
Edith Cowan University Edith Cowan University

Research Online Research Online

Australian Information Security Management
Conference Conferences, Symposia and Campus Events

1-12-2008

Framework for Anomaly Detection in OKL4-Linux Based Framework for Anomaly Detection in OKL4-Linux Based

Smartphones Smartphones

Geh W. Chow
British Telecommunications plc

Andy Jones
British Telecommunications plc

Follow this and additional works at: https://ro.ecu.edu.au/ism

 Part of the Information Security Commons

Recommended Citation Recommended Citation
Chow, G. W., & Jones, A. (2008). Framework for Anomaly Detection in OKL4-Linux Based Smartphones.
DOI: https://doi.org/10.4225/75/57b55ad8b876b

DOI: 10.4225/75/57b55ad8b876b
6th Australian Information Security Management Conference, Edith Cowan University, Perth, Western Australia, 1st
to 3rd December 2006.
This Conference Proceeding is posted at Research Online.
https://ro.ecu.edu.au/ism/49

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online @ ECU

https://core.ac.uk/display/41532225?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ism
https://ro.ecu.edu.au/ism
https://ro.ecu.edu.au/conference
https://ro.ecu.edu.au/ism?utm_source=ro.ecu.edu.au%2Fism%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ro.ecu.edu.au%2Fism%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.4225/75/57b55ad8b876b
https://doi.org/10.4225/75/57b55ad8b876b

A Framework for Anomaly Detection in OKL4-Linux Based Smartphones

Geh Wynn Chow and Andy Jones
British Telecommunications plc

Abstract
Smartphones face the same threats as traditional computers. As long as a device has the capabilities to
perform logic processing, the threat of running malicious logic exists. The only difference between security
threats on traditional computers versus security threats on smartphones is the challenge to understand the
inner workings of the operating system on different hardware processor architectures. To improve upon the
security of smartphones, anomaly detection capabilities can be implemented at different functional layers of a
smartphone in a coherent manner; instead of just looking at individual functional layers. This paper will
focus on identifying conceptual points for measuring normalcy in different functional layers of a smartphone
based on OKL4 and LiMo Foundation’s platform architecture.

Keywords
Smartphone security, anomaly detection, OKL4, Linux, LiMo Foundation

INTRODUCTION
Mobile phones today have evolved to become ubiquitous communication and computing platforms where
users can make the usual phone calls, create presentation slides, edit documents, listen to music, watch
videos, play games, and access the internet all from a single mobile device, simply known as a smartphone.
These devices are able to perform complex computing tasks and communicate through a variety of different
methods (3G/GSM, WiFi, RFID, IrDA, Bluetooth). In short, a smartphone is almost the same as a traditional
computer, only smaller in size and computing power.

Smartphones today are produced by many different hardware manufacturers including Nokia, Sony Ericsson,
Motorola, Samsung, HTC, RIM Blackberry, Palm and Apple iPhone. These hardware manufacturers partner
with different mobile operating system vendors such as Symbian (Nokia, Sony Ericsson), Windows Mobile
(HTC), Blackberry OS (Blackberry), PalmOS (Palm), Linux (Motorola, Samsung) and Apple iPhone OS
(Apple iPhone). According to Canalys, a technology market research firm’s 2007 report on mobile operating
systems; Symbian is the leader in mobile operating systems; followed by Linux, Windows Mobile,
Blackberry OS and Apple iPhone OS. However, Linux is beginning to establish itself as a major mobile
operating system platform thanks to pioneering efforts by industry consortiums such as the LiMo Foundation.

The LiMo Foundation was created in 2007 by Motorola, NEC, NTT DoCoMo, Panasonic Mobile
Communications, Samsung, and Vodafone as a mobile industry consortium that focuses on creating an open
mobile platform based on the Linux operating system. The motivation of using Linux, from LiMo’s
perspective, is that it is open source, and also that it enables a standardised framework for faster and easier
development of applications in an open environment. By collaborating with different smartphone hardware
manufacturers, LiMo intends to build a standard and open Linux operating system stack where developers can
create applications in different logical functionalities or frameworks that are typically found in a smartphone.

2007 also saw the emergence of virtualisation in embedded systems focussing on security and stability. One
of the key players in this area is OKL4, a virtualisation platform for embedded systems based on the L4
microkernel technology. L4 is a microkernel family designed by Jochen Liedtke that is well-known for its
minimality principle and performance. A microkernel can be described as a minimal computer operating
system kernel that provides only the mechanisms needed to implement services such as low-level address
space management, thread management, and inter-process communication (IPC). Other operating system
services such as device driver management, file system management, and network protocol stacks are treated

as user mode services. This operating systems kernel design approach is different from the more popular
monolithic kernel used in Linux, where user mode services mentioned above are implemented inside the
kernel in supervisor mode. Microkernel advocates state that microkernels are more secure and stable due to
the fact that there are less parts of the kernel running in supervisor mode, and different parts of the operating
system are compartmentalised as different user mode services to prevent faulty components from bringing the
entire system down.

This paper will focus on identifying conceptual points for measuring normalcy in different functional layers
of a smartphone based on OKL4 and the LiMo Foundation’s platform architecture.

SECURITY THREATS ON SMARTPHONES
Smartphones face the same threats as traditional computers. As long as a device has the capabilities to
perform logic processing, the threat that malicious logic will run exists. The only difference between security
threats on traditional computers and security threats on smartphones is the challenge of understanding the
inner workings of the operating system on different hardware processor architectures (eg. x86, SPARC,
MIPS, PowerPC, etc… on traditional computers; ARM, ATOM etc… on smartphones). These threats have
already been observed in the wild. For example, a virus has been detected in the wild infecting Symbian-
based smartphones. A handful of other viruses have also been detected that were infecting Windows Mobile-
based smartphones.

To counter these mobile-based threats, anti-malware companies have developed antivirus software, host-
based firewalls and intrusion detection/prevention systems for smartphones. The antivirus and intrusion
detection/prevention system monitors the smartphone for known malicious activities by scanning files,
memory and network packets for malicious behaviour. Firewalls in smartphones function in a similar manner
to hostbased firewalls in traditional computers by controlling IP-based network access such as 3G and WiFi.
However, as in the case of traditional computer security, these solutions also have difficulty detecting
unknown threats in smartphones. This is due to the fact that antivirus and host-based intrusion
detection/prevention systems rely, for the most part on attack signatures (misuse detection) to successfully
mitigate threat.

A different approach of anomaly detection for mitigating unknown threats has been explored and proposed by
the intrusion detection research community. The holy grail of host-based anomaly detection is achieved when
a host is able to formally measure normalcy for every instance in the system, and as a result, would be able to
detect and mitigate unknown events or threats that may occur. In reality, the challenges of anomaly detection
lie in the identification and measurement of normalcy. Many approaches have been proposed by the research
community, such as measuring normalcy in traditional computer system calls using statistical models. In the
smartphone space, one approach to the measured of ‘normalcy’ is based on a user’s call, text and location
behaviour using neural networks. To improve upon the security of smartphones, anomaly detection
capabilities can be implemented at different functional layers of a smartphone in a coherent manner; instead
of just looking at individual functional layers.

ANATOMY OF A SMARTPHONE
A generic smartphone can be divided into the following functional layers as shown in the diagram below.

Physical Layer
The physical layer corresponds to the smartphone’s hardware. The common hardware components of
smartphones today are shown below:

1. Processor (Central Processing Unit)

2. Power Management Unit

3. Flash Memory (non-volatile memory that can be erased and reprogrammed)

4. SDRAM

5. GSM/GPRS/3G Modem

6. Digital and Analog Baseband

7. Radio Frequency Transceiver

8. GPS Chipset

9. Accelerometer

10. Graphic Accelerator (Graphical Processing Unit)

11. External Storage (microSD Card)

12. LCD Touch Screen Module

13. Bluetooth Module

14. WiFi Module

15. Vibrator

16. USB Device

17. I2C Device

18. Audio System

19. Microphone System

20. Camera

Hypervisor Layer
The hypervisor layer can be thought of as an interface between the hardware layer and the operating system
layer. This layer plays the role of separating the operating system and preventing it from having total
privileges to access the smartphone hardware for stability and security reasons. In other words, the hypervisor
layer is like a virtual machine manager, managing different operating systems installed on top of it with each
performing very specific tasks. For example, real-time capabilities are needed for functions that need
predictable and deterministic behaviour such as making cellular calls. A real-time operating system can be
installed on top of the hypervisor layer to perform this task. Functions that do not require real-time
capabilities such as 3rd party applications can be serviced by another operating system specialised in
application management. Separating certain functionalities of the phone into different layers as explained
above would enhance stability and security. An unstable 3rd party application would not be able to crash the
entire smartphone because the application manager operating system is separate from other operating systems
that perform more critical smartphone functions. This makes it possible for the smartphone to continue
initiating and receiving calls instead of being frozen as the result of a crashed application. From a security
perspective, a compromised application in a phone would not constitute a total compromise of a smartphone
due to the separation of duties and privileges between different operating systems. OKL4 is an example of a
hypervisor layer for mobile devices and is based on the L4 microkernel family design.

Virtual Machine Guest OS Layer
The virtual machine guest OS layer may consist of one or many different operating systems paravirtualised to
run on top of the hypervisor layer. A paravirtualised operating system is described as an operating system that
is intentionally reprogrammed to run in a hypervisor environment; where the kernel is customised to interface
hardware instructions with the hypervisor application programming interface (API) instead of directly to the
hardware. The hardware abstraction is important, because this will enable the operating system to run with
lower privileges, and supervisor instructions will be passed to the hypervisor to be translated to actual
hardware instructions. For example, OLK4 has developed OK Linux, a paravirtualised Linux kernel that
exists as a virtual guest operating system sitting on top of the OKL4 hypervisor layer. Inside the
paravirtualised operating system layer, memory management, file system management, process management,
inter-process communications, interrupt handling, device driver management and network management are
passed to the hypervisor layer to be handled and translated into real hardware instructions.

Application Layer
For the application layer, LiMo Foundation’s platform architecture is used to describe the application
functionalities inside a Linux mobile operating system for smartphones. LiMo’s platform consists of the
following logical functionalities:

1. Application Manager Framework
Responsible for managing application installations and invocations.

2. Application User Interface Framework
Responsible for defining the graphical user interface of the applications.

3. Registry
Responsible for storing and managing access to application related data/values.

4. Conflict Management
Responsible for resolving conflicts arising from concurrent requests to shared resources. This
functionality may be offloaded to the hypervisor layer.

5. Event Delivery / Inter Process Communications (IPC)
Event delivery is responsible for generating, processing, filtering, subscribing and publicising
application related notifications. IPC is responsible for application service startup, service

deployment configuration, service discovery by clients, communication between clients and servers,
parameter passing between clients and servers, and service shutdown. This functionality may be
offloaded to the hypervisor layer.

6. Security Framework
Responsible for scanning new applications to determine their security trust level before installation,
and
also applying security access control policies in the application.

7. Telephony Framework
Responsible for cellular activities such as SIM handling, network registration, voice and video calls.
This functionality may be offloaded to the hypervisor layer.

8. Networking Framework
Responsible for handling IP networking functionality. This functionality may be offloaded to the
hypervisor layer.

9. Messaging Framework
Responsible for handling Short Message Service (SMS) and Multimedia Message Service (MMS)
functionalities.

10. Multimedia Framework
Responsible for managing multimedia services such as audio, image, and video services.

11. Digital Rights Management Framework
Responsible for controlling access to licensed digital media using cryptographic functions.

12. Database
Responsible for providing database functionalities to applications for storing data.

13. Other Frameworks
LiMo provides a modular design for future frameworks to be integrated into the platform
architecture. Other possibilities may include a GPS framework or even an accelerometer framework.

User Layer
The user layer is more of an abstract layer, used to describe the usage pattern of a smartphone by an
individual. The “who, what, where, when, how and why” of a user can be profiled through this layer. For
example, a user may only contact a few phone numbers frequently who may either be family, close friends,
colleagues or business partners. This user may normally contact this particular group of people using voice
calls and SMS, mostly in the morning on weekdays. The user may be constantly on the move, so he or she
may use his or her smartphone regularly to check emails and surf the web for news. As we can see in the user
layer, a profile of a user can be developed based on the smartphone’s usage pattern.

AN OVERVIEW OF ANOMALY DETECTION
According to Roy A Maxion et al. (2002), an anomaly is an event (or object) that differs from some standard
or reference event, in excess of some threshold, in accordance with some similarity or distance metric on the
event. They further described two types of data that can be used for anomaly detection. The first type, called
the intuitive type, is where data is numerical and can be mathematically calculated to define anomalies. For
example, a threshold value is set on a network anomaly detector to flag an alarm if the monitored network
traffic exceeds more than 50 megabits per second. This type of anomaly is intuitive because a threshold value
can be defined numerically. The second type, called the categorical type, is where data does not have any
numerical or mathematical representation that can be measured. For instance, a police surveillance camera
may flag an alarm if the system detects a person that fits a profile of a suspected criminal based on parameters
such as suspicious behaviour, illogical commuting patterns and other related factors. Hence, an anomaly
detector may employ either an intuitive type or categorical type of approach depending on the event or
subject being monitored.

Once the data’s type of anomaly (intuitive or categorical) is determined, different types of mathematical
models can be applied to the data for further processing. Intuitive types are usually applied with statistical
models to identify normalcy. Statistical models such as Bayesian theory and logistic regression can be used
by an anomaly detection system to learn the behaviour of a monitored system based on numerical data.
Categorical types are usually applied with models such as Markov model and artificial neural networks for
learning behaviours based on different states of a monitored system. Identifying the types of mathematical

models used for anomaly detection is beyond the scope of this paper; hence the focus will only be on
identifying different points for measuring normalcy in different functional layers of a smartphone based on
OKL4 and LiMo Foundation’s platform architecture.

APPLYING ANOMALY DETECTION CAPABILITIES AT DIFFERENT
SMARTPHONE LAYERS
Many smartphone anomaly detection papers propose the learning of a user’s behaviour when using a
smartphone. This paper aims to improve on earlier proposals through the concept of implementing anomaly
detection capabilities at different layers in a smartphone, instead of just the user layer. This includes the
hypervisor layer, operating system layer, application layer and the user layer. The key points in implementing
anomaly detection in these layers is to identify what to measure and define what is normal in the measured
entity. Once these capabilities are in place, anomalies can be detected and actions can be taken to raise an
exception or perform mitigation procedures.

Anomaly Detection in the Hypervisor Layer

The following explores possible entities that can be measured for normalcy at the hypervisor layer, based on
the OKL4 microkernel. OKL4’s application programming interfaces (API) are made up of the following
logical elements:

1. Address spaces and threads

• System level instructions and data usually live in a protected area in memory. Since certain
system level instructions and data does not change unless the hypervisor firmware is
modified, normalcy can be defined by learning where and how frequently these instructions
and data are stored in memory. Through statistical methods, it is possible to build a
normalcy profile of this element and detect anomalies.

2. Data types, data constructors and data fields

• This element is used to characterise objects stored in memory or virtual registers. Since
objects are defined with their own data types, normalcy can be defined and measured here
by learning the data types of these objects.

3. System parameters

• This element is an OKL4 API used for simplifying the implementation of OKL4 on specific
architectures. OKL4 API parameters are constants, and its values are specified by each
OKL4 architecture. Normalcy can be defined here since any changes to these constants
would be considered an anomaly.

4. Virtual registers

• Each thread in the hypervisor is associated with a number of virtual registers that are
defined by the OKL4 microkernel. Normalcy can be defined and measured by learning the
virtual registers of each thread; hence anomalies can be flagged when the thread is
associated with the wrong virtual register.

5. System calls

• This element is conceptually similar to system calls in traditional computer operating
systems. Hence, normalcy can be measured using known methods of tracing and learning
the system calls of different processes. Once normalcy profiles for the system call
sequences of processes are built, anomalies can be detected when the system call sequence
is different from the ones measured in its normalcy profile.

6. Communication protocols

• This element concerns the inter process communications (IPC) in the microkernel. IPC
behaviour between processes can be learnt, and a normalcy profile can be built to detect
anomalies.

7. IP Networking

• Normalcy of network packets traversing the hypervisor can be measured using known
protocol analysis techniques. For example, a TCP packet with the SYN/FIN flag turned on
is considered anomalous, and an anomaly flagged.

Anomaly Detection in the Virtual Machine Guest OS Layer
Normalcy at the virtual machine guest operating system layer can be implemented based on monitoring the
paravirtualised system calls between the guest operating system and hypervisor. In OKL4, many different
instances of a paravirtualised operating system run at the same time offering different services such as file
system management, networking and graphical user interfaces. Each of these separate instances would
perform its own system calls via the hypervisor. These system calls usually contain instructions intended for
the actual hardware (via the hypervisor), hence they can be used as categorical data for an anomaly detection
system to learn the behaviour of normal paravirtualised system calls. Identifying all the different system calls
for monitoring normalcy is beyond the scope of this paper; however the key purpose is to illustrate the
possibilities of performing anomaly detection by monitoring system calls between the paravirtualised
operating system and the hypervisor.

Anomaly Detection in the Application Layer
Normalcy at the application layer can be implemented based on the LiMo Foundation’s platform architecture
as shown below:

1. Application Manager Framework

• A list of installed applications can be used as a baseline for normalcy. Any tampering or
illegal installation of applications will flag off an anomaly.

2. Application User Interface Framework

• Normalcy profiling in this framework is not necessary.

3. Registry

• A list of authorised registry entries can be used as a baseline for normalcy. Any illegal
modifications to the registry will flag as an anomaly.

4. Conflict Management

• Normalcy profiling in this framework is not necessary.

5. Event Delivery / Inter Process Communications (IPC)

• Event delivery notifications and IPC behaviour can be learnt to establish a normalcy profile.
Any deviations from the learnt behaviour will flag as an anomaly.

6. Security Framework

• The integrity of this framework is important. If it is compromised, then the integrity of all
other applications installed will be suspect. Hence, a normalcy profile for the health of this
framework can be learnt. Any deviations of the normalcy profile of this framework will flag
as an anomaly.

7. Telephony Framework

• This normalcy profiling of this framework can be done concurrently with the user layer to
learn the behaviour of the user’s cellular usage.

8. Networking Framework

• Normalcy profiling in this framework is not necessary as it can be done at the hypervisor
layer.

9. Messaging Framework

• This normalcy profiling of this framework can be done concurrently with the user layer to
learn the behaviour of the user’s messaging usage.

10. Multimedia Framework

• Normalcy profiling in this framework is not necessary.

11. Digital Rights Management Framework

• Normalcy profiling in this framework is not necessary.

12. Database

• Normalcy profiling for this framework would require learning of which application is
authorised to insert, update and delete data in the database.

Anomaly Detection in the User Layer
Normalcy at the user layer can be implemented based on the characteristics of an individual. An example of
the types of characteristics that can be monitored are shown below:

1. Subscriber Identity Module (SIM) password

• The SIM password can be monitored in the smartphone every time a user keys it in. If the
smartphone is used with another foreign SIM with a different password, the anomaly
detector can flag of an alarm.

2. Phone password

• Phone passwords can be monitored in the smartphone. Since these types of passwords are
usually static for a long time, a change to this password can also be perceived as an
anomaly.

3. Key stroke analysis

• Different individuals have their own unique way of using their smartphones, and this can be
used as a means of learning the behaviour of a user based on their keystrokes. If the phone
is used by somebody other than the original owner whose keystrokes have been learned, an
anomaly can be flagged off.

4. T9 usage analysis

• The T9 predictive text dictionary found on most smartphones today are widely used as a
means of making it easier and faster to type text messages on a 9-key keypad; hence the
name T9 (Text on 9 Keys). T9 has the ability for users to key in their own frequently words
that are not found in the built-in dictionary; hence this can be used as a parameter for
monitoring anomalies when the smartphone is texted by a foreign user.

5. Text Message Spelling analysis

• Different individuals may text using their own style of spelling for certain words. This can
be used a parameter for monitoring anomalies when the smartphone is texted by a foreign
user.

6. Top-n called numbers/contacts based on hour, day, week, month

• Top-n number of calls to a certain number/contact based on different time scales can be
used as a parameter for learning the user’s smartphone usage behaviour.

7. Top-n texted numbers/contacts based on hour, day, week, month

• Top-n number of texts to a certain number/contact based on different time scales can be
used as a parameter for learning the user’s smartphone usage behaviour.

8. Top-n received call numbers/contacts based on hour, day, week, month

• Top-n number of received calls from a certain number/contact based on different time
scales can be used as a parameter for learning the user’s smartphone usage behaviour.

9. Top-n received text numbers/contacts based on hour, day, week, month

• Top-n number of received texts from a certain number/contact based on different time
scales can be used as a parameter for learning the user’s smartphone usage behaviour.

10. Top-n called numbers/contacts based on location

• Top-n number of calls to a certain number/contact based on location can be used as a
parameter for learning the user’s smartphone usage behaviour.

11. Top-n texted numbers/contacts based on location

• Top-n texts to a certain number/contact based on location can be used as a parameter for
learning the user’s smartphone usage behaviour.

12. Top-n received call numbers/contacts based on location

• Top-n number of received calls from a certain number/contact based on location can be
used as a parameter for learning the user’s smartphone usage behaviour.

13. Top-n received text numbers/contacts based on location

• Top-n number of received texts from a certain number/contact based on location can be
used as a parameter for learning the user’s smartphone usage behaviour.

14. Top-n called numbers/contacts based on call duration

• Top-n number of calls to a certain number/contact based on call duration can be used as a
parameter for learning the user’s smartphone usage behaviour.

15. Top-n texted numbers/contacts based on call duration

• Top-n number of texts to a certain number/contact based on call duration can be used as a
parameter for learning the user’s smartphone usage behaviour.

16. Top-n received call numbers/contacts based on call duration

• Top-n number of received calls from a certain number/contact based on call duration can be
used as a parameter for learning the user’s smartphone usage behaviour.

17. Top-n received text numbers/contacts based on call duration

• Top-n number of received texts from a certain number/contact based on call duration can be
used as a parameter for learning the user’s smartphone usage behaviour.

18. Frequently executed smartphone applications

• Frequently executed smartphone applications can be used as a parameter for learning the
user’s smartphone usage behaviour. For example, a user may always like to play a certain
smartphone game, access the camera, view pictures via a certain smartphone image viewer
and other similar actions.

19. Smartphone application usage analysis

• The manner in which a particular smartphone application is used can be used as a parameter
for learning the user’s smartphone usage behaviour. For example, the user may like to
tweak the smartphone camera to a certain setting before snapping photos.

20. Bluetooth usage analysis

• The most frequent devices paired via Bluetooth to the smartphone can be used as a means
of learning the smartphone’s Bluetooth connectivity behaviour. If there are rogue Bluetooth
applications that intend to pair with the smartphone monitored by an anomaly detection
system, the smartphone can flag an alarm.

21. WiFi usage analysis

• The most frequent access points connected by the smartphone can be used as a means of
learning the smartphone’s WiFi connectivity behaviour. If there are rogue WiFi access
points attempting to associate with the smartphone monitored by an anomaly detection
system, the smartphone can flag an alarm.

Anomaly Detection Challenges in Smartphones

Anomaly detection at different functional layers in a smartphone can help enhance the accuracy of
determining normalcy and detecting anomalies in a smartphone. However, the smartphone is still limited by
processing power, battery power and storage and this may impede the ideal implementation of anomaly
detection in embedded systems. Several proposals have been put forward, such as Mark Burgess (2005);
where processing anomaly detection data can be distributed to other similar devices. Advances in making
smartphone processorsfaster and the ability to have longer battery life and larger solid state device storage are
other solutions at the hardware level that may make anomaly detection in smartphones a reality.

CONCLUSION
Anomaly detection is a complimentary security solution for detecting unknown threats to smartphones, and in
order to enhance its ability to determine normalcy and detecting anomalies, it should be implemented at a
numberof different functional layers to obtain a more fine-grained view of how each layer works. This paper
proposes4different functional layers (hypervisor, virtual guest operating system, application, user) in a
smartphone whereanomaly detection can be implemented; and also identified each individual layer’s high
level parameters where normalcy can be monitored.

REFERENCES
Azzedine Boukerche et al. (2002) Behavior-Based Intrusion Detection in Mobile Phone Systems, Journal of

Parallel and Distributed Computing 62, 1476–1490 (2002)

Cyrus Peikari et al. (2004) Details Emerge on the First Windows Mobile Virus, URL

http://www.informit.com/articles/article.aspx?p=337069 Accessed 12 Jun 2008

Darren Mutz et al. (2006) Anomalous system call detection, ACM Transactions on Information and System

Security (TISSEC) Volume 9 , Issue 1 (February 2006)

F-Secure Corporation, URL http://www.f-secure.com/v-descs/commwarrior.shtml, Accessed 5 Aug 2008

Gernot Heiser (2007), Virtualization for Embedded Systems, Open Kernel Labs Technology White Paper

Jochen Liedtke (1995), On μ-Kernel Construction, Proceedings of the 15th ACM Symposium on Operating

System Principles (SOSP), Copper Mountain Resort, CO, December 1995

LiMo Foundation, URL http://www.limofoundation.org/, Accessed 3 Jun 2008

Mark Burgess (2005), Probabilistic anomaly detection in distributed computer networks, Oslo University

College (2005)

N.L. Clarke et al. (2006) Authenticating mobile phone users using keystroke analysis, Source International

Journal of Information Security Volume 6 , Issue 1, December 2006

Open Kernel Labs Community Wiki, URL http://wiki.ok-labs.com/ Accessed 12 Jun 2008

Open Kernel Labs, OKL4 Microkernel Reference Manual API Version 0316 (2008)

Roy A Maxion et al. (2002), Anomaly Detection in Embedded Systems, IEEE Transactions on Computers,

Vol.51, No.2, February 2002

COPYRIGHT
Geh Wynn Chow and Andy Jones ©2008. The author/s assign Edith Cowan University a non-exclusive
license to use this document for personal use provided that the article is used in full and this copyright
statement is reproduced. Such documents may be published on the World Wide Web, CD-ROM, in printed
form, and on mirror sites on the World Wide Web. The authors also grant a non-exclusive license to ECU to
publish this document in full in the Conference Proceedings. Any other usage is prohibited without the
express permission of the authors.

	Framework for Anomaly Detection in OKL4-Linux Based Smartphones
	Recommended Citation

	Microsoft Word - Chow Jones _2_.doc

