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Abstract
Hidden terrorist cells in high dimensional communications networks arise when terrorists camouflage 
connectivity to appear randomly connected to the background network. We investigate hidden network 
detectability when the background network does not support terrorist activities.  Using two September 11 
terrorist networks as the test bed and a network measure called assortativity, we suggest hidden terrorist 
networks can behave as Peer-to-Peer networks.  We compare the September 11 hidden networks with Peer-to-
Peer networks containing embedded terrorist networks, as well as with generic Peer-to-Peer networks.  Using 
Peer-to-Peer characteristics and social network group-based centralities, we show that for certain Peer-to-Peer 
networks it is possible to detect hidden terrorist networks in cyberspace, with potential future application to 
Instant Messaging and Skype networks. 
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INTRODUCTION  
Terrorist attacks are a recurring threat to local livelihood and global wellbeing and in the past decade have been 
enacted as the large-scale tragedies of September 11, 2001 (United States), October 12, 2002 (Indonesia) and 
July 7, 2005 (United Kingdom).  More recently, the Lockerbie-styled plane bombing attempts (October 2010) 
reflect the ongoing global threat of terrorism.  Concerns have been raised over the growing strength of terrorist 
organisations such as al Qaeda, which in the last decade has increased both its membership and geographic 
reach (Farrall, 2011).   

A considerable body of research on modelling terrorist networks has developed in recent years.  The cornerstone 
publication of (Krebs, 2002) used social network measures to capture pertinent characteristics of the individuals 
involved in the September 11 hijackings.  In (Hussain, 2010, Borgatti, 2003) key individuals within terrorist 
networks were identified such that their removal would cause maximal disruption to the network. In (Chiera, 
2010) a paradigm shift from the social network analysis of individual terrorists to groups of terrorists was 
introduced, by treating a terrorist cell as a hidden network – that is a network of individuals appearing randomly 
connected to the background communications network whilst preserving connectivity between themselves, to 
facilitate unimpeded information flow. Using the September 11 terrorist network of (Krebs, 2002), hidden 
terrorist networks were characterised using group-based social network measures and were shown to be highly 
visible and therefore detectable. 

The conclusions drawn in (Chiera, 2010) however, were for hidden networks immersed in a larger terrorist 
network. It needs to be conjectured that it may not be sufficient to consider only the social network measure and 
size of the surrounding network; network type may also play an important role in detection.  Specifically, are 
hidden terrorist networks more difficult to detect when located in a network that does not support terrorist 
activities?  

In this paper we take a first step towards addressing this question. The ability to distinguish hidden terrorist 
networks from a larger network backdrop has long been considered vital for successful detection and thwarting 
a planned terrorist attack (Baumes, 2008), however while previous work has focused on detection dependent 
upon the background network size, it is not yet sufficiently clear if hidden terrorist network detection also 
depends on the whether the background network supports the terrorists’ online behaviour. 

Using assortativity, a network measure of association, we will show that hidden terrorist networks can behave as 
Peer-to-Peer (P2P) networks.  Correspondingly, we generate embedded P2P networks containing hidden 
September 11 terrorist networks, as well as generic P2P networks, as our test bed.  Using the P2P network 
characteristics degree distribution, clustering and average path length, as well as group-based eigenvector, 
information, and subgraph centrality, known to be relevant to P2P networks (Estrada and Rodríguez-Velázquez, 
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2005), we will investigate whether hidden networks are easily distinguishable from non-terrorist P2P network 
backgrounds. 

Next we review the group-based social network metrics used in this analysis. We then determine the 
assortativity of hidden September 11 terrorist networks (Krebs, 2002), introduce the embedded and simulated 
P2P networks and investigate their P2P characteristics.  Following, we conduct group-based social network 
analyses of hidden terrorist networks located within P2P networks before giving our conclusions. 

CHARACTERISING HIDDEN NETWORK TYPE AND BEHAVIOUR 
We wish to characterise two aspects of a hidden network: type, used to determine the network category 
(Newman, 2010); and behaviour, designed to capture different facets of communication between individuals or 
groups. Accordingly, we view a communications network as a graph G consisting of individuals (nodes) vi V, 
and edges eij  E, which can be viewed as lines of communication connecting individuals vi,vj, such that G ={V, 
E}.   

A hidden network H is defined as a sub-network of G such that VH V, EH E, with H treated as a single node, 
vH.  An example of vH is depicted in Figure 1 in which the hidden network members are denoted by green     
circles.  Previous analyses in this area (for example Hussain, 2010, Baumes, 2008, Borgatti, 2003, Krebs, 2002) 
have focused on detecting the individuals within a hidden network.  However here, as in (Chiera 2011, Chiera 
2010),  a hidden network will be considered as a single network node for the analysis that follows.  Thus, for the 
example network presented in Figure 1, this implies that the network would be considered treated as consisting 
of nine nodes. 

 
Figure 1: An example hidden network (green     nodes) immersed in a larger network (blue     nodes).   

The dashed lines (- -) indicate the boundary of the hidden network node vH. 

The fundamental centrality measure underlying much of the characterisations presented here is degree centrality 
and while not explicitly analysed in this work, is introduced to facilitate understanding. Degree centrality is a 
measure of local influence in the network (Freeman, 1979) such that a node with high degree centrality would 
have many direct connections to other network nodes and would thus be considered influential.  

For an individual node vi, degree centrality is the number of edges directly connected to vi. For a hidden network 
H, treated as a single node vH, the normalised group degree centrality CD is defined as the ratio of the number of 
non-hidden network nodes connected to H, to the number of non hidden network nodes (Everett and Borgatti, 
2005), viz.  

� ��� (1)�
�

where |.| is cardinality, N(H) is the set of all nodes vi V such that vi H but is connected to a member of H, with 
multiple ties counted once so as not to overinflate the influence of H in the network.  For example,  in Figure 1 
the normalised group degree centrality of H is CD = 8/(10-2) = 1.00. 

Hidden Network Type: Assortativity 

An indication of the type and robustness of a network can be obtained from the degree assortativity of a 
network.  Assortativity is the tendency observed in complex networks for nodes to connect mostly with other, 
similar nodes (Newman, 2010).  Similarity is typically defined on the basis of degree centrality, such that nodes 
with high degree centrality may prefer to connect to other nodes with high degree centrality (assortative 
mixing).  In this instance the network is robust in that many network nodes would need to be removed to destroy 
the overall network structure.  Alternatively, nodes with high degree centrality may prefer to connect to nodes of 
low degree centrality (disassortative mixing) making the robustness of the overall network structure more 
sensitive to node removal. 

�
�

� �

  
CD = | N(H ) |

|V |� | H |

� �
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With a slight abuse of notation, denoting the degrees of nodes vi,vj H as ki,kj respectively, network degree 
assortativity is defined as (Newman, 2010) 

 

where |E | gives the total number of edges and the degree centrality of the hidden network H is defined as in (1). 
A network is assortative if r>0, non-assortative if r=0 and disassortative if r<0, with r [-1,1]. 

Hidden Network Behaviour: Group-Based Centrality 

Eigenvector Centrality 

Eigenvector centrality extends the concept of degree centrality to capture the importance of a node’s 
connections.  Whereas in degree centrality only the number of node connections was of interest, eigenvector 
centrality takes the further step of determining the quality of these connections — labelling a node of high 
degree centrality as important only if it is connected to other nodes of high degree centrality.  Conversely, a 
node with high degree centrality connected to nodes with low degree centrality would be classified as 
unimportant. In this way, eigenvector centrality provides an indication of the most globally central network node 
(Newman, 2010).  

For a network adjacency matrix A, with elements Ai,j = 1 if nodes vi,vj are connected and Ai,j = 0 otherwise, the 
eigenvector centrality xi of node vi is proportional to the average of the centralities of vi’s neighbours 

                                                                                

where M(i)  is the set of nodes connected to the vi
th node and � is a constant capturing the relative importance of 

all nodes in the network.  A large value of xi indicates that node vi is considered important. 

Subgraph Centrality 

Subgraph centrality is also designed to extend the concept of degree centrality by taking into account the 
influence of node vi beyond its immediate neighbours, to depict the ease with which information is shared 
throughout the network.  Using the concept of a closed walk, that is a network path comprised of repeated edges 
beginning and ending at node vi, subgraph centrality is a weighted sum of the number of such closed walks of 
different lengths in the network.  Smaller subgraphs (closed walks of shorter length) are given more weight than 
larger subgraphs, reflecting the immediacy of the influence of node vi.  Subgraph centrality Cs(i) is thus defined 
as (Estrada and Rodríguez-Velázquez, 2005) 

Cs(i) �  �k (i)
k!k� 0

	



 
 

where �k(i) is the number of closed walks of length k beginning and ending at node vi and ! indicates a factorial.  
Dividing by k! guarantees convergence of the infinite sum, as well as an appropriate weighting, based on walk 
length.  In practice, the summation in Cs(i) is evaluated up to |V |, the number of nodes in the network.  Note that 
the larger the value of Cs(i), the more easily information flows around the network, when originating at node vi. 

Information Centrality  

Information centrality is the only measure considered here not based on degree centrality.  Rather, it assesses all 
paths between two nodes to provide an alternative quantification of node importance than that produced by 
eigenvector centrality, by considering the use of circuitous paths through the network.  Circuitous path usage 
precisely captures the situation of information sharing between terrorists via trusted parties external to the 
hidden network H (Newman, 2010, Wasserman, 1994).   

Following (Wu et al., 2010) we define information centrality as a function of network efficiency.  Efficiency 
relates the importance of a network node to a decline in communication efficiency if that node is removed from 
the network. For dvi,vj, the length of the shortest path between nodes vi,vj, we define the efficiency E(G) of 
network G  

�

r �
E �1 kik j � E �1 1

2
(ki � k j )eij �E


�
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�
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from which a group-based information centrality measure CI is (Wu et al., 2010) 

                                                                   

where  is network G with node vi removed.   The measure is designed such that positive information 
centrality suggests network efficiency whereas a negative value would be indicative of network inefficiency. 

HIDDEN NETWORK ANALYSIS: TYPE 
We utilised, as a starting point for the test bed, two versions of the September 11 (9/11) network (Krebs, 2002).  
The first is the core 9/11 network GC ={|V|,|E|} ={19, 27}, consisting solely of the individuals who physically 
hijacked the flights (all nodes except the grey     nodes in Figure 2).  The second is the full network in 
Figure 2 with GE ={|V|,|E|} ={37, 82}, containing all individuals deemed complicit in aiding the September 11 
terrorist attack.   We consider two networks here as a means of capturing differences in hidden terrorist network 
detectability in different sized networks. 

We identified four hidden networks in Figure 2 based on the hijacked flights: 

1. AA Flight # 77:  orange     nodes;  

2. UA Flight #93:   blue      nodes;  

3. AA Flight #175: purple      nodes; and 

4. UA Flight #11:   green     nodes. 

A fifth hidden network, Trusted Priors (Figure 3), was identified in (Krebs, 2002) as a network of previously 
acquainted individuals, all of whom believed to have been key individuals in planning the September 11 attack.  

Figure 2: A reproduction of the September 11 Network (Krebs, 2002) 

 

 
Figure 3: The September 11 Trusted Priors Network identified in (Krebs, 2002) 

E (G ) �
1 dvi ,v jvi �v j �G



V V �1

CI � E G� �� E �G i� �� �/ E G� �

  �G i
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Table 1: Assortativity (r) for the core and extended 9/11 networks GC, GE. 

 
We computed the degree assortativity for both 9/11 networks (Table 1).  For the GC networks only AA Flight 
#77 was assortative (r > 0), seemingly reflecting the fact that the hidden networks for Flight #77 and Flight # 93 
are structurally similar.  This is not an inconceivable result since previous work (Chiera, 2010; Lindelauf, 2009) 
indicated a propensity for similar network structures based on size, coupled with a trade-off between the need 
for information sharing and secrecy. 

From Table 1 we see that all hidden GE networks were disassortative (r<0), particularly for Flight Networks 
#93 and #175 (r = -0.50, r = -0.39, respectively).  Comparing the internal structures of these two networks with 
that of their direct neighbours (Figure 2), we see this disassortativity captures the difference between the simple 
network structures (Flights #93, #175) as opposed to the more complex connectivity of their neighbours (Flights 
#11, #77).  

Comparing the GE assortativities with those of 27 different network types (Newman, 2010), it was found that 
many values reported in Table 1 were categorised as Technological, where, for example, r = -0.39 for Flight 
#175 network is close to r = -0.37 (the assortativity value for an undirected peer-to-peer (P2P) network, 
(Newman, 2010)).  Comparison of a terrorist network to a P2P network is not necessarily unreasonable since 
P2P networks have the goals of decentralisation, immediate connectivity and anonymity; characteristics 
attractive to a terrorist network.  Moreover, P2P networks are self-organising such that the failure of a smaller 
network component is less likely to spread throughout the network; correspondingly, should one hidden terrorist 
network be compromised, the remaining terrorist cells would remain undetected and able to carry out their 
mission. 

Since our aim is to detect hidden terrorist networks in high dimensional communications networks, we are 
primarily interested in terrorist communication captured at the Internet routing level, the domain of P2P 
networks.  Combined with the potential for hidden terrorist networks to behave as undirected P2P networks, we 
wish to determine whether a hidden terrorist network embedded in a P2P network can be distinguished from a 
generic P2P network structure. 

Ideally, a P2P network should satisfy the following properties (Newman, 2010, Wang et al., 2006): 

1. It is scale-free with a power law degree distribution pk = Ck-�, where pk is the probability a randomly 
chosen node has degree k, and C is a constant.  The power law exponent ��is typically 2 � ��� 3, 
capturing the phenomenon that many network nodes have low degree with only a small number having 
high degree; 

2. It is small-world, that is the average hop distance between nodes is short and scales logarithmically; 
and 

3. It should have a high clustering coefficient, indicating a propensity for two nodes to cluster together 
with a third node.  The global clustering coefficient  

 

takes the ratio of the number of triangles NT in the network with an edge between each node, to the 
number of connected triples N3, in which nodes can reach other nodes either directly or indirectly. 

Graph types used to simulate P2P networks include the Barabási (BA) preferential-attachment model, capturing 
the scale-free and small-world properties; the Watts-Strogatz (WS) model, capturing the small-world and 
clustering properties; and the Erd�s-Rényi (ER) random graph model, since in selected undirected P2P networks 
(e.g. Gnutella) peers choose neighbours essentially at random.  We used all three types as no single model 
captured all P2P properties.  

Using the igraph package in R, we generated: 

1. Embedded P2P Networks: 1,000 networks of types BA, ER and WS were generated for the GC and 
GE networks, with the Flight #77 hidden network embedded in each, such that the link connectivity of 
the hidden network to the remaining nodes was comparable to that in the original GC and GE networks.  
We repeated this process for all remaining hidden networks (Flights #93, #175, #11, Trusted Priors). 

C c �
3N T

N 3

Network Type  #77  #93 #175 #11 Trusted Priors

9/11 Network GC 0.14 0.00 -0.03 -0.09 -0.14

9/11 Network GE  -0.06 -0.50       -0.39   -0.07 -0.03
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Peer-to-Peer characteristics and group-based centralities were calculated for each network, from which 
averages were produced; and 

2. Simulated P2P Networks: generated as for the Embedded P2P networks, however without an 
embedded hidden terrorist network. Averages were taken of the Peer-to-Peer characteristics and 
centralities. 

The degree distributions for the core and extended embedded P2P networks (Figure 4, top row) indicate that the 
Barabási and Erd�s-Rényi networks follow a similar power law.  While the actual 9/11 hidden networks also 
follow a power law distribution, they are visually distinguishable from the embedded Barabási and Watts-
Strogatz P2P networks, although more closely mimic the degree distribution of the Erd�s-Rényi embedded 
networks.  Comparison between the embedded and simulated networks (Figure 4, top/bottom row respectively) 
indicates that while there are noticeable differences between the two types of networks, it would be difficult to 
visually distinguish one from the other, since a power law degree distribution is present in both cases, as would 
be expected of a genuine P2P network.  

The low clustering coefficients (Figure 5) of the embedded (solid line) and simulated (dashed line) Barabási and 
Erd�s-Rényi P2P networks indicate that nodes are connected to only a small number of acquaintances.  The 
9/11 and Watts-Strogatz networks have larger clustering coefficients, suggesting that the number of nodes 
directly connected to each hidden network is larger than for the Barabási and Erd�s-Rényi networks. While 
there is little difference between the clustering coefficients for the embedded and simulated Watts-Strogatz and 
Erd�s-Rényi P2P networks, the Barabási networks demonstrate a noticeable difference in coefficient size when 
the hidden networks are not embedded.  
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Figure 4: Degree Distributions. The top row shows all 9/11 hidden networks (black  •), and embedded networks 
using the Barabási (green *), Erd�s-Rényi (red +) and Watts-Strogatz (blue X) models. The bottom row shows 

the simulated P2P networks without embedded terrorist networks. 

 

Figure 5: Clustering Coefficients for the Core and Extended networks for all hidden networks of type  
Krebs (black  •), Barabási (green *), Erd�s-Rényi (red +) and Watts-Strogatz (blue X).  The solid lines indicate 

the Embedded P2P networks, the dashed lines indicate the simulated P2P networks. 
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Figure 6: Average Path Lengths for the Core and Extended networks for all hidden networks of type  

 
Krebs (black  •), Barabási (green *), Erd�s-Rényi (red +) and Watts-Strogatz (blue X). The solid lines indicate 

the Embedded P2P networks, the dashed lines indicate the Simulated P2P networks.   
 

Similarly, the average path lengths (Figure 6) for the embedded and simulated P2P networks show little 
difference between the Watts-Strogatz and Erd�s-Rényi networks, however the Barabási P2P networks show 
discernibly different path lengths.  The actual 9/11 networks yielded the largest average path lengths, suggesting 
that although attempting to behave as a P2P network, a surrounding network directly supportive of terrorist 
activities destroys the average path length property rendering the hidden network visibly distinct from a P2P 
network background. 

The implications of these preliminary results for the Barabási model have untapped potential for locating hidden 
terrorist networks in cyberspace.  For instance it may be possible to detect hidden terrorist networks as non-P2P 
entities if observed in a P2P network space generally better modelled by a Barabási graph, such as Instant 
Messaging and Voice over IP (Skype) networks (Newman, 2010). 

HIDDEN NETWORK ANALYSIS: BEHAVIOUR 
To analyse hidden network behaviour, we computed information, eigenvector and subgraph centralities for the 
actual 9/11 networks, as well as the embedded and simulated P2P networks (Tables 2-4).  To aid interpretation, 
the 9/11 GC network is given in Figure 7. 

 
Figure 7: A reproduction of the core September 11 Network of (Krebs, 2002). 

Discussion: Information, Eigenvector and Subgraph Centrality Results 

Table 2 contains the information centralities calculated for the 9/11 and Embedded and Simulated P2P networks 
for both network sizes (GC, GE).  The negative information centralities for the GC and GE 9/11 networks indicate 
network inefficiency if the Flight #93 and #175 networks are removed, reflecting the fact that these networks 
behave as intermediaries in the communication path between the Flight #11 and #77 networks (Figure 7).  Thus 
their removal will detrimentally affect communication across the network.   

Flight�#11��

Flight�#175��

Flight�#93��

Flight�#77��
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Table 2: Information Centralities CI for the 9/11, Embedded and Simulated P2P Networks 

 
Removal of the Trusted Priors group however, indicates the overall network will still function efficiently (CI = 
0.79) suggesting the presence of this group is superfluous to communication across the network.  None of the 
embedded or simulated P2P networks produce information centralities in the region of those for the 9/11 
networks, particularly the Barabási networks, which understates the importance of each flight network, as 
indicated by the larger positive values. 
 
The eigenvector centralities (Table 3) capture the importance of each of the flight networks.  Recalling that the 
larger the eigenvector centrality, the more important the hidden network, it can be seen that for both the GC and 
GE networks, the embedded Barabási and Watts-Strogatz P2P network centralities predominantly overstate and 
understate network importance respectively, when compared to the centralities for the actual 9/11 network. 

The simulated networks show a better correspondence to the actual 9/11 network centralities. Note however that 
the results for the embedded and simulated GC and GE Erd�s-Rényi networks indicates a general similarity of 
importance, to make distinguishing between the embedded and simulated networks a more difficult undertaking.   
Revisiting the GC network in Figure 7, we see that the “better connected” networks, in terms of eigenvector 
centrality, appear to be the Flights #77, #93, #175 and Trusted Priors networks, since these networks are 
connected to nodes that are themselves highly connected. The Flight #11 network possesses two unique, albeit 
inferior, connections, to the remainder of the network, as reflected by the negligible eigenvector centrality 
(0.06), however when immersed in the larger GE network, the eigenvector centrality of the Flight #11 network is 
vastly increased due to the improved connectivity of group member Atta (Figure 2).  It should be noted that 
Flight #77 is considered more important in the smaller GC network (xi = 0.50) than in the extended GE network 
(xi = 0.04), due to the inferiority of its connections in the latter instance. 
 
Finally, the subgraph centralities Cs (Table 4) depicts the ease with which information is shared throughout the 
network. The larger centralities for the GC Flight #175 and Trusted Priors networks (28.67, 29.56 respectively), 
indicate that information circulates more easily, seemingly capturing the fact that the Flight #175 network has 
multiple connections to two of the three other hidden groups in the network.  In contrast, the Flight #11 network 
distributes information poorly, as it is connected to two other hidden networks, albeit through nodes which 
themselves are poorly connected.   
 
 

   #77  #93 #175 #11 Trusted Priors

9/11 Network GC  0.15 -0.13 -0.29 0.17 0.79

Embedded P2P GC Networks  

Erd�s-Rényi GC 0.13 0.08 0.13 0.13 0.23

Barabási GC 0.82 0.81 0.87 0.83 0.88

Watts-Strogatz GC 0.12 0.12 0.12 0.12 0.13

Simulated P2P GC Networks  

Erd�s-Rényi GC 0.17 0.13 0.16 0.13 0.26

Barabási GC 0.95 0.39 0.25 0.08 0.74

Watts-Strogatz GC 0.00 -0.10 -0.07 -0.03 0.17

9/11 Network GE  0.19 -0.12       -0.12   0.05  0.76

Embedded P2P GE Networks  

Erd�s-Rényi GE -0.05 -0.02 -0.08 -0.05 -0.08

Barabási GE 0.55 0.34 0.50 0.51 0.69

Watts-Strogatz GE 0.06 0.05 0.06 0.06 0.06

Simulated P2P GE Networks  

Erd�s-Rényi GE 0.05 -0.02 -0.05 -0.05 -0.08

Barabási GE 0.85 0.56 0.56 0.50 0.76

Watts-Strogatz GE -0.08 -0.20 -0.22 -0.13 -0.21
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Table 3: Eigenvector Centralities xi for the 9/11, Embedded and Simulated P2P Networks 

 
The reverse situation is observed for the GE network in which the Flight #11 and #175 networks are now better 
located to circulate information more easily, as reflected by the larger subgraph centralities (258.21, 360.99).  
The inordinately large subgraph centralities of the Watts-Strogatz models for the embedded P2P networks are 
not uncommon and indicate an abundance of short path connectivity of a network node (Estrada and Rodríguez-
Velázquez, 2005).  In this case, these large subgraph centralities precisely reflect the observed low average path 
lengths (Figure 5) and high clustering coefficients for the Watts-Strogatz networks. 
 
Comparison of the subgraph centralities for the GC Erd�s-Rényi embedded and simulated networks (Table 4), 
indicates once more, the differences between these networks are barely distinguishable from one another.  This 
suggests it would be difficult to detect the presence of a hidden terrorist network in an Erd�s-Rényi type P2P 
network.  Conversely, there are somewhat larger differences between the Barabási embedded and simulated 
networks, particularly for subgraph centrality in the GC networks.  This is encouraging since this suggests that a 
smaller network background is better suited to detect such a difference, making locating hidden terrorist 
networks a computationally tractable exercise. 
 
The outcomes of the centrality-based analyses (Tables 2-4) reinforce the observation made earlier in this work, 
namely that Barabási type P2P networks provide the least protection for a hidden terrorist network wishing to 
avoid detection. This result paves the potential for future research in hidden network detection in cyberspace, as 
there are known Barabási type P2P networks that can be modelled for such an exercise.  As indicated earlier, 
Instant Messaging and Voice over IP (Skype) networks provide exciting potential in this context (Newman, 
2010). 
 
Finally, it should be noted that the GC and GE hidden networks presented here have been characterised in further 
detail in previous works (Chiera, 2011, Chiera, 2010) in terms of group-based social network analysis including 
degree, betweenness and induced centrality, as well as network centralisation.  The ease with which a hidden 
network can be detected was determined using these measures, with the analysis suggesting hidden networks are 
paradoxically easier to detect within larger terrorist-supportive network structures.  The interested reader is 
referred to these works for further details. 

 
 
 
 

   #77  #93 #175 #11 Trusted Priors

9/11 Network GC 0.50 0.57 0.60 0.06 0.60

Embedded P2P GC Networks  

Erd�s-Rényi GC 0.59 0.57 0.59 0.59 0.61

Barabási GC 0.71 0.71 0.72 0.71 0.71

Watts-Strogatz GC 0.35 0.33 0.35 0.35 0.37

Simulated P2P GC Networks  

Erd�s-Rényi GC 0.59 0.54 0.59 0.59 0.61

Barabási GC 0.87 0.46 0.46 0.42 0.64

Watts-Strogatz GC 0.39 0.54 0.50 0.44 0.59

9/11 Network GE  0.04 0.40 0.50 0.49 0.66

Embedded P2P GE Networks  

Erd�s-Rényi GE 0.52 0.49 0.54 0.52 0.54

Barabási GE 0.70 0.69 0.69 0.69 0.69

Watts-Strogatz GE 0.24 0.22 0.24 0.24 0.25

Simulated P2P GE Networks  

Erd�s-Rényi GE 0.51 0.45 0.51 0.51 0.54

Barabási GE 0.71 0.48 0.49 0.44 0.64

Watts-Strogatz GE 0.24 0.54 0.48 0.24 0.57
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Table 4: Subgraph Centralities CI(i) for the 9/11, Embedded and Simulated P2P Networks 

Discussion: Assortativity, Limitations and Implications for Future Analysis 

Finally, as assortativity provided the motivation for the bulk of the analysis presented here, some discussion on 
the limitations of assortativity is in order.  Whilst it is conceptually straightforward to interpret assortativity 
based on the sign and size of the value reported, there are known problems with this approach (Newman, 2010).  
Specifically, perfect scalar disassortativity (r = -1) occurs when the network closely resembles that of a random 
mixing network, in which dissimilar nodes mix such that the nodes that are most dissimilar mix with one 
another.  For degree-based assortativity the conditions for perfect disassortativity become even more stringent.  
Such a real-world network would be infrequently encountered and it is postulated that most disassortative 
networks instead produce values closer to r = 0.0 than assortative networks (Newman, 2010).  
 
A second point for consideration is whether obtaining a disassortativity value in the region of -0.37 necessarily 
indicates that a hidden terrorist network behaves as an undirected P2P network. The results presented here 
suggest some confirmation of this supposition, particularly with regards to the analysis of degree distribution, 
however a more in-depth analysis into the competing characteristics of P2P networks with hidden networks of 
varying sizes and configuration is needed before such a statement can be made with firmer conviction.  As the 
networks under consideration expand in size, it would be of interest to determine the sensitivity of the degree-
based assortativity coefficient to these changes.  Moreover, in the current work it is assumed the connectivity 
between individuals is undirected and that each hidden network member has equal weighting in the analysis.  
This may not be realistic, particularly in the case of Skype or Instant Messaging networks, and once such 
assumptions are removed, assortativity will need to be re-evaluated in terms of these changes. 
 
Finally, it should be noted that in this work we considered a global degree-based assortativity, however there are 
a number of alternative definitions of assortativity. For example, it is possible to consider local assortativity 
(Piraveenan et al., 2009b) used to capture an individual node’s direct contribution to the overall network 
assortativity.  Assortativity can also be defined as a function of time, state or network entropy (Piraveenan et al., 
2009a) and it is of interest to determine how alteration of the definition of assortativity will affect the analysis 
presented here. 

   #77  #93 #175 #11 Trusted Priors

9/11 Network GC 11.49 11.68 28.67 6.15 29.56

Embedded P2P GC Networks  

Erd�s-Rényi GC 28.91 26.02 28.92 28.92 29.99

Barabási GC 0.05 0.04 0.05 0.05 0.06

Watts-Strogatz GC 445,009.40 871,280.51 445,009.41 445,009.38 222,822.23

Simulated P2P GC Networks  

Erd�s-Rényi GC 26.88 26.88 28.22 28.22 30.97

Barabási GC 23.70 23.70 23.70 23.70 23.70

Watts-Strogatz GC 15.39 29.97 29.97 29.97 46.57

9/11 Network GE 66.51 188.37      360.99   258.21 254.74

Embedded P2P GE Networks  

Erd�s-Rényi GE 171.13 121.03 181.19 171.14 207.48

Barabási GE 0.02 0.01 0.01 0.01 0.02

Watts-Strogatz GE >1e+13 >1e+13 >1e+13 >1e+13 >1e+12

Simulated P2P GE Networks  

Erd�s-Rényi GE 228.10 228.10 228.10 228.10 229.08

Barabási GE 1.73 1.82 1.89 1.90 1.90

Watts-Strogatz GE 19.03 45.69 45.69 45.69 58.99
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CONCLUSION 
We investigated whether hidden terrorist networks are more difficult to detect when located within larger non-
terrorist networks.  Using assortativity, we showed that hidden terrorist networks have the potential to behave as 
Peer-to-Peer networks, and thus generated embedded and simulated Peer-to-Peer networks for analysis.  
Quantitative analyses of these networks alongside two actual September 11 terrorist networks indicated that it is 
possible to distinguish between a hidden network hiding within a larger terrorist network, a Barabási network 
containing a hidden terrorist network and a genuine Barabási network. 

The results of this exploratory analysis hold far-reaching potential for future research in the detection of hidden 
networks in cyberspace.  Future areas of research based on the work presented here include the development of 
more sophisticated hidden network detection techniques, based on alternative definitions of assortativity.  The 
detection of hidden networks located amongst Skype or Instant Messaging traffic is deserving of attention, as 
well as the development of models of the evolutionary behaviour of these hidden networks, as compared to that 
of genuine Peer-to-Peer network traffic, for better detection capabilities.  As the goal is to detect these hidden 
networks in order to stop further terrorist-driven tragedies, it is encouraging that there are still many unexplored 
opportunities in this area. 
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