
Edith Cowan University Edith Cowan University

Research Online Research Online

ECU Publications Pre. 2011

2008

Using NEAT for Continuous Adaptation and Teamwork Formation Using NEAT for Continuous Adaptation and Teamwork Formation

in Pacman in Pacman

Markus Wittkamp

Luigi Barone

Philip Hingston
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks

 Part of the Computer Sciences Commons

10.1109/CIG.2008.5035645
This is an Author's Accepted Manuscript of: Wittkamp, M., Barone, L., & Hingston, P. F. (2008). Using NEAT for
Continuous Adaptation and Teamwork Formation in Pacman. Proceedings of IEEE Symposium on Computational
Intelligence and Games. (pp. 234-242). Australia, Perth. IEEE. Available here
© 2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.
This Conference Proceeding is posted at Research Online.
https://ro.ecu.edu.au/ecuworks/735

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworks
https://ro.ecu.edu.au/ecuworks?utm_source=ro.ecu.edu.au%2Fecuworks%2F735&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ro.ecu.edu.au%2Fecuworks%2F735&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1109/CIG.2008.5035645
http://dx.doi.org/10.1109/CIG.2008.5035645

Using NEAT for Continuous Adaptation and
Teamwork Formation in Pacman

Mark Wittkamp, Luigi Barone, Member, IEEE, and Philip Hingston, Senior Member, IEEE

Abstract-Despite games often being used as a testbed for
new computational intelligence techniques, the majority of ar
tificial intelligence in commercial games is scripted. This means
that the computer agents are non-adaptive and often inherently
exploitable because of it. In this paper, we describe a learning
system designed for team strategy development in a real time
multi-agent domain. We test our system in the game of Pacman,
evolving adaptive strategies for the ghosts in simulated real time
against a competent Pacman player. Our agents (the ghosts) are
controlled by neural networks, whose weights and structure
are incrementally evolved via an implementation of the NEAT
(Neuro-Evolution of Augmenting Topologies) algorithm. We
demonstrate the design and successful implementation of this
system by evolving a number of interesting and complex team
strategies that outperform the ghosts' strategies of the original
arcade version of the game.

I. INTRODUCTION

Games are often used as a test-bed to further the devel
opment of artificial intelligence (AI) techniques. Games are
suitable in this respect because they involve similar problems
to those encountered in real life, but are simpler and more
clearly defined. They have a finite number of rules and
actions for players to make and there is some well understood
goal. There are extra challenges facing players in video
games, compared to traditional games (board and card games
for example). Video games have a far greater number of
actions available for players to make and these actions can
have temporal significance.

Developing adaptive behaviour has been demonstrated
using opponent modeling together with evolutionary algo
rithms [1], [2], but the problem becomes much more com
plicated when we add the requirement for this to be done
in real time, during play. In a simple example, Quinn et
al [3] have witnessed the real time evolution of cooperative
and coordinated behaviour for a team of robots; achieving
the goal of moving to a new location while staying within
sensor range of each other.

Contrast real time learning with offline learning, where
artificial players practice (generally by playing games) to
become better players for future games. When an artificial
player is able to learn a strategy offline, the amount of CPU
time available is near limitless. The learning and fine tuning
of artificial players can run continuously for days or weeks.

Mark Wittkamp and Luigi Barone are with the School of Computer
Science & Software Engineering, The University of Western Australia,
35 Stirling Highway, Crawley, Austra1ia (phone: +61-8-6488-1944; fax:
+61-8-6488-1089; email: {wittkamp.luigi}@csse.uwa.edu.au).
Philip Hingston is with the School of Computer and Information
Science, Edith Cowan University, 2 Bradford Street, Mount Law
ley, Australia (phone: +61-8-9370-6427; fax: +61-8-9370-6100; email:
p. hingston@ecu. edu. au).

978-1-4244-2974-5/08/$25.00 ©2008 IEEE

For real time adaptation, the time allowed for learning is
much less. Not only must the learning yield results quickly
enough so that adaptive behaviour can be achieved during
play, but only a portion of the CPU time will be avail
able due to the game's own running requirements. Further,
computational intelligence techniques require many iterations
and many more test cases for the evolution process to yield
desirable results and so, speeding up of such techniques is
of great importance.

II. LIMITATIONS IN VIDEO GAME AI

Despite a large amount of research in the field of video
game AI, the majority of AI strategy in commercial games
is scripted [4]. Developers resort to scripts because they
are understandable, predictable, easy to modify and extend,
and are usable by non-programmers [5]. While scripts can
respond to the actions of human players, behaviours will
be the same time and again. Game developers sometimes
use adaptive learning techniques during development, but
learning is rarely included in the released product [6]. This
results in artificial opponents with weaknesses that, once
discovered, are easily exploited. Predetermined behaviour
also leads to repetitive and boring artificial players. While
stochastic systems can be employed to add some variety into
the behaviour of artificial players, they generally offer only
slight variation to some predetermined strategy. Too much
variation has the potential for seemingly random or irrational
behaviour. Appearing random may not necessarily imply an
ineffective strategy, but it can adversely affect the human
player's immersion in the artificial environment.

Another limitation of current game AI is that the teams of
opponents are often self-interested. While a good individual
may be useful for a team, this is very different from team
interested individuals who prioritise the good of the team
over personal good. Without team based learning, artificial
players will in some respect always be "greedy". No matter
how well the individual parts may be tuned, certain team
strategies may never arise - a self-interested individual
would not sacrifice himself to draw fire away from comrades,
or to lead opponents into an ambush. Team based learning
is also useful where the goal to be accomplished is too
large or complex to be achieved by individuals without team
coordination - RoboCup soccer [7] for instance.

This paper explores the use of computational intelligence
techniques for real time learning in the game of Pacman.
Focusing on team-work development, we examine how these
techniques can be used to evolve strategies for the ghost
agents in the game. Making use of continuous short-term

234

learning to regularly update ghost strategies, we introduce
a novel framework that parallelises offline strategy learning
with actual game play; constant adaptation over short time
periods meaning the ghosts do not need to learn complex
general strategies to be used in all game situations.

The rest of the paper is structured as follows. Sections III
and IV provided background material that further motivate
the problem and introduce the salient features of the under
lying technologies used. Section V introduces our learning
system for the game, discussing how our approach can be
used for real time adaptation and team strategy development.
Section VI details the AI used in the original arcade version
of the game, reporting statistics that will be used as a baseline
comparison for our work. Section VII then reports on ex
periments with a number of different fitness metrics; results
indicating our system is able to evolve players that yield
emergent team-work capable of superior performance to the
AI used in the original arcade version. Finally, Section VIII
summarises and concludes the work.

III. NEURO-EVOLUTION OF AUGMENTING TOPOLOGIES

Evolutionary algorithms (EAs) are a powerful tool for
designing and training neural networks. Recently, Stan
ley and Miikkulainen developed a new evolutionary algo
rithm called Neuro-Evolution Through Augmenting Topolo
gies (NEAT) [8] , which incrementally evolves the topology
and weights of neural networks simultaneously.

The NEAT algorithm has been applied to a number of
interesting problem domains, yielding some very impressive
results. For example, the application of NEAT to the game
of Othello saw the development of the sophisticated mobility
strategy as a required step towards defeating alpha-beta
search [9] . The development of this strategy, even at an
intermediate level, suggests that NEAT has the ability to seek
out weaknesses in opponents and develop strategies to exploit
them.

NEAT has a number of features making it an attractive
choice for our desired application area - that is, real time
learning, where learning speed is important. While NEAT
has been applied to real time learning in games in the
past [10], most previous work has focussed on self-interested
individuals and not team-based strategy development that we
seek for this work.

NEAT utilises speciation to avoid premature convergence
to suboptimal solutions. Potential innovations are protected,
giving newer structures a better opportunity to develop rather
than being discarded early on in favour of existing, more
developed, structures. This is done by allowing individuals
to compete primarily against other members of their species
rather than with the entire population. The number of off
spring allowed per species is proportional to the average
fitness of that species.

Bloat is the name given to the problem that results
from individuals' structures becoming unnecessarily large
(i.e. without an increase in performance), leading to slower
execution of the EA and individuals that can not be further
optimized. NEAT has a number of features to avoid bloat.

It has a historical marking mechanism avoids the crossing
of sections arbitrarily from highly varying structures. NEAT
builds up from an initial population consisting of minimal
networks without hidden nodes and structural complexity
grows incrementally via mutation; complexity is only added
if it yields a fitness advantage. NEAT's use of specia
tion/niching also aids in ensuring smaller structures are kept
in the population as long as they are competitive. Should a
species' members become bloated, these members will split
off and form a new species. Only if this new species exhibits
superior performance will the original species begin to die
off.

IV. THE GAME OF PACMAN

The human player's goal in the video game Pac man [11] is
to navigate Pacman through a maze and progress to the next
level by collecting (eating) all the pellets and power-pills in
the maze (see Figure 1 for the default Pacman level map).
There are four opposing ghosts, who try to stop Pacman
by chasing him down and eating him. In the centre of the
maze is a hideout area that Pacman is unable to enter. At
the beginning of each level, one ghost begins just above
this hideout while the remaining three venture out one after
another every two seconds.

.0 :0 : :O : O~

Fig. 1. Default Pacman level map

Pacman begins the game with three lives and loses one
each time he is eaten by a ghost. The game is over when
Pacman runs out of lives.

Typically, the ghosts chase Pacman throughout the maze
in an attempt to restrict his progress with the threat of
consuming him and taking one of his lives. When Pac man
eats a power-pill however, the situation is reversed and for
a limited amount of time, Pac man is able to eat the ghosts
and the ghosts cannot harm him. When eaten by Pacman,
the ghost is consumed and loses its body, at which point
it can not be eaten again nor pose any threat to Pac man
until it is restored. The ghost must make a trip back to
the hideout in order to restore itself. We define these three
different ghost states as: chaSing (pursuing Pacman), fleeing
(evading Pacman when Pacman has consumed a power-pill),
and returning (returning back to the hideout to be restored).

2008 IEEE Symposium on Computational Intelligence and Games (CIG'08) 235

Other than a game of survival, there is also a point scoring
system to Pacman. The consumption of pellets, power-pills,
and the bonus items that appear on occasion throughout the
game all give Pacman points. Eating ghosts also rewards
Pacman with points, increasing exponentially for each ghost
eaten while still under the effects of that power-pill. When
Pacman reaches certain scores, he is awarded an extra life.
Despite its simplicity, the game of Pacman provides an
interesting environment for potentially very complex team
strategy development as the ghosts need to cooperate together
to "trap" Pacman in order to kill him. In this paper, we work
with a modified version of Pacman (in part, to be more true
to the original arcade) based upon a Java applet version by
Ben Chow [12].

V. A TEAM LEARNING SYSTEM FOR PACMAN

In this work, we aim to construct an environment where
a number of ghosts are able to learn as a team in real time
to exploit Pacman's weaknesses. The learning scheme for
the ghosts is designed to work in parallel with the execution
of the Pacman game, however, for this paper, we run it in
"simulated real time" where we simply pause the game in
progress and allow NEAT to take over. The work reported
here is intended to be a proof of concept for a complete real
time implementation of our system.

The representation we use for ghosts is a feed-forward
neural network which we evolve through the use of the NEAT
algorithm - we have disallowed NEAT from producing
recurrent links. Note that we are using the original NEAT
algorithm, not the rtNEAT extension. We actually run four
separate instances of NEAT with separate populations, only
the best of which ever becoming active participants in the
real Pacman game.

For the experiments reported in this work, we hand-coded
a pachot to play the Pacman game and act as a training
partner to our team of ghosts. The pacbot is a decent
player, capable of completing the first level almost every time
when faced against the default ghost strategies (described in
Section VI).

A. Precomputed information

Pacman levels are made up of a number of adjacent cells,
each of which is either a pathway or a wall. Pacman, as
well as the ghosts, pellets, power-pills, and bonus items may
occupy these pathways.

We wish to concentrate on developing high level game
play and avoid complicating the problem with lower level
tasks such as navigating around walls, finding intersections,
and so on. We are aware of a study that evolved a Pacman
playing agent using a very small set of raw inputs and was
able to produce a basic player, but its ultimate ability was
hampered by having to learn how to avoid walls [13]. Our
interest lies in the team-work and game strategies that can
be evolved, rather than evolving ghosts from raw game data
or minimal information.

Ghosts process the level map as a graph made up of a
series of interconnected nodes that correspond to the pathway

cells that the ghosts are able to reach. The initial positions
of all pellets and power-pills are stored and updated in
the environment model as the game progresses. We also
precompute an all-pairs shortest-path table for every node
in the level map, but we store only the length of these paths.
Finally, we also allow our ghosts access to a precomputed
table of shortest-path lengths from each cell to its nearest
intersection - that is, any node that has more than two
connecting nodes.

B. Learning structure

We use a neural network as the representation of an
individual ghost strategy, which we evolve by running a
series of simulated games in between the progression of the
real game. We aim to have real time learning which learns
only the specific team behaviours necessary to do well in
the short-term, allowing for a high level of adaptivity which
we hope will overcome the lack of a more generalised game
playing strategy. Using evolutionary selection pressure that
rewards an individual ghost based on the performance of the
team, we use NEAT to train our ghost strategies.

To allow for heterogeneous strategy development, we keep
a number of populations in memory, divided up amongst
the four separate ghosts. A simplistic approach might be to
allow each ghost to have its own population, however, as
relative distance to Pacman is more likely to decide what
strategy to employ than a ghost's arbitrary colour, we use a
population scheme based on a ghost's proximity ranking to
Pacman instead.

In each time slice, a ghost is marked for training (cycling
through the four different ghosts in tum) and then allowed to
evolve from the population corresponding to its proximity to
Pacman (Le. closest, second closest and so on). A time slice
is about as long as it takes for a ghost to travel a distance
of 15 cells (approximately three to four seconds of game
time). Section VII report experiments with different fitness
schemes; results showing that the fitness scheme has a major
impact on the strategies evolved by the learning system.

We begin by initialising a number of randomly generated
neural network populations, each corresponding to ghosts
classified according to their distance to Pacman. Let Gn be
the state of the game at the beginning of time slice n. During
these time slices and at their boundaries, a number of tasks
must be performed. The general ghost training algorithm is
as follows (see also Figure 2):

1) Mark a ghost for learning during current time slice,
beginning at Gn .

2) Look ahead (based on our models of the other ghosts
and Pacman) and store the game state as we expect it
to be like at the beginning of the next slice through
simulated play (eGn+1). This will be the starting state
for the NEAT simulation runs.

3) The fitness of a ghost strategy is determined by evalu
ating the game state that we expect to reach when the
strategy is used in place of the marked ghost (eGn+2).
This evaluation is an evaluation of the end state, and
we experiment with various fitness schemes.

236 200B IEEE Symposium on Computational Intelligence and Games (C/G'OB)

Real game lime passes.. . •

(1)
Mark a ghost for

replacement

+
(2)

Look ahead and
simulate from eGn+1

+
Rank pl,3~u l ation

according to fitness
seen at eGn+2

t
(4)

Run NEAT until the real
game reaches Gil.'

Population for ghosts within a some
proximity range to Pacman

(5),- +--.:==::::;Ji§iJ
Replace . 0 0
marked .00
ghoston .00
the game . 00

.00

New Population of
playing strategies

Fig. 2. Pictorial representation of our learning system

4) In parallel to the running of the actual game, run NEAT
until the actual game reaches On+!.

5) The best individual from the simulations is substituted
into the game, replacing the marked ghost.

6) Repeat the process for the next ghost in tum.

Our aim in this work is to determine the feasibility of
the proposed approach for learning in Pacman. Instead of
restricting NEAT to a limited amount of time (point 4
above), in this work, we allow the marked ghost to learn
by simulating play with a perfect Pacman player model for a
definite number of generations (20 generations). We maintain
four separate populations (each of size 10) to allow for
variation between ghost strategies. Our eventual aim is for
this learning to occur in parallel, and hence it will be limited
by the time available while the game is in play (the time
slice). For the moment however, we simply pause the game's
progress and allow the simulations to run sequentially.

The accuracy of the estimated next game state depend on
the accuracy of the Pac man player model. The estimates for
these experiments will be close to perfect because we are pro
viding NEAT with a perfect model (the game itself has slight
variation due to processor load and interleaving of events).
The ghosts are deterministic and have perfect knowledge of
each others' behaviour and so will not introduce any error
into game state estimates.

C. Ghost neural network

We aim to evolve a neural network that acts as a move
evaluator for the cells adjacent to a ghost. This approach
has been successfully tried before, albeit to control Pac man
rather than ghosts [14]. Our network is applied up to four
times (once for each adjacent cell); the cell with the highest
evaluated score is where the ghost will move to next. The
neural network we construct will therefore only have one
output value - the score of a cell. The score provides a
measure of desirability of the resulting game state if the
training ghost moved to the cell under consideration. An
alternative approach uses a neural network with four outputs,
representing the value of moving up, down, left or right in
each situation, as in [15]. The advantage of our approach is

that the network must only learn to output a single value.
An approach where we evaluate only a ghost's adjacent

cells may at first seem to be a very localised and "greedy"
choice. However, when we consider that the inputs to the
neural network contain precomputed high-level information
as described in Section V-A, it becomes clear that the few
cells explicitly under consideration are capable of encom
passing information from many other cells.

Allowing our neural networks to receive their inputs as
higher-level information allows complex behaviour to be
very simply represented by the ghosts' neural network. For
example, consider a neural network with a single input:
the shortest-path distance to Pacman. For a ghost to chase
Pacman, all that would be required is a positive weight
connecting this single input to the output.

We selected neural inputs to give the ghosts sufficient
information to be used as fundamental building blocks for
general ghost strategy development. There are 19 inputs in
total, which we hope will be sufficient to allow for complex
and diverse team strategies to develop. Many of these 19
neural network inputs are based on information we found
useful when constructing the pacbot player.

The full list of inputs is listed below. To keep the list
concise, we first introduce some terminology. The inputs are
written from the point of view of the ghost using the neural
network as if that ghost was positioned on the cell that is
currently being evaluated. We use the word this to refer to the
current ghost (the one whom the neural network is being used
to control). Recalling the three different ghost states (chasing,
fleeing, or returning), we define a function called status (g)
that returns {-I, 0, I} respectively depending on the state of
ghost g. As the ghosts need information about their relative
positions to key objects in the game, we use a function called
closest (t , 0) that returns the closest object of a particular
type t to the object 0 (e.g. closest(Powerpill, Pacman)
represents the closest power-pill to Pacman). We refer to the
length of the (Manhattan) shortest path from points a and b
as dist(a ,b).

Each evolving ghost strategy has access to the following
information in the form of its neural network inputs:

1) status (this)
2) status (closest (Ghost , this»
3) status (closest (Ghost , Pacman»
4) dist(this , Pacman)
5) dist(this, closest (Ghost , this»
6) dist(Pacman, closest (Ghost , this»
7) dist(Pacman, closest (Ghost, Pacman»
8) dist(this , closest(Powerpill , this)
9) dist(Pacman, closest(Powerpill , this»

10) dist(this , closest(Powerpill , Pacman»
11) dist(Pacman, closest(Powerpill , Pacman»
12) dist (this, closest (Pellet , this»
l3) dist(Pacman, closest(Pellet , this»
14) dist(this, closest (Pellet , Pacman»
15) dist(Pacman, closest(Pellet , Pacman»
16) dist(this , closest (Intersection, this»
17) dist(this , closest (Intersection , Pacman»
18) dist(Pacman, closest (Intersection, this»
19) dist(Pacman, closest (Intersection , Pacman»

2008 IEEE Symposium on Computational Intelligence and Games (CIG'08) 237

D. Performance assessment

After a simulated game run has finished, the performance
of the ghosts is evaluated as a whole and this group score
is used to evaluate the variable component during that
simulation - i.e. the ghost currently in training.

Ideally, we would like the fitness to be measured by
some high-level means (for example, the amount of time
Pacman managed to stay alive, or Pacman's achieved score).
This would minimise the bias in our evaluation metric. The
problem with a high-level evaluation metric is that most
of the time there would be very little, if any, selection
pressure for the evolutionary algorithm to use. If only the
death of Pacman is given as positive feedback, a mostly
flat fitness landscape results, with little search gradient to
guide the evolutionary search. Useful feedback will only be
forthcoming if a strategy is found that is good (or lucky)
enough to eat Pacman in the first place - but it does not
provide a means of comparing all the group behaviours that
failed to eat Pacman.

The aim of a fitness function is to guide the evolutionary
algorithm toward leaming effective team strategies. We tried
a number of fitness functions, as outlined in the correspond
ing experiments in Section VII. All are designed to reward
individual ghosts based on the performance of the team they
are a part of (global reinforcement), as opposed to directly
evaluating an individual solely by their own performance
(local reinforcement).

VI. ORIGINAL GHOST AI IN PACMAN

In order to show the benefits of our learning system for
evolving good ghost strategies, we compare the performance
of strategies evolved using our approach to the strategies used
in the original arcade game of Pacman. Here we describe the
main elements of the AI used to control the ghosts in the
original version.

In the original Pacman game, the ghosts alternate between
the two modes of play (attack and scatter) several times until
eventually remaining in a permanent state of attack [16].
Each of the four ghosts has its own unique attacking strategy,
and each heads toward their own "home" corner when
scattering.

When a ghost reaches an intersection, it decides upon a
target cell. The ghost then moves in the direction to minimise
its horizontal or vertical distance to that target (whichever is
greater). When attacking, the red ghost's target is the current
position of Pacman. The pink ghost's target is the cell four
positions in front of Pacman. The blue ghost's target is the
position such that the cell two positions in front of Pacman
is the midpoint between Pacman and the red ghost's target.
The orange ghost will target Pacman when it is far away, but
will target its home corner instead when within a vertical and
horizontal distance of eight cells to Pacman. Ghosts revert
to a pseudo-random behaviour when under the effect of a
power-pill [17].

TABLE I
PERFORMANCE OF THE PACBOT VERSUS THE ORIGINAL GHOST AI

Score at end of first level:
Lives lost during first level:

A. Performance of the Original Ghost AI

To measure the success of our learning system, we com
pare the performance of our evolved strategies against a
simulation of the original Pacman ghost AI described above.
Table I reports this performance, averaged over 25 runs to
compensate for the non-determinism in the game. We report
the score at the end of the first level, and the number of lives
lost in completing the level - when either the pacbot has
eaten all pellets and power-pills or has died three times.

These results confirm the competence of the pacbot, which
successfully completed the first level 22 out of 25 runs. The
score obtained by the pacbot in completing the first level
(4808.4) is significantly greater than the "baseline" score of
2700 (the score obtainable by just eating pellets and power
pills), indicating that the pacbot uses the power-pills to eat
ghosts to maximise its score. If we continue the game to
completion (repeating the level until the pacbot has lost all
three of its lives), the pacbot obtains on average a final score
of 7930.8, roughly equivalent to that of a novice human
player. This pacbot was designed to be a "safe" player - its
primary goal is to stay alive and pass the level; achieving a
high score is a secondary concern.

VII. EXPERIMENTAL FRAMEWORK AND RESULTS

In this section, we report experiments with various fitness
functions used in our evolutionary learning system and
discuss our observations.

A. Experiment 1 - Chasing and Evading Pacman

In our first experiment, we aim to learn a simple chasing
and evading strategy for the ghosts. We use an evaluation
metric that rewards killing Pacman and then a secondary
reward for minimising the distance of chasing ghosts to
Pacman and maximising the distance of fleeing ghosts to
Pacman. We use the secondary measure to resolve ties
between solutions with the same performance on the first
measure. The metric we use is:

rank 1 :

rank 2:

Pacman's number of lives

Eb:ldist(Ghost'i" Pac:man)

- Eb:l dist(Ghost{, Pac:man)

where GhostC denotes a chasing ghost and Ghost! denotes
a fleeing ghost.

A comparison of the performance of the pacbot when
played against our learning system using this evaluation
function and the original ghost AI is shown in Table II. As for
all the experiments, results are averaged over 25 independent
runs. Italicised entries are statistically significantly different

238 200B IEEE Symposium on Computational Intelligence and Games (C/G'OB)

TABLE II

PERFORMANCE OF THE PACBOT VERSUS THE LEARNING SYSTEM FOR

EXPERIMENT 1

Original Ai
Experiment 1

(using a two-tailed student t-test at the 0.05 level) to the
original AI.

These results show that the pacbot obtained a statistically
significant lower score than against the original AI, but not
a statistically significant difference in the number of lives
lost. While the ghosts have seemingly learned to successfully
evade Pacman (thus reducing the score the pacbot was able
to obtain from eating ghosts), we did not observe the increase
in the kill-rate of the opponent ghosts we sought, thus
suggesting some other mechanism to reward killing Pac man
is needed in the fitness function.

Inspection of the phenotypic behaviour of the resulting
collection of ghost strategies demonstrates how the collection
behaves as a team. We observe that each ghost quickly learns
to chase Pacman, vigorously pursuing the pacbot as it moves
through the maze. We do note however that the ghosts often
cluster together, typically within a few cells of each other,
and often approach Pacman from the same direction. This
clustering behaviour reduces the overall performance of the
team, effectively reducing the team of four ghosts to a team
of one or two ghosts, reducing the ability of the team to
"trap" Pac man by approaching from different sides (which is
ultimately what is needed for a successful kill). An example
of this behaviour is shown in Figure 3.

Fig. 3. Clustering of ghosts as they chase Pacman

This clustering behaviour may explain the reduced score
obtained by Pacman - the pacbot is not surrounded by
ghosts and hence is less likely to find a nearby ghost to eat
after eating a power-pill (it must always proceed in the one
correct direction to kill the ghosts) We also observe that being
so clustered together, the ghosts have a reduced ability to
kill Pacman (fewer effective ghosts makes trapping Pac man
less likely). This seems to indicate that the system would

benefit from a more directed fitness function that promotes
dispersion among the ghosts.

Examination of the resultant ghost behaviours also high
lights a beneficial feature of our approach. By using contin
uous short-term learning, the system does not need to learn
complex general game-playing strategies that will be used
in all situations in the game, and instead need only learn
"simple" strategies suitable for the time slice of use. Indeed,
since the fitness function evaluates the behaviour (phenotype)
of the ghosts rather than the decision network (genotype) that
results in this behaviour, any strategy that manifests with
good behaviour during that time slice will suffice. That is,
the search for a rewarding behaviour is made easier by the
many-to-one relationship that exists between genotype and
phenotype over a time slice.

For example, when learning continuously, a ghost never
actually needs to evolve a specific genotype that explicitly
encodes a "chase Pacman" strategy; all that is required is a
genotype that (for the current time slice) dictates the ghost
moves towards Pacman. An example of this behaviour is
shown in Figures 4 and 5.

Fig. 4. A ghost chasing Pacman during its time slice

Fig. 5. Continued game play of the ghost strategy from Figure 4

Figure 4 plots the trajectory of one ghost during a time

2008 IEEE Symposium on Computational Intelligence and Games (CIG'08) 239

TABLE III

PERFORMANCE OF THE PACBOT VERSUS THE LEARNING SYSTEM FOR

EXPERIMENT 2

Score Lives lost
I Original AI 4808.4 1.44
I Experiment I 4127.6 1.12
I Experiment 2 4930.8 1.52

slice. At first sight, the ghost appears to be chasing Pacman.
However, when we extend play beyond that time slice, it
becomes evident in Figure 5 that the behaviour encoded by
the strategy is not one of chasing Pacman, but some other
strategy entirely. So, while the system may not be able to
learn good general strategies for the game, through the use
of continual adaptation, the system is able to "simulate" a
general strategy without the need for offline learning.

B. Experiment 2 - Remaining Dispersed

In Experiment I, we found that ghosts often cluster
together, limiting their influence over the maze. To overcome
this problem, we extend the performance evaluation metric
to consider the dispersion of ghosts. As before, we use an
evaluation function with a tiered approach over a number of
separate metrics:

rank 1 :

rank 2 :

rank 3 :

Pacman's number of lives

min~l dist(Ghostf, Pacman)

- maxf=l dist(Ghost! , Pacman)

-L:~l dist(Ghostf_l' GhostD

-L:~l dist(GhostLl' Ghost!)

where GhostC denotes a chasing ghost and Ghost! denotes
a fleeing ghost.

The first tier evaluation is used to reward ghosts that
kill Pacman. The second tier rewards how close the closest
chasing ghost is to Pacman, and how far the furthest fleeing
ghost is from Pacman. Note that this differs from Experiment
1, since a reward for minimising the distance to Pac man for
all ghosts would counter-act our desire for dispersion. The
third tier promotes dispersion directly by rewarding ghosts
that are more distant from other ghosts of the same status
than closer ghosts.

A comparison of the performance of the pacbot when
played against our learning system using this evaluation
function and the original ghost AI is shown in Table III.

Although the difference is not statistically significant, these
results suggest that this evaluation function produces a team
of ghosts that does not perform as well as those produced in
Experiment 1.

As mentioned in the previous section, a network of
dispersed ghosts is easier for the pac bot to score against
(consume) after eating a power-pill. This may seem counter
intuitive to those familiar with game (human players often
attempt to force the ghosts to bunch together and allow for
easier mass-consumption), however, the pacbot does not view

a bunch of ghosts as a hugely profitable target, but a minor
goal relative to completing the level. With more dispersed
ghosts, it is more likely that the pac bot will encounter a
ghost while collecting pellets and then proceed to consume a
nearby ghost. In contrast, a tight cluster of ghosts require the
pacbot to choose one of a limited number of "critical" paths
that intersect with the cluster. Of course, should the pacbot
successfully intersect the cluster, he is richly rewarded,
however experimental results indicate that the "conservative"
strategy scores better on average than the "higher-risk-higher
reward" strategy.

As expected, the ghosts in this experiment evolved a
behaviour leading them to organise themselves in a dispersed
manner, while minimising the shortest distance of the closest
chasing ghosts to Pacman. As the fitness function only
rewards chasing behaviour if a ghost is able to become the
closest ghost, what tends to evolve is team behaviour in
which the separate ghosts "sit" in very dispersed locations
(the ghosts actually oscillate back and forth on the spot due to
the game restriction that ghosts must remain in motion), with
the single closest ghost actively pursuing Pacman through the
maze.

Recall from the discussion of Experiment 1, we outlined a
problem with evolved strategies being kept in play for longer
than their intended time slice. A side effect of this leads
to desirable behaviour in this experiment - Pac man often
becomes trapped by two ghosts approaching from opposite
sides due to the "lag" in updating the different ghosts. An
example of this behaviour is shown in Figure 6.

CJ 0

Fig. 6. Ghosts trapping Pacman

C. Experiment 3 - Protection Behaviour

The aim of this experiment is to see if we can evolve
strategies where ghosts protect either a vulnerable team
mate or a power-pill/pellet. To achieve this, we alter the
evaluation metric for this experiment by rewarding strategies
that minimise both the number of ghosts that have been eaten
and the number of vulnerable (fleeing) ghosts:

240 2008 IEEE Symposium on Computational Intelligence and Games (CIG'08)

TABLE IV

PERFORMANCE OF THE PACBOT VERSUS THE LEARNING SYSTEM FOR

EXPERIMENT 3

rank 1:

rank 2:

rank 3:

rank 4:

rank 5:

Score Lives lost
Original AI 4808.4 1.44
Experiment I 4127.6 1.12
Experiment 2 4930.8 1.52
Experiment 3 4271.6 1.64

Pacman's number of lives

count (GhostT)

count (Ghost!)

minb:l dist(Ghosti, Pacman)

-maxb:l dist(Ghost{, Pacman)

- Eb:l dist(Ghosti_l , Ghosti)

-Ef=l dist(GhostLl' Ghost{)

where GhostC denotes a chasing ghost, Ghost! denotes a
fleeing ghost, GhostT denotes a returning ghost, and count
is a function that returns the number of objects of a particular
type.

A comparison of the performance of the pacbot when
played against our learning system using this evaluation
function and the original ghost AI is shown in Table IV.

The performance results reported in Table IV suggests that
this evaluation function goes some way toward promoting
successful team-work that leads to killing Pacman, though
the difference from Experiment 2 is not statistically signifi
cant.

We have witnessed three examples of different protection
behaviour emerging from the system, although they do not
commonly occur due to the specific situations required for
such an opportunity to arise:

1) A chasing ghost moving towards a vulnerable ghost to
protect it from Pacman.

2) A vulnerable ghost moving towards a chasing ghost to
protect itself from Pacman.

3) A chasing ghost moving toward a power-pill to prevent
Pacman from eating it.

An interesting (and obviously unplanned) emergent be
haviour that we observed was that of suicidal behaviour,
where in certain situations, ghosts would run straight into
Pacman! This occurred because the vulnerable ghosts learned
that killing themselves could yield a reward if they were able
to make it back to the hideout before the time slice was
up. Similarly, we saw some strange shepherding behaviours
where a training ghost would learn to behave in a way that
would cause suicides in the other (fixed) ghost strategies,
who obviously had their actions influenced by the actions
of the ghost in training. This was an exciting result as it
demonstrates the level of complex team behaviour that we
hoped we would see.

TABLE V

PERFORMANCE OF THE PACBOT VERSUS THE LEARNING SYSTEM FOR

EXPERIMENT 4

Score Lives lost
Original AI 4808.4 1.44
Experiment I 4127.6 1.12
Experiment 2 4930.8 1.52
Experiment 3 4271.6 1.64
Experiment 4 4494.4 1.96

D. Experiment 4 - Ambushing Pacman

Furthering the idea of trapping Pacman, in our final
experiment, we define a fitness function that attempts to
directly encode this concept. To achieve this, we include
the number of maze intersections that are "controlled" by
Pacman - controlled in the sense that Pacman can reach
the intersection before any chasing ghost can. We also only
consider intersections within a threshold distance of 20 from
Pacman, intersections further away than this are ignored.
This controlled-intersection value captures the "freedom" of
Pacman; the lower the number, the lower the number of
options Pacman has in order to escape from being killed.

Using the evaluation function of Experiment 2, we add
as a second tier metric a measure that explicitly captures
this value, thus driving the evolutionary process to reward
strategies that limit the number of escape routes available
to Pacman. We also add a fifth measure to the evaluation
function that captures Pacman's score, attempting to drive
Pacman to the less valuable areas of the maze, prolonging the
game and increasing the likelihood of forcing Pacman into a
trap. The evaluation function we use in this final experiment
is:

rank 1:

rank 2:

rank 3:

rank 4:

rank 5:

Pacman's number of lives

Intersections "controlled" by Pacman

minb:l dist(Ghosti, Pacman)

-maxf=ldist(Ghost{, Pacman)

-Eb:l dist(Ghosti_l' Ghosti)

-Ef=l dist(GhostLl' Ghost{)
Pacman's score

where GhostC denotes a chasing ghost and Ghost! denotes
a fleeing ghost.

A comparison of the performance of the pacbot when
played against our learning system using this evaluation
function and the original ghost AI is shown in Table V. The
results clearly indicate that this evaluation function is strong
in maximising the kill-rate of Pacman, doing better than all
previous evaluation functions and the original ghost AI on
this measure.

We also continued the runs of Experiment 4 to game end
(repeating the level until Pacman dies three times), recording
an average final score of 4853.2 for the pacbot in play against
our learning system using this evaluation function compared
to 7930.8 against the original ghost AI; results statistically

200B IEEE Symposium on Computational Intelligence and Games (C/G'OB) 241

significantly different using a two-tailed student t-test at the
0.05 level. This further demonstrates the superiority of our
learning system over the original ghost AI, producing more
difficult opponents than the original ghost AI, at least for our
hand-coded pacbot player.

From examination of the evolved strategies, we observe
that the ghosts tend to attack as a group (thus limiting
the number of intersections controlled by Pacman), and
importantly attack from different directions (again as a
consequence of the desire to restrict escape routes, but also
to ensure dispersion). Attacks are not as "directed" as in
Experiment I (the ghosts are driven to remain dispersed
and therefore do not simply head straight for Pacman), but
they appear more "structured", surrounding Pacman to limit
escape routes before proceeding to ambush Pacman.

The evolution of structured team-work is indeed an im
pressive result. Recall, the system was not provided with
any expert guidance to help organise the ghosts to work
effectively together. This emergent behaviour is exactly what
is sought in this work - a system capable of learning and
adapting to a player's style without direction from a human
designer.

VIII. CONCLUSIONS

This paper has proposed a novel system for real time
team strategy development using computational intelligence
techniques for the game of Pacman. Our approach reduces
the problem to be solved by the ghosts' neural network to
one of game-state valuation - each ghost using their neural
network to decide on the worth of each adjacent cell in order
to select the next best cell to move to. This is made possible,
in part, through the precomputed high-level data we make
available to the neural networks.

As a proof of concept, we have implemented the system
in simulated real time, with learning occurring in (pseudo)
parallel to actual game play. Using continuous short-term
learning, each ghost in the team is subjected to evolutionary
selection pressure in order to learn a good strategy for use in
the next time slice. Time slices are deliberately kept short,
thus allowing the system to learn simple strategies that suffice
for a short period of time and not complex general game
playing strategies to be used in all game situations.

Our approach of using multiple evolving populations de
pending on the proximity of the ghost to Pacman has allowed
us to evolve very interesting and complex team behaviours
with noticeable role development. Results show that our
system is able to evolve players that yield emergent team
work capable of superior performance compared to the AI
used in the original arcade version of the game.

Furthermore, our system has developed this team be
haviour using a small population and a small number of
generations for learning per time slice. This gives us con
fidence that our goal of implementing the system in true real
time will show similar successes.

It is expected that this work will lead to a fully functional
implementation capable of delivering real time team strategy
development in the near future. Future work will also exam
ine the importance of the accuracy of the opponent model
in learning, and explore ways of using a multi-objective
approach for simultaneously evolving different strategies that
satisfy the different metrics of interest without an explicitly
stated ordering of such metrics.

ACKNOWLEDGEMENTS

This research is partly funded by a postgraduate scholar
ship grant from the Australian Research Council.

REFERENCES

[1] M. Wittkamp and L. Barone, "Evolving adaptive play for the game
of spoof using genetic programming," in Proceedings of the 2006
IEEE Symposium on Computational Intelligence and Games. IEEE
Publications, 2006.

[2] M. Wittkamp, L. Barone, and L. While, "A comparison of genetic
programming and look-up table learning for the game of spoof,"
in Proceedings of the 2006 IEEE Symposium on Computational
Intelligence and Games. IEEE Publications, 2006.

[3] M. Quinn, L. Smith, G. Mayley, and P. Husband, "Evolving teamwork
and role allocation with real robots," in In Proceedings of the 8th
International Conference on The Simulation and Synthesis of Living
Systems (Artificial Life VIII), 2002.

[4] L. Berger, "Scripting: overview and code generation," in AI Game
Programming Wisdom. MIT Press, 2002, vol. 1, pp. 505-510.

[5] P. Torour, The Perils of AI Scripting. Charles River Media, Inc.,
2002.

[6] D. Charles, C. Fyfe, D. Livingstone, and S. McGlinchey, Biologically
Inspired Artificial Intelligence for Computer Games. Medical Infor
mation Science Reference, 2007.

[7] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa, "RoboCup:
the robot world cup initiative," in Proceedings of the First International
Coriference on Autonomous Agents (Agents '97). ACM Press, 5-8,
1997, pp. 340-347.

[8] K. Stanley and R. Miikkulainen, "Evolving neural networks through
augmenting topologies," Evolutionary Computation, vol. 10, no. 2, pp.
99-127, 2002.

[9] T. Andersen, K. Stanley, and R. Miikkulainen, "Neuro-evolution
through augmenting topologies applied to evolving neural networks to
play Othello," Department of Computer Sciences, University of Texas
at Austin, Tech. Rep.

[10] K. Stanley, B. Bryant, and R. Miikkulainen, "Real-time neuroevolu
tion in the NERO video game," IEEE Transactions of Evolutionary
Computation, vol. 9, no. 6, pp. 653-668, 2005.

[11] T. Iwatani, Pac-man. Namco, 1980, http://en.wikipedia.orglwikil
Pac-Man.

[12] B. Chow, "Java Pac-man implementation," http://www.bennychow.
com/play..pacman.shtml.

[13] M. Gallagher and M. Lewdich, "Evolving Pac-man players: can we
learn from raw input?" in Proceedings of the 2007 IEEE Symposium
on Computational Intelligence and Games. IEEE Publications, 2007.

[14] S. Lucas, "Evolving a neural network location evaluator to play Ms.
Pacman," in Proceedings of the 2005 IEEE Symposium on Computa
tional Intelligence and Games. IEEE Publications, 2005.

[15] G. Yannakakis and J. Hallam, "Evolving opponents for interesting
interactive computer games," in Proceedings of the 8th International
Conference on the Simulation of Adaptive Behavior (SAB'04); From
Animals to Animats 8. MIT Press, 2004, pp. 499-508.

[16] M. Hanshew, "Pac-man FAQ/strategy guide," July 2006, http://www.
gamefaqs.com/coinop/arcade/file/589548/439591.

[17] Twin Galaxies Forums, "Pac-man ghost behavior revealed," August
2008, http://www.twingalaxies.com/forums/viewtopic.php?t=1223l.

242 200B IEEE Symposium on Computational Intelligence and Games (C/G'OB)

	Using NEAT for Continuous Adaptation and Teamwork Formation in Pacman
	tmp.1299744759.pdf.yFiz5

