
Edith Cowan University Edith Cowan University

Research Online Research Online

ECU Publications Pre. 2011

2001

Educating professional software engineers: pathways and Educating professional software engineers: pathways and

progress in the Australian experience progress in the Australian experience

Rick Duley
Edith Cowan University

David Veal
Edith Cowan University

Stanislaw P. Maj
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks

 Part of the Computer Sciences Commons

10.1109/CSEE.2001.913846
This is an Author's Accepted Manuscript of: Duley, R. , Veal, D. R., & Maj, S. P. (2001). Educating professional
software engineers: pathways and progress in the Australian experience. Proceedings of 14th Conference on
Software Engineering Education and Training. (pp. 214-220). Charlotte, USA. IEEE. Available here
© 2001 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.
This Conference Proceeding is posted at Research Online.
https://ro.ecu.edu.au/ecuworks/4770

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworks
https://ro.ecu.edu.au/ecuworks?utm_source=ro.ecu.edu.au%2Fecuworks%2F4770&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ro.ecu.edu.au%2Fecuworks%2F4770&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1109/CSEE.2001.913846
http://dx.doi.org/10.1109/CSEE.2001.913846

Educating Professional Software Engineers: Pathways and progress in
the Australian experience

S P Maj Rick Duley D Veal
(r.duley, d.veal, p.maj) @cowan.edu.au

Edith Cowan University, Perth, Westem Australia

Abstract

Australia has seized the international initiative in the recognition of Sofnyare Engineers
as professionals, Of the 37 universities in Australia offering undergraduate courses in
computing, eleven offer courses in Software Engineering which are accredited by the Institute of
Engineers, Australia and which may lead the graduate to membership of the Institute. In this
way, the Institute has plausible claim to being the first national professional engineering body in
the world to have accredited four-year undergraduate sofrwure engineering degrees as
professional qualifications.

This paper traces the development of the relationship between the Institute of Engineers
and the computing industry and looks at the changes this relationship has wrought in the content
and emphasis of tertiary so&vare engineering education.

1 Pathways

1.1 Beginnings

For more than fifteen years, the Institute of Engineers, Australia, (IEAust) has shown interest
in the evolution of the software industry. IEAust’s Working Party on Software Engineering
reported in May 1985 with the conclusion that:

“...at that time, ‘software engineering’ was more correctly characterised as a specialist

Only eleven years later, in 1996, the University of Melboume received IEAust accreditation
for its baccalaureate of Engineering in Software Engineering (the first in Australia to do so). By
1999 eleven of the 37 universities in Australia offering undergraduate computing degrees were
offering software engineering degrees under the auspices of IEAust.

activity within the computerfield than as U new engineering discipline. ” [4, p.31

“A further fifteen or ‘so accredited professional engineering degree programs have
suficient software content and coverage of computing topics to prepare graduates fo r careers
in software engineering, provided that they select the appropriate alternatives. Many of these
courses are accredited by the Australian-Computer Sociery as well as IEAust. ” [4, p.51

In this way, IEAust has plausible claim to being the first national professional engineering
body in the world to have ,accredited four-year , undergraduate software engineering degrees as
fully professional qualifications. (In the UK, graduates of accredited courses may, through the
British Computer Society, become Chartered Engineers [8, p.2641 but the Department of Trade
and Industry has expressed some opposition to their being registered as engineers [9, p.251)

0-7695-1059-0/01 $10.00 0 2001 IEEE 213

2 14

1. I . 1

Pre-existing Australian state-based computer societies merged in 1966 to form the Australian
Computer Society (ACS) with a mission to advance professional excellence in information
technology [I]. After some years of enquiry, the ACS launched, in 1996, a concerted effort to
gain the recognition of the Australian Council of Professions (the governing body of the
governing bodies of professional societies in Australia) as a fully-fledged professional
organisation. IEAust was approached by the ACS to assist in this push, and, after a period of
restructuring and reformation during 1996-98, the ACS received recognition in 1999. Currently,
IEAust and the ACS are working towards a formal agreement which will result in a Joint Board
on Software Engineering which will have oversight of accreditation standards and procedures,
examination and registration of the Professional Software Engineer (PSE).

1.2 Educating the PSE

Traditionally, undergraduate computer courses in Australia have fallen under one of three
headings: Computer Science, Information Systems (or Information Technology) and Computer
Systems Engineering. Software engineering, it is well known, fits none of these categories.

Enter the ACS

“...it became increasingly apparent to us and to others that the goals of s o f i a r e
engineering and computer science, while similar, are distinct. ” [7, p.2881

This difference is echoed by IEAust:

“It is generally accepted that computer science is the predominant underlying discipline
on which software engineering is based; however, software engineering has different goals to
computer science (viz. learninp in order to build. rather than buildina in order to Iearn). [4 ,
P.21

Furthermore, it is long recognised that the education of practitioners in the emerging field of
software engineering would require a different approach to that traditionally applied to computer
science.

“Since software engineers work in a product-orientedfield, they require a different kind of
education than that typically provided by research-oriented computer science departments.”
[2, P.5951

In the first place, undergraduate science courses in Australia are of three years duration.
Whether or not the bases of software engineering could be transmitted within that timespan was
one of the first questions which begged an answer especially when the normal extent of an
undergraduate engineering course is four years.

“The cruel face of reality commands us to implement such an integrated programme over
[three years], and so we have to make many compromises to the ideal. We believe it is
possible to accomplish these compromises so that the result is clearly a degree with an
engineering rather than a science emphasis. ... Thus our curriculum is focussed on educating
software engineers through a mixture of Computer Science fundamentals, controlled Software
Engineering practice in project units, and uncontrolled commercial experience through our
cooperative programme (which incidentally adds an extra year to the degree, which consists
of three academic years and one year of cooperative ‘industry based learning’. ” [3, pp.106-
71

This extension of the course, common
among the eleven IEAust accredited
courses, still leaves the academic
duration of the course short in
comparison to the normal engineering
undergraduate course. (For example, the
Mechanical Engineering undergraduate
course at the University of Western
Australia is of four years duration
including only twelve weeks of practical
work experience.)

2 Progress

Juggling the concurrent requirements
of duration and content has required a
reshaping of the SE curricula. It is this

3
4
5

215

Table 1 : Courses Used for Comparison

BCS BCSE(SE)
BIS BE(SE)
BCS BSE

Table 2 : Knowledge Area Comparison

Algorithms
Architecture
Artificial Intelligence
Comoutational Science

-.,-
1 BSc(CS) BE(SE)
2 BIT BE(SE)

J J J

J

J J J

J

BE(SE)

BE(SE)

I Consumer Comuuting I I I J I

216

As well as the curriculum for the SE degree, the 120-

curriculum for another, related, undergraduate
computing degree was obtained from each university loo.

in the study. Selected courses for each university are
shown in Table 1. To avoid exacerbating any “

university, the authors selected for each non-SE
(loosely termed Computer Science (CS)) degree an
SE major where available.

divergence between the degrees offered by any one U E
p
4o

, , ~ ,
SE cs

217

comparison between the individual university curricula and each of the three general curricular
outlines - CC’91, CC’OI and IEAust.

2.1 1 Limitations

Understanding the results of the survey requires cognisance of some limitations of precision
imposed by the nature of this initial survey

2.1 I I Core Units

In each curriculum, only core units were considered Universities vary in the degree of
latitude allowed students in the matter of electives It is reasonable to assume that all of the
universities provide educational coverage of each of the subject areas through a combination of
core and elective units However, the authors elected to keep to the units a graduate must have
taken rather than to speculate on the units a graduate have taken

2.1.1 2 Course Description

Unit content, in each case, was judged solely on the Course Description as given at the
web-site (or University Handbook). It is accepted that this might not necessarily reflect the
totality of the subject matter dealt with in the unit but the authors could, in this study, only
operate on the information made available to a prospective student.

2 1.1.3 Terminology

Terminological differences presented arguably the most difficult aspect of the survey from the
authors’ point of view

For example, all three curricular outlines were written with procedural high-level languages in
mind. Table 3 shows the specified introductory programming languages used in each of the
courses studied

Descriptive terminology for Java does not parallel that for procedural languages, so a
difficulty arises in defining the point at which ‘Abstract Data Types’ might been covered in the
Course Description

As a further example, a decision had to be made as to whether the sentence “The subject is
dedicated to the introduction of object-oriented programming principles, Lisrng the Java
programming langirage” covers the topic “Fundamental Programming Constructs”

Compliance with CC‘91 Requirements for
Programming Fundamentals

120

Compliavenith CC‘91 Requirements f a
Wogamning Fundanentals

Figure 3 : CC‘91 Compliance - Programming
Fundamentals Fundamentals - Boxplot

Figure 4 : CC’91 Compliance - Programming

218

2. I . 1.4 Judament Compliance with CC'91 Requirements for

As described in the previous section, much
of the interpretation of the raw data had to be
based on purely subjective judgment. In
accepting this problem, every attempt was
made to be consistent throughout even if not
pedantically and precisely correct. Given this
and the other shortcomings, the results of the
survey do not lend themselves to rigorous
statistical analysis. However, the authors
contend that the results of graphical analysis
are valid and give an informative picture of the
current situation.

. Algorithms and Complexity

Figure 5 : CC'91 Compliance - Algorithms and
Complexity

2.2 The Results Compliance with CC'91 Requirements for

2.2.1 Programming Fundamentals

While it is true that SE is not Programming
(and that Programming is not SE) it is true
that the implementation of a design into code
is a fundamental and crucial part of the
software lifecycle. For this reason, we might
expect that in a degree course which focuses
on SE rather than the broader spectrum of CS
the curriculum would show an increased
emphasis on the programming fundamentals.

Consider Figure 1. Values for the SE

Operating Systems - -

Figure 6 : CC'91 Compliance - Operating Systems

degrees are (typically) shown in the rear row
(darker columns). In all but three cases - 6, 1 and 7 - the values for SE are higher, some -
especially 4 -substantially so. Boxplotting the figures (Figure 2) clarifies the shift in emphasis.

Interestingly, when the compliances are graphed against the requirements for Curriculum
1991, the results are even more clear-cut indicating a distinct change in emphasis as the courses

Compliance with IEAust Requirements for
Software Enaineerina '"I ..

f"
40

SE ffi

Softwae Englrratng

" E
S Canpliarewtth IEAust R-ir-ts f a

Figure 8 : IEAust Compliance - Software Figure 7 : IEAust Compliance - Software

Engineering Engineering - Boxplot

219

focus on Software Engineering (Figure 3 and Figure 4). University 1’s result in Figure 3 is an
aberration which may be explained by the dropping of one CS unit from the core in favour of an
Engineering unit.

2.2.2 Algorithms and Complexity

In alignment with the (CC’OI) Knowledge Unit on Algorithms and Complexity, the IEAust
specifications deal only with complexity and computability and the resultant graphical
information is simplistic and unenlightening. However, when the raw data is graphed against the
requirements for Curriculum 1991 (Figure 5) i t is evident again that some change has occurred.
While the coverage of the Knowledge Area given by courses 9, 1 and 3 has dropped, courses 0, 2
and 10 now address the topic - in fact, only 6 does not. While the result might not be as
profound as that for Programming Fundamentals, it does show that the change in emphasis has an
effect.

2.2.3 Operating Systems

A similar situation, applies when considering the subject of Operating Systems but, again,
when the raw data is compared to the requirements for Curriculum 1991 (Figure 6) the change in
emphasis quite clear. This came as something of a surprise to the authors who expected that
Operating Systems, being of a technical nature were more likely to be emphasised in a course of
Computer Science than one on Software Engineering. As can be seen, substantial changes in the
emphasis on the subject have occurred and now all the universities concemed now deal with the
subject and most of them quite.thoroughly.

2.2.4 Software Engineering

It was only to be expected that courses seeking accreditation from EAust would reflect the
increased emphasis on Software Engineering revealed in Table 2. This expectation is realised in
Figure 7 and Figure 8.

As mentioned above, where applicable the authors selected CS courses with SE majors, and
this may be taken to explain the higher than might be expected compliance of the CS courses as
shown in the graph. However, despite this, an overall change in emphasis is clearly visible.

2.3 The Conclusions

IEAust, in initiating the recognition of Software Engineering as a distinct and fully
professional engineering discipline, has had a profound effect on relevant tertiary curricula. In
every area of knowledge investigated by the authors, SE course content had changed
significantly from that previously offered for traditional computer science.

Despite the limitations of the survey conducted by the authors, graphs of data obtained from
IEAust accredited university curricula show the core of each SE syllabus placing greater
emphasis on the requirements of SE than was previously the case with a CS syllabus. In the view
of the authors, this confirms the distinct and individual nature of SE as a discipline in its own
right and demonstrates the willingness of tertiary education institutions to respond to the needs of
that discipline. Further work is proposed to address the limitations of this preliminary survey.

References

[l] Australian Computer Society. About the Australian Computer Society [Web Page].
[2000].

220

[91

N.E. Gibbs, The SEI Education Program: The Challenge of Teaching Future Software
Engineers Communications of the ACM, vol. 32, pp. 594-605, May, 1989.

D.D. Grant and R. Smith, Undergraduate Software Engineering - An Innovative Degree
at Swinburne The Australian Computer Journal, vol. 24, pp. 106-1 13, Aug, 1992.

IEAust Working Group on Software Engineering, Software Engineering as a
Professional Engineering Discipline: Discussion paper Mar, 1999. (unpublished).

IEEE-CS/ACM Joint Curriculum Task Force, Computing Curricula 1991 : A Summary
Communications of the ACM, vol. 34, pp. 69-84, Jun. 1991.

IEEE-CS/ACM Joint Task Force on Computing Curricula, Computing Curricula 2001
(draft) Mar 6,2000. IEEE-CS/ACM. [on line] :
http://www.computer.org/education/cc2OOl/.

M.J. Lutz and J.F. Naveda, The Road Less Traveled: A Baccalaureate Degree in
Software Engineering Proceedings of ACMNGCSE 97, pp. 287-291, 1997.

L.R. Neal and A.D. Irons, Integrating Professionalism into Undergraduate Degree
Courses in Computing ITiCSE '98. Proceedings of the 6th annual conference on the
teaching of computing/3rd annual conference on integrating technology into computer
science education, pp. 264-267, 1998.

Perth, WA.
Dr. A. Underwood, Position Paper: Certification of Software Engineers (unpublished).

http://www.computer.org/education/cc2OOl

	Educating professional software engineers: pathways and progress in the Australian experience
	Educating professional software engineers: pathways and progress in the australian experience - Software Engineering Education and Training, 2001. Proceedings. 14th Conference on

