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Evolving Crushers 

P. Hingston 
School of Computer and Information Science 

Edith Cowan University 
Mt Lawley, WA, Australia 

Abstract - This paper describes the use of an evolutionary 
algorithm to solve an engineering design problem. The 
problem involves determining the geometry and operating 
settings for a crusher in a comminution circuit for ore 
processing. The intention is to provide a tool for consulting 
engineers that can be used to explore candidate designs for 
various scenarios. The algorithm has proved capable of 
deriving designs that are clearly superior to existing designs, 
promising significant financial benefits. 

Keywords: Evolutionary algorithms, evolution strategies, 
engineering design. 

1. INTRODUCTION 

Evolutionary algorithms are increasingly finding 
applications in engineering design tasks. In this paper we 
describe a study, supported by Rio Tinto Ltd, which uses 
evolutionary algorithms to optimise the performance of a 
comminution circuit for ore processing. This study clearly 
demonstrates the strengths of the evolutionary approach. 

The performance of a processing plant has a large impact 
on the profitability of a mining operation, and yet plant 
design decisions are often guided more by engineering 
intuition and previous experience than by analysis. This is 
because plants are extremely complex to model, so 
engineers often must rely on simulation tools to evaluate 
and compare alternative hand-crafted designs. This is a 
time-consuming process and the lack of an analytical model 
means that there is little theoretical guidance to narrow the 
search for better solutions. Evolutionary algorithms can be 
of great benefit here, providing a means to search large 
design spaces and present the engineer with superior 
designs optimised for different operating scenarios. 

In order to test the applicability of evolutionary 
algorithms in this setting, a representative problem was 
chosen by Rio Tinto. The task was to find combinations of 
design variables (including geometric shapes and machine 
settings) to maximise the capacity of a simple comminution 
circuit, whilst also minimising the size of the product. 

We begin the paper with a description of the problem, 
including a brief background on crushers and comminution 
circuits. Section I11 describes our mapping of the problem to 
an evolutionary algorithm, including the genetic 
representation, genetic operators and selection methods. 
Section 1V presents some illustrative results. Finally, we 
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discuss future enhancements to the system and plans to 
extend the work to include greater complexity in the 
simulation model, including circuits. 

11. BACKGROUND 

Crushing and grinding of rocks and other particles has 
many important applications, including coarse crushing 
mined ore and quarry rock, fine grinding of coal for power 
station boilers, and for production of paint, ceramics, 
cement and other materials. It has been estimated that 
several billion tons of material is crushed and ground 
annually ([ 13). Thus optimisation of crushing operations 
offers large potential economic benefits. For example, in the 
area of energy savings, Napier-Munn et a1 ([2], p l )  quote a 
report of the U.S. National Materials Advisory Board in 
198 1, which estimated that realistic improvements in 
crushing-related activities could result in energy savings of 
more than 20 billion kWh per annum. Other benefits of 
optimisation of crushing and grinding in mineral processing 
operations include reduced operating costs, increased 
throughput and thus value production, and improved 
downstream performance. 

A.  Cnrshers and Circuits 

In this section, we provide a brief background on 
crushers and how they are used in comminution circuits. 
The interested reader could consult, for example, [2] for 
more detailed information. “Comminution” refers to the 
collection of physical processes that can be applied to a 
stream of ore to change the size of the particles in the 
stream. Examples include crushing and grinding (which 
break ore particles into smaller particles), and screening 
(which separates ore into several streams of different 
particle sizes). The purpose of comminution is to transform 
raw ore into a more usable or more saleable product or to 
prepare it for further processing. A “comminution circuit” 
consists of a collection of processing units (crushers, 
screens, etc) connected together (by conveyor belts, for 
example), possibly containing loops (hence the use of the 
word “circuit”). One or more streams of ore (the “feed”) 
enter the circuit and one or more streams of transformed 
material (the “product”) exit the circuit. 
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Figure 1 - The simple circuit used in this study 

Figure 1 shows the simple circuit that was used in this 
study. The feed comes in on a conveyor from the top left 
and enters the crusher. The crushed ore is then passed 
through a screen that allows particles less than 32 mm to 
pass through and report to product. Particles larger than this 
(the “oversize”) are recycled back to the crusher. Thus the 
input to the crusher is a combination of feed and 
recirculating oversize. 

The type of crusher used here is a “cone” crusher. Figure 
2 is a schematic diagram of a typical cone crusher. Material 
is introduced into the crusher from above, and is crushed as 
it flows downwards through the machine. The inner 
crushing surface, or “mantle”, is mounted on the conical 
crushing head and is driven in an eccentric motion 
swivelling around the axis of the machine. The outer 
crushing surface, or “bowl”, is held stationary. Material 
flows into the crushing chamber from above, and is crushed 
between the two surfaces by compressive forces due to the 
eccentric motion. After compression, the chamber widens 
and allows material to flow to lower parts of the crushing 
chamber, and eventually to fall through and exit the 
machine. 

The gap between the bowl and the crushing head at the 
closest point in the cycle is called the “closed-side setting”. 
This can be reduced to obtain a narrower chamber and finer 
crushing. The two crushing surfaces are covered by 
replaceable steel liners (shaded in Figure 2), which can be 
manufactured with different cross-sectional shapes. The 
eccentric angle and speed of revolution of the head can also 
be adjusted. These variables contribute to the performance 
characteristics of the crusher. 

B. Simulating Crushers 

Fitness is evaluated using a simulation of a single cone 
crusher. The inputs to the simulation are the: 

Physical properties of the feed (composition, hardness 
etc); 

Size distribution of the feed (the proportion of particles 
in different size fractions); 

Geometry of the mantle and bowl liners; 

Closed-side setting; 

The final four of these were chosen as the design variables 
for the chosen problem. The outputs of the simulation are 
the: 

Rotational speed of the head; and 

Eccentric angle of the head. 

Size distribution of the product; 

Power needed to crush the feed; and 

Maximum amount of material that can flow through the 
chamber without overloading the crusher (its 
“capacity”). 

From these outputs it is possible to calculate the steady- 
state size distribution of the product and the capacity of a 
circuit that includes the crusher. These data are used to 
evaluate the fitness of proposed designs. Each evaluation 
takes approx. 300ms on a 700MHz Pentium 111. 
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Figure 2 - Schematic diagram of a cone crusher (after 121 Figure 6.3) 

111. ALGORITHM 

The problem described above is well suited to an 
evolutionary algorithm approach. The problem cannot 
easily be described analytically, but a simulation is 
available that can be used to evaluate candidate solutions. 
The search space is large - too large for an exhaustive 
search - and there is little to guide an engineer in 
determining good designs for a given scenario. We chose an 
evolution strategy approach to tackle this problem, as it has 
similarities with other problems that have been successhlly 
handled by evolution strategies. In particular, candidate 
designs can be described using a vector of real values, and 
the problem involves determining geometric shapes. 
Previously reported successful applications of this type 
include the design of a jet nozzle ([3]) and a flywheel ([4]). 

The basic evolution strategy algorithm has the following 
steps: 

1. 

2. 

3. 

4. 

5 .  

6 .  

Create an initial population of designs. 

Evaluate the fitness of the designs. 

Create a population of children by mutating the 
members of the current population. 

Evaluate the fitness of the children. 

Select the fittest designs from the parents and children 
together. 

Repeat steps 3 to 5 until done. 

To implement a specific instantiation of the algorithm, 
we must specify the representation scheme to be used, the 
method of fitness evaluation, the nature of the mutation 
operators, the selection mechanism, and the termination 
condition. It may be possible for infeasible designs to be 
generated by mutation, in which case we must also specify 
how to deal with these infeasible designs. 

These specifications are detailed in the remainder of this 
section. 

A .  Fitness 

The principal objective that we are trying to maximise is 
the capacity of a circuit containing a given crusher. The 
placement of the crusher in a circuit is important because a 
crusher that itself has a high capacity may not be suitable if 
it generates a lot of oversize material: the presence of this 
recirculating material reduces the rate at which feed can be 
introduced into the circuit. We define “capacity ratio” to be 
the ratio of the amount of material entering the crusher to 
the amount of feed entering the circuit (at steady-state 
operation). A higher capacity ratio corresponds to more 
recirculating material. 

The capacity of a circuit may be limited by one of three 
factors. 

The capacity of the crusher. If a crusher has capacity 
CAP tonshour and capacity ratio CR, the capacity of 
the circuit will be limited by 

CAP / CR 

The power requirements of the crusher. A high 
rotational speed in particular delivers a lot of crushing 
but requires a lot of power. If a crusher with maximum 
power output M P  kWh requires P kWh to process a 
circuit feed of F tonshour, the capacity of the circuit 
will be limited by 

F x ( M P / P )  

The capacity of the recirculation conveyor in the 
circuit. If a crusher has capacity ratio CR and the 
conveyor has a capacity of M R  tonshour, the capacity 
of the circuit will be limited by 

MR/(CR-1) 
Each of these factors potentially limits the capacity of the 

circuit, therefore the actual capacity will be the minimum of 
these values. 
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CSS: 24.0 
Angle: 2.35 

RPM: 310 

Fitness: 1.00 
Normalised Capacity: 1.00 
Nmalised P80: 1.00 

Generation 0 

CSS: 15.2 
Angle: 0.81 

RPM: 227 

Fitness: 1.13 
Normalised Capacity: 1.18 
Nmalised P80: 1.12 

Generation 20 

CSS: 15.0 
Angle: 0.91 

RPM: 199 

Fitness: 1.16 
Nmalised Capacity: 2.54 
Normalised P80: 1.09 

Generation 100 

Figure 3 - A series of evolved liner pairs 

Notice the potential trade-offs for the various design 
variables. For example, a large closed-side setting will 
increase the capacity of the crusher, but will also increase 
the amount of recirculating material, raising the capacity 
ratio. Similarly, a high rotational speed will lead to more 
crushing in each pass through the chamber, but will also 
increase the power requirements of the crusher, possibly 
reducing the overall capacity. 

A secondary aim of the process is to minimise the size of 
the product. Specifically, we define P80 to be a measure of 
the size of the 80‘ percentile in the product (i.e. the size k 
mm such that 80% of the product is smaller than k mm). For 
technical reasons, a higher value of P80 corresponds to a 
smaller product, so we want to maximise P80. 

For the purpose of the experiments reported in this paper, 
we normalise both capacity and size figures by dividing by 
the figures for a standard design and settings. 

The actual fitness function that we use is: 

0.05 xCAP + 0.95 xP80 

where CAP is the circuit capacity, P80 is the size measure, 
and the constants are chosen to equalise the variability of 
the two components. Thus the fitness of the standard design 
is 1 .O, and higher fitness is better. 

B. Initialisation 

The population is initialised with copies of the existing 
standard design and settings. These copies are quickly 
eliminated in the first few generations of a typical 
execution. 

C. Representation 

The representation of the machine settings - closed-side 
setting, eccentric angle and rotational speed - is 
straightforward, these being real values within given ranges. 
The best way to represent the geometric shapes of the two 
liners is less clear. The shape of each liner is defined by its 

CSS: 15.0 
Mde: 0.53 n RPM: 192 

Nmalised Capacity: 2.95 
Fitness: 1.20 

Nmalised P80: 1.11 

Generation 200 

vertical cross-section. The shape of the machine structure 
dictates the shape of the “back” of each liner, so it is only 
the ‘‘front” of each liner (the actual crushing surface) that is 
represented. 

We chose to describe each shape as a series of line 
segments, using a variable-length list of points, each 
represented by a pair of coordinates. The first coordinate 
pair for the first segment and the last coordinate pair for the 
last segment are fixed, but each other coordinate is another 
real-valued object variable. 

Thus, if there are n line segments on the mantle and m 
line segments on the bowl liner, then the genotype consists 
of a vector of 

3 + 2(n - 1)+ 2(m - 1) 

real-valued object variables. 

Figure 3 shows a series of liner pairs evolved during a 
typical run. The first pair is a standard design as might be 
supplied by a crusher manufacturer. 

D. Mutation 

When a parent is mutated to produce a child, each object 
variable is mutated independently using self-adaptive 
mutation rates as described in [ 5 ] .  Specifically, each object 
variable is mutated using the formula 

x;‘ =xi + 0,: - Ni(0,l) 
where N ,  (0,l) is a normally distributed random value with 
mean 0 and standard deviation 1, and each strategy 
parameter ui is mutated using the formula 

where r and r‘are constants set to 0.25 and 0.1 
respectively. N(0,l) is sampled once for each individual. 
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In addition, we provided mutation operators to increase 
or reduce the number of segments in a liner. Whether to 
apply these operators is determined randomly with a fixed 
probability. The operator to reduce the number of segments 
randomly selects two adjacent segments to merge and 
discards the common end point. The operator to increase 
the number of segments randomly selects a segment to split 
into two, using the segment midpoint as the common end 
point. This was done to allow the algorithm to generate 
more complex or simpler liner shapes as desired. 

Run I Capacity 

1 1  2.068 
2 1  2.176 

E. Constraints 

There are a variety of feasibility constraints upon 
potential designs. These can be categorised as follows: 

Physical constraints The sequences of coordinate pairs 
must describe shapes that make sense operationally. In 
particular, the liners must have at least a certain thickness to 
be practical. Whilst code was developed to enforce this 
constraint, we found that it is violated so rarely that it is not 
worth the computational expense to do the checking. If the 
final solution returned violates this constraint, the algorithm 
can simply be re-run. 

Setting constraints Each machine setting must be confined 
to a given range. This is done by repair - any value that is 
too low is set to the minimum value for that setting, and any 
that is too high is set to the maximum value. 

Modeling constraints The crusher simulation is very 
complex and assumes (sometime implicitly) that liners have 
“sensible” shapes. To keep our designs in the “sensible” 
region, we imposed a heuristic constraint that the sequence 
of x-coordinates and the sequence of y-coordinates for each 
liner must both change monotonically. This constraint is 
enforced by repairing any coordinate that violates the 
constraint, at the time of creation. Even so, the simulation 
occasionally fails. In these cases, the design is assumed to 
be nonsensical and is assigned an abysmal fitness of 0. 

P80 Fitness 
1.106 1.154 

1.106 1.160 

F. Selection 

Selection is done using the standard (h  + p)-selection 
mechanism of evolution strategies, with h = p = 1. That is, 
each member of the current generation becomes the parent 
of one child, and the best individuals selected from the 
combined parents and children become the next generation. 

6 

7 

IV. RESULTS AND DISCUSSION 

In this section, we describe an example set of runs of the 
algorithm that is indicative of the performance attained on 
test problems. 

We ran the system ten times with a population size of 50 
for 200 generations on each run. Table 1 shows the 
performances of the best designs from these runs. The 
results show an average increase in capacity of around 
140%, and around 10% in P80. 

1.78 1 1.117 1.150 
1.958 1.106 1.149 
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1.094 1.194 ’ 

TABLE 1 - PERFORMANCES OF THE BEST DESIGNS FROM TEN 
RUNS RELATIVE TO THE STANDARD DESIGN. 

I I 
1 3 I 1.981 I 1.108 I 1.152 I 
I 4 I 2.288 I 1.101 I 1.160 I 

I 8 I 3.065 I 1.093 I 1.191 I 
L I 

9 1  2.591 I 1.105 1 1.180 

10 I 2.947 I 1.107 I 1.199 

Figure 4 shows how the fitness values and the two 
components, P80 and capacity, evolve during a typical run, 
Run 10. Improvements in capacity have been scaled down 
by a factor of 19 to reflect the fitness function scaling. It 
can be seen that improvements tend to be made by 
favourable tradeoffs between the two components. 

Figure 3 shows the best liner pairs from selected 
generations evolved during another run. It can be seen that 
the evolved shapes are distinctly different from the standard 
design. Whilst engineers can provide a post-hoc rationale 
for the revised design, and this provides confidence in the 
validity of the designs, it is virtually impossible to predict in 
advance the effect of a change in shape, much less to intuit 
a high quality design for a specific scenario. 

It is worth noting that each run takes only around 30 
minutes. In a real design exercise, a running time of several 
hours (or even days) would still be very acceptable, so there 
is plenty of scope for increased task complexity in the 
future. 

V. FUTUREWORK 

The work reported here is still in the early stages of its 
development. While the results obtained so far are 
excellent, many enhancements and extensions are 
envisaged. The problem described in this study could be 
extended to include other objectives. Work-has begun on a 
multi-objective algorithm based on Pareto optimality, using 
the principles outlined in [ 6 ] .  

Planned enhancements to the crusher simulation are 
likely to make it run an order of magnitude slower. We may 
then need to develop special strategies to speed up the 
evolutionary algorithm. One possibility is to use faster, 
more approximate models early in the search, using a 
scheme similar to the injection island genetic algorithm 
described in [4]. 
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Figure 4 -Graph showing fitness evolution during Run I O  from Table 1 

Another aim is to include, as part of the task, the design 
of the circuit itself - that is, to co-evolve crushers, screens 
and other processing units and their settings, as well as the 
pattern of conveyors connecting them together. This brings 
in elements of network design, another application area in 
which evolutionary algorithms have been successful (see 
e.g. [7]). The concurrent design of this network and the 
machines within it will be challenging, but the potential 
rewards are huge. 

VI. CONCLUSION 

In this paper we have described a study in the application 
of evolutionary algorithms to a difficult practical 
engineering design problem. Our system determines the 
liner profiles and operating settings for a comminution 
circuit in an ore processing plant. Initial results are very 
promising and indicate significant financial benefits. 

In many ways, this problem is an ideal application for 
evolutionary algorithms. The pay-off is high; the problem is 
too complex to solve analytically; the search space is too 
large to explore unaided; we have a well-defined evaluation 
hnction and a straightforward representation scheme, 
suitable for manipulation by genetic operators. Many 
challenges remain in incorporating more realism in the 
problem definition (for example, including variety in feed 
properties, interactions with other plant, etc) and validating 
the predicted performance with field trials. 
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