
Edith Cowan University Edith Cowan University

Research Online Research Online

ECU Publications Pre. 2011

2006

A Faster Algorithm for Calculating Hypervolume A Faster Algorithm for Calculating Hypervolume

Lyndon While

Philip Hingston
Edith Cowan University

Luigi Barone

Simon Huband
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks

 Part of the Computer Sciences Commons

10.1109/TEVC.2005.851275
This is an Author's Accepted Manuscript of: While, L., Hingston, P., Barone, L., & Huband, S. (2006). A Faster
Algorithm for Calculating Hypervolume. IEEE Transactions on Evolutionary Computation, 10(1), pp. 29-38. Available
here
© 2006 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.
This Journal Article is posted at Research Online.
https://ro.ecu.edu.au/ecuworks/2023

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworks
https://ro.ecu.edu.au/ecuworks?utm_source=ro.ecu.edu.au%2Fecuworks%2F2023&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ro.ecu.edu.au%2Fecuworks%2F2023&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1109/TEVC.2005.851275
http://dx.doi.org/10.1109/TEVC.2005.851275

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 10, NO. 1, FEBRUARY 2006 29

A Faster Algorithm for Calculating Hypervolume
Lyndon While, Senior Member, IEEE, Phil Hingston, Member, IEEE, Luigi Barone, Member, IEEE, and

Simon Huband, Member, IEEE

Abstract—We present an algorithm for calculating hypervolume
exactly, the Hypervolume by Slicing Objectives (HSO) algorithm,
that is faster than any that has previously been published. HSO
processes objectives instead of points, an idea that has been consid-
ered before but that has never been properly evaluated in the lit-
erature. We show that both previously studied exact hypervolume
algorithms are exponential in at least the number of objectives and
that although HSO is also exponential in the number of objectives
in the worst case, it runs in significantly less time, i.e., two to three
orders of magnitude less for randomly generated and benchmark
data in three to eight objectives. Thus, HSO increases the utility of
hypervolume, both as a metric for general optimization algorithms
and as a diversity mechanism for evolutionary algorithms.

Index Terms—Evolutionary computation, hypervolume, multi-
objective optimization, performance metrics.

I. INTRODUCTION

MULTIOBJECTIVE optimization problems abound, and
many evolutionary algorithms have been proposed to

derive good solutions for such problems, for example [1]–[8].
However, the question of what metrics to use in comparing
the performance of these algorithms remains difficult [1], [9],
[10]. One metric that has been favored by many people is
hypervolume [1], [11], also known as the S metric [12] or the
Lebesgue measure [13], [14]. The hypervolume of a set of
solutions measures the size of the portion of objective space
that is dominated by those solutions collectively. Generally,
hypervolume is favored because it captures in a single scalar
both the closeness of the solutions to the optimal set and, to
some extent, the spread of the solutions across objective space.
Hypervolume also has nicer mathematical properties than many
other metrics; Zitzler et al. [15] state that hypervolume is the
only unary metric of which they are aware that is capable of
detecting that a set of solutions is not worse than another
set , and Fleischer [16] has proved that hypervolume is
maximized if and only if the set of solutions contains only
Pareto optima. Hypervolume has some nonideal properties too;
it is sensitive to the relative scaling of the objectives and to the
presence or absence of extremal points in a front.

Hypervolume has also been proposed as a diversity mecha-
nism in multiobjective algorithms [1], [16], [17], for ensuring
that an algorithm generates a front with a good spread over the

Manuscript received June 7, 2004; revised December 13, 2004 and February
17, 2005. This work was supported in part by the Australian Research Council.

L. While and L. Barone are with the School of Computer Science and Soft-
ware Engineering, The University of Western Australia, Western Australia 6009,
Australia (e-mail: lyndon@csse.uwa.edu.au; luigi@csse.uwa.edu.au).

P. Hingston and S. Huband are with the School of Computer and Information
Sciences, Edith Cowan University, Western Australia 6050, Australia (e-mail:
p.hingston@ecu.edu.au; s.huband@ecu.edu.au).

Digital Object Identifier 10.1109/TEVC.2005.851275

range of optimal solutions. Clearly, if hypervolume calculations
are incorporated into the execution of an algorithm (as opposed
to hypervolume used as a metric after execution is completed),
there is a much stronger requirement for those calculations to
be efficient. The ideal for such use is an incremental algorithm
that minimizes the expense of repeated invocations.

However, previously studied algorithms for calculating
hypervolume exactly are very expensive, probably too expen-
sive to facilitate the use of hypervolume for problems with
more than two to three objectives. In particular, the published
complexity of the new algorithm LebMeasure [14], [16] is
incorrect. We show in this paper that although LebMeasure
is polynomial in the number of points, in the worst case it
is exponential in the number of objectives, not polynomial
as previously claimed, and that the general performance of
LebMeasure deteriorates rapidly as the number of objectives
increases beyond two to three.

The principal contribution of this paper is a faster algo-
rithm for calculating hypervolume, called the Hypervolume by
Slicing Objectives (HSO) algorithm. HSO processes objectives,
as opposed to points, repeatedly making slices through a hyper-
volume in fewer and fewer objectives, then sums the volumes
of these slices to calculate the total hypervolume. This idea has
been suggested independently before [18], [19], but it has never
been seriously studied, possibly because of the (incorrectly)
perceived efficiency of LebMeasure. Indeed, in the worst case,
HSO still exhibits exponential complexity, but this complexity
is much lower than that of LebMeasure. Moreover, we show
that HSO is significantly faster than LebMeasure, by two to
three orders of magnitude over typical fronts in three to eight
objectives. HSO thus extends the utility of hypervolume to
problems with more objectives and allows the evaluation of
much bigger fronts for such problems.

The rest of the paper is structured as follows. Section II
defines the concepts and notation used in multiobjective op-
timization and throughout this paper. Section III describes
previous published algorithms that calculate hypervolume,
with particular emphasis on Fleischer’s LebMeasure algorithm.
Section IV describes the HSO algorithm. Section V describes
our experimental setup and compares the performance of HSO
and LebMeasure. Section VI concludes the paper and outlines
some ideas for future work in this area.

II. DEFINITIONS

In a multiobjective optimization problem, we aim to find the
set of optimal tradeoff solutions known as the Pareto optimal
set. Pareto optimality is defined with respect to the concept of
nondomination between points in objective space. Without loss
of generality, consider a maximization problem in objectives

1089-778X/$20.00 © 2006 IEEE

30 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 10, NO. 1, FEBRUARY 2006

for which we generate a set containing solutions. We as-
sume that all values in all objectives are positive.

Given two objective vectors and , dominates if and
only if is at least as good as in all objectives and better in at
least one. A vector is nondominated with respect to the set
if and only if there is no vector in that dominates . is a
nondominated set if and only if all vectors in are mutually
nondominating. Such a set of objective vectors is sometimes
called a nondominated front.

A vector is Pareto optimal if and only if is nondominated
with respect to the set of all possible vectors. Pareto optimal
vectors are characterized by the fact that improvement in any
one objective means worsening at least one other objective. The
Pareto optimal set is the set of all possible Pareto optimal vec-
tors. The goal in a multiobjective problem is to find the Pareto
optimal set, although for continuous problems a representative
subset will usually suffice.

Given the set of solutions produced by an algorithm, the
question arises how good the set is, i.e., how well it approx-
imates the Pareto optimal set. One metric used for comparing
sets of solutions is to measure the hypervolume of each set. The
hypervolume of is the total size of the space that is dominated
by one (or more) of the solutions in . The hypervolume of a
set is measured relative to a reference point, the anti-optimal
point or “worst possible” point in space; for our maximization
problem with positive objectives, we take the origin as the refer-
ence point. If a set has a greater hypervolume than a set ,
then is taken to be a better set of solutions than .

III. PREVIOUS ALGORITHMS

Calculating the hypervolume of a Pareto front is expensive,
and few algorithms have been published. In this section, we de-
scribe two previous exact algorithms, then we describe briefly
an algorithm for approximating hypervolume, then we consider
the general question of what level of performance is required
from a hypervolume algorithm for it to be usable for practical
applications.

A. Inclusion–Exclusion Algorithm

The most obvious algorithm for calculating hypervolume is
the inclusion–exclusion algorithm (IEA) [10]. Fig. 1 gives the
pseudocode for the IEA.

The IEA works exactly like the standard algorithm for calcu-
lating the size of the union of a set of sets. It sums the volumes
dominated by each point in the set individually, then subtracts
the volumes dominated by the intersection of each pair of points,
then adds back in the volumes dominated by the intersection of
each triple of points, and so on, until all subsets of the orig-
inal set have been accounted for. It is clear from this description
that the IEA calculates the volume of every subset of a set of
points. Each calculation is at least , so the complexity of
the IEA is at least . Thus, the IEA is exponential in the
number of points; hence, it is unusable for practical applications.

B. LebMeasure Algorithm

Possibly the best known algorithm for calculating hyper-
volume is the LebMeasure algorithm, due to Fleischer [14].

Fig. 1. Pseudocode for inclusion–exclusion algorithm.

LebMeasure works by processing the points in a set one at a
time. It calculates the volume that is dominated exclusively
by one point then discards that point and moves on to the
subsequent points until all points have been processed and
all volumes have been summed. This is particularly efficient
when the volume dominated exclusively by a point is “hyper-
cuboid,” but where this is not the case, LebMeasure lops off a
hypercuboid that is dominated exclusively by and replaces
with a set of “spawned” points that dominate the remainder of

’s exclusive hypervolume. Spawns which dominate no exclu-
sive hypervolume, either because they have one or more zero
dimensions or because they are dominated by an unprocessed
point, are discarded.

As an example, consider the four three-objective points

(6, 7, 4), (9, 5, 5), (1, 9, 3), (4, 1, 9)

(6, 7, 4) dominates exclusively the hypercuboid, which is
bounded at the opposite corner by (4, 5, 3). Thus, the three
potential spawns of (6, 7, 4) are

(4, 7, 4), (6, 5, 4), (6, 7, 3)

However, (6, 5, 4) is dominated by (9, 5, 5) (from the main
list of points), so only the other two spawns dominate exclusive
hypervolume of their own, and only those two are added to the
main list to be processed.

LebMeasure continues lopping off volume and replacing
points with their spawns until all points (and spawns) have been
processed.

Fleischer claims that the worst case complexity of
LebMeasure is [14], [16]. The calculation is based
partly on the observation that for spawned points, many of
their potential spawns dominate no exclusive hypervolume.
The potential spawns are, in fact, guaranteed to be dominated
by some other point in the remaining set. However, a simple
example illustrates that this fact is not sufficient to make the
LebMeasure polynomial in the number of points. It is clear that
the complexity of LebMeasure is at least equal to the number
of hypercuboids that are processed and summed (including
spawns, spawns of spawns, etc.). Consider the sets of points
described by the pattern shown in Fig. 2.

By tracing the detailed operation of LebMeasure using the
code given in Fig. 4, we can see that the numbers of hyper-
cuboids that are processed for this pattern are as given in
Table I. The numbers clearly show growth that is exponential
in the number of objectives, indicating that this pattern gen-
erates hypercuboids. Given the operations involved in
processing each point in LebMeasure (principally generating

WHILE et al.: FASTER ALGORITHM FOR CALCULATING HYPERVOLUME 31

Fig. 2. Pathological example for LebMeasure. Pattern describes sets of five
points in n objectives, n � 2. All columns except first are identical. Pattern can
be generalized for other numbers of points.

TABLE I
NUMBERS OF HYPERCUBOIDS PROCESSED FOR PATTERN

FROM FIG. 2, EQUAL TO m

Fig. 3. Second pathological example for LebMeasure. Pattern describes sets
of five points in n objectives, n � 2. First and last columns are fixed; if n > 2,
second column is fixed and each other column is a simple rotation of the previous
column. Pattern can be generalized for other numbers of points.

potential spawns and checking them for dominance), we esti-
mate its worst case complexity to be .

However, this pattern raises the question of the order in
which the points are processed. If the points from Fig. 2 are re-
versed before being presented to LebMeasure, then the number
of hypercuboids is , for all values of . The order shown in
Fig. 2 is, in fact, the worst case for this pattern.

We shall return to the question of ordering points when we
evaluate the general performance of LebMeasure in Section V,
but we illustrate now that there are patterns of points that exhibit
exponential growth under LebMeasure even in their best case
ordering. Consider the sets of points described by the pattern
shown in Fig. 3.

By evaluating all permutations of each set of points,
we can see that the numbers of hypercuboids that are pro-
cessed for this pattern when the points are presented in their
optimal ordering are as given in Table II. Again, we see
exponential growth; this pattern generates approximately

hypercuboids, even for the
best case ordering of the points.

Finally, Knowles et al. propose the use of LebMeasure in an
evolutionary algorithm that calculates hypervolume incremen-
tally for archiving purposes [17]. Structurally, LebMeasure is
well suited to this task, because it calculates explicitly the hy-
pervolume dominated exclusively by its first point. However,
even evaluating the hypervolume dominated by a single point
can be exponential in LebMeasure, as shown by the numbers

TABLE II
BEST CASE NUMBERS OF HYPERCUBOIDS PROCESSED FOR PATTERN

FROM FIG. 3, APPROXIMATELY EQUAL TO (BUT NOT BOUNDED BY)
m(m!) ((n � 2)mod m)!. VALUES OF m REPORTED WERE

LIMITED BY NUMBERS OF PERMUTATIONS THAT MUST BE TESTED

TABLE III
NUMBERS OF HYPERCUBOIDS PROCESSED FOR FIRST POINT OF PATTERN

FROM FIG. 2, EQUAL TO m � (m� 1) , i.e., O(m)

in Table III. Note that in this context, where we need to eval-
uate the hypervolume contribution of a single point, changing
the order of the other points makes no difference to the algo-
rithm’s performance.

In summary, it is clear that the worst case complexity of
LebMeasure is at least , and while reordering points
can help somewhat, we shall show in Section V that even with
reordering, the usefulness of LebMeasure deteriorates rapidly
as the number of objectives increases.

C. Algorithm for Approximating Hypervolume

Given that hypervolume is so expensive to calculate exactly,
a valid approach would be to design an algorithm to approxi-
mate it to within a reasonable error. Everson et al. [20] describe
a Monte Carlo algorithm for comparing two nondominated sets

and by calculating the fraction of space dominated by
and not by , and vice versa. They do this by normalizing

all objectives onto the range then randomly generating
points in the unit hypercube and testing each point to see if it
is dominated by and/or . This algorithm has complexity

in the worst case, where is the number of samples
used, and this complexity can be reduced by using a more ad-
vanced data structure to store the points. The error induced by
the random sampling decreases as , and the authors state
that it is independent of .

The Monte Carlo approach could clearly be adapted to calcu-
late hypervolume directly, and an approximation might be suffi-
cient for many purposes. However, an efficient exact algorithm

32 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 10, NO. 1, FEBRUARY 2006

Fig. 4. Pseudocode for counting hypercuboids processed in LebMeasure.
Description does not include trick for automatically rejecting spawns which
are known to be dominated: however, trick is irrelevant here, as we are only
counting number of contributing points.

would have clear advantages; it would always give precise re-
sults for comparing fronts, and it would be more amenable to
mathematical analysis.

D. Is Hypervolume Too Expensive to be Useful?

Given that both previously studied exact algorithms have
complexity that is exponential in at least the number of ob-
jectives, it may be thought that hypervolume is not, after all,
a practical idea as a metric for comparing fronts. However,
in reality, the number of objectives is seldom large. A survey
of papers from the proceedings of the CEC 2003 reveals that
the great majority of authors who considered more than two
objectives studied problems with only three or four objectives,
and none studied problems with more than 12 objectives. Thus,
we might still hope to make use of hypervolume, given a
(relatively!) efficient exponential algorithm.

A related question is: “what population size is required for
a problem in objectives, for an evolutionary algorithm to de-
rive good solutions?”. It is to be expected that population size
will increase with , in order to achieve reasonable coverage of
the Pareto optimal front (see for example [21] and [22]). Some
theoretical guidance is given in [23], where it is shown that,
for their adaptive grid archiving strategy, a guarantee of a weak
kind of convergence requires an archive size that is exponen-
tial in the number of objectives. However, again in practice, we
find that authors tend to limit their population size in order to
get reasonable performance out of their algorithm. According
to [24], population sizes for real-world problems tend to lie in

the range 10–1000. Thus, in Section V we follow Purshouse [11]
and Khare et al. [22] and use this range of population sizes to
evaluate algorithms.

IV. HSO ALGORITHM

Given mutually nondominating points in objectives, the
HSO algorithm is based on the idea of processing the points one
objective at a time. This idea has been suggested independently
before [18], [19]. But, in this paper we apply the idea differently
to reduce repeated calculations, and we report a thorough the-
oretical and empirical analysis of both the complexity and per-
formance of the algorithm. We discuss HSO as it is applied to
a maximization problem relative to the origin. The transforma-
tion to a minimization problem, or to another reference point,
is trivial. (We do not address here the problem of choosing a
reference point, if the anti-optimal point is not known or does
not exist. One suggestion is to take, in each objective, the worst
value from any of the fronts being compared.)

Initially, the points are sorted by their values in the first objec-
tive. These values are then used to cut cross-sectional “slices”
through the hypervolume; each slice will itself be an -ob-
jective hypervolume in the remaining objectives. The -ob-
jective hypervolume of each slice is calculated and is multiplied
by the depth of the slice in the first objective, then these -ob-
jective values are summed to obtain the total hypervolume.

Each slice through the hypervolume will contain a different
subset of the original points. Because the points are sorted, they
can be allocated to the slices easily. The top slice can contain
only the point with the highest value in the first objective; the
second slice can contain only the points with the two highest
values; the third slice can contain only the points with the three
highest values; and so on, until the bottom slice, which can
contain all of the points. However, not all points “contained”
by a slice will contribute volume to that slice. Some points
may be dominated in whatever objectives remain and will con-
tribute nothing. After each step (i.e., after each slicing action),
the number of objectives is reduced by one, the points are re-
sorted in the next objective, and newly dominated points within
each slice are discarded.

Fig. 5 shows the operation of one step in HSO, including the
slicing of the hypervolume, the allocation of points to each slice,
and the elimination of newly dominated points.

The most natural base case for HSO is when the points are
reduced to one objective, when there can be only one nondomi-
nated point left in each slice. The value of this point is then the
one-objective hypervolume of its slice. However, in practice, for
efficiency reasons, HSO terminates when the points are reduced
to two objectives, which is an easy and fast special case.

A. Operational Behavior of HSO

Fig. 6 gives the pseudocode for HSO. The modus operandi is
to start from a set containing a single list of points in ob-
jectives with (nominal) depth one. The algorithm performs
steps. In the first step, is expanded into a set containing lists
of points in objectives, each paired with the depth of the
corresponding slice in the first objective. In the second step, each
of these lists is expanded into a set of lists in objectives,

WHILE et al.: FASTER ALGORITHM FOR CALCULATING HYPERVOLUME 33

Fig. 5. One step in HSO for four three-objective points shown. Objective x is
processed, leaving four two-objective shapes in y and z. Points are labeled with
letters. Unfilled circles represent points that are dominated in y and z. Slices are
labeled with numbers and are separated on main picture by dashed lines.

each paired with the product of its depths in the first two objec-
tives. These sets of lists are combined to again make a single
set. This expansion occurs times, until we have a large
number of lists in one objective, each paired with the product of
its depths in the first objectives. The volumes represented
by these lists are summed to give the total hypervolume.

The three functions from Fig. 6 perform the following tasks.

• The function slice takes a list of points pl in Objec-
tives and returns a set containing the lists of points
derived from pl in Objectives , each paired
with the depth of the corresponding slice. slice essen-
tially performs the actions depicted in Fig. 5.

• The function insert accumulates incrementally the list
of points in each slice. insert maintains the invariant
that all lists of points are sorted in the next relevant objec-
tive. It also eliminates dominated points.

• The function hso iterates times, starting from the
original list of points with a depth of one. In each step,
each list of points is broken down in the next objective,
and the depths are accumulated multiplicatively. The ef-
fect is to reduce the original list of points in Objectives

to a large number of (singleton) lists of points in
Objective , each paired with its cumulative depth. hso
sums these one-objective hypervolumes to calculate the
total hypervolume.

As mentioned previously, the performance of HSO can be im-
proved by using as the base case, instead of . A
further improvement comes from processing each intermediate
list of points on-the-fly, instead of constructing an explicit set.

B. Complexity of HSO

We can construct a recurrence relation describing the worst
case complexity of HSO by considering the operation of each
step. Each step starts with a list of points in objectives. In
the worst case, points with different values in the first ob-
jective will generate distinct slices through the hypervolume.
One of these slices (the top one) will contain one objec-
tive point; the next slice will contain two points; and so on, until
the bottom slice, which will contain all points. Each of these

Fig. 6. Pseudocode for HSO.

slices must be processed separately, so the total amount of work
involved is given by

(1)

and

(2)

Note that, typically, some points will be dominated and dis-
carded at each step, reducing the sizes of some sets and speeding
up the calculation; but for the worst case analysis, we assume
that this never happens.

The base case is given by (1). When only one objective re-
mains, there will be only one point left, whose single value is
the result. thus counts how many one-objective “volumes” are
summed by HSO.

From this recurrence relation, we can show that

We first need a lemma.

34 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 10, NO. 1, FEBRUARY 2006

Lemma 1: For all nonnegative integers , , such that
and , the following identity holds:

(3)

Proof: The proof is by induction on .
Base case: . In this case, the formula becomes

(4)

This is a well-known identity [25] that can be checked by ex-
panding out the binomial coefficients.

Induction step: suppose the formula holds for , i.e.,

Invoking (4), we expand the first term on the right-hand side,
giving

Hence, the formula holds for , and by induction it
holds for all , as claimed.

Corollary 1: For all nonnegative integers , such that
, the following identity holds:

Proof: Substituting in (3), we obtain

as required.
Corollary 2: satisfies the recurrence

defined by (1) and (2).

Fig. 7. Log-scale comparison of worst case complexities of HSO and
LebMeasure. Each line Fn plots complexity of Algorithm F form points in n
objectives. Solid lines represent HSO and dashed lines represent LebMeasure.

Proof: Equation (1) is easily checked by substituting
in the definition of . To show that (2) holds, we apply

Corollary 1

by Cor. 1 with

making the substitution

rearranging and simplifying

by definition

It is instructive to plot the complexity of HSO against that
of LebMeasure, as shown in Fig. 7. Despite both algorithms
being exponential in the number of objectives, the complexity of
HSO is vastly lower than that of LebMeasure. This means that
HSO is significantly more useful than LebMeasure in practical
applications, as will be confirmed by the experimental results
described in Section V.

V. PERFORMANCE

We compared the performance of HSO and LebMeasure on
two different types of data: randomly generated data and sam-
ples taken from the four distinct Pareto optimal fronts of the
problems from the DTLZ test suite [26].

WHILE et al.: FASTER ALGORITHM FOR CALCULATING HYPERVOLUME 35

Fig. 8. Log-scale comparison of performance of HSO and (optimized)
LebMeasure on randomly generated data. Each line Fn plots the time taken to
run Algorithm F withm points in n objectives. Solid lines represent HSO and
dashed lines represent LebMeasure. Each data point is average of ten runs on
different data sets. L coincides with H , 4 � x � 5.

However, we discovered that the performance of the basic
LebMeasure algorithm was so poor as to make meaningful com-
parisons with HSO infeasible. To compensate, we incorporated
into LebMeasure an attempt to optimize its performance by or-
dering the points before processing them, as discussed briefly in
Section III-B. We used a straightforward ordering based on the
closeness of a point to the “edges” of objective space (as also
suggested independently by Fleischer (private communication)
and others). For each point , we count the number of points
that are worse than in each objective and sum these counts.
We process the points in increasing the order of these sums;
thus, we process first the points that are likely to generate the
fewest hypercuboids. We note that we performed some (minor)
experimentation with other ordering schemes, but we found no
convincing evidence generally favoring one scheme over others.

We shall see in Section V-B that this optimization can have
a dramatic effect with some patterns of data. We note also
that this optimization would induce polynomial complexity for
the pathological example in Fig. 2 (but not for the example in
Fig. 3).

All timings were performed on a dedicated 1.9-GHz Pentium
IV machine with 512 Mb of RAM, running Linux Red Hat 8.0.
All algorithms were implemented in Haskell [27] and compiled
with . The data used in the experiments are available
[28].

A. Randomly Generated Data

We generated sets of mutually nondominating points in
objectives simply by generating points with random values ,

, in all objectives. In order to guarantee mutual
nondomination, we initialized and added each point
to only if would be mutually nondominating. We kept
adding points until .

Fig. 8 shows the resulting comparison. The top of the figure
marks a time of 100 s, and the center line across the figure marks
a time of 1 s. Our experience shows that these times are indica-
tive of the performance required to use hypervolume as a metric
and as a diversity mechanism, respectively, although clearly the

Fig. 9. Log-scale comparison of performance of HSO and (optimized)
LebMeasure on spherical front from DTLZ. Each line Fn plots time taken to
run Algorithm F withm points in n objectives. Solid lines represent HSO and
dashed lines represent LebMeasure. Each data point is average of ten runs on
different data sets. L coincides with H , 3 � x � 6.

Fig. 10. Log-scale comparison of performance of HSO and (optimized)
LebMeasure on linear front from DTLZ. Each line Fn plots time taken to run
Algorithm F with m points in n objectives. Solid lines represent HSO and
dashed lines represent LebMeasure. Each data point is average of ten runs on
different data sets. L coincides with H , 4 � x � 6.

availability of an efficient incremental algorithm would ease the
performance requirement for the latter.

B. Benchmark Data

We also compared the performance of the two algorithms on
the four distinct fronts from the well-known DTLZ test suite: the
spherical front, the linear front, the discontinuous front, and the
degenerate front. For each front, we generated mathematically
a representative set of 10 000 points from the (known) Pareto
optimal set. Then, to generate a front of size , we sampled
this set randomly.

Figs. 9–12 show the resulting comparisons.

C. Discussion

Figs. 8–11 all have the same basic shape, and they all show the
superior performance of HSO compared to that of LebMeasure.
Typically, in under 100 s, HSO can process fronts with several
thousand points in three to four objectives, fronts with around
1000 points in five objectives, fronts with 100–300 points in

36 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 10, NO. 1, FEBRUARY 2006

Fig. 11. Log-scale comparison of performance of HSO and (optimized)
LebMeasure on discontinuous front from DTLZ. Each line Fn plots time taken
to run Algorithm F with m points in n objectives. Solid lines represent HSO
and dashed lines represent LebMeasure. Each data point is average of ten runs
on different data sets. L coincides with H , 4 � x � 5.

Fig. 12. Log-scale comparison of performance of HSO and (optimized)
LebMeasure on degenerate front from DTLZ. Each line Fn plots time taken
to run Algorithm F with m points in n objectives. Solid lines represent HSO
and dashed lines represent LebMeasure. Each data point is average of ten runs
on different data sets.

six to seven objectives, and fronts with 50–80 points in eight to
nine objectives. The optimized LebMeasure is unable to process
fronts with even 50 points in more than five to six objectives in
under 100 s. Thus, HSO increases the utility of hypervolume by
enabling calculations with reasonable-sized fronts in almost any
likely number of objectives.

Table IV summarizes the sizes of fronts that HSO can process
in our two nominated times, for randomly generated data in var-
ious numbers of objectives. It is notable that HSO performs gen-
erally better on the randomly generated data than on the DTLZ
fronts, although it is unclear which is likely to represent more
closely the fronts in real-world applications.

Fig. 12 makes a stark contrast to the other graphs. The
point-ordering optimization that we implemented enables
LebMeasure to process these fronts in polynomial time, as
shown by the closely grouped lines on the graph. Note that
the order of the points is irrelevant to HSO, as the points are
sorted before the algorithm is run.

TABLE IV
SIZES OF FRONTS IN VARIOUS NUMBERS OF OBJECTIVES THAT HSO CAN

PROCESS IN TIMES INDICATED (RANDOMLY GENERATED DATA)

Fig. 13. DTLZ5 front in three objectives. Front is defined for any number of
objectives; it forms an arc embedded in n-objective space, where as the values
in f decrease, the values in all other objectives increase.

It is worth investigating the nature of the degenerate data.
Fig. 13 plots the front of the DTLZ5 test function [26] in three
objectives. The degenerate front is basically an arc embedded
in -objective space. The important feature of this front for
LebMeasure is that it is (in overall form) identical to the patho-
logical example from Fig. 2. The point with the biggest value
in has the smallest values in ; the point with the
second biggest value in has the second smallest values in

; and so on. Thus, when these points are in their
optimal ordering (decreasing values of), LebMeasure can
process them without generating any nondominated spawns,
thus summing only hypercuboids.

We believe that this sort of degenerate front is likely to be rare
in real-world problems. Moreover, the front as defined presents
itself in the worst case form for HSO. But while HSO cannot
benefit from reordering the points, it can benefit from reordering
the objectives. If we reverse the objective values in each point,
and then rerun the experiments, we get the comparison shown
in Fig. 14. (Note the different scale used in this figure.) We
can see that both HSO and LebMeasure are able to process the
reversed degenerate data in polynomial time, with appropriate
preprocessing.

Thus, permuting objectives allows HSO to beat LebMeasure
on the degenerate front, and it should deliver a general improve-
ment to the performance of HSO [29].

VI. CONCLUSION AND FUTURE WORK

Hypervolume is a popular metric for comparing the perfor-
mance of multiobjective optimization algorithms, particularly

WHILE et al.: FASTER ALGORITHM FOR CALCULATING HYPERVOLUME 37

Fig. 14. Comparison of performance of HSO and (optimized) LebMeasure
on degenerate front from DTLZ, with objectives in reverse order. Each line
Fn plots time taken to run Algorithm F with m points in n objectives. Solid
lines represent HSO and dashed lines represent LebMeasure. Each data point is
average of ten runs on different data sets.

evolutionary algorithms. However, calculating the hypervolume
of a front is expensive. We have shown that both previously
studied algorithms for calculating hypervolume exactly are ex-
ponential in at least the number of objectives, and we have de-
scribed a hypervolume algorithm HSO, that, while also expo-
nential in the number of objectives in the worst case, runs in
significantly less time than previous algorithms, i.e., two to three
orders of magnitude less for randomly generated and benchmark
data in three to eight objectives. HSO extends the utility of hy-
pervolume by enabling calculations on larger fronts in more ob-
jectives. Indeed, we believe that the performance of HSO will
be sufficient for many real-world applications and setups. HSO
also raises the possibility of an algorithm that is genuinely fast
enough to support the use of hypervolume as a diversity mech-
anism in multiobjective evolutionary algorithms.

We intend to take this research in several directions.

Speed-up HSO: We plan to make HSO faster, for example
by minimizing the cost of dominance checking, by minimizing
repeated work in HSO, or by discovering heuristics that allow
HSO to permute objectives intelligently. Either of the latter two
possibilities could make a huge difference to the practical per-
formance of HSO.

Develop a fast incremental algorithm: We plan to develop an
incremental version of HSO to support the use of hypervolume
as a diversity mechanism. Given a set of points , if we add a
point to such that in objective , it is clear
that some slices in the hypervolume of will not be affected by

. Slices above in objective will be unaffected, and slices
below in objective will be unaffected if dominates in the
other objectives. If we choose to maximize the number of un-
affected slices, this should make it relatively cheap to calculate
the hypervolume that adds to .

Decide the complexity question: We plan to search for a poly-
nomial-time algorithm for calculating hypervolume, or, alterna-
tively, we plan to try to prove that a polynomial-time algorithm
is impossible. We suspect the latter.

ACKNOWLEDGMENT

The authors would like to thank M. Fleischer for useful dis-
cussions on the LebMeasure algorithm, its complexity, and pos-
sible optimizations, and for helpful feedback on an earlier draft
of the paper. They also thank G. Royle for helpful comments on
hypervolume in general.

REFERENCES

[1] S. Huband, P. Hingston, L. While, and L. Barone, “An evolution strategy
with probabilistic mutation for multi-objective optimization,” in Proc.
Congr. Evol. Comput., vol. 4, 2003, pp. 2284–2291.

[2] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength
Pareto evolutionary algorithm for multiobjective optimization,” in Proc.
EUROGEN, K. C. Giannakoglou et al., Eds., Barcelona, Spain, 2001,
pp. 95–100.

[3] R. C. Purshouse and P. J. Fleming, “The multiobjective genetic algorithm
applied to benchmark problems—An analysis,” Department Automatic
Control Systems Eng., Univ. Sheffield, U.K., Res. Rep. 796, 2001.

[4] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist mul-
tiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, 2002.

[5] J. Knowles and D. Corne, “M-PAES: A memetic algorithm for multiob-
jective optimization,” in Proc. Congr. Evol. Comput., vol. 1, 2000, pp.
325–332.

[6] M. Laumanns, L. Thiele, and E. Zitzler, “Running time analysis of multi-
objective evolutionary algorithms on pseudo-Boolean functions,” IEEE
Trans. Evol. Comput., vol. 8, no. 2, pp. 170–182, Apr. 2004.

[7] C. A. Coello Coello, G. T. Pulido, and M. S. Lechuga, “Handling mul-
tiple objectives with particle swarm optimization,” IEEE Trans. Evol.
Comput., vol. 8, no. 3, pp. 256–279, Jun. 2004.

[8] M. Farina, K. Deb, and P. Amato, “Dynamic multi-objective optimiza-
tion problems: Test cases, approximations, and applications,” IEEE
Trans. Evol. Comput., vol. 8, no. 5, pp. 425–442, Oct. 2004.

[9] T. Okabe, Y. Jin, and B. Sendhoff, “A critical survey of performance in-
dexes for multi-objective optimization,” in Proc. Congr. Evol. Comput.,
vol. 2, 2003, pp. 878–885.

[10] J. Wu and S. Azarm, “Metrics for quality assessment of a multiobjective
design optimization solution set,” J. Mechanical Design, vol. 123, pp.
18–25, 2001.

[11] R. Purshouse, “On the evolutionary optimization of many objectives,”
Ph.D. dissertation, Univ. Sheffield, Sheffield, U.K., 2003.

[12] E. Zitzler, “Evolutionary algorithms for multiobjective optimization:
Methods and applications,” Ph.D. dissertation, Swiss Federal Inst.
Technology (ETH) Zurich, Switzerland, 1999.

[13] M. Laumanns, E. Zitzler, and L. Thiele, “A unified model for multi-
objective evolutionary algorithms with elitism,” in Proc. Congr. Evol.
Comput., vol. 1, 2000, pp. 46–53.

[14] M. Fleischer, “The measure of Pareto optima: Applications to
multi-objective metaheuristics,” in Evolutionary Multiobjective Op-
timization. ser. Lecture Notes in Computer Science, C. M. Fonseca
et al., Eds. Berlin, Germany: Springer-Verlag, 2003, vol. 2632, pp.
519–533.

[15] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da Fonseca,
“Performance assessment of multiobjective optimizers: An analysis and
review,” IEEE Trans. Evol. Comput., vol. 7, no. 2, pp. 117–132, Apr.
2003.

[16] M. Fleischer, “The measure of Pareto optima: Applications to multi-ob-
jective metaheuristics,” Inst. Systems Research, Univ. Maryland, Col-
lege Park, MD, Tech. Rep. ISR TR 2002-32, 2002.

[17] J. Knowles, D. Corne, and M. Fleischer, “Bounded archiving using the
lebesgue measure,” in Proc. Congr.Univ. Maryland, vol. 4, H. Abbass
and B. Verma, Eds., 2003, pp. 2490–2497.

[18] E. Zitzler. (2001) Hypervolume metric calculation. ftp://ftp.tik.
ee.ethz.ch/pub/people/zitzler/hypervol.c

[19] J. Knowles, “Local-Search and hybrid evolutionary algorithms for
pareto optimization,” Ph.D. dissertation, Univ. Reading, Reading, U.K.,
2002.

[20] R. Everson, J. Fieldsend, and S. Singh, “Full elite sets for multi-objective
optimization,” in Proc. 5th Int. Conf. Adapt. Comput. Design Manuf.,
2002, pp. 87–100.

[21] K. Deb, Multiobjective Optimization Using Evolutionary Algo-
rithms. New York: Wiley, 2001.

38 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 10, NO. 1, FEBRUARY 2006

[22] V. R. Khare, X. Yao, and K. Deb, “Performance scaling of multi-ob-
jective evolutionary algorithms,” in Evolutionary Multi-Objective Opti-
mization. ser. Lecture Notes in Computer Science, C. M. Fonseca et al.,
Eds. Berlin, Germany: Springer-Verlag, 2003, vol. 2632, pp. 376–390.

[23] J. Knowles and D. Corne, “Properties of an adaptive archiving algorithm
for storing nondominated vectors,” IEEE Trans. Evol. Comput., vol. 7,
no. 2, pp. 100–116, Apr. 2003.

[24] C. Coello Coello, Evolutionary Algorithms for Solving Multi-Objective
Problems. New York: Kluwer, 2002.

[25] W. Feller, An Introduction to Probability Theory and Its Applica-
tions. New York: Wiley, 1968.

[26] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable multi-objec-
tive optimization test problems,” in Proc. Congr. Evol. Comput., vol. 1,
2002, pp. 825–830.

[27] S. Peyton-Jones, Haskell 98 Language and Libraries: The Revised Re-
port. Cambridge, U.K.: Cambridge Univ. Press, 2003.

[28] http://wfg.csse.uwa.edu.au/Hypervolume.
[29] L. While, L. Bradstreet, L. Barone, and P. Hingston, “Heuristics for opti-

mizing the calculation of hypervolume for multi-objective optimization
problems,” in Proc. Congr. Evol. Comput., vol. 3, 2005, pp. 2225–2232.

Lyndon While (M’01–SM’03) received the B.Sc.
and Ph.D. degrees from the Imperial College of
Science and Technology, London, U.K., in 1985 and
1988, respectively.

He is currently a Senior Lecturer in the School
of Computer Science and Software Engineering,
the University of Western Australia, Australia. His
research interests include evolutionary algorithms,
multiobjective optimization, and the semantics
and implementation of functional programming
languages.

Phil Hingston (M’00) received the B.Sc. degree
from the University of Western Australia, Australia,
in 1978, and the Ph.D. degree from Monash Univer-
sity, Melbourne, Australia, in 1984.

He is currently a Senior Lecturer in the School
of Computer and Information Science, Edith Cowan
University, Australia. His research interests include
artificial intelligence and its application to industrial
design tasks, as well as the modeling of social and
natural systems.

Luigi Barone (M’04) received the B.Sc. and Ph.D.
degrees from the University of Western Australia,
Australia, in 1994 and 2004, respectively.

He is currently an Associate Lecturer in the School
of Computer Science and Software Engineering, the
University of Western Australia. His research inter-
ests include evolutionary algorithms and their use for
optimization and opponent modeling and the mod-
eling of biological systems.

Simon Huband (M’04) received the B.Sc. and Ph.D.
degrees from the University of Western Australia,
Australia, in 1997 and 2003, respectively.

He is currently a Research Fellow in the School
of Computer and Information Science, Edith Cowan
University, Australia. His research interests include
parallel programming, the design of test problems,
and the optimization of industrial systems using evo-
lutionary algorithms.

	A Faster Algorithm for Calculating Hypervolume
	toc
	A Faster Algorithm for Calculating Hypervolume
	Lyndon While, Senior Member, IEEE, Phil Hingston, Member, IEEE,
	I. I NTRODUCTION
	II. D EFINITIONS
	III. P REVIOUS A LGORITHMS
	A. Inclusion Exclusion Algorithm
	B. LebMeasure Algorithm

	Fig.€1. Pseudocode for inclusion exclusion algorithm.
	Fig.€2. Pathological example for LebMeasure. Pattern describes s
	TABLE€I N UMBERS OF H YPERCUBOIDS P ROCESSED FOR P ATTERN F ROM
	Fig.€3. Second pathological example for LebMeasure. Pattern desc
	TABLE€II B EST C ASE N UMBERS OF H YPERCUBOIDS P ROCESSED FOR P
	TABLE€III N UMBERS OF H YPERCUBOIDS P ROCESSED FOR F IRST P OINT
	C. Algorithm for Approximating Hypervolume

	Fig.€4. Pseudocode for counting hypercuboids processed in LebMea
	D. Is Hypervolume Too Expensive to be Useful?
	IV. HSO A LGORITHM
	A. Operational Behavior of HSO

	Fig.€5. One step in HSO for four three-objective points shown. O
	B. Complexity of HSO

	Fig.€6. Pseudocode for HSO.
	Lemma 1: For all nonnegative integers x, y, r such that $y
	Proof: The proof is by induction on r .

	Corollary 1: For all nonnegative integers x, y such that $y\
	Proof: Substituting $r=x-y$ in (3), we obtain $$\eqalign{{x\choo

	Corollary 2: $f(m,n)={m+n-2\choose n-1}$ satisfies the recurrenc

	Fig.€7. Log-scale comparison of worst case complexities of HSO a
	Proof: Equation (1) is easily checked by substituting $n=1$ in t
	V. P ERFORMANCE

	Fig.€8. Log-scale comparison of performance of HSO and (optimize
	A. Randomly Generated Data

	Fig.€9. Log-scale comparison of performance of HSO and (optimize
	Fig.€10. Log-scale comparison of performance of HSO and (optimiz
	B. Benchmark Data
	C. Discussion

	Fig.€11. Log-scale comparison of performance of HSO and (optimiz
	Fig.€12. Log-scale comparison of performance of HSO and (optimiz
	TABLE€IV S IZES OF F RONTS IN V ARIOUS N UMBERS OF O BJECTIVES T
	Fig.€13. DTLZ5 front in three objectives. Front is defined for a
	VI. C ONCLUSION AND F UTURE W ORK

	Fig.€14. Comparison of performance of HSO and (optimized) LebMea
	S. Huband, P. Hingston, L. While, and L. Barone, An evolution st
	E. Zitzler, M. Laumanns, and L. Thiele, SPEA2: Improving the str
	R. C. Purshouse and P. J. Fleming, The multiobjective genetic al
	K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elit
	J. Knowles and D. Corne, M-PAES: A memetic algorithm for multiob
	M. Laumanns, L. Thiele, and E. Zitzler, Running time analysis of
	C. A. Coello Coello, G. T. Pulido, and M. S. Lechuga, Handling m
	M. Farina, K. Deb, and P. Amato, Dynamic multi-objective optimiz
	T. Okabe, Y. Jin, and B. Sendhoff, A critical survey of performa
	J. Wu and S. Azarm, Metrics for quality assessment of a multiobj
	R. Purshouse, On the evolutionary optimization of many objective
	E. Zitzler, Evolutionary algorithms for multiobjective optimizat
	M. Laumanns, E. Zitzler, and L. Thiele, A unified model for mult
	M. Fleischer, The measure of Pareto optima: Applications to mult
	E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da
	M. Fleischer, The measure of Pareto optima: Applications to mult
	J. Knowles, D. Corne, and M. Fleischer, Bounded archiving using
	E. Zitzler . (2001) Hypervolume metric calculation . ftp://ftp.t
	J. Knowles, Local-Search and hybrid evolutionary algorithms for
	R. Everson, J. Fieldsend, and S. Singh, Full elite sets for mult
	K. Deb, Multiobjective Optimization Using Evolutionary Algorithm
	V. R. Khare, X. Yao, and K. Deb, Performance scaling of multi-ob
	J. Knowles and D. Corne, Properties of an adaptive archiving alg
	C. Coello Coello, Evolutionary Algorithms for Solving Multi-Obje
	W. Feller, An Introduction to Probability Theory and Its Applica
	K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, Scalable multi-o
	S. Peyton-Jones, Haskell 98 Language and Libraries: The Revised

	http://wfg.csse.uwa.edu.au/Hypervolume .
	L. While, L. Bradstreet, L. Barone, and P. Hingston, Heuristics

