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Abstract 

In this paper we propose a new scheme for ciphertext-policy attribute-based encryption that allows outsourcing 

of computationally expensive encryption and decryption steps. The scheme constitutes an important building 

block for mobile applications where both the host and users use mobile devices with limited computational 

power. In the proposed scheme, during encryption the host involves a semi-trusted proxy to encrypt a partially 

encrypted (by the host) message according to an access policy provided by the host. The proxy is unable to learn 

the message from this partially encrypted text. A user can only decrypt the stored ciphertext if he possesses 

secret keys associated with a set of attributes that satisfies the associated policy. To reduce computational load 

in the decryption step, the user, in his turn, involves a semi-trusted proxy (e.g. a cloud) by deploying the scheme 

of Green et al. (2011). The cloud is given a transformation key that facilitates construction of an El Gamal-

ciphertext from the original ciphertext if the user's attributes satisfy the ciphertext. This El Gamal-ciphertext can 

be then efficiently decrypted on the user's resource-constrained device. The resulting ABE scheme with 

encryption and decryption outsourcing is proven to be secure in the generic group model.  
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INTRODUCTION 

Nowadays we observe the spread of distributed systems in which sensitive data has to be shared with multiple 

parties. In order to facilitate these distributed systems, a network infrastructure can be used to allow shared 

storage (e.g. in the cloud) and access to the systems' resources. Although this new paradigm offers a number of 

advantages by eliminating organizational boundaries and increasing operational flexibility, it requires extra 

security mechanisms needed to protect sensitive data involved. Unlike in traditional situations where one party 

encrypts a message for another targeted party, distributed (collaborative) systems require more flexibility in the 

way access to their resources is regulated, allowing access to parties that satisfy an access policy rather than to a 

specified set of parties. 

Attribute-based encryption (ABE), introduced by Sahai and Waters (2005), offers an expressive way to define 

asymmetric-key encryption schemes for policy enforcement based on attributes. Here both a user secret key and 

ciphertext are associated with sets of attributes. There are two flavours of ABE defined, i.e. ciphertext-policy 

attribute-based encryption (CP-ABE) and key-policy attribute-based encryption (KP-ABE). In CP-ABE, see e.g. 

Bethencourt et al. (2007), Ostrovsky et al. (2007), and Ibraimi et al. (2010), a user encrypts the data according to 

a predicate (access policy) defined over attributes, such that only the party that possesses a secret key associated 
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Figure 1 Architecture for a typical ABE 
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with the attribute set satisfying the predicate is able to decrypt the ciphertext, Figure 1. In KP-ABE of Goyal et 

al. (2008) the idea is reversed. Here the ciphertext is associated with the attribute set and the secret key is 

associated with the predicate defined over the attributes. CP-ABE schemes are more desirable due to their 

flexibility allowing encryption according to the access policy. 

In practice, in distributed systems data often has to be encrypted, transferred or accessed from portable devices, 

such as e.g. smartphones. However, ABE schemes are typically computationally intensive, involving pairing 

operations and exponentiations, and their computational complexity increases linearly with the size of the access 

control policy (or number of attributes). Currently, an efficient realization of ABE schemes can be implemented 

using conventional desktop computers. Portable devices, however, have limited computational resources making 

it a challenging task to realize mobile applications with ABE schemes. Recently, Green et al. (2011) proposed 

architecture with a corresponding modified ABE scheme that allowed reducing the computational load required 

for ciphertext decryption on mobile devices by involving a semi-trusted server in the decryption process. In 

Green et al. (2011) the ABE scheme is modified such that a user has to provide the server with a transformation 

key that allows the server to translate any ABE ciphertext satisfied by the user's attributes into an El Gamal-

style ciphertext, without being able to learn any part of the encrypted message. The resulting El Gamal-style 

ciphertext is then transmitted to the user, who can decrypt it in a computationally efficient way. This work, 

however, does not address computational load reduction for the host that creates the access policy and the 

ciphertext.  

 

 

Our Contribution: In this paper we propose a new attribute-based encryption scheme with encryption and 

decryption (end-to-end) outsourcing that reduces the computational load for both the host and the user. Unlike 

the original ABE scheme or the scheme of Green et al. (2011), our scheme involves two proxies, as shown in 

Figure 2. Here we allow the host (data owner) to outsource cryptographic policy creation to a semi-trusted 

entity or proxy (Proxy A), and to encrypt messages for users according to the given policy in such a way that the 

proxy is a) unable to learn the encrypted message; and b) is enforced to encrypt the messages based on the 

attributes specified by the policy. The decryption workload is reduced by allowing a user to outsource the policy 

verification to another semi-trusted proxy (Proxy B) by allowing the proxy to verify the policy given the user's 

transformation key attributes. The latter is realized with deploying the idea of Green et al. (2011). The security 

of the proposed ABE scheme with encryption and decryption outsourcing is proven in the generic group model. 

Paper Organization: The remainder of this paper is organized as follows. In Background section we provide 

generic concepts used in the proposed scheme.  ABE with encryption and decryption outsourcing section 

presents the formal definition of our scheme and its security model. The next section describes the construction 

of the proposed scheme. Finally, the last section concludes the paper. 

BACKGROUND 

We start with defining a number of concepts that provide the basis for our scheme. 

 

Bilinear Groups 

Figure 2 Architecture for ABE with Encryption and Decryption Outsourcing 
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Our proposed scheme is based on pairings over groups of prime order. Let    and    be two multiplicative 

cyclic groups of prime order  ,   be a generator of   , and    be the additive group associated with integers 

from          . A pairing or bilinear map            satisfies the following properties: 

1. Bilinearity: for all        and       , we have                  . 

2. Non-degeneracy:         . 

Observe that bilinear map also enjoys the symmetry property, i.e.                           . 

Group    is said to be a bilinear group if the group operation in    and the bilinear map            can 

be computed efficiently. 

Access Tree 

Another important concept used in this paper is the concept of an access tree. Let   be an access tree associated 

with an access policy. A leaf node   in the access tree   represents an attribute from the attribute set    , 

where   is a universe of attributes. A non-leaf node   in   represents a threshold gate, which is described by its 

child nodes and a threshold value. Let      be the number of children of a node   and    its threshold value, 

then          . If     , then   corresponds to an    gate; if        , the node   is an     gate. 

For leaf nodes,     . 

Next we define the following functions on access trees. Denote by           the function that returns the parent 

of a node   in an access tree  . Moreover, we define an ordering between children of a certain node in   in the 

following manner. Let the children nodes of   be numbered from   to     , then          returns the order 

value associated with a child node  . Finally, function        returns the attribute associated with a leaf node   

of the access tree  . 

Shamir’s Secret Sharing Scheme 

The idea of Shamir’s secret sharing  is to divide a secret   into   shares            such that knowing   or 

more secret shares one can easily recover  , while the knowledge of only     or less shares of   does not 

suffices to reconstruct  . Shamir’s secret sharing is information-theoretically secure. Schemes based on 

Shamir’s secret sharing are also known as threshold secret sharing schemes and can be realized using 

polynomial interpolation.  

Let        denote a polynomial of degree    . The scheme then consists of two steps: 1) distribution of 

shares – where secret      is distributed among users    by giving each user one of   distinct points (shares) 

of a random polynomial     , which is created using    and      randomly selected coefficients          ; 

2) reconstruction of secret  , where any group of   or more users can reconstruct key   by combining their 

distinct shares and reconstructing the polynomial      using e.g. Lagrange interpolation. Then the secret is given 

by       

ABE WITH ENCRYPTION AND DECRYPTION OUTSOURCING 

Next we define algorithms that constitute our proposed ABE scheme with encryption and decryption 

outsourcing capability and present the security game for it. 

Algorithms of the Proposed ABE Scheme 

In the proposed scheme the host and the user can outsource part of encryption and decryption functionalities to 

two independent semi-trusted entities, called proxies. We call the proxy used to outsource encryption proxy A 

and the one for decryption proxy B (see also Figure 2). Our proposed scheme uses the following algorithms. 

•         : This algorithm is run by a trusted authority. It takes as input a security parameter  , and 

outputs public parameters PK and a master secret key MK. 

•                        : This algorithm is also run by the trusted authority. It takes as input the 

public parameters PK, the master secret key MK and a set of user’s attributes  . The output of this step is 

the secret key     for a user with the attribute set  . Here     is composed of two parts, i.e.        and 

      , where        can be used by proxy B to assist in decryption, while        is used directly by the 

user to recover a plain message   from the partially decrypted ciphertext   ̂ constructed by proxy B. 

•                      : This algorithm is used to generate a unique (per proxy) secret key for proxy 

A that assists the host with encryption by constructing the access policy. The algorithm takes as input the 

master secret key MK and public parameters PK. The output of this algorithm is       . 
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•                   : The encryption algorithm takes as input the public parameters PK, a message M, 

and an access tree   over a universe of attributes  . It produces a partial ciphertext   ̌. This partial 

ciphertext includes the access tree (structure)  , but no cryptographic access policy associated with  . 

•                  ̌        : This algorithm is run by proxy A in order to create the final ciphertext 

CT. It takes as input the partial ciphertext   ̌ and the proxy encryption secret key        and creates the 

cryptographic access policy related to the access tree  .  

Note that the proxy secret key        does not suffice to recover the message M, and the proxy is only 

trusted with cryptographic access policy creation. 

•                               : This algorithm is run by proxy B that takes as input the proxy 

decryption key        related to     and the ciphertext   . The output of this algorithm is a partially 

decrypted ciphertext   ̂ (called El Gamal style ciphertext) if   satisfies access tree  . 

•                      ̂ : The user runs the decryption algorithm. The decryption algorithm takes as 

input the partially decrypted ciphertext   ̂ and a user’s secret key        (called El Gamal style private 

key). The output of this stage is the decrypted message   if   satisfies  , otherwise the output is an error, 

denoted by  . 

Security Model for ABE with Encryption and Decryption Outsourcing 

Now we define two security games for an adversary   and a challenger   for the ABE scheme with encryption 

and decryption outsourcing capability (ABE-EDO). In the first game,   asks for the secret keys of proxy A, i.e. 

      , while in the second game,   asks for the secret keys of the user, i.e.    . These games correspond to 

the assumption we use in our model that proxy A and proxy B are independent of each other and will not 

collude. The idea behind this assumption is to achieve a good separation of duties. 

Game 1 
Setup: The challenger   runs Setup algorithm and gives the adversary   the public parameters, while 

keeping the master secret key to itself. 

  Phase 1: The adversary   performs a polynomially bounded number of queries asking for secret keys 

       
              of proxy A. The challenger returns these secret keys to    

  Challenge: In this phase the adversary   submits two equal length plaintexts    and    from the 

message space, on which   wants to be challenged. The challenger flips a random coin         and 

returns the partial encryption of    (i.e. the encryption that does not contain the cryptographic policy) to 

the adversary  . 

  Phase 2: Repeat Phase 1 querying for the secret keys that have not already been queried for in Phase 1.  

  Guess: In this phase,   outputs a guess          and wins if     . The advantage of the adversary in 

attacking the scheme is           
 

 
 . 

Game 2 
Setup: The challenger   runs Setup algorithm and gives the adversary   the public parameters, while 

keeping the master secret key to itself. 

  Phase 1: The adversary   performs a polynomially bounded number of queries and asks for the user 

secret keys corresponding to the attribute sets           . The challenger returns the secret keys 

    
              to  . 

  Challenge: In this phase the adversary   submits two equal length plaintexts    and    from the 

message space, on which   wants to be challenged. Moreover,   also gives the challenger an access tree 

   such that the queried secret keys from Phase 1 do not satisfy   . The challenger flips a random coin 

        and returns the encryption of    under    to the adversary  . 

  Phase 2: Repeat Phase 1 querying for the secret keys that do not satisfy    and that have not already been 

queried for in Phase 1. 
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  Guess: In this phase,   outputs a guess          and wins if     . The advantage of the adversary in 

attacking the scheme is           
 

 
 . 

Definition 1. An ABE-EDO scheme is secure if all polynomial time adversaries have at most negligible 

advantage in the aforementioned ABE-EDO security games, where the advantage is defined to be   

           
 

 
 . 

Theorem 1. Let   be an upper bound on the total number of group elements that an adversary   can receive 

from queries she makes to the challenger   for elements from the hash function     , group   ,   , bilinear 

map       , and from her interaction in the ABE-EDO security games. The advantage of the adversary in the 

security game is        . 

The security of ABE-EDO scheme can be proved using arguments similar to those in Shoup (1997), Bethencourt 

et al (2007), or Boneh et al. (2005). 

CONSTRUCTION OF THE PROPOSED SCHEME 

In this section we present the formal description of the algorithms for the ABE scheme with encryption and 

decryption outsourcing capabilities. First, however, we outline its main idea. 

In our scheme we assume that the host and the user can involve two independent semi-trusted entities (proxies) 

to outsource computationally expensive encryption and decryption operations. During encryption a message   

will be encrypted according to an access policy   such that only a user whose attribute set   satisfies   will be 

able to decrypt it. The resulting ciphertext consists of the encrypted message and cryptographic policy 

components. Since policy creation is computationally expensive, this step is performed by involving a proxy 

(Proxy A in Figure 2). This proxy is only trusted with policy creation. Therefore the host performs partial 

encryption and gives to the proxy the information that consists of encrypted message, encrypted secret key for 

the policy creation and a set of encrypted authorized attributes. In this way the proxy cannot learn the message 

and is forced to create the access policy for the specified attributes. During decryption, a user will involve the 

second proxy to perform computationally expensive pairing operations required to evaluate the access policy. 

The user will provide the proxy (Proxy B in Figure 2) with a transformation key that allows the proxy to 

evaluate the access policy and produce a partially decrypted ciphertext (El Gamal type ciphertext), if the user’s 

attributes satisfy the access policy. The proxy is not able to learn the message using only ciphertext and the key 

provided by the user. Note that our assumption and trust model explicitly excludes the collusion between that 

Proxy B and Proxy A, otherwise it would be able to decrypt the message. Finally, the resulting El Gamal type 

ciphertext can be efficiently decrypted by the user. 

Let            denote the bilinear map, defined in Background section. A security parameter   

determines the size of the groups. Moreover, let              and              be two collision resistant 

hash functions, where        denotes a binary sequence of an arbitrary length. Finally, we define the Lagrange 

coefficient         ∏
    

             , for        and   being a set of elements from   . 

1.         : This algorithm is run by a trusted authority in order to generate system parameters, i.e. the 

public key    and master secret key   . The algorithm selects a random generator      of prime order 

  and random variables             . In addition, it selects cryptographic hash functions            

             and             , and sets           . The public key    and master secret key 

   are set to be: 

   (         
            ) 

                                         
 

2.                        : This algorithm is run by the trusted authority in order to generate the 

secret key for a user with an attribute set    . The algorithm selects random variables         and 

sets     to be: 

                     

  with 

               (       )
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                                                                                    (     )
 
        

                                                                                           
   

 (      
   )

 
        

     

  where   
  

 
  and 

          

  Here        is a short El Gamal type private key for the user, while        is a transformation key that 

can be shared with a semi-trusted proxy B assisting the user with computationally expensive policy 

evaluation. 

3.                      : This algorithm generates the secret key for proxy A. The proxy will use this 

key to create the access policy specified by the host: 

       
 

 
  

  This key is used by proxy A to recover the component to be shared across the access structure   in order to 

compute the cryptographic access policy. 

  Remark: If there are a number of proxies in the system, as a result of this algorithm, each proxy gets a 

unique key        (i.e. unique   will be used). 

4.                      This algorithm is run by the host (encryptor). To reduce computational load on 

the host, the algorithm only produces a partial ciphertext, that consists of encrypted message     , 

encrypted secret key and the set of authorized attributes. These latter components are used by Proxy A to 

which calculation of cryptographic policy is outsourced. The algorithm selects a random value      and 

computes a partial ciphertext as follow: 

  ̌  (         
    ̆       ̃               ̃    (  )

  
). 

5.               (  ̌       )  This algorithm is run by proxy A in order to generate access policy      

related to the access tree   that has to be associated with the ciphertext  . The proxy performs the 

following steps: 

a) Decrypt  ̃  

    ̃             ̂  

  where  ̂    . 

   

b) Create the access policy     : 

In this step, the proxy creates cryptographic components related to the access policy  . It uses 

Shamir’s secret sharing to distribute   ̂ among the leaf nodes of  . More precisely, the algorithm 

chooses a polynomial       for each node   in   in a top-down manner, starting from the root 

node  . First, for each node   in the tree, it sets the degree    of the polynomial       to be one 

less than the threshold value    of that node, i.e.        . Then, starting with the root node 

 , the algorithm sets          and selects at random    other points of the polynomial       

in order to define the polynomial completely. For any other node  , the algorithm sets       
                     and selects the rest    points randomly to completely define       . 

c) Create ciphertext: 

The final ciphertext    is composed as follows: 

   (   ̆            ̂       
  )  
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6.                               : This algorithm is run by proxy B. It takes as input the 

transformation secret key       , provided by a user and associated with a set of his attributes  , and a 

ciphertext   . The algorithm verifies a user’s attribute set   satisfies the access tree  , and if so computes 

and outputs a partially decrypted El Gamal style ciphertext   ̂. 

  The algorithm makes use of the recursive function                    
   

   . We define this function for 

(a) leaf nodes  , and for (b) internal nodes   of  . 

a)                         : 

Observe that each leaf node of the access tree is associated with a real-valued attribute. Then let 

        . Now, if    , we have 

                                        (           )   (    
   )   ( ̆   

   
)                                                   

  (  ̂       
       )   (          

  )                      

        ̂      (  (  )  )
     

  (    (  ))
    

  

        ̂                                                                           

   

  If    , then                          , where   denotes failure. 

b)            (           ): 

For all nodes   that are children of  , the algorithm calls            (           ). Its output 

stored as    is used to determine whether the user has enough attributes to satisfy the policy. 

Note that to satisfy the policy, there should be enough data points (i.e. satisfied child nodes) to 

reconstruct the polynomial in the node   and thus to reconstruct      . Let     be an arbitrary 

  -sized set of child nodes   such that     ,      . If there exists no such a set, then node   

is not satisfied and the function returns  . Otherwise, using polynomial interpolation, the 

algorithm evaluates the following function: 

   ∏   

     
   

    

                  

                                                                   ∏(       ̂    )
     

   

    

 

                                                                          ̂      

  Partial decryption at the proxy: Proxy B has to verify if the user satisfies the access control policy 

associated with  , and to create an El Gamal ciphertext (partially decrypted ciphertext) that can be further 

decrypted by the user. The proxy first evaluates the                function on the root node   of  . If 

           (           ) returns  , then   is not satisfied by the attribute set   associated with the 

key        and thus the user’s secret key    . In this case, decryption fails and the algorithm returns  . 

Otherwise, if   is satisfied, the decryption algorithm performs the following steps: 

                (           )         ̂                

      ( ̆     )   (     
 
     )        

   
                   

     
    

    
 

      
   
             

           
       

   
                           

 

  and outputs   ̂  (      ). 

7. Decryption          ̂ : This algorithm is run by the user. It takes as input the El Gamal style private 

key        and the partially decrypted ciphertext   ̂. The plain message can now be recovered as follows 

        
     (( 

   )
 
)         

       
     (      

   
 

  )
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CONCLUSIONS AND FUTURE WORK 

In this paper we have presented a new ABE scheme with encryption and decryption outsourcing capabilities. 

The scheme relies on the use of two semi-trusted proxies, one used to outsource computationally expensive 

encryption steps and another to outsource decryption steps. During the encryption process, a host involves the 

encryption proxy to create cryptographic policy components for a set of specified attributes, in such a way that 

the proxy cannot reveal the original message and is enforced to use the given attributes. During decryption, the 

decryption proxy is used for policy evaluation. Upon successful evaluation (i.e. a user possesses an authorized 

set of attributes), the proxy transforms the original ciphertext into the El Gamal type of ciphertext. The latter can 

be then efficiently decrypted by the user. To guarantee security of the scheme, two proxies used in our scheme 

have to be independent and non-colluding. The security of our scheme is proved in the generic group model. 

The presented scheme plays an important role in applications where both the host and users are using 

computationally constrained devices (e.g. mobile devices). 
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