
Edith Cowan University Edith Cowan University

Research Online Research Online

ECU Publications Pre. 2011

2006

SQL Injection - Threats to Medical Systems: The Issues and SQL Injection - Threats to Medical Systems: The Issues and

Countermeasures Countermeasures

Craig Valli
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks

 Part of the Computer Sciences Commons

This is an Author's Accepted Manuscript of: Valli, C. (2006). SQL Injection - Threats to Medical Systems: The Issues
and Countermeasures. Proceedings of World Congress in Computer Science, Computer Engineering, and Applied
Computing. (pp. 421-425). Las Vegas, Nevada. CSREA Press, U.S.A.
This Conference Proceeding is posted at Research Online.
https://ro.ecu.edu.au/ecuworks/2044

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online @ ECU

https://core.ac.uk/display/41533563?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworks
https://ro.ecu.edu.au/ecuworks?utm_source=ro.ecu.edu.au%2Fecuworks%2F2044&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ro.ecu.edu.au%2Fecuworks%2F2044&utm_medium=PDF&utm_campaign=PDFCoverPages

SQL Injection - Threats to Medical Systems:
The Issues and Countermeasures

Craig Valli
School of Computer and Information Science

Edith Cowan University
Mount Lawley WA, Australia

Abstract - A vast majority of medical information systems
use Standard Query Language databases (SQL) as the
underlying technology to deliver medical records in a
timely and efficient manner. SQL is a standardised and
well entrenched database technology, which allows for the
development of robust, customised applications for
information management. In recent years, SQL has been
used as the back-end to many successful web client
accessible applications. The use of SQL in this manner
has been greatly enhanced through the development of
server side scripting languages such as Microsoft ASP and
open source systems such as PHP. These allow for the
representation and extraction of data from a database and
have a range of manipulation and display possibilities
allowing a developer a rich tapestry of options. However,
these scripting languages have enabled the ability for
malicious users to directly modify, manipulate or destroy
SQL databases. In addition to those server side scripting
language problems there is also malicious software in the
form of worms specifically targeting SQL databases.

Keywords: SQL, injection, medical, countermeasure

1 Introduction

Increasingly medical practitioners are either being
encouraged or forced to use information technology to
make the businesses more efficient or accountable. This
impetus for adoption of information technology into
modern medical practices comes from several sectors. In
the case of Australia, the Australian Federal government
has either mandated or provided significant financial
incentive for medical practitioners to modernise their
practices by installing Information Systems. Similar
schemes are also to be found other nation states around the
world. As well as government forces requiring a move into
information technology many of the medical supply
companies are likewise following suit. Whether it be
physical goods such as pharmaceutical or the provision of
knowledge such as test results for pathology or x-ray of
these suppliers increasingly are requiring ordering and
delivery of goods and services via electronic systems that
utilise the Internet as a principal conduit.

Consequently, as a result of this trend, medical practices
are now availing themselves of broadband technologies

and SQL enabled medical practice/client management
databases to meet this demand and also provide them with
strategic advantage through the usage of IT. There is little
argument that a modern database (typically SQL) centric
information system will garner significant cost savings and
strategic advantage for any information dependent
organization. This cost saving is principally in timely
delivery of information for legitimate purposes or use by
the organisation. In addition to increased speed of retrieval
and the ability to perform meaningful analysis and searches
on data, cost savings can be found in significantly reduced
storage space required to house records. A standard 2m tall
rack with a foot print of 0.25m2 or 0.5m3 can hold a server
and several terabytes of storage space. This could replace
several large rooms of paper based storage, realising
significant savings in reduced rental costs for floor space
and supporting infrastructure. Reduced labour expense in
the physical retrieval and re-storage of the record is also
found in itself a further significant cost saving to a
business.

What makes this current push more volatile is that the
systems that are being delivered by vendors are becoming
more multi-functional and at the same time monolithic. A
SQL enabled DBMS allows application developers to
produce a single data entry and aggregation point for all
medical practice business billing, notes, pharmacy,
pathology, tests etc a sound business concept in theory.
This philosophy is very problematic for securing all
information about a patient i.e one breach on one level and
an attacker potentially has the complete picture.

These market trends and forces are now bringing a
significant threat profile in the form of SQL injection and
manipulation within reach of a medical practices client
records. No longer does an attacker need to be physically
present to see the medical record they simply purloin or
modify the information across the ether connecting the
medical practice to a more purportedly, productive world.

2 What is SQL injection?

SQL injection is normally made possible as a result of
programming flaws in an application that allow for
changing the query parameters. This is a result of poor
validation or checking of the input. It is a common
misconception that the, well known, SQL slammer worm

was an SQL injection attack, but it was actually a result of
a serious flaw/exploit in the underlying server
infrastructure.

SQL injection attacks work because the application layer
is not properly checked for its input[1]. In fact it is possible
to perform a SQL injection attack on a properly secure and
patched SQL server as it is simply responding to the SQL
query it receives. The queries, which in these cases has
been intercepted or modified by attacker interactions,
remain legitimate or accurate SQL syntax after
modification by the attacker.

To illustrate this, take a SQL procedure that takes a
username and password as input on a web based login form
box that could look like Figure 1.

Figure 1: Login prompt

"select * from database.user

where username=’ " . $userName . " ’ and

password=password(’ ". $passWord . " ’);"

Instead of a valid user-name, the malicious user sets the
$userName variable to the string: ’ or 1=1; - -’, causing the
CGI script to issue the following SQL query to the
database:

"select * from database.user

 where username=’’ or 1=1;-- ’ and

password=password(’ ". $passWord . " ’);"

The problem here is that - - is the SQL comment command
i.e all text after this is ignored so now the query really reads
like

select * from database.user where username=’’ or 1=1;

This means that the database will now return a list of
usernames to the screen of the attacker and they can go
about attempt a break in by password guessing. This is a
simple select statement in SQL which is principal used to
query or extract information from a database. A more

sinister form of attack is when the attacker actually uses the
INSERT or UPDATE statements in SQL to create or
modify an existing record using similar mechanics of
modification. There are various other methods of attack
using SQL injection techniques that are already well
documented. It is not necessary to include each variant in
this paper as its progress as an exploit is well beyond proof
of concept [1-5]. As one software developer put it, "From
the outside, all SQL injections look the same. But there are
five or six ways to set up a call that has SQL injections."[2]
The point of the previous explanatory text was to illustrate
the ease of attacks.

The major problem with this form of attack is that if
there is no integrity checking run on the database inputs,
modification can be undertaken at will by an attacker
without fear of detection. Many intrusion detection systems
are still not fully checking for this type of malicious input
into a system hence the data streams will be allowed
through. One of the other issues is that supporting server
side scripting architectures such as PHP and Microsoft
ASP have some limited in-built methods for checking for
such inputs with most requiring action from the application
developer. PHP has for instance magic_quotes which
checks for and can help against such incursions but it must
be enabled it is not set on by default.

3 How feasible are attacks on medical

records?

The use of SQL injection attack, and the subsequent
consequences to a medical information system, can only be
described as potentially catastrophic and life threatening.
The ability to potentially change any data contained within
a database of this sort is simply not an acceptable option.
However, potentially many custom built SQL applications
are susceptible to these attacks and that includes medical
systems.

The enabler of this type of attack is simply a broadband
connection that allows an attacker to probe your server.
Now many people reading this would postulate that it is
impossible to target medical systems specifically, think
again. Using Google or similar search engines an attacker
can target systems with a high probability that they are
medical systems. Some simple targeting examples follow
in Table 1. The examples given here allow for broad
reconnaissance of the Internet for host to potentially
compromise. A more determined attacker can actually use
Google or other search engines to interrogate a domain
name or website of a medical practice. This is standard
practice now for many penetration testing schemes and
there are several published books to aid you in using search
engines for this purpose[6]. Further specificity can be
arrived at by using domain name interrogation and other IP
probing tools such Nmap[7].

 Table 1 Sample Google Queries

Google Query Hits
intitle:medical inurl:login 20000 hits
inurl:surgery inurl:login 899 hits
inurl:doctor inurl:login 695 hits
intitle:hospital inurl:login 696 hits
intitle:patient inurl:login 682 hits

The reason that this is a risk is that for many small
businesses is the actual web server that serves web content
itself may be contained on the practice SQL server. In fact
many vendor products designed for small businesses
actually encourage this sort of deployment e.g Microsoft
Small Business Server suite by providing a monolithic
solution to the provision of business applications and
services.

4 Mitigating against SQL injection

The following are some simple steps that medical
practises can take to secure there client or practise
management systems from SQL injection. These are by no
means an exhaustive list of options but are the relatively
easy to effect and can great reduce or even nullify the
threat of SQL injection from external attackers.

4.1 Simple Infrastructure Changes

As mentioned before, vendors will often encourage using
a monolithic architecture i.e. all components on one server
by having a one size fits all small business server
“solution”. This server normally serves the SQL database,
web services, web proxy and is used to connect directly to
the Internet. The connection to the Internet in most of these
cases is via an ADSL router or similar broadband based
router directly connected to the server. At best a simple
dual bastion design is utilised in these situations to protect
the network. This network design is not the strongest and is
becoming increasingly ineffective against newer attacks.

Cost is a factor in any business and more so often in
smaller business were economies of scale and profitability
may not be as high. But regardless of cost a risk that is
potential business terminator should not be too heavily
discounted in considering risk for a medical practise.
Significant security advantage can be gained by separating
the practice/client SQL server from the Internet and web
access server and using a DMZ mentality see Figure 2.

The purchase of a new Internet and web server to
physically separate servers will easily be defrayed against
the significant risk this purchase reduces. It will help also
mitigate risk of other Internet borne attacks such as viruses

and spyware which is significant and warrants factoring
into this decision.

Figure 2 – DMZ Deployment SQL Server

Router/F irewall

Internet Services Server

Network Sw itch

SQ L ServerC lin ica l PCs

Broadband Router

Network Hub

The use of a de-militarized zone (DMZ) with firewalling
and routing will afford a higher level of protection for the
SQL server. The SQL server would no longer be accessible
directly from the Internet sitting behind the DMZ in the
private network with the practice computers. This type of
defensive arrangement would hamper significantly the
possible reconnaissance from search engines and other
simple attack methods that could be employed by hackers
on a monolithic system.

One of the common misconceptions in network security
is that the use of network switch will prevent/stop a hacker
from penetrating a network further, this is simply not true.
The use of ARP poisoning software such as ettercap [8]
which is readily available from the Internet will allow the
attacker to penetrate a network switch.

Effective firewalling technology is often seen as
expensive and in the domicile of scientists in white coats
this is no longer the case. Many commodity based ADSL
routers for instance have been certified by the same testing
schemas that are applied to large enterprise level firewalls
and have proven equally fit for purpose[9]. Furthermore,
modern operating systems now have as there base
operating system a competent firewalling system that can
further strengthen defences.

4.2 Input or Data Sanitisation

Removal of any unwanted characters say ' , " , ; , or - -
from the received from the input stream. Allowing these

types of characters that are correct SQL syntax may allow
SQL injection attacks to be performed on your SQL based
application.

However, one particular problem from an SQL injection
viewpoint is that you will need to allow certain special
characters such as ' or - so a patients name such as O'Bree
or Della-Agostini could be used in the application. Now
while the use of such characters is good for correct name
syntax it is bad in mitigating SQL injection via syntactic
insertion. The alternative is to replace the characters with a
close substitute such as ' with ‘ or a character as that
would not represent or be legitimate SQL syntax. By doing
this substitution it would be useful for the mitigating
against propagation of SQL injection attempts. The
converse however would have to happen for display of
database records in reports such as queries or output to
other systems otherwise the names would be grammatically
incorrect.

It is interesting to note that such routines for cleansing or
substitution can have significant reuse in all aspects of the
application and often only need to be created once and
reused via calls to the validation of substitution procedure.

4.3 Strict SQL database permissions

Allowing unrestricted access to the SQL application
although it might be expedient for development of systems
it is not ideal for their eventual deployment and will cause
security issues for the owner of the software. A proper
mapping of appropriate DBMS read or write permissions
for each role within the system can mitigate against SQL
injection. This is typically done at the developer level
which is achieved by giving only necessary permissions to
the user or procedure to perform that particular job
function or process. In databases this is accomplished
typically via the use of views. A view is used typically for
displaying queries so unless a user needs to directly update
a record they should see only a read-only version of the
record (view).

4.4 Reducing Customisation

By using a stored and tested procedure instead of
allowing dynamic queries in your SQL based applications.
This will reduce the chance of such attacks and if properly
tested and constructed should also increase server
efficiency and performance gains are also garnered by this
approach by restricting inappropriate resource usage. As an
example a user can not accidentally query or modify the
entire database schema by the input of an inappropriate
query parameter. The same logic is then applied to
malicious codes if no query interface is given then the

presentation of malformed SQL code becomes a difficult
outcome to achieve.

4.5 Simple System Auditing

The use of some of the in-built auditing tools in most
SQL server implementations could provide at least alerting
that some malicious activity is being undertaken.
Furthermore, conventional performance measuring tools
provide with server operating systems might indicate an
unnecessary large server load as a result of intense SQL
queries being run in non-business hours. Incidents of these
types are relatively easy to detect as a system over time will
tend towards a normalised pattern of loads and behaviours
from its users.

5 Conclusion

SQL injection may seem a reasonably esoteric subject for
medical practices to consider in a threat profile. However,
as medical practices become more dependent on the use of
information and network technology they will need to avail
themselves of security posture and countermeasure beyond
simple virus protection and simple firewalling. Information
contained on medical systems is systems of interest to more
than the stereotypical hacker who lays waste to data with
impunity or wants to “ownz” the system. The target group
for such systems data includes a wide range of attack
profiles and motivations. A dialogue between stakeholders
in this arena should be on-going and is vital if we are to
protect data from deletion or even worse modification.

Further practical research is about to be started from an
Australian context where the leading products in this area
of practice/client management which utilize SQL will be
fully penetration tested for SQL injection and range of
other ancillary security threats. It is hoped that all of the
software tested goes through unscathed and is robust.
Finally, as people can literally live or die as a result of the
data held in these systems it does bring new meaning to the
words data integrity or would it be better couched as
patient integrity.

6 References
[1] S. King, "How to plug online gaps," in Computer

Weekly, 2004, pp. 30.
[2] J. deJong, "Top Ten, Other Lists Catalog Security

Threats," in Software Development Times, 2005,
pp. 5.

[3] L. Gomes, "PORTALS: More Scary Tales Involving
Big Holes In Web-Site Security," in Wall Street
Journal, 2004, pp. B.1.

[4] R. Kwon, "Is Your Web Site at Risk of Injection?,"
Baseline, vol. 2, pp. 108, 2002.

[5] M. Thurman, "Security problems put survey app on
sidelines," in Computerworld, vol. 37, 2003, pp.
30.

[6] J. Long and E. Skoudis, Google Hacking for
Penetration Testers: Syngress, 2001.

[7] Fyodor, "Remote OS detection via TCP/IP stack
fingerprinting," vol. 2002, 1998.

[8] A. Ornaghi and Marco, "ettercap," 2005.
[9] Netgear, "ProSafe™ VPN Firewall w/4 Port 10/100

Switch and Print Server Model FR114P,"
NetGear, 2005.

	SQL Injection - Threats to Medical Systems: The Issues and Countermeasures
	Microsoft Word - SAM8150.doc

