.695 0.305

10x10 TWplayer CWplayer 1.0 0.941 0.293

10x10 TWplayer TWplayer 1.0 0.906 0.684

D, and (weaker) E if enemies are on it. We can assume that
it moves down on the left side, avoiding I (moving through
F) and meets the other group of agents starting from E at G
or J, and then attacks H with a clear majority. Then it moves
all agents back to attack I and wins.

The results show that with the combination of the RedTNet
and an evolutionary optimization algorithm, one may explore
and test the ‘strategy space’ of a red team player in this CIP-
like network.

Experiment: Does strategy learning scale well to larger net-
works?
Pre-experimental planning. Initial experiments on larger
networks as used in this experiment revealed that learning of
strategies is still far from completed after 500 evaluations,
thus the number of evaluations was increased to 2000.
Task. The tested hypotheses are the same as in experiment
1. Additionally, we investigate the strategy learning difficulty
related to map size and test the results of otherwise equal
situations of a smaller map against a larger map. Even if the
difference is statistically significant (U-tests), it should not
be too large. A difference of ≈10-20% in winning fractions
of the (averaged) best red strategies would be tolerable.
Setup. We largely employ the same setup as for experiment
1, with the following changes. To resemble an RTS-like
scenario, we use an 8x8 network (Figure 3) and an enlarged,
but structurally identical network of size 10x10. The CMA-
ES is allowed 2000 function evaluations, and the TWplayer
is not used as it would require excessively large strategy
representations of 130 and 202 variables, respectively.
Results/Visualization. We report the learning results in
table III, again as means of 21 runs, median initial, best
initial, and best final fitness. P-values of the tests between
best initial and best final are all below 10−3, and except
TWplayer against TWplayer on the 10x10 network, all final
best values are significantly better than 0.5 (p-values below
10−2). Comparing the final best of row 1 and 3, and 2 and
4, respectively, also results in statistical significance (results
are not equal). In case of rows 1 and 3, this is due to high
variance, despite identical mean values. Figure 7 visualizes
one of the best TWplayers against a CWplayer on the 10x10
map, the learned weights of the TWplayer are given in
table IV.
Observations. Learning strategies against the CWplayer
appears to be more difficult in the beginning for both network

TABLE IV
LEARNED WEIGHTS OF ONE OF THE BEST TWPLAYERS FROM GAMES

AGAINST THE CWPLAYER IN THE RTS SCENARIO.

targets t 1 t 2 t 3 t 4 t 5

Target nodes 5-9 3-2 4-2 0-2 6-4

posession weights 0.159 0.376 -0.477 1.0 0.936

threat weights 0.518 0.981 0.559 1.0 0.135

sizes, however final results are also much better. Interestingly,
learning a good anti-TWplayer for the large network is much
harder than for the small network whereas there is little
difference when learning against the CWplayer.
Discussion. It seems that the difficulty of learning an op-
ponent for the CWplayer does not depend very much on
network size, but it does for learning against the TWplayer.
The reason for this could be that the CWplayer ignores
the location of its opponents squads, focusessing only on
possessing the critical nodes or a subset of these. However,
the TWplayer can react to what its opponent does and
then has more move alternatives on the large map, possibly
avoiding the attacking red squads. Again, we have a look
at one exceptionally good TWplayer from games against the
CWplayer, on the 10x10 network, depicted in fig. 7. The
driving factors of its behavior are mainly that 0-2 is to be
avoided (whether or not possessed by blue), and that there is
a weak attraction towards 4-2, so that the TWplayer choses to
go down towards the lower critical node. Somewhere on the
way to it or at the critical node, it seemingly meets not yet
fully assembled groups of blue agents (note that blue takes
all possible routes to the lower critical node, although that
does not necessarily mean that this happens in one game,
but it is still realistic to think of two parties of blue moving
separately). So what the red player actually learned is to take
out the blue agent groups one after the other, which results in
all blue agents being killed, which is the alternative winning
condition. Note that getting into possession of both critical
nodes would be much more challenging. It requires a well
timed distribution of forces as red needs a majority of agents
to beat the blue ones near the lower critical node (both forces
start with 10 agents).

VI. CONCLUSION AND FUTURE WORK

We have presented and experimentally evaluated a simple
network-based framework which is suited well for evolving
and evaluating strategies. Application to CIP and RTS based
scenarios are straightforward. Inspection of single strategies
via visualization has led to several surprises: Automatically
developed player strategies are successful, but often chose
paths a human player would probably not prefer, which
makes our framework a viable help for detecting and evalu-
ating strategies and counter-strategies in several contexts. As
expected, we observed that reactive strategies are harder to
beat than static ones, although our results in this direction
are rather preliminary.



Fig. 7. Accumulated games of one of the best TWplayers against a CWplayer on the 10x10 network. Data presentation is similar to the one of fig. 6.
Blue starts at 4-4 (5 agents) and 5-5 (5), red starts at 0-0 (10). The two critical nodes are 0-9 and 9-0

Some possibilities for the extension of our framework
have already been mentioned: finite capacity edges and
information hiding. Another possible modification would be
a non-deterministic rule to determine the outcome when both
teams attempt to occupy a node simultaneously. The current
majority rule has the advantage of simplicity, but a stochastic
rule might be more realistic. It is relatively easy to emulate
related strategy games with RedTNet. With a capacity of one
for every edge and slightly changed update rules, one obtains
rules that resemble the board game Diplomacy very closely.
This game was invented by Calhamer in 1959, also see [16],
and has attracted some interest already in the CI in games
community [17], [18] due to its strategic variability despite
simple rules.

In the future, we also plan to investigate more complex
strategy spaces, and more intelligent agents, on different
networks, and using different optimization methods. For
example, we will use coevolution of red and blue team
strategies.
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