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Abstract:   

     Position control system of an Electro-Hydraulic Actuator System (EHAS) is investigated in this paper The EHAS is 

developed by taking into consideration the nonlinearities of the system: the friction and the internal leakage. A variable load 

that simulates a realistic load in robotic excavator is applied as the trajectory reference. A method of control strategy that is 

implemented by employing a Fuzzy Logic Controller (FLC) whose parameters are optimized using Particle Swarm 

Optimization (PSO) is proposed. The scaling factors of the fuzzy inference system are tuned to obtain the optimal values 

which yield the best system performance. The simulation results show that the FLC is able to track the trajectory reference 

perfectly for orifice opening. Orifice opening more than   introduces chattering, where the FLC alone is not sufficient to 

overcome this. The PSO optimized FLC reduces the chattering significantly. This result suggests the implementation of the 

proposed method in position control of EHAS. 

Keywords:  Position control, Electro-Hydraulic Actuator, Fuzzy Logic Controller, Particle Swarm Optimization 

1 Introduction 

     Position control applications in most equipments that are 

implemented using servo mechanism need robust control 

scheme and tracking accuracy. This requires good 

positioning and smooth response of the actuation system. 

Due to its capability, electro-hydraulic actuators have been 

used in this servo system for the last years. Its robustness 

and accuracy of position tracking contribute significantly in 

the applications and equipments such as robotics, mining, 

and aircraft. 

     The constraints appear in the applications of the 

hydraulic control system are the internal and external 

disturbances that yield the nonlinearities and uncertainties. 

Such characteristics emerge on the system and degrade its 

performance significantly. These disturbances have adverse 

impact on the robustness and accuracy of position tracking 

of the system. Such nonlinearities and uncertainties in the 

hydraulic actuation system are caused by the presence of 

friction and internal leakage of the system.  

     A number of studies have been conducted to minimise 

the impact of friction and internal leakage. An available 

nonlinear observer for Coulomb friction is modified to 

simultaneously estimate friction, velocity, and acceleration 

[1]. An observer-based friction compensating control 

strategy is developed for improved tracking performance of 

the manipulator. According to the nonlinearity and 

uncertainty of the excavator mechanism control system, in 

[2] a fuzzy plus PI controller which combines the 

advantages of fuzzy logic and conventional PI control is 

developed, a fuzzy rule based soft-switch method is 

adopted to achieve smooth switching. 

     In this paper, a method of position control of electro-

hydraulic servosystem is proposed. This method introduces 

robustness to system nonlinearities and uncertainties. First, 

a fuzzy logic controller (FLC) is designed as the controller 

of the nonlinear model of electro-hydraulic system. The 

model takes into consideration the friction and internal 

leakage. Then the parameters of FLC is tuned by using the  

 

 

Particle Swarm Optimization (PSO) algorithm. The 

parameters tuned are the scaling factors of the Fuzzy 

Inference System. To evaluate the performance and 

robustness of the proposed method, a computer simulation 

is used. 

     The structure of this paper is organized as follows: in 

section 2 we describe the mathematical models to develop 

the electro-hydraulic servosystem with the complete 

simulink model presented at the end of this section. The 

FLC design is explained in section 3. Then we explain the 

PSO in section 4. The testing and simulations of the 

position control of the electro-hydraulic actuator system are 

presented in section 5 followed by the results and 

discussion in section 6. We then conclude our study in 

section 7.  

2 Electro-hydraulic actuator system  

2.1  Hydraulic dynamics and force balance 

model 

  The electro-hydraulic actuator system modelled in this 

study consists of 2 main parts: the valve and the cylinder. 

The cylinder is modelled as a double acting single rod or 

single ended piston, with a single load attached at the end 

of the piston. The cylinder is depicted in Fig. 1 [3]. 

 

Fig. 1. Electro-hydraulic cylinder 

     Fig. 1 shows that Xp is the cylinder position, F denotes 
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the applied load to the cylinder while Q1 and Q2 are the 

fluid flow to and from the cylinder respectively. In Fig. 1, 

sides 1 and 2 are shown with the fluid pressure within side 

1 is given by P1 and fluid pressure in side 2 is given by P2. 

The pressurised area on side 1 and side 2 are shown in the 

Fig. 1 by A1 and A2 respectively. The cylinder will retract 

or extend when a pressure difference between P1 and P2 

occurs.  

     The dynamic of the system is expressed by: 

                                   �̇�p = Vp                             (1) 

                             m.ap = Fa - Ff                             (2) 

where Xp is the piston position, Vp is the piston velocity, ap 

is the piston acceleration and m is the piston and load mass. 

There are two forces in (2) that influence the system: the 

hydraulic actuating force Fa and the friction force Ff which 

are functions of nonlinearities that will significantly 

influence the system. The parameters that affecting Fa are 

the control input voltage, environment load, cylinder 

pressure, friction force and leakage. Hence, it can be 

represented by: 

                   Fa = Ap.Pl                                        (3) 

Therefore, the force balance equation of the cylinder is 

represented by: 

                             𝑚𝑎𝑝 = 𝐴𝑝𝑃𝑙 − 𝐹𝑓                            (4) 

where Ap is the cross section of the hydraulic cylinder and 

Pl is the cylinder differential pressure, which can be written 

as: 

                                 𝑃𝑙 = 𝑃1 − 𝑃2                 (5) 

The differential equation in (4) governs the dynamics of the 

system.  

     As discussed in [4], by defining the load pressure Pl to 

be the pressure across the actuator piston, the derivative of 

the load pressure is given by the total load flow through the 

actuator divided by the fluid capacitance: 

                           
𝑉𝑡

𝛽𝑒
�̇�𝑙 = 𝑄𝑙 − 𝐶𝑡𝑃𝑙 − 𝐴𝑃𝑉𝑃                   (6) 

where Vt is the total actuator volume of both cylinder sides, 

𝛽e is the bulk modulus of hydraulic oil, Ct is the total 

leakage coefficient, and Ql is the load flow. By using  (6), 

the flow equation of the servo valve is given in (7). It 

expresses the relationship between spool valve 

displacement Xv and the load flow Ql. 

                               𝑄𝑙 = 𝐶𝑑𝑊𝑋𝑣√
𝑃𝑠−𝑠𝑔𝑛(𝑋𝑉)𝑃𝑙

𝜌
                (7) 

where Cd is discharge coefficient, W is the spool valve area 

gradient and 𝜌 is the oil density. By substituting (7) into (6) 

one can find the hydraulics dynamics of the cylinder 

pressure in (8). 

 

�̇�𝑙 =
4𝛽𝑒

𝑉𝑡
[−𝐴𝑃𝑉𝑝 − 𝐶𝑡𝑃𝑙 + 𝐶𝑑𝑊𝑋𝑣√

𝑃𝑆−𝑠𝑔𝑛(𝑋𝑣)𝑃𝑙

𝜌
]           (8) 

 

  The spool displacement of the servo valve Xv is controlled 

by the control signal generated by the FLC U. The 

corresponding relation can be simplified as: 

                                 �̇�𝑣 =
1

𝜏𝑣
(−𝑋𝑣 + 𝑘𝑣𝑢)                       (9) 

The servo valve input can also be expressed as a second 

order lag: 

                     𝑢 =
1

𝑘𝑣
(

1

𝜔𝑣
2
�̈�𝑣 +

2𝐷𝑅𝑣

𝜔𝑣
�̇�𝑣 + 𝑥𝑣)           (10) 

where kv is the servo valve gain, 𝜏v is time constant, 𝜔v is 

the natural frequency and 𝐷𝑅𝑣 is the damping ratio of servo 

valve. Based on equation (1) to (10), if the state variables 

are determined as 

                        𝑥 = [𝑥1, 𝑥2, 𝑥3]𝑇 ≡ [𝑥𝑝, 𝑣𝑝, 𝑎𝑝]
𝑇
            (11) 

then a third order of state equations model for a servo 

hydraulic actuator system can be obtained by neglecting the 

valve dynamic (9) and replace it by (12). 

                                       𝑋𝑣 = 𝑘𝑣𝑈                        (12) 

Then the following equations can be obtained: 

                                         �̇�1 = 𝑥2                                  (13) 

                                         �̇�2 = 𝑥3                                  (14) 

                               �̇�3 = �̇�𝑝 =
1

𝑚
(𝐴𝑝�̇�𝑙 − �̇�𝑓)               (15) 

2.2  Friction model 

     Friction is an important aspect of many control systems 

both for high quality servo mechanisms and simple 

pneumatic and hydraulic systems. Friction can lead to 

tracking errors, limit cycles, and undesired stick-slip 

motion [5]. Friction is the tangential reaction force between 

two surfaces in contact. Physically these reaction forces are 

the results of many different mechanisms, which depend on 

contact geometry and topology, properties of the bulk and 

surface materials of the bodies, displacement and relative 

velocity of the bodies and presence of lubrication [6]. 

     The commonly used model for friction is usually 

depicted by the discontinuous static mapping between 

velocity and friction force. This needs to consider the 

Coulomb and viscous friction that depends on the velocity 

sign. The static model, however, does not take into 

consideration the dynamics behaviour of the friction force 

such as stick-slip motion, re-sliding displacement and 

friction lag. These characteristics are properties of friction 

in nature, therefore, friction does not have instantaneous 

response to the velocity change. In order to model the static 

and dynamic behaviour of friction force, LuGre model [6] 

is used in the design of friction in this study. It 

accommodates both static and dynamic characteristics of 

the friction force. Fig. 2 shows the characteristic of friction 

– velocity of this model. The friction characteristics are 

generated during two cycle of oscillation. The oscillation 

results in a narrow hysteretic effects around the zero 

relative velocity in the graph (presliding motion area)[7].   

 

Fig. 2. Characteristic of friction force – velocity [4] 

LuGre model is expressed by: 
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𝐹𝑓 = 𝜎0𝑧 + 𝜎1�̇� + 𝜎2𝑣𝑝                                                (16) 

�̇� = 𝑣𝑝 −
|𝑣𝑝|

𝑔(𝑣𝑝)
𝑧                                                               (17) 

where z is the average deflections of the bristle between 

each pair of the contact surface that is described by the 

friction internal state and vp is the relative velocity between 

two surfaces 𝝈0, 𝝈1, and 𝝈2 are the stiffness of the bristle 

between two contact surfaces, bristles damping coefficient, 

and viscous friction coefficient respectively. The nonlinear 

property of friction is described by g(vp) in (18), which can 

be parameterized to characterize the Stribeck effect. 

               𝑔(𝑣𝑝) =
1

𝜎0
[𝐹𝑐 + (𝐹𝑠 − 𝐹𝑐)𝑒

−(
𝑣𝑝

𝑣𝑠
)
2

]                (18) 

𝐹𝑐 ,  𝐹𝑠 and 𝑣𝑠 are the Coulomb friction, viscous friction and 

stribeck velocity, respectively. With this description, the 

model is characterised by four static parameters and two 

dynamic parameters, stiffness coefficient and damping 

coefficient. 

2.3  Internal leakage model 

     At small servo valve spool displacements, leakage flow 

between the valve spool and body dominates the orifice 

flow through the valve [8]. In precision positioning 

applications, where the servo valve operates within the null 

region, this flow, if ignored, may severely degrade the 

performance of a conventional servo hydraulic design.     

     In this study, an accurate model of leakage flow [8] is 

used. It includes both leakage flow and orifice flow, and 

makes smooth transition between them would likely 

improve precision of the servo hydraulic system design and 

performance. The model used is a nonlinear servo valve 

model that accurately captures the servo valve leakage 

behaviour over the whole ranges of spool movement. The 

leakage behaviour is modelled as turbulent flow with a 

flow area inversely proportional to the overlap between the 

spool lands and the servo valve orifices. 

A servo valve configuration depicted in Fig. 3, consists 

of two control ports with variable orifices regulate the flow 

rates. The flow rates through the control ports of the servo 

valve are expressed in (19) and the flow rate at the supply 

and return ports are represented in (20). 

 
Fig. 3. Hydraulic servo valve configuration 

 

𝑄1 = 𝑄1𝑆 − 𝑄1𝑅 and 𝑄2 = 𝑄2𝑅 − 𝑄2𝑆                           (19) 

𝑄𝑆 = 𝑄1𝑆 + 𝑄2𝑆 and 𝑄𝑅 = 𝑄1𝑅 + 𝑄2𝑅                           (20) 

     The flow rate at the supply side and return side of 

control port 1 are given by: 

𝑄1𝑆 = 𝐾1𝑆√(𝑃𝑆 − 𝑃1)(𝑋0 + 𝑋𝑣)            (𝑋𝑣 ≤ 0)          (21) 

𝑄1𝑅 = 𝐾1𝑅√(𝑃1 − 𝑃𝑅)𝑋0
2(𝑋0 + 𝑘1𝑅𝑋𝑣)−1(𝑋𝑉 ≥ 0)    (22) 

 

where 𝑋0 is the leakage flow rate at null (𝑋𝑣 = 0). 𝑋0 is 

equivalent to a spool displacement that would result in the 

same amount of flow in a nonleaking servovalve as the 

leakage flow rate in a leaking servovalve with a centered 

spool. Since the leakage resistance increases at larger valve 

openings, the leakage flow rate is inversely proportional to 

spool displacement [8].  

     The relations for orifice and leakage flow at the 

servovalve ports form the basis of the servo valve flow 

model. For negative spool displacement, the flow relations 

are interchanged since now the supply side forms the 

leakage path and the return side flow is an orifice flow. 

Applying similar reasoning to each orifice, we obtain the 

flow relations for control port 1 [8]: 

𝑄1𝑆 = 𝐾1𝑆(𝑃𝑆 − 𝑃1)
1/2 {

(𝑋0 + 𝑋𝑉),                    (𝑋𝑉 ≥ 0)

𝑋0
2(𝑋0 − 𝑘1𝑆𝑋𝑉)−1,   (𝑋𝑉 < 0)

         (23) 

 

𝑄1𝑅 = 𝐾1𝑅(𝑃1 − 𝑃𝑅)1/2 {
𝑋0

2(𝑋0 + 𝑘1𝑅𝑋𝑉)−1, (𝑋𝑉 ≥ 0)
𝑋0 − 𝑋𝑉,                       (𝑋𝑉 < 0)

        (24) 

For control port 2, the flow relations are: 

𝑄2𝑆 = 𝐾2𝑆(𝑃𝑆 − 𝑃2)
1/2 {

𝑋0
2(𝑋0 + 𝑘2𝑆𝑋𝑉)−1,   (𝑋𝑉 ≥ 0)

𝑋0 − 𝑋𝑉,                        (𝑋𝑉 < 0)
        (25) 

𝑄2𝑅 = 𝐾2𝑅(𝑃2 − 𝑃𝑅)1/2 {
(𝑋0 + 𝑋𝑉),                    (𝑋𝑉 ≥ 0)

𝑋0
2(𝑋0 − 𝑘2𝑅𝑋𝑉)−1, (𝑋𝑉 < 0)

        (26) 

 

The total supply flow 𝑄𝑆 represents the internal leakage 

flow since the control ports are blocked for an internal 

leakage test [9]. The internal leakage flow can be expressed 

by: 

𝑄𝑆 = 2𝐾𝑓(𝑃𝑆 − 𝑃𝑅)
1

2(𝑋0 + |𝑋𝑣|)(1 + 𝑓(𝑋))−1/2           (27) 

where 

                  𝑓(𝑋𝑣) = [1 +
|𝑋𝑣|

𝑋0
]
2
[1 + 𝑘𝑓

|𝑋𝑣|

𝑋0
]
2
                 (28) 

For any type of servo valve, available manufacturer data 

(Qmax and Imax) can be used to determine the servo valve 

leakage parameters such as 𝐾𝑓, 𝑘𝑓 and 𝑋0 [8].  

     Having discussed the electro-hydraulic actuator model, 

the LuGre friction model and the internal leakage model,  
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Fig. 4. The simulink block diagram of electro-hydraulic actuator system with friction and internal leakage 

 

we then integrate them into an integrated model. The 

friction model is integrated by supplying the output of 

equations (16) to (18) into the model. The internal leakage 

model in (23) to (27) are integrated into (6) and (7) to 

determine the total supply flow into side 1 of the cylinder.  

     The simulink block diagram of electro-hydraulic 

servosystem with friction and internal leakage modelled 

from equations (1) to (28) is shown in Fig. 4. The next 

section will discuss the FLC used to control the position of 

EHS model that contains friction and internal leakage. 

3  Fuzzy Logic Controller 

3.1  Fuzzy Inference System 

    The control strategy of the EHS needs to be able to 

overcome the nonlinearities and uncertainties emerge from 

the system. A controller with robust tracking performance 

is obviously significant. A fuzzy logic controller is 

designed to fulfil the need for such controller.        

     Fuzzy control provides a formal methodology for 

representing, manipulating, and implementing a human’s 

heuristic knowledge about how to control a system [10]. 

The fuzzy logic controller block diagram is given in Fig. 5.  

     The fuzzy controller has four main components: (1) The 

“rule-base” holds the knowledge, in the form of a set of 

rules, of how best to control the system. (2) The inference 

mechanism evaluates which control rules are relevant at the 

current time and then decides what the input to the plant 

should be. (3) The fuzzification interface simply modifies 

the inputs so that they can be interpreted and compared to 

the rules in the rule-base, and (4) the defuzzification 

interface converts the conclusions reached by the inference 

mechanism into the inputs to the plant [10]. 

3.2 Universe of discourse 

     The FLC is designed as a Proportional Integral (PI) 

fuzzy logic controller where the equation giving a 

conventional PI-controller is 

                      u(t) = Kp.e(t) + Ki.∫ 𝑒(𝑡)𝑑𝑡                      (29)  

where Kp and Ki are the proportional and the integral gain 

coefficients respectively. A block diagram for a PI like 

fuzzy logic control system is depicted in Fig. 6 [11]. 

 

 

 

 

 

 

 

 

 

Fig. 5. The fuzzy logic controller block diagram. 

 

     Based on Fig. 6, it is clear that the FLC has two input 

variables: error and change of error. The output variable of 

the controller is the control signal to control the plant. Thus 

the FLC is a two inputs and one output system. Fig. 7 

shows the block diagram of the FLC controlled integrated 

EHAS in a closed-loop control system. The system output 

is denoted by y(t), its inputs are denoted by u(t), and the 

reference input to the fuzzy logic controller is denoted by 

r(t). 

 

3.3  Membership functions 

     The universe of discourse in the Fuzzy membership 

function designed for the error, change of error and the 

output is normalised with -1 to 1 span. The linguistic values 

of the error and change of error are designed with 7 

linguistic terms for each input: Negative Big (NB), 

Negative Medium (NM), Negative Small (NS), Zero (Z), 

Positive Small (PS), Positive Medium (PM), and Positive 

Big (PB). The same linguistic terms are used for the output. 

Each linguistic value is assigned a triangular membership 

function. The membership functions of inputs and output 

are shown in Fig. 8, Fig. 9 and Fig. 10.      
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Set point                                  Error 

                                                                                    Ki                                                                                                       Output 

       +                                                                                                                                Ku                          

               -                                        + 

                                                                                Kp                                               

                                                     -         Change 

                                                               of error 

 

Fig. 6. Block diagram of a PI fuzzy control system 

 

   

Reference                                     u(t)             y(t)  

Input    + 

 r(t)           - 

 

 

Fig. 7. Fuzzy logic controlled integrated hydraulic model in 

a closed-loop control system 

 

      

 

Fig. 8. Membership functions of Error as input 

 

 

Fig. 9. Membership functions of Change of Error as input 

 

Fig. 10. Membership functions of control signal as output 

3.4  Rules 

     Using the 7 linguistic values for each input and 7 

values for the output, in this study the FLC is designed with 

49 rules. These rules were selected using trial and error 

method. The rule base is presented in Table 1.  

Table 1. Rules Base of the FLC 

 

3.5 FLC Tuning 

     After the design of FLC completes, then it is connected 

with the plant to be controlled which is the integrated 

model of the electro-hydraulic system. This forms a closed 

loop system with the FLC as the controller and output of 

the plant is observed as the feedback to be compared with 

the reference input. The simulink block diagram of closed 

loop system is depicted in Fig. 11. 

     The rest of the process will be the simulation of the 

whole system and tuning of the FLC. The objective is to 

obtain the best system performance. This can be 

accomplished by tuning the values of scaling factors: Kp, 

Ki and Ku that resulting in the minimum oscillation, 

overshoot and error. 

 

 

Fig. 11. Simulink block of the FLC controlled integrated 

EHAS in closed loop system 

 

     Tuning of FLC parameters using trial and error method 

does not always give the optimum results. In addition, it is 

a time consuming process. Therefore, an intelligent 

optimization technique to optimize the FLC parameters is 

obviously neccessary. The next section discusses the 

Particle Swarm Optimization.     
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4  Particle Swarm Optimization 

     In 1995, Kennedy and Eberhart introduced Particle 

Swarm Optimization (PSO) as an evolutionary algorithm. 

Particle Swarm Optimization (PSO) is inspired by 

swarming behaviours observed in flocks of birds, schools 

of fish, or swarms of bees. PSO is a population-based 

optimization tool, which could be implemented and applied 

to solve various function optimization problems, or the 

problems that can be transformed to function optimization 

problems. This method was developed through simulation 

of a simplified social system, and has been found to be 

robust in solving continuous nonlinear optimization 

problems [12,13]. 

     In PSO, each particle is attracted toward the position of 

current global best 𝑔∗ and its own best location 𝑥𝑖
∗ in 

history, while the same time it has tendency to move 

randomly. When a particle finds a location that is better 

than any previously found locations, then it updates it as 

the new current best for particle i. There is a current best 

for all n particles at any time t during iterations. The aim is 

to find the global best among all the current best solutions 

until the objective no longer improves or after a certain 

number of iterations. The essential steps of the PSO can be 

summarised as the pseudo code shown in Fig. 12. 

 

Particle Swarm Optimization 

Objective function 𝑓(𝑥), 𝑥 = (𝑥1, … , 𝑥𝑝)
𝑇

 

Initialise locations 𝑥𝑖 and velocity 𝑣𝑖 of n particles 

Find 𝑔∗ from min {𝑓(𝑥1), … , 𝑓(𝑥𝑛)} (at t=0) 

While (criterion) 

      T=t+1 (pseudo time or iteration counter) 

      for loop over all n particles and all d dimensions 

     Generate new velocity 𝑣𝑖
𝑡+1using equation (30) 

     Calculate new locations 𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1 

     Evaluate objective functions at new locations 𝑥𝑖
𝑡+1 

     Find the current best for each particle 𝑥𝑖
∗ 

     End for 

     Find the current global best 𝑔∗ 

End while 

Output the final results 𝑥𝑖
∗ and 𝑔∗ 

Fig.  12. Pseudo code of Particle Swarm Optimization [14] 

 

     When 𝑥𝑖 and 𝑣𝑖 are the position vector and velocity for 

particle i respectively, then the new vector is determined by 

(30). 

𝑣𝑖
𝑡+1 = 𝑣𝑖

𝑡 + 𝛼𝜖1 ∙ [𝑔∗ − 𝑥𝑖
𝑡+1] + 𝛽𝜖2 ∙ [𝑥𝑖 − 𝑥𝑖

𝑡]         (30) 

where 𝜖1 and 𝜖2 are two random vectors, and each entry 

taking the values between 0 and 1. The parameters 𝛼 and 𝛽 

are the learning parameters or acceleration constants, which 

can typically be taken as 2 [14]. 

4.1. Accelerated PSO 

     The accelerated PSO based on [14 ] is used in this study. 

The standard PSO uses both the current global best 𝑔∗ and 

the individual best 𝑥𝑖
∗. The reason of using the individual 

best is primarily to increase the diversity in the quality 

solutions, however, this diversity can be simulated using 

some randomness. Subsequently, there is no compelling 

reason for using the individual best, unless the optimization 

problem of interest is highly nonlinear and multimodal 

[14]. 

     As discussed in [14], a simplified version which could 

accelerate the convergence of the algorithm is to use the 

global best only. Thus, in the accelerated PSO, the velocity 

vector is generated by a simpler formula 

𝑣𝑖
𝑡+1 = 𝑣𝑖

𝑡 + 𝛼 (𝜖 −
1

2
) + 𝛽(𝑔∗ − 𝑥𝑖

𝑡)                            (31) 

where  𝜖 is a random variable with values from 0 to 1. We 

can also use a standard normal distribution  𝛼𝜖𝑛 where 𝜖𝑛 

is drawn from N(0,1) to replace the second term. The 

update of the position is simply 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1                                                          (32) 

In order to increase the convergence even further, the 

update of the location in a single step can also be written: 

𝑥𝑖
𝑡+1 = (1 − 𝛽)𝑥𝑖

𝑡 + 𝛽𝑔∗ + 𝛼𝜖𝑛              (33)  

This simpler version will give the same order of 

convergence. The typical values for this accelerated PSO 

are 𝛼 ≈ 0.1~0.7, though 𝛼 ≈ 0.2 and 𝛽 ≈ 0.5 can be taken 

as the initial values for most unimodal objective functions. 

It is worth pointing out that the parameters 𝛼 and 𝛽 should 

in general be related to the scales of the independent 

variables 𝑥𝑖 and the search domain. 

     A further improvement to the accelerated PSO used in 

[14] is to reduce the randomness as iterations proceed. This 

means that we can use a monotonically decreasing function 

such as 

                                      𝛼 = 𝛼0𝑒−𝛾𝑡                          (34) 

or 

                         𝛼 = 𝛼0𝛾𝑡 ,   0 < 𝛾 < 1)           (35) 

where 𝛼0 ≈ 0.5~1 is the initial value of the randomness 

parameter. Here t is the number of iterations or time steps. 

0 < 𝛾 < 1 is a control parameter, where 𝑡 ∈ [0,10]. 
Obviously, these parameters are fine-tuned to suit the 

current optimization problem.  

 

4.2  PSO Implementation 
     The parameters used in the PSO are: number of 

particles: 25, dimension of the problem: 3, number of 

maximum iteration: 500, speed of convergence (𝛽 = 

acceleration coefficient determining the scale of the forces 

in the direction of 𝑝𝑖): 0.5, randomness amplitude of 

roaming particles (𝛼 = acceleration coefficient determining 

the scale of the forces in the direction of  𝑔𝑖): 0.2, and 

𝛾 = 0.95.  

     The PSO is employed to optimize the FLC parameters 

(scaling factors): KI, KP, KU. These factors are optimized 

at the same time. The functions of these parameters in the 

FLC are shown in (36). 

                 ∆𝑢(𝑡) = 𝐾 . 𝑒(𝑡) + 𝐾𝑝. ∆𝑒(𝑡)              (36) 

    The fitness function of the problem is the Integral of 

Time multiplied by Absolute Errors (ITAE): 

 𝐼𝐼𝑇𝐴𝐸 = ∫ 𝑡|𝑒(𝑡)|𝑑𝑡
𝑇

0
                     (37) 

The fitness function considered is based on the error 

criterion. The performance of a controller is evaluated in 

terms of error criterion. Fig. 13 shows the closed loop 

system of the integrated EHAS controlled by PSO 

optimized FLC. 
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Fig. 13. PSO optimized FLC controlled integrated EHAS in 

a closed loop system. 

5 Tests and simulations  

     The simulation tests were conducted to evaluate the 

performance of the closed loop system under the prescribed 

environments. The system was tested to handle variable 

load with 500N maximum value of the load and friction 

parameters specified in Appendix. The variable load is 

depicted in Fig. 14.  

     First the test was undertaken using several orifice 

openings. The tests were undertaken from small opening to 

bigger orifice openings. These were applied in the system 

while the results were observed to evaluate the response 

and performance of the system. 

 

Fig. 14. Variable Load of the closed loop system 

6 Results and Discussion 

     First, a 8e-5 orifice opening was applied in the system, 

and the result is shown in Fig. 15. 

 

 

Fig. 15. Response of the FLC controlled system with 8e-5 

orifice opening 

Fig. 15 shows the result of simulation with trajectory 

reference, variable load, and friction parameters described 

in section 5. The system is able to track the trajectory 

reference accurately, and there is no overshoot and steady 

state error in the system output.  

     Using the same trajectory reference, variable load, and 

friction parameters, then bigger orifice openings were 

applied in the system. At 229e-5 opening, a chattering was 

observed for the first time. Further test was conducted to 

observe and evaluate a more visible chattering, a 235e-5 

opening was applied in the system. The system response is 

depicted in Fig. 16. 

 

Fig. 16. Response of FLC controlled system with 235e-5 

orifice opening 

     It can be seen from the result, that the 235e-5 orifice 

opening introduces deflection and chattering in the system 

output. The deflection started from 8s when the variable 

load reaches its maximum value until the chattering occurs 

from 14s to 18s of the simulation time. After that, the 

system output is able to track the trajectory reference with 

no error. This indicates that the FLC is not able to handle 

anymore the nonlinearities in the system introduced by the 

orifice opening. The FLC cannot handle the orifice 

openings starting from 229e-5.  

     Then the next test was undertaken by employing PSO to 

optimise the FLC parameters, by using the same trajectory 

reference, variable load, friction parameters, and with 235e-

5 orifice opening. The result is shown in Fig. 17.  

 

Fig. 17. Response of the PSO optimized FLC controlled 

system with 235e-5 orifice opening 

     It is shown in Fig. 17 that the deflection in the system 

output still occurs from 8s, but the chattering is now 

reduced only from 14s to approximately 15.2s. This means 

that the PSO is able to reduce the chattering in the system. 
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     The result shows the effectiveness of the PSO to 

optimize the FLC parameters in order to reduce the 

chattering introduced by the nonlinearities in the EHAS. 

The simulation results indicate that PSO has been 

successfully implemented to optimize the FLC parameters 

in the EHAS. 

7  Conclusions 

     The position control of electro-hydraulic actuator using 

the proposed method has been presented in this paper. FLC 

is able to overcome the nonlinearities in the modeled 

system. Larger values of orifice openings, starting from 

229e-5, introduce chattering. The proposed method shows 

that it can be reduced by using FLC whose parameters are 

optimized by the PSO. The results of simulation show that 

the FLC optimized by PSO has been successfully 

implemented on the position control of EHAS. This 

demonstrates the robustness of the proposed method and 

offers the implementation of the proposed method on the 

position control of EHAS.   

 

Appendix 

Table 2. Parameters of the Hydraulic System [4] 

Cylinder   

𝑃𝑆    Supply pressure (Pa)                               0.7 x 107 

𝑃𝑅    Return pressure (Pa)                               0 

𝑉𝑡     Total actuator volume (m3)                    0.89x10-3 

𝐴𝑝   Actuator ram area (m2)                           2.97x10-3 

L      Total stroke of piston (m)                     0.3 

m    Total mass of piston and load (kg)        18 

𝛽𝑒     Effective bulk modulus (Pa)                  1 x 109 

𝜌     Fluid mass density (kg/m2)                     850 

 

Servo valve 

𝐶𝑑   Discharge coefficient                              0.6 

𝐶𝑡    Total leakage coefficient                         2 x 10-14 

W    Spool valve area gradient (m2)              0.02 

𝑘𝑉   Servo valve spool position gain (m/V)   1.27 x 10-5 

 

Leakage parameter 

𝑋0   Equivalent orifice opening (m)             8e-5 and 235e-5 

𝑘𝑓   Leakage coefficient                                0.3 

𝐾𝑓   Flow gain                                               1.42 x 10-5 

 

Friction parameter 

𝐹𝑆    Static friction (N)                                  300 

𝐹𝐶   Coulomb friction (N)                             230 

𝜎0   Bristles stiffness coefficient (N/m)        14 x 105 

𝜎1   Bristles damping coefficient (Ns/m)      340 

𝜎2   Viscous friction (Ns/m)                          70 

𝑉𝑆   Stribeck velocity (m/s)                           0.05 
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