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Abstract  

For phreatophytic plants to persist in a given habitat they need to maintain a functional 

connection to the water table, and the capacity for roots to respond to changes in the 

water table is a key aspect of this. If root growth is limited by season, plants may not be 

able to grow roots to adjust to changes in the water table at a particular time of the 

year. The redistribution of roots, particularly the capacity for roots to follow the water 

table down in summer and autumn months, is vital for phreatophytic plants to maintain 

a functional connection with the water table. Root activity by phreatophytic Banksia in 

south-west Western Australia was assessed using root in-growth bags, with above-

ground plant phenological processes observed simultaneously. The root in-growth bag 

technique that was used showed that Banksia roots are able to grow, provided soil 

conditions are conducive and there are no endogenous limitations to root growth at 

different times of the year, such as a dormancy period. The ability to grow at any time 

in response to soil conditions might be an essential prerequisite for phreatophytes if 

they are to survive fluctuating water table conditions in seasonally water-limited 

environments.  

 

Assuming that roots follow a seasonally dynamic watertable, a further study using 

chemical tracers assessed water uptake from the capillary fringe at contrasting times of 

the year. Lithium chloride was used in spring and 15N in autumn, to avoid 

contamination between the two sampling periods. There was some indication that the 

phreatophytic Banksia study species were utilising groundwater. This was evident from 

observation of tracer uptake from the capillary fringe during spring, when the water 

table was at its highest level. However, water uptake from the capillary fringe by 

Banksia was not evident during the autumn sampling period. This is likely to be due to 

methodological constraints, as plants did not demonstrate any signs of water stress 

despite the low water content in the vadose zone. These physiological indicators 

suggest that plants were still accessing groundwater at this time of the year.  
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Quantifying the rate of root elongation for a particular species may give some indication 

of the rate of water table decline that they are able to survive. Root elongation rates 

and response to rapid water table decline were observed in rhizopods, allowing for the 

maintenance and manipulation of a water table under glasshouse conditions. The 

maximum rates of root elongation were found to be 36.7 mm day-1 and 18.2 mm day-1 

for Banksia attenuata and Banksia littoralis respectively. These rates of root elongation 

may be regarded as rapid in comparison to the rates of water table decline that the 

species are likely to experience over summer and autumn water table decline. Such 

rapid rates of root elongation indicate that plants can potentially maintain contact with a 

water table decline at far greater rates than those that occur during a normal seasonal 

cycle of water table fluctuations.  

 

Based on the rates of root elongation by phreatophytic Banksia, it was expected that 

plants would maintain a functional connection with a rapidly decreasing water table. 

However, despite plant-available water being present in the soil profile, there was very 

limited root extension following rapid water table drawdown. In addition to little root 

elongation response, seedlings demonstrated a rapid drought response to water table 

decline, quickly reducing stomatal conductance, transpiration and photosynthesis. It is 

likely that the lack of root elongation response to a declining water table by the 

phreatophytic Banksia study species was due to plants being unable to meet their 

water requirements once the water table fell below the rooting depth of the plants. It 

was found that the response of phreatophytic Banksia to rapid water table decline 

depends on the availability of other water sources, and the rate of water table decline. 
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Chapter One 

General Introduction 

Groundwater accounts for more than 30% of the earth’s fresh water (Shiklomanov 

1998), and a variety of ecosystems have developed in the presence of groundwater 

(Eamus et al. 2006). Groundwater may be defined as part of the soil profile that has 

reached maximum water holding capacity, with all soil pores filled with water, also 

referred to as the zone of saturation (Freeze & Cherry 1979; Eamus et al. 2006; Fig. 

1.1). Plants which use groundwater are referred to as phreatophytic, from the Greek 

‘phreatos’ – a well, and ‘phyte’, denoting a plant having a particular characteristic 

(Meinzer 1923). Phreatophytes can access groundwater either directly from the water 

table (the upper surface of groundwater) or from the capillary fringe, which sits above 

the water table and contains groundwater held by capillary action (Freeze & Cherry 

1979; Eamus et al. 2006). Phreatophytes are prevalent in water-limited environments, 

where annual evapotranspiration exceeds annual rainfall, resulting in a net deficit in 

water availability (Abrahams & Parsons 1994; Cui & Shao 2005). This water deficit is 

exacerbated in habitats with soils that have low water-holding capacity, such as coarse 

sands (Sperry et al. 2002). In such environments, water availability in the unsaturated 

(vadose) zone is often unreliable, and, as a result, many species develop deep root 

systems to access deeper water sources, such as groundwater (Stone & Kalisz 1991; 

Canadell et al. 1996). In water-limited environments, plants that have access to a water 

table often have higher rates of transpiration, with less regulation of stomatal 

conductance compared to species which utilise only vadic water (Gardner 1983). In 

addition, these phreatophytic plants may be more vulnerable to water stress, due to the 

physiology of xylem (Tyree et al. 1994; Pockman & Sperry 2000; Horton et al. 2001; 

Canham et al. 2009). It is the functional connection to groundwater, in terms of root 

contact with the capillary fringe or water table and use of groundwater, that allows 

phreatophytic plants to meet their higher water requirements. 

 

Plants that are dependent on access to groundwater can be detrimentally impacted by 

changes in groundwater levels, which are dynamic, falling due to discharge and rising 

due to recharge. A decrease in rainfall can lead to reduced groundwater levels, 

particularly in environments where groundwater levels are tightly coupled with rainfall 
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recharge (Allen 1976; Harrill & Prudic 1998). For example, the south west corner of 

Western Australia has experienced a drying trend, with a decline in annual rainfall 

since the mid 1970s (Bureau of Meteorology 2011) contributing to a gradual decline of 

groundwater levels over a landscape scale (Yesertener 2008). Groundwater levels can 

also be influenced by groundwater abstraction, which can result in a rapid decline of 

the water table. Changes in the water table can sever the functional connection 

between phreatophytic plants and the water table, which means plants are no longer 

able to meet their water requirements (Mahoney & Rood 1991; Naumburg et al. 2005). 

As such, groundwater decline has been associated with negative impacts on 

phreatophytic plants. Following changes in groundwater regime, phreatophytic plants 

have been found to exhibit signs of water stress, such as low predawn water potentials, 

reduced stomatal conductance, and eventually crown and plant death (Scott et al. 

1999; Sperry & Hacke 2002; Cooper et al. 2003). Thus, for a phreatophytic species 

dependent on access to groundwater to persist in a given habitat, plants need to 

maintain a functional connection with a dynamic water table.  

 

Vadose zone

Capillary fringe

Groundwater

Water table

 

Figure 1.1. Schematic of potential plant water sources, with groundwater, the upper 

surface of which is the water table. Rising above the water table is the capillary fringe, 

with water drawn up by the capillary action, and the vadose zone is the unsaturated 

part of the soil profile. Adapted from Freeze & Cherry (1979). 
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Although phreatophytic plants can be impacted by changes in water table levels, there 

are indications that they have some capacity to adapt. Water table levels change 

seasonally, with these changes being greatest in environments which have marked wet 

and dry seasons (Gallart et al. 2002). Root growth in the zone just above the water 

table may be impacted by the change in soil moisture, for example, a rising water table 

can restrict root growth (Castelli et al. 2000). While flood tolerant species have 

structural and physiological adaptations to survive periods of saturation and anoxia 

(Kozlowski 1997; Mitsch & Gosselink 2000; Kozlowski 2002), the roots of most 

terrestrial plant species, including terrestrial phreatophytes, are less tolerant of anoxic 

conditions (Ganskopp 1986; Groom 2004b). Thus, a rising water table is likely to 

prevent root growth in the saturated part of the profile, with roots being redistributed to 

the unsaturated vadose zone and capillary fringe (Oosterbaan & Nabuurs 1991; 

Segelquist et al. 1993; Imada et al. 2010).  

 

Following the rise of the water table due to winter recharge, water table levels decline if 

there is little recharge of the water table and ongoing discharge due to plant 

transpiration of groundwater, such as over a summer drought period. If phreatophytic 

plants are to maintain a functional connection with groundwater, they must be able to 

elongate their roots to follow the declining water table. This is particularly vital in 

seasonally water-limited environments, where vadic water is low over dry season 

months, and groundwater can be critical for plants to survive the drought period 

(Mooney et al. 1980). The notion that phreatophytes remain connected with the water 

table throughout the year is supported by observation of high transpiration rates and 

high predawn water potentials, despite low water content in the vadose zone (Nilsen et 

al. 1983; Scott et al. 2006). In addition, studies of plant water sources have indicated 

year-round groundwater use by phreatophytic plants in a Mediterranean-type 

environment, with a marked summer drought period (Zencich et al. 2002). This 

indicates that plants have been able to maintain a functional connection with 

groundwater as it has receded over summer months. From this, it may be inferred that 

some plants have the capacity to respond to the change in water availability, 

redistributing root growth in response to a rising water table inundating part of the root 

zone, and elongating roots to follow a declining water table.  
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For the roots of phreatophytic plants to be able to adapt to changes in the water table 

at different times of the year, roots need to be able to grow year round at the capillary 

fringe. Knowing when roots grow and die is critical if we are to understand whole-plant 

performance in water-limited environments. Root growth is controlled by both 

environmental and endogenous factors, and is therefore influenced by changes in soil 

temperature and water availability as well as endogenous constraints on carbon 

availability (Teskey & Hinckley 1981; Palacio & Montserrat-Martí 2007). Seasonal 

changes in environmental conditions impact the timing of plant growth, both above and 

below ground. The study of the timing of plant life events, such as flowering and 

vegetative growth is termed phenology (Lieth 1974). Throughout the year there can be 

large variations in water availability and temperature in highly seasonal environments, 

which may impact on the capacity for root growth (Teskey & Hinckley 1981). 

Additionally, root activity can be influenced by endogenous cues (Joslin et al. 2001). 

Root and shoot growth are intrinsically linked, with shoots dependent on roots for 

nutrient and water uptake, while continued root growth is reliant on photosynthates 

fixed in the leaves (Kramer & Boyer 1995). It is thus beneficial to observe root and 

shoot growth simultaneously. For two Mediterranean shrub species in Spain, 

Echinospartum horridum and Salvia lavandulifolia, vegetative growth occurs over a 

short period in spring, with warming air temperatures and high soil water availability, 

while root growth occurred in autumn (Palacio & Montserrat-Martí 2007). However, the 

relationship between root and shoot growth for most phreatophytic plants is less well 

known. Any restrictions on the timing of root growth may influence the ability for 

phreatophytes to respond to changes in the water table at a given time of the year.  

 

The rate of water table decline can determine the ability of plants to survive changes in 

groundwater availability. In particular, maintenance of a functional connection with the 

water table is dependent on the initiation of root growth in response to changes in the 

water table and the plant’s capacity for rapid root elongation. If water table decline 

occurs at a rate greater than the rate at which roots are able to elongate, it is likely that 

plants will become disconnected from groundwater. Rapid groundwater decline often 

results in signs of plant water stress, crown dieback and death (Sperry & Hacke 2002; 

Cooper et al. 2003). However, if roots are able to maintain contact with the declining 

water table, impacts on phreatophytic plants may be minor (Mahoney & Rood 1991; 
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Naumburg et al. 2005). Root response to water table decline has been investigated for 

riparian phreatophyte species, with studies often instigated by observation of plant 

decline due to changes in stream flow (Kranjcec et al. 1998; Horton & Clark 2001; 

Stave et al. 2005; Imada et al. 2008; Gonzalez et al. 2010). Many riparian species have 

been found to survive water table decline at a rate of 1 cm day-1, including Tamarix 

chinesis (Horton & Clark 2001), Populus alba (Gonzalez et al. 2010) and the poplar 

hybrid Populus deltoides x P. balsamifera (Mahoney & Rood 1991). Furthermore, other 

species have survived faster rates of water table drawdown, with Faidherbia albida and 

Acacia tortilis following a declining water table at 5 cm day-1 (Stave et al. 2005). A 

range of phreatophytic plants have therefore demonstrated an ability to respond and 

elongate their roots to follow a rapidly declining water table. However, the majority of 

species studied occupy riparian type environments and there is a paucity of data for 

the root elongation response of phreatophytes from other ecosystems.  

 

The Swan Coastal Plain, in the south west of Western Australia has large areas of 

phreatophytic vegetation, which access an unconfined, shallow aquifer. There are two 

groundwater mounds (Gnangara and Jandakot) where recharge rate exceeds 

discharge, resulting in a ‘mound’. One of these, and the focus of this study, is the 

Gnangara Mound. This aquifer underlies a large area of the Swan Coastal Plain in the 

internationally recognised biodiversity hotspot of the south west corner of Western 

Australia (Myers et al. 2000). The hot, dry Mediterranean-type summers, in 

combination with the poor water-holding capacity of the sandy soils that are 

characteristic of the region (McArthur & Bettenay 1974), mean that water availability in 

the vadose zone can become limiting to plant survival in summer months. However, 

the shallow aquifer is accessible to plants that have sufficiently deep root systems to 

access it (Zencich et al. 2002; Groom 2004a). The Gnangara Mound supports large 

areas of phreatophytic vegetation, including a number of Banksia species. Previously 

large areas of Banksia have been adversely impacted by groundwater abstraction in 

combination with exceptionally hot, dry summers (Mattiske & Associates 1988; Groom 

et al. 2000), prompting research on Banksia ecophysiology (Pate et al. 1995; Groom 

2002; Zencich et al. 2002; Veneklass & Poot 2003; Froend & Drake 2006; Canham et 

al. 2009). The connection between groundwater and phreatophytic plants has been 

implied from observation of year-round high water use, and high predawn shoot water 
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potentials during periods of rainfall deficit. This implies that plants have access to 

deeper water sources, such as groundwater, since there is limited water availability in 

the shallow unsaturated parts of the soil profile. Furthermore, water source partitioning 

studies using isotopes of hydrogen and oxygen have identified year-round groundwater 

use by phreatophytic Banksia, although the proportion of groundwater used varies 

spatially and temporally (Dawson & Pate 1996; Zencich et al. 2002). Thus, Banksia on 

the Swan Coastal Plain which have a range of phreatophytic dependencies are an 

excellent group in which one can investigate the response of phreatophytes to 

changing water table levels.  

 

The aim of this thesis is to investigate the responses of Banksia roots to changes in 

water table levels. To achieve this, a series of studies were undertaken to investigate 

the dynamics of root growth in relation to a water table and rates of change in the 

depths. I have also considered a range of environmental and endogenous factors that 

may influence the ability for plants to adapt to changes in a water table.  

 

The specific aims of the study are; 

1. To assess the seasonality of root growth by phreatophytic Banksia, 
particularly the influence of environmental and endogenous cues. If root 

growth is controlled by season-linked cues then plants may not be able to grow 

roots to adjust to changes in the water table at certain times of the year. 

Phreatophyte root activity in the zone above the water table is likely to be 

impacted by seasonal fluctuations in groundwater levels. In addition, there 

might be physiological constraints on the timing of root growth, due to the 

relationship between above-ground vegetative growth and flowering and root 

growth. The redistribution of roots, particularly the capacity for roots to follow 

the water table down in summer and autumn months, is vital for phreatophytic 

plants so that they can maintain a functional connection with the water table. 

The seasonality of root growth at the water table is assessed in Chapter 3. 

Chapter 4 provides supporting evidence of the year-round maintenance of a 

functional connection between phreatophytic plants and a water table.  
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2. To assess the capacity for phreatophytic Banksia to follow a rapidly 
declining water table. For phreatophytes to adapt to changes in water table 

levels, plants need to be able to meet their water requirements, which can be 

dependent on plants maintaining a functional connection with the water table. 

For plants to be able to follow a declining water table they need to have the 

capacity for rapid root elongation, as well as the ability to respond to changes in 

water availability. Quantifying the rate of root elongation for a particular species 

may give some indication of the rate of water table decline that they are able to 

adapt to for survival. The rate of root elongation for representative 

phreatophytic Banksia species is assessed in Chapter 5. Chapter 6 investigates 

the response of phreatophytic Banksia to water table decline at three different 

rates.  
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Chapter Two  

Study area and species descriptions 

The Swan Coastal Plain is situated on the west coast of south-western Australia, 

bounded to the east by the Gingin and Darling Scarps, the Indian Ocean to the west, 

the Collie-Naturalise Scarp to the south and the Hill River Scarp to the north (Fig. 2.1). 

The Swan Coastal Plain extends 400 km, from Jurien Bay in the north to Dunsborough 

in the south. The Plain is characterised by a series of ancient sand dune systems that 

run from north to south, parallel with the coast (Davidson 1995). 

 

 
Figure 2.1. Location of the Swan Coastal Plain and the Gnangara Groundwater 
Mound. The specific study site, Whiteman Park, is also shown.  
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Description of the Swan Coastal Plain Environment 

Climate  

The climate of the Swan Coastal Plain is warm Mediterranean, with hot, dry summers 

and mild, wet winters (Bagnouls & Gaussen 1957; Gentilli 1972). The Mediterranean-

type climate of the Plain has a marked dry season, with five to six dry months between 

approximately mid-October to the end of March. The long-term rainfall average for 

Perth from 1876 to 1975 is 881 mm (Bureau of Meteorology 2011). However, the 

region has experienced a reduction in average rainfall since 1975 and the mean annual 

rainfall for this period is 762 mm (average for years 1975-2010; Bureau of Meteorology 

2011). Eighty-five percent of annual rainfall occurs between May and October and the 

winter period from June to August are the wettest months (Butcher 1986; Fig. 2.2). 

Rainfall generally only exceeds evaporation in June and August and mean annual 

evaporation is greater than mean annual rainfall. The average annual pan evaporation 

for Perth is 1890 mm compared to 762 mm (1975-2010 average) of annual rainfall, 

thus resulting in a rainfall deficit.  

 

Mean maximum temperatures on the Swan Coastal Plain range from 30.2 ˚C in 

February and 17.5 ˚C in July (Fig. 2.2). Mean minimum temperatures range between 

8.8 ˚C in July and 18.1 ˚C in February. The Swan Coastal Plain experiences a high 

proportion of cloudless days throughout the year, with 60% of clear days from 

December to March and 30% from mid-May to July. (Gentilli 1972). Day length varies 

from 10 hours to 14.3 hours over the year.  
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Figure 2.2. Mean monthly minimum and maximum temperatures and mean monthly 
rainfall for Perth, Western Australia. Data sourced from Bureau of Meteorology (2011).  
 

Landforms and soils 

The Swan Coastal Plain is comprised of a series of gently undulating aeolian sand 

dunes 20 km wide running north – south, parallel with the coast line (Davidson 1995). 

The region consists of a series of geomorphic units. Moving from the east, next to the 

Darling Scarp, through to the west which is bound by the Indian Ocean, they are; the 

Pinjarra Plain, and the Bassendean, Spearwood and Quindalup Dune Systems. All 

field work was carried out on the Bassendean Dune system, which dominates the 

centre of the Swan Coastal Plain. The dunes were formed during a period of higher 

sea levels, and are accumulations of marine deposits that originally consisted of a 

mixture of lime sand and quartz sand, with a minor fraction of fine-grained heavy-

mineral concentrations. However, the sand dunes are between 115,000 and 429,000 

years old and have been heavily weathered, with almost all carbonate material leached 

from the soil (McArthur & Bettenay 1974). The soil in the Bassendean Sand Dune 

system therefore consists almost entirely of quartz sand, with a low pH, very low 

nutrient availability and a poor water-holding capacity. 
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Hydrology  

Groundwater is present in a series of aquifers underlying the unconfined Gnangara 

aquifer of the Swan Coastal Plain. There are two deep confined aquifers, which were 

formed at different times during geological history; the Yarragadee in the Jurassic 

period and the Leederville during the Cretaceous (Davidson 1995). The Gnangara 

superficial aquifer permeates the overlying sand and limestone formations and extends 

unconfined throughout the Swan Coastal Plain. The superficial aquifer covers an area 

of 2,140 km2, from Gingin Brook to the north, the Swan River to the south, Gingin 

Scarp and Ellen Brook to the east and the Indian Ocean to the west (Fig. 2.1; Allen 

1976). The maximum thickness of the aquifer is approximately 50 m, in the centre of 

the groundwater mounds, but ranges from 45 m in the north of the mound to 25 m in 

the south (Allen 1976). The upper surface of the superficial aquifer is the water table, 

which fluctuates seasonally by 0.5 to 3 metres, depending on the hydraulic conductivity 

of the soil and the direction of groundwater flow. The water table is at its highest level 

in September-October and lowest in April-May.  

 

Influences on water table levels 

There are a number of factors that influence the rate and magnitude of recharge and 

discharge of the superficial aquifer, which control the level of the water table. The 

superficial aquifer on the Swan Coastal Plain is primarily recharged by rainfall 

(Davidson 1995). The rate and magnitude of groundwater recharge by rainfall is 

dependent on rainfall patterns, land use cover and depth to the water table (Kite & 

Webster 1989). The processes of vertical rainfall infiltration and horizontal groundwater 

flow determine the level of the water table. When rainfall infiltration exceeds the flow of 

groundwater, as in winter months, the water table rises. Over the summer drought 

period the horizontal flow of groundwater exceeds the amount of recharge, thus the 

water table declines. In addition to horizontal flow, groundwater discharge also occurs 

through evapotranspiration of water by plants and groundwater abstraction in impacted 

areas. The influence of evapotranspiration on groundwater levels is greatest in habitats 

with a shallow depth to groundwater, and during periods when there is little recharge.  
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Specific Study site 

Whiteman Park and Specific Study Site 

Field studies were undertaken in Whiteman Park, a conservation reserve covering 

2,600 hectares, approximately 20km north-east (31°48′ S, 115°56′ E) of Perth, Western 

Australia, and situated on the Bassendean Sand Dune system (Anon. 1989). The 

Gnangara Groundwater Mound underlies the Park, supporting a range of groundwater-

dependent ecosystems, including large areas of phreatophytic vegetation. Vegetation 

ranges from eucalypt woodlands dominated by Eucalyptus marginata (Jarrah) and 

Corymbia calophylla (Marri), Banksia woodlands dominated by B. attenuata, B. ilicifolia 

and B. menziesii, to dampland environments dominated by wetland species such as 

Melaleuca preissiana, Melaleuca rhaphiophylla and Banksia littoralis (Anon. 1989). 

Deep-rooted plants, including Banksia, are often phreatophytic owing to the shallow 

water table throughout the Park.  

 

A specific study site within Whiteman Park was selected for studies of plant phenology, 

as well as the functional connectivity between the phreatophytic Banksia and the water 

table (Chapters 3 & 4). A shallow water table was a primary factor in site selection, as it 

made the study of root growth at the water table logistically feasible. Depth to the water 

table was determined at the site prior to the start of the study, and was 3.8 m from 

February to June, before peaking at 3.0 m in September, in response to winter rainfall 

recharge (Fig. 2.3). The water table then receded again returning to 3.7 m by March 

2008. 
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Figure 2.3. Seasonal cycle of water table levels from January 2007 to April 2008 at the 
Whiteman Park study site. 
 

Soils at the site are representative of those found on the Bassendean Dune system. 

The soil profile is deep medium to coarse grey sand down to a depth of approximately 

3 m. At 3 – 3.25 m, sitting above the water table, there is a hard layer of cemented soil 

(colloquially referred to as ‘coffee rock’), which contains varying amounts of aluminium, 

iron and organic matter. The coffee rock layer varies in thickness and has a patchy 

distribution throughout the site, and was not always encountered when digging 

boreholes. Below the coffee rock layer, from 3.25 – 6 m there is coarse to medium 

sand, which varies in colour from yellow-brown to white.  

 



14 
 

 

 

Figure 2.4. The study site, showing Banksia ilicifolia (top) and Banksia attenuata 

(bottom). 
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Study species 

Banksia is a dominant genus on the Swan Coastal Plain, and groundwater use by a 

number of species has been described previously (Dawson & Pate 1996; Zencich et al. 

2002). Over the past three decades large areas of Banksia woodland have been 

adversely impacted by groundwater abstraction in combination with exceptionally hot, 

dry summers (Mattiske & Associates 1988; Groom et al. 2000), prompting research on 

Banksia ecophysiology (Pate et al. 1995; Groom 2002; Zencich et al. 2002; Veneklass 

& Poot 2003; Froend & Drake 2006; Canham et al. 2009). Three species of Banksia 

were selected for study; Banksia attenuata R. Br., Banksia ilicifolia R. Br. and Banksia 

littoralis R. Br. The three study species are representative of canopy species that 

dominate Banksia woodland (Fig. 2.4). 

 

The three study species differ in their distribution in relation to groundwater depth and 

dependency on groundwater resources (Fig. 2.5). The distribution of B. littoralis is 

confined to dampland environments with a shallow water table, which affords year-

round access to groundwater, as has been previously identified by water source 

partitioning studies (Zencich et al. 2002). Banksia ilicifolia also maintains access with 

groundwater, with a wider distribution than B. littoralis, but still constrained to habitats 

where groundwater is within the maximum rooting depth of the species, approximately 

8 m (Arrowsmith 1992). In contrast, B. attenuata as a species uses groundwater 

opportunistically. It has a wide distribution in relation to groundwater depth, co-

occurring with more mesic phreatophytic Banksia in habitats with a shallow depth to 

groundwater, as well as occupying habitats with a deep water table, such as at dune 

crests. Groundwater can be a significant water source for B. attenuata plants in 

habitats with a shallow depth to groundwater. However, at sites with deep water tables, 

such as at dune crests where the water table can be 30 m below the soil surface, 

groundwater is not utilised by the species (Zencich et al. 2002). This is likely to be due 

to the water table being beyond the maximum rooting depth of the species, as well as 

plants being able to meet their water requirements from the vadic zone.  
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Figure 2.5. A representation of the distribution of Banksia attenuata, Banksia ilicifolia 
and Banksia littoralis along an ecohydrological gradient showing the water sources 
available.  
 

Xeric phreatophytic species, such as B. attenuata, are physiologically adapted to 

survive the seasonal water deficit due to vadic water content decreasing over the 

summer drought period. One of these adaptations is increased resistance to xylem 

cavitation, which allows plants to be exposed to increased water stress before xylem 

embolism occurs (Tyree & Ewers 1991). Banksia attenuata has some plasticity in its 

vulnerability to xylem embolism, as plants in more xeric habitats, where groundwater is 

unavailable, are less vulnerable to water stress than plants that have year-round 

access to a shallow water table (Canham et al. 2009). The two more mesic study 

species, B. ilicifolia and B. littoralis do not have the same plasticity in the trait, and are 

thus more dependent on access to groundwater to avoid severe water stress. 

Therefore, the three study species represent a range of phreatophytic habit, with  

B. littoralis the most mesic species by virtue of its distribution and vulnerability to water 

stress, followed by B. ilicifolia, then B. attenuata, which is a more xeric phreatophyte 

which opportunistically utilises groundwater.  
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Banksia root systems 

Terrestrial phreatophytic species typically have extensive root systems, allowing 

access to the water table which can be at great depth (Canadell et al. 1996; Eamus et 

al. 2006). Dimorphic root systems are a common rooting type in Mediterranean-type 

ecosystems, including Banksia species (Dodd et al. 1984; Lamont & Bergl 1991; Pate 

et al. 1998). Dimorphic root morphology refers to a root distribution that includes 

shallow lateral roots (primarily for nutrient acquisition) and deep sinker roots, which 

access stored-soil moisture or groundwater (Cannon 1949; Dodd et al. 1984; Dawson 

& Pate 1996). Dimorphic root morphology is particularly beneficial in the nutrient poor, 

water-limited environment of the Swan Coastal Plain, Western Australia and similar 

environments. In these environments many non-mycorrhizal species, such as Banksia, 

develop cluster roots, which are a plant adaptation to low nutrient environments. 

Cluster roots increase root surface area, which greatly increases the uptake of water 

and nutrients per unit of root length (Purnell 1960; Lamont 2003). Lateral roots also 

facilitate water uptake from shallow parts of the soil profile, optimising uptake of water 

during wet seasons (Zencich et al. 2002). 

 

Studies on the Gnangara Mound have found that Banksia roots extend to depths of at 

least 9 m (Farrington et al. 1989) and are able to access stored soil moisture and 

groundwater if it is available (Zencich et al. 2002). In addition, the root architecture of 

B. attenuata has been described for individuals in Eneabba, south Western Australia 

(Lamont & Bergl 1991). Lateral roots were observed to extend up to 10 m from the bole 

of the tree, with sinker roots branching from the laterals, often reaching down to the 

water table. Although the root architecture of a number of Banksia species is well 

described (Table 2.1), few studies have observed the seasonality of root activity. One 

exception is a study by Lamont & Bergl (1991) who investigated the phenology of soil 

surface cluster root growth in conjunction with observations of plant-water relations and 

root and shoot architecture. Maximum cluster root development was observed 

following the first autumn rains, with cluster root growth continuing until late spring. 

However, observations of the phenology of root growth were restricted to cluster root 

development in the top 10 cm of the soil surface. This restriction gives a limited 

indication of overall root phenology for deep-rooted terrestrial phreatophytic Banksia 

species. 
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Table 2.1. Summary table of studies that have observed Banksia roots in situ.  
Reference Spp. & Location Method Findings 

Low & 
Lamont 
1990 

• B. attenuata, 
B. menziesii, 
B. hookeriana 

• Eneabba 

• Whole plant 
sampling of 
12 year old 
Banksia 

• Determined above and 
belowground phytomass 

Lamont & 
Bergl 1991 

• B. attenuata, 
B. menziesii, 
B. hookeriana 

• Eneabba 

• Observed 
architecture 
of lateral 
roots 

• Seasonal 
observation 
of root mat 
(top 100 mm) 
for new 
rootlet 
growth 

• Described architecture of lateral 
roots – extend up to 10 m from 
parent plant 

• Surface rootlet production 
commenced after rain (May) and 
ceased in late spring (October).  

Enright & 
Lamont 
1992 

• B .attenuata, 
B. leptphylla, 
B. hookeriana 

• Eneabba  

• Excavated 1 
year old 
seedlings 

• Described root morphology of 
seedlings 

Pate et al. 
1995 

• B. prionotes, 
B. ilicifolia 

• Yanhcep & 
Shenton Park 

• Excised 
trunk, lateral 
and sinker 
root material 
to determine 
hydraulic 
architecture 

• Determined hydraulic conductivity, 
specific hydraulic conductance and 
xylem anatomy of trunk, lateral 
and sinker roots. 

• Examined mobile and non-mobile 
water in lateral and sinker roots. 

Nicoski et 
al. 1997 

• B. ilicifolia, B. 
littoralis 

• Gnangara 
Mound 

• Excavated 
mature trees 

• Described the dimorphic root 
morphology of the 2 species. 

• B. littoralis had fewer lateral and 
more dropper roots. 

Pate et al. 
1998 

• B. prionotes 
• Yanchep & 

Shenton Park 

• Whole plant 
harvest of 
seedlings 
every 3 
months for 1 
year 

• Max. depth: 
2.5 m 

• Described the dimorphic rooting 
morphology 

• Increased proportion in biomass at 
depth with increasing age 

• Winter proteoid root growth and 
increased nutrient uptake 

Rokich et 
al. 2001 

• B. attenuata,  
B. menziesii 

• Gnangara 
Mound 

• Excavated 1 
yr old 
seedlings 

• Described root morphology of 
seedlings 
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Chapter Three 

Dynamics of Banksia root growth relative to a seasonally fluctuating water table 

Introduction 

The response of roots to changes in the water table may be influenced by both 

endogenous and environmental cues. If root growth is limited by environmental factors 

or endogenous limitation of carbon availability, roots may not be able to respond to 

changes in water table levels. Root growth is influenced by changes in temperature 

and water availability (Teskey & Hinckley 1981). As such, seasonal environmental 

cues, such as changes in temperature and water availability, can influence the timing 

and intensity of root growth (Bevington & Castle 1985; Tierney et al. 2003). 

Phenological studies have typically observed the seasonal timing of above-ground 

traits, such as the commencement of leaf growth and flowering (Kummerow 1983; 

Cannell 1997; Koike et al. 2003; Rousi & Heinonen 2007), however, there is increasing 

interest in the phenology of root growth and the environmental parameters that 

influence it (Lamont & Bergl 1991; Joslin et al. 2001; Tierney et al. 2003; Palacio & 

Montserrat-Martí 2007; Janos et al. 2009). Studies in the Mediterranean-type 

ecosystems of Californian chaparral and Chilean matorral suggest that fine root growth 

in the top 20 cm begins after the first winter rains, reaching maximum production in 

spring and early summer (Kummerow et al. 1978; Montenegro et al. 1982). In contrast, 

Lamont and Bergl (1991) found that cluster root production under Banksia in Eneabba, 

280 km north of Perth, occurred from May to September, which is out of phase with 

shoot growth. The dynamic relationship between root growth, shoot growth and other 

environmental variables is thus complex and species specific.  

 

The environmental variables that influence root growth, such as temperature and water 

availability (Teskey & Hinckley 1981) change with soil depth. For example, soil 

temperature is more constant with depth (Voroney 2007), with changes in temperature 

at the soil surface generally having no influence below one metre (Popiel et al. 2001; 

Florides & Kalogira 2005). Water availability also changes with depth, influenced by 

hydrological attributes specific to the particular site. Water content in the vadose zone 

fluctuates seasonally, particularly in seasonally water-limited Mediterranean-type 
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climates, where vadic water content is high during winter months, recharged by winter 

rainfall (Zencich et al. 2002). Water from the vadose zone may be used preferentially 

by the plant, as plant root density is highest in the shallower layers (Adiku et al. 2000; 

Schenk & Jackson 2002). However, Mediterranean-type ecosystems are characterised 

by a summer drought period, with negligible rainfall in summer. During this period 

water content in the vadose zone, particularly the shallow layers, becomes depleted, 

with evapotranspiration exceeding rainfall. Plants must therefore be adapted to survive 

water deficits or have root systems that access deeper water sources, such as 

groundwater. Thus, water sources utilised by phreatophytic vegetation can vary both 

spatially, down the soil profile, as well as temporally (Zencich et al. 2002). Root growth 

may also respond to seasonal changes in environmental parameters; however, 

previous investigations have been limited to observation of root growth in the very top 

portion (generally the top 20 cm) of the soil profile (Kummerow et al. 1978; Montenegro 

et al. 1982; Lamont & Bergl 1991), with few studies of root activity at depths greater 

than one metre. For deep rooted phreatophytes, observations limited to the upper 

portion of the soil profile provide a limited perspective of overall root dynamics, since 

the timing of root growth may change with depth.  

 

Roots close to the water table are likely to be influenced by the rise and fall of the 

water table. Water table depths change seasonally, and root growth in the zone just 

above the water table may be impacted by the change in soil moisture, following 

groundwater as it declines over summer, and being restricted by the rising water table 

as recharge occurs (Castelli et al. 2000). While flood-tolerant species have structural 

and physiological adaptations to survive periods of saturation and anoxia (Kozlowski 

1997; Mitsch & Gosselink 2000; Kozlowski 2002), the roots of most terrestrial plant 

species, including terrestrial phreatophytes, are less tolerant to anoxic conditions 

(Ganskopp 1986; Groom 2004b). Terrestrial phreatophytes are instead thought to 

access water from the capillary fringe, where water content is higher but the soil is not 

saturated, therefore sufficient oxygen is available for respiration (Mahoney & Rood 

1998). As the water table and capillary fringe are seasonally dynamic, it is probable 

that root growth in this zone is influenced by rising and falling groundwater levels, as 

has been observed for riparian vegetation (Castelli et al. 2000; Martin & Chambers 

2002). The notion that phreatophytes, particularly phreatophytic Banksia, remain 
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connected with the water table throughout the year is supported by water source 

partitioning studies, which demonstrate year-round uptake of groundwater, particularly 

in summer months (Zencich et al. 2002). This indicates that plants must follow the 

water table as it reaches its deepest level in summer and autumn. The seasonality of 

root growth is thus implied, but it is rarely observed, particularly at depth. It is thus likely 

that roots redistribute in response to the seasonal changes in the water table depth.  

 

Root activity can also be influenced by endogenous cues (Joslin et al. 2001). Root and 

shoot growth are intrinsically linked, with shoots dependent on roots for nutrient and 

water uptake, while continued root growth is reliant on photosynthates fixed in the 

leaves (Kramer & Boyer 1995). It is thus beneficial to observe root and shoot growth 

simultaneously. Plant growth is most readily perceived through observation of above-

ground parameters, particularly leaf expansion and flowering (Baker et al. 1982; 

Orshan 1989; Tébar et al. 2004; Castro-Díez et al. 2005). In many ecosystems, plants 

have a spring flush of vegetative growth, in response to the warmer temperatures and 

longer day length, while there is still high soil moisture (Cannell 1997; Koike et al. 

2003; Rousi & Heinonen 2007). This is true of most Mediterranean-type ecosystems, 

including Spain (Palacio & Montserrat-Martí 2007), southern France and California 

(Kummerow 1983). In contrast, the dominant species of the South African fynbos and 

the kwongan vegetation of south Western Australia are characterised by summer 

growth, despite this being a period of very little rainfall (Kummerow 1983). This 

climatically independent phenological pattern has been attributed to the deep root 

systems that are a feature of many of the dominant species in Mediterranean-type 

ecosystems (Mooney & Kummerow 1980; Pierce 1984; Groom 2004a). However, the 

phenology of root growth in relation to shoot growth has rarely been observed. A study 

by Palacio & Montserrat-Martí (2007) has investigated the above- and belowground 

phenology of four Mediterranean shrub species in Spain. They found that for 

Echinospartum horridum and Salvia lavandulifolia vegetative growth occurred over a 

short period in spring, corresponding with warming air temperatures and high soil water 

availability. However, root growth occurred independently, favouring autumn 

conditions. The relationship between root and shoot growth for most phreatophytic 

plants is not known, yet the timing of root growth in relation to water availability may be 

critical.  
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The impact of water table decline may be less severe, or negligible, if it occurs at a 

time of year when plants are not reliant on groundwater resources (Naumburg et al. 

2005). Plant water and nutrient requirements are low during periods of dormancy, due 

to lower physiological demands (Harris & Campbell 1981; Smith & Nowak 1990). In 

addition, during wet winter months, plants are generally able to meet their requirements 

from soil moisture, with groundwater uptake significantly diminished (Zencich et al. 

2002). If the water table declines during this period and plants are able to meet their 

water requirements from the vadose zone, there may be minimal impact on 

phreatophytes (Naumburg et al. 2005). However, to avoid severe water stress in drier 

months, when vadic water content has decreased, plants need to maintain a functional 

connection with the water table. 

 

Studies of above-ground phenology were undertaken in a Banksia woodland from 

1978-1981, with a number of species observed including B. attenuata (Bell & Stephens 

1984). Banksia attenuata was found to have a summer growth pattern, as well as 

summer flowering. These observations of a summer growth pattern were supported by 

a later study of three Banksia species in Eneabba, including B. attenuata, with 90% of 

growth and leaf production occurring between November and March (Lamont & Bergl 

1991). Plant growth in the hottest, driest part of the year implies year-round access to 

either stored soil moisture or groundwater. Groundwater use has been demonstrated 

quantitatively for both B. attenuata and B. ilicifolia in a water source partitioning study 

(Zencich et al. 2002). It was shown that, over summer months, groundwater is an 

important water source for plants, which implies that plant roots are able to follow the 

water table as it recedes. However, root growth at the capillary fringe and water table 

has rarely been observed, particularly for terrestrial phreatophytes.  

 

The objective of this study is to determine how root growth by phreatophytes is affected 

by seasonal changes in environmental conditions. The primary focus was to assess the 

dynamics of root growth closest to the water table, which is influenced by seasonal 

changes in groundwater levels. Specifically, it was hypothesised that root growth would 
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be limited by the rising water table in winter and that roots would recover and follow the 

water table as it declined over summer and autumn. In addition, environmental 

conditions change with soil depth; therefore it was hypothesised that patterns in root 

growth would change with depth. Finally, the interrelationship between above- and 

belowground growth activity was assessed, with the expectation that root growth in the 

deeper soil layers would allow for above-ground growth to extend into the summer 

drought period.  
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Materials and Methods 

Measurements of root growth  

Root growth by adult Banksia trees was investigated at the Whiteman Park study site, 

which was selected for having a shallow depth to groundwater (3.0 to 3.8 m) and a 

high number of individuals of the study species within close proximity. The two species 

studied were Banksia attenuata and Banksia ilicifolia, which differ in their water 

requirements, with B. attenuata considered more xeric in terms of distribution in 

relation to groundwater, as well as its physiological adaptation to drought stress. The 

roots of both species were likely to reach the water table at this site, given previous 

observations of groundwater uptake from a similar depth (Zencich et al. 2002). 

Seasonal observation of root growth at the water table thus required measurements of 

root growth at depths of up to 3.8 m.  

 

Root growth and functioning is often implied through indirect means of observation. For 

example, water source partitioning studies for phreatophytes have previously indicated 

plant uptake of groundwater, which should indicate root activity in the vicinity of the 

water table (Busch et al. 1992; Zencich et al. 2002). Chemical tracers have also been 

used to the same effect and have inferred water uptake, thus root activity, from as 

deep as 76 m (Lubczynski & Obakeng 2007). While these are useful indicators of root 

growth at depth, there remains a paucity of data on root growth phenology at a water 

table, and how this relates to seasonal cues. Minirhizotrons are increasingly being 

used to observe root turnover and seasonality (Eamus et al. 2006), however, such 

studies are limited to the top 1 to 2 m of soil (Hendrick & Pregitzer 1997; Steinaker et 

al. 2010). While this is appropriate for some species, roots of most phreatophytes 

extend well beyond this zone. Alternative approaches, such as root in-growth bags 

have been shown to be effective in repeated observations of root activity (Bohm 1979). 

This method involves placing bags full of root-free soil at the required depth, then 

leaving them for root in-growth to occur. Bags are later retrieved and the contents 

analysed for root mass, giving an indication of root activity at various depths and at 

different seasons. 
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Root in-growth 

Ten individuals of B. attenuata and B. ilicifolia were selected at the study site and 

tagged. To investigate belowground phenology, root in-growth bags were placed at 

four different depths around each plant. The depth of root bag placement was 

determined from observations of depths to groundwater from the previous year 

(Chapter 2), where it was seen that groundwater depth was greatest in April (3.75 m) 

and shallowest in October (3.00 m). To determine root growth at the water 

table/capillary fringe, root bags were placed at 3.50-3.75 m and 2.70-2.95 m. This 

meant that root bags placed at the 3.50–3.75 m level would be at the capillary fringe in 

April, then, as the water table rose to its highest level, the 2.60-2.85 m bags were at 

the capillary fringe and the 3.50 m bags submerged (see Fig. 3.1). Bags were also 

placed at 1.20-1.45 m and 0-0.25 m to observe root in-growth in the vadose zone, 

which dries out over summer and autumn. The sampling periods were selected to 

correspond with the spring peak and autumn low levels of the water table, and were, 

therefore; April to July 2008 (autumn), July to November 2008 (winter), November 

2008 to January 2009 (spring) and January to April 2009 (summer). Due to a slight 

slope at the site, there was some variation in water table levels, with trees at the south 

end of the site tending to have a slightly deeper water table. However, all 3.75 m bags 

were saturated when collected for the July to November sampling period.  

 

Bags were constructed out of aluminium flywire which was rolled into a cylinder (the 

same diameter as the PVC tube and 25 cm long), then sewn together down the side 

and bottom. Rope was cut to length, threaded through the bag then fastened at the 

bottom with a large knot behind a small plastic square, to prevent it being pulled back 

through the bag. Nutrients and water were added to the bags prior to being placed in 

the field, to encourage root in-growth. This was deemed necessary as it was thought 

that roots would not grow into the bag if it only contained sand and had lower soil water 

content than the surrounding soil. Bags were filled with a 1:6 mixture of peat and clean, 

white sand, then sewn shut at the top. Bags were placed into plastic trays and 

moistened to keep sand from falling through the mesh, then transported to the study 

site. To allow repeated access to these depths, access tubes were installed. This 

involved hand auguring to the required depth then sliding in a 90 mm PVC tube which 

was then capped. Bags were wet to field capacity before being placed in the access 
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tube. Access tube length was checked to ensure that 25 cm was left uncovered at the 

bottom, to allow contact between the bag and the surrounding soil. Once the bags 

reached the bottom, the rope was secured at the top, to allow bags to be retrieved. No 

access pipe was required for the 0.25 m bags, as the hole tended to stay intact, with 

only a small amount of soil having to be removed to allow the bag to be covered again 

when it was replaced.  

 

 

Figure 3.1. Schematic diagram of (a) sampling design and (b) root bag 
placement. Root access tubes were situated approximately halfway between the 
bole of the tree and the edge of the canopy drip line. The depths that bags were 
placed at were 0-0.25 m (cluster roots), 1.45 m (vadose zone), 2.85 m (spring 
capillary fringe), and 3.75 m (autumn capillary fringe).  
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Root bags were left for 12 weeks to allow for in-growth to occur. Bags were retrieved, 

wrapped in plastic and transported to the laboratory for sorting. As the study bags were 

retrieved, they were replaced with fresh bags, ready for the next period of root in-

growth. In the laboratory, root bags were cut open and the material inside placed into a 

tray for sorting. Material was initially sorted by picking out the larger, more obvious 

roots by hand. Soil was then sieved to sort the finer roots, then all the material was 

sorted once again by hand, to ensure no root material was missed. Roots were washed 

by hand in water in small containers, ensuring all sand particles were removed. This 

was more problematic for the cluster roots, generally found in the 0.25 m samples. 

These often needed soaking to loosen the sand, which had become firmly attached 

due to exudates produced by the roots. These samples were soaked and agitated by 

hand until sand could be removed. It was possible that root in-growth had come from 

other species also growing at the site. Roots were thus sorted according to 

appearance, compared with roots collected from known samples of co-occurring 

species. For example, B. attenuata and B. ilicifolia roots were found to be red to brown 

in colour and were woodier than roots from Allocasuarina fraseriana, which had finer, 

dark brown to black roots. Nuytsia floribunda roots were also commonly found, and 

were easily identified as they are white, thick and very brittle. Root material that was 

most likely to be from the two study species was bagged in paper and dried at 60 °C 

until reaching a constant weight (approximately 48 hours). Any sand that remained was 

removed at this stage by agitating the roots whilst still in the bags. Roots were then 

weighed to 3 decimal places. 

 

Above-ground Growth Phenology 

Above-ground phenological phases were recorded over a two year period using the 

same ten individual trees from each species. The timing of vegetative growth and 

flowering was recorded fortnightly, with binoculars being used to see into the canopy. A 

score that best described the vegetative and reproductive stage, as defined and used 

by Bell and Stephens (1984), was assigned to each tree. For example, when leaf 

growth commenced, trees were given a value of 2 – leaves emerged, small and 

immature. When flowers were observed, they were recorded as 16 – flowers open  

(Fig. 3.2). In addition to phenophase observations, leaf fall was recorded. Three 

buckets (25 cm diameter) were placed, evenly spaced halfway between the bole and 
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the edge of the tree canopy. Leaves of the species that the buckets were under were 

collected, placed in paper bags then dried at 60 °C. Leaf area was then determined 

using an area meter (Delta-T Type WDIGC-2, Delta T Devices, Cambridge UK). 

 

 

 
Figure 3.2. Examples of the phenophases of Banksia attenuata recorded and used for 
analysis. Anthesis, or phenophase 16 (top), leaves emerged, small, immature – 
phenophase 2 (middle) and leaves maturing, shoot growth continuing – phenophase 4 
(bottom).  
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Changes in trunk diameter were determined, using dendrometers. These were made 

following the methods of Keeland & Young (n.d.). To install the dendrometers the bole 

of the tree was prepared. Tree bark was filed down, to remove any rough, uneven 

patches, thus allowing the dendrometer to sit flat against the tree. Dendrometers were 

constructed out of segments of stainless steel measuring tape as this was flexible 

enough to wrap around the tree and would not corrode after being left in the field over 

the two year observation period. The tape was fixed with a spring, allowing for the 

expansion and/or contraction of the tree trunk over time. Phenophase, leaf fall and 

trunk diameter were all recorded approximately fortnightly from week 18 of 2008 to 

week 18 of 2010. Leaf area index was measured using an LAI meter (LAI 2000, LiCor 

Biosciences) and was recorded every three months between week 9 of 2008 to week 

20 of 2009. A 50 x 50 m plot was marked out with 10 m intervals. Measurements were 

taken across four transects within the plot, recording values every 10 m. Xylem 

pressure potentials were measured approximately every six weeks. To determine 

predawn potentials, plants were sampled prior to sunrise (approx. 4.30-6.30 am 

depending on sunrise time). Small twigs were cut from three individuals of each 

species and water potential immediately determined using a Scholander-type pressure 

chamber (Mk3005 Soil Moisture Equipment Co., Santa Barbara, CA., USA). Midday 

water potentials were also determined, with trees sampled between 12.00-2.00 pm. 

 

Environmental variables 

Meteorological data was recorded at a weather station (EnviroStationTM, ICT 

International Armidale, NSW) situated approximately 2 km from the study site. Rainfall, 

wind and temperature were logged at half hourly intervals for the duration of the study 

period. Soil volumetric water content was determined for the site approximately every 

six weeks using a neutron moisture meter (Didcot Instrument Co., Abingdon, UK). 

Neutron counts were recorded then calibrated according to methods outlined by 

Greacen et al. (1981). To allow for calibration, soil samples were collected from 

boreholes drilled adjacent to the neutron moisture probe access tube at five different 

times over the study period, during various seasons. There were three soil horizons 

present in the soil profile (as determined by soil texture) therefore three calibration 

curves were used. The number of samples used for calibration varied with thickness of 

the horizon. Thus, soil samples were collected at 11, 2 and 6 points in each horizon of 
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soil types 1, 2 and 3, respectively. Count ratios were plotted against known volumetric 

water content values determined gravimetrically from and a linear relationship was 

determined. The neutron count ratio was then converted to volumetric water content 

using the linear equation. Groundwater depth was recorded using a groundwater 

sensor and logger (miniTROLL, In Situ Inc., Colorado, USA) and was logged daily.  

 

Statistical Analysis 

Phenophase and environmental data were analysed using binary logistic regression. It 

was found difficult distinguishing between all the phenophases; this difficulty had also 

been encountered by Stephens (1985), therefore the most obvious, thus easiest to 

observe, were used for analysis. Phenophase data were converted to binary, with 

phenophases assigned to two groups. For vegetative phenophases these groups were 

defined as “no growth” (0) and “leaf growth” (1). The leaf growth group included 

phenophase numbers 2, 3 and 4, as defined by Bell and Stephens (1984; Fig. 3.5) with 

all remaining phenophases defined as “no growth” (0). Reproductive phenophases 

were defined as “flowers” (phenophase 16; 1), with the remainder termed “no flowers” 

(0). Binary logistic regressions were used to determine environmental predictors for the 

initiation of leaf growth and flowering. The environmental variables used were average 

temperature, total rainfall and daily wind run, which were averaged for the time period 

between observations. For example, phenophase observations for week 18 were 

paired with the mean average temperature observations for the fortnight between 

weeks 16 and 18. Data were entered into the model forward stepwise (likelihood ratio) 

and the model that predicted the highest proportion of observations was used. The 

timing of root in-growth was analysed using multiple linear regressions. Root weight at 

each depth was coupled with average temperature (°C), total rainfall (mm), daily wind 

run (km hr-1) and average volumetric water content of the vadose zone (m3 m-3). Since 

root in-growth was measured every 12 weeks, environmental parameters were 

averaged for this time period and data were entered into the model using a forward 

stepwise procedure. All statistical analyses were performed using SPSS v. 17.  
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Results 

Environmental variables 

The 24 month study period was typical of the Mediterranean climate of the south west 

of Western Australia. The two summers were hot, with peaks in weekly average 

maximum temperatures of 36.7 °C in week 1 and 37.8 °C in week 3 in 2009 and 2010 

respectively (Fig. 3.3). The summer of 2009-2010 was particularly hot and dry, with 

only 1 mm of rain in the 16 weeks between week 47, 2009 and week 11, 2010, 

combined with daily maximum temperatures of more than 29 °C. The winter months 

were mild, with average daily maximum temperatures ranging between 17 and 20 °C 

and minimum temperatures between 0 and 9 °C. Total daily wind run followed the 

same general pattern as temperatures, lower in winter and peaking in summer. There 

were, however, a number of occasions in the cooler months with high daily wind runs 

which were associated with storm fronts, such as week 26, in June 2009 (Fig. 3.3).  

 

The majority of rain fell between May and October, although there was a significant 

amount of rain in November 2008. This contrasts with 2009, where there was little 

rainfall between August 2009 and March 2010 (Fig. 3.3c). Water table levels increased 

in response to precipitation, with a short lag between rainfall and groundwater 

recharge. Recharge of the vadose zone is evident in observations of volumetric water 

content. Wetting fronts are evident following precipitation events (Fig. 3.4) and 

increases in groundwater levels can be seen soon after the wetting front has 

percolated down to the water table. Following winter recharge, the water table rose at a 

rate of 0.28 cm day-1 between April and July and at a rate of 0.36 cm day-1 between 

July and October (average for the two sampling years). Water table levels peaked at 

2.8 m in August, 2008 and September in 2009. The water table decreased over 

summer and autumn, declining at an average rate of 0.38 cm day-1 between October 

and January and a rate of 0.30 cm day-1 between January and April. At its deepest, the 

water table was at 3.76 m from the soil surface, which occurred in April in 2008, and in 

May 2009 (Fig. 3.5).  
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Figure 3.3. Environmental variables recorded over the study period at the study site. 
Variables shown are (a) minimum and maximum temperature, (b) daily wind run (c) 
total rainfall and depth to groundwater (DGW). Values are weekly averages. 

 



33 
 

 

Figure 3.4. Volumetric water content (cm3 cm-3) at the study site from April 2008 to 
April 2010. Volumetric water content was determined at 25 cm increments. 

 

Plant variables 

Root in-growth at the water table/capillary fringe 

The mass of root in-growth was generally lowest in the zone closest to the water 

table/capillary fringe (Fig. 3.5). The root zone at 2.75 m was not inundated by the water 

table at any point during the study, and constant root in-growth throughout the year 

reflects this. In contrast, at 3.7 m, roots were saturated from late autumn until the 

following summer. Root in-growth at this depth was negligible over the winter and 

spring sampling periods, when this zone was saturated by the rising water table. 

However, root in-growth was observed at this depth over autumn, when the water table 

was deepest, and again in summer, when the water table declined again.  
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Figure 3.5. Depth to groundwater (DGW) and dry mass of root in-growth at 2.75 and 
3.7 m for Banksia attenuata and Banksia ilicifolia over 12 months at the study site. 
Study period was from April 2008 to April 2009. 

 

Root in-growth phenology down a soil profile 

Patterns in root in-growth were similar between the two study species (Fig. 3.6). The 

overall pattern indicated that root growth was lowest in the winter sampling period. This 

coincides with high soil moisture content at the site and low plant growth activity  

(Fig. 3.6). As temperatures increased, and with the onset of plant growth in December, 

root activity increased, with overall root mass highest in the summer sampling period 

for both species. Maximum root growth (by in-growth mass) was found in the 0.25 m 

zone, and it consisted mainly of cluster roots. There was a distinct pattern in the 

seasonality of root growth in the top 0.25 m of the soil profile with little new cluster root 

growth recorded in the autumn and winter observation periods (i.e. April to November). 

Root growth peaked in the warmer sampling periods, from November until the following 

April. In B. attenuata root in-growth weight increment at 0.25 m for autumn was 0.02 ± 

0.01 g, compared with 6.1 ± 1.69 g for the spring period. Average temperature was the 
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best predictor of the timing of root growth at 0.25 m for both B. attenuata (r2 = 0.373,  

p <0.05) and B. ilicifolia (r2= 0.195, p<0.05; Table 3.1). Deeper in the soil profile, at  

1.5 m, it was found that soil moisture was the best predictor of root in-growth in bags 

placed under B. attenuata (r2 = 0.105, p<0.042). Root growth in this part of the soil 

profile was highest in the summer sampling period for both species, coinciding with the 

period of least soil moisture availability and period of highest plant activity.  

 

There were no environmental predictors identified for root activity at the two deepest 

parts of the profile (Table 3.1). Root activity at 2.7 m was very similar between the 

summer and autumn sampling periods for B. attenuata. For B. ilicifolia, root in-growth 

at 2.7 m was greatest for the spring sampling period, although there was a large 

standard error. For B. attenuata, root in-growth was highest during the autumn 

sampling period, when the water table was deepest. There was very little root growth in 

this part of the soil profile during the winter and spring months. Root activity at 3.7 m 

increased from January to April when the water table receded. Banksia ilicifolia 

exhibited a similar pattern, with root growth at 3.7 m in the summer and autumn 

sampling periods. 

 

Above-ground phenology 

Above-ground plant activity was greatest between December and March (Figs 3.7 and 

3.8). This pattern is strongest for B. attenuata, which had distinct growth and flowering 

periods and high synchrony between individuals. Leaf growth for B. attenuata was first 

observed in week 49 in 2008 and week 46 in 2009 with average temperatures during 

these weeks of 18.6 °C and 17.2 °C respectively. The peak period of leaf growth 

occurred in summer, from December through to late March. Flowering occurred over 

the same time period, with anthesis starting in week 47 in 2008 and week 46 in 2009, 

with corresponding average temperatures of 17.3 °C and 17.2 °C. Regression analyses 

indicated that temperature was the strongest predictor of both flowering and shallow 

(0.25 m) root growth for B. attenuata (Tables 3.1 & 3.2).  
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Figure 3.6. Root in-growth (as dry mass) for Banksia attenuata and Banksia ilicifolia 
recorded every 12 weeks over 12 months at four different soil depths (n = 10). 
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Table 3.1. Significant (<0.05) multiple linear regression models for root in-
growth weights for Banksia attenuata and Banksia ilicifolia at four different 
soil depths; 0.25 m, 1.5 m, 2.5 m and 3.7 m. Predictor refers to the 
environmental parameter used in the model, as determined by entering data 
stepwise. n/a refers to instances where the model did not run due to none of 
the parameters fitting the model. 

 B. attenuata B. ilicifolia 

 0.25 m 1.5 m 2.7 m 3.7 m 0.25 m 1.5 m 2.7 m 3.7 m 

Predictor(s) Temp SM n/a n/a Temp n/a n/a n/a 

r2 0.373 0.105 - - 0.195 - - - 

F (1, 38) 22.065 4.443 - - 9.233 - - - 

p <0.000 0.042 - - 0.004 - - - 

 

 

Leaf growth for B. ilicifolia began and finished slightly earlier than that for B. attenuata. 

It did not extend as far into the hot months, with leaf growth finished by February in 

both study years (Fig. 3.7). Both soil moisture and solar radiation were found to be 

significant predictors of the timing of leaf growth for B. ilicifolia, but no environmental 

predictors were identified for the timing of flowering. Flowering occurred over a longer 

period, with less synchrony between individual plants compared to B. attenuata and 

there were often singular study trees with flowers open. The flowering periods were 

generally the same over the two year study, starting in July and finishing in April, but 

the peak period (i.e. >50% of individuals) occurred later in 2009 compared to 2008.  
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Figure 3.7. Above-ground phenology data for Banksia attenuata over a 24 month 
period, showing (a) timing of leaf growth and anthesis, (b) change in bole diameter as a 
percentage of starting bole size, and (c) leaf area of fallen leaves collected in litter 
traps, presented as leaf area m-2 (n =10). 
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Figure 3.8. Above-ground phenology data for Banksia ilicifolia over a 24 month 
period, showing (a) timing of leaf growth and anthesis, (b) change in bole 
diameter as a percentage of starting bole size, and (c) leaf area of fallen leaves 
collected in litter traps, presented as leaf area/m2 (n =10). 
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Leaf fall peaked in summer in association with high winds, high temperatures and low 

soil moisture conditions (Fig. 3.8c). The peak in leaf fall is more pronounced for  

B. attenuata than B. ilicifolia (0.3 m2 m-2 c.f. 0.2 m2 m-2). B. attenuata leaf fall was 

greatest in late January, coinciding with high temperatures and high winds, and these 

two parameters emerged as the best predictors of leaf fall (r2 = 0.387, p < 0.05) (Table 

3.3). In contrast, B. ilicifolia lost leaves throughout the year, but had a peak in late 

January. Overall change in bole diameter was very low, 20.5 ± 3.0 mm yr-1 and 8.5 ± 

1.6 mm yr-1 for B. attenuata and B. ilicifolia respectively. Banksia attenuata showed 

highest bole growth in the summer months, corresponding with new leaf growth and 

the loss of old leaves. Temperature was the best predictor of change in bole diameter 

(r2 = 0.129, p <0.05). In contrast, B. ilicifolia showed more variable changes in stem 

diameter throughout the year (Fig. 3.8b) with temperature as the best predictor of 

growth (Table 3.3).  

Table 3.2. Binary logistic regression results for vegetative and reproductive 
phenophases in Banksia attenuate and Banksia ilicifolia. ‘Flowers’ refers to 
phenophase number 16 and ‘NoFl’ refers to all other phenophases. ‘Growth’ refers to 
phenophases 2, 3 and 4, ‘NoGr’ to remaining phenophases. Banksia ilicifolia flowering 
data did not fit the model, and are not presented. Predictor is the environmental 
parameter that predicted the highest percentage of observation, as determined by 
entering data forward stepwise regression (likelihood ratio). ***indicates significance 
value of <0.001. 

 B. attenuata B. ilicfolia 

 NoFl Flowers NoGr Growth NoGr Growth 

% Predicted 93.8 78.2 95.7 80.6 98.0 75.9 

Overall % 

Predicted 
90.7 92.5 93.9 

Predictor(s) Av. Temperature Av. Temperature SM & Solar Rad. 

P <0.000 <0.000 
SM = 0.000 

SR = 0.015 

B (SE) 0.600 (0.062) 0.695 (0.71) 
SM = -88.487(13.453) 

SR = 0.146(0.060) 

Wald (df) 95.092 (1) 95.816 (1) 
SM = 43.262 (1) 

SR = 5.913 (1) 
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Predawn shoot water potential (ΨPD) did not suggest plant water deficit was occurring, 

with the majority of observations above -0.5 MPa for both species (Fig. 3.9a & b). 

There was a tendency for the more mesic phreatophyte, B. ilicifolia to have higher ΨPD, 

with the majority close to 0 MPa, except for the July 2009 sampling period where ΨPD 

was -0.58 ± 0.06 MPa. This sampling event also saw a low ΨPD for B. attenuata (-0.55 

± 0.08 MPa). Midday shoot water potentials (ΨMD) varied throughout the seasons and 

were lower for the more xeric phreatophyte, B. attenuata. Higher predawn shoot water 

potentials were observed in the cooler, wetter winter and autumn months (Fig. 3.9a). 

Leaf area index for the site stayed relatively stable at approximately 1 through the 

different seasons (Fig. 3.9c). 

 

Table 3.3. Significant (p< 0.05) multiple linear regression models for leaf fall  
(mm tree-1) and percentage change in bole diameter for Banksia attenuata and Banksia 
ilicifolia. Predictors are environmental variables used in the model that gave the highest 
r2, and were entered stepwise (likelihood ratio).  

Species B. attenuata B. ilicifolia 

 Leaves Bole Change Leaves Bole Change 

Predictor(s) 
Temp., Wind 

Run 
Temp. 

Temp., Rain, 

Wind Run 
Temp. 

r2 0.387 0.129 0.442 0.114 

F (df) 
137.874 

(2, 437) 

63.158 

(1, 438) 

35.308 

(3, 346) 

5.653 

(1, 438) 
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Figure 3.9. Pre-dawn (ΨPD) and midday (ΨMD) shoot water potential data (Ψ) for 
Banksia attenuata (a) and Banksia ilicifolia (b); (n = 3 for both species), and leaf 
area index data (c) for trees at the study site.  
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Discussion 

The root in-growth bag technique that was used, showed Banksia roots at the capillary 

fringe are able to grow all year round, provided soil conditions are conducive, and that 

there are no endogenous limitations to root growth at different times of the year, such 

as a dormancy period. This is demonstrated most clearly at 2.7 m depth, where the 

mass of root in-growth was consistent between seasons. The ability to grow at any 

time in response to soil conditions might be an essential prerequisite for phreatophytes, 

if they are to survive fluctuating water table conditions in seasonally water-limited 

environments. This study highlights the differences in root phenology with depth in a 

dimorphic root system. There was an overall trend of reduced root in-growth mass with 

depth, which follows the distribution of roots generally (Specht & Rayson 1957; Schenk 

& Jackson 2002). The timing of root growth differed with depth and this may be 

associated with different environmental parameters having more influence at certain 

depths compared to others. Roots in the top 0.25 m of the soil profile appear to be 

most influenced by seasonal changes in temperature. Roots found at 0.25 m were 

primarily cluster roots (Purnell 1960) which are typical of the O and A soil horizons in 

Banksia woodlands (Lamont 2003). There was little root growth at this soil depth during 

the cool, wet winter season (i.e. between April and October) which is contrary to 

observations made by Lamont & Bergl (1991), who found that cluster root growth was 

initiated by the first rain events of winter. However, studies of chaparral in southern 

California and Chilean matorral suggest that fine root growth in the top 20 cm begins 

after winter rain, reaching maximum production in spring and early summer 

(Kummerow et al. 1978; Montenegro et al. 1982). Root growth in the shallow parts of 

the soil profile in Mediterranean-type ecosystems is likely to be opportunistic, 

influenced be the large seasonal variations in temperature, as well as responding to 

changes in water and nutrient availability. 

 

In contrast to the high seasonality of environmental variables and root growth at the 

soil surface, conditions are stable at deeper soil depths. The magnitude of diurnal and 

seasonal changes in soil temperature decreases with depth (Voroney 2007), and 

generally do not have an influence below 1 m (Popiel et al. 2001; Florides & Kalogira 

2005). Instead, water availability appears to be a primary driver of root growth at the 

water table/capillary fringe interface, with root in-growth at 3.7 m most impacted by 
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seasonal changes in the water table and root growth did not occur when this area 

became saturated. Root in-growth at 2.75 m occurred throughout the seasons, 

corresponding with the relatively stable conditions. Deep root systems enable access 

to deeper soil layers, which are generally more stable in terms of soil moisture and 

temperature. For phreatophytic plants in water-limited environments, this allows plants 

to survive and meet their water requirements throughout the year. 

 

Seasonal fluctuations of the water table routinely saturate part of the root zone, which 

can impact on root activity (Kozlowski et al. 1997; Mahoney & Rood 1998; Castelli  

et al. 2000). In this current study root in-growth was initially observed at 3.7 m in 

autumn, when this zone was high in moisture, but not saturated (i.e. the capillary 

fringe). However, as the water table rose in winter and early spring the zone became 

saturated, and negligible root growth was observed (Fig. 3.8). In contrast, at 2.7 m, 

which was never saturated, root growth was similar for each sampling period, 

indicating that roots are able to grow at these depths throughout the year. This implies 

that the root growth by phreatophytic Banksia is restricted by the saturated conditions 

of the water table. This is supported by an investigation of the flooding tolerance of 

Banksia prionotes and Banksia littoralis seedlings, where it was found that both 

species are intolerant to long periods (>100 days) of flooding (Groom 2004b). Of the 

two species, B. littoralis was more tolerant of saturated conditions, and this was 

attributed to the distribution of B. littoralis, which is restricted to wetland fringes and 

damplands on the Swan Coastal Plain. Groom (2004b) hypothesised that the roots of 

B. littoralis may be able to form aerenchyma tissue, which would allow respiration 

under flooded conditions. In contrast, all seedlings of B. prionotes, a more xeric 

phreatophyte, died after 54 days of submergence. The species in this current study,  

B. attenuata and B. ilicifolia, are not distributed in areas that are exposed to flooding 

and it is likely that they are not physiologically adapted to survive inundation, as 

demonstrated by the lack of root growth when saturated. 

 

Winter water table rise may inhibit root growth at the capillary fringe; however, the 

declining water table in summer and autumn provides a high moisture environment 

suitable for root growth. Root growth following a declining water table has been 
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observed for a wide range of species, including phreatophytic plants. Under 

glasshouse conditions, roots of phreatophytic seedlings have been observed to 

elongate in response to a declining water table (Mahoney & Rood 1991; Kranjcec et al. 

1998; Horton & Clark 2001; Stave et al. 2005). However, in situ observations of root 

elongation following a water table decline are fewer. In this current study, the patterns 

of root in-growth at the capillary fringe-water table interface indicate that roots 

elongate, following the water table as it declines in summer and autumn. The 

winter/spring increase in water table levels inhibited root growth at 3.7 m, but when the 

water table fell below the root bags over summer/autumn, root in-growth was observed 

at this soil depth. This indicates that roots respond to the change in water availability 

and follow the seasonally declining water table. 

 

The pattern of root activity close to the water table is indicative of a seasonal cycle of 

root trimming in response to water table rise, and subsequent recovery as the water 

table falls again. Root redistribution can occur as phreatophytic plants adjust root 

growth in response to a rising and declining water table (Naumburg et al. 2005). As the 

rising water table inhibits root growth, root growth may continue and be encouraged in 

the unsaturated layers just above the water table (Castelli et al. 2000; Martin & 

Chambers 2002). Imada et al. (2010) described the proliferation of roots of Populus 

alba cuttings in the zone above a dynamic water table. Cuttings with a fluctuating water 

table had a higher dead fine root biomass than those with a static water table. 

However, the live fine root biomass was similar between the control and the 

treatments, suggesting that plants maintain total fine root biomass, redistributing 

growth in response to inundation of part of the root zone (Imada et al. 2010). 

Observation of root in-growth by phreatophytic Banksia with a shallow water table, as 

observed in this current study, indicate that roots close to the water table undergo a 

cycle of root trimming and recovery in response to seasonal fluctuations in 

groundwater levels.  

 

For phreatophytic Banksia, year-round root growth at the water table/capillary fringe 

may impact on above-ground phenological processes. Although the volume of roots at 

depth may be smaller, water uptake by deep roots can account for up to 60% of the 
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total plant water balance (Canadell et al. 1996). Root activity and water uptake at depth 

may therefore be influential in allowing plants to maintain leaf growth, flowering and 

secondary growth such as increasing bole diameter. Both B. attenuata and B. ilicifolia 

demonstrate restricted above-ground growth periods, with leaf growth occurring in late 

spring and early summer, a pattern observed both in this current study and in Bell and 

Stephens (1984). As new leaves develop, older leaves are shed. The synchrony 

between the loss of old leaves and new growth results in little overall change in canopy 

cover, with leaf area index remaining consistent throughout the year under Banksia 

woodland, as seen in this current study and observed by others (Farrington et al. 1989; 

Veneklass & Poot 2003). In addition, secondary growth, as observed using changes in 

bole diameter, indicates that growth is more pronounced in summer and autumn. Thus, 

all above-ground growth occurred between late spring and autumn, when water 

availability in the vadose zone is depleted due to the summer drought period of the 

Mediterranean-type climate. Therefore, this pattern of growth may be facilitated by root 

growth and water uptake from deeper soil moisture sources and the capillary fringe.  

 

In addition to testing the stated primary hypotheses, this study also provides an 

opportunity to compare phenological observations made on B. attenuata over two 

study periods spaced approximately 30 years apart (i.e. Bell & Stephens 1984). There 

was generally strong agreement between the timing of phenophases and the 

associated temperatures observed in this current study of B. attenuata and the 

previous assessment by Bell & Stephens (1984; Table 3.5). In particular, the timing 

and the mean daily temperature when anthesis occurred was consistent between the 

study periods. Stephens (1985) found that an average air temperature of 17.8 °C 

initiated flowering in B. attenuata with only 3% variation over a four year study period. 

In the current study, anthesis was first observed in week 48 in 2008 and week 44 in 

2009 and the average temperatures for these weeks were 17.1 °C and 18.5 °C 

respectively (although it should be noted that in 2009 the mean temperature in the 

preceding week was 17.5 °C and flowering could have started then). Rising 

temperatures in late spring thus trigger anthesis in B. attenuata, with its flowering 

period occurring over late spring and early summer (Bell & Stephens 1984; George 

1984). The initiation of flowering by Banksia species is likely to be linked to changes in 
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temperature. This allows closely related co-occurring Banksia species to maintain their 

genetic identity through flowering at different times of the year (Lewis & Bell 1981).  

 

Table 3.5. Comparison of the timing of anthesis and beginning of leaf growth of 
Banksia attenuata in Stephens 1985 (1) and the current study (2) and the mean values 
of daily average temperature (°C) and daily total solar radiation (MJ m-2). 
 

  1978-
19791 

1979-
19801 

1980-
19811 

1981-
19821 

20082 20092 20102 

Anthesis Av. 
Temp. 

17.8 (3% variation between years) 17.3 18.5  

 Solar 
Rad. 

20.5 (31% variation between years) 22.7 17.2  

 Yr 
Week 

45 5    42 10    45 
4   38 

48 16  44 
11 

Leaf 
Growth 

Av. 
Temp.  

16.5 (13% variation between years) 17.5 18.5  

 Solar 
Rad. 

18.4 (28% variation between years) 14.8 17.2  

 Yr 
Week 

41 6   43 9   40 
2   41 

43 6  44 
11 

 

 

Vegetative growth was restricted to late spring and early summer for both species, a 

pattern previously observed in Mediterranean species in the south west of Western 

Australia (Specht et al. 1983; Bell & Stephens 1984). Temperature was again a 

significant factor in triggering leaf growth, although there was some variation between 

the study years (2008 and 2009). Also, the temperature at which leaf growth was 

initiated varied between this study and that by Bell & Stephens (1984; 18 ˚C c.f.  

16.5 ˚C). Bell and Stephens (1984) showed that the temperature that triggers leaf 

growth varies between years, with 13% variation between years. The variations in 

temperatures that trigger leaf growth between years may be related to temperature not 

being the only significant variable that controls the timing of leaf growth. The dynamics 

between other factors, such as soil moisture, day length and endogenous cues may 

make it difficult to identify a single controlling parameter.  
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The primary focus of this study was to investigate root activity at the water 

table/capillary fringe interface, and the methodology was designed to meet this aim. 

Root in-growth bags thus contained some slow release nutrients and were wet to field 

capacity prior to installation, as it was thought that root in-growth would otherwise not 

occur if the surrounding wet soil environment was more favourable. This may have 

allowed some root growth to be independent of soil conditions at the time of placement. 

This is likely to have had the most influence at the 0.25 m sampling depth, which dried 

out over the summer and autumn sampling periods, and the addition of water to the 

root bags may have made them particularly attractive for root growth. This may have 

been less influential in winter and spring when there was higher water content in the 

soil surrounding the root bags. However, the small amount of water added should not 

have had a prolonged effect over the three months the bag was in the field. The 

addition of water and nutrients appeared to have less influence on root activity at depth 

(i.e. 1.5-3.75 m), with root growth consistent between seasons. In addition, cluster root 

growth has been shown to be stimulated by the addition of nutrients at depth and at 

times of the year when they would not otherwise develop (Pate & Watt 2002). 

However, nutrient addition did not enhance cluster root formation at depth (found in  

< 4% of bags below 1.5 m) with most confined to the more nutrient-rich top 0.25 m of 

the soil profile. At 0.25 m the effect of the addition of water and nutrients is more 

pronounced. At 0.25 m the methodology may have influenced results by allowing some 

unseasonal cluster root production, with the timing of cluster root development in this 

study differing from that described by Lamont & Bergl (1991).  

 

Conclusion 

Growth by B. attenuata and B. ilicifolia, both above- and below ground, is greatest in 

spring and summer months, with leaf growth restricted to late spring and early summer. 

However, there did not appear to be any endogenous limitations on root growth, with 

root growth occurring year-round, as demonstrated by year-round growth at the 

capillary fringe. The influence of different environmental variables on root growth by 

phreatophytic Banksia changes with depth. In the shallow parts of the vadic zone, root 

growth is associated with temperature and water availability. Soil moisture can be more 

constant deep in the soil profile, and root growth is able to occur at different times of 

the year. However, deep roots that are growing near the water table can be influenced 
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by the seasonal rise and fall of groundwater levels. Root growth by phreatophytic 

Banksia is restricted when the water table inundates the root zone in winter and spring. 

However, root growth was observed in the capillary fringe when the water table had 

receded to its deepest level in autumn. This indicates that roots have the capacity to 

respond to seasonal changes in groundwater levels.  



50 
 

Chapter Four 

Seasonal groundwater uptake by dominant canopy species in a Banksia 
woodland 

Introduction 

The connection between phreatophytic plants and a water table is implied through the 

observation of above-ground parameters that can show if plants have access to a 

consistent water supply. Such indicators include observation of year-round vegetative 

growth and maintenance of high shoot water potentials and transpiration rates, despite 

a rainfall deficit (Noy-Meir 1973; Fernandez & Caldwell 1975; Poole & Miller 1975; 

Canadell et al. 1996). However, while these ecophysiological observations indicate that 

plants have adequate access to water, they do not directly demonstrate the water 

source utilised by the plant. Plants preferentially use water from areas with the highest 

water potential, and often the highest root density (Adiku et al. 2000). Root density 

typically changes with depth, with highest root density in the shallow soil layers, 

decreasing with depth (Schenk & Jackson 2002). This is true of plants with dimorphic 

root systems, including Banksia (Dodd et al. 1984), which have an extensive lateral 

root system, with sinker roots accessing deeper water sources (Dawson & Pate 1996; 

Zencich et al. 2002). Although the volume of roots at depth may be smaller, water 

uptake by deep roots can account for more than 60% of evapotranspiration in the dry 

season, as was found in an Amazonian rainforest (Nepstad et al. 1994). Water uptake 

from depth is often from plants accessing a water table; however, the water table is 

seasonally dynamic in Mediterranean-type ecosystems, rising in winter months to 

reach highest levels in spring, before declining over the summer months (Castelli et al. 

2000; Martin & Chambers 2002). Changes in water table levels mean roots have to 

redistribute to maintain connection with the water table (Naumburg et al. 2005; Chapter 

3). Roots can redistribute in response to a seasonally fluctuating water table, thus 

maintaining a functional connection with the water table. If roots are maintaining a 

connection with the water table, uptake of groundwater should be evident throughout 

the year.  
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Phreatophytic Banksia in areas with a shallow water table are likely to maintain year-

round contact with the capillary fringe (Zencich et al. 2002). This can be inferred from 

observation of phreatophytic Banksia in habitats with a shallow depth to groundwater 

maintaining year-round high transpiration rates and high predawn shoot water 

potentials (Dodd & Bell 1993), demonstrating that they have access to sufficient water 

to avoid water deficits. This is particularly significant over summer and autumn months, 

when there is little rainfall in the Mediterranean-type climate of the Swan Coastal Plain, 

and water content in the vadose zone is low. Plants that are able to maintain high 

transpiration rates and predawn shoot water potential throughout the drought period 

are likely to be accessing groundwater. Groundwater uptake by phreatophytic Banksia, 

including B. attenuata and B. ilicifolia, has been previously investigated in a water 

source partitioning study using the natural abundance of hydrogen isotopes (Zencich  

et al. 2002). Although plants preferentially use water from the vadose zone, 

groundwater uptake was detected all year round, particularly in habitats with a shallow 

water table. Observation of year-round groundwater uptake is supported by root  

in-growth studies (Chapter 3), which indicate that roots close to the water table 

redistribute according to seasonally changing water table levels. A study that focuses 

on water uptake from the capillary fringe, where root growth has previously been 

observed, would further support these observations of year-round connection with a 

seasonally dynamic water table.  

 

Root activity and use of water from the water table can be observed by applying 

chemical tracers to the water table and observing their uptake. Chemical tracers, such 

as lithium and strontium have been used successfully to assess root activity, 

particularly for crop species (Sayre & Morris 1940; Fox & Lipps 1964; Martin et al. 

1982; Tofinga & Snaydon 1992; Haase et al. 1996; Obakeng 2007). Although many 

studies have utilised tracers to observe root activity of shallow-rooted species (Martin 

et al. 1982; Tofinga & Snaydon 1992; Simmons 1993), the method is being used 

increasingly to investigate water uptake by deep-rooted phreatophytes (Haase et al. 

1996; Obakeng 2007). For example, Haase et al. (1996) used lithium chloride to 

investigate the rooting depth of a shrub species, Retama sphaerocarpa, in a semi-arid 

environment in Spain. Uptake of the tracer by the plants was observed from depths of 

up to 28 m. Similarly, Obakeng (2007) observed lithium uptake by seven different tree 
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species in the Kalahari from depths of up to 73 m. In addition, isotopes of different 

elements can also be used as tracers, including the 15N nitrogen isotope. 15N is an 

effective tracer as its natural abundance in plants lies between -5% and +8%, thus only 

a small addition of highly enriched 15N is required for uptake and distribution to be 

observed in a plant (Fry 1991; Nadelhoffer & Fry 1994). The uptake of 15N can be 

rapidly detected in plant shoots, with one glasshouse experiment demonstrating the 

major amino acids in the shoots of Norway spruce were enriched with 15N within four 

hours to one day (Geneger et al. 2003). In addition, 15N has been observed to 

concentrate in plant shoots (Aarnes et al. 1995). The rapid uptake and accumulation of 
15N, in combination with the low natural abundance of the isotope in plants, makes it an 

effective tracer for observation of groundwater uptake by phreatophytic plants. Thus, 

there are a number of different chemicals that can be used effectively to observe root 

activity and groundwater uptake from a deep water table.  

 

This study aims to investigate water uptake from the capillary fringe by phreatophytic 

Banksia throughout the year, to support observations in Chapter 3 of year-round root 

activity at the capillary fringe. It was hypothesised that if roots follow a seasonally 

dynamic water table there should be water uptake from the capillary fringe at 

contrasting times of the year. Two chemical tracers were used to assess water uptake 

by plants from the capillary fringe at contrasting times of the year. Lithium chloride was 

used in spring and 15N in autumn, to avoid contamination between the two sampling 

periods. Additionally, although the dominant genus in a Banksia woodland, Banksia 

often occur in mixed stands with other trees, which are also deep rooted and likely to 

be phreatophytic. Thus, co-occurring trees species were also sampled, to determine if 

they were also utilising groundwater. 
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Materials and Methods 

Study site and species 

Groundwater uptake in contrasting seasons (spring and autumn) was assessed for four 

canopy species dominant in the Banksia woodland at the Whiteman Park study site. 

The study used the same site as Chapter 3, and existing infrastructure was used to 

monitor environmental variables during the course of the experiment. Meteorological 

parameters (temperature and rainfall) were recorded at a weather station 

(EnviroStationTM, ICT International Armidale, NSW) approximately 1 km from the study 

site. Water table depth at the study site was recorded daily, using a groundwater 

sensor and logger (miniTROLL, In Situ Inc., Colorado, USA) placed in a monitoring 

bore at the site. Soil volumetric water content was recorded using a neutron moisture 

meter (Didcot Instrument Co., Abingdon, UK), with observations made five days prior to 

autumn sampling and on the second last day of spring sampling. Chemical tracers 

were applied using existing boreholes (see details in Chapter 3) to access the capillary 

fringe/water table. Two different chemical tracers were used: lithium chloride in spring 

and 15N in autumn. This was to avoid contamination between the sampling periods and 

to ensure tracer uptake occurred during the observation period.  

 

Four species, representing the dominant canopy species at the site, were selected for 

study. They were B. attenuata (five replicates), B. ilicifolia (five replicates), 

Allocasuarina fraseriana Miq. (three replicates), and a hemi-parasitic tree Nuytsia 

floribunda (Labill.) Fenzl (three replicates). While B. attenuata and B. ilicifolia are the 

most common species, A. fraseriana and N. floribunda trees co-occur at the site. 

These two species were therefore also sampled for tracer uptake, to determine if they 

are also accessing the water table. Allocasuarina fraseriana is a deep rooted tree 

species, with needle-like cladodes. Nuytsia floribunda is a hemi-parasitic species with 

an extensive root system capable of attaching itself to the roots of host plants to gain 

access to their water and nutrients (Herbert 1919; Weber 1980).  
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Spring Sampling – Lithium Tracer 

The spring sampling period was selected to represent the period when the water table 

is highest as well as being the period of greatest water availability in the vadose zone. 

Spring sampling took place between the 19th and the 28th of October 2009. A 2.7 m 

borehole used to access root in-growth bags in Chapter 3 was used for the application 

of the lithium tracer. Using a hole at this depth ensured the tracer was applied to the 

capillary fringe, where root growth had been observed in the previous season (Chapter 

3). Trees closest to the tracer injection well were sampled for analysis, ranging from 

1.5 m to 19 m from the site of tracer application (Fig. 4.1). Plants were sampled prior to 

tracer application as a control. Sunlit leaves from the current year, (using the budscar 

ageing method of Lamont 1985), were sampled from the canopy, using a pole pruner. 

Two small bunches of leaves (approximately 5-10 leaves per bunch) were picked from 

each sample tree and placed into paper bags. Leaves were then transported to the 

laboratory and dried at 60 ˚C until a constant weight was attained (approximately  

48 hours). A solution of lithium chloride (100 g diluted in 300 ml DI water) was poured 

into the hole. The solution was then washed out into the surrounding soil profile with  

20 L of water. Following lithium injection, leaves were collected daily for the next ten 

days. Dry leaf material was ground and digested in 15.8 mol L-1 nitric acid and  

11.6 mol L-1 perchloric acid. Lithium concentration in the extract was measured using 

ICP-OES (CCD Simultaneous Inductively Coupled Plasma Optical Emission 

Spectrometry radial torch, Varian Australia).  

 

Autumn sampling – 15N tracer 

Autumn sampling took place between the 9th and the 19th of March 2010, representing 

the period when water table is deepest and soil water storage is diminished. Previous 

observation of groundwater depth at the site identified the depth to be approximately 

3.85 m at this time of the year (Chapter 3). The tracer was applied to three 3.7 m deep 

wells, in an approximate triangle formation and trees were sampled from inside the 

triangle (Fig. 4.2). The nitrate tracer solution consisted of 1 g of labelled 15N diluted with 

99 g of ammonium nitrate in 900 ml DI water. This solution was divided into three equal 

parts then placed down the three boreholes. The same species and sampling protocol 

used for the lithium tracer was followed with leaves collected for ten days. Dried 
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samples were encapsulated in a tin capsule and combusted in elemental analyser 

(Europa Scientific, Crewe, UK) to CO2, N2 and H2O. H2O was removed by magnesium 

percholate (SerCon Crewe, UK) and CO2 was removed by Carbosorb (SerCon, Crewe, 

UK). The N2 was purified by gas chromatography before being analysed by a 20-20 

continuous flow isotope ratio mass spectrometer (CF-IRMS, Europa Scientific, Crewe, 

UK). Raw data was corrected for instrument drift. A standard weighed at variable 

weights, was used to correct for source pressure effects and IAEA-N-1 and IAEA-N-2 

were used to normalise the results to the nitrogen in AIR scale, such that  

IAEA-N-1 = 0.43% and IAEA-N-2 = 20.32%. 
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Figure 4.1. Study site layout for spring sampling period showing plant replicate 
locations for Banksia attenuata (BA), Banksia ilicifolia (BI), Allocasuarina fraseriana 
(AF) and Nuytsia floribunda (NF). The lithium chloride tracer was added to a central 
well that was 2.7 m deep, corresponding with the spring capillary fringe.  
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Figure 4.2. Study site layout for autumn sampling period showing plant replicate 
locations for Banksia attenuata (BA), Banksia ilicifolia (BI), Allocasuarina fraseriana 
(AF) and Nuytsia floribunda (NF). The N15 tracer was added to a central well that was 
3.7 m deep, corresponding with the summer capillary fringe. 
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Results 

Spring tracer uptake 

Environmental conditions during the study period were typical of spring weather for the 

Mediterranean-type ecosystem on the Swan Coastal Plain. Maximum temperatures 

ranged between 20.4 and 33.4 ˚C, and cool nights, with minimum temperatures 

ranging between 5.6 and 15.6 ˚C. Depth to groundwater was approximately 3.11 m 

below the soil surface and appeared to be beginning to decline (Fig. 4.3). Only a very 

small amount of rainfall occurred during the ten day study period, with 3.6 mm 

recorded on day eight. The vadose zone indicated recharge from winter precipitation, 

with volumetric soil water content between 0.02 cm3 cm-3 and 0.06 cm3 cm-3. Soil water 

content increased rapidly towards the water table, and was 0.11 cm3 cm-3 at 2.75 m 

(Fig. 4.4). 

 

 
Figure 4.3. Temperature, rainfall and depth to groundwater for the study site at the 
spring sampling periods. 
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Figure 4.4. Volumetric water content (VWC) down the soil profile during spring 
(squares) and autumn (triangles).  
 

Generally, the signal of lithium uptake in the leaves over the 10 day study period was 

inconsistent, with high variation both between individuals of the same species and 

between days from the same plant (Fig. 4.5). The concentration of lithium in the leaves 

was low, but there did appear to be a pattern of uptake for some individuals and this 

was strongest for replicates of B. ilicifolia and N. floribunda. The peak in lithium 

concentration for these two species was between seven and nine days after tracer 

injection. Lithium concentrations were highest for N. floribunda, reaching a peak of  

1.9 µg g-1 compared with the much lower concentrations observed in B. attenuata 

leaves (highest value of 0.3 µg g-1). There was little evidence of tracer uptake by  

B. attenuata and A. fraseriana. Both species demonstrated low concentrations of 

lithium in general and there was no indication of increased levels following tracer 

injection. One possible exception to this is a B. attenuata replicate, which had a very 

low starting concentration of lithium (0.1 µg g-1). Six days after the tracer injection, 

lithium concentration had increased to 0.3 µg g-1), however this value is still very low 

and concentrations dropped again over subsequent sampling days (Fig. 4.5). 
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Figure 4.5. Lithium concentration in Banksia attenuata, Banksia ilicifolia, Allocasuarina 
fraseriana and Nuytsia floribunda leaves sampled following injection of LiCl solution 
into the spring capillary fringe (DGW approximately 3.1 m). 
 

Autumn tracer uptake 

Conditions during the sampling period were hot and dry, representative of 

Mediterranean-type summer on the Swan Coastal Plain. However, the sampling period 

was particularly hot for March, with maximum temperatures ranging between 24.7 and 

42.9 ˚C. Minimum temperatures were between 10.1 and 20.0 ˚C (Fig. 4.6). The 

summer of 2009-2010 was particularly hot and dry, with only 1 mm of rain in the  

16 weeks between week 47, 2009 and week 11, 2010, combined with daily maximum 

temperatures of more than 29 °C. This is reflected in the limited amount of soil 

moisture in the vadose zone over the study period (Fig. 4.4) with volumetric water 

content ranging between 0 and 0.06 cm3 cm-3 down to 3 m below the soil surface. In 

addition, water content was approximately 0 cm3 cm-3 between 0.75 and 2 m, indicative 

of the lack of recharge and the poor water-holding capacity of the Bassendean type 
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sands. Depth to groundwater declined over the summer months and was at 3.75 m at 

the time of sampling.  

 

 
Figure 4.6. Temperature, depth to groundwater (DGW) at the study site over the 
autumn sampling period. Note that no rainfall was recorded during this period.  
 

The concentration of tracer present in the leaves following injection was again very 

inconsistent between sampling days and between individual trees. There is generally 

little evidence of change in δ15N abundance after the application of 15N tracer (Fig. 4.7). 

One day after tracer injection, two replicates of A. fraseriana (AF1 & AF3) and one 

replicate of N. floribunda (NF2) had a spike in δ15N abundance. However, abundance 

returned to similar values as those before tracer application by the following day and 

remained relatively stable for the rest of the sampling period. There was little variation 

in δ15N abundance for B. attenuata and B. ilicifolia following tracer injection and there 

was no evidence of an increase in values (Fig. 4.7). 
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Figure 4.7. Nitrate abundance (δ15N) in Banksia attenuata, Banksia ilicifolia, 
Allocasuarina fraseriana and Nuytsia floribunda leaves sampled following injection of a 
15N labelled nitrate solution into the autumn capillary fringe (DGW approximately  
3.75 m). 
 

Shoot water potentials were similar across the two contrasting seasons (Table 4.1). 

Predawn shoot water potential for both B. attenuata and B. ilicifolia was close to zero 

during both the spring and autumn sampling periods, indicating that plants were not 

water stressed. Midday shoot water potentials were lower for the more xeric 

phreatophyte, B. attenuata, but values were once again similar between the two 

sampling periods.  

Table 4.1. Predawn (ΨPD) and midday (ΨMD) shoot water potentials (MPa) for Banksia 
attenuata and Banksia ilicifolia sampled in spring and autumn. Values shown are 
means with standard errors (n = 3). 
  

B. attenuata 
 

B. ilicifolia 
 ΨPD ΨMD ΨPD ΨMD 

Spring -0.16 ± 00 -131 ± 0.22 -0.07 ± 0.01 -0.70 ± 0.11 
Autumn -0.23 ± 0.05 -1.51 ± 0.13 -0.19 ± 0.02 -1.03 ± 0.10 
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Discussion  

It was hypothesised that water uptake from the capillary fringe would be evident in 

phreatophytic Banksia in contrasting seasons. This study provides evidence of root 

activity at the capillary fringe in early spring, but does not indicate tracer uptake by 

either Banksia study species in autumn. Water uptake in spring, as indicated by an 

increase in lithium concentration in plant leaves, was most evident in the more mesic 

phreatophyte species B. ilicifolia, with all individuals showing an increase in lithium 

concentration by the end of sampling (Fig. 4.5). It is possible that B. ilicifolia utilise 

water from the capillary fringe in spring, despite there being water available in the 

vadose zone, as was also observed by Zencich et al. (2002). This may be related to 

the higher water requirements of this more mesic phreatophyte (Canham et al. 2009). 

In contrast, B. attenuata did not show a clear pattern of uptake of the lithium tracer 

from the water table in spring. This may be partly attributed to the extensive root 

system of the species, which explores large volumes of the sandy soil profile for water 

(Zencich et al. 2002; Groom 2004a). As plant water uptake is a function of soil water 

potential and rooting density (Adiku et al. 2000), it may be that B. attenuata was able to 

meet its water demands from the vadose zone during spring, when water content in the 

was high. However, it is likely that roots were in contact with the capillary fringe, when 

the water table was at its highest level. If plants were preferentially using vadic water, 

water uptake from the capillary fringe may have been too low to provide a tracer uptake 

signal.  

 

Similarly, there did not appear to be any tracer uptake by either B. attenuata or  

B. ilicifolia in the autumn sampling period. The concentration of δ15N fell well within 

natural abundance levels and no real increase detected following the injection of the 

tracer. It may be that the soil containing the tracer was too saturated for root growth by 

the species in the study. If the sampling period were increased this may allow for more 

root growth in the zone containing the tracer, as water content decreased. Although 

uptake of the tracer was not detected in the leaves, it appears that plants maintain 

connection with deeper water sources over the summer and autumn period. Water 

availability was severely diminished in the vadose zone over summer and autumn, and 

when sampling took place there was limited water available in the top 2.8 m of the soil 

profile. Despite this, plants still maintained high predawn water potentials, indicating 
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that there was sufficient water available. Given the low water-holding capacity of the 

soils, in combination with an extended drought period, it is likely that plants were 

accessing water from the capillary fringe.  

 

The other canopy species present at the site, N. floribunda and A. fraseriana, also 

showed water uptake from the capillary fringe, both in the spring and autumn sampling 

periods. Nuytsia floribunda had the strongest signal of increasing concentration of 

lithium, and all three replicates demonstrated tracer uptake during the spring sampling 

period. It is likely that the parasitic rooting trait of N. floribunda allowed the study plants 

to access the roots of nearby plants that also absorbed tracer, increasing the load of 

tracer taken up by the N. floribunda plants. In addition, N. floribunda, has an extensive 

root system, which stretches well beyond the canopy of the tree. This was noted in 

Chapter 3, with N. floribunda roots evident in root in-growth bags up to 20 m from the 

nearest individual of that species. This also could have contributed to the higher tracer 

values evident for N. floribunda. Rapid uptake of the tracer by both N. floribunda and  

A. fraseriana was also evident in autumn, with abundance of δ15N peaking one day 

after the tracer was applied to the capillary fringe, although δ15N abundance quickly 

returned to values similar to those observed prior to the addition of the tracer. When 

the water table was at its deepest and there was low water availability in the vadose 

zone both N. floribunda and A. fraseriana showed rapid uptake of the 15N tracer. It is 

therefore probable that other deep-rooted species that co-occur in Banksia woodland, 

particularly N. floribunda and A. fraseriana, also utilise water from the capillary fringe.  

 

Few studies that have investigated groundwater uptake using chemical tracers have 

assessed the seasonality of groundwater use. In this study, two tracers were used, to 

avoid cross-contamination of the site between the two seasons. However, the use of 

the two different tracers may have contributed to some difficulty in interpreting the 

results. While it was expected that water uptake from the capillary fringe by  

B. attenuata and B. ilicifolia could occur all year round, there was little tracer uptake in 

autumn. There are a number of possible reasons why uptake of the 15N tracer was not 

evident in the autumn sampling period. It is possible that the lack of tracer uptake over 

that period may have been due to roots being inactive in the capillary fringe during this 
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time. This may indicate that plants have access to other water sources, although 

considered unlikely given the low water content in the vadose zone at the time of 

sampling. However, Banksia have extensive root systems, which extend laterally from 

the plant and roots may have been active in the capillary fringe in an area where the 

tracer was not present, given that it was applied in only one central well. In addition, 

the concentration of the tracer used may also have been too low for the autumn 

sampling period using the 15N isotope. However, as natural levels are so low, only a 

small amount of the tracer should be required to get a signal of tracer uptake. It may be 

the case that sampling of leaf material after tracer injection did not occur for long 

enough. Although previous studies of 15N uptake by plants indicate that a signal is 

quickly observed in the shoots, these observations were based on shallow rooted 

plants under glasshouse condition (Geneger et al. 2003). Plants in situ may utilise 

water sources other than that part of the capillary fringe containing the tracer, which 

may dilute the signal. In addition, a longer sampling period may be necessary to 

observe water uptake by deeper-rooted species.  

 

Although the lithium tracer generally gave a better signal of uptake, the concentration 

of lithium in the leaves was low overall and varied considerably, both between days 

and between individuals of the same species. The low concentrations of lithium 

following tracer application may be due to insufficient lithium being added to the water 

table to get a reliable signal in the leaves of the study trees. The methodology used in 

this study followed that outlined by Haase et al. (1996) who used 100 g of lithium 

chloride to observe water uptake from depths of 26 m and reported uptake in trees 

within one day of tracer application, peaking after seven days. However, Obakeng 

(2007) undertook a similar study using Kalahari tree species and used far greater 

quantities of lithium chloride, applying 4,950 g of lithium chloride to the water table. The 

small amount of tracer used in the current study may not be enough lithium chloride for 

a clear signal of water uptake by plants in the spring sampling period. The 

inconsistency between sampling periods evident in the results was also reported by 

Haase et al. (1996) and Obakeng (2007) who found that lithium concentrations were 

highly variable between sampling periods. Although that could be attributed to the 

environmental conditions over the sampling period, it is unlikely in this study as only 

negligible rainfall and stable temperatures were observed within each sampling period. 
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The variation in tracer concentrations between each sampling day may also be due to 

different sets of leaves being sampled each time. An effort was made to be consistent 

with the leaves sampled, collecting the current year’s growth from the same side of the 

tree. However, there were unavoidable variations in the locations from which the 

leaves were collected each day and this may, in part, account for the variability in the 

results. This was also considered to be a factor in the variation between treatments 

reported by Obakeng (2007).  

 

Conclusion 

The chemical tracers used in this study give some indication that the phreatophytic 

Banksia study species were utilising groundwater, thus maintaining a functional 

connection with the water table. This is evident from observation of tracer uptake from 

the capillary fringe during spring, when the water table was at its highest level. 

However, water uptake from the capillary fringe by Banksia was not evident during the 

autumn sampling period. This is likely to be due to methodological reasons, as plants 

did not demonstrate any signs of water stress despite the low water content in the 

vadose zone. These physiological indicators suggest that plants were still accessing 

groundwater at this time of the year. Thus, it is likely that plants maintain a 

physiological connection with the water table, following it as it recedes over summer 

and autumn.  
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Chapter Five 

Seedling root elongation rates for two phreatophytic Banksia species with 
contrasting water requirements 

Introduction 

Phreatophytic plants often have high water requirements and therefore need to be able 

to access a reliable water source, such as groundwater. The connection between 

groundwater and phreatophytic plants is dependent on plant roots being able to 

maintain functional contact with the capillary fringe. In environments where the water 

table is seasonally dynamic, plant roots are likely to redistribute in response to 

fluctuations in water table levels (Castelli et al. 2000; Naumburg et al. 2005; Chapter 

3). This implies that, under normal seasonal conditions, the roots of phreatophytic 

plants elongate to follow a declining water table. In Chapter 3, roots appeared to adjust 

to water table decline at an average rate of 0.38 cm day-1 over the summer study 

period and 0.3 cm day-1 over autumn. The presence of roots suggests that roots were 

able to elongate and follow the water table that decline at these rates. However, these 

observations only infer the rate of root elongation; the actual root elongation rates for 

Banksia species have not been demonstrated. In addition, the rate of water table 

decline that roots are able to match was at a ‘natural’ rate; that is, the rate that the 

water table declines over summer drought due to evapotranspiration and the horizontal 

discharge of groundwater. Water table decline can occur at more rapid rates, impacted 

by reduced rainfall recharge and groundwater abstraction (Kite & Webster 1989; Scott 

et al. 2000). The rate of water table decline to which phreatophytic plants are able to 

adapt, may be dependent on the plant’s capacity for rapid root elongation. For 

phreatophytic plants to avoid detrimental impacts from groundwater decline, root 

elongation must be adequate to maintain functional contact with the water table 

(Mahoney & Rood 1991). Thus, the ability for phreatophytic plants to survive changes 

in water table levels can depend on the root elongation rate of which plants are 

capable. Identifying the rate of root elongation by phreatophytic plants can assist our 

understanding of the adaptability of phreatophytes to changing water table levels.  

 

Root elongation rates are species dependent and may differ between species that 

occupy different ecohydrological habitats. There is a wide range in the root elongation 
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rates that have been previously described. For example, riparian poplar species have 

been found to have modest root elongation rates and are able to survive water table 

decline rates of between 1 – 4 cm day-1 (Mahoney & Rood 1991; Kranjcec et al. 1998; 

Gonzalez et al. 2010). Similarly, Hughes et al. (1997) found that in Alnus incana, a 

riparian phreatophytic tree species, plants grew well at a rate of decline of 1 cm day-1, 

but they could also survive a drawdown rate of 3 cm day-1. Riparian tree species in 

semi-arid Africa have much greater capacity to adapt to high rates of water decline 

since they are able to elongate roots at 5 cm day-1 (Faidherbia albida) to 10 cm day-1 

(Acacia tortilis) (Stave et al. 2005). Additionally, there is some evidence that root 

development differs between mesic and more xeric species. In particular, root 

elongation rates are reported to be slower for more mesic species that occupy habitats 

with high degrees of water availability (Booth et al. 1990; Richards et al. 1995; Stave et 

al. 2005). Slower root elongation by more mesic plants may be due to these species 

occupying areas where water availability is more reliable, thus slower root elongation 

rates are sufficient (Kranjcec et al. 1998). However, there are few studies comparing 

seedling root elongation rates between phreatophyte species. For more xeric species, 

roots that are quick to penetrate to deeper soil layers may be advantageous, allowing 

plants to follow the water table when shallower soil layers dry out (Leishman & 

Westoby 1994). In contrast, mesic phreatophytes distributed in habitats with a shallow 

depth to groundwater do not require roots to penetrate as far, before they are able to 

access water from the capillary fringe. Thus, rapid root elongation may be less 

advantageous for mesic phreatophytes, as water availability is higher at shallower 

depths.  

 

Phreatophytic Banksia on the Swan Coastal Plain of south Western Australia range in 

their dependency on groundwater, as determined through their distribution in relation to 

groundwater availability and physiological traits such as vulnerability to xylem 

cavitation (Zencich et al. 2002; Canham et al. 2009). The root elongation rates of these 

phreatophytic Banksia have not been previously documented, but this is a vital 

parameter in further understanding the adaptability of phreatophytic Banksia in 

response to changes in water table levels. The current study investigates the capacity 

for root elongation, and the rate at which root elongation occurs for two phreatophytic 

Banksia species. Quantifying the rate of root elongation of which phreatophytic Banksia 
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are capable, may give some indication of the rate of water table decline that they are 

able to withstand. It was expected that the roots would be able to elongate at a rate of 

water table decline at least as fast as that which occurs over summer, which was found 

to be 0.38 cm day-1 in Chapter 3. Furthermore, it is thought that the rate will be faster, 

based on previous observation of rapid root development by Banksia seedlings (Bowen 

1991; Rokich et al. 2001). In addition, the two study species, B. attenuata and  

B. littoralis, represent phreatophytes that range in their dependency on groundwater, 

as demonstrated by their distribution across the ecohydrological landscape and 

physiological traits, such as vulnerability to xylem cavitation. Banksia attenuata is a 

widespread species, and can tolerate greater water stress than B. littoralis, which 

occurs in dampland habitats. It was hypothesised that the mesic phreatophyte  

(B. littoralis) would have a slower rate of root elongation than the more xeric 

phreatophyte (B. attenuata). Root elongation rates were determined in a glasshouse 

experiment using rhizopods (Mahoney & Rood 1991). Other plant traits, including root 

and shoot weights, seed weight, cotyledon leaf condition and predawn leaf water 

potentials, were also observed to support the interpretation of root elongation.  
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Materials and Methods 

Glasshouse Experimental Design 

Root studies are often difficult, due to the logistical constraints of observing roots and 

this difficulty is compounded when the study species are deep rooted, as are many 

phreatophytes. Mahoney and Rood (1991) used a 'rhizopod' to investigate root 

elongation rates of phreatophytes in response to a declining water table in an 

experimental setting. The rhizopod is an array of tube ‘pots’ connected to a reservoir, 

which allows for the maintenance and manipulation of a water table. Such an 

apparatus has appeared in a number of studies since its inception, sometimes 

undergoing minor variations (Hughes et al. 1997; Horton & Clark 2001; Stave et al. 

2005). The rhizopod design is useful for the study of phreatophyte root elongation, 

although it does not allow for direct observation of roots. Instead, previous studies have 

investigated root elongation rates by destructively sampling seedlings (Mahoney & 

Rood 1991). This technique is useful as it allows for root and shoot biomass to be 

determined, in addition to root lengths, but it does not necessarily provide detailed data 

on root elongation rates. Root windows allow for regular observation of root growth and 

elongation (Bohm 1979). Rhizotrons, used in the field to investigate root growth, can 

have transparent walls through which roots may be mapped (Soileau et al. 1974). Root 

windows have also been used in glasshouse studies, cut into the sides of growing 

containers, which allows regular monitoring of root growth (BassiriRad & Caldwell 

1992; Gallardo et al. 1994). Root windows allow for detailed observation of root growth, 

which is vital to quantifying plant root elongation rates. Rhizopod apparatus may be 

combined with root windows to allow detailed observation of the growth and root 

elongation of phreatophytic species.  

 

Rhizopods were constructed using a similar design to that of Mahoney and Rood 

(1991). They consisted of 2 m high 90 mm diameter PVC pipe attached via 20 mm pipe 

to a 150 cm tall reservoir. The reservoir is to maintain and manipulate water table 

depths (Fig. 5.1). To avoid psuedoreplication (sensu Hurlbert 1984) there were just 

three plant tubes for each reservoir, meaning there was one replicate per species per 

reservoir plus a spare plant. There were 34 sets of three, with 30 of these used for 

destructive sampling and measurement of plants. The remaining four sets had 
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windows installed, to allow for in situ observation of root growth (Fig. 5.2). To provide 

dark conditions for root growth, the windows were covered with a layer of black plastic 

and this in turn was covered with a thin reflective layer.  

 

 
Figure 5.1. Rhizopods in the glasshouse on campus. Seedlings were grown in 2 m tall 
plant tubes attached to reservoirs. Reservoirs were used to maintain the water table at 
1 m below the soil depth. 
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Figure 5.2. Root windows with roots showing Banksia attenuata root growth towards 
water table. 
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Rhizopods were filled with a medium to coarse sand, similar to that of the Bassendean 

Sand Dune system. The soil was predominately medium sand, with fine sand only 3% 

of the soil fraction, and silt and clay less than 1% (Table 5.1). The soil had a very low 

water-holding capacity, as determined from an analysis of the water retention 

properties of the soil (Table 5.2).  

 

Table 5.1. Particle size distribution for soil 
media used in rhizopods 

Table 5.2. Water retention data for soil 
media used in rhizopods 

Sand Fraction 
(µm) 

% of 
Sample 

Coarse Sand (2000–600) 14.02 

Medium Sand (600–200) 81.94 

Fine Sand (200–75) 3.09 

Silt and Clay (< 75) 0.95 
 

Matric Potential 
(kPa) 

VWC 
(%) 

0 31.83 

10 0.36 

33 0.18 

100 0.10 

1500 0.04 
 

 

Germination and seedling transplantation 

Two phreatophytic Banksia species were selected for study. Banksia attenuata is 

considered a more xeric phreatophyte, with a wide distribution across the 

ecohydrological landscape and is relatively more resistant to xylem cavitation. In 

contrast, the distribution of B. littoralis is restricted to mesic environments with a 

shallow depth to groundwater and the species is more susceptible to xylem cavitation 

(Canham et al. 2009). Seeds of B. attenuata and B. littoralis were sown in January 

2008. The study species normally germinate in winter/spring and because they were 

being germinated in summer they were given a hot/cold treatment prior to sowing. 

Seedlings were placed on filter paper in a petri-dish and dampened. They were 

refrigerated at approximately 4 °C for eight hours, and then taken outside to be 

exposed to 30-32 °C for six hours. This temperature oscillation was repeated twice 

more. Seeds were then sown in root trainer pits filled with white sand then watered 

daily. Seedlings were transplanted in March, eight weeks after sowing and all seedlings 

still had green cotyledon leaves (Fig. 5.3). A slow release fertiliser (8 g of Osmocote© 

Native Plants) was applied to each tube and plants were watered with 200 ml water 

every three days for 33 days after transplantation to avoid desiccation. After this 
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period, seedlings were no longer watered, with the water table the only water source 

available once the unsaturated part of the profile had dried out. The glasshouse 

temperature was controlled and ranged from 18 to 25 ºC. There were five days when 

temperatures reached 37 ºC due to a malfunction of the coolers. Relative humidity 

ranged between 25 and 90%, and averaged 50% across the experimental period. 

 
Figure 5.3. Example of a Banksia attenuata seedling transplanted into a rhizopod. 

 

Destructive Sampling 

Destructive sampling took place on the 33rd, 49th, 65th and 92nd day after transplanting. 

After leaves had been collected for water potential measurements, the reservoirs were 

drained. The plant tube was cut using a reciprocating saw to approximately 30 cm 

below the water table to allow for any root growth beyond the water table. The tube 

containing the plant was laid on its side and the soil was washed away from the plant 

roots. Intact plants were laid out and total root and shoot lengths were recorded 

immediately, before desiccation could occur. Plants were photographed, then shoots 
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removed and placed into plastic bags. Roots were cut into 20 cm increments and 

placed into paper bags and dried at 40 °C until they reached a constant weight 

(approx. 48 hours). Shoots were returned to the laboratory on the same day to have 

their leaves removed and leaf area determined using a leaf area meter (model Delta-T 

Type WDIGC-2, Delta T Devices, Cambridge UK.) Following this, the leaves were 

placed in a paper bag with the rest of the shoot portion and dried along with the roots. 

The plant material was weighed to determine total root mass, total shoot mass and 

root:shoot ratios. In addition, whole seed weight was determined by weighing 20 

individual seeds of each species. 

 

Leaf Water Potential 

On the same days as the destructive sampling, pre-dawn leaf water potential (n = 3) 

was determined using a dewpoint potentiometer (WP4, Decagon Services). Leaves 

were excised from the plant, with sampling taking place between 6 and 7 am. Following 

the methods recommended by Decagon (Decagon application note n.d.) leaves were 

scoured using 600 grit sand paper and DI water to remove the cuticle and allow for 

faster equilibration. Leaves were patted dry using a lint-free tissue (KimwipeTM), then 

excised from the plant and placed in a plastic bag with a piece of moist paper to 

minimise desiccation. Leaves were taken into the laboratory and cut to a size that 

covered the bottom of the WP4 sample container. Subsequently, the sample was 

placed into the drawer of the WP4 and water potential measurements were logged for 

up to an hour. It appeared that after 40 minutes the majority of replicates had 

equilibrated, so values recorded at 40 minutes were used for analysis. 

 

Soil Moisture 

Soil moisture content was determined by collecting soil samples at each sampling 

period. The day before plants were sampled soil samples were taken from a randomly 

selected tube (n = 1 per species). A 25 mm diameter hole was drilled and a horizontal 

soil core taken. This was repeated every 5 cm from the top of the tube to the water 

table (100 cm). Each core of sand was placed in a plastic sample jar, sealed and kept 

refrigerated until analysed. Soil water potential was determined using the WP4 
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dewpoint potentiometer. Samples were shaken, to ensure even distribution of water, 

and a small sample placed in the bottom of the WP4 sample cup. The sample was 

placed in the WP4 and water potentials were logged for up to 20 minutes. The value 

recorded closest to 15 minutes was used for analysis as samples appeared to have 

equilibrated sufficiently in that time. 

 

Gravimetric water content was also determined. Wet weight of samples was recorded 

and samples placed in the oven at 105 °C until a constant weight was reached (approx. 

48 hours). Dry sample weight was recorded and gravimetric water content ( ) was 

determined as thus; 

 

To determine bulk density pieces of the sand filled pipe (n = 3) were cut, keeping the 

sand inside the pipe. The volume of pipe was determined and the weight of the sand 

from that volume of pipe was dried, before being weighed. Bulk density (BD) was then 

determined as: 

 

Volumetric water content (VWC) was then determined using the gravimetric water 

content and the bulk density: 

 

Root elongation rates (RER) were determined for both the destructively sampled 

seedlings and the seedling roots observed in rhizopod windows. For the sampled RER, 

the mean root length was used to determine the elongation rate of individuals at the 

next sampling event. This may be shown as: 

 

where n = number of days, x = sample root length, x̄ = mean root length. 
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Root elongation rates for the seedlings in the window tubes were calculated by 

determining the difference in root length since the previous observation and then 

dividing by the number of days between observations. The maximum root elongation 

rate was determined for each individual and this value was used for statistical analysis. 

The capillary fringe was determined to be 20 cm above the water table, thus at 80 cm 

depth. Window observations of roots were used to determine the number of days it 

took for each individual to reach 80 cm depth, the capillary fringe.  

 

Data Analysis 

Independent t-tests were performed on each parameter at each sampling period to see 

if there were significant differences between the two study species. Where data did not 

meet normality requirements, a log transformation was used. Leaf area and root:shoot 

ratio data could not be transformed to a normal distribution so non-parametric Kruskal-

Wallis tests were used to test for significant differences. All analyses were done using 

SPSS v. 17 software (SPSS Inc.). 
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Results 

Soil moisture 

At day 33, when initial watering ceased, volumetric water content was between 1 and 

5% throughout the soil profile (Fig. 5.4a & 5.4c). After this, the profile began to dry out 

from the top down and by the conclusion of the experiment 75% of the profile had less 

than 1% volumetric water content (VWC) for B. attenuata (Fig. 5.4a). In contrast, soil 

moisture in the rhizopods containing B. littoralis was higher, with only 40% of the soil 

profile having less than 1% VWC (Fig. 5.4c). Whilst the profile dried from the top down, 

the water table was maintained at 1 m, providing a constant water source if the roots 

could reach it. The capillary fringe was approximately 20 cm above the water table and 

remained constant for the duration of the experiment.  

 

Root Elongation 

Seedlings of both study species were observed to have roots extending to the capillary 

fringe by the end of the experiment (92 days after transplanting; Fig. 5.4b & 5.4d) The 

total root length reached by the end of the study was not significantly different between 

species, though the more mesic phreatophyte, B. littoralis, had a greater total root 

length at 1,018 ± 25 mm compared to 950 ± 44 mm for B. attenuata (t (10) = -1.33  

p = 0.212 (Table 5.5). Root elongation was rapid immediately after watering from the 

top ceased, but slowed again as roots got closer to the capillary fringe. The pattern in 

root elongation rates differed between the two study species. The more xeric 

phreatophyte, B. attenuata, had a sharp peak in rate of root elongation post-watering, 

followed by a rapid decrease as roots reached the capillary fringe (Fig. 5.5 a & b). This 

contrasts with B. littoralis which showed a flatter response, with a lower peak and a 

more gradual slowing of root elongation rate as roots approached the capillary fringe. 

Peak elongation rates were found on day 41 for both species, eight days after the 

cessation of water from the top.  
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Figure 5.4. Volumetric water content (VWC) during the study period for (a) Banksia 
attenuata and (c) Banksia littoralis (n = 1 for both species). Volumetric water content is 
categorised as 0-1%, 1 to 5% and more than 5% VWC. Root lengths for  
(b) B. attenuata and (d) B. littoralis, as recorded through observation windows (mean ± 
SE; n = 5). 
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Figure 5.5. Root elongation rates for Banksia attenuata (solid line) and Banksia 
littoralis (dashed line) as determined by (a) destructive sampling and by (b) observation 
windows. 
 

Maximum RER was significantly higher for the more xeric phreatophyte, peaking at 37 

± 4 mm day-1 for B. attenuata compared to 18 ± 3 mm day-1 for B. littoralis (t (8) = 3.783 

p = 0.005; Table 5.3). The difference in RER is reflected in the number of days it took 

for seedling roots to reach the capillary fringe. B. attenuata roots reached the capillary 

fringe by day 46 ± 4, whilst the mesic phreatophyte, B. littoralis took significantly longer 

at 69 ± 5 days (t (8) = -4.437 p = 0.009). There was strong agreement in root 

elongation rates as determined from root length observations from destructive 

sampling and root window observations.  
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Table 5.3. Mean and standard errors for seed weights (n = 20) and root elongation 
rates (n = 5) for Banksia attenuata and Banksia littoralis as observed through root 
windows. Max. RER refers to the highest root elongation rate observed for each 
individual and average RER – peak period is the mean RER after cessation of watering 
and when the roots reached the capillary fringe. Symbols indicate significant 
differences between species (*t tests, and † Kruskal-Wallis, p <0.05). 
 

 
Seed Weight  

(mg) 
Max. RER  
(mm day-1) 

Average RER– 
Peak Period (mm 

day-1) 

B. attenuata 108.12 ± 3.94† 37 ± 4* 19 ± 5 

B. littoralis 21.42 ± 1.25† 18 ± 3* 15 ± 2 

    
 

 

Seed and Seedling Size 

Banksia attenuata had significantly larger seeds than the more mesic phreatophyte,  

B. littoralis (Table 5.3), and B. attenuata also had larger seedlings overall. Although 

there were no significant differences in total root length identified, there was a 

significant difference in total root mass, particularly at the final sampling period. 

Banksia attenuata had a much larger root mass than B. littoralis (t (10) = 4.298  

p = 0.002; Table 5.5). B. attenuata also had a higher shoot mass than B. littoralis at  

day 92 (t (10) = 5.423 p <0.001). Banksia attenuata seedlings increased root mass, 

then shoot mass, at a faster rate than the mesic phreatophyte, and leaf area increased 

accordingly. By the conclusion of the experiment, B. attenuata had twice the leaf area 

of B. littoralis (Kruskal-Wallis, χ2 (1 N = 12) = 5.769 p = 0.016). This corresponds with 

observations that B. attenuata seedlings were twice the size of B. littoralis seedlings by 

day 92, both in terms of root and shoot mass. Cotyledon leaves were larger for  

B. attenuata and remained green for longer (Table 5.4). By the end of the experiment, 

the majority of B. littoralis seedlings (87%) had brown, shrivelled cotyledon leaves. This 

contrasts with B. attenuata, where the majority of seedlings had chlorotic cotyledon 

leaves but 33% still had green cotyledon leaves.  



81 
 

 

Table 5.4. Condition of cotyledon leaves observed on harvesting days 33, 49, 65 and 
92. Values are a percentage of total plant numbers for Banksia attenuata (BA) and 
Banksia littoralis (BL) and n = 6 for each species. 
  

Cotyledon 
Condition  Day 33 Day 49 Day 65 Day 92 

Green BA 100 83 17 33 
 BL 100 50 17 0 
Yellow BA 0 17 83 67 
 BL 0 50 33 17 
Brown BA 0 0 0 0 
 BL 0 0 50 83 

 

 

Root:shoot ratios (R:S) varied for each species as seedlings became established. At 

day 33 for B. attenuata, the R:S was relatively low at 0.3 ± 0.0 differing to B. littoralis at 

0.6 ± 0.0 (Kruskal-Wallis, χ2 (1 N = 12) = 8.308 p = 0.004; Table 5.5). These had 

reversed by day 49, with B. attenuata seedlings investing more in roots and R:S ratio 

increased to 0.9 ± 0.2 compared with 0.6 ± 0.1 for B. littoralis. At day 65 B. littoralis had 

a significantly higher R:S ratio, at 1.2 ± 0.2, though this had decreased to 0.9 ± 0.1 by 

day 92. After the initial increase in R:S between days 33 and 49 B. attenuata remained 

relatively constant. There were no significant interspecific differences in leaf water 

potential, and values were consistent at each sampling period, although it was highest 

at day 33, before the soil profile started to dry from the top.  
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Table 5.5. Summary of plant parameters measured on destructively sampled 
seedlings. All data are mean and standard errors (n = 6, except for Ψ leaf where n = 3). 
* indicates a significant difference detected between Banksia attenuata (BA) and 
Bankisa littoralis (BL) at that sampling period as determined using t tests and † 

indicates a significant difference detected using Kruskal-Wallis test, as data did not 
meet the normality of distribution requirements for parametric analysis. 
 

Parameter Spp. Day 33 Day 49 Day 65 Day 92 

Root length (mm) BA 350.3 ± 54.9 795.8 ± 66.4* 838.7 ± 35.4 953.5 ± 43.6 

 BL  291.5 ± 38.5 609.2 ± 34.1* 787.5 ± 74.3 1018.2 ± 25.1 

Root weight (mg) BA 50.5 ± 7.4* 289.1 ± 65.7 333.5 ± 30.1 600.4 ± 22.9* 

 BL 91.3 ± 17.2*  149.5 ± 18.7 353.0 ± 31.7  321.1 ± 39.7* 

Shoot weight (mg) BA 168.0 ± 19.2 334.3 ± 33.0 546.3 ± 50.9* 866.7 ± 72.3* 

 BL 156.7 ± 26.8 243.2 ± 36.1 324.5 ± 28.0* 360.0 ± 59.2* 

Root:Shoot 

 
BA 0.3 ± 0.0† 0.9 ± 0.2 0.6 ± 0.0† 0.7 ± 0.1 

 BL 0.6 ± 0.0† 0.6 ± 0.1 1.2 ± 0.2† 0.9 ± 0.1 

Leaf area (cm2) BA 9.5 ± 2.2 22.3 ± 1.4 34.4 ± 4.5 54.0 ± 5.7† 

 BL 13.7 ± 1.9 21.6 ± 3.1 26.0 ± 2.6 25.6 ± 5.6† 

Pre-dawn Ψleaf 

(MPa) 

BA -0.6 ± 0.1 -1.1 ± 0.2 -1.4 ± 0.3 -1.2 ± 0.0 

BL -0.8 ± 0.1 -1.4 ± 0.2 -1.7 ± 0.3 -1.4 ± 0.1 
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Discussion 

The root elongation rates observed in the current study greatly exceed those found in 

field observations of root growth in response to seasonal changes in water table levels 

(Chapter 3). The maximum rates of root elongation were found to be 36.7 mm day-1 

and 18.2 mm day-1 for B. attenuata and B. littoralis respectively. These rates of root 

elongation may be regarded as rapid in comparison to the rates of water table decline 

that the species are likely to experience over summer and autumn water table decline 

(approximately 3.8 mm day-1; Chapter 3). However, the root elongation rates fall within 

the rates that have been recorded in studies of root elongation by phreatophytic plants 

in response to different rates of water table decline. It has been suggested that 

phreatophytic plants are capable of root elongation rates between 10 and 40 mm day-1, 

as shown for a number of riparian tree species (Mahoney & Rood 1991; Hughes et al. 

1997; Kranjcec et al. 1998 Gonzalez et al. 2010) and possibly even up to 100 mm day-1 

(Stave et al. 2005). In addition, previous researchers have commented on the rapid 

development of tap and sinker roots by Banksia seedlings. Enright & Lamont (1992) 

found that one year old seedlings of B. attenuata, Banksia hookeriana and Banksia 

leptophylla at a dune crest site in Eneabba (280 km north of Perth) had tap roots 

exceeding 2 m in length. Bowen (1991) found roots of 16 month old B. attenuata and 

B. prionotes extending down to a 2.2 m water table at a site on the Swan Coastal Plain. 

Similarly, Rokich et al. (2001) described tap roots of up to 1.5 m in length for one year 

old B. attenuata and Banksia menziesii growing in Banksia woodland, also on the 

Swan Coastal Plain. Thus, Banksia are capable of rapid root elongation during 

development.  

 

Root elongation may be encouraged by decreased water availability, as plants are 

prompted to increase their rooting volume, thus increasing absorptive surfaces for 

water uptake (Hutchings & de Kroon 1994). In this current study, root elongation rates 

peaked soon after surface watering had stopped, as roots followed the drying front 

through the sandy soil in the rhizopod. It is likely that the root elongation rate increased 

as roots responded to decreasing soil water potential. Teskey and Hinckley (1981) 

reported a root growth response to decreased soil water potential for white oak 

(Quercus alba), with root elongation and the number of growing roots increasing with 

soil water deficits between -0.4 to -0.8 MPa. This response means plants increase their 
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total rooting volume and the volume of soil from which water can be accessed, which is 

a critical factor that allows phreatophytic plants to respond to changes in water table 

levels.  

  

Differences in root elongation rate by the two phreatophytic Banksia species may be 

related in part to the ecohydrological habitats in which the species are distributed. For 

phreatophytes that occupy more xeric environments with deep sandy profiles, a rapid 

rate of root elongation may be necessary for plants to access deeper water stores 

quickly. For species that are limited to more mesic environments, such as B. littoralis, 

access to groundwater is still vital, with the distribution of these species often limited to 

habitats with a shallow depth to groundwater (Busch et al. 1992; Zencich et al. 2002). 

Therefore, roots do not have to penetrate as deeply to access the capillary fringe and 

water table, and less time and fewer resources are required to access a reliable water 

source. High water availability at shallow soil depth may mean there is less selection 

pressure for newly germinated seedlings to be capable of rapid root elongation. A rapid 

rate of root elongation may be unnecessary for the establishment and persistence of 

mesic species, since plants can have a slower rate of root elongation and still be able 

to access sufficient water (Kranjcec et al. 1998). This is supported by observation of 

species from more mesic environments having slower root elongation rates compared 

to more xeric species (Matsuda & McBride 1986; Richards & Lamont 1996; Milberg & 

Lamont 1996). The root elongation rates observed in this current study support the 

hypothesis that the more xeric phreatophyte, B. attenuata, has a faster elongation rate 

and can reach the capillary fringe before the mesic phreatophyte, B. littoralis. It is more 

beneficial for B. attenuata to invest in more extensive root growth than B. littoralis, 

since it is a xeric phreatophyte with a distribution that includes habitats of deep sands 

with no available groundwater. Banksia attenuata therefore requires an extensive root 

system exploiting a large volume of soil. Conversely, the narrow distribution of  

B. littoralis means that this species is confined to habitats that afford year-round access 

to a shallow water table (Zencich et al. 2002).  

 

The use of rhizopods in the current study necessitated the use of seedlings to 

investigate root elongation rates by phreatophytic Banksia, and this may have 
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influenced the rates observed. The young seedlings still had cotyledons intact and it is 

likely that seed size had an influence on the rates of seedling growth and interspecific 

differences in root elongation rates. Seedling root elongation rate, in part, may be 

determined by seed size, as large seeds produce larger initial seedlings than small 

seeds (Marshall 1986; Jurado & Westoby 1992; Osunkoya et al. 1993; Leishman & 

Westoby 1994). Additionally, there is evidence that larger seeds are advantageous in 

xeric habitats (Baker 1972; Stock et al. 1990; Stromberg & Patten 1990; Leishman & 

Westoby 1994; Richards & Lamont 1996; Milberg & Lamont 1997), which is significant 

when contrasting root elongation rates between phreatophytes with different water 

requirements. The more xeric species, B. attenuata had significantly larger seeds than 

the mesic species, B. littoralis. Observations in the current study of Banksia seedling 

growth in the first few months following germination, support previous studies that 

found that larger seeds produce larger seedlings in this genus (Stock et al. 1990). 

Leishman and Westoby (1994) observed a similar trend for a range of semi-arid 

species, noting that overall seedling size was related to root development, with large 

seedlings developing large roots capable of accessing deeper soil water. The faster 

root elongation rates observed for the xeric phreatophyte are most likely associated 

with the large seed size of B. attenuata in comparison to B. littoralis. It may be argued 

that it is less of an imperative for B. littoralis seedlings to invest energy into producing 

larger seeds in order to produce larger seedlings with extensive root systems. The 

distribution of B. littoralis ensures it is in habitats with greater and more constant water 

availability, and rapid development of a deep root system may not be as strongly 

selected for, compared to species that occur in more xeric environments.  

 

Conclusion 

To maintain a functional connection with a rapidly declining water table, phreatophytic 

plants need to have the capacity for root elongation rates that allow plants to follow the 

water table. The rates of 1.8 cm day-1 for B. littoralis and 3.7 cm day-1 for B. attenuata 

that were observed in this current study fall within the range of root elongation rates 

observed for phreatophytes in similar glasshouse experiments. Such rapid rates of root 

elongation indicate that plants can potentially maintain contact with a water table 

decline at rates far greater than those that occur during a normal seasonal cycle of 

water table fluctuations.  
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Chapter Six 

Root response of phreatophytic Banksia exposed to rapid water table decline 

Introduction 

Plants that develop in the presence of a shallow water table can become dependent on 

access to groundwater as a water source. While phreatophytes often preferentially 

utilise water from the vadose zone when it is available (Snyder & Williams 2000; 

Zencich et al. 2002), groundwater uptake allows phreatophytes to not only survive 

summer drought, but maintain high water potentials and continue photosynthesis and 

leaf growth (Fernandez & Caldwell 1975; Poole & Miller 1975; Canadell et al. 1996; 

Chapter 3). Many phreatophytes are physiologically adapted to a high level of water 

availability, with comparatively high water demands (Horton et al. 2001) and increased 

vulnerability to water stress (Hacke et al. 2000; Pockman & Sperry 2000; Canham et 

al. 2009). Phreatophytes are therefore vulnerable to water table decline and their 

response is often observed as physiological water stress, reduced photosynthesis and 

transpiration, branch dieback and eventually, plant death (Scott et al. 1999; Sperry & 

Hacke 2002; Cooper et al. 2003). These canopy level processes can indicate 

disconnection from the water table. However, phreatophytic plants may avoid severe 

water stress if they have a root elongation response to declining groundwater levels 

and are able to maintain contact with the water table and capillary fringe (Naumburg et 

al. 2005).  

 

The adaptability of phreatophytic Banksia to changes in groundwater availability is 

influenced by the capacity for roots to respond to a declining water table. Root growth 

responds to changes in soil moisture, limited by either a deficiency or an excess of soil 

water (Kramer & Boyer 1995). Root growth can be limited by reduced water availability. 

For example, root growth by loblolly and Scotch pine seedlings was reduced to about 

25% of the rate at field capacity when soil water potential was reduced to  

-0.6 or -0.7 MPa (Kaufmann 1968). Conversely, root elongation may be encouraged by 

decreased water availability, since plants need to increase their rooting volume, thus 

increasing absorptive surfaces for water uptake (Hutchings & de Kroon 1994). Teskey 

and Hinckley (1981) observed a root growth response to decreased soil water potential 
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for white oak (Quercus alba). They reported that root growth, including root elongation 

and the number of growing roots, increased with soil water deficits between  

-0.4 to -0.8 MPa. The capacity for plants to detect decreased soil water availability, and 

invest in root growth as water availability decreases, allows them to extend deeper into 

the soil profile and maximise the volume of soil that is able to be searched for moisture. 

Root growth response to decreased water availability may allow phreatophytic plants to 

maintain contact with a declining water table. 

 

Roots of phreatophytic plants may respond to a declining water table; however, the 

rate of water table decline and the capacity for root growth will determine whether 

plants are able to continue to meet their water requirements. Under normal seasonal 

conditions, water table rise and fall occurs at relatively low rates. For example, the 

shallow unconfined aquifers in the sandy soils on the Swan Coastal Plain, Western 

Australia, decline at a rate of approximately 0.38 cm day-1 over summer months 

(Chapter 3). However, decreased recharge of the aquifer, due to reduced rainfall, in 

addition to groundwater abstraction, can increase the rate of water table decline that 

phreatophytic plants are likely to encounter. Changes in ecosystem hydrology have 

prompted investigations of maximum rate of water table decline that phreatophytic 

plants are able to adapt to, specifically examining the root growth and elongation in 

relation to water table decline. For example, Mahoney and Rood (1991) found that a 

water table drop of 1 cm day-1 best matched the potential for root elongation in the 

natural poplar hybrid Populus deltoides x P. balsamifera. Others have also found that 

certain phreatophyte species respond best to a 1 cm day-1 rate of water table decline 

rather than faster rates (Krancjec et al. 1998; Horton & Clark 2001). Stave et al. (2005) 

found that Faidherbia albida seedling root elongation could maintain contact with a 

water table decreasing at a rate as high as 5 cm day-1. In Chapter 5 of this study it was 

found that two phreatophytic Banksia species had the capacity for relatively rapid rates 

of root elongation, with rates of 1.8 cm day-1 for B. littoralis and 3.6 cm day-1 for  

B. attenuata. Thus, as phreatophytic Banksia are capable of rapid rates of root 

elongation to establish a connection to a water table, they may also be able to elongate 

roots in response to a rapidly declining water table. 
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Root elongation response (including rate of root elongation) can differ between species 

and may differ according to the distribution of a species in an ecohydrological 

landscape. It has been suggested that there is a general trend for more mesic species 

to have slower root extension than more xeric species (Matsuda & McBride 1986; 

Richards et al. 1995). For example, Horton & Clark (2001) compared Salix gooddingii, 

a mesic phreatophyte which inhabits river edges, with Tamarix chinesis, an exotic, 

more xeric phreatophyte. It was found that S. gooddingii had slower root elongation 

rates in response to the declining water table than T. chinesis. For Banksia species, it 

was shown in Chapter 5 that germinants of B. attenuata, a xeric phreatophyte, have 

faster root elongation rates than the smaller-seeded mesic phreatophyte B. littoralis.  

 

Plant water status indicators, such as predawn shoot water potential, stomatal 

conductance, transpiration and photosynthetic rate, indicate if plants are experiencing 

a water deficit (Cooper et al. 2005). Regulation of stomatal conductance can reduce 

transpirational water loss and is one way plants can maintain their water status in 

response to decreased water availability. However, this is at the expense of 

photosynthesis and, over time, may limit the availability of carbohydrates necessary for 

further growth, including root extension (Hughes et al. 1997; Martinez-Vilalta et al. 

2002). Additionally, plants can suffer irreversible xylem cavitation if water deficits 

become too great (Zimmermann 1983; Sperry et al. 1988). To avoid this, roots of 

phreatophytic plants need to elongate in response to the declining water table, to 

ensure plants maintain access to a sufficient water supply. Observation of stomatal 

conductance, transpiration and photosynthetic rate can indicate if plants have access 

to sufficient water. Phreatophytic plants may be considered to have responded 

sufficiently to water table drawdown if there is little change in plant water status. Thus, 

a functional connection to the capillary fringe may be inferred from measurements of 

plant water status, such as shoot water potential, transpiration and gas exchange.  

 

The current study investigates the response of phreatophytic Banksia to three different 

rates of water table decline. It was expected that phreatophytic Banksia would 

demonstrate a root elongation response to a declining water table. Based on previous 

observation of the rate of root elongation by phreatophytic Banksia (Chapter 5), as well 
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as other phreatophytic species (Krancjec et al. 1998; Stave et al. 2005), it is also 

expected that these species are able to maintain a functional connection with a rapidly 

decreasing water table. Differences in plant response between phreatophytic Banksia 

species that have differing distribution along an ecohydrological gradient, and 

associated physiological traits were also investigated. It was hypothesised that a more 

xeric species, such as B. attenuata, would exhibit a stronger root elongation response 

than mesic species, like B. ilicifolia and B. littoralis. 
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Materials and Methods 

Seed germination and plant establishment 

Three phreatophytic Banksia species were selected for study. Banksia attenuata is 

considered a more xeric phreatophyte, with a wide distribution across the 

ecohydrological landscape and is relatively more resistant to xylem cavitation. In 

contrast, the distribution of B. littoralis is restricted to mesic environments with a 

shallow depth to groundwater and the species is more susceptible to xylem cavitation. 

Banksia ilicifolia represents an intermediate species, with a wider distribution than  

B. littoralis, but with a distribution still limited to habitats where groundwater is within 

the maximum rooting depth of the species (Canham et al. 2009). The experiment took 

place from September 2008 to May 2009. Seeds were germinated in September 2008, 

with a total of 200 seeds sown to get 36 healthy seedlings for experimentation. Seeds 

were sown in pots filled with the same sand substrate used in the rhizopods (for soil 

water-holding capacity analysis see Chapter 5). Seedlings were transplanted in the 

beginning of November, eight weeks after sowing. The healthiest seedlings, with 

cotyledons still intact and no more than two fully extended leaves were selected and 

transplanted. The soil was prepared by adding slow release fertiliser (Osmocote© 

Native Plants) and wetting the soil profile to field capacity. Seedlings were again 

fertilised at three and six weeks after transplanting, and watered (200 ml per growing 

tube) every second day for eight weeks, to ensure root contact with the water table, 

which was maintained at 1 m below soil depth. After this period, watering from the top 

ceased and the unsaturated part of the profile dried out, with the water table remaining 

as the only plant water source. Plants were left to establish at the water table until the 

commencement of drawdown treatments.  

 

Drawdown rates and sampling design 

Plants were grown in rhizopods (Chapter 5) to allow for the manipulation of the water 

table at different rates. Tubes were filled with a medium to coarse white sand, 

representative of that found on the Bassendean Dune System, and water table levels 

were controlled and monitored using reservoirs. Three different drawdown rates were 

selected to investigate the maximum rate of water table drawdown tolerable to 
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phreatophytic Banksia. Chapter 5 indicates that the study species do not extend their 

roots into the saturated zone; therefore, prior to drawdown, root distribution is assumed 

to be limited to the part of the soil profile above the water table and including the 

capillary fringe. Rhizopods require a large amount of glasshouse space, which was a 

limiting factor for the number of replicates that were feasible. To allow for three 

drawdown rates to be investigated, a control of 0 cm day-1 rate was not used, as it was 

assumed that root elongation would not occur beyond the water table. The previous 

study (Chapter 5) shows that recently germinated B. attenuata seedlings had a 

maximum root elongation rate of 3.6 cm day-1 and an average rate of 1.8 cm day-1. It 

was thus assumed that seedlings would be able to match water table decline 

treatments of 2 cm day-1 and 4 cm day-1, but would become disconnected at  

10 cm day-1. There were seven replicates of each species and each treatment for plant 

harvesting, and three replicates per species per treatment for soil moisture sampling. 

 

The start of each treatment was staggered so that all would finish within three weeks of 

each other. This was to ensure the plants were all of a similar age at the time of 

harvesting, to try and limit differences in biomass due to plant age. The water table 

started at 100 cm and was drawn down by 80 cm to 180 cm below the soil surface. The 

2 cm day-1 treatment started 16 weeks after transplanting and the drawdown took  

40 days. The 4 cm day-1 treatment started 17 weeks after transplanting and lasted  

20 days, and the 10 cm day-1 treatment started 20 weeks after transplanting and took 

eight days (Table 6.1). Seedlings were left in the rhizopods for a further 30 days to 

allow plants to adjust to the new water table depth. Water table levels were lowered 

using a tap at the bottom of the reservoir and drawdown was regulated in a step-wise 

manner on a daily basis. Glasshouse temperatures were controlled, generally ranging 

between 18 °C and 31 °C. Temperatures were highest during the establishment phase, 

when seedlings were being watered every second day. Maximum temperatures during 

this period averaged approximately 31 °C. This period was during the hottest part of 

the year (November to March). After watering had finished and plants were 

establishing at the water table, glasshouse temperatures ranged between 18 °C and  

25 °C. Relative humidity ranged between 20% and 90% and was approximately 50% 

on average. 
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Table 6.1. Timing of drawdown treatments and plant harvesting. 

16 17 18 19 20 21 22 23 24 25 26 27

2 cm treatment Harvest

4 cm Treatment Harvest

10 cm Harvest

Drawdown

Drawdown

Drawdown

Weeks since transplanting 

 2cm Treatment 

4cm Treatment 

10cm Treatment 

 
 

Plant water relations 

Gas exchange was measured to investigate plant response to the declining water table 

using an infra-red gas analyser (IRGA; Model Li 6400, Li-cor Inc., Lincoln Nebraska). 

Measurements were recorded at time 0 (i.e. the day that water table decline 

commenced), then every 10 days until plants were harvested. Transpiration, stomatal 

conductance and photosynthetic rates were recorded within a two hour period over the 

middle of the day. PPFD was controlled at 1400 µmol m-2, CO2 at 385 µmol mol-1 and 

chamber temperature was set at 25 °C. Prior to harvesting, predawn plant water 

potentials were determined using a Scholander-type pressure chamber as a measure 

of hydraulic connection to the capillary fringe (Model 3005, PMS instruments, Oregon, 

USA). Seedlings were small enough to fit into the chamber; therefore, water potentials 

were determined using the whole plant and were taken in the hour before sunrise.  

 

Plant harvesting 

After predawn water potentials had been determined, shoots were placed into plastic 

bags and taken to the laboratory. Leaves were removed and leaf area was determined 

using an area meter (model Delta-T Type WDIGC-2, Delta T Devices, Cambridge UK). 

Leaves and shoots were then placed into paper bags and dried. In order to sample 

plant roots, the water table was drained completely from the rhizopods. Tubes were cut 
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into 20 cm sections containing plant roots and soil, which were bagged and transported 

to the laboratory. Plant roots were sorted and cleaned, then dried, along with the 

shoots, at 50 °C until a constant weight was reached (approx. 48 hours). Following this, 

they were weighed, thus determining root weights for 20 cm increments. Total root 

weight, shoot weight and root to shoot ratios were all determined. 

 

Soil sampling 

Soil was sampled on three occasions for each treatment; the day that drawdown 

treatments began, the day that drawdown ceased and the day before plants were 

harvested, with one replicate per species (except for B. attenuata at drawdown end for 

the 2 cm day-1 treatment as there were not enough replicates). Holes 25 mm in 

diameter were drilled into the side of the tube and a soil core taken, which was then 

placed into a plastic jar and sealed tightly. This was repeated along the tube every  

5 cm. Gravimetric water content was then determined. Wet weight of samples was 

recorded and samples placed in the oven at 110 °C until a constant weight was 

reached (approx. 48 hours). Dry sample weight was recorded and gravimetric water 

content was determined as thus;  

 

Bulk density in the tubes had been previously determined as 1.474g cm-3, which was 

used to determine volumetric water content: 

 
 

 

Statistical analysis 

Two-way analysis of variance (ANOVA) was used to statistically analyse total root dry 

weights, total shoot dry weight and leaf area. A square-root transformation was used 

on non-normally distributed data. Where significant differences were detected, a Tukey 

post hoc test was used. Root:shoot ratios and predawn pressure potentials were not 
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normally distributed and could not be transformed to meet the assumptions required for 

ANOVA. These parameters were therefore analysed using non-parametric Kruskal 

Wallis and Mann-Whitney-U tests. The relationship between leaf area and predawn 

xylem pressure potential was examined using a Spearman’s rank order correlation. All 

analyses were carried out using SPSS version 17.0 software (SPSS Inc., Chicago, IL, 

USA). 
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Results  

Soil water availability 

The sandy soil has limited water-holding capacity, with soil moisture in the capillary 

fringe and saturated zone rapidly depleted as water table drawdown occurs. This is 

evident in the similarities in volumetric water content between the treatments at the end 

of drawdown (Fig. 6.1). At the end of drawdown, the 2 cm day-1 treatment had similar 

volumetric water content in the top 120 cm of the soil profile as the 4 cm day-1 and  

10 cm day-1 treatments. This is despite the 2 cm day-1 drawdown taking 40 days to 

complete, while the 10 cm day-1 treatment took just eight days. However, the rate of 

water table drawdown was more important in determining the volume of water available 

in the vadose zone at any given time. After ten days of drawdown treatment, there was 

approximately 330 ± 34 ml of water in the top 100 cm of the soil profile for the 2 cm 

day-1 treatment compared with 246 ± 26 and 35 ± 10 ml for the 4 and 10 cm day-1 

treatments respectively (Fig. 6.2).  

 

Plant response to water drawdown 

As the soil water store decreased, transpiration and photosynthetic rates decreased 

(Fig. 6.2). Photosynthetic rates were generally less than 5 µmol m-2 s-1 when total 

volumetric soil water in the top 1 m was reduced to less than 150 ml. Transpiration 

rates reduced similarly in response to decreased water availability, as they declined to 

less than 2 mmol m-2 s-1 when total volumetric soil water in the top 1 m was reduced to 

less than 150 ml. Over the first 20 days, photosynthetic rates declined slowest for the  

2 cm day-1 treatment for all three species (Fig. 6.3). However, at 30 days there was a 

small increase in the photosynthetic rate for the 4 cm day-1 treatment.  
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Figure 6.1. Rhizopod profiles. Line graphs depict root dry weights at 20 cm increments 
for Banksia attenuata (n= 4 for 2 cm day-1 and 4 cm day-1 treatments, 7 for 10 cm day-

1), Banksia ilicifolia (n = 6) and Banksia littoralis (n = 5 for 2 cm day-1 treatment and 6 
for the 4 cm day-1 and 10 cm day-1) harvested 30 days after drawdown treatments at 
differing rates. Values are mean +/- 1SE (n=7). Bar graphs show changes in volumetric 
water content (VWC) before drawdown start, at drawdown end and 30 days after 
drawdown finished. 
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By 30 days after the start of drawdown, all treatments and all species appear to have 

been disconnected from the water table/capillary fringe, with very low photosynthetic 

rates observed. Stomatal conductance follows a similar trend, with the gradient in 

decline being steepest for the 10 cm day-1 drawdown treatment. The 2 cm day-1 

treatment appeared to take the longest to decline in stomatal conductance. Banksia 

attenuata showed a faster rate of decline in photosynthetic rate compared with the 

other two study species, with a sharp drop observed for both the 4 and 10 cm day-1 

treatments, taking 10 days to reach less than 6 µmol m-2 s-1. The decline was slower 

for the 2 cm day-1 treatment, taking 30 days to reach a similar value. 

 

There was limited evidence of a root elongation response following the declining water 

table, with no roots observed beyond 120 cm below the soil surface. Root elongation 

did not appear to initiate in response to the change in water availability for B. attenuata. 

This can be seen by roots only being found down to the 80 to 100 cm portion of the soil 

profile for all drawdown rate treatments, which corresponds with the position of the 

capillary fringe prior to drawdown (Fig. 6.1). In contrast, the mesic phreatophytic 

species, B. ilicifolia and B. littoralis, showed some response to water table decline for 

all three treatments. For these more mesic species, roots extended beyond the pre-

drawdown capillary zone, with roots recorded at 100-120 cm deep for all treatments.  

 

Total root weight was significantly higher for the three study species at the 10 cm day-1 

treatment (d.f. = 2, f. = 4.997 p = 0.011), with the largest root mass recorded for B. 

attenuata (2.73 ± 0.37 g. Fig. 6.4). This contrasts with the root weight for the same 

species with the 2 cm day-1 treatment (1.67 ± 0.46 g). Root mass was generally 

greatest at 80-100 cm, particularly for the 10 cm day-1 treatments, once again 

corresponding with the presence of the capillary fringe during the three month 

establishment phase (Fig. 6.1).  
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Figure 6.2. Relationship between soil water storage in the top 1 m of the rhizopod 
and photosynthetic (a) and transpiration (b) rates. n = 399. 
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Figure 6.3. Photosynthetic rate and stomatal conductance (mean +/-1 SE) for  
Banksia attenuata (n= 4 for 2 cm day-1 and 4 cm day-1 treatments, 7 for 10 cm day-1),  
Banksia ilicifolia (n = 6) and Banksia littoralis (n = 5 for 2 cm day-1 treatment and 6 for 
the 4 cm day-1 and 10 cm day-1) seedlings exposed to different water table drawdown 
rates.  
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Figure 6.4. Mean (± 1 S.E) values for (a) total root dry weight, (b) shoot dry weight,  
(c) root:shoot ratios, and (d) leaf area for Banksia attenuata (n= 4 for 2 cm day-1 and  
4 cm day-1 treatments, 7 for 10 cm day-1), Banksia ilicifolia (n = 6) and Banksia littoralis 
(n = 5 for 2 cm day-1 treatment and 6 for the 4 cm day-1 and 10 cm day-1) seedlings  
30 days after cessation of water table drawdown at different rates. Different capital 
letters indicate significant differences between treatments and different lowercase 
letters indicate significant differences between species for; (a) according to ANOVA, 
d.f. = 2, f. = 4.997 p = 0.011; (b).Differing capital letters indicate significant differences 
between treatments (ANOVA, d.f. = 2, f = 3.513, p = 0.039). Differing lowercase letters 
indicate significant differences between species (ANOVA, d.f. = 2, f = 15.44,  
p = <0.000); (c) Kruskal-Wallis, d.f. = 2, χ2 = 33.058, sig. = <0.000; and (d) ANOVA,  
d.f. = 2, f = 6.341, p = 0.004.  
 



101 
 

Shoot weights differed significantly both at species and treatment levels (Fig. 6.4a). For 

example, for the 2 cm day-1 treatment shoot weight for the more xeric phreatophyte,  

B. attenuata, was larger than the two mesic phreatophyte species (2.86 ± 0.77 g, c. f, 

1.62 ± 0.48 g for B. ilicifolia and 0.68 ± 0.16 g for B. littoralis). As with root weight, 

shoot weights were also found to be larger for the 10 cm day-1 treatment (Fig. 6.4b). 

Root:shoot ratios (R:S) differed between the three species (Fig. 6.4c). The more xeric 

phreatophyte, B. attenuata, was found to have the lowest R:S and the most mesic 

species, B. littoralis, had the highest (eg. 0.58 ± 0.01 c.f. 1.69 ± 0.14 for the 2 cm day-1 

treatment). Root:shoot ratios were very similar across the treatments for each of the 

species. 

 

Leaf area was largest for B. attenuata, corresponding with the larger shoot weights 

observed for this species, and leaf area was significantly lower for the mesic 

phreatophyte, B. littoralis (Fig. 6.4d). Predawn water potentials were significantly lower 

for B. attenuata (Fig. 6.5a). This reflects the higher number of mortalities of this 

species, with three out of the seven B. attenuata replicates dying with the 2 and  

4 cm day-1 treatments (Fig. 6.5b), although there were no mortalities for B. attenuata 

with the 10cm day-1 treatment, however xylem pressure potentials were low (-2.23 ± 

0.44 MPa) indicating plants were water-stressed. There was a significant correlation 

between final leaf area and predawn xylem pressure potentials (r = 0.636, p < 0.001, 

n=49), with individuals with larger leaves tending to be more water-stressed by the end 

of the experiment. Banksia attenuata, which had a larger leaf area, tended to have 

lower xylem pressure potentials than the other two species, although there is a large 

spread in the data (Fig. 6.6).  
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Figure 6.5. Mean (± 1 S.E) values of (a) predawn xylem pressure potential (ΨPD) for 
Banksia attenuata (n= 4 for 2 cm day-1 and 4 cm day-1 treatments, 7 for 10 cm day-1), 
Banksia ilicifolia (n = 6) and Banksia littoralis (n = 5 for 2 cm day-1 treatment and 6 for 
the 4 cm day-1 and 10 cm day-1) seedlings 30 days after cessation of water table 
drawdown at different rates. Different lowercase letters indicate significant differences 
between species (Kruskal-Wallis, d.f. = 2, χ2 = 17.024, p = <0.000). Seedling mortality 
(b) expressed as a percentage of replicates alive at experiment end (n = 7). 
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Figure 6.6. Leaf area and pre-dawn plant water potentials (ΨPD) for all 
treatments. y = -0.0000935x + 0.388. Spearman’s rank order correlation 
results are:  r (49) = 0.636, p < 0.000. 



103 
 

Discussion 

It was expected that the roots of phreatophytic Banksia would demonstrate root growth 

in response to a declining water table. However, despite plant-available water being 

present in the soil profile, there was very limited root extension following water table 

decline. In addition to a poor root elongation response, seedlings demonstrated a rapid 

drought response to water table decline, quickly reducing stomatal conductance, 

transpiration and photosynthesis (Fig. 6.2). It is likely that the phreatophytic Banksia in 

this current study experienced hydraulic failure, due to a rapid disconnection from the 

water table. This is indicated by the rapid reduction in transpiration and gas exchange, 

as well as the low predawn xylem pressure potential observed during the experiment. 

In the event of a sudden decrease in water availability, such as that caused by a 

rapidly declining water table, it is likely that hydraulic failure is the primary cause of 

plant death (Sparks & Black 1999; McDowell et al. 2008). If the water potential 

becomes more negative than what can be sustained by the plant, runaway embolisms 

can occur, leading to the complete desiccation of the plant and subsequently to cellular 

death (McDowell et al. 2008). If onset of a water-deficit response is less acute but more 

prolonged, plants may become ‘carbon starved’ (McDowell et al. 2008). In this 

scenario, plants respond to water stress by closing their stomata to reduce 

transpirational loss; however, if water stress is chronic and plants do not 

photosynthesise sufficiently, metabolic demands may exceed available carbohydrates 

(Martínez-Vilalta et al. 2002). This will impact on the capacity of the plant to invest in 

further root growth to find soil moisture, thereby exacerbating the problem. Thus, if 

roots become disconnected from the water table/capillary fringe, plants become water-

stressed and unable to grow either roots or shoots. Similar responses to water table 

decline have been observed for poplars, with reports that although root elongation was 

stimulated by a water table decline of 4 cm day-1, plants became water-stressed and 

were unable to extend their roots when water table drawdown occurred at a rate of 10 

cm day-1 (Kranjcec et al. 1998). It is likely that the lack of root elongation response to a 

declining water table by the phreatophytic Banksia study species was due to plants 

being unable to meet their water requirements once the water table fell below the 

rooting depth of the plants.  
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It was hypothesised that the roots of the phreatophytic Banksia study species have the 

capacity to elongate roots at a rapid rate of water table decline, specifically 2 or  

4 cm day-1, based on the root elongation rates observed in Chapter 5, where it is 

observed that B. attenuata had a maximum root elongation rate of 3.7 cm day-1. The 

notion that phreatophyte roots are able to extend at such a rate is supported by Stave 

et al. (2005), who found that Faidherbia albida seedlings survived drawdown rates of  

5 cm day-1. Similarly, Kranjcec et al. (1998) reported that Populus balsamifera is able to 

maintain contact with a water table declining at 4 cm day-1. The same study also 

indicated a root growth response following a 10 cm day-1 water table decline, although 

plant water relations data indicated that this rate was too rapid for roots to maintain 

water table contact. Despite there being some evidence indicating that phreatophytes 

are able to survive water table declines of more than 4 cm day-1, all the rates used in 

this current experiment (2, 4 and 10 cm day-1) appear to be too fast for the 

phreatophytic Banksia seedlings to survive. It has been shown previously that a 

drawdown rate of 1 cm day-1 best matches potential for root elongation for a number of 

phreatophytic species (Mahoney & Rood 1991; Krancjec et al. 1998; Horton & Clark 

2001). This study has shown a conservative response amongst juvenile Banksia plants 

to water table declines with the drawdown rates tested (more than 2 cm day-1) all 

leading to plant death. Thus, phreatophytic Banksia are likely to elongate their roots to 

maintain a functional connection with a water table declining at a rate of less than  

2 cm day-1. 

 

It was hypothesised that the more xeric phreatophyte, B. attenuata, would exhibit a 

stronger root elongation response to the rapidly declining water table, based on 

previous observations of rapid root elongation rates. However, the species did not 

initiate root growth in response to the declining water table, with roots not extending 

beyond the pre-drawdown capillary fringe. As a consequence of this functional 

disconnection from the capillary fringe, B. attenuata also had the most negative 

predawn water potentials and the highest mortality rate of the three study species. The 

lack of root growth response may be due to the rapid reduction in the photosynthetic 

rate by B. attenuata in contrast to the other two study species. A drought response to 

limit photosynthesis and stomatal conductance to conserve water loss will further limit 

plant growth through reduced carbohydrates available for growth (Pedersen 1998). 
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Thus, the lack of root growth response may have been due, in part, to the feedback 

between water deficits inducing a leaf-level drought response, exacerbating the 

problem of reduced water uptake as roots are unable to grow to follow the declining 

water table.  

 

In contrast, the two more mesic phreatophyte study species, B. littoralis and B. ilicifolia, 

both showed a root elongation response to the declining water table. Both species 

extended their roots beyond the depth of the capillary fringe at the start of the 

experiment, with roots recorded in the 100-120 cm zone across all treatments. The 

expectation that the more mesic phreatophytes would have a slower root elongation 

response to water table drawdown was based on previously observed root elongation 

rates (Chapter 5). However, an alternative hypothesis could suggest that a root 

elongation response to water table drawdown is more beneficial for species dependent 

on access to groundwater, such as the two mesic study species. Both B. ilicifolia and 

B. littoralis have been shown previously to be more vulnerable to drought stress than 

the xeric phreatophyte (Canham et al. 2009). They are species that require contact 

with the water table and capillary fringe in order to meet high water requirements and 

to avoid xylem cavitation. Therefore, root elongation in response to a water deficit may 

be greater for the more mesic phreatophyte species, in contrast to the more xeric 

species.  

 

In addition to interspecific differences in root length and the subsequent disconnection 

from the water table, species also differed in overall plant size, particularly shoot 

weights. Root:shoot ratios (R:S) were shown to differ between the species, with  

B. attenuata shown to have the smallest R:S, B. littoralis the largest and B. ilicifolia 

intermediary, which follows the pattern in the water requirements of the three species. 

The R:S ratios in the study are similar to those in Chapter 5, with B. littoralis having the 

highest proportion of roots to shoots in both studies. However, these differences are 

more pronounced in this current study, which may be due to the mesic phreatophytes 

increasing their roots in proportion to shoot mass as the water table declined. In 

contrast, B. attenuata shows considerable shoot growth during the establishment 

phase, which may be attributed to the large seed size and larger seedlings of this 
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species, as demonstrated in Chapter 5. As B. attenuata did not extend its roots during 

the drawdown, its R:S did not differ significantly compared to pre-drawdown. This may 

account for the low proportion of root mass to shoot mass compared to the other two 

study species. In addition, the larger shoot mass and leaf area of B. attenuata suggest 

that individuals of this species had a higher transpirational demand than the two mesic 

phreatophyte species. This may help explain why the more xeric phreatophyte was 

more water-stressed than the mesic phreatophyte species, with more water required to 

meet plant-water demands.  

 

There are some methodological considerations that should be taken into account in the 

interpretation of results. The majority of previous rhizopod studies focussed on riparian 

species found in very shallow groundwater habitats, and the methodology was to plant 

either seeds or germinants with cotyledons still intact into rhizopods with the water 

table just below the soil surface (Mahoney & Rood 1991; Stave et al. 2005; Gonzalez 

et al. 2010). For example, Stave et al. (2005) planted six day old seedlings in rhizopods 

with a water table established 5 cm below the soil surface, corresponding with the 

mean rooting depth of the seedlings. Therefore, seedlings were in contact with the 

water table almost immediately after germination. This is beneficial for interpreting how 

seedlings which grow in habitats with a very shallow water table may establish contact 

with a declining water table, but may not represent the post-cotyledon response of 

terrestrial species to drawdown of deeper water tables. The species in this current 

study invest in rapid root development to reach a water table (Chapter 5). Once at the 

water table, individual plants become dependent upon access to the reliable water 

source, as indicated by year-round groundwater usage (Zencich et al. 2002) and 

plasticity in vulnerability to water stress (Canham et al. 2009). The plants in this current 

study had exhausted their cotyledon reserves which may have limited the capacity for 

rapid root elongation. It may be hypothesised that juvenile plants do not have sufficient 

nutrient reserves to support rapid root development to meet increased transpirational 

demands. This phenomenon has previously been reported for glasshouse experiments 

by Sparks and Black (1999), who attributed it to seedling leaf area and thus 

transpirational demand being particularly high under glasshouse conditions compared 

to the rooting volume available to pot-grown plants. Thus, the age of the seedlings 

used may account for the lack of root elongation response to water table drawdown, 
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with older plants having fewer resources and higher transpirational demands than 

recently germinated seedlings.  

 

There may also be differences in plant response between rhizopod glasshouse studies 

and adult trees in situ, particularly in relation to the water sources available to plants 

and the rates of water table decline that are likely to occur. The rates of the decline 

used in this study were designed to investigate the maximum rate of water table 

decline that phreatophytic Banksia can survive. However, it is unlikely that adult plants 

in the field would be exposed to such rapid rates of water table decline. Seasonal 

changes in water table levels at study sites in Whiteman Park are approximately  

0.38 cm day-1; a slow rate that plants are able to accommodate for the redistribution of 

their roots (Chapter 3). However, altered hydrological regimes influenced by factors 

such as reduced rainfall recharge and groundwater abstraction, can impact water table 

depths. In situ winter groundwater drawdown experiments have induced water table 

decline in winter at rates of 1.76 cm day-1 over a period of 34 days in 2009 and  

1.76 cm day-1 over 77 days in 2010 (Pers. Obsv.). Banksia at the sites exposed to this 

rate of drawdown did not indicate any signs of water stress, as determined by predawn 

shoot water potential associated with the declining water table (Froend et al. 2010). 

This suggests that there is some ability for Banksia to tolerate groundwater drawdown 

at relatively rapid rates, although it should be noted these water table declines 

occurred over winter months when vadic water was also available to plants. Adult 

plants with extensive root systems can access a large volume of both vadic and 

capillary fringe water, and may respond differently from seedlings in a glasshouse. The 

design of the glasshouse studies restricts horizontal root growth to the diameter of the 

growth tubes, limiting root volume. This influences the availability of water sources to 

seedlings, particularly as the study species have dimorphic root systems, which extend 

considerable distances horizontally from the plant (Lamont & Bergl 1991; Pate et al. 

1995). Thus, the rhizopod design limits rooting volume, which may limit comparisons 

between plant response to water drawdown in rhizopods and in the field. 
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Conclusion 

The response of phreatophytic Banksia to rapid water table decline depends on the 

availability of other water sources and the rate of water table decline. Despite 

previously demonstrating the capacity for rapid root elongation rates of up to  

3.7 cm day-1, plants in this current water table drawdown experiment overall 

demonstrated little root elongation response. Soon after water table drawdown had 

started, transpiration rates decreased, indicating a functional disconnection from the 

water table. The lack of root elongation may be due to the strong drought response, 

with plants reducing stomatal conductance and photosynthesis. Contrary to the initial 

hypothesis, based on previous observation of root elongation rates, B. attenuata was 

the least responsive to the declining water table. Banksia attenuata may have a 

stronger drought response, limiting stomatal conductance and photosynthesis, which 

limits the capacity for further root growth. In contrast, the more mesic phreatophyte 

species, B. ilicifolia and B. littoralis, showed some root elongation response to the 

declining water table. There may be greater selection pressure for these species to 

maintain connection to groundwater, due to higher water demands and increased 

vulnerability to water stress. 
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Chapter 7 

General Discussion  

For phreatophytic plants to persist in a given habitat they need to be able to adapt to 

the environmental conditions they are exposed to, including the seasonal hydrological 

cycle. For the phreatophytic Banksia study species at a site on the Gnangara Mound it 

was found that root growth by phreatophytic Banksia at the capillary fringe could occur 

the whole year round, with no endogenous limitations to root growth at different times 

of the year (Chapter 3). Roots of phreatophytic Banksia were found to redistribute in 

response to seasonal fluctuations of the water table. The root zone closest to the water 

table becomes saturated in winter and spring, which limits root growth in that part of 

the soil profile. This was evident in the seasonal pattern of root activity observed, with a 

lack of root activity by the study species in the saturated soil profile (Chapter 3). Thus, 

the two terrestrial phreatophyte study species demonstrated root trimming in response 

to the rising water table, with negligible root activity observed when this part of the root 

zone became saturated. However, plants are likely to redistribute roots in response to 

the rising water table, maintaining functional connection with the capillary fringe, as 

was demonstrated with uptake of water from the capillary fringe in spring (Chapter 4). 

When the water table was at its highest level, root activity in the capillary fringe was 

evident, from both observation of root in-growth and water uptake from the capillary 

fringe (Chapters 3 & 4). In addition to demonstrating the connection between 

phreatophytes and a dynamic water table, this supports the concept of phreatophytes 

accessing water from the unsaturated capillary fringe rather than directly from the 

water table (Mahoney & Rood 1998).  

 

Following the spring peak of water table levels, the water table declines over summer 

and autumn, and roots must respond to the change in water table levels if they are to 

maintain a functional connection with the water table. The rate of water table decline 

that plants were found to be exposed to, in a normal year, was 3.8 mm day-1. The 

slowly declining water table leaves behind an unsaturated zone of high moisture 

content suitable for root growth (Imada et al. 2008). When the water table was at its 

lowest level in autumn, root activity was observed in the previously saturated zone, 

suggesting that the phreatophyte roots had followed the declining water table. Plant 
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water status measurements, as determined from predawn shoot water potentials 

provide further evidence of Banksia maintaining a connection with groundwater 

(Chapter 3). Root growth at the capillary fringe and year-round high predawn water 

potential observed in this study, supports previous observations of phreatophytic 

Banksia maintaining year-round functional connection with the water table (Zencich et 

al. 2002). This connection with the water table is enabled by roots responding to the 

seasonal changes in water table levels. Thus, it is likely that the phreatophytic Banksia 

study species have the capacity to respond to changes in water availability, including 

elongating roots to maintain a functional connection with a seasonal decline of the 

water table.  

 

Although phreatophytic plants are able to adjust to the seasonal changes in water table 

levels, water table declines can also occur at faster rates, impacted by reduced rainfall 

recharge and groundwater abstraction. For phreatophytic plants to avoid detrimental 

impacts from groundwater decline, root elongation must be adequate to maintain 

functional contact with the water table. The rate of water table decline that 

phreatophytic plants are able to adapt to may be dependent on the plant’s capacity for 

rapid root elongation (Mahoney & Rood 1991; Naumburg et al. 2005). Both 

phreatophytic Banksia species have demonstrated a capacity for rapid root elongation, 

under experimental conditions. Banksia littoralis had a maximum root elongation rate of 

1.8 cm day-1, and the more xeric phreatophyte, B. attenuata demonstrated root 

elongation at twice this rate, at 3.7 cm day-1 (Chapter 5). These rapid rates of root 

elongation suggest plants have the capacity to maintain contact with a rapidly declining 

water table. However, when this was tested under glasshouse conditions, seedlings 

showed limited root elongation response to rapidly declining water tables at rates of 

more than 2 cm day-1 (Chapter 6), which is further discussed below. The rapid rates of 

root elongation shown in Chapter 5 may be typical of the rapid root development by 

Banksia seedlings in the first year, with roots extending deep into the vadose zone to 

maximise rooting volume and to access deeper soil water stores (Stone & Kalisz 1991; 

Rokich et al. 2001). In addition, differences in the root elongation rate by the two 

phreatophytic Banksia species may be related, in part, to the ecohydrological habitats 

in which the species are distributed. It is more beneficial for B. attenuata to invest in 

root growth than B. littoralis, as B. attenuata is a more xeric phreatophyte with a 
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distribution that includes habitats of deep sands with no available groundwater. 

Banksia attenuata therefore requires an extensive root system exploiting a large 

volume of soil. Conversely, the narrow distribution of B. littoralis means that this 

species is confined to habitats that afford year-round access to groundwater (Zencich 

et al. 2002). 

 

While the rapid rate of root elongation suggests that plants have the capacity to follow 

a rapidly receding water table, it does not specifically measure plant response to water 

table decline. Plant response to a declining water table may be limited, depending on 

the capacity for plants to continue to meet their water requirements. If water table 

decline occurs at a rate too fast for root growth to respond, plants are likely to 

experience water stress. Findings from Chapter 6 suggest that the rate of water table 

decline the Banksia study species are able to survive is likely to be less than  

2 cm day-1, as rates greater than this resulted in severe plant water stress. Additionally, 

the availability of other water sources, particularly vadic water, may impact on plant 

drought response and the ability for plants to adjust to a declining water table. If water 

table decline occurs when vadic water availability is high, plants may be able to 

continue to meet their water requirements. This may allow plants to continue to grow 

roots, and thus follow the water table. In contrast, if vadic water content is very low 

phreatophytic plants are likely to be dependent on accessing water from the capillary 

fringe to be able to meet water requirements. If the water table falls at a rate faster than 

plants are able to elongate roots to maintain a functional connection with it, plants will 

no longer be able to meet their water requirements. This can initiate a drought 

response, with the plant closing stomata to limit water loss, but also limiting 

photosynthesis and thus the availability of carbohydrates for continued plant growth. 

This may limit the capacity for further root growth, exacerbating the problem by plants 

being unable to elongate roots to follow the water table. Plant response to water table 

decline may therefore be dependent on the rate of water table decline and the 

availability of other water sources, such as vadic soil moisture.  
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Consequences of hydrological change and implications for groundwater 
management 

Like many superficial aquifers worldwide, the Gnangara Mound is in decline, and this is 

likely to continue as the south west of Western Australia continues to experience less 

rainfall, in addition to abstraction from the aquifer for urban water supply. However, 

there may be some capacity for continued use of groundwater as a resource. If 

abstraction is timed to occur when groundwater usage by plants is low, then 

phreatophytes may be able to adapt to the change in the water table level. In winter, 

groundwater use by phreatophytes is diminished as water availability in the vadose 

zone is high, and plants preferentially use this soil moisture (Zencich et al. 2002). If the 

water table were to remain stable or even decline in winter, plants are likely to continue 

to be able to meet their water requirements from vadic water. However, for plants to 

continue to meet their water requirements in the following summer months when vadic 

water availability decreases, plants must maintain a functional connection with the 

water table. It is likely that roots have the capacity to follow a declining water table in 

winter, as immediate hydraulic failure is avoided due to plant-water demand being met 

from the vadic water source. In addition, plant root growth is not limited by season, thus 

roots should be able to redistribute in response to the change in water table levels in 

winter. Groundwater abstraction may therefore be scheduled to occur at a time of the 

year that is more sympathetic with the demands and physiology of phreatophytic 

plants.  

 

A groundwater abstraction regime that mitigates impacts on phreatophytic Banksia 

needs to account for the rate of water table decline to which plants are able to adjust. 

The adaptability of phreatophytic plants to a declining water table is dependent on the 

rate of decline and the capacity for plants to elongate roots at a sufficient rate to 

maintain functional contact. For phreatophytic Banksia that have established in a 

habitat with a shallow water table, acceptable rates of water table decline are likely to 

be less than 2 cm day-1. Faster rates are likely to induce hydraulic failure and plant 

death, although this may be dependent on the availability of other plant-water sources. 

However, slower rates would allow plants to respond to the change in water availability, 

and elongate roots to follow the declining water table, as demonstrated in response to 

normal seasonal groundwater fluctuations (Chapter 3) and from preliminary results of a 
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drawdown trial (Froend et al. 2010). Therefore, roots of phreatophytic Banksia may be 

able to adapt to a water table decline at an acceptable rate, which is less than  

2 cm day-1. However, there may be a limit to the depth which plants are able to follow a 

declining water table. The extent to which roots are able to elongate is yet to be 

demonstrated; however, maximum rooting depths for the Banksia study species are 

thought to be approximately 8m (Farrington et al. 1989; Arrowsmith 1992). Further 

research could identify the limits of root growth for phreatophytic Banksia, and the 

maximum depth to which they are able to maintain contact with a declining water table.  

 

If groundwater decline on the Gnangara Mound continues, it is likely that more mesic 

species, such as B. littoralis, will be replaced by more xeric species, such as  

B. attenuata. Under drier conditions the more xeric phreatophyte is at an advantage, 

starting from the recruitment stage. The larger seed size of B. attenuata enables rapid 

plant growth (Chapter 5). This includes rapid root growth, both mass and length, with 

roots rapidly penetrating down to either deep-stored soil moisture or a water table. 

Banksia attenuata seedlings often establish in xeric habitats, where groundwater is 

unavailable and plants are reliant instead on deep, stored soil moisture (Zencich et al. 

2002). Seedlings rapidly develop extensive root systems that are quick to penetrate to 

deeper soil layers, increasing the volume of soil explored for moisture. In contrast, the 

more mesic phreatophyte, B. littoralis, has smaller seedlings, lower overall root mass 

and a slower rate of root elongation. Banksia littoralis are able to persist due to their 

distribution being restricted to mesic environments. The slower root extension is 

tolerable as the water table is shallower, thus there is less of an imperative for rapid 

root growth. However, if the Gnangara Groundwater Mound continues to decline, the 

recruitment success of mesic species like B. littoralis may be impacted. The difference 

in seed size and the resulting growth rates of seedlings can play a role in the 

replacement of mesic phreatophyte species with more xeric species in the event of 

long-term water table decline. 
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