
Edith Cowan University Edith Cowan University

Research Online Research Online

Australian Information Security Management
Conference Conferences, Symposia and Campus Events

2014

Attribute-based encryption with encryption and decryption Attribute-based encryption with encryption and decryption

outsourcing outsourcing

Muhammad Asim
Eindhoven University of Technology, muhammad.asim@philips.com

Milan Petkovic
Philips Research Eindhoven, Netherlands, milan.petkovic@philips.com

Tanya Ignatenko
Eindhoven University of Technology, t.ignatenko@tue.nl

Follow this and additional works at: https://ro.ecu.edu.au/ism

 Part of the Information Security Commons

Recommended Citation Recommended Citation
Asim, M., Petkovic, M., & Ignatenko, T. (2014). Attribute-based encryption with encryption and decryption
outsourcing. DOI: https://doi.org/10.4225/75/57b65cc3343d0

DOI: 10.4225/75/57b65cc3343d0

12th Australian Information Security Management Conference. Held on the 1-3 December, 2014 at Edith Cowan
University, Joondalup Campus, Perth, Western Australia.
This Conference Proceeding is posted at Research Online.
https://ro.ecu.edu.au/ism/163

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online @ ECU

https://core.ac.uk/display/41532246?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ism
https://ro.ecu.edu.au/ism
https://ro.ecu.edu.au/conference
https://ro.ecu.edu.au/ism?utm_source=ro.ecu.edu.au%2Fism%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ro.ecu.edu.au%2Fism%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.4225/75/57b65cc3343d0
https://doi.org/10.4225/75/57b65cc3343d0

ATTRIBUTE-BASED ENCRYPTION

WITH ENCRYPTION AND DECRYPTION OUTSOURCING
1

Muhammad Asim,
1,2

 Milan Petković,
1,2

 Tanya Ignatenko
1

1
Eindhoven University of Technology,

2
Philips Research Eindhoven, Netherlands

muhammad.asim@philips.com, milan.petkovic@philips.com, t.ignatenko@tue.nl

Abstract

In this paper we propose a new scheme for ciphertext-policy attribute-based encryption that allows outsourcing

of computationally expensive encryption and decryption steps. The scheme constitutes an important building

block for mobile applications where both the host and users use mobile devices with limited computational

power. In the proposed scheme, during encryption the host involves a semi-trusted proxy to encrypt a partially

encrypted (by the host) message according to an access policy provided by the host. The proxy is unable to learn

the message from this partially encrypted text. A user can only decrypt the stored ciphertext if he possesses

secret keys associated with a set of attributes that satisfies the associated policy. To reduce computational load

in the decryption step, the user, in his turn, involves a semi-trusted proxy (e.g. a cloud) by deploying the scheme

of Green et al. (2011). The cloud is given a transformation key that facilitates construction of an El Gamal-

ciphertext from the original ciphertext if the user's attributes satisfy the ciphertext. This El Gamal-ciphertext can

be then efficiently decrypted on the user's resource-constrained device. The resulting ABE scheme with

encryption and decryption outsourcing is proven to be secure in the generic group model.

Keywords

Proxy Re-encryption, Attribute-Based Encryption, Access Policy, Outsourcing

INTRODUCTION

Nowadays we observe the spread of distributed systems in which sensitive data has to be shared with multiple

parties. In order to facilitate these distributed systems, a network infrastructure can be used to allow shared

storage (e.g. in the cloud) and access to the systems' resources. Although this new paradigm offers a number of

advantages by eliminating organizational boundaries and increasing operational flexibility, it requires extra

security mechanisms needed to protect sensitive data involved. Unlike in traditional situations where one party

encrypts a message for another targeted party, distributed (collaborative) systems require more flexibility in the

way access to their resources is regulated, allowing access to parties that satisfy an access policy rather than to a

specified set of parties.

Attribute-based encryption (ABE), introduced by Sahai and Waters (2005), offers an expressive way to define

asymmetric-key encryption schemes for policy enforcement based on attributes. Here both a user secret key and

ciphertext are associated with sets of attributes. There are two flavours of ABE defined, i.e. ciphertext-policy

attribute-based encryption (CP-ABE) and key-policy attribute-based encryption (KP-ABE). In CP-ABE, see e.g.

Bethencourt et al. (2007), Ostrovsky et al. (2007), and Ibraimi et al. (2010), a user encrypts the data according to

a predicate (access policy) defined over attributes, such that only the party that possesses a secret key associated

1
 This work has been partially funded by the EC via grant agreement no. 611659 for the AU2EU project.

Figure 1 Architecture for a typical ABE

21

with the attribute set satisfying the predicate is able to decrypt the ciphertext, Figure 1. In KP-ABE of Goyal et

al. (2008) the idea is reversed. Here the ciphertext is associated with the attribute set and the secret key is

associated with the predicate defined over the attributes. CP-ABE schemes are more desirable due to their

flexibility allowing encryption according to the access policy.

In practice, in distributed systems data often has to be encrypted, transferred or accessed from portable devices,

such as e.g. smartphones. However, ABE schemes are typically computationally intensive, involving pairing

operations and exponentiations, and their computational complexity increases linearly with the size of the access

control policy (or number of attributes). Currently, an efficient realization of ABE schemes can be implemented

using conventional desktop computers. Portable devices, however, have limited computational resources making

it a challenging task to realize mobile applications with ABE schemes. Recently, Green et al. (2011) proposed

architecture with a corresponding modified ABE scheme that allowed reducing the computational load required

for ciphertext decryption on mobile devices by involving a semi-trusted server in the decryption process. In

Green et al. (2011) the ABE scheme is modified such that a user has to provide the server with a transformation

key that allows the server to translate any ABE ciphertext satisfied by the user's attributes into an El Gamal-

style ciphertext, without being able to learn any part of the encrypted message. The resulting El Gamal-style

ciphertext is then transmitted to the user, who can decrypt it in a computationally efficient way. This work,

however, does not address computational load reduction for the host that creates the access policy and the

ciphertext.

Our Contribution: In this paper we propose a new attribute-based encryption scheme with encryption and

decryption (end-to-end) outsourcing that reduces the computational load for both the host and the user. Unlike

the original ABE scheme or the scheme of Green et al. (2011), our scheme involves two proxies, as shown in

Figure 2. Here we allow the host (data owner) to outsource cryptographic policy creation to a semi-trusted

entity or proxy (Proxy A), and to encrypt messages for users according to the given policy in such a way that the

proxy is a) unable to learn the encrypted message; and b) is enforced to encrypt the messages based on the

attributes specified by the policy. The decryption workload is reduced by allowing a user to outsource the policy

verification to another semi-trusted proxy (Proxy B) by allowing the proxy to verify the policy given the user's

transformation key attributes. The latter is realized with deploying the idea of Green et al. (2011). The security

of the proposed ABE scheme with encryption and decryption outsourcing is proven in the generic group model.

Paper Organization: The remainder of this paper is organized as follows. In Background section we provide

generic concepts used in the proposed scheme. ABE with encryption and decryption outsourcing section

presents the formal definition of our scheme and its security model. The next section describes the construction

of the proposed scheme. Finally, the last section concludes the paper.

BACKGROUND

We start with defining a number of concepts that provide the basis for our scheme.

Bilinear Groups

Figure 2 Architecture for ABE with Encryption and Decryption Outsourcing

22

Our proposed scheme is based on pairings over groups of prime order. Let and be two multiplicative

cyclic groups of prime order , be a generator of , and be the additive group associated with integers

from . A pairing or bilinear map satisfies the following properties:

1. Bilinearity: for all and , we have .

2. Non-degeneracy: .

Observe that bilinear map also enjoys the symmetry property, i.e. .

Group is said to be a bilinear group if the group operation in and the bilinear map can

be computed efficiently.

Access Tree

Another important concept used in this paper is the concept of an access tree. Let be an access tree associated

with an access policy. A leaf node in the access tree represents an attribute from the attribute set ,

where is a universe of attributes. A non-leaf node in represents a threshold gate, which is described by its

child nodes and a threshold value. Let be the number of children of a node and its threshold value,

then . If , then corresponds to an gate; if , the node is an gate.

For leaf nodes, .

Next we define the following functions on access trees. Denote by the function that returns the parent

of a node in an access tree . Moreover, we define an ordering between children of a certain node in in the

following manner. Let the children nodes of be numbered from to , then returns the order

value associated with a child node . Finally, function returns the attribute associated with a leaf node

of the access tree .

Shamir’s Secret Sharing Scheme

The idea of Shamir’s secret sharing is to divide a secret into shares such that knowing or

more secret shares one can easily recover , while the knowledge of only or less shares of does not

suffices to reconstruct . Shamir’s secret sharing is information-theoretically secure. Schemes based on

Shamir’s secret sharing are also known as threshold secret sharing schemes and can be realized using

polynomial interpolation.

Let denote a polynomial of degree . The scheme then consists of two steps: 1) distribution of

shares – where secret is distributed among users by giving each user one of distinct points (shares)

of a random polynomial , which is created using and randomly selected coefficients ;

2) reconstruction of secret , where any group of or more users can reconstruct key by combining their

distinct shares and reconstructing the polynomial using e.g. Lagrange interpolation. Then the secret is given

by

ABE WITH ENCRYPTION AND DECRYPTION OUTSOURCING

Next we define algorithms that constitute our proposed ABE scheme with encryption and decryption

outsourcing capability and present the security game for it.

Algorithms of the Proposed ABE Scheme

In the proposed scheme the host and the user can outsource part of encryption and decryption functionalities to

two independent semi-trusted entities, called proxies. We call the proxy used to outsource encryption proxy A

and the one for decryption proxy B (see also Figure 2). Our proposed scheme uses the following algorithms.

• : This algorithm is run by a trusted authority. It takes as input a security parameter , and

outputs public parameters PK and a master secret key MK.

• : This algorithm is also run by the trusted authority. It takes as input the

public parameters PK, the master secret key MK and a set of user’s attributes . The output of this step is

the secret key for a user with the attribute set . Here is composed of two parts, i.e. and

 , where can be used by proxy B to assist in decryption, while is used directly by the

user to recover a plain message from the partially decrypted ciphertext ̂ constructed by proxy B.

• : This algorithm is used to generate a unique (per proxy) secret key for proxy

A that assists the host with encryption by constructing the access policy. The algorithm takes as input the

master secret key MK and public parameters PK. The output of this algorithm is .

23

• : The encryption algorithm takes as input the public parameters PK, a message M,

and an access tree over a universe of attributes . It produces a partial ciphertext ̌. This partial

ciphertext includes the access tree (structure) , but no cryptographic access policy associated with .

• ̌ : This algorithm is run by proxy A in order to create the final ciphertext

CT. It takes as input the partial ciphertext ̌ and the proxy encryption secret key and creates the

cryptographic access policy related to the access tree .

Note that the proxy secret key does not suffice to recover the message M, and the proxy is only

trusted with cryptographic access policy creation.

• : This algorithm is run by proxy B that takes as input the proxy

decryption key related to and the ciphertext . The output of this algorithm is a partially

decrypted ciphertext ̂ (called El Gamal style ciphertext) if satisfies access tree .

• ̂ : The user runs the decryption algorithm. The decryption algorithm takes as

input the partially decrypted ciphertext ̂ and a user’s secret key (called El Gamal style private

key). The output of this stage is the decrypted message if satisfies , otherwise the output is an error,

denoted by .

Security Model for ABE with Encryption and Decryption Outsourcing

Now we define two security games for an adversary and a challenger for the ABE scheme with encryption

and decryption outsourcing capability (ABE-EDO). In the first game, asks for the secret keys of proxy A, i.e.

 , while in the second game, asks for the secret keys of the user, i.e. . These games correspond to

the assumption we use in our model that proxy A and proxy B are independent of each other and will not

collude. The idea behind this assumption is to achieve a good separation of duties.

Game 1
Setup: The challenger runs Setup algorithm and gives the adversary the public parameters, while

keeping the master secret key to itself.

 Phase 1: The adversary performs a polynomially bounded number of queries asking for secret keys

 of proxy A. The challenger returns these secret keys to

 Challenge: In this phase the adversary submits two equal length plaintexts and from the

message space, on which wants to be challenged. The challenger flips a random coin and

returns the partial encryption of (i.e. the encryption that does not contain the cryptographic policy) to

the adversary .

 Phase 2: Repeat Phase 1 querying for the secret keys that have not already been queried for in Phase 1.

 Guess: In this phase, outputs a guess and wins if . The advantage of the adversary in

attacking the scheme is

 .

Game 2
Setup: The challenger runs Setup algorithm and gives the adversary the public parameters, while

keeping the master secret key to itself.

 Phase 1: The adversary performs a polynomially bounded number of queries and asks for the user

secret keys corresponding to the attribute sets . The challenger returns the secret keys

 to .

 Challenge: In this phase the adversary submits two equal length plaintexts and from the

message space, on which wants to be challenged. Moreover, also gives the challenger an access tree

 such that the queried secret keys from Phase 1 do not satisfy . The challenger flips a random coin

 and returns the encryption of under to the adversary .

 Phase 2: Repeat Phase 1 querying for the secret keys that do not satisfy and that have not already been

queried for in Phase 1.

24

 Guess: In this phase, outputs a guess and wins if . The advantage of the adversary in

attacking the scheme is

 .

Definition 1. An ABE-EDO scheme is secure if all polynomial time adversaries have at most negligible

advantage in the aforementioned ABE-EDO security games, where the advantage is defined to be

 .

Theorem 1. Let be an upper bound on the total number of group elements that an adversary can receive

from queries she makes to the challenger for elements from the hash function , group , , bilinear

map , and from her interaction in the ABE-EDO security games. The advantage of the adversary in the

security game is .

The security of ABE-EDO scheme can be proved using arguments similar to those in Shoup (1997), Bethencourt

et al (2007), or Boneh et al. (2005).

CONSTRUCTION OF THE PROPOSED SCHEME

In this section we present the formal description of the algorithms for the ABE scheme with encryption and

decryption outsourcing capabilities. First, however, we outline its main idea.

In our scheme we assume that the host and the user can involve two independent semi-trusted entities (proxies)

to outsource computationally expensive encryption and decryption operations. During encryption a message

will be encrypted according to an access policy such that only a user whose attribute set satisfies will be

able to decrypt it. The resulting ciphertext consists of the encrypted message and cryptographic policy

components. Since policy creation is computationally expensive, this step is performed by involving a proxy

(Proxy A in Figure 2). This proxy is only trusted with policy creation. Therefore the host performs partial

encryption and gives to the proxy the information that consists of encrypted message, encrypted secret key for

the policy creation and a set of encrypted authorized attributes. In this way the proxy cannot learn the message

and is forced to create the access policy for the specified attributes. During decryption, a user will involve the

second proxy to perform computationally expensive pairing operations required to evaluate the access policy.

The user will provide the proxy (Proxy B in Figure 2) with a transformation key that allows the proxy to

evaluate the access policy and produce a partially decrypted ciphertext (El Gamal type ciphertext), if the user’s

attributes satisfy the access policy. The proxy is not able to learn the message using only ciphertext and the key

provided by the user. Note that our assumption and trust model explicitly excludes the collusion between that

Proxy B and Proxy A, otherwise it would be able to decrypt the message. Finally, the resulting El Gamal type

ciphertext can be efficiently decrypted by the user.

Let denote the bilinear map, defined in Background section. A security parameter

determines the size of the groups. Moreover, let and be two collision resistant

hash functions, where denotes a binary sequence of an arbitrary length. Finally, we define the Lagrange

coefficient ∏

 , for and being a set of elements from .

1. : This algorithm is run by a trusted authority in order to generate system parameters, i.e. the

public key and master secret key . The algorithm selects a random generator of prime order

 and random variables . In addition, it selects cryptographic hash functions

 and , and sets . The public key and master secret key

 are set to be:

 (
)

2. : This algorithm is run by the trusted authority in order to generate the

secret key for a user with an attribute set . The algorithm selects random variables and

sets to be:

 with

 ()

25

 ()

 (
)

 where

 and

 Here is a short El Gamal type private key for the user, while is a transformation key that

can be shared with a semi-trusted proxy B assisting the user with computationally expensive policy

evaluation.

3. : This algorithm generates the secret key for proxy A. The proxy will use this

key to create the access policy specified by the host:

 This key is used by proxy A to recover the component to be shared across the access structure in order to

compute the cryptographic access policy.

 Remark: If there are a number of proxies in the system, as a result of this algorithm, each proxy gets a

unique key (i.e. unique will be used).

4. This algorithm is run by the host (encryptor). To reduce computational load on

the host, the algorithm only produces a partial ciphertext, that consists of encrypted message ,

encrypted secret key and the set of authorized attributes. These latter components are used by Proxy A to

which calculation of cryptographic policy is outsourced. The algorithm selects a random value and

computes a partial ciphertext as follow:

 ̌ (
 ̆ ̃ ̃ ()

).

5. (̌) This algorithm is run by proxy A in order to generate access policy

related to the access tree that has to be associated with the ciphertext . The proxy performs the

following steps:

a) Decrypt ̃

 ̃ ̂

 where ̂ .

b) Create the access policy :

In this step, the proxy creates cryptographic components related to the access policy . It uses

Shamir’s secret sharing to distribute ̂ among the leaf nodes of . More precisely, the algorithm

chooses a polynomial for each node in in a top-down manner, starting from the root

node . First, for each node in the tree, it sets the degree of the polynomial to be one

less than the threshold value of that node, i.e. . Then, starting with the root node

 , the algorithm sets and selects at random other points of the polynomial

in order to define the polynomial completely. For any other node , the algorithm sets
 and selects the rest points randomly to completely define .

c) Create ciphertext:

The final ciphertext is composed as follows:

 (̆ ̂
)

26

6. : This algorithm is run by proxy B. It takes as input the

transformation secret key , provided by a user and associated with a set of his attributes , and a

ciphertext . The algorithm verifies a user’s attribute set satisfies the access tree , and if so computes

and outputs a partially decrypted El Gamal style ciphertext ̂.

 The algorithm makes use of the recursive function

 . We define this function for

(a) leaf nodes , and for (b) internal nodes of .

a) :

Observe that each leaf node of the access tree is associated with a real-valued attribute. Then let

 . Now, if , we have

 () (
) (̆

)

 (̂
) (

)

 ̂ (())

 (())

 ̂

 If , then , where denotes failure.

b) ():

For all nodes that are children of , the algorithm calls (). Its output

stored as is used to determine whether the user has enough attributes to satisfy the policy.

Note that to satisfy the policy, there should be enough data points (i.e. satisfied child nodes) to

reconstruct the polynomial in the node and thus to reconstruct . Let be an arbitrary

 -sized set of child nodes such that , . If there exists no such a set, then node

is not satisfied and the function returns . Otherwise, using polynomial interpolation, the

algorithm evaluates the following function:

 ∏

 ∏(̂)

 ̂

 Partial decryption at the proxy: Proxy B has to verify if the user satisfies the access control policy

associated with , and to create an El Gamal ciphertext (partially decrypted ciphertext) that can be further

decrypted by the user. The proxy first evaluates the function on the root node of . If

 () returns , then is not satisfied by the attribute set associated with the

key and thus the user’s secret key . In this case, decryption fails and the algorithm returns .

Otherwise, if is satisfied, the decryption algorithm performs the following steps:

 () ̂

 (̆) (

)

 and outputs ̂ ().

7. Decryption ̂ : This algorithm is run by the user. It takes as input the El Gamal style private

key and the partially decrypted ciphertext ̂. The plain message can now be recovered as follows

 ((

)

)

 (

)

27

CONCLUSIONS AND FUTURE WORK

In this paper we have presented a new ABE scheme with encryption and decryption outsourcing capabilities.

The scheme relies on the use of two semi-trusted proxies, one used to outsource computationally expensive

encryption steps and another to outsource decryption steps. During the encryption process, a host involves the

encryption proxy to create cryptographic policy components for a set of specified attributes, in such a way that

the proxy cannot reveal the original message and is enforced to use the given attributes. During decryption, the

decryption proxy is used for policy evaluation. Upon successful evaluation (i.e. a user possesses an authorized

set of attributes), the proxy transforms the original ciphertext into the El Gamal type of ciphertext. The latter can

be then efficiently decrypted by the user. To guarantee security of the scheme, two proxies used in our scheme

have to be independent and non-colluding. The security of our scheme is proved in the generic group model.

The presented scheme plays an important role in applications where both the host and users are using

computationally constrained devices (e.g. mobile devices).

REFERENCES

Bethencourt, J., Sahai, A., Waters, B. (2007). Ciphertext-policy attribute-based encryption. In: Proc. of Security

and Privacy 2007, pp.321–334. IEEE Computer Society

Boneh, D., Boyen, X., Goh, E.J. (2005). Hierarchical identity based encryption with constant size ciphertext. In:

Proc. of EUROCRYPT’05, pp. 440–456. LNCS 3494, Springer

Boneh, D., Franklin, M.K. (2003). Identity-based encryption from the weil pairing. SIAM J. Comput. 32(3),

pp.586–615

Goyal, V., Jain, A., Pandey, O., Sahai, A. (2008). Bounded ciphertext policy attribute based encryption. In:

ICALP (2), pp. 579–591. LNCS 5126, Springer

Green, M., Hohenberger, S., Waters, B. (2011). Outsourcing the decryption of ABE ciphertexts. In: Proc. of the

20th USENIX Conference on Security (SEC'11), pp.34

Ibraimi, L., Asim, M., Petkovic, M. (2010). An encryption scheme for a secure policy updating. In: Proc. of

SECRYPT’10, pp. 399–408. SciTePress

Ostrovsky, R., Sahai, A., Waters, B. (2007). Attribute-based encryption with non-monotonic access structures.

In: Proc. of CCS’07, pp. 195–203. ACM

Sahai, A., Waters, B. (2005). Fuzzy identity-based encryption. In: Proc. of EUROCRYPT’05, pp.457–473.

LNCS 3494, Springer

Shamir, A. (1979). How to share a secret. Communications of the ACM 22(11), pp.612–613

Shoup, V. (1997). Lower bounds for discrete logarithms and related problems. In: Proc. of EUROCRYPT’97,

pp. 256–266

28

	Attribute-based encryption with encryption and decryption outsourcing
	Recommended Citation

	tmp.1427264484.pdf.0aBtL

