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Abstract—The Iterated Prisoner’s Dilemma (IPD) is widely 
used to study the evolution of cooperation between self-
interested agents. Existing work asks how genes that code for 
cooperation arise and spread through a single-species 
population of IPD playing agents. In this paper, we focus on 
competition between different species of agents. Making this 
distinction allows us to separate and examine 
macroevolutionary phenomena. We illustrate with some species-
level simulation experiments with agents that use well-known 
strategies, and with species of agents that use team strategies. 

I. INTRODUCTION 

A beguiling puzzle of biology is how cooperative behavior 

can evolve in a population of selfish organisms. Ever since 

Axelrod and Hamilton’s pioneering paper [1] in 1981, the 

simulated evolution of agents playing the iterated prisoner’s 

dilemma (IPD) has been the gold standard for examining this 

question. IPD is a model that encapsulates the choices an 

organism faces regarding whether or not to cooperate with 

another organism, and the payoffs resulting from the choices 

the two organisms jointly make. A thorough coverage of the 

history and the main themes of this large body of research 

can be found in [3]. 

Many hundreds of papers on the topic have examined it 

from many directions – the effect of miscommunication, 

spatial models, multiple levels of cooperation, multiple 

players, choice of partners, signaling, selection schemes and 

so on. But in all these variations, the evolutionary process 

has been studied at the level of changing proportions of 

different alleles in a population of players. This level of 

abstraction is sometimes called “microevolution”. 

In this paper, we propose a framework for studying the 

evolution of cooperation at the level of competition between 

species, sometimes called “macroevolution”. This is the level 

better suited to consider phenomena such as speciation, 

mutualism (cooperation between species), parallel evolution, 

extinction and so on. 

The term “macroevolution” can be a controversial one. It 

is sometimes used by creationists and Intelligent Design 

proponents to split evolutionary theory into a part that 

explains variations within species (“microevolution”) and a 

part that explains larger scale phenomena, such as speciation 

(“macroevolution”). This second part then becomes a target 

to attack. We are not interested in these arguments here, and 
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we simply use “macroevolution” to refer to those phenomena 

of evolution that are best thought about at the level of 

abstraction appropriate to competition between species. 

In the rest of this paper, we first introduce the iterated 

prisoner’s dilemma and discuss related work. We then 

present our simulation framework, and use it to design and 

carry out some experiments. We begin with experiments 

using simple, well-known IPD strategies, to show how the 

framework can be used, and then move on to some more 

complex, successful strategies from recent IPD contests. We 

then consider some group strategies. We conclude with a 

discussion of the results of these experiments and suggest 

possibilities for future work. 

II. ITERATED PRISONER’S DILEMMA 

The Prisoner’s Dilemma (PD) is a model used to study 

human and natural systems in which cooperation between 

self-interested individuals is observed or desired. It was 

introduced by Flood and Dresher in the early 1950’s in 

studies applying game theory to global nuclear strategies [5]. 

It has also been applied to problems in psychology, 

economics, politics, and biology. 

As PD is widely known, we refer the reader to [3] for a 

detailed description of the game, noting that we chose the 

common values T = 5, R = 3, P = 1, and S = 0. 

A case by case analysis shows that the best way for a self-

interested player to play PD is always to defect, no matter 

what the other player does. This leads us to consider the 

Iterated Prisoner’s Dilemma (IPD), in which the players play 

a sequence of games of PD against each other. 

In IPD, player strategies are rules that determine (perhaps 

stochastically) a player’s next move in any given game 

situation (which can include the history of the game to that 

point). Each player’s aim is to maximize his total payoff over 

the series. To prevent players anticipating the end of the 

series (which again leads to mutual defection), the series 

continues with some fixed probability, called the discount 

factor (so called because in a mathematical sense this is 

equivalent to an infinitely repeated game where future 

payoffs are discounted). 

Some well-known IPD strategies are: 

 

• TitForTat: cooperate on the first move, and play the 

opponent’s previous move after that; 

• Grim: cooperate on the first move, and keep 

cooperating unless the opponent defects, in which 

case, defect forever; 
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• Pavlov: cooperate on the first move, and on subsequent 

moves, switch strategies if you were punished on the 

previous move. 

Many variations of IPD have been studied, using many 

approaches. Variations include different classes of strategies, 

noisy moves, noisy payoffs, alternating non-simultaneous 

moves, signalling and so on. Approaches used include game 

theory, evolutionary methods, and machine learning. See [3] 

for a nice review covering work up to 2007. 

A. IPD Tournaments 

Around 1980, Robert Axelrod staged two round-robin 
“tournaments” between computer programs designed by 
participants to play IPD. Many sophisticated programs were 
submitted. In each case, the winner was Anil Rapaport’s 
submission, a program that simply played TitForTat. In 
1987, Axelrod carried out computer simulations using a 
genetic algorithm to evolve populations of strategies playing 
the IPD against each other [1]. In these simulations, 
TitForTat-like strategies often arose, but other, more 
complicated strategies sometimes evolved that outperformed 
TitForTat in particular populations. Axelrod used this to 
illustrate that there is no “best” strategy for playing the IPD 
in such an evolving population, because success depends on 
the mix of other strategies present in the population. 

Over the years, other tournaments have been held, 

including a series of competitions held in 2004 at the IEEE 

Congress on Evolutionary Computation, to celebrate the 20th 

anniversary of Axelrod’s 1984 book on the subject [2]. 

Controversially, competitors were allowed to enter more than 

one strategy, and some took advantage of this to enter 

strategies that colluded with each other – so called group 

strategies – in order to improve the chances of one of their 

number of winning the competition. The competitions were 

repeated at the 2005 IEEE Symposium on Computational 

Intelligence and Games (CIG’05), along with an extra 

competition in which group strategies were not allowed. 

III. RELATED WORK 

There are many existing examples, often ad hoc, of 

evolutionary simulations at the species level. A famous one 

is Lovelock’s Daisyworld [12], which models the interaction 

between two species of daisy and their effect on climate, 

illustrating the Gaia hypothesis. A popular subject for 

simulation is the predator-prey relationship: see, for example 

[11]. In an example closely related to our topic, Rankin et al 

[9] used a multispecies simulation to show that in a 

competition between species, the more selfish species tend to 

go extinct – at least in the scenarios they simulated (but note 

that their study did not use IPD as the vehicle for 

representing cooperative versus selfish behavior). 

Despite the common occurrence of species-level 

evolutionary simulations, we are not aware of any other 

species-level simulation studies focused on IPD. Many 

existing studies do sometimes interpret specific alleles as 

“species”, and refer to their “extinction”, for example. 

However, alleles don’t really behave like species except in 

an allegorical sense. The essential property of species that is 

missing is that species are reproductively isolated. For 

example, “extinction” is but a temporary setback for an allele 

– mutation can always bring it back to life. Similarly, a 

single mutation changes one allele to another, whereas true 

speciation is much more complex. An interesting 

contribution is this area is [4], where fitness sharing is used 

to encourage specialization of a population into species. 

There have been other IPD studies where restricted 

reproductive choices are used in a similar way, simulating 

the reproductive isolation of species to some degree. There is 

even the suggestion that IPD-like competition can help 

speciation in Nature, see, for example, [7]. 

Our experiments on group strategies were obviously 

motivated by the group strategies created for the 2004/5 IPD 

Competitions. Another approach to group-aware strategies is 

the work involving the use of tag systems to allow agents to 

recognize different player types, for example [10]. The 

approach we use here is more straightforward, but does not 

support study of issues such as mimicry and signaling. 

IV. A SIMULATION FRAMEWORK 

Evolution in Nature can be thought of as a competition 

between organisms using different survival strategies. In this 

work, we want to examine one specific aspect of evolution, 

so we need to lay out the rules of the competition. 

 Informally, here are our rules: 

 We are interested in a population of IPD playing 

agents; 

 The population consists of agents belonging to a 

number of distinct species; 

 Each species has its own specific kind of genome; 

 Agents reproduce asexually, with the child’s genes 

derived from its parents by mutation - the child is the 

same species as its parent; 

 An agent’s genes determine the strategy the agent uses 

when playing IPD; 

 An agent’s fitness is determined as the average payoff 

it receives from playing IPD games against the rest of 

the population; 

 An agent’s reproductive success is proportional to its 

fitness. 

The outcome of this competition depends on many factors: 

chance, population size, the species and their initial 

proportions in the population, as well as on how, 

specifically, the rules of the competition are operationalised. 

By manipulating some of these, we aim to understand better 

how cooperative behaviour can evolve in populations of self-

interested individuals, and what factors affect that evolution. 

We implemented this framework in Java using a 

population is made up of Organisms, each containing a 

Genotype and a Phenotype. The Genotype determines the 

species of the Organism. The Phenotype (determined from 

the Genotype) is the agent’s strategy. 
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Although the framework provides for mutation, in the 

experiments reported here, we keep it simple by making 

mutation a no-op. Thus we are focused, in this initial 

exploration, on competition between species, and ignore 

competition within species. 

 
public class Organism 

{ 

    public Genotype genotype; 

    public Phenotype phenotype; 

    public double fitness; 

}  

 

public interface Genotype 

{ 

    public Genotype copy(); 

    public void mutate(); 

    public Phenotype develop(); 

} 

 

public interface Phenotype 

{ 

    public Move getFirstMove(); 

    public Move getNextMove( 

             Move oppLastMove); 

} 

We simulate the evolution of a population of Organisms as 

shown in the pseudo-code below: 

 

Inputs: Initial number of organisms of each species 

1. Create initial population of Organisms 

2. While not done do 

3.     For each pair of Organisms O1 and O2 

4.         Play O1 against O2 in a game of IPD 

5.         O1.fitness += O1’s total payoff 

6.         O2.fitness += O2’s total payoff 

7.     Start a new population 

8.     While new population not complete 

9.         Select a parent O  

10.         C = O.genotype.copy() 

11.         C.mutate() 

12.         P = C.develop() 

13.         Add a new Organism(C, P, 0) to the population 

14.     End While 

15. End While 

 

Notice that in the case where there is only one species, this 

framework reduces to the more usual kind of evolutionary 

simulation. 

A. Example – AllC, AllD and TitForTat 

We use this framework to run experiments with different 

kinds of IPD strategies, to examine the species-level 

phenomena that we can observe. To illustrate, we first 

examine some simple, well-known strategies, AllC – where 

the agent ignores its opponent and cooperates at all times, 

AllD – where the agent always defects, and TitForTat. We 

start with 20 individuals in each species. The discount rate is 

0.98, giving an average game length of 50 moves. We use 

roulette-wheel selection. Each simulation is run for 100 

generations. 

During the course of a simulation, it is possible for a 

species to go extinct. This is a key point of departure from 

typical evolutionary simulations, where all the agents are of 

the same species, and interest is in the changing proportions 

of different individual-level strategies (we refer to these as 

individual-level strategies even though they may involve 

interactions between different population sub-groups). These 

strategies never really go extinct – they can always make a 

comeback through mutation or crossover. In contrast, we are 

examining species-level interactions, where extinction is 

forever.  

In a sense, the real competition between species is to see 

who does best at survival in the long term – a short-term 

drop in population numbers doesn’t necessarily spell failure. 

However, if the population of a species drops too low, then 

an unlucky sequence of events might lead to extinction. 

There are at least three different kinds of outcomes for 

these simulations. One possibility is that only one species 

survives for the whole 100 generations. In this case, we call 

that species the sole survivor.  Another possibility is that 

more than one species lasts 100 generations. It might be that 

the surviving species have reached some kind of equilibrium 

or limit cycle, or it might be that one would be sole survivor 

if we ran the simulation longer. It is difficult for us to tell the 

difference between these last two cases. 

As the outcome of any single simulation is affected by 

chance, we run 100 simulations, and gather some statistics 

on the outcomes in terms of extinctions and sole survivors. 

Table 1 below shows the results for the present example.  
TABLE 1 

EXTINCTION AND SURVIVAL RESULTS FOR 100 RUNS STARTING WITH 20 

ALLC, 20 ALLD, AND 20 TITFORTAT 
 

 AllC AllD TitForTat 

extinction 83 99 11 

sole.survivor 10 1 82 

Here we see that AllD almost always goes extinct (99%), 

while AllC usually does (83%), and TitForTat only 

occasionally does (11%). It is very rare (1%) for AllD to be 

sole survivor. TitForTat is usually the sole survivor (82%). 

We can see what happens in a little more detail with a plot 

showing the mean population sizes at each generation over 

the 100 runs of the simulation, as in Figure 1. 

The plot does not show a typical run – the course of each 

individual run may be quite different – but we can see some 

general features. The number of AllD initially rises, on 

average, while AllC falls. TitForTat rises also, eventually 

suppressing the AllD population. By the time AllD is 

eliminated, TitForTat exists in higher numbers than AllC. At 

this point, the population is playing almost exclusively 

cooperatively (100% in those runs where AllD is extinct), so 

the competition becomes a kind of “random walk”, where 

everyone’s fitness is more or less equal, and stochastic 

variation causes the relative proportions to wander a little. 
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This kind of result has been seen in many previous studies. 

In our species-based simulations, an unlucky sequence of 

wanderings will result in either AllD or TitForTat going 

extinct if we wait long enough, which happens in all but 7 

simulations in this case. 

0

20

40

60

80

100

0 20 40 60 80 100

generation

c
o

u
n

t

AllC

AllD

TitForTat

%coop

 
Figure 1 - Mean numbers in each generation, starting with 20 AllC, 20 
AllD, 20 TitForTat 

If we increase the initial population to 50 of each species, 

we get the results shown in Table 2 below. 
TABLE 2 

EXTINCTION AND SURVIVAL RESULTS FOR 100 RUNS STARTING WITH 50 

ALLC, 50 ALLD, AND 50 TITFORTAT 

 

 AllC AllD TitForTat 

extinction 54 100 0 

sole.survivor 0 0 54 

We see that the stochastic effects are less with a larger 

total population. TitForTat always survives, and AllD always 

goes extinct. AllC goes extinct 54% of the time, while AllC 

and TitForTat both survive the other 46% of the time. While 

we have omitted the mean numbers plot here, it is similar to 

Figure 1, with TitForTat having an average final population 

of about 125 to AllC’s 25, a ratio of about 5:1, compared 

with about 3:1 for the smaller population case. 
TABLE 3 

EXTINCTION AND SURVIVAL RESULTS FOR 100 RUNS STARTING WITH 100 

ALLC, 100 ALLD, AND 100 TITFORTAT 

 

 AllC AllD TitForTat 

extinction 31 100 0 

sole.survivor 0 0 31 

With starting populations of 100, the results are 

qualitatively similar, except that AllC only goes extinct 31% 

of the time after 100 generations. The final ratio of TitForTat 

to AllC is about 5:1, the same ratio as for 50 initial agents 

per species.  

V. COMPETITION ENTRIES 

In the CIG 2005 IPD Competitions, Competition 4 was a 

re-run of Axelrod’s original competition.  In particular, only 

one entry was allowed per contestant, and group strategies 

were not allowed. The form of the competition was similar to 

a single generation of one of our simulations – fitness levels 

at the end of the first generation corresponded to the final 

scores in the competition. What would happen if we were to 

continue the competition into successive generations? 

Arguable, this would test how well the strategies used in the 

competition would fare in an evolutionary context. Of 

course, these strategies were not designed to be used in this 

way, but we were interested to see the results. 

Therefore, we present here an experiment in which we use 

some of the competition entries and subject them to our 

simulation framework. For practical reasons, we have chosen 

to include only the top 4 entries, along with the “standard” 

strategy Rand, a random player, that was included in the 

competition by the organisers. The entered strategies, in the 

order they finished, are: Adaptive Pavlov (our own 

implementation, based on our best understanding of [8]), 

Omega TitForTat (the actual implementation from the 

competition), Modeller (modified for a 0.98 discount rate), 

and Gradual (the competition implementation). We started 

with 20 agents of each species. Extinction and survival 

results are shown in Table 4. 
TABLE 4 

EXTINCTION AND SURVIVAL RESULTS FOR 100 RUNS STARTING WITH 10 

AGENTS FROM EACH OF 13 COMPETITION STRATEGIES. 

 extinct sole.survivor 

APavlov 61 4 

OTFT 46 10 

Modeller 47 5 

Gradual 52 6 

Rand 100 0 

Thus Omega TitForTat is the winner of the species-level 

competition. The mean numbers plot, Figure 2, shows that 

Rand is quickly eliminated, and the other 4 strategies are 

closely matched. 

 
Figure 2 - Mean numbers in each generation, starting with 20 APavlov, 20 
OTFT, 20 Modeller, 20 Gradual and 20 Rand 

The reason APavlov does not win here may be the 

different mix of opponents (there were 50 entrants in the 

original competition), or it may be that our implementation 

of the strategy is not identical to the competition one (the 

description is ambiguous on a couple of points). 

Individual runs of the simulation look quite different from 

Figure 2. We give an example in Figure 3. On this run, 

Modeller was doing best in the first couple of generations, 

but Adaptive Pavlov caught a lucky break in generation 3. 

These two continued to be favoured by chance, with the 
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other strategies dying out by generation 25. 

 

 
Figure 3 - Numbers in each generation on a single run, starting with 20 
APavlov, 20 OTFT, 20 Modeller, 20 Gradual and 20 Rand 

VI. SOME GROUP STRATEGIES 

So far we have looked at agents that do not distinguish 

between opponents – that is, agents that consider all 

opponents to be identical at the start of each new IPD game. 

In this section, we ask: what changes if agents are able to 

identify the species of the opponent. Such an ability seems 

biologically reasonable for studying species-level evolution, 

and would also be appropriate for non-biological scenarios 

in which we are interested in group strategies. 

Group strategies proved very successful under the rules of 

the 2004/5 IPD Competitions, in those competitions where 

group entries were allowed. Agents used special sequences 

in the first few moves of the game to allow members of the 

same group to recognise each other, and then to play 

differently against different players. While we could do the 

same here, it seems simpler to provide all agents with the 

innate ability to identify an opponent’s species. 

In Nature, it would often be reasonable to assume that 

organisms can identify the species of another organism, as 

long as we put aside signaling and mimicry, interesting as 

they are. 

We can accommodate group strategies by modifying our 

framework as follows, adding the opponent’s genotype class 

as another argument to the Phenotype methods: 

 
public interface Phenotype 

{ 

    … 

    public Move getFirstMove(Class oClass); 

    public Move getNextMove( 

                       Class oClass, 

                       Move oppLastMove); 

} 

 

Many different strategies have been developed for IPD, 

and the possibilities for group strategies are no doubt just as 

numerous. In the rest of this section, we consider just a 

couple of possible strategies and begin to explore the 

complexities of their interactions. 

A. Master/Slave Group Strategies 

The group strategies entered in the 2004/5 IPD 

Competitions work roughly as follows. There are two types 

of agents in a team: Master and Slave. Slaves sacrifice 

themselves for Masters, by repeatedly cooperating, allowing 

the Master to constantly defect, giving the Master the 

maximum payoff. A Slave playing another Slave cooperates. 

A Slave playing any player not in its team always defects, 

preventing the other player from getting a good payoff. A 

Master playing another Master cooperates, maximizing their 

joint payoff. A Master playing any player not in its team 

plays TitForTat (or some other good strategy), so as to 

maximize its own payoff against other players. So, for 

example, the Master’s Phenotype uses this method: 

 
public Move getNextMove(Class oClass, 

                        Move oppLastMove) 

{ 

    if(oClass == Master.class) 

        return COOPERATE; 

    else if(oClass == Slave.class) 

        return DEFECT; 

    else return oppLastMove; 

}  

These strategies were designed for the context of the 

competitions: a good strategy was to use one Master and as 

many Slaves as the competition allowed. The aim was for the 

Master to do well, and the poor outcome for the Slaves was 

of no consequence. In the context of an evolutionary contest, 

the likely consequence for the Slaves is extinction of their 

species, and it is not clear whether there would be any lasting 

benefit for the Masters. 

An alternative way to model the Master/Slave strategy 

would be to make Master and Slave different roles within a 

single species. The assignment of roles could be decided 

either socially (for example, individuals could switch 

between roles if there seem to be too many of one and not 

enough of the other), or genetically. Both of these would be 

interesting, but we have not yet attempted either. 

B.  The Clique Strategy 

A commonly observed group strategy among humans is 

that of the clique, in which members cooperate only with 

other members of the clique. Here we model this behaviour 

by creating a species that uses this strategy. So, for example, 

one method of the Clique phenotype would be: 
 

public Move getNextMove(Class oClass, 

                        Move oppLastMove) 

{ 

    if(oClass == Clique.class) 

        return COOPERATE; 

    else return DEFECT; 

} 

 

This strategy tries to give maximum assistance to clique 

members while denying succor to outsiders. An apparent 

weakness is its inability to get a good reward from outsiders 
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who cannot be exploited by defection, like TitForTat. 

C. Simulation results 

We begin with some experiments to explore the 

Master/Slave strategy, by pitting some familiar strategies 

against a Master/Slave team. Let’s start with AllC. 

1) Experiment C.1 – Master/Slave versus AllC 
In this experiment, we started with 50 AllC agents, 25 

Masters and 25 Slaves. As the Master/Slave agents are acting 

as a team, we allow 50 agents to be split between Masters 

and Slaves. Table 5 gives the extinction/survival results: 
TABLE 5 

EXTINCTION AND SURVIVAL RESULTS FOR 100 RUNS STARTING WITH 25 

MASTER, 25 SLAVE, AND 50 ALLC 

 

 Master Slave AllC 

extinction 3 100 71 

sole.survivor 71 0 3 

As we see, the Slaves always go extinct, Masters usually 

(71%) become the sole surviving species, sometimes (26%) 

Masters and AllC both survive, and rarely (3%) AllC is the 

sole survivor. A more detailed picture is given by the Mean 

numbers plot, Figure 4 below. 
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Figure 4 – Mean numbers in each generation, starting with 25 Master, 25 
Slave, 50 AllC 

The Slaves sacrifice themselves in the first few 

generations (generally going extinct at about generation 10) 

to give the Masters and initial advantage over AllC. By that 

time Masters make up about 88% of the population, and both 

surviving species will cooperate 100% of the time from then 

on. Stochastic variation then determines which species, if 

any, goes extinct by generation 100. 

Our choice of 25 Masters and 25 Slaves was arbitrary. 

Would the team do better with more Slaves and fewer 

Masters? Perhaps starting with too few Masters would leave 

them still in the minority at the point when the Slaves go 

extinct? The next experiment examines this. 

2) Experiment C.2 – Master/Slave 5/45 versus AllC 
In this experiment, we start with 5 Masters, 45 Slaves, and 

50 AllC. Table 6 gives the extinction/survival results. We 

see that the team as a whole is more successful than before, 

with AllC going extinct in every run. Surprisingly, the Slaves 

actually out-competed the Masters in one run. How did this 

happen? The Mean numbers plot, Figure 5, offers an 

explanation. 

 
TABLE 6 

EXTINCTION AND SURVIVAL RESULTS FOR 100 RUNS STARTING WITH 5 

MASTER, 45 SLAVE, AND 50 ALLC 

 

 Master Slave AllC 

extinction 1 99 100 

sole.survivor 99 1 0 
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Figure 5 - Mean numbers in each generation, starting with 5 Master, 45 
Slave, 50 AllC 

This time, the Slaves are seen to rapidly rise to nearly 80% 

of the population, by which time AllC is almost eliminated. 

By the time AllC goes extinct, the Masters have increased to 

more than 20% of the population, and are usually (99%) able 

to assert themselves and take over from the Slaves. 

What happens if we start with more Masters? If we start 

with 45 Masters and 5 Slaves, then the Masters are sole 

survivors about 34% of the time, AllC about 17%, and the 

rest of the time, Masters and AllC both survive (with about 

66% Masters and 34% AllC). As expected, a smaller initial 

number of Masters is more effective. 

3) Experiment C.3- Master/Slave versus TitForTat 
Having disposed of AllC, we now ask how the 

Master/Slave strategy might do against a more difficult 

opponent, say TitForTat. Table 7 below gives the 

extinction/survival results for 100 runs starting with 5 

Masters, 45 Slaves, and 50 TitForTat agents. 
TABLE 7 

EXTINCTION AND SURVIVAL RESULTS FOR 100 RUNS STARTING WITH 5 

MASTER, 45 SLAVE, AND 50 TITFORTAT 

 

 Master Slave TitForTat 

extinction 14 99 45 

sole.survivor 44 1 13 

Here we see that the Master/Slave team is also effective 

against TitForTat, driving TitForTat to extinction almost half 

the time (45%), and going extinct only 13% of the time. The 

mean numbers plot, Figure 6, gives more detail. 

The Slaves drive down TitForTat to around 35% on 

average by the time they go extinct in about generation 10. 

As with the competitions against AllC, 100% cooperation 

then ensues, with drift causing extinction of either Master or 

TitForTat by generation 100 about 58% of the time. 
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Figure 6 - Mean numbers in each generation, starting with 5 Master, 45 
Slave, 50 TitForTat 

4) Experiment C.4- Clique versus AllC 
Starting with 50 Clique and 50 AllC agents, Clique drives 

AllC to extinction in about 5 generations. This is not 

surprising given AllC’s lack of defense against exploitation. 

5) Experiment C.5 – Clique versus TitForTat 
In this experiment we pit 50 Clique against 50 TitForTat 

agents. Extinction and survival rates are given in Table 8.  
TABLE 8 

EXTINCTION AND SURVIVAL RESULTS FOR 100 RUNS STARTING WITH 50 

CLIQUE AND 50 TITFORTAT 

 

 Clique TitForTat 

extinction 42 58 

sole survivor 58 42 

Clique has a small edge against TitForTat when they start 

with equal numbers. As Figure 7 shows, one species or the 

other is extinct by about generation 20 (we know this 

because we see 100% cooperation). 
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Figure 7 - Mean numbers in each generation, starting with 50 Clique and 
50 TitForTat 

Clique gains its advantage over TitForTat by defecting on 

the first move of the game. The average payoffs in games 

between Clique and TitForTat (with a discount of 0.98) is 

54/50 for Clique versus 49/50 for TitForTat. This gives 

equal average payoffs over one generation when the 

proportion of Clique agents in the population is about 

48.73%. If we start the simulation with 49 Clique and 51 

TitForTat, Clique is the sole survivor about 51% of the time. 

Starting with 48 Clique and 52 TitForTat, then Clique is the 

sole survivor only about 35% of the time.  

 

6) Experiment C.6 – Master/Slave versus Clique 
In this experiment the two group strategies face off. 

Perhaps surprisingly, Clique is sole survivor 62% of the 

time, compared with Master 38% of the time. 
TABLE 9 

EXTINCTION AND SURVIVAL RESULTS FOR 100 RUNS STARTING WITH 5 

MASTER, 45 SLAVE, AND 50 CLIQUE 

 

 Master Slave Clique 

extinction 62 100 38 

sole.survivor 38 0 62 
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Figure 8 - Mean numbers in each generation, starting with 5 Master, 45 
Slave, and 50 Clique 

The mean numbers plot suggests an explanation. 

Comparing Figure 6 and Figure 8, we see that Clique is not 

so damaged by Slave as TitForTat is, so that Master, starting 

with low numbers,  never manages to catch up to Clique. 

7) Experiment C.7 – All in 
The success of an IPD strategy depends on the population 

it is part of, and it’s this that makes the dynamics of an 

evolutionary simulation of IPD so rich and complex. In this 

experiment we throw all our strategies together: 5 Masters, 

45 Slaves, 50 Clique, 50 TitForTat and 50 AllC.  
TABLE 10 

EXTINCTION AND SURVIVAL RESULTS FOR 100 RUNS STARTING WITH 5 

MASTER, 45 SLAVE, 50 CLIQUE, 50 TITFORTAT AND 50 ALLC 

 

 Master Slave Clique TitForTat AllC 

extinction 48 100 53 67 97 

sole.survivor 19 0 47 1 0 

In avoiding extinction, the Master/Slave team  just shades 

Clique, while Clique was best at eliminating the competition 

– the Clique strategy either goes extinct itself or drives the 

other strategies extinct – no live and let live here. In Figure 

9, we show the mean numbers for each species in the first 20 

generations, before full cooperation is established. 

We see that Clique and Master both increase initially, with 

Clique getting a slightly faster start. If Clique’s start is fast 

enough, and it reaches a large enough proportion of the 

population, it ruthlessly eliminates the competition. If not, 

then the hard to exploit Master and TitForTat strategies are 

together able to hold it off, and Master generally prevails by 

virtue of having a larger proportion of the population at the 

point when all the surviving species start cooperating. 
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Figure 9 - Mean numbers in each generation, starting with 5 Master, 45 
Slave, 50 Clique, 50 TitForTat and 50 AllC 

It is perhaps surprising that the very simple Clique 

strategy is such a strong contender in these contests, but we 

must remember that the outcome is very dependent on the 

initial composition of the population. 

VII. DISCUSSION AND FUTURE WORK 

These experiments illustrate that the phenomena of 

species-level evolution of cooperation are complex and 

different from those observed in single-species simulations. 

The experiments in subsection IV.A revisited the familiar 

case of competition between naïve cooperation, naïve 

defection and cooperating but non-exploitable strategies like 

TitForTat. The results are similar, with defection successful 

initially, then TitForTat punishing the defectors, allowing 

cooperation to re-establish. The difference in this case is that 

the defectors are a separate species, which goes extinct, 

leaving cooperators and TitForTat at the same fitness level, 

until one or the other drifts into extinction. 

A similar story is seen in section V, where clearly inferior 

species inevitably go extinct, and where the relative success 

of well-matched species is expressed in different extinction 

and survival rates over many simulation runs. 

The strategies in those experiments are all adaptive to 

some degree, with the Modeller strategy building an explicit 

opponent model. But they adapt only to each individual 

opponent during the course of a game. None of this learning 

carries over between opponents. Imagine instead a strategy 

that collects population statistics over a number of games 

against different opponents, and makes use of this 

information to more quickly identify an opponent’s likely 

strategy. This might allow agents to learn the characteristics 

of the other species in the population, for example. The 

evolutionary process itself provides the means for another 

kind of adaptation, at the species level. Species that mutate 

can adapt their strategies in evolutionary time, by means of 

mutation and selection, to respond to changes in the 

composition of the population. These two levels of 

adaptation would support studies of the interaction of 

learning and evolution along the lines of [6].  

In section VI, we considered group strategies, using 

species to represent groups. We found that there are group 

strategies that can do better than non-group strategies in 

some circumstances. The Master/Slave combination that was 

used in some of the 2004/5 IPD Competitions defeats 

TitForTat in a head-on contest, for example, as does the 

unsubtle Clique strategy that we introduced. A question yet 

to be explored is how such strategies might evolve. 

Our framework could be used to model various other 

macroevolutionary phenomena, such as invasion by a 

separately evolved species, coextinction and so on. However 

it does not provide for speciation. This would be an 

interesting extension. 

VIII. CONCLUSIONS 

We have introduced a novel framework for studying the 

IPD in the context of species-level evolution. 

Within this framework, it is simple to devise experiments 

to explore specific aspects or phenomena of macroevolution. 

Some experiments have been introduced to illustrate. Using 

survival and extinction as the yardstick, interactions between 

some simple, well-known strategies were examined. We then 

re-examined some more complex strategies from the 2005 

IPD Competition. Finally, we experimented with group 

strategies, using species to represent groups. We believe that 

this framework provides a flexible and economical platform 

for simulating species-level evolution. 
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