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ABSTRACT 

 

The Global Financial Crisis (GFC) highlighted the importance of measuring and understanding 

extreme credit risk. This paper applies Conditional Value at Risk (CVaR) techniques, traditionally 

used in the insurance industry to measure risk beyond a predetermined threshold, to four credit 

models. For each of the models we use both Historical and Monte Carlo Simulation methodology to 

create CVaR measurements. The four extreme models are derived from modifications to the Merton 

structural model (which we term Xtreme-S), the CreditMetrics Transition model (Xtreme-T), 

Quantile regression (Xtreme-Q), and the author’s own unique iTransition model (Xtreme-i) which 

incorporates industry factors into transition matrices. For all models, CVaR is found to be 

significantly higher than VaR, and there are also found to be significant differences between the 

models in terms of correlation with actual bank losses and CDS spreads. The paper also shows how 

extreme measures can be used by banks to determine capital buffer requirements. 

   

Keywords: credit risk, conditional value at risk, conditional probability of default, historical 

simulation, Monte Carlo simulation. 
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1 INTRODUCTION 

 

The Global Financial Crisis (GFC) has raised widespread spread concern about the 

ability of banks to accurately measure and provide for credit risk during extreme downturns.   

Prevailing widely used credit models were generally designed to predict credit risk on 

the basis of ‘average’ credit risks over time, or in the case of Value at Risk (VaR) models on the 

basis of risks falling below a pre-determined threshold at a selected level of confidence, such as 95 

percent or 99 percent. The problem with these models is that they are not designed to measure the 

most extreme losses, i.e. those in the tail of the credit loss distribution. It is precisely during these 

extreme circumstances when firms are most likely to fail, and it is exactly these situations that the 

models in this study are designed to capture. 

Although the use of VaR (which measures potential losses over a given time period at a 

pre-determined confidence) is widespread, particularly since it’s adaptation as a primary market risk 

measure in the Basel Accords, it is not without criticism. Critics include Standard and Poor’s 

analysts (Samanta, Azarchs, & Hill, 2005) due to inconsistency of VaR application across 

institutions and lack of tail risk assessment. VaR has also been criticised by Artzner, Delbaen, Eber 

& Heath (1999; 1997) as it does not satisfy mathematical properties such as subadditivity.  

Conditional Value at Risk (CVaR) is a measure initially used in the insurance industry 

for determining extreme returns (those beyond VaR). The metric has been shown by Pflug (2000) to 

be a coherent risk measure without the undesirable properties exhibited by VaR. CVaR has been 

applied to portfolio optimization problems by Uryasev and Rockafellar (2000), Rockafeller and 

Uryasev (2002), Andersson et.al (2000), Alexander et al (2003), Alexander and Baptista (2003), 

Rockafellar et al (2006), Birbil, Frenk, Kaynar, & Noyan (2009) and Menoncin (2009). CVaR has 

also been explored as a measure of sectoral market and credit risk by Allen and Powell (2009a, 

2009b),  but compared to VaR, CVaR studies in a credit context are still in their infancy. 
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Given the importance of understanding and measuring extreme credit risk, the first aim 

of this study is to show how CVaR techniques can be applied to prevailing models to measure tail 

risk, using a US dataset which includes 380 US companies, mixed between investment and 

speculative entities. Allied to this objective, this study investigates to what extent these CVaR 

measures are significantly differently from VaR measures.  

Our second aim is to show how the CVaR measures can be used by banks to measure 

capital buffers required by banks to deal with volatility in credit risk. A link can be drawn between 

the volatility of the market asset values of banks and capital adequacy, as illustrated by the Bank of 

England (BOE, 2008). BOE report that in 2008 UK banks had equity ratios of around 3.3 percent, 

and assuming volatility in market value of assets of 1.5 percent, this gives a Probability of Default 

of around 1 percent (see equations 1 and 2). If volatility doubles, then PD increases substantially to 

15 percent. As bank PDs increase with deteriorating market conditions, so too does the chance of 

the assets needing to be liquidated at market prices. Therefore as PDs rose during the GFC, market 

participants changed the way they assessed underlying bank assets, placing a greater weight on 

mark to market asset values, implying lower asset values and higher potential capital needs for 

banks. Thus BOE sees the mark to market approach of a bank’s assets as providing a measure of 

how much capital needs to be raised to restore market confidence in the bank’s capitalisation. In a 

similar fashion we will use the volatility metrics in this study to show what capital buffers are 

required to restore market confidence in volatile times. 

To ensure a thorough examination of CVaR metrics we use a range of models (four in 

total), as well as apply two techniques (Historical and Monte Carlo Simulation) to each model. The 

Monte Carlo method generates multiple random scenarios, with the key advantage being that 

thousands of potential scenarios can be generated and considered, as opposed to just a few discrete 

observations. This is especially advantageous with CVaR, where historical observations are only 
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limited to a small number of observations in the tail of the distribution.  The third aim  of this study 

is to ascertain which of the models most highly correlate with actual measures of credit risk, 

including Credit Default Swap spreads, delinquent loans and charge-offs. 

  Our four models are based around some of the most widely used existing credit 

models.  The Merton (1974) structural model (modified by KMV) uses a combination of asset value 

fluctuations and balance sheet characteristics to measure Probability of Default (PD), with Moody’s 

KMV (2010) reporting use of their products by more than 2,000 leading financial institutions in 

over 80 countries, including most of the 100 largest financial institutions in the world. Our first 

model (Xtreme-S) applies CVaR techniques to this structural model, by measuring the tail asset 

value fluctuations (those beyond VaR). Our second model (Xtreme-Q) applies quantile regression 

to the Merton structural model, by dividing the dataset of asset value fluctuations into parts 

(quantiles), allowing the selected quantile (in our case based on tail observations) to be isolated and 

measured. Our third model (Xtreme-T) applies CVaR techniques to the CreditMetrics Transition 

model, which measures VaR and is the credit equivalent of the RiskMetrics model of JP Morgan 

who introduced and popularised VaR. The CreditMetrics model incorporates credit ratings and 

calculates VaR based on the probability of transitioning from one rating to another (including to a 

default rating). Our fourth model (Xtreme-i) applies CVaR techniques to our own iTransition model 

which is a transition model modified to incorporate market derived sectoral risk weightings.  

The remainder of the paper is structured as follows: Section two describes data and the 

methodology (both Historical and Monte Carlo) used for each of the four models; Section three 

discusses results and implications for capital; Section four concludes. 
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2 DATA AND METHODOLOGY 

 

2.1 Data 

 

Data is divided into two periods: Pre-GFC and GFC. For each of the four models we 

generate separate measurements for each of these two periods. We also generate an annual measure 

for each model for each of the 10 years in the dataset. Our Pre-GFC period includes the 7 years 

from January 2000 to December 2006. This 7 year period aligns with Basel Accord advanced model 

credit risk requirements. Our GFC period includes January 2007 to June 2009.  

For our Merton / KMV based models (Xtreme-S and Extreme Q) which require equity 

prices, we obtain daily prices from Datastream (approximately 250 observations x 10 years = 2500 

observations per company).  Required balance sheet data for the structural model, which includes 

asset and debt values, is also obtained from DataStream. To ensure a mix of investment and 

speculative entities, we obtain data from two sources: firstly entities listed on the New York Stock 

Exchange (NYSE) Standard & Poor’s 500 index (S&P 500); secondly entities included in Moody’s 

Speculative Grade Liquidity Ratings list (Moody's Investor Services, 2010a). In both cases we only 

include rated entities, for which equity prices and Worldscope balance sheet data are available in 

Datastream. Entities with less than 12 months data in either of the 2 periods are excluded. This 

results in 378 entities consisting of 208 S&P 500 companies and 170 speculative companies. 

The transition based models (Xtreme-T and Xtreme-i) require credit ratings and 

transition probability matrices (as discussed in the methodology section) for each period. Credit 

ratings are obtained from Moody’s (Moody's Investor Services, 2010b). We use Standard and 

Poor’s (2009) US transition probability matrices which we obtain for each year in our study. For the 

Pre-GFC vs GFC periods, we average the matrices for the relevant years in the dataset.   

Annual delinquent loans and charge-off rates were obtained from the U.S. Federal 

Reserve Bank (2010).  Annual CDS figures for US Corporates were obtained from Datastream. 



 

6 

 

These CDS figures were extracted by credit rating, and weighted according to the dollar value of 

debt for each credit rating category in our data sample.   

 

2.2 Methodology Model 1: Xtreme-S 

 

We use the Merton / KMV approach to estimating default, and then modify this 

calculation to incorporate a CVaR component (which we term CPD as the model uses probability of 

default as opposed to VaR). The structural model point of default is where the firm’s debt exceeds 

asset values. KMV (Crosbie & Bohn, 2003), in modeling defaults using their extensive worldwide  

database, which includes over 250,000 company-years of data and over 4,700 incidents of default, 

find that in general firms do not default when assets value reach total liability book values. Many 

continue to trade and service their debts at this point as the long-term nature of some of their 

liabilities provides some breathing space. KMV find that the default point, the asset value at which 

the firm will default, generally lies somewhere between total liabilities and current, or short-term, 

liabilities (modelling evidence from their extensive database shows approximately half way). Thus 

KMV use current debt plus half of long term debt as the default point. Distance to default (DD) and 

probability of default (PD) are measured as 

T

TFV
DD

V

V



 )5.0()/ln( 2
         (1) 

 

)( DDNPD            (2) 

where 

 V = market value of firm’s assets 

F = face value of firm’s debt (in line with KMV, this is defined as current liabilities plus one 

half of long term debt)  

 µ = an estimate of the annual return (drift) of the firm’s assets  

 N = cumulative standard normal distribution function. 
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It should be noted that KMV find the PD values arising from the normal distribution are 

very small, and hence use their own extensive database of defaulting entities to derive an Estimated 

Default Frequency (EDF) from DD values, which we do not have access to. For this reason, we will 

report DD values only as opposed to PD values. This has little impact on our study as we are 

concerned with changes from period to period rather than with absolute measures.  

For our historical approach, we obtain daily equity returns for each entity, and calculate 

the standard deviation of the logarithm of price relatives.  Following the estimation, iteration and 

convergence procedure outlined by KMV (2008), Bharath & Shumway (2009), and Allen and 

Powell (2009a), we obtain asset values and asset returns. These figures are then applied to the DD 

and PD calculations in equations 1 and 2. We measure µ as the mean of the change  in lnV as per 

Vassalou & Xing  (2004). Following KMV, debt is measured as current liabilities plus one half of 

long term liabilities. 

 We define conditional distance to default (CDD) as being DD on the condition that 

standard deviation of asset returns exceeds standard deviation at the 95 percent confidence level, i.e. 

the worst 5 percent of asset returns. We term the standard deviation of the worst 5 percent of returns 

for each period as CStdev, which we then substitute into equation 1 to obtain a conditional DD: 

TVCStdev

TVFV
CDD

)
2

5.0()/ln(  
        (3) 

 

For our Monte Carlo approach we generate 20,000 simulated asset returns for every 

company in our dataset. This is done by generating 20,000 random numbers based on the standard 

deviation and mean obtained using the Historical approach. We then follow the same approach as 

for the Historical model, applying the standard deviation of all simulated returns to equation 1 to 

measure DD and the standard deviation of the worst 5 percent of simulated returns to equation 3 to 

measure CDD.   
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2.3 Methodology Model 2: Xtreme-Q 

 

Quantile regression per Koenker & Basset  (1978) and Koenker and Hallock (2001) is a 

technique for dividing a dataset into parts. Minimising the sum of symmetrically weighted absolute 

residuals yields the median where 50 percent of observations fall either side. Similarly, other 

quantile functions are yielded by minimising the sum of asymmetrically weighted residuals, where 

the weights are functions of the quantile in question per equation 3. This makes quantile regression 

robust to the presence of outliers. 

min𝜀∈𝑅  𝑝𝑟 𝑦1 − 𝜀            (3) 

where pτ(.) is the absolute value function, providing the τth sample quantile with its solution.  

 

Figure 1  Illustrative Quantile Regression Example  

Figure 1 (Andreas Steiner, 2006) illustrates 

the quantile regression technique. The x and 

y axes represent any two variables being 

compared (such as age and height; or market 

returns and individual asset returns). The 50 

percent quantile (middle line) is the median, 

where 50 percent of observations fall below the line and 50 percent above. Similarly, the 90 percent 

quantile (top line) is where 10 percent of observations lie above the line, and 10 percent quantile 

(bottom line) has 90 percent of observations above the line. The intercept and slope are obtained by 

minimising the sum of the asymmetrically weighted residuals for each line. Quantile Regression 

allows direct modelling of the tails of a distribution rather than ‘average’ based techniques such as 

ordinary least squares or credit models which focus on ‘average’ losses over a period of time. The 
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technique has enjoyed wide application such as investigations into wage structure (Buschinsky, 

1994; Machado & Mata, 2005), production efficiency (Dimelis & Lowi, 2002), and educational 

attainment (Eide & Showalter, 1998). Financial applications include Engle & Manganelli (2004) 

and Taylor (2008) to the problem of VaR and Barnes and Hughes (2002) who use quantile 

regression analysis to study CAPM in their work on stock market returns. 

In a stock market context Beta measures the systematic risk of an individual security 

with CAPM predicting what a particular asset or portfolio’s expected return should be relative to its 

risk and the market return.  The lower and upper extremes of the distribution are often not well 

fitted by OLS. Allen, Gerrans, Singh, & Powell (2009), using quantile regression, show large and 

sometimes significant differences between returns and beta, both across quantiles and through time. 

These extremes of a distribution are especially important to credit risk measurement as it at these 

times when failure is most likely. We therefore expand these quantile techniques to credit risk by 

measuring Betas for fluctuating assets across time and across quantiles, and the corresponding 

impact of these quantile measurements on DD. Our x axis depicts the asset returns for the quantile 

being measured (we measure the 50 percent quantile which corresponds roughly to the standard 

Merton model, and the 95 percent quantile to give us our CStdev). The y axis represents the returns 

for all the asset returns (all quantiles) in the dataset. The Historical approach is based on the actual 

historical asset fluctuations. The Monte Carlo approach uses 20,000 simulated asset returns 

generated in the same manner as for Xtreme-S. 

 

2.4 Methodology Model 3: Xtreme-T 

 

This model is based upon obtaining the probability (ρ) of a bank customer transitioning 

from one grade to another as shown for the following BBB example: 

BBB ρAAA ρAA ρA ρBBB ρBB ρB ρCCC/C ρD 
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External raters such as Moody’s and Standard & Poor’s (S&P) provide transition 

probabilities for each grading and we use the S&P US transition probabilities. We exclude non-

rated categories and adjust remaining categories on a pro-rata basis as is the practice of 

CreditMetrics (Gupton, Finger, & Bhatia, 1997). The sum of all probabilities must equal 1. 

We follow CreditMetrics methodology as described in the following paragraphs. The 

model obtains forward zero curves for each rating category (based on risk free rates) expected to 

exist in a year’s time. Using the zero curves, the model calculates the market value (V) of the loan, 

including the coupon, at the one year risk horizon. Effectively, this means estimating the change in 

credit spread that results from rating migration from one rating category to another, then calculating 

the present value of the loan at the new yield to estimate the new value. The following example 

values a 5 year loan, paying a coupon of 6 percent, where r = the risk free rate (the rate on 

government bonds) and s = the spread between a government bond and corporate bonds of a 

particular category, say AA (see CreditMetrics (Gupton et al., 1997)). 

𝑉 = 6 +
6

 1+𝑟1+𝑠1 
+

6

 1+𝑟2+𝑠2 2
+

6

 1+𝑟2+𝑠2 3
+

106

 1+𝑟2+𝑠2 4
      (4) 

The above is calculated for each rating category (yields for government and corporate 

bonds are obtained from Datastream for each rating category for each year in the sample, and are 

weighted according to F for each entity in our data sample). Probabilities in the S&P (Standard and 

Poor's, 2009) transition tables  are multiplied by F for each rating category to obtain a weighted 

probability. Based on the revised probability table, Historical VaR is obtained by calculating the 

probability weighted portfolio variance and standard deviation (σ), and then calculating Historical 

VaR using a normal distribution (for example 1.645σ for a 95 percent confidence level).  It has 

become common practice for modellers of transition matrices to use the average historical transition 

probabilities over the time period being modeled (as opposed to varying the probabilities year by 
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year). This approach is effective in isolating how changes in ratings affect VaR over time. However, 

credit ratings change only periodically and, especially over periods like the GFC, this will not be 

effective in predicting actual changes in VaR as it ignores the impact of volatility in the default 

probabilities associated with the ratings (these changed dramatically over the GFC). Standard and 

Poor’s provide annual probability matrices as well as historical averages over various extended time 

periods. When correlating our VaR and CVaR outcomes to CDS spreads and bank defaults and 

charge-offs we examine both approaches – one which uses fluctuating  probabilities and one which 

uses an average  for the 10 year period.  

We extend this VaR methodology (Gupton et al., 1997) to calculate Historical CVaR by 

using the lowest 5 percent of ratings for each industry. 

CreditMetrics (see also Allen & Powell, 2009b) use Monte Carlo modelling as an 

alternate approach to estimating VaR, and we follow this approach for our Monte Carlo CVaR. 

transition probabilities and a normal distribution assumption are used to calculate asset thresholds 

(Z) for each rating category as follows: 

 Pr(Default)= Φ(ZDef/σ)         

Pr(CCC) = Φ(ZCCC/σ) - Φ(ZDef/σ)      (5) 

 and so on, where Φ denotes the cumulative normal distribution, and 

 ZDef  = Φ
-1

σ          (6) 

 

Scenarios of asset returns are generated using a normal distribution assumption. These 

returns are mapped to ratings using the asset thresholds, with a return falling between thresholds 

corresponding to the rating above it. In line with this methodology we generate 20,000 returns for 

each firm from which portfolio distribution and VaR are calculated. We extend this methodology to 

calculate Monte Carlo CVaR by obtaining the worst 5 percent of the 20,000 returns.  



 

12 

 

 

2.5 Methodology Model 4: Xtreme-i 

 

CreditPortfolioView (Wilson, 1998) is a variation to the transition model which 

incorporates an adjustment to transition probabilities based on industry and country factors 

calculated from macroeconomic variables.  This model recognises that customers of equal credit 

rating may transition differently depending on their industry risk. Other studies have subsequently 

also linked macroeconomic / business cycle conditions to transition matrices (Belkin, Forest, & 

Suchower, 1998; Kim, 1999; Nickell, Perraudin, & Varotto, 2000; Trück, 2010; Wei, 2003). 

However, a study by APRA (1999) showed that banks did not favour using macroeconomic factors 

in their modelling due to complexities involved. Our own iTransition model  (Allen & Powell, 

2009b) uses the same framework as CreditPortfolioView, but (on the basis that differences in 

industry risk will be captured in share prices), incorporates market VaR (fluctuations in the share 

prices of industries) instead of macroeconomic variables to derive industry adjustments. This is 

done by calculating market VaR for each industry, then calculating the relationship between market 

VaR and credit risk for each industry, using the Merton model to calculate the credit risk 

component. We classify data into sectors using Global Industry Codes (GICS), which are Energy, 

Materials, Industrials, Consumer Discretionary, Consumer Staples, Financials, Health Care, Retail, 

Information Technologies, Telecommunications and Utilities. These factors are used to adjust the 

Xtreme-T model as follows using a BBB rated loan example:  

BBB ρAAAi ρAAi ρAi ρBBBi ρBBi ρBi ρCCC/Ci ρDi 

 

 

Other than the industry adjustments, our Xtreme-i Historical and Monte Carlo VaR and 

CVaR calculations follow the same process as Xtreme-T. 
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3 RESULTS AND IMPLICATIONS FOR CAPITAL 

 

Table 1.  Results Summary 

 

 

DD (measured by number of standard deviations) is calculated using equation 1. CDD is based 

on the worst 5 percent of asset returns and is calculated using equation 3. VaR (95 percent 

confidence level) and CVaR (average of losses beyond VaR) are daily figures and can be 

annualised by multiplying by the square root of 250, being the approximate number of annual 

trading days. The pre-GFC period is the 7 years from 2000 – 2006 whereas the GFC period is 

the 3 years from 2007 – 2009. 

 

 

Historical

Model Metric Pre GFC GFC

Xtreme-S DD 8.64 4.07

CDD 2.53 1.26

Xtreme-Q DD 8.10 4.04

CDD 2.31 1.96

Xtreme-T VaR 0.0190 0.0453

CVaR 0.0433 0.0908

Xtreme-i VaR 0.0182 0.0570

CVaR 0.0453 0.1052

Monte Carlo

Model Metric Pre GFC GFC

Xtreme-S DD 8.63 4.06

CDD 3.03 1.08

Xtreme-Q DD 8.09 3.81

CDD 2.81 1.84

Xtreme-T VaR 0.0162 0.0507

CVaR 0.0527 0.0865

Xtreme-i VaR 0.0175 0.0543

CVaR 0.0524 0.0859
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Table 1 shows large differences between VaR and CVaR, or DD and CDD.  For 

example, all Historical models show CDD being approximately 3 times higher than CVaR during 

the pre-GFC period, increasing to approximately 5 times higher for the transition based models 

(Xtreme-T and Xtreme-i) over the GFC period. The Monte Carlo models show similar trends to 

their corresponding  Historical models, although Historical VaR and Monte Carlo VaR are slightly 

closer than Historical CVaR and Monte Carlo CVaR. The reason VaR is closer is because there are 

a large number of Historical VaR observations (95 percent of historical observations)  to compare to 

the extremely large number of Monte Carlo VaR observations, whereas the Historical model 

generates only a smallnumber of CVaR observations (5 percent of historical observations) 

compared to the large number of Monte Carlo CVaR observations (5 percent of 20,000 

observations),  Although there are some differences between the models in the extent of the 

variation between the quantiles, the difference between VaR and CVaR (or DD and CDD) is 

nonetheless significant for all models at the 99 percent level using F tests for changes in volatility. 

This has significant implications for banks. Provisions and capital calculated on below the threshold 

measurements will clearly not be adequate during periods of extreme downturn. This is illustrated 

in Figure 2. 
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Figure 2.   Illustration of Fluctuating Risk 

 

 

The figure shows the results of the Quantile Regression (Xtreme-Q) Model for 

the 50 percent and 95 percent quantiles for pre- GFC and GFC periods. The pre-

GFC period is the 7 years from 2000 – 2006 whereas the GFC period is the 3 

years between 2007 – 2009. The y axis is calculated on the asset fluctuations (σ), 

using the Merton model, for the quantile in question. The x axis is the median σ 

for the entire 10 year period. Thus the Beta( β) for the 50 percent Quantile for the 

10 year period is one. Where σ for a particular quantile is less (greater) than the 

median for the 10 year period,   β<(>)1, and DD increases (reduces) accordingly. 

 

The above graph shows that the ‘median’ DD  (based on how the standard Merton 

structural model calculates DD) over the 10 year study period  was 5.98 for US banks with an asset 

value standard deviation (σ) of 0.00789.  As asset value σ is the denominator of the DD equation 

(equation 1), as σ increases (reduces) from one level to another (i.e from σ1 to , σ2) DD reduces 

(increases) by the same proportion. Thus the numerator of the equation (a measure of capital – the 

distance between as assets and liabilities) needs to increase to restore DD back to the same level 

(i.e., as per the BOE observation in Section 1, capital (K) will need to increase by the same 
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DD 5.98 β 1.0

σ  0.00789

DD 8.09 β 0.74
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DD 3.81 β 1.57

σ  0.0124

DD 2.81 β 2.13

σ  0.0168

DD 1.84 β 3.26

σ  0.0258
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proportion to restore market confidence in the banks’ capital).  Thus the required change in capital 

(K*) is; 

K* = K x σ2 / σ1          (7) 

 

Based on Figure 1, during the extreme fluctuations of the GFC (as measured by the 95 

percent quantile) US banks needed in excess of 3 times more capital than during ‘median’ 

circumstances (as measured by the 10 year median).  Whilst we have used the Xtreme-Q model to 

illustrate this, the same principle applies to all the models - a trebling of VaR or DD requires treble 

capital (100 percent buffer) to deal with it. Thus a bank with 5 percent capital during ‘normal’ times 

would need 15 percent during extreme times.  

 

When comparing different volatility models, it is important to consider how well their 

relative outcomes compare to actual credit risk volatility experienced by US banks. Using 10 years 

of annual data, we correlate our measures for the four models to three measures three measures of 

actual credit risk.  The first of these three measures is Credit Default Swap (CDS) spreads, which is 

measure of the premium the market is prepared to pay for increased credit risk.  The second is 

Delinquent Loans as reported by the US Federal Reserve and are loans past thirty days or more and 

still accruing interest as well as those in non-accrual status, measured as a percentage of end-of 

period loans. The third is Charge-off rates, also reported by the US Federal Reserve which is the 

value of loans removed from the books and charged against loss reserves, measured net of 

recoveries as a percentage of average loans. These correlations are reported in Table 2. Various lags 

were tested, with most correlations being most significant with no lag and some correlations (the 

shaded areas of Table 2) being most significant with a 1 year lag (e.g. a 2009 measurement for 

actual risk compared to a 2008 measurement model).  To avoid over-reporting of figures, we show 



 

17 

 

only the results of the Histotrical model, but the Monte Carlo models produce very similar 

outcomes. 

 

Table 2.  Correlations 

 

 

The table correlates the Historical model metrics produced by each of our four models for each of the ten 

years in our data sample with three measures of actual credit risk of US banks, being CDS Spreads, 

Delinquent Loans, and Charge-off rates. Level of significance is measured by a t-test, with * denoting 95 

percent significance and ** denoting 99 percent significance. Non shaded areas are where highest 

correlation is experienced with no lag, and the shaded areas with a 1 year lag.    

 

 

The structural based models (Xtreme-S and Xtreme Q) show a much higher correlation 

with CDS spreads than the other models. This is because CDS spreads change daily with market 

conditions, and so does the asset value component of the structural model. The transition based 

models (Xtreme-T and Xtreme-i) which largely depend on ratings (more sluggish than CDS spreads 

as ratings are often updated only annually) show no significant correlation in the same year, but a 

higher correlation when using a one year lag. All four models show highly significant (99 percent 

confidence) correlation with delinquent loans, meaning that the metrics of all the models are a good 

indicator of actual defaults. There is very high significance shown by the transition based models’ 

correlations with charge-off rates. The timeline in Figure 3 shows how both CDS spreads and the 

structural model respond quickly to market events, resulting in high correlation between these two 

Model Metric

Xtreme-S DD 0.915 ** 0.786 ** 0.606

CDD 0.906 ** 0.826 ** 0.647 *

Xtreme-Q DD 0.914 ** 0.789 ** 0.608

CDD 0.885 ** 0.865 ** 0.683 *

Xtreme-T VaR 0.573 0.929 ** 0.936 **

CVaR 0.741 * 0.893 ** 0.908 **

Xtreme-i VaR 0.831 ** 0.952 ** 0.926 **

CVaR 0.768 ** 0.920 ** 0.920 **

CDS Spreads Delinquent Loans Charge-off rates
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items, whereas ratings (and thus transition models) react slower to market events and thus have a 

higher correlation with actual write-offs which usually occur sometime after initial market 

deterioration. 

    

Figure 3. Timeline and Correlations 

 

Of note is that there is very little difference in the correlation significance levels for 

VaR (DD) as compared to CVaR (CDD). This means that, although CVaR (CDD) are at much 

higher levels than VaR as previously discussed, the trend (percentage increase or decrease from 

year to year) is similar for both VaR (DD) and CVaR (CDD) .   

It should be noted that transition probabilities used in Table 2 to calculate VaR and 

CVaR for Xtreme-T and Xtreme-i have been updated each year according to the annual probability 

matrices provided by Standard and Poor’s, as opposed to using a long term historical average (for 
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example the probability of a B rated loan defaulting in 2008 is given as 3.82 percent compared to 

0.64 percent in 2006, even though the underlying rating had not changed). As mentioned in Section 

2.4 it is common practice to model transition matrices using long term probability averages, thus 

varying only the ratings. As an alternative to our approach of varying the probabilities, we used a 10 

year probability average. We found no significant correlation at all between the VaRs and CvaRs 

produced using this averaging method with any of the 3 risk variables (CDS spreads, Defaults, or 

charge-offs). This means that ratings on their own (without the associated default probability) are a 

poor indicator of actual credit risk, as they change only periodically, whereas the actual credit risk 

may have increased substantially in the interim. This has major ramifications for banks in respect of 

capital. The Basel standard approach requires banks to calculate capital based on the rating alone, 

but this rating may have an entirely different probability of default from one period to the next.  It 

should be noted that rating agents such as Standard and Poor’s and Moody’s stress that ratings are 

not absolute measures of default, but rather a relative ranking of one entity to another.  Therefore 

ratings on their own, without the associated default probability are not a good predictor of default or 

a sound basis for determining capital adequacy.      

 

4 CONCLUSIONS 

 

This paper has shown how CVaR type metrics can be applied to credit risk models to 

measure extreme risk. A comprehensive study was undertaken by generating and comparing four 

Xtreme models and by applying Historical as well as Monte Carlo metrics to each. In addition the 

models were applied to pre-GFC as well as GFC data to capture different economic circumstances.  

All four models showed highly significant differences between VaR (DD) and CVaR 

(CDD) measures. Increased volatility requires capital buffers to deal with the increased risk and the 

paper demonstrated how this volatility and buffer requirement can be measured.   
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There were no significant differences in outcomes between Xtreme-S and Xtreme-Q, 

nor between Xtreme-T and Xtreme-i. There were significant differences observed between the 

structural based models (Xtreme-S and Extreme-Q) as compared to the transition based models 

(Xtreme-T and Xtreme-i). The changes in risk as measured by the structural based models  are more 

consistent with changes experienced in CDS Spreads than those shown by the transition based 

models, because both structural models and CDS spreads respond very rapidly to market conditions. 

The opposite is true of charge-offs where the transition based models show much greater correlation 

than the structural based models, as there is generally a delay between defaults and charge-offs, and 

credit ratings also often respond slower (often annually) to market conditions than the structural 

models. All models show a significant correlation with delinquent loans.  
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