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Inference of Regular Languages using Model Simplicity 

Philip Hingston 
Edith Cowan University 
p .hingston@ecu .edu.au 

Abstract 

We describe an approach that is related to a number 
of existing algorithms for the inference of a regular 
language from a set of positive (and optionally also 
negative) examples. Variations on this approach provide 
a family of algorithms that attempt to minimise the 
complexity of a description of the example data in terms 
of a finite state automaton model. 

Experiments using a standard set of small problems 
show that this approach produces satisfactory results 
when positive examples only are given, and can be helpful 
when only a limited number of negative examples is 
available. The results also suggest that improved 
algorithms will be needed in order to tackle more 
challenging problems, such as data mining and 
exploratory sequential analysis applications. 

Key words: grammatical inference, Minimum Message 
Length principle 

1. Introduction 

The inference of regular languages has important 
applications in fields such as exploratory sequential 
analysis, artificial intelligence, pattern recognition and 
data mining. In this paper, we describe an algorithm 
framework encompassing a number of existing approaches 
to the problem, and show, through examples with a 
standard set of benchmark problems, how these 
algorithms perform. 

There are two main classes of algorithms for 
grammatical inference, depending on whether there are 
both positive and negative examples from the target 
language, or positive examples only. In the former case, 
“exact” methods are available, with guaranteed 
convergence, provided sufficient examples of the right 
kind are given. In the latter case, “heuristic” methods must 
be employed. While some of the more abundant 
applications are of the second kind, heuristic algorithms 
have not received as much attention as exact ones to date. 
One of the aims of the work presented here is to start to 
understand the strengths and weaknesses of the heuristic 
search approach to inference. 

The structure of the paper is as follows. We f i s t  
review the relevant theory of finite state automata and 
regular languages, and then describe the induction 
problem and summarise the main approaches to its 
solution in terms of this theory. Next we explain the 
concept of Minimum Message Length as a model 
selection tool, and how we compute it for finite state 
automata. Then we describe the basic algorithm and its 
extension to include negative examples, and note some 
possible improvements. Finally, some experimental results 
on the performance of the algorithm are presented. 

2. Theory of FSA 

In this section we review the basic theory of finite state 
automata and their relationship with regular languages. A 
finite state automaton (FSA) is a quintuple A = 
<Q, S, 40, F,  next>, where Q is a finite set of states, S a 
finite set of symbols, qo E Q is the start state, F _c Q is the 
set of final states, and next: QxS -+ Q is a partial mapping 
called the state transition function. The elements of next 
are called transitions. If the mapping is deterministic (i.e. 
if there is at most one transition for a given Q,S 
combination), then A is also said to be deterministic. In 
this paper we consider only deterministic FSA’s. 

An FSA, A, models a process that begins in the start 
state, and at each step chooses a transition ( q ,  s) -+ q 
where q is the current state, outputs the symbol s, and 
moves to state q . The process can stop at any final state. 
In the course of this computation, a string of symbols is 
output. The set of such strings is the language generated 
by A .  One can also view the symbols as inputs: A begins in 
the start state, and at each step, the next input symbol 
determines the next state via the state transition function. 
If there is no transition from the current state with the 
given input symbol, the computation fails. If the 
computation succeeds, and finishes with A in a final state, 
then the string is accepted by A.  The set of such strings is 
the language accepted by A (and is the same as the 
language generated by A).  

A basic result of automata theory states that a language 
is regular if and only if it is accepted by (or, equivalently, 
generated by) an FSA. In particular, for any finite set of 
strings, there is an FSA that accepts exactly that set of 
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strings. One such FSA is the prefix tree acceptor (PTA) of 
the strings. The PTA may be constructed by simply laying 
out the strings in L, using a state to represent each unique 
prefix of one of the strings. 

We can illustrate this with an example from Gaines, 
(cited in [ 11 as originally due to Feldman et al.). The set of 
strings is L = {CAAAB, BBAAB, CAAB, BBAB, CAB, 
BBB, CB}.  The PTA of L is shown in the state diagram 
below, Figure 1. In the figure, circles represent the states, 
and labeled arcs between them represent transitions. We 
follow the usual convention of marking the start state with 
a “>” and using a double-circle for the final states. 

B B @  

B b  B b  
Figure 1. Example Prefix Tree Acceptor 

This FSA represents the language L exactly, but does 
so somewhat wastefully - there are smaller FSA’s that 
accept L. Given any FSA, Nerode [2] showed how to 
construct a minimal deterministic FSA that accepts the 
same language as the given FSA (minimal in the sense of 
having the least number of states). This is sometimes 
called the canonical FSA of that language. In this 
example, the canonical FSA is shown in Figure 2. 

Figure 2. FSA with least number of states 
(canonical FSA) 

Note that the FSA in Figure 2 is obtained from the one 
in Figure 1 by “merging” states together - all the final 
states have been merged into one, and three other pairs of 
states, corresponding to the prefixes {CA,BB}, 
{CAAJBA}, and {CAAA,BBAA} have also been merged. 
These two FSA’s share three properties: 

1. 
2. 

They accept the strings in L. 
Every transition is used in accepting some 
string of L (and therefore all states are 
accessible). 

3. They do not accept any strings that are not in 
L. 

More generally, every (possibly non-deterministic) 
FSA that satisfies the first two conditions can be obtained 
by merging states of the PTA, and conversely [3]. Thus 
each such FSA can be identified with a partition of the 
states of the PTA. Successive merges correspond to 
composition of partitions. The FSA’s thus form a lattice, 
and the deterministic ones form a sub-lattice. The PTA is 
at the top of the lattice. Given two FSA’s F and G ,  F<G 
in the lattice if F can be obtained by merging states of G. 

At the bottom of the lattice is a single-state FSA. This 
FSA accepts not only L, but also any string over the same 
alphabet. In fact, as we move down the lattice, the set of 
languages accepted by the FSA becomes less restrictive 
(i.e. more general). To illustrate this, consider what 
happens if we merge the two states that follow the start 
state in Figure 2. The resulting FSA would be non- 
deterministic, so further states must be merged to obtain a 
deterministic FSA, giving the FSA shown in Figure 3. 

C A A A 

Figure 3. Canonical FSA after further merging 

This FSA accepts strings that begin with BA, whereas 
the canonical FSA only accepts strings beginning with BB, 
C A  or CB.  Also, there are now several “loops” in the 
graph. These can be traversed as many times as desired to 
add extra symbols to accepted strings. 

Finite languages are of theoretical interest, but the 
practical applications listed earlier concem infnite 
languages. In the general case, we have a finite sample of 
strings from some infinite language and are interested in 
identifying the underlying language, i.e. finding an FSA 
that accepts (or generates) the language. 

Assuming that the sample strings are generated from an 
FSA using some probabilistic process, we can infer not 
only the structure of the FSA, but also the parameters of 
the probabilistic process. In particular, we will assume 
that a probabilistic finite state automaton (also sometimes 
called a stochastic finite state automaton) generates the 
sample strings. 

Next we will define what we mean by a probabilistic 
FSA, but we first need to introduce a technical device that 
makes the description easier. Rather than specifying a set 
of final states, F,  as before, we introduce a special 
delimiter symbol, which is not in the alphabet of the FSA, 
say “*”. If a state emits the delimiter symbol, this is taken 
to indicate the end of the string, and no next state is 
specified (or equivalently, the next state is understood to 
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be the start state). Thus any state that can emit the 
delimiter symbol is considered a final state. Now we are 
ready for the definition of a probabilistic FSA. 

A probabilistic finite state automaton is formally a 
quintuple <Q, S, 40, next, p > .  where the first four 
elements are as before, and p :  QxS + (OJ] is a partial 
mapping which is defined whenever next is defined, and 
where the sum of the values of p for any given state is 1. 
We interpret p as giving the probability that a particular 
symbol will be emitted when we are in a particular state 
(we call these transition probabilities). Once the output 
symbol is chosen, next determines the next state from that 
symbol. Figure 4 shows one possible set of transition 
probabilities’ for the FSA in Figure 2. Notice the 
“transition” from the final state using the delimiter 
symbol. This is the reason for introducing the device - the 
probability of ending the string can now be treated in the 
same way as the probabilities of transitions between 
states. A probabilistic FSA determines a probability 
distribution over the strings in the language - the 
probability for a particular string is the product of the 
probabilities of the transitions that generate it. 

Note that probabilistic FSA’s are essentially a special 
case of discrete output first-order Hidden Markov Models 
(HMM’s), which have been used extensively in 
applications such as speech recognition (see, for example, 
[4]). We do not require the full generality of HMM’s for 
our target applications, and FSA’s are much more 
tractable. 

Figure 4. FSA with transition probabilities 

When we construct an FSA from a set of sample 
strings, we can estimate the transition probabilities by 
keeping a count of the number of times each arc of the 
graph has been traversed. When states are merged, the 
transition counts on the merged arcs are added together. 
The counts can be converted into probability estimates by 
dividing each count by the total count of all the arcs from 
that state. Doing this with the FSA in Figure 2 yields the 
probabilistic FSA in Figure 4. In what follows, when we 
refer’ to an FSA, we will often mean an FSA with 
transition counts, or a probabilistic FSA, depending on the 
context. 

3. The induction problem 

As was stated earlier, we are concemed with the 
problem of identifying a regular language from a finite 
sample of strings in the language, i.e. with finding an FSA 
that accepts the language. For example, in the case of 
exploratory sequential analysis, we are given coded 
behaviour sequences, and we are interested in finding out 
something about the underlying processes that are 
producing the behaviours. In speech recognition 
applications, we are given examples of strings of 
phonemes representing spoken words to be recognised, 
and we want to find models that enable us to recognise 
these words. In data mining, we might, for example, have 
a data set of sequences of credit card transactions, and 
might want to derive models that will help to detect 
possible fraudulent activities. 

In the grammatical inference tradition, we usually also 
have a set of negative examples - strings that are not in 
the language. Sometimes one is provided with an oracle or 
teacher that will answer whether a particular string is in 
the language or not, or other questions that can be used to 
identify the FSA. These additional data are needed if one 
wishes to identify the target FSA exactly. In the 
applications listed above, it is more likely that we will 
have a given set of positive examples only. In this case, 
the target FSA can only be approximately identified, and 
heuristic methods come into play. 

In each case, if the underlying language is infinite, then 
an FSA that accepts only the finite sample (e.g. the 
canonical FSA) cannot be the right model! Supposing that 
we already have an FSA that accepts the sample strings 
(say the PTA or the canonical FSA), there are two ways to 
make it accept more strings. We could add transitions that 
are not used in the sample strings, or we could merge 
states, creating altemate paths and loops in the state graph. 
Since we have no rational basis for hypothesising extra 
transitions, we usually assume that the sample is large 
enough for all the necessary transitions to be represented 
(the sample is then said to be structurally complete). 

Looking at the second possibility, we know that we can 
expand the language accepted by an FSA by merging 
states, so traversing down the lattice. If we keep merging, 
we will eventually reach the single-state FSA, so we want 
to stop before then. The question is - when should we stop 
merging? There are at least two distinct answers. 

If negative examples are supplied, these can be used to 
stop merging too far. If we merge too many states, the 
resulting FSA will accept one of the negative examples. 
An algorithm of this type is the RPNI (regular positive 
and negative inference) algorithm [ 5 ] .  RPNI starts with 
the PTA, and merges pairs of states if possible, using a 
fmed depth-first ordering of state pairs. It runs in 
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polynomial time and is guaranteed to identify the correct 
FSA given completeness conditions on the sample data. 

The second possibility, when only positive examples 
are supplied, is to use a formulation of Occam’s razor to 
select the FSA in the lattice that provides the “simplest” 
explanation of the data. This idea is behmd a number of 
algorithms. The general pattem is to construct the PTA for 
the sample strings, and then to perform successive merges 
of states, seeking to optimise a “figure of merit” or 
simplicity measure. 

In one of the earliest investigations of this kind, [l], 
Gaines describes ATOM, a system that used a dual- 
objective minimization criterion (number of states and an 
entropy-based measure) and looks for discontinuities of 
the minimal entropy value as the number of states is 
varied. He studied data sets from a range of applications, 
showing the ability of ATOM to identify various kinds of 
structure inherent in the data. 

Patrick and Chong [6] describe an algorithm that uses 
Minimum Message Length [7, 81 as the measure of 
simplicity. The algorithm was implemented as part of a 
system for recording, coding and analysing behaviours 
from videos. It was later generalised and improved by 
Raman et a1 [9]. In that version, FSA’s are allowed to be 
non-deterministic. Hingston and Lees [ 101 implemented 
an improved version of Patrick and Chong’s algorithm 
and Lees has used it to analyse data from a vocabulary 
learning experiment Ell]. Stolcke et al [4] describe a 
similar algorithm for HMM’s. The Alergia algorithm [12] 
is similar to both RPNI and these simplicity-based 
algorithms, where the role of negative examples in RPNI 
(in preventing merges) is replaced by a test of similarity 
of behaviours of states. Grunwald [ 131 used the Minimum 
Description Length principle as formulated in [14] to 
induce grammars rather than FSA’s, from positive 
samples. Both MML and MDL have been used as model 
selection principles for other induction tasks. 

4. Minimum Message Length for FSA’s 

For the case of induction from positive examples, since 
a simplicity measure will be used to guide the search 
down the lattice, a suitable measure must be chosen. We 
have chosen to use the Minimum Message Length 
(MML), which is described below. 

The motivation behind this choice is that the 
description with the shortest optimal encoding provides 
the “simplest”, and therefore the best, explanation of the 
observed data. Imagine the situation where we wish to 
communicate the data to another person, perhaps over a 
computer network. We send a message to the other person 
describing the data set. We want this message to be as 
short as possible. 

The description consists of two parts: a description of 
the model (the FSA) and a description of the data using 
that model. At first, it may not be clear why the 
description of the model must be included. This is because 
it may be possible to achieve a very compact description 
of the data using a very complex model, which should not 
be considered to be a simple explanation. In the extreme 
case the model could just enumerate the data and no 
separate description of the data is needed at all! Requiring 
the description to include both the model and the data 
provides a trade-off between model complexity and 
accuracy. 

So, given a data set, D, we seek an FSA, F ,  which 
minimises the quantity: 

DescriptionLengthfF) + DescriptionLength(DIF), 

where the each description is optimally encoded. How 
can we compute these description lengths? There are two 
possible ways - specify a particular coding scheme, or 
compute the probability of each event (then the length of 
an optimally encoded description is -Zog(p), the negative 
log-likelihood of the event occurring). We designed an 
encoding scheme for the FSA’s, so as to calculate the 
description length for F. Once the FSA is specified, a 
probability distribution over the set of strings from which 
the sample is drawn is determined, (as in Figure 4), and 
we can calculate the second description length. 

It is interesting to note that minimising description 
length is equivalent to maximising the a-posteriori 
probability of the FSA model given the data. To see this 
consider the formula 

rob(D1F) xprob(F)  
prob(D) ‘ 

prob(F1D) = 

The denominator on the RHS is fixed by the data, so to 
maximise the LHS is to maximise the numerator on the 
RHS. Taking negative logs, we see that this is the same as 
minimising the expression: 

-Zog(prob(F) xprob(D1F)) 
= -log(prob(F)) + -log(prob(DIF) 
= DescriptionLengthfF) + DescriptionLength(D1F). 

4.1 Coding Scheme 

Here we will describe our coding scheme. A 
description of the FSA lists the following 

1. the number of states, N ,  in the FSA, 
2. for each state j ,  tj, the total of all transition 

3. for each state j and symbol i, nij, the transition 
counts leaving the state, 

count for this symbol leaving the state, 

72 



4. for each state j and symbol i, if nii is not 0 (there 
is a transition for symbol i) and symbol i is 
not the delimiter, the description must specify 
the next state. 

Finally we want to encode the data. This can be done 
by beginning at the start state, and traversing the FSA, 
encoding the symbol to be selected for each transition at 
each step. As each symbol is emitted, the transition counts 
can be decremented. Assuming that an optimal code is 
selected based on the probabilities when each symbol is 
emitted, the total message length required for symbols 
emitted from statej can be calculated. 

The detailed derivation of the final formula is omitted 
here, but the result is: 

N V C(tj + Zog((t. + V - I ) ! )  - log((V - I ) ! )  - C /og(nql)) 

j=l  i = l  
J 

+ N - lOg(N!)+ Mlog(N) , 

where V is the number of symbols in the alphabet, and 
M is the number of non-delimiter arcs in the FSA. Notice 
that the formula is written so that the additive contribution 
of each state can be separated from that of other states. 

5. The induction algorithm 

We fis t  introduce the basic induction algorithm for the 
case of positive examples only. We then show how it is 
modified to handle positive and negative examples. 

The basic algorithm is a greedy search over the lattice 
of FSA’s by performing successive deterministic merges 
of pairs of states, starting with the PTA of the (positive) 
example set. Being greedy, the search is incomplete, and 
may not find the optimal solution. In pseudo-code, the 
basic algorithm can be written as in Figure 5. 

function Greedy(examp1e set): FSA; 
begin 

b := PTA(examp1e set); t := BestMerge(b); 
while FOM(t) < FOM(b) do begin 

end; 
Greedy := b; 

b := t; t := BestMerge(b); 

end; 

function BestMerge(FSA: 8: FSA; 
begin 

b :=A 
for each SI ,s2 in Stateslf) do begin 

t := DeterministicMerge~ SI, s2); 
ifFOM(t) < FOM(b) then b := t; 

end; 
BestMerge := b; 

m d .  

function DeterministicMerge(FSA: f ;  State: SI ~ 2 ) :  FSA; 
begin 

d := Mergelf, SI, s2); 
while d is not deterministic do begin 

find a state with two transitions for the same 
output, but different next states ql and q2; 
d := Merge(d, q l ,  92); 

end; 
end: 

Figure 5. Greedy search with positive examples 
only 

DeterministicMerge can be implemented using a stack 
of pairs of states that need to be merged, and using a 
version of the Union-Find algorithm, (see, for example, 
[15], pp 236-245), to represent and update the partition 
that is being created. The pair of states to be merged is 
pushed onto the stack initially. When a pair of states is 
popped, they are merged (if not already merged), and 
more state pairs may be pushed onto the stack if needed to 
keep the merged state deterministic. 

In the case where only positive examples are available, 
if the figure of merit is Minimum Message Length, then 
the result of greedy search is an FSA that is at a local 
optimum of the MML, which we hope is also a global 
optimum or close to it. 

5.1 Including negative examples 

When negative examples are provided, merging a pair 
of states can result in an FSA that accepts .one of the 
negative examples. In this case, we say that the FSA and 
the negative examples are inconsistent. We modify 
BestMerge by adding a consistency check after the merge. 
This prevents the FSA from collapsing too far, and the 
result will be an FSA that is at a local minimum of 
message length, number of states or transitions, depending 
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on the figure of merit chosen, among FSA’s that are 
consistent with the negative examples. 

L1 
L2 

6. Improving greedy search 

canonical FSA 
a* 1 
(ab)* 2 

In this section, we discuss some enhancements to the 
basic algorithm. One dimension of improvement is 
completeness of the search. Raman et al, in [9], modified 
the algorithm by replacing greedy search with a beam 
search, and extending the search space to non- 
deterministic automata. Beam search keeps several 
candidate FSA’s at each step in the search, rather than 
only the best (a beam rather than a point). This makes the 
search more complete, but much slower! We have 
implemented a version of beam search that works with 
deterministic FSA’s. 

A second dimension of improvement is execution 
speed. We have implemented several methods that 
improve the speed of the algorithm. These can be used 
with search methods that merge states, such as greedy and 
beam search and “I. 

L7 
L8 

6.1 Incremental calculations 

b’s congruent modulo 3 
a*b*a*b* 4 
a*b 2 

Lazy and incremental calculations ‘can be used to good 
effect to improve the efficiency of the basic algorithm. For 
example, the formula for the MML of an FSA is expressed 
as the sum of a global part and a contribution from each 
state. These state contributions only need to be 
recalculated when each particular state is modified, thus 
making the calculation of the overall MML much faster. 
In fact, when a candidate pair is being tried, it is not 
necessary to actually carry out the merge. It is possible to 
calculate the change in the figure of merit that would 
result from the merge by manipulating only the states 
involved in the merge (or copies of them). Only when it is 
known that the change in figure of merit is good enough 
do we actually carry out the merge. This is a large saving 
when the FSA has many states. 

L9 
L10 
L11 

6.2 Quick consistency checking 
(a*+c*)b 4 
(aa)*(bbb)* 5 
Even number of a’s and odd 4 
number of b’s When negative examples are provided, some merges 

will be rejected because the merged FSA would accept 
one of the negative examples. To avoid doing the merge 
in these cases saves a lot of needless computation. 
Therefore, ,a quick way to check for this beforehand is 
worth doing. 

One way to do a quick check relies on the following 
observation: If at any stage the merge of a pair of states is 
rejected, then the merge will also be rejected at any time 
from then on (even if more transitions are added to the 
FSA, or more states are merged). This applies not only to 
the original pair of states, but also to any states that they 

L12 
L13 
L14 

are merged into. So it is worthwhile remembering when a 
merge is rejected. We will say that such a pair of states is 
inconsistent with each other with respect to the sets of 
positive and negative examples. We implemented this by 
keeping, for each state, a list of states known to be 
inconsistent with it. When a pair of states is merged, the 
merged state inherits the union of its parents’ known 
inconsistent states. In particular, a state cannot be allowed 
to be inconsistent with itself, which provides another 
quick check - if the known inconsistent states for two 
states intersect, then those two states are themselves 
inconsistent (and can be added to each other’s list of 
known inconsistent states). 

a(aa)*b 3 
Even number of a’s 2 
(aa)*ba* 3 

7. Results 

In this section we describe some experiments 
comparing the performance of the greedy algorithm with 
the RPNI algorithm when positive and negative examples 
are given, and investigating the success of the greedy 
algorithm when only positive examples are given. 

For these experiments, we used a standard set of 15 
regular languages [16]. These languages are listed in 
Table 1. 

Table 1 - Tomita regular languages 

I Description I #states in the I 

Not ending in odd number of I 1 b’sthenornumberofa’s 1 I 
L4 Not havin 3 consecutive a’s 

Even number of a’s and even 
number of b’s 
Number of a’s and number of L6 

I L15 I bc*b+ac*a I 4 I 

7.1 Positive and negative examples 

For each language, we used canonical FSA’s to 
generate a random sample of 100 positive examples and 
100 negative examples. When generating positive 
examples, we assigned equal probability to each possible 
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RPNI I Greedy MML 
% I T P  ITN 1 %  I T P  ITN , 

L1 1 100 I - 

Since RPNI is guaranteed to identify the canonical 
FSA given a sufficient sample (technically a 
characteristic sample), it is clear that the random 
generation procedure did not always provide such a 
characteristic sample. But in real applications, if the 
number of negative examples available is limited, it is not 
possible to know whether or not the sample is 
characteristic (without prior knowledge of what the target 
FSA is). It is interesting to note that greedy search 

I 9 9  I 100 I 100 

sometimes correctly identified the target FSA in these 
cases, where RPNI did not. Using L9 as an example, we 
saw by inspection that FSA’s found by RPNI accept either 
CAB or ACB or both, neither of which is in L9. So we 
know that the samples generated lacked negative 
examples of one or both of these types. Yet greedy search 
found the correct target. This was because the positive 
examples also lack strings of this type, reflected in a lower 
message length to the target FSA. 

What about the languages with which greedy search 
had trouble? There are two ways in which greedy search 
can “fail” to find the target language - since the search is 
incomplete, it may fail to find the FSA with the lowest 
message length, or, it may be that the FSA with the lowest 
message length is not the target FSA. How can this 
happen, since we used the target FSA to generate the 
sample data? The explanation is that message length is 
related to the probability that the particular model (FSA) 
is the target one. Thus it is possible, though less likely, 
that a model other than the one with smallest message 
length is the target. Taking L3 as an example, we saw that 
in many cases the target FSA and the one found by greedy 
search had almost the same MML. Thus these two FSA’s 
were almost equally likely given the sample data, and their 
behaviours were almost identical. 

These results suggest that greedy search, or another 
method based on MML, can be a useful alternative to 
“exact” methods like RPNI when a limited number of 
negative examples is provided. 

L2 I 100 I - 7.2 Positive examples only 1100 I -  

As discussed earlier, when only positive examples are 
available, exact methods do not apply and a heuristic 
method like greedy search with MML is needed. To 
investigate how effectively a model simplicity criterion 
like MML replaces negative examples, we applied greedy 
search to the same example sets as in the first experiment, 
this time ignoring the negative examples. 

Table 3 - Mean MML’s found by greedy search 
with and without negative examples 

I target I Greedy+/- 1 Greedy+ I L3 I 877.16 I 880.71 I 869.81 
L4 1746.54 I 746.2 1 741.83 
L5 12072.55 I 2072.55 I 2203.89 

I L6 I 1626.54 I 1626.54 I 1738.39 
L7 I 762.3 I 762.88 I 751.38 
L11 12615.20 I 2615.20 I 2790.5 

I L13 I 1182.58 I 1182.58 I 1253.15 

For the languages L1, L2, L8, L9, L10, L12, L14 and 
L15, greedy search with positive examples only 
performed just as well as when negative examples were 
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given. However for the remaining languages, L3, U, L5, 
L6, L7, L11 and L13, it failed to find the target on any 
trial, instead collapsing to a single-state FSA. Table 3 
shows the average MML’s for the FSA’s found for these 
languages. For languages L3, L4 and L7, the single-state 
FSA had a lower message length than the target FSA. 
Thus for these languages, the single-state FSA is the more 
likely model given the data (even though it is the “wrong” 
one). We ran a smaller number of trials (just 5) for each of 
these languages, with a sample size of 500 rather than 
100. With this sample size, the target FSA becomes more 
likely than the single-state FSA, but greedy search still 
converged on the single-state FSA. For L5, L6, L11 and 
L13, the target FSA has the lower message length, even 
with a sample size of 100. We tried beam search on these 
cases (again just 5 trials on each, with a beam width of 
lo), and found that beam search was able to identify the 
target, although it took several hundred times longer to 
run than greedy search. In this situation, an advantage of 
beam search is that it can return the best few FSA’s that it 
finds, rather than just one. If several FSA’s have similar 
MML’s, then this is valuable additional information. 

In summary, given enough samples, merging states to 
optimize the MML was capable of correctly identifying 
the target language. When more data was needed, a simple 
greedy search was not powerful enough to find the FSA 
with the optimal MML, and beam search was slow. This 
suggests that better, faster search algorithms will be 
needed to tackle larger problems. 

8. Conclusion 

In this paper we have described a family of search 
algorithms that can be used to induce finite state automata 
either from positive examples alone, or from a 
combination of positive and negative examples. The 
algorithms perform well even when only a limited number 
of negative examples is available. There are many 
potential applications in which only positive examples are 
available. Data mining applications such as analysis of 
sequences from user logs of web sites are a topical 
example. These applications will require algorithms that 
can handle large volumes of data, and large models. Using 
Minimum Message Length as a model-merging criterion is 
very effective with small problems, but search 
completeness and execution speed are issues that need 
further research before more challenging problems can be 
handled. 
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