
Edith Cowan University Edith Cowan University

Research Online Research Online

ECU Publications Pre. 2011

2001

Inference of regular languages using model simplicity Inference of regular languages using model simplicity

Philip Hingston
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks

 Part of the Computer Sciences Commons

10.1109/ACSC.2001.906625
This is an Author's Accepted Manuscript of: Hingston, P. F. (2001). Inference of regular languages using model
simplicity. Proceedings of 2001 Australian Computer Science Conference. (pp. 69-76). Gold Coast, QLD. IEEE.
Available here
© 2001 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.
This Conference Proceeding is posted at Research Online.
https://ro.ecu.edu.au/ecuworks/4778

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworks
https://ro.ecu.edu.au/ecuworks?utm_source=ro.ecu.edu.au%2Fecuworks%2F4778&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ro.ecu.edu.au%2Fecuworks%2F4778&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1109/ACSC.2001.906625
http://dx.doi.org/10.1109/ACSC.2001.906625

Inference of Regular Languages using Model Simplicity

Philip Hingston
Edith Cowan University
p .hingston@ecu .edu.au

Abstract

We describe an approach that is related to a number
of existing algorithms for the inference of a regular
language from a set of positive (and optionally also
negative) examples. Variations on this approach provide
a family of algorithms that attempt to minimise the
complexity of a description of the example data in terms
of a finite state automaton model.

Experiments using a standard set of small problems
show that this approach produces satisfactory results
when positive examples only are given, and can be helpful
when only a limited number of negative examples is
available. The results also suggest that improved
algorithms will be needed in order to tackle more
challenging problems, such as data mining and
exploratory sequential analysis applications.

Key words: grammatical inference, Minimum Message
Length principle

1. Introduction

The inference of regular languages has important
applications in fields such as exploratory sequential
analysis, artificial intelligence, pattern recognition and
data mining. In this paper, we describe an algorithm
framework encompassing a number of existing approaches
to the problem, and show, through examples with a
standard set of benchmark problems, how these
algorithms perform.

There are two main classes of algorithms for
grammatical inference, depending on whether there are
both positive and negative examples from the target
language, or positive examples only. In the former case,
“exact” methods are available, with guaranteed
convergence, provided sufficient examples of the right
kind are given. In the latter case, “heuristic” methods must
be employed. While some of the more abundant
applications are of the second kind, heuristic algorithms
have not received as much attention as exact ones to date.
One of the aims of the work presented here is to start to
understand the strengths and weaknesses of the heuristic
search approach to inference.

The structure of the paper is as follows. We f i s t
review the relevant theory of finite state automata and
regular languages, and then describe the induction
problem and summarise the main approaches to its
solution in terms of this theory. Next we explain the
concept of Minimum Message Length as a model
selection tool, and how we compute it for finite state
automata. Then we describe the basic algorithm and its
extension to include negative examples, and note some
possible improvements. Finally, some experimental results
on the performance of the algorithm are presented.

2. Theory of FSA

In this section we review the basic theory of finite state
automata and their relationship with regular languages. A
finite state automaton (FSA) is a quintuple A =
<Q, S, 40, F, next>, where Q is a finite set of states, S a
finite set of symbols, qo E Q is the start state, F _c Q is the
set of final states, and next: QxS -+ Q is a partial mapping
called the state transition function. The elements of next
are called transitions. If the mapping is deterministic (i.e.
if there is at most one transition for a given Q,S
combination), then A is also said to be deterministic. In
this paper we consider only deterministic FSA’s.

An FSA, A, models a process that begins in the start
state, and at each step chooses a transition (q , s) -+ q
where q is the current state, outputs the symbol s, and
moves to state q . The process can stop at any final state.
In the course of this computation, a string of symbols is
output. The set of such strings is the language generated
by A . One can also view the symbols as inputs: A begins in
the start state, and at each step, the next input symbol
determines the next state via the state transition function.
If there is no transition from the current state with the
given input symbol, the computation fails. If the
computation succeeds, and finishes with A in a final state,
then the string is accepted by A. The set of such strings is
the language accepted by A (and is the same as the
language generated by A).

A basic result of automata theory states that a language
is regular if and only if it is accepted by (or, equivalently,
generated by) an FSA. In particular, for any finite set of
strings, there is an FSA that accepts exactly that set of

69
1530-0900/01$10.00 0 2001 IEEE

strings. One such FSA is the prefix tree acceptor (PTA) of
the strings. The PTA may be constructed by simply laying
out the strings in L, using a state to represent each unique
prefix of one of the strings.

We can illustrate this with an example from Gaines,
(cited in [11 as originally due to Feldman et al.). The set of
strings is L = {CAAAB, BBAAB, CAAB, BBAB, CAB,
BBB, CB}. The PTA of L is shown in the state diagram
below, Figure 1. In the figure, circles represent the states,
and labeled arcs between them represent transitions. We
follow the usual convention of marking the start state with
a “>” and using a double-circle for the final states.

B B @

B b B b
Figure 1. Example Prefix Tree Acceptor

This FSA represents the language L exactly, but does
so somewhat wastefully - there are smaller FSA’s that
accept L. Given any FSA, Nerode [2] showed how to
construct a minimal deterministic FSA that accepts the
same language as the given FSA (minimal in the sense of
having the least number of states). This is sometimes
called the canonical FSA of that language. In this
example, the canonical FSA is shown in Figure 2.

Figure 2. FSA with least number of states
(canonical FSA)

Note that the FSA in Figure 2 is obtained from the one
in Figure 1 by “merging” states together - all the final
states have been merged into one, and three other pairs of
states, corresponding to the prefixes {CA,BB},
{CAAJBA}, and {CAAA,BBAA} have also been merged.
These two FSA’s share three properties:

1.
2.

They accept the strings in L.
Every transition is used in accepting some
string of L (and therefore all states are
accessible).

3. They do not accept any strings that are not in
L.

More generally, every (possibly non-deterministic)
FSA that satisfies the first two conditions can be obtained
by merging states of the PTA, and conversely [3]. Thus
each such FSA can be identified with a partition of the
states of the PTA. Successive merges correspond to
composition of partitions. The FSA’s thus form a lattice,
and the deterministic ones form a sub-lattice. The PTA is
at the top of the lattice. Given two FSA’s F and G , F<G
in the lattice if F can be obtained by merging states of G.

At the bottom of the lattice is a single-state FSA. This
FSA accepts not only L, but also any string over the same
alphabet. In fact, as we move down the lattice, the set of
languages accepted by the FSA becomes less restrictive
(i.e. more general). To illustrate this, consider what
happens if we merge the two states that follow the start
state in Figure 2. The resulting FSA would be non-
deterministic, so further states must be merged to obtain a
deterministic FSA, giving the FSA shown in Figure 3.

C A A A

Figure 3. Canonical FSA after further merging

This FSA accepts strings that begin with BA, whereas
the canonical FSA only accepts strings beginning with BB,
C A or CB. Also, there are now several “loops” in the
graph. These can be traversed as many times as desired to
add extra symbols to accepted strings.

Finite languages are of theoretical interest, but the
practical applications listed earlier concem infnite
languages. In the general case, we have a finite sample of
strings from some infinite language and are interested in
identifying the underlying language, i.e. finding an FSA
that accepts (or generates) the language.

Assuming that the sample strings are generated from an
FSA using some probabilistic process, we can infer not
only the structure of the FSA, but also the parameters of
the probabilistic process. In particular, we will assume
that a probabilistic finite state automaton (also sometimes
called a stochastic finite state automaton) generates the
sample strings.

Next we will define what we mean by a probabilistic
FSA, but we first need to introduce a technical device that
makes the description easier. Rather than specifying a set
of final states, F, as before, we introduce a special
delimiter symbol, which is not in the alphabet of the FSA,
say “*”. If a state emits the delimiter symbol, this is taken
to indicate the end of the string, and no next state is
specified (or equivalently, the next state is understood to

70

be the start state). Thus any state that can emit the
delimiter symbol is considered a final state. Now we are
ready for the definition of a probabilistic FSA.

A probabilistic finite state automaton is formally a
quintuple <Q, S, 40, next, p > . where the first four
elements are as before, and p : QxS + (OJ] is a partial
mapping which is defined whenever next is defined, and
where the sum of the values of p for any given state is 1.
We interpret p as giving the probability that a particular
symbol will be emitted when we are in a particular state
(we call these transition probabilities). Once the output
symbol is chosen, next determines the next state from that
symbol. Figure 4 shows one possible set of transition
probabilities’ for the FSA in Figure 2. Notice the
“transition” from the final state using the delimiter
symbol. This is the reason for introducing the device - the
probability of ending the string can now be treated in the
same way as the probabilities of transitions between
states. A probabilistic FSA determines a probability
distribution over the strings in the language - the
probability for a particular string is the product of the
probabilities of the transitions that generate it.

Note that probabilistic FSA’s are essentially a special
case of discrete output first-order Hidden Markov Models
(HMM’s), which have been used extensively in
applications such as speech recognition (see, for example,
[4]). We do not require the full generality of HMM’s for
our target applications, and FSA’s are much more
tractable.

Figure 4. FSA with transition probabilities

When we construct an FSA from a set of sample
strings, we can estimate the transition probabilities by
keeping a count of the number of times each arc of the
graph has been traversed. When states are merged, the
transition counts on the merged arcs are added together.
The counts can be converted into probability estimates by
dividing each count by the total count of all the arcs from
that state. Doing this with the FSA in Figure 2 yields the
probabilistic FSA in Figure 4. In what follows, when we
refer’ to an FSA, we will often mean an FSA with
transition counts, or a probabilistic FSA, depending on the
context.

3. The induction problem

As was stated earlier, we are concemed with the
problem of identifying a regular language from a finite
sample of strings in the language, i.e. with finding an FSA
that accepts the language. For example, in the case of
exploratory sequential analysis, we are given coded
behaviour sequences, and we are interested in finding out
something about the underlying processes that are
producing the behaviours. In speech recognition
applications, we are given examples of strings of
phonemes representing spoken words to be recognised,
and we want to find models that enable us to recognise
these words. In data mining, we might, for example, have
a data set of sequences of credit card transactions, and
might want to derive models that will help to detect
possible fraudulent activities.

In the grammatical inference tradition, we usually also
have a set of negative examples - strings that are not in
the language. Sometimes one is provided with an oracle or
teacher that will answer whether a particular string is in
the language or not, or other questions that can be used to
identify the FSA. These additional data are needed if one
wishes to identify the target FSA exactly. In the
applications listed above, it is more likely that we will
have a given set of positive examples only. In this case,
the target FSA can only be approximately identified, and
heuristic methods come into play.

In each case, if the underlying language is infinite, then
an FSA that accepts only the finite sample (e.g. the
canonical FSA) cannot be the right model! Supposing that
we already have an FSA that accepts the sample strings
(say the PTA or the canonical FSA), there are two ways to
make it accept more strings. We could add transitions that
are not used in the sample strings, or we could merge
states, creating altemate paths and loops in the state graph.
Since we have no rational basis for hypothesising extra
transitions, we usually assume that the sample is large
enough for all the necessary transitions to be represented
(the sample is then said to be structurally complete).

Looking at the second possibility, we know that we can
expand the language accepted by an FSA by merging
states, so traversing down the lattice. If we keep merging,
we will eventually reach the single-state FSA, so we want
to stop before then. The question is - when should we stop
merging? There are at least two distinct answers.

If negative examples are supplied, these can be used to
stop merging too far. If we merge too many states, the
resulting FSA will accept one of the negative examples.
An algorithm of this type is the RPNI (regular positive
and negative inference) algorithm [5] . RPNI starts with
the PTA, and merges pairs of states if possible, using a
fmed depth-first ordering of state pairs. It runs in

71

polynomial time and is guaranteed to identify the correct
FSA given completeness conditions on the sample data.

The second possibility, when only positive examples
are supplied, is to use a formulation of Occam’s razor to
select the FSA in the lattice that provides the “simplest”
explanation of the data. This idea is behmd a number of
algorithms. The general pattem is to construct the PTA for
the sample strings, and then to perform successive merges
of states, seeking to optimise a “figure of merit” or
simplicity measure.

In one of the earliest investigations of this kind, [l],
Gaines describes ATOM, a system that used a dual-
objective minimization criterion (number of states and an
entropy-based measure) and looks for discontinuities of
the minimal entropy value as the number of states is
varied. He studied data sets from a range of applications,
showing the ability of ATOM to identify various kinds of
structure inherent in the data.

Patrick and Chong [6] describe an algorithm that uses
Minimum Message Length [7, 81 as the measure of
simplicity. The algorithm was implemented as part of a
system for recording, coding and analysing behaviours
from videos. It was later generalised and improved by
Raman et a1 [9]. In that version, FSA’s are allowed to be
non-deterministic. Hingston and Lees [101 implemented
an improved version of Patrick and Chong’s algorithm
and Lees has used it to analyse data from a vocabulary
learning experiment Ell]. Stolcke et al [4] describe a
similar algorithm for HMM’s. The Alergia algorithm [12]
is similar to both RPNI and these simplicity-based
algorithms, where the role of negative examples in RPNI
(in preventing merges) is replaced by a test of similarity
of behaviours of states. Grunwald [131 used the Minimum
Description Length principle as formulated in [14] to
induce grammars rather than FSA’s, from positive
samples. Both MML and MDL have been used as model
selection principles for other induction tasks.

4. Minimum Message Length for FSA’s

For the case of induction from positive examples, since
a simplicity measure will be used to guide the search
down the lattice, a suitable measure must be chosen. We
have chosen to use the Minimum Message Length
(MML), which is described below.

The motivation behind this choice is that the
description with the shortest optimal encoding provides
the “simplest”, and therefore the best, explanation of the
observed data. Imagine the situation where we wish to
communicate the data to another person, perhaps over a
computer network. We send a message to the other person
describing the data set. We want this message to be as
short as possible.

The description consists of two parts: a description of
the model (the FSA) and a description of the data using
that model. At first, it may not be clear why the
description of the model must be included. This is because
it may be possible to achieve a very compact description
of the data using a very complex model, which should not
be considered to be a simple explanation. In the extreme
case the model could just enumerate the data and no
separate description of the data is needed at all! Requiring
the description to include both the model and the data
provides a trade-off between model complexity and
accuracy.

So, given a data set, D, we seek an FSA, F , which
minimises the quantity:

DescriptionLengthfF) + DescriptionLength(DIF),

where the each description is optimally encoded. How
can we compute these description lengths? There are two
possible ways - specify a particular coding scheme, or
compute the probability of each event (then the length of
an optimally encoded description is -Zog(p), the negative
log-likelihood of the event occurring). We designed an
encoding scheme for the FSA’s, so as to calculate the
description length for F. Once the FSA is specified, a
probability distribution over the set of strings from which
the sample is drawn is determined, (as in Figure 4), and
we can calculate the second description length.

It is interesting to note that minimising description
length is equivalent to maximising the a-posteriori
probability of the FSA model given the data. To see this
consider the formula

rob(D1F) xprob(F)
prob(D) ‘

prob(F1D) =

The denominator on the RHS is fixed by the data, so to
maximise the LHS is to maximise the numerator on the
RHS. Taking negative logs, we see that this is the same as
minimising the expression:

-Zog(prob(F) xprob(D1F))
= -log(prob(F)) + -log(prob(DIF)
= DescriptionLengthfF) + DescriptionLength(D1F).

4.1 Coding Scheme

Here we will describe our coding scheme. A
description of the FSA lists the following

1. the number of states, N , in the FSA,
2. for each state j , tj, the total of all transition

3. for each state j and symbol i, nij, the transition
counts leaving the state,

count for this symbol leaving the state,

72

4. for each state j and symbol i, if nii is not 0 (there
is a transition for symbol i) and symbol i is
not the delimiter, the description must specify
the next state.

Finally we want to encode the data. This can be done
by beginning at the start state, and traversing the FSA,
encoding the symbol to be selected for each transition at
each step. As each symbol is emitted, the transition counts
can be decremented. Assuming that an optimal code is
selected based on the probabilities when each symbol is
emitted, the total message length required for symbols
emitted from statej can be calculated.

The detailed derivation of the final formula is omitted
here, but the result is:

N V C(tj + Zog((t. + V - I) !) - log((V - I) !) - C /og(nql))

j=l i = l
J

+ N - lOg(N!)+ Mlog(N) ,

where V is the number of symbols in the alphabet, and
M is the number of non-delimiter arcs in the FSA. Notice
that the formula is written so that the additive contribution
of each state can be separated from that of other states.

5. The induction algorithm

We fis t introduce the basic induction algorithm for the
case of positive examples only. We then show how it is
modified to handle positive and negative examples.

The basic algorithm is a greedy search over the lattice
of FSA’s by performing successive deterministic merges
of pairs of states, starting with the PTA of the (positive)
example set. Being greedy, the search is incomplete, and
may not find the optimal solution. In pseudo-code, the
basic algorithm can be written as in Figure 5.

function Greedy(examp1e set): FSA;
begin

b := PTA(examp1e set); t := BestMerge(b);
while FOM(t) < FOM(b) do begin

end;
Greedy := b;

b := t; t := BestMerge(b);

end;

function BestMerge(FSA: 8: FSA;
begin

b :=A
for each SI ,s2 in Stateslf) do begin

t := DeterministicMerge~ SI, s2);
ifFOM(t) < FOM(b) then b := t;

end;
BestMerge := b;

m d .

function DeterministicMerge(FSA: f ; State: SI ~ 2) : FSA;
begin

d := Mergelf, SI, s2);
while d is not deterministic do begin

find a state with two transitions for the same
output, but different next states ql and q2;
d := Merge(d, q l , 92);

end;
end:

Figure 5. Greedy search with positive examples
only

DeterministicMerge can be implemented using a stack
of pairs of states that need to be merged, and using a
version of the Union-Find algorithm, (see, for example,
[15], pp 236-245), to represent and update the partition
that is being created. The pair of states to be merged is
pushed onto the stack initially. When a pair of states is
popped, they are merged (if not already merged), and
more state pairs may be pushed onto the stack if needed to
keep the merged state deterministic.

In the case where only positive examples are available,
if the figure of merit is Minimum Message Length, then
the result of greedy search is an FSA that is at a local
optimum of the MML, which we hope is also a global
optimum or close to it.

5.1 Including negative examples

When negative examples are provided, merging a pair
of states can result in an FSA that accepts .one of the
negative examples. In this case, we say that the FSA and
the negative examples are inconsistent. We modify
BestMerge by adding a consistency check after the merge.
This prevents the FSA from collapsing too far, and the
result will be an FSA that is at a local minimum of
message length, number of states or transitions, depending

73

on the figure of merit chosen, among FSA’s that are
consistent with the negative examples.

L1
L2

6. Improving greedy search

canonical FSA
a* 1
(ab)* 2

In this section, we discuss some enhancements to the
basic algorithm. One dimension of improvement is
completeness of the search. Raman et al, in [9], modified
the algorithm by replacing greedy search with a beam
search, and extending the search space to non-
deterministic automata. Beam search keeps several
candidate FSA’s at each step in the search, rather than
only the best (a beam rather than a point). This makes the
search more complete, but much slower! We have
implemented a version of beam search that works with
deterministic FSA’s.

A second dimension of improvement is execution
speed. We have implemented several methods that
improve the speed of the algorithm. These can be used
with search methods that merge states, such as greedy and
beam search and “I.

L7
L8

6.1 Incremental calculations

b’s congruent modulo 3
a*b*a*b* 4
a*b 2

Lazy and incremental calculations ‘can be used to good
effect to improve the efficiency of the basic algorithm. For
example, the formula for the MML of an FSA is expressed
as the sum of a global part and a contribution from each
state. These state contributions only need to be
recalculated when each particular state is modified, thus
making the calculation of the overall MML much faster.
In fact, when a candidate pair is being tried, it is not
necessary to actually carry out the merge. It is possible to
calculate the change in the figure of merit that would
result from the merge by manipulating only the states
involved in the merge (or copies of them). Only when it is
known that the change in figure of merit is good enough
do we actually carry out the merge. This is a large saving
when the FSA has many states.

L9
L10
L11

6.2 Quick consistency checking
(a*+c*)b 4
(aa)*(bbb)* 5
Even number of a’s and odd 4
number of b’s When negative examples are provided, some merges

will be rejected because the merged FSA would accept
one of the negative examples. To avoid doing the merge
in these cases saves a lot of needless computation.
Therefore, ,a quick way to check for this beforehand is
worth doing.

One way to do a quick check relies on the following
observation: If at any stage the merge of a pair of states is
rejected, then the merge will also be rejected at any time
from then on (even if more transitions are added to the
FSA, or more states are merged). This applies not only to
the original pair of states, but also to any states that they

L12
L13
L14

are merged into. So it is worthwhile remembering when a
merge is rejected. We will say that such a pair of states is
inconsistent with each other with respect to the sets of
positive and negative examples. We implemented this by
keeping, for each state, a list of states known to be
inconsistent with it. When a pair of states is merged, the
merged state inherits the union of its parents’ known
inconsistent states. In particular, a state cannot be allowed
to be inconsistent with itself, which provides another
quick check - if the known inconsistent states for two
states intersect, then those two states are themselves
inconsistent (and can be added to each other’s list of
known inconsistent states).

a(aa)*b 3
Even number of a’s 2
(aa)*ba* 3

7. Results

In this section we describe some experiments
comparing the performance of the greedy algorithm with
the RPNI algorithm when positive and negative examples
are given, and investigating the success of the greedy
algorithm when only positive examples are given.

For these experiments, we used a standard set of 15
regular languages [16]. These languages are listed in
Table 1.

Table 1 - Tomita regular languages

I Description I #states in the I

Not ending in odd number of I 1 b’sthenornumberofa’s 1 I
L4 Not havin 3 consecutive a’s

Even number of a’s and even
number of b’s
Number of a’s and number of L6

I L15 I bc*b+ac*a I 4 I

7.1 Positive and negative examples

For each language, we used canonical FSA’s to
generate a random sample of 100 positive examples and
100 negative examples. When generating positive
examples, we assigned equal probability to each possible

74

RPNI I Greedy MML
% I T P ITN 1 % I T P ITN ,

L1 1 100 I -

Since RPNI is guaranteed to identify the canonical
FSA given a sufficient sample (technically a
characteristic sample), it is clear that the random
generation procedure did not always provide such a
characteristic sample. But in real applications, if the
number of negative examples available is limited, it is not
possible to know whether or not the sample is
characteristic (without prior knowledge of what the target
FSA is). It is interesting to note that greedy search

I 9 9 I 100 I 100

sometimes correctly identified the target FSA in these
cases, where RPNI did not. Using L9 as an example, we
saw by inspection that FSA’s found by RPNI accept either
CAB or ACB or both, neither of which is in L9. So we
know that the samples generated lacked negative
examples of one or both of these types. Yet greedy search
found the correct target. This was because the positive
examples also lack strings of this type, reflected in a lower
message length to the target FSA.

What about the languages with which greedy search
had trouble? There are two ways in which greedy search
can “fail” to find the target language - since the search is
incomplete, it may fail to find the FSA with the lowest
message length, or, it may be that the FSA with the lowest
message length is not the target FSA. How can this
happen, since we used the target FSA to generate the
sample data? The explanation is that message length is
related to the probability that the particular model (FSA)
is the target one. Thus it is possible, though less likely,
that a model other than the one with smallest message
length is the target. Taking L3 as an example, we saw that
in many cases the target FSA and the one found by greedy
search had almost the same MML. Thus these two FSA’s
were almost equally likely given the sample data, and their
behaviours were almost identical.

These results suggest that greedy search, or another
method based on MML, can be a useful alternative to
“exact” methods like RPNI when a limited number of
negative examples is provided.

L2 I 100 I - 7.2 Positive examples only 1100 I -

As discussed earlier, when only positive examples are
available, exact methods do not apply and a heuristic
method like greedy search with MML is needed. To
investigate how effectively a model simplicity criterion
like MML replaces negative examples, we applied greedy
search to the same example sets as in the first experiment,
this time ignoring the negative examples.

Table 3 - Mean MML’s found by greedy search
with and without negative examples

I target I Greedy+/- 1 Greedy+ I L3 I 877.16 I 880.71 I 869.81
L4 1746.54 I 746.2 1 741.83
L5 12072.55 I 2072.55 I 2203.89

I L6 I 1626.54 I 1626.54 I 1738.39
L7 I 762.3 I 762.88 I 751.38
L11 12615.20 I 2615.20 I 2790.5

I L13 I 1182.58 I 1182.58 I 1253.15

For the languages L1, L2, L8, L9, L10, L12, L14 and
L15, greedy search with positive examples only
performed just as well as when negative examples were

75

given. However for the remaining languages, L3, U, L5,
L6, L7, L11 and L13, it failed to find the target on any
trial, instead collapsing to a single-state FSA. Table 3
shows the average MML’s for the FSA’s found for these
languages. For languages L3, L4 and L7, the single-state
FSA had a lower message length than the target FSA.
Thus for these languages, the single-state FSA is the more
likely model given the data (even though it is the “wrong”
one). We ran a smaller number of trials (just 5) for each of
these languages, with a sample size of 500 rather than
100. With this sample size, the target FSA becomes more
likely than the single-state FSA, but greedy search still
converged on the single-state FSA. For L5, L6, L11 and
L13, the target FSA has the lower message length, even
with a sample size of 100. We tried beam search on these
cases (again just 5 trials on each, with a beam width of
lo), and found that beam search was able to identify the
target, although it took several hundred times longer to
run than greedy search. In this situation, an advantage of
beam search is that it can return the best few FSA’s that it
finds, rather than just one. If several FSA’s have similar
MML’s, then this is valuable additional information.

In summary, given enough samples, merging states to
optimize the MML was capable of correctly identifying
the target language. When more data was needed, a simple
greedy search was not powerful enough to find the FSA
with the optimal MML, and beam search was slow. This
suggests that better, faster search algorithms will be
needed to tackle larger problems.

8. Conclusion

In this paper we have described a family of search
algorithms that can be used to induce finite state automata
either from positive examples alone, or from a
combination of positive and negative examples. The
algorithms perform well even when only a limited number
of negative examples is available. There are many
potential applications in which only positive examples are
available. Data mining applications such as analysis of
sequences from user logs of web sites are a topical
example. These applications will require algorithms that
can handle large volumes of data, and large models. Using
Minimum Message Length as a model-merging criterion is
very effective with small problems, but search
completeness and execution speed are issues that need
further research before more challenging problems can be
handled.

[2] A. Nerode, “Linear automaton transformation,” Proceeding
of the American Mathematical Society, vol. 9, pp. 541-544,
1958.

[3] P. Dupont, Miclet, L., & Vidal, E., “What is the search
space of the regular inference?,” presented at Second
Intemational Colloquium on Grammatical Inference
(ICGI’941, Alicante, Spain, 1994.

41 A. Stolcke, and Omohundra, S., “Best-first Model Merging
for Hidden Markov Model Induction,” International Computer
Science Institute, Berkeley, CA TR-94-003, 1994.

51 J. Oncina, & Garcia, P., “Inferring regular languages in
polynomial update time,” in Pattern Recognition and Image
Analysis, N. Perez et al, Ed.: World Scientific, 1992, pp. 49-
61.

61 J. D. Patrick, & Chong, K.E., “Real-time inductive inference
for analysing human behaviour,” presented at Paper presented
at the International Joint Conference on AI (IJCAIPI),
Workshop number 6 on Integrating AI into Databases,
Sydney, 1991.

[7] C. Wallace, & Boulton, D., “An information measure for
classification,” Computing Journal, vol. 11, pp. 185-195,
1968.

[8] C. S. Wallace, & Georgeff, M.P., “A general objective for
inductive inference,” Monash University, Department of
Computer Science, Technical Report 32, 1983.

[9] A. Raman, Andreae, P. & Patrick, J., “A Beam Search
Algorithm for PFSA Inference,” Pattern Analysis and
Applications, vol. 1, pp. 121-129, 1998.

[lo] P. F. Hingston, & Lees, C.D., “Sequential analysis with
probabilistic finite state automata,” University of Westem
Australia, Department of Computer Science, Perth, Westem
Australia, Technical Report 94/12,1994.

[l l] C. D. Lees, “Analyzing event sequences using
Probabilistic Finite State Automata,” In Preparation, 2000.

[121 R. C. Carrasco, & Oncina, J., “Learning stochastic regular
grammar by means of a state merging method,” presented at
The Second International Colloquium on Grammatical
Inference (ICGI’94), Alicante, Spain, 1994.

[13] P. Grunwald, “A Minimum Description Length Approach
to Grammar Inference,” in Connectionist, statistical and
symbolic approaches to learning for natural language
processing, G . S. S. R. Wermter, E., Ed. Berlin: Springer-
Verlag, 1996, pp. 203-216.

[141 J. Rissanen, “A universal prior for integers and estimation
by minimum description length,” Annals of Statistics, vol. 11,

[I51 E. Horowitz, & Sahni, S., Fundamentals of Data
Structures in Pascal, Second Edition ed. Rockville, Maryland,
USA: Computer Science Press, 1987.

[161 M. Tomita, “Dynamic construction of finite-automata
from examples using hill-climbing,” presented at The 4th
Annual Cognitive Science Conference, 1982.

pp. 416-431, 1982.

9. References

[I] B. R. Gaines, “Behaviour/structure transformation under
uncertainty,” International Journal of Man-Machine Studies,
vol. 8, pp. 337-365, 1976.

76

	Inference of regular languages using model simplicity
	Inference of regular languages using model simplicity - Computer Science Conference, 2001. ACSC 2001. Proceedings. 24th Australasian

