
Edith Cowan University Edith Cowan University

Research Online Research Online

Theses: Doctorates and Masters Theses

2011

Model based test suite minimization using metaheuristics Model based test suite minimization using metaheuristics

Usman Farooq
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Farooq, U. (2011). Model based test suite minimization using metaheuristics. https://ro.ecu.edu.au/
theses/409

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses/409

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses?utm_source=ro.ecu.edu.au%2Ftheses%2F409&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ro.ecu.edu.au%2Ftheses%2F409&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses/409
https://ro.ecu.edu.au/theses/409

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons
who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement. Where the reproduction of such material is

done without attribution of authorship, with false attribution of

authorship or the authorship is treated in a derogatory manner,

this may be a breach of the author’s moral rights contained in Part

IX of the Copyright Act 1968 (Cth).

 Courts have the power to impose a wide range of civil and criminal

sanctions for infringement of copyright, infringement of moral

rights and other offences under the Copyright Act 1968 (Cth).

Higher penalties may apply, and higher damages may be awarded,

for offences and infringements involving the conversion of material

into digital or electronic form.

Model Based Test Suite Minimization Using

Metaheuristics

by

Usman Farooq

This thesis is submitted for the degree of

Doctor of Philosophy

at the Edith Cowan University

School of Computer and Security Science

July 2011

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

 III

Dedication

To

My Mother

for her endless prays, encouragement and support

that made all of this happen.

 IV

Abstract

Software testing is one of the most widely used methods for quality assurance and fault

detection purposes. However, it is one of the most expensive, tedious and time consuming

activities in software development life cycle. Code-based and specification-based testing has

been going on for almost four decades. Model-based testing (MBT) is a relatively new approach

to software testing where the software models as opposed to other artifacts (i.e. source code)

are used as primary source of test cases. Models are simplified representation of a software

system and are cheaper to execute than the original or deployed system.

The main objective of the research presented in this thesis is the development of a

framework for improving the efficiency and effectiveness of test suites generated from UML

models. It focuses on three activities: transformation of Activity Diagram (AD) model into

Colored Petri Net (CPN) model, generation and evaluation of AD based test suite and

optimization of AD based test suite.

Unified Modeling Language (UML) is a de facto standard for software system analysis and

design. UML models can be categorized into structural and behavioral models. AD is a behavioral

type of UML model and since major revision in UML version 2.x it has a new Petri Nets like

semantics. It has wide application scope including embedded, workflow and web-service

systems. For this reason this thesis concentrates on AD models. Informal semantics of UML

generally and AD specially is a major challenge in the development of UML based verification

and validation tools. One solution to this challenge is transforming a UML model into an

executable formal model. In the thesis, a three step transformation methodology is proposed for

resolving ambiguities in an AD model and then transforming it into a CPN representation which

is a well known formal language with extensive tool support.

Test case generation is one of the most critical and labor intensive activities in testing

processes. The flow oriented semantic of AD suits modeling both sequential and concurrent

systems. The thesis presented a novel technique to generate test cases from AD using a

stochastic algorithm. In order to determine if the generated test suite is adequate, two test suite

adequacy analysis techniques based on structural coverage and mutation have been proposed.

In terms of structural coverage, two separate coverage criteria are also proposed to evaluate the

adequacy of the test suite from both perspectives, sequential and concurrent. Mutation analysis

is a fault-based technique to determine if the test suite is adequate for detecting particular types

 V

of faults. Four categories of mutation operators are defined to seed specific faults into the

mutant model.

Another focus of thesis is to improve the test suite efficiency without compromising its

effectiveness. One way of achieving this is identifying and removing the redundant test cases. It

has been shown that the test suite minimization by removing redundant test cases is a

combinatorial optimization problem. An evolutionary computation based test suite minimization

technique is developed to address the test suite minimization problem and its performance is

empirically compared with other well known heuristic algorithms. Additionally, statistical

analysis is performed to characterize the fitness landscape of test suite minimization problems.

The proposed test suite minimization solution is extended to include multi-objective

minimization. As the redundancy is contextual, different criteria and their combination can

significantly change the solution test suite. Therefore, the last part of the thesis describes an

investigation into multi-objective test suite minimization and optimization algorithms.

The proposed framework is demonstrated and evaluated using prototype tools and case

study models. Empirical results have shown that the techniques developed within the

framework are effective in model based test suite generation and optimization.

 VI

List of Published Papers

1. Farooq, U., Lam, C. P., Li, H., “Transformation Methodology for UML 2.0 Activity
Diagram into Colored Petri Nets”, Proceedings of the third IASTED Conference on
Advances in Computer Science and Technology, 2007. ISBN: 978-0-88986-656-0

2. Farooq, U., Lam, C. P., Li, H., “Towards Automated Test Sequence Generation”.

19th Australian Software Engineering Conference, Perth, WA., pp. 441-450, 25-28th
March 2008. ISSN:1530-0803

3. Farooq, U., Lam, C. P., “Mutation Analysis for the Evaluation of AD Models ",

International Conference on Innovation in Software Engineering (ISE'2008),
December, 2008. (Vennia, Australia, 9-12/12/2008, Publisher: IEEE Computer
Society Press)

4. Farooq, U., Lam, C. P., “Evolving the Quality of a Model-Based Test Suite”,

International Conference on Software Testing, Verification and Validation (ICST
2009), Denver, USA, 2009

5. Farooq, U., Lam, C. P., “A Max-Min Multiobjective Technique to Optimize Model

Based Test Suite”, 10th ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD
2009), 2009

 VII

Declaration

I certify that this thesis does not, to the best of my knowledge and belief:

(i) incorporate without acknowledgement any material previously submitted for a

degree or diploma in any institution of higher education;

(ii) contain any material previously published or written by another person except

where due reference is made in the text; or

(iii) contain any defamatory material.

I also grant permission for the Library at Edith Cowan University to make duplicate

copies of my thesis as required.

Signed: …Usman Farooq…….

Date: ………30/11/2011…….

 VIII

Acknowledgements

First of all, I am thankful to Allah, Al-Haadi, for leading me to the path of knowledge and

wisdom, Al-Waliyy, for giving me the opportunity and strength to complete my Ph.D.

I am greatly thankful to many people whose help and support made this journey possible.

First of all, I would like to thank my supervisor C. P. Lam for continuously supporting and guiding

me throughout in my research and for providing valuable feedback on my thesis. Her critical and

insightful comments greatly improved my work and presentation of this thesis.

I owe my gratitude to my co-supervisor Huaizhong Li for the useful discussion which helps

me in shaping up some of the ideas in this thesis.

Many thanks go to School of Computer and Security Science for providing me the

scholarship without which it would be very difficult to finish my thesis.

I am truly thankful to the Paul Nicholson and Paolo Cantoni at Ripple Systems for allowing

me to use the ETP and DTP models for case study. I also appreciate their support to continue my

research and giving me the opportunity to learn about model driven development in practice.

I owe my gratitude to my PhD lab colleagues for providing motivating and friendly

environment. Special thanks goes to Yunous Vagh for many interesting discussions and

proofreading various sections of this thesis. I am also very grateful to my friends, Muhammad

Abid Akhtar, S. P. Singh, Muhammad Kashif and Ahmad Sattar Khan, for encouragement and

support.

Last but not least, many thanks go to my family for their personal and moral support

during my studies and they were always there for me. Special thanks to my mother who always

supported and encouraged me to whatever degree I want. My brother and sisters for supporting

every decision I made.

 IX

Table of Contents

USE OF THESIS ... II

DEDICATION ...III

ABSTRACT ... IV

LIST OF PUBLISHED PAPERS... VI

DECLARATION .. VII

ACKNOWLEDGEMENTS ... VIII

TABLE OF CONTENTS ... IX

LIST OF FIGURES .. XIII

LIST OF TABLES .. XIX

LIST OF ACRONYMS ... XXI

CHAPTER 1 INTRODUCTION .. 23

1.1 Motivation .. 24

1.2 Aims and objectives of this thesis .. 27

1.3 Contribution of this thesis .. 29

Description of the Model-based Test Suite Optimization Framework 29

1.4 Structure of the Thesis ... 33

CHAPTER 2 LITERATURE REVIEW ... 35

2.1 Model driven engineering .. 35

2.2 Model-based testing ... 36

2.2.1 Model-based testing workflow... 38

2.2.2 Advantages of model-based testing ... 41

2.2.3 Unified Modeling Language (UML) ... 44

2.2.4 Model-based Test Case Generation ... 52

2.2.5 Model-based Test Suite Evaluation .. 55

2.2.6 Issues with Model-based Testing ... 63

2.3 Optimization Techniques .. 64

2.3.1 Metaheuristic Techniques .. 65

2.3.2 Greedy Search .. 65

2.3.3 Local Search .. 66

2.3.4 Evolutionary Computation ... 66

 X

2.3.5 Applications of Evolutionary Computation .. 71

2.3.6 Basics of Evolutionary Techniques ... 72

2.3.7 Multi-Objective Evolutionary Algorithms .. 82

2.3.8 Non-Pareto-Based Evolutionary Algorithms .. 83

2.3.9 Pareto-based Evolutionary Algorithms .. 84

2.3.10 Multi-Objective Performance Metric ... 87

2.4 Search Based Software Testing .. 91

2.4.1 Optimal Test Suite Generation... 92

2.4.2 Test Suite Optimization .. 94

2.4.3 Code and Model-based Test Suite Optimization ... 96

2.4.4 Multiobjective Test Generation and Optimization .. 97

2.4.5 Test Suite Minimization Approaches ... 97

CHAPTER 3 MODEL TRANSFORMATION .. 100

3.1 AD based Software Models: Notations, Syntax and Semantic 101

3.1.1 Functional Artifacts: ... 102

3.1.2 Control Artifacts: .. 103

3.1.3 Special Artifacts: ... 104

3.1.4 Connection Artifacts: ... 105

3.2 Case Studies ... 106

3.2.1 Enterprise Customer Commerce System (ECCS) .. 106

3.2.2 Automated Teller Machine (ATM) ... 107

3.2.3 Two Models from Software Industry ... 114

3.2.4 Edit Trend Properties (ETP) .. 114

3.2.5 Delete Trend Properties (DTP) ... 119

3.3 Model Transformation ... 123

3.3.1 Transformation Types .. 123

3.3.2 Transformation Techniques ... 124

3.4 AD to CPN Transformation ... 127

3.4.1 Colored Petri Nets .. 129

3.4.2 Transformation Methodology .. 136

3.4.3 Transformation Validation ... 151

3.5 Transformation of Case Study Models ... 152

3.6 Summary .. 153

CHAPTER 4 ACTIVITY DIAGRAM BASED TESTING ... 154

 XI

4.1 AD Based Test Sequence Generation ... 155

4.1.1 Test Sequence Generation Algorithm .. 157

4.1.2 Test Suite Evaluation .. 161

4.2 Experimental Analysis... 176

4.2.1 Experimental Setup .. 176

4.2.2 Result and Discussion ... 179

4.3 Summary ... 184

CHAPTER 5 TEST SUITE OPTIMIZATION ... 186

5.1 Test Suite Minimization .. 187

5.2 Model-based Test Suite Minimization .. 190

5.2.1 Test Suite Evaluation .. 190

5.2.2 Formulation as an Equality Knapsack Problem .. 193

5.3 Empirical Study ... 194

5.3.1 Research Questions .. 194

5.3.2 Experimental Setup .. 194

5.3.3 Metrics .. 203

5.3.4 Result and Discussion ... 205

5.4 Characterizing the Fitness Landscape of Test Suite Minimization 215

5.4.1 Measures for Landscape Analysis ... 216

5.4.2 Test Suite Minimization Landscape Analysis .. 219

5.5 Threats to Validity .. 225

5.6 Summary ... 226

CHAPTER 6 MULTI-OBJECTIVE TEST SUITE OPTIMIZATION .. 227

6.1 Multi-Objective Model-based Test Suite Optimization .. 227

6.1.1 Formulation as a Profitable Tour Problem ... 228

6.1.2 Multi-objective Evolutionary Algorithms ... 231

6.2 Empirical Study ... 231

6.2.1 Research Questions .. 232

6.2.2 Experimental Setup .. 232

6.2.3 Metrics .. 236

6.2.4 Result and Discussion ... 237

6.3 Summary ... 251

CHAPTER 7 CONCLUSION AND FUTURE WORK .. 252

7.1 Conclusion .. 252

 XII

7.1.1 The execution of models .. 252

7.1.2 The ambiguous and semantically incorrect models .. 252

7.1.3 The need for test sequences .. 253

7.1.4 The adequacy of a test suite .. 253

7.1.5 The optimization of a test suite ... 253

7.2 Limitations and Future Work ... 255

7.2.1 Transformation of object-flow ... 255

7.2.2 Limited transformation .. 255

7.2.3 Mutation analysis ... 255

7.2.4 Test generation from AD model .. 256

7.2.5 No-Free-Lunch algorithm ... 256

BIBLIOGRAPHY .. 257

APPENDIX A. AD TO CPN TRANSFORMATION ... 274

1. Implementation ... 274

2. XSL templates for AD to CPN Transformation ... 275

3. CPN Model of Case Studies .. 280

a. Enterprise Customer Commerce System (ECCS) .. 281

b. Automated Teller Machine (ATM) ... 282

c. Edit Trend Properties ... 287

d. Delete Trend Properties ... 291

APPENDIX B. MUTANT MODEL GENERATION.. 293

1. Mutant Operator Templates .. 294

2. Coverage analysis of ATM test suite .. 306

 XIII

List of Figures

Figure 1-1: The high level depiction of test generation and optimization process

underlying the IFMBTGO framework ... 30

Figure 1-2: Detailed sketch of the IFMBTGO Framework ... 31

Figure 2-1: Model-based testing workflow (adapted from [Utting and Legeard 2006]) .. 38

Figure 2-2: Taxonomical overview of model-based testing [taken from [Utting,

Pretschner and Legeard 2006]] .. 40

Figure 2-3: Fault proportion according to the source phase [adapted from [Rice 2010]] 42

Figure 2-4: Activity diagram (taken from [Systems 2008]) .. 47

Figure 2-5: Sequence diagram (taken from [Systems 2008]) .. 49

Figure 2-6: State machine diagram (taken from [Systems 2008]) 51

Figure 2-7: Greedy Algorithm Pseudo Code .. 65

Figure 2-8: Hill Climbing Pseudo Code .. 66

Figure 2-7: Pseudo code of an evolutionary computation algorithm 68

Figure 2-10: Elitist selection .. 76

Figure 2-11: Random selection .. 76

Figure 2-12: Roulette-wheel selection .. 76

Figure 2-13: Rank selection ... 76

Figure 2-14: Rank selection (truncation=5) ... 76

Figure 2-15: Tournament selection (k=2) .. 76

Figure 2-16: Tournament selection (k=5) .. 76

Figure 2-17: Tournament selection (k=6) .. 76

Figure 2-18: The example of the metric in the case of two objective functions and

 with 7 decision vectors for a minimization problem. [INRIA 2010] 89

Figure 3-1: Activity Diagram Behavioral Artifacts ... 102

Figure 3-2: Activity Diagram Control Artifacts... 104

 XIV

Figure 3-3: Object and Partition Notations ... 105

Figure 3-4: Activity Edge Notations .. 105

Figure 3-5: Enterprise Customer Commerce System [Koehler, Hauser, Sendall and

Wahler 2005] ... 106

Figure 3-6: Automated Teller Machine Activity Diagram ... 109

Figure 3-7: Sub-process Deposit ... 110

Figure 3-8: Sub-process Check Balance .. 111

Figure 3-9: Transfer Funds Sub-process .. 112

Figure 3-10: Withdraw Cash Sub-process ... 113

Figure 3-11: Edit Trend Properties (ETP) .. 115

Figure 3-12: Show Trend Properties Dialog .. 116

Figure 3-13: Load Trend Template .. 117

Figure 3-14: Reset Cursor .. 117

Figure 3-15: On Cursor .. 118

Figure 3-16: Add to Graph .. 118

Figure 3-17: Load Items .. 119

Figure 3-18: Delete Trend Properties ... 120

Figure 3-19: Remove Trend Properties ... 120

Figure 3-20: Load Trend Properties .. 121

Figure 3-21: Iterate Through Data .. 121

Figure 3-22: Force Remove Trend Properties ... 122

Figure 3-23: CPN meta-model adapted from [Hillah et al. 2006] 131

Figure 3-24: AD meta-model (Adapted from [OMG 2005]) .. 132

Figure 3-25: Scenarios of Place and Transition Fusion (taken from [Khadka 2007]) 136

Figure 3-26: AD to CPN Transformation Methodology ... 137

Figure 3-27: Example Activity Diagram ... 138

Figure 3-28: Ambiguous control flow behavior .. 140

Figure 3-29: Node simplification ... 141

Figure 3-30: Illustration of refinement strategy ... 141

 XV

Figure 3-31: ECCS Model (after refinement) ... 143

Figure 3-32: Transformation rule for Action to transition .. 144

Figure 3-33: Transformation rule for Call-behavior action ... 144

Figure 3-34: Transformation rule for Send-Signal action .. 144

Figure 3-35: Transformation rule for Accept-Event action ... 144

Figure 3-36: Transformation rule for Time-Event Action .. 144

Figure 3-37: Transformation rule for Initial node ... 145

Figure 3-38: Transformation rule for FlowFinal node ... 145

Figure 3-39: Transformation rule for ActivityFinal node ... 145

Figure 3-40: Transformation rule for Decision node ... 146

Figure 3-41: Transformation rule for Merge node .. 146

Figure 3-42: Transformation rule for Fork node ... 146

Figure 3-43: Transformation rule for Fork node ... 146

Figure 3-44: Production rules for control flow edge ... 146

Figure 3-45: XSLT -based AD to CPN model transformation ... 149

Figure 3-46: Data Binding, color type and initial marking ... 150

Figure 3-47: Guard Inscription on arc .. 150

Figure 4-1: Three steps in an AD-based test sequence generation 156

Figure 4-2: Pseudo Code for the Random-Walk Algorithm for TSG which is adapted from

[Pelánek, Hanžl, Černá and Brim 2005]. ... 161

Figure 4-3: Instruction Level Parallelism (taken from [Hughes and Hughes 2003]) 165

Figure 4-4: Model-based Mutation Analysis ... 167

Figure 4-5: Deadlock bug, Action1 in tread1 is waiting for Object2 whereas Action2 in

thread2 is waiting for Object3 .. 172

Figure 4-6: Livelock bug, thread-1 which contains Action1 gets blocked if Action2

executes before Action1... 173

Figure 4-7: Race condition, the final value of Y is dependent on the execution order of

the Actions A1, A2 and A3 .. 173

Figure 4-8: Faulty interleaving, execution of thread-1 get stuck in at least one scenario

 .. 174

 XVI

Figure 4-9: Blocking Thread Bug, according to AD semantic Join waits until tokens are

available on all inputs .. 174

Figure 4-10: Coverage analysis of test suites generated for case study models with

respect to branch coverage criterion ... 178

Figure 4-11: ECCS model - Extra Outflow live mutant .. 184

Figure 4-12: ECCS model - Extra Outflow live mutant .. 184

Figure 5-1: Offline performance analysis (reduction percentage) of EC with various

population and mutation profiles for six test suites (three DTP and three ATM) 201

Figure 5-2: Maximum number of generations for different test suite problems was

determined empirically such that the algorithm can have ample opportunity to explore the

search space before stopping. ... 202

Figure 5-3: Box-plot for test suite reduction with respect to different algorithms (the

outliers are shown by the size of the test suite, e.g. 41 is a test suite size associated with the ETP

– see Table 5-2) .. 206

Figure 5-4: Mean reduction for five versions of test suites. See the variation in mean

reduction due to reshuffling of test suite causing the rearrangement of test cases. 210

Figure 5-5: Graphs of estimated marginal means of reduction percentage with HCRA

algorithm depict the difference in performance due to test suite shuffling. 213

Figure 5-6: Graphs of estimated marginal means of reduction percentage with HCNA

algorithm show the difference in performance due to test suite shuffling. 213

Figure 5-7: Graphs of estimated marginal means of reduction percentage with EC

algorithm show the difference in performance due to test suite shuffling. 214

Figure 5-8: Graphs of estimated marginal means of reduction percentage with GD

algorithm show the difference in performance due to test suite shuffling. 214

Figure 5-9: Two different neighborhood one-step mutation strategies, (a) Kauffman's

adjacent neighborhood (N=8, K=2), (b) Kauffman's random neighborhood (N=8, K=2). [Back,

Fogel and Michalewicz 1997] ... 218

Figure 5-11: Neighborhood Random Walk Pseudo Code (adapted from [Kauffman 1993])

 ... 220

Figure 5-11: Effect of test suite shuffling w.r.t. fitness distance correlation 222

 XVII

Figure 5-13: Summary view of fitness landscape of TS minimization and other

optimization problems on fitness distance correlation scale. Horizontal position is for grouping at

that correlation level. Adapted from [Jones and Forrest 1995]. ... 224

Figure 6-1: ECCS model with usage profile.. 233

Figure 6-2: Minimization of ECCS-20 test suite with 2-objectives; Data points labeled

with capital letters are NSGA-II results and small letter are related to the Pareto-front produced

by NPGA2. ... 239

Figure 6-3: 3D scatter plot of ECCS-20 test suite minimization with 3-objectives. A

combination of higher coverage, smaller size and more weight indicate a better trade-off

solution. .. 240

Figure 6-4: ECCS-20 test suite minimization with 3-objectives viz. weight of a test suite

w.r.t. a usage profile, coverage as AD-based branch coverage and size as number of test cases in

a test suite on Matrix scatter plot. ... 241

Figure 6-5: Effects of test suite size on test suite minimization with 2-objectives 243

Figure 6-6: Effects of test suite size on test suite minimization with 3-objectives on 3D

scatter plot ... 244

Figure 6-7: Effects of test suite size on test suite minimization with 3-objectives on

Matrix scatter plot .. 244

Figure 6-8: Illustration of test suite size effect on Pareto front with ONVGR measure .. 246

Figure 6-9: Illustration of test suite size effect on Pareto front with ER measure 247

Figure 6-10: Performances of algorithms with 2-objectives ... 250

Figure 6-11: Performance of algorithms with 3-objectives ... 250

Figure A-1: ECCS CPN model.. 281

Figure A-2: ATM CPN model .. 282

Figure A-3: Check balance ... 283

Figure A-4: Deposit cash .. 284

Figure A-5: Transfer funds ... 285

Figure A-6: Withdraw cash .. 286

Figure A-7: ETP CPN model .. 287

Figure A-8: ShowTPDialog ... 287

Figure A-9: LoadTT ... 288

 XVII

Figure A-10: ResetCursor .. 288

Figure A-11: OnCursor .. 289

Figure A-12: AddItems .. 289

Figure A-13: LoadItems ... 290

Figure A-14: addToGraph .. 290

Figure A-15: Delete Trend Properties CPN model .. 291

Figure A-16: Remove trend properties ... 291

Figure A-17: Load trend properties ... 292

Figure A-18: Force remove trend properties .. 292

 XIX

List of Tables

Table 2-1: Relative cost of fault detection and repair at different project phases

[adapted from [Perry 2006]]. ... 42

Table 2-2: UML and Software Testing [adapted from [Williams 1999]] 45

Table 2-3: Coverage Criteria based on Graph Structure ... 56

Table 2-4: Coverage Criteria based on Sequence Diagram (adapted from [McQuillan and

Power 2005]) .. 57

Table 2-5: Coverage Criteria based on State Machine Diagrams (adapted from

[McQuillan and Power 2005]) .. 58

Table 2-6: Coverage Criteria based on Activity Diagram (adapted from [McQuillan and

Power 2005]) .. 60

Table 2-7: Main features of Evolutionary Algorithms [Back and Schwefel 1993] 69

Table 2-8: Taxonomical overview of test optimization techniques 92

Table 3-1: Summary of the key characteristics of case study models 122

Table 3-2: Orthogonal dimensions of model transformations (taken from [Mens et al.

2006]) ... 124

Table 3-3: Comparison of existing work to the define formal semantic for AD.............. 129

Table 3-4: A Summary of token game semantic for AD2 .. 133

Table 3-5: Mapping between AD and CPN nodes with token game semantic of CPN 134

Table 3-6: Ambiguous behavior .. 142

Table 4-1: CPN nodes with corresponding AD nodes in brackets and observing token-

game semantic ... 159

Table 4-2: AD Mutation Operators .. 176

Table 4-3: Summary of mutants generated for each of the four case study models 178

Table 4-4: Summary of the test suite generated for ECCS, ETP and DTP models 180

Table 4-5: Evaluation of the ECCS test suite with interleaving node and interleaving edge

coverage criteria ... 182

 XX

Table 4-6: Synthesis of mutation analysis of test suites generated for case study models

 ... 183

Table 5-1: Example test suite with coverage illustration .. 188

Table 5-2: Composition of generated test suites .. 196

Table 5-3: Bounds on the population size in EC for test suite minimization based on

Alander's empirical study [Alander 1992] .. 200

Table 5-4: Summary of parametric settings used for EC in the experiment................... 200

Table 5-5: Paired Sample t-test between the Original and Reduced Test Suite 207

Table 5-6: Composition of minimized test suites (minimized using EC algorithm) versus

original test suites .. 207

Table 5-7: Pearson Correlation Matrix among TS Sizes and TS Reductions w.r.t. algorithm

 ... 209

Table 5-8: Summary of ANOVA ... 211

Table 5-9: Tukey’s HSD comparison between algorithms for test suite reduction 211

Table 5-10: Summary of results for fitness landscape of five versions of selected test

suites .. 223

Table 6-1: Composition of generated test suites .. 235

Table 6-2: Paired Sample t-test between the original test suite size SizeO and the reduced

test suite size SizeR. .. 238

Table 6-3: Independent Sample t-test between the Pareto front size with 2 & 3 objects

test suite minimization. ... 240

Table 6-4: Tukey HSD pairwise comparison between Test Suites in terms of ONVGR to

reference Pf .. 248

Table B-1: Coverage analysis of ATM test suite .. 307

 XXI

List of Acronyms

UML Unified Modeling Language

AD Activity Diagram

SD Sequence Diagram

SM State Machine

CPN Colored Petri Nets

FSM Finite State Machine

SDL Specification and Description Language

EC Evolutionary Computation

GA Genetic Algorithm

ES Evolutionary Strategies

EP Evolutionary Programming

MOEA Multi-Objective EC Algorithm(s)

NPGA Niched Pareto Genetic Algorithm

NSGA Non-Dominated Sorting Genetic Algorithm

SPEA Strength Pareto Evolutionary Algorithm

PAES Pareto Archived Evolutionary Strategy

VEGA Vector Evaluated Genetic Algorithm

HCSA Steepest Ascent Hill Climbing (Algorithm)

HCNA Next Ascent Hill Climbing (Algorithm)

HCRA Random Ascent Hill Climbing (Algorithm)

GD Greedy (Algorithm)

ONVGR Overall Non-dominated Vector Generation Ratio (metric)

ER Error Ratio (metric)

S Space (metric)

SDLC Software Development Life Cycle

CASE Computer Aided Software Engineering

MDE Model Driven Engineering

MDA Model Driven Architecture

CIM Computational Independent Model

PIM Platform Independent Model

PSM Platform Specific Model

CWM Common Warehouse Metamodel

XMI XML Metamodel Interchange

XSLT eXtensible Stylesheet Language Transformation

MOF QVT Meta Object Facility Query/View/Transformation

 XXII

MBT Model Based Testing

TTCN Testing and Test Control Notation

SUT Software Under Test

ECCS Enterprise Customer Commerce System

ATM Automated Teller Machine

ETP Edit Trend Properties

DTP Delete Trend Properties

RW Random Walk (Algorithm)

MCDC Modified Condition/Decision Coverage

TSM Test Suite Minimization

TCS Test Case Selection

TCP Test Case Prioritization

 23

Chapter 1 Introduction

Testing, like in other manufacturing and engineering processes, is an integral part of the

software development process. Generally, it consumes thirty to fifty percent of the software

development budget, resources and time [Beizer 1990; 1979]. Furthermore, in case of life and

safety critical systems, it accounts for an even significantly higher percentage. Although testing is

critical for controlling software quality, it is often largely neglected or is performed inefficiently

[Beizer 1990; Butler 2004]. As software is getting ubiquitous, there is an increased dependence

upon the features and services provided by software. Ironically, software systems are far too

often failing due to anomalies and defects, thereby causing severe problems and damages,

costing lives, reputations and fortunes. In 2005, Toyota had to recall 160,000 of its hybrid Prius

cars due to faults in its embedded software [Garfinkel 2005]. In another incident, the lack of a

robust testing procedure contributed to the death of five patients and injuries to others by a

radiation therapy device [Huckle 2005]. A 2002 study conducted by the National Institute of

Standards and Technology reported that software bugs cost the USA’s economy around $59.5

billion annually and, more than a third of that cost - about $22.2 billion, was caused by

ineffective testing [Tassey 2002]. The report further concluded that the lack of rigorous and

robust testing during and after software development usually contributed to its failure. The

problem is universally persistent in software projects irrespective of its geographical location,

scale and type of software and developing organization [Tan 2009]. Software projects often

running under pressure of limited time and budget, are prone to compromises in the testing

effort and program quality. Furthermore, poor program quality can generally be ascribed to

inadequate and ineffective testing owing to a broad reluctance to accept robust techniques that

may be highly expensive and lacking direct and obvious value for the project (or to their

customers).

Software testing remains a tedious, complex and error-prone process as a consequence of

the latest tools and technologies perpetually trying to match the ever growing size, functionality,

complexity and heterogeneity of software systems. The capability for delivering high quality

software under competitive pressure and tight schedules has become the strategic factor for

software organizations. Spending too much time or money on unnecessary testing can possibly

 24

result in late delivery and wastage of resources. On the other hand, premature software release

with inadequate testing to meet deadlines, or to cut costs and minimize effort, may lead to

accidents, injuries, and loss of time or data due to undetected faults. Software organizations,

similar to the challenges faced in other industries, face an ongoing struggle between the aim for

higher quality production and the desire to reduce both costs and time-to-market (release cycle)

[El-Far and Whittaker 2002]. Testing always needs a significant investment in terms of both time

and effort. To remain competitive in the software business, organizations need to improve their

testing activities resulting in higher productivity (performance) and better value.

1.1 Motivation

Exhaustive testing is impractical and infeasible due to the infinite number or

combinations of inputs or paths even in the case of a small software program [Beizer 1990;

Binder 1999; Myers 1979]. One of the approaches in addressing this problem is the selection of

an adequate set of effective test cases according to a given test criteria. However, as testing is

often performed under limited time and resource constraints in practice, the questions of the

amount of testing that is adequate, or when testing should stop is raised. One option is to stop

testing when time or resources run out [Pressman 2001]. However, as this approach does not

ensure the effective and efficient use of time and resources, it has several implications. For

instance, a critical module could not be tested as the allocated testing time has exhausted or too

much time was spent on redundant test cases. Myers [1979] and Kaner [1997] argued that,

owing to limited time and resources, a less but reasonable or ‘good enough’ testing should be

done.

For effective and efficient use of testing resources, several test suite optimization

approaches [Jones et al. 1996; Jones et al. 1998; Michael et al. 2001; Pargas et al. 1999; Tracey

et al. 1998; Tracey et al. 1998] have been proposed. Generally, these approaches can be

classified into two categories viz, the optimal test suite generation [Shiba et al. 2004; Sthamer

1996; Wegener et al. 2001] and the optimization of pre-generated test suites [Elbaum et al.

2001; Jones and Harrold 2003; Offutt et al. 1995; Rothermel et al. 2001]. In the former case,

given the fact that exhaustive testing is infeasible, the focus is to generate an adequate set of

test cases according to some given criteria, whereas in the latter case, the focus is on enhancing

the efficiency and/or effectiveness of a pre-generated test suite. This is done by prioritizing or

selecting a subset of test cases based on information (e.g. usage profile, complexity or risk)

collected during the analysis, design or previous execution of the system as selection,

prioritization or reduction criteria. Both types of techniques can be further categorized into

 25

code-based and model-based optimization techniques. Code-based techniques derive test cases

using source code based information. Whereas, model-based techniques rely on models of a

system under test for test suite reduction, test case selection or prioritization.

Optimization of test suites with model-based techniques is relatively inexpensive in

comparison to code-based techniques [Bogdan et al. 2005]. Bogdan et al. [2005] argued that the

execution of a system model is cheaper than full system execution, and therefore, the smaller

optimization overhead of model-based techniques makes it more feasible than the code-base

techniques. Another recent study [Bogdan and Koutsogiannakis 2009] found that the model-

based prioritization techniques (a form of test suite optimization) are even more effective in

fault detection than the code-based prioritization techniques.

Model based testing (MBT) has been advocated for its several advantages including the

potential for decreasing the cost by reusing and sharing the model artifacts, scaling up the

testing process to large and complex systems, and the capability to accommodate the change

with minimum cost and effort [El-Far 2001; Utting and Legeard 2006]. Incorporating models in

the development process enables the use of various verification and validation techniques such

as simulation, testing and formal analysis to ensure the correctness of the software. Late fault

detection and correction is expensive and time-consuming. In conventional code-based

techniques, testing starts after the coding phase which not only misses the requirement and

design defects but also increases the cost. MBT allows testing to start earlier in the development

process, thereby enabling faults to be detected sooner and fixed for cheaper. Test generation is

the most expensive and crucial activity in the testing process. In MBT, the underlying formal

structure of a modeling technique facilitates automation of the test generation process making it

quicker and simpler to generate test cases according to the given criteria. Several academic and

commercial MBT tools are already available [Utting and Legeard 2007]. Furthermore,

considerable research and industrial experiences have confirmed the success and benefits of

MBT [Bogdan and Koutsogiannakis 2009; Bouquet and Legeard 2003; Briand et al. 2004; Dias

Neto and Travassos 2009; Farchi et al. 2002; Florin 2008; Jonas 2008; Kansomkeat et al. 2008;

Pedro et al. 2008; Pretschner et al. 2005; Stobie 2005].

Several studies have also shown [Jones, Eyres and Sthamer 1998; Li et al. 2007; McMinn et

al. 2006; Wegener et al. 1997; Yoo and Harman 2007] that incorporating optimization

techniques in the testing process can significantly enhance the efficiency of a test suite without

compromising its fault detection capability. Optimization is referred to as the process of finding

the best solution from the set of available values under a given objective. According to Corne et

al. [1999], an optimization problem is a class of problems for which there exist a number of

 26

different possible solutions with respect to some quality criteria. Mathematically, the

optimization problem can be defined as a function for finding the minimum or maximum

possible value. Some types of optimization problems are simple to solve, e.g. a problem with few

candidate solutions will have a small solution space which can be searched exhaustively and

where the best solution can be revealed in a reasonable amount of time. However, not all

optimization problems are easy to solve as the search space is so large that an exhaustive search

of all possible solutions is practically impossible. Such problems are formally classified as NP-

hard, which means that there is no algorithm that can solve them in polynomial time. Since it is

unlikely that there exists any exact algorithm that can solve these computationally hard

problems in a feasible time space, one approach is to take the constrained version of a problem

and then obtain the optimal solution using an exact algorithm. Another approach is to solve the

original problem using an approximation algorithm, also known as a heuristic algorithm, in a

significantly reduced amount of time, however at the cost of a guarantee of finding the actual

optimal solution. Nevertheless, several studies [Aguilar 2001; Dorigo and Gambardella 1996;

Goldberg and Samtani 1986; Grefenstette et al. 1985; Prins 2004] have shown that these

heuristic techniques can find the optimal solution for such NP-hard problems in finite

(reasonable) time, if they have been customized or tailored to the problem.

Metaheuristic techniques are a class of Artificial Intelligence (AI) techniques which are

used to find near-optimal solutions with the help of a particular cost (or objective) function.

They are generally considered suitable for dealing with very large search spaces and non-linear

constraints. They are also adaptable and powerful, with the ability to obtain good solutions for

many extremely difficult problems. Their flexibility is due to the fact that the search is simply

directed by a cost function, and very little other problem specific knowledge is required [Corne,

Glover and Dorigo 1999]. The successful application of metaheuristic techniques in many

engineering, business, science and management areas showed that they are capable of

producing near-optimal solutions for problems that are computationally hard to solve exactly in

polynomial time.

Evolutionary Computation (EC) is a metaheuristic technique which is inspired by the

evolution process and characterized as Genetic Algorithms (GA) by Holland [1992] and

Evolutionary Strategies (ES) by Rechenburg [1973]. Evolution by natural selection has proven to

be an effective search process and has successfully been applied to various research and

application fields such as combinatorial optimization, planning and scheduling, industrial design,

machine learning and pattern recognition. The potential of Evolutionary Computing (EC) in the

realm of Software Engineering has been investigated for software testing [Jones, Eyres and

 27

Sthamer 1996; Lakhotia et al. 2007; Li, Harman and Hierons 2007; McMinn 2004; McMinn,

Harman, Binkley and Tonella 2006; Michael et al. 1997; Patton et al. 2003; Roper 1996; Watkins

1995; Zhan and Clark 2005], next release problem [Zhang et al. 2007], optimal service

composition and deployment [Yves et al. 2008] and software understanding [Reynolds et al.

1994].

1.2 Aims and objectives of this thesis

In general, the aim of test suite optimization is to find one or more minimized or

prioritized combinations of test cases in such a way that by selecting and executing one of them

will either reduce the testing time and cost without compromising the required coverage level of

test requirements (i.e. mutation score and branch coverage) or increase the rate of test

requirement fulfillment (i.e. fault detection rate). In order to determine a credible and valid

measure of counteracting the test suite optimization problem, and taking into account the

characteristics of metaheuristic techniques, the overall objective of the study was to investigate

the potential application of metaheuristic techniques into model-based test suite optimization.

This involved exploring solutions for problems, developing specific tools and empirically

analyzing them. The objectives of this thesis are as follows:

1) Develop an automatic transformation of a UML behavioral model into an equivalent

and valid executable model.

The key advantage of model-based testing over other testing methodologies is the fact

that model execution is cheaper than full software system execution. Although, Unified

Modeling Language (UML) has become the lingua franca for software modeling in

academia and industry, the models developed in it are not executable. The first and

foremost objective is to develop an automatic mechanism for transforming a UML

behavioral model into an equivalent and valid executable model.

2) Develop an automatic model-based test generation and evaluation technique.

Software requirements and design methodologies have seen major changes in the last

two decades due to the high cost and impact of the errors introduced at these stages.

UML provides several visual modeling formalisms (languages) for capturing

requirements and intended behavioral depiction. These visual languages are very

attractive and user-friendly. Moreover, they enable the generation of complete,

consistent, and unambiguous specifications of system behavior that can be used for the

test generation purpose. One of the main requirements of the model-based testing is

the ability to directly and automatically generate test suites from software models.

 28

Another essential and pertinent requirement is to determine the adequacy of a

generated test suite. Therefore, it is important to investigate and develop test

generation techniques and evaluation/adequacy criteria for the selected modeling

formalism.

3) Investigate the application of metaheuristic in model-based test suite optimization.

The key to the application of metaheuristic techniques to a problem is to formulate it as

a searchable problem, which means that an appropriate solution representation and a

cost or fitness function relative to the desired objective or criterion need to be defined.

The heuristic seeks a ‘better’ solution according to the cost/fitness function through the

search space, which represents the set of all possible solutions. Therefore, suitable

representation and good cost/fitness functions are critical to the success of the search.

Although, metaheuristic techniques are generally considered generic techniques and

can find the optimal solution without needing much domain specific information, they

usually need adaptation for better performance. Therefore, in order to apply

metaheuristic techniques to model-based test suite minimization, it is important to cast

the test suite minimization first as an optimization problem and then to adapt the

selected heuristic strategies.

4) Investigate the multi-objective model-based test suite optimization using

metaheuristic.

The last but equally important objective to model-based test suite optimization1 is to

incorporate multiple criteria into the optimization process. The multi-criteria

optimization of model-based test suite is important to testing for practical reasons. In

optimization, solutions are considered good or bad according to the given criterion.

However practical optimization problems often involve more than one criterion or

factor and no one solution can be rendered optimal according to multiple criteria. As

mentioned earlier, a tester may need to consider multiple factors in testing in order to

perform effective and efficient testing. In this scenario, finding the optimal test suite

according to all of the required factors is more appropriate than finding an optimum for

each of the factors separately.

1 Throughout the thesis, the term minimization is interchangeably used with optimization and whenever
the term test suite optimization is used it means test suite minimization except where other usages are
stated explicitly.

 29

1.3 Contribution of this thesis

The central insight in driving this study is the fact that model-based test suite optimization

has several merits. These include such things as cheaper model execution as opposed to whole

system execution, earlier availability of models in the software development process which

eliminates the need to wait for the completion of coding, as well as early fault detection of the

separate models, value adding to the testing process through linking of tests to requirements

and the convenience of being able to incorporate multiple factors (i.e. usage and risk

information) into the optimization process [Bogdan et al. 2007; Bogdan and Koutsogiannakis

2009; Jonas 2008]. As the purpose of the study is to investigate the application of metaheuristic

techniques in model-based test suite optimization, a framework for UML-based test suite

optimization is developed and demonstrated with an Activity Diagram (one of the UML modeling

formalisms) and an Evolutionary Computation. The incorporation of metaheuristic techniques in

test suite optimization will lead to more effective and efficient testing by finding the near-

optimal combination or arrangement of test cases. Given the fact that test suite optimization is a

computationally difficult problem [Harman and Jones 2001; Harrold et al. 1993; Rothermel and

Harrold 1993], the typical analytic techniques are not always viable, as these techniques cannot

always successfully find the optimal solution under limited available resources and timeframes.

Hence, the general aim is to integrate the automated model-based test generation techniques

and optimization techniques in a framework so that the tester or project manager can produce

and use one or more efficient and effective test suites by selecting or prioritizing test cases

according to the value, risk, time and/or budgetary considerations.

Description of the Model-based Test Suite Optimization Framework

The Integrated Framework for Model Based Test Generation and Optimization (IFMBTGO)

framework contains two processes (Figure 1-1). Firstly, a model based test generation which

takes a UML based model as an input and derives test sequences from it, and secondly, an

optimization process for enhancing the efficiency and effectiveness of the generated test suite.

During the test generation process, a UML based behavioral model is explored automatically

with respect to a given test requirement. This enables the tester to record the test sequences

from a design model. The test suite (set of test sequences) is then analyzed in order to decide

whether they are adequate according to the pre-defined evaluation metrics (e.g. node coverage

and mutation score). If this is the case, then it passes the test suite onto the optimization

process, otherwise more test sequences are generated using an alternate model

exploration/execution technique. This process is depicted in Figure 1-2. A number of prototype

 30

tools were developed to demonstrate the vital building blocks of the proposed test suite

optimization framework. Four case study Activity Diagram-based models of various sizes and

complexities were used for empirical study and the various experimental results were

statistically analyzed. The following is a summary of major contributions of this thesis:

Figure 1-1: The high level depiction of test generation and optimization process underlying the IFMBTGO
framework

1) The thesis proposes a model transformation methodology for automatic and seamless

transformation of AD models into Colored Petri Net (CPN) models while addressing the

common sources of ambiguities through transformation and simplification rules [Farooq

et al. 2006]. Modular model transformation of AD has never been performed before and

this thesis particularly addresses modular model transformation of AD models. The

proposed transformation methodology is substantiated by a transformation tool which

takes the AD models of case studies in XMI format as shown in Figure 1-2 and produces

the equivalent CPN model also in a valid XML according to the CPN Tools schema

[Jensen 1997]. The significance of AD into CPN transformation is that it will enable the

static and dynamic analysis (i.e. state space and simulation) of a model depicted in AD.

2) Generating test cases from a model of the software system is a key task in model-based

testing. A number of AD-based verification and validation techniques have been

reported in the literature (for detail about these techniques see the Chapter 2 and 4).

However, due to the significant changes in AD2 (version 2.x) as compared to AD1

 31

(version 1.x), most of the existing AD-based testing techniques have been outdated. A

novel automated technique is proposed in the thesis to devise test sequences from an

AD model by executing its CPN version according to the given test requirements. The AD

based TSG is significant due to the fact that AD has wide application scope, ranging from

high level business processes and distributed system modeling to low-level embedded

systems modeling.

Figure 1-2: Detailed sketch of the IFMBTGO Framework

Generally, coverage analysis is performed in order to determine the adequacy of the

test suite according to some given criteria. Similar to code-based testing, the test suite

in MBT is also generated with the aim of providing maximum coverage of the system

under test [Utting 2005]. However, during the test case generation process the model-

based coverage adequacy metric is used according to the source model. In the

literature, a large number of coverage criteria have been suggested for model-based

testing. However, most of them are not applicable to AD models. This study developed

two classes of coverage metrics specifically for AD based test suite evaluation, namely

sequential and concurrent coverage criteria. The two proposed coverage metrics will

 32

allow the systematic analysis of the coverage information for AD-based test suites and

for assessing its adequacy according to a given coverage criterion.

Mutation analysis is a promising testing technique, and empirical studies have already

confirmed its effectiveness in gaining the confidence in the correctness of the program

as well as the adequacy of the test suite. In this thesis, the mutation analysis for AD-

based behavioral models and test suite adequacy is proposed. The contribution of this

work is twofold. Firstly, it defines mutation operators based on the faults patterns

defined in [Farchi et al. 2003; Li et al. 2006] for mutation analysis of the AD models, and

secondly it introduces mutation analysis for the AD-based test suite adequacy. The

significance of this technique at the design level for an AD is that it enhances the

confidence in design correctness by showing the absence of the potential or actual

faults. Moreover, it will provide an automated analysis technique for the AD models that

are often undervalued for their informal semantic and the lack of automated analysis

tools.

A CPN-based model execution and trace recording technique is developed and reported

in [Farooq et al. 2008]. The test suites are generated from the case studies models using

the algorithm and evaluated with the proposed coverage metrics and mutation analysis

for adequacy as shown in the Figure 1-2. If a generated test suite is found adequate, it is

passed onto the next phase otherwise, more test cases are generated.

3) Kaner et al. [1993] argued that ‘good test cases’ need to be unique and non-redundant

in order to avoid the wastage of resources and time. A novel metaheuristic-based,

model-based test suite minimization technique is proposed and demonstrated with four

types of metaheuristic techniques. In order to study the comparative performance of

the heuristic techniques and other factors on test suite reduction, an empirical study

was performed and results were partly reported in [Farooq and Lam 2009].

4) Most of the real-world optimization problems involve more than one decision

parameter, and often the good tradeoffs are searched for, in competing constraints. For

these types of problems, more than one equally good solution usually exists. Choosing

the best one always depends upon the application context. Therefore, in typical multi-

objective optimization problems, all of the possible solutions represent some sort of

trade-off relationship between the objectives. A novel Evolutionary Computation (EC)

based multiobjective optimization approach is proposed to incorporate multiple criteria

into model-based test suite optimization. The approach is flexible and can be extended

 33

to other modeling languages and can incorporate more objectives. Furthermore, it

shows that the convenience of being able to incorporate various types of information,

i.e. requirements and usage profile in the optimization process, gives model-based

techniques an extra advantage, which may enable multi-objective test suite

optimization without sacrificing the integrity and thoroughness of the test suite.

1.4 Structure of the Thesis

The subsequent chapters of this thesis are:

Chapter 2 —Literature Review. This chapter provides the background information for the

thesis. It examines the model-based testing, modeling techniques, model-based test generation

and evaluation criteria. It also reviews the evolutionary computation, important algorithms and

basic building blocks of the technique. Finally, it reviews the search-based testing and shows

how metaheuristic techniques have been applied in test suite optimization.

Chapter 3 —Model transformation: This chapter firstly introduces the case study models

and then showcases the common issues related to the ambiguities in the AD models. It presents

the transformation rules between AD and CPN and subsequently shows how an AD model can

be transformed into CPN model.

Chapter 4 —Model-based testing: In this chapter, a model-based test sequence

generation algorithm is presented in order to derive test suites from the case study models

introduced in Chapter 3. Two classes of coverage criteria and mutation analysis are also

presented.

Chapter 5 —Test suite optimization: This chapter shows the test suite minimization

problem as an optimization problem and reformulates it as the well-known knapsack problem.

This involves using an evolutionary computation technique followed by comparisons with other

types of heuristic algorithms. The heuristic-based optimization is shown to apply to various test

suites of different sizes and composition. A fitness landscape analysis is performed on the test

suite minimization problem in order to characterize its fitness landscape. Furthermore, it

presents the parametric recommendations for the evolutionary computation with regards to the

test suite minimization problem.

Chapter 6 —Multiobjective test suite optimization: Multiobjective optimization problems

are often cited as difficult but natural to practical problems. This chapter shows how multiple

criteria can be incorporated into model-based test suite minimization which can then be

formulated as a multiobjective optimization problem and resolved through multiobjective

evolutionary computation algorithms.

 34

Chapter 7 —Conclusions: This chapter concludes the thesis research, examines the

achievements and limitations of the research reported in this thesis and identifies directions for

future research.

Appendix A — Supporting Material: This section contains the CPN-models of the case

study models and AD to CPN transofrmation templates.

Appendix B — Supporting Material: This section contains the templates of the mutant

operators for the generation of mutant models.

 35

Chapter 2 Literature Review

This chapter reviews the work related to automated model-based software testing

through search based techniques. The aim of software engineering is to build and maintain high

quality software products with effective and efficient development processes. Typically,

software projects are constrained by limited time and resources. Therefore, a trade-off is

inevitable for testing process according to a given test objective. Given the fact that testing is the

most expensive and laborious activity in software development life cycle (SDLC), it is necessary

to determine the most efficient use of the test budget. Selecting a small yet adequate subset of

test cases according to a given objective could potentially save test resources and improve the

efficiency. The optimization of testing is based on the premise that effective and efficient testing

can not only meet the test objectives but also save the cost of testing.

2.1 Model driven engineering

Model Driven Engineering (MDE) is an emerging software development approach that

relies on abstraction and automation in order to achieve several significant benefits including

reduction in development and maintenance cost, improvement in software quality and support

for controlled evolution of the software. Studies indicate that MDE not only reduces the

potential faults in the system by 80% but also enhances the productivity by the factor of four

[Selic 2008]. MDE has been applied to many software domains, such as real-time and embedded

systems, telecommunication systems, and, more recently, to the development and integration

of enterprise information systems. MDE is a model-centric development approach where models

are used to specify, develop, analyze, verify and manage the software system at a higher level of

abstraction than the traditional development approaches.

Modeling is essential for dealing with the complexity and enormity of real-world systems.

The Model-Driven Architecture (MDA) is a multi-tier modeling approach fostered by the Object

Management Group (OMG) for addressing the complexity of the software development and

maintenance process. A common way of development using MDA is by describing the situation

of interest in the world, i.e. business process or workflow as a conceptual model formally known

 36

as Computational Independent Model (CIM). This is followed by the definition of a solution

model also known as Platform Independent Model (PIM) for the software to specify its content,

structure and behavior under the assumption of an ideal computing platform. Using model

transformation, one or more implementation models (a.k.a. platform-specific models (PSMs))

considering all the computing platform specific constraints and limitations are obtained from the

PIM. In this context, CIMs are a conceptual representation of the domain using the vocabulary

that is familiar to the practitioners of the domain, while PIMs are the specification of the

software and PSMs are the implementation model. So in the MDA approach, models are

reusable artifacts that consolidate the software development effort.

One of the main advantages of model-driven development approaches is the provision of

a conceptual structure which defines the mapping between the abstract and detailed models.

The chain relationship between models from higher to lower levels not only allows validating the

implemented system but also enables the automatic transformation of models. Model

transformation is an essential mechanism in MDE for automatic model to model transformation

and to generate other key artifacts such as code and test cases from the design models. The

model-based testing is a promising approach for software testing and is getting popular due to

the inherent advantages of MDE and fault detection effectiveness. The focus of this thesis is

model-based testing and in the following section it is elaborated further.

2.2 Model-based testing

The complexity and ever growing size of software systems has made testing even more

difficult and challenging. Models are easier to develop and analyze than the original system and

therefore are often used for design verification and validation in many engineering disciplines. A

model is a simplified, abstract, conceptual and/or graphical representation of a system (or a

component of a system). It allows the user to visualize, simulate, analyze and gain understanding

about the depicted components of a system and their relationships or their behavior.

According to the McGraw-Hill Dictionary of Scientific & Technical Terms, a model is “a

mathematical or physical system, obeying certain specified conditions, whose behaviour is used

to understand a physical, biological, or social system to which it is analogous in some way”

[McGraw-Hill 2003]. Another definition in the context of computing is given in the Web

Dictionary of Cybernetics and Systems and it states that a model is

a system that stands for or represents another typically more comprehensive system. A

model consists of a set of objects, described in terms of variables and relations defined on these

and either (a) embodies a theory of that portion of reality which it claims to represent or (b)

 37

corresponds to a portion of reality by virtue of an explicit homomorphism or isomorphism

between the model's parameters and the given Data. [Heylighen 2010]

Generally, a model is used to depict a particular aspect or view of the system. In a

software engineering context, software models depending on the depicted aspect of the system

can be classified into two types, viz. structural and behavioral. Structural models depict the

structural properties of the system i.e. a set of components and relationship between these

components. As they represent the fixed aspects of the system, they are also referred to as

static models. Models that describe the operational or stimulus response characteristics of a

system i.e. state transition or control flow are referred to as behavioral models or dynamic

models. A model needs to be a true but simpler representation of the system. Stachowiak gave a

definition of a model which is more commonly accepted in the scientific community wherein he

described three key properties of a model [Stachowiak 1973]:

 Representation: A model is a representation of something [Stachowiak 1973, page

131].

 Simplification: Abstraction is one of the approaches for handling complexity.

Therefore model should not show all the attributes of the original [Stachowiak

1973, page 132].

 Pragmatic: A model exposes a particular view of the original and fulfils a certain

objective.

One of the objectives of software testing is to detect as many bugs as possible. In order to

achieve this objective, it is necessary for a tester to fully understand the purpose and

functionality of the system under test. With the growing size and complexity of software

systems, it is increasingly hard for a tester to comprehend and test the whole system. Therefore,

Binder [1999, Page 111] suggested that models be used in testing instead by stating that “We

cannot test without first understanding what the implementation under test is supposed to do.

The complexity of software requires development of models to support test design.”

Once the knowledge of a system is understood and captured in a model, it can be used to

test the correctness and conformance of the software [Apfelbaum and Doyle 1997; Dalal et al.

1999; Robinson 1999]. As models typically express the required features and functionalities, they

become the reference points in model-based testing. Therefore, Beizer [1990] noted that the art

of testing involves creating, exploring and revising test models. Models are fundamental to

software testing as testers usually use mental picture about the system to develop test cases

[Binder 1999]. In manual testing, an informal mental model is used to generate test cases;

 38

whereas in model-based testing an explicit model is systematically used to generate test cases

and evaluate the test quality.

2.2.1 Model-based testing workflow

Model-based testing is generally refer to as an approach that leverages the model of a

software under test in key testing activities such as test generation, execution and evaluation.

Automation of such activities is fundamental to the successful application of MBT. Generally, the

model-based testing is defined as a process comprising of the following three main automated

tasks as shown in Figure 2-1.

1. Model development: The first and foremost step of MBT is developing a model of

system under test with sufficient information for testing. As no single model type can

specify all aspects of a system, it is necessary to choose an appropriate model type (e.g.

state-based and control-flow). Usually, there are multiple modeling notations or

languages available for each model type with different express-ability level and tool

support. Several selection criteria such as type of the system under test and the focus of

testing have been suggested as guidelines for choosing an appropriate model type and

notation. For more detail and guidelines on selecting suitable model type, please see [El-

Far and Whittaker 2002; Utting and Legeard 2006].

Figure 2-1: Model-based testing workflow (adapted from [Utting and Legeard 2006])

 39

2. Test generation: Test generation is one of the most complex and tedious activities in the

testing process. In MBT, this issue is addressed through automatic test generation by

leveraging the theoretical background of most of the modeling formalisms. Usually, the

models exist at different levels of abstraction than the software under test, so the task

of model-based test generation is usually performed in two steps.

a. Abstract test case generation: In the first step, abstract test cases are

derived from the model of the system under test according to some given

selection criteria. The abstract test cases also referred as test sequences,

represent the threads of token-flow in the system. The term token flow is

used to abstractly refer to the different types of test sequences such as

control-flow, object-flow and state-flow in the different types of

behavioral models.

b. Concrete test case generation: In the second step, concrete test cases are

generated from the abstract test cases in an executable script format

using a transformation mechanism. There are numerous general purpose

languages (e.g. Java, C#, Python and Perl) and test-specific languages (e.g.

TTCN-3) that have been used for executable test scripts.

3. Test execution and evaluation: Similar to a typical testing process, test scripts are

executed on the system under test and the results are recorded. An important

characteristic of MBT is that the test scripts can be executed online or offline. In the

online mode, they are executed as they are generated and the result is analyzed on-the-

fly and fed back to the test case generation process. Whereas, in the offline mode, the

generated test scripts are executed after all the test cases have been generated and the

results are recorded for analysis separately.

Several types of behavioral models, test generation techniques and test execution

mechanisms associated to model-based testing have been reported in literature. Synthesis of

these works have appeared in [Broy et al. 2005; Neto et al. 2007; Utting and Legeard 2006;

Utting et al. 2006].

 40

Figure 2-2: Taxonomical overview of model-based testing [taken from [Utting, Pretschner and Legeard
2006]]

Utting et al. [2006] argued that model-based testing techniques have some specific

characteristics that can help to understand the strengths and weaknesses of a particular

technique. They defined a classification of model-based testing techniques based on seven

different dimensions as shown in Figure 2-2. Accordingly, the subject of a model (i.e. system,

environment or both) can affect the test suite as system oriented information are used to

generate test cases whereas the environment related information can help to identify the valid

test scenarios. So the subject or focus of the model is one dimension for categorizing the

applications of MBT. Pretschner and Philipps [2005] elaborated four different configurations of

test and development models for model-based testing. Using a common or separate model for

both testing and development indicate the redundancy in modeling. So the level of redundancy

is another dimension to classify the instances of MBT. Non-determinism, temporal constraints,

 41

and the continuous or discrete nature of a model are some of the key characteristics that can be

used to differentiate different MBT techniques or their applications. Several model paradigms

have been defined for describing the system behavior. Statecharts, Z and Petri Nets are some of

the well known examples of Pre-Post, Transition-based and Operational modeling notations

respectively. Similar to conventional code based testing, test selection criteria and technology

are the two main test generation factors to classify MBT techniques. Test selection criteria and

technology are elaborated further in Section 2.2.4 and Section 2.2.5. As model-based test cases

can be executed offline or online, the mode of test execution is another dimension used to

characterize a MBT technique.

2.2.2 Advantages of model-based testing

Modeling is an effective and economical approach for addressing the complexity and

enormity of software systems during their development and maintenance phases. The

incorporation of models in the testing process improves it in a number of ways, including the

earlier fault detection, automation, greater reusability and higher level of coordination between

design and testing activities.

The availability of models in the earlier stages of the SDLC enables the commencement of

testing activities from the earlier stages where the ‘bug fixing’ can have maximum benefits.

Studies have shown that faults are cheaper to fix soon after they occur rather than at later

stages [Perry 2006]. Fault detection effectiveness is critical to any software testing technique. El-

Far and Whittaker studied the use of models in software testing and noted that system

specifications depicted in the form of model are effective for both test case generation and fault

detection [El-Far and Whittaker 2002]. Recent studies in both commercial and academic

environments have also confirmed the fault detection effectiveness of model-based testing

[Jonas 2008; Paradkar 2005; Pretschner, Prenninger, Wagner, Kuhnel, Baumgartner, Sostawa,

Zolch and Stauner 2005; Stobie 2005].

Table 2-1 shows the relative cost of fixing a fault relative to the stage when it was

detected. Unfortunately, requirements and specifications are a major source of software bugs

(see Figure 2-3). Studies have found that in some cases the proportion of such bugs to the

overall detected bugs can be 50% or more [Beizer 1990; Perry 2006]. A more important fact is

that the cost of fixing such faults at the later phases can be up to 100 times more than that at

the analysis stage. Therefore, it is often recommended to start testing activities from the earlier

development stages and to detect faults as they occur. Design flaws are another expensive

 42

source of software bugs (see Figure 2-3). A flawed design or requirement usually results in a

flawed implementation, in which case even the best programming techniques will not mitigate

this problem. Industrial experience has shown that modeling is highly effective in exposing

requirements and design flaws [Research 2010; Stobie 2005].

Fault detection effectiveness is critical to any software testing technique. El-Far and

Whittaker studied the use of models in software testing and noted that system specifications

depicted in the form of model are effective for both test case generation and fault detection [El-

Far and Whittaker 2002]. Recent studies in both commercial and academic environments have

also confirmed the fault detection effectiveness of model-based testing [Jonas 2008; Paradkar

2005; Pretschner, Prenninger, Wagner, Kuhnel, Baumgartner, Sostawa, Zolch and Stauner 2005;

Stobie 2005].

Table 2-1: Relative cost of fault detection and repair at different project phases [adapted from [Perry
2006]].

Phase when fault

occurred

Phase in which fault is detected and fixed

Analysis Design Coding System Test Operation

Analysis 1x 3x 5-10x 25x 75-100x

Design - 1x 10x 10x 30-100x

Coding - - 1x 10x 10-25x

- x is an assumed unit of cost for detecting and repairing fault at a SDLC phase

Figure 2-3: Fault proportion according to the source phase [adapted from [Rice 2010]]

One key feature of using models in software testing is that the test cases can be directly

generated from the model of a system under test using an automated technique. Automated

test generation not only saves cost and time but also reduces the risk of faulty and missing test

27%

7%

10%

56%

Design

Code

Requirements

Others

 43

cases due to human error. Most of the modeling formalisms are amenable to automated test

generation due to their theoretical foundation and mathematical or logical structure.

Furthermore, as model-based testing is code independent and does not require code source to

be examined, it allows the tester to use the same model to generate test cases for any language

of implementation.

Ease of change management in evolving systems, and low maintenance cost are

important features that make MBT a viable approach for iterative and incremental software

development processes. In model driven development, multiple views of a system are

developed and maintained in multiple layers (levels of abstraction) of models. Separate views

emphasize different aspect of the system. This helps in identifying and rectifying the ambiguity

and missing or incomplete information by focusing on specific aspects of the system. The

capture of system knowledge in multiple layers enables automatic tracing between

requirements, test cases and implementation [Bouquet et al. 2005]. Developing models in this

way allows better handling of frequently changing requirements as well. Multiple views and

layers are synchronized or updated by automated model transformation. In evolving systems, as

are most of the real world systems, requirements change often and throughout the program’s

lifespan. Consequently, each change may require the tester to redo the testing activities in order

to update the test suite. Moreover, subsequent bug-fixtures or new features in the product will

require the addition of new test cases or the update of the existing test suite. The cost of

manually regenerating test cases or updating the major part of a test suite can be significant.

With model-based testing, the testing artifacts affected by these changes are simply handled by

updating the model and the new test cases are subsequently regenerated from the updated

model.

Software testing is usually carried out at three levels, namely, unit, integration and

system. At the start, basic system units (i.e. methods, components and modules) are tested to

determine if they work correctly and this activity is referred to as unit testing. At this level,

implementation specific details are usually needed to generate test cases. For example, specific

paths in the module’s control structure are selected to ensure its correctness. Then, integration

testing is performed to ensure that various modules when put together function properly as per

expectation. Mostly, design of the software guides the identification of possible interaction

scenarios of the modules that can be used to ensure the coverage of major control paths. Finally,

system testing is conducted when all modules are integrated and then software is validated in

accordance with the system requirements. Model-based testing can be useful at all levels of

software testing. Assuming that model driven architecture (MDA) is being used in software

 44

development, the models developed at PSM level contain low level detail that can be used to

generate test cases to evaluate the particular part or module of the software. Models at the PIM

level are simpler than the PSM level models. It is easy to identify potential interaction between

modules with PIM level models for integration testing. The CIM level models contain business

and/or system requirements that can be used for deriving systems level test cases. System level

testing is relatively complex and therefore comparatively it is more beneficial by using model-

based testing [Utting and Legeard 2006].

Applying MBT in practice requires well-structured modeling languages as well as scalable

and practical tools for constructing and managing models and for test case generation,

execution and evaluation.

2.2.3 Unified Modeling Language (UML)

A large variety of modeling languages (i.e. decision tables, finite state machines and

variations, Markov chains, Statecharts and Petri Nets) are reported in literature. However, this

review is restricted to UML only for various reasons. The reason for focusing on UML is that it is

a mainstream software modeling language and yields a more natural representation of the

world than any other approach due to its object oriented theoretical foundation. Moreover, it

provides modeling notations for three of the main modeling paradigms (transition-based,

history-based and operation-based as shown in Figure 2-2). UML State Machine, Sequence

Diagram and Activity Diagram support modeling transition-based, history-based and operation-

based behavior of the system respectively.

UML is an industry as well as ISO standard language for modeling software systems

[ISO/IEC 2005; OMG 2007]. It provides a set of modeling languages for specifying, visualizing and

documenting the structure and behavior of a system. The structural modeling formalisms are

used to describe or visualize the static view of the system. The class, component and

deployment diagrams which are classified as structural modeling formalisms focus on data or

object elements and the relationship between them. The Class diagram is used to define classes,

their attributes, operations, and their relationship i.e. inheritance, association and dependency

with other classes. The Component diagram shows the static design of the system or part of the

system using encapsulated classes, interfaces and ports. The behavioral modeling formalisms are

used to specify or visualize the dynamic aspect of the system. The Activity, State Machine, Use

Case and Interaction Diagrams are behavioral modeling formalisms. The Sequence diagram

(subtype of Interaction) is used to express time-oriented message sequencing between objects.

The Activity diagram is devised to visualize the flow-oriented aspects of the system that may

 45

encompass simple sequential, branching, looping and concurrency. The State Machine diagram

is used for specifying the behavior of the system in terms of sequence of states that a system

can pass through during its lifecycle. The Use Case diagram is provided to specify the usage

scenarios and Actors in a system.

2.2.3.1 UML-based testing

In order to generate test cases from a model, it must have complete and correct

information about the system under test. Simple input and output information about methods

of a class can be used to generate a large set of test cases which may be suitable for unit testing.

However, in order to generate complete and effective test cases for functional and system

testing, behavioral models are necessary. Therefore, in MBT, behavioral models are used at the

start in order to determine the valid test scenarios of a system from which the relevant test

cases are then selected. The following table (Table 2-2) describes the suitability of UML diagrams

with the different types of testing. The focus of unit testing is to determine the correctness of a

program unit (i.e. methods, objects and components). The class diagram for a component along

with the control-flow or state-flow information can be used to generate a test suite with

maximum code coverage for the unit under test. The Interaction and class diagrams are suitable

to determine that the integrated components are working as expected. The Use Case, Activity

and State Machine diagrams are particularly suitable for system level testing.

As the focus of this thesis is behavioral testing, only the behavioral types of UML diagrams

are reviewed.

Table 2-2: UML and Software Testing [adapted from [Williams 1999]]

Test Type Coverage Criteria Fault Model UML Diagram

Unit Code correctness, error handling pre
or post conditions, invariants

Class, Activity and
State Diagrams

Function Functional Functional and API behavior,
Integration issues

Class, Interaction,
Activity Diagram

System Operational
Scenarios

workload, contention,
synchronization, recovery

Use Case, Activity,
State Machine,
Interaction Diagrams

Regression Functional Unexpected behavior from
new or changed function

Same as Function

Solution Inter system
communication

Interpretability Problems Use Case, Activity and
Deployment Diagrams

 46

2.2.3.2 Activity Diagram

The Activity Diagram is one of several behavioral diagrams in UML with particular

strengths in modeling the object and control flows aspects of a system [OMG 2007]. It suits the

modeling of both applications and business process systems with a variety of high and low level

notations. In UML2, the AD notations are defined in multiple layers. The provision of high and

low level notations (i.e. StructuredActivity) supports modeling the behavior of a system at

various level of abstraction. One of the key features of the AD is the built-in modeling support

for concurrency and synchronization. It can specify multiple sequences of operations executing

concurrently and control their execution order with built-in fork and join constructs. Moreover,

it may be used to depict various modes of parallel and distributed processing, such as

synchronous or asynchronous execution of some activities.

An AD is a graph of nodes and edges that depicts the behavior of a system with a

sequence of operations. Activity and action are operation nodes that are used to represent the

execution of a statement in a program or the processing of a step in a workflow. Decomposition

of complex operations or reuse of predefined operations can be depicted by subordinate

operation nodes, such as sub or nested activities or invoked actions. The flow of control or

objects through steps of operations indicates the logical paths of execution. The alternate and

concurrent paths can be depicted with branch and fork nodes respectively. The sequential and

synchronous paths can be depicted with merge and join nodes respectively. An operation node

(i.e. Activity or Action) starts executing as soon as tokens are received on each of its inputs. An

AD starts executing when the ActivityInitial node receives a token and stops when the

ActivityFinal node receives a token. The diagram shown in Figure 2-4 illustrates some of the

basic features of an AD. AD based testing focuses on the functional correctness of the system,

and the logical paths in the model manifest the test sequences in order to detect defects like

interface, decision and synchronization errors. The following paragraphs describe three AD-

based test case generation approaches that have been reported in literature.

Andrews, France and Craig [2003] introduced a technique for dynamic analysis of the

software design model comprising of class, activity and interaction diagrams. Their technique

was based on UML 1.4 and involved testing using an executable model. An interesting aspect of

the approach was that the AD was used to generate an executable model for capturing the

behavior of a class and to obtain the interactions between objects from a set of ADs.

Linzhang et al. [2004] proposed a test generation technique to derive test cases directly

from an AD and named it the gray-boxed method due to the fact that it synthesizes the

conventional white-box (path-based) and black-box (category-partition) based test generation

 47

techniques. According to the authors, all information for the test case generation, such as

input/output parameters, conditions and expected method sequence, is extracted from the

implementation model and the final test data (possible values of all the input/output

parameters) is generated through black-box techniques.

Figure 2-4: Activity diagram (taken from [Systems 2008])

Mingsong, Xiaokang and Xuandong [2006] reported a test generation technique that uses

an AD as the design specification. According to the proposed technique, test cases were

generated randomly and then the software under test (SUT) was executed using each of the

generated test cases to obtain the corresponding execution trace. Finally the traces were

 48

evaluated against the design specification and the specified coverage criterion. In order to

obtain the execution traces, the approach involved program instrumentation where probes were

inserted into the code of the software under test.

2.2.3.3 Sequence Diagram (SD)

The Sequence Diagram is one of the interaction diagrams that model the interaction

between cooperating objects [OMG 2007]. An interaction is defined as a set of information

messages that are exchanged or call messages to invoke some operations. A SD is a structured

representation of an inter-object behavior as a series of sequential steps over time. The creation

of objects is shown with lifelines running down the page. The inter-object interactions over time

represented as messages are drawn as arrows from the source lifeline to the target lifeline. The

SD is suitable for depicting which objects communicate with which other objects, and what

messages trigger those communications. However, it is also good for showing the complex

procedural logic. Sequence diagrams can be used as explanatory models for Use Case scenarios

or depicting simple workflow, message passing and general interactions of elements over time

to achieve a result. By creating an Actor and elements involved in the Use Case, a SD depicts the

flow of steps a user and the system undertake to complete the required tasks. The diagram

shown in Figure 2-5 illustrates some of the basic features of the SD.

The focus of SD based testing is on the interaction between collaborating components of a

system. Since a SD captures such interaction through message exchange, message sequences are

recorded to verify that the integration between the components is correct and behaves as

expected. Several researchers have proposed the use of SD in software testing.

Binder [1999] defined a start-to-end message in a SD as a test sequence and presented a

technique to generate test sequences from a SD by transforming it into a control flow graph.

Basanieri and Bertolino [2000] proposed a Use Case and SD based technique to generate test

cases for integration testing. Their approach uses a two-step strategy to generate abstract test

cases. Initially test units (objects) were identified for each sub-use case and then test data

(choices) were generated along the message sequences between the interacting objects using

Category Partition method.

Briand and Labiche [2002] presented a methodology to derive test sequences from SD and

other UML diagrams for system testing. Accordingly, the Use Case and SD are verified for

correctness as a part of analysis model. Thereafter, the Use Case diagram is converted into

Activity Diagram from which all possible usage scenarios are derived. Test sequences are then

produced from the generated usage scenarios and message paths in the corresponding SD.

 49

Dinh-Trong, Gosh and France [2006] proposed a sequence diagram based design analysis

technique where UML design models were converted into an executable form (a program which

simulates the behavior of the specified models) for testing the design models. Their approach

made use of symbolic executions and a variable assignment graph that incorporates information

from UML class diagrams and SD for generating test data which could then be subsequently used

for testing design models.

Figure 2-5: Sequence diagram (taken from [Systems 2008])

2.2.3.4 State Machine Diagram (SM)

A State Machine diagram illustrates the transition of an element between states,

identifying and classifying its behavior according to transition triggers and constraining guards

[OMG 2007]. Furthermore, it depicts changes in the states and behavior of a system in response

to events. From UML version 2 onwards, two types of SMs have been defined. The behavioral

 50

SM is for behavioral modeling and the protocol SM is provided to express the usage protocols.

The behavioral SM diagram is adapted from the formally defined Harel statecharts [Harel and

Gery 1997] for object oriented modeling [OMG 2007]. Harel statechart is itself an extension to

the finite state machine (FSM) and supports hierarchy, concurrency and data variables which

makes it more expressive and scalable.

Generally, a SM depicts the states of a system or component and associated events with

node-arc notation. Nodes are used to represent the states of the system while arcs are used to

represent the actions or operations of the system. A state represents a scenario where some

invariant static or dynamic condition holds true. In a static condition, the system waits for an

event to occur and in the dynamic condition the system performs a set of activities. Additionally,

it supports the hierarchical and parallel representations of states with submachine and

composite state elements. The composite state is an expanded state element that subsumes

other state elements which are then referred to as sub-states. The submachine state element is

used to refer a state to another SM which is then considered a sub-SM within that context. The

transitions in one sub-SM can occur without affecting the other sub-SMs. Furthermore, there are

some pseudo-states which are similar to simple states but with a pre-defined implication. Initial

and final states are examples of Pseudo-states that are used to depict the start and end of a SM

execution. The diagram shown in Figure 2-6 illustrates some of the basic features of a SM. In SM

based testing, the sequence of events or states that a system or component may undergo during

its lifetime in response to an event manifests the potential test sequences. The following

paragraphs are some of the SM based testing techniques found in the literature.

Binder [1999] proposed a Flattened Regular Expression (FREE) state model-based

methodology to derive test cases from state based models particularly for class testing.

Accordingly, a testable SM model should be developed for flattened classes and follows FREE

conventions about state, transition and unspecified event/state pairs. Furthermore, he specified

a number of strategies, namely All-explicit-transitions, All-transitions, N+ and Opaque, to

generate test cases from the testable SM [Binder 1999].

Offutt and Abdurazik [1999] described a technique to generate test cases from a state

machine for system testing. They developed a tool integrated with Rational Rose (CASE tool) for

parsing a model file and generating test sequences. They developed two test case generation

algorithms and empirically evaluated them. They also proposed coverage criteria for SM based

test suite and these are described in the next section. They found that the transition coverage

adequate test suite was slightly better than the statement coverage adequate test suite.

 51

Chevally and Thevenod-Fosse [2001] proposed a probabilistic technique for the

generation of test cases from a SM model for functional testing. They automatically generated

test cases using the Rational Rose Realtime tool and evaluated them for the transition coverage

criterion.

Figure 2-6: State machine diagram (taken from [Systems 2008])

 52

2.2.4 Model-based Test Case Generation

Test case generation is the most demanding and crucial task among the testing activities.

Bertolino [2003] articulated that test case generation is the most extensively researched topic in

software engineering due to its complexity and importance. Furthermore, Ould [1991] asserted

that it is the process of test case generation which, if automated, would give the biggest

beneficial effect. The automation of test case generation is of particular significance as it can

help in reducing the cost of test case generation substantially. The potential of automated test

case generation is one of the key factors in the success of model-based testing [Utting and

Legeard 2006].

Traditionally, the automation of the test case generation has been focused on code-based

or specification-based techniques. Code-based techniques have the limitation that testing can

only start after the coding phase. Specification-based techniques are typically based on formal

methods that enable the automation of specification-based testing. However, due to the higher

learning curve associated with formal methods, these methods could not find much presence in

practice except where required for highly safety or mission critical systems.

Modern software systems tend to be large, highly interactive and often involve complex

data manipulations. Simple input-output test cases are not adequate for such non-trivial

systems. The required functionality cannot be tested directly and need to be done through

invoking a series of operations. Typical test cases of such complex systems involve sequences of

operations or usage scenarios. Thus, a testing technique must treat both the input-output

relation as well as the possible sequences of interaction. As the focus of model-based testing is

the behavioral correctness of the system, the generated test cases enforce the functional

correctness of tasks/operations, order of execution and the dependencies among the various

tasks or operations.

In software testing, the definition of a test case is contextual and relates to the

corresponding test generation technique. In the context of model-based testing, a test case is a

sequence of tasks or operations directly generated from a behavioral model according to a

particular test objective. The terms test case and test sequence is used interchangeably in the

thesis. Throughout this thesis, when the term test suite is used, it implies the collection of test

cases.

The technique for generating test cases depends on the structure of a model. For some

models (i.e. input/data model) combinatorial testing is suitable [Dalal, Jain, Karunanithi, Leaton,

Lott, Patton and Horowitz 1999], as the combination of certain constraints or actions described

 53

in the model guides the test case generation procedure. Whereas for some models (i.e. state

machine), any simple graph traversal algorithm would be able to generate paths by traversing

over the State Machine graph and then test cases are the sequences of inputs along the

generated paths. In case of a Markov chain model, a random process is used to generate test

cases based on the probabilities defined along the transitions (edges).

2.2.4.1 Graph Traversal Techniques

Typically, a model developed using a modeling language can be translated into a graph

structure. A graph consists of a set of abstract elements called nodes and the relation between

the nodes is called an edge or a link. The model depicting control or data flow of a program

represents the a sequence of statements. The nodes represent the statements in the program

and the edges express the flow of control or data between the statements. Nodes which have no

following nodes are called leaf nodes. One of the strategies for selecting test sequences from

graphs is the well-known path-based strategies of structural testing. A flow which starts from

executing an entry node (initial statement) and ends at an exit node (last statement) is

considered as a path [White and Cohen 1980]. Whilst there could be only one entry node, a path

may have multiple exit nodes. Randomly traversing through the graph and stochastically

following any available link out of a node is a simple and popular approach. More detail about

path-based strategies can be found in [Beizer 1990] and [Beizer 1995].

The graph structure of a model enables the application of graph traversal algorithms to

extract test sequences through the model. Graph-based test case generation can be elucidated

as a path traversing through the model as a graph. A variety of graph traversal algorithms can be

used to navigate through the model and generate test case. Node coverage (exercising each

node at least once) or edge coverage (exercising each edge at least once) or basic path coverage

(exercising all possible unique paths) are the examples of graph-based strategies. The Chinese

Postman algorithm is very simple and fast graph traversal algorithm which produces complete

coverage of the model with shortest test sequences [Robinson 1999]. The State-changing

Chinese Postman algorithm is another technique to traverses only those links that lead to

different states [Robinson 2000; Rosaria and Robinson 2000]. Another technique for selecting

test cases is the Shortest Path First algorithm that starts from the initial state and then gradually

evaluates all paths of length 2, 3, 4 and so on. For instances where testing according to the value

of the functionality is needed, the Most Likely Paths First algorithm can be used to generate test

cases for the certain areas of interest [Robinson 1999]. Moreover, new and useful test cases may

also be generated by incorporating the behavioral information depicted in models into a graph

traversal technique.

 54

2.2.4.2 Formal Analysis Techniques

Formal techniques aspired to be precise and systematic, but these techniques vary in rigor

and exhaustiveness. According to [Leveson 1995], formal analysis depends on the formal design

process and can be very costly and time-consuming. In high risk systems the exhaustive and

rigorous verification of the system is obligatory [Standard 2001]. For instance, formal

specification and verification is required for safety and mission critical software systems with

safety integrity of level 4 and above. Nevertheless, the enormous cost and time required for

applying these techniques renders these techniques impractical for non-trivial models.

One of the formal approaches to generate a test suite from a model is based on model

checking [Heimdahl et al. 2003; Khurshid et al. 2003]. Model checking is a technique that can be

used to determine whether a specific property of interest is verifiable or the system exhibits a

particular functional behavior. In case the property of interest is refuted, it is considered as a

defect and so a supporting counterexample trace is generated. The trace is a sequence of states

that are undesired according to the given property, but which the model is supporting. A

counterexample represents the potential or actual fault in the system and constitutes a powerful

scenario for testing. However, model checking is an exhaustive analysis technique that requires a

large amount of memory to create and explore the whole state space associated with the model.

The technique is prone to the state explosion problem [Merz 2000] and not suitable for non-

trivial models.

2.2.4.3 Optimization Heuristic Techniques

The graphical models developed in high-level modeling languages and graphs are related

at the structural level and this fact can be exploited by using graph traversal techniques to

generate test sequences from such models. However, these techniques are prone to produce an

incomplete test suite or a large number of invalid test sequences from graphical models as they

cannot use the behavioral information during test case generation. It is important to note that

both the graphical model and a simple graph exist on a different level of abstraction. In order to

generate valid and adequate test sequences from such models, one solution is to transform the

graphical model into a detailed graph structure. Transforming a model into a graph structure is

prone to yield very large and complex graphs which could inhibit the application of typical graph

traversal algorithms. Another possible approach is developing semantic aware heuristic

algorithms that can traverse the model and produce effective and useful test sequences [Li and

Lam 2005; Xu et al. 2005].

 55

Heuristic techniques are typically used when exact solutions are hard to find or when

there is no known way to do it that is significantly faster than trying every possible solution. A

heuristic technique iteratively selects better solutions that are more likely to produce optimal

outcome, rather than evaluating all possible solutions. It learns which areas of the search space

to explore and which ones to disregard by evaluating a metric (e.g. Euclidean distance) for a

solution in each iteration with the globally best identified solution. For many practical problems,

due to the impeding cost and size of the problem a heuristic technique could be the only

approach in finding a good solution in a reasonable amount of time. A metaheuristic is a general

type of heuristic which can be applied to a wide range of problems, but an optimal performance

is never guaranteed due to the stochastic nature of the search. Heuristic techniques particularly

customized for a problem produce better results than off-the-shelf heuristic algorithms [Deb

2007]. More details about heuristic techniques are presented in Section 2.3.

2.2.5 Model-based Test Suite Evaluation

The ultimate goal of automation of test case generation is to produce test cases to

confirm that adequate testing has been completed according to a given criterion. A set of such

criterion are generally named as test case selection criteria or test adequacy criteria. Control-

flow and data-flow coverage criteria are two typical examples of test coverage criteria. The aim

of control-flow criteria is that test cases must fully exercise certain control constructs of the

program under test, while the concern of data-flow coverage criteria is whether test cases will

completely execute certain patterns of data manipulation in the program. Various studies have

shown a strong correlation between the testing effectiveness and the coverage achieved by a

test suite [Namin and Andrews 2009; Phyllis and Oleg 1998; Ye and Malaiya 2002].

Test case selection or adequacy criteria are fundamental to any testing method and act as

guidelines for test selection or measuring the adequacy of the generated test suite. In order to

evaluate the completeness or quality of model-based test suites three types of coverage criteria

are generally used, namely model-based, implementation-based and fault-based [Pretschner,

Prenninger, Wagner, Kuhnel, Baumgartner, Sostawa, Zolch and Stauner 2005]. In case of

implementation-based criteria, test suites are applied to the implementation of the model,

followed by the use of conventional code-based criteria for evaluation. Model-based criteria are

defined by means of the coverage of model artifacts. Fault-based criteria are used to evaluate a

test suite in terms of the score of actual or seeded faults detected by the test suite.

The following review is restricted to model-based and fault-based criteria. In terms of

model-based criteria only those related to with the modeling techniques mentioned in the

 56

previous section are reviewed. For more details or the explanation of coverage criteria, readers

are referred to the survey on test adequacy and coverage criteria [Zhu et al. 1997].

2.2.5.1 Coverage Based Analysis

Typically, the test case generation process is guided by the predefined coverage criteria to

manage the test case explosion. A number of coverage criteria have been proposed and one way

to classify them is by the source of information used to specify testing requirements and in the

measurement of test adequacy. Test coverage is measured as the percentage of constructs - as

defined by the coverage criterion that have been executed at least once during testing.

Moreover the test coverage measures (e.g. statement coverage) can also define the stopping

rule to determine when this process can stop. According to Beizer [1990], satisfying a criterion

does not assert that the test suite is complete in an absolute sense, however not achieving it

completely must implied that something is left untested.

2.2.5.1.1 Graph-based Coverage

A test suite generated through the graph of a model must at least exercise all nodes or all

edges on the graph. Table 2-3 presents three graph based coverage criteria which can e used to

generate or evaluate a test suite.

Table 2-3: Coverage Criteria based on Graph Structure

Criterion Definition

Node Coverage

Execute all nodes in the graph at least once under some test. By

achieving this coverage, the test suite can be said to have achieved 100%

node coverage. It is the weakest criterion in the family of graph-based

criteria and is similar to statement coverage in code-based testing.

Edge Coverage

Select enough test cases to assure that every edge has been exercised at

least once. By achieving this coverage, the test suite can be said to have

achieved 100% edge coverage. Edge coverage is stronger than node

coverage and therefore edge coverage a.k.a. branch coverage strictly

includes node coverage.

Path Coverage

Execute all paths (entry/exit paths) in the graph at least once by some

test. By achieving this coverage, the test suite can be said to have

achieved 100% path coverage. This criterion is the strongest in the graph-

based criteria family and practically impossible to achieve.

 57

2.2.5.1.2 Model-based Coverage

In model-based testing, models are the main source of the test cases. Models define the

behaviors of a system by identifying the intended usage and requirements of the system or

implemented functionality of the system. Some model-based coverage criteria are briefly

described in the following section. More details of the UML-based coverage criterion mentioned

here or associated with other UML diagrams can be found in McQuillan and Power [2005].

Sequence Diagram Criteria

A SD as an interaction model depicts the exchange of messages between the interacting

objects at runtime [OMG 2007]. It focuses on representing the behavior of a system with the

timed ordering of the messages. An entry-exit path in a SD is the sequential ordering of

messages that starts with an external stimulus and ends with a response to satisfy that stimulus.

One requirement for the adequacy of a test suite based on SDs is that all entry-exit message

paths in the diagram are covered by the test suite and characterized as All-Path coverage

criterion.

Rountev, Kagan and Sawin [2005] defined the Interprocedural Restricted Control-Flow

Graph (IRCFG) and used it to define a sequence diagram based coverage criteria family. An IRCFG

is a graph which specifies the concrete representations of the message sequences in a sequence

diagram. A node in IRCFG represents a control-flow graph referred to as restricted control flow

graph (RCFG) for a particular method call with a message sequence invoked in response to that

method call. Moreover, an IRCFG path is defined as a sequence of messages that starts at an

entry (method call) and ends at the final message in the IRCFG and corresponds to an entry-exit

message path in a sequence diagram. The all IRCFG-paths criterion means the coverage of all

such paths. The definition of each of the sequence diagram based coverage criteria is given in

Table 2-4.

Table 2-4: Coverage Criteria based on Sequence Diagram (adapted from [McQuillan and Power 2005])

Criterion Definition

All Paths Coverage
A set of message paths P satisfies the all-paths coverage criterion if and

only if, P contains all start-to-end message paths in a sequence diagram.

Condition/Iteration

Coverage

A set of paths P satisfies the branch coverage criterion if and only if, for

all edges e in the control flow graph, there is at least one path p in P

 58

such that p contains the edge e.

Given a test set T and Sequence Diagram SD, for each loop L in SD, T

must cause the loop to be either bypassed or taken for the minimum

number of iterations, or to be taken at least once for the maximum

number of iterations.

All IRCFG Paths Similar to All Paths criterion but defined using IRCFG.

All RCFG Paths
A set of IRCFG paths P satisfies the all-RCFG-paths coverage criterion if

and only if P contains all RCFG paths.

All RCFG Branches

A set of IRCFG paths P satisfies the all-RCFG-branches coverage criterion

if and only if for all edges e in each RCFG, there is at least one path p in

P such that p contains the edge e.

All Unique Branches

A set of IRCFG paths P satisfies the all-unique-branches coverage

criterion if and only if for each edges e (up to equivalence) there is at

least one path p in P such that p contains the edge e.

State Machine Diagram Criteria

UML SM diagram is an adaptation of Statechart for object oriented modeling and depicts

the life-cycle of an object. A SM diagram specifies the states of an object during its lifetime along

with the transitions between the states. One criterion for the adequacy of a test suite based on

SM diagrams is that all transitions in the diagrams are covered by the test suite and is

characterized as All-Transitions coverage criterion.

Table 2-5: Coverage Criteria based on State Machine Diagrams (adapted from [McQuillan and Power
2005])

Criterion Definition

All Transitions

Coverage

A test suite T satisfies the all-transitions criterion if and only if for

each transition in a SM diagram there exists t in T such that t

causes to be traversed.

Full Predicate Coverage

A test suite T satisfies the full predicate coverage criterion if and only

if for each clause c in each predicate in a SM diagram there exists

in T such that causes c to be evaluated to TRUE and there exists

in T such that causes c to be evaluated to FALSE while all other

clauses in the condition have values such that the value of the

 59

condition will always be the same as the clause under test.

Transition-Pair

Coverage

A test suite T satisfies the transition pair coverage criterion if and

only if for each pair of adjacent transitions and in a SM,

there exists t in T such that t causes the pair of transitions to be

traversed sequentially.

Complete Sequence

Coverage

A test suite T satisfies the complete sequence criterion if and only if

for each complete sequence s defined by the test engineer there

exist t in T such that t causes s to be taken.

All Context-

Dependence

Relationship Coverage

A test suite t satisfies the all context dependence relationships

criterion if and only if for each context dependence relationship r

derived from a SM diagram, there exists t in T such that t tests r.

Offutt and Abdurazik [1999] proposed a UML State Machine (Statechart) based test

generation technique and several associated coverage criteria (e.g. all-transitions coverage, full-

predicate coverage and transition-pair coverage criteria). Transition coverage is equivalent to

branch coverage in structural testing. All-transitions criterion is supposed to try every transition

in the specification graph. Transition-pair criteria is relatively stronger than the All-transitions

and tracks faults that may occur owing to either an invalid sequence of transitions is being

allowed to execute, or a valid sequence is not allowed to execute. For the definition of each SM

based coverage criterion, see Table 2-5.

Activity Diagram Criteria

Up to UML version 1.5, the SM (Statechart) based coverage criteria were also used for

Activity diagram [McQuillan and Power 2005]. For instance, all-edge criterion was defined for

the adequacy analysis of AD based test suite which was adapted from transition coverage

criterion for Statechart [Dinh-Trong et al. 2005]. Mingsong et al. [2006] proposed three types of

test adequacy criteria for AD based testing, namely activity, transition and simple path coverage.

These criteria are also adapted from SM based coverage criteria. Accordingly, “all activity states”

and “all transitions” in an activity diagram are required to be exercised at least once for activity

and transition coverage criteria respectively.

From UML version 2 (UML2), AD has new Petri Net-like token based semantic and has

become a separate diagram (instead of a derived class of SM diagram). The SM based test

criteria are not suitable for UML2 AD based testing. In UML version 1.x (UML1), the action and

activity node were state nodes and the transitions that connect two states could usually trigger

 60

on the completion of a source state. In the case of multiple transitions that could trigger in

response to a completion event, only one transition would trigger. In UML2, the Action and

Activity nodes are executable nodes in AD and ActivityEdge is used to connect two ActivityNodes

(includes both executable and control nodes) types of nodes. The AD in both UML1 and UML2

are provided for the same flow-based modeling but they have major differences. The

relationship between the inputs or outputs of an activity in UML2 and UML1 are very different.

In UML1, the inputs and outputs of an activity have Boolean OR relationship between them

which means that if an activity state has multiple inputs (inward transitions) then it can be

activated by getting stimulus on any one of its inputs (triggering of a transition). Similarly, in case

of multiple outputs (outward transitions) of an activity state, only one of them will trigger.

However, in UML2 the activity node have implicit join and fork relationships (Boolean AND)

between its inputs and outputs respectively. It means that in UML2 an activity node cannot start

execution until it receives tokens on all of its inputs and similarly it provides tokens to all of its

outputs on the completion of its execution. The connectors between activity nodes that may

represent alternate paths in UML1 usually do not represent alternate paths in UML2. It means

that the all-transitions criterion which was defined for AD of UML1 is not effective for AD2.

The simple path coverage criterion or basic path coverage criterion as defined by

[Linzhang et al. 2004] is adapted from McCabe’s basic path testing strategy. It is based on the

control-flow graph and requires all paths in an AD that have no loops or concurrency must be

covered at least once. Given the fact that the AD is basically a flow graph model, the basic-path

coverage criterion is valid for AD based testing irrespective of the version of UML. The formal

definition of the criterion is presented in Table 2-6.

Table 2-6: Coverage Criteria based on Activity Diagram (adapted from [McQuillan and Power 2005])

Criterion Definition

Basic-Path- Coverage

Let BP be the basic path set of an activity diagram, a test suite T

satisfies the all basic paths coverage criterion if and only if for each p

in BP there exists t in T such that t causes p to be traversed.

2.2.5.2 Fault Based Analysis (Mutation Analysis)

An alternate and complementary approach to coverage based analysis for the adequacy

or quality of a test suite is mutation analysis. When a program passes all tests in a test suite,

mutant programs are generated by introducing faults into the code of the program under test.

 61

Then, the test suite is assessed in terms of how many mutants it can distinguish from the original

program. Mutation analysis also referred to as mutation testing is a fault-based testing

technique which was introduced by Hamlet [1977] and DeMillo et al. [1978].

Mutation analysis is traditionally used to gain confidence in the correctness of the

software and to evaluate the effectiveness of test suites. It provides a comparative technique for

assessing and improving multiple test suites. Previous studies [Andrews et al. 2005; Andrews et

al. 2006; Do and Rothermel 2005] have confirmed the relationship between the mutation faults

and real faults and have asserted that mutation analysis is an appropriate evaluation technique

for test suite fault detection capability.

The conceptual basis of mutation analysis is a well-known statistical procedure of capture-

recapture for estimating the size of a population. For instance, in order to estimate the number

of fish in a pond, suppose 100 fish were captured, tagged and released. Later, a sample of 50 fish

was taken and among them 20 was found tagged. Now the estimated population of the pond

will be 250. If we could catch all the tagged fish then theoretically we have captured the entire

population. Similarly, in mutation analysis some tagged faults are seeded into the program and

then testing is performed to detect these faults. The testing will detect the seeded faults and

some other faults as well if there is any. If all the seeded faults are detected then the test suite is

considered adequate and program is deemed free from the seeded types of faults. In the case

some seeded faults are still undetected then the test suite is deemed inadequate and more test

cases need to be generated to find the remaining faults.

As the number of possible faults made by a programmer can be very large, only a subset

of all these are targeted. It is assumed that targeting only a limited set of faults can detect other

types of faults as well. Basically, mutation analysis relies on two hypotheses: (1) the program

produced by a competent programmer is either correct or near correct, and (2) the coupling

effect [DeMillo, Lipton and Sayward 1978]. The competent programmer hypothesis states that a

program written by a competent programmer can be incorrect but it will be slightly different

from the correct program. Coupling effect is the relationship between test data which is based

on the fact that data that can detect the mutants with simple faults can also detect the more

complex faults as well.

Mutation testing comprises of four steps: mutant generation, execution of artifact under

test (AUT) using a given test suite, mutant execution with the given test suite and the

evaluation of outcomes. Mutant artifacts s are generated by injecting simple faults in the

AUT. A fault that can be fixed by making a single change in the source artifact is considered as a

simple fault and a fault that needs multiple changes to fix is deemed as complex fault. A mutant

 62

which is generated by inserting a single fault is called first-order mutant. More higher-order

mutants are generated by inserting multiple faults but due to the coupling effect between the

first-order mutants and the higher-order mutants [Offutt 1992], only first-ordered mutants are

usually used in mutation analysis. Mutant operators based on a classification of faults for a given

language are used to systematically inject these faults and to obtain a set of mutant artifacts. A

mutant is considered killed by a test case that causes the mutant artifact to behave or output

differently from the original artifact; otherwise, it is considered alive. In the case a test suite fails

to kill a mutant then there could be two reasons for it; either the given test suite is not adequate

to execute the faulty block of the mutant, or the original artifact (AUT) and the living mutant

are equivalent. Equivalent mutants mean that the mutant artifacts are semantically equivalent

to the original artifact despite the syntactical difference and therefore could not be killed by any

test case in the test suite. In the former case, more test cases are generated until all the non-

equivalent mutants are killed. While in the latter case, the equivalent mutants are determined

manually as the automatic detection of equivalent mutants is an undecidable problem [Jia and

Harman 2010]. So the objectives of mutation testing remain the same; to assure that the AUT is

free from a particular fault set, and to generate a test suite with the ability to kill all non-

equivalent mutants.

The mutation analysis of a test suite relative to a given program is performed by

executing against every test case in . A set of mutant programs is produced by injecting a

modification in in such a way that each mutant program slightly differs from . If in

executing each mutant against , the output produced differs from the ’s output, then the

test suite has fulfilled its obligation and detected the injected fault. Once a mutant is detected

and killed, it is assumed that the test suite is effective in detecting that particular type of fault.

The ratio of dead mutants to the remaining live mutants indicates the quality of the test set and

is called the mutation score . It can be defined as follows:

where is the number of mutants killed by the test suite , is the total number of

mutants generated and is the number of equivalent mutants which cannot be differentiated

from the original program. Mutation analysis with a code-based technique is prohibitively

expensive for non-trivial programs due to the large number of mutants as the number of

mutants generated for a program is proportional to the product of the number of data

references and the number of data objects [Yu-Seung et al. 2005].

Initially, mutation testing was introduced as a code-based technique. However, later it

was adapted for specification- and model- based techniques as well. Budd & Gopal [1981]

 63

adapted mutation testing for a specification given in predicate calculus and provided several

examples of program mutations. Potential faults are represented as mutants of the specification

and then test cases are generated that can distinguish between the mutated and original

specification.

Stocks [1993] extended mutations analysis to Z formal specification by defining a

collection of mutation operators for it. For example, a mutant operator is defined to exchange

the union operator of sets with the intersection operator. Test cases are generated from these

mutants for demonstrating that the implementation does not implement one of the mutant

specifications and the generated test suite is adequate for detecting the given classes of faults.

Kuhn [1999] evaluated the application of mutation analysis to specification-based testing

with various fault classes. Faults were represented as mutated formal specifications. Boolean

operators based conditions for distinguishing a mutant specification from the original

specification were calculated, and which was then used to calculate the fault coverage hierarchy

and test suite effectiveness.

Fabbri et al. [1999] have conducted mutation analysis for the Finite State Machines (FSM).

A set of mutation operators for FSM are defined to confirm the absence of particular faults types

in the FSM model. In the work of [Fabbri et al. 1999] the authors extended the FSM-based fault

model presented in [Fabbri, Maldonado, Masiero and Delamaro 1999] to Statecharts and

introduced new mutation operators to address the specific to the Statechart features (e.g.

parallelism, communication and hierarchy). Furthermore, Fabbri et al. [1996] have explored the

application of mutation analysis in other formal specification languages such as Petri Nets and

SDL [Sugeta et al. 2004]. In the work of [Souza et al. 1999], they used mutation analysis for

Estelle specification. Although, the application of mutation analysis for various specification and

design languages has been investigated, no work has been reported for UML in the available

literature. Considering the wide use of UML, it is deemed that mutation analysis can be valuable

for evaluating the UML-based test suites.

2.2.6 Issues with Model-based Testing

Earlier in section 1.2, three key properties (i.e. representation, simplification and

pragmatic) of a good model are presented. Although these properties are fundamental to

models in general, they are not adequate for test generation and evaluation purposes. Binder

[1999] argues that a test-ready model should have enough information to derive test cases

directly. Fault detection using test cases derived from imprecise and ambiguous models could be

very difficult. A recent study confirms that the adequacy and level of details of a model,

 64

influence the effectiveness of the generated test cases [Pretschner, Prenninger, Wagner, Kuhnel,

Baumgartner, Sostawa, Zolch and Stauner 2005]. Binder [1999] notated that a test-ready or

testable model:

 provides complete, consistent and accurate requirements of the system that need

to be tested and,

 abstracts details to minimize the testing cost.

Developing a model at the right level of abstraction for effective testing is one of the main

challenges for model-based testing. As the test cases are directly derived from models of the

system under test, the effectiveness of the test cases depends on the information available in

the model. One approach to address this issue is to keep separate models for different stages of

testing. Models at a high level of abstraction (i.e. CIM level model in MDA) might not be useful

for unit testing but are quite appropriate for system or user acceptance testing. On the other

hand, using the implementation level model will make the cost of system testing prohibitive. It is

important to note that developing or maintaining a separate model for different testing stages

could also be problematic and may lead to consistency and management issues.

Automated test generation in model-based testing can quickly generate a large number of

test cases. However, the increase in test cases does not improve the quality of the test suite

necessarily and may compromises its efficiency. Utting and Legeard [2006, page 40] stressed

that the quality of the generated test suite is equally as important as the quantity. Usually, the

effectiveness of a test suite is measured in terms of satisfying test requirements (i.e. faults,

coverage and mutation score) and the efficiency is measured by the cost to achieve the test

requirements. Several studies have been reported on the effectiveness of model-based testing

[Dalal et al. 1999; Farchi, Hartman and Pinter 2002; Pretschner, Prenninger, Wagner, Kuhnel,

Baumgartner, Sostawa, Zolch and Stauner 2005]. However, there is not much work reported on

the efficiency of model-based testing and this thesis focuses on improving the efficiency of

model-based test suites using metaheuristic techniques.

2.3 Optimization Techniques

Optimization problems arise in almost every field (e.g. bioinformatics, manufacturing,

telecommunication, economics and transportation). Consequently, many different optimization

techniques have been developed. Heuristic reasoning is provisional and is a non-stringent type

of reasoning with an objective to discover the solution of the present problem. Heuristic

techniques are optimization techniques which are used to find minimal (or maximal) values of a

 65

particular cost (or objective) function. They are adaptive and powerful, with the ability to obtain

good results for many extremely difficult problems.

2.3.1 Metaheuristic Techniques

Metaheuristic is a class of search techniques which aspire to find an optimal solution using

a given cost (or objective) function. Metaheuristic techniques are considered suitable for infinite

state spaces and non-linear constraints. The strength of these techniques stems from their

flexibility of the search which is simply directed by a cost function and very little other problem

specific knowledge is required [Blum and Roli 2003; Corne, Glover and Dorigo 1999].

Formally, a metaheuristic is a framework that guides underlying heuristic methods to

iteratively find an optimal solution for a computationally hard problem. This is achieved by

dynamically balancing the convergence and divergence of underlying search strategies; as

convergence leads to a quick identification of a quality solution but is prone to be trapped in a

sub-optimal (local optimal) solution and divergence wastes too much time on already evaluated

regions of the search space. In the literature, various heuristic techniques have been reported.

Greedy, local and global searches are the three general classes of heuristic strategies [Talbi

2009].

2.3.2 Greedy Search

Greedy search is a heuristic technique that constructs solution by always selecting the

locally fittest (first/ best) solution based on an objective function. The greedy selection gradually

prunes the search space and finally returns an optimal solution. Although, this strategy makes it

a very fast and cheap (time and space wise) heuristic, it is nevertheless prone to converging to a

suboptimal solution for the same reason as the choice of one solution at one step can constrain

the search space at the next step. Greedy search is a constructive type of heuristic [Silver et al.

1980] and generally performs well if each locally selected optimum is part of the global

optimum.

The pseudo code for greedy algorithm is presented in Figure 2-7.

 item = 0;
 sort(item-List);
 for each x in Item-List do
 if (Evaluate(item) ≥ Evaluate(x)) then
 item = x;
 end

Figure 2-7: Greedy Algorithm Pseudo Code

 66

2.3.3 Local Search

The local search is a simple heuristic technique that starts from an arbitrary solution and

iteratively improves upon it by moving through the search space by selecting a fitter solution

and replacing the existing solution with the new one. The moves are based on local information

that continues until a termination condition is met. An important difference between local and

greedy search is that local search is based on solution improvement rather than solution

construction which makes it stagnant and revisiting the same region continuously. Hill Climbing,

Iterated local search and Guided local search are some of the popular techniques in this

category. In this study Hill Climbing is used as an example of the local search.

There are three forms of Hill Climbing that differ in the criterion by which the next fitter

neighbor (solution) is selected. These criteria are described as follows: Given that a bit-string

representation is being used, the Steepest Ascent Hill Climbing (HCSA) systematically flips all bits

in the string and chooses the string that gives the highest increase in fitness. Using Next Ascent

Hill Climbing (HCNA), a single bit from left to right is flipped and evaluated progressively. The

process terminates when a neighbor is found that increases the fitness and this is then chosen as

the current item. This process continues until the fitness value stops improving for a given

number of iterations. With Random Ascent Hill Climbing (HCRA), bits are randomly flipped until

a neighbor is found that gives an increase in fitness and replaces the current item.

The pseudo code for hill climbing is presented in Figure 2-8.

 currentItem = startItem;
 loop do
 neighbours = getNeighbours(currentItem);
 for each item in neighbours
 if (Evaluate(item) > nextEval) then
 nextItem = item;
 nextEval = Evaluate(item);
 if nextEval <= Evaluate(currentItem) then
 return currentItem;
 currentItem = nextItem;
 end

Figure 2-8: Hill Climbing Pseudo Code

2.3.4 Evolutionary Computation

The objective of global searching techniques is to seek the globally fittest solution. The

search is guided by an objective function and a solution is only selected if it improves the

existing globally fittest solution. Some of the well known global searching techniques are, Ant

 67

Colony Optimization (ACO), Particle Swarm Optimization (PSO) and Evolutionary Computation

(EC). In this study EC is used as an example of the global search. In the following, a review of the

key features and methods of EC is presented.

EC is a population-based metaheuristic inspired from the natural process of evolution.

There are a variety of EC techniques that have been proposed and studied which are in general

referred to as evolutionary computation as they share common concept of evolution through

individual structures, selection and reproduction processes. These techniques are characterized

as Genetic Algorithms (GA) by Holland [1973], Evolutionary Programming (EP) by Fogel et al.

[1966] and Evolutionary Strategies (ES) by Rechenburg [1973]. Evolution by natural selection has

proven to be an effective search process and has been successfully applied to various research

and application fields such as combinatorial optimization, neural nets evolution, planning and

scheduling, industrial design, management and economics, machine learning and pattern

recognition, to name a few [Back et al. 1997].

The evolutionary process that makes EC a very effective and efficient technique for large

and complex problems comes under the influence of two fundamental sub-processes which are

selection and reproduction. The former process involves determining individual members of a

population for selection, survival and reproduction. The latter process performs the

recombination of genes of parents to produce new offspring. One of the advantages of EC is that

it thoroughly evaluates promising areas of the solution space. It is therefore inherently effective

when searching or optimizing input spaces which are not smooth or continuous. Another

advantage of EC is the fact that despite its stochastic nature, EC is not a simple random search.

It is adaptive and the search is simply guided by a fitness function. It learns from experience and

takes advantages of knowledge held in a parent population in reproducing a better generation

with improved performance. Thereby, a population undergoes simulated evolution at each

generation. Relatively good solutions are reproduce whilst; relatively bad ones die out and are

replaced by fitter offspring.

EC techniques do not exercise any operation directly in the problem space but use an

encoded space (either binary or real). Initially, a string of codes that represents the population P

of candidate solutions is randomly generated. In the case of GA, each individual which is

analogous to a chromosome in a population can have a value of while in ES each individual

can have a real value. The fitness function F(P) is used to calculate the quality of each individual

in a generation. A set of better individuals from the population is selected for breeding. New

offspring are produced with crossover and mutation. The offspring replace the parents in the

next generation if they are fitter than the parents otherwise they are just discarded. The size of

 68

the population is very important for performance. A small population is quick at the fitness

calculation and evaluation but takes longer to converge whereas a large population converges

very fast but is slow on the fitness calculation. The impact of reproduction operations is

significant on the quality of the solution. The crossover process exploits the available fitness

information and the mutation process leads to the exploration of the search space. The pseudo

code for an EC algorithm is given in Figure 2-9.

EC includes several evolution based algorithms such as classifier systems, genetic

programming, coevolution, memetic algorithms, GA, EP and ES. Although similar at a higher

level, these algorithms differ in many aspects, such as problem representation, selection

mechanism, genetic operators and performance measure. Details of each of these techniques

are out of the scope of this study. For the sake of brevity only the two main evolutionary

techniques (GA and ES) are reviewed in the following sections. Other evolutionary techniques

i.e. Genetic Programming (GP) and EP are similar in theme to the two mentioned above but

differ in the details of their implementation and the nature of the particular problem to which

they have been applied. The similarities and differences are summarized in Table 2-7.

Procedure EC()
Initialization:

 //generation counter

Solution:
Repeat

Calculate Fitness:

Reproduce Offspring O:
 // select parents

Perform Mutation:

 // select an individual to mutate

Select New Generation:

Until termination condition met
End Procedure EC()

Figure 2-9: Pseudo code of an evolutionary computation algorithm

 69

Table 2-7: Main features of Evolutionary Algorithms [Back and Schwefel 1993]

 ES EP GA

Representation Real valued Real valued Binary valued

Self-adaptation Standard deviations and

covariances

Variances (in metaEP) None

Fitness Objective function value Scaled objective

function value

Scaled objective

function value

Mutation Main Operator Only Operator Background Operator

Recombination Different variants

important for self-

adaptation

None Main operator

Selection Deterministic, extinctive Probabilistic,

extinctive

Probabilistic,

preservative

2.3.4.1 Genetic Algorithm

The Genetic Algorithm (GA) is a stochastic search algorithm that allows the evolution of a

solution to the problem. The underlying concept is that a population evolves through

generations according to a set of genetic rules that lead to the emergence of ever fitter

individuals. For GA, the crossover mechanism drives the solutions or in other words offspring are

breed using recombination of existing individuals at each iteration step, known as a generation.

The GA develops a solution constructively and maintains a constant population size.

The canonical Genetic Algorithm has the following distinct features:

Binary Encoding: For a given problem, each individual represents a feasible solution in

the problem space through a suitable mapping mechanism. Holland and his associates suggested

the use of strings of bits (binary digits) for the problem space mapping to individuals [Holland

1973]. The basic encoding scheme for GA was a binary string of fixed length. Suppose the search

space consists of n states. The binary string (chromosome) will consist of n bits to encode the

states. The length of the chromosome will remain the same in each generation.

Proportional Selection: The chances of selection for an individual depend on its

fitness relative to the fitness of other individuals in the population. According to Goldberg

(1989), the selection process consists of the fitness and selection functions [Goldberg 1989].

Fitness functions involve the decoding of individuals to real values, calculating the fitness

 70

according to the objective function and then rating each individual according to its fitness

relative to the other individuals. The fitness function defines the selection of individuals with a

probability proportional to their relative performance in the population. The selection function

uses the rating produced from the fitness function in order to select parents for breeding.

Initially a number of individuals are generated at random. Each individual is evaluated and

assigned a fitness value. Then each new generation of individuals is bred from the parents

selected from the existing population using the fitness function.

Reproduction: The production function for generating new offspring (new regions in

search space) is based on two operators which are the crossover and mutation. For GA, the

crossover mechanism drives the reproduction process. The offspring are produced using a

recombination of existing individuals at each generation. The mutation operator randomly

inverts some bits in the binary strings with a given probability called the mutation rate. The

mutation rate defines the number of bits that will be flipped in each iteration. Through crossover

the search converges toward the promising regions of the search space. The mutation operation,

acts as a background operator and is used only to prevent the premature convergence of the

search process to a local optima by randomly sampling new points in the search space.

2.3.4.2 Evolutionary Strategies

Evolutionary Strategies (ES) also evolve solution similar to GAs but have different problem

representations and breeding schemes. In the canonical ES, the floating point numbers are

suggested for representing problems having continuously changing parameters and mutation is

the key operator for reproduction rather than crossover.

The key features of Evolutionary Strategies are as following:

Encoding Scheme: The representation of each individual in a chromosome comprises

of two parameters: genotypic and phenotypic. The genotypic parameter is a problem related

floating point value and the phenotypic parameter includes evolution related strategic

information for each individual that can affect the evolution process such as the mutation step

size.

Selection: Two selection strategies and are defined and they

imply that offspring will be produce from parents in one generation. In the case of

, only offspring will be considered and individuals will be selected for next

generation. On the other hand, in , individuals will be selected from both

 parents and offspring for next generation.

 71

Reproduction: Crossover is used to reproduce offspring as in GA; however mutation is

more influential than crossover in ES. In contrast to the GA, a separate mutation mechanism is

used for each individual. Mutating a certain individual means perturbing the genotypic value

with a random number based on a dynamic mutation step size. The mutated individual is only

accepted if the mutated individual is better than the original individual.

2.3.5 Applications of Evolutionary Computation

EC algorithms are adaptive search techniques inspired by the natural process of selection

and have been applied to various optimization problems. The main goal of EC techniques is to

find an approximately good solution for problems that are computationally hard to solve exactly.

The initial application of a GA was the classical optimization problem whereas the ES was initially

applied to engineering problems. However, later a hybrid of both of these two techniques or

with another optimization method (i.e. local search or hill climbing) was used in most of the

applications [Whitley 1993].

Evolutionary algorithms have been applied to several classical combinatorial problems

and have proven to be a robust optimization technique for obtaining consistent results. For

instance, Grefenstette et al. [1985] and Oliver et al. [1987] adapted the GA for the well known

combinatorial optimization Travelling Salesman Problem (TSP). The TSP problem is defined as

finding the shortest distance (normally Euclidean distance) between n number of cities.

Mühlenbein [1991], Fujiki and Dickinson [1987] and Wilson [1987] applied GA to the Prisoner's

Dilemma problem where the two prisoners has a choice of co-operating with each other or

defecting to minimize his sentence. A GA with binary encoding intuitively suits the classical 0/1

knapsack problem and many researchers have developed variants of GA to solve various

versions of the knapsack problem. Khuri et al. [1990] used GA to resolve the 0/1 knapsack

problem. In [Sami et al. 1994], Khuri and Batarekh adapted GA for the multiple knapsack

problem. Furthermore, Chu and Beasley [1998] have studied the application of GA for the

multidimensional knapsack problem. Quadratic Assignment Problem (QAP) is a more general

version of TSP and is considered as one of the hardest problems. The QAP is a problem

associated with the assignment of a set of resources to a set of locations while minimizing the

assignment cost. Tate and Smith [1992] used GA to resolve the QAP which consistently

performed equal to or better than the known techniques. Vehicle Routing Problem (VRP) is an

extension of TSP and requires the optimal route for a fleet of vehicles stationed at a depot to

serve a given set of customers while adhering to given conditions, like capacity, time window,

 72

backhauling and maximum tour length. Ang Juay et al. [1999], Prins [2004] and Baker and

Aychew [2003] developed various hybrid versions of GA for the VRP with time-window.

EC has seen widespread application to various practical optimization problems as an

adaptive search method. Goldberg [1989] reported various engineering projects that had

applied a GA to solve optimization problems, e.g. optimizing the gas pipeline control, optimizing

the design of ten member plane truss with an objective to minimize the weight of the structure

under minimum and maximum stress constraints [Goldberg and Samtani 1986], the design of a

concrete shell of an arch dam (large scale hydropower scheme) [Parmee and Denham 1994];

design of microwave absorbers (low-profile radar absorbing materials) which resulted in a

reduction of the radar signature of military hardware [Tennant and Chambers 1994] and the

generation of test sequences for VLSI circuits [O'Dare and Arslan 1994].

The potential of evolutionary computing in the realm of software engineering has been

investigated for various activities related to software development including requirement

engineering [Bagnall et al. 2001; Zhang, Harman and Mansouri 2007], project planning and cost

estimation [Aguilar-Ruiz et al. 2001; Giuliano et al. 2004], software designing [Gerardo et al.

2005; Yves, Peter and Yolande 2008], test planning, test case generation [Jones et al. 1995;

Michael, McGraw, Schatz and Walton 1997; Roper 1996; Watkins 1995] and test suite

optimization [Li et al. 2007; Yoo and Harman 2007], compiler optimization [Keith et al. 1999],

quality assessment [Taghi et al. 2004] and software understanding [Reynolds, Zannoni and

Posner 1994]. For a detailed review of the application of evolutionary and others search based

techniques in software engineering, readers are referred to a recent review report [Harman et

al. 2009].

2.3.6 Basics of Evolutionary Techniques

In the following sections the basic building blocks of an evolutionary technique (ET) is

explained. In addition, the basic structure, a variety of operators and control parameters are also

explained. Various key concepts including the population, chromosome, fitness, selection,

crossover, mutation and replacement procedure will be covered briefly.

2.3.6.1 Population and generation

Central to every evolutionary technique is the concept of population which is the

collection of information about a set of individuals. The individuals in a population represent

solutions. The size of the population affects the performance of an ET. De Jong [1988]

recommended a population of 50-100 members for optimal results. The advantage of using a

population with many members is that many points in a space are searched in one generation. In

 73

order to start the optimization process, the first population needs to be available. The initial

population can be randomly seeded with a set of parameter values for each individual in the

population, for instance, for binary encoding the parameter set will be {0, 1}. Alternatively,

parameter values from previous experiments can be used to provide a portion of the initial

population. With evolution, the individual in the population changes from one generation to

next.

2.3.6.2 Representation

The chromosomes in an ET represent the individuals and provide the space of candidate

solutions. De Jong [De Jong 1993] found out that the representation of the chromosome can

itself affect the performance of an evolutionary algorithm. There are different possible methods

of chromosome encoding that can be used in an ET, e.g. using binary, gray, integer or real value

types, finite-state machine and tree encodings.

Binary encoding is the most common representation, invented by Holland [1992]. The

potential solution values are encoded as bit strings composed of binary characters {0, 1}. Binary

representation is not only simple and convenient in terms of problem encoding, but also for

implementation. It is a genotypic representation which makes the evolutionary algorithm

problem independent and traditional mutation and crossover operators can be used. In general,

all bit strings within a population have the same format and length. A bit string format is

described as contiguously placed binary values.

2.3.6.3 Fitness function

Evolutionary techniques require a fitness function which allocates a score to each

chromosome in the current population. The fitness value of an individual is calculated based on

its performance relative to the optimal (ideal) solution. Generally, the fitness is defined

by: is the fitness of individual and is the average fitness of all the individuals in

the population. It is used to compare the individuals and to differentiate their performance in

the population. An individual solution which is close to an optimal solution gets a higher fitness

value than the one which is far away. An ET does not need any problem specific knowledge. The

fitness value is the only feedback from the problem which guides the ET search process and

exploits the area of higher fitness in the search space. The main issue in the application of an ET

is often the attempt to find a suitable fitness function that expresses the problem as well as

possible.

 74

2.3.6.4 Selection

The selection operator chooses individuals from a generation to become parents for

breeding the next generation. According to Darwin's evolution theory (survival of the fittest) the

best individuals should survive and create new offspring. In EC, natural selection is considered as

an adaptation operator which leads the search to promising regions of the search space.

Selection intensity and genetic diversity are the two competing factors in a selection process

that need to be considered. Selection intensity means to select only the best individuals of the

current generation for mating/ reproduction which is required to drive the underlying heuristic.

Diversity of solutions in the population is also required to ensure that the search does not

converge prematurely and that the solution space is adequately searched. A very high selection

intensity can lower the genetic diversity and risks the heuristic converging prematurely.

However, low selection intensity could cause the heuristic to wander around and not converge

to an optimal solution in a reasonable amount of time. Consequently, there are different

techniques (e.g. elitist selection, roulette-wheel, rank selection and tournament selection) with

varying emphasis and control over selection intensity and genetic diversity that can be used for

selection.

Elitist Selection

The Elitist selection method is used to increase the probability of choosing fitter

individuals to reproduce more often than individuals with lower fitness values. The selection

process takes into account the fitness of an individual. Individuals that have higher values (fitter)

are more likely to be selected for reproduction, whereas, those with low values are merely

discarded. Thus, this method introduces high selection intensity which rapidly converge the

heuristic to promising regions of search space.

Random Selection

Selecting only members with a high fitness can lead to inbreeding which can cause strong

convergence towards a local optimum and a loss of diversity. It can be difficult to abandon the

local optimum in order to find the global optimum. A pseudo random number generator is used

with a uniform distribution to select the members of a generation to become parents for the

mating process. The random selection works very fast, is easy to implement and guarantees

genetic diversity and healthy mating.

Roulette Wheel Selection

The Roulette-wheel is a selection of parents proportional to their fitness. Conceptually, it

is like a circular roulette wheel where slices for each individual have the area according to the

 75

individual’s fitness [Mitchell 1998]. Suppose the wheel is spun N times, where N is the number of

the individuals in the population. On each spin, the individual under the wheel’s marker is

selected to be in the pool of parents for the next generation [Mitchell 1998]. The Roulette-wheel

selection maintains a high selection intensity with some genetic diversity by allowing some

weaker solutions to survive the selection process.

Rank Selection

The Rank selection is a ranking-based technique to select individuals according to their

fitness ranking. In cases where the fitness of individuals differs very much e.g. if the best

individual fitness is 90% of all the individuals in the roulette wheel then the other individuals will

have very little chance of selection. In the Rank selection, first the population is ranked and then

every individual receives a fitness score according to its ranking. The worst will have fitness 1,

second worst 2 and so on. The best will have fitness N (number of individual in population).

Tournament Selection

The Rank selection technique first seeks to sort the population which is usually considered

unattractive for large problems. In general, the tournament selection process involves randomly

choosing a group of individuals from the current population, comparing their fitness, and then

selecting the fittest from the group for mating. Various tournament selection parameter control

schemes have been defined. Examples include fixed tournament size, probabilistic tournament

selection, Boltzmann selection with annealing, self-adaptive tournament size and fuzzy

tournament selection.

The following figures show the effect of various selection techniques on same individuals

in a population. Suppose A={(a,5),(b,6),(c,9),(d,2),(e,1),(f,4)} is a set of individuals with their

fitness values. In case of elitist selection (Figure 2-10), the selection intensity is highest and two

individuals ‘b’ and ‘c’ with highest fitness values will dominate the selection as parents. In case

of random selection, any two individuals will be selected for mating with every individual have

equal chance of selection as shown in Figure 2-11. The Roulette-wheel selection and the Rank

selection without truncation are similar approaches. However, in Rank selection the selection

intensity is less than that in the Roulette-wheel selection so the less fit individuals have slightly

more chances of selection as shown in Figure 2-12 and Figure 2-13. The Rank selection with

truncation (Figure 2-14) has more selection intensity than the Rank selection without truncation.

Tournament selection is often used in practice as it offers greater control over the selection

intensity than other technique [Tobias and Lothar 1995]. It allows control of the selection

intensity by specifying the tournament size and the number of members chosen to compete in

 76

each tournament. For instance, see the selection intensity of tournament selection with

different tournament sizes (k=2, k=5 and k=6) as illustrated in Figures Figure 2-15-Figure 2-17.

The binary tournament (k=2) implies the weakest selection intensity whereas N-size tournament

(k=6) implies the strongest intensity

Figure 2-10: Elitist selection

Figure 2-11: Random selection

Figure 2-12: Roulette-wheel selection

Figure 2-13: Rank selection

Figure 2-14: Rank selection (truncation=5)

Figure 2-15: Tournament selection (k=2)

Figure 2-16: Tournament selection (k=5)

Figure 2-17: Tournament selection (k=6)

40%

60%

b

c

16%

16%

17%17%

17%

17%

a

b

c

d

e

19%

22%
33%

7%

4% 15%
a

b

c

d

e

19%

24%
29%

9%

5% 14%

a

b

c

d

e

f

20%

25%
30%

10%

15%
a

b

c

d

f

36%

64%

a

c

24%

43%
9%

5%
19%

a

c

d

e

f

19%

22%
33%

7%

4% 15%

a

b

c

d

e

 77

2.3.6.5 Reproduction Operators

The crossover and mutation operators have the pivotal roles in GA. They are the

operators which create new individuals with the idea that the new individuals will improve the

solution and move the search closer to a global optimum. The crossover process exploits the

available fitness information and the mutation process leads to exploration of the search space.

Crossover Operator

Crossover is the process of combining the bits of one parent with those of another. During

this process, the two parents exchange sub-string information (genetic material) at a random

position in the chromosome to produce two new strings (offspring). The objective here is to

create new individuals by combining material from pairs of (fitter) members from the parent

population. Crossover is performed according to a crossover probability. Various crossover

methods have been proposed and examples include single-point, double-point and uniform

crossover. The simplest one is the single-point crossover that selects a locus randomly and

exchanges the sub-string before and after that locus between two parents to create new

offspring.

Single crossover

A crossover point is randomly chosen for two parents. This point occurs between two bits

and divides each individual into left and right sections. Crossover then swaps the left (or right)

section of two individuals. For example, consider the following parents and a crossover point at

position 3:

Parent 1: 1 0 0 | 0 1 1 1 1

Parent 2: 1 1 1 | 1 0 0 0 1

Offspring 1: 1 0 0 1 0 0 0 1

Offspring 2: 1 1 1 0 1 1 1 1

In this example, Offspring 1 inherits bits in position 1, 2, and 3 from the left side of the

crossover point from Parent 1 and the rest from the right side of the crossover point from Parent

2. Similarly, Offspring 2 inherits bits in position 1, 2, and 3 from the left side of Parent 2 and the

rest from the right side of Parent 1.

 78

Double crossover

Double Crossover operates by selecting two random bits within the parent strings with

subsequent swapping of bits between these two crossover points. For example, consider the

following parents and two crossover points at position 2 and 5:

Parent 1: 1 0 | 0 0 1 | 1 1 0

Parent 2: 1 1 | 1 1 0 | 0 0 1

Offspring 1: 1 0 1 1 0 1 1 0

Offspring 2: 1 1 0 0 1 0 0 1

In this example, Offspring 1 inherits bits in position 1, 2, 6, 7 and 8 from the Parent 1 and

the rest of the bits (3, 4 and 5) from the Parent 2. Similarly, Offspring 2 inherits bits in position 1,

2, 6, 7 and 8 from the Parent 2 and the rest (3, 4 and 5) from the Parent 1.

Uniform crossover

Uniform crossover is the extension of 1-point crossover to n-point crossover where n is

the number of crossover points. Uniform crossover means that each bit of the parents can be

selected according to some probability so that these two bits are exchanged to create

offspring. The number of genes exchanged during uniform crossover is on average crossings

on strings of the length for . For example, consider the following parents with S=8:

Parent 1: 1 0 0 0 1 1 1 0

Parent 2: 1 1 1 1 0 0 0 1

Offspring 1: 1 1 0 0 0 0 1 1

Offspring 2: 1 0 1 1 1 1 0 0

In this example, Offspring 1 inherits bits in position 1, 3, 4, and 7 from the Parent 1 and

the rest of the bits (2, 5, 6, and 8) from the Parent 2. Similarly, Offspring 2 inherits bits in

position 1, 3, 4 and 7 from the Parent 2 and the rest from the Parent 1.

Mutation operator

The mutation operator in evolutionary algorithm is analogous to biological mutation and

aims to introduce genetic diversity in the population. It triggers randomly chosen genes to

change (flip) bits, whereas crossover allows random exchange of information of two individuals.

If selection leads the heuristic to converge to an optimal value then mutation allows it to avoid

the local optima. Mutation can introduce new information that may not be present in the

current population because it was lost during crossover or performance-base d selection.

 79

Mutation changes the new offspring by flipping bits from 1 to 0 or from 0 to 1. In a string, any bit

can get flipped with some probability, usually very small (e.g. 0.01). Single point mutation is a

simple technique and in the case of constrained problems, where the gene encoding is

restrictive (i.e. as in permutation problems) then mutation can be implemented with swaps,

inversions and scrambles.

Normal mutation

Mutation when applied to new individuals created through crossover is called normal

mutation and it flips some bits with a pre-defined probability. For example, consider the

following bit-string of an individual with mutation point at position 2:

Pre-mutation Individual: 1 0 0 0 1 1 1

Post-mutation Individual: 1 1 0 0 1 1 1

The 0 at position 2 flips to 1 after mutation.

Weighted mutation

Weighted mutation is only executed when the population seems to be stuck. Weighted

mutation increases the probability of mutating certain bits depending on the representation

type. Usually, it flips the most significant bit and/or some of the least significant bits.

2.3.6.6 Replacement

The replacement method decides which individual of the offspring and parent population

will survive into the next generation and which will be discarded or dies. To accomplish this, the

procedure may copy parts of the offspring population to the parent population according to

some criteria, such as the fitness of the individuals similar to the selection process. There are

many different methods of replacement, i.e. random replacement, parent replacement, worst

replacement, most-similar replacement (crowding) and elite replacement. Some of these are

explained in the following sections.

Parent replacement

In direct replacement, parents are replaced by their offspring. As with this approach,

parents are replaced by their offspring so it allows the preservation of information in less fit

individuals in the population. One advantage of using this technique is that it can avoid

deceptive traps in the search space.

 80

Elitist replacement

Selects only the very best individual with regard to the fitness value of the offspring

population, and overwrites the very worst individual from the parent generation. Since the

fittest individual always survives it could mean that after a couple of generations the population

comprises several copies of the same very dominant individual which can lead to inbreeding and

loss of genetic diversity. The advantage of this technique when used in conjunction with other

operators is to have more exploitation and less exploration. One drawback is that it can fall into

deceptive traps i.e. suboptimal region in a multi-peaked space.

2.3.6.7 Termination conditions

The evolutionary algorithm executes until a termination condition has been reached.

There are a number of termination conditions:

 Search gets stagnant such that successive iterations stop producing better results

after finding a fittest solution or reaching a peak in the search plateau.

 The population is converged; De Jong defined a convergence as when a particular

gene has the same value in at least 95% of all individuals in a population [De Jong

1975].

 A solution is found that satisfies the expected optimal criteria.

 The predefined number of generations is reached.

 Any combinations of the above.

2.3.6.8 Performance Metric

Evolutionary techniques have been applied to many optimization problems with variety of

search spaces i.e. linear, multi-dimensional, multimodal, discontinuous and noisy. Although for

simple problems, an evolutionary algorithm may perform well, it needs appropriate optimization

operators and parameters in the case of complex problems. In many such cases, the choice of

the optimization operators may not be obvious. Even when an appropriate class of optimization

operators is available, there are several other parameters that need to be tuned, e.g., crossover

and mutation rate, tournament size for selection. The problem of tuning the algorithm is

dependent upon the performance evaluation of the algorithm. De Jong [1975] and Grefenstette

[1986] proposed three performance evaluation metrics for evolutionary algorithms which are as

follows:

 81

Online Performance:

The online performance is the average fitness value of all individuals that have been

generated and evaluated by the algorithm up to the current evaluation s. It means that if the

heuristic concentrates on the areas with higher fitness values it will perform better than

searching the area with lower fitness values.

 (2-1)

Where is the fitness value on s evaluation step. A low value for online performance

means that the heuristic is wasting too many evaluations on ‘bad’ solutions.

Offline Performance:

The offline performance at time t is the running average of the best fitness values found

by an optimization technique up to s evaluation steps (generations). It means that the heuristic

which produces better solutions by exploring poor regions of the search space may perform

better than the heuristic which focuses on a restricted area of the search space. The offline

performance can be defined as:

 (2-2)

Where is the best fitness value found up to s evaluation steps. The offline

performance measure is also used to see how quickly the heuristic converges to the optimal

solution.

Best Value:

An obvious metric is the global best solution. The global best solution is the individual

with the highest fitness from all generations that has been generated.

For example, if at t = 10, five individuals have been produced and evaluated yielding

fitness values of 10, 20, 8, 4, and 25, the on-line performance will be (10 + 20 + 8 + 4 + 25)/10,

the off-line performance will be (10 + 20+ 20 + 20 + 25)/5, and the best-value performance will

be 25. The online and offline performance metrics are greatly affected by the population quality.

In a population with high diversity the online performance will be low which indicates a bad

 82

performance for the heuristic. In a population with low diversity, the offline performance may

not be an effective measure.

2.3.7 Multi-Objective Evolutionary Algorithms

Evolutionary Computation (EC) is a population based meta-heuristic which means that it

processes a population of solutions in every generation, thus making EC an ideally suitable

technique for multi-objective optimization problems. For single objective optimization, EC

algorithms (EAs) are designed to optimize only a single objective or decision variable. However,

in the case of multi-objective optimization, there are two approaches. A multi-objective EA

(MOEA) that produces multiple Pareto-optimal solutions without having pre-defined relationship

or preference among objectives is called the Pareto-based technique while a MOEA that

produces single solution according to a given preference or prior trade-off relationship among

the objectives is usually referred to as non-Pareto or priori technique. An EA incorporated with

preference or prior trade-off relationship among the objectives is usually referred to as non-

Pareto or priori technique while the EA that produces multiple Pareto-optimal solutions without

having pre-defined relationship or preference among objectives is called the Pareto-based

technique. Formally, the multi-objective optimization is stated as follows:

(2-3)

where is the vector of objectives; is the number of objective functions;

 is the vector of decision variables; and D is the feasible solution space.

Although, multi-objective problems can be optimized with single objective algorithms, in these

cases all objectives are optimized one by one with a single algorithm being run, while others are

handled as constraints. In the end, using this approach, a trade-off solution is manually identified

among the objectives. However with multi-objective algorithms, all objectives are optimized

simultaneously and a trade-off solution or a set of solutions is devised automatically. Multi-

objective optimization elevates the need to run the single-objective algorithm multiple times in

order to generate the optimal solution set for each objective.

Generally, MOEAs are classified according to the underlying solution propagation

mechanism, i.e. Pareto and non-Pareto based techniques. The Pareto based techniques (e.g.

Niched Pareto Genetic Algorithm (NPGA), Non-Dominated Sorting Genetic Algorithm (NSGA) and

Strength Pareto Evolutionary Algorithm (SPEA)), produce multiple distinct solutions known as

 83

Pareto optimal (solution) sets, whereas the non-Pareto class of techniques such as VEGA and

Min-Max, are designed to propagate a globally unique solution.

Pareto Optimum:

The optimality criterion for multi-objective problems is defined as follows [Coello 2000]: a

point is said to be Pareto optimal, if there is no other point dominating the point with respect to

a set of objective functions. A point x dominates a point y, if x is better than y in at least one

objective function and no worse with respect to all other objective functions. Coello defines the

Pareto Optimum as “ x is Pareto optimal if there exists no feasible vector x which would

decrease the same criterion without causing a simultaneous increase in at least one other

criterion.” [Coello 1998]

Pareto Front:

The Pareto optimum is not always a single solution. It usually comprises of a set of

solutions called the Pareto optimal set or the non-dominated solution set or Pareto front [Coello

1998].

2.3.8 Non-Pareto-Based Evolutionary Algorithms

In typical multi-objective problems, all the possible solutions represent some trade-off

relationship among the objectives. However, as mentioned earlier, an EA incorporated with a

preference or prior trade-off relationship through fitness or cost function mechanism is called a

non-Pareto or priori technique. The following paragraphs describe some of the examples of non-

Pareto-based evolutionary techniques.

2.3.8.1 Aggregation-based Approach

Usually in an evolutionary algorithm, a scalar fitness function guides the search directly.

One approach in dealing with multiple objectives is to combine them into a single function so

that each potential solution is evaluated according to some predefined relation (i.e. preference

and weight) between the objectives. The approach of combining objectives into a single (scalar)

function is normally defined as aggregating functions. An example of an aggregating function is

as follows:

 (2-4)

 84

Where are the weighting coefficients representing the relative importance of the k

objective functions of our problem and it is assumed that:

The main problem with aggregation-based techniques is that they need to know the

normalization, prioritization or weight relationship among the various objectives for a suitable

measure. Combining objectives that interact or conflict with each other (such as increasing one,

can reduce others, especially in a nonlinear way) makes the function very complex. Moreover,

the set of solutions produced through this technique will be highly dependent on the function

and the relationship defined.

2.3.8.2 Vector Evaluated Genetic Algorithm (VEGA)

Schaffer adapted the simple GA for multi-objective optimization with a vector valued

fitness function and a performance-proportion selection operator that selects individuals

according to each objective at each generation [Schaffer 1985]. The algorithm was named the

Vector Evaluated Genetic Algorithm (VEGA) as it requires selecting parts of the population

(subpopulations) according to each of the objectives separately. So for a problem with

objectives and a population of size , k sub-populations of size each would be generated.

These would then be shuffled together to obtain a new population of size , on which the usual

crossover and mutations operators of GA would be applied.

The objective of the algorithm is to find solutions with moderate performance for all

objectives as a set of compromised solutions. However, the algorithm does not have explicit

diversity control mechanism so the solutions generated by VEGA suffer a speciation problem

such that the algorithm evolves species within the population dominated on different objectives

rather than producing a compromised solution.

2.3.9 Pareto-based Evolutionary Algorithms

As an EA is a population-based technique, it can produce a large Pareto-optimal solution

set in a single iteration intuitively. From the population of solutions, it preserves the diverse

niche of multiple non-dominated solutions by considering all non-dominated solutions equally.

At each generation multiple good solutions are exploited and the search gradually converges

close to the Pareto-optimal front with a good spread.

 85

2.3.9.1 Pareto Archived Evolutionary Strategy (PAES)

Knowles and Corne [2000] proposed Pareto-based extension of evolutionary strategy and

named Pareto Archived Evolutionary Strategy. As the name suggests, it uses an archive of all the

non-dominated solutions generated previously in selecting parents for mating. Furthermore, it

uses a single-parent, single-offspring strategy for reproduction. An important feature of PAES is

the crowding procedure that divides the objective space recursively which spares the need to

define the niche size. Therefore, niches are simply produced by placing the solutions into a

number of divisions in the objective space.

2.3.9.2 Niched Pareto Genetic Algorithm (NPGA-2)

Horn et al. [1994] first proposed the Niched-Pareto Genetic Algorithm (NPGA) which is an

extension of the traditional GA with a Pareto domination based tournament selection, fitness

sharing and fixed niche radius. It uses the same production operators (i.e. crossover and

mutation) as in a single objective GA. However, for the selection operator, a Pareto dominance

strategy is used to select the winner. The selection strategy is defined as follows: two candidate

solutions are selected randomly from the population. A subset of the population is also selected

randomly for comparison. Each of the candidate solutions is compared against each individual in

the selected subset. If one of them is dominated and the other is not dominated, then the non-

dominated individual wins. If there is no clear winner (i.e. neither dominated nor non-

dominated) then the result of the tournament is decided through fitness sharing. Errickson et al.

[2001] subsequently proposed a revised version of the NPGA and named it NPGA-2. This

algorithm uses Pareto ranking instead of Pareto dominance in tournament selection. In the

PAES Procedure
Begin

Initialize population pop
 Generate solution Si randomly and add it archive
 Repeat until (terminal condition is not satisfied) Do
 Mutate Si to produce Si+1 and evaluate Si+1
 If (Si dominates Si+1) Discard Si+1
 Else if (Si+1 dominates Si)

Replace Si with Si+1, and add Si+1 to the archive
 Else if (Si+1 is dominated by any member of archive) discard Si+1,

Else apply test (Si, Si+1, archive) to determine the new current
solution and whether to add Si+1 to the archive.

End
End

 86

algorithm, a dynamically updated niching strategy is used and the niche count is calculated using

individuals in the partially filled next generation.

2.3.9.3 Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II)

NSGA-II is one of the most efficient multi-objective evolutionary algorithms proposed by

Deb et al. [2000] which is based on the elitist non-dominated sorting approach. The approach

uses the elitist diversity-preserving mechanism to allow the elite of the population to compete

for survival over the next generation. The fitness assignment scheme is based on the non-

domination level. Offspring are generated using a standard bimodal crossover and mutation

operators. A binary tournament selection is made on a non-dominance and diversity basis. The

crowding comparison procedure is used in the tournament selection and the population

reduction phase in order to keep the diversity in the solution.

The following is a step-by-step detail of the algorithm. Initially, a random population Pi is

created and sorted into different non-dominated classes. The fitness for each solution is

calculated based on its non-domination level. Once the offspring population Po is created, both

offspring and parent populations Pi are combined from the temporary population Pt of size 2N.

Pt is sorted in a non-dominated form which classifies the population into groups termed as non-

dominated fronts. Thereafter, the best N members of the Pt are chosen to form the next

generation in the following manner. Firstly, solutions of the best non-dominated front are

selected. This is followed by the second and third fronts and so on, until the new population is

full and the rest of the solutions are simply deleted. In the case where the solutions in a non-

dominated front are more than the size of the new population, a niche of the solution is selected

from the least crowded region of the front. However, the solutions are selected based on their

crowding distances so that no extra niche parameter (such as niche radius in NPGA) is required.

NPGA-2 Procedure
Begin
 Initialize population pop
 Repeat until (terminal condition is not satisfied) Do
 Perform Pareto-Rank based Tournament Selection:
 Select Parent P1 and P2
 Perform crossover:

Between P1 & P2, produce offspring O1 & O2
 Perform mutation:
 On O1 & O2

Update offspring population with O1 & O2
End

End

 87

2.3.9.4 Strength Pareto Evolutionary Algorithm (SPEA)

Zitzler and Thiele [1999] extended a multi-objective evolutionary algorithm by introducing

a clustering technique to maintain diversity in the populations and non-dominated solutions set

based archiving mechanism, similar to PAES for selecting individuals that will survive into the

next generation. The strength of each of these non-dominated individuals is proportional to the

number of solutions which it dominates. The fitness of each member of the population is

computed according to the strengths of all archived non-dominated solutions that dominate it.

2.3.9.5 Multi-objective Genetic Algorithm (MOGA)

Fonseca and Fleming [1993] proposed an extension of the GA for multi-objective

optimization consisting of a selection technique in which the rank of a certain individual

corresponds to the number of individuals in the current population by which it is dominated. The

algorithm uses a rank-based fitness assignment method that assigned the non-dominated

individuals rank 1 and the dominated individuals are penalized according to the population’s

density of the corresponding region of the trade-off surface. Moreover, the authors proposed

the use of a niche-formation method to distribute the population over the Pareto-optimal

regions and suggested some guidelines for the determination of the niche sizes. Restricted

mating is also recommended in order to avoid the excessive competition.

2.3.10 Multi-Objective Performance Metric

For single objective algorithms, generally the best solution is considered to be an ultimate

performance measure. However, for multi-objective algorithms, as the optimization seeks the

SPEA Procedure
Begin
 Initialize population pop and create external non-dominated set S’
 Repeat until (terminal condition is not satisfied) Do
 Copy non-dominated members of pop to S’

Update the external non-dominated set S’:
Remove the duplicate solutions
If (Size of S’ > maximum N’)
Prune S’ using clustering mechanism

Compute fitness of each individual of pop and S’
Perform Binary Tournament Selection on pop and S’ for mating pool

 Perform crossover and mutation.
Update pop with new generation.

End
End

 88

trade-off between the objectives, there is mostly more than one optimal solution. It means that

a multi-objective optimization algorithm generates a set of non-dominated solutions also known

as a Pareto-optimal set. An important assumption about Pareto-based techniques is the absence

of prior preference information about the objectives which means that each solution in the

Pareto-front is equally as good as the others. However, there are three main factors that are

used to scale the performance of an algorithm: 1) the closeness of the generated Pareto front to

the Pareto-optimal front (true Pareto front), 2) the degree of solution diversity in the Pareto

front, and 3) the width or the spread of the generated Pareto front. Generating wider Pareto

front (maximum spread) closest to the true Pareto front is the most important objective of the

Pareto-based optimization as it provides more alternatives for the decision maker.

Given the fact that multi-objective heuristic techniques are approximate techniques, the

solution set produced by them are approximate Pareto fronts. Hansen and Jaszkiewicz (1998)

defined a number of compatibility and outperformance relations to express the comparative

relationship between two solution sets as reported in [Knowles 2002].

Given A and B are two approximate solution sets,

 The solution set A weakly outperforms the solution set B if all solutions in B are

covered (equal to or dominate) by those in A and there is at least one solution in

A that is not contained in B. Formally, it is defined as follows:

 and .

 The solution set A strongly outperforms the solution set B if all points in B are

covered by those in A and at least one point in B is dominated by a point in A.

Formally, it is defined as: .

 The solution set A completely outperforms the solution set B if each solution in B

is dominated by a solution in A and is formally defined as:

.

Assessing and comparing the performance of multi-objective algorithms is difficult

because of the multidimensional nature of the Pareto fronts. As the outcome is a set of non-

dominated solutions rather than the single best solution, it is hard to represent the solution

quality on a plot against time. A number of performance metrics for multi-objective optimization

algorithms have been reviewed in [Deb 2001] and have highlighted the fact that a proper

comparison of results of these algorithms is a complex issue. The following are some of the

measures taken from [Knowles 2002] to evaluate and compare the performance of multi-

objective optimization techniques.

 89

Generational Distance:

Generational distance is a measure of how close the current Pareto front is from the true

Pareto front (based on the assumption that the true Pareto front is already known).

 (2-5)

Where is the size of the produced Pareto front , is the individual member of

the true or reference Pareto front , is the individual of the current Pareto front, and

 is the Hamming or Euclidean phenotypic distance between and . If

then .

Figure 2-18: The example of the metric in the case of two objective functions and with 7 decision
vectors for a minimization problem. [INRIA 2010]

Size of the Dominated Space:

The size of the dominated space metric (S-metric), which is generally recommended for

assessing the quality of Pareto-based optimization techniques, is used to compute both the

convergence and spread of the generated non-dominated solution sets with respect to a

reference point. Figure 2-18 visually depicts the size of the dominated space. Depending on the

selected reference point , the S value of two different non-dominated solution sets (Pareto

front) can be different, therefore the selection of reference point is critical. The following

equation taken from [Knowles 2002, page 98] is used to compute the S metric:

 (2-6)

 90

Usually, the objectives functions have different range metrics, so the objective values are

normalized before computing the S value. The maximum possible valid value of each objective is

used as a component of the reference vector [Deb 2001]. In order to calculate the value properly

when the optimal value is also the ideal value, a small positive -value is added to each

component of the reference point [Hansen and Jaszkiewicz 1998].

Coverage

The coverage metric (C) is used to evaluate the performance of Pareto-based optimization

techniques or their outcomes by comparing two sets of non-dominated solutions against each

other. The following equation is used to compute the C metric:

 (2-7)

The value , means that all decisions vectors in are dominated by , whereas

 means that none of the points in are dominated by . As is not

necessarily equal to , it is necessary to calculate separately.

Spacing

The Spacing metric is used to determine if the points in the generated Pareto front are

evenly distributed in the objective space. The Spacing metric is given as:

 (2-8)

where

and ; n is the number of vectors in ; and is the mean of all .

 means that all the members of the produced Pareto front are evenly spaced.

Overall Non-dominated Vector Generation Ratio:

The Overall Non-dominated Vector Generation Ratio (ONVGR) metric is used to evaluate

the convergence property of a produced Pareto front and is measured the ratio of the

total number of vectors found in the produced to the number of vectors found in the

 91

reference Pareto front . The following equation as reported in [Knowles 2002] is used to

calculate it:

 (2-9)

The measure is calculated at a phenotype level and a larger ONVGR value indicates a

better .

Error Ratio:

The Error Ratio (ER) metric is used to evaluate a produced Pareto front in terms of

the number of vectors in the that are not members of the reference Pareto front .

ER is calculated according to following equation as reported in [Knowles 2002]:

 (2-10)

 Where when the vector is an element of and otherwise; n is the

number of vectors in the . The measure is calculated at phenotype level and a lower ER

valued is considered as a better . If the then is same as and if

the then none of the points in and are common.

2.4 Search Based Software Testing

 Incorporation of metaheuristic techniques has started a new direction for automated

software testing and according to a recent survey, it accounted for the largest proportion of

publications (70%) in search based software engineering [Harman, Mansouri and Zhang 2009].

Metaheuristic techniques also known as search based techniques are usually applied to

problems where the solution space is very large and no known exact algorithm can produce

good solutions (global optimal) in a reasonable amount of time. Software testing is complex,

expensive but forms an integral part of the software development process. The efforts to reduce

the cost of testing through automated test generation and execution have been around for more

than two decades now. Initial attempts on automating the test generation process were

primarily focused on using random and systematic (i.e. goal and path oriented) approaches

[Roger and Bogdan 1996]. The random technique can produce a large number of test cases,

however, it can never guarantee complete coverage and is prone to produce redundant test

cases. The systematic approaches enable generating test cases according to given a criterion.

 92

However, they are also prone to produce infeasible test cases [Edvardsson 1999]. Several

attempts have been made to improve both test case generation approaches by incorporating

heuristic techniques. The test optimization techniques can be classified along several

dimensions, such as source or reference-based (e.g. code and specification), purpose-based (e.g.

mutation, temporal and stress), objectives-based (e.g. single and multi), test stage-based (e.g.

optimal generation and optimization), optimization mode-based (e.g. online and offline) and

heuristic-type based (e.g. local and global search) dimensions. Table 2-8 presents the overview

of two orthogonal dichotomies of test optimization techniques. The following is the summary of

some of the test optimization techniques and related work.

Table 2-8: Taxonomical overview of test optimization techniques

 Optimal Test Suite Generation Test Suite Optimization

Code-

based

 Structural testing,
 OO class testing,
 State-based testing,
 Aspect oriented testing

 Test case prioritization
 Test case selection
 Test suite minimization

Speciation-

based

 Test sequence generation
 Domain testing

Same as code-based test suite
optimization

2.4.1 Optimal Test Suite Generation

Test generation is one of the most extensively investigated topics in software engineering

[Bertolino 2003]. Search based software engineering is no exception and several search based

test generation techniques have been reported.

Exhaustive testing of non-trivial software is impractical as the number of possible test

cases can be astronomical due to the infinite test space (e.g. input space, state space and path

space). Typically, there are two types of approaches, sampling and folding, which are followed to

address the test case explosion problem [Young and Taylor 1989]. The first approach is based on

using random sampling to use only part of the infinite test space (e.g. random testing [Hamlet

2006]). The second approach is based on reducing the test space by folding or abstracting away

some detail of inputs, paths or states. For instance, the equivalence class testing requires input

data from each equivalence class. The subsumption hierarchy of test adequacy or selection

criteria indicates the folding relationship of their test space. For example, test space of edge

coverage criterion (graph-based criterion) includes paths that satisfy node coverage criterion as

 93

well. A test criterion that subsumes another criterion in a particular criteria family (i.e. graph-

based criteria) means a larger test space and more test cases needed to cover it.

Generating an effective test suite which efficiently covers the complete search space of

candidate test cases according to a given criterion for the software under test is a

computationally hard problem. Producing a test suite with minimum number of test cases and

complete coverage of a given criterion (e.g. all transitions and basic paths) is analogous to Set

Cover problem which is NP-hard. It means that no algorithm exists that can resolve such a

problem exactly in polynomial time. Heuristic techniques often used for problems where the

polynomial-time algorithms are not feasible due to the size of the search space or where the

search space grows exponentially with the increase in problem size and the conventional

exhaustive search algorithm does not scale well.

In order to generate test cases using a heuristic technique, the test adequacy or selection

criterion is formulated as a fitness function and the search space of possible test cases is

encoded in the appropriate representation. Several metaheuristic based test generation

techniques have been reported and these can be classified along a conventional testing

dichotomy of structural and functional testing.

2.4.1.1 Structural Test Generation

The aim of structure based test generation is to generate test cases with maximum

coverage for a given structural coverage criterion. A heuristic technique uses the fitness function

to evaluate individual candidate test case for fitness according to the given coverage criterion.

Generally, the fitness function is defined as a distance value between a test case and the target

program predicate that it needs to execute [Sthamer 1996; Wegener, Baresel and Sthamer

2001]. For example, consider the selected criterion is branch coverage, which requires that a test

suite contains at least one test case which causes each feasible branch of the program under test

to execute. The condition to execute a branch is x==y. With the fitness function |x-y|, that

branch will be executed when this function is evaluated to a minimum [McMinn 2004]. For

extensive review of the structural test case generation using metaheuristic, readers are referred

to [McMinn 2004] and [Harman, Mansouri and Zhang 2009]. Formally the optimal structural test

generation can be defined as follows:

Given a program and a set of program elements that must be traversed to

provide the desired test coverage of the program, test suite generation is to find a test suite

that satisfies all of the .

 94

2.4.1.2 Functional Test Generation

The aim of functional test generation is to find test cases that fulfill the functional

coverage criterion. The heuristic based functional test generation techniques can be categorized

into test data and test sequence generation. Test data generation techniques are used to

generate input data from the functional specification. Domain testing and combinatorial testing

are test data generation techniques. In combinatorial testing, all possible t-way data

combinations for input parameter are tested. Shiba, Tsuchiya and Kikuno [2004] proposed two

test data generation algorithms based on GA and ant colony optimization algorithm (ACO) to

produce a small t-way test set for combinatorial testing.

The test sequence generation techniques derive test sequences from the functional or

behavioral model, such as Statechart and Markov Usage Model (MUM). State-based testing is a

functional testing technique for generating test cases to identify faults in the implementation of

classes or components modeled in logical states. Li and Lam [Li and Lam 2005] proposed an ACO

technique for generating minimal test suite covering all states from the UML Statechart. MUM is

usually used in software testing for identifying the relative importance of various transition and

states of the software and prioritizing associated test cases accordingly. Doerner and Gutjahr

[2003] demonstrated the usage of ACO in extracting the test sequences for functional testing

from a MUM. Formally the optimal functional test generation can be defined as follows:

Given a specification and a set of specification elements that must be

traversed to provide the desired test coverage, test suite generation is to find a test suite that

satisfies all of the .

2.4.2 Test Suite Optimization

During ongoing software maintenance, the test suite grows and requires regular

maintenance. New test cases are added wherever needed to exercise the modified part of the

program. However, the changes may render some of the existing test cases invalid or redundant

and which are usually difficult to identify and remove. Executing invalid test cases may produce

false test results. Redundant test cases may create test suite maintenance problems as well as

wastes testing time and resources. Moreover, due to the limited time and resources available for

testing, executing the entire test suite is not always feasible. In such circumstances, test cases

with higher effectiveness and/or lower cost are selected or prioritized for execution. Approaches

to find feasible and economical sets of test cases are usually classified into three types: test case

selection, test case prioritization and test suite minimization.

 95

2.4.2.1 Test Suite Minimization

Test suite minimization techniques are used for maximizing the effectiveness of a test

suite at minimal cost by removing those test cases that owing to code or requirement

modifications over time have become redundant or obsolete with respect to the original test

objectives. Generally test cases produced for a test requirement fulfils other requirements as

well which in other terms means that a requirement might be satisfied by more than one test

case. The premise of reducing a test suite is that running the minimal set of test cases that give

the same coverage as all of the test cases can significantly reduce the cost of execution and

maintenance with negligible effect on the fault detection capability. Several empirical studies

have confirmed the advantages of test suite minimization [Chen and Lau 2001; Wong et al.

1997]. Formally, it is defined by Harrold, Gupta and Soffa [1993] as follows:

Given a test suite , a set of test case requirements that must be satisfied to

provide the desired test coverage of the program, and subsets of , one associated

with each of the such that any one of the test cases belonging to can be used to test .

Test suite minimization is to find a representative set of test cases from that satisfies all of the

.

2.4.2.2 Test Case Selection

Many testing techniques have been proposed to selectively choose test cases according to

a predefined test objective. However, from the regression testing perspective, test case

selection is about finding test cases to target only the changed code or functionality. The basic

idea of selective testing is to execute a relatively small and effective set of test cases and to

reduce extraneous testing. Generally, test cases are selected using specification or code oriented

dependency analysis which allows testers to choose only those test cases that target the

modified code or functionality. Simplistic dependency analysis or more sophisticated techniques

such as data-flow analysis can be used. Many studies have shown the effectiveness of

dependency analysis and heuristic based test case selection [Binkley 1995; Bogdan and Ali 1998].

It is defined by Yoo and Harman [2007] as follows:

Given a program , its updated version and a test suite , test case selection is to find

such that .

A test case t is considered modification_traversing if it covers at least one part of the

updated code or functionality in .

 96

2.4.2.3 Test Case Prioritization

Prioritizing test cases has become increasingly important in the past two decades and has

also attracted significant research attention. The basic idea of test prioritization is that given the

effectiveness (e.g. coverage, fault detection capability) of each test case one can prioritize the

execution of the test cases such that the testing achieves the maximum test objectives at a

faster rate. For example, if you know the coverage of each test case, you can prioritize the tests

in a way that by executing them in that order you can achieve the highest coverage in the least

amount of time [Rothermel and Elbaum 2003]. Several empirical studies and industrial

experiences appear to confirm this approach [Rothermel et al. 1999; Srivastava and Thiagarajan

2002]. Rothermel et al. [1999] defined the test prioritization as follows:

Given a test suite , the set of permutations of , ; a function from to real numbers

, test case prioritization is to find such that

.

The set represents all possible prioritization orderings and the function quantifies and

assigns values to these orderings according to a given objective.

2.4.3 Code and Model-based Test Suite Optimization

Existing work in test suite optimization that are similar to test generation techniques can

be categorized into code-based and model-based techniques. Code-based optimization

techniques use source code based coverage information collected during the execution of the

software under test (SUT) with test cases as a fitness value to guide the optimization process.

Model-based optimization techniques rely on models of the SUT for test suite optimization.

Optimization of test suite with model-based techniques is relatively inexpensive in

comparison to code-based techniques [Bogdan et al. 2005]. Therefore, the optimization

overheads of model-based techniques are smaller than that of code-base techniques which

make it a more feasible option for system level test suite optimization. The code-based

techniques are language dependent and are effective for unit level testing mostly. Moreover,

they do not scale well to system level testing. A recent study [Korel and Koutsogiannakis 2009]

found that model-based prioritization techniques are superior to code-based techniques in

terms of the fault detection capability at system level testing. Furthermore, incorporating

requirement information in optimization gives model-based techniques an extra advantage

which can be utilized to eliminate many overlapping test cases without sacrificing the integrity

and thoroughness of the test suite.

 97

2.4.4 Multiobjective Test Generation and Optimization

Most of the conventional testing techniques derive a large number of test cases to

achieve a given coverage objective and often without considering the potential or allocated cost

and time. Typically, software projects are constrained by limited time and resources, so a trade-

off is often sought between the testing objectives. Selecting a small but adequate subset of test

cases according to a given objective can potentially save significant test resources. Moreover,

studies have shown that although more testing improves the productivity (satisfying test

objective i.e. code and requirement coverage) initially, it eventually reaches a point of

diminishing returns where more testing stops improving the productivity [Chen and Lau 2001;

Wong et al. 1995].

Several researchers have incorporated heuristic techniques in the testing process in order

to generate or select a minimal number of test cases while fulfilling the multiple test objectives

[Lakhotia, Harman and McMinn 2007; Oster and Saglietti 2006; Yoo and Harman 2007]. Patton

et al. [2003] proposed a multiobjective GA and usage profile based approach to provide

appropriate debugging information (i.e. fault nature and location) during system testing. Kiran

and Harman [2007] incorporated multiobjective evolutionary algorithms to generate test data

for branch coverage while maximizing the dynamic memory allocation. Zhang and Harman

[2007] proposed a multiobjective evolutionary algorithm for test case selection.

2.4.5 Test Suite Minimization Approaches

To minimize a test suite, there are two approaches that are usually used to identify and

handle redundant test cases. One approach is iteratively selecting test cases to maximize the

coverage of artifact /feature of interest according to a given criterion. The other approach is

selecting test cases to maximize the range of behavior exhibited by the original test cases.

2.4.5.1 Coverage-based minimization

With coverage-based minimization, test cases are selected to maximize the proportion of

the program artifacts /features that are covered according to a given criterion (e.g. statement or

branch). It simply tries to cover as many program artifacts of a given type as the original test

suite with a minimum number of test cases. For example, in the minimization of a test suite

generated for a branch coverage criterion using a greedy algorithm, at each of the iterations it

will select a test case that covers the largest number of branches that were not covered by the

previously selected test cases. In general, coverage-based techniques have the following key

components:

 98

1) A test suite from which the minimal set is selected.

2) A set of selection criteria and an associated set of artifacts/features

3) A feasibility function to determine if a test case contributes to the

solution

4) The solution function to determine when the solution is final and

complete.

2.4.5.2 Distribution-based minimization

With distribution-based minimization, cluster analysis techniques are used for selecting

test cases based on the way they are distributed over the program artifact /feature space

according to the criterion [Dickinson et al. 2001; Masri et al. 2007]. At the start, k clusters of test

cases are identified on the basis of their execution profile and then tests are selected using a

random or guided sampling strategy. For clustering a dissimilarity metric (e.g. coverage of

program artifacts or execution count) is used and calculated by an n-dimensional Euclidean

distance between each pair of test cases in terms of coverage of program artifacts or features. It

indicates their degree of dissimilarity. For example, in order to minimize a test suite generated

for branch coverage criterion, test cases are first sorted into various clusters according to the

difference in the branches they cover. Secondly, test cases are selected from each of the clusters

either randomly or using some guided selection mechanism. The main steps involved in

distribution-based minimization are as follows:

1) Sort test cases into clusters.

2) Define similarity/dissimilarity criterion

3) Select test cases from each cluster (e.g. one-per-cluster sampling or

adaptive sampling).

 A number of studies have been reported that enhance the efficiency and effectiveness of

testing by eliminating the redundant and obsolete test cases without compromising the fault

detection capabilities [Binkley 1995; Harrold, Gupta and Soffa 1993; Jeffrey and Gupta 2007;

Jennifer et al. 2004; Offutt et al. 1995; Yanping et al. 2007]. Harrold, Gupta and Soffa [1993]

formulated the test suite minimization as a hitting set problem and proposed a heuristic for

finding the smallest test suite. Offutt et al. [1995] proposed a minimization heuristic and

conducted an empirical study to reduce a regression test suite with respect to mutation and

statement coverage criteria. Chen and Lau [2003] proposed a divide-and-conquer approach to

minimize the size of a test suite generated through a random technique. It is based on an exact

algorithm which is usually considered infeasible for industrial scale applications. Xie et al. [2004]

 99

have developed a framework for the optimization of object oriented unit tests by eliminating

redundant test cases. They also proposed a number of redundancy detection approaches and

applied it in detecting and removing redundant test cases. Jeffrey and Gupta [2005] proposed a

technique to minimize a test suite with selective redundant test cases. Tallam and Gupta [2005]

adapted the greedy algorithm to minimize a test suite by removing redundant test cases. They

used the Concept Analysis technique to identify the groups of objects and attributes and their

implications and then exploit that information for test suite reduction. Jeffrey and Gupta [2007]

proposed a test suite reduction approach while selectively retaining redundant test cases in

order to improve the fault detection capability. Wong et al. [1999] and Rothermal et al. [1998]

have empirically studied the effects of test suite reduction on its fault detection capability.

According to Wong et al. [1999], the reduction in test suite size has no or negligible effect on it

fault detection capability. However, Rothermal et al. [1998] found that the reduced test suite

can compromise the fault detection capability of a test suite. The conflicting results of both

studies have rendered the test suite reduction a controversial topic. Other studies [Chen and Lau

2001; Heimdahl and George 2004] on this topic found the similar opposite results. So far, the

proposition about the compromised fault detect-ability of an optimized test suite is limited to

the code-based regression test suite. Few studies in the category of functional testing regarding

the effect of test suite minimization on its fault detection capability were conducted [Chen and

Lau 2001; Chen and Lau 2003; Heimdahl and George 2004]. Chen and Lau’s [2003] study is

related to domain testing and reported no difference in the fault detection capability of the

reduced or the original test suite. The other study by Heimdahl and George [2004] was related to

model-based testing and they found that test suite minimization can compromise the fault

detection capability of a test suite. However, due to the enormous differences between

modeling languages and the associated test generation mechanisms, these results are not

necessarily applicable to other model-based techniques. Nevertheless, this fact highlights the

need for further study.

 100

Chapter 3 Model Transformation

The previous chapter provides the review of the literature related with the study. This

chapter reports the issues related to transformation of an AD model into a CPN model and

describes a rule-based transformation methodology developed in this study. It also describes

four case study AD models and reports an experiment to evaluate the proposed transformation

methodology using the case models.

Model transformation is a core mechanism in Model Driven Architecture (MDA) for

defining an automatic, valid and consistent transformation between source and target models.

The transformation requires a set of production rules or mapping patterns for translating one or

more elements in the source model into one or more elements in the target model.

Transformation is the application of production rules to the source model until no more

production rules are applicable and which finally yields the target model. Various model

transformation techniques have been developed to produce models in the same or different

technological spaces i.e. Common Warehouse Metamodel (CWM), XML Metamodel Interchange

(XMI), eXtensible Stylesheet Language Transformation (XSLT), graph transformation and graph

grammar. The Object Management Group (OMG) has approved various standards to facilitate

model interchange. CWM, XMI and MOF QVT are the OMG’s adopted meta-model, data and

model level transformation respectively. XSLT is the World Wide Web Consortium (W3C)

endorsed standard for interchanging documents in XML format.

UML provides various modeling formalisms to specify different views of a system in

models. These formalisms are classified into structural and behavioral types based on their

capabilities to reveal different aspects of a system. Diagrams associated with these formalisms

provide graphical projection of the models depicted in them. The Interaction Diagrams

(Sequence and Collaboration) are suitable for depicting inter-object behavior. However, they are

not suitable for representing what happens inside an object. The Statechart Diagrams are

excellent for showing the internal behavior of an object but they are not useful in depicting the

inter-object interaction. The ADs are excellent in depicting both inter and intra-object behavior.

It has wide application scope, ranging from modeling embedded hardware and software to

business process modeling for distributed and concurrent systems. Flow-oriented modeling in

 101

ADs do not require new skills as it is very similar to flowcharting, and is deemed intuitive for

depicting program and process flow logic. The provision of hierarchical activities enables the

development of large and complex models in a top-down, bottom-up or a combination of both

top-down and bottom-up ways. In software modeling, it can be used to model the detailed flow-

oriented specification of a method or operation for a class or use case. In the case of a business

process or workflow modeling, it can be used to model the detailed specification of complex use

cases involving many actors or business organizations.

In UML version 2.x (UML2), AD has gone through a major revision, resulting in several

syntactical and semantical changes. Although, its new multilayered syntax is complex, it is quite

rich in notations and expressiveness. This makes it suitable for modeling both high level

conceptual diagrams at the earlier stages to low level detailed diagrams at the later stages. The

syntactic elements with graphical notations such as action, activity, object and control nodes

allow modeling both simple control and data flow behavior to complex behaviors such as

hierarchies, synchronous or asynchronous communication, concurrency and exception handling.

These features serve to reduce the modeling overhead [Bock 2003; OMG 2007]. Its new token-

flow oriented semantic enables simulating the intended or implemented system behavior of the

model. The action and activity firing rules, token insertion and removal rules on control nodes

allow model navigation and status monitoring at any time during a simulation run.

As this study is focused on the application of AD in software testing, the following

sections only describe software modeling related aspects of AD.

3.1 AD based Software Models: Notations, Syntax and Semantic

An AD is suitable for modeling the dynamic behavior of a system in terms of the

computational steps connected by actions, data and control flows. They can be used to model

the methods of a class or the detailed specification of a use case. In the following section, some

of the basic notations and convention used to build behavioral software models using AD as

defined in [OMG 2007], are presented. Although the notations are readily understandable, the

syntax will be elaborated upon. Given the importance of semantics, some of the vital points of

AD semantics in UML2 are also covered in the following sections.

An AD model consists of diagrams compose of a small set of graphical artifacts. Figure

3-1 depicts the basic set of artifacts that are provided for modeling with AD in UML2 (based on

Enterprise Architecture [EA 2008] modeling notation).

 102

3.1.1 Functional Artifacts:

There are two kinds of basic functional artifacts that take some input, execute (perform

some operation on control or data input that they receive) and produce some output.

1) Activity: An activity represents a complex behavior or functionality provided by a

program, which at a detailed level, can specify the sequence and condition for

execution of low level behaviors (also referred to as actions). The initiation of an

activity is depicted by an Initial node which is then linked to other artifacts by

directed connections, thereby indicating an ordered flow of execution. The

execution of an activity stops at an Activity Final node which concludes the

behavior. However, a thread of execution within an activity ends when the flow

reaches a Flow Final node. A Structured Activity node allows the specification of

complex logic in multiple levels of sub-activities and may be represented as a

composite activity as depicted in Figure 3-1. Although an activity can invoke

(call) other activities (through call-behavior-action) at run-time and can create

call-hierarchies, it is different to Structured Activity node. A sub-activity in a

structured (composite) activity starts executing as soon as the super-activity

commences execution. The super-activity remains active until all sub-activities

have completed execution.

Figure 3-1: Activity Diagram Behavioral Artifacts

2) Action: An action node is used to represent a primitive or a low level behavioral

or functional aspect of the system which can be atomic as well. Typically, an

action node has some inputs and outputs and is active when it receives tokens

(data) on its inputs and while it consumes those tokens. At the start of the its

execution, the tokens are consumed (removed from the inputs) and an

operation is performed on them; ultimately producing some output which in

turn goes on to become the input for the next action node in the sequence. The

rounded-corner rectangle notation as shown in Figure 3-1, represents an action

node. UML2 specification has various types of primitive actions defined (e.g.

 103

calling other behaviors (activities/ actions)). For instance, the Call-Behavior

action represented by an action node with a trident symbol in the lower-right

corner (see Figure 3-1) depicts calling other activities (behaviors/functions). The

Send Signal action, shown as ‘Send Event’ node in Figure 3-1, creates a signal

instance on receiving an input. It transmits the signal token to the target

activity/ action which may trigger the execution of that activity asynchronously.

Whereas, the Receive Signal action (‘shown as Receive event’) creates a token

immediately on receiving the signal and passes it on to a successor node.

3.1.2 Control Artifacts:

Another set of artifacts in AD is the control nodes as shown in Figure 3-2. Control nodes

pass the control and data tokens through the activity and coordinate the flow between nodes.

1) Initial node: An Initial node receives token (control) when the enclosing activity

is invoked or started. It indicates the starting point for executing that activity. A

control token placed in an initial node is forwarded to all outgoing edges. An

initial node is not required for an activity and a direct link from the activity

border (or input pins) to the start node can indicate the start of flow. However,

for the sake of design clarity an explicit start node will be used as a convention.

2) Final node: The Final node also referred to as Activity Final is used to represent

the termination of execution for an activity. A token reaching the Final node

stops all action nodes in execution regardless of their state (e.g. waiting for

event) and all of the synchronous flows (threads) in the activity. However, it

does not affect the execution of any asynchronously invoked flows or separate

instances of the same activity.

3) Flow Final node: The Flow Final node represents the termination of a flow in the

activity. Arrival of a token at the Flow Final node only indicates the completion

of a particular flow and does not affect the execution of other flows.

4) Fork/ Join node: A Fork node splits the flow into multiple concurrent flows. The

incoming tokens at a fork are duplicated and offered to all outputs. At least one

input and two outputs are required for a Fork node. A Join node synchronizes

multiple flows and combines multiple parallel flows into a single flow. It offers a

token on the outgoing edge only after receiving tokens on all of its inputs. The

notation for both fork and join nodes is a line segment. The functionality of

both Fork and Join nodes can be combined into single node using the same

notation.

 104

5) Decision/ Merge node: Both Decision and Merge nodes have the same diamond

notation. A decision node has an incoming edge and multiple outgoing edges.

Each outgoing edge (branch) from a decision node carries a guard condition that

is evaluated at runtime to determine if a token can continue along the edge. The

guard conditions on outgoing edges are evaluated for each individual token

arriving at the decision node to determine which edge the token will traverse.

Each token can only follow one outgoing edge from a decision node. A merge

node has multiple incoming edges and one outgoing edge and serves to combine

multiple flows without synchronizing. All tokens arriving at a merge node are

immediately passed over to the outgoing edge.

Figure 3-2: Activity Diagram Control Artifacts

3.1.3 Special Artifacts:

1) Objects: A rectangle in an AD means a data-object that can be accessed by

actions during the program execution. Each of the data-object nodes in a model

also has a unique identifier which is enclosed in braces as a prefix to the data-

type name. All object nodes specify the type of value they can hold and if no

type is specified, they can hold values of any type. Object nodes can hold more

than one value at a time, and some of these values can be the same. Each object

node has an upper bound which specifies the maximum number of tokens it can

hold, including any duplicate values.

2) Partitions: Activity Partitions are provided in order to model the procedural flow

and actions within an activity that has been grouped based on common grounds

such as objects (e.g. classes, components, classifier or other responsible entities)

that actually execute the action or provide the functionality. Partitions indicate

what or who is responsible for actions grouped in a partition. An activity diagram

may be visually divided into partitions each separated from neighboring

partitions by solid vertical lines on both sides. In UML2, although the partitions

 105

can be hierarchical, they do not affect the token flow of the model as there is no

execution semantic defined for Partitions.

The visual notations for both object and partition artifacts are shown in Figure 3-3.

Figure 3-3: Object and Partition Notations

3.1.4 Connection Artifacts:

Activity nodes are connected by two kinds of directed edges:

1) Control flow edges connect control and behavioral nodes (activities and actions)

and indicate that the node at the target end of the edge cannot start until the

source node finishes. Only control tokens can pass along control flow edges.

2) Object flow edges connect objects nodes with behavioral types of nodes. The

directed link between an action and an object node depicts the flow of data. If

an action only reads from the object, then the arrow is directed toward the

action node representing the flow from the object to the action only. If the

action updates data in the object node, then the data flows from the action to

the object node. Only objects and data tokens can pass along object flow edges.

The visual notations for the control and object flow edges are shown in Figure 3-4.

Figure 3-4: Activity Edge Notations

 106

3.2 Case Studies

For the validation of the study, AD was chosen as a surrogate modeling formalism for

depicting the case studies in all of the experiments. In the following sections, four case studies

featuring models at various levels of complexity and composition are described.

3.2.1 Enterprise Customer Commerce System (ECCS)

The AD model shown in Figure 3-5 is adapted from [Koehler et al. 2005]. It describes an

Enterprise Customer Commerce System (ECCS) and depicts the process of online purchasing of

products that is comprised of two sub-processes, viz. the authentication process and the

shopping process. The authentication process allows a customer to sign-in into the system. In

the case of a new customer, system allows him or her to register first and then get back to the

login screen. The authentication sub-process operates on user-specific data object for

authorization. The shopping process facilitates the user to order the selected products and is

also used for the account configuration by the user. The shopping sub-process operates on the

data object that is related with shopping and user-specific information.

Figure 3-5: Enterprise Customer Commerce System [Koehler, Hauser, Sendall and Wahler 2005]

The guard conditions on the edges leaving decision nodes are denoted with mnemonic

names according to the source-target actions. For example, the conditions for logon action from

init, register and authenticate actions are denoted as il, rl and al respectively in the diagram.

Overall, the ECCS model shows the order in which the data objects can be changed and the

conditions when a specified action can operate on them.

The authentication sub-process comprises of init, register, logon and authenticate

actions and D1, D2, D3 and D4 decision nodes. The init action initializes the process by creating

an authentication data object for a new customer or loads it from the system for an existing

 107

user. Existing users can log on straight to the purchasing system; while new users are requested

to register first and then proceed to the shopping system after a successful authentication.

Registration remains active for a specific period according to the system’s security policy.

Thereafter, the authorization may fail and the user with an expired registration needs to

reregister (activate). On the successful authentication of a user, all shopping data related with

the authorized user, such as payment information, open shopping sessions, previous and

existing orders and shipping addresses, is made available for subsequent shopping processes.

The shopping sub-process comprises of verify, select, configure, put and order actions.

The process has two concurrent threads, one for product selection allowing the user to select

and possibly configure products, and a verification thread containing only a single ‘verify’ action

that ensures the security and integrity of the shopping process. If a user has an uncompleted

shopping session with items placed in the shopping cart but not ordered, the cart will be load

with previous session data by default and available to the user for modification. New products

can be selected and configured until they are finally added to the shopping cart. The process is

quite flexible and the user may go back and forth between the various actions. In order to place

an order, the user is required to complete the product selection process via the order action

where orders placed on products in the shopping cart may be submitted or cancelled. A verify

action also needs to be completed successfully for the order action to be executed. No order can

be submitted, and the process cannot be exited in a valid way without this information.

3.2.2 Automated Teller Machine (ATM)

The Automated Teller Machine (ATM) model is one typical case study in software

engineering research. For this study, it has been adapted from a report [Chandler et al. 2006].

The ATM model describes the flow of control between a customer, the ATM and the Bank. This

is a simple, high level view of these activities where a customer typically interacts with the

system by performing some transaction. The transactions offered to a customer of the ATM such

as withdraw cash, deposit funds, transfer funds and balance enquiry are depicted as separate

activities and invoked using call-behavior actions. A transaction requires that a customer be

authenticated via a bank card in order to access his/her account. One user session may involve

one or more transactions and on the completion of a successful session, the ATM will eject the

card from the card reader.

The top level ATM activity diagram as shown in Figure 3-6 depicts the possible actions at

the system level and provides options for a customer to access specific functions. The specific

selection functions are depicted by ‘call-behavior’ actions labeled with the activity name that it is

 108

designed to invoke (e.g. the ‘Deposit’ call-behavior action invokes the Deposit Funds activity as

shown in Figure 3-7.

In the first interaction with the ATM, a customer inserts the ATM card into the machine.

In response, the machine validates the card, and if it is recognized by the system, it prompts the

customer to enter a PIN (Personal Identification Number) using the machine keypad, otherwise

the card is ejected. After a successful authentication within three attempts, the system prompts

the customer to select a transaction option. However, if the customer fails to enter a correct PIN

in three attempts, the system retains the card and the customer is asked to contact the bank for

new card. On the other hand, after each transaction the system prompts the customer to

perform another transaction. A negative response to one of these prompts causes the system to

close the session and to eject the card from the card reader.

 109

Figure 3-6: Automated Teller Machine Activity Diagram

 110

Figure 3-7: Sub-process Deposit

Deposit Funds: The Deposit Funds activity in Figure 3-7 illustrates the process flow of a

deposit transaction using the ATM system. From the ATM system level activity, if the guard

condition with ‘B5’ edge evaluates to true then control reaches the ‘Deposit’ call-behavior action

which will execute the Deposit Funds activity. The control flows through the activity, prompting

the customer to enter the amount and deposit the cash, printing the receipt if needed and

updating the account balance by tracing a route from nodes to edges. An interesting segment in

this diagram is the concurrent region between the Fork2 and Join2 nodes. The upper thread in

this region includes the Update Balance action which updates the ‘balance pending’ field in the

‘Account’ table at the bank while in the lower thread, the customer is asked if a receipt is

required, involving a decision made within a concurrent region. In this activity, if the customer

does not opt to print a receipt, then the lower thread branches past the print receipt action.

 111

Figure 3-8: Sub-process Check Balance

Balance Enquiry: The Balance Enquiry activity in Figure 3-8 illustrates the functionality

of finding and displaying the balance of the account linked to the card using the ATM. For this

activity, the system prompts the customer to select the account type and then displays the

account balance on ATM screen. The customer is then asked if account balance is required to be

printed and prints a balance receipt is printed if the answer is affirmative. From within the ATM

activity, the Check Balance action invokes the balance enquiry activity if the guard condition on

the ‘B7’ edge is evaluated to true.

 112

Figure 3-9: Transfer Funds Sub-process

Transfer Funds: Figure 3-9 illustrates the expected behavior of the Transfer Funds

activity. It is triggered when the guard condition with the ‘B8’ edge in the ATM activity is

evaluated to be true. On execution, it prompts the customer to select the account type, the

transfer amount and to enter the BSB and the account number. The system then checks if the

target account is valid, after verifying that the transfer amount is within the account balance.

 113

Figure 3-10: Withdraw Cash Sub-process

Withdraw Cash: Figure 3-10 depicts the actions that occur during a withdraw cash

transaction in the ATM system. The activity is invoked from the ATM activity if the guard

condition on the ‘B6’ edge is evaluated to true. This activity, similar to other low level activities,

 114

performs various actions such as prompting the user for information like account type, withdraw

amount and then updates the account balance on completion of the transaction request.

3.2.3 Two Models from Software Industry

The study also includes the two industry related models, namely Edit Trend Properties

(ETP) and Delete Trend Properties (DTP) of a Trending Subsystem in an Intelligent Transport

System (ITS). These two models were developed by the researcher while working for a software

and permission was given to include them in this project. The Trending subsystem is responsible

for the display of both historical and real-time trend of travellers, traffic flow and equipment

operation in particular area or route. Basically any numerical data that is collected by the system

can be displayed in a trend. A trend can display multiple plots for visual comparison of data. Two

modes, time-based and source-based, are supported for comparative analysis and a trend can

be configured to plot one or more data sources or a data source against two different time

period simultaneously. A trend can display real-time data as well as archived data in multiple 2-

dimensional plots. The x-axis typically represents time, while the y-axis represents the data value

at a point in time. Historical trends are used to display archived data in a chronological plot for a

given time period. Whereas, real-time trends with a start time set to the current date and time

are continuously updated with new data at configurable sample rate. Data displayed in a

historical trend can be scrolled forwards and backwards in time.

Trends are typically pre-configured and a user usually selects one or more pre-

configured trends for display during system operation. However, a user with appropriate access

privileges would be able to configure or remove a custom trend during system operation. Both

models ETP and DTP describe the step by step editing and deletion of existing trending reports

from archived or real-time data respectively. The product related terms in the models have been

obfuscated for commercial neutrality purpose.

3.2.4 Edit Trend Properties (ETP)

The Trending subsystem allows the operator to graphically see the data trend by

creating a new trend (graph) for a particular data point. The system comes with various trend

templates that can quickly be attached to the new trend. A template specifies various trend

properties such as graph type, sampling rate, scale and trend type. The system also allows the

user to create new or modify existing trend properties (templates), either while viewing the

trend or from the displayed list of saved trends. When a user selects a trend template to modify,

the system verifies that the user has sufficient privileges to modify trend templates. On

successful authorization, the system loads the details of selected trend template (Figure 3-12)

 115

and displays it in the ‘Trend Properties Dialog’; otherwise it shows a message, indicating

insufficient rights for performing the requested operation. The user modifies the template

details and selects to save. The system verifies the changes and stores the modified template. In

case of invalid changes (e.g. the input data falls out of the acceptable ranges), the system

advises the user of the error and allows him/her to correct it. The system also advises the user of

the error if the name of the template is not unique or valid. On successfully saving the template

the system loads the trend template (Figure 3-13) and refreshes the display. The system advises

the user of the appropriate error if it fails to load the template or refresh the display.

Figure 3-11 to Figure 3-17 illustrate the control flow model of the Edit Trend Properties

functionality in Trending subsystem.

Figure 3-11: Edit Trend Properties (ETP)

 116

Figure 3-12: Show Trend Properties Dialog

In order to modify or display a trend template, its details need to be retrieved from the

database. For that the system generates an appropriate SQL query and then executes it. If the

database connection or SQL query fails then the system generates an appropriate error message

detailing the problem. Otherwise the template details are uploaded from the database.

In order to reflect the changes in template properties into the loaded template, the

system reloads the trend template. It calculates the data points applicable to the template and

read associated data values from the database. New plots are created according to the given

type and update the current display.

 117

Figure 3-13: Load Trend Template

Figure 3-14: Reset Cursor

 118

Figure 3-15: On Cursor

Figure 3-16: Add to Graph

 119

Figure 3-17: Load Items

3.2.5 Delete Trend Properties (DTP)

The Trending subsystem also has a provision to delete the existing trend templates. The

user selects one or more trend templates and selects the “Delete Trend Template” functionality.

The system verifies the user has sufficient privileges to delete trend templates. On successful

authorization, the system first loads the details of selected trend template (Figure 3-19 and

Figure 3-20) and then creates the query to load the associated trend data. The system prompts

the user for confirmation. After getting confirmation from user, the system removes the trend

data, plots and the selected trend templates. On successfully deleting the template the system

refreshes the display. The system advises the user of the appropriate errors (e.g. database

connection or query execution failure) if it fails to delete the template.

Figure 3-18 illustrate the control flow model of the Delete Trend Properties functionality

of the Trending subsystem.

 120

Figure 3-18: Delete Trend Properties

Figure 3-19: Remove Trend Properties

 121

Figure 3-20: Load Trend Properties

Figure 3-21: Iterate Through Data

 122

Figure 3-22: Force Remove Trend Properties

The summary of the key characteristics of these models is presented in Table 3-1. The

column ‘Nodes’ represents the number of nodes in the model which is analogous to statements

in a program. The ‘Branches’ column represents the number of edges immediately following

predicate nodes. The complexity column is based on the cyclomatic complexity of the model.

Table 3-1: Summary of the key characteristics of case study models

Models Nodes Branches Complexity

ECCS 23 17 11

ATM 135 28 16

ETP 77 26 14

DTP 52 37 21

 123

3.3 Model Transformation

In typical model driven development (MDD), models are developed to depict the

structural and behavioral aspects of a system under development from a particular viewpoint

and at a particular level of abstraction. Developing a model in this way not only helps to focus on

various specific aspects of the system, but also allow better handling of complexities of the

system specification with the use of multiple models. Models refinement or decomposition into

other models, enables the tackling of the complexity and enormity of system detail in layers.

MDA is an emerging OMG standard for model-driven software development and it defines a

layered framework for system specification. At the highest level of MDA is a computation

independent model (CIM) where requirement models of a system are developed in the

application domain at a conceptual level. In the next layer, the conceptual models are

transformed into implementation technology independent models and are referred to as

Platform Independent Model (PIM). At the lowest level they are referred to as Platform Specific

Model (PSM). The platform independent models are transformed into models specific to a

particular technology (e.g. J2EE and .Net). It is generally understood that for MDA realization,

automated model transformation is a core mechanism as it is necessary for valid and consistent

transformation, verification and synchronization between source and target models (from CIM

to PIM and then PIM to multiple PSMs or vice versa).

Automatic transformation requires a set of production rules or mapping patterns

between two modeling languages for translating a source model depicted in one language into

another language. Transformation is the application of production rules on the source model

until no more production rules are applicable and it finally yields the target model.

3.3.1 Transformation Types

Model transformation can be distinguished based on the way it transform the source

model into the target model as shown in Table 3-2. Usually, models are initially developed or

available at a particular level of abstraction and are then incrementally refined. Horizontal

transformation involves transforming a source model into target model at the same level of

abstraction e.g. transforming an AD model into a FSM model. On the other hand, vertical

transformation involves transforming a model from one level of abstraction to another e.g.

refining a design model into a development model or transforming a model from a CIM to a PIM

level. As models are expressed in a particular modeling language, a transformation is called

endogenous when the modeling language of both source and target models is the same and

exogenous when both source and target models are expressed in different modeling languages.

 124

Refactoring and simplification of a model are two examples of endogenous transformation while

code generation and reverse engineering are examples of exogenous transformation.

Table 3-2: Orthogonal dimensions of model transformations (taken from [Mens et al. 2006])

 Horizontal Vertical

Endogenous Refactoring Refinement

Exogenous Migration (Porting) Code Generation

3.3.2 Transformation Techniques

Various model transformation techniques have been developed to produce models in

the same or different technological spaces. There are various classifications (e.g. imperative or

declarative techniques, generic or dedicated transformation techniques) defined for

transformation techniques [Mens and Grop 2006]. In the following section, the classification

based on the underlying technology used in the transformation is presented. Further details on

the classification of transformation techniques can be found in [Mens and Grop 2006].

3.3.2.1 Graphical Transformation Techniques

Graphical transformation techniques treat source and target models as graphs. Graph

Transformation is a well studied graph-based model transformation approach and has been

applied in variety of application domains such as pattern recognition, database specification,

programming languages, distributed systems, optimization etc.

Graph Transformation is a formal mechanism used to generate, evaluate and manipulate

graphs [Varro et al. 2002] and as the name suggests, provides visual transformation rules that

when applied rewrite the graphs. A transformation rule consists of two graphs, a LHS graph to

match and a RHS graph to replace (or add). Typically, these transformation rules play a pivotal

role between the source and the target model and they provide a general and flexible

mechanism for expressing a mathematical relation between them. In a source model, the LHS of

a transformation rule can hold true for several artifacts and in that case the transformation rule

executes for each instance iteratively. The transformation algorithm (application) executes the

relevant transformation rule(s) for each artifact in the source (input) graph and adds the

corresponding RHS artifact to the intermediate graph which finally yields the target (output)

graph.

The Attributed Graph Grammar (AGG) [Ermel et al. 1997], PROgrammed GRaph

REplacement System (PROGRES) [Schürr et al. 1997], Graph Rewriting and Transformation

 125

Language (GReAT) [Agrawal et al. 2004] and VIsual Automated model TRAnsformations (VIATRA)

[Csertán et al. 2002] are some of the well known examples of Graph Transformation systems.

AGG is a general purpose algebraic approach based graph transformation tool. AGG support

transformation within a single domain only. Although, AGG uses graph grammar for describing

transformation rules, it does not support programmed graph transformations. PROGRES allows

not only specifying the transformation rules but also defining the sequencing of these rules.

Similar to the PROGRES, GReAT also supports describing both transformation rules and

execution ordering rules. Both PROGRES and GReAT allow heterogeneous transformations.

Even though, graphical transformation techniques offer quite expressive mechanism or

language for transformation rules, the execution control rules have limited usability in specifying

complex transformation logic. Various visual control-constructs including sequencing, recursion

and conditional branching are supported in this context but writing complicated transformation

algorithms is very difficult.

3.3.2.2 Textual Transformation Techniques

Text based transformation techniques as the name suggests process models as textual

data. Output models are produced by taking an input model from a text-based file or data

stream and with the application of text-based pattern matching. For example, XSLT, ATL (ATLAS

Transformation Language), YATL (Yet Another Transformation language) and AWK are some of

the known textual transformation techniques.

XSLT is an industry standard for model interchange and it is specifically defined for

describing transformations of XML-based models. It is a declarative technique that lacks

execution sequencing rules. As a consequence, it requires experience and considerable effort to

define even simple model transformations in XSLT. However, a solution ‘MTrans’ has been

proposed to address the problem of describing the sequencing rules for XSLT-based

transformations [Peltier et al. 2000].

XSLT is also a most widely used transformation technique for XML-based artifacts. Many

UML tools support the facility to export and import models in XMI which is a XML-based

standard for interchanging UML models. Once a model is exported or available in XML format, it

is possible to use existing XML tools, such as XSLT to perform model transformations. Even

though XSLT was proposed to describe transformations in general, it is tightly coupled to the

XML.

Although textual or lexical languages are better in handling complex and detailed

transformations and offer a finer control over transformation description, the construction of

 126

model transformations using such languages is time consuming, costly and mostly defined semi-

formally or informally. Another disadvantage of textual transformation approaches is that the

transformations are performed in batch mode and offer little control over execution of

transformation.

3.3.2.3 Hybrid Transformation Techniques

Hybrid techniques offer a pragmatic approach to address some of the shortcomings of

graph-based transformation languages. These techniques mostly enhance graphical mapping

with the accessibility and expressive power of programming languages (e.g. Java and OCL), for

describing complicated transformation algorithms. For example, Sendall et al. [2002] proposed

VMT (Visual Model Transformation) which is a visual declarative language similar to GReAT.

However with the use of OCL to indicate the selection, creation, modification and removal of

model elements, it provides greater control on the transformation. The main features of VMT

are the abstraction with visual notations in the specification of transformation rules (which

makes the comprehensive mapping of rules easier), and the strength of OCL.

Milicev [2002] proposed a graphical language for describing model transformations with

the features of both imperative and declarative languages. It uses the UML object diagram as a

notation for expressing the transformation rules. The notations are extended to support the

constructs for conditional, repetitive, parameterized, and polymorphic model element creation.

These concepts provide built-in features to specify and control model transformations. However,

the approach needs a specifically built tool to interpret the extended graphical notations and run

transformations. This is because the extended graphical notations make heavy use of

stereotypes and common UML elements, such as, packages, in ways that are not typically seen

in UML-based languages. Although, the approach has the advantage of strong expressive powers

due to the extended notations, it is very likely that the selection conditions, in contrast to OCL,

would become complex and hard to maintain in the case of complex selection criteria.

Rational XDE (eXtended Development Environment) is a specialized model

transformation platform [IBM 2010]. The transformations rules are defined as model templates

called patterns. A pattern can take and return parameters and contain arbitrary procedural code

in Java, VB or C#. The transformation engine executes the pattern binding parameters with

arguments automatically or manually, to yield the target model. Although, the proprietary XDE

approach has a strong transformation engine, the main drawback is its limited capability to

compose patterns.

 127

3.4 AD to CPN Transformation

As mentioned earlier, AD2 (AD in UML2) has gone through major changes and acquired

Petri-Nets like token flow semantics. Unlike former UML versions, where the semantic of AD1

(UML version 1.x) was based on State Machines (another UML behavioral modeling language).

Since UML State Machines are synchronous, AD1 had certain limitations, such as, it could

perform distributed computational steps only synchronously and only one step per concurrent

region could be activated at a time. On the other hand, the execution of distributed steps in AD2

need not be synchronized. Thus AD is now an ideal tool for modeling asynchronous control flow

logic required in systems like multithreading and agent-based systems.

The new token flow semantics of AD2 has made it executable and can simulate the

control or object flows in the system models. In terms of token flow, the UML2 specification

state that “by flow, we mean that the execution of one node affects, and is affected by, the

execution of other nodes…” [OMG 2005 - page 308]. Other researchers also consider that the

new AD semantics provides the basis for the execution of models [Bock and Gruninger 2005] as

it enables the simulation of the behavior of the system. Ironically, the lack of simulation and

analysis tools has restricted the potential advantages of using the new AD semantics. The

semantics of UML generally and AD specifically is still defined informally in natural language, and

is therefore largely prone to misuse and inconsistent implementations. Cook pointed out that

despite the popularity of UML in the software development industry, the developed models in

practice are often inconsistent with the standard defined semantic [cited in Henderson-Sellers

2005]. He ascribed a number of reasons for this problem including the lack of standard

conformance procedures and a general practice among modelers to ignore the UML semantics.

The imprecision and ambiguity of natural language make it difficult, not only for precise analysis

but also for the detection and correction of subtle errors, incompleteness, and inconsistencies in

models [Broy et al. 2007]. In their seminal work, France et al. [1998] identified the need to

formalize the UML semantics and initiated the Precise UML (PUML) project. They argued that

the semantics, defined with a mixture of meta-models and natural language, is though good for

its abstract syntax but is not precise enough for the clear meaning of its constructs (notations).

Clear semantics of a language is a prerequisite for the verification of consistency, formal analysis

and execution of a model that it described. To address this issue, two types of approaches have

been reported in literature; the first is defining the formal semantics for UML [Broy, Crane,

Dingel, Hartman, Rumpe and Selic 2007; Evans and Kent 1999] also known as operational

formalization [Heckel 2003], and the second is mapping the elements of a UML diagram into an

existing formal language [Baresi and Pezzè 2001; Shen et al. 2001] a.k.a. denotational

 128

formalization [Heckel 2003]. For AD, various formal languages such as Finite State Process

[Rodrigues 2000], Abstract State Machine [Borger et al. 2000], Labelled Transition System

[Eshuis and Wieringa 2001], π-calculus [Yang and Zhang 2003], Process Specification Language

[Bock and Gruninger 2005] and Petri Nets [Gehrke et al. 1998; Störrle and Hausmann 2005] have

been used to define its formal semantics.

Gehrke et al. [1998] used Petri Nets (PNs) as a target formalism for automatic derivation

of Collaboration diagrams (CD) from AD. They describe a rule based transformation

methodology for AD to Collaboration diagram but it was based on earlier version of AD.

Rodrigues [2000] used Finite State Process (FSP) to define Transition System (LTS) based

semantics for AD. Börger et al. [2000] proposed Abstract State Machine (ASM) based semantics

for AD. Eshuis and Wieringa [2001] used hypergraphs to define LTS-based formal semantic for

AD. Although, they also developed a real time execution algorithm for it, the proposed syntax

and semantics were tied to intended use for workflow modeling and analysis. Yang and Zhang

[2003] used π-calculus for formalizing AD. Although, the proposed formalism is intended for

workflow modelling, the syntax and semantic of π-calculus is very difficult. Lopez-Grao,

Merseguer and Campos [2004] introduced formal semantics for AD by transforming it into

Stochastic Petri Nets. Merseguer [2003] described the three stage transformation of an Activity

diagram into Stochastic Petri Nets. Accordingly, the early stage involves model simplification

operations such as merging control nodes and removing bad design constructs. The second and

last stage includes replacement and removal of pseudo artifacts from the final PN model

respectively. Ironically, in some cases the proposed model simplification is not helpful, as it not

only adds more ambiguities (shown later in Figure 3-29), but also makes the transformation

erroneous (e.g. in case of three successive merge or decision, fork or join). Störrle [Störrle 2004;

2004; Störrle and Hausmann 2005; Störrle and Hausmann 2005] proposed formal semantics for

AD2 over a series of papers and pointed out various deficiencies in the semantics of AD2. While

addressing the artifacts relating to control and data flow respectively, he described the PN

semantics for a number of overlapping AD artifacts using several Petri nets dialects such as

Place-Transition Nets (P/T Nets), Procedural Petri Nets (PPN) and CPN. Like others, Störrle

suggested the simplification of the model by merging the multiple levels of control nodes which

adds ambiguities into the models. Bock and Gruninger [2005] proposed formalization of AD

through Process Specification Language (PSL). Table 3-3 summarizes the key characteristics of

the existing works.

Most of these studies focused on defining and formalizing AD, but did not address the

pragmatic model transformation issues (i.e. undefined link and execution semantic for invoked

 129

activities, label and predicate inscription, ambiguous specification and hierarchal activities). The

volume and complexity of real world system models make manual transformation extremely

difficult, expensive and unpredictable. Moreover, most of these studies were based on previous

versions of AD and due to a major revision in UML2 these studies are now outdated except for

those of [Bock and Gruninger 2005] and [Störrle and Hausmann 2005] . The following section

described the approach where a methodology to automatically transform an AD model into

another formal model was devised to address the gap between the formal semantics defined in

[Störrle 2004; Störrle and Hausmann 2005] and the practical model transformation. The

motivation for translating an AD into a CPN stems from the fact that CPN is a mathematically

defined modeling language. As such it provides unambiguous, visual and executable specification

which is backed by several formal verification and validation techniques and tools. Moreover,

CPNs are ideally suited to AD models as a target formal language because of the similarity

between AD2 and CPN semantics [OMG 2007 - page 326].

Table 3-3: Comparison of existing work to the define formal semantic for AD

 AD Version Formalism F.T. Asynch.
Invocation

Hierarchy Domain

Merseguer
[2003]

1.x LGSPN D Yes Yes Performance
analysis

Börger et al.
[2000]

1.x ASM O Yes Yes Program

Ehusis [2001],
Rodrigues
[2000]

1.x LTS D No Yes Workflow

Gehrke et al.
[1998]

1.x PN D No No Program

Yang et al.
[2003]

1.x π-calculus O Yes Yes Workflow

Störrle [2005] 2.0 PPN, CPN D No Yes Program

Bock et al.
[2005]

2.0 PSL O Yes Yes Process

- Denotational (D), Operational (O), Formalization Technique (F.T.)

3.4.1 Colored Petri Nets

PN is a formal modeling technique for consistent and clear description of the behavioral

aspects of a system. It has a well-defined syntax and semantics which supports the explicit

 130

description of both states and actions. The states are represented by places and each place is

assigned a number of tokens (also known as marking). The transitions depict the behavior and

arcs provide the links between places and transitions. The execution of a behavior is depicted by

a transition firing that changes the state of the system. An inward arc shows that the token from

the corresponding input-place can be removed and the outward arc implies that the token can

be added to the next place. A transition gets enabled only when all the preconditions for the

actions have been satisfied such that there are enough tokens available in the input places. A

transition can only be fired when it is enabled. The exact number of tokens to be removed/

added is determined by the arc expression [Jensen 1993].

CPN is a popular variant of PN that exploits the synergy of PN and high level

programming constructs. In CPN, the colored tokens were introduced to improve the process

modeling capabilities of PN [Jensen 1992; Jensen 1993; Jensen 1996] with data definition and

the processing of programming languages. With the synthesis of PN and programming language,

CPN enables the modeling and verification of very large scale systems in PN formal semantics. It

is widely used in academia and industry due to its intuitive visual notation and extensive tool

support for design, simulation and system verification. is a CASE Tool for editing,

simulating and analyzing CPN models. It has a built-in syntax checker which validates the model

before doing simulation or formal analysis. It features a simulator for handling both timed and

untimed models. For model data declaration and model inscription it uses the CPN ML language

which is a adaption of the Standard ML [CPN-Group 2010].

Despite the fact that AD has PN-like token game semantics, the transformation from AD

to CPN is not straightforward owing to several syntactical and semantical differences. In this

context, there are a few important questions that need to be addressed. Each of the following

subsections considers a particular issue, and describes a number of objective criteria to be taken

into consideration in developing a transformation methodology.

3.4.1.1 Syntactic Variation

Since precise syntax is critical to correct language interpretation, visual notations (e.g.

lines and boxes) and their composition (e.g. connection and partitioning) are critical to visual

modeling languages. CPN has only two types of nodes and connections (arcs) between the nodes

is restricted (source and target nodes must be of different types). However, AD2 has a complex

hierarchy of nodes and connections between these nodes are somewhat flexible. In terms of

visual notations, AD2 is provided with nine notions for ten control flow related nodes types

[OMG 2007, page 415-419], up to the intermediate level of activities. To elaborate the

 131

differences further, the meta-model descriptions of AD2 and CPN are shown in Figure 3-23 and

Figure 3-24. The analysis is limited to modeling elements of Activities up to the Intermediate

package as it inherently supports modeling similar to PN [OMG 2007, page 297].

CP Nets

Page

PN Element Node

Place

Transition

Arc

1

1..* 1

*

1
Target

1
Source

0..n0..n

Figure 3-23: CPN meta-model adapted from [Hillah et al. 2006]

3.4.1.2 Semantic Variation:

Interestingly, the syntax of AD in UML2 is formally defined using class diagram (generally

referred to as meta-model) but its semantics is still in informal natural language. A summary of

the new token game semantics of AD2 up to the Intermediate package is presented in Table 3-4.

It is important to note that the aggregated semantics of control nodes types in AD is almost

similar (but not equivalent) to the semantics of the two types of CPN nodes. Furthermore, in

some cases, AD nodes seem to be a specialized version of CPN nodes (e.g. Decision & Merge

nodes in AD2 and Place node in CPN). Therefore, they can be mapped directly to the places and

transitions in CPN.

In other cases, such as, Activity-Final, translation can be performed by adding some

explicit contextual conditions or extra code to the CPN node to get the required AD behavior.

The difference in both cases is that the first type of translation is implicit translation as the

semantics of AD nodes is inherently supported in CPN and in the second case, it is an explicit

translation as the semantics of the Activity-Final node is achieved by overloading the inherently

behavior. A node-level comparison between the token game semantics of both AD2 and CPN

was undertaken as part of this study and is summarized in Table 3-4.

13

2

A
ct

iv
ity

A
ct

iv
ity

Ed
ge

C
on

tr
ol

N
od

es

O
bj

ec
tN

od
e

A
ct

iv
ity

Pa
ra

m
et

er
N

od
e

C
en

tr
al

B
uf

fe
rN

od
e

A
ct

iv
ity

N
od

e

0.
.1 *

1
Ta

rg
et

1
S

ou
rc

e

*

0.
.1

A
ct

io
n

Pi
n

Fi
na

lN
od

e
Fo

rk
Jo

in
M

er
ge

D
ec

is
io

n
In

iti
al

C
on

tr
ol

Fl
ow

O
bj

ec
tF

lo
w

A
ct

iv
ity

Fi
na

l
Fl

ow
Fi

na
l

Fi
gu

re
 3

-2
4:

 A
D

 m
et

a-
m

od
el

 (A
da

pt
ed

 fr
om

 [O
M

G
 2

00
5]

)

 133

Table 3-4: A Summary of token game semantic for AD2

AD2 Node Description Semantic

Action An atomic executable element
representing a single step
within an activity

 An action can only start execution when all
the incoming edges and pins have tokens.

 When an action starts execution it
consumes all the tokens available on the
incoming edges and pins.

 On completion of the action execution,
tokens are offered on all outgoing edges
and pins.

Initial A node where the flow starts
in an activity

 A control token is placed on it whenever the
enclosing activity is invoked.

 An initial token is offered to all outgoing
edges but only one of them will receive the
token.

Activity
Final

To stop all flows in the activity When a token arrive at this node, the
enclosing activity will be terminated;
particularly, all executing actions are
stopped, all other tokens are destroyed and
all flows are terminated, except

o Token in activity output parameter
node

o Asynchronously invoked actions
Flow Final To terminate a flow – indicates

the termination of a flow path
 All tokens arriving on it are destroyed.

Fork To split the inflow into multiple
concurrent outflows

 Incoming tokens are duplicated to all
outputs

Join To synchronize multiple
inflows into single outflow

 All incoming tokens are joined according to
the following strategy and offered to the
outflow:

o If all incoming tokens are control
token then only one control token
will be offered

o If the incoming tokens are mixture
of control and data tokens then only
the data tokens will be offered.

Decision To split an inflow into alternate
outflows

 Each incoming token can traverse only one
outflow.

 No token duplication is allowed so although
a token will be offered to the all outflows
but only one outflow will accept it.

Merge To combine multiple inflows
into single outflow

 All incoming tokens are forwarded to the
single outflow without synchronizing the
inflows and joining the tokens.

 134

Table 3-5: Mapping between AD and CPN nodes with token game semantic of CPN

AD2 Node CPN Node CPN semantic

Action Transition A transition can only start execution when all the input arcs
have tokens.

 When a transition starts execution it consumes tokens from all
inputs.

 On completion of execution, transition offers tokens on all
outputs.

Initial Place An available token is offered to all outgoing arcs but only one
of them will receive the token.

 A token can stay on a place until it is consumed by a transition.
Activity Final Place All token arriving on it are destroyed. A token in a place with

no outgoing arc have no effect on the model state and
represents the end of flow behavior.

Flow Final Place All token arriving on it are destroyed. A token in a place with
no outgoing arc have no effect on the model state and
represents the end of flow behavior.

Fork Transition Incoming tokens are duplicated to all outputs.
Join Transition All incoming tokens are joined according to the specific

strategy and offered to the outflow.
Decision Place Each incoming token can traverse only one outflow.

 No token duplication is allowed so although a token will be
offered to the all outflows but only one outflow will accept it.

Merge Place All incoming tokens are handled separately and forwarded to a
outflow without synchronizing the inflows and joining them.

3.4.1.3 Modular Modeling

Modular modeling is quite useful for large complex systems. The modular creation of

models makes the development and maintenance of these models easier. Moreover it supports

the reuse of model components as well. The provision of model libraries in UML 2.0 enables the

development and reuse of standard or user-defined models [OMG 2007]. The high level models

in AD2 specify the processes at the abstract level. The precise description of each task involved is

relegated to the lower level detailed activities described as behavior which in turn ultimately

resolves to the individual action or sub-activities.

In AD2, two mechanisms are provided for modular decomposition of complex logic

through multiple activities or sub-activities. Firstly, the specific type of actions i.e. Call-Behavior-

Action and Call-Operation-Action are provided for reuse of other already defined activities (sub)

and to invoke them during the execution of invoking activity (super). The usage of Call-Behavior-

Action is comparable to a calling function in programming languages and requires having a

linking mechanism for combining the invoking activity with various other activities it uses. The

 135

Call-Behavior-Action is a direct invocation of called activities whereas the Call-Operation-Action

is an indirect invocation of called activities. Secondly, a structured activity is provided for

decomposing the behavior in one or more subordinate activities. Although, an activity can

invoke (call) other activities (through the call-behavior-action) at run-time and can create call-

hierarchies, this is different from Structured Activity. With a structured activity, a sub-activity

(subordinate) commences. The super-activity start executing and super-activity remains active

until all sub-activities have completed their execution.

For modular modeling, PN supports the abstraction (refinement) mechanism. Formally,

the abstraction is explained with the concept of bordered sets where the nodes (transitions or

places) which are directly connected within a border or locality are called Transition or Place

Border Set. Therefore, in a net, a Transition Bordered Set can be abstracted by representing the

transition bordered set with a single transition. On the other hand, the refinement of a transition

will yield a net structure. Similarly a Place Bordered set can be abstracted by replacing it with a

single place which on refinement results in a net structure.

In CPN, the modular model structure is defined through the pages mechanism [Jensen

1992] where the whole system model is comprised of several corresponding page modules. With

the help of the module linking mechanism, the page (also called super-page) with references to

other pages are linked to the referred pages (also named as sub-pages). A page can be both

referring (super) and referred (sub) page simultaneously, hence it can be reused many times in

the model.

In order to describe a task precisely which is represented by a transition node at an

abstract level, the detailed description needs to be relegated to the sub-page. The integration of

these detailed specifications (sub-pages) of particular transition nodes are accomplished by a

corresponding transition substitution marked by a sub-page name-tag. After attaching a page

module to a substitution transition, a couple of places on the sub-page need to be constituted as

port places for communication with the environment. The place which is set to receive tokens

from the surroundings is called the input port and marked with an in-tag, whereas the place for

sending tokens to the surroundings is said to be the output port and marked with an out-tag. A

place which can mimic both input and output ports simultaneously is tagged as I/O. At the

super-page, the input and output places of the substitution transition are called socket places

and are linked to the corresponding input/output ports on the sub page.

According to the UML specification [OMG 2007], the direct or indirect invocation of a

behavior or an activity can either be synchronous or asynchronous. In the case of synchronous

invocation, the execution of the invoking action does not complete until the invoked behavior or

 136

activity is completed and returned an output (token). On the other hand, with asynchronous

invocation the invoking action will complete as soon as the invoked behavior commences. In an

asynchronous mode, the invoking action will copy the input token to all the outputs and the flow

continues while the invoked behavior will not return any output on its completion. The

substitution-transition mechanism provides the synchronous mode of communication and is

similar to synchronous invocation. The implementation of asynchronous invocation is not

intuitive and straightforward in CPN and therefore requires further investigation.

In CPN, fusion of places or transitions, termed as place fusion and/or transition fusion

are used for composition of Nets (modular modeling) [CPN-Group 2010]. The example in Figure

3-25 is taken from [Khadka 2007]. The first three diagrams on the left side depict various

scenarios of place fusion whereas the first three nets shown on the right side depict various

scenarios of transition fusion. The last diagram on each side is the final resulting net for any of

the three cases.

Figure 3-25: Scenarios of Place and Transition Fusion (taken from [Khadka 2007])

3.4.2 Transformation Methodology

The transformation methodology developed in this study comprises of three steps: pre-

translation, translation and post-translation as shown in Figure 3-26. The first stage is the

refinement of the model and is called pre-translation, as it is performed on an AD before

transforming it into a CPN. In consideration of the informal semantics of AD and the different

levels of abstraction, it is important to refine the source model by identifying and resolving the

ambiguities in the model before transforming it into a CPN model. The transformation of AD

models into CPN models is defined by rules and patterns based manipulation of models.

 137

Therefore, the second stage is translation of an AD into a CPN via the execution of

transformation rules. Given the fact that CPN is a high level PN and needs auxiliary data for

displaying and simulating the model, enhancement to the transformed model is performed. In

the third stage, the post-translation step, where the auxiliary data associated with the CPN is

added to the transformed model. For illustration of the methodology, a simple example of an AD

as shown in Figure 3-27 and the ECCS case study model (Figure 3-5) is used.

Figure 3-26: AD to CPN Transformation Methodology

3.4.2.1 Pre-translation step

Abstraction is a key approach to deal with the complexity in modeling [Booch 2010].

Typically, in the beginning a high-level model is developed with a simplified view of the system

through the use of abstraction. However, an unplanned abstraction can leave ambiguity in the

developed model. In model-based development, the usage and effectiveness of a model largely

depends on the accuracy and level of information available in it. A model at a higher level of

abstraction may provide a simplified view of a very complex system but it may omit vital and

useful details resulting in ambiguities in the specification. On the other hand, a low level model

with concrete information not only limits the usage of the specified model, but also increases

the cost and effort needed to develop and maintain it.

In order to develop complete and consistent models, it is important to understand the

application of abstraction. Pretschner and Jan [2005] noted the omission and encapsulation of

details as basic techniques for abstraction and simplification in modeling. However, unplanned

omission is problematic as Bock and Gruninger [2005] argued that abstraction is a deliberate and

clearly identified omission of unnecessary and redundant information, whereas ambiguity is an

 138

unintended and unidentified omission of useful information. In the case of unavailability of

required information or when the intended system is not fully defined or understood, the

modeler may need to make assumptions. Therefore, Prenninger and Pretschner [2005] pointed

out that the ambiguities may arise from erroneous or partial behavioral assumptions. Bock and

Gruninger [2005] also suggest that imprecise and implicit functional assumptions are the main

cause of miscommunications and ambiguities.

Although the rich and layered syntax of UML languages empowers flexibility in

expressing very complex systems at various levels of abstraction, it often causes error and

ambiguities in the specification depicted in it. According to Heckel [2003], the obscure semantics

of a modeling language is another source of ambiguities in a model. In a recent study, Lange and

Chaudron [2005] noted that UML models in practice often contain several syntactical and

semantical defects when used. They further stated that some of these issues stem from the

inability or failure of the modeler to correctly and precisely specify the system in the model.

Imprecise and implicit functional assumptions in a model can lead to missing critical aspects of a

system and implementing a behavior which has undesired characteristics. Frisch et al. [2002]

ascertain that the assumptions made while developing models at certain levels of abstraction

are responsible for several pitfalls in models and they suggested refinements of the model for

addressing these problems.

Figure 3-27: Example Activity Diagram

As one of the objectives of this study is the automatic generation of test cases from AD,

the implicit behavior to generate a complete test suite needs to be expanded. Binder [1999]

 139

argued that “implicit behavior is no less a requirement than explicit behavior”. Test cases

generated for explicit behavior will not necessarily exercise the implied behavior. Therefore, in

order to generate an adequate test suite it would be necessary that an implicit behavior be

expanded and replaced with an explicit behavior.

In order to get an unambiguous and semantically valid model, it is necessary to refine

the model by transforming it to the next lower level of abstraction. The fundamental steps of

refinement are the identification of implicit (control-flow) behavioral assumptions in the model

and replacing them with explicit control nodes, thus it is not viable until the purpose and usage

of the implicit behavior is well-understood.

During software model development, a modeler may need information about the

various aspects of the system such as control/data flow, functionality and operational

environment depending on the projected viewpoint of the system. In the case of unavailability

of required information, the modeler needs to make various types of assumption such as the

data related assumptions (e.g. type, variable or value), functional assumptions (e.g. parameters,

functional logic, procedure calls and error handling) and flow related assumptions (i.e.

sequencing, loop and concurrency) [Dye 2002]. Analogous to the assumption types, the

ambiguities in the model can be categorized according to these assumptions such as functional

ambiguities, flow ambiguities and so forth.

Here in this chapter, only flow related ambiguities that may stem from the implicit flow

related assumptions in the model are addressed. For instance, in the ECCS model (Figure 3-5),

the action ‘logon’ has three inward edges which imply that it needs exactly three tokens to begin

its execution. However, a further analysis could reveal that in any scenario it could not receive

more than one token at any one time and any attempt to execute (simulate) this model would

end in a deadlock eventually. Similarly, there are three other actions, such as Register, Select and

Put that also have ambiguous specifications. As with reference to UML2 specification for action

semantics [OMG 2005, page-301], “an action can only begin execution when all incoming control

edges have tokens, and all input pins have tokens.” Hence it is reasonable to infer that the

model (Figure 3-5) is designed with various assumptions for sequential control flow that are

inconsistent with the semantics defined in the UML2 specification.

In AD2, several Activity artifacts with layered syntax and semantics, allow the depiction

of a system model with ambiguous behaviors. The ambiguity in the behaviors of syntactically

valid AD2 constructs can be seen in the examples in Figure 3-28. The diagram (A) in Figure 3-28

does not clearly specify whether activity-B (activity notation labelled B) and activity-C (activity

notation labelled C) are concurrent or branch activities. Similarly, the diagram (D) in Figure 3-28

 140

implicitly assumes that the execution of activity-A, follows the execution of activity-B and

activity-C, but fails to specify whether the execution of activity-A will wait for the tokens from

both preceding activities, or start execution soon after receiving a token from either one of

them. The two possible but conflicting behavioral interpretations of diagram (A) are shown in

diagrams (B) and (C), and highlight the ambiguity in the specification. Therefore, it is necessary

to unmask the necessary control flow detail and replace the implicit control behavior with the

explicit control artifacts. For instance, replace each implicit initial/ flow-final/ Activity-final node

with an explicit initial/ flow-final/ Activity-final node, replace each implicit decision/ merge with

an explicit decision/ merge and replace each implicit fork/ join with an explicit fork/ join.

Figure 3-28: Ambiguous control flow behavior

Although AD2, allows the combination of decision and merge, or fork and join

functionality in one node symbol to get a more concise and simplified model, as shown in Figure

3-29 (a, b, e and f), it must be done with careful consideration. As Störrle [2004] pointed out, the

simplification of a control node in some cases may result into some unwanted behavior, such as

the simplification of Figure 3-29 (c) into Figure 3-29 (d) does not produce the same behavior.

Although this proposition does not seem to hold true in Figure 3-29 (g and h), in fact it also

implies that the overuse of control nodes does not elucidate the process logic. Nevertheless,

another similar but pragmatic scenario in Figure 3-29 (i) reveals that a straightforward

simplification will not work here as both Figure 3-29 (i) and Figure 3-29 (j) mimic different

behavior.

 141

(a) (b)

(c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 3-29: Node simplification

Figure 3-30: Illustration of refinement strategy

As a pre-translation step, a two pronged decomposition strategy of integrated control

elements for addressing two sources of ambiguities in the control flow is proposed. As shown

earlier, the implicit control flow behavior at an action node and simplification of control nodes

can lead to a more precise and accurate behavior. Therefore, the strategy is to unmask the

implicit control flow behavior from the action (executable) nodes and then combine the multiple

levels of decision-decision, decision-merge, fork-fork and fork-join nodes provided that they are

directly linked and no other node is linked between them. For illustration of the refinement step,

see Figure 3-30, where a fork and a merge node is added to indicate that both activities A and B

will execute concurrently but will not be synchronized.

 142

The case study ECCS model (Figure 3-5) seems syntactically correct according to the

UML2 specification but further analysis reveals that it is in fact semantically inconsistent. For

detailed analysis, every node in the model is evaluated according to the UML 2.x specification

which is given in Table 3-6. Based on the observations as given in column 2, 3 and 4 in Table 3-6,

the following nodes are disambiguating by explicitly expressing the implicit behavior:

Action logon has three inputs, according the UML2 specification, the logon action finally

enters into deadlock as it will wait for input from D1, D2 and D4. Therefore, it is essential to

replace the implicit merge with explicit merge to make it executable.

Table 3-6: Ambiguous behavior

AD Nodes Type ID,OD UML2 Behavior Assumed Behavior Refinement Action

Init Initial 0,1 Implicit Decision Nil

Init Action 1,1 Implicit Fork/Join Nil

D1 Decision 1,2 Implicit Merge Nil

Logon Action 3,1 Implicit Fork/Join Implicit Merge Explicit Merge

D3 Decision 1,2 Implicit Merge Nil

Register Action 3,1 Implicit Fork/Join Implicit Merge Explicit Merge

D2 Decision 1,2 Implicit Merge Nil

Authenticate Action 1,1 Implicit Fork/Join Nil

D4 Decision 1,2 Implicit Merge Nil

F1 Fork 1,1 Implicit Join Nil

Verify Action 1,1 Implicit Fork/Join Nil

F2 Fork 1,1 Implicit Join Nil

F3 Fork 1,1 Implicit Join Nil

Select Action 4,1 Implicit Fork/Join Implicit Merge Explicit Merge

D5 Decision 1,4 Implicit Merge Nil

Put Action 2,1 Implicit Fork/Join Implicit Merge Explicit Merge

D6 Decision 1,2 Implicit Merge Nil

Configure Action 1,1 Implicit Fork/Join Nil

D7 Decision 1,3 Implicit Merge Nil

M Merge 3,1 Implicit Decision Nil

Order Action 1,1 Implicit Fork/Join Nil

F4 Fork 1,1 Implicit Join Nil

Final Flow
final

1,0 Implicit Merge Nil

ID: Incoming degree of a node,

OD: Outgoing degree of a node.

 143

 Action Register has three inputs. Even if it receives a token from D1, it will

essentially wait for input from D2 and D3 as well resulting in an eventual

deadlock. Thus it is essential to replace the implicit merge with an explicit merge

to make it executable.

 Action Select has four inputs, where the control flow will stall because the select

action finally enters into deadlock as it will wait for input from F1, D5, D6 and

D7. Replacing the implicit merge with an explicit merge will resolve this problem.

 Action Put enters into deadlock as soon as it receives an input from D5 but

cannot proceed until it receives an input from D7. Therefore, it is essential to

replace the implicit merge with an explicit merge to make it executable.

The refined ECCS model is shown in Figure 3-31.

Init

D1

D2

 EM1 D3

EM2

Authenticate
D4

Legends:
Dx : Decision 1...n
Fx : Fork 1...n
Mx : Merge 1...n
Jx : Join 1...n
EMx : Explicit Merge 1...n

Logon

Register

F1 EM3

Verify
F2

Select
D5

Configure

Put

D7

EM4

M

D6

F3

Order

F4

Figure 3-31: ECCS Model (after refinement)

3.4.2.2 Translation

In model transformation, production (transformation) rules play a pivotal role. The

production rules provide a general and flexible mechanism for expressing a formal relation

between source and target formalism. Formally, a production rule is an ordered pair

where both A and C are a finite set of artifacts in source and target models respectively. The Left

Hand Side (LHS) of a production rule represents the artifact(s) in a source model where as the

Right Hand Side (RHS) is used for artifacts in the target model. In a source model, the LHS of a

production rule could hold true for several artifacts, in which case the production rule will be

executed iteratively for each instance. The transformation algorithm executes the relevant

production rule for each artifact in the source model and replaces it with the corresponding RHS

artifact for the target model.

3.4.2.2.1 Production rules

For AD to CPN model transformation, the production rules are defined for three types of

AD artifacts, action nodes, control nodes and activity edges corresponding to Intermediate

 144

Activities (IA). The rules illustrate the conditions and the transformation of AD elements into CPN

artifacts. In AD, Action is a basic atomic artifact that becomes ready to execute when token(s)

are available on all inputs and all preconditions are satisfied. It consumes all input tokens when

it starts execution, holds them until completion and then offers these token(s) to some or all of

its outputs according to the given condition [Bock 2003]. Figure 3-32 illustrates the translation of

the action node in an AD into transition node in a CPN. Call-Behavior-Action is a special kind of

action in an AD, provided to invoke another activity at run time. In a CPN, Substitution-Transition

represents the other net as a subnet and has semantics similar to that of Call-Behavior-Action.

The transformation rule create-substitution-transition given in Figure 3-33 indicates the

replacement of call-behavior-action node in an AD with a substitution transition in a CPN.

Figure 3-32: Transformation rule for Action to
transition

Figure 3-33: Transformation rule for Call-behavior
action

Figure 3-34: Transformation rule
for Send-Signal action

Figure 3-35: Transformation rule for
Accept-Event action

Figure 3-36: Transformation rule
for Time-Event Action

In AD, Send-Signal-Action and Accept-Event-Action are defined to trigger and handle

asynchronous communication. Similarly the rules create-transition-fusion-place in Figure 3-34

and Figure 3-35 describes CPN patterns for the send-signal and accept-event action nodes. For a

 145

send-signal-action, a transition with an output fusion place is used to send signal token to a

group of fusion places where one of them can randomly process this token. In case of accept-

event-action, an input fusion place with a transition in CPN mimics the required behavior. A

place with a bidirectional link to a transition node as defined in Figure 3-36 indicates that the

given accept-time-event-action remains enabled until the containing activity is active.

Control nodes only route the token flow along the outgoing edges within an activity and

does not operate/modify them. The transformation rules for five control nodes are presented in

Figure 3-37, Figure 3-38, Figure 3-39, Figure 3-40 and Figure 3-41. The create-place, suggest

replacing the initial, decision, merge and final types of control nodes in an AD with place nodes

in a CPN. With create-transition rule as illustrated in Figure 3-42 and Figure 3-43, the transition

nodes in CPN will substitute both fork and join types of nodes.

Figure 3-37: Transformation
rule for Initial node

Figure 3-38: Transformation rule for
FlowFinal node

Figure 3-39: Transformation rule
for ActivityFinal node

In AD, ActivityEdge is a directed link between two activity nodes and the connection

between source and destination node types is quite flexible. However, a CPN model is a bi-

partite, directed graph where two disjointed type of nodes: namely places and transitions are

linked by arcs. An arc represents the flow between a transition and a place or vice versa and

always connects two different types of nodes (i.e. place and transition). The arc between a place

and a transition is called Input arc, whereas an arc which connects a transition to a place is

known as Output arc. The translation of an AD model into a CPN without considering the arc

restrictions in the CPN model would generate a model which is inconsistent to CPN semantics.

Thus it is necessary to include ActivityEdge related rules as well. A synthesis of these rules is

given in Figure 3-44 depicting the edge transformation in different scenarios. Application

conditions indicate the execution of a rule only triggers when the edge have the specific types of

source and target nodes, for example, when an edge links a fork node and an action node such

as in condition-3 (con3) in Figure 3-44, it will be replaced by a place with a single input and

output edge in a CPN model.

 146

Figure 3-40: Transformation rule for Decision node

Figure 3-41: Transformation rule for Merge node

Figure 3-42: Transformation rule for Fork node

Figure 3-43: Transformation rule for Fork node

Figure 3-44: Production rules for control flow edge

 147

Typically, an activity model comprises of several activities depicting a behavior or

functionality in an associated diagram. Given the previously defined rules, each activity and

associated activity diagram can be effectively transformed into a separate net. As in Section

3.4.1.3, it is noted that CPN support composition of multiple nets a.k.a. pages (sub-pages)

through transition and place fusion mechanism [CPN-Group 2010]. In AD, the modular formation

defined in terms of behavior invocation is structurally analogous to the page modulation in CPN.

Accordingly, invoked-activities or sub-activities can be added as sub-Pages to the main CPN

model and link them to the invoking actions/activities in the super-page or other sub-pages

using Substitution-Transitions (ST). The Substitution-Transition also needs mapping it to a sub-

page by defining and linking port and socket places on sub and super pages respectively.

AD is provided with two behavior invoking mechanisms; the call-behavior action and the

call-operation action are direct and indirect invocation mechanism respectively. The UML2

specification is silent about the way the target method of call-operation action will be

determined. However, at runtime the call-operation action will obviously be resolved so it is

postulated that the call to the associated method is already resolved. Consequently regardless of

whether a behavior is invoked using call-behavior action or call-operation action, the

transformation would be the same. Moreover, as the invoking and invoked activities can be in

the namespace of a single model or different models, it is assumed that all the referred and

referencing activities are available for transformation.

Integrate behavior as subpage: Activities defined as behavior make up the modules

of the system in the model and could be reused when required. Once the top level activity is

translated into a CPN, the activities referred through call-behavior or call-operation actions will

be accessed in a depth-first manner and nested into the CPN model as a subpage after

translation into a CPN. In order to resolve the potential reuse of an activity to same

corresponding page consistently, the name of each activity will be used as the label of the

corresponding subpage.

Call-behavior/ Call-operation action as Substitution-transition: Similarly for

substitution-transition in CPN, both the call-behavior and call-operation actions represent a

behavior as a module and link to it during execution when all prerequisites are satisfied [OMG

2007, page 248-250]. The substitution-transition will replace both call-behavior and call-

operation actions in the CPN and attached to the associated subpage. In order to observe the

design constraints, such as equal number of inputs and outputs, are given to establish the

consistency between invoking actions and invoked behavior, the socket and port places will be

referred whenever needed.

 148

3.4.2.2.2 Production Rule Processing

Since UML models can be serialized as XML (eXtensible Markup Language) using the XML

Metadata Interchange (XMI), and CPN model are serialized in a XML-based file, implementing

model transformations using XSLT, which is a standard technology for transforming XML, seems

very appropriate. XMI is an industry as well as an international standard framework endorsed by

both OMG and ISO for defining, interchanging, manipulating UML models through XML based

data and objects [ISO/IEC 2005; OMG 2007]. It provides production rules which enable the

various UML modeling tools, applications and repositories to exchange UML models by

serializing the models into XML documents. It can be used to exchange models between UML

and non-UML tools using standard XML-based transformations mechanism.

The Petri Net Markup Language (PNML) is a part of the international standard on Petri

Nets [ISO/IEC 2009]. The part 2 of the standard defines PNML, an XML-based structure of a Petri

net file and interchange format for Petri nets. The main feature of PNML is that it supports both

the general features of all types of Petri nets and specific features of a particular Petri net type.

However, the specific features are handled through a separate Petri Net Type Definition (PNTD)

for each Petri Net type. Although PNML is an ISO standard for interoperability among Petri Net

tools, it is currently not supported by CPN Tools which was selected for to support further

investigations in this study. However, the native model file of CPN Tools is XML-based and its

format is well defined using a Document Type Definitions (DTD)-based schema [CPN-Group

2010].

XML is a meta-language for describing the markup of different types of documents and a

considered as one of most widely used technique for data presentation and exchange. The key

feature of XML is that it is a simplified subset of SGML (Standard Generalized Markup Language)

so it is easier to learn, use, and implement than SGML while supporting full features like

validation, structure, and extensibility. The XML specification stipulates the requirements for

XML documents, data objects and XML processing programs for reading such documents and

accessing their content and structure. XML documents are composed of entities, which are

storage units containing text and/or binary data. Text is composed of character streams that

form both the document character data and the document markup. Markups describe the

document's storage layout and logical structure. A well-formed XML document is unambiguous,

so that a browser or editor can read the tags and create a tree of the hierarchical structure

without reading its schema. XML provides a standard way for information providers to add

custom markup to information-rich documents, so that complex documents can be rendered

and published in a dynamic way. Another key feature is the structure of XML documents or the

 149

presentation of data in the document can be defined separately in XML schema which can be

used to validate the document as well.

As described in Section 3.3.2.2, XSLT is a de facto standard language for describing the

transformation of XML-based documents in one format into another format. Typically,

transformation rules are specified in XML-based Stylesheet and then using a XSLT execution

engine (processor) these rules are applied on an input XML document to create a new document

in same XML or another format. There are several open-source and commercial XSL execution

engines available for use; Saxon, AltovaXML and Xalan are examples of some of the freely

available XSL engines. As it is a declarative transformation technique, the XSLT execution engine

loads the input XML document and performs transformation rules in batch mode which makes it

suitable for large models.

Using XSLT-based model transformation mechanism, a direct AD to CPN model

transformation can be expressed through an automatic application of transformation rules

described in a XSLT Stylesheet. Formally, the AD to CPN model transformation described

by is obtained by applying transformation rules to an AD

model by finding the occurrence of the transformation rule’s LHS in the source model and

applying the transformation rule R for each occurrence which finally yields the resultant

model . Therefore, the XSLT-engine primarily reads the input XMI file containing the AD

model, parses and converts it into a document object model (DOM) tree. Then the sequential

execution of the transformation rules that includes searching and matching the occurrences of

LHS of a rule in the tree occurs. For each occurrence, the RHS of the rule is applied by creating

new artifacts. Finally, results are structured and written into a CPN schema compliant XML file.

The high-level description of the transformation is graphically shown in Figure 3-45.

Figure 3-45: XSLT -based AD to CPN model transformation

 150

3.4.2.3 Post-translation steps:

The implementation specific issues such as input, output, condition and annotation, are

dealt with in the post-translation step. There are several CPN implementations and associated

tools available (e.g. CPN Tools, PNetLab, ALPHA/Sim and CPN-AMI [2010]). Most of the available

CPN modeling tools come with an inscription language but none of them uses the same

language. Nevertheless, a specific tool and language needs to be selected to specify data, guard

and annotation on the model. Due to the comprehensive toolkit and technical support, CPN

Tools [CPN-Group 2010] which comes with CPN ML (an extension of Standard ML) was chosen

for reference and demonstration purposes. Following is the specific auxiliary data that is needed

for a CPN model in CPN Tools.

 Data binding and Processing: In CPN each place has a specific type and

requires defining a color set. Similarly each arc needs binding with a variable of

linked place type. For example in Figure 3-46, the STRING is the color type of the

‘Initial’ place and arc inscription ‘str’ binds the arc to a variable ‘str’ of STRING

type.

 Guard inscription: Each guard condition in AD needs to define the equivalent

conditions on the corresponding element using Standard ML which is a general

purpose functional programming language. Figure 3-47 shows an example of

guard inscription in CPN Tools.

Figure 3-46: Data Binding, color type and
initial marking

Figure 3-47: Guard Inscription on arc

 Code segment and Transition binding: For some specific behaviors, such as

execution stoppage at an Activity final node and token merging at a Join node,

such functionality using Standard ML expression in the model needs to be

implemented. A breakpoint function is required to depict run-time behavior of

an Activity final node. It is postulated that an activity execution will only

initial transition
str

STRING

"test"
1 1`"test"

if n=k
then 1`m
else 1`n

4

INT

Init Action1

 151

complete at the top-level and therefore the breakpoint monitor will only be

attached to one or more Activity Final nodes on the super-page whereas all

other Activity Final nodes on sub-pages will only return control back to the

invoking activity. Similarly, a code segment is also needed for token merging

behaviors according to the rules defined in [Bock and Gruninger 2005] for CPN

transitions which are mapped Join nodes in AD. The code segment executes

when a linked transition executes.

 Initial Marking: In order for a model to execute, it needs to define initial

marking by placing initial tokens on the required initial places (see Figure 3-46).

It is also necessary to provide initial marking in the case of multiple entry points,

such as accept-time-event action, accept-event action and send-signal action.

3.4.3 Transformation Validation

In order to determine that the transformation of a source model into a target model,

from one modeling formalisms to another modeling formalism or one abstraction level to

another abstraction level, is valid and correct it is necessary to evaluate such transformations.

Following are the four qualitative criteria have been defined to evaluate a transformation

[Küster 2006].

 Syntactic correctness: The purpose of the syntactic correctness criterion is to

determine if the output model conforms to the syntax of target modeling

formalism.

 Semantic equivalence: In order to ensure that the transformation is valid, this

criterion requires that the target model is semantically equivalent to the source

model. A transformation is considered invalid if it yields target model which is

syntactically correct but semantically not consistent with the source model.

 Termination and confluence: One of the important properties of valid and

correct transformation is that the transformation always produces consistent

results both syntactically and semantically. The termination and confluence

criterion ensure that the transformation does not produce intermediate or

inconsistent outputs.

 Safety or liveness properties: This criterion is used to determine that the

transformation preserves the security or structural properties in the target

model.

 152

To put these criteria in perspective, the purpose of transforming an AD model into a CPN

model is to get a valid executable model. The syntactic correctness is a basic requirement for an

output model and for a CPN model, the checking for syntactic correctness can be achieved with

built-in syntax analyser of CPN Tools [CPN-SC 2010]. The syntax analyser of CPN Tools

automatically starts checking syntax of loaded model and highlights the syntax errors with colour

coded auras. Aforementioned that the new semantic defined for AD is based on Petri Nets.

However, there are some variations points which are pertinent to this study and addressed in

Section 3.4.1.2. The transformation rules are defined to produce the semanticaly equivalent CPN

model. The evaluation of semantic equivalence after transformation is either not achievable or

not required at this stage for different reasons. First, the two often used techniques, trace

equivalence and bisimulation, for determining similarity between two bahvioral models cannot

be used due to the fact that the AD models are not executable. Second, one of the objectives of

this study is to generate test suite from AD by transforming it into an executable CPN model. In

the case the transformation is incorrect and both the source and target model are not

equivalent, the test sequences generated from the target (CPN) model will not be adequate to

the source (AD) based coverage criteria. The coverage criteria based analysis is addressed as test

suite evaluation in next chapter. The other two transformation evaluation criteria are not

performed for the same reasons.

3.5 Transformation of Case Study Models

For evaluating the proposed transformation methodology, an experiment with four case

study models described in Section 3.2 was conducted. The pre-translation step as specified in

Section 3.4.2.1 was performed manually to resolve the control-flow related ambiguity. For

example, the refined ECCS model is shown in Figure 3-31. For transformation of case study

models into CPN, the production rules defined in Section 3.4.2.2 were implemented with XSLT

Stylesheet. The refined case study models were exported into XMI format. In order to execute

the transformation Stylesheet, Saxon execution engine was used and the output CPN models

were serialized to ‘.cpn’ files. The XSLT transformation templates and output CPN models are

presented in Appendix A. In order to validate transformation, syntactic correctness criterion was

applied via two mechanisms. First, the document type definition (DTD) for CPN Tools was used

to ensure that the output ‘.cpn’ conforms to the required format. Second, the output ‘.cpn’ files

were loaded into CPN Tools and further syntactically validated with the built-in syntax analyser.

 153

3.6 Summary

The chapter describes the case models and a methodology for transforming an AD

model into a CPN model which is an executable model. Various issues related with the AD to

CPN transformation were discussed. First, the common sources of ambiguity in AD models that

may result into an incorrect transformation are elaborated and a model refinement solution is

proposed. Second, the syntactic and semantic difference between the AD and CPN are detailed

and a set of transformation rules are proposed for a rigorous and consistent transformation.

Third, the CPN tool specific details that are needed for model simulation are identified. A three

stage transformation methodology is developed to address each of these issues and evaluated

with case study models. Resulting CPNs and related artifacts on this process are provided in

Appendix A.

 154

Chapter 4 Activity Diagram Based Testing

The previous chapter describes four case study AD models and a methodology

developed as part of this study to transform an AD model into a CPN model. In this chapter, the

potential of model based testing using AD is explored and a dynamic analysis based technique

for deriving test sequences from AD models is proposed. To evaluate the adequacy of the

generated test suites, two evaluation techniques have been developed, namely distribution

analysis and mutation analysis which are coverage-based and fault-based techniques

respectively. Furthermore, two types of coverage criteria were defined for evaluating the test

suites through coverage-based analysis. In addition, this study defined a set of mutation

operators to support mutation analysis of AD models and AD-based test suites. Lastly, a

controlled experiment using case study models described in Chapter 3 was also conducted to

evaluate the proposed test case generation and evaluation techniques and associated results

were reported.

Concurrent software must be designed to take advantage of the multi-core and multi-

processor systems in order to meet ever increasing user demands and leveraging of the recent

hardware developments. Many formal languages like Petri Nets and Communicating Sequential

Processes (CSP) have long been used for designing and analyzing concurrent systems. A number

of studies [Kersten and Nebe 2004; Shousha et al. 2008] have also been conducted to exploit the

concurrency characteristics of UML diagrams such as State-chart and sequence diagram in

detecting concurrency faults (e.g. deadlock and race conditions). Among the UML diagrams,

Activity Diagram (AD) is ideally suited for depicting parallel or distributed processing [Bock

2003]. In particular, it provides standard notations and semantics that can clearly represent

multithreaded or multi-process design and readily supports the accurate description of

concurrent work breakdowns. For example, the fork and join nodes are used to depict creation

and synchronization of threads or processes2 respectively. Furthermore, it supports a wide range

of applications in the development cycle including process sketching and executable program

2 Generally, the difference between process and thread is granular and a thread usually contains in a
process. The implementation differences between them vary from one operating system to another.
Usually, multiple threads can exist in a process and share resources whereas multiple processes have
separate address spaces and they do not share resources.

 155

specifications [Bock 2003]. The concrete syntax of AD is defined in multiple layers which allow

modelers to use it for both high level abstract models (i.e. requirements or Computational

Independent Model in MDA) and low level detailed models (i.e. program design or Platform

Specific Model in MDA). For a complete description of a task (usage scenario) in the system, AD

provides high-level notations and token-flow semantic for an accurate and concise depiction of

the use case. In order to specify how a procedure or method should be accomplished, control

and data flow notations support the detailed modeling of the implementation.

4.1 AD Based Test Sequence Generation

An AD model depicts logical paths in a program that can or should be followed in its

implementation based on various conditions such as concurrent processing, data access and

interruptions. These logical paths can be used to verify that the implementation is correct and is

as expected. Similar to the execution paths in code based testing, it is the execution sequences

of model artifacts that interest testers more than the execution of an individual artifact.

Therefore, the execution traces of the model are recorded during its simulation and these traces

then constitute test sequences for the implementation (of the model) under test. A test

sequence is defined as a path through the model from its initial node to its final node. In AD-

based testing, typical test-cases are sequences of operations or usage scenarios that reflect both

the input-output relation as well as the possible sequences of interaction. The test cases

generated from an AD determine the functional correctness of tasks or operations, order of

execution and the dependencies among the various tasks or operations.

Investigations involving the application of PN in software testing can be categorized into

three groups:

1. Test suite generation using typical state-space analysis techniques [Watanabe

and Kudoh 1995]

2. Test suite generation using invariant analysis [Ramaswamy and Neelakantan

2002], and

3. Deriving test scenarios by simulating or executing the PN models.

Watanabe and Kudoh [1995] proposed two CPN based algorithms for the automatic test

suite generation in conformance testing involving concurrent systems. Their CP-tree method

requires the generation of a reachability tree from a CPN model and then test sequences are

produced by traversing through arcs and nodes from the root to the leaf nodes of the CP-tree.

In their CP-graph method, the CP-graph is generated from a CP-tree. The W_p method is applied

to generate the test suite if the resulting CP-graph satisfies the pre-conditions associated with

 156

the W_p method. The authors noted that the developed approach performs better than other

existing approaches. The authors also claimed that the test suite generated from the CP-tree

method has the same fault detection capability as that of the FSM-based method.

Ramaswamy & Neelakantan [2002] showed the application of a PN based invariant

analysis technique in software design and testing. Their approach aimed to generate unique

paths dubbed as “sub-flows” using the T-invariants obtained from a PN model. While the

approach avoided the state explosion problem associated with model checking, it requires a high

level of mathematical skills, thus inhibiting its applications at the industry level.

Zhu and He [2002] proposed four types of techniques, for testing Predicate Transitions

Net (a variant of high-level Petri Nets), which is based on the general theory of testing

concurrent software systems. They also defined separate classes of test evaluation criteria for

each type of techniques. Transition and state-based techniques focused on testing all the

transitions and their sequences, as well as all states and their sequences in the model. The third

type, a flow-based technique focuses on token-flow testing which is similar to conventional

data-flow testing. Using PN as a formal algebraic specification of the Net, the fourth approach

aims to use the existing specification-based testing techniques (e.g. mutation testing and formal

algebraic for verification and validation of both specification and implementation). Additionally,

the authors proposed an observation based scheme to determine the system’s dynamic

behavior during concurrent testing. They found that observations in the form event sequences

of various possible dynamic behaviors are more appropriate and pragmatic than test data

adequacy criteria for testing concurrent systems.

AD model Transform CPN model

Generate TestTest Sequences

Test Objective Evaluate Adequate

(1)

(2)

(3)

Figure 4-1: Three steps in an AD-based test sequence generation

Given the new token-game semantic defined for AD in UML2, a token can abstractly

represent a control or stimuli in a system and the flow of these tokens in AD models can be used

 157

to simulate the behavior of the intended or implemented system. However, the semantic of AD

is informally defined and AD models are not suitable for static (formal) or dynamic (model

execution) analyses [Störrle and Hausmann 2005]. Thus, in order to derive test suites from an AD

model, a three step test sequence generation (TSG) process as illustrated in Figure 4-1, was

developed as part of this study.

1. In the first step of the TSG process, the transformation of an AD model into a

Colored Petri Nets (CPN) model using the approach developed in Chapter 3 was

proposed and demonstrated.

2. In the second step, test sequences were generated through the execution of the

CPN model and the control flow traces are recorded. A guided random-walk based

stochastic algorithm was proposed for the random execution of the CPN model and

details of this algorithm are described in the following section.

3. Finally the generated test suite was evaluated against a given test objective. If the

test suite did not satisfy the required objective, more test sequences would be

generated through another iteration of the guided random-walk algorithm. This

process was repeated until the required criterion specified in test objective was

satisfied, at which time the process terminates.

4.1.1 Test Sequence Generation Algorithm

Prior to the description of the proposed TSG algorithm, the concept of random-walk is

briefly described. The random-walk algorithm is derived from the theory of probability and it

refers to a trajectory where the path is initiated from a specific point and from which each

successive step is made randomly. The trajectory of a random walk includes all visited nodes in a

connected graph. In general, a random-walk is considered suitable for discrete problems and

often needs adaptation for better results according to a particular application. Examples of

adapted versions of random walk include a self-avoiding walk to generate non-intersecting paths

[Madras and Slade 1996], a reinforced random walk tailored to exploit the information in

weighted graphs [Renlund 2005] and the exploration process for state space analysis [Sivaraj and

Gopalakrishnan 2003]. This apparently simple technique has received a fair amount of attention

and has been applied in areas such as networking [Chen and Bhaskar 2008; Christos et al. 2006],

image segmentation [Grady 2006], web search [Fortunato and Flammini 2007], state space

exploration [Pelánek et al. 2005] and model checking [Sivaraj and Gopalakrishnan 2003]. In this

study, it has been adapted for model-based test suite generation.

 158

The application of the random-walk algorithm in software testing has been reported in a

number of studies [Lee et al. 1996; Pelánek, Hanžl, Černá and Brim 2005; Sivaraj and

Gopalakrishnan 2003]. Sivaraj and Gopalakrishnan [2003] proposed a random walk-based

approach for model checking in parallel and distributed environments together with a breadth

first search. They defined four heuristic-based algorithms with a configurable coupling between

a random-walk algorithm and a breadth first search for state space exploration. The objective of

their work was to explore the potential of heuristics with various combinations of a random-

walk algorithm and a breath first search in detecting bugs that are difficult to find. Lee et al.

[1996] presented the idea of using the random-walk algorithm for generating test sequences

from Communicating Finite State Machine (CFSM) in conformance testing. According to the

method, an adaptable random-walk algorithm is guided by classified transitions in a directed

graph and visited states are sampled for test traces. Pelánek et al. [2005] presented an empirical

analysis of a random-walk approach with various factors for state space exploration and

proposed many performance enhancements to the random-walk algorithm.

The natural graph based representation of a CPN makes it an ideal candidate for the

application of the random-walk algorithm. The random-walk algorithm is adapted for generating

traces from a CPN. The formal definition and semantics of CPN which can be found in [Jensen

1997] are first described in the following section.

A Colored Petri Net is a tuple where

 is a finite set of non-empty types and called ,

 is a finite set of places,

 is a finite set of transitions,

 is a set of arcs,

 is a node function ,

 is a color function ,

 is a guard function such that

,

 is an arc expression function such that

 where is the

place of and

 is an initialization function such that

.

 159

For a given net, a marking is a mapping from to natural numbers, indicating the

number of tokens in each place such that . A marking represents the state of the

system in its CPN model and indicates the initial marking of the Net (state of the system).

For a transition , represents the input set of , and

 represents the output set of . Similarly, for a place ,

 and represent the sets of inputs and outputs of .

A transition is enabled for execution if every input of contains enough tokens (must

be equal or more than what is required), and its execution conditions are satisfied. When a

transition is executed the marking changes in a way that tokens from the input places are

removed and added to the output places. The number of tokens removed from an input place

equals the weight of the corresponding input arc. Two transitions execute concurrently if they

are not in conflict. Conflicts are resolved non-deterministically (e.g. using a stochastic or a

probabilistic function). The execution of an enabled transition is atomic. It is assumed that the

set of all possible execution sequences represents the behavior of a net and thus constitutes

the potential test set. An execution trace is a sequence of transitions that can be executed

starting from the initial marking and each successive marking is obtained through a transition

step (transition execution) in the order indicated. It can be denoted as

 where is a transition execution sequence, and it represents the sequence of

transitions that were executed to reach from , is an initial marking,

, are marking such that is obtained from by executing transition sequence .

Table 4-1: CPN nodes with corresponding AD nodes in brackets and observing token-game semantic

Node Semantic

Transition (Action) An action can only start execution when all inputs have tokens.
 When an action starts execution it consumes tokens on all inputs.
 On completion, tokens are offered on all outputs.

Place (Initial) Initialize with a token whenever the enclosing activity is invoked.
 An outgoing token can follow only one edge.

Place (Activity Final) When a token reached in it, the enclosing activity will be
terminated; particularly, all executing actions are stopped, all other
tokens are destroyed and all flows are terminated.

Place (Flow Final) All tokens arriving on it are destroyed.

Transition (Fork) Incoming tokens are duplicated to all outputs.

Transition (Join) All incoming tokens are joined according to the rules given in (Bock,
2003).

Place (Decision) Each incoming token can traverse only one outflow.

 160

Place (merge) All incoming tokens are forwarded to a single outflow without
synchronizing and joining them.

Owing to the stochastic nature of the random-walk algorithm, it may generate traces

(paths) which are illegal according to CPN semantics. In order to avoid this problem, the random

selection process has been adapted to incorporate the predefined semantics for CPN in this

study. In CPN, the flow of a token can represent the control flow in the model and therefore the

random-walk algorithm will simulate the token-flow during the model execution. Moreover, as

the technique is based on a pseudorandom exploration of the model, the model inscriptions

such as conditions and data information are not used during the random-walk algorithm.

However, it is important to note that the random-walk algorithm can further be adapted to

handle model inscription during branch selection. Furthermore, as in the case of CPN, one of the

many enabled transitions will eventually occur or fire so it is therefore postulated that the

walker randomly selects a transition, and in visiting it, makes one step of the walk. Similarly, the

traversal of the walker through a place node is also marked as a step of the walk.

At the start, the random walk begins from an initial place node dubbed as ‘Init’ in the CPN

model. The walker then randomly selects one of the outgoing arcs according to the

corresponding semantics of the initial node as shown in Table 4-1 and the given token moves

along the selected arc. After the occurrence of a transition, a token is passed to each output

place. The walker continues as long as it is visiting nodes with nonzero outgoing arcs. Once it

reaches a node without any outgoing arc, this implies that the Activity-Final node has been

reached and therefore the walk terminates for the current iteration. Using the random walk

approach, test sequences are automatically generated at the end of each iteration by recording

the trace of the random walk starting from the initial node to the final node. The pseudo code

for the algorithm is given in Figure 4-2. The random-walk approach is adapted to make the next

move at a particular node according to the semantic specified in Table 4-1. In a conventional

random-walk algorithm, all subsequent transitions become active and eligible for execution at

each step of the walk. In this adapted version of the algorithm only those transitions that have

satisfied the CPN semantics (i.e. all input tokens are available, all execution conditions for a

transition are satisfied) are to be enabled.

 161

Figure 4-2: Pseudo Code for the Random-Walk Algorithm for TSG which is adapted from [Pelánek, Hanžl,
Černá and Brim 2005].

As indicated earlier the output of the second step of the AD based test suite generation

are test sequences which are subsequently evaluated to determine if the specified testing

criterion are met. The evaluation process involves coverage-based and fault-based techniques.

4.1.2 Test Suite Evaluation

Measurement is a prerequisite to quality control and project management. DeMarco

stated that you cannot control what you cannot measure [cited in Fenton and Pfleeger 1997]. A

measure is used to quantitatively characterize an attribute of an entity under observation and

constitute as a basic building block of any measurement system. A measurement for an attribute

of an entity usually has a standard unit of measure, for example inch is a unit of length and gram

is a unit of weight. Similarly, in software engineering, several specific measures such as mean

time to failure (MTTF) and the number of faults found per KLOC (thousand lines of code) are

being used for evaluating the reliability and quality of a program respectively.

As discussed in Chapter 2, a number of measures (e.g. node coverage, branch coverage

and mutation adequate test suites) have been reported for evaluating the adequacy of a test

suite [Zhu, Hall and May 1997]. Coverage criteria are generally used to determine the adequacy

 162

of a test suite and are therefore considered an essential part of any testing method. A general

rule of thumb in testing is that a test suite with a higher coverage is considered to be of a better

quality. This is based on the fact that a test suite with a higher coverage can reveal more defects

than a test suite with a lower coverage [Frankl and Weiss 1993; Wong et al. 1994]; which

ultimately improves the quality and reliability of a software under test. The test coverage is

measured in terms of the percentage of specific constructs that have been executed at least

once during execution according to the defined coverage criterion. Comprehensive reviews of

various code coverage based test adequacy criteria and UML model-based coverage criteria can

be found in [Zhu, Hall and May 1997] and [McQuillan and Power 2005] respectively. Mutation

testing, a fault-based technique introduced by DeMillo et al. [1978], provides an alternative

measure for assessing test adequacy of a test suite.

Mutant programs are generated by introducing faults into the code of the program

under test, with each mutant program containing a single fault. The test suite is then assessed in

terms of how many mutants it distinguishes from the original program.

AD based testing would require the testing of ordered executions of tasks or operations

in isolated control paths or threads as well as the coordinated execution of tasks or operations in

synchronous or asynchronous parallel control paths or threads. In the following sections,

coverage-based and mutation-based evaluation techniques for AD-based test suites are

introduced. Two sequential and concurrent criteria, adapted from [Zhu, Hall and May 1997] and

[Factor et al. 1996] respectively, as well as mutation operators developed in this study for

generating mutants of AD models. The coverage-based criteria will allow the systematic analysis

of the coverage information for AD-based test suites and for assessing its adequacy with respect

to a given coverage criterion. The mutation operators will allow the generation of mutant

models of an AD model and for assessing the adequacy of a test suite in terms of its fault

detection capability.

The next section describes sequential coverage criteria developed as a part of this study.

The proposed criteria has been adapted from those proposed in [Zhu, Hall and May 1997].

4.1.2.1 Sequential Coverage Criteria

An AD depicts transaction, control or data flow in a process or method of a system,

depending on the level of abstraction. A start to end path in an AD is a sequence of actions or

activities which starts and ends at the initial and final node respectively. Testing isolated control

paths or threads is analogous to sequential control flow based testing. Control flow based

testing has been extensively studied and a number of control flow based coverage criteria for

 163

code-based testing have been proposed. As control based criteria are basically defined on a

graph structure, they can be adapted for AD based techniques by exploiting the underlying

graph structure and covering it. A sequential control flow based coverage criteria which will

allow measuring and determining the adequacy of the AD based test suite, is presented in the

following section.

4.1.2.1.1 Action/Activity Coverage

In AD, an action or activity node is executed when it offers a token onto a set of outputs

 that can be traversed after its execution. Action or Activity coverage would

require the execution of each action or activity node in the model at least once. Therefore, the

test suite includes a test case for testing each action or activity node at a minimum. This is

analogous to node-coverage in state-based testing and could be considered as the elementary

and minimal required testing criterion. It can be defined formally as follows:

Definition: A test suite T satisfies the action or activity coverage criterion if and only if

for each action or activity node A in an AD model there exists t in T such that t causes A to

execute.

4.1.2.1.2 Branch Coverage

This is a control flow based criterion that measures the number of branches that have

been executed at least once during testing. It ensures that all alternate paths have been

evaluated during testing. For complete branch coverage, a test suite needs to have at least one

test case for each branch which also includes the execution of all transitions. Therefore, branch

coverage subsumes the Action/Activity coverage.

Definition: Given a test suite T and an AD model, for each branch b in the model, T must

cause each b to be taken at least once.

4.1.2.1.3 All Path Coverage

For complete testing, one would try to ensure that all possible executions sequences

(Paths) in an AD-model have been executed at least once during testing. All-Path coverage

criterion is the strongest. Unfortunately, analogous to all-path analysis in path-based testing, it is

difficult to achieve for a non-trivial program. This is because the total number of all execution

paths is usually very high, and in some cases it is possible to have an infinite number of all

execution paths. The formal definition is as follows:

Definition: A test suite T satisfies the all path coverage criterion if and only if for each

path P in an AD model there exists t in T such that t causes P to be traversed.

 164

The next section describes concurrent coverage criteria developed as a part of this

study. The proposed criteria has been adapted from [Factor et al. 1996].

4.1.2.2 Concurrent Coverage Criteria

The development of concurrent software poses a set of challenges different from the

development of sequential software. For example, deadlock and race conditions are two of the

issues that can occur in concurrent software. Concurrency faults that lead to a deadlock or a race

condition may only occur in a very small number of execution interleavings which means it is

extremely difficult to detect via conventional testing. Conventional testing of sequential

programs usually involves developing a set of test cases that provide a certain level of code

coverage (e.g., path coverage). Furthermore, studies have shown that conventional test

coverage criteria are inadequate for concurrent program testing due to the non-determinism of

the execution of concurrent regions and the high number of possible interleavings [Factor,

Farchi, Lichtenstein and Malka 1996; Tai 1989; Yang and Chung 1990].

An AD provides several basic primitives (i.e. fork, join, SendSignalAction and

AcceptEventAction) for specifying concurrent designs. The fork node depicts the creation and

invocation of new threads or processes that may execute concurrently. It splits the control into

‘n’ sub-processes and allows all of them to execute in parallel. The join node depicts the

synchronization point for the concurrent threads or processes and is used for the scheduling of

threads and for access to shared resources. SendSignalAction and AcceptEventAction are used to

depict the communication between processes by sending and receiving messages or events in

distributed processing configurations (i.e. client-server and interacting peers). Similarly,

CallBehaviorAction is another AD construct which can be used to depict the invocation of

remote operations in distributed computing. ExpansionRegion is particularly suitable for data or

object level parallelism, however as the study is limited to control flow it is not covered here.

An AD supports the depiction of complex concurrency at various levels of granularity.

Concurrency at instruction level is where multiple parts of a single instruction that may execute

simultaneously is modeled with actions (e.g. Figure 4-3). Functional or operational level

concurrency may be achieved through activities which are assigned to different threads and can

execute simultaneously. Furthermore, objects created or assigned to a different thread or

process may execute their methods concurrently and depict the object level concurrency. The

execution of concurrent processes is an interleaving of actions or activities, depending on the

granularity of the model. A particular execution of a concurrent program can be viewed as a

trace of the sequence of actions or activities.

 165

Figure 4-3: Instruction Level Parallelism (taken from [Hughes and Hughes 2003])

When executed, threads in a concurrent program work together to compute results and

the interleaving space of a concurrent program consists of all possible thread or process

schedules. A test suite that could reveal concurrency faults such as race conditions and

deadlocks, must exercise these interleavings. The following sections describe the concurrent

coverage criteria that has been adapted from [Factor, Farchi, Lichtenstein and Malka 1996] for

the evaluation of the AD based test suite.

4.1.2.2.1 Synchronized path coverage:

The execution of the set of all possible interactions between concurrent threads or

processes is required in order to satisfy the synchronized path coverage criterion. As the number

of interleaving paths grows exponentially along with the number of threads or processes,

attaining adequate coverage for this criterion is intractable.

Definition: Let T be a set of test sequences for AD model M. T satisfies the synchronized

path coverage criterion, if and only if for any feasible interleaving I, between concurrent threads

of M, there is at least one t T such that I is covered by t.

4.1.2.2.2 Interleaving edge coverage:

The selection of sufficient test cases such that all the -wise permutated set of edges in

 synchronized threads or processes are executed at least once during testing is known as

interleaving edge coverage. The percentage of the paired edges exercised during testing implies

the adequacy level of the test suite.

 166

Definition: Let T be a set of test sequences for AD model M. T satisfies interleaving edge

coverage criterion, if and only if, for any feasible edge sequence E of M, there is at least one t T

that covers E.

4.1.2.2.3 Interleaving node coverage:

The interleaving node coverage criterion requires the execution of -wise permutated

set of concurrent nodes in synchronized threads or processes. In AD, the execution of an

action and activity node will make up the permutated set. The degree to which the permutated

set has been exercised by a test suite implies the coverage attained according to this criterion.

Definition: Let T be a set of test sequences for AD model M. T satisfies interleaving node

coverage criterion, if and only if for any feasible node sequence N of M, there is at least one t T

that covers N.

4.1.2.3 Mutation Analysis of AD-based Test Suite

 In the section, a novel mutation analysis based technique which has been developed for

assessing and improving the fault detection capability of test suites generated from AD models is

described.

One application of mutation analysis on AD model is the verification of the design

correctness [Farooq and Lam 2008]. Here it is defined for the adequacy evaluation of a test suite

generated from an AD model. Mutating an AD model is similar to mutating a program source

and usually, a single syntactical change is introduced per mutant. Using the new token-game

semantics of AD defined in [OMG 2007], a modeler can simulate the model and analyze the

runtime behavior of the system. The test sequences are generated from the original AD model

and then used to execute the mutant models. If a mutant model fails to execute these test

sequences then it is considered dead otherwise it is deemed equivalent. In other words, if the

generated test suite cannot kill all non-equivalent mutants then it is considered inadequate and

more test sequences need to be generated.

The steps involved in the proposed approach for mutation analysis of an AD model are

illustrated in Figure 4-4 and described as follows. At the “Mutant Generation” step, mutant

models are generated according to a set of selected mutant operators. A mutant model is

generated for each application of a mutant operator in the AD model. An initial suite of test

sequences is then generated from the original AD model using the random-walk based test case

generation technique at the “Test Generation” step. During “Test Execution” step, each mutant

 167

model is transformed into CPN model and executed with all of the test sequences in the initial

test suite. If the mutant fails in the execution of a test sequence then it is considered to be killed

by that test sequence. If all of the mutants generated from the original AD model are killed then

the generated test suite is considered adequate. If a mutant is not killed by any of the test

sequences then it is necessary to determine whether the live mutant is an equivalent mutant. In

the case where a mutant is found to be equivalent, it is separated and excluded from the

mutation score. Otherwise, more test sequences are generated to kill the remaining live

mutants. This process continues until all mutants are killed or separated.

Figure 4-4: Model-based Mutation Analysis

In code-based mutation testing, a fault set is devised based on the simple errors that a

competent programmer may commit in practice. In the case of AD mutation analysis, control-

flow based fault types associated with semantic bugs that were referred to in a recent study on

software error characteristics [Li, Tan, Wang, Lu, Zhou and Zhai 2006] were derived for this

study. It is important to mention that AD supports modeling behavior with both control and

object flow. However the mutation operators defined here are limited to the control-flow

aspects of the AD model and are a minimal set of operators. The consideration for limiting the

 168

scope of this study to control-flow view is as follows: (1) the semantics of control flow view is

clear, well established and pragmatic; (2) the semantics of the object-flow view constructs has

several ambiguities and inconsistencies [Schattkowsky and Forster 2007]; and (3) there are

practical problems with the application of object-flow and high-level constructs [Schattkowsky

and Forster 2007].

AD Mutation Operators

Mutation operators are represented as a set of rules that describe syntactic changes to

the elements of the AUT. Nevertheless, the focus of the syntactic changes is to alter the

behavior depicted in the model which will result in a failure to produce the desired outcome.

Similar to the code based mutation analysis where it is assumed that the compiler will catch

syntactic errors, it is assumed that model validation will detect the syntactic errors in a model.

An example of model validation is available in Enterprise Architect which evaluates the well-

formedness of a UML model according to UML specifications and reports errors for detected

violations [Systems 2008]. To generate mutant AD models, mutation operators are applied to

elements within the AD models and this requires the identification of a set of potential faults. A

competent designer may encounter several types of faults in AD based modeling:

 Wrong sequencing of operations (i.e. actions or activities).

 Interface errors (i.e. missing input or output).

 Synchronization errors that may happen due to various situations, such as

deadlock, livelock, starvation and race conditions.

 Decision errors.

These four types of faults can be implemented by simple syntactical changes in an AD-

model. In order to systematically seed these faults in mutant models, four types of mutation

operators are defined. To define mutation operators, the following definition of AD is adapted

from [Xu, Li and Lam 2005].

Definition: Let be a 8-tuple Activity Diagram where

 is a finite set of action nodes;

 a finite set of edges;

 a finite set of decision nodes such that

 where is a finite set of

branches such that b B, B E and c C, is a set of guard

conditions;

 169

 a finite set of merge nodes;

 a finite set of fork nodes;

 a finite set of join nodes;

 is an initial node and is an Activity-Final node.

For the application of mutation analysis on ADs, it is assumed that both mutation testing

hypotheses are also valid; in that the designer is competent, and simple and composite faults

have a coupling effect. It means that the AD model produced by the competent designer is

either correct or close to correct, while the coupling effect means the test suite that can detect

simple faults is also sensitive enough to catch complex faults as well. Moreover, it is

hypothesized that the faults that a designer can commit in modeling system behavior can be

detected earlier and fixed. The set of faults that can be injected into an AD model constitute as

the operators for AD mutant generation.

Based on the fault types defined here, a set of mutation operators for ADs has been

developed (and summarized in Table 4-2) and is specified in the following sections:

Operation Mutation Operator (OMO)

An activity represents a complex behavior which specifies the sequence and condition

for execution of operations by directed links (edges). The links between the executable nodes

indicate that the node at the target end of the edge cannot start until the source node finishes.

Functional errors often constitute a major part of the bugs in software [Beizer 1990; Li, Tan,

Wang, Lu, Zhou and Zhai 2006]. In AD, the wrong sequencing of the operations including false

activation or a non-execution of an intended operation can be performed by dropping or

swapping the links between the action or activity nodes. The operation mutation operators are

intended for seeding functional faults such as missing, wrong and unwanted functionality.

Definition:

Let and be the input and output edge set of an action node respectively,

is a directed edge from the source node to the target node , and

.

The Missing Action Operator omits one action node in the model for each mutant

model.

Mutant models , , are generated in such a way that for each

such that and .

 170

The Actions Exchanged Operator generates the error when the order or position of two

action nodes in the models is exchanged. It changes the position or order of the action nodes in

the model for each mutant model.

Mutant models , , are generated in such a way that

 for each such that

 and .

 Interface Mutation Operator (IMO)

Most of the conventional interface errors are related with data or object flow when one

or more data inputs are required for an operation. In AD, data or object flow can be depicted by

object nodes and object flow edges. As object flow modeling is out of scope for this study, only

control flow related interface fault patterns are addressed here. In AD, an executable node

needs some inputs to start execution and produces some outputs at the end of the execution. It

becomes active and ready for execution only when tokens on its all inputs are available. At the

start of execution, the tokens are consumed (removed from the inputs) and an operation is

performed on them. At the end of execution, tokens are offered on all outputs which in turn are

available for consumption to the next node(s) in the sequence. The interface mutation operators

inject faults that are related with the interaction between the artifacts of the model and result

into non-activation or non-execution of the invoked artifact. This type of faults implies that the

required input is missing or output is not being produced.

Definition:

Let and be the input and output edge set of an action node respectively,

is a directed edge from the source node to the target node , and

.

According to AD semantics, more than one inflow into an executable node implies join

behavior which means that it needs token available on all inputs to start execution. So the Extra

Inflow Operator creates an extra input for an action node which will result in an unexpected

non-execution of that node in the model for each mutant model.

Mutant models , are generated in such a way that for each

such that and .

More than one outflow of an action implies fork behavior and Extra Outflow Operator

induces an unwanted invocation of multiple threads in the model for each mutant model.

 171

Mutant models , are generated in such a way that for each

such that and .

The Inflow Exchanged Operator generates a wrong method call in the model for each

mutant model.

Mutant models , are generated in such a way that

 such that .

Concurrency Mutation Operator (CMO)

Concurrency is an important factor in the behavior of modern systems. As mentioned

earlier, AD supports modeling both parallel and distributed concurrency mechanisms. Fork and

join nodes are provided for the creation of processes or threads that can execute concurrently

and to specify the synchronization between these concurrent processes or threads respectively.

SendSignalAction and AcceptEventAction nodes are provided for specifying process

communication through message passing. According to the AD semantics, the incoming tokens

at a fork are duplicated and offered to all outputs. At least one input and two outputs are

required for a Fork node. A Join node offers a token on the outgoing edge only after receiving

tokens on all of its inputs. To facilitate the understanding of common concurrency failures, the

following are the necessary definitions along with examples depicted in AD. For more detail,

please refer to [Andrews 2000].

Deadlock is defined as a situation where two or more processes are unable to proceed

because each is waiting for the other to complete or release some resources in a circular chain.

For instance, in Figure 4-5 both Action1 and Action2 are in deadlock as Action1 is waiting for

Object2 to be produced by Action2 and Action2 is waiting for Action1 to produce Object3.

Livelock is similar to deadlock in that the program does not make any progress. However, in

deadlocked computation there is no possible execution sequence which succeeds, whereas in a

livelocked computation there are successful computations, but there are also one or more

execution sequences in which no thread makes progress. For example, as shown in Figure 4-6 if

Action1 execute before Action2 then both threads will complete execution, however if Action2

start execution before Action1 then thread1 will keep waiting for Action2 to release Object1 and

gets stuck. Race condition is defined as a situation when two or more processes attempt to

access a shared memory location concurrently and one of the accesses is a write then the output

of the execution depends on the order in which the access takes place. For example, as shown in

Figure 4-7, action A1 and A2 concurrently try to change the value of ‘X’ to ‘1’ and ‘2’ respectively

 172

but as the execution order of A1, A2 and A3 is nondeterministic, the value of ‘Y’ at action A3 will

be randomly determined.

Farchi et al. [2003], defined three concurrency related fault patterns and also identified

various code level instances of these fault patterns. The suggested fault patterns were based on

the common mistakes that a programmer may commit while coding. Accordingly, the first type

of fault pattern is based on an assumption that threads interleaving are protected such that no

thread executes a concurrent operation during the execution of another thread. The second

fault pattern is based on the wrong assumption that certain interleaving will never occur (i.e.

certain operations in different threads will not interleave) and no synchronization is required.

The third fault pattern is based on the mistaken assumption that interleaving threads are non-

blocking (e.g. one of the threads contains a blocking operation that blocks indefinitely or one of

the threads terminates due to an exception when it is not expected to terminate). Concurrency

mutation operators defined here are based on these concurrency patterns as described in

[Farchi, Nir and Ur 2003] to model the concurrency faults in AD models. Given the overlap

between the fault patterns [Farchi, Nir and Ur 2003], the “Missing Join Operator” will inject the

first two types of faults whilst the “Invalid Synchronization Operator” will inject the third type of

faults.

Figure 4-5: Deadlock bug, Action1 in tread1 is waiting for Object2 whereas Action2 in thread2 is waiting
for Object3

 173

Figure 4-6: Livelock bug, thread-1 which contains Action1 gets blocked if Action2 executes before Action1.

Figure 4-7: Race condition, the final value of Y is dependent on the execution order of the Actions A1, A2
and A3

Definition:

Let and be the input and output edge set of a join node respectively, is a

directed edge from the source node to the target node , and

.

Synchronization is used to prevent some undesirable interleaving. The Missing Join

Operator models the missing synchronization fault (that may result into race conditions or

atomicity violation) in the model for each mutant model.

Mutant models , are generated in such a way that for each

such that .

The Invalid Synchronization Operator models the invalid synchronization (dead thread)

fault in the model for each mutant model. For instance, Figure 4-8 and Figure 4-9 show two

scenarios where deadlock may occur in at least one case. The operator manifest the “Blocking

 174

or dead thread bug”, a third type of concurrency fault pattern where some interleaving blocks

indefinitely [Farchi, Nir and Ur 2003].

Mutant models , are generated in such a way that

for each such that .

Figure 4-8: Faulty interleaving, execution of thread-1 get stuck in at least one scenario

Decision Mutation Operator (DMO)

Typically, a decision node in an AD has an incoming edge and multiple outgoing edges.

Each outgoing edge (branch) from a decision node carries a guard condition that is evaluated at

runtime to determine if the token can be offered on the edge or not. The decision mutation

operators are intended for seeding branch or decision faults i.e. unreachable paths and missing

paths.

Figure 4-9: Blocking Thread Bug, according to AD semantic Join waits until tokens are available on all
inputs

Definition (Extra Branch Operator): The operator injects an extra branch in the model

for each mutant model.

 175

Let and be the input and output edge set of a decision node with cardinality

and respectively, is a directed edge from the source node to the target node ,

, , and . Mutant

models , are generated in such a way that and

 for each such that and .

Definition (Missing Branch Operator): The operator removes a branch from a decision

node in the model for each mutant model.

Let be an output edge set of a decision node , is a directed edge from the

source node to the target node , and . Mutant models

, are generated in such a way that for each such that ,and

.

Definition (Missing Merge Operator): The operator models the missing merge fault in

the model for each mutant model.

Let and be the input and output edge set of a merge node respectively,

is a directed edge from the source node to the target node , and

and . Mutant models , are generated in such a

way that for each such that and .

Definition (Negation of Condition Operator): The negation of condition fault refers to a

fault where a condition that is required to be true in the specification is changed to false or vice

versa. The operator depicts the negation of condition fault in the model for each mutant model.

A condition is replaced by its negation in the formula.

Let be an output edge set of a decision node , be a condition attached to an

output edge, is a directed edge from the source node to the target node , and

. Mutant models , are generated in such a way

that for each such that ,and .

The operators developed and defined in this study for AD models are aimed at injecting

faults of both the omission and commission types, where a missing action is an omission fault

and an extra action is a commission type of fault. For the application of defined operators, it is

assumed that the model has already been refined by replacing each implicit decision, fork and

join with an explicit decision, fork and join respectively. The assumption is based on the fact that

the replacement of an implicit decision, fork or join with explicit counterparts does not affect the

control-flow but does reduce the ambiguity (i.e. multiple inputs or multiple flows) as shown is

 176

Chapter 3. These mutation operators were subsequently implemented as XSL transformation

rules and specified in a XML-based Stylesheet for experimental analysis. The code snipped of

these mutation operators can be found in Appendix B.

Table 4-2: AD Mutation Operators

Operator Type Mutation Operator

OMO
 Missing Action

 Actions Exchanged

IMO

 Extra Inflow

 Extra Outflow

 Inflow (Input) Exchanged

DMO

 Missing Branch

 Extra Branch

 Missing Merge

 Negation of Condition

CMO

 Missing Fork (Thread)

 Missing Join (Synchronization)

 Invalid Synchronization

4.2 Experimental Analysis

A number of experiments are conducted to examine AD-based technique that was

developed for generating test sequences. Two categories of AD-based coverage criteria

(sequential and concurrent) have been proposed for test selection and adequacy analysis. Test

suites generated are evaluated to determine if a given testing criterion, chosen from the two

categories of AD-based coverage criteria, is met. The effectiveness of these generated test suites

will also be evaluated using the proposed AD-based mutation analysis technique. The following

sections describe the experiments, result and analysis.

4.2.1 Experimental Setup

The four case studies of AD models, as described in Chapter 3 are used in the

experiments. Firstly, using the proposed AD-based test sequence generation technique and the

AD models in each of the case studies, were generated until each test suite achieved the

 177

complete coverage with respect to the branch coverage criterion. The resulting test suites are

analysed and are further evaluated against two concurrent coverage criteria.

Secondly, to evaluate the fault detection effectiveness of the generated test suite, the

AD-based mutation analysis technique described in Section 4.1.2.3 was performed. Generally,

mutants are generated by introducing k simultaneous changes in the original artifact and

considered as k-order mutants. Earlier studies [Budd 1981] have indicated only a minor gain in

the quality of an artifact with higher-order mutation analysis in comparison to the cost involved

in mutant generation and execution. So the mutation analysis applied here in this experiment

was limited to the first order mutants. Using the XSLT-based model transformation technique,

the mutation rules were applied on the case study models (in XMI format) to produce mutant

models. The number of mutants generated for case study models using each of the operators is

shown in Table 4-3. The Negation of Condition operator is not used to produce any mutant

models as the case study models do not contain the required parameters.

All the generated mutant models were executed with the test suite generated from the

original AD model. A mutant model was marked as dead if it failed to execute any one of the test

sequences in the given test suite. Due to the large number of mutant models and the repetitive

nature of the mutation analysis tasks, manual mutation analysis was deemed infeasible and a

tool was developed to generate and detect the mutant models. However, the undetected

mutants were analyzed interactively to determine the equivalent mutants and the deficiency of

the generated test suite.

 178

Figure 4-10: Coverage analysis of test suites generated for case study models with respect to branch
coverage criterion

Table 4-3: Summary of mutants generated for each of the four case study models

 Number of Mutants Generated

Mutation Operator ATM ETP DTP ECCS

Missing Action 65 72 60 9

Action Exchange 65 72 60 9

Extra Inflow 65 72 60 9

Extra Outflow 65 72 60 9

Inflow Exchanged 117 72 92 25

Extra Branch 13 12 18 7

Missing Merge 16 11 13 5

Missing Thread 11 0 0 2

Missing Synchronization 8 0 0 1

Invalid Join 8 0 0 1

Total 433 383 363 77

0

20

40

60

80

100

120

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88

Cu
m

m
ul

at
iv

e
Co

ve
ra

ge

Test Case

ATM

DTP

ETP

EECS

 179

4.2.2 Result and Discussion

Results from the application of the AD-based test sequence generation technique on the

case study models are shown in Figure 4-10. This figure illustrates the cumulative coverage of

each of the test suites, calculated in the order as each of the test cases are generated using the

corresponding case study models. The test adequacy of these test suites, evaluated against the

branch coverage criterion and results are shown in Table 4-4. The results demonstrated that (1)

the proposed test sequence generation process, involving the transformation of an AD into a

CPN model, is a feasible approach and (2) under circumstances of no constraints on the number

of test sequences, RW-based algorithm is capable of generating sufficient test sequences to

satisfy a given criterion. The graphs in Figure 4-10 show the cumulative coverage of the test

suites and reveal two important characteristics common to all test suites. First, the increase in

cumulative coverage is discrete and uneven, as signified by the “jumps” in ETP graph. Second,

the flat section in each graph (e.g. see ATM graph from test case 25 to 85) indicates the

redundancy in the test suite.

In order to get a better insight of the redundancy issue, the test suites generated for

ECCS, ETP and DTP models were further analysed and presented in Table 4-4. The column

names, Cov and CC in the table are abbreviations for coverage and cumulative coverage

respectively. The individual percentage coverage of each test sequence is presented in the

column ‘Cov’. The ‘CC’ column is the cumulative coverage gained by each additional test

sequence. The evaluation results for ATM test suite can be found in Appendix B where it is

presented separately due to the large size of the test suite.

A test case is considered redundant if it does not improve the cumulative coverage. The

redundancy issue is further illustrated with the ECCS test suite. The first test case in ECCS test

suite, TS-1 attained 29.4% coverage of the ECCS model according to the branch coverage

criterion. As it was the first test case in the suite, all tested artifacts were unique and therefore

the cumulative coverage was also 29.4%. After that, TS-2 attained 70.6% coverage and the

cumulative coverage reached to 76.5% as it covered new artifacts in the model. With the

execution of TS-3, the CC reaches to 88.2%. But for next six test cases, from TS-4 to TS-9, the CC

does not improve as no new artifact has been executed. The CC further improves when TS-10

executed a new artifact. After that, the CC remains stagnant for TS-11 and TS-12. Finally, CC

reaches to 100% when TS-13 executed the remaining artefact of the ECCS model. The next four

test cases, from TS-14 to TS-17 are redundant as CC is already 100%, that is all relevant artefacts

of the model has been executed at least once. It was found that 70% of test cases in the ECCS

test suites were redundant. The ratio of redundant test cases in other test suites was also very

 180

high. In case of ETP and DTP test suites, 67% and 64% test cases were redundant respectively.

The proportion of redundant test cases in ATM test suite was highest (88%).

Table 4-4: Summary of the test suite generated for ECCS, ETP and DTP models

 ECCS ETP DTP

Tests Cov % CC % Cov % CC % Cov % CC %

TS-1 29.41 29.40 7.69 7.69 27.78 27.78
TS-2 70.59 76.50 7.69 11.54 38.89 50.00
TS-3 64.71 88.20 7.69 11.54 30.56 61.11
TS-4 47.06 88.20 7.69 11.54 30.56 75.00
TS-5 41.18 88.20 26.92 34.62 22.22 75.00
TS-6 47.06 88.20 34.62 61.54 25.00 77.78
TS-7 35.29 88.20 7.69 61.54 41.67 86.11
TS-8 52.94 88.20 7.69 61.54 27.78 86.11
TS-9 41.18 88.20 26.92 61.54 19.44 86.11
TS-10 52.94 94.10 23.08 65.38 22.22 88.89
TS-11 58.82 94.10 38.46 73.08 36.11 88.89
TS-12 47.06 94.10 7.69 73.08 27.78 91.67
TS-13 58.82 100 23.08 73.08 19.44 91.67
TS-14 41.18 100 7.69 73.08 52.78 97.22
TS-15 47.06 100 7.69 73.08 44.44 97.22
TS-16 70.59 100 7.69 73.08 36.11 97.22
TS-17 52.94 100 7.69 73.08 16.67 97.22
TS-18 - - 30.77 80.77 30.56 97.22
TS-19 - - 7.69 80.77 27.78 97.22
TS-20 - - 7.69 80.77 13.89 97.22
TS-21 - - 7.69 80.77 36.11 97.22
TS-22 - - 7.69 80.77 11.11 97.22
TS-23 - - 7.69 80.77 19.44 97.22
TS-24 - - 34.62 80.77 33.33 97.22
TS-25 - - 7.69 80.77 47.22 97.22
TS-26 - - 50.00 96.15 38.89 97.22
TS-27 - - 46.15 100 22.22 97.22
TS-28 - - - - 38.89 100

Although some test cases have a higher coverage with respect to a specific criterion than

others, the cumulative coverage could still not be improved due to the execution order of test

cases in the test suite. For instance, in Table 4-4, although the test case TS-11 of ECCS test suite

had almost double the coverage of TS-1, it would be deemed redundant under the current test

 181

execution order of the test cases. However, redundancy is a complex issue and simply changing

the execution order of test cases might not be adequate due to the duplication and subsume

relationship between the test cases. For example, test cases TS-16, TS-17 are duplicates of TS-2

and TS-8 respectively and changing their order will not resolve the problem. Nevertheless, it

seems that finding an optimal combination of test cases rather than just an execution order

according to some given criteria may be another promising option employed to optimize the test

suite. In next chapter (Chapter 5), the problem of finding an optimal combination of test cases is

reformulated as a combinatorial optimization problem and a number of heuristic-based

solutions are also considered.

As the execution of the test sequence generation RW-algorithm conforms to CPN

semantics, the generated test sequences are feasible for concurrency testing as well. The

generated test suites were further evaluated against two of the concurrent criteria (Interleaving

node coverage and interleaving edge coverage) defined in Section 4.1.2.2 for following two

reasons.

1. To evaluate the adequacy of generated test suite according to the concurrent

coverage criteria, and

2. To determine the redundancy in a test suite with respect to the concurrent coverage

criteria.

The Table 4-5 presents the evaluation of ECCS test suite with interleaving node and

interleaving edge coverage criteria. The column names, Cd, Cov, NC and CC in the table are

abbreviations for covered nodes, coverage, newly covered nodes and cumulative coverage

respectively. The numbers of paired interleaving artifacts are given in columns ‘Cd’ for a

particular test sequence. The degree of the individual coverage of each test sequence is

presented in the column ‘Cov’. The ‘NC’ column contains the number of unique paired

interleavings that were covered by a test sequence. The ‘CC’ column is the cumulative coverage

gained by each additional test sequence. As two of the models (ETP and DTP) did not have the

multithreading functionality, they were not used in the analysis for concurrency coverage

criteria. The evaluation ATM test suite with concurrent criteria can be found in Appendix B.

In term of analysing concurrent coverage criteria for the ECCS model, executing the

same ECCS test suite (all 17 test cases), complete coverage could not be achieved. The test suite

achieved 50% cumulative coverage for the interleaving node coverage criterion and in the case

of interleaving edge coverage criterion, it could only get up to 35.7% cumulative coverage. In

addition, as seen in Table 4-4 and Table 4-5, there were a large number of redundant test cases

according to both sequential and concurrent criteria (no improvement in terms of the

 182

cumulative coverage). An important revelation for the concurrent coverage criteria is that TS-4

and TS-12 which appeared redundant according to the sequential criteria became effectively

important test cases for concurrency testing. For instance, the test case TS-4 is redundant

according to both the branch coverage and the interleaving node coverage criteria but as it

covered a unique interleaving edge sequence so it was not redundant at least according to the

interleaving edge coverage criterion. Similarly, although the test case TS-12 was found

redundant with respect to the branch coverage criterion, it was not according to both the

interleaving node and interleaving edge coverage criteria. It indicates that the redundancy of

test cases in a test suite and effectiveness of test cases is relative to the test criteria in question.

The relative comparison of results for both sets of criteria revealed that the sequential

criteria were relatively easier to achieve than the concurrent criteria. As can be seen from the

data given in Table 4-4 and Table 4-5, although the generated test suite was adequate according

to a sequential (branch) coverage criterion, it was not sufficient for concurrent testing and thus

it required generating more test cases.

Table 4-5: Evaluation of the ECCS test suite with interleaving node and interleaving edge coverage criteria

 Interleaving Node Coverage Interleaving Edge Coverage

Tests Cd Cov % NC CC % Cd Cov % NC CC %

TS-1 2 14.3 2 14.3 2 7.1 2 7.14

TS-2 1 7.14 1 21.4 1 3.6 1 10.7

TS-3 2 14.3 1 28.6 2 7.1 2 17.9

TS-4 2 14.3 0 28.6 2 7.1 1 21.4

TS-5 1 7.14 0 28.6 1 3.6 0 21.4

TS-6 2 14.3 0 28.6 2 7.1 0 21.4

TS-7 1 7.14 0 28.6 1 3.6 0 21.4

TS-8 2 14.3 0 28.6 2 7.1 0 21.4

TS-9 1 7.14 0 28.6 1 3.6 0 21.4

TS-10 2 14.3 2 42.9 2 7.1 2 28.6

TS-11 1 7.14 0 42.9 1 3.6 0 28.6

TS-12 2 14.3 1 50 3 11 2 35.7

TS-13 2 14.3 0 50 2 7.1 0 35.7

TS-14 1 7.14 0 50 1 3.6 0 35.7

TS-15 1 7.14 0 50 1 3.6 0 35.7

TS-16 1 7.14 0 50 1 3.6 0 35.7

TS-17 1 7.14 0 50 1 3.6 0 35.7

 183

The basic idea behind using a RW-algorithm is to enumerate all the possible and unique

control flow paths in a model. With random interactions in the concurrent processes, the

number of permutated paths grows exponentially and manual or exhaustive test sequences

generation techniques (e.g. depth first algorithm) are therefore infeasible. Consequently, the

RW-based TSG algorithm is deemed adequate because of the probabilistic nature of the

algorithm. The algorithm incrementally generates more test sequences and stops once a

specified coverage criterion is achieved. As the execution of the algorithm conforms to the CPN

semantics, every test case generated with the RW-based technique is essentially feasible.

However, the proposed algorithm is not ideal as it has a tendency to produce a number of

redundant test cases due to the stochastic nature of the algorithm. One option to address this

problem is to modify the test sequence generation algorithm to produce an optimual test suite.

Another option is to find the optimal subset from the test suite obtained from the RW-

algorithm.

Table 4-6: Synthesis of mutation analysis of test suites generated for case study models

Mutation
Operator

ATM ETP DTP ECCS

Killed Alive Killed Alive Killed Alive Killed Alive

Missing Action 65 0 72 0 60 0 9 0

Action Exchange 65 0 72 0 60 0 9 0

Extra Inflow 65 0 72 0 60 0 9 0

Extra Outflow 46 19 72 0 60 0 6 3

Inflow Exchanged 117 0 72 0 92 0 25 0

Extra Branch 13 0 12 0 18 0 7 0

Missing Merge 16 0 11 0 13 0 5 0

Missing Thread 11 0 0 0 0 0 2 0

Missing
Synchronization

8 0 0 0 0 0 1 0

Invalid Join 8 0 0 0 0 0 1 0

Total 414 19 383 0 363 0 74 3

In terms of the experiment using mutation analysis for determining the fault detection

effectiveness of the generated test suites, the first step produced a number of mutants for each

of the case studies using the defined mutation operators and this is shown in Table 4-3. The

number of both killed and live mutants for each model using the associated test suite is shown in

Table 4-6. As can be seen from the table, all the mutants for ETP and DTP models were killed and

 184

the generated test suite for these two models was adequate. However, some mutants could not

be killed for the ECCS (3 out of 77) and the ATM (19 out of 433) models. In both cases, the live

mutants of both the ECCS and ATM are in the category of “extra outflow”. The review of these

live mutants revealed that they were not equivalent mutants and the failure to kill them was due

to the inadequacy of the associated test suite. For instance, the Figure 4-11 and Figure 4-12

show the selected part of the two “extra outflow” mutant of the ECCS model that could not be

killed with the generated test suite. In both cases, an extra outflow from an action node (i.e.

logon and select) is ending on a fork node (i.e. F1 and F2) which means an extra token created

on the action nodes (due to the intrinsic fork) is available to the fork nodes. However, that extra

token could not be moved forward due to the intrinsic join behaviour of the fork nodes and no

unique path was created. Therefore, despite the fact that both mutant models are not

equivalent to the ECCS model, they could not be differentiated from the ECCS model by the

generated test suite.

Figure 4-11: ECCS model - Extra Outflow live mutant

Figure 4-12: ECCS model - Extra Outflow live mutant

4.3 Summary

In this chapter an AD-based test case generation technique and two test suite evaluation

techniques were introduced. In order to generate a test suite from an AD model, it was

transformed into an executable CPN model and then a stochastic algorithm is used to generate

 185

test sequences. The proposed test case generation techniques free a tester from learning a new

language and tool or redesigning his already built models in order to execute them. Two sets of

coverage criteria to evaluate the adequacy of a generated test suite were proposed. Mutation

analysis technique was also proposed to evaluate the effectiveness of the AD-based test suite.

The proposed test sequence generation and evaluation techniques were empirically analysed

and results confirmed the effectiveness of proposed techniques.

 186

Chapter 5 Test Suite Optimization

The previous chapter described a stochastic test generation technique for behavioral

models depicted in AD. It also addressed the issue of adequacy criteria for a generated test suite

and proposed coverage and mutation based analysis for AD based test suites. This chapter

described an investigation to examine how metaheuristic techniques may be used to optimize

the generated test suites obtained using techniques described in Chapter 4.

One of the desired characteristics associated with effective test cases is that they are

unique and non-redundant in order to avoid wastage of resources and time. Therefore, in order

to maximize the productivity of the testing effort (such as fault detection capability, coverage or

reliability level) several test suite optimization approaches [Jones, Eyres and Sthamer 1996;

Jones, Eyres and Sthamer 1998; Michael, McGraw and Schatz 2001; Pargas, Harrold and Peck

1999; Tracey, Clark and Mander 1998; Tracey, Clark, Mander and McDermid 1998] that

incorporate an optimization technique in the test suite generation and maintenance process

have been proposed. These approaches can be classified into in-test generation and post-test

generation optimizing techniques. In the former, the test generation problem is reformulated as

a searchable problem and an optimization technique is applied to generate an optimal test suite

[Shiba, Tsuchiya and Kikuno 2004; Sthamer 1996; Wegener, Baresel and Sthamer 2001], whereas

in the latter, the optimization of a pre-generated test suite is defined as an optimization problem

followed by the use of a heuristic technique to derive an optimal version of the original test

suite. Both these approaches have their specific limitations. The in-test generation optimization

can generate a small and effective test suite according to given test criterion but does not permit

retrospective removal of redundant test cases once new and better test cases have been

generated. This drawback means that the test suite is virtually locked and more likely to contain

some level of unwanted redundancy. On the other hand, with post-generation optimization the

efficiency may be enhanced by removing the redundancy, but it cannot improve the coverage

level and fault detection capability. However regardless of the differences, several studies

[Jones, Eyres and Sthamer 1998; Li, Harman and Hierons 2007; McMinn, Harman, Binkley and

Tonella 2006; Wegener, Eyres, Sthamer and Jones 1997; Yoo and Harman 2007] has shown that

 187

incorporating optimization techniques in testing can significantly enhance productivity and cost

effectiveness without compromising the fault detection capability.

5.1 Test Suite Minimization

Some studies have shown that more testing can improve the quality of software initially;

however, the increase in testing eventually reaches a point of diminishing returns where it no

longer translates into better quality. It has been often emphasized that a 100% statement

coverage or that of any other test criterion does not necessarily guarantee a 100% defect free

software [Beizer 1990; Williams et al. 2001]. Therefore, a great deal of research has focused on

developing new test optimization techniques for enhancing software efficiency and

effectiveness. Test suite optimization or post-test generation optimization is a class of

techniques that aims to minimize the cost of a test suite without compromising its fault

detection capability. It is achieved by removing test cases that are considered redundant or

ineffective with respect to the test objectives for which they were generated. The process of

identification and removal of redundant test cases, finally yielding a minimal test suite, can be

defined as test suite minimization.

A test case is considered redundant if it does not add value to the test suite. A test suite

produced for a given test criterion (i.e. statement or branch) requires the test requirements

(parts of an artifact under test) according to that criterion must be satisfied. Usually, a test case

fulfills more than one test requirements (e.g. statements or branches). In the case when some

test cases are subset of other test cases, many test requirements are likely to be satisfied by

more than one test case.

Test suites may also degrade and become less efficient over the lifetime of software as

changes in the software or specification may render some of the test cases redundant or

obsolete. Whilst rework or maintenance of software may require additional test cases for new or

modified functionality or for feature interaction, it also requires identification and isolations of

obsolete or redundant test cases. In practice, software passes through several revisions, each

with many build and retesting cycles prior to its release. Regression testing is a very expensive

activity as it is extremely time consuming to rerun previous test cases in order to ensure that

changes in the software did not introduce any new faults. Studies [Chen and Lau 2001; Wong,

Horgan, Mathur and Pasquini 1997] have confirmed that running the minimal subset of a test

suite with the same coverage as the original test suite can reduce testing cost with very little or

no effect on its fault detection capability.

 188

Table 5-1: Example test suite with coverage illustration

 A B C D E F G

t1 X X X X

t2 X X X X X

t3 X X X

t4 X X X X X

t5 X X X X

t6 X X X X

t7 X X X X X

As the redundancy of a test case is relative to and dependent upon the test criteria as

well as the other test cases in a test suite, the optimization process may need to evaluate all

possible combinations of the test cases in a test suite together with a calculation of their

cumulative coverage. The following example provides an explanation of this point. Given a test

suite TS with test cases and a software artifact under test with a set of seven

branch elements as shown in Table 5-1. The execution of an element with a

particular test case is indicated by the symbol ‘X’ . A careful analysis of this test suite reveals

that redundancy often can exist in three forms: (1) a test case duplicates one or more test cases;

(2) a test case subsumes the coverage of one or more test cases and (3) a combination of test

cases subsumes the coverage of one or more test cases. For example in Table 5-1, is an exact

duplication of a type-1 redundancy, as both test cases cover branch elements A, B, C, D, F;

subsumes both and (a type-2 redundancy), and the combination of and subsumes

the coverage of the rest of the test cases (a type-3 redundancy). The detection and removal of

type-1 and type-2 redundancies from a test suite can be done simply by monitoring the

cumulative coverage and dropping each additional test case, if it fails to improve the overall

coverage level. For example, after selecting the first three test cases (, and) the

remainder of the test cases will become redundant and may be dropped from the test suite.

However, using this technique, type-3 redundancy is relatively harder to detect as the execution

order of test cases can affect the selection of the subsequent test cases. Therefore, in order to

detect a type-3 redundancy, an optimization technique needs to be employed for searching and

 189

evaluating all possible combinations of test executions. Removing type-1 and type-2

redundancies can reduce the test suite size, but cannot ensure the minimal test suite. The

removal of a type-3 redundancy also eliminates the need for removing the other two types of

redundancy to yield the minimal test suite.

Redundancy in test suites is generally not desirable as it wastes project resources and

increases the testing cost. Various researchers have tried to address this problem. Harrold,

Gupta and Soffa [1993] proposed a code-based, heuristic technique for removing obsolete and

redundant test cases from an original test suite resulting in a reduced test suite. In their

approach, the first step involved examining each test requirement that is covered by only one

test case and selecting each of these test cases; then iteratively select those test cases that cover

the maximum numbers of requirements until all test requirements are covered. In cases of a tie

involving multiple test cases with the same coverage level then select the test cases that would

cover the higher number of unmarked requirements. Finally, remove the rest of the test cases

that become redundant as they do not uniquely cover the test requirement. Their proposed

technique is a greedy algorithm and prone to produce suboptimal solutions. Moreover, Jeffrey

and Gupta [Jeffrey and Gupta 2005] showed that the test suite reduction technique proposed by

Harrold, Gupta and Soffa may compromise its fault detection capability and they proposed a

new technique for test suite minimization which retained some level of redundancy in the test

suite. They suggested using a secondary criterion (e.g. all def-use criterion associated data flow

testing), in the test suite minimization process. They showed that with selective redundancy it is

possible to retain the test suite effectiveness with a slightly less test suite reduction. Tallam and

Gupta [2005] proposed an adapted greedy algorithm to minimize a test suite by removing

redundant test cases. They employed the Concept Analysis technique to identify groups of

objects and attributes and their implications and then exploit this information in a greedy

algorithm for test suite reduction.

Xie, Marinov and Notkin [2004] showed that existing unit testing tools such as JTest and

JCrasher, generate a large number of redundant test cases and developed a framework to

minimize these generated test suites. They showed that the elimination of redundant test cases

can be achieved without compromising their quality. They further proposed a number of

redundancy detection approaches for detecting redundancy in test suites associated with an

object oriented system.

Chen and Lau [1998; 2001; 2003] investigated Boolean specification-based test suite

reduction techniques based on some fault-based test case selection criteria. They proposed a

divide-and-conquer algorithm for test suite minimization which actually decomposes the original

 190

problem into k independent sub-problems [Chen and Lau 2003]. Accordingly, the set of test

cases is decomposed into mutually disjoint subsets of test cases such that

the sets of all test requirements satisfied by are also mutually disjoint. Although, this

divide-and-conquer approach is based on an exact algorithm that guarantees the delivery of an

optimal solution from the set of optimal solutions of the sub-problems, it is generally considered

not feasible for real world applications due to their sheer size or non-decomposable nature.

In the following section, a model-bases test suite minimization technique developed in

this study is described.

5.2 Model-based Test Suite Minimization

Model based testing uses a model as a reference point for test case generation and

evaluation purposes, which makes it independent of the implementation language and the need

to examine the source code. Typically, a model consists of a set of abstract elements known as

nodes and a relation between the nodes is referred to as an edge. The nodes represent the

statements in the program and edges express the flow of control or data between the

statements. Nodes with two or more outgoing edges are called decision nodes and the edges are

referred to as branches. As a model based test suite is directly generated from a model

according to a model-specific criterion, the model based test suite minimization problem can be

defined as follows:

A model based test suite is given in the form of set TS with elements ai, size n and

coverage m. The set of elements ai are the test cases where each test case is a sequence

consisting of the model elements representing an execution path in the model. The coverage m

is calculated as the percentage of model elements, required by a test criterion, that have been

covered by a given test suite with n number of test cases. The objective is to find a minimal

subset in such a way that .

5.2.1 Test Suite Evaluation

In order to analyze and compare the different test suite solutions objectively, the

attributes of a test suite such as cost, fault detection capability, size and coverage must be

measured. As the objective of test suite minimization is enhancing the efficiency of a test suite

without compromising its effectiveness, it is important to know the size of the test suite that is

produced, the cost to execute it, and the number of faults it can detect. It is postulated that a

test suite is inefficient if it has a high degree of redundancy (as it will waste resources) and

ineffective if it has “gaps” in the coverage of the given test requirement (as it will leave untested

functionality in the system). Generally, the adequacy of a test suite is measured with respect to a

 191

particular test requirement metric e.g. structural coverage, fault coverage and mutation score.

Therefore, a test case in a test suite is considered redundant in accordance with a specific

criterion:

1) If it fails to improve the consolidated coverage of the test suite [Shiba, Tsuchiya

and Kikuno 2004; Sthamer 1996; Wegener, Baresel and Sthamer 2001] or

2) If removing it does not affect the effectiveness of the test suite [Harrold, Gupta

and Soffa 1993; Jorgensen 2002; Offutt, Pan and Voas 1995].

The first rationale is the basis of in-test generation optimization whereas the second

rationale is considered for post-test generation optimization. The evaluation of a test suite in

terms of its ability to fulfill a given test selection or adequacy criterion indicate its degree of

effectiveness. A test case is considered essential according to a given criterion if its inclusion or

exclusion from the test suite can change the effectiveness of the test suite. The selection of test

cases can be guided by various objectives, for instance, structural coverage (e.g. block and

decision) to ensure the adequacy of a test suite [Frankl and Iakounenko 1998; Frankl and Weiss

1993; Hutchins et al. 1994], and functional coverage to show conformity to the specification

[Beizer 1995].

The efficiency of a test suite can be defined as the cost it needs to achieve a given test

criterion per test case used. The cost of the test suite, computed as the sum of the cost of its test

cases, can be measured in several ways. One measurement uses the computing time it needs to

execute each test case [Wagner 2006]. Another measures the tester time spent on constructing

and analyzing test cases [Ellims et al. 2006]. The cost of a test suite to achieve the stated test

objective indicates its efficiency in relation to the number of test cases needed to achieve the

given test criterion. Such measurements have been used in other studies [Ntafos 1988; Weyuker

1990]. Based on this efficiency measurement, a test suite minimization procedure can find a

minimal subset that maintains the coverage of the original test suite with respect to a certain

coverage criterion.

As the objective of test suite minimization is enhancing the efficiency and effectiveness

of the test suite, these two terms are defined in the context of this study as measurable

attributes of a test suite as per the following: consider a model-based test suite that contains

 test cases, with each test case being a sequence of model elements representing an execution

path in the model. These test cases are evaluated with respect to the coverage criterion that

identifies elements in the artifact under test (AUT). When a subset of containing test

 192

case is executed, it traverses of the AUT elements and attains percent coverage. In

order to quantify the efficiency and efficacy of a test suite, the following definitions are stated.

Definition 1:

The efficacy of a test suite TS with respect to the criterion M is a ratio of to .

Definition 2:

 The efficiency of a test suite TS with respect to the criterion M is a ratio of to . In

order to have the efficiency increase as with the decrease in subset, the efficiency metric is

formulated as follows:

The efficacy metric would help to determine the extent to which the test suite satisfies a

particular test criterion. The efficacy metric in definition-1 can be used to measure the

effectiveness of a test suite in terms of selected criteria i.e. structural coverage and mutation

score. When this value is less than 1 (in terms of ratio a.k.a. test effectiveness ratio [Woodward

et al. 1980]) or 100%, it indicates the deficiency in the test suite (or inadequacy of the test suite)

and the need to generate more test cases. The efficiency metric would help to determine that

how economically the test suite satisfies a particular test criterion. The efficiency metric is

obvious and a high score indicates a relatively more efficient test suite. For example in Table 5-1,

the test suite contains 7 test cases and if executed as it is, it will yield an efficacy = 1 (complete

coverage) and efficiency = 0. Executing the subset of TS and skipping the rest of

the test cases can improve the efficiency from 0 to 0.71 without compromising its efficacy.

The efficiency metric allows determining the improvement in the reduced test suite but

it does not provide any information about the level of redundancy in the test suite. In Section

5.1, it is shown that the redundancy in a test suite can occur when multiple test cases are

covering completely or partially the same set of element(s) in an AUT. The coverage relationship

between the test cases and elements according to a given criterion can be defined as the set

 where and are the test suite with test cases and a set of

elements in AUT respectively. Suppose is the set of all elements that are covered by a

test case and is the set of all test cases that cover an element . The redundancy

metric can be defined as follows.

Definition 3:

The redundancy in a test suite according to a criterion M is an average of number of test

cases per element (ATCE) and formally defined as:

 193

(5-1)

The process of manual identification and removal of the redundant test cases for large

test suites is both overwhelmingly complex and infeasible. Similarly, exhaustive analysis even

with an automated tool would handle only relatively trivial test suites and is prone to a

scalability issue. In order to solve the test suite minimization problem using heuristic techniques,

it is formulated as a combinatorial optimization problem in the following.

5.2.2 Formulation as an Equality Knapsack Problem

The knapsack problem is a class of combinatorial optimization problems that has been

extensively studied. In the basic version, the knapsack has some specific capacity and a set of

objects, each with a given weight and profit. The problem is defined as the search for a set of

objects, such that the total profit of the set is maximized without exceeding the knapsack

capacity. There are many knapsack variants including the Equality Knapsack problem (EKP)

where the objective is to find a subset from a given set of items in such a way that the total

profit is maximized and the total weight c is exactly equal to the given capacity C [Kellerer et al.

2004].

The test suite minimization problem can be translated into EKP. For instance, the test

suite has n test cases that correspond to objects in the knapsack problem and the coverage C of

the test suite corresponds to knapsack capacity. Each test case i has coverage ci that corresponds

to the weight of an object. In order to show the inclusion or exclusion of a particular test case, a

binary decision variable x is used. The requirement to be satisfied is

(5-2)

The utility value of a test case in the test suite that corresponds to cost in the knapsack

problem is for each test case. The objective is to find a test suite at a given coverage in

such a way that the total cost of the test suite is minimized. Since the capacity of the test suite is

C, it is required that the total weight of all chosen test cases (the total weight of the minimized

test suite) is to be C exactly. As the EKP can be formulated into a minimization

 194

version by minimizing the cost of the items in the knapsack, the problem can formally be stated

as

 (5-3)

5.3 Empirical Study

As it is described in Section 5.2.1, removing the redundant test cases from a test suite

can enhance the efficiency of the suite without compromising its effectiveness. However,

identifying and removing the redundant test cases is a combinatorial optimization problem.

Since it is unlikely that such problems are polynomially solvable, heuristic techniques are

commonly used for finding approximate solutions in polynomial time. However, heuristics do

not work equally effectively on all problem instances. A commonly held view is that there is a

link between problem complexity (both size and the search space) and the performance of the

heuristics [Back, Fogel and Michalewicz 1997]. Consequently, following experiments were

conducted in order to investigate the comparative performance of the proposed EC-based test

suite minimization with three other types of algorithms (Greedy, Hill Climbing Random Ascent

and Hill Climbing Next Ascent) for different problem instances.

5.3.1 Research Questions

The experiment is designed with the aim of answering the following research questions

based on the assumption that the efficiency of a test suite can be enhanced by removing

redundancy in it.

Q1: How do the EC, Greedy, Hill Climbing Random Ascent and Hill Climbing Next Ascent

algorithms perform in the context of model-based test suite minimization?

Q2: How does the test suite size affect its minimization through a specific heuristic?

Q3: How does the composition of a test suite (i.e. arrangement of test cases, length of

the sequences) affect its minimization through a specific heuristic?

5.3.2 Experimental Setup

In order to investigate the research questions, the following variables were considered.

The goal was to empirically assess the heuristic techniques and the effect of test suite size and

composition on test suite minimization. The independent variables were test suite size, test suite

composition, optimization algorithms and model type. The dependent variables were reduced-

 195

size and coverage. It was expected that the test suites will be homogenous with respect to the

source models. Thus, the test suites were blocked into four uniform groups on the basis of the

models, namely ECCS, ETP, DTP and ATM (previously described in Chapter 3). Within each of the

four blocks, experiments were performed with a 3 x 5 x 4 (three test suites of different sizes, five

test suite compositions and four optimization algorithms) Factorial Repeated Measure with

Block design [NIST/SEMATECH 2010]. Each factor is elaborated in the following sections.

In order to study the effect of size and composition of a test suite on test suite

reduction, multiple versions of a test suite of varying size were generated for each model.

Following the random walk based test generation (RW-TSG) technique described in Chapter 4, a

test suite was generated from each case study model described in Chapter 3 and then evaluated

according to the associated branch coverage criterion proposed in Chapter 4. A test suite

generated for branch coverage criterion requires at least one test case to execute each branch.

Two more test suites were generated with 25% and 50% more test cases than the original test

suite.

Table 5-2 summarizes the composition of every generated test suite. For instance,

approximately half of all branches on average are executed by each test case for the ECCS model

as shown in the ‘Mean’ column of the Branch Coverage per Test Case (BCTC) column. The

standard deviation ‘S.D.’ column indicates the variation of test cases in terms of their coverage.

The ‘Min’ and ‘Max’ columns show the minimum BCTC (indicating smallest test sequence) and

maximum BCTC (indicating longest test sequence) respectively. Although, with larger models

(e.g. ATM) the average BCTC is smaller, the size of longest test sequences (‘Max’ column) is same

for all three versions of test suites within a group (model) and the average difference within the

group is also statistically insignificant at the .05 significance level. The redundancy level of the

generated test suites with respect to branch coverage criterion is determined using redundancy

metric (equation (5-1)) defined in Section 5.2.1 and presented in the column ‘Test Cases per

Branch’ of Table 5-2. On average in each generated test suite, there are more than four test

cases for a branch that can execute it.

In order to see the impact of test cases arrangement3 on test suite minimization, each

generated test suite was randomly shuffled five times and marked as a distinct version (TS-1, TS-

2, TS-3, TS-4 and TS-5). Studies have shown that the performance of heuristic algorithms can

vary depending on the structure of the fitness landscape [Deb 1997; Mitchell et al. 1992;

3 The arrangement of test cases in a test suite implies their execution order. As the focus here is to study
its impact on test suite minimization, the term ‘arrangement’ is used in order to avoid confusion with
‘execution order’ in test case prioritization.

 196

Rothlauf 2006]. Other studies have shown a relationship between the smoothness or ruggedness

of the search space and the correlation level between the fitness values of the search points

[Jones 1995; Weinberger 1990]. Thus the assumption is that a change in the arrangement of the

test cases in a test suite will change the structure of the search space and the complexity of the

problem and may thereby affect the optimization of a test suite in general or the performance of

a heuristic specifically.

Table 5-2: Composition of generated test suites

Model Test
Suite
Size

Branch Coverage per Test Case (%) Test Cases per Branch
Mean S.D. Min Max Mean S.D. Min Max

ECCS 20 49.12 13.40 29.41 70.59 9.82 5.30 2 20
 25 49.88 12.49 29.41 70.59 12.47 6.69 3 25
 30 50.98 11.39 29.41 70.59 15.29 8.59 3 30
ATM 89 10.88 8.16 3.57 32.14 9.68 11.47 1 45
 111 11.65 8.32 3.57 32.14 12.93 14.35 1 60
 133 11.36 8.21 3.57 32.14 15.11 17.13 1 70
ETP 27 17.24 13.80 7.69 50.00 4.66 4.31 1 17
 34 15.84 12.94 7.69 50.00 5.39 5.61 1 23
 41 16.89 13.18 7.69 50.00 6.92 6.55 1 26
DTP 28 33.14 9.91 16.67 52.78 9.28 6.80 2 28
 35 32.22 9.88 16.67 52.78 11.28 8.54 3 35
 42 32.61 9.57 16.67 52.78 13.69 10.25 3 42

 The experiments were performed with four heuristic algorithms namely; Greedy, Hill

Climbing Random Ascent, Hill Climbing Next Ascent and Evolutionary Computation, referred to

as GD, HCRA, HCNA and EC respectively forthwith. As mentioned earlier, normally different

heuristic algorithms comprise of several different combination of operators and their application

essentially involves several design considerations such as problem representation, solution

selection and production operators, formulation of a fitness function to evaluate the quality of

these solutions in guiding the underlying heuristic search and finally the selection of appropriate

operating parameters for the optimal performance of the algorithm.

EC algorithms do not usually perform operation directly in the problem space.

Therefore, in terms of their implementation the first and foremost step is encoding the problem

in a suitable representation (e.g. binary string, real value or tree structure). The encoding

scheme defines the search space and links the genotype or genome to a corresponding

phenotype. The effect of encoding is very critical as the entire set of algorithmic operations is

performed only on the encoded space. Similar to the knapsack-problem, binary encoding was

 197

considered to be a direct and natural representation for the test suite optimization. Test suites

are directly encoded in the form of genotype with a constant chromosome length of original test

suite size. Each allele at a particular position in a chromosome represents a corresponding test

sequence in the original test suite. The inclusion and exclusion of a test sequence within a test

suite are represented by 1 and 0 respectively in a chromosome string (binary sequence). So, a

chromosome with a given sequence of 0 and 1 represents a test suite with a particular

combination of test sequences and the total number of 1’s in a binary sequence represents the

size of the test suite. A chromosome with a sequence of all 1’s represents the original test suite.

The size and coverage of an individual test suite are some of the quality attributes

pertinent to this study so these attributes can be expressed as phenotypic properties of an

associated genotype and are calculated as the number and collective coverage of all the

included test cases respectively. The fitness function calculates the quality of individuals in terms

of phenotype in a generation. The phenotype which is the functionality or expression of the

genotype maps the search space (encoded in the form of genotype) to the objective space. The

notions of superior and inferior solutions and a fitness measuring mechanism have pivotal roles

in evolutionary optimization as they guide the underlying search mechanism and greatly affect

the convergence of the evolutionary heuristic [Corne, Glover and Dorigo 1999]. As the objective

of test suite minimization is finding a minimal combination of test cases from the original test

suite, equation-(5-3) is used to evaluate the fitness of each candidate solution. A precondition of

the equation-(5-3) requires that a valid candidate solution must satisfy equation-(5-2).

The design of selection and production functions is crucial to the adaptation of the EC.

The selection function defines rules for the selection of sub-population (mating pool) for the

production of offspring. Various selection techniques i.e. rank, probabilistic, fitness-

proportionate and tournament selection are widely used in EC applications. Tournament

selection was used owing to its robustness and pressure controllability [Goldberg 1989]. The

replacement mechanism defines the placement of offspring into the population and for that it is

used as a generational technique. Accordingly, the offspring replaces the parents in next

generation. The role of production operators is very critical for solution quality. The crossover

process exploits the available fitness information and the mutation process leads to the

exploration of the search space. The production function to breed new individuals comprises

both recombination and mutation operators. Typically, the recombination operation can be

either sexual or asexual. The sexual reproduction a.k.a. crossover produces new offspring from

the parents. The individuals selected according to their fitness for mating survive through the

generations and propagate their characteristics in the offspring. Therefore, through crossover,

 198

the search converges towards the promising regions of the search space. The mutation

operation introduces noise and prevents the premature convergence of the search process to

local optima by randomly sampling new points in the search space. In bit string representation,

mutation is applied by inverting bits at random in a string with a certain probability called the

mutation rate. The mutation rate defines the number of bits that will be flipped at each iteration

step. Similarly, the crossover mechanism essentially breeds new solutions by swapping the

substrings of existing solutions (test suites) at each iteration step. Double-point operators are

used for crossover and single-point operators are used for mutation.

For EC, the binary coding scheme, pairwise tournament selection, objective function

(equation-(5-3)) value as fitness, double-point crossover, single-point mutation and maximum

generation numbers as stopping criterion, are used in the experiment. Although EC is a generic

technique, a relatively large number of operational parameters in addition to design parameters

(i.e. selection, crossover and mutation operator types) still need to be configured.

The appropriate values for these parameters except for crossover are empirically

determined for each problem instance and described as follows.

For crossover, De Jong [1991] suggested an optimal rate between 0.6 and 0.7 and

Grefenstette [1986] recommended a higher rate of 0.95. Back, Fogel and Michalewicz [1997]

have reported no significant difference between the low level and high level of the crossover

rate on optimization so therefore it was not empirically determined in this study. The double-

point crossover with a high constant crossover rate of 0.9 is applied in the experiments.

One important question is the number of individuals (strings) needed in a population.

The population size is a critical decision as EC algorithm converges more rapidly with smaller

populations whereas with larger populations, it performs better in terms of solution quality.

Alander [1992] empirically investigated population sizes for EC algorithms. He suggested

and as an ideal range for the best population size where N is the size of the problem's

search space [Alander 1992]. For test suite minimization problem, , a value between

and would be optimal for the population size. In order to determine the population size

empirically, an experiment is performed with five profiles (labelled as , , , ,) to

cover both the ideal and imperfect type of values such as upper bound, median, lower bound,

out of upper bound and out of lower bound. Given that is the size of the search space of

the test suite minimization problem where is the string length, the lower bound ,

median , upper bound , out of lower bound and

out of upper bound are calculated and result of the experiment is presented in

Figure. Although the profile on average produced better results than other profiles as shown

 199

in Figure 5-1(a), it was not statistically significant using Tukey HSD Post hoc test at the 0.05 level

of significance. It is important to note that a larger population size means a larger search space

and more CPU time usage. Therefore, basing the selection decision for population size merely on

the superiority or inferiority of the solution without considering the cost is inadequate. Given

that the additional computation time and space needed for a larger population size is without

any significant gain, it is safe to say that using a smaller population limit (lower bound) is more

efficient than the upper limit (upper bound) for an EC-based test suite minimization. Considering

this, the initial population is randomly generated for each problem instance according to the

associated lower bound mentioned in Table 5-3.

The single-point constant rate mutation is applied with probability . For mutation

probability values, very diverse recommendations have been found in the literature. Back [1993]

suggested a high mutation rate such as where is the string length as an optimal rate,

whereas Schaffes et al. [1989] recommended 0.005 at the other extremity of the mutation rate.

In order to determine an optimal value, an experiment is performed where values are

selected from 0.005 to 0.5 thereby covering both extremes. Twelve mutation profiles, labeled as

(, , ,), with different probability rates are given as and . Apart

from which is calculated using , a fixed value mutation rate is used. From the mutation

profile graph in Figure 5-1(b), the positive effect of the mutation rate on the EC-based test suite

optimization is very obvious. Apart from the two extreme values (M1 and M11 with mutation rate

of 0 and 1), the solution quality (reduction %) increases with the mutation rate generally. For

mutation rates of less than 0.01 (M5), the average solution quality was the lowest. Another

example of this phenomenon can be seen in Figure 5-1(b) at M0 for ATM-111 and ATM-133

where the mutation rate is 0.009 and 0.007 respectively and the results were almost similar to

that of M2, M3 and M4 which are less than M5. On average, high mutation rates resulted in better

solutions. All the results except for mutation rates of M6 and M9 are inconsistent across the

different test suites. However, it can be safely inferred that higher mutation rates are better to

start the search with for test suite minimization problem. Considering this, a high standard

mutation rate of 0.2 is applied in the study for each problem instance.

The bound on the number of generations is usually determined empirically for each

problem instance. Therefore an appropriate value as shown in Figure 5-2 was determined via

initial experiments and used for rest of the replications. In case of the ECCS problem, the search

converged in around 15 generations for all three problem instances. In case of the DTP problem,

the search converged less than 25 generations for all problem instances. In case of the ETP and

the ATM problems, the search took up to 19 and 29 generations respectively to converge to a

 200

solution. In all cases, the algorithm was further executed up to 100 generations with an

assumption that it will give the algorithm ample opportunity to improve the solution.

Table 5-3: Bounds on the population size in EC for test suite minimization based on Alander's empirical
study [Alander 1992]

Test Suite Size Lower bound Upper bound

20 20 40

25 25 50

30 30 60

89 89 178

111 111 222

133 133 266

27 27 54

34 34 68

41 41 82

28 28 56

35 35 70

42 42 84

The summary of preliminary values of the EC parameters is given in Table 5-4.

Table 5-4: Summary of parametric settings used for EC in the experiment

Parameters Values
Objective Minimize Test Suite Size
No. of Generations 100
Replacement Scheme Generational
Crossover Rate 0.9 (double point)
Mutation Rate 0.2 (single point)
Selection Scheme Pairwise tournament

20

1

Fi

gu
re

 5
-1

:
O

ff
lin

e
pe

rf
or

m
an

ce
 a

na
ly

si
s

(r
ed

uc
ti

on
 p

er
ce

nt
ag

e)
 o

f
EC

 w
it

h
va

ri
ou

s
po

pu
la

ti
on

 a
nd

 m
ut

at
io

n
pr

of
ile

s
fo

r
si

x
te

st
 s

ui
te

s
(t

hr
ee

 D
TP

 a
nd

 t
hr

ee

A
TM

)

20

2

05101520253035

1
9

17
25
33
41
49
57
65
73
81
89
97

Test Suite Size

N
um

be
r o

f g
en

er
at

io
ns

EC
CS

-3
0

EC
CS

-2
5

EC
CS

-2
0

05101520253035404550

1
9

17
25
33
41
49
57
65
73
81
89
97

Test Suite Size

N
um

be
r o

f g
en

er
at

io
ns

D
TP

-4
2

D
TP

-3
5

D
TP

-2
8

010203040506070

1

11

21

31

41

51

61

71

81

91

101

Test Suite Size

N
um

be
r o

f g
en

er
at

io
ns

ET
P-

41

ET
P-

34

ET
P-

27

02040608010
0

12
0

14
0

16
0

1
12
23
34
45
56
67
78
89

100

Test Suite Size
N

um
be

r o
f g

en
er

at
io

ns

A
TM

-1
33

A
TM

-1
11

A
TM

-8
9

Fi
gu

re
 5

-2
: M

ax
im

um
 n

um
be

r
of

 g
en

er
at

io
ns

 f
or

 d
iff

er
en

t
te

st
 s

ui
te

 p
ro

bl
em

s
w

as
 d

et
er

m
in

ed
 e

m
pi

ri
ca

lly
 s

uc
h

th
at

 t
he

 a
lg

or
it

hm
 c

an
 h

av
e

am

pl
e

op
po

rt
un

it
y

to
 e

xp
lo

re
 t

he
 s

ea
rc

h
sp

ac
e

be
fo

re
 s

to
pp

in
g.

 203

For the Greedy algorithm, the test cases were sorted initially in decreasing order of

fitness according to their individual coverage level. It then proceeded to include them into the

test suite, starting with a randomly selected test case and then include test cases according to

their contribution to the fitness of the test suite until it reached the level of 100%.

For Hill Climbing, two versions of the algorithm, HCNA and HCRA, were used. A search

point was arbitrarily selected initially. After that, for each step up to the maximum defined

iterations, the next item is selected according to the selection schemes of HCRA and HCNA and

replaces the current item.

In consideration of the stochastic nature of the EC algorithm and the random starting

points for the HCRA and the HCNA algorithms, each experiment was replicated 10 times in order

to address the possible effect of randomness on the results.

5.3.3 Metrics

Metrics are crucial to assist the decision making process when integrated with

optimization techniques in order to obtain the optimal or better alternate solution for process

improvement. The following metrics are used to assess the effects of variables in this

experiment:

The efficiency metric defined in Section 5.2.1 is used to measure the test suites in terms

of their execution and validation cost. Various cost metrics such as the number of test cases in a

test suite, the number of method invocations in the test suite, execution and validation time of

each test case and the number of test cases per unit of given criterion have been reported in the

literature [Beizer 1990; Briand, Labiche and Wang 2004]. A higher efficiency score indicates

relative higher redundancy in a test suite. The cost of test execution and validation is very much

implementation and configuration dependent. Therefore, an estimated cost of potential

execution and validation of a test case is used in this study. Furthermore, it is assumed that the

execution and validation cost is equal on average for all test cases in a test suite [Friedman et al.

2002]. It means though that the test cases with a higher coverage could take longer to execute

than smaller test cases but on average still have similar cost [Friedman, Hartman, Nagin and

Shiran 2002]. This assumption might cause the optimization to be less sensitive to the

composition of a test suite and favour the longer test sequences but can be justified if the setup

and initialization overhead of smaller test cases is included. Nevertheless, despite these

differences, for the sake of simplicity a constant unit of cost is used for all test cases.

 204

The efficacy metric defined in Section 5.2.1 is used to measure the effectiveness of a test

suite. When this value is less than 1 (in terms of ratio) or 100%, it indicates deficiency in the test

suite (indicates the inadequacy of the test suite with respect to the stated criterion) and the

need to generate more test cases. Many effectiveness measures e.g. mutation score, fault

detection rate, fault detection probability have already been reported in the literature. As the

original test suites were generated for branch coverage criterion, coverage based criterion called

AD-based branch coverage criterion that was previously defined in Chapter 4 was used. It was

used as a surrogate measure in efficacy metric for both test suite effectiveness and redundancy

and is referred to as the average branch (element) coverage per test case and average test cases

per branch (element) respectively.

As the search in heuristic algorithms is guided by the fitness function, the function

associated with test suite size and coverage (equation-(5-3)) is used to calculate the fitness of a

generated solution. Various measures (i.e. solution quality, time and space) can be used for

comparing the performance of optimization algorithms. A number of performance metrics for

evolutionary algorithms have been reviewed in Chapter 2. As the optimization techniques used

in this study are heuristic-based that improve the solution gradually, evaluating their

performance based on the solution they produce at the end of the optimization process seemed

to be a reasonable metric. The best-value metric (for detail see Chapter 2) was used to compare

the performance of algorithms in terms of test suite reduction. For performance evaluation of

algorithms with respect to different test suites, the percentage reduction in a test suite size was

used and denoted as “Reduction %”.

Additionally, three statistical analyses were conducted using SPSS [IBM 2010] to

examine the optimization effect, assess whether difference was statistically significant and to

analyze the correlation.

1) The t-test of mean difference between paired Original and Optimized test suites in

terms of size is a simple test of significance. The t-test compares the means of two

groups and then test whether the difference is zero or significantly larger than

zero. The t-test assumes that the population is normally distributed. However, it is

robust to the deviations from normality if the sample size is large [StatSoft 2011].

As there are 2400 data points in original and optimized test suites, the assumption

of normal distribution is not an issue and it is safe to use t-test in this case. The

presence of outliers in data can comprise the reliability of results. The outliers in

the data were visually identified through box-plot and Q-Q plot and Winsorizing

[NIST 2011] was applied to recode them to the nearest boundary value.

 205

2) The analysis of variance (ANOVA) will allow us to address the question of whether

there are meaningful and statistical differences in test suite reduction among the

heuristic algorithms under the influence of constant factors known to affect the

performance. The Tukey HSD post hoc test is widely accepted for analysis of

variance in multiple factor experimental model and hence applied for multiple

comparisons in this study. In order to apply the ANOVA, the assumptions of

normality and homogeneity of the data need to be satisfied. The F test used in

ANOVA is considered quite robust against the violations of these assumptions in

case of large sample size [StatSoft 2011]. Owing to very large and balanced group

size, the Tukey HSD post hoc test is reasonably safe to be used here.

3) In order to determine the relationship between the test suite size and reduction

in redundancy such as decreasing the test suite size by an amount or percentage

may or may not equally affect the reduction, the correlation analysis was

performed.

5.3.4 Result and Discussion

The summary of results for the experiments is presented in Figure 5-3 and they provide

an insight into the performance of optimization algorithms with respect to “Reduction %”. The

items along the x-axis named as HCRA, HCNA, GD and EC represent Hill Climbing Random Ascent,

Hill Climbing Next Ascent, Greedy and Evolutionary Computation algorithms respectively. The

results illustrated three significant phenomena: (1) Significant reduction in most of the test

suites without affecting their effectiveness, (2) Consistent and scalable evolutionary test suite

optimization and (3) better performance by EC than Greedy, HCRA and HCNA algorithms in most

cases. Although the reduction in test suites is visually obvious from the data, in order to

determine if this difference was statistically significant or just random, the Paired Samples t-test

was applied which confirmed that the differences are significant. This was evidenced by the

mean difference between the pair of variables (Original test suite size and reduced test suite

size) and at 95% confidence interval in Table 5-5, as strong evidence of test suite

reduction is significant. In all cases, the final optimal test suite had the same coverage level as in

the original test suite.

 206

Figure 5-3: Box-plot for test suite reduction with respect to different algorithms (the outliers are shown by
the size of the test suite, e.g. 41 is a test suite size associated with the ETP – see Table 5-2)

20

7

Ta
bl

e
5-

5:
 P

ai
re

d
Sa

m
pl

e
t-

te
st

 b
et

w
ee

n
th

e
O

ri
gi

na
l a

nd
 R

ed
uc

ed
 T

es
t

Su
it

e

Pa

ir
ed

 D
iff

er
en

ce
s

t

M
ea

n
St

d.
 D

ev
ia

tio
n

St
d.

 E
rr

or

M
ea

n

95
%

 C
l o

f t
he

 D
iff

er
en

ce

Pa
ir

Lo
w

er
 B

ou
nd

U

pp
er

 B
ou

nd

O
ri

gi
na

l S
iz

e
- R

ed
uc

ed
 S

iz
e

33
.6

60

29
.7

35

.6
07

32

.4
69

34

.8
50

55

.4
57

Ta
bl

e
5-

6:
 C

om
po

si
ti

on
 o

f m
in

im
iz

ed
 t

es
t

su
it

es
 (m

in
im

iz
ed

 u
si

ng
 E

C
al

go
ri

th
m

) v
er

su
s

or
ig

in
al

 t
es

t
su

it
es

M
od

el

Te
st

 S
ui

te
 S

iz
e

A
ve

ra
ge

 B
ra

nc
h

Co
ve

ra
ge

 p
er

 T
es

t C
as

e
A

ve
ra

ge
 T

es
t C

as
es

 p
er

 B
ra

nc
h

O
ri

gi
na

l T
S

M
in

im
iz

ed
 T

S
O

ri
gi

na
l T

S
M

in
im

iz
ed

 T
S

EC
CS

20

49

.1
2

62
.7

5
9.

82

1.
90

25

49
.8

8
66

.6
7

12
.4

7
2.

00

30

50

.9
8

70
.5

9
15

.2
9

2.
10

A

TM

89

10
.8

8
20

.9
2

9.
68

4.

93

11

1
11

.6
5

19
.0

5
12

.9
3

5.
89

13
3

11
.3

6
20

.9
8

15
.1

1
4.

61

ET
P

27

17
.2

4
33

.9
7

4.
66

2.

04

34

15

.8
4

33
.9

7
5.

39

2.
04

41

16
.8

9
33

.4
6

6.
92

2.

00

D
TP

28

33

.1
4

41
.6

7
9.

28

2.
50

35

32
.2

2
40

.2
8

11
.2

8
2.

40

42

32

.6
1

39
.8

1
13

.6
9

2.
40

 208

Test Suite Reduction: Table 5-6 summarizes the composition of the reduced test suites

in comparison with the original test suites. It shows an increase in the efficacy of the test suite

(average number of test cases per branch) and the reduction in cost as fewer test cases on

average per branch in a minimized test suite as compare to the original test suites. For instance,

in test suite DTP-42 (column ‘model’ – ‘test suite size’ in Table 5-6) there were 13.69 test cases

per branch on average in the pre-optimization version which was reduced to 2.4 in the post-

optimization version which is a significant improvement in terms of efficiency. Furthermore, on

average there were 32.61 branches per test case in the original version of the same test suite

(DTP-42) and 39.81 branches per test case in the optimized version thereby indicating the

improvement in the effectiveness as well.

Effect of Optimization Technique: The average reduction percentage of all test suites

with HCRA, HCNA, GD and EC algorithms were approximately 47, 50, 84 and 86 respectively. Due

to the stochastic nature of the algorithms, some variation in the results was expected and

evident in the spread of the results as shown in Figure 5-3. The wider spread of results shown

between the upper and lower whiskers in Figure 5-3, indicate relatively more inconsistent

performance of the algorithms. Although, the average performance of the Greedy algorithm

seemed slightly poorer than that of the EC algorithm, over a large data sets (12 test suites with

different sizes, five reshuffled versions of each test suite and ten replications) it was found to be

statistically significant at the 0.001 significance level (see the difference between the mean

reduction % with EC and GD algorithms as shown in Table 5-9). The large spread of results and

outliers for HCNA and HCRA confirmed the known issues with these algorithms i.e. inconsistent

and un-scalable performance. It suggests that the inconsistency in the Greedy algorithm’s

performance is due to its non-exploratory searching mechanism which is a known fact that often

causes it to converge to a non-optimal solution too early. Both the variants of Hill Climbing often

got trapped into local optimum, and in some cases even failed to improve the initial solution

(see outliers marked as 41 and 27 in Figure 5-3). EC has a natural advantage over other

algorithms owing to its implicit population based, multidimensional search that leverages

evaluation of multiple points in parallel.

The test suite reduction using the EC algorithm for each test suite was 75% or higher

which was quite phenomenal. The data substantiates the stability and robustness of the

proposed evolutionary framework for model-based test suite minimization in comparison to the

HCRA, HCNA and GD algorithms. The ANOVA table is presented in Table 5-8 indicating that the

test statistic (1241.20) is much larger than the critical value (5.43 which is a tabular value of F

distribution). Hence, the variation in the performance of algorithms was statistically significant.

 209

The column (mean reduction % difference) in Table 5-9 reports the difference between each pair

of means. In the first row, the mean reduction of GD is subtracted from the mean reduction of

EC and yields 1.94 (EC-GD) as the mean difference between these two groups. An asterisk next

to the mean difference flags the pair of group means as significantly different at the 0.001 level

of significance.

The results of Post-Hoc Tukey HSD (pair-wise) comparison of EC-GD, EC-HCRA and EC-

HCNA showed significant differences at the 99.9% confidence interval. It can thereby be inferred

that the EC algorithm, on average performs better than the Greedy, Hill Climbing Random

Ascent and Hill Climbing Next Ascent algorithms for test suite minimization.

Effect of Test Suite Size and Composition: As mentioned earlier, some variation in the

performance of heuristic techniques is generally expected due to their stochastic nature.

However, the complexity of an optimization problem, e.g. search space size and structure, can

render a particular instance of a problem intractable and may also affect the performance of the

applied heuristic technique [Deb 1997; Mitchell, Forrest and Holland 1992; Rothlauf 2006].

Therefore, it is pertinent to investigate the effects of the test suite’s composition (problem

complexity) if any, upon the performance of the algorithms used.

Table 5-7: Pearson Correlation Matrix among TS Sizes and TS Reductions w.r.t. algorithm

Algorithm Test Suite Size

EC Reduction 0.772**

GD Reduction 0.652**

HCRA Reduction -0.364**

HCNA Reduction -0.409**

 ** p < 0.01 level (2-tailed) using Pearson Correlation, (N=600).

As mentioned earlier in Section 5.3.2 that multiple versions of a test suite for a model

were produced by incorporating additional test cases. The increase in test suite size was

expected to increase the degree of redundancy in the test suite. However, the reduction in test

suite size was not reflected in the same proportions in HCRA, HCNA and GD algorithms based

optimization. In order to see if there is any interaction of test suite size upon optimization with

respect to a particular algorithm, correlation analysis was applied. Table 5-7 provides bivariate

correlation matrix among the test suite sizes and reductions with respect to the algorithms. The

 210

analysis confirmed the following statistically significant results: 1) there is strong positive

association between EC-based reduction and test suite size which means the performance of EC

was least influenced by the test suite size and indicates the scalability of the algorithm; 2) there

is a strong positive relationship between the test suite size and GD-based reduction which

indicates that problem size was not an issue with the GD algorithm; and 3) a moderate negative

correlation between test suite size and HCNA or HCRA which highlights the scalability issue with

both of the Hill Climbing algorithms.

Earlier in Section 5.3.2, it was hypothesis that the change in the arrangement of the test

cases in a test suite will change the structure of the search space and may thereby affect the

optimization of a test suite in general or the performance of a heuristic specifically. As

mentioned in Section 5.3.2, in order to determine the effect of test cases arrangement on test

suite minimization, each test suite was shuffled five times randomly and optimized. In general,

there was a very clear variation observed in reduction (%) due to the reshuffling of the test

suites resulting in changes in the arrangement of test cases (see Figure 5-4).

Figure 5-4: Mean reduction for five versions of test suites. See the variation in mean reduction due to
reshuffling of test suite causing the rearrangement of test cases.

21

1

Ta

bl
e

5-
8:

 S
um

m
ar

y
of

 A
N

O
V

A

Su

m
 o

f S
qu

ar
es

df

M

ea
n

Sq
ua

re

F

Be
tw

ee
n

G
ro

up
s

78
46

10
.5

2
3

26
15

36
.8

4
12

41
.2

0

W
ith

in
 G

ro
up

s
50

48
65

.3
2

23
96

21

0.
71

To
ta

l
12

89
47

5.
84

23

99

Ta

bl
e

5-
9:

 T
uk

ey
’s

 H
SD

 c
om

pa
ri

so
n

be
tw

ee
n

al
go

ri
th

m
s

fo
r

te
st

 s
ui

te
 r

ed
uc

ti
on

99

.9
%

 C
on

fid
en

ce
 In

te
rv

al

Co
m

pa
ri

so
ns

M

ea
n

Re
du

ct
io

n
%

D

iff
er

en
ce

St

d.
 E

rr
or

Lo

w
er

 B
ou

nd

U
pp

er
 B

ou
nd

EC

 v

s.

 G
D

1.

94
*

0.
40

0.

45

3.
43

EC

 v

s.

 H
CR

A
38

.4
7*

0.

74

35
.7

0
41

.2
5

EC

 v

s.

 H
CN

A

35
.6

3*

0.
90

32

.2
5

39
.0

1

G
D

 v
s.

 H

CR
A

36
.5

3*

0.
78

33

.6
1

39
.4

6

G
D

 v
s.

 H

CN
A

33

.6
9*

0.

93

30
.1

8
37

.1
9

H
CR

A

vs
.

 H
CN

A

-2
.8

5
1.

12

-7
.0

5
1.

36

*

p
<

0.
00

1

 212

Given the observed differences in the performance of heuristic algorithms, some degree

of variation in the shuffling effects on test suite reduction (%) for different algorithms was

expected. In order to see that variation and interaction between the shuffling and the test suite

size on test suite reduction, line-plots were drawn for each of the four algorithms as shown in

Figure 5-5, Figure 5-6, Figure 5-7 and Figure 5-8. The effects of change in the arrangement of test

cases on test suite reduction can be seen clearly from the line-plots depicting the estimated

marginal means of reduction percentage for five versions of all test suites. From Figure 5-5 and

Figure 5-6, it can be seen that the performance of both Hill Climbing algorithms, HCRA and

HCNA, was greatly affected by the change in the arrangement of test cases. Similarly, the test

suite reduction with EC and GD algorithms also affected as shown in Figure 5-7 and Figure 5-8 by

the arrangement of test cases though less severely and variably. It is important to note that in

case of GD algorithm, the effect of test suite shuffling on test suite reduction was least likely to

occur because of the sorting mechanism. However, it appeared that the sorting algorithm could

not shield the later ‘greedy solution construction’ mechanism from shuffling effect because of

the redundancy and produced different sorted lists for different versions of a test suite. Figure

5-7 and Figure 5-8 revealed another interesting aspect that the shuffling in most cases resulted

in slightly better overall result than for the initial version of test suite for EC algorithm whereas

in the case of the GD algorithm case the effect was mostly negative. The analysis indicated the

effect of arrangement of test cases on test suite reduction and on the performance of heuristic

algorithms. Given that studies have shown that the performance of heuristic algorithms can vary

depending on the structure of the fitness landscape [Deb 1997; Rothlauf 2006], a set of

experiments was designed and presented in Section 5.4 to better understand the landscape of

the shuffled test suites.

 213

Figure 5-5: Graphs of estimated marginal means of reduction percentage with HCRA algorithm depict the
difference in performance due to test suite shuffling.

Figure 5-6: Graphs of estimated marginal means of reduction percentage with HCNA algorithm show the
difference in performance due to test suite shuffling.

 214

Figure 5-7: Graphs of estimated marginal means of reduction percentage with EC algorithm show the
difference in performance due to test suite shuffling.

Figure 5-8: Graphs of estimated marginal means of reduction percentage with GD algorithm show the
difference in performance due to test suite shuffling.

 215

5.4 Characterizing the Fitness Landscape of Test Suite

Minimization

In the previous experiment, it was found that the arrangement of test cases in a test

suite can affect the performance of an optimization algorithm and the outcome of test suite

minimization. Therefore, it deemed necessary to characterize the fitness landscape of test suite

minimization problem which may help us to understand the problem better and develop

appropriate search strategies which may result in better results.

Heuristic techniques find optimal solutions by visiting solution points in the search

space, evaluating their fitness and converging to the fittest solution. Studies have shown that

their performance can vary depending on the structure of the fitness landscape of the given

search problem [Deb 1997; Mitchell, Forrest and Holland 1992; Rothlauf 2006]. In terms of

landscape, the structure of a landscape is specified by its characteristics namely, smoothness,

ruggedness and neutrality. A landscape can range from a uni-modal and very smooth to multi-

peaked and very rugged landscapes. A landscape where the average fitness difference between

the neighboring points is relatively small is called smooth and finding good global optima within

such a space is relatively easier as local information can be used to guide the search. A landscape

with a relatively large average fitness difference between neighbors is called rugged and finding

good global optima within such a landscape is relatively difficult as the available local

information is less useful. The third landscape characteristic of neutrality is associated with

building blocks in the landscape.

Correlation functions have been used in various types of search landscapes e.g. NK-

model and combinatorial optimization problems, to analyze and classify them based on their

structural characteristics. Using the correlation function on NK-model, Kauffman [1993] showed

that the properties of landscape vary as a function of rugged and multi-peaked landscape. NK-

model is a stochastic fitness function on bit-string to generate fitness landscape with N

genes/points and K interactions between these genes/points, where the value of K ranges

between 0 and N-1. He explored the link between the epistasis and the ruggedness of landscape

and identified the following properties:

1) With high epistatic coupling (interaction between genes/points), the landscapes

become progressively less correlated and highly rugged. So with K=0, when there

is no epistatic interactions between genes, the fitness landscape is fully correlated

and smooth, whereas at K=N-1, each gene is affected by all the remaining genes

which indicates the landscape is fully uncorrelated and rugged.

 216

2) In smooth and correlated landscape, the fitness values at one point are more or

less similar to the fitness values at the neighboring points. Moreover, a fully

smooth correlated landscape is a unimodal (contains a single global optimal

solution) and all the one-mutant neighbors have a similar fitness. Whereas, in a

fully rugged landscape fitness values are entirely uncorrelated (random) and

contains several peaks (a.k.a. multimodal landscape).

3) The selection gradient to the optimal point (peak) is steeper in the rugged

landscape than in the smooth landscape, thereby affecting the convergence of the

search.

4) For K=0, the landscape is easy to explore, or in other words, the optimization

problem is easy to solve. Moreover, increasing K decreases the success rate. The

higher K is, the sooner the evolution (a.k.a. premature convergence) ends.

Since the relationship between the fitness space and search space by fitness

function which defines the quality of a point (solution) in the search space, the fitness landscape

is defined in [Tavares et al. 2008] by the following tuple:

 (5-4)

where is a set of all points in search space, is a fitness function to compute fitness

value for each point , and neighborhood structure of size k defined over set by distance

metric d as follows:

 (5-5)

5.4.1 Measures for Landscape Analysis

For a 2-dimensional search space, visualization is through the surface map and for a 3-

dimensional search space the additional ‘elevation’ dimension can easily represent the smooth

or rugged nature of the fitness landscape. However, this intuition based analysis is not only hard

to extend for the higher dimensional search space, but also tends to be misleading [Deb 2001].

Therefore, in order to evaluate and compare the fitness landscape, various measures have been

defined, such as, density of local minima, fitness function distribution and correlation functions.

Following are some of the measures that can be used for fitness landscape analysis.

 217

Autocorrelation Function: Two types of techniques, average correlation and stochastic

correlation, are used to determine the correlation structure of a fitness landscape. In average

correlation, the average correlation level between points in the fitness landscapes is measured

[Weinberger 1990]. It is calculated for all pairs of points in the search space with distance ‘d’ by

the difference between the fitness of the pairs. The high correlation level due to the similarities

between the fitness of the points indicates the smoothness of the landscape. Whereas, the low

correlation level due to higher differences in fitness values between points implies a rugged

landscape. Accordingly, the average correlation between points in a landscape can be estimated

by sampling a large data set and is defined as follows:

 (5-6)

where E is the expected or mean value, is the fitness of the point and is the

fitness of each point in the search space with distance ‘d’.

The second technique (stochastic correlation) involves estimating the correlation

structure by applying a random walk of a time series, starting from an arbitrary genotype and

then randomly moving step by step in the search space using single point mutation. A number of

single-point mutation strategies (e.g. adjacent neighborhood and random neighbourhood) have

been reported in literature [Kauffman 1993]. Figure 5-9 illustrate the difference in both adjacent

and random neighbourhood types of mutation strategies. An assumption about the random

walk based analysis is that the landscape is isotropic. An isotropic landscape means that the

landscape is statistically similar (on average) from any point and regardless of the starting point

the results of the random walk will always be the same. For stochastic correlation method,

following equation is used to compute the correlation level:

 (5-7)

where E is the expected or mean value, is the fitness of the point (genotype) at the

 step and is the fitness of the point (genotype) ‘s’ steps apart in the random walk.

The value of autocorrelation function ranges from -1 to 1. In case of

 is closer to -1 or 1, means the stronger correlation between the two points apart

by ‘s’ steps or ‘d’ distance away. Whereas, if it is closer to 0 then there is less correlation

between the two points.

 218

Figure 5-9: Two different neighborhood one-step mutation strategies, (a) Kauffman's adjacent
neighborhood (N=8, K=2), (b) Kauffman's random neighborhood (N=8, K=2). [Back, Fogel and Michalewicz 1997]

Correlation Length: The correlation length metric is defined as the rate of decrease in

the correlation between the fitness of two points (e.g. correlation between the fitness of parent

and child) and often used to assess the ruggedness of a fitness landscape [Jones 1995]. A higher

value of the correlation length indicates a smoother landscape, whereas a lower value of

indicates a more rugged landscape. It is based on the autocorrelation function and computed as

follows:

 (5-8)

where is hamming distance and . In order to estimate a value, it is usual to

normalize it with the diameter of the landscape that can be used to determine if it is significantly

different to zero. The correlation length closer to 1 is considered to be indicative of a higher

correlation, whereas a zero or closer to zero length is indicative of no correlation or a lower

degree of correlation.

Number of Local Optima: Another approach to measure the structure of a landscape is

the number of local optima. Local optima are considered as obstacles for optimization

techniques and fewer local optima mean less chances for a search to trapped into a local

optimal. However, it is not an absolute indicator as the size of the basin of attraction of local

optima is also an important factor. Moreover, studies [David 1987; Horn and Goldberg 1995]

have shown that a high number of local optima does not necessarily render a problem hard for

optimization. In binary encoding, there are two alternate alleles per locus so the total number of

genotypes is . The expected total number of local optima with respect to a single-point

mutation is:

 (5-9)

 219

Fitness Distance Correlation: Another approach to measure the structure of a landscape

is to determine the extent to which the fitness values are correlated with distance to a global

optimum in the search space. The fitness distance correlation coefficient [Jones and Forrest

1995] can be computed as follows:

 where

(5-10)

is the covariance of set and , is the set of fitness values of

individual points and is a corresponding set of distances to the nearest

global maximum. The , , are the average mean and standard deviation of and

respectively. When the search objective is to maximize then the fitness increases as the distance

to the global optimum decreases. Therefore, for an ideal landscape the value of will be -1.

Whereas, for minimization the ideal landscape will have a value of . In an ideal landscape

the search should be easy and indicates the existence of a path via solutions with better fitness

values.

5.4.2 Test Suite Minimization Landscape Analysis

Given the known association between the fitness values of neighbors and the problem

of the smoothness/ruggedness of the landscape, the following experiment was designed to

analyze the fitness landscape of test suite minimization problem and to get a better insight of

the problem. It was hypothesized that rearranging the test cases in a test suite may change the

correlation level among genes (test cases) which in turn may enable smoothing the fitness

landscape and make it more favorable for search. A thorough analysis of the complete fitness

landscape for a combinatorial optimization problem is generally considered difficult due to the

huge size of the search space. Hence, the decision to use representative parts by sampling

through the search space in a random fashion was made. In addition, fitness distance correlation

and correlation length measures were used for evaluation and comparison of the landscapes.

The objective was to express the correlation structure of the fitness landscape and compare the

landscape of the different versions (reshuffling) of a test suite. For each test suite version,

Kauffman’s neighborhood random walk [Kauffman 1993] of 10,000 steps was performed using

the single-point mutation on its landscape. The single-point mutant walk passes through points

in the search space regardless of their fitness differential. This way, a time series of fitness

values was generated to which the autocorrelation approach was applied for determining the

 220

correlation length. For autocorrelation analysis, it was assumed that the problem is isotrophic,

which meant that the contribution of each bit-string (gene) position was normally distributed

and independent of each other.

For fitness distance analysis, the global optimum needs to be known. In terms of the

analysis described here, the known global optimum which was determined during an earlier

experiment was used. Although there could be more than one global optimum in a search

space, only one global optimum is considered for a test suite. Moreover, the measure of

hamming distance at genotype level, simply counts the number of positions in which two

aligned solutions differ. It is used to determine the proximity of the solutions encountered in a

random walk with the known optimum solution.

The pseudo code for Neighborhood Random Walk is presented in Figure 5-10.

In Table 5-10, the results of the measures applied in the experiment are presented. In

the first column, names of the test suites that were used in the experiment are given. The

second column lists the measures used (Fitness Distance Correlation , Correlation Length and

Normalized Correlation length). The data for fitness distance correlation measure indicates

that landscapes of test suites are generally not search friendly. It was observed that the value of

 was quite far from the ideal values (1 and -1). However, as other studies [Jones 1995] have

also suggested, this criteria alone cannot render the given optimization problem hard or difficult

for GA or other heuristics.

In Figure 5-12 (adapted from [Jones and Forrest 1995]), the fitness landscape of studied

instances (DTP-***, ATM-***) of the test suite minimization problem are positioned on the

fitness distance correlation scale in comparison with other optimization problems.

 Select an item (genotype) arbitrarily from the search space

 For each step up to MAX_ITERATIONS

o Select an item randomly from one-mutant neighbours

o Compute and record the fitness value of the selected item

o Compute and record the hamming distance between the current and the

selected item.

Figure 5-10: Neighborhood Random Walk Pseudo Code (adapted from [Kauffman 1993])

 221

Another important aspect that is observable from the Table 5-10 is the effect of

additional test cases in a test suite. The three test suites with different sizes for a model (e.g.

referred as DTP-28, 35 and 42) are not significantly different (worse or better) in terms of

(fitness distance correlation). A slight increase in the normalized correlation length (for ATM

test suites in Table 5-10) indicates that larger test suites are more favorable to search despite

the increase in the search space. However, further investigation is required as it is not clearly

evident from the DTP test suites.

Jones and Forrest studied a large set of optimization problems and classified them in

three groups using the fitness distance correlation metric: (1) problems with are

considered to be “misleading” as in such problems, fitness tend to increase with distance from

the global optimum, (2) problems within are considered to be difficult as in

such problems there is very little correlation between the fitness and distance from the global

optimum, and (3) straightforward problems in which fitness tends to increase as the global

optimum is approached and where [Jones and Forrest 1995]. Figure 5-12 is

adapted from [Jones and Forrest 1995] and shows the studied instances of test suite

minimization problem on Fitness Distance Correlation scale. Although, none of the test suite

minimization problem instances seemed to fall in the deceptive or misleading problems

category, nonetheless most of them clearly appeared to be difficult. In Table 5-10, the Fitness

Distance Correlation values are marked with classification keys such as misleading ,

difficult and straightforward according to this classification.

In order to visually see the effect of test suite shuffling on the fitness landscape of a test

suite, the line plots of fitness distance correlation of various versions of test suites were drawn

and presented here in Figure 5-11. From these plots it can be seen very clearly that the test suite

shuffling had affected the fitness landscape in every case. In some cases the change was little

but on the other occasions it was very significant. For example in case of TS-2, TS-3 and TS-4 of

ATM-89 there was a very small change but in case of TS-5 it was very significant.

Following are the key results of the fitness landscape analysis for the test suite

minimization problem:

1) The landscape of the test suite minimization problem was found to be highly

rugged invariably. The short correlation length and far from ideal values for fitness

distance correlation were the key indicators (see in Table 5-10). In NK-

model analysis, Kauffman [1993] showed that the fitness landscapes highly

influenced by the epistatic interactions between genes or points in the search

space. In fully uncorrelated and rugged landscape (at K=N-1), each gene is

 222

affected by all the remaining genes in the search space. In an ideal landscape,

each gene contributes to overall fitness independently of all other genes.

However, in test suite minimization, the fitness contribution of a bit does not only

depend on its own value (0 or 1) but also on the values of earlier enabled bits.

This high degree of epistatic interaction in the test suite minimization problem

renders its fitness landscape very rugged.

2) The addition of more test cases to a test suite may result in a larger but not

necessarily more rugged landscape (see for ATM-89, ATM-111 and ATM-

133 in Table 5-10). Therefore, it is important to note that the change in the size of

landscape does not necessarily diminish the performance of a heuristic.

3) Shuffling a test suite generally effects its fitness landscape (as shown in Figure

5-11) and in some cases turned a difficult instance into straightforward problem

(for instance, see the classification markings on values for different versions of

DTP-28 test suite in Table 5-10).

Figure 5-11: Effect of test suite shuffling w.r.t. fitness distance correlation

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

TS-1 TS-2 TS-3 TS-4 TS-5

DTP-28

DTP-35

DTP-42

ATM-89

ATM-111

ATM-133

22

3

Ta
bl

e
5-

10
: S

um
m

ar
y

of
 r

es
ul

ts
 fo

r
fit

ne
ss

 la
nd

sc
ap

e
of

 fi
ve

 v
er

si
on

s
of

 s
el

ec
te

d
te

st
 s

ui
te

s

Te
st

 S
ui

te
 N

am
e

M
ea

su
re

Te

st
 S

ui
te

 V
er

si
on

TS

-1

TS
-2

TS

-3

TS
-4

TS

-5

D
TP

-2
8

-0

.0
98

5d
0.

01
34

 d

-0
.2

22
4s

-0
.0

26
3 d

-0

.2
92

7 s

4.
26

95

4.
24

97

4.
01

92

4.
28

86

4.
24

18

0.
15

25

0.
15

18

0.
14

35

0.
15

32

0.
15

15

D
TP

-3
5

-0

.0
56

0 d

-0
.0

85
5 d

-0

.1
39

3 d

-0
.1

71
9 s

-0

.1
08

1 d

5.
47

12

5.
07

74

5.
04

61

5.
10

30

5.
34

89

0.
15

63

0.
14

51

0.
14

42

0.
14

58

0.
15

28

D
TP

-4
2

-0

.0
56

4 d

-0
.0

66
9 d

-0

.1
28

2 d

-0
.1

24
3 d

-0

.1
76

2 s

6.
46

92

6.
60

84

6.
76

45

6.
67

44

6.
55

24

0.
15

40

0.
15

73

0.
16

11

0.
15

89

0.
15

60

A
TM

-8
9

-0

.0
77

9 d

-0
.1

31
7 d

-0

.1
06

1 d

-0
.1

15
8 d

0.

11
00

 d

16
.4

44
1

16
.7

76
5

17
.2

14
4

17
.1

62
9

18
.2

00
4

0.
18

48

0.
18

85

0.
19

34

0.
19

28

0.
20

45

A
TM

-1
11

-0
.0

81
6 d

0.

10
29

 d

-0
.1

29
1 d

-0

.0
80

8 d

-0
.0

94
6 d

25

.8
09

6
24

.3
68

8
25

.4
50

9
25

.4
16

4
24

.8
51

6

0.

23
25

0.

21
95

0.

22
93

0.

22
90

0.

22
39

A

TM
-1

33

-0

.1
03

4 d

-0
.1

03
4 d

0.

11
13

 d

-0
.0

73
6 d

-0

.0
95

9 d

30
.3

48
5

31
.1

52
7

30
.6

40
4

30
.7

71
4

30
.7

59
5

0.
22

82

0.
23

42

0.
23

04

0.
23

14

0.
23

13

,

 a
nd

22

4

1
.0

0
.9

0
.8

0
.7

0
.6

0
.5

0
.4

0
.3

0
.2

0
.1 0

-0
.1

-0
.2

-0
.3

-0
.4

-0
.5

-0
.6

-0
.7

-0
.8

-0
.9

-1
.0

Li
e

p
in

s
&

 V
o

se
Tr

ap
(2

0
)

Tr
ap

(1
2

)

Tr
ap

(1
0

)

W
h

it
e

ly
 4

-b
it

 fu
ll

y
d

ec
e

pt
iv

e
 F

2

G
re

fe
n

st
e

tt
e

n
o

n
-d

ec
e

pt
iv

e
 &

 h
ar

d
W

h
it

le
y

4-
b

it
 fu

ll
y

d
ec

e
pt

iv
e

 F
3

G
o

ld
b

e
rg

, D
eb

 &
 K

o
rb

3
-b

it
 fu

lly
 d

ec
ep

ti
ve

D
e

b
 &

 G
o

ld
b

er
g

6-
b

it
 fu

ll
y

d
e

ce
pt

iv
e

D
e

b
 &

 G
o

ld
b

er
g

6-
b

it
 fu

ll
y

e
as

y

G
re

fe
n

st
e

tt
e

d
e

ce
p

ti
ve

 &
 e

as
y

Ta
n

e
se

(1
6

,8
,4

)

H
o

rn
, G

o
ld

b
er

g
&

 D
e

b
lo

ng
 p

at
h

H
o

ll
an

d
 R

o
ya

l R
o

ad

D
TP

-2
8

 (T
S-

1
)

D
TP

-3
5

(T
S-

1
)

D
TP

-3
5

(T
S-

2
)

D
TP

-3
5

(T
S-

5
)

D
TP

-3
5

(T
S-

3
)

D
TP

-3
5

(T
S-

4
)

A
TM

-1
1

1
(T

S-
4

)
A

TM
-1

1
1

(T
S-

5
)

A
TM

-1
1

1
(T

S-
1

)
A

TM
-1

1
1

(T
S-

3
)

N
K

(1
2

,1
1)

N
K

(1
2

,3
)

N
K

(1
2

,2
)

N
K

(1
2

,1
)

N
K

(1
2

,0
)

O
n

e
 M

ax

H
o

rn
 &

 G
o

ld
b

er
g

m
ax

 m
o

d
al

it
y

D
TP

-2
8

 (T
S-

2
)

D
TP

-2
8

 (T
S-

3
)

D
TP

-2
8

 (T
S-

4
)

D
TP

-2
8

 (T
S-

5
)

D
TP

-4
2

(T
S-

1
)

D
TP

-4
2

(T
S-

2
)

D
TP

-4
2

(T
S-

4
)

D
TP

-4
2

(T
S-

3
)

D
TP

-4
2

(T
S-

5
)

A
TM

-1
3

3
(T

S-
4

)
A

TM
-1

3
3

(T
S-

5
)

A
TM

-1
3

3
(T

S-
1

,T
S-

2
)

A
TM

-1
3

3
(T

S-
3

)

A
TM

-8
9

(T
S-

1
)

A
TM

-8
9

(T
S-

3
)

A
TM

-8
9

(T
S-

4
)

A
TM

-8
9

(T
S-

2
)

A
TM

-1
1

1
(T

S-
2

)
A

TM
-8

9
(T

S-
5

)

P
o

rc
u

p
in

e

P
la

te
au

(1
2

)

P
la

te
au

(1
6

)

N
IA

H B
B

2
 B

B
3

 B
B

4

G
F2

(8
)

G
F1

(3
0

)

Fi
gu

re
 5

-1
2:

 S
um

m
ar

y
vi

ew
 o

f
fit

ne
ss

 la
nd

sc
ap

e
of

 T
S

m
in

im
iz

at
io

n
an

d
ot

he
r

op
ti

m
iz

at
io

n
pr

ob
le

m
s

on
 f

it
ne

ss
 d

is
ta

nc
e

co
rr

el
at

io
n

sc
al

e.
 H

or
iz

on
ta

l
po

si
ti

on
 is

 fo
r

gr
ou

pi
ng

 a
t t

ha
t

co
rr

el
at

io
n

le
ve

l.
A

da
pt

ed
 fr

om
 [

Jo
ne

s
an

d
Fo

rr
es

t
19

95
].

 225

5.5 Threats to Validity

Although, the care was taken in the experimental design, there are some factors that

may jeopardize the validity of the experiments and results. These factors are related to internal

validity, external validity, construct validity, and conclusion validity [Claes et al. 2000]. Factors

that can affect the independent variables without the researcher’s knowledge are considered as

threat to validity [Claes, Per, Martin, Magnus, Bjöorn and Anders 2000]. Following threats were

identified and addressed for the empirical study presented in this chapter.

Internal validity: Internal validity is about the integrity of the experiment and evaluates

how well the inference can be made about the causal relationship between the independent and

dependent variables. Threats to internal validity include testing, instrumentation, selection of

objects, statistical regression, maturation and others. In this study there were two major threats

to internal validity. First, there was an instrumentation threat that the difference in the scoring

instruments may affect the outcome of different experiments. The instrumentation threat was

addressed by using the same fitness or cost function with each of the optimization algorithms to

determine the quality of generated solution. Second, statistical regression towards mean is a

threat to internal validity that can occur due to extreme values of independent variables. AD

models used in the experiments have different size and complexity level. In order to minimize

the effect of model size and complexity on the results, as a preventive measure test suites were

grouped into homogenous blocks. Given the randomization in test suite generation and shuffling

it is assumed that the threat of statistical regression was also very limited.

External validity: Threats to external validity limits the generalization of the

experimental results [Claes, Per, Martin, Magnus, Bjöorn and Anders 2000]. The models used in

the study represent a mix of software of different sizes and complexities, reduces the threat to

external validity. Note that the ECCS model was taken from [Koehler et al. 2005] which was

developed by professionals at IBM Zurich Research Laboratory. The ATM model is a typical case

study in software engineering research and here it was adapted from [Chandler, Lam and Li

2006]. In this model, it was tried to mimic the real-world scenarios as close as possible. The ETP

and DTP models were taken from a large model developed for a commercial product which is

being used in transport industry for online and offline reporting of traffic trend. However, the

used models were rather small which may restrict the generalizability of the results. Four

different heuristic algorithms were used in the experiments. It is important to note that they can

be customized which may affect their performance. Therefore, the configurations of these

algorithms used in the experiments also limit the generalization of the results.

 226

Construct validity: Construct validity is referred to the degree to which independent and

dependent variables accurately measure the constructs they supposed to measure [Claes, Per,

Martin, Magnus, Bjöorn and Anders 2000]. Poor construct definition and construct confounding

are examples of threat to construct validity. The goal of this study was to empirically assess the

performance of heuristic algorithms and the effect of test suite size and composition on test

suite reduction. The size and coverage of reduced test suite were considered right indicator of

redundancy reduction and therefore valid measures for test suite reduction. Moreover, in order

to make meaningful comparison across different groups of test suites percentage of reduction

(reduction %) metric was used. Thus, it was considered that the dependent variables had

construct validity.

Conclusion validity: Threats to conclusion validity refer to issues that can affect the

correct conclusion about relations between independent and dependent variables [Claes, Per,

Martin, Magnus, Bjöorn and Anders 2000]. In order to draw valid and accurate conclusions from

the study, correct measurements and appropriate statistical tests were used. In order to ensure

that measurements were recorded correctly, data was automatically stored in log files. For

correct application of statistical tests, it was ensured that none of the associated test

assumptions were violated.

5.6 Summary

The chapter introduced the evolutionary computation based minimization technique for

model-based test suites. The problem of test suite minimization was formulated as an instance

of well known and highly studied knapsack problem. An empirical study was performed to

analyze the performance of proposed evolutionary technique with three other optimization

techniques. It was found that the proposed evolutionary consistently performed better than

other optimization techniques. In order to get a better insight of the test suite minimization

problem, its fitness landscape was characterized. Furthermore, the effect of parametric values of

the evolutionary technique on test suite minimization was empirically investigated and suitable

values were recommended.

 227

Chapter 6 Multi-objective Test Suite Optimization

The previous chapter introduced the evolutionary computation (EC) based minimization

technique for model-based test suites. In that chapter, the test suite redundancy removal

problem was reformulated as a combinatorial optimization problem and the performance of the

EC technique was compared with the Greedy and Hill climbing algorithms. A single criterion

(Branch coverage) was used for test suite minimization. Given the differences in test criteria,

incorporating other types of possible criteria i.e. usage profile, mutation score and cost into test

suite minimization can yield different results. As redundancy is measured relative to the

evaluation criteria, it is important to incorporate these criteria during the minimization process

in order to avoid losing its aggregated effectiveness. This chapter describes the investigation for

multi-criteria minimization of a model-based test suite using multi-objective evolutionary

techniques.

6.1 Multi-Objective Model-based Test Suite Optimization

Generally, multiple techniques can be used for software testing depending on the

quality, reliability and budgetary considerations of the software project. In safety and mission

critical applications, a combination of white-box, black-box and performance testing techniques

is mandatory. For instance, according to standard requirement for railway control systems a

combination of black-box with performance testing is required for components of the highest

integrity level [CENELEC 2001]. Variation in the effectiveness of the testing techniques is one of

the factors behind the need for using multiple techniques. In these cases, specification-based

testing can determine if the implementation satisfies all the intended requirements. However,

paradoxically it is known that the specification based testing is not effective for all types of

defects, and conformance can even be demonstrated for implementations that contain faults

[Beizer 1990]. Although, code-based testing is considered quite effective in fault detection to the

extent that in some industries such as aviation, MCDC coverage is a minimum criterion for

software testing [EUROCAE 1992]. However, code-based testing has its own limitations as it fails

to detect the omission type of faults [Beizer 1990]. This is due to the fact that code-based

techniques derive test cases from code only. Statistical testing is highly recommended for safety-

critical systems to provide quantitative measures of quality, reliability and conformance to the

 228

specification [Goel 1985], yet even it cannot ensure that the program does not have any

untested partitions. Each technique has its strengths and weaknesses; therefore, it is often

recommended that a combination of these techniques be used to achieve better software

quality and reliability.

Most of the practical or industrial optimization problems involve more than one decision

parameter, and often good tradeoffs are searched for amongst competing constraints. For these

types of problems, more than one equally good solution usually exists. Choosing the best one

always depends upon the application context. Therefore, in typical multi-objective optimization

problems, all of the possible solutions represent some sort of trade-off relationships between

the objectives.

The process of finding optimum solution(s) for two or more conflicting objectives

simultaneously is known as multi-objective optimization. A multi-objective optimization problem

can be resolved as a single objective problem by reformulating it as a constrained problem. In

such case one of the objectives are optimized while others are handled as constraints. In the

previous chapter, the test suite minimization (TSM) problem is defined as maximizing the

effectiveness of a test suite while reducing its cost. It is a dual-objective problem where the one

objective is to maximize the effectiveness of a test suite and the other objective is to reduce its

cost. However, the problem was reformulated and resolved as a single objective problem by

aiming to find a minimal subset of a test suite without compromising its effectiveness adequacy

(resolving one objective while restricting the other). In the following section, the same TSM

problem is reformulated as the Profitable Tour Problem which is one of the well-known multi-

objective optimization problems.

6.1.1 Formulation as a Profitable Tour Problem

The Traveling Salesman Problem (TSP) is one of the most intensely studied problems in

combinatorial optimization. In the basic version of the TSP, the objective is to find a most cost-

effective round trip path for a given number of cities with the traveling costs between them.

Profitable Tour Problem (PTP) is a multi-objective type of TSP with profits (TSPP) and formally

defined as follows [Dominique et al. 2005]. Consider be a complete undirected graph

where is a set of vertices and is a set of edges. A profit is associated

with each vertex and a distance with each edge . The

distance is considered as a travel cost and it is not necessary to visit all vertices. The aim is to

find a tour with two conflicting objectives: (1) minimize the travel cost with option to drop

vertices and (2) maximize the total profit by visiting more vertices.

 229

In an analogy to the PTP, the dual-objective TSM problem can be defined as finding a

subset of a test suite TS with a minimum number of test cases and maximum coverage. For

instance, a test suite has test cases that correspond to cities in PTP. Each test case has a

coverage that corresponds to the profit associated with a city. Like PTP, the selection of a city

to visit, a binary variable is used to indicate the inclusion or exclusion of a test case. The

traveling cost associated with an edge in PTP implies the utility value of a test case and a

binary variable associated with the edge indicates whether the corresponding edge is used in

the solution or not. As the objective is to find a subset of test suite TS with maximum coverage

at minimum cost, the problem can formally be stated as [Dominique, Pierre and Michel 2005]:

(6-1)

The requirements to be satisfied are:

 subtour elimination constraints,

One way of reducing the test suite size is to detect and eliminate test cases that are

considered redundant according to a given coverage criterion. However, reducing the same test

suite using another different criterion may yield a different solution. For instance, reducing the

test suite according to the usage profile of the software will focus mainly on testing the software

features that are important to the user. The software features that are rarely used have less

impact on customer satisfaction than the features that are in high demand or used regularly.

Similarly, in mission critical applications a feature that may execute only once cannot be left

untested. Therefore, customer usage data that can leverage the testing effort according to the

value of the features from a user’s perspective, would add direct value and meaning to the

testing. Using this approach, test cases with the least value can be dropped based on the usage

patterns of the software. Whilst several other objectives (e.g. setup and execution cost, risk,

 230

failure probability) can be used for test suite minimization, selecting a minimal number of test

cases out of all the possible combinations of test cases in a test suite that satisfies the

constraints of multiple objectives is harder than the single objective TSM problem.

Given that the multi-objective minimization of a test suite is an optimization problem,

the question as to whether test cases can be omitted from execution, in order to improve

efficiency and effectiveness of the test suite according to multiple test objectives, is formulated

as PTP and defined as follows.

Consider a model based test suite TS of test cases with cumulative coverage . Each

test case is a sequence of model elements representing an execution path in the model and

provides coverage at a utility cost (). The cumulative coverage

and test case coverage are the percent values of model elements required by a test criterion

that have been executed by the test suite and a test case respectively. The test suite size is

the number of test cases in the test suite. Consider the test suite minimization with an objective

of determining a minimal solution subset in such a way that

. is a set of all feasible solutions and a feasible solution is represented by a set

 of binary variables such that if test case is included in the

solution and otherwise. Using this notion, the objective function can be represented as:

Subject to

(6-2)

In general the multi-objective test suite minimization is considered with objective

functions , where the vector function maps each

subset solution to an objective vector .

For any instance of the problem, the aim is to find the non-dominated solution vector.

For objectives, the dominance relation is defined on feasible solutions and denoted by . A

feasible solution dominates a feasible solution , , if and only if ,

.

 231

6.1.2 Multi-objective Evolutionary Algorithms

Evolutionary Computation (EC) is a population based meta-heuristic where the search

starts from multiple points in the search space and then processes multiple points for each

iteration until the specified objective is reached. It means that evolutionary algorithms can

explore and produce multiple solutions in single iteration and inherently support parallelism,

thus making EC an ideally suitable technique for multi-objective optimization problems.

Generally, the multi-objective EC algorithms (MOEAs) are classified into Pareto-based and non-

Pareto-based techniques. In non-Pareto-based techniques (e.g. VEGA and Min-Max) prior trade-

off relationship or preference among the objectives is defined and used to propagate a globally

unique solution. The Pareto-based techniques (e.g. NPGA, NSGA and SPEA) produce multiple

distinct solutions known as Pareto optimal (solution) sets without having pre-defined

relationship or preference among objectives. A number of Pareto and non-Pareto based MOEAs

are described in much greater detail in Chapter 2.

Now in the case of the TSM problem, if the tester has prior knowledge of the

relationship among the objectives, then in light of a given preference (i.e. weight, target), the

exact trade-off among the objectives can be used to determine the optimal solution. However, if

the tester is not sure of the exact relationship among objectives, rather than determining a

single approximate solution, a set of Pareto-optimal solutions can be generated initially where

each solution represents one possible way of balancing among the objectives. Thereafter, one of

these solutions can be chosen, based on some ‘posterior’ knowledge or consideration of the

tester. In situations where time and knowledge is scarce, Pareto-based multi-objective

algorithms provide much needed assistance in decision making with various options for optimal

solutions. In this study the Pareto-based minimization of model based test suites is investigated

and results of empirical study are presented in the following section.

6.2 Empirical Study

In Section 6.1, it is shown that the test suite minimization under multiple objectives is a

problem of real practical importance. As there could be more than one equally good solution for

such multi-objective problems, it is important to use an optimization technique that can produce

a set of solutions rather than a single best solution. The problem of finding various tradeoff

solutions while removing the redundant test cases in parallel, is a combinatorial optimization

problem. There are several multi-objective evolutionary techniques (e.g. NPGA, NSGA and SPEA)

that are commonly used for finding approximate non-dominated solution sets in polynomial

time. The performance of these techniques varies depending on the suitability to a problem

 232

instance and parametric values and that need to be determined empirically. Therefore, in this

experiment, the objective is to empirically compare two multi-objective evolutionary techniques

for the test suite minimization problem in terms of quality of the generated solution.

6.2.1 Research Questions

The following research questions about the effects of the test criteria such as test suite

size, test suite coverage and usage profile on test suite minimization were investigated.

Q1: How do the various test criteria in combination affect the test suite minimization?

Q2: How does the test suite size affect the multi-objective test suite minimization?

Q3: How does the usage profile affect the test suite minimization?

Q4: How do the various evolution-based multi-objective optimization techniques

perform in terms of the test suite minimization problem?

6.2.2 Experimental Setup

In order to investigate the research questions, the variables that need to be considered

are enumerated next. The independent variables are test suite size, optimization algorithms,

usage profile and model type. The dependent variables are reduced-size, coverage and weight

values. It was expected that the test suites will be homogenous with respect to the source

models. So, the test suites were blocked into four uniform groups according to the models,

namely ECCS, ETP, DTP and ATM. Within each of our four blocks, experiment was performed

with a 4 x 2 x 3 (four test suites of different sizes, two Pareto-based optimization algorithms and

three user profiles) Factorial Repeated Measure with Block design. Each factor is elaborated in

the following paragraphs.

As the focus of this experiment is TSM by eliminating redundant test cases under

different usage patterns, the same set of AD models were used as in the case of single-objective

TSM, but they were enhanced with usage profiles. For usage profile based testing, generally

empirical data (i.e. usage frequency, the cost and severity of failure) collected from the user is

used. A usage profile is specified by a complete set of software functions with their probabilities

of occurrence. Generally, four key steps are performed in developing a usage profile viz. 1)

identify the user, 2) determine the functions invoked by each user, 3) determine the occurrence

frequency of functions identified at step 2, 4) determine the occurrence probabilities by dividing

the occurrence frequency with total occurrence frequency. Three different types of users,

namely experienced, novice and average (uniform) users were considered. Although other more

broad sets of users may be defined, for the purposes of simplicity, only three types of users are

 233

used in this study. As real usage information is not available, similar to another study [Doerner

and Gutjahr 2003] the estimated usage pattern based on the potential usage of the processes is

used. For annotating usage data on the case study AD models described in Chapter 3, a UML

profile as specified in [OMG 2008] is used. The stereotype <<PaStep>> together with its ‘prob’

attribute is used to annotate the probability of a branch. These annotations on the branches of

the decision nodes specify the probability of their execution. For instance, in Figure 6-1, on

branch D6-Select, there is a 50% probability specified for adding another product and 50% for

proceeding to shopping cart under uniform probability distribution.

Figure 6-1: ECCS model with usage profile

Test suites of four different sizes are generated for each model using a random walk

based test sequence generation (RW-TSG) technique described in Chapter 4. The generated

sequences of model constructs, formally referred to as paths are evaluated according to the

associated branch coverage criterion proposed in Chapter 4. It is assumed that in the generated

test suites there are multiple test cases of varying length covering one or more branches.

Table 6-1 presents the summary of a generated test suite according to Branch Coverage

per Test Case (BCTC) and Test Cases per Branch (TCB) metrics. For instance, each test case for

the ECCS model covers more than 47% of the branches on average as shown in the ‘mean’

column of Branch Coverage per Test Case (BCTC). The standard deviation ‘S.D.’ column indicates

the variation in test cases in a test suite. The Test Cases per Branch (TCB) metric indicates the

redundancy level of a test suite and as shown in Table 6-1 on average is more than one test case

for a branch that can execute it.

Two multi-objectives Pareto-based EC algorithms, namely NSGA-II and NPGA2 were used

in the experiment. The detail of these algorithms and evolutionary computation in general is

presented in Section 3 of Chapter 2. The same set of evolutionary operators and parameters

 234

were used here as were used in the single objective optimization (Section 5.3.2). For the search

space encoding, binary strings were used and the initial population of the candidate solution was

produced randomly. For the selection of the parents, tournament selection was used. In NPGA,

linear ranking is used with a selection pressure of two individuals per generation.

Single point crossover with the probability of 0.9 was used. Single point mutation of

each individual is used with 0.01 rate of occurrence. The maximum generation for both

algorithms varies with test suite size e.g. the maximum generations for the ECCS-20 and ATM-

300 problems are 100 and 400 respectively. Given the stochastic nature of the optimization

algorithm, a small variation is expected in the results. Therefore, the experiment was designed

to run for 10 iterations of each algorithm. One of important features of multi-objective

optimization is that it does not need scaling or normalization of objectives. However, for

comparative analysis of optimizers and generated solutions it is necessary to scale or normalize

different objectives. For normalization, the following procedure as defined in [Deb 2001] was

used:

 (6-3)

Where and are known or estimated maximum and minimum positive values

of objective respectively. Moreover, all objective vectors were transformed in such a way

that all objectives were set to be minimized.

23

5

Ta
bl

e
6-

1:
 C

om
po

si
ti

on
 o

f g
en

er
at

ed
 te

st
 s

ui
te

s

M
od

el

Te
st

 S
ui

te

Si
ze

Br
an

ch
 C

ov
er

ag
e

pe
r

Te
st

 C
as

e
Te

st
 C

as
es

 p
er

 B
ra

nc
h

W
ei

gh
t p

er
 T

es
t C

as
e

PF
1

PF
2

PF
3

M
ea

n
S.

D
.

M
ea

n
S.

D
.

M
ea

n
S.

D
.

M
ea

n
S.

D
.

M
ea

n
S.

D
.

EC
CS

20

49

.1
2

13
.4

0
9.

80

5.
30

39

.7
5

10
.4

8
42

.7
5

9.
65

46

.1
0

9.
03

28

50
.0

0
11

.1
5

13
.3

5
7.

84

41
.9

6
9.

54

44
.2

0
9.

03

47
.8

9
8.

49

37

47

.8
5

11
.3

6
17

.9
4

10
.6

2
40

.1
4

9.
61

42

.7
4

9.
15

46

.1
6

8.
46

50

47
.5

3
11

.4
5

23
.7

6
13

.8
5

39
.6

5
9.

57

42
.4

7
9.

40

45
.7

0
8.

17

A
TM

89

10

.8
8

8.
16

9.

68

11
.0

0
13

.7
9

10
.0

5
13

.7
4

10
.7

9
11

.7
4

12
.0

6

15
0

12
.0

5
8.

34

15
.8

6
19

.4
3

15
.2

2
10

.2
7

15
.2

0
10

.7
5

13
.2

9
11

.7
8

20

0
11

.5
0

8.
09

21

.5
0

26
.0

1
14

.5
5

9.
95

14

.5
0

10
.5

3
12

.5
4

11
.6

5

30
0

10
.8

6
7.

87

32
.5

7
38

.7
1

13
.7

8
9.

66

13
.6

5
10

.3
5

11
.6

1
11

.2
5

ET
P

27

17
.2

4
13

.8
0

4.
65

4.

31

32
.4

1
16

.6
1

33
.6

3
19

.6
7

33
.6

3
22

.5
1

45

22

.9
1

14
.6

5
7.

92

7.
05

28

.3
3

17
.9

3
29

.1
6

20
.6

2
30

.2
0

24
.0

6

72

19
.3

9
13

.9
1

12
.6

9
11

.2
4

24
.0

6
16

.9
4

24
.3

5
19

.1
7

24
.7

8
22

.6
4

90

18

.2
1

13
.6

3
16

.3
8

13
.6

4
22

.6
4

16
.5

8
22

.8
3

18
.7

7
23

.0
2

22
.1

6
D

TP

28

33
.1

4
9.

91

9.
30

6.

80

59
.6

4
17

.8
4

60
.7

1
21

.8
4

54
.5

0
23

.2
7

43

31

.6
5

9.
83

12

.6
4

7.
67

56

.9
8

17
.7

0
57

.8
1

21
.4

6
51

.6
3

22
.3

3

76

30
.3

4
10

.4
4

22
.1

9
12

.6
2

54
.6

1
18

.7
9

55
.2

2
22

.4
3

49
.6

7
23

.5
5

10

4
29

.1
7

9.
88

30

.3
3

17
.2

1
52

.5
0

17
.7

9
52

.9
9

21
.1

9
47

.2
1

22
.3

1
-

PF
1-

 P
ro

fil
e

1,
 P

F2
 –

 P
ro

fil
e

2
an

d
PF

3
–

Pr
of

ile
 3

-
S.

D
. –

 S
ta

nd
ar

d
D

ev
ia

tio
n

 236

6.2.3 Metrics

To quantify the objectives, the following metrics to observe and evaluate the effects of

variables (i.e. model type, test suite size and algorithm type) were used in this experiment. For

test suite efficiency and efficacy, the metrics defined in the previous chapter (Section 5.2.1)

were used. For comparison of multi-objective optimization algorithms, metrics specified in

Chapter 2 were used.

As the objective of test suite minimization was to find the trade-off between the

effectiveness and efficiency of the test suite, it was pertinent to evaluate the performance of the

optimization algorithms by the solutions they produced. The optimization techniques used in

this experiment were Pareto-based, so they produced a set of non-dominated solutions also

known as Pareto-optimal sets at each generation. An important assumption about these Pareto-

based techniques was the absence of prior preference information about the objectives, which

meant that each solution in the Pareto-front was equally as good as the others.

In order to statistically analyze the apparent effect of test suite size on multi-objective

test suite minimization [IBM 2010], following two measures, ONVGR and ER metrics were used

to quantify the solution sets in terms of finding and missing the true Pareto front respectively.

Both metrics has been defined in Chapter 2. In order to apply these metrics, it needs to know

the true Pareto front. However, given the fact that the true Pareto fronts are generally

unknown, Knowles suggested two different approaches for using reference Pareto front

[Knowles et al. 2006; Knowles 2002]. According to the first approach all generated non-

dominated solution sets produced by algorithms under consideration are combined and used as

reference sets. The second approach is by using a median reference set that dominates 50% of

the solutions of a large sample (e.g. 1000) produced through a random search. In this study, the

first approach was followed and a reference Pareto front was created by combining the

best unique solution vectors produced for all test suites of a particular model. Using this

approach, the reference Pf provided the maximum spread and diversity to the Pareto front and

allowed us to measure the quality of a solution Pf, , in terms of spread and compliance to

reference Pf. The ONVGR was computed as the coverage of reference Pf, , by solution

Pf . Whereas the ER was calculated as the ratio of missing parts in the to the total

number of solutions in . Statistical analysis was conducted for examining the optimization

effects, their statistical significant and correlation analysis using SPSS [IBM 2010]. The Tukey HSD

analysis of variance (ANOVA) was performed to address the question of whether there are

meaningful and statistical differences in multi-objective test suite minimization among the

 237

heuristic algorithms under the influence of constant factors known to affect the performance.

Nonparametric Mann-Whitney U test was performed when the assumption of Tukey HSD test

were not satisfied. To evaluate and compare the performance of optimization techniques in

terms of test suite minimization, the S-metric was used and the results were presented using a

box plot.

6.2.4 Result and Discussion

Multi-objective Test Suite Minimization: The results of the experiment (presented in

Table 6-2) confirmed our premise that a test suite can be reduced with respect to multiple

objectives concurrently, by eliminating the redundant test cases and without compromising its

effectiveness. In order to see the effects of multiple objectives on test suite minimization, firstly

the data was graphically examined. Figure 6-2 and Figure 6-3 illustrate the Pareto fronts with

typical cross axes objectives representation on scatter plots for test suite ECCS-20 with 2 and 3-

objectives respectively. 3-objective Pareto front is further represented with a matrix scatter plot

in Figure 6-4 for pair-wise interaction. In the 2-objectives test suite minimization (TSM-2), the

test suite coverage and size were used for test suite minimization, whereas in the 3-objectives

test suite minimization (TSM-3), the usage profile was incorporated in addition to test suite

coverage and size. In Figure 6-2, the data points with labels {A, B, C, D, E} and {v, w, x, y, z} show

the optimal test suite solutions produced by NSGA-II and NPGA2 techniques respectively. Data

points {E, D, y, z} are the solutions with minimum size and maximum (complete) coverage level

in the Pareto front. As the other solutions on the Pareto fronts (labeled as ‘A’, ‘v’, ‘B’, ‘w’ and ‘C’,

‘x’ in Figure 6-2) with subsets of test cases were less effective than the original test suite (e.g.

test suite depicted as ‘C’ was even smaller than the ‘E’ and ‘D’ test suites but coverage was

clearly compromised), they could be ignored based on posterior knowledge. Figure 6-3 shows

the Pareto front of 3-objective test suite minimization on 3D scatter plot. Similarly for 3-

objective TSM, the data points marked as ‘X’ in Figure 6-4 indicate the different solutions of

reduced test suite on Pareto front without any loss of coverage. In order to ensure that these

results were statistically significant, a Paired Samples t-test was performed for solutions with

complete coverage and results are presented in Table 6-2. There was significant difference

between the SizeO and SizeR; and . This confirmed that the

generated non-dominated solutions sets (Pareto fronts) for both TSM-2 and TSM-3 included the

solutions, which were (1) significantly more efficient than the original test suites, and (2) not

inferior in terms of effectiveness.

Effect of Multiple Objectives on Test Suite Minimization: From the tester’s perspective,

the wider Pareto front is more insightful as it can reveal the differences in the test cases which

 238

could otherwise be overlooked. Another advantage is that it will help the tester to select and

execute a test suite among others, which despite having similar quality according to one

objective is more effective and valuable from another objective. For instance, finding the

minimal subset of test cases with two objectives can yield more than one equally optimal

solution, as in the case of solutions ‘D’ and ‘E’ in Figure 6-2. However, reducing the same test

suite with three objectives revealed a significantly larger and diverse Pareto front. For

comparison see the solution sets for ECCS-20 with 2 and 3-objectives in Figure 6-2 and subplot

(size-coverage) in Figure 6-4 respectively. Similar phenomenon was observed for even larger test

suites as shown in Figure 6-5 and Figure 6-7. The observation provides some insight to our

research question Q1, in that incorporating more test criteria (as optimization objectives) in TSM

gives the user more options of optimal test suites with varying degrees of efficiency and efficacy.

Table 6-2: Paired Sample t-test between the original test suite size SizeO and the reduced test suite size
SizeR.

Pair

Paired Differences

t df Mean
Std. Error

Mean

95% CI of the Difference

Lower Bound Upper Bound

SizeO – SizeR 51.91 .407 51.115 52.710 127.585 18452

 239

Figure 6-2: Minimization of ECCS-20 test suite with 2-objectives; Data points labeled with capital letters
are NSGA-II results and small letter are related to the Pareto-front produced by NPGA2.

In order to determine whether the results were statistically significant, the Independent

Samples t-test at the 0.05 level of significance was performed with two groups (2 and 3

objectives) of data sets comprising of sixteen test suites with ten replications each using two

optimization algorithms and the result are presented in Table 6-3. There was significant

difference between the 2-objectives TSM (NO2) and 3-objectives TSM (NO3);

t(41657.73)=303.190, p=.000. This confirmed the significantly large increase in the potentially

unique trade-off solutions for the reduced test suite when optimized with three objectives as

compared to two objectives.

 240

Figure 6-3: 3D scatter plot of ECCS-20 test suite minimization with 3-objectives. A combination of higher
coverage, smaller size and more weight indicate a better trade-off solution.

Table 6-3: Independent Sample t-test between the Pareto front size with 2 & 3 objects test suite
minimization.

Groups

Differences

T df Mean
Std. Error

Mean

95% CI of the Difference

Lower Bound Upper Bound
NO3 – NO2 39.298 .130 39.044 39.522 303.190 41657.731

- NO2 – Two number of objectives, NO3 – Three number of objectives

 241

Figure 6-4: ECCS-20 test suite minimization with 3-objectives viz. weight of a test suite w.r.t. a usage
profile, coverage as AD-based branch coverage and size as number of test cases in a test suite on Matrix scatter

plot.

An important question arose about the cause(s) of wider and diverse Pf for TSM-3 in

comparison to TSM-2. Initially, it seemed that the size of a Pf was proportional to the number of

objectives. However, further analysis revealed that another reason for a wider Pareto front was

the scale and uniformity of the measure associated with a particular objective. For instance, in

two objectives TSM, there were only five solutions in the Pareto front (see the Pareto front

generated by NSGA-II in Figure 6-2). Whereas in case of three objectives TSM the generated

Pareto front was wider and more diverse, as shown in Figure 6-3. By plotting the Pareto front

associated with the three objectives TSM in scatter plot matrix as shown in Figure 6-4, the

following characteristics was observed. First, the non-uniformity in the coverage level of solution

test suites resulted into two distinct clusters in the Pareto front (see ‘x’ and ‘y’ in subplot (size,

coverage) and subplot (weight, coverage) in Figure 6-4). Second, the weight measure of test

suite solutions was more uniform than coverage and third, the size measure was most uniform

and finely scaled. For instance, in subplot (size, coverage) it shows that there were three

coverage levels (x, y and a single point in the left bottom corner indicating 100%, approximately

92% and 0% coverage respectively), however, there was a test suite of almost every size with

 242

100% coverage which reflected in large PF of test suites and vertically it shows all the sizes of

ECCS-20 test suite that can achieve those three coverage levels. Similar effect can be observed in

the subplot (size, weight).

The effect of interaction between objectives (criteria) with coarse scale and non-uniform

measure was clustered and a narrow Pareto front as shown in subplot (weight, coverage) in

Figure 6-4. The interaction between objectives with fine scale and non-uniform measure

resulted in a clustered but wider Pareto front (e.g. see subplot (size, coverage) of Figure 6-4).

The interaction between objectives with fine scale and uniform measure yielded wider and

uniform Pareto front as shown in subplot (weight, size) of Figure 6-4. Thus, it can be inferred

that the uniformity and scale of the measure associated with a particular test criterion

(optimization objective) played critical role in the width and diversity of a Pareto front.

Effect of Test Suite Size on Multi-objective Test Suite Minimization: Figure 6-5 and

Figure 6-6 depict the Pareto front solutions for four test suite versions for the ECCS model with 2

and 3-objectives on a two-dimensional plot matrix respectively. They depict the effects of test

suite size on TSM-2 and TSM-3 and for illustration only one solution set for each test suite size

produced with NSGA-II is shown. There was some effect of test suite size on multi-objective

TSM, for instance, in TSM-2 (Figure 6-5) the (Pareto front solution produced for

ECCS-50) was wider than the Pareto front solutions produced for other test suites such as

. Similarly in TSM-3 (Figure 6-6) the is clearly

the widest (highest cardinality) of all. Although, it appears that the Pareto front solution

generated for the ECCS-50 test suite is wider (higher cardinality) than that of the smaller test

suites, this effect is not reflected consistently with the increase in test suite size. For instance, in

TSM-2 (Figure 6-5) the Pareto fronts generated for ECCS-20, ECCS-28 and ECCS-37 were very

similar (same cardinality on phenotypic space), nevertheless in the case of TSM-3 (Figure 6-6)

the increase in test suite size also resulted in an extension in the Pareto front to some extent.

As mentioned earlier, the spread, distribution and the proximity to true Pareto front

 are the three key criteria for evaluating a Pf solution . Although, the larger test

suites resulted in wider (higher cardinality) Pareto front, in some cases the solution Pf of

larger test suites partly or completely missed the true Pf as observable in Figure 6-5 (see

the triangle marker is slightly outside of the values which are part of the true Pf). Nevertheless,

with TSM-3 (Figure 6-6), the solution Pf for ECCS-50 has the maximum coverage of

the true Pf.

 243

Overall Non-dominated Vector Generation Ratio (ONVGR) and Error Ratio (ER) metrics

are used to evaluate the convergence and deficiency properties of a produced Pareto front

 with respect to the reference Pareto front .

Figure 6-5: Effects of test suite size on test suite minimization with 2-objectives

 244

Figure 6-6: Effects of test suite size on test suite minimization with 3-objectives on 3D scatter plot

Figure 6-7: Effects of test suite size on test suite minimization with 3-objectives on Matrix scatter plot

 245

Figure 6-8 and Figure 6-9 illustrate the average effect of test suite size on multi-objective

TSM with ONVGR and ER metrics. From the mean ONVGR results of Pf solutions generated with

NSGA-II algorithm for all test suites as shown in Figure 6-8, some degree of influence of test suite

size on multi-objective TSM is seen. For instance, see the mean ONVGR gradient of NSGA-II

(green line) from ECCS-20 to ECCS-28 which indicates the increase in coverage of . Again

some degree of rise from ECCS-28 to ECCS-37 is noticeable and then a drop in coverage of

 from ECCS-37 to ECCS-50. Although this phenomenon was evident for ECCS, ATM and

ETP test suites, it was not apparent in the case of the DTP test suites. In order to determine

whether this effect was statistically significant, Tukey-HSD Post Hoc test at 95% confidence

interval was performed and results are presented in Table 6-4. As the results with NPGA2

algorithm are clearly insignificant, the Post Hoc test was only applied to NSGA-II related data.

The pair-wise comparison of test suites revealed that: (1) the change in test suite size was not

reflected significantly across all test suite groups consistently, which means that the increase in

test suite size may not yield a higher coverage of the true Pareto front. Moreover, it means that

there was no linear relationship between problem size and Pf distribution, (2) there was some

statistically significant improvement (higher cardinality) in Pareto front with the increase in test

suite size but after a certain level of the change in test suite size, this phenomena did not reflect

positively on the coverage of the . It is found that after a certain threshold of problem

size multi-objective EC algorithms may need parametric re-tuning but for meaningful

recommendation it will need further experiments.

 246

Figure 6-8: Illustration of test suite size effect on Pareto front with ONVGR measure

In case of the DTP test suites, the increase in test suite size did not show an

improvement in the Pf but it did not show any loss either, in terms of coverage of the .

The visual analysis of Figure 6-9 reveals that the increase in test suite size did not increase the

error rate (diminishing effect). Therefore, even with larger search spaces, the Pfs produced for

larger test suites (ATM and DTP) were not worse than the Pfs produced for smaller test suites.

It is important to note that both ONVGR and ER metrics used in this study were

computed at phenotypic level. Therefore, there was a limitation with these metrics that two

solutions were not different at phenotypic level even if they were different at genotypic level.

This is because generally one point in genotypic space can be mapped to multiple points in

phenotypic space. It means that no matter how diverse the solution sets (Pareto front) for larger

 247

test suites at genotypic level (different combination of test cases) are, they will not be treated

differently in terms of these two metrics.

Figure 6-9: Illustration of test suite size effect on Pareto front with ER measure

Effect of Optimization (Multi-objective Evolutionary) Techniques: From Figure 6-8 and

Figure 6-9 it appears that the NSGA-II performed consistently superior to NPGA2 for both the

two and three objectives TSM in terms of the closeness to the reference Pareto-optimal front,

diversity and spread of the generated solution set. Although the NPGA2 produced a good diverse

set of solutions, it failed to find a better coverage of the reference Pareto-optimal front. This

observation was substantiated by the S-metric analysis as follows.

 248

Table 6-4: Tukey HSD pairwise comparison between Test Suites in terms of ONVGR to reference Pf

 95% Confidence Interval

Comparisons
Mean ONVGR
Difference Std. Error Lower Bound Upper Bound

ECCS-20 vs. ECCS-28 -.020897* .0006020 -.022972 -.018822

ECCS-20 vs. ECCS-37 -.022563* .0006020 -.024638 -.020488

ECCS-20 vs. ECCS-50 -.017097* .0006020 -.019172 -.015022

ECCS-28 vs. ECCS-37 -.001667 .0006020 -.003742 .000408

ECCS-28 vs. ECCS-50 .003800* .0006020 .001725 .005875

ECCS-37 vs. ECCS-50 .005467* .0006020 .003392 .007542

ATM-89 vs. ATM-150 -.004113* .0006020 -.006188 -.002038

ATM-89 vs. ATM-200 -.003923* .0006020 -.005998 -.001848

ATM-89 vs. ATM-300 .001003 .0006020 -.001072 .003078

ATM-150 vs. ATM-200 .000190 .0006020 -.001885 .002265

ATM-150 vs. ATM-300 .005117* .0006020 .003042 .007192

ATM-200 vs. ATM-300 .004927* .0006020 .002852 .007002

ETP-27 vs. ETP-45 -.004383* .0006020 -.006458 -.002308

ETP-27 vs. ETP-72 -.008063* .0006020 -.010138 -.005988

ETP-27 vs. ETP-90 -.008783* .0006020 -.010858 -.006708

ETP-45 vs. ETP-72 -.003680* .0006020 -.005755 -.001605

ETP-45 vs. ETP-90 -.004400* .0006020 -.006475 -.002325

ETP-72 vs. ETP-90 -.000720 .0006020 -.002795 .001355

DTP-28 vs. DTP-43 -.000170 .0006020 -.002245 .001905

DTP-28 vs. DTP-76 -.000533 .0006020 -.002608 .001542

DTP-28 vs. DTP-104 -.000910 .0006020 -.002985 .001165

DTP-43 vs. DTP-76 -.000363 .0006020 -.002438 .001712

DTP-43 vs. DTP-104 -.000740 .0006020 -.002815 .001335

DTP-76 vs. DTP-104 -.000377 .0006020 -.002452 .001698

* p < 0.05

The size of the dominated space metric (S-metric), which is generally used to compute

both the convergence and spread of the generated non-dominated solution sets with respect to

a reference point. An S-metric box plot for each Pareto-based optimization algorithm with

respect to 2 and 3 objectives is presented in Figure 6-10 and Figure 6-11. The column of box-

plots on the left summarized the results for NPGA2 algorithm. The column on the right depicts

the NSGA-II algorithm and the eight box-plots in each figure depict the results for each of the

test suite based on the model types (ECCS, ATM, ETP, DTP) respectively. The x-axes represent

the test suites with respect to the model types. The y-axes represent the S-values (the size of the

space covered) measured for each algorithm. Here, box plots show the distribution of the

 249

results. A central box shows the middle 50% of the data. The black bar in the middle of a box

represents the median value, the whiskers show the range of the data, upper whisker indicates

the maximum value and lower whisker shows the minimum value (except for the outliers).

The box plots in Figure 6-10 and Figure 6-11 compare the two algorithms in terms of

TSM problem and display two important characteristics that are of interest: 1) in general the

NSGA-II perform relatively better than the NPGA2 for the TSM problem, and 2) the TSM with 3-

objectives in all test suite types and sizes, have an S-value with about 50% of its readings being

within 1 unit. These findings provide an answer to our research question Q4. The S-value,

indicating the overall quality of the produced Pf with respect to the reference Pf is used to

compare the performance of NSGA-II and NPGA2 for TSM. From the visual comparison of the

results for the 2-objectives TSM, it can be observed that the NSGA-II in most cases has a smaller

centre box and the results are skewed to the bottom indicating minimal variation in

performance as compared to NPGA2. Similarly, the box plot for the 3-objectives TSM shows

negligible variation and a more stable performance. In order to determine that the results were

statistically significant, the Mann-Whitney U test was applied owing to the presence of outliers

in the data. Test was performed at 95% confidence interval with two groups (NPGA2 and NSGA-

II) of data sets comprising of sixteen test suites with ten replications each. The median S-values

for NSGA-II and NPGA-2 for 2-objectives TSM were 8.3077 and 11.4444 respectively. There was

significant difference in the performance of NSGA-II and NPGA2 in relation to 2-objectives TSM;

. The median S-values for NSGA-II and NPGA-2 for 3-objectives

TSM were 36.336 and 47.1739 respectively and similar performance difference between the two

algorithms was found for 3-objectives TSM with . This

confirmed the statistically significant differences between the two algorithms for both the 2 and

3-objectives TSM.

 250

Figure 6-10: Performances of algorithms with 2-objectives

Figure 6-11: Performance of algorithms with 3-objectives

 251

6.3 Summary

In this chapter the various aspects of multi-objective test suite minimization were

investigated, evolutionary computation based optimization framework was developed and

empirically validated. The multi-objective minimization of model-based test suite minimization

with respect to test suite size, coverage and value problem was reformulated as Profitable

Travelling Salesman Problem which is multi-objective version of Traveling Salesman Problem.

The empirical result shows that Pareto-based multi-objective test suite minimization not only

reduces test suite size but also provide a tester several options of a minimal test suite for

execution. It is found that a combination of factors i.e. algorithm type, scale and uniformity in

the measure of an objective plays important role in the quality of Pareto-based solutions. The

elitism-based NSGA algorithm performed consistently better than niche-based NPGA algorithm

in terms of proximity to the Pareto-optimal front, diversity and spread of the generated solution

set. Although, the size of Pareto front increases with the number of objectives but scale and

uniformity in the measure of an objective are critical to spread and diversity in the Pareto front.

 252

Chapter 7 Conclusion and Future Work

In this chapter the results of the study are summed up by reviewing and assessing them.

Furthermore, the limitations and restrictions of the study and conclusions are also explained.

The chapter concludes with discussion about the future research possibilities.

7.1 Conclusion

In this thesis, a novel model based test suite optimization framework was presented. A

number of techniques have been developed within the framework to address the following

problems that UML-based models pose for the standard model based test generation and

optimization.

7.1.1 The execution of models

Software models have long been used for requirement and design verification and

validation purposes. They are cheaper to execute than the whole implemented system and

therefore the smaller overhead makes them ideal to use in test suite generation and

optimization. UML is de facto standard for software analysis and design modeling. However,

models developed in UML are not outright executable as it lacks precise semantic. The thesis

presented a CPN-based execution approach for AD models.

7.1.2 The ambiguous and semantically incorrect models

An automated and seamless transformation methodology from AD to CPN models is

implemented and evaluated with case study models. UML has evolved into a huge language over

several revisions of the standard specification and contains several compromises. Studies have

shown that models developed in UML are often incorrect with respect to the standard

specification [Henderson-Sellers 2005]. The thesis identified a number of sources that

contributed to the ambiguity and inconsistency in an AD model and proposed an endogenous

transformation and a set of control flow refinement patterns to address this issue by automatic

refinement of the model. The thesis reviewed the AD, Colored Petri Nets and the syntactic and

semantic differences between them. A set of transformation rules was defined and a XSLT-based

transformation mechanism was used to demonstrate the automatic transformation.

 253

7.1.3 The need for test sequences

Test generation is one of the most expensive and critical activity in the testing process.

In model based testing, test sequences which represent the logical paths in the software are

generated from the software model. This thesis presented a novel semantic-aware stochastic

test generation algorithm for AD models. The proposed guided random walk algorithm was first

of its kind to automatically derive valid test sequences from the AD models while simulating the

intuitive human behavior.

7.1.4 The adequacy of a test suite

A test suite was usually generated for the coverage of certain artifacts, which could be

used to calculate its quality or adequacy level. The thesis presented two types of coverage

criteria for evaluating the quality or adequacy of test suites generated from AD model.

Sequential coverage criteria were defined for AD-based test suite to ensure that it was adequate

for sequential execution. Similarly, the concurrency coverage criteria were defined to ensure

that the test suite generated from AD was adequate for concurrency testing. The thesis also

proposed mutation analysis based technique to evaluate the adequacy of AD based test suite. A

set of mutation operators was defined to verify the design correctness of an AD-based model

according to the concurrency and control-flow logic. The proposed RW-based test generation

algorithm was empirically analyzed by generating test suites for four case study models and

evaluated with both coverage and mutation based techniques. Empirical results showed that the

generated test suites achieved complete coverage according to a sequential criterion (branch

coverage criterion); however same test suites could achieve only 50% coverage at maximum

according to a concurrency coverage criterion. Furthermore, the mutation analysis of same test

suites revealed that they were able to detect at least 88% of all mutants generated.

7.1.5 The optimization of a test suite

Another important contribution of this thesis is the evolutionary computation based

optimization framework for model based test suite. The purpose of test suite optimization is to

minimize the cost of a test suite without compromising its fault detection capability. It is

achieved by either removing those test cases that are redundant or ineffective with respect to

the test objectives for which they are generated or by prioritizing them to increase the rate of

test objective fulfillment. In this thesis, only the former case also known as test suite

minimization was used to demonstrate the proposed model based test suite optimization

framework. It is shown that the redundancy that can exist in a test suite can be classified into

three types. Removing the type-1 redundancy in a model based test suite is a simple task;

 254

however removing the type-2 and the type-3 redundancy is a combinatorial optimization

problem. The test suite minimization problem was reformulated as equality knapsack problem

which is a well known combinatorial optimization problem. The performance of the proposed

evolutionary computation based test suite minimization approach was empirically evaluated and

compared with that of a Greedy and two Hill Climbing algorithms. The results showed that the

evolutionary computation performed better than the other three algorithms and the difference

in their performance was statistically significant. It was also found that the evolutionary

computation based solution was scalable and the quality of solution was not affected much by

the size of search space (test suite size). However, an important revelation of the study was that

the arrangement of test cases in a test suite can affect the complexity of search space and hence

the performance of algorithms. A further study to characterize the fitness landscape of test suite

minimization problem revealed that it is highly rugged in general and finding the optimal

solution for such problems is difficult due to high epistatic coupling between genes (test cases).

Another interesting finding was that the increase in the size of a test suite may enhance the

search space of that instance of the problem but not necessarily the ruggedness of its fitness

landscape. On the other hand, changing the arrangement of test cases in a test suite can change

the fitness landscape of that instance of the problem and might be its difficulty level as well.

As a natural extension to the evolutionary computation based optimization of model

based test suite, the model based test suite optimization was extended to include multiple

objectives. The multi-objective formulation of test suite optimization problem will allow

incorporating multiple objectives in the minimization process. For demonstration, two instances

(i.e. bi-objectives and tri-objectives) of multi-objective minimization problem of case study test

suites were defined. Generally, multi-objective problems can be optimized with single objective

algorithms but in these cases the problem is resolved with each of the objectives separately and

finally a global trade-off solution is manually identified from a set of constrained solutions [Deb

2001]. On the other hand, multi-objective algorithms can optimize all objectives simultaneously

and a trade-off solution or a set of solutions is devised automatically. For this study, two Pareto-

based multiobjective evolutionary algorithms were implemented and empirically evaluated with

bi- and tri-objectives minimization of case study test suites. Statistical tests were performed in

order to determine whether results were significant or not. The results showed that Pareto-

based multiobjective test suite minimization not only reduced test suite size but also provide a

tester with several options of a minimal test suite for evaluation. It was found that a

combination of factors i.e. algorithm type, scale and uniformity in the measure of an objective

played important role in the quality of Pareto-based solutions. The elitism-based NSGA

 255

algorithm performed consistently better than niche-based NPGA algorithm in terms of proximity

to the Pareto-optimal front, diversity and spread of the generated solution set. Although, the

size of Pareto front increased with the number of objectives but scale and uniformity in the

measure of an objective were critical to the spread and diversity in the Pareto front.

7.2 Limitations and Future Work

The thesis leaves many questions unanswered and motivates several new directions of

research. This section outlines some of the limitations closely associated with challenges related

to the AD to CPN model transformation, AD-based test generation and test suite optimization.

Furthermore, there are few issues and potential extension that may be addressed in future

work.

7.2.1 Transformation of object-flow

Activity Diagram provides elements to depict both control-flow and object-flow in a

system. The AD to CPN transformation presented in Chapter 3 was defined for control-flow

elements only. As there is no transformation rules defined for object nodes, the XSLT-based

translation can automatically skip the object node transformation. However, as such

transformation can leave dangling nodes and edges in the target CPN model; it is recommended

to remove object nodes from the AD model before transformation.

7.2.2 Limited transformation

The modeling concepts or elements of AD are defined in multiple packages according to

their modeling capabilities. The transformation presented in Chapter 3 handled the modeling

elements of AD up to Intermediate package as it natively supports the modeling similar to Petri

Nets. Other high-level modeling elements such as Loop node, exception handling even though

are related with control-flow modeling but their transformation is not supported currently in

this project.

7.2.3 Mutation analysis

The set of mutation operators in Chapter 4 was defined for syntactic errors according to

the control-flow and concurrency features of Activities. In order to conduct mutation analysis, a

mutation tool that generates mutants for AD-model was implemented. In order to limit the cost

of mutation analysis, the coupling effect was assumed to be true in this study but this hypothesis

needs validation study in the context of AD. Detecting equivalent mutants is an undecidable

problem and manual identification of equivalent mutants is often required. Mutation analysis for

 256

semantic errors, data-flow and high-level constructs of AD can be very useful and need further

investigation.

7.2.4 Test generation from AD model

The AD based test generation technique presented in Chapter 4 is incorporated with

CPN semantic in order to produce valid execution paths for both sequential and concurrent

testing. Although, it is a stochastic exploratory technique which allows it mimicking the intuitive

human behavior, it has two limitations. First, it is prone to produce redundant test sequences

and second, it cannot guarantee complete coverage according to a given criterion. An exhaustive

technique may provide complete coverage of a trivial model but for large and complex models, it

needs a guided exploration based technique to cover the unexplored parts of the model.

7.2.5 No-Free-Lunch algorithm

In Chapter 5, an EC based solution was proposed for test suite minimization problem

and an empirical study showed that it performed better than the three other heuristic

algorithms. According to the No-Free-Lunch theorem presented by Wolpert and Macready

[1997], all heuristic algorithms perform equally on average over all possible optimization

problems. The theorem basically has following implications: (a) there is no universally best

general-purpose algorithm; (b) one heuristic algorithm can suite a problem better than another

algorithm and outperform it on that problem; (c) a heuristic algorithm designed or adapted to a

particular problem by incorporating problem specific knowledge into the algorithm can perform

better than the general purpose algorithm [Knowles 2002]. So in light of these implications of

No-Free-Lunch algorithm, it is important to state that all four algorithms presented in Chapter 5

were general purpose and the performance differences between these algorithms indicate that

EC suits test suite minimization problem more than other three algorithms.

 257

Bibliography

2010. Petri Nets Tool Database Department of Informatics, University of Hamburg, Petri Nets
Tool Database.
AGRAWAL, A., KARSAI, G., NEEMA, S., SHI, F. and VIZHANYO, A. 2004. The design of a language
for model transformations International Journal on Software and Systems Modeling 5, 261-288.
AGUILAR-RUIZ, J.S., RAMOS, I., RIQUELME, J.C. and TORO, M. 2001. An evolutionary approach to
estimating software development projects. Information and Software Technology 43, 875-882.
AGUILAR, J. 2001. A General Ant Colony Model to solve Combinatorial Optimization Problems.
Revista Colombiana de Computacion 2, 7-18.
ALANDER, J.T. 1991. On finding the optimal genetic algorithms for robot control problems. In
Proceedings of the International Workshop on Intelligent Robot and Systems, Osaka, 3-5
November 1991 IEEE, 1313-1318.
ALANDER, J.T. 1992. On optimal population size of genetic algorithms. In Proceedings of the 6th
Annual European Computer Conference on Computer Systems and SoftwareEngineering, Hague,
4-8 May 1992 IEEE Computer Society, 65-70.
ANDREWS, A.A., FRANCE, R.B., GHOSH, S. and CRAIG, G. 2003. Test adequacy criteria for UML
design models. Journal of Software Testing, Verification and Reliability 13, 95-127.
ANDREWS, G.R. 2000. Foundations of Multithreaded, Parallel and Distributed Programming.
Addison-Wesley.
ANDREWS, J.H., BRIAND, L.C. and LABICHE, Y. 2005. Is mutation an appropriate tool for testing
experiments? [software testing]. In Proceedings of the International Conference on Software
Engineering, Sept 2005, 402-411.
ANDREWS, J.H., BRIAND, L.C., LABICHE, Y. and NAMIN, A.S. 2006. Using Mutation Analysis for
Assessing and Comparing Testing Coverage Criteria. IEEE Transactions on Software Engineering
32, 608-624.
ANG JUAY, C., HO WEE, K. and ANDREW, L. 1999. A New GA Approach for the Vehicle Routing
Problem. In Proceedings of the 11th IEEE International Conference on Tools with Artificial
Intelligence, Nov 1999 IEEE Computer Society.
APFELBAUM, L. and DOYLE, J. 1997. Model Based Testing. In Proceedings of the Software Quality
Week Conference, May 1997.
BACK, T. 1993. Optimal mutation rates in genetic search. In Proceedings of the 5th International
Conference on Genetic Algorithms, Urbana-Champaign, June 1993 Morgan Kaufmann, 2-8.
BACK, T., FOGEL, D.B. and MICHALEWICZ, Z. 1997. Handbook of Evolutionary Computation IOP
Publishing and Oxford Univeristy Press.
BACK, T. and SCHWEFEL, H.-P. 1993. An overview of evolutionary algorithms for parameter
optimization. Evol. Comput. 1, 1-23.
BAGNALL, A.J., RAYWARD-SMITH, V.J. and WHITTLEY, I.M. 2001. The next release problem.
Information and Software Technology 43, 883-890.
BAKER, B.M. and AYECHEW, M.A. 2003. A genetic algorithm for the vehicle routing problem.
Computers & Operations Research 30, 787-800.
BALA, J.W., DEJONG, K. and PACHOWICZ, P. 1991. Using Genetic Algorithms to Improve the
Performance of Classification Rules Produced by Symolic Inductive Methods. In Proceedings of
the 6th International Symposium on Methodologies for Intelligent Systems, ISMIS '91, Charlotte,
N.C., USA, Oct. 16-19 1991 Springer, 121-138.
BARESI, L. and PEZZÈ, M. 2001. On Formalizing UML with High-Level Petri Nets. Lecture Notes in
Computer Science 2001, 276-304.

 258

BASANIERI , F. and BERTOLINO, A. 2000. A Practical Approach to UML-based Derivation of
Integration Tests. In Proceedings of the Proceedings of 4th International Quality Week Europe,
Brussels, Belgium, 20-24 November 2000.
BEIZER, B. 1990. Software Testing Techniques. Van Nostrand Reinhold, New York.
BEIZER, B. 1995. Black-box Testing: Techniques for Functional Testing of Software and Systems.
Wiley, New York.
BERTOLINO, A. 2003. Software Testing Research and Practice. In 10th International Workshop on
Abstract State Machines (ASM'2003) LNCS, Taormina, Italy, 1-21.
BINDER, R. 1999. Testing Object-Oriented Systems: Models, Patterns and Tools. Addison-Wesley
Longman, Reading, Massachusetts.
BINKLEY, D. 1995. Reducing the cost of regression testing by semantics guided test case
selection. In Proceedings of the International Conference on Software Maintenance, Oct 1995,
251-260.
BOCK, C. 2003. Activity and Action Models Part 2: Actions. Journal of Object Technology 2, 41-56.
BOCK, C. 2003. UML 2 Activity and Action Models. Journal of Object Technology 2, 43-53.
BOCK, C. 2003. UML 2 Activity and Action Models Part 3: Control Nodes. Journal of Object
Technology 2, 7-23.
BOCK, C. and GRUNINGER, M. 2005. PSL: A semantic domain for flow models. Software and
Systems Modeling 4, 209-231.
BOGDAN, K. and ALI, M.A.-Y. 1998. Automated regression test generation. In Proceedings of the
International symposium on Software testing and analysis, Clearwater Beach, Florida, United
States, March 1998 ACM.
BOGDAN, K., GEORGE, K. and LUAY, H.T. 2007. Model-based test prioritization heuristic methods
and their evaluation. In Proceedings of the 3rd international workshop on Advances in model-
based testing, London, United Kingdom, July 2007 ACM.
BOGDAN, K. and KOUTSOGIANNAKIS, G. 2009. Experimental Comparison of Code-Based and
Model-Based Test Prioritization. In Proceedings of the Software Testing, Verification and
Validation Workshop (ICSTW'09), April 2009, 77-84.
BOGDAN, K., LUAY, H.T. and MARK, H. 2005. Test Prioritization Using System Models. In 21st
IEEE International Conference on Software Maintenance IEEE Computer Society.
BOGDAN, K., LUAY, H.T. and MARK, H. 2005. Test Prioritization Using System Models. In
Proceedings of the 21st IEEE International Conference on Software Maintenance, Nov 2005 IEEE
Computer Society.
BOOCH, G. 2010. Handbook of Software Architecture. In Preface online.
BORGER, E., CAVARRA, A. and RICCOBENE, E. 2000. An ASM Semantics for UML Activity
Diagrams. In Proceedings of the 8th International Conference on Algebraic Methodology and
Software Technology, May 2000 Springer-Verlag.
BORGER, E., CAVARRA, A. and RICCOBENE, E. 2000. Modeling the Dynamics of UML State
Machines. In Proceedings of the Proceedings of the International Workshop on Abstract State
Machines, Theory and Applications2000 Springer-Verlag.
BOUQUET, F., JAFFUEL, E., LEGEARD, B., PEUREUX, F. and UTTING, M. 2005. Requirements
traceability in automated test generation: application to smart card software validation. SIGSOFT
Softw. Eng. Notes 30, 1-7.
BOUQUET, F. and LEGEARD, B. 2003. Reification of Executable Test Scripts in Formal
Specification-Based Test Generation: The Java Card Transaction Mechanism Case Study. In FME
2003: Formal Methods Springer Berlin / Heidelberg, 778-795.
BRIAND, L. and LABICHE, Y. 2002. A UML-based Approach to System Testing. Software and
Systems Testing 1, 10-42.
BRIAND, L., LABICHE, Y. and WANG, Y. 2004. Using Simulation to Empirically Investigate state
Coverage Criteria based on Statecharts. In Proceedings of the International Conference on

 259

Software Engineering Edinburgh, Scotland, May 2004,
http://www.sce.carleton.ca/Squall/pubs/tech_report/TR_SCE-02-09.pdf, 62.
BROY, M., CRANE, M.L., DINGEL, J., HARTMAN, A., RUMPE, B. and SELIC, B. 2007. UML 2
Sematics Symposium: Formal Semantics for UML. Lecture Notes in Computer Science 4364, 318-
323.
BROY, M., JONSSON, B., KATOEN, J.-P., LEUCKER, M. and PRETSCHNER, A. 2005. Model-Based
Testing of Reactive Systems. Springer-Verlag, New York, Inc.
BUDD, T.A. 1981. Mutation Analysis: Ideas, Exampies, Problems and Prospects. In Summer
School on Computer Program Testing, B. CHANDRASEKARAN and S. RADICCHI Eds. Elsevier
Science Inc., Sogesta, Urbino, Italy, 129-148.
BUDD, T.A. and GOPAL, A.S. 1981. Program testing by specification mutation. In Proceedings of
the Computer Program Testing : proceedings of the Summer School on Computer Program
Testing, Urbino, Italy, June 29-July 3 1981, 129-148.
BUTLER, B.R.R. 2004. The Challenges of Complex IT Projects The Royal Academy of Engineering
and The British Computer Society, Westminster, London,, 45.
CENELEC 2001. Railway Applications: Software for railway, control, and protections systems. In
EN Std 50128 - 2001 BS EN CENELEC, 0_1-110.
CHANDLER, R., LAM, C.P. and LI, H. 2006. UML Models with Activity Diagrams: for Case Studies
SCIS, Edith Cowan University, Perth, 30.
CHEN, A. and BHASKAR, K. 2008. The power of choice in random walks: An empirical study. The
International Journal of Computer and Telecommunications Networking 52, 44-60.
CHEN, T.Y. and LAU, M.F. 1998. A new heuristic for test suite reduction. Information and
Software Technology 40, 347-354.
CHEN, T.Y. and LAU, M.F. 2001. Test Suite Reduction and Fault Detecting Effectiveness: An
Empirical Evaluation. In Reliable Software Technologies: Ada Europe 2001 A. STROHMEIER Ed.
Springer-Verlag, Leuven, Belgium, 253-265.
CHEN, T.Y. and LAU, M.F. 2003. On the divide-and-conquer approach towards test suite
reduction. Information sciences 152, 89-119.
CHEVALLEY, P. and THEVENOD-FOSSE, P. 2001. Automated generation of statistical test cases
from UML state diagrams. In Computer Software and Applications Conference, 2001. COMPSAC
2001. 25th Annual International, 205-214.
CHRISTOS, G., MILENA, M. and AMIN, S. 2006. Random walks in peer-to-peer networks:
algorithms and evaluation. Performance Evaluation 63, 241-263.
CHU, P.C. and BEASLEY, J.E. 1998. A Genetic Algorithm for the Multidimensional Knapsack
Problem. Journal of Heuristics 4, 63-86.
CLAES, W., PER, R., MARTIN, H., MAGNUS, C.O., BJÖORN, R. and ANDERS, W. 2000.
Experimentation in software engineering: an introduction. Kluwer Academic Publishers.
COELLO, C.A.C. 1998. Using the Min-Max Method to Solve Multiobjective Optimization Problems
with Genetic Algorithms. In Proceedings of the 6th Ibero-American Conference on AI (IBERAMIA
98), Lisbon, Portugal, October 5-9 1998 Springer, 303-314.
COELLO, C.A.C. 2000. An updated survey of GA-based multiobjective optimization techniques.
ACM Comput. Surv. 32, 109-143.
CORNE, D., GLOVER, F. and DORIGO, M. 1999. New ideas in optimization. McGraw-Hill, London.
CPN-GROUP 2010. CPN Tools CPN Group, University of Aarhus, Denmark.
CPN-GROUP 2010. File formats for CPN Tools CPN Group, University of Aarhus, Denmark.
CPN-GROUP 2010. Introduction to Hierarchical Nets CPN Group, University of Aarhus, Denmark.
CPN-SC 2010. Syntax checking. In CPN Tools.
CSERTÁN, G., HUSZERL, G., MAJZIK, I., PAP, Z., PATARICZA, A. and VARRÓ, D. 2002. VIATRA -
Visual Automated Transformations for Formal Verification and Validation of UML Models. In
Proceedings of the Automated Software Engineering, Edinburgh, 23-27 September 2002 IEEE
Computer Society, 267-270.

 260

DALAL, S., JAIN, A., KARUNANITHI, N., LEATON, J., LOTT, C., PATTON, G. and HOROWITZ, B. 1999.
Model-Based Testing in Practice. In Proceedings of the 21st International Conference on Software
Engineering, California, USA, May 16-22 1999 IEEE / ACM,
http://www.argreenhouse.com/papers/lott/1999-icse.pdf, 285-294.
DALAL, S.R., JAIN, A., KARUNANITHI, N., LEATON, J.M., LOTT, C.M., PATTON, G.C. and
HOROWITZ, B.M. 1999. Model-Based Testing in Practice. In Proceedings of the International
Conference on Software Engineering, May 1999 ACM Press.
DAN, H., LU, Z., HAO, Z., HONG, M. and JIASU, S. 2005. Eliminating harmful redundancy for
testing-based fault localization using test suite reduction: an experimental study. In Proceedings
of the 21st IEEE International Conference on Software Maintenance Sept 2005, 683-686.
DAVID, H.A. 1987. A connectionist machine for genetic hillclimbing. Kluwer Academic Publishers.
DE JONG, K.A. 1975. An analysis of the behavior of a class of genetic adaptive systems University
of Michigan, 266.
DE JONG, K.A. 1988. Learning with Genetic Algorithms: An Overview. Machine Learning 3, 121-
138.
DE JONG, K.A. 1991. An analysis of the interacting roles of population size and crossover in
genetic algorithms. Lecture Notes in Computer Science 496, 38-47.
DE JONG, K.A. 1993. Genetic Algorithms are not function optimizers. In Proceedings of the
Foundations of Genetic Algorthms, Whitley L, California, Feb 1993, 5-17.
DEB, K. 1997. Introduction to representations. In Handbook of Evolutionary Computation, T.
BACK, D.B. FOGEL and Z. MICHALEWICZ Eds. IOP Publishing and Oxford Univeristy Press, 127-
131.
DEB, K. 2001. Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley Sons, Inc.
DEB, K. 2007. Evolutionary Practical Optimization. In Proceedings of the GECCO, July 2007 ACM.
DEB, K., SAMIR, A., AMRIT, P. and MEYARIVAN, T. 2000. A Fast Elitist Non-dominated Sorting
Genetic Algorithm for Multi-objective Optimisation: NSGA-II. In Proceedings of the 6th
International Conference on Parallel Problem Solving from Nature, Sept 2000 Springer-Verlag.
DELAMARO, M.E., MALDONADO, J.C. and MATHUR, A.P. 2001. Interface Mutation: An Approach
for Integration Testing. IEEE Trans. Softw. Eng. 27, 228-247.
DEMILLO, R.A., LIPTON, R.J. and SAYWARD, F.G. 1978. Hints on Test Data Selection: Help for the
Practicing Programmer. Computer 11, 34-41.
DIAS NETO, A.C. and TRAVASSOS, G.H. 2009. Porantim: An approach to support the combination
and selection of Model-based Testing techniques. In Automation of Software Test, 2009. AST '09.
ICSE Workshop on, 1-9.
DICKINSON, W., LEON, D. and PODGURSKI, A. 2001. Finding Failures by Cluster Analysis of
Execution Profiles. In Proceedings of the International Conference on Software Engineering,
Toronto, May 2001 IEEE Computer Society, 339-348.
DINH-TRONG, T.T., GHOSH, S. and FRANCE, R.B. 2006. A Systematic Approach to Generate Inputs
to Test UML Design Models. In Proceedings of the 17th International Symposium on Software
Reliability Engineering, Raleigh, North Carolina, USA, 7-10 November 2006, 95-104.
DINH-TRONG, T.T., KAWANE, N., GHOSH, S., FRANCE, R.B. and ANDREWS, A.A. 2005. A Tool-
Supported Approach to Testing UML Design Models. In Proceedings of the International
Conference on Engineering of Complex Computer Systems (ICECCS 2005), Shanghai, China, Jun
2005 IEEE Computer Society, 519-528.
DO, H. and ROTHERMEL, G. 2005. A controlled experiment assessing test case prioritization
techniques via mutation faults. In Proceedings of the 21st IEEE International Conference on
Software Maintenance, May 2005, 411-420.
DOERNER, K. and GUTJAHR, W.J. 2003. Extracting Test Sequences from a Markov Software Usage
Model by ACO. In Proceedings of the Genetic and Evolutionary Computation Conference,
Chicago, IL, USA, July 12-16 2003 Springer, 2465-2476.

 261

DOMINIQUE, F., PIERRE, D. and MICHEL, G. 2005. Traveling Salesman Problems with Profits.
Transportation Science 39, 188-205.
DORIGO, M. and GAMBARDELLA, L.M. 1996. Ant Colony System: A Cooperative Learning
Approach to the Traveling Salesman Problem Universite Libre de Bruxelles, IRIDIA, Brussels, 24.
DYE, D. 2002. Abstraction. In Encyclopedia of Software Engineering, J.J. MARCINIAK Ed. John
Wiley & Sons Inc.
EA 2008. Enterprise Architect Sparx Systems, Creswick, Australia, CASE Tool.
EDVARDSSON, J. 1999. A Survey on Automatic Test Data Generation. In Proceedings of the 2nd
Conference on Computer Science and Engineering, Linkoping, Sweden, October 1999,
http://www.ida.liu.se/~joned/papers/class_atdg.pdf, 21-28.
EL-FAR, I.K. 2001. Enjoying the Perks of Model-Based Testing. In Software Testing, Analysis, and
Review Conference (STARWEST 2001), California, USA.
EL-FAR, I.K. and WHITTAKER, J.A. 2002. Model-based Software Testing. In Encyclopedia on
Software Engineering, J.J. MARCINIAK Ed. John Wiley & Sons, Inc., New York, 22.
ELBAUM, S., MALISHEVSKY, A. and ROTHERMEL, G. 2001. Incorporating varying test costs and
fault severities into test case prioritization. In Proceedings of the International Conference on
Software Engineering, May 2001, 329-338.
ELLIMS, M., BRIDGES, J. and INCE, D.C. 2006. The Economics of Unit Testing. Empirical Software
Engineering. 11, 5-31.
ERICKSON, M., MAYER, A. and HORN, J. 2001. The Niched Pareto Genetic Algorithm 2 Applied to
the Design of Groundwater Remediation Systems. In Evolutionary Multi-Criterion Optimization
Springer Berlin / Heidelberg, 681-695.
ERMEL, C., RUDOLF, M. and TAENTZER, G. 1997. The AGG approach: Language and tool
environment. In Handbook of graph grammars and computing by graph transformation:
Applications, Languages and Tools, H. EHRIG, H.-J.K. G. ENGELS and G. ROZENBERG Eds. World
Scientific Publishing, 551-601.
ESHUIS, R. and WIERINGA, R. 2001. An Execution Algorithm for UML Activity Graphs. In The
Unified Modeling Language, Modeling Languages, Concepts, and Tools Springer, Toronto,
Canada, 47-61.
ESHUIS, R. and WIERINGA, R. 2001. A Formal Semantics for UML Activity Diagrams - Formalising
Workflow Models University of Twente, Department of Computer Science, Enschede,
Netherlands, 44.
EUROCAE 1992. Software Considerations in Airborne Systems and Equipment Certification. In
DO-178B / ED-12B EUROCAE.
EVANS, A. and KENT, S. 1999. Core Meta-Modelling Semantics of UML: The pUML Approach. In
Proceedings of the 2nd International Conference on the Unified Modeling Language: Beyond the
Standard, Colorado, USA, October 28-30 1999, R.B. FRANCE and B. RUMPE Eds. LNCS, 140-155.
FABBRI, S.C.P.F., MALDONADO, J.C., MASIERO, P.C. and DELAMARO, M.E. 1999. Proteum/FSM: A
Tool to Support Finite State Machine Validation Based on Mutation Testing. In Proceedings of
the International Conference of the Chilean Computer Science Society, Nov 1999 IEEE Computer
Society.
FABBRI, S.C.P.F., MALDONADO, J.C., MASIERO, P.C., DELAMARO, M.E. and WONG, E. 1996.
Mutation Testing Applied to Validate Specifications Based on Petri Nets. In Proceedings of the
Proceedings of the IFIP TC6 Eighth International Conference on Formal Description Techniques
VIII1996 Chapman; Hall, Ltd.
FABBRI, S.C.P.F., MALDONADO, J.C., TATIANA, S. and MASIERO, P.C. 1999. Mutation Testing
Applied to Validate Specifications Based on Statecharts. In Proceedings of the International
Symposium on Software Reliability Engineering, Nov 1999 IEEE Computer Society, 210-219.
FACTOR, M., FARCHI, E., LICHTENSTEIN, Y. and MALKA, Y. 1996. Testing concurrent programs: a
formal evaluation of coverage criteria. In Israeli Conference on Computer-Based Systems and
Software Engineering (ICCSSE '96) IEEE Computer Society, Washington, DC, USA, 119.

 262

FACTOR, M., FARCHI, E., LICHTENSTEIN, Y. and MALKA, Y. 1996. Testing concurrent programs: a
formal evaluation of coverage criteria. In Proceedings of the Israeli Conference on Computer-
Based Systems and Software Engineering (ICCSSE '96) Washington, DC, USA, June 1996 IEEE
Computer Society, 119-126.
FARCHI, E., HARTMAN, A. and PINTER, S.S. 2002. Using a Model-Based Test Generator to Test for
Standard Conformance. IBM Systems Journal 41, 89-110.
FARCHI, E., NIR, Y. and UR, S. 2003. Concurrent Bug Patterns and How to Test Them. In
Proceedings of the Parallel and Distributed Systems: Testing and Debugging (PADTAD), Nice,
France, April 22-26 2003, 7.
FAROOQ, U. and LAM, C.P. 2008. Mutation Analysis for the Evaluation of AD Models. In
Proceedings of the International Conference on Computational Intelligence for Modelling Control
& Automation, Dec 2008, 296-301.
FAROOQ, U. and LAM, C.P. 2009. Evolving the Quality of a Model Based Test Suite. In
International Conference on Software Testing, Verification and Validation Workshops, 141-149.
FAROOQ, U., LAM, C.P. and LI, H. 2006. Transformation Methodology for UML 2.0 Activity
Diagram into Colored Petri Nets. In 4th IASTED International Conference on Advances in
Computer Science and Technology ACTA Press, Phuket, Thailand, 6.
FAROOQ, U., LAM, C.P. and LI, H. 2008 Towards Automated Test Sequence Generation. In
Proceedings of the 19th Australian Software Engineering Conference (ASWEC'2008), Perth,
Australia, March 25-28 2008
FENTON, N.E. and PFLEEGER, S.L. 1997. Software Metrics: A Rigorous & Practical Approach. ITP.
FLOCKHART, I.W. and RADCLIFFE, N.J. 1996. A Genetic Algorithm-Based Approach to Data
Mining. In Proceedings of the Second International Conference on Knowledge Discovery and Data
Mining, Portland, Oregon, USA, August 1996, 299-302.
FLORIN, J. 2008. An Evaluation on Model Based Testing at Ericsson. In School of Electrical
Engineering Royal Institute of Technology, Stockholm, Sweden, 80.
FOGEL, L.J., OWENS, A. and WALSH, M. 1966. Artificial Intelligence Through Simulated Evolution.
Hohn Wiley, New York.
FONSECA, C.M. and FLEMING, P.J. 1993. Genetic Algorithms for Multiobjective Optimization:
Formulation, Discussion and Generalization. In Proceedings of the Fifth International Conference
in Genetic Algorithm, San Mateo, CA, June 1993, 416-423.
FORREST, S. and MITCHELL, M. 1993. What Makes a Problem Hard for a Genetic Algorithm?
Some Anomalous Results and Their Explanation. Machine Learning 13, 285-319.
FORTUNATO, S. and FLAMMINI, A. 2007. RANDOM WALKS ON DIRECTED NETWORKS: THE CASE
OF PAGERANK. International Journal of Bifurcation and Chaos (IJBC) in Applied Sciences and
Engineering 17, 2343-2353.
FRANCE, R., EVANS, A., LANO, K. and RUMPE, B. 1998. The UML as a formal modeling notation.
Comput. Stand. Interfaces 19, 325-334.
FRANKL, P.G. and IAKOUNENKO, O. 1998. Further Empirical Studies of Test Effectiveness. In
Proceedings of the International Symposium on Foundations of Software Engineering, Lake
Buena Vista, FL, USA, Nov 1998 ACM SIGSOFT, 153-162.
FRANKL, P.G. and WEISS, S.N. 1993. An experimental comparison of the effectiveness of branch
testing and data flow testing. IEEE Transactions on Software Engineering 19, 774-787.
FRIEDMAN, G., HARTMAN, A., NAGIN, K. and SHIRAN, T. 2002. Projected State Machine
Coverage for Software Testing. In Proceedings of the ISSTA, Rome, Italy, July 22-24 2002, 10.
FRISCH, A.M., HNICH, B., MIGUEL, I., SMITH, B.M. and WALSH, T. 2002. Towards CSP Model
Reformulation at Multiple level of Abstraction. In Proceedings of the International Workshop on
Reformulating Constraint Satisfaction Problems, Ithaca, NY, USA, Sep 2002, 42-56.
FUJIKI, C. and DICKINSON, J. 1987. Using the Genetic Algorithm to generate lisp source code to
solve the prisoner's dilemma. In Proceedings of the Second International Conference on Genetic
Algorithms and their Applications, July 1987, 236-240.

 263

GARFINKEL, S. 2005. History's Worst Software Bugs Wired Magazine.
GEHRKE, T., GOLTZ, U. and WEHRHEIM, H. 1998. The Dynamic Models of UML: Towards a
Semantics and its Application in the Development Process Universitt Hildesheim.
GERARDO, C., MASSIMILIANO DI, P., RAFFAELE, E. and MARIA LUISA, V. 2005. An approach for
QoS-aware service composition based on genetic algorithms. In Proceedings of the Genetic and
evolutionary computation conference (GECCO), Washington DC, USA, June 2005 ACM.
GIULIANO, A., MASSIMILIANO DI, P. and MARK, H. 2004. A Robust Search-Based Approach to
Project Management in the Presence of Abandonment, Rework, Error and Uncertainty. In
Proceedings of the International Symposium on Software Metrics, Sep 2004 IEEE Computer
Society.
GOEL, A.L. 1985. Software Reliability Models: Assumptions, Limitations, and Applicability. IEEE
Transaction on Software Engineering 11, 1411-1423.
GOLDBERG, D.E. 1989. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley.
GOLDBERG, D.E. and SAMTANI, M.P. 1986. Enginnering optimization via Genetic Algorithm. In
Proceedings of the 9th Conference on Electronic Computation, Feb 1986, 471-482.
GÓRRIZ, J.M. and PUNTONET, C.G. 2005. GA-ICA algorithms applied to image processing In Soft
Computing as Transdisciplinary Science and Technology Springer, 1269-1277.
GRADY, L. 2006. Random Walks for Image Segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence 28, 1768–1783.
GREFENSTETTE, J. 1986. Optimization of control parameters for genetic algorithms. IEEE Trans.
Syst. Man Cybern. 16, 122-128.
GREFENSTETTE, J.J. and FITZPATRICK, J.M. 1985. Genetic Search with approximate function
evaluation. In Proceedings of the first international Conference on Genetic Algorithm and their
Applications, July 1985, 112-120.
GREFENSTETTE, J.J., GOPAL, R., ROSMAITA, B. and VAN GUCHT, V. 1985. Genetic Algorithms for
the Traveling Salesman Problem. In Proceedings of the first international Conference on Genetic
Algorithm and their Applications, July 1985, 160-168.
HAHNERT, W.H. and RALSTON, P.A.S. 1995. Analysis of population size in the accuracy and
performance of genetic training for rule-based control systems. Computers & Operations
Research 22, 55-72.
HAMLET, D. 2006. When only random testing will do. In Proceedings of the 1st international
workshop on Random testing, Portland, Maine, July 2006 ACM.
HAMLET, R.G. 1977. Testing programs with the aid of a compiler. IEEE Transactions on Software
Engineering 3, 279-290.
HANSEN, M.P. and JASZKIEWICZ, A. 1998. Evaluating the quality of approximations to the non-
dominated set Institute of Mathematical Modelling, 31.
HAREL, D. and GERY, E. 1997. Executable object modeling with statecharts IEEE Computer 30, 31-
42.
HARMAN, M. and JONES, B.F. 2001. Search based software engineering. Information and
Software Technology 43, 833-839.
HARMAN, M., MANSOURI, S.A. and ZHANG, Y. 2009. Search Based Software Engineering.: A
Comprehensive Analysis and Review of Trends Techniques and Applications King's College
London, London, 78.
HARROLD, M.J., GUPTA, R. and SOFFA, M.L. 1993. A methodology for controlling the size of a
test suite. ACM Transactions on Software Engineering Methodology 2, 270--285.
HECKEL, R. 2003. Foundations of Visual Modelling Techniques. In Advance Course on Petri Nets
Universitat Paderborn, 6.
HEIMDAHL, M.P.E. and GEORGE, D. 2004. Test-suite reduction for model-based tests: Effects on
test quality and implications for testing. In Proceedings of the Automated Software Engineering
Linz, Austria, September 20-24 2004, 176-185.

 264

HEIMDAHL, M.P.E., RAYADURGAM, S., VISSER, W., DEVARAJ, G. and GAO, J. 2003. Auto-
generating Test Sequences Using Model Checkers: A Case Study. In Formal Approaches to
Software Testing Springer, Montreal, Quebec, Canada, 42-59.
HENDERSON-SELLERS, B. 2005. UML– the Good, the Bad or the Ugly? Perspectives from a panel
of experts. Software System Model 4, 4-13.
HEYLIGHEN, F. 2010. Web Dictionary of Cybernetics and Systems, Online Dictionary.
HILLAH, L., KORDON, F., PETRUCCI, L. and TRÈVES, N. 2006. PN Standardisation: A Survey. In
Formal Techniques for Networked and Distributed Systems - FORTE 2006, 307-322.
HOLLAND, J.H. 1973. Genetic Algorithms and the Optimal Allocation of Trials. SIAM J. Comput. 2,
88-105.
HOLLAND, J.H. 1992. Adaptation in natural and artificial systems. MIT Press.
HORN, J. and GOLDBERG, D.E. 1995. Genetic Algorithm Difficulty and the Modality of Fitness
Landscapes. In Foundations of Genetic Algorithms Morgan Kaufmann, 243--269.
HORN, J., NAFPLIOTIS, N. and GOLDBERG, D.E. 1994. A niched Pareto genetic algorithm for
multiobjective optimization. In Proceedings of the IEEE World Congress on Computational
Intelligence Evolutionary Computation, Jun 1994, 82-87 vol.81.
HUCKLE, T. 2005. Collection of Software Bugs, München.
HUGHES, C. and HUGHES, T. 2003. Parallel and Distributed Programming Using C++. Addison-
Wesley, Bostan, MA.
HUTCHINS, M., FOSTER, H., GORADIA, T. and OSTRAND, T. 1994. Experiments of the
effectiveness of dataflow- and controlflow-based test adequacy criteria. In Proceedings of the
International Conference on Software Engineering, Sorrento, Italy, May 1994, 191-200.
IBM 2010. Rational XDE IBM, Rational eXtended Development Environment.
IBM 2010. SPSS SPSS Inc, Chicago.
INRIA 2010. Guimoo - User's Manual INRIA, www.lifl.fr/OPAC/guimoo.
ISO/IEC 2005. Information technology -- XML Metadata Interchange (XMI) ISO/IEC.
ISO/IEC 2005. Unified Modeling Language Specification International Organization for
Standardization, 454.
ISO/IEC 2009. Software and system engineering -- High-level Petri nets -- Part 2: Transfer Format
ISO/IEC, 102.
JEFFREY, D. and GUPTA, N. 2005. Test Suite Reduction with Selective Redundancy. In Proceedings
of the International Conference on Software Maintenance (ICSM 2005), Budapest, Hungary,
September 25-30 2005, 549-558.
JEFFREY, D. and GUPTA, N. 2007. Improving Fault Detection Capability by Selectively Retaining
Test Cases during Test Suite Reduction. Software Engineering, IEEE Transactions on 33, 108-123.
JENNIFER, B., EMANUEL, M. and DAVID, K. 2004. Bi-Criteria Models for All-Uses Test Suite
Reduction. In Proceedings of the International Conference on Software Engineering, May 2004
IEEE Computer Society.
JENSEN, K. 1992. Coloured Petri Nets: Basic Concept, Analysis Methods and Practical Use. EATCS
Monographs on Theoretical Computer Science 1.
JENSEN, K. 1993. An introduction to the theoretical aspects of coloured petri nets. Lecture Notes
in Computer Science 803, 230-272.
JENSEN, K. 1996. An introduction to the practical use of coloured petri nets. Lecture Notes in
Computer Science 1492, 237-292.
JENSEN, K. 1997. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use.
Springer-Verlag.
JIA, Y. and HARMAN, M. 2010. An Analysis and Survey of the Development of Mutation Testing.
IEEE Transactions on Software Engineering.
JONAS, B. 2008. Early fault detection with model-based testing. In Proceedings of the 7th ACM
SIGPLAN workshop on ERLANG, Victoria, BC, Canada, Sept 2008 ACM.

 265

JONES, B., SHAMER, H. and EYRES, D. 1995. Automatic structural testing using genetic
algorithms. Software Eng Journal 12, 57-74.
JONES, B.F., EYRES, D.E. and STHAMER, H.H. 1996. Automatic structural testing using genetic
algorithms. The Software Engineering Journal 11, 299-306.
JONES, B.F., EYRES, D.E. and STHAMER, H.H. 1998. A strategy for using genetic algorithms to
automate branch and fault-based testing. The Computer Journal 41, 98–107.
JONES, J. and HARROLD, M. 2003. Test-Suite Reduction and Prioritization for Modified
Condition/Decision Coverage. IEEE Transactions on Software Engineering 29, 195-209.
JONES, T. 1995. Evolutionary Algorithms, Fitness landscapes and Search The University of New
Mexico, 249.
JONES, T. and FORREST, S. 1995. Fitness Distance Correlation as a Measure of Problem Difficulty
for Genetic Algorithms. In Proceedings of the 6th International Conference on Genetic
Algorithms, July 1995 Morgan Kaufmann Publishers Inc., 184-192.
JORGENSEN, P.C. 2002. Software Testing: A Craftman's Approach. CRC Press, Boca Raton,
Florida.
KANER, C. 1997. The Impossibility of Complete Testing. In Software QA, 28.
KANER, C., FALK, J. and NGUYEN, H.Q. 1993. Testing Computer Software International Thomson
Computer Press.
KANSOMKEAT, S., OFFUTT, J., ABDURAZIK, A. and BALDINI, A. 2008. A Comparative Evaluation of
Tests Generated from Different UML Diagrams. In Proceedings of the 9th ACIS International
Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed
Computing, Aug 2008, 867-872.
KAUFFMAN, S.A. 1993. The Origins of Order : Self-Organization and Selection in Evolution Oxford
University Press.
KAY, M.H. 2010. SAXON: The XSLT and XQuery Processor Sourceforge.net.
KEITH, D.C., PHILIP, J.S. and DEVIKA, S. 1999. Optimizing for reduced code space using genetic
algorithms. In Proceedings of the ACM SIGPLAN 1999 workshop on Languages, compilers, and
tools for embedded systems, Atlanta, Georgia, United States, May 1999 ACM.
KELLERER, H., PFERSCHY, U. and PISINGER, D. 2004. Knapsack Problems. Springer.
KERSTEN, M. and NEBE, W. 2004. On detecting deadlocks in large UML models. In Proceedings of
the IFIP Working Conference on Distributed and Parallel Embedded Systems, Toulouse, France,
Aug 2004, 11-20.
KHADKA, B. 2007. Transformation of Live Sequence Charts to Colored Petri Nets (LSCTOCPN). In
Computer and Information Science Department UNIVERSITY OF MASSACHUSETTS, DARTMOUTH,
51.
KHURSHID, S., PASAREANU, C.S. and VISSER, W. 2003. Generalized Symbolic Execution for Model
Checking and Testing. In Proceedings of the Tools and Algorithms for the Construction and
Analysis of Systems, Warsaw, Poland, April 7-11 2003 Springer, 553-568.
KNOWLES, D.J. and CORNE, W.D. 2000. Approximating the Nondominated Front Using the
Pareto Archived Evolution Strategy. Evolutionary Computation 8, 149-172.
KNOWLES, D.J., THIELE, L. and ZITZLER, E. 2006. A Tutorial on the Performance Assessment of
Stochastic Multiobjective Optimizers Computer Engineering and Networks Laboratory, ETH
Zurich, Switzerland, Zurich.
KNOWLES, J.D. 2002. Local-Search and Hybrid Evolutionary Algorithms for Pareto Optimization.
In Department of Computer Science University of Reading, Reading.
KOEHLER, J., HAUSER, R., SENDALL, S. and WAHLER, M. 2005. Declarative techniques for model-
driven business process integration. IBM Syst. J. 44, 47-65.
KOEHLER, J., HAUSER, R., SENDALL, S. and WAHLER, M. 2005. Declarative techniques for model-
driven business process integration. IBM Systems Journal 44, 47-65.

 266

KOEHLER, J., KUSTER, J.M., NOVATNACK, J. and RYNDINA, K. 2006. A Classfification of UML2
Activity Diagrams IBM Research GmbH, Zurich Research Laboratory, Ruschlikon, Switzerland, 1-
287.
KOREL, B. and KOUTSOGIANNAKIS, G. 2009. Experimental Comparison of Code-Based and
Model-Based Test Prioritization. In Software Testing, Verification and Validation Workshops,
2009. ICSTW '09. International Conference on, 77-84.
KUHN, D.R. 1999. Fault classes and error detection capability of specification-based testing. ACM
Transactions on Software Engineering and Methodology 8, 411-424.
KÜSTER, J. 2006. Definition and validation of model transformations. Software and Systems
Modeling 5, 233-259.
LAKHOTIA, K., HARMAN, M. and MCMINN, P. 2007. A multi-objective approach to search-based
test data generation. In Proceedings of the 9th annual conference on Genetic and evolutionary
computation, London, England, July 2007 ACM.
LANGE, C.F.J. and CHAUDRON, M.R.V. 2005. Managing Model Quality in UML-Based Software
Development. In Proceedings of the 13th International Workshop on Software Technology and
Engineering Practice (STEP 2005), Budapest, Hungary, 24-25 September 2005 IEEE Computer
Society, 7-16.
LEE, D., SABNANI, K.K., KRISTOL, D.M. and PAUL, S. 1996. Conformance Testing of Protocols
Specified as Communicating Finite State Machines - a Guided Random Walk Based Approach.
IEEE Trans. on Communications 44, 631-640.
LEVESON, N.G. 1995. SAFEWARE: SYSTEM SAFETY AND COMPUTERS. Addison-Wesley.
LI, H. and LAM, C.P. 2005. An Ant Colony Optimization Approach to Test Sequence Generation
for Statebased Software Testing. In Proceedings of the 5th International Conference on Quality
Software, Sept 2005 IEEE Computer Society.
LI, Z., HARMAN, M. and HEIRONS, R. 2007. Search Algorithms for Regression Test Case
Prioritisation IEEE Transactions on Software Engineering. 33, 225-237.
LI, Z., HARMAN, M. and HIERONS, R.M. 2007. Search Algorithms for Regression Test Case
Prioritization. IEEE Transactions on Software Engineering 33, 225-237.
LI, Z., TAN, L., WANG, X., LU, S., ZHOU, Y. and ZHAI, C. 2006. Have things changed now?: an
empirical study of bug characteristics in modern open source software. In Proceedings of the 1st
workshop on Architectural and system support for improving software dependability, San Jose,
California, Oct 2006 ACM.
LINZHANG, W., JIESONG, Y., XIAOFENG, Y., JUN, H., XUANDONG, L. and GUOLIANG, Z. 2004.
Generating test cases from UML activity diagrams based on gray-box method. In Proceedings of
the 11th Asia-Pacific Software Engineering Conference, Busan, Korea, 30 Nov - 3 Dec 2004, 284-
291.
LOPEZ-GRAO, J.P., MERSEGUER, J. and CAMPOS, J. 2004. From UML activity diagrams to
Stochastic Petri nets: application to software performance engineering. In Proceedings of the 4th
international workshop on Software and performance, Redwood Shores, California, Jan 2004
ACM.
MADRAS, N. and SLADE, G. 1996. The Self-Avoiding Walk. Springer Verlag.
MASRI, W., PODGURSKI, A. and LEON, D. 2007. An Empirical Study of Test Case Filtering
Techniques Based on Exercising Information Flows. IEEE Transactions on Software Engineering
33, 454-477.
MCGRAW-HILL 2003. Dictionary of Scientific & Technical Terms. In Dictionary of Scientific &
Technical Terms The McGraw-Hill Companies, Inc.
MCMINN, P. 2004. Search-based software test data generation: A survey. Software Testing,
Verification and Reliability 14, 105-156.
MCMINN, P., HARMAN, M., BINKLEY, D. and TONELLA, P. 2006. The species per path approach to
search-based test data generation. In Proceedings of the International symposium on Software
testing and analysis, Portland, Maine, USA, July 2006 ACM.

 267

MCQUILLAN, J.A. and POWER, J.F. 2005. A Survey of UML-Based Coverage Criteria for Software
Testing National University of Ireland, Maynooth, 18.
MENS, T. and GROP, P.V. 2006. A Taxonomy of Model Transformation. Electronic Notes in
Theoretical Computer Science 152, 125-142.
MENS, T., VAN GORP, P., VARRO, D. and KARSAI, G. 2006. Applying a Model Transformation
Taxonomy to Graph Transformation Technology. In Proceedings of the International Workshop
on Graph and Model Transformation (GraMoT 2005), Sept 2006, 143--159.
MERSEGUER, J. 2003. Software Performance Engineering based on UML and Petri Nets
University of Zaragoza, Zaragoza.
MERZ, S. 2000. Model Checking: a tutorial overview. In Modeling and verification of parallel
processes Springer, 3-38.
MICHAEL, C., MCGRAW, G., SCHATZ, M. and WALTON, C. 1997. Genetic algorithms for dynamic
test data generation. In Proceedings of the IEEE International Conference on Automated
Software Engineering, Nov 1997, 307-308.
MICHAEL, C.C., MCGRAW, G. and SCHATZ, M.A. 2001. Generating software test data by
evolution. In IEEE Transactions on Software Engineering, 1085–1110.
MILICEV, D. 2002. Automatic Model Transformations Using Extended UML Object Diagrams in
Modeling Environments. IEEE Transactions on Software Engineering 28, 413-431.
MINGSONG, C., XIAOKANG, H. and XUANDONG, L. 2006. Automatic Test Case Generation for
UML Activity Diagrams. In Proceedings of the Automated Software Testing, Shanghai, China2006
ACM.
MITCHELL, M. 1998. An Introduction to Genetic Algorithms. The MIT Press, Massachusettss.
MITCHELL, M., FORREST, S. and HOLLAND, J.H. 1992. The Royal Road for Genetic Algorithms:
Fitness Landscapes and GA Performance. In First European Conference on Artifical Life MIT Press.
MÜHLENBEIN, H. 1991. Darwin's continent cycle theory and its simulation by the Prisoner's
Dilemma. Complex Systems 5, 459-478.
MYERS, G.J. 1979. The Art of Software Testing. John Wiley & Sons, New York.
NAMIN, A.S. and ANDREWS, J.H. 2009. The influence of size and coverage on test suite
effectiveness. In Proceedings of the Proceedings of the eighteenth international symposium on
Software testing and analysis, Chicago, IL, USA2009 ACM.
NETO, A.C.D., SUBRAMANYAN, R., VIEIRA, M. and TRAVASSOS, G.H. 2007. A survey on model-
based testing approaches: a systematic review. In Proceedings of the 1st ACM international
workshop on Empirical assessment of software engineering languages and technologies: held in
conjunction with the 22nd IEEE/ACM International Conference on Automated Software
Engineering (ASE) 2007, Atlanta, Georgia, Nov 2007 ACM.
NIST 2011. Dataplot Satistical Engineering Division, NIST.
NIST/SEMATECH 2010. e-Handbook of Statistical Methods NIST/SEMATECH.
NTAFOS, S.C. 1988. A comparison of some structural testign strategies. IEEE Transactions on
Software Engineering 14, 868-874.
O'DARE, M.J. and ARSLAN, T. 1994. Generating test patterns for VLSI circuits using a genetic
algorithm. Electronics Letters 30, 778-779.
OFFUTT, A.J. 1992. Investigations of the Software Testing Coupling Effect. ACM Transactions on
Software Engineering Methodology 1, 3-18.
OFFUTT, A.J. and ABDURAZIK, A. 1999. Generating Tests from UML Specifications. In 2nd
International Conference on the Unified Modeling Language (UML'99), Colorado, USA, 14.
OFFUTT, A.J., PAN, J. and VOAS, J. 1995. Procedures for Reducing the Size of Coverage-based
Test Sets. In International Conference on Testing Computer Software, Washington D.C., USA,
111-123.
OFFUTT, A.J., PAN, J. and VOAS, J.M. 1995. Procedures for Reducing the Size of Coverage-based
Test Sets. In Proceedings of the International Conference on Testing Computer Software1995,
111-123.

 268

OFFUTT, J. 1995. A Practical System for Mutation Testing: Help for the Common Programmer. In
12th International Conference on Testing Computer Software, Washington D.C., USA, 99-109.
OLIVER, I.M., SMITH, D.J. and HOLLANDT, J.R.C. 1987. A study of permutation crossover
operatord on the Traveling Salesman Problem. In Proceedings of the Second International
Conference on Genetic Algorithms and their Applications, July 1987, 224-230.
OMG 2005. UML 2.0 Superstructure Specification, 709.
OMG 2005. UML 2.0 Superstructure Specification Object Management Group, 709.
OMG 2007. MOF 2.0 / XMI Mapping 2.1.1 Object Management Group, 120.
OMG 2007. Unified Modeling Language: Superstructure Object Management Group, 732.
OMG 2008. UML Profile for Modeling and Analysis of Real-time and Embedded Systems Object
Management Group, 1-664.
OSTER, N. and SAGLIETTI, F. 2006. Automatic Test Data Generation by Multi-Objective
Optimisation. In 25th International Conference on Computer Safety, Reliability and Security
(SAFECOMP 2006) Springer-Verlag, 426-438.
OULD, M. and PRAXIS, B. 1991. Testing-a challenge to method and tool developers. Software
Engineering Journal 6, 59-64.
PARADKAR, A. 2005. Case studies on fault detection effectiveness of model based test
generation techniques. In Proceedings of the 1st international workshop on Advances in model-
based testing, St. Louis, Missouri, July 2005 ACM.
PARGAS, R.P., HARROLD, M.J. and PECK, R.R. 1999. Test-data generation using genetic
algorithms. The Journal of Software Testing, Verification and Reliability 9, 263–282.
PARMEE, I.C. and DENHAM, M.J. 1994. The integration of adaptive search techniques with
current engineering design practice. In Proceedings of the ACEDC'94, Plymouth, UK, Aug 1994, 1-
13.
PATTON, R.M., WU, A.S. and WALTON, G.H. 2003. A genetic algorithm approach to focused
software usage testing. In Software Engineering with Computational Intelligence, T.M.
KHOSHGOFTAAR Ed. Kluwer Academic Publishers, 259-286.
PEDRO, S.-N., RODOLFO, F.R., CLARINDO, P. and DUA 2008. An evaluation of a model-based
testing method for information systems. In Proceedings of the ACM symposium on Applied
computing, Fortaleza, Ceara, Brazil, Mar 2008 ACM.
PELÁNEK, R., HANŽL, T., ČERNÁ, I. and BRIM, L. 2005. Enhancing random walk state space
exploration. In Proceedings of the 10th international workshop on Formal methods for industrial
critical systems, Lisbon, Portugal, Sept 2005 ACM.
PELTIER, M., ZISERMAN, F. and BÉZIVIN, J. 2000. On Levels of Model Transformation. In
Proceedings of the XML Europe 2000, Paris, France, 12-16 June 2000.
PERRY, W. 2006. Effective Methods for Software Testing. Wiley Publishing, Inc., Indianapolis,
Indiana.
PHYLLIS, G.F. and OLEG, I. 1998. Further empirical studies of test effectiveness. SIGSOFT Softw.
Eng. Notes 23, 153-162.
PRENNINGER, W. and PRETCHNER, A. 2005. Abstractions for Model-Based Testing. Electronic
Notes in Theoratical Computer Science 116, 59-71.
PRESSMAN, R. 2001. Software Engineering: A Practitioners Approach. McGraw - Hill, New York.
PRETSCHNER, A. and PHILIPPS, J. 2005. Methodological Issues in Model-Based Testing. In Model-
Based Testing of Reactive Systems, 281-291.
PRETSCHNER, A., PRENNINGER, W., WAGNER, S., KUHNEL, C., BAUMGARTNER, M., SOSTAWA, B.,
ZOLCH, R. and STAUNER, T. 2005. One evaluation of model-based testing and its automation. In
Proceedings of the International conference on Software engineering, St. Louis, MO, USA, May
2005 ACM.
PRINS, C. 2004. A simple and effective evolutionary algorithm for the vehicle routing problem.
Computers & Operations Research 31, 1985-2002.

 269

RAMASWAMY, S. and NEELAKANTAN, R. 2002. Software Design and Testing Using Petri Nets: A
Case Study Using a Distributed Simulation Software System. In Proceedings of the Performance
Metrics for Intelligent Systems, Gaithersburg, MD, Gaithersburg, MD 2002.
RECHENBERG, I. 1973. Evolutionsstrategie, optimierung technischer systeme nach prinzipien der
biologischen evolution. Stuttgart: Frammann-Holzboog Verlag.
RENLUND, H. 2005. Reinforced Random Walk Department of Mathematics, Uppsala University,
53.
RESEARCH, M. 2010. Model-based Testing with SpecExplorer Microsoft Research.
REYNOLDS, R., ZANNONI, E. and POSNER, R. 1994. Learning to understand software using
cultural algorithms. In 3rd Annual Conf on Evolutionary Programming, San Diego, CA, 150-157.
RICE, R.W. 2010. The Economics of Testing Rice Consulting, 5.
ROBINSON, H. 1999. Graph Theory Techniques in Model-Based Testing. In International
Conference on Testing Computer Software, 12.
ROBINSON, H. 2000. Intelligent Test Automation. Software Testing & Quality Engineering, 24-32.
RODRIGUES, R.W.S. 2000. Formalising UML Activity Diagrams using Finite State Processes. In
Proceedings of the International Workshop on Dynamic Behavior in UML Models: Semantic
Questions, Oct 2000, A.K. G. REGGIO, B. RUMPE, B. SELIC AND R. WIERINGA Ed. Inst. f.
Informatik, Ludwig-Maximilians-Universität, München, 92-98.
ROGER, F. and BOGDAN, K. 1996. The chaining approach for software test data generation. ACM
Transactions on Software Engineering and Methodology 5, 63-86.
ROPER, M. 1996. CAST with GAs (Genetic Algorithms) - Automatic Test Data Generation via.
Evolutionary Computation. In IEE Colloquium on Computer Aided Software Testing Tools.
ROSARIA, S. and ROBINSON, H. 2000. Applying Models in your Testing Process. Information and
Software Technology 42, 16.
ROTHERMEL, G. and ELBAUM, S. 2003. Putting your best tests forward. Software, IEEE 20, 74-77.
ROTHERMEL, G. and HARROLD, M.J. 1993. A safe, efficient algorithm for regression test
selection. In Proceedings of the Conference on Software Maintenance, Sept 1993, 358-367.
ROTHERMEL, G., HARROLD, M.J., OSTRIN, J. and HONG, C. 1998. An empirical study of the effects
of minimization on the fault detection capabilities of test suites. In Proceedings of the
Conference on Software Maintenance, Nov 1998, 34-43.
ROTHERMEL, G., UNTCH, R.H., CHENGYUN, C. and HARROLD, M.J. 1999. Test case prioritization:
an empirical study. In Proceedings of the IEEE International Conference on Software
Maintenance, 30 Aug - 3 Sept 1999, 179-188.
ROTHERMEL, G., UNTCH, R.H., CHENGYUN, C. and HARROLD, M.J. 2001. Prioritizing test cases for
regression testing. IEEE Transactions on Software Engineering 27, 929-948.
ROTHLAUF, F. 2006. Representations for Genetic and Evolutionary Algorithms. Springer.
ROUNTEV, A., KAGAN, S. and SAWIN, J. 2005. Coverage criteria for testing of object interactions
in sequence diagrams. In Proceedings of the Fundamental Approaches to Software Engineering,
Apr 2005 Springer, 282-297.
SAMI, K. and BATAREKH, A. 1990. Heuristics for the Integer Knapsack Problem. In Proceedings of
the Xth International Computer Science Conference, Santiago, Chile, June 1990, 161-172.
SAMI, K., THOMAS, B. and HEIKOTTER, J. 1994. The zero/one multiple knapsack problem and
genetic algorithms. In Proceedings of the ACM symposium on Applied computing, Phoenix,
Arizona, United States, July 1994 ACM.
SCHAFFER, J.D. 1985. Multiple objective optimization with vector evaluated genetic algorithms.
In Proceedings of the First International Conference on Genetic Algorithms1985, 93-100.
SCHAFFER, J.D., CARUANA, R.A., ESHELMAN, L.J. and DAS, R. 1989. A study of control parameters
affecting online performance of genetic algorithms for function optimization. In Proceedings of
the 3rd International Conference on Genetic Algorithms, Fairfax, VA, June 1989 Morgan
Kaufmann, 51-60.

 270

SCHATTKOWSKY, T. and FORSTER, A. 2007. On the Pitfalls of UML 2 Activity Modeling. In
Proceedings of the International Workshop on Modeling in Software Engineering May 2007 IEEE
Computer Society.
SCHATTKOWSKY, T. and FORSTER, A. 2007. On the Pitfalls of UML 2 Activity Modeling. In
Proceedings of the International Workshop on Modeling in Software Engineering, May 2007 IEEE
Computer Society.
SCHÜRR, A., WINTER, A.J. and ZÜNDORF, A. 1997. The Progres Approach: Language And
Environment. In Handbook of graph grammars and computing by graph transformation:
Foundations, H. EHRIG, H.-J.K. G. ENGELS and G. ROZENBERG Eds. World Scientific Publishing,
487-550.
SELIC, B. 2008. Filling in the Whitespace: A Strategy for Research in Model-Driven Development
Malina Software Corp., Carleton, Canada, 38.
SENDALL, S. and STROHMEIER, A. 2002. Using OCL and UML to Specify System Behavior. Object
Modeling with the OCL, LNCS 2263, 250-279.
SHEN, W., COMPTON, K. and HUGGINS, J. 2001. A UML Validation Toolset Based on Abstract
State Machines. In 16th IEEE International Conference on Automated Software Engineering
(ASE'01), San Diego, USA, 315-318.
SHIBA, T., TSUCHIYA, T. and KIKUNO, T. 2004. Using Artificial Life Techniques to Generate Test
Cases for Combinatorial Testing. In 28th Annual International Computer Software and
Applications Conference (COMPSAC'04) IEEE, Hong Kong, 72-77.
SHOUSHA, M., BRIAND, L. and LABICHE, Y. 2008. A UML/SPT Model Analysis Methodology for
Concurrent Systems Based on Genetic Algorithms Carleton University, Ottawa, 18.
SILVER, E.A., VIDAL, R.V.V. and WERRA, D.D. 1980. A tutorial on heuristic methods. European
Journal of Operational Research 5, 153-162.
SINHA, A., WILLIAMS, C.E. and SANTHANAM, P. 2006. A measurement framework for evaluating
model-based test generation tools. IBM Systems Journal 45, 501-514.
SIVARAJ, H. and GOPALAKRISHNAN, G. 2003. RandomWalk Based Heuristic Algorithms for
Distributed Memory Model Checking University of Utah, School of Computing, Salt Lake City.
SNYERS, D. and PETILLOT, Y. 1995. Image processing optimization by genetic algorithm with a
new coding scheme. Pattern Recogn. Lett. 16, 843-848.
SOUZA, S.D.R.S.D., MALDONADO, J.C., FABBRI, S.C.P.F. and SOUZA, W.L.D. 1999. Mutation
Testing Applied to Estelle Specifications. Software Quality Control 8, 285-301.
SRIVASTAVA, A. and THIAGARAJAN, J. 2002. Effectively prioritizing tests in development
environment. SIGSOFT Softw. Eng. Notes 27, 97-106.
STACHOWIAK, H. 1973. Allgemeine Modelltheorie. Wien: Springer.
STANDARD, E. 2001. EN Std 50128 - 2001 BSEN. In EN Std 50128 - 2001 BS EN, 0_1-110.
STATSOFT 2011. StatSoft Electronic Statistics Textbook StatSoft, Inc, Tulsa, OK.
STHAMER, H. 1996. The Automatic Generation of Software Test Data Using Genetic Algorithms.
University of Glamorgan, Pontyprid, Wales, Great Britain.
STOBIE, K. 2005. Model Based Testing in Practice at Microsoft. Electronic Notes in Theoretical
Computer Science 111, 5-12.
STOCKS, P.A. 1993. Applying formal methods to software testing. In Department of computer
science University of Queensland, Brisbane.
STÖRRLE, H. 2004. Semantics of Control-Flow in UML 2.0 Activities. In IEEE Symposium on Visual
Languages and Human-Centric Computing IEEE Computer Society, 235-242.
STÖRRLE, H. 2004. Structured Nodes in UML 2.0 Activities. Nordic Journal of Computing 11, 279-
302.
STÖRRLE, H. and HAUSMANN, J.H. 2005. Semantics and Verification of Data Flow in UML 2.0
Activities. Electronic Notes Theoratical Computer Science 127, 35-52.
STÖRRLE, H. and HAUSMANN, J.H. 2005. Towards a Formal Semantics of UML 2.0 Activities. In
Proceedings of the Software Engineering, Essen, March 8-11 2005, 117-128.

 271

SUGETA, T., MALDONADO, J.C. and WONG, W.E. 2004. Mutation Testing Applied to Validate SDL
Specifications. In TestCom Springer, Oxford, UK, 193-208.
SYSTEMS, S. 2008. Enterprise Architect Sparx Systems, Creswick, Australia, CASE Tool.
T. Y. CHEN and LAU, M.F. 2003. On the divide-and-conquer approach towards test suite
reduction. Information sciences 152, 89-119.
TAGHI, M.K., YI, L. and NAEEM, S. 2004. Module-Order Modeling using an Evolutionary Multi-
Objective Optimization Approach. In Proceedings of the 10th International Symposium on
Software Metrics, Sept 2004 IEEE Computer Society.
TAI, K. 1989. Testing of concurrent software. In 13th Annual International Computer Software
and Applications Conference, 62-64.
TALBI, E.-G. 2009. Metaheuristics: from design to implementation. John Wiley & Sons.
TALLAM, S. and GUPTA, N. 2005. A Concept Analysis Inspired Greedy Algorithm for Test Suite
Minimization. In Workshop on Program Analysis for Software Tools and Engineering ACM,
Lisbon, Portugal.
TAN, G. 2009. A Collection of Well-Known Software Failures Lehigh University.
TASSEY, G. 2002. The Economic Impacts of Inadequate Infrastructure for Software Testing
National Institute of Standards & Technology (NIST), Gaithersburg, 309.
TATE, D.M. and SMITH, A.E. 1992. A Genetic Approach to the Quadratic Assignment Problem.
Computers & Operations Research, 24.
TAVARES, J., PEREIRA, F.B. and COSTA, E. 2008. Multidimensional Knapsack Problem: A Fitness
Landscape Analysis IEEE Trans. Systems, Man, and Cybernatics 38, 604-616.
TENNANT, A. and CHAMBERS, B. 1994. Adaptive optimisation techniques for the design of
microwave absorbers. In Proceedings of the ACEDC'94, Plymouth, UK, Aug 1994, 44-49.
THOMAS, D. 2004. MDA: revenge of the modelers or UML utopia? Software, IEEE 21, 15-17.
TOBIAS, B. and LOTHAR, T. 1995. A Mathematical Analysis of Tournament Selection. In
Proceedings of the International Conference on Genetic Algorithms, July 1995 Morgan Kaufmann
Publishers Inc.
TRACEY, N., CLARK, J. and MANDER, K. 1998. Automated program flaw finding using simulated
annealing. In International Symposium on Software Testing and Analysis ACM/SIGSOFT, 73-81.
TRACEY, N., CLARK, J., MANDER, K. and MCDERMID, J. 1998. An Automated Framework for
Structural Test-Data Generation, 4 pages.
UTTING, M. 2005. Position paper: Model-Based Testing. In Proceedings of the Verified Software:
Theories, Tools, Experiments, ETH Zürich, 10-15 October 2005 Springer.
UTTING, M. 2008. The Role of Model-Based Testing. Lecture Notes in Computer Science 4171,
510-517.
UTTING, M. and LEGEARD, B. 2006. Practical Model-Based Testing - A Tools Approach. Morgan
Kaufmann.
UTTING, M. and LEGEARD, B. 2007. Commercial MBT Tools Waikato University, 2.
UTTING, M., PRETSCHNER, A. and LEGEARD, B. 2006. A Taxonomy of model-based testing. In
Working paper series Department of Computer Science, 18.
VARRO, D., VARRO, G. and PATARICZA, A. 2002. Designing the automatic transformation of
visual languages. Sci. Comput. Program. 44, 205-227.
W3C 2010. The Extensible Stylesheet Language Family (XSL) World Wide Web Consortium
(W3C).
WAGNER, S. 2006. A Literature Survey of the Quality Economics of Defect-Detection Techniques.
In Proceedings of the International Symposium on Empirical Software Engineering Rio de Janeiro,
Brazil, Sept. 21-22 2006 ACM, 194-204.
WANG, L., YUAN, J., YU, X., HU, J., LI, X. and ZHENG, G. 2004. Generating Test Cases from UML
Activity Diagram based on Gray-Box Method. In Asia-Pacific Software Engineering Conference
(APSEC'04), Busan, Korea, 284-291.

 272

WATANABE, H. and KUDOH, T. 1995. Test Suite Generation Methods for Concurrent Systems
Based on Colored Petri Nets. In Proceedings of the Second Asia Pacific Software Engineering
Conference, Dec 1995 IEEE Computer Society.
WATKINS, A. 1995. The automatic generation of test data using genetic algorithms. In 4th
Software Quality Conf, Dundee, UK, 300-309.
WEGENER, J., BARESEL, A. and STHAMER, H. 2001. Evolutionary test environment for automatic
structural testing. Information and Software Technology - Special Issue on Software Engineering
using Metaheuristic Innovative Algorithms 43, 841-854.
WEGENER, J., EYRES, D.E., STHAMER, H. and JONES, B.F. 1997. Testing real-time systems using
genetic algorithms. Software Quality 6, 127–135.
WEINBERGER, E.D. 1990. Correlated and Uncorrelated landscape and How to tell the difference.
Biological Cybernatics 63, 325-336.
WEYUKER, E. 1990. The cost of data flow testing: An empirical study. IEEE Transactions on
Software Engineering 16, 121-127.
WHITE, L.J. and COHEN, E.I. 1980. A domain strategy for computer program testing. IEEE
Transactions on Software Engineering 6, 247-257.
WHITLEY, D. 1993. A Genetic Algorithm Tutorial Colorado State University, Colorado, 37.
WILLIAMS, C.E. 1999. Software Testing and the UML. In Proceedings of the International
Symposium on Software Reliability Engineering (ISSRE'99), Boca Raton, November 1-4 1999, 2.
WILLIAMS, T.W., MERCER, M.R., MUCHA, J.P. and KAPUR, R. 2001. Code Coverage, What Does It
Mean in Terms of Quality? In Proceedings of the Annual Symposium on Reliability and
Maintainability, Jan 2001, 420-424.
WILSON, S.W. 1987. The Genetic Algorithm and biological developmenturce code to solve the
Prisoner's Dilemma. In Proceedings of the Second International Conference on Genetic
Algorithms and their Applications, July 1987, 247-251.
WOLPERT, D.H. and MACREADY, W.G. 1997. No free lunch theorems for optimization.
Evolutionary Computation, IEEE Transactions on 1, 67-82.
WONG, W.E., HORGAN, J.R., LONDON, L. and MATHUR, A.P. 1995. Effect of Test Set
Minimization on Fault Detection Effectiveness. In 17th International Conference on Software
Engineering, 41-50.
WONG, W.E., HORGAN, J.R., LONDON, S. and MATHUR, A.P. 1994. Effect of Test Set Size and
Block Coverage on the Fault Detection Effectiveness. In 5th International Symposium on
Software Reliability Engineering, 230-238.
WONG, W.E., HORGAN, J.R., MATHUR, A.P. and PASQUINI, A. 1997. Test Set Size Minimization
and Fault Detection Effectiveness: A Case Study in a Space Application In Proceedings of the
Annual International Computer Software & Applications Conference1997, 522-528.
WONG, W.E., HORGAN, J.R., MATHUR, A.P. and PASQUINI, A. 1999. Test set size minimization
and fault detection effectiveness: A case study in a space application Journal of Systems and
Software 48, 79-89.
WOODWARD, M.R., HEDLEY, D. and HENNELL, M.A. 1980. Experience with path analysis and
testing of programs. IEEE Transactions on Software Engineering 6, 278-286.
XIE, T., MARINOV, D. and NOTKIN, D. 2004. Rostra: A Framework for Detecting Redundant
Object-Oriented Unit Tests. In Automated Software Engineering IEEE, Linz, Austria, 196-205.
XU, D., LI, H. and LAM, C.P. 2005. Using Adaptive Agents to Automatically Generate Test
Scenarios from the UML Activity Diagrams. In Proceedings of the 12th Asia-Pacific Software
Engineering Conference, Dec 2005 IEEE Computer Society.
YANG, D. and ZHANG, S. 2003. Using π-calculus to formalize UML activity diagram for business
process modeling. In Engineering of Computer-Based Systems, 2003. Proceedings. 10th IEEE
International Conference and Workshop on the, 47-54.

 273

YANG, R.-D. and CHUNG, C.-G. 1990. A path analysis approach to concurrent program testing. In
Ninth Annual International Phoenix Conference on Computers and Communications IEEE
Computer Society, Scottsdale, AZ, USA, 425-432.
YANPING, C., ROBERT, L.P. and HASAN, U. 2007. Regression test suite reduction using extended
dependence analysis. In Proceedings of the Fourth international workshop on Software quality
assurance: in conjunction with the 6th ESEC/FSE joint meeting, Dubrovnik, Croatia, Sept 2007
ACM.
YE, R. and MALAIYA, Y.K. 2002. Relationship Between Test Effectiveness and Coverage. In
Proceedings of the International Symposium on Sftware Reliability Engineering, November 2002,
159-160.
YOO, S. and HARMAN, M. 2007. Pareto efficient multi-objective test case selection. In
International Symposium on Software Testing and Analysis, London, United Kingdom, 140-150.
YOUNG, M. and TAYLOR, R.N. 1989. Rethinking the taxonomy of fault detection techniques. In
Proceedings of the International conference on Software engineering, Pittsburgh, Pennsylvania,
United States, May 1989 ACM.
YU-SEUNG, M., JEFF, O. and YONG RAE, K. 2005. MuJava: an automated class mutation system:
Research Articles. Softw. Test. Verif. Reliab. 15, 97-133.
YVES, V., PETER, R. and YOLANDE, B. 2008. Genetic algorithm-based optimization of service
composition and deployment. In Proceedings of the International workshop on Services
integration in pervasive environments, Sorrento, Italy, July 2008 ACM.
ZHAN, Y. and CLARK, J.A. 2005. Search-based mutation testing for Simulink models. In
Proceedings of the Conference on Genetic and evolutionary computation, Washington DC, USA,
June 2005 ACM.
ZHANG, Y., HARMAN, M. and MANSOURI, S.A. 2007. The multi-objective next release problem.
In Proceedings of the Annual conference on Genetic and evolutionary computation, London,
England, July 2007 ACM.
ZHU, H., HALL, P.A.V. and MAY, J.H.R. 1997. Software unit test coverage and adequacy. ACM
Computing Surveys 29, 366-427.
ZHU, H. and HE, X. 2002. A methodology of testing high-level Petri nets. Information and
Software Technology 44, 473-489.
ZITZLER, E. and LOTHAR, T. 1999. Multiobjective Evolutionary Algorithms: A Comparative Case
Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 3, 257-
271.

 274

Appendix A. AD to CPN Transformation

1. Implementation

In Chapter 3, the AD to CPN transformation methodology and selected technology are

described. The implementation of proposed three step methodology is described as follows:

1. At first step, the typical ambiguities are identified and removed from AD model.

2. Secondly, the refined AD model is transformed into CPN model, and

3. Finally, enhancements in the CPN model are performed in order to make it

executable.

4. Most of the CPN tools use XML based files to store all the information about the

models.

XSLT is a standard technology for transformation between XML or other structured

documents. Extensible Stylesheet Language (XSL) is an XML-based language to specify the

transformation rules also known as templates. An XSLT engine takes XML based input document

and XSL Stylesheet, and produces target document. On loading input document, the engine

prepares source tree from it and then starts acting on the templates in the Stylesheet

sequentially by navigating to the nodes in the source tree as specified in templates. One finding

an exact matching, the engine then either creates one or more nodes in the result tree, or

processes them in the source tree according to the instructions in each template. The output is

finally derived from the result tree. A typical implementation of a XSLT based transformation

consists of four parts:

1. One or more XML based input documents

2. One or more transformation templates specified in XML based Stylesheet

3. A XSLT templates execution engine.

4. One or more XML based output documents

In order to realize the proposed XSL based transformation of AD models into CPN

models, they were needed in XML format. So the case study AD models were exported into XMI

file. The transformation rules were implemented in XSL Stylesheet and specified in the following

 275

section. For the execution of transformation templates, the home edition of ‘Saxon’ [Kay 2010],

an open source XSLT execution engine was used. It provides the implementations of latest

versions of XSLT, XQuery, and XPath at the basic level of conformance as defined by W3C [W3C

2010].

2. XSL templates for AD to CPN Transformation

In this section, the XSL templates are presented. The templates are based on the

transformation rules defined in Chapter 3 for AD to CPN transformation. The first template is

main template which calls the templates related with pre-transformation, transformation and

post-transformation steps. The ActivitytoNet template performs the transformation step and

calls the rest of the templates on each occurrence of the associated element in AD model (XML

format).

1. AD to CPN Template

2. Pre-Transformation Step Template

3. Activity to Net Template

 276

4. Action to Transition Template

5. Fork or Join to Transition Template

 277

6. Merge or Decision to Place Template

7. Initial Node to Place Template

 278

8. Final Node to Place Template

9. Edge to Arc Template (Place to Transition)

 279

10. Edge to Arc Template (Transition to Place)

11. Edge to Arc Template (Transition to Transition)

 280

12. Edge to Arc Template (Place to Place)

13. Post-Transformation Step Template

3. CPN Model of Case Studies

Following are the CPN models (without marking) produced from the case study AD

models using model transformation methodology mentioned in Chapter 3.

 281

a. Enterprise Customer Commerce System (ECCS)

Figure A-1: ECCS CPN model

s

s

s

s s

s

s

s

s

s

s

s

s

s s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s
s

s

s

s

s

s

s

s

s

s

s

s

s

ss

DmyM10

DmyM9

DmyM8

DmyM6

DmyM7DmyM5

DmyM2

DmyM4

DmyM1

DmyM3

DmyM0

Dmy2

Configure

Verify

F2&3

Dmy1

Put

Order

Select

F1

Register

Authenticate

F4

Logon

Init

DmyM4

STRING

DmyM2STRING

DmyM1

STRING

Dmy3STRING

D7
STRING

Dmy1STRING

M
STRING

D5

STRING

P6

STRING

D3

STRING

D6 STRING

DmyM3

STRING

D2
STRING

D4
STRING

P5
STRING

D1
STRING

Final STRING

Init

STRING

s

28

2

b
.

A
u

to
m

at
ed

 T
el

le
r

M
ac

h
in

e
(A

T
M

)

Fi
gu

re
 A

-2
: A

TM
 C

PN
 m

od
el

s

s

s

s s
s

s

s

s

s

s

s

s
s

s

s

s

s

s

s

s

s

ss

s

s

s

s s

s
s

s

s

s

s
s

s

s
s

s

s
s

s

s
s

s

s

s
s

s

s
s

s

J3
C

S
1

E
C

1

C
C

1

J2

D
M

1

F2

A
U

1

O
S

1

dt
2

C
B

1
C

he
ck

B
al

an
ce

D
e1

D
ep

os
it Tr

1
Tr

an
sf

er
Fu

nd
P

T1
F1

R
A

1

J1

P
P

1

W
i1

W
ith

dr
aw

C
as

h

E
P

1

V
C

1
E

F1
IC

1

dm
16

TK
N

A
F2

TK
N

dm
17

TK
N

dm
15TK

N

M
1

TK
N

dm
9

TK
N

dm
10 TK

N
dm

14
TK

N

D
4

TK
N

A
F1

TK
N

D
1

TK
N

D
2

TK
N

dm
6

TK
N

M
2TK

N
D

3

TK
N

dm
5

TK
N

dm
4

TK
N

dm
3

TK
N

E
M

0

TK
N

E
M

1 TK
N

dm
1

TK
N

In
it

TK
N

W
ith

dr
aw

C
as

h

Tr
an

sf
er

Fu
nd

D
ep

os
it

C
he

ck
B

al
an

ce

28

3

Fi
gu

re
 A

-3
: C

he
ck

 b
al

an
ce

s

s

s

ss

s

ss

s
s

s

s

s

ss

s
s

s

s

s

P
P

1

dt
3

dt
4

D
B

1

R
R

1

P
R

1
G

B
1

G
N

1
S

T1
P

T1

M
1

TK
N

dm
4

TK
N

dm
3

TK
N

dm
6

TK
N

dm
5

TK
N

D
2

TK
N

dm
2

TK
N

dm
1

TK
N

C
F1

O
ut

TK
N

In
it

In
TK

N
In

O
ut

28

4

Fi
gu

re
 A

-4
: D

ep
os

it
 c

as
h

s

s

s

s

s

s

ss s

s
s

s

s
s

s

s
s

s

s

s
s

s

s

s

s

s

s
s

s

s

s
s

s

s

R
R

1
J1

D
C

1

J

F2

G
N

1

U
B

1

P
P

1
D

T1

S
A

1

P
R

1

dt
9

F1

S
T1

P
T1

dm
11

TK
N

dm
9

TK
N

D
2

TK
N

dm
13

TK
N

dm
5

TK
N

dm
4

TK
N

dm
14

TK
N

dm
15

TK
N

dm
8

TK
N

dm
7

TK
N

M
1

TK
N

dm
3

TK
N

dm
2

TK
N

dm
6

TK
N

dm
1

TK
N

D
F1

O
ut

TK
N

In
it

In
TK

N
In

O
ut

28

5

Fi
gu

re
 A

-5
: T

ra
ns

fe
r

fu
nd

s

s

s

s

s
s

s

s
s

s

s
s

s

s

ss

s
s

ss

s

s

s
s

s

s

s

s
s

s
s

s
s

ss

s
s

s

s
s

s
s

s s

F
1

G
B

1

dt
2

E
N

1

D
M

1

D
M

2

TF
1

D
T1

R
R

1

dt
3

F
2

S
A

1

P
R

1

U
B

1
J1P
P

1

S
T1

G
N

1

P
T1

dt
1

dm
4

TK
N

dm
3

TK
N

dm
6

TK
N

M
2

TK
N

dm
8

TK
N

D
1

TK
N

D
2

TK
N

dm
10

TK
N

D
3

TK
N

M
3

TK
N

dm
9

TK
N

dm
7

TK
N

dm
1

TK
N

dm
11

TK
N

dm
2

TK
N

dm
5

TK
N

M
1

TK
N

TF
1

O
ut

TK
N

In
it

In
TK

N
In

O
ut

28

6

Fi
gu

re
 A

-6
: W

it
hd

ra
w

 c
as

h

s
s

s
s

s
s

s

s

s

s
s

s

s

s

s

s
s

s
s

s

s

s

s s
ss

s

s
s

s

ss
s

s

s

s

s

s

s
s

ss

s

ss

s

s

s
s

s

s

s

s

s
s

s
s

s

s

s

s
s

s
s

s
s

d
t5

J3

J1

R
C

1
D

C
1

R
R

1
P

R
1

F
2

P
P

1
D

T
1

G
B

2

U
B

2
F

4

F
3

D
M

2

D
M

3

D
M

1

d
t2

U
B

1

d
t3

d
t4

S
A

1

G
B

1

G
N

1
F

1

S
T

1

J2

d
t1

P
T

1

d
m

1
9

T
K

N

d
m

1
8

T
K

N

d
m

1
3

T
K

N
d

m
1

1
T

K
N

D
5

T
K

N

d
m

8
T

K
N

d
m

1
5

T
K

N
d

m
7

T
K

N
d

m
9

T
K

N

d
m

1
4

T
K

N

d
m

1
7

T
K

N

d
m

1
6

T
K

N

M
2

T
K

N
D

6
T

K
N

d
m

5
T

K
N

M
1

T
K

N

d
m

1
2

T
K

N

D
4

T
K

N

D
3

T
K

N

D
2

T
K

N
d

m
4

T
K

N

d
m

6
T

K
N

d
m

3
T

K
N

d
m

2
T

K
N

d
m

1
0

T
K

N

W
F

1
O

ut
T

K
N

d
m

1
T

K
N

D
1

T
K

N
In

it
In

T
K

N
In

O
ut

 287

c. Edit Trend Properties

Figure A-7: ETP CPN model

Figure A-8: ShowTPDialog

s

s

s

s

s

ss

s

LoadTT
LoadTT

ShowTPDlg
ShowTPDlg

setMTDsetTP

AF2

TKN

D3TKN

dm1

TKN

Init

TKN ShowTPDlg

LoadTT

s

s

s

s

s s

s
sssss

dm3

GetUD

CheckAD

GetSDPI PE

D2
TKN

dm2
TKN

WF1
Out

TKN

dm1
TKN

dm0
TKN

Init
In TKNIn

Out

 288

Figure A-9: LoadTT

Figure A-10: ResetCursor

s s s s

s

ss ss

s

s s

ss

s

s

s

s

s

s

sssss

s
sXYS aXAT

aXAFsG

XYGBG

LG

CG

aI
addItems

rC
resetCursor

rDASATG

dm9

TKN

dm8

TKN

dm7

TKN

dm6

TKN

dm5
TKN

dm4
TKN

dm3
TKN

dm2 TKNdm1

TKN

AF

Out TKN

Init
In TKNIn

Out

resetCursor

addItems

s

s

s

s

s

s

sss

s

s

s

dm4

CC

CCT

OnC
OnCursor

AC

DC dm3
TKN

dm1

TKN

dm2
TKN

dm0
TKN

AF
Out TKN

Init
In TKNIn Out OnCursor

 289

Figure A-11: OnCursor

Figure A-12: AddItems

s

s

s s s

s

ss

s

s

s

s

s

s

s

s

s

s
s

s

s

s

s

s

s

s

dm9

DOd

SI

dm8

dm1

CDC

dm7

LEM

dm3

gD

mQdm0

M1
TKN

dm6
TKN

D3
TKN

D4
TKN

M2
TKN

D1
TKN

D2
TKN

dm1
TKN

dm2
TKN

AF

Out

TKN

Init
In TKNIn

Out

s

s

s

s

ss
LI

LoadItems

aTG
addToGraph

CODI

dm1

TKN

WF1
Out TKN

dm0
TKN

Init
In TKNIn

Out

addToGraph

LoadItems

 290

Figure A-13: LoadItems

Figure A-14: addToGraph

s

s

s

s

s

s

s

s s s s

s

sss

s s

s

s

s

s

s

s

s

dm3dm4CS

WV2

shW

MCdm1

RR1

WV

CV

ST1dm0

dm6
TKN

D3
TKN

D2
TKN

M2
TKN

D1
TKN

dm3
TKN

M1
TKN

dm2
TKN

AF
Out

TKN

Init
In TKNIn

Out

s

s

s

s

s

s

s s
s

sssss

AG

dm0

dm3 PlotDG

CGEG gI

dm2
TKN

M1

TKN

dm3
TKN

WF1
Out TKN

dm1
TKN

D1
TKN

Init
In TKNIn

Out

 291

d. Delete Trend Properties

Figure A-15: Delete Trend Properties CPN model

Figure A-16: Remove trend properties

s s s s

s

s

s

sssss

s

s

getTP

setBA

getIT

removeTP
removeTP

DeleteItem

getNSI

getFSP

dm6
TKN

dm5
TKN

dm4
TKN

dm3
TKN

AF2

TKN

dm2
TKN

dm1

TKN

Init

TKN

removeTP

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

ss

s

dm9

rTP TPDA2

LE

getIT

RE

RT

loadTP
LoadTP

TPDA

dm2
TKN

dm3
TKN

D2
TKN

dm0
TKN

D1
TKN

dm1
TKN

AF

Out

TKN

Init
In TKNIn

Out

LoadTP

 292

Figure A-17: Load trend properties

Figure A-18: Force remove trend properties

s

s

s

s

s

s

s s
s

sssss

setTP

dm0

dm3 AddTP2T

GDdm1 TP

dm3
TKN

M1

TKN

dm4
TKN

WF1
Out TKN

dm2
TKN

D1
TKN

Init
In TKNIn

Out

s s s s

s

s

s

sssss

s

s

getDC

ITRD
ITRD

SpCN

getOI

eQry

CSQL

CV

dm6
TKN

dm5
TKN

dm4
TKN

dm3
TKN

AF
Out

TKN

dm2
TKN

dm1

TKN

Init
In

TKN
In Out ITRD

s

s

s

s

s

s

sss

s

RE

fRTP
FRTP

getTP

loadTP
LoadTP

TPDA

D1
TKN

dm2 TKNdm1

TKN

AF
Out TKN

Init
In TKNIn

Out

LoadTP

FRTP

 293

Appendix B. Mutant Model Generation

In Chapter 4, the mutation analysis is proposed for adequacy analysis of a test suite

generated from an AD model. In order to perform such analysis, it is necessary to be able to

generate mutant models by seeding simple faults into the original model. The set of fault types

that can be seeded into a model constitute as the mutant operators. A mutation operator is a

set of rules that describe syntactic changes into the model under test (MUT) to seed a particular

type of faults. In the following, the XSLT-based implementation of the AD-based mutation

operators defined in Chapter 4 is presented.

XML Metamodel Interchange (XMI) is an industry standard format for UML-based model

document. Previously it is mentioned that the XSLT is a standard technology for transformation

of XML based documents or artifacts and XSL is a standard language for specifying the output

style and format which is mostly used along with XSLT. Here the XSL templates are used to

define the mutation operators in the form of XSL transformation rules. The least advantage of

using this approach is that the templates can be used with any programming language that has

well defined Application Programming Interfaces (APIs) for XSL (i.e. .Net and JAXP) or with any

independent XSL engine like the Saxon and the AltovaXML.

Mutating an AD model is similar to mutating a program source and a mutant model is

generated from an original model for each application of a mutant operator. The XSL Processor

parse the input model and produces output model according to the transformation rules

(mutant operators). Thus, the implementation of mutant model generation of AD model

effectively consists of three main components:

1) Original model in XML format – XMI file

2) One or more transformation rules (XSL templates)

3) One or more mutant models in XML format – XMI file

In the following section, an XSL template is defined for each mutant operator defined in

Chapter 4. The XMI standard allows the tool specific data included in the <Extension> element.

In order to view the mutant models in Enterprise Architecture templates are also provided to

update the extension data related to changes made in <Model> element [EA 2008].

 294

1. Mutant Operator Templates

1. Missing Action Operator Template

 295

2. Actions Exchanged Operator Template

 296

 297

3. Extra Inflow Operator Template

 298

4. Extra Inflow Operator Template

 299

5. Inflow Exchanged Operator Template

 300

 301

6. Missing Join Operator Template

 302

7. Invalid Synchronization Operator Template

 303

8. Extra Branch Operator Template

 304

9. Missing Branch Operator Template

 305

10. Missing Merge Operator Template

 306

11. Negation of Condition Operator Template

2. Coverage analysis of ATM test suite

The following table presents the coverage analysis (Coverage (Cov) % and Cumulative

Coverage (CC) %) of a test suite generated for ATM model using the Branch coverage, Interleaving

Node (IN) coverage and Interleaving Edge (IE) coverage criteria.

 307

Table B-1: Coverage analysis of ATM test suite

 Branch Coverage IN Coverage IE Coverage
Tests Cov % CC % Cov % CC % Cov % CC %
TS-1 3.57 3.57 2.65 2.65 1.77 1.77
TS-2 10.71 14.29 4.42 5.31 3.98 3.98
TS-3 3.57 14.29 2.65 6.19 1.77 3.98
TS-4 3.57 14.29 2.65 6.19 1.77 3.98
TS-5 17.86 28.57 7.52 9.29 6.19 6.64
TS-6 10.71 32.14 4.87 9.29 3.98 6.64
TS-7 25.00 53.57 15.49 19.47 12.39 15.49
TS-8 21.43 57.14 15.49 21.68 12.83 17.26
TS-9 3.57 57.14 2.65 21.68 1.77 17.26

TS-10 17.86 57.14 13.27 21.68 11.06 17.26
TS-11 3.57 57.14 2.65 21.68 1.77 17.26
TS-12 3.57 57.14 2.65 21.68 1.77 17.26
TS-13 14.29 57.14 5.75 21.68 3.98 17.26
TS-14 3.57 57.14 2.65 21.68 1.77 17.26
TS-15 10.71 57.14 5.75 21.68 3.98 17.26
TS-16 25.00 60.71 8.85 21.68 6.64 17.26
TS-17 7.14 60.71 2.65 21.68 1.77 17.26
TS-18 3.57 60.71 3.98 21.68 2.21 17.26
TS-19 3.57 60.71 2.65 21.68 1.77 17.26
TS-20 3.57 60.71 2.65 21.68 1.77 17.26
TS-21 3.57 60.71 2.65 21.68 1.77 17.26
TS-22 3.57 60.71 3.98 21.68 2.21 17.26
TS-23 28.57 60.71 9.29 21.68 7.08 17.26
TS-24 10.71 60.71 5.31 21.68 3.54 17.26
TS-25 17.86 67.86 10.18 23.01 7.96 18.14
TS-26 10.71 67.86 5.31 23.01 3.54 18.14
TS-27 17.86 67.86 8.85 23.01 6.64 18.14
TS-28 32.14 67.86 10.62 23.01 7.96 18.14
TS-29 3.57 67.86 2.65 23.01 1.77 18.14
TS-30 3.57 67.86 2.65 23.01 1.77 18.14
TS-31 3.57 67.86 2.65 23.01 1.77 18.14
TS-32 14.29 67.86 9.73 23.01 7.52 18.14
TS-33 21.43 67.86 14.60 23.01 11.95 18.14
TS-34 17.86 67.86 9.73 23.01 7.52 18.14
TS-35 25.00 67.86 9.73 23.01 7.52 18.14
TS-36 25.00 67.86 9.29 23.01 7.08 18.14
TS-37 14.29 67.86 9.73 23.01 7.52 18.14
TS-38 14.29 67.86 5.75 23.01 3.98 18.14
TS-39 21.43 67.86 14.16 23.01 11.95 18.14
TS-40 7.14 67.86 2.65 23.01 1.77 18.14
TS-41 10.71 67.86 5.75 23.01 3.98 18.14
TS-42 17.86 67.86 8.85 23.01 6.64 18.14
TS-43 14.29 67.86 9.73 23.01 7.52 18.14
TS-44 3.57 67.86 2.65 23.01 1.77 18.14
TS-45 3.57 67.86 2.65 23.01 1.77 18.14

 308

TS-46 3.57 67.86 2.65 23.01 1.77 18.14
TS-47 3.57 67.86 2.65 23.01 1.77 18.14
TS-48 3.57 67.86 2.65 23.01 1.77 18.14
TS-49 14.29 67.86 9.73 23.01 7.52 18.14
TS-50 25.00 67.86 10.62 23.01 7.96 18.14
TS-51 14.29 67.86 9.73 23.01 7.52 18.14
TS-52 3.57 67.86 2.65 23.01 1.77 18.14
TS-53 3.57 67.86 2.65 23.01 1.77 18.14
TS-54 3.57 67.86 2.65 23.01 1.77 18.14
TS-55 14.29 67.86 8.85 23.01 6.64 18.14
TS-56 3.57 67.86 2.65 23.01 1.77 18.14
TS-57 3.57 67.86 2.65 23.01 1.77 18.14
TS-58 3.57 67.86 2.65 23.01 1.77 18.14
TS-59 3.57 67.86 2.65 23.01 1.77 18.14
TS-60 14.29 67.86 9.73 23.01 7.52 18.14
TS-61 10.71 67.86 5.75 23.01 3.98 18.14
TS-62 17.86 67.86 5.75 23.01 3.98 18.14
TS-63 25.00 67.86 13.27 23.01 11.06 18.14
TS-64 3.57 67.86 2.65 23.01 1.77 18.14
TS-65 7.14 67.86 2.65 23.01 1.77 18.14
TS-66 25.00 67.86 10.62 23.01 7.96 18.14
TS-67 10.71 67.86 5.75 23.01 3.98 18.14
TS-68 17.86 67.86 8.41 23.01 6.64 18.14
TS-69 3.57 67.86 2.65 23.01 1.77 18.14
TS-70 14.29 67.86 9.29 23.01 7.52 18.14
TS-71 10.71 67.86 6.19 23.01 3.98 18.14
TS-72 17.86 67.86 8.85 23.01 6.64 18.14
TS-73 10.71 67.86 5.75 23.01 3.98 18.14
TS-74 10.71 67.86 5.75 23.01 3.98 18.14
TS-75 3.57 67.86 2.65 23.01 1.77 18.14
TS-76 21.43 67.86 14.16 23.01 11.95 18.14
TS-77 3.57 67.86 2.65 23.01 1.77 18.14
TS-78 3.57 67.86 2.65 23.01 1.77 18.14
TS-79 3.57 67.86 2.65 23.01 1.77 18.14
TS-80 3.57 67.86 2.65 23.01 1.77 18.14
TS-81 7.14 67.86 2.65 23.01 1.77 18.14
TS-82 3.57 67.86 2.65 23.01 1.77 18.14
TS-83 3.57 67.86 2.65 23.01 1.77 18.14
TS-84 3.57 67.86 2.65 23.01 1.77 18.14
TS-85 3.57 67.86 2.65 23.01 1.77 18.14
TS-86 3.57 67.86 2.65 23.01 1.77 18.14
TS-87 25.00 89.29 17.26 34.07 14.60 29.20
TS-88 3.57 89.29 2.65 34.07 1.77 29.20
TS-89 28.57 100.00 22.12 37.61 19.91 34.51

	Model based test suite minimization using metaheuristics
	Recommended Citation

	Model based test suite minimization using metaheuristics

