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Using NEAT for Continuous Adaptation and 
Teamwork Formation in Pacman 

Mark Wittkamp, Luigi Barone, Member, IEEE, and Philip Hingston, Senior Member, IEEE 

Abstract-Despite games often being used as a testbed for 
new computational intelligence techniques, the majority of ar­
tificial intelligence in commercial games is scripted. This means 
that the computer agents are non-adaptive and often inherently 
exploitable because of it. In this paper, we describe a learning 
system designed for team strategy development in a real time 
multi-agent domain. We test our system in the game of Pacman, 
evolving adaptive strategies for the ghosts in simulated real time 
against a competent Pacman player. Our agents (the ghosts) are 
controlled by neural networks, whose weights and structure 
are incrementally evolved via an implementation of the NEAT 
(Neuro-Evolution of Augmenting Topologies) algorithm. We 
demonstrate the design and successful implementation of this 
system by evolving a number of interesting and complex team 
strategies that outperform the ghosts' strategies of the original 
arcade version of the game. 

I. INTRODUCTION 

Games are often used as a test-bed to further the devel­
opment of artificial intelligence (AI) techniques. Games are 
suitable in this respect because they involve similar problems 
to those encountered in real life, but are simpler and more 
clearly defined. They have a finite number of rules and 
actions for players to make and there is some well understood 
goal. There are extra challenges facing players in video 
games, compared to traditional games (board and card games 
for example). Video games have a far greater number of 
actions available for players to make and these actions can 
have temporal significance. 

Developing adaptive behaviour has been demonstrated 
using opponent modeling together with evolutionary algo­
rithms [1], [2], but the problem becomes much more com­
plicated when we add the requirement for this to be done 
in real time, during play. In a simple example, Quinn et 
al [3] have witnessed the real time evolution of cooperative 
and coordinated behaviour for a team of robots; achieving 
the goal of moving to a new location while staying within 
sensor range of each other. 

Contrast real time learning with offline learning, where 
artificial players practice (generally by playing games) to 
become better players for future games. When an artificial 
player is able to learn a strategy offline, the amount of CPU 
time available is near limitless. The learning and fine tuning 
of artificial players can run continuously for days or weeks. 
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For real time adaptation, the time allowed for learning is 
much less. Not only must the learning yield results quickly 
enough so that adaptive behaviour can be achieved during 
play, but only a portion of the CPU time will be avail­
able due to the game's own running requirements. Further, 
computational intelligence techniques require many iterations 
and many more test cases for the evolution process to yield 
desirable results and so, speeding up of such techniques is 
of great importance. 

II. LIMITATIONS IN VIDEO GAME AI 

Despite a large amount of research in the field of video 
game AI, the majority of AI strategy in commercial games 
is scripted [4]. Developers resort to scripts because they 
are understandable, predictable, easy to modify and extend, 
and are usable by non-programmers [5]. While scripts can 
respond to the actions of human players, behaviours will 
be the same time and again. Game developers sometimes 
use adaptive learning techniques during development, but 
learning is rarely included in the released product [6]. This 
results in artificial opponents with weaknesses that, once 
discovered, are easily exploited. Predetermined behaviour 
also leads to repetitive and boring artificial players. While 
stochastic systems can be employed to add some variety into 
the behaviour of artificial players, they generally offer only 
slight variation to some predetermined strategy. Too much 
variation has the potential for seemingly random or irrational 
behaviour. Appearing random may not necessarily imply an 
ineffective strategy, but it can adversely affect the human 
player's immersion in the artificial environment. 

Another limitation of current game AI is that the teams of 
opponents are often self-interested. While a good individual 
may be useful for a team, this is very different from team­
interested individuals who prioritise the good of the team 
over personal good. Without team based learning, artificial 
players will in some respect always be "greedy". No matter 
how well the individual parts may be tuned, certain team 
strategies may never arise - a self-interested individual 
would not sacrifice himself to draw fire away from comrades, 
or to lead opponents into an ambush. Team based learning 
is also useful where the goal to be accomplished is too 
large or complex to be achieved by individuals without team 
coordination - RoboCup soccer [7] for instance. 

This paper explores the use of computational intelligence 
techniques for real time learning in the game of Pacman. 
Focusing on team-work development, we examine how these 
techniques can be used to evolve strategies for the ghost 
agents in the game. Making use of continuous short-term 
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learning to regularly update ghost strategies, we introduce 
a novel framework that parallelises offline strategy learning 
with actual game play; constant adaptation over short time 
periods meaning the ghosts do not need to learn complex 
general strategies to be used in all game situations. 

The rest of the paper is structured as follows. Sections III 
and IV provided background material that further motivate 
the problem and introduce the salient features of the under­
lying technologies used. Section V introduces our learning 
system for the game, discussing how our approach can be 
used for real time adaptation and team strategy development. 
Section VI details the AI used in the original arcade version 
of the game, reporting statistics that will be used as a baseline 
comparison for our work. Section VII then reports on ex­
periments with a number of different fitness metrics; results 
indicating our system is able to evolve players that yield 
emergent team-work capable of superior performance to the 
AI used in the original arcade version. Finally, Section VIII 
summarises and concludes the work. 

III. NEURO-EVOLUTION OF AUGMENTING TOPOLOGIES 

Evolutionary algorithms (EAs) are a powerful tool for 
designing and training neural networks. Recently, Stan­
ley and Miikkulainen developed a new evolutionary algo­
rithm called Neuro-Evolution Through Augmenting Topolo­
gies (NEAT) [8] , which incrementally evolves the topology 
and weights of neural networks simultaneously. 

The NEAT algorithm has been applied to a number of 
interesting problem domains, yielding some very impressive 
results. For example, the application of NEAT to the game 
of Othello saw the development of the sophisticated mobility 
strategy as a required step towards defeating alpha-beta 
search [9] . The development of this strategy, even at an 
intermediate level, suggests that NEAT has the ability to seek 
out weaknesses in opponents and develop strategies to exploit 
them. 

NEAT has a number of features making it an attractive 
choice for our desired application area - that is, real time 
learning, where learning speed is important. While NEAT 
has been applied to real time learning in games in the 
past [10], most previous work has focussed on self-interested 
individuals and not team-based strategy development that we 
seek for this work. 

NEAT utilises speciation to avoid premature convergence 
to suboptimal solutions. Potential innovations are protected, 
giving newer structures a better opportunity to develop rather 
than being discarded early on in favour of existing, more 
developed, structures. This is done by allowing individuals 
to compete primarily against other members of their species 
rather than with the entire population. The number of off­
spring allowed per species is proportional to the average 
fitness of that species. 

Bloat is the name given to the problem that results 
from individuals' structures becoming unnecessarily large 
(i.e. without an increase in performance), leading to slower 
execution of the EA and individuals that can not be further 
optimized. NEAT has a number of features to avoid bloat. 

It has a historical marking mechanism avoids the crossing 
of sections arbitrarily from highly varying structures. NEAT 
builds up from an initial population consisting of minimal 
networks without hidden nodes and structural complexity 
grows incrementally via mutation; complexity is only added 
if it yields a fitness advantage. NEAT's use of specia­
tion/niching also aids in ensuring smaller structures are kept 
in the population as long as they are competitive. Should a 
species' members become bloated, these members will split 
off and form a new species. Only if this new species exhibits 
superior performance will the original species begin to die 
off. 

IV. THE GAME OF PACMAN 

The human player's goal in the video game Pac man [11] is 
to navigate Pacman through a maze and progress to the next 
level by collecting (eating) all the pellets and power-pills in 
the maze (see Figure 1 for the default Pacman level map). 
There are four opposing ghosts, who try to stop Pacman 
by chasing him down and eating him. In the centre of the 
maze is a hideout area that Pacman is unable to enter. At 
the beginning of each level, one ghost begins just above 
this hideout while the remaining three venture out one after 
another every two seconds. 

.0 :0 : :O : O~ 

Fig. 1. Default Pacman level map 

Pacman begins the game with three lives and loses one 
each time he is eaten by a ghost. The game is over when 
Pacman runs out of lives. 

Typically, the ghosts chase Pacman throughout the maze 
in an attempt to restrict his progress with the threat of 
consuming him and taking one of his lives. When Pac man 
eats a power-pill however, the situation is reversed and for 
a limited amount of time, Pac man is able to eat the ghosts 
and the ghosts cannot harm him. When eaten by Pacman, 
the ghost is consumed and loses its body, at which point 
it can not be eaten again nor pose any threat to Pac man 
until it is restored. The ghost must make a trip back to 
the hideout in order to restore itself. We define these three 
different ghost states as: chaSing (pursuing Pacman), fleeing 
(evading Pacman when Pacman has consumed a power-pill), 
and returning (returning back to the hideout to be restored). 
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Other than a game of survival, there is also a point scoring 
system to Pacman. The consumption of pellets, power-pills, 
and the bonus items that appear on occasion throughout the 
game all give Pacman points. Eating ghosts also rewards 
Pacman with points, increasing exponentially for each ghost 
eaten while still under the effects of that power-pill. When 
Pacman reaches certain scores, he is awarded an extra life. 
Despite its simplicity, the game of Pacman provides an 
interesting environment for potentially very complex team 
strategy development as the ghosts need to cooperate together 
to "trap" Pacman in order to kill him. In this paper, we work 
with a modified version of Pacman (in part, to be more true 
to the original arcade) based upon a Java applet version by 
Ben Chow [12]. 

V. A TEAM LEARNING SYSTEM FOR PACMAN 

In this work, we aim to construct an environment where 
a number of ghosts are able to learn as a team in real time 
to exploit Pacman's weaknesses. The learning scheme for 
the ghosts is designed to work in parallel with the execution 
of the Pacman game, however, for this paper, we run it in 
"simulated real time" where we simply pause the game in 
progress and allow NEAT to take over. The work reported 
here is intended to be a proof of concept for a complete real 
time implementation of our system. 

The representation we use for ghosts is a feed-forward 
neural network which we evolve through the use of the NEAT 
algorithm - we have disallowed NEAT from producing 
recurrent links. Note that we are using the original NEAT 
algorithm, not the rtNEAT extension. We actually run four 
separate instances of NEAT with separate populations, only 
the best of which ever becoming active participants in the 
real Pacman game. 

For the experiments reported in this work, we hand-coded 
a pachot to play the Pacman game and act as a training 
partner to our team of ghosts. The pacbot is a decent 
player, capable of completing the first level almost every time 
when faced against the default ghost strategies (described in 
Section VI). 

A. Precomputed information 

Pacman levels are made up of a number of adjacent cells, 
each of which is either a pathway or a wall. Pacman, as 
well as the ghosts, pellets, power-pills, and bonus items may 
occupy these pathways. 

We wish to concentrate on developing high level game 
play and avoid complicating the problem with lower level 
tasks such as navigating around walls, finding intersections, 
and so on. We are aware of a study that evolved a Pacman 
playing agent using a very small set of raw inputs and was 
able to produce a basic player, but its ultimate ability was 
hampered by having to learn how to avoid walls [13]. Our 
interest lies in the team-work and game strategies that can 
be evolved, rather than evolving ghosts from raw game data 
or minimal information. 

Ghosts process the level map as a graph made up of a 
series of interconnected nodes that correspond to the pathway 

cells that the ghosts are able to reach. The initial positions 
of all pellets and power-pills are stored and updated in 
the environment model as the game progresses. We also 
precompute an all-pairs shortest-path table for every node 
in the level map, but we store only the length of these paths. 
Finally, we also allow our ghosts access to a precomputed 
table of shortest-path lengths from each cell to its nearest 
intersection - that is, any node that has more than two 
connecting nodes. 

B. Learning structure 

We use a neural network as the representation of an 
individual ghost strategy, which we evolve by running a 
series of simulated games in between the progression of the 
real game. We aim to have real time learning which learns 
only the specific team behaviours necessary to do well in 
the short-term, allowing for a high level of adaptivity which 
we hope will overcome the lack of a more generalised game 
playing strategy. Using evolutionary selection pressure that 
rewards an individual ghost based on the performance of the 
team, we use NEAT to train our ghost strategies. 

To allow for heterogeneous strategy development, we keep 
a number of populations in memory, divided up amongst 
the four separate ghosts. A simplistic approach might be to 
allow each ghost to have its own population, however, as 
relative distance to Pacman is more likely to decide what 
strategy to employ than a ghost's arbitrary colour, we use a 
population scheme based on a ghost's proximity ranking to 
Pacman instead. 

In each time slice, a ghost is marked for training (cycling 
through the four different ghosts in tum) and then allowed to 
evolve from the population corresponding to its proximity to 
Pacman (Le. closest, second closest and so on). A time slice 
is about as long as it takes for a ghost to travel a distance 
of 15 cells (approximately three to four seconds of game 
time). Section VII report experiments with different fitness 
schemes; results showing that the fitness scheme has a major 
impact on the strategies evolved by the learning system. 

We begin by initialising a number of randomly generated 
neural network populations, each corresponding to ghosts 
classified according to their distance to Pacman. Let Gn be 
the state of the game at the beginning of time slice n. During 
these time slices and at their boundaries, a number of tasks 
must be performed. The general ghost training algorithm is 
as follows (see also Figure 2): 

1) Mark a ghost for learning during current time slice, 
beginning at Gn . 

2) Look ahead (based on our models of the other ghosts 
and Pacman) and store the game state as we expect it 
to be like at the beginning of the next slice through 
simulated play (eGn+1). This will be the starting state 
for the NEAT simulation runs. 

3) The fitness of a ghost strategy is determined by evalu­
ating the game state that we expect to reach when the 
strategy is used in place of the marked ghost (eGn+2). 
This evaluation is an evaluation of the end state, and 
we experiment with various fitness schemes. 
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Real game lime passes.. . • 

(1) 
Mark a ghost for 
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Replace . 0 0 
marked .00 
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the game . 00 

.00 

New Population of 
playing strategies 

Fig. 2. Pictorial representation of our learning system 

4) In parallel to the running of the actual game, run NEAT 
until the actual game reaches On+!. 

5) The best individual from the simulations is substituted 
into the game, replacing the marked ghost. 

6) Repeat the process for the next ghost in tum. 

Our aim in this work is to determine the feasibility of 
the proposed approach for learning in Pacman. Instead of 
restricting NEAT to a limited amount of time (point 4 
above), in this work, we allow the marked ghost to learn 
by simulating play with a perfect Pacman player model for a 
definite number of generations (20 generations). We maintain 
four separate populations (each of size 10) to allow for 
variation between ghost strategies. Our eventual aim is for 
this learning to occur in parallel, and hence it will be limited 
by the time available while the game is in play (the time 
slice). For the moment however, we simply pause the game's 
progress and allow the simulations to run sequentially. 

The accuracy of the estimated next game state depend on 
the accuracy of the Pac man player model. The estimates for 
these experiments will be close to perfect because we are pro­
viding NEAT with a perfect model (the game itself has slight 
variation due to processor load and interleaving of events). 
The ghosts are deterministic and have perfect knowledge of 
each others' behaviour and so will not introduce any error 
into game state estimates. 

C. Ghost neural network 

We aim to evolve a neural network that acts as a move 
evaluator for the cells adjacent to a ghost. This approach 
has been successfully tried before, albeit to control Pac man 
rather than ghosts [14]. Our network is applied up to four 
times (once for each adjacent cell); the cell with the highest 
evaluated score is where the ghost will move to next. The 
neural network we construct will therefore only have one 
output value - the score of a cell. The score provides a 
measure of desirability of the resulting game state if the 
training ghost moved to the cell under consideration. An 
alternative approach uses a neural network with four outputs, 
representing the value of moving up, down, left or right in 
each situation, as in [15]. The advantage of our approach is 

that the network must only learn to output a single value. 
An approach where we evaluate only a ghost's adjacent 

cells may at first seem to be a very localised and "greedy" 
choice. However, when we consider that the inputs to the 
neural network contain precomputed high-level information 
as described in Section V-A, it becomes clear that the few 
cells explicitly under consideration are capable of encom­
passing information from many other cells. 

Allowing our neural networks to receive their inputs as 
higher-level information allows complex behaviour to be 
very simply represented by the ghosts' neural network. For 
example, consider a neural network with a single input: 
the shortest-path distance to Pacman. For a ghost to chase 
Pacman, all that would be required is a positive weight 
connecting this single input to the output. 

We selected neural inputs to give the ghosts sufficient 
information to be used as fundamental building blocks for 
general ghost strategy development. There are 19 inputs in 
total, which we hope will be sufficient to allow for complex 
and diverse team strategies to develop. Many of these 19 
neural network inputs are based on information we found 
useful when constructing the pacbot player. 

The full list of inputs is listed below. To keep the list 
concise, we first introduce some terminology. The inputs are 
written from the point of view of the ghost using the neural 
network as if that ghost was positioned on the cell that is 
currently being evaluated. We use the word this to refer to the 
current ghost (the one whom the neural network is being used 
to control). Recalling the three different ghost states (chasing, 
fleeing, or returning), we define a function called status (g) 
that returns {-I, 0, I} respectively depending on the state of 
ghost g. As the ghosts need information about their relative 
positions to key objects in the game, we use a function called 
closest ( t , 0) that returns the closest object of a particular 
type t to the object 0 (e.g. closest(Powerpill, Pacman) 
represents the closest power-pill to Pacman). We refer to the 
length of the (Manhattan) shortest path from points a and b 
as dist(a ,b). 

Each evolving ghost strategy has access to the following 
information in the form of its neural network inputs: 

1) status ( this) 
2) status ( closest ( Ghost , this» 
3) status ( closest ( Ghost , Pacman» 
4) dist(this , Pacman) 
5) dist(this, closest ( Ghost , this» 
6) dist(Pacman, closest ( Ghost , this» 
7) dist(Pacman, closest ( Ghost, Pacman» 
8) dist(this , closest(Powerpill , this) 
9) dist(Pacman, closest(Powerpill , this» 

10) dist(this , closest(Powerpill , Pacman» 
11) dist(Pacman, closest(Powerpill , Pacman» 
12) dist (this, closest (Pellet , this» 
l3) dist(Pacman, closest(Pellet , this» 
14) dist(this, closest (Pellet , Pacman» 
15) dist(Pacman, closest(Pellet , Pacman» 
16) dist( this , closest (Intersection, this» 
17) dist(this , closest (Intersection , Pacman» 
18) dist(Pacman, closest (Intersection, this» 
19) dist(Pacman, closest (Intersection , Pacman» 
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D. Performance assessment 

After a simulated game run has finished, the performance 
of the ghosts is evaluated as a whole and this group score 
is used to evaluate the variable component during that 
simulation - i.e. the ghost currently in training. 

Ideally, we would like the fitness to be measured by 
some high-level means (for example, the amount of time 
Pacman managed to stay alive, or Pacman's achieved score). 
This would minimise the bias in our evaluation metric. The 
problem with a high-level evaluation metric is that most 
of the time there would be very little, if any, selection 
pressure for the evolutionary algorithm to use. If only the 
death of Pacman is given as positive feedback, a mostly 
flat fitness landscape results, with little search gradient to 
guide the evolutionary search. Useful feedback will only be 
forthcoming if a strategy is found that is good (or lucky) 
enough to eat Pacman in the first place - but it does not 
provide a means of comparing all the group behaviours that 
failed to eat Pacman. 

The aim of a fitness function is to guide the evolutionary 
algorithm toward leaming effective team strategies. We tried 
a number of fitness functions, as outlined in the correspond­
ing experiments in Section VII. All are designed to reward 
individual ghosts based on the performance of the team they 
are a part of (global reinforcement), as opposed to directly 
evaluating an individual solely by their own performance 
(local reinforcement). 

VI. ORIGINAL GHOST AI IN PACMAN 

In order to show the benefits of our learning system for 
evolving good ghost strategies, we compare the performance 
of strategies evolved using our approach to the strategies used 
in the original arcade game of Pacman. Here we describe the 
main elements of the AI used to control the ghosts in the 
original version. 

In the original Pacman game, the ghosts alternate between 
the two modes of play (attack and scatter) several times until 
eventually remaining in a permanent state of attack [16]. 
Each of the four ghosts has its own unique attacking strategy, 
and each heads toward their own "home" corner when 
scattering. 

When a ghost reaches an intersection, it decides upon a 
target cell. The ghost then moves in the direction to minimise 
its horizontal or vertical distance to that target (whichever is 
greater). When attacking, the red ghost's target is the current 
position of Pacman. The pink ghost's target is the cell four 
positions in front of Pacman. The blue ghost's target is the 
position such that the cell two positions in front of Pacman 
is the midpoint between Pacman and the red ghost's target. 
The orange ghost will target Pacman when it is far away, but 
will target its home corner instead when within a vertical and 
horizontal distance of eight cells to Pacman. Ghosts revert 
to a pseudo-random behaviour when under the effect of a 
power-pill [17]. 

TABLE I 
PERFORMANCE OF THE PACBOT VERSUS THE ORIGINAL GHOST AI 

Score at end of first level: 
Lives lost during first level: 

A. Performance of the Original Ghost AI 

To measure the success of our learning system, we com­
pare the performance of our evolved strategies against a 
simulation of the original Pacman ghost AI described above. 
Table I reports this performance, averaged over 25 runs to 
compensate for the non-determinism in the game. We report 
the score at the end of the first level, and the number of lives 
lost in completing the level - when either the pacbot has 
eaten all pellets and power-pills or has died three times. 

These results confirm the competence of the pacbot, which 
successfully completed the first level 22 out of 25 runs. The 
score obtained by the pacbot in completing the first level 
(4808.4) is significantly greater than the "baseline" score of 
2700 (the score obtainable by just eating pellets and power­
pills), indicating that the pacbot uses the power-pills to eat 
ghosts to maximise its score. If we continue the game to 
completion (repeating the level until the pacbot has lost all 
three of its lives), the pacbot obtains on average a final score 
of 7930.8, roughly equivalent to that of a novice human 
player. This pacbot was designed to be a "safe" player - its 
primary goal is to stay alive and pass the level; achieving a 
high score is a secondary concern. 

VII. EXPERIMENTAL FRAMEWORK AND RESULTS 

In this section, we report experiments with various fitness 
functions used in our evolutionary learning system and 
discuss our observations. 

A. Experiment 1 - Chasing and Evading Pacman 

In our first experiment, we aim to learn a simple chasing 
and evading strategy for the ghosts. We use an evaluation 
metric that rewards killing Pacman and then a secondary 
reward for minimising the distance of chasing ghosts to 
Pacman and maximising the distance of fleeing ghosts to 
Pacman. We use the secondary measure to resolve ties 
between solutions with the same performance on the first 
measure. The metric we use is: 

rank 1 : 

rank 2: 

Pacman's number of lives 

Eb:ldist(Ghost'i" Pac:man) 

- Eb:l dist( Ghost{, Pac:man) 

where GhostC denotes a chasing ghost and Ghost! denotes 
a fleeing ghost. 

A comparison of the performance of the pacbot when 
played against our learning system using this evaluation 
function and the original ghost AI is shown in Table II. As for 
all the experiments, results are averaged over 25 independent 
runs. Italicised entries are statistically significantly different 
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TABLE II 

PERFORMANCE OF THE PACBOT VERSUS THE LEARNING SYSTEM FOR 

EXPERIMENT 1 

Original Ai 
Experiment 1 

(using a two-tailed student t-test at the 0.05 level) to the 
original AI. 

These results show that the pacbot obtained a statistically 
significant lower score than against the original AI, but not 
a statistically significant difference in the number of lives 
lost. While the ghosts have seemingly learned to successfully 
evade Pacman (thus reducing the score the pacbot was able 
to obtain from eating ghosts), we did not observe the increase 
in the kill-rate of the opponent ghosts we sought, thus 
suggesting some other mechanism to reward killing Pac man 
is needed in the fitness function. 

Inspection of the phenotypic behaviour of the resulting 
collection of ghost strategies demonstrates how the collection 
behaves as a team. We observe that each ghost quickly learns 
to chase Pacman, vigorously pursuing the pacbot as it moves 
through the maze. We do note however that the ghosts often 
cluster together, typically within a few cells of each other, 
and often approach Pacman from the same direction. This 
clustering behaviour reduces the overall performance of the 
team, effectively reducing the team of four ghosts to a team 
of one or two ghosts, reducing the ability of the team to 
"trap" Pac man by approaching from different sides (which is 
ultimately what is needed for a successful kill). An example 
of this behaviour is shown in Figure 3. 

Fig. 3. Clustering of ghosts as they chase Pacman 

This clustering behaviour may explain the reduced score 
obtained by Pacman - the pacbot is not surrounded by 
ghosts and hence is less likely to find a nearby ghost to eat 
after eating a power-pill (it must always proceed in the one 
correct direction to kill the ghosts) We also observe that being 
so clustered together, the ghosts have a reduced ability to 
kill Pacman (fewer effective ghosts makes trapping Pac man 
less likely). This seems to indicate that the system would 

benefit from a more directed fitness function that promotes 
dispersion among the ghosts. 

Examination of the resultant ghost behaviours also high­
lights a beneficial feature of our approach. By using contin­
uous short-term learning, the system does not need to learn 
complex general game-playing strategies that will be used 
in all situations in the game, and instead need only learn 
"simple" strategies suitable for the time slice of use. Indeed, 
since the fitness function evaluates the behaviour (phenotype) 
of the ghosts rather than the decision network (genotype) that 
results in this behaviour, any strategy that manifests with 
good behaviour during that time slice will suffice. That is, 
the search for a rewarding behaviour is made easier by the 
many-to-one relationship that exists between genotype and 
phenotype over a time slice. 

For example, when learning continuously, a ghost never 
actually needs to evolve a specific genotype that explicitly 
encodes a "chase Pacman" strategy; all that is required is a 
genotype that (for the current time slice) dictates the ghost 
moves towards Pacman. An example of this behaviour is 
shown in Figures 4 and 5. 

Fig. 4. A ghost chasing Pacman during its time slice 

Fig. 5. Continued game play of the ghost strategy from Figure 4 

Figure 4 plots the trajectory of one ghost during a time 
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TABLE III 

PERFORMANCE OF THE PACBOT VERSUS THE LEARNING SYSTEM FOR 

EXPERIMENT 2 

Score Lives lost 
I Original AI 4808.4 1.44 
I Experiment I 4127.6 1.12 
I Experiment 2 4930.8 1.52 

slice. At first sight, the ghost appears to be chasing Pacman. 
However, when we extend play beyond that time slice, it 
becomes evident in Figure 5 that the behaviour encoded by 
the strategy is not one of chasing Pacman, but some other 
strategy entirely. So, while the system may not be able to 
learn good general strategies for the game, through the use 
of continual adaptation, the system is able to "simulate" a 
general strategy without the need for offline learning. 

B. Experiment 2 - Remaining Dispersed 

In Experiment I, we found that ghosts often cluster 
together, limiting their influence over the maze. To overcome 
this problem, we extend the performance evaluation metric 
to consider the dispersion of ghosts. As before, we use an 
evaluation function with a tiered approach over a number of 
separate metrics: 

rank 1 : 

rank 2 : 

rank 3 : 

Pacman's number of lives 

min~l dist( Ghostf, Pacman) 

- maxf=l dist( Ghost! , Pacman) 

-L:~l dist( Ghostf_l' GhostD 

-L:~l dist( GhostLl' Ghost!) 

where GhostC denotes a chasing ghost and Ghost! denotes 
a fleeing ghost. 

The first tier evaluation is used to reward ghosts that 
kill Pacman. The second tier rewards how close the closest 
chasing ghost is to Pacman, and how far the furthest fleeing 
ghost is from Pacman. Note that this differs from Experiment 
1, since a reward for minimising the distance to Pac man for 
all ghosts would counter-act our desire for dispersion. The 
third tier promotes dispersion directly by rewarding ghosts 
that are more distant from other ghosts of the same status 
than closer ghosts. 

A comparison of the performance of the pacbot when 
played against our learning system using this evaluation 
function and the original ghost AI is shown in Table III. 

Although the difference is not statistically significant, these 
results suggest that this evaluation function produces a team 
of ghosts that does not perform as well as those produced in 
Experiment 1. 

As mentioned in the previous section, a network of 
dispersed ghosts is easier for the pac bot to score against 
(consume) after eating a power-pill. This may seem counter­
intuitive to those familiar with game (human players often 
attempt to force the ghosts to bunch together and allow for 
easier mass-consumption), however, the pacbot does not view 

a bunch of ghosts as a hugely profitable target, but a minor 
goal relative to completing the level. With more dispersed 
ghosts, it is more likely that the pac bot will encounter a 
ghost while collecting pellets and then proceed to consume a 
nearby ghost. In contrast, a tight cluster of ghosts require the 
pacbot to choose one of a limited number of "critical" paths 
that intersect with the cluster. Of course, should the pacbot 
successfully intersect the cluster, he is richly rewarded, 
however experimental results indicate that the "conservative" 
strategy scores better on average than the "higher-risk-higher­
reward" strategy. 

As expected, the ghosts in this experiment evolved a 
behaviour leading them to organise themselves in a dispersed 
manner, while minimising the shortest distance of the closest 
chasing ghosts to Pacman. As the fitness function only 
rewards chasing behaviour if a ghost is able to become the 
closest ghost, what tends to evolve is team behaviour in 
which the separate ghosts "sit" in very dispersed locations 
(the ghosts actually oscillate back and forth on the spot due to 
the game restriction that ghosts must remain in motion), with 
the single closest ghost actively pursuing Pacman through the 
maze. 

Recall from the discussion of Experiment 1, we outlined a 
problem with evolved strategies being kept in play for longer 
than their intended time slice. A side effect of this leads 
to desirable behaviour in this experiment - Pac man often 
becomes trapped by two ghosts approaching from opposite 
sides due to the "lag" in updating the different ghosts. An 
example of this behaviour is shown in Figure 6. 

CJ 0 

Fig. 6. Ghosts trapping Pacman 

C. Experiment 3 - Protection Behaviour 

The aim of this experiment is to see if we can evolve 
strategies where ghosts protect either a vulnerable team 
mate or a power-pill/pellet. To achieve this, we alter the 
evaluation metric for this experiment by rewarding strategies 
that minimise both the number of ghosts that have been eaten 
and the number of vulnerable (fleeing) ghosts: 
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TABLE IV 

PERFORMANCE OF THE PACBOT VERSUS THE LEARNING SYSTEM FOR 

EXPERIMENT 3 

rank 1: 

rank 2: 

rank 3: 

rank 4: 

rank 5: 

Score Lives lost 
Original AI 4808.4 1.44 
Experiment I 4127.6 1.12 
Experiment 2 4930.8 1.52 
Experiment 3 4271.6 1.64 

Pacman's number of lives 

count ( GhostT ) 

count ( Ghost!) 

minb:l dist( Ghosti, Pacman) 

-maxb:l dist( Ghost{, Pacman) 

- Eb:l dist( Ghosti_l , Ghosti) 

-Ef=l dist( GhostLl' Ghost{) 

where GhostC denotes a chasing ghost, Ghost! denotes a 
fleeing ghost, GhostT denotes a returning ghost, and count 
is a function that returns the number of objects of a particular 
type. 

A comparison of the performance of the pacbot when 
played against our learning system using this evaluation 
function and the original ghost AI is shown in Table IV. 

The performance results reported in Table IV suggests that 
this evaluation function goes some way toward promoting 
successful team-work that leads to killing Pacman, though 
the difference from Experiment 2 is not statistically signifi­
cant. 

We have witnessed three examples of different protection 
behaviour emerging from the system, although they do not 
commonly occur due to the specific situations required for 
such an opportunity to arise: 

1) A chasing ghost moving towards a vulnerable ghost to 
protect it from Pacman. 

2) A vulnerable ghost moving towards a chasing ghost to 
protect itself from Pacman. 

3) A chasing ghost moving toward a power-pill to prevent 
Pacman from eating it. 

An interesting (and obviously unplanned) emergent be­
haviour that we observed was that of suicidal behaviour, 
where in certain situations, ghosts would run straight into 
Pacman! This occurred because the vulnerable ghosts learned 
that killing themselves could yield a reward if they were able 
to make it back to the hideout before the time slice was 
up. Similarly, we saw some strange shepherding behaviours 
where a training ghost would learn to behave in a way that 
would cause suicides in the other (fixed) ghost strategies, 
who obviously had their actions influenced by the actions 
of the ghost in training. This was an exciting result as it 
demonstrates the level of complex team behaviour that we 
hoped we would see. 

TABLE V 

PERFORMANCE OF THE PACBOT VERSUS THE LEARNING SYSTEM FOR 

EXPERIMENT 4 

Score Lives lost 
Original AI 4808.4 1.44 
Experiment I 4127.6 1.12 
Experiment 2 4930.8 1.52 
Experiment 3 4271.6 1.64 
Experiment 4 4494.4 1.96 

D. Experiment 4 - Ambushing Pacman 

Furthering the idea of trapping Pacman, in our final 
experiment, we define a fitness function that attempts to 
directly encode this concept. To achieve this, we include 
the number of maze intersections that are "controlled" by 
Pacman - controlled in the sense that Pacman can reach 
the intersection before any chasing ghost can. We also only 
consider intersections within a threshold distance of 20 from 
Pacman, intersections further away than this are ignored. 
This controlled-intersection value captures the "freedom" of 
Pacman; the lower the number, the lower the number of 
options Pacman has in order to escape from being killed. 

Using the evaluation function of Experiment 2, we add 
as a second tier metric a measure that explicitly captures 
this value, thus driving the evolutionary process to reward 
strategies that limit the number of escape routes available 
to Pacman. We also add a fifth measure to the evaluation 
function that captures Pacman's score, attempting to drive 
Pacman to the less valuable areas of the maze, prolonging the 
game and increasing the likelihood of forcing Pacman into a 
trap. The evaluation function we use in this final experiment 
is: 

rank 1: 

rank 2: 

rank 3: 

rank 4: 

rank 5: 

Pacman's number of lives 

Intersections "controlled" by Pacman 

minb:l dist( Ghosti, Pacman) 

-maxf=ldist(Ghost{, Pacman) 

-Eb:l dist(Ghosti_l' Ghosti) 

-Ef=l dist(GhostLl' Ghost{) 
Pacman's score 

where GhostC denotes a chasing ghost and Ghost! denotes 
a fleeing ghost. 

A comparison of the performance of the pacbot when 
played against our learning system using this evaluation 
function and the original ghost AI is shown in Table V. The 
results clearly indicate that this evaluation function is strong 
in maximising the kill-rate of Pacman, doing better than all 
previous evaluation functions and the original ghost AI on 
this measure. 

We also continued the runs of Experiment 4 to game end 
(repeating the level until Pacman dies three times), recording 
an average final score of 4853.2 for the pacbot in play against 
our learning system using this evaluation function compared 
to 7930.8 against the original ghost AI; results statistically 
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significantly different using a two-tailed student t-test at the 
0.05 level. This further demonstrates the superiority of our 
learning system over the original ghost AI, producing more 
difficult opponents than the original ghost AI, at least for our 
hand-coded pacbot player. 

From examination of the evolved strategies, we observe 
that the ghosts tend to attack as a group (thus limiting 
the number of intersections controlled by Pacman), and 
importantly attack from different directions (again as a 
consequence of the desire to restrict escape routes, but also 
to ensure dispersion). Attacks are not as "directed" as in 
Experiment I (the ghosts are driven to remain dispersed 
and therefore do not simply head straight for Pacman), but 
they appear more "structured", surrounding Pacman to limit 
escape routes before proceeding to ambush Pacman. 

The evolution of structured team-work is indeed an im­
pressive result. Recall, the system was not provided with 
any expert guidance to help organise the ghosts to work 
effectively together. This emergent behaviour is exactly what 
is sought in this work - a system capable of learning and 
adapting to a player's style without direction from a human 
designer. 

VIII. CONCLUSIONS 

This paper has proposed a novel system for real time 
team strategy development using computational intelligence 
techniques for the game of Pacman. Our approach reduces 
the problem to be solved by the ghosts' neural network to 
one of game-state valuation - each ghost using their neural 
network to decide on the worth of each adjacent cell in order 
to select the next best cell to move to. This is made possible, 
in part, through the precomputed high-level data we make 
available to the neural networks. 

As a proof of concept, we have implemented the system 
in simulated real time, with learning occurring in (pseudo) 
parallel to actual game play. Using continuous short-term 
learning, each ghost in the team is subjected to evolutionary 
selection pressure in order to learn a good strategy for use in 
the next time slice. Time slices are deliberately kept short, 
thus allowing the system to learn simple strategies that suffice 
for a short period of time and not complex general game­
playing strategies to be used in all game situations. 

Our approach of using multiple evolving populations de­
pending on the proximity of the ghost to Pacman has allowed 
us to evolve very interesting and complex team behaviours 
with noticeable role development. Results show that our 
system is able to evolve players that yield emergent team­
work capable of superior performance compared to the AI 
used in the original arcade version of the game. 

Furthermore, our system has developed this team be­
haviour using a small population and a small number of 
generations for learning per time slice. This gives us con­
fidence that our goal of implementing the system in true real 
time will show similar successes. 

It is expected that this work will lead to a fully functional 
implementation capable of delivering real time team strategy 
development in the near future. Future work will also exam­
ine the importance of the accuracy of the opponent model 
in learning, and explore ways of using a multi-objective 
approach for simultaneously evolving different strategies that 
satisfy the different metrics of interest without an explicitly 
stated ordering of such metrics. 
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