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Abstract

Common implementations of geostatistical methods, kriging and simulation,
ignore the fact that geochemical data are usually reported in weight percent,
sum to a constant, and are thus compositional in nature. The constant sum
implies that rescaling has occurred and this can be shown to produce spurious
correlations. Compositional geostatistics is an approach developed to ensure
that the constant sum constraint is respected in estimation while removing de-
pendencies on the spurious correlations. This study tests the applicability of
this method against the commonly implemented ordinary cokriging method.
The sample data are production blast cuttings analyses drawn from a pro-
ducing iron ore mine in Western Australia. Previous studies using the high
spatial density blast hole data and compositional geostatistical approach re-
turned encouraging results, results other practitioners suggested were due to
the high spatial density. This assertion is tested through sub-sampling of the
initial data to create four subsets of successively lower spatial densities rep-
resenting densities, spacings, and orientations typical of the different stages
of mine development. The same compositional geostatistical approach was
then applied to the subsets using jack-knifing to produce estimates at the re-
moved data locations. Although other compositional geostatistical solutions
are available, the additive logratio (alr) approach used in this study is the
simplest to implement using commercially available software. The advan-
tages of the logratio methodology are the removal of the constant sum con-
straint, allowing the resulting quantities to range freely within the real space
and, importantly, the use of many proven statistical and geostatistical meth-
ods. The back transformation of linear combinations of these quantities and
associated estimation variances to the constrained sample space is known to
be biased; this study used numerical integration by Gauss-Hermite quadra-
ture to overcome this drawback. The Aitchison and Euclidean distances were
used to quantify both the univariate and compositional errors between the es-
timates and original sample values from each estimation method. The errors
of each method are analysed using common descriptive and graphical criteria
including the standardised residual sum of squares and an assessment of the

accuracy and precision. The highest spatial density dataset is equally well

vii



reproduced by either method. The compositional method is generally more
accurate and precise than the conventional method. In general the compo-
sitional error analyses favour the compositional techniques, producing more
geologically plausible results, and which sum to the required value. The re-
sults support the application of the logratio compositional methodology to

low spatial density data over the commonly implemented ordinary cokriging.
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Chapter 1
Introduction

Compositional data are multivariate data where each variable represents some part of
a whole and which carries only relative information. Compositional data occur in many
fields including natural resources, biology, forestry, and economics. In the context of min-
ing or natural resources, compositional data can take a number of different forms. One
form is geochemical data; such as whole rock chemical analyses, or the sum of the major
oxide components. Quantitative mineralogical data is another, where the proportions of
each mineral species present in a sample are totaled. Resource evaluation, mine planning
and geometallurgy all use these quantities and perform mathematical operations on them,
ultimately making business decisions based upon the values and the relationships between
them. Geochemical data used in natural resource evaluation, in most measurement sys-
tems (weight percent, parts per million etc), are compositional data in that a rescaling or
normalisation of the original units has occurred, resulting in a constant sum constraint.
The so called natural iron ores, such as those mined in the Yilgarn and Pilbara regions
in Western Australia, are sold to customers in much the same form they occur naturally;
no beneficiation occurs between mining and delivery to customer with the exception of
crushing and screening the ore to produce lump and fines products. Thus the relationships
noted in the whole rock geochemical analyses of in-situ material must be present in the fi-
nal products delivered to customers. Geostatistical methods are routinely used to estimate
or simulate geochemical data for use in downstream economic and mine engineering ap-
plications. However, the compositional nature of the input data is rarely considered, and
appropriate techniques to correctly represent the correlations and totals sums are seldom,
if ever, utilised [1]. The correlations noted in the whole rock analyses are required both by
the mine planning staff to optimise the delivery of ore and by customers operating blast
furnaces producing iron and steel products. Errors in the correlations, both locally and
globally are almost guaranteed if the compositional nature of the data are not taken into
consideration. The decision as to whether any part of an iron ore deposit is economic to
process is achieved through considering all of the components, therefore misrepresenting

the correlations between components will result in incorrect classification of ore mate-



rial as waste and vice versa. The following sections will examine the available published

works which use compositional data with natural resource applications.

1.1 Outline of the problem

During a study of animal proportions, Pearson [2] observed and demonstrated the spu-
rious correlation that arises between uncorrelated measures that are assessed using a
common denominator and attributed this to the rescaling. He proposed adjustments to
account for the spurious correlation, however, these adjustments did not take into account
the range of the data and essentially ignored the compositional nature of the problem;
focusing instead on the scaling. It was more than half a century later that Chayes [3]
described the spurious correlation problem in the context of compositional data. His con-
tribution demonstrated that due to the constant sum constraint, rather than the rescaling,
some of the correlations must be negative. The most significant non-spatial research was
conducted by Aitchison starting in 1982 with his address to the Royal Statistical Society
[4] and is summarised in his 1986 monograph [5]. In these early works he set up the basic
compositional data framework adhered to today, including the terminology. The major
thrust of his research is the recognition of the relative nature of compositions, being ra-
tios, Aitchison was the first to propose working with the logarithm of the ratio rather than
the unwieldy ratios directly. The main feature of the logarithmic transform is to move the
problem from a constrained sample space imposed by the compositional ratio into an un-

constrained one, enabling the use of a much larger variety of existing statistical methods

[5].

Theoretical developments

Pawlowsky-Glahn [6] furthered the study of compositional data by recognising that di-
rectly applying geostatistical techniques to compositional data would carry the same spu-
rious correlation penalty as non-spatial techniques. In later works with others she pro-
posed combining Aitchison’s logratio approach with traditional geostatistical techniques
[7], [8]. The most complete treatment of the proposed solutions with derivations of key
findings and a proposed work flow on an oil sands dataset focused particular attention to
the treatment and modelling of the spatial covariance structure of compositional data, a
basic requirement for most geostatistical techniques [7]. The transformation of the data
using the selected logratios presents theoretical and practical difficulties in the modelling
of the spatial covariances. It is shown that the different transformations are related to one
another, creating pathways for modelling the spatial covariances via conventional tech-
niques and software. The approach implemented by Pawlowsky-Glahn and Olea [7] uses

Fast-Fourier Transforms and bespoke software code. When the technique proposed is
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used with an example dataset, superior results were generated when compared against
conventional techniques using compositional metrics which included the Aitchison and
Mahanalobis distances. Critically, the constant sum total is honoured when using the pro-
posed work flow while errors in excess of one percent of the required total were noted
when using conventional techniques which ignore this feature of the input data. A one
percent total discrepancy is not large, however, if it is largely confined to a single compo-
nent upon which a categorisation or classification is dependent such as in a mining study,

material misclassification could result.

This is not the only possible solution to the problem of estimating spatially distributed
compositional data where the resulting estimates honour the compositional nature of the
input data; nevertheless, many practitioners merely ignore the issue and treat composi-
tional data as they would any other continuous additive variable. Indeed, in most cases the
sum of components fall within ranges deemed acceptable, even if the constant sum con-
straint is rarely honoured, and therefore the correlations cannot be accurately reproduced.
In essence the estimates are not optimal, normally an important aim of an estimation ex-
ercise. Optimal estimates of regionalised compositional variables should comply with the
non-negativity and constant sum constraints; examples of methods that can achieve this
are nearest neighbour, inverse distance, triangulation and local sample mean interpola-
tion. These methods will always yield compositional estimates because the columns of
the matrix of weights are identical, the weights sum to one, the weights range between
zero and one and the conditioning data are compositions. However, the spatial covariance
structure is not taken into account [9]. Variogram-based geostatistical methods including
ordinary cokriging, are designed specifically to take the spatial character of the input data
into consideration. However, ordinary cokriging of nonnegative input data can generate
negative estimates, frequently noted when the screening effect occurs [10]. Additionally,
estimates honouring the constant sum constraint are only produced in the special case of
proportional semi-variogram models which is seldom possible in practice. One way to
ensure that kriging obeys the compositional restrictions is to add one or more conditions
to those the estimator must satisfy. Walvoort and de Gruijter [9] proposed a new inter-
polation method, compositional kriging, based on ordinary kriging that satisfies the con-
straints imposed by compositional data outlined above. The compositional kriging system
is a modification of ordinary kriging and considers each component of the compositional
whole sequentially, rather than ordinary cokriging which considers all components simul-
taneously. This is performed to avoid the following features of cokriging compositions

namely:

estimating and modelling the cross semi-variograms,
forcing the system to honour correlations known to be spurious,

enforcing linear relationships between components that may be non-linear, and

W=

the positive-definite restriction on the linear model of coregionalisation can result



in a poor fit of models to experimental data.

In order to satisfy the requirements of the desired compositional estimator the compo-
sitional kriging system is a direct extension of ordinary kriging with the addition of the
nonnegativity and constant sum constraints. Compositional kriging has a number of draw-
backs:

1. the cross-correlations are not taken into account omitting potentially valuable infor-
mation,

2. due to difficulties in its interpretation, the prediction error variance cannot be utilised
as a measure for constructing confidence intervals,

3. commercial software is not readily available for testing and implementation, and

4. the solutions to the compositional kriging systems are iterative and can be compu-

tationally expensive.

The compositional kriging method was compared with the logratio approach advocated
by Olea and Pawlowsky-Glahn [7] using the direct back-transformation of the logratio
estimates to the constrained sample space in two case studies. The results of the compar-
ison were not decisive with regards to selecting the optimal method in that the logratio
method produced results superior to the proposed compositional kriging method in one of
the case studies. Koushavand and Deutsch [11] examine the problem of spatial estimation
of compositional data and suggest that solving a kriging system with an additional con-
straint could solve the compositional data estimation problem, from the univariate to the
multivariate case. This was performed by adding an additional constraint to the simple
cokriging system and solving only one system for each data location to force the sum
of the resulting estimates to a specified value. The drawbacks with the system are that
negative estimates can still result even though the total sums to the required constraint. A
second step to remove possible negative estimates by setting those estimates to zero, re-
moving them and resolving the kriging system adds computational expense. Additionally
this creates a relationship between the kriging weights and the informing data and there-
fore the potential for bias exists [11]. Moreover, this constrained cokriging approach does
not address the spurious correlation issue as the correlations evident in the data would
be transfered through the linear model of coregionalisation. The modifications were only
tested on the simple kriging system which is globally unbiased under appropriate condi-

tions of stationarity but local bias is expected in most real data applications.

Case studies

Jaruta-Bragulat ef al [12] compare four different methods of geostatistical interpolation

techniques applied to a compositional bauxite dataset. Four techniques are employed;
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ordinary cokriging of the variables in original units, two logratio transformations with no
mention of the approach used to model the spatial covariance structure, and the direct
application of the Pawlowsky-Glahn and Olea [7] workflow by using Fast-Fourier Trans-
forms to model the spatial covariances. The graphical results shown in the paper sug-
gest that the four techniques were equivalent with some subjective advantage allocated to
the Fast-Fourier Transform method. No mention of the back transformation method or
the effect on bias was made. Manchuk [1] provides a holistic mathematical and practi-
cal overview of compositions including considering geostatistical applications. Although
not the primary focus of the work, the problem of zero values components with logratio
transforms is addressed, and several solutions are proposed. Geochemical data are un-
likely truly barren in any one component, due partially to the analytical accuracy of the
equipment, rendering the problem one of interest rather than practicality. The theoretical
aspects of implementing geostatistics using the logratio techniques is discussed but no

case studies are presented.

The isometric logratio transformation is used in conjunction with ordinary kriging [14] to
model and estimate granite proportions and compare against fuzzy kriging and ordinary
kriging. The results compare positively for the compositional approach by increasing
confidence in the estimates over the other techniques. The compositional geostatistical
approach is applied to particle size distributions in [15] combining functional analytical
techniques with compositional techniques and ordinary kriging. The procedure which
utilises the centred logratio transformation, cross-validates well and generates excellent
results at unsampled locations. Further recognition of the compositional nature of grain-
size data is described in [13] where indicator kriging, ordinary kriging and additive logra-
tio cokriging are compared. The techniques are used to produce two dimensional maps
of the sand, silt and clay and the results compared through cross-validation. The additive
logratio cokriging technique produced the best results using the mean absolute error and
confusion matrix criteria. The merits of compositional kriging, ordinary cokriging, logra-
tio cokriging and additive logratio cokriging of soil particle size fractions are compared in
two case studies [16]. The study focuses on the performance of each technique measured
with traditional and compositional measures including the Mahalanobis and Aitchison
distances. In these applications the outcomes did not favour any particular compositional
technique; the compositional techniques did however, produce better results when com-

pared with techniques that do not take the constant sum into account.

Boezio et al [17] applied ordinary cokriging to additive logratio transformed exploration
iron ore data and compared the results of this method with ordinary cokriging using uni-
variate criteria such as global and local means. When compared with the input data the
logratio estimates display bias for some variables, bias not noted in the ordinary cok-
riging results. Boezio et al [18] then applied the Minimum / Maximum Autocorrelation

Factors (MAF) technique to iron ore data which had been initially transformed using the



alr. The MAF technique was applied to decorrelate the data, thereby removing the re-
quirement to use the restrictive linear model of coregionalisation. The published results
in the paper displayed a bias of the iron grades when compared against the input data.
The precursor studies [19], [20] to this thesis on production blast hole data from an oper-
ating iron mine used the alr cokriging procedure outlined by Pawlowsky-Glahn and Olea
[7]. These precursor studies, using only the three principal analytes of interest in iron ore
mining, compared the alr cokriging method against the sample data using cross-validation
and against the traditional ordinary cokriging method. The results compared favourably
with the input data and with the ordinary cokriging. In all the geostatistical case studies
mentioned above that utilise the logratio method to transform the data to an unconstrained
space followed by interpolation, another function, such as the additive generalised logistic

(agl) is applied to return the estimates to the constrained sample space.

Elimination of bias

Job [21] concludes that although the results from the geostatistical case studies available
in the literature appear unbiased, in fact the direct application of inverse logratio func-
tions such as the the agl, necessarily generate estimates that are biased. A small example
is worked in his thesis to illustrate the error induced by applying a linear process to non-
linearly transformed variables and then applying the inverse non-linear transformation
resulting in bias. This problem is reinforced by the comments of Chiles and Delfiner [22]
who dismiss logratio methods as biased. Aitchison [5] acknowledges this phenomenon
and states that although the moments (such as the expected value and variance) of logra-
tio transformed distributions exist, they do not reduce to a simple form. He then outlines
the use of numerical integration to generate approximations of the required moments.
Pawlowsky-Glahn and Olea [7] describe this procedure by using Gauss-Hermite quadra-
ture as a method to compute the expected value and estimation variance at an estima-
tion location in the original sample space. Tolosana-Delgado et al [23] illustrate that
another mechanism can be used. Under the assumption that alr transformed data at a
certain support come from a Gaussian random field, Monte Carlo simulation can pro-
vide an upscaling. This concept was tested on exploration iron ore data where the target
blocks were partitioned into units of that support, and LU simulation on the discretised
block applied, conditional to the available data. Simulated values were back-transformed
with the agl, and averaged to obtain a simulated block mean composition. The results of
the block simulation technique compared favourably against results from Gauss-Hermite

back transformation of cross-validated point estimates and the input data.
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The effect of data density

Ward and Mueller [19] compared estimates generated using the agl back transformation
with the input data which were reasonably good but did exhibit minor bias. However, in
addition to the agl back transformation, the numerical integration approach was also used
to generate estimates in the original units. These estimates compared more favourably
with the input data and the ordinary cokriging results than the agl back transformed re-
sults. Other practitioners asserted that the reason for the low bias noted in the agl back
transformed estimates (and by proxy the estimates derived by numerically integration) is
the high spatial density of the input data (pers. comm. Job, 2013). In order to validate this,
a follow up study used the same base dataset and three analytes from the first study, but
created successively lower data densities and used the jack-knifing technique to test this
[20]. The study focused only on the now proven numerical integration approach, as early
(unpublished) results using the lower density input data and the agl back-transformation
were strongly biased. The numerical integration results were comparable with the or-
dinary cokriging results in terms of bias, but with the added advantage of summing to
the required constant at all the spatial densities tested. The review of current literature
highlights that logratio techniques are increasingly seen and tested as an alternative to
the traditional methods for the spatial interpolation of compositional data. It is noted

however, that four areas specific to mining would benefit from further examination.

1. Bias in the back-transformed results of interpolated logratio estimates is of primary
importance. It is difficult to convince practical mining professionals to consider

alternative methods if the accuracy is inferior, even if the constant sum is respected.

2. Correlations between the estimated components is important; indeed, validation re-
ports of estimation studies which use traditional estimation or simulation techniques
focus heavily on the reproduction of the correlations in the estimates, especially
when a decorrelating technique has been used to remove the onerous requirement
for fitting of the Linear Model of Coregionalisation. In the literature however, very

little, if any time is spent verifying this critical feature.

3. Spatial covariance modelling; the application of most geostatistical techniques re-
quires a model of the spatial covariance, an aspect that Pawlowsky-Glahn dedicates
much effort to provide a theoretically sound framework for logratio transformed
variables [7]. The majority of practical applications of variogram-based geostatis-
tical methods ignore much of this theory and merely apply standard software and

modelling practices to logratio transformed data.

4. The impact of data density on the resulting estimates. The effects are well under-
stood with linear estimators, furthering the understanding of logratio techniques is

necessary to drive acceptance of these methods with other practitioners.



1.2 Objectives

Three overarching objectives are identified based upon the literature review and the per-

ceived gaps in the current set of knowledge and specifically case studies.

Objective 1

An examination of the logratio framework, both in the classical as well as the spatial
sense. As part of this objective, the theory of regionalised compositions will be dis-
cussed, along with the methodology for ordinary cokriging and compositional cokriging.
The approach will be illustrated through the application to a compositional iron ore geo-
chemical data set, comprised of 7 analytes (Al,O3, Fe, Loss on Ignition (LOI), Mn, P, S,
Si0») and a filler variable. Of particular interest will be an assessment of the stationarity
of the input data. Two logratio transformations will be applied: Isometric Logratio (ilr)

(for stationarity assessment) and alr (for cokriging of the logratios).

Objective 2

A comparison of compositional cokriging via logratios with ordinary cokriging in the
context of the compositional iron ore geochemical data set. The comparison will be based

on the cross validation results and the assessment will include:

e accuracy and precision of the estimates,

e univariate and multivariate errors calculated using compositional and standard Eu-

clidean approaches,
e standardised Residual Sum if Squares (STRESS), and

e scatterplots to check the reproduction of bivariate relationships between analytes.

Objective 3

An analysis of the impact of spatial data density on the estimation results. The original
data will be subsampled to generate 4 subsets with properties matching the typical drilling
available at varying stages of mine development. These subsets comprise successively
sparser samples, each containing 27%, 15%, 9%, and finally 4.4% of the total dataset
respectively. The methodology outlined in objective 2 will be used to examine the impact

of the subsampling.



1.3 Structure of the thesis

Chapter 1 addresses the nature of the spurious correlation problem, the proposed solutions
and the testing approach of these solutions. Additionally the available literature relating to
the problem and solutions is presented. The mathematical background and theory is pre-
sented in Chapter 2, starting with the basic description of random variables as applied to
spatially correlated examples. Thereafter the link between the spurious correlation prob-
lem and random variables is examined, with an emphasis on the logratio transformations
available. The geostatistical requirement for stationarity is followed by the description
of the cokriging systems used. The chapter concludes with a description of the Gauss-
Hermite back-transformation measures employed and the testing measures used to evalu-
ate the applied techniques. Chapter 3 is focused on the data used in this study; beginning
with the geological description and upgrade theories. The sampling methodology used to
collect the data is described. Chapter 4 contains details of the implementation and steps
followed in the process with a flow-sheet. Chapter 5 presents the exploratory data analy-
sis and modelling of the spatial covariance in the simplex and the logratio space together
with results of the estimation and performance comparisons presented in Chapter 6. The
errors are comprehensively examined using traditional and compositional error measures
for bias and information loss. In addition, the precision and accuracy of the estimation
techniques are compared as is the totals of the analytes. Chapter 7 draws conclusions

from the work and future questions are posed.

1.4 Notation and terminology

Mathematical notation

Symbol Description

X row vector

sP D-Simplex

u datum location

uj datum location for estimation quality tests

A Study area

X(u) vector of continuous random variable at location u

Xi(u) i component of continuous random variable at location

Z(u) vector of logratio transformed continuous random variable at location u
Zi(u) i"" component of logratio transformed continuous random variable at location u
gi geometric mean of a D-component continuous random variable

g closed geometric mean of g;

T variation matrix



D number of parts of a composition
RP D-dimensional real space
w; component in orthonormal basis generating system
b balance between two subgroups of an orthonormal basis
ay numerator weight of the i"" balance
a_ denominator weight of the i/ balance
x* coordinate of x
E[Z(u)] expected value of Z(u)
Var[Z(u)] variance of Z(u)
h separation or lag distance
Cov(h) covariance of pairs separated by h
y(h) experimental auto semivariogram for lag
%:.j(h) experimental cross-semivariogram between component i and j for lag &
¥ (h) semivariogram function for lag h
X(h) covariance function for lag
Z" (u) estimate Z(u) of at location u
Iy matrix of weights
% Lagrange multiplier
u,(u)) approximation of E[Z"(u)]
Y7 (u approximation of estimation variance of Z* (u)
x (u) estimation variance of X" (u)
Oy univariate error at datum location u
€(uisp) indicator function at each datum location u; for each analyte
A Accuracy statistic
P Precision measure
Abbreviations

Abbreviation  Expansion

alr
clr
mlr
ilr
agl
LMC
LOI
BH
RC
OCK
GH
STRESS

Additive logratio

Centred logratio

Multiplicative logratio

Isometric logratio

Generalized additive logistic transformation
Linear Model of Coregionalisation
Loss on Ignition

Blast hole

Reverse Circulation

Ordinary Cokriging
Gauss-Hermite

Standardised Residual Sum of Squares
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ROM Run of Mine
OKNA Quantitative Kriging Neighborhood Analysis
EDA Exploratory Data Analysis
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Chapter 2

Mathematical background and Theory

2.1 Regionalised variables, Random Variables and Com-

positions

The study and application of geostatistical methods is dependent upon the concept of
random functions; drawn partially from the field’s mining origin which was dedicated to
describe geochemical data. Geochemical data are the final output of many natural pro-
cesses, each of which is imperfectly known, including the sampling of the material. This
uncertainty in the processes means that deterministic methods are not suitable to model
them. The complexity in the phenomenon under study appears to be the result of random
processes; this is not the case, the complexity is a function of the limited information
available to describe the phenomenon. However, the complexity does fit well with the
concept of random variables; defined as variables that have been generated according
to a probabilistic or stochastic process. This approach has advantages; specifically the
mathematical framework with which we can work with the random variables and func-
tions of random variables [10]. This set of concepts was extended to compositional data

distributed spatially [7]. A D-part composition is defined as a row vector x where
X = [x1,X2,...,xp|(2.1)

and all the D-parts or components are strictly positive real numbers and only carry rela-
tive information [8]. The units of the compositional implicitly state that the information
carried is relative in that they are always parts of a whole and add up to a constant c¢. The
sample space of compositional data is the D-simplex, defined as

SP =x = [x1,%2,...,%p](2.2)

13



D
where x; > 0 and in = c. Regionalised variables are sets of measurements distributed
i=1
through space that display dependencies as functions of their proximity to one another
[24]. Analogously, a regionalised composition is a vector random function X : A —
{X(u) : u € A} such that for each u € A the vector X(u) is a composition and the sample
space for X (u) is the D-simplex Z € SP.

2.2 Sample spaces

The common implementations used to estimate regionalised compositions ignore the dif-
ferences between the sample space of the inputs and the possible outputs. This is im-
portant both from a theoretical as well as a practical perspective, even if as mentioned in
Chapter 1 in some cases the penalties are not so severe as to make the technique practically
useless. The sample space is, in the usual statistical context, defined as the set of possible
results. The constant sum constraint implicit in compositional data implies a constrained
sample space. This is critical to the application of statistical techniques to compositional
data as the vast majority of multivariate statistical techniques were developed to address
unconstrained sample spaces such as the Euclidean space. In fact most statistical meth-
ods assume compositional data are drawn from Euclidean space, an assumption implicitly
declared when the squared Euclidean distance is used to measure errors between predic-
tions and targets [24]. The sample space is, in the usual case of compositional data X(u)
the D-simplex S”. When D components are to be accounted for, then the corresponding

composition is a vector x € S of positive components which add up to a constant value.

2.3 Compositional operations

Tolosana-Delgado et al [25] provide an overview of compositional operations; the critical
examples are reproduced hereafter considering a D-part composition of positive compo-
nents Xjnirias = [X1,%2,...,xp| totaling less than c¢. A summary of these is required for the
development of later properties of compositions (Section 2.5.3), which require the sim-
plex to have a vector space structure. The required operations are perturbation, analogous
to addition, and powering analogous to multiplication; with these a vector space struc-
ture can be described and therefore a geometry [25]. These components are closed or

normalised to ¢ through the closure operation CI|.]

c

ZiDzlxi
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Compositions are not always static and may undergo changes, geological examples of
these changes or perturbations are described in Section 3.1.4. In mathematical terms the
perturbation operation denoted by @ of the D-part composition Xisis = [x1,%2,...,Xp]
being perturbed by proportions P = [py, p2,...,pp| respectively is the scaling of each

component by the corresponding proportion followed by the closure operation

Xperturbed = Xinitial © P
Xperturbed = [X1,X2, ..., Xp] ® [p1,p2,...,PD] (2.4)

Xperturbed = Cl[xl X P1,X2 X pP2y...,Xp X pD]-
Powering is multiple () iterations of the perturbation operation and is denoted by ®.

Xinitiat)ap = (¢ @ P) ® Xinitiar

(2.5)
Kinitiat)ap = Cllx1 X p1%,x2 x p2%,...,xp X pp?]

The compositional differences operation is analogous to determining the proportion re-

moved (0) by a perturbation from the example system and is written

0= Xperturbed — Xinitial (26)

0= [X17x27 cee :xD] S} [Pl,l?z, cee va] = Xperturbed SP ((X ®Xinitial>

where o = -1. In order to define a linear vector space structure the inner product is

required. The inner product of Xi,irias = [X1,X2,- - .,xp| and Yiuitiat = [V1,¥2,---,YD] is:

D D . .
(Xinitiat, Yinitial) = 5+ 3 3 In="In=. (2.7

1 D D X 2
1
inisiad | = | 575 2 2 (ln —) (2.8)
i=1j=1 Xj
and distance between Xj,io; and Yipirial
1 D D Xi Vi 2
d(Xinitial» Yinitial) = D& ; (hlx—; —lﬂy—;) : (2.9)
= ‘17

These concepts are utilised in the discussion of the isometric logratio transformation (Sec-
tion 2.5.3) and the distance (Section 2.12.2).
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2.4 Compositional statistical measures

2.4.1 Numerical Compositional techniques

As traditional statistical measures of central tendency and dispersion do not adequately
describe compositional data, alternatives are described below. Pawlowsky-Glahn et al
[8] noted that the centre of a compositional distribution is a better descriptor than the
arithmetic mean. For a D-part compositional data set of size n the centre is the closed

geometric mean g defined as

g=Cl[g1,81,---,8D); (2.10)

1

n n
with g; = Hx,- i | ,i=1,2,...,D. Dispersion in a compositional dataset is described
j=1

by the variation matrix T defined as

1T tiz --- Up
Iy In ... b X;
T=| |, tiy=var{In=). (2.11)
: I Xj
tp1 tp2 ... tpp

The global dispersion of the dataset can be measured through the total variance which is
given by

totvar(X] = - i i var (1n ﬁ) . (2.12)
2D = = Xj
The diagonal of the variation matrix T will contain only zeros and values indicate how
the variability is split between the components (or their logratios). It can be demonstrated
that the total variance and the variation matrix values do not change with changing c as

the ratios are relative [8].

2.4.2 Visual Compositional techniques

Further to the numerical description Aitchison [5] adapted existing plots to assist with
the analysis of compositional data. The first plot utilised is the ternary diagram, familiar
to geologists, made more useful through centring of the points to the barycentre of the
simplex. The centring results in easily visualised diagrams ready for interpretation. The
centring is accomplished by determining the inverse of the geometric mean of the compo-

nent g*1

and perturbing the sample by this quantity. An example of the changes induced
by the centring operation is shown in Figure 2.1. The second plot is the biplot, a type of

exploratory graph used in statistics, which is a generalization of the simple two-variable
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Al,O, C(A,0,)

Fo R . Si0,  C(Fe) C(Si0,)

Figure 2.1: Ternary diagram (left) and centred ternary diagram(right)

scatterplot. These were also adapted for use with compositional data and can be used
for exploratory data analysis to explain sources of variability. A detailed discussion of the
construction of the compositional biplot is beyond the scope of this document; suffice it to
say the biplot graphically displays the best rank-2 approximation Y (u) to the coefficients
Z(u) in clr coordinates in the least squares sense given by the singular value decompo-
sition. Interested readers are directed to the discussion in Pawlowsky-Glahn ef al [8]. A

schematic example of a biplot is given in Figure 2.2, the parts of which are:

1. the origin O which is the centre of the dataset,
2. the rays joining the origin O to each vertex of the D parts,
3. the links joining the end point of each ray.

The biplot is interpreted with the following guidelines:

1. iflinks of two components are a right angles then zero correlation of the (sub)compositions
is expected and possible independence, or
. . Xi\y .
2. if links are coincident then var(In(=")) is zero and the parts x; and x; can be con-
X
sidered redundant, and finally
3. co-linear links indicate one dimensional variability; i.e. plotting along a composi-

tional line.

The schematic biplot in 2.2 shows that the link joining clr(a) and clr(b) is perpendicular
to the link joining clr(b) and clr(c), this indicates low or zero correlation with possible
independence of these components. By contrast the link joining clr(a) and clr(b) is at an
acute angle to the link joining clr(a) and clr(c), this indicates some redundance between

the information carried by those components with respect to one another.
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Figure 2.2: 3 part schematic Biplot

2.5 Logratios

The relative nature of compositional data lends itself to analysis with ratios. In his semi-
nal publication, Aitchison [5] introduced transformations based on logratios to use these
relative properties. Early work focused on the additive logratio transformation (alr) and
the centred logratio transformation (clr). The other transformation of importance is the
isometric logratio transformation (ilr); developed to overcome the shortcomings of both
the alr and the cIr which are expanded upon in their respective sections below. The ilr is
an association of coordinates with compositions in an orthonormal system and results in

an isometry between SP and RP~! [26].

2.5.1 Additive logratio transformation

The additive logratio transformation alr : S — RP ~! (relative to the /" component),

given by

alt(Z (1)) = X(u) = (m (%(u”))) In (Z(Z))) ... In (ZZ?T(MM))>> (2.13)

embeds the D-simplex into (D — 1)-dimensional space and removes the constant sum

constraint. In practice any one of the parts can be used as the divisor [7]; and should
be selected so as to minimise any computational difficulties in later processes. The mul-
tiplicative logratio (mlr) is a further development of the alr in which a filler variable

is calculated to ensure the constant sum constraint is honoured and is then used as the
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denominator. Due to this the mlr and the alr have the same properties when the filler
variable is considered equivalent to the original parts of the composition. The alr trans-
formation results in D — 1 components; advantageous when considering the fitting of the
linear model of coregionalisation (LMC) to the resulting components. This property is
also a drawback as by changing the divisor the alr transformation changes too (it is de-
fined as asymmetric). The major problem when applying the alr transform is that it is
not an isometric transformation from the simplex, with the Aitchison metric, onto the real
space with the Euclidean metric [26]. The alr transform is invertible and its inverse is the

additive generalised logistic (agl) transform:

(exp(x1 (”))? e ,exp(xD_1 (”))7 1)
14+ Y27 exp(xi(u))

agl(X(u)) = Z(u) = (2.14)

2.5.2 Centred logratio transformation
The centred logratio transformation clr : S —s RP given by

Clr(Z(u)) = X(u) = (ln (g?lz((b;)») ..., (?&fg; )) (2.15)

D b
8(Z(u)) = (Ha(@) (2.16)
i=1

is the geometric mean. The advantage of the clr is symmetry in the components but this

where

is offset by a new constraint on the transformed variable; the sum of the components is
equal to zero [26]. Thus the covariance matrix of X(u) is singular; this requires the use
of generalised inverses for cokriging, an option not available on commercial software [7].

The clr transform is invertible and its inverse is the following:

clr*I(X(u)) = Z(u) = Cllexp(x (u)),exp(x2(u)),...,exp(xp(u))] 2.17)

2.5.3 Coordinates and the Isometric logratio transformation

Mathematical statistics relies on real analysis which is commonly performed using co-
ordinates with respect to an orthonormal basis [27]. In statistics, the real space R is
assumed to be the sample space for a set of observations and the Euclidean geometry as
the algebraic-geometric structure. If the sample space of a given set of observations is
different then an alternative strategy must be used or one runs the risk of incompatibili-
ties or incoherences arising; this is epitomised by the spurious correlation referred to in
Chapter 1. One such strategy uses coordinates and although very similar to the logratio

approach some differences are noted. Using coordinates is called Stay in the simplex or
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stay and the logratio approach is called move. An alternative geometry is required for
the stay approach available through the properties of the Aitchison inner product, norm
and distance which honour the important principles of compositional analysis; scale in-
variance, sub-compositional coherence and permutation invariance. These properties are
not defined here, however further information is available in [5] and summarised in [8].
Through the so called Aitchison simplicial geometry; the properties of Euclidean spaces
can be used to analyse compositional data, which importantly, allows the use of standard
statistical techniques and software [27]. A critical element in this geometry is the con-
struction of orthonormal bases and their corresponding coordinates. The construction of
orthonormal coordinates has been called the isometric logratio transformation (ilr). The
first step in defining an orthonormal basis is finding a generating system to build the basis.

Pawlowsky-Glahn et al [8] demonstrate that one method is
w; =C(exp(e;)) =C[1,1,...,e,...,1], i=1,2,...,D, (2.18)

where in each w; the number e is in the i-th column and the exponentiation operates
component-wise. Using the fact that the closure operation is unaffected by the choice of

¢ We can represent any vector X € SD as

D
x=@Phxow, =hxell,.. . l]ohoele,... 1]6--0lnxpe[l,1,... .

i=1
(2.19)

It can be further shown that the clr coefficients are generated by dividing each component
of Equation 2.19 by the geometric mean (Equation 2.16). The complete derivation is be-
yond the scope of this study, however interested readers are directed to Pawlowsky-Glahn
et al [8]. If one of the vectors from the generating system in Equation 2.19 is omitted
then a basis is obtained, however this is not an orthonormal basis. Egozcue et al [26]
demonstrate that the Gram-Schmidt procedure can be used to generate one of infinitely
many orthonormal bases in any Euclidean space. The relationships between groups of
components can be useful in statistical analysis of compositions. If a geological reason
is available to subdivide the composition into groups then a relevant and useful orthonor-
mal basis can be generated using sequential binary partitioning as discussed in detail in
Egozcue and Pawlowsky-Glahn [28]. A sequential binary partition is a hierarchy of the
parts of a composition which, importantly, can be performed in a manner meaningful to
the geology of the data. The total composition is split into to two groups of parts. Each
group is then sequentially split into two groups until no further subdivision is possible and
each group has one part. The sign matrix is shown in Table 2.1, where the first D columns
contain the entries for each component and the last two contain the number of parts of the

first subgroup, r and the number of parts in the second subgroup, s. The balance (b) is the
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Table 2.1: Example Binary Sequential Partition

Order X1 X2 ... xp r S
1 X1, X1, X1p r 51
2 X2, X2, ... X2 r $2
D—1 Xxp-1, xp-1, --- Xp-1p, ID-1 SD-1

normalised logratio of the geometric mean of the two groups

. 1/
po | gy e i) 7 (2.20)
r—+s (xj]sz...xjs) §
where for the i’ balance each part receives a weight of
1 rs
=+- 221
=+ ryr+s ( )

for those on the numerator,

1 [/ rs
= 2.22
a4 s\Vr+s ( )

for those on the denominator, and ap = 0 for those not involved in the splitting. It is
possible to populate a matrix ‘¥ of orthonormal basis with entries a;; where a;; is a if the
code from the sign matrix, at the i order partition, is +1 for the jt h part, is a_ if the code
is -1 and aq if the code is a null. The matrix ¥ satisfies the requirement that YW = Ip_

and is used in the isometric logratio transformation (ilr) to produce coordinates x* where:
x* = ilr(x) = clr(x)¥’ (2.23)

The coordinates are real variables and can be analysed using conventional statistical tech-

niques. The inverse function restoring the coordinates to the simplex is:
x = C(exp(x*¥)). (2.24)

A convenient summary diagram is the balance-dendrogram which carries information
for the sequential binary partition in the form of a tree structure, the sample mean and
variance of each ilr coordinate, as well as a box-plot summarising the order statistics of
each ilr coordinate. In this case, the order statistics are the sample minimum, maximum,
median and interquartile ranges. The horizontal portion of the plot contains each coor-
dinate, the limits of which corresponds to the range (identical for every coordinate). As
the range of each coordinate is symmetric, the relative position of the box-plot on the

horizontal axis (i.e. closer to one part or group than another) indicates abundance of that
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Figure 2.3: Schematic Balance-dendrogram (left) with exploded view of intersection and
box-plot (right)

part (or group). The length of each vertical bar represents the variance of that coordinate
and the contact point reflects the coordinate mean, about which the order statistics in the
form of the box-plot are displayed. For example, in Figure 2.3, the information contained
is that the majority of the variance is associated with the coordinates of a and ¢ and that

the relative abundance of ¢ is greater than that of the group containing a and b.

No matter which approach is used, either stay or move the important property is that the

transformations result in a one-to-one mapping of S® —s RP -1 (Figure 2.4)
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Figure 2.4: Representation of mapping using logratios between the simplex and the real
space

2.6 Stationarity

Stationarity is an important consideration when deciding upon an interpolation method. In
geostatistics a stationary process is a stochastic process whose joint probability distribu-
tion is invariant under translation over a given study area. A stationary random function is
homogeneous and self-repeating in space and consequently parameters such as the mean
and variance, in fact all the moments if they are present, do not change or follow any
trends as a function of location. In practical terms stationarity is a decision made by the
practitioner after consideration of the type and scale of the problem. Second-order sta-
tionarity is a weaker hypothesis in which only the mean and variance are invariant. This

is captured by the following expectation:

E[Z(u)]=m

(2.25)
E[(Z(u+h) —m)(Z(u) —m)] = Cov(h)

for all distance vectors & and where Cov(h) is the covariance of all pairs separated by h.
Some authors suggest that stationarity is not a hypothesis that can be tested and proven

(or otherwise) by the data [29], while others [30] suggest that testing the hypothesis is
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possible using the following relationship:

2
lim M

=0 2.26
h—+e h ( )

When considering the problem we are applying geostatistical techniques to, it is important
to understand the impact of scale on the decision of stationarity. Armstrong [30] provides
a simple rule of thumb which states if the scale we are considering is dominated by trend,
then assuming stationarity is not advised; however if the random fluctuations dominate,
then our decision of stationarity is likely acceptable. Although in a theoretical context the
domain in which we are working may not be perfectly stationary; the practical drawbacks
caused by assuming a form of stationarity may be inconsequential. This has driven the
acceptance of lower orders of stationarity in mining applications, specifically the Intrinsic

Hypothesis which is a milder hypothesis characterised by the following relationships:

EZ(u+h)—Z(u)]=0

(2.27)
Var[Z(u+h) —Z(u)] =2y(h)

where y(h) is the semivariogram function and which can account for some drift in the

mean [22].

2.7 Spatial covariance structure

The spatial distribution of random variables and functions is described using spatial co-
variances or semivariograms and in the case of intrinsic random functions only with semi-
variograms. An important consideration in the selection of the appropriate spatial covari-
ance structure is the presence or absence of symmetry as it is a prerequisite for cokriging
with semivariograms and cross-semivariograms [31]. Each of the logratio specifications
discussed in Section 2.5 has a (generally distinct) spatial covariance structure resulting
from the transformation. Pawlowsky-Glahn and Olea [7] discuss each of these in de-
tail; interested readers are suggested to refer to this excellent overview. They highlighted
that for a complete characterisation of the spatial covariance structure for stationary re-
gionalised compositions D* covariance functions are needed and in their calculation all
possible logratios are accounted for [7]. Alternatively the clr cross-covariances appear on
first inspection to offer another solution due to symmetry in the components (unlike the
alr cross-covariances) however the associated matrix function is singular; conventional
software is not able to correctly deal with this. The alr cross-covariances are useful in that
asymmetry is retained, if present, but the asymmetric consideration of the components
is shown to create differing spatial covariance structures. However, the study completed
by Job [21] demonstrated that the overall outcome is independent of the selection of the

divisor. In addition the direct logratio semi-variograms (Ir semi-variograms) provide the
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optimal solution as they can be modelled using existing software. The intrinsic spatial
covariance structure of a regionalised D-part composition is completely defined by the

the D* covariograms ¥; ikt (h)

=1 (5 - (S2) m(317) (51

where i, j,k,l = 1,2,...,D. In the case of an intrinsic alr random function which is sym-

metric, then the number of covariance terms required reduces to (D — 1) D/2, the corre-

sponding cross-semivariograms are required and they are defined by
%.i(h) = Yiijj(h), (2.29)
and the alr cross-semivariogram function is given by
¥ (h) = v;j(h) = ¥ij.op(h) (2.30)

where the alr semivariogram is the special case where i = j. Interestingly; each alr cross-
semivariogram is dependent only on the auto-semivariograms of the pairwise logratios of

the involved components and the component used as a divisor. This is due to the following

and therefore the estimation and modelling of the semivariogram of the following quantity

In ( ZZ;(<L;))) “n (%) , (2.32)

is the same as the estimation and modelling of ¥, j(h). The correspondence for every lag

COrT! espondence:

h is the following:
1
Wij(h) = 5 (%o (h) + 50 (h) = %i.5(h)) (2.33)

As in classical geostatistics, the covariance function and the semivariogram function ¥

are related via the equation
¥ (h) =X£(0) —X(h), (2.34)

so that fitting of a linear model of coregionalisation (LMC) using standard variography

tools is possible.

2.8 Cokriging

A common problem in earth sciences is the best linear unbiased (BLU) estimation of

single or multiple values at unsampled locations. Kriging is a method of interpolation
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for which the interpolated values are modelled by a process, which may or may not be
Gaussian, governed by prior covariances. Under suitable assumptions on the priors (see
Section 2.6 describing stationarity), kriging gives the best linear unbiased prediction of
the intermediate values. Chiles and Delfiner [22] note that kriging appears especially
well suited to Gaussian random functions and while kriging still provides the best lin-
ear estimator for non-Gaussian cases, the linear estimators may not be efficient due to
heteroscedasicity. Cokriging utilises the cross-correlations sometimes present between
variables to reduce the variance of the estimation error further than kriging each variable
independently thus cokriging is most useful when one of the variables is under-sampled
with respect to another [10]. The following description primarily follows Myers’ [31]

discussion of cokriging focusing initially on the stationary and then the intrinsic case.

2.8.1 The stationary case

Let Zy,...,Zp represent the continuous random variables in the multivariate estimation
problem. The informed or sampled locations are denoted by I = {uy,us,...,u,}. Given

these data the objective is to estimate Z(u) using the I informing data where:
Z(u) =[Z,(u),...,Zp(u)]. (2.35)

In order to fulfill the aim of a BLU estimator a linear combination of of Z(u;), 1 <i<n
such that the estimation variance is minimised must be constructed. The estimator is of

the form: ;
Z(u) =Y Z(u)Ty (2.36)
k=1

where each I';, = [),l-l}], 1 <i,j<Disan D x D matrix of weights. Thus the Qtilj- element

represents the contribution of the i;;, variable at location uy, to the estimate of the j;;,

variable. Since this is a linear expectation of random functions:
E[Z"(u)] = Y E[Z(u)]T, (2.37)
k
in the stationary case the necessary and sufficient condition for Z* to be unbiased is for
n
Y =1 (2.38)
k=1
The estimation variance can be defined as
D
Y Var(Zi(u) — Z; (u)). (2.39)
i=1
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When equation 2.38 is true equation 2.39 can be written as
E[(Z(u) = 2" (u))(Z(u) — Z*(u))"] (2.40)

where T denotes the transpose [31]. Equation 2.40 can be reformulated in terms of

covariances through the following relation:
E[Zi(u)Z;(v)] = Covij(u—v) (2.41)

where v is another, possibly different location. In the case of ordinary cokriging (OCK)
the unbiasedness requirement demands the use of Lagrange multipliers. Let the Lagrange
Multipliers (V) be an D x D matrix of elements v;;. These are necessary in the minimi-

sation exercise which is achieved by solving the system of equations:

9¢
— =0, k=1,...,n; i,j=1,...,D
IAF /
/ (2.42)
9¢
Z7 0
o'?vij

where ¢ is the restatement of equation 2.40 in terms of I'; and V. These partial derivatives

simplify to:

m(ul — ul) s m(ul — un) 1 Fl m(ul - Lt)
_ o =|_ (2.43)
Cov(upy—uy) -+ Cov(up—up) 1| [Ty Cov(u, —u)

I I ol | & I

In the case of kriging a single variable, equation 2.43 has the identical form except that

entries are scalars, not matrices [31].

2.8.2 The Intrinsic case

The special case of Intrinsic Random Functions discussed in Section 2.6 allows for the
use of variogram functions. This is also true of the cokriging system which can utilise
cross variograms in the case of symmetrical cross-covariances [31]. Because cokriging
considers multiple variables, and therefore equations of matrices, equation 2.27 must be

altered to the following:
EZ(u+h)—Zu)]=0 i=1,...,....m (2.44)

which implies
E[Z(u+h)—Z((u)] =10,0,...,0] =0 (2.45)



and that
Cov(Zi(u+h)—Zi(u),Zj(u+h) —Z;j(u)] = 27yj(h) (2.46)

exists and is dependent only upon 4 for all i, j = 1,...,m. When equation 2.45 is true

then equation 2.46 becomes

%E[Z((Hh) —Z(()]" [Z((u+h) = Z(()] = () = [3;(h)]. (2.47)

If C,'j(h) - Cij(—u) — C,'j(u + h) = Cij(—h) - C,'j(bt) — Cij(—u — h) which is true when

Cij(v) = C;j(—v) for all i, j,v i.e. symmetry then we can also derive the following
E[Z((u+h) = Z((u")]" [Z((u—h) — Z((u")] = F(u+h) +7(u) = 7(h). (2.48)

In the intrinsic case the estimator Z* has the same form as in the stationary case equation
2.36 with the same unbiasedness condition shown in equation 2.38. In order to main-
tain the same unbiasedness constraint the equation 2.48 is used to restate the estimation
variance in terms of the variogram. Similarly to the stationary case partial derivatives are

taken to obtain the following system of equations:

Y(uy—uy) - Y(uy—uy) I| [Ty Y(uy —u)
o L : | (2.49)
YV —uy) - Ylup—uy) 1| [Ty V(un —u)

I I 0 v 1.

The minimised estimation variance (kriging variance) can then be expressed in terms of

the variogram function as the following:

o} = Tr[z Y(u—u)Ui]+Trv (2.50)
i=1

where T'r denotes the trace of a matrix.

2.8.3 Compositional Cokriging

Myers’ work deals with the general case of unconstrained sample spaces; the work of
Pawlowsky-Glahn and Olea [7] is an extension of this to constrained samples spaces. The
core of the approach used in this work is known as alr cokriging. The central premise
used in this approach is the mapping of the constrained sample space (simplex) to the
unconstrained real space R using the alr transformation described in section 2.5. In

essence the aim is to estimate Z

Z*(u) = agl (f)‘((ui)r,) : (2.51)

i=1

28



based on the covariance structure of X (1;) where
X(u;) = alr (Z(u;)) (2.52)

Under the conditions of second-order stationarity, complete knowledge of the covariance
functions for every lag h, and X(u) following a multivariate normal, lognormal or additive

normal distribution then equation 2.51 satisfies the following conditions:

1. The estimates are of the center of the distribution defined as agl(E[X(u)]) and are
unbiased in that the construction of the ordinary cokriging estimator X* () is unbi-

ased with respect to X(u) at any given location u.

2. The squared Euclidean distance between X*(u) and X (u) - the estimation variance,

is minimised.

Importantly Pawlowsky-Glahn and Olea [7] noted that as there is no explicit equation
which relates E[Z(u)] and E[alr(Z(u))] only ordinary cokriging and not simple cokriging

can be applied to alr transformed vectors.

2.9 Gauss-Hermite approximations

In equation 2.51 the agl back transformation function is used to estimate the expected
value. In fact, due to the non-linear nature of the alr transform and the linear combinations
used in cokriging, bias of the back transformed variables is guaranteed in the simplex if
the agl is applied directly. Job [21] illustrated the non-additivity of logratios and high-
lighted that the bias will be greatest for the dominant component. Unbiased estimates of

the expected value of components can be obtained by calculating the integral
() = E(Z(w) = | Z0)f (2(u))d2Z(w) (2.53)
D
and estimates of the estimation variance through

() = CovlZ. 2] = [ (2(0) ~ B, () (Z(0) — 1,0))” F(Z)dZ(w). @54

When the data follow a multivariate normal distribution with mean 11,(u)) and variance-
covariance matrix X, (obtained from ordinary compositional cokriging) then R can be
calculated as the square root of ¥, obtained via the Cholesky decomposition, £x = R'R.

Thus the integrals in 2.53 and 2.54 can be calculated as
I, (u) = / a7l (x/ERTYer* (u)) exp (—YTY) dY (2.55)
RD-
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and
T, (u) = / T MM exp(-YTY)dY (2.56)
RD-
1
respectively, where M = agl(v/2R'Y + X*(u) and Y = 7 (R_I)T (alr(Z) —X*(u)). The

evaluation of the equation must be done via numerical integration and due to the multi-

variate normality Gauss-Hermite Quadrature can be applied such that

k k k D
/RDlg(Y)exp(—YTY)dY: Y Y o Y TIwiei e ¥y)  @57)

where wi, w3, ..., wy are the known weights, Y1,Y>,...,Y; are the known abscissa. Using

Equation 2.57 to compute 11,(u) take
¢(Y) =1 "7 agl (\/ERTY +nx(u)) (2.58)

whereas for the computation of Xz, take

g(V) =77 (agl (V2R'Y + By ) — B ) (a2l (V2RTY + iy ) ~ By "
(2.59)
Functionally, numerical integration assigns weights to the integrand at each abscissa to
quantify the approximation, hence in general the higher the order k of the quadrature

implemented, the more accurate the approximation.

2.10 Estimation quality test procedures

Two techniques are used to evaluate the applicability and robustness of the estimation

approaches selected for this study.

2.10.1 Cross-validation

Chiles and Delfiner [22] define cross-validation of a dataset with n samples as the esti-
mation of Z*(u;) at each sample location u; using the neighbouring data Z(u;) : i = j #
1,2,...,n. Although cross-validation was developed and implemented originally as a var-
iogram validation procedure, it is possible to evaluate other estimation techniques using it
which is the approach used in this study. The critical knowledge gained is the frue error

(8; = Z"(u;) — Z(u;). Further to J;, other useful statistics can be generated including the

— 1 —2 1 ¢
mean absolute error 6, = — z 0; and root mean square error A,” = , [ — E (6;)2.
n n
i=1 i=1
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2.10.2 Jack-knifing

Jack-knifing is a precursor to the cross-validation technique described in subsection 2.10.1.
Whereas cross-validation is quite specific to geostatistics, jack-knifing is a generalised
statistical technique used originally to reduce bias and later developed to set appropriate
confidence limits for estimates [32]. Sensu stricto jack-knifing refers to resampling with-
out replacement. Geostatistical jack-knifing is similar to the cross-validation technique
except a subset of the data set is removed rather than a single datum; this results in an al-
ternative set of data being estimated from a non-overlapping set. Functionally, a data set
of size n is split into two subsets, the locations to be estimated Z(u;) : i = 1,2,...,n, and
Z(uj) :i=j#1,2,...,n, the informing data. This can be repeated with alternate Z(u;)
subsets of differing sizes and locations; the repetition filters out statistical fluctuation
caused by selection of only one dataset [33]. Further, as the informing or non-overlapping
data are not used to compare histograms or variograms with the resulting estimates, jack-
knifing is seen as a more rigorous technique [33] [22]. The main advantage is the same
as that from cross-validation, computation of the frue error (8,) and the other statistics
outlined in 2.10.1.

2.11 Accuracy and Precision

Confidence limits in the univariate case, and confidence regions in multivariate instances,
have been used historically as alternatives to point estimates for unknown parameters.
Confidence intervals and regions are helpful in assessing the accuracy and variability of
estimators, and in making decisions about the unknown parameters [7]. Deutsch [34] pro-
vides a framework for the assessment of /ocal accuracy and precision of estimates result-
ing from different methodologies. The estimation of an error variance associated with the
expected value is one of the distinguishing features of probabilistic methods and kriging in
particular (See Section 2.8). When used in conjunction with a method which leaves data
with which to compare the estimates against true values such as cross-validation or jack-
knifing, a powerful comparative tool can be constructed. In this application, Deutsch [34]
defines accuracy as the proportion a true value falls within fixed symmetrical probability
intervals defined by the probabilistic estimator. The precision is defined as the closeness
of the accurate distribution to the ideal distribution. Precision is meaningless without ac-
curacy when used in this framework, as a constant value (zero variability) would have
the ultimate precision, but be a very poor estimator of the true value locally. The process
described below follows very closely that suggested by Deutsch [34]. Local conditional
cumulative distribution functions (ccdf) can be calculated from the expected value and es-
timation standard deviations at each location under the assumption of normally distributed

errors. From these local ccdf’s probabilities associated with the true values are calculated.
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The ccdf is defined as:

F(u;;z

(uj)) = Prob(Z(u;) < z|(uj)), (2.60)

where as in Section 2.10.1 and 2.10.2 Z(u;) : i = j # 1,2,...,n. The probabilities associ-

ated to the true values from Equation 2.60 are:
F(ui;z(ui)\u(j)), i= l,...,n (2.61)

Symmetric p-probability intervals are constructed by setting

1—p 1+p
plow:(—z)andpupp:( ) )7

(2.62)

thus for p = 0.9 the 90% probability interval (PI), the lower limit is p;,,, = 0.05 and the
upper limit p,,, = 0.95. Further an indicator function €(u;; p) is defined at each sample

location u;

1, if F(uiz(ui)|(uj)) € (Piow, Pupp)

0 otherwise.

&(ui;p) =
Averaging €(u;; p) over the n data locations generates the proportion m of locations
where the true value falls within the symmetrical PI. The algorithm is defined as accurate
when (_p) > p, for all p. This quantity can be graphically displayed by plotting m
against p, known as an accuracy plot. By construction, points plotting above the 45° line
meet the definition of accuracy defined above, while points below below the 45° line do

not. A quantitative statistic (A),
1
A= [atp)ap. (2.63)
0

which can be used to compare one distribution’s accuracy against that of another, is gen-

erated by an indicator a(p) defined for each probability interval p € [0, 1]

1, ife(p)=>p

0 otherwise.

a(p) =

A is approximated numerically by a discrete summation over K probability values py,k =
I,...,K. The best case is A = 1.0 indicating maximum accuracy and A = 0.0 for the
worst case where no true values fall within the probability intervals [34]. The precision

is defined as the closeness of €(p) to p if the distribution is accurate over that interval i.e.

€(p) > p. This measure (P) can be calculated by

P=1-2 / a(p)[e(p) — pldp, (2.64)
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where similarly to the Equation 2.63:

e P =1.0 is maximum precision and P = 0.0 is the worst case
e P is approximated numerically by a discrete summation over K probability values
pk,k: 1,...,K.

The summary statistics A and P do not account for the case where the true values falls
outside of the PI, i.e. where €(p)<p. The goodness can be quantified through G the de-
parture of the points from the 45° line with the inaccurate points penalised more severely.

The integral
1
G=1- [ Ba(p) ~2)[e(p) - pldp (2.65)
0
is approximated numerically as for precision and accuracy with the maximum value for

Goodness being 1 and the minimum 0.

2.12 Error measures

The objective of estimation is to maximise the accuracy and precision of the estimate
with respect to the true value. This is explicit in the design of the kriging algorithms to be
unbiased and with minimum error variance. This is captured using a distance measure of
some type, of which there are many to choose. Martin-Fernandez et al [35] highlighted
that the measure(s) should be selected for ease of computation and interpretation. They
expand upon these criteria by suggesting that the measure should conform to the sample
space of the data set; and ideally to be one dimensional. The one dimensional aspect is
important as we need to test the combined goodness of the estimate of all the attributes at
a particular location as well as each attribute separately. Traditional statistical description

can then take place on the one dimensional measurement or error variable.

2.12.1 Univariate measures

In Section 2.10 the univariate error measure, the arithmetic difference (6,) was described.
If this measure is applied directly in the simplex only the one dimensional criterion out-
lined above is satisfied as negative values can result. Taking the absolute value of the
difference would address this but would require a different interpretation and would not
be immediately useful as a measure of the bias. This method is commonly used in the
earth sciences to generate an estimate of mean bias. We define this error measure as
follows:

6 =2 (u)—Ziu).,i=1,...,D (2.66)
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In fact this is the same error we seek to minimise in the kriging equations; except of course

there is no knowledge of the true value in that case and thus the true error is unknown.

2.12.2 Compositional measures

In addition to the recommendation in [35] to use distance or error measures of one dimen-
sion, they also advocate using different errors for different sample spaces. The principal
calculations are carried out in the D-simplex SP where the Euclidean error, defined as

follows, is used:

8 (X(u), X" () = Y (Xiae) — X[ (w))*. (2.67)

where X(u) is a coregionalisation with X*(u«) as its estimate with matching number D of
observations and estimates. In a strict statistical sense using Euclidean error is equivalent
to assuming equal variances and absence of correlation which may or may not be met in

practice [35]. The alternative choice is the Aitchison error 602 defined as:

D « 2
Zi(u) Z*(u)
82(Z(u),Z* (n)) = (ln S/ : (2.68)
“ L "zt stz )

where Z(u) and Z"(u) are as defined in equation 2.67 and g(Z(u)) and g(Z" (u)) are the
geometric mean of the components of Z(u«) and Z*(u) respectively.

2.12.3 STRESS

Two different estimation methods will be compared; a global measure of performance
well suited to this task is the Standardised Residual Sum of Squares (STRESS). The com-
parison is is therefore of §,, the difference between observations Z(u,) and Z(u;) and
d,, the difference between observations Z*(u,) and Z*(uj,) where 0, and J,;, use the

same type error measure, say Euclidean. Then

1
Ya<b(Bab — 5;1)1 ’

STRESS = {
Za<b 5a2b

(2.69)
The STRESS can be interpreted as a normed loss of information induced by replacing
the true values with the estimates; thus the smaller the value of STRESS, the better the
quality of the estimate. As with the other one dimensional error measures, analysis of the

base statistics such as central tendency and spread, are used to further analyse the results
of the STRESS calculation [35].
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Chapter 3

Data, Geology and Sampling
methodologies

3.1 Geology

Cliffs Natural Resources operates the Koolyanobbing Iron Ore Project containing the
Windarling mining hub. At Windarling iron ore is mined from open pits located in the
Marda-Diemals Greenstone Belt of the Southern Cross Domain. Prior to mining oper-
ations commencing in 2004, the Windarling deposits formed a prominent east-west ori-
ented range approximately 25 km north of Mt Jackson and approximately 90 km north of
the Koolyanobbing mining hub complex (figure 3.1).

3.1.1 Windarling Geological Setting

The Marda-Diemals (Windarling) greenstone belt is located within the Yilgarn craton.
The belt, placed within the Youanmi Terrane, an amalgamation of the Murchison and
Southern Cross domains, is thought to represent a protocraton onto which the younger
Eastern Goldfields and Narryer Terrane were accreted. This greenstone belt differs from
surrounding belts due its west-northwest trend and is divided into a lower and upper se-

quence [36].

3.1.2 Windarling Regional Geology

The lower sequence of the Marda-Diemals greenstone belt is thought to be a mafic volcanic-
dominated succession of about c. 3.0 Ga. This sequence is unconformably overlain by

an upper (c. 2.73 Ga) sequence comprising felsic volcanic and associated volcanoclastic-
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Figure 3.1: Location of the Cliffs NR Windarling open pits

sedimentary rocks of the Marda Complex as well as clastic metasediments of the Diemals
Formation. Younger granitoid (principally monzogranitic) intrusions have been dated at c.
2.73-2.65 Ga; three major periods of deformation are further recorded and detailed Riganti
and Chen [37]. Greenschist facies metamorphism predominates in the lower greenstone
succession. High grades (up to amphibolite facies) have been recorded from granite-
greenstone contacts and in sediments occurring in the northernmost part of the Marda

Complex.

3.1.3 The local geology of W3

The W3 deposit forms the most prominent ridge of the Windarling Range. The stratig-
raphy dips approximately 50 degrees south, with mineralisation extending over a strike
length of approximately 950 metres. Up to three parallel zones of iron mineralisation, over
a width of approximately 40 metres, are separated by lenses of sheared magnesium and
iron rich volcanic (mafic) material. The ore is hard, fine to medium grained, bedded, and
comprised of goethite magnetite hematite. The W3 deposit is characterised by medium
to high Fe grade (>63 weight percent Fe), relatively high phosphorus and uniformly low
sulphur. The W3 deposit lies immediately to the south of the W5 deposit (Figure 3.2.
W5 consists of up to three relatively narrow, discontinuous bands of hematite-goethite
mineralisation forming a low arcuate ridge immediately south of the W3 deposit. The

W5 deposit is characterised by relatively high Fe grades (>63 weight percent), moderate
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phosphorus and uniformly low sulphur. The mineralisation is interspersed along strike
with areas of hematite rich jaspilite. In plan view the BIF bands appear to have been
thickened by longitudinal compression to create a series of imbricated structures with a
strike direction change approximately at the midpoint (721165 m Easting) of the study

area.

Geology Legend
1o

e

Y e

Lithological Boundary
Fau

< CLIFFS

Local Geology

:::::::::::

Figure 3.2: Local geological mapping of W3 and WS5. Courtesy Cliffs NR

3.1.4 Iron concentrating mechanisms

Angerer and Hagemann [38] noted that the structural control of high grade (>58 weight
percent Fe) BIF-hosted ore deposits is considered to be a critical factor. They further list
the principal iron ore-formation models postulated to create economic iron oxide concen-

trations. These are:

1. syngenetic models that propose synsedimentary structures such as boudinage or
extensional faults which lead to chert-free BIF formation,

2. supergene and supergene-metamorphic models which operate primarily by the cir-
culation of meteoric fluids through existing structures eliciting upgrade of the BIF
by leaching of gangue minerals and,

3. hypogene models in which hydrothermal fluid flow associated with deformation is

deemed critical for iron oxide mineralisation in the low stress portions of structures.
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The most likely processes that cause upgrade in the Windarling (Marda) greenstone belt
are analogous to those which occurred in the Koolyanobbing greenstone belt to the south.
Angerer and Hagemann [38] postulate the same multistage, structurally controlled iron
ore genesis for the deposits in the Windarling range with added structural high-strain
zones that have resulted in a remarkable variety of pre-, syn- and post-deformational ore
textures. Angerer et al [39] describe the Windarling genesis in the following way (figure
3.3):

e Trace element analyses of the BIF indicate precipitation from Archean seawater
that was fertilised by hydrothermal vent fluids with a basaltic signature. The ore
genesis then proceeded through four main stages

e Stage 1 was a syn- to post-metamorphic metasomatism that produced local Fe-
dolomite-magnetite alteration in BIF. Hydrothermal alteration was induced by hot
fluid flow controlled by brittle-ductile reactivation of BIF-basalt margins and cross-
cutting D1 faults. Analysis of dolomite and carbonate-altered BIF suggests that the
basalts in the Windarling Range were the primary source of introduced metals.

e Stage 2 resulted in high-grade magnetite-hematite ore forming from syn-deformational
fluid flow along BIF-basalt margins.

e Stage 3 is the relatively minor stage of remobilising iron oxides, carbonate and
quartz to form veins and breccia.

e Stage 4 involved recent (Mesozoic to present) supergene oxidation and hydration
in a weathering environment reaching down to depths of maximum 200 m below

surface

Irrespective of the ore genesis theories, the outcome is a series of discrete enrichments of
Fe within the broader Marda (Windarling) BIF range. In total, nine economic enrichments
have been identified along the range and form a spectrum of grades. W3 is on the high
end of the spectrum with a mean grade of “63 weight % Fe and locally blast hole analyses

regularly in excess of 66 weight % Fe.
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Figure 3.3: Windarling ore genesis model — Ore formation (after Angerer and Hagemann

[38])

3.2 Sampling methods

The evaluation of mineral deposits is generally based upon geochemical analyses of rock,
sand or other natural material obtained from a repeatable method. The kriging paradigm
enforces the notion that (for a given variogram and search neighbourhood) more regu-
larly gridded samples will result in superior estimates of the in-situ material than fewer
samples [40]. As sampling of the material is expensive and the required confidence inter-
vals around estimates are different for each stage of a mining project, different sampling
methodologies and equipment are used for each stage. For example, at the scoping stage,
fewer data are required as the output of the evaluation exercise will likely be a mean
estimate with confidence limits. This contrasts with the requirement for a high degree
of accuracy and local grade interpolation needed to delineate operational Run of Mine
(ROM) material from waste during the mining stage. At the Windarling mining hub and
specifically at W3, ROM sampling is achieved by taking ~3 kg samples from blast hole
cuttings piles left at the collar (top of the hole). Blast holes are drilled for the purposes of
fragmenting the material through explosive blasting to facilitate loading and stockpiling.
The holes are drilled vertically on a nominal 3 m x 3.5 m grid with a (sampling) length
matching the bench height (Figure 3.4). The bench height used at W3 is 6 vertical me-

ters and has little relationship to the grade characteristics of the geological formations.
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Blast holes are sampled opportunistically as a low cost alternative to other methods such
as Reverse Circulation (RC). RC drill samples, especially when the drill hole is drilled
perpendicularly to the gross dip of the mineralised formation, are generally considered
superior to the vertical blast holes [41]. Additionally, RC samples are generally taken
at smaller intervals; increasing the edge resolution between different geological units, a
desirable quality, unlike blast holes samples which tend to blur the edges between geo-
logical units. This is especially true if the geological units occur on a scale less than the
blast hole interval. As a result, over a common volume, it is highly probable that RC data
will be differently distributed both spatially and statistically from blast hole data [42].

Figure 3.4: Blast hole rig on pattern; cuttings piles at collar easily visible (Photo courtesy
Cliffs NR

3.3 Data description

The dataset selected for this study consists of a single complete bench of ROM blast hole
analyses from the W3 open pit at Windarling (Figure 3.5). At this elevation through the
steeply dipping ore body the following features are noted:

1. the blast hole analyses selected describe the ROM material only, not the waste,
2. the mineralisation trends approximately East-West,
3. the bench is composed of two, discrete, parallel, mineralised BIF lithologies with

internal waste,
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4. the mineralisation appears as two distinct limbs with different strike orientations,

which hinge about the 721165 X-coordinate, and

5. each limb is further broken into discrete faulted blocks some of which display rota-

tion relative to the adjacent block and in some cases minor imbrication.

The data consist of 1594 geographic locations with geochemical analyses for the follow-

ing analytes
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Figure 3.5: Plan view of blast hole analyses from W3 open pit

The blast hole analyses list the seven principal analytes of importance for the smelting

of the ore in a blast furnace. Although this is not an exhaustive list of possible analytes

these seven generally constitute the bulk of the material delivered to a furnace. The an-

alytes (A, O3, Fe, Loss on Ignition (LOI), Mn, P, S, SiO;) are a mixture of oxides and

native element abundances and therefore form a subcomposition of the total mass of the

sample; in other words, the total analysed does not total a constant value (Figure 5.1).

Due to this a filler variable was introduced in order to satisfy the constant sum constraint.

Consequently, the filler represents the missing oxygen mass not accounted from the iron,

manganese, phosphorus, and sulphur oxide minerals as well as the small concentration of

other elements and oxides not reported. The reason the analyses are routinely performed

this way is to account for the different iron oxide speciation, i.e. the analyses are consis-

tent whether magnetite (Fe304) or hematite (Fe;03) is considered as the customers are

interested in total iron units.
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Chapter 4

Implementation

The flow chart in Figure 4.1 encapsulates the major processing steps and outputs in this

study. The process involved the use of four primary software packages:

1. Geovariances Isatis

2. Microsoft Office Excel and embedded Visual Basic for Applications

3. CoDaPack
4. MATLAB

Several of the steps require the application of a process to each individual observation and

therefore scripting was required. A simplified process flowchart is shown in Figure 4.1

outlining the process followed.

Data Preparation
BH Analyses
Selections

“Standard” Multivariate
* EDA
* Variography

Ordinary cokriging

Compositional logratio
* EDA
* \Variography

Compositional cokriging
Gauss-Hermite Back Transformation

Performance Evaluation
* Compositional
* Univariate

Figure 4.1: Flow chart of major process steps.
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As is typical in a geostatistical study the majority of the iterative processes occurred in
Isatis followed by output of the variance-covariance matrices from each cokriging calcu-
lation for input into the Gauss-Hermite (GH) Quadrature back-transformation calculation.

The scripts are available in Appendix H.

4.1 Data spacing

Geostatistical techniques were originally developed to predict mineral grades ahead of
the mining face from relatively sparse, highly variable data. As was discussed in Section
3.2, different stages of mining projects have different spatial data density requirements;
the more advanced the project, the more dense the data. The guidelines produced by
the Joint Ore Reserves Committee (JORC) established a nomenclature used by mining
houses and reporting bodies such as the Australian Securities Exchange (ASX) to classify
mineral resources based on operational and therefore financial risk [43]. These categories
(summarised in Figure 4.2) broadly capture the decreasing risk as a function of increasing
geoscientific knowledge. At the scoping level this knowledge is a combination of physical
mapping, geophysical mapping and sparse drilling information. As the mining evaluation
progresses the geoscientific knowledge generally stems from geostatistical evaluations
of drill hole data with increasing spatial density as well as the geophysical and physical
mapping information. Other practitioners of compositional geostatistics have asserted
that the high spatial density of the blast hole data described here may mask bias induced
by any particular estimation technique (pers.comm. Job, 2013). To test this assertion
the initial high density complete dataset shown in Figure3.5 was sub-sampled to create
alternative subsets which mimic the spatial densities ordinarily encountered during the
different stages of mine development. Ideally the real RC exploration drilling data
should be used to evaluate the technique; however the fundamental differences between
the short, low spatial density, small volume RC samples and the longer, vertical, high
spatial density larger volume blast hole samples outlined in Section 3.2 prohibits this and

use of the sub-sampled data to avoid biasing any comparative results is necessary.

Table 4.1: Sampling selection subset spacing parameters

Dataset X mesh Y mesh Number of samples
Spacing 1 - - 1594
Spacing 2 7 7 432
Spacing 3 14 7 234
Spacing 4 14 14 137
Spacing 5 28 14 71
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Figure 4.2: JORC(2012) classification diagram
Table 4.2: Description of subsets
Dataset Mining Stage Description JORC classification
Spacing 1 ROM - Grade Control - Weekly / daily Mine plan Measured
Spacing 2 Advanced Grade Control - 90 day Forecast Mine Plan Indicated / Measured
Spacing 3 Resource level drill out - Life of Mine Plan Indicated
Spacing 4 Exploration Infill drilling - Conceptual Mine plan Inferred
Spacing 5 Scoping level - No mine planning yet Unclassified

East - West division

The data exhibit a strike direction change as a result of the structural imbrication dis-

cussed in Section 3.1.3 pivoting about 721165 m Easting. The dominant strike direction
in the West block is 80°East of North increasing to 110°East of North in the East block

(Figure 4.3). Strike changes of that magnitude result in changes to spatial covariance

functions which should be captured and exploited to ensure estimates of surrounding lo-

cations is optimal. Due to the complexity of estimating and modelling the spatial covari-

ance functions and the limitations imposed by the available software, the parsimonious

decision was taken to create separate estimation domains rather than attempt alternative

approaches such as local anisotropy or unfolding.
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Figure 4.3: Plan view of East and West blocks showing dominant strike directions

4.2 Spatial covariance modelling

4.2.1 Constrained space variography

The auto and cross experimental semi-variograms were calculated for each subset in the
constrained sample space for the seven attributes and filler variable. The experimental
semi-variograms were calculated using different lag criteria which mimicked the spatial
selection parameters used in Section 4.1 (Table 4.3). Each set of experimental semi-
variogram was modeled with a Linear Model of Coregionalisation (LMC) using a nugget
and two spherical structures incorporating anisotropy. Estimates using semi-variogram
models with different types of structure, ranges, and relative contributions of each struc-
ture to the overall semi-variogram model can be markedly different if all other parameters
are held constant. Although the impact of differing data densities is an important aspect
of this study, the effect on the variogram models was designed to be minimised. This
was achieved by using the highest density (Spacing 1) data as the base case and applying
the information derived from this to the lower density subsets. The nugget variance-
covariance values and ranges of each spherical structure were locked and only the sill
values for each spherical structure were allowed to vary to match the experimental semi-

variogram values from each subset (Table 4.4).

4.2.2 Logratio variography

The same calculation parameters outlined in Table 4.4 used to calculate the logratio exper-
imental semivariogram as were used for the untransformed (constrained space) data. The
cross semi-variograms were estimated using the relationship described in Equation 2.33
which required the estimation of experimental auto semi-variograms of all logratio pairs.
The Isatis software used could not perform the required cross semi-variogram calculation
required by this equation as the experimental values are locked within binary parameter
files. Estimating the required quantities necessitated exporting the binary parameter files

into an ASCII format, importing these into Microsoft Excel, performing the arithmetic
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Table 4.3: Experimental semivariogram calculation param-
eters

Spacing
1 2 3 4 5

Calculation lag 35 7 14 14 21
Toleranceonlag 0.5 0.5 05 05 0.5
1 Number of lags 40 20 12 12 7
Angular tolerance 30 30 30 30 30
Azimuth (Limb) 110 °(East) / 080 °(West)

Calculation lag 3 6 6 12 12
Tolerance of lag 0.5 0.5 05 05 0.5
2 Number of lags 20 10 10 7 7
Angular tolerance 45 45 45 45 45
Azimuth (Limb) 200 °(East) / 170 °(West)

Direction Parameter

Note: Each spacing has the same anisotropy characteristics,
verified from the exhaustive dataset. These were applied to
all the lower density subsets.

Table 4.4: Constrained space variogram parameters and ranges

Parameter East Block West Block
Number of structures 3 3

Rotation 110° 080 °
Range Spherical 1 Strike 15 18

Range Spherical 1 Across Strike 5 12

Range Spherical 2 Strike 60 70

Range Spherical 2 Across Strike 15 27

and finally re-importing the ASCII files into Isatis’ binary format for later modelling.
The same approach used to model the logratio semi-variograms as was employed for the
constrained space semi-variograms, i.e. locking the nugget and range values determined
when modelling the Spacing 1 data, and applying these to the lower density datasets; and
similarly the LMC was used to model the spatial covariance. The complete set of fitted

model plots are available in Appendix I and the model parameter tabulations in Appendix
J.

4.3 Cokriging

4.3.1 Cokriging parameter optimisation

The kriging neighborhood parameters dictate which samples are used as the informing

data for any given kriging system. The parameters control the size, shape and orienta-
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tion of the search volume and the number of data within that volume. Changes to these
selections can materially change the resulting estimates and must be iteratively changed

and the results analysed to ensure the optimal estimates will result. The kriging neigh-

Table 4.5: Optimised kriging neighborhood parameters

Parameter East Block West Block
Orientation 110° 085 °
Rotated X range 100 metres
Rotated Y range 15 metres
Minimum number of samples 5
Maximum number of data 30
Quadrant search used No

borhood parameters in this study were optimised using cross-validation (Section 2.10.1).
The search window was set to be an ellipse (Table 4.5 ) and only the minimum and maxi-
mum number of samples used, and the number of quadrants were iteratively altered in the
optimisation procedure. The cross-validation function delivers the following numerical

statistics:

mean error of the true error (Equation 2.66),
variance of true error,
standardised error (item 1 scaled by item 2), and

S e

variance of standardised error.

Additionally graphical representations of the error distributions are produced, including
histograms of the error and scatter-plots of the estimated versus true values. The minimum
and maximum number of samples used was iterated to achieve a mean error closest to zero
and a tight and symmetrical distribution of errors around the mean value. As outlined in
Chapter 1, the aims of the study are to compare the outputs of additive logratio techniques
with the outputs of conventional estimation techniques incorporating data density changes
as well. The effects of differing search parameters are well known ([10], [40]) and not
part of this study, and as a result the neighborhood parameters were optimised using the
Simplex variogram and Spacing 1 dataset and those parameters were applied to the other
estimates. It is is acknowledged that this may result in suboptimal estimates with other
variogram models and datasets, however the author deemed the risk acceptable as the

impact is likely negligible.

4.3.2 Interpolation

The cokriging step was undertaken to provide estimates at each sample location under the

following scenarios:
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1. complete cross-validation of each sample location for the simplex sample space,

2. jack-knifing the non-overlapping data at each data density for the simplex sample
space,

3. complete cross-validation of each sample location for the log transformed sample
space, and

4. jack-knifing the non-overlapping data at each data density for the log transformed

sample space.

The estimation runs were completed using the semi-variogram models described in Sec-
tions 4.2.1 and 4.2.2 and the optimised kriging neighborhood parameters outlined in Sec-
tion 4.3.1. The simplex cross-validation and jack-knifing runs were completed using the
traditional interface of the Isatis software package and associated scripting functions. The
logratio sample space estimation runs were completed using the ”print complete output”
switch checked in order to provide the complete kriging systems for each estimated point.
Checking this option generates two files, the traditional spatially located estimate file and
the kriging systems output file. The kriging systems output file had to be capped at 100
samples otherwise the file size (in excess of one gigabyte) was too large to be opened or
interrogated using commonly available software and text editors. As a result runs of 100

samples were used and the results later recombined.

4.4 Back-transformation and error measures

4.4.1 Gauss-Hermite Quadrature Back-transformation

After the logratio cokriging step was completed the process described in Section 2.9 to
back-transform the interpolated results from the real space to the simplex was carried out.
The quadrature was performed using the MATLAB software and required the export of
an estimate and the variance-covariance matrices from Isatis. The MATLAB procedure
(Appendix H) generates the approximation of the interpolated value and the estimation
variance associated with the estimate. These back-transformed values were matched to

the true sample values to create datasets for comparison and error measurements.

4.4.2 Spatial recombination and error measures

Prior to the estimate runs the data were split into a number of independent zones to fa-
cilitate the modelling and downstream processing; before the error variables could be
generated the data were recombined to create the final datasets. The end result of this

process was five datasets, Spacing 1 through to Spacing 5, each containing the original
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assayed analyte value as well as an estimate using OCK and the GH methodologies. In
addition to these, Spacing 2 through to Spacing 5 also included an attribute identifying
whether the data location is an informing point or an estimated point for the jack-knifing
process. Subsequent to the data being recombined, the error measures outlined in Sections

2.10 and 2.12 were calculated for each dataset using the Isatis Calculator function.
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Chapter 5

Characteristics of the Input Data

5.1 Exploratory Data Analysis

The characteristics of the exhaustive and each subset are described in Sections 5.1.1 and
5.1.2 below; any differences between a subset and the exhaustive set must be quantified as
this could have a material impact on downstream uses of the data and comparisons with
the exhaustive set. The data are examined in the raw units in the simplex; although this is
known to be incomplete and in some cases spurious, the customers for the iron ore expect
weight percent analyses of the data. Additionally the data are explored using the stay and

the move methodologies described in Section 2.2 and Section 2.5

5.1.1 Constrained space EDA — Exhaustive

The Exhaustive dataset, Spacing 1 shows characteristics typical of Direct Shipping Ore
(DSO). These ores have left (negative) skewed distributions for Fe (and by construction
the filler), strongly right (positive) skewed for Al,O3, Mn, SiO;, and S, and less strongly
right skewed for LOI and P (Figure 5.2). The descriptive statistics (Table 5.1) emphasise
the high grade and relatively low contaminant levels of the ore. There are compositional
relationships in this type of ore which are related to the initial precipitation of the BIF and
the stoichiometry possible from that initial composition. Simply this means that as the Fe
content increases, the Si0, must decrease along with Al; O3, and also that the maximum
Fe content cannot exceed 72.35 weight % (pure magnetite). This compositional bounding
is clearly noted in the Figure 5.3 as a linearity in the Fe vs. SiO, and Fe vs. Al;O3 plots
beyond which no points plot. These compositional parameters constrain the possible point
locations to an even more restricted sample space than the simplex theoretically allows
(0 - 100). The compositional and stoichiometric constraints impose correlations between

the analytes, illustrated in Figure 5.3 and quantified in the lower triangle of Table 5.1.
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The correlations range between 0.95 and -0.909; with the majority (22 out of 28) between
-0.299 and 0.306 which is considered low. The grouping of the data points in the scatter
plots (Figure 5.3) is tight with no obvious groups emerging.

| L—
0.0 70 75 80 85

Figure 5.1: Sum of analytes — Exhaustive data

Table 5.1: Descriptive statistics of Spacing 1 dataset (n = 1594)

VARIABLE AlLO3 Fe LOI Mn P S SiO, Filler
Min 0.080 9.940 0.520 0.003 0.016 0.001 0.340 13.368
Max 21.410 71.740 10.940 12918 0417 0975 61.580 32.472
Mean 1.651 62926 4.078 0.188 0.128 0.030 3.382 27.618
Std. Dev. 1.981 5777 1409 0.546 0.051 0.054 5918 1.930
CoV 1.201  0.092 0.345 2907 0.398 1.843 1.75 0.070
Skewness 3.559 -5.268 0.624 12.615 0939 8916 6446 -3.613
Correlation AL O3 Fe LOI Mn P S Si0;

Fe -0.819

LOI 0.273 -0.258

Mn 0.028 -0.099 0.177

P -0.107  0.147 0.298 0.072

S 0.306 -0.181 0.273 -0.003 0.091

SiO, 0.658 -0.941 -0.002 -0.037 -0.249 0.062

Filler -0.806  0.950 -0.299 -0.031 0.166 -0.192 -0.909

The mean and variance are plotted as a function of the easting coordinate (Figures 5.5
and 5.6). As discussed in Section2.6 an assessment of the absence of drift in the first two
moments is necessary in order to make the decision of stationarity. When analysing the
mean statistic in Figures 5.5 it is noted that the Mn analyte displays the greatest trend with
respect to Easting; the segregation between the East and West blocks is also marked. Five
of the other seven analytes also display marked differences in mean value between the

East and West blocks, only the LOI and P do not. This characteristic of these two analytes

52



[T1
70

|
10

50

20

sa 19uanba 14

L
20

10
Al 208

sa 1ouanba 14

Fe

|
10

1.00
0.75
0.50

sa |1ouanba 14

0.25

0. 00

10

0.20
0.15
0.10

s9 |ouanba 14

0.05

0. 00

La

|

1.00

0.75

0.50

S8 1ouanba i4

0.25

0. 00

0.25

0.20

0.15
0.10

sa 1ouanba 14

0.05

!
15

25

20

sa 1ouanba 14

L
60

!
50

L
30

Si @2

L
20

40

10

sa 1ouanba 14

Filleg

1 dataset

ing

Histograms of Spac

Figure 5.2

53



Fe

LOI

i Sio,

Figure 5.3: Scatterplots of Spacing 1 dataset
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Figure 5.4: Scatterplots of Spacing 1 dataset after logratio transformation
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relates to the geological processes; the distributions are not highly controlled by the BIF
or upgrading mechanisms discussed in Section 3.1.4, rather it is a function of the vertical
regolith processes. Regolith characteristics are the end product of the effect of climate on
the earths surface and has a vertical effect, and therefore ubiquitously applied to the East
- West aspect of the study area. The East and West blocks are visually discernible when
analysing the variance of the 20 meter wide swathes in Figure 5.6. The LOI is the only

analyte displaying almost constant variability as a function of the Easting.
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Stationarity assesment - mean value
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Figure 5.5: Stationarity assessment plot - mean of data within 20 m wide swathes. Red
lines represent the mean and the break in the red line represents the Easting (721165m)

about which the estimation domains are divided.
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Stationarity assesment - variance
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Figure 5.6: Stationarity assessment plot - variance of data within 20 m wide swathes. Red
lines represent the mean and the break in the red line represents the Easting (721165m)
about which the estimation domains are divided.
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5.1.2 Constrained space EDA — Subsets
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Figure 5.7: Informing locations, red points are informing data, black points are the esti-
mation locations — Plan view

The subsets are intended to be representative of the entire bench. In order to evaluate the
representativity, two tools were used; the mean percentage bias statistic and QQ plots.
The mean percentage bias is calculated as

meanciement Spacing 1

Bias,emenr = x 100 for i=2,...,5 and all elements.  (5.1)

meanejement Spacing i
The tabulated bias statistics in Table 5.2 contain SiO,, Al;O3, and Mn values of up to
30%. These values at first appear too high for the subset to be considered representative.
However, evaluation of the histograms (Appendix K) and specifically the QQ plots in
Figure 5.8 shows that the biases are brought about by the presence or absence of several
extreme values in the tails of the highly skewed distributions when compared with the

exhaustive set. The skewness statistics in Table 5.1 are highest for these biased elements,
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Table 5.2: Mean percentage bias between Spacing 1 and subsample datasets

VARIABLE Spacing 2 Spacing 3 Spacing4 Spacing 5

AL O3 -8.42 -20.71 -31.25 -20.84
Fe 0.68 1.36 1.9 1.62
LOI 1.28 0.2 -2.23 2.48
Mn 0.53 -4.26 15.43 15.43
P 0 0 -2.34 1.56
S -3.33 10 -10 6.67
Si0O; -13.63 -21.58 -27.32 -30.19
filler 0.43 0.78 1.13 0.77

supporting this assertion. The QQ plots demonstrate that where the highest density of
data exists, the distributions plot along the 45° line, which is the required outcome. Fe,
LOI, and P have lower skewness statistics and have associated lower mean biases. Given
that the subsets are sub-sampled from the master set, combined with the link between
the skewness and bias, and excellent appearance of the QQ plots over the critical portion
of the grade ranges, the subsets are deemed representative of the master set and therefore
acceptable for use in this study. The comprehensive listing of all the subsets base statistics

is available in Appendix A.

5.1.3 Spatial covariance modelling

The alr transformation of skewed, (spuriously) correlated data can advantageously result
in partially or completely decorrelated data with a deskewed or even normal distribution.
In fact the alr transformation has been used in a manner analogous to Gaussian anamor-
phosis in simulation studies to achieve the removal of spurious correlation and normalise
the distribution [23]. As a result of the the pseudo-normal distributions and decreased cor-
relations between variables (Figures 5.3 and 5.4), the transformed distributions are more
tractable to model than the untransformed data. The transformed data (top of Figure 5.9)
were modelled using the relationships and techniques outlined in Section 2.8.2 and Sec-
tion 4.2.2 respectively, while the untransformed data (bottom of Figure 5.9) are estimated
using using conventional semivariograms. Both resulting sets of experimental variograms
were modelled using the Linear Model of Coregionalisation. The high spatial density of
the data results in unambiguous experimental semivariograms to model, a boon in a uni-
variate case, but this can be problematic when fitting due to the constraints imposed by
the LMC. The Spacing 1 examples illustrated in Figure 5.9 show both these attributes; the
shape of the semivariograms are very clear, but the fitment of some of the cross semivar-
iograms is not ideal. Qualitatively, the fitment of the logratio semivariogram set appears

superior to that of the raw space data. The remainder of the experimental semivariograms
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and fitted models are available for perusal in Appendix I and tabulated in Appendix J. All
the spacings but the lowest (Spacing 5) exhibit model-able structure, as both logratio and

raw space are reasonably fitted by the LMC. The decision to use the Spacing 1 nugget and
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ranges is coherent with current mining geostatistics practices, where use of a priori spatial
covariance information from geologically similar or nearby deposits is commonplace. In
the spacing 5 example specifically, the lack of structure demands that some subjectivity
would ordinarily be required to fit an appropriate set of models in the absence of a priori

information.

5.1.4 Compositional EDA

The implementation of the logratio approach to geostatistics in this thesis predominantly
follows the work of Pawlowsky-Glahn and Olea [7]. This approach proposes that the alr
is a good choice for the analysis and subsequent estimation of spatially correlated com-
positional data for practical reasons. These reasons include mathematical tractability and
readily available software to perform the analysis and estimation as outlined in Sections
2.5 and 2.7. The exploratory data analysis for compositions generally follows a common
approach independent of whether the variables are spatially correlated and considers all
the possible log pairs. This effectively covers all possible combinations which could be
used in the calculation of the alr. This five step approach is summarised in Pawlowsky-
Glahn et al [8] and then applied to the W3 data. The steps are as follows:

compute compositional descriptive statistics,
centre the data set for a better visualisation of subcompositions in ternary diagrams;
analyse at the biplot of the data;

v =

define an appropriate representation in orthonormal coordinates and computing the

corresponding coordinates; and
5. represent the results in a balance-dendrogram.

The centre of the Spacing 1 dataset g spacing1 for the analytes in the following sequence is

g Spacingl — [A1203,F€,LOI,MH,P,S,SiOz,filler]

(5.2)
g spacing1 = [0-011,0.643,0.039,0.001,0.0012,0.0002,0.021,0.284]..

The Fe, Al, O3, and SiO, ternary diagram is shown in Figure 5.10 where is is clear the data
are naturally compressed into the Fe corner of the diagram. To facilitate interpretation,
data are centred through perturbing the values with the inverse g_1 Spacing1 Of the centre
values. The two diagrams show that there is only one material type (ore) predominately
sampled in the dataset with some contaminated edge effect samples. The contamination
edge effect samples form the two separate groups of low iron material in the left hand
diagram, while the mineralised BIF forms the linear grouping perpendicular to the Al,O3
and Si0O, axis. The geochemical bounding inherent to BIF mineralogies is evident in
the right hand side diagram of Figure 5.10 as an upper linear boundary highlighted in

red and subdividing the centred ternary diagram into area A and area B. The boundary
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Table 5.3: Spacing 1 Variation matrix Variance (upper triangle), Mean (lower triangle)

ln(X,-/Xj) A1203 Fe LOI Mn P S Si02 Filler
AL O3 0959 0.778 1942 1.014 0.662 0.31 0.898
Fe 4.074 0.171 1.072 0.163 0.568 0.952 0.007
LOI 1.282 -2.792 0979 0.209 0.441 0.789 0.158
Mn -2.473  -6.547 -3.755 1.049 1.715 2.153 1.047
P -2.202 -6.275 -3.484 0.272 0.657 1.11 0.167
S -3.975 -8.049 -5257 -1.502 -1.774 0.869 0.554
Si0, 0.652 -3422 -0.63 3.126 2.854 4.628 0.883
filler 3.255 -0.819 1973 5728 5.457 7.231 2.603

Table 5.4: Sign matrix Spacing 1 dataset

ALOs Fe LOI Mn P S SiO, filler r

2]

-1 -1 -1 I -1 -1 -1 -1 17
-1 -1 -1 0 -1 1 -1 -1 1 6
1 -1 -1 0 -1 O -1 -1 1 5
0 -1 -1 0 -1 O 1 -1 1 4
0 -1 1 0 -1 O 0 -1 1 3
0 -1 0 0 1 O 0 -1 1 2
0 1 0 0 0 O 0 -1 1 1

therefore represents a limit beyond which it is unlikely to find a BIF sample, a structure
that estimation methods should honour. The variation matrix shown in Table 5.3 is a
compact form of the base statistics where the mean values for each pairing are below the
diagonal and the variance values above the diagonal. The variation matrix explains how
the total variation is split between the logratio parts. The total variance (Equation 2.12)
for the Spacing 1 data equals 2.784. These three analyte combinations of [n(SiO,/Mn),
In(S/Mn), and In(Al,O3/Mn) account for 26% of the total variance. Examination of
the scatterplots of logratio transformed quantities (5.4), although not part of the standard
compositional EDA work-flow outlined by Pawlowsky-Glahn and Olea [7], shows that
the only highly correlated variable set after alr transformation is Al,O3 and SIO; (with the
common denominator of the filler). The biplots (Figure 2.2) are shown in two projections
to facilitate interpretation. Using the guidelines outlined in Section 2.4 the following

features are noted:

e near co-linearity between Fe, P, and r and to a lesser degree LOI,
e the mutually perpendicular orientation of Mn, Al;O3, S, and SIO; to one another,

and the near collinear group identified above.
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Table 5.5: Orthonormal basis W Spacing 1 dataset

AL O3 Fe LOI Mn P S  SiO, filler
-0.13  -0.13 -0.13 094 -0.13 -0.13 -0.13 -0.13

-0.15  -0.15 -0.15 0 -0.15 093 -0.15 -0.15
091 -0.18 -0.18 0 -0.18 0 -0.18 -0.18
0 -0.22 -0.22 0 -0.22 0 089 -0.22
0 -0.29  0.87 0 -0.29 0 0 -0.29
0 -0.41 0 0 0.82 0 0 -041
0 0.71 0 0 0 0 0 -0.71

An orthonormal basis was generated through the sequential binary partitioning as in Sec-
tion 2.5. The sign matrix is shown in Table 5.4 where it is evident that the simplest
solution was selected. This solution involved splitting into groups containing only one
part each in a successive manner such that the first decision was to split the most different
part (Mn) from the rest. The next part selected and split was S as the biplot identified this
as different from the other parts and from Mn. This process continued until no further
splitting was possible. The result is the decrease of the s statistic (of the first subgroup)
from 7 to 1 with increasing order; coupled with the r statistic of the second subgroup
remaining constant and equaling 1. The resulting orthonormal basis ¥ is shown in Table
5.5. Once the ilr transform had been applied the balance dendrogram (Figure 5.12 ) is
produced which summarises the salient statistical measures of the isometric coordinates
of the Spacing 1 dataset as outlined in Section 2.5.3. The diagram illustrates that the coor-
dinate associated with Mn has the highest variance as well as the largest range; S, Al,O3
and SiO, have similar large variances and ranges when compared with the remaining four
parts. The variation matrix shows that the logratios with Mn in the denominator account
for a large portion of the total variation contained within the data. The biplot supports this
conclusion as the links connecting the Mn, S, Al,O3 and SiO; vertices to any other part are
long and the rays are approximately perpendicular to the others. The ternary and centred
ternary diagrams do not contain discrete groups of observations; rather the data form a
single ellipse almost perpendicular to the Al O3 - SiO, continuum. These interpretations
support the conclusion garnered from the scatter plots in Section 5.1.1 which suggest a

stationary domain.
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Figure 5.9: Logratio LMC East zone 1 spacing (top), LMC of raw data (bottom)
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Figure 5.10: Spacing 1 Fe, SiO;, and Al, O3 ternary diagram (left) and centred (right)
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Figure 5.11: Biplot Spacing 1 XY projection (left) and YZ (right)
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Figure 5.12: Balance-dendrogram
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Chapter 6
Estimation Results

Given the eight variables, the three distributions (assayed results, OCK, and Gauss-Hermite),
and five spatial configurations used in this study, it is not feasible to describe each result
individually. Two principal analytes were selected for in-depth analysis and one correla-

tion set of geologically correlated variables:

1. Fe asitis the dominant part in the total composition, the principal analyte of interest

economically,

2. Mn asitis one of the least dominant parts and was identified as the major contributor
to the compositional variability in the logratios, and

3. the SiO; versus Fe scatter-plot as it is the pairing with the highest linear correlation

and described a critical geological compositional relationship.

In general only the Exhaustive dataset (Spacing 1) and the sparsest dataset (Spacing 5)
are described in detail throughout this section; this decision was taken for brevity and as
these two datasets represent the end-members of the data density scenarios. All the other

results are available in Appendix A.

6.1 Estimated distributions

6.1.1 Cross validation estimates (Spacing 1)

The Spacing 1 data were cross-validated resulting in 3 distributions for comparison, those
of the sample, OCK and the Gauss-Hermite back-transformed datasets. The basic statis-
tics for each of the true values and estimates per analyte are shown in Table 6.1. The mean
statistic of each analyte for the exhaustive dataset are very similar to the mean estimates
resulting from the OCK estimates. The mean estimates of each analyte from the Gauss-

Hermite Quadrature back-transformed logratio estimates, hereinafter referred to as "GH”,
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Table 6.1: Spacing 1 Cross-validation statistics (n = 1594)

Attribute Min. Mean  Std. Dev. Skew.

AL Os 0.080 1.651 1.981 3.559
AlLO3;-0OCK -0.167 1.620 1.156 3.035
ALO3-GH 0250 1.583 1.143 3.696

Fe 9940 62.926 5.777 -5.268
Fe - OCK 23.036 63.007 3.495 -4.330
Fe - GH 24.069 63.150 3.254 -4.442
LOI 0.520 4.078 1.409 0.624

LOI - OCK 1483 4.078 0.902 0.286
LOI - GH 1.264 4.076 0.934 0.282

Mn 0.003  0.188  0.546 12.615
Mn - OCK -0.033 0.186  0.203 3.410
Mn - GH 0.006 0.156 0.154 5.435

P 0.016 0.128 0.051 0.939
P-0OCK 0.010 0.128 0.039 0.973
P-GH 0.030  0.129  0.039 0.961
S 0.001  0.030 0.054 8.900
S - OCK -0.003 0.030 0.031 3.668
S-GH 0.001  0.028 0.029 5.489
SiO, 0.340 3.382 5918 6.446

Si0, -OCK  -2.007 3.310 3.726 4.586
SiO, - GH 0.614 3.093 2.946 4.065

filler 13.368 27.618 1.930 -3.613
filler -OCK 16.138 27.642 1.197 -3.131
filler-GH  21.519 27.785 0.979 -1.267

are also very similar to the true values. In all cases the OCK mean is closer to the true
value than the GH mean. The difference between the Fe true value and the GH estimate is
0.224 percent while the true value to OCK difference is 0.081 percent. Similarly the Mn
differences are 0.032 percent and 0.002 percent for GH to OCK respectively. Both of the
interpolated datasets exhibit the smoothing effect of cokriging, evidenced by the standard
deviations of the estimates being lower than the true values and as is the skewness. In
the majority of cases (5 out of 8 analytes) the skewness of the GH estimates is closer to
the true value than that of OCK. Graphically, the true distribution (Figure 5.2) is more
peaked than the estimated distributions (Figures 6.1 and 6.2) but the effect is muted and
best examined using the selected QQ plots for Fe and Mn in Figures 6.3 and 6.4 respec-
tively. The complete suite of histograms are shown in Appendix K, the OCK QQ plots
in Appendix C, and the GH QQ plots in Appendix E. These figures demonstrate that
the left skewed tail of the Fe distribution and the right skewed tail of the Mn distribution
are not well reproduced by either interpolation technique; a typical result of the linear

combination process. As the kriging algorithm assigns weights to the informing data, it is
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Figure 6.2: Spacing 1 Mn Histograms

only in the relatively rare circumstance where weights greater than or equal to 1 (coupled
with negative weights to ensure unbiasedness) are assigned, or the minimum number of
samples is set to 1 (effectively nearest neighbour technique), that the input maximum and
minimum values are reproduced or exceeded [10]. Thus in general, the range of kriging
estimates is wholly contained within the range of the input data, with the exception of
negative estimates which are noted (Table 6.1). Given that the search neighbourhoods
and data locations are constant between the OCK and GH estimation passes, it is highly
probable that the same location in the GH kriging process step computed a result lower
than the lowest input datum. However, the Gauss-Hermite quadrature step maintains the
back-transformed estimate to within the range of the input data. The scatter-plots (Fig-
ure 6.5) show that the correlation is better reproduced using the GH methodology. The
OCK methodology can enforce a highly linear relationship between two variables (Figure
6.5), however, the nuance of the dataset with the contaminated edge samples is visibly
better reproduced using the GH methodology. This is most likely a direct consequence of
the pseudo-normal distribution of the logratio variables which will, by design, be better
reproduced by the cokriging algorithm which is optimal in Gaussian sample spaces (See
Section 2.8 for discussion on this point). The sum of the analytes including the filler vari-
able is of prime importance; by construction the informing dataset sums to 100% in all
locations. The GH cross-validated results also sum to 100% in all locations, an expected
and constructed result. The OCK results do not, although the mean value 100.00001 is

very similar to the constructed sample mean value. Of further interest is the sum of an-
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alytes without the influence of the filler variable. The quantity calculated and analysed

sum_var is the following:
sum_var = Fe+ Si0Oy +Al,O3+ P+ S+ LOI + Mn. (6.1)

The sum_var was calculated for each dataset and each spatial density. The results for
Spacing 1 are shown in Table 6.2. The statistics illustrate that although the mean value is
well reproduced by both estimation techniques, the OCK mean estimate is superior to the
GH mean estimate as it is closer to the true value, albeit by a small margin. However, the
mean does not completely describe the performance as the minimum value is better repro-
duced by the GH technique, the maximum value is better reproduced by the OCK which
also reproduces the variability of the data better. Neither estimated distributions display
variability close to that of the input dataset; the reduction is typical of linear estimators.

The histograms in Figure 6.6 for the three distributions display different morphology, the

Table 6.2: Statistics of sum_var variable for Spacing 1

Attribute n Minimum Maximum Mean  Std. Dev.
True values 1594 67.528 86.632 72.382 1.93
OCK 1594 70.719 83.862 72.358 1.197
GH 1594 67.738 78.481 72215 0.979

main difference between the two estimated distributions is the reproduction of the lower
end of the distribution. The OCK results do not adequately reproduce the very low val-
ues, a typical result for a linear estimator; the non-linear nature of the GH approach assists
with this aspect. It is postulated that, similarly to the distributions of individual analytes,
the pseudo-normal logratio distributions assists with the reproduction of skewed tails due

to the optimality of the cokriging estimator with normally distributed data.
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Figure 6.7: Spacing 5 Fe Histograms
6.1.2 Jack knifed distributions (Spacing 5)

As noted in the opening paragraph of Chapter 6, only the sparsest data density results
are examined in detail. The exhaustive dataset and the sparsest dataset represent end-
members; only where necessary to validate a hypothesis are the other jack-knifed esti-
mates explicitly referred to. The complete results of the jack-knife estimates are available
in Appendix B (OCK statistics), Appendix C (OCK QQ plots), Appendix D (GH statis-
tics), Appendix E (GH QQ plots), Appendix F (Scatter-plots), and Appendix K (His-
tograms of sample data and estimates).  The estimated distributions based on spacing 5
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Figure 6.8: Jack-knifing Basemap - Fe - Spacing 5 - Blue represents the right hand bi-
modal peak selection of the OCK

(Figures 6.7 and 6.9) show deviation from the true distribution (Figure 5.2) and the effects
of being model driven, rather than data driven as the estimates are in the Spacing 1 sce-
nario. The distribution of the Fe OCK estimates has a narrower spread and a bimodality
not noted in either the true values or the GH estimates. The bimodality is clearly visible in
the QQ plots (Figure 6.11) as the inflection in the curve. This effect is emphasised in the
Mn distributions (Figure 6.9) where the OCK estimate is clearly bimodal, a property the
true value data do not share and which is not evident in the GH estimates. Examination of
the data showed that the bimodality is caused by the use of two estimation domains with
differing variogram models and orientations that were later recombined. The estimation
locations corresponding to the left hand peak are shown highlighted in blue across all

three histograms (Figure 6.9) and the Jack-knifing basemap for Spacing 5 data (Figure
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6.10). It is hypothesised that these effects are most pronounced in the Mn estimates due

to the following:

1. the highly skewed nature of the input data,
2. the distinct difference between the Mn mean values in between the East and West
blocks, and

3. the very low data density of the informing dataset.

An important feature of the true value histogram is the exponential appearing drop-off of
frequencies with increasing grade; this is partially reproduced in the GH estimates and the
greater similarity between the True value and GH estimates is discerned in the QQ plots
(Figure 6.12). This appears to support the proposition that the psuedo-normal additive
logratio distribution is beneficial with input data that are highly skewed. Figures 6.15
and 6.16 show the consistency in the morphology of the the Spacing 1 and Spacing 5
estimated distributions, even as the informing data density decreases. The scatter plots
of the Fe and SiO; shown in Figure 6.13 demonstrate the model driven nature of the
estimates at this low informing data density. The linear nature of the OCK estimates and
the enforcement of the correlation modeled through the LMC is easy to discern visually.
This is juxtaposed with the curvilinear form of the relationship between the GH estimates

which is reproducing the strict compositional nature imposed by the GH back-transform.
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Neither is a perfect reproduction of the input data at this data density but the relationship
between the GH estimates carries more compositional reality than the strict linearity of
the OCK estimate.
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6.2 Accuracy and Precision comparison

In Sections 6.1 the shape and statistics of the distributions of estimated analytes and uni-
variate errors have been discussed. To further compare the methods the accuracy and
precision of the univariate results are calculated and compared using the techniques de-
scribed in Section 2.11. As in Section 6.3.2 the accuracy plots shown in Figure 6.17 and
6.18 the Fe and Mn distributions are examined, firstly for the exhaustive data and then
for the Spacing 5 dataset. Overall the GH curve both for the Fe and Mn exhaustive sets
show greater accuracy than the OCK curves. This conclusion is reached through the red
GH curve maintaining a positive (above the 45°1ine) position for a greater portion of the
theoretic centile range than the black OCK curve and it lies closer to the 45°line. These
conclusions are supported by the statistics in Table 6.3 where for Spacing 1 Fe and Mn the
GH values are closer to 1.0 for all three criteria. The Spacing 5 data are not as definitive;
the GH Fe curve follows the same pattern as the Spacing 1 data but the Mn curve does not
as the OCK estimated distribution better reproduces the true values, this is upheld by the
accuracy statistic, even though the goodness values for the GH estimate are better than

those of OCK. When examining the Spacing 5 plot (Figure 6.18) the two estimated Fe
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Figure 6.18: Comparative accuracy plots Spacing 5

distributions are equally accurate, shown by the two curves intersecting the 45°line at the
same point but the GH estimated distribution is more precise, shown by the closeness of
the red curve to the 45°line. The Spacing 5 Mn plot however show that although the OCK
distribution is more accurate, the goodness is better for the GH distribution. This is an in-
teresting outcome, because the goodness calculation (Equation 2.65) penalises inaccurate
results with twice the weighting compared with accurate estimates. The change in accu-
racy and precision as a function of decreasing data spacing is illustrated in Figure 6.19.
Generally the curves bow away from the 45°axis as the data density decreases, indicating
poorer precision and goodness results, upheld by the results in Table 6.3. This is most
likely a consequence of increase in the average distance between informing data and lo-
cation of point to be estimated and the changes to the relative sills of the variograms used
in the estimates. The consequence of increasing distance between the estimation location
and the informing data (within the range of the variogram) will be increasing estimation
variances and thus wider confidence intervals within which accuracy is preserved. The

relative contribution of any informing point to the estimation variance is dependent on the
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Table 6.3: Accuracy, Precision, and Goodness statistics

Spacing 1 Spacing 5
OCK GH OCK GH

Accuracy 0.837 0.898 0918 00918
Fe Precision 0.842 0.909 0.629 0.773
Goodness 0.902 0951 0.808 0.883

Accuracy 0.327 0.980 0.755 0.000
P Precision 0.995 0.909 0.943 1.000
Goodness 0.956 0.954 0.947 00915

Accuracy 0.857 0.816 0918 0.878
SiO,  Precision 0.725 0.891 0.543 0.880
Goodness 0.846 0.943 0.765 0.929

Accuracy 0.837 0.776 0.816 0.857
AlbO3  Precision 0.796 0.873 0.811 0.819
Goodness 0.882 0.934 0.895 0.899

Accuracy 0.898 0.490 0.898 0.510
S Precision 0.557 0.976 0.610 0.983
Goodness 0.769 0.971 0.797 0.968

Accuracy 0.898 0.939 0.898 0.347
Mn Precision 0.514 0.813 0.602 0.958
Goodness 0.748 0.904 0.792 0.919

Accuracy 0.000 0.000 0.000 0.000
LOI Precision 1.000 1.000 1.000 1.000
Goodness 0.938 0.907 0.865 0.770

Accuracy 0.816 0.939 0.878 0.939
filler  Precision 0.847 0.851 0.803 0.658
Goodness 0.904 0.923 0.890 0.827

Element  Statistic

relative contribution of each variogram structure to the total model. Appendix I shows
the variogram models for each data density scenario; the Spacing 5 comparative matrices
exhibit qualitatively better fit of the logratio model to the experimental data than the raw
space model, itself most likely a result of the pseudo-normal alr distribution. It follows
that for the same spatial arrangement of informing data the confidence interval for the GH
estimates are likely to be comparatively narrower than the OCK. This coupled with the
generally narrower univariate error distributions for GH, results in GH displaying better

goodness statistics even though the accuracy as quantified by A is on occasion worse than
OCK.
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Figure 6.19: Comparative accuracy plots OCK versus GH

6.3 Univariate error measures

6.3.1 Cross-validation results (Exhaustive data)

The most desirable distribution of univariate errors is symmetrical, centred on zero and
with a variance small with respect to the estimation problem being addressed. When
analysing the errors generated through the application of the two estimation methodolo-
gies, the above criteria will be used. When examining the Spacing 1 univariate error (5,)
results shown in Table 6.4, the OCK estimate is better centred on zero than the GH es-
timate in every instance. The largest bias occurs with the Fe and SiO,-GH estimates,
which display the reverse bias with respect to one another. The enforcement of the cor-
relation between Fe and SiO; through the LMC could account for the discrepancy noted
here as the fit of the LMC is usually a compromise [10] and the bias in the Fe is negative
(overestimates) where the bias in the SiO, is positive (underestimates), matching the neg-
ative correlation between the two analytes. Regarding the range of error values, smaller
is better; each technique has the larger range for four analytes. The OCK method range
of errors is smaller for Al,O3, Mn, P, and filler, while the GH estimates have a smaller
range for Fe, LOI, S, and SiO,. The symmetry appears marginally better for the Fe GH
error distribution (Figure 6.20) than the OCK distribution and appears considerably better
for the Mn distributions (Figure 6.21) where the OCK curve is skewed to the left when
compared with the GH curve. As the differences between the distributions are small, QQ
plots of the error distributions were generated to identify particular ranges of values where
one estimation methodology is superior to another. Figure 6.22 shows that when examin-
ing the Fe curve, the OCK error curve is superior to the GH error curve below zero error,
approximately equal at the zero error point and inferior above the zero point. In contrast,
the Mn distribution shows that the GH error distribution is superior from -0.017 through

to 0.101 and slightly inferior outside of these bounds. This region represents the majority
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of the error range. Overall this emphasises that statistics alone cannot be used to judge
the goodness of an error measure, but that other criteria and methods should comple-
ment the statistics. For this reason, the alternative complementary methods quantifying
the accuracy, precision and goodness of the estimates are described in Section 2.11 and

implemented in Section 6.2.

Table 6.4: Spacing 1 Univariate error &, (n=1594)

Attribute Minimum Maximum Mean Std. Dev.

AbO3; GH  -5.624 15.069 0.068 1.611
ALO3 OCK -4.569 15.489 0.031 1.623

Fe GH -54.121 19.747 -0.224 4.7
Fe OCK -54.435 21.934 -0.081 4.709
LOI GH -4.296 5.927 0.003 1.149
LOI OCK  -4.377 6.398 0.001 1.14
Mn GH -1.693 12.115 0.032 0.512
Mn OCK -1.404 11.927 0.002 0.516
P GH -0.164 0.162 -0.001 0.034
P OCK -0.155 0.134 0 0.033
S GH -0.276 0.738 0.002  0.044
S OCK -0.187 0.851 0 0.045
SiO, GH -12.536 58.791 0.288 4.743
Si0, OCK  -24.011 58.59 0.072  4.746
filler GH  -15.704 3.514 -0.167 1.664
filler OCK -14.061 5.018 -0.024  1.547

6.3.2 Jack-knife results (Low spatial density)

At the lower spatial density (as epitomised by the Spacing 5 results), the two techniques
generate mean errors of similar magnitude, in fact four out of eight analytes are better
estimated, in a mean error sense, by the GH methodology than by OCK (Table 6.5). The
range of error values is generally smaller for the OCK estimates, and, correspondingly
the standard deviation is usually smaller too. When the histograms of errors are examined
(Figures 6.25 and 6.26) the same commentary used for the exhaustive cross-validated data
can be used with the low informing density estimates. The Fe histograms are very similar,
only examination of the QQ plot (Figure 6.27) shows that although the range is larger, the
GH estimate outperforms the OCK estimate for the majority of the error range examined,
the two coming into parity around the zero error point on the plot. The Mn histograms and
QQ plots are different from the Spacing 1 results; the GH estimates are superior across the

majority of the error grade range with a more symmetrical distribution and smaller mean
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error. The basemaps of errors given in Figures 6.28 and 6.29 show different clustering

of the extreme high and low zones of errors which are different from one technique to

the next. Given that the search criteria used to inform each estimate were the same for

each method, it is postulated that the differences are rooted in the variogram model and/or

back-transformation portions of each process. The impact of changing the data density on

the mean error statistic is shown in Figure 6.30, here the close correspondence between

the two different methods is noted; in general the OCK method is superior when measured

this way.

Table 6.5: Spacing 5 Univariate error 0, (n=1534)

Attribute Minimum Maximum Mean Std.Dev.
AlLO3z GH -7.55 18.01 -0.20 1.96
AlLO3z; OCK -3.31 17.62 -0.17 1.91
Fe GH -52.41 20.10 0.08 5.61
Fe OCK -52.64 9.73 049 5.39
LOI GH -5.02 6.62 0.09 1.49
LOI OCK -3.38 6.60 0.10 1.42
Mn GH -0.47 12.35 0.03 054
Mn OCK -0.26 12.65 0.02 0.55
P GH -0.19 0.21 -0.01 0.05
P OCK -0.15 0.24 0.00 0.05
S GH -0.17 0.88 0.00 0.05
S OCK -0.10 0.88 0.00 0.05
Si0, GH -12.91 57.54 -0.03 5.42
Si0, OCK  -8.97 57.63 -0.51 5.45
filler GH -15.10 6.07 0.03 1.95
filler OCK -13.92 4.29 0.06 1.82
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6.4 Compositional error measures

The two compositional distance measures selected for use in this study, Euclidean (6,)
and Aitchison (8,) are variations on the sum of squared differences family and are there-
fore always positive (Equations 2.67 and 2.68). In addition, the Aitchison error is only
calculable for strictly positive components, which results in differing numbers of obser-
vations that could be calculated and used in the error calculations as several parts had

negative OCK estimates.

6.4.1 Euclidean Error

The mean Euclidean error 9§, statistics are shown in Table 6.6 where the following features

are noted:

e the mean error from the GH data is closer to zero for all the spacings except Spacing
5

e the GH data are more skewed than the OCK data for all cases except Spacing 5

e in all cases except Spacing 4 the GH errors have a larger standard deviation than
the OCK errors.

Table 6.6: Euclidean error statistics

Spacing Method Count Minimum Maximum Mean Std. Dev. Skewness

1 GH 1594  0.22 81.66 3.61 6.22 7.19
OCK 1594 0.19 81.97 377  6.09 6.60
) GH 1173 0.17 80.70 3.69 594 7.49
OCK 1173 0.16 78.61 378  5.92 7.15
3 GH 1370  0.22 80.57 4.10 6.27 7.12
OCK 1370 0.24 79.32 4.16  6.08 6.90
4 GH 1468  0.33 80.76 445 6.39 6.74
OCK 1468  0.22 81.31 454 6.44 6.50
5 GH 1534 0.26 79.75 512 6.71 6.60
OCK 1534 0.29 80.08 5.08 6.54 6.73

The histograms of the Euclidean errors for Spacing 1 and Spacing 5 (Figure 6.31) have
visually similar highly skewed morphology. The distributions are also compared using
QQ plots in Figure 6.32 which shows that GH is better than OCK for the majority of
each distribution’s range. In each scenario, the few large deviations from the true value
resulted in error values that have large relative magnitude. On visual examination few

differences can be discerned between the OCK and GH errors for the Spacing 1 data.
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Figure 6.32: Euclidean error QQ plots - GH on abscissa and OCK on ordinate

The most important difference is the greater frequency of errors at lower values for the
GH data; an indicator of better performance. The Spacing 5 distributions have the same
characteristic, as well as sharper drop off of the frequency of errors as a function of in-
creasing error magnitude for the GH data. This is seemingly at odds with the quantitative
tabulated data which reveal a smaller range but a higher standard deviation for the GH
data. The conclusion drawn here is that the GH technique, in a mean sense, outperforms
the OCK technique for the majority (4 out of 5) of the data density scenarios examined
here (Figure 6.36). The spatial distribution of the errors is examined in Figure 6.33. The
large and small magnitude errors for both estimation methodologies are not distributed
through the estimation zone with random placement; rather the large error values tend to
be on the edges where the informing data is likely to be sub-optimal and the possibility
of diluted (and therefore different from surrounding) grades are expected. In contrast, the

low error values cluster in the center of the estimation zone where continuity is high and
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the informing data will always satisfy the optimal estimation search parameters. There
is a visually greater proportion of large magnitude errors on the east side, this is evident
for either method, but more marked for the OCK estimates, especially Spacing 5. The
conclusion drawn from examining the spatial error plots is that the GH method produces

better results than OCK using this measure.

6.4.2 Aitchison Error

The histogram of GH errors for the Spacing 1 data (Figure 6.34) is more peaked about the
low error portion of the abscissa than the OCK data, which in conjunction with the lower
mean value (Table 6.7) indicates that when measured with the Aitchison error, the GH
estimates are superior to the OCK estimates. This conclusion is supported by the QQ plots
in Figure 6.35 which show the deviation of the plot away from the 45°line toward the OCK
(ordinate) axis. This deviation indicates that error is always greater for the OCK estimates
than for the GH estimates. The tabulated statistics (Table 6.7) also show that for Spacing
1, the range and standard deviation of the errors for GH data are smaller than those of
the OCK errors. Examination of the statistics and plots of the lower spatial density data
confirms that this trend continues as the data density decreases. Of specific interest is
the trend plots (Figure 6.36) which show that the GH estimates outperform the OCK
estimates at all data spacings, with the sole exception of the Spacing 5 Euclidean measure

where the OCK estimate is marginally better. The spatial distribution of the errors

Table 6.7: Aitchison error statistics

Spacing Method Count Minimum Maximum Mean Std. Dev. Skewness

1 GH 1594  0.19 5.07 1.05 0.55 1.77
OCK 1570  0.18 5.44 1.18  0.62 1.53
) GH 1173 0.24 5.03 1.15 0.56 1.74
OCK 1133 0.13 6.74 1.33  0.63 1.73
3 GH 1370  0.22 5.01 1.24  0.58 1.45
OCK 1346  0.15 4.72 143  0.64 1.00
4 GH 1468  0.29 4.98 .36 0.61 1.16
OCK 1432 0.21 5.05 1.49  0.67 1.15
5 GH 1534 0.18 4.82 145 0.66 1.11
OCK 1524 0.36 4.92 1.58  0.66 0.97

is examined in Figure 6.37, where the negative estimates are easily visible in the OCK
plots as black circles. The placement of the negative estimates and therefore incalculable
Aitchison errors is explained by the edge positioning of the estimate locations, where the
search ellipse is poorly informed on one side and well on another, leading to large screen
effects for deleterious (such as Al,O3) data with high grades. Besides the erroneous (and
impossible) OCK estimates the trends within the estimation zone do not show significant

spatial variation from one another. For both methods the high error values are commonly
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located on the edges of the zones where the search ellipse is sub-optimally informed and
the possibility of edge dilution is elevated. This commentary is true of the exhaustive and

lower data density scenarios.

6.5 STRESS

The STRESS is used to measure loss of information when substituting estimates for the
original observations; it is useful as it is a single number and therefore easy to compare
one dataset against another [44]. Simplistically, as it is a sum of squared residual method,
an unbiased, but smoothed estimate is likely to perform worse than a slightly biased es-

timate with variability closer to the original dataset. This is the result we note in Table
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Table 6.8: STRESS as a function of spacing

Spacing ordinary cokriging Gauss-Hermite Quadrature
Euclidean Aitchison Euclidean Aitchison
1 0.731 2.048 0.740 0.583
2 0.956 1.645 0.814 0.649
3 0.927 1.485 0.817 0.672
4 0.945 1.828 0.827 0.709
5 0.947 0.945 0.844 0.810

6.8 and shown graphically in Figure 6.38. With the exception of the Spacing 1 OCK esti-
mate which (marginally) retains more of the true values information than the GH estimate
when compared using the STRESS statistic and the Euclidean error measure, all other

data spacings and error methods return results favoring the GH estimates.
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Figure 6.38: STRESS statistic as function of Spacing

6.6 Sum of Analytes

Compositional data techniques are formulated to address the specific issue of estimat-
ing quantities which total a known and constant value. The logratio transformation and
the Gauss-Hermite Quadrature back-transformation techniques used in this study result
in estimates that honour this constraint by design (See Section 2.5 and 2.9). The OCK
algorithm does not have this constraint and thus the resulting estimates will rarely total
the target. As this is a comparative study, the filler variable was calculated and estimated
for both algorithms used, even though this is not common practice when using OCK. The
advantage of this experimental design is that it allows comprehensive comparison of this
aspect of the two techniques. The OCK and GH datasets were examined firstly by exam-
ining the histograms of the totals of all eight parts of the composition i.e. including the
filler and then only the seven parts measured and available in the original sample dataset.
Figure 6.39 depicts the histogram totals and shows the spread of the totals for the OCK
estimates juxtaposed against the single spike of the GH estimates. The Spacing 1 OCK
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estimates range between 99.994 and 100.006 percent, small when viewed in an opera-
tional iron ore mining context. This range of values about the required 100 percent mark
increases as informing data density decreases, for example the Spacing 5 dataset ranges
between 99.85 and 100.11 percent, a twenty-fold increase over the range of the Spacing
1 estimates. Comparisons which exclude the filler variable are important in a practical
sense; as the iron ore mining process focuses attention naturally on the analytes that are
assayed only. To this end, the totals of the analytes and estimates excluding the filler were
calculated at each data location and the results compared using two techniques. Firstly
QQ plots of the OCK and GH distributions were created using the informing data distri-
bution on the abscissa and the estimate on the ordinate axes (Figure 6.40), and secondly,
the difference between the estimated and sample total were plotted on basemaps to ascer-
tain if spatial patterns were evident (Figure 6.41). The spatial patterns of the differences

follow very similar trends for both techniques; the differences appear distributed along
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ference of the estimated analyte totals from the sample analyte total. Black - estimates
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the edges of the sampled areas; which fits with the intuitive notion that this is where the
errors are expected due to edge effect and the position of errors noted with other measures
or techniques (See Sections 6.3 and 6.4). The similarities in the patterns suggests that this
is data driven rather than model or method driven.
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Chapter 7
Conclusions

The study describes the comparison of geostatistical estimates at data locations of an ex-
haustive set of compositional geochemical data with the true sampled value. The body of
work seeks to honour the constant sum constraint implicit to the whole rock geochemical
analyses used as the base dataset through the application of geostatistical methods specif-
ically kriging, a technique which ordinarily does not honour this constraint. Central to the
properties of compositional geochemical data and therefore the geostatistical techniques
are the correlations, spurious and real, which are a feature of the largest seaborne com-
modity, iron ore, which is the focus of this study. Honouring these properties is achieved
through the application of logratio transformations prior to the application of the geosta-
tistical methods followed by a numerical integration step (i.e. GH) to restore the resulting
estimates to the compositional sample space. The results of the logratio process flow are
measured against those derived from the conventional implementation of linear geosta-
tistical methods (i.e. OCK) on compositional data. The results are compared using three
error measures, one univariate and two compositional, as well as two other criteria which
gauge the holistic performance of each method, namely the local accuracy and precision.
Peer reviewed results of a pilot study were presented at two international conferences,
where other practitioners suggested that the high spatial density of the exhaustive dataset
may mask potential bias induced by non-linear logratio transformation. This concern is
tested in this study through successive sub-sampling of the exhaustive dataset and using
the geostatistical implementation of jack-knifing. The sub-sampling is designed to mimic
the data density, spacing and orientation of information likely available at various stages

of mining project evaluations.
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7.1 Significant findings

Exploratory data analysis

The exhaustive dataset is a horizontal section through a steeply dipping BIF horizon which
displays minor structural imbrication. Examining the descriptive statistics of the con-

strained sample data generates results typical of ore grade BIF where:

e the F'e component dominates,
e Fe, SiO,, and Al O3 are (potentially spuriously) highly correlated, and
e all the distributions with the exception of LOI are highly skewed.

Edge dilution effects are noted within the data, these are explained by the inability of
six meter vertical blast hole samples to accurately delineate the BIF to country rock
(ore/waste) interface. The subsets are evaluated for representativity of the exhaustive
set through mean bias quantification and QQ plot visualisation. The mean bias results
appear to be excessive for some analytes in specific subsets but combined examination of
the statistics with the QQ plots showed that these were caused by few samples in the tails
of the distribution and were not material. The subsets are considered to be representa-
tive and thus meaningful conclusions can be drawn from comparisons with the exhaustive
dataset. The exhaustive data are also explored through the application of compositional
techniques. Similarly to the constrained techniques, these also comprise numerical and

visual elements from which the following items are noted:

e the only highly correlated logratio transformed variable set are SiO, and Al> O3, all
other correlations are spurious,

e Mn when paired with SiO,, Al,O3, and S explains the largest portion of the vari-
ability contained within the data,

e the centered ternary diagrams exhibit a continuous shape without different group-

ings which is interpreted to be indicative of a stationary domain.

The most important conclusion drawn from the exploratory data analysis steps is the de-
cision that the assumption that the data are stationary is reasonable and therefore that
the application of geostatistical methods is both permissible and the results likely ro-
bust. The interpretation that Mn is the key variable for the variability of the data is an
important second conclusion. The spatial covariances are estimated and modeled using
conventional techniques; a primary advantage of the alr method. The approach followed
is designed to eliminate differences in interpreted modelling decisions typical of natural
resource estimation studies; decisions which would arise as a function of the spatial den-
sity changes. The cokriging estimation parameters are optimised on the Spacing 1 data

and the constrained sample space data and then held constant to eliminate another source
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of possible variability. Using these parameters, datasets, and spatial covariance models
the cross-validation and jack-knifing routines were run and validated. The alr composi-
tional estimates are back-transformed to the constrained sample space using numerical

integration via Gauss-Hermite quadrature and validated.

Analysis of results

The highest density dataset is reproduced approximately equally well by either interpola-
tion method when the univariate mean error is considered however the GH method better
reproduces the tails of the distributions. This is attributed to the approximately Gaussian
form of the alr transformed histograms which will be better reproduced when cokriging is
the estimation technique. The GH methodology also better reproduces the compositional
bounding inherent to this lithology as noted in the scatterplots, an expected but significant
result. The accuracy and precision testing is particularly interesting as the GH-derived
estimates and confidence limits were in almost all cases superior to the OCK -derived re-
sults, for the high and lower data densities. In the majority of cases the goodness statistic
was higher for GH than for OCK. The compositional error measures favour the com-
positional approach, an expected result, both for the Euclidean and Aitchison measures.
With decreasing data density, the results in general increasingly support the use of the GH
methodology over the conventional OCK. This statement is supported by the following
points:

1. there exists bimodality in the OCK distributions not present in the true value distri-
butions,

2. the mean univariate error statistic is similar, however the GH histogram is generally
superior as it is more symmetrical and centred on zero,

3. the values of the GH correlation statistics are more similar to the true values than
OCK,

4. the morphology of the GH scatterplots more closely represents the true values than
the OCK,

5. the accuracy and precision curves are generally superior for the GH distributions,

6. the mean compositional errors are smaller in nine out of ten cases for the GH esti-
mates,

7. the STRESS statistic indicates that less information is lost when using the GH
methodology, and

8. the fotal sum of analytes is only reproduced perfectly by the GH technique.

Experience by other practitioners is that compositional measures will demonstrate supe-
rior performance for compositional estimation methods over methods which ignore the

compositional nature of the input data (pers.comm. Tolosana-Delgado, 2012) and this
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study generally supports that assertion. The performance of the two techniques compared
here are similar for the highest density data with the exception of the total sums. However,
data densities less than the exhaustive favour the GH method. The reasons could be de-
rived from a number of items, the most likely being that the pseudo-Gaussian distribution
of the alr transformed variables will be better reproduced by the Gaussian-optimal cokrig-
ing algorithm than the skewed distributions of the analytes in the constrained data space.
It is hypothesised that as the data density decreases, the pseudo-Gaussian alr distribution
is less likely to decay than the skewed untransformed data distributions. The accuracy and
precision study in particular adds weight to the argument for the GH method. In essence,
a practitioner using the alr-GH method would decrease the mine planning risk through
more accurate and generally precise estimates with quantifiable confidence limits over
the conventional OCK methodology, especially at the low data densities typical of early

stage mineral project evaluation.

7.2 Final remarks

The application to production iron ore blast hole cuttings of the logratio method of data
transformation coupled with the Gauss-Hermite Quadrature method of back-transforming
the data from R? to the D-simplex S” produces acceptable results. The method is com-
parable with conventional methods at high data densities and superior at lower data den-
sities. Practitioners at early stages of iron ore project evaluation would benefit from using
the techniques and as such has been shown to be a viable alternative in the geostatistics

toolbox.
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Appendix A

Jack knife: Informing comparative

statistics
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Table A.1: Descriptive statistics - Cross Validation sample data

Variable Min Q25 Mean Q50 Q75 Std. Dev. Skew
Spacing 2 (n = 432)
AL O3 0.120 058 1.790 1.00 211 2.27 3.72
Fe 10.100 62.07 62.495 64.29 6548 7.27 -5.19
LOI 0.670 3.01 4.026 391 487 141 0.72
Mn 0.003 005 0.187 0.09 0.16 045 8.07
P 0.016 0.09 0.128 0.12 0.16 0.05 0.74
S 0.003 0.01 0.031 0.02 0.03 0.07 9.19
SiO, 0440 1.10 3.843 185 3.76 17.57 5.84
Filler 13.368 27.23 27.499 28.17 2859 2.26 -3.88
Spacing 3 (n =234)
AL O3 0.170 0.71 1993 1.15 221 236 2.62
Fe 10.240 61.72 62.070 64.14 6530 7.71 -4.74
LOI 0.540 298 4.070 3.87 5.02 1.54 0.88
Mn 0.005 0.05 0.196 0.08 0.16 047 7.67
P 0.022 0.09 0.128 0.12 0.16 0.06 0.98
S 0.003 0.01 0.027 0.02 0.03 0.03 5.08
SiO, 0.340 121 4.112 204 385 7.86 5.60
Filler 13.368 27.18 27.403 28.10 28.58 2.37 -3.25
Spacing 4 (n = 137)
AL O3 0.250 0.70 2.167 125 256 2.39 2.54
Fe 10.240 61.30 61.728 63.57 65.48 8.15 -4.70
LOI 0.770  3.12 4169 4.08 504 135 0.34
Mn 0.004 005 0.159 0.07 0.14 043 9.30
P 0.022 0.10 0.131 0.13 0.17 0.05 0.39
S 0.003 0.01 0.033 0.02 0.03 0.05 5.76
SiO, 0470 121 4306 238 4.69 821 5.55
Filler 13.368 26.84 27.307 27.90 28.61 2.25 -3.61
Spacing 5 (n=71)
AL O3 0.150 062 1995 1.07 250 242 2.69
Fe 13.650 61.63 61.906 64.18 65.59 8.72 -4.45
LOI 0.540 3.15 3977 403 486 1.22 -0.16
Mn 0.008 0.05 0.159 0.08 0.15 0.24 3.91
P 0.022 0.09 0.126 0.12 0.17 0.05 0.24
S 0.003 0.01 0.028 0.02 0.03 0.04 4.77
SiO, 0.540 1.09 4403 194 3.63 8.88 4.89
Filler 13.368 27.22 27.406 28.18 28.68 2.38 -3.50
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Table A.2: Correlation matrices - Cross Validation sample data

Spacing 2 (n =432) ALO3; Fe LOI Mn P S Si0;
Fe -0.85

LOI 0.18 -0.11

Mn 0.04 -0.06 0.16

P -0.20 024 029 0.07

S 0.30 -0.14 0.28 -0.03 0.06

SiO, 0.73 -096 -0.09 -0.04 -0.31 0.04
Filler -0.85 095 -0.19 -0.02 0.25 -0.18 -0.92
Spacing 3 (n =234)

Fe -0.88

LOI 0.18 -0.14

Mn -0.01  -0.03 0.11

P -0.23 023 035 0.07

S 0.18 -0.06 0.22 0.02 0.12

SiO, 0.80 -097 -0.04 -0.06 -0.31 -0.02
Filler -0.89 094 -0.28 0.02 0.23 -0.09 -091
Spacing 4 (n = 137)

Fe -0.90

LOI 0.16  -0.09

Mn -0.05 -0.03 0.20

P -0.23 031 0.07 0.03

S 034 -0.17 037 0.05 -0.03

SiO, 0.83 -098 -0.09 -0.05 -0.34 0.05
Filler -091 095 -0.19 0.01 030 -0.21 -0.92
Spacing 5 (n="71)

Fe -0.91

LOI -0.02  0.01

Mn -0.15  0.08 0.06

P -0.19 024 045 0.08

S 0.12 -0.01 0.13 -0.13 0.16

SiO, 0.87 -099 -0.13 -0.11 -0.31 -0.04
Filler -091 092 -0.08 0.13 0.21 -0.02 -0.92
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Table A.3: Descriptive statistics - Jack knife estimate location sample data

Variable Min Q25 Mean Q50 Q75 Std. Dev. Skew
Spacing 2 (n = 1168)
AL O3 0.080 053 1594 095 187 1.86 3.36
Fe 9.940 62.24 63.097 64.42 65.69 5.09 -4.82
LOI 0.520 3.14 4.099 398 493 141 0.59
Mn 0.004 005 0.188 0.08 0.15 0.58 13.26
P 0.017 0.09 0.127 0.12 0.16 0.05 1.02
S 0.001 0.01 0.029 0.02 0.03 0.05 7.08
SiO, 0.340 1.05 3200 1.75 331 5.5 6.38
Filler 13.444 27.28 27.666 28.17 28.67 1.79 -3.28
Spacing 3 (n = 1366)
AL O3 0.080 052 1.588 093 1.86 1.90 3.81
Fe 9940 62.26 63.082 64.44 65.68 5.35 -5.22
LOI 0.520 3.11 4.081 398 4.89 1.38 0.56
Mn 0.003 0.05 0.186 0.09 0.15 0.56 13.07
P 0.016 0.09 0.127 0.12 0.16 0.05 0.92
S 0.001 0.01 0.030 0.02 0.03 0.06 8.72
SiO, 0.380 1.04 3247 176 330 5.50 6.52
Filler 13.397 27.29 27.658 28.18 28.66 1.84 -3.66
Spacing 4 (n = 1463)
AL O3 0.080 053 1.598 094 185 193 3.72
Fe 9940 62.36 63.047 6445 65.67 5.48 -5.21
LOI 0.520 3.08 4.071 395 490 141 0.65
Mn 0.003 0.05 0.191 0.09 0.15 0.56 12.71
P 0.016 0.09 0.127 0.12 0.16 0.05 0.99
S 0.001 0.01 0.029 0.02 0.03 0.05 9.22
SiO, 0.340 1.06 3286 1.74 334 5.64 6.47
Filler 13.397 27.35 27.650 28.18 28.64 1.89 -3.60
Spacing 5 (n = 1529)
AL O3 0.080 055 1.631 095 194 195 3.62
Fe 9.940 62.23 62.982 64.40 65.66 5.59 -5.25
LOI 0.520 3.08 4.084 396 491 1.42 0.64
Mn 0.003 005 0.189 0.09 0.15 0.56 12.50
P 0.016 0.09 0.128 0.12 0.16 0.05 0.97
S 0.001 0.01 0.030 0.02 0.03 0.06 8.97
SiO, 0.340 1.06 3325 1.76 337 573 6.53
Filler 13.397 27.26 27.631 28.17 28.64 1.90 -3.61
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Table A.4: Correlation matrices - Jack knife estimate location sample data

Spacing 2 (n=1168) AlLO3 Fe Lol Mn P S Si0,
Fe -0.80

LOI 032 -0.34

Mn 0.02 -0.12 0.18

P -0.06  0.10 0.30 0.07

S 032 -0.21 028 0.01 0.11

SiO, 0.61 -092 0.05 -0.04 -0.22 0.08
Filler -0.78 095 -035 -0.04 0.13 -0.20 -0.91
Spacing 3 (n = 1366)

Fe -0.80

LOI 0.30 -0.29

Mn 0.04 -0.12 0.19

P -0.08 0.13 0.28 0.07

S 034 -0.21 0.29 -0.01 0.09

SiO, 0.62 -093 0.01 -0.03 -0.23 0.08
Filler -0.78 095 -0.31 -0.04 0.15 -0.21 -091
Spacing 4 (n = 1463)

Fe -0.81

LOI 029 -0.28

Mn 0.04 -0.11 0.18

P -0.10  0.13 0.31 0.08

S 0.30 -0.18 0.27 -0.01 0.10

SiO, 0.63 -093 0.01 -0.04 -0.24 0.06
Filler -0.79 095 -0.31 -0.04 0.15 -0.19 -0.91
Spacing 5 (n = 1529)

Fe -0.81

LOI 0.29  -0.28

Mn 0.03 -0.11 0.18

P -0.10  0.14 0.29 0.07

S 032 -0.19 0.28 0.00 0.09

SiO, 0.64 -094 0.01 -0.04 -0.25 0.07
Filler -0.80 095 -0.31 -0.04 0.16 -0.20 -0.91
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Appendix B

Descriptive statistics - OCK estimates
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Table B.1: OCK estimates - descriptive statistics

Variable Min Q25 Mean Q50 Q75  Std. Dev. Skew
Spacing 2 (n = 1168)
AL O3 0.299 0917 148 1334 180 0.84 2.93
Fe 26.328 62475 63.39 63.873 64.89 2.58 -5.02
LOI 1.547 3518 4.09 4.038 460 0.75 0.20
Mn -0.019 0.074 0.19 0.150 026 0.14 1.18
P 0.014 0.102 0.13 0.122 0.15 0.04 0.91
S -0.008 0.015 0.03 0.021 0.03 0.04 5.38
SiO, -4.192 1468 295 2265 343 288 5.20
Filler 17.8 27.431 27.75 27.928 28.31 091 -3.09
Spacing 3 (n = 1365)
AL O3 0.184 1.052 1.63 1456 199 0.87 1.66
Fe 38.858 62370 63.12 63.638 64.62 2.25 -2.29
LOI 1.919 3.691 4.16 4117 4.64 0.71 0.12
Mn -0.222  0.075 020 0.177 025 0.16 1.64
P 0.041 0.101 0.13 0.125 0.16 0.04 0.95
S 0.003 0.019 0.03 0.023 0.03 0.01 1.41
SiO, -0.374 1470 3.02 2405 373 241 2.27
Filler 23.077 27.392 27772 27919 2831 0.89 -1.43
Spacing 4 (n = 1463)
AL O3 0.78 1.308 1.80 1.658 2.12 0.75 2.81
Fe 32.732 62.015 6292 63.268 64.07 2.48 -4.44
LOI 2.687 3.871 421 4190 451 0.50 0.19
Mn -0.523 0.070 0.16 0.134 022 0.12 2.06
P 0.019 0.104 0.13 0.129 0.15 0.03 0.17
S -0.002 0.020 0.03 0.028 0.04 0.02 3.48
SiO, -6.82 2,060 3.15 2764 383 2.50 5.46
Filler 19.97 27.287 27.61 27.721 28.10 0.74 -3.21
Spacing 5 (n = 1529)
AL O3 0.849 1.164 1.801 1.689 2297 0.698 1.086
Fe 38.622 61.082 62.49 62.754 64.51 2.18 -1.50
LOI 2698 37705 398 4016 425 0.34 -0.29
Mn 0.001 0.097 0.17 0.194 025 0.08 -0.09
P 0.073 0.112 0.13 0.123 0.14 0.02 0.75
S -0.02  0.017 0.03 0.019 0.03 0.02 2.88
SiO, 0.629 1924 383 3483 512 220 1.50
Filler 24387 26.997 27.57 27923 28.24 0.82 -1.00
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Table B.2: Correlation matrices - OCK estimates

Spacing 1 (n=1594) ALOs; Fe LOI Mn P S SiO»

Fe -0.85

LOI 0.09 -0.16

Mn 0.02 0.00 0.21

P -0.10 0.20 0.19 0.09

S 0.30 -0.13 0.19 -0.06 0.30

SiO, 0.72 -095 -0.08 -0.13 -0.30 0.01
Filler -0.80 097 -0.17 0.07 025 -0.10 -0.94
Spacing 2 (n = 1168)

Fe -0.79

LOI 0.04 -0.13

Mn -0.07  0.11 0.21

P -0.14 024 0.10 -0.01

S 039 -0.16 0.16 -0.21 0.25

SiO, 0.63 -094 -0.13 -0.24 -0.31 0.03
Filler -0.73 095 -0.13 0.19 030 -0.14 -0.93
Spacing 3 (n = 1365)

Fe -0.92

LOI 0.02  -0.09

Mn -0.31 034 -0.27

P -0.27 030 0.04 -0.03

S 0.15 -0.01 0.07 -0.33 0.31

SiO, 0.86 -096 -0.13 -0.34 -0.34 -0.06
Filler -090 096 -0.19 041 035 0.00 -0.92
Spacing 4 (n = 1463)

Fe -0.90

LOI 0.12  -0.11

Mn -0.06  0.03 0.29

P -0.11  0.22 -0.33 0.02

S 021 -0.13 0.06 -0.14 0.19

SiO, 085 -097 -0.09 -0.15 -0.19 0.08
Filler -094 093 -0.19 0.11 023 -0.10 -0.90
Spacing 5 (n = 1529)

Fe -0.98

LOI 045 -040

Mn -0.76  0.71 -0.81

P -0.07 0.06 031 -0.22

S 029 -029 0.23 -0.34 0.62

SiO, 097 -099 034 -0.68 -0.11 0.24
Filler -096 093 -059 085 005 -022 -093
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Appendix C

OCK estimates - QQ plots
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Figure C.1: QQ plots - By column Al, O3 far left, Fe near left, LOI near right, and Mn far
right in row order of decreasing data density, Spacing 1 on the top and Spacing 5 at the
bottom. The abscissa in each case is the sample data, the ordinate is the OCK distribution.
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Figure C.2: OCK QQ plots - By column P far left, S near left, SiO; near right, and filler
far right in order of decreasing data density, Spacing 1 on the top and Spacing 5 at the
bottom. The abscissa in each case is the sample data, the ordinate is the OCK distribution.
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Appendix D

GH estimates - Descriptive statistics
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Table D.1: GH estimates - descriptive statistics

Variable Min Q25 Mean Q50 Q75  Std. Dev. Skew
Spacing 2 (n = 1173)
AL O3 0.31 0915 148 1284 1.82 0.86 3.72
Fe 21.875 62.558 63.45 63982 6491 244 -6.44
LOI 1.541 3520 4.02 3968 451 0.67 0.03
Mn 0.006 0.080 0.16 0.135 0.20 0.10 1.53
P 0.039 0.102 0.13 0.123 0.15 0.05 3.46
S 0.003 0.017 0.03 0.022 0.03 0.03 6.40
SiO, 0.59 1.586 293 2278 340 242 5.04
Filler 22.139 27.437 27.80 27961 28.38 0.80 -1.54
Spacing 3 (n = 1370)
AL O3 0438 1.044 1.66 1497 206 0.86 3.16
Fe 20.264 62.254 63.15 63.700 64.65 2.41 -5.29
LOI 1.184 3.622 4.10 4.050 456 0.77 0.07
Mn 0.012 0.073 0.16 0.131 022 0.12 1.82
P 0.044 0.104 0.13 0.126 0.15 0.04 0.94
S 0.009 0.018 0.03 0.022 0.03 0.02 5.67
SiO, 0.818 1.693 3.02 2311 3.66 2.20 4.67
Filler 22206 27.337 27.775 27.887 28.34 0.96 -0.45
Spacing 4 (n = 1468)
AL O3 0.548 1.197 185 1.652 232 094 2.46
Fe 27.382 61.727 62.79 63.166 64.32 2.57 -5.24
LOI 2472 3773 411 4.084 436 048 0.39
Mn 0.014 0.068 0.14 0.108 0.19 0.09 1.76
P 0.036 0.100 0.13 0.127 0.16 0.04 1.21
S 0.004 0.019 0.03 0.025 0.03 0.02 2.55
SiO; 0953 2060 334 2968 422 1.99 4.52
Filler 24726 27.079 27.61 27.642 28.22 0.77 -0.12
Spacing 5 (n = 1534)
AL O3 0.196 1.093 1.83 1.712 233 098 1.68
Fe 30.083 61.496 6290 62.899 64.40 3.00 -1.42
LOI 0.366 3.539 399 4223 440 0.99 -0.10
Mn 0.01 0.075 0.16 0.106 0.23 0.12 1.18
P 0.038 0.103 0.13 0.128 0.16 0.04 0.42
S 0.003 0.016 0.03 0.020 0.03 0.02 4.60
SiO, 0.251 2.002 336 2895 4.14 207 2.39
Filler 24451 26.921 27.60 27.659 28.30 0.97 -0.30
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Table D.2: GH estimates - correlation matrices

Spacing 1 (n=1594) ALOs; Fe LOI Mn P S SiO»

Fe -0.87

LOI 0.15  -0.26

Mn -0.05 0.02 0.29

P -0.13 025 0.05 0.07

S 0.31 -0.19 0.31 -0.09 0.15

SiO, 071  -092 0.01 -0.18 -0.35 0.06
Filler -0.56 0.68 -035 0.11 029 -022 -0.76
Spacing 2 (n = 1173)

Fe -0.85

LOI 0.08  -0.17

Mn -0.15  0.12 0.25

P -0.03  0.19 -0.20 0.05

S 035 -022 044 -0.20 0.17

SiO, 0.71  -092 -0.10 -0.26 -0.24 0.05
Filler -0.69 0.78 -0.13 0.25 0.27 -0.24 -0.85
Spacing 3 (n = 1370)

Fe -0.89

LOI 0.13  -0.29

Mn -0.28 0.18 0.26

P -0.27 0.32  -0.06 0.05

S 0.29 -0.16 0.26 -0.20 0.19

SiO, 0.86 -093 0.07 -033 -0.43 0.04
Filler -0.69 0.62 -040 023 042 -0.15 -0.72
Spacing 4 (n = 1468)

Fe -0.93

LOI 042 -043

Mn -0.15  0.09 0.30

P -0.06  0.17 -0.38 -0.15

S 0.38 -0.31 0.76 0.01 -0.14

SiO, 0.88 -094 025 -0.27 -0.27 0.15
Filler -0.61 046 -035 0.28 039 -031 -0.63
Spacing 5 (n = 1534)

Fe -0.92

LOI 0.38  -0.59

Mn -0.25  -0.03 043

P 0.13 -0.12 052 0.10

S 042 -0.28 030 -0.27 0.36

SiO, 093 -091 034 -0.26 -0.09 0.21
Filler -0.52 038 -041 035 -0.16 -0.32 -0.59
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Appendix E

GH estimates - QQ plots
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Figure E.1: QQ plots - By column Al, O3 far left, Fe near left, LOI near right, and Mn far
right in row order of decreasing data density, Spacing 1 on the top and Spacing 5 at the
bottom. The abscissa in each case is the sample data, the ordinate is the GH distribution.
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Figure E.2: GH QQ plots - By column P far left, S near left, V near right, and filler far
right in row order of decreasing data density, Spacing 1 on the top and Spacing 5 at the
bottom. The abscissa in each case is the sample data, the ordinate is the GH distribution.
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Appendix F

Scatter plots - All datasets —
Constrained sample space

. s
o ‘ Sio,

Figure F.1: Scatter plot matrix - Spacing 1. Black points are sample data, red points are
OCK estimates, blue points are GH estimates
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Figure F.2: Scatter plot matrix - Spacing 2. Black points are sample data, red points are
OCK estimates, blue points are GH estimates
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Figure F.3: Scatter plot matrix - Spacing 3. Black points are sample data, red points are
OCK estimates, blue points are GH estimates
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Figure F.4: Scatter plot matrix - Spacing 4. Black points are sample data, red points are
OCK estimates, blue points are GH estimates
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Figure FE.5: Scatter plot matrix - Spacing 5. Black points are sample data, red points are
OCK estimates, blue points are GH estimates
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Appendix G

Detailed Implementation Flowsheet
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Appendix H

Script File code
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Compositional_Ir_GH_backtrans_loop_input.m
% Read in the Excel files in the directory Specified
% Make sure this only contains the Excel files and nothing else
list=ls('C:\Users\ccward\Documents\MATLAB\East_all');
NL=size(list,1);
Final_Output=[];
for nl=3:NL
[num,txt,raw]=xIsread(['C:\Users\ccward\Documents\MATLAB\East_all\' list(nl,:)]);
[m,n]=size(raw);
% Nv = number of variables
% Nqg = number of quadrature
Nv=7;
Nqg=3;
Nf=0;
fori=1:m
if strcmp(cell2mat(raw(i,1)),'Location')==1 && strcmp(cell2mat(raw(i+1,1)),'Location')==1 &&
strcmp(cell2mat(raw(i+2,1)),'Location')==1 && strcmp(cell2mat(raw(i+4,1)),'Successfully')==0
Nf=Nf+1;
end
end
count=0;
% reading the locations
Loc=zeros(Nf,3);
fori=1:m
if strcmp(cell2mat(raw(i,1)),'Location')==1 && strcmp(cell2mat(raw(i+1,1)),'Location')==1 &&
stremp(cell2mat(raw(i+2,1)),'Location')==1 && strcmp(cell2mat(raw(i+4,1)),'Successfully')==0
count=count+1;
forj=1:3
temp=cell2mat(raw(i+j-1,6));
mt=size(temp,2);
Loc(count,j)=str2double(temp(1:mt-1));
end
end
end
count=0;
%for each location read the number of samples usde in the krging system
Sample_Num=zeros(Nf,1);
fori=1:m
if strcemp(cell2mat(raw(i,1)),'Number')==1 && strcmp(cell2mat(raw(i,2)),'of')==1 &&
strcmp(cell2mat(raw(i,3)),'active')==1 && strcmp(cell2mat(raw(i,4)),'samples')==1
count=count+1;
Sample_Num(count)=cell2mat(raw(i,6));
end
end
count=0;
RHS=zeros(Nv*max(Sample_Num)+Nv,Nv,Nf);
fori=1:m
if strcemp(cell2mat(raw(i,1)),'Right')==1 && strcmp(cell2mat(raw(i,2)),'Hand')==1
count=count+1;
for j=1:min(9,Nv*Sample_Num(count)+Nv)
RHS(1:9,:,count)=cell2mat(raw(i+4:i+12,4:4+Nv-1));




end
if Nv*Sample_Num(count)+Nv>9
for j=10:Nv*Sample_Num(count)+Nv

RHS(10:Nv*Sample_Num(count)+Nyv,:,count)=cell2mat(raw(i+13:i+Nv*Sample_Num(count)+4+Nv-
1,3:3+Nv-1));
end
end
end
end
count=0;
Weight=zeros(Nv*max(Sample_Num)+Nv,Nv,Nf);
fori=1:m
if stremp(cell2mat(raw(i,1)),'Kriging')==1 && strcmp(cell2mat(raw(i,2)),'variable')==1 &&
stremp(cell2mat(raw(i,3)),'V1')==1
count=count+1;
for j=1:Nv
Weight(1+(j-1)*Sample_Num(count):j*Sample_Num(count),:,count)=cell2mat(raw(i+1+(j-
1)*(Sample_Num(count)+3):i+j*(Sample_Num(count)+3)-3,6:6+Nv-1));
end
end
end
count=0;
Lagrange=zeros(Nv,Nv,Nf);
fori=1:m
if stremp(cell2mat(raw(i,1)),'-')==1 && strcmp(cell2Zmat(raw(i,2)),'For')==1 &&
stremp(cell2mat(raw(i,3)),'variable')==1 && strcmp(cell2Zmat(raw(i,4)),'V1')==1
count=count+1;
for j=1:Nv
Lagrange(:,j,count)=cell2mat(raw(i+6+(j-1)*(Nv+15):i+6+Nv-1+(j-1)*(Nv+15),6));
Weight(Nv*Sample_Num(count)+1:Nv*Sample_Num(count)+Nv,j,count)=cell2mat(raw(i+6+(j-
1)*(Nv+15):i+6+Nv-1+(j-1)*(Nv+15),6));
end
end
end
count=0;
estimate=zeros(Nv,Nf);
fori=1:m
if strcemp(cell2mat(raw(i,1)),'Variable')==1 && strcmp(cell2mat(raw(i,2)),'V1')==1
count=count+1;
for j=1:Nv
estimate(j,count)=cell2mat(raw(i+(j-1)*4+1,4));
end
end
end
varcovar=zeros(Nv,Nv,Nf);
RHS
Weight
c0=[0.987 0.14773388 -0.0224836 0.00679483 0.3976438 0.71495431 -0.033101601
0.14773388 0.13431773 0.1275228 0.07079109 0.129107903 0.1190044 -0.003049348
-0.0224836 0.1275228 1.040791 0.11354852 -0.1706903 -0.28940986 -0.0086542



0.00679483 0.07079109 0.11354852 0.1924235 0.06081324 -0.0967181 0.00952995
0.3976438 0.129107903 -0.1706903 0.06081324 0.6336 0.2217039 -0.004777286
0.71495431 0.1190044 -0.28940986 -0.0967181 0.2217039 1.264299 -0.03384148
-0.033101601 -0.003049348 -0.0086542 0.00952995 -0.004777286 -0.03384148 0.0109
l;
for i=1:Nf

varcovar(:,:,i)=c0-Weight(:,:,i)*RHS(:,:,i);
end
R=zeros(Nv,Nv,Nf);
for i=1:Nf

R(:,:,i)=chol(varcovar(:,:,i),'lower");
end
%Calculate quadrature points and product fo weights
[GHYs,GHweights]=GHvars(Ng,Nv);

%calculate Backtransformed data via GH integration
est=zeros(Nv,Ng”Nv,Nf);
for i=1:Nf
est(:,:,i)=diag(estimate(:,i))*ones(size(GHYs))+sqrt(2)*R(:,:,i) *GHYs;
end
expest=zeros(Nv+1,Ng”Nv,Nf);
for i=1:Nf
expest(1:Nv,:,i)=exp(est(:,:,i));
expest(Nv+1,:,i)=ones(1,Ng”*Nv);
end
sumexpest=zeros(Ng”Nv,Nf);
fori=1:Nf
sumexpest(:,i)=sum(expest(:,:,i));
end
g=zeros(Nv+1,Ng”Nv,Nf);
for i=1:Nf
for j=1:Nv+1
for k=1:Ng”~Nv
g(j,k,i)=expest(j,k,i)/sumexpest(k,i);
end
end
end
ALRestGH=zeros(Nv+1,Nf);
alr=zeros(Nv+1,Ng”Nv,Nf);
for i=1:Nf
alr(:,:,i)=g(:,:,i).*GHweights/pi*(Nv/2);
ALRestGH(:,i)=sum(alr(:,:,i),2);
end
M=zeros(Nv+1,Nv+1,Nf);
GHweights2=zeros(Nv+1,Nv+1,Ng~Nv);
for i=1:Ng"Nv
for k=1:Nv+1
GHweights2(:,k,i)=GHweights(:,i);
end
end
M;



for i=1:Nf
Mi=zeros(Nv+1,Nv+1,Ng”Nv);
for k=1:Ng”Nv
Mi(:,:,k)=g(:,k,i)*g(:,k,i)';
end
size(Mi)
Mi=Mi.*GHweights2/pi*(Nv/2);
M(:,:,i)=sum(Mi,3);
M(:,:,i)=M(:,:,i)-ALRestGH(:,i)*ALRestGH(:,i)";
end
M;
Output=cell((Nv+1)*Nf,3+2*(Nv+1));
fori=1:Nf
for j=1:3
Output((Nv+1)*(i-1)+1,j)={Loc(i,j)};
end
for j=1:Nv+1
for k=1:Nv+1
Output((Nv+1)*(i-1)+j,3+k)={M(j,k,i)};
end
end

for j=1:Nv+1
Output((Nv+1)*(i-1)+1,4+Nv+j)={ALRestGH(j,i)};
end
end
Final_Output=[Final_Output; Output];
%write Output to file

end
xlswrite('C:\Users\ccward\Documents\MATLAB\East_all\Final_Output.xIsx',Final_Output)

GHvars.m
function [GHY GHw]=GHvars(N, M)
% N is the number of quadrature points
% M is the number of variables
GHY=[];
GHw=[];
[Y W]=hermquad(N)
% Y=[-1.224744871 0 1.224744871];

% W=[0.295409 1.18164 0.295409];
ghy=zeros(M,1);
ghw=zeros(1,M);
count=0;
fori=1:N*M
count=count+1;
for j=1:M
ghy(j,1)=Y(ceil((mod(count-1,NA(M+1-j))+1)/N*(M-j)),1);
ghw(1,j)=W/(ceil((mod(count-1,NA(M+1-j))+1)/NAM-j)),1);
end



GHY=[GHY ghy];

GHw=[GHw prod(ghw)*ones(M+1,1)];
end
GHY;
GHw;

Hermqguad.m

function [X W] = hermquad(N)

% % [X W] = HERMQUAD(N)

% % Find the Gauss-Hermite abscissae and weights. % % Arguments:

% N - The number of abscissae and weights to return.

% % Return Values: % X - A column vector containing the abscissae.

% W - A column vector containing the corresponding weights.

% % Gauss-Hermite quadrature approximates definite integrals of the form
% % \intM-\infty}_{\infty} dx W(x) f(x)

% % where % % W(x) = \exp( - x"2)

% % with the sum % % \sum_{n=1}*{N} w_{n} f(x_{n}).

% % This function returns the set of abscissae and weights

% % {x_{n}, w_{n}}*{N}_{n=1}

% % for performing this calculation given N, the number of abscissae.

% These abscissae correspond to the zeros of the Nth Hermite

% polynomial. It can be shown that such integration is exact when f(x)

% is a polynomial of maximum order 2N-1.

% % The procedure in this calculation is taken more or less directly from

% % @BOOK({ press-etal-1992a,

% AUTHOR = { Press, William H. and % Flannery, Brian P. and % Teukolsky, Saul A. and % Vetterling,
William T. },

% ISBN = {0521431085}, % MONTH = {October}, % PUBLISHER = {{Cambridge University Press}},
% TITLE = {Numerical Recipes in C : The Art of Scientific Computing}, % YEAR = {1992} % }
% % precision

EPS = 3.0e-14;

% 1/\pi~{1/4}

PIM4 = 0.7511255444649425;

% maximum number of loops

MAXIT = 10;

% allocate the return values

X = zeros([N 1]);

W = zeros([N 1]);

for i=1:(N+1)/2

% good guesses at initial values for specific roots

ifi ==
z=sqrt(2.0*N+1.0) - 1.85575*((2.0*N+1)*(-0.16667));
elseif i ==
z=12-(1.14 * N*0.426 / z);
elseif i ==
z2=1.86*z-0.86 * X(1);
elseif i ==

z=1.91*z-0.91 * X(2);



else
z=2.0%z - X(i-2);
end
for iter=1:MAXIT+1
pl = PIM4;
p2 =0.0;
for j=1:N
p3 = p2;
p2 =pl;
pl=2z*sqrt(2.0/j) * p2 - sqrt((j-1.0)/j) * p3;
end
% the derivative
pp = sqrt(2.0*N) * p2;
% newton step
z1=1z
z=121-pl/pp;
if abs(z-z1) <= EPS break;
end
end
if iter == MAXIT+1
fprintf('Too many iterations in hermquad.\n');
end
X(i) =z;
X(N+1-i) = -z;
W(i) = 2.0/(pp*pp);
W(N+1-i) = W(i);
end
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Appendix I

Variogram models plots
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Figure I.1: Semivariogram model - East zone Spacing 2 (Top is logratio, bottom is raw
space)

138



Figure 1.2: Semivariogram model - East zone Spacing 3 (Top is logratio, bottom is raw
space)
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Figure 1.3: Semivariogram model - East zone Spacing 4 (Top is logratio, bottom is raw
space)
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Figure 1.4: Semivariogram model - East zone Spacing 5 (Top is logratio, bottom is raw
space)
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Appendix J

Variogram models Tabulations

J.1 Constrained space Models

---> Set

S1

S2

S3

Variance-Covariance
Variable

Al203

Fe

Directional

Variance-Covariance
Variable

Al203

Fe

Directional

Variance-Covariance
Variable

Al203

Fe

LOI

Mn

p

S

Si0o2

name

Nugget

matrix

1

1
2
3
4
5
6
7
8

effect

Al203

1.98
-3.7932
0.7321
0.0025
-0.0037
0.0362
2.5155
-1.4632

Spherical -

Scales

matrix

1

1
2
3
4
5
6
7
8

Al203
0.1672
0.4009

-0.0161
0.0035
-0.002
0.0005
-0.7167
0.1625

Spherical -

Scales

matrix

1
1

Al203
2.9537
-9.5479
0.1792
-0.0004
-0.0157
0.0054
9.3071
-2.8814

East_1_raw

Fe
-3.7932
12.95
-1.644
-0.0275
-0.0021
-0.0776
-12.5326
5.1276

Range

(

Fe

0.4009
1.2571
-0.1049
-0.0182
-0.0089
0.0037
-2.2057
0.676

Range

(

Fe

-9.5479
38.4941
0.2527
0.0718
0.1199
0.0094
-40.6989
11.2989

LOI
0.7321
-1.644
0.82
0.0171
0.0113
0.0271
0.6705
-0.6307

0.0025
-0.0275
0.0171
0.015
0.0003
0.0001
-0.0011
-0.0064

= 5.412964880m

15.00m,

LOI
-0.0161
-0.1049

0.5978
0.0165
0.0112
-0.0051
-0.5048
0.0055

5.00m,

0.0035
-0.0182
0.0165
0.0119
-0.0001
-0.0001
-0.0161
0.0025

= 15.416376691m

60.00m,

LOI
0.1792
0.2527
0.4598

-0.0078
0.0031
0.0077

-0.8536

-0.0411

15.00m,

-0.0004
0.0718
-0.0078
0.0093
0.001
-0.0007
-0.1005
0.0273

P S
-0.0037 0.0362
-0.0021 -0.0776
0.0113 0.0271
0.0003 0.0001
0.0007 -0.0003
-0.0003 0.0036
-0.0065 0.0422
0.0003 -0.0313

5.412964880m)

P S

-0.002 0.0005
-0.0089 0.0037
0.0112 -0.0051
-0.0001 -0.0001
0.0003 -0.0001
-0.0001  0.0001
0.0054 -0.0016
-0.0059 0.0026

15.416376691m)

P S

-0.0157
0.1199
0.0031

0.001
0.0023
0.0008
-0.1576
0.0463

0.0054
0.0094
0.0077
-0.0007
0.0008
0.0005
-0.0285
0.0054

Si0o2 r
2.5155 -1.4632
-12.5326 5.1276
0.6705 -0.6307
-0.0011 -0.0064
-0.0065 0.0003
0.0422 -0.0313
1435 -5.0338
-5.0338 2.038

Sio2 r
-0.7167 0.1625
-2.2057 0.676
-0.5048 0.0055
-0.0161 0.0025
0.0054 -0.0059
-0.0016  0.0026
4789 -1.3494
-1.3494 0.5062

Sio2 r
9.3071 -2.8814
-40.6989 11.2989
-0.8536 -0.0411
-0.1005 0.0273
-0.1576 0.0463
-0.0285 0.0054
44.4334 -11.9015
-11.9015 3.4461

Figure J.1: Semivariogram model tabulation - East zone Spacing 1 true values
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---> Set

S1

S2

S3

Variance-Covariance
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable

Directional
Local

Variance-Covariance
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable

Directional
Local

Variance-Covariance
Variable

Al203

Fe

name
Nugget

matrix
1

1
2
3
4
5
6
7
8

Spherical
Scales
Rotation

matrix

Spherical
Scales
Rotation

matrix

1
1
2
3
4
5
6
7
8

00N O U WN R P

effect

Al203

1.98
-3.7932
0.7321
0.0025
-0.0037
0.0362
2.5155
-1.4632

Al203
0.5384
-0.0374
0.0898
0.0166
-0.0105
0.0155
-0.1087
-0.1954

Al203

4.0354
-13.1923
0.1207
0.0232
-0.0247
0.0303
12.7097
-3.9343

East_2_raw

Fe

Range

(

-3.7932
12.95
-1.644
-0.0275
-0.0021
-0.0776
-12.5326
5.1276

Azimuth=N110.00

Fe

Range

(

-0.0374
0.0026
-0.007
-0.0011
0.0008
-0.001
0.0076
0.0136

Azimuth=N110.00

Fe

-13.1923
53.7461
0.1764
-0.0136
0.1339
-0.0501
-56.868
16.2178

Lol

0.7321
-1.644
0.82
0.0171
0.0113
0.0271
0.6705
-0.6307

15.00m,
(Geologist

Lol
0.0898
-0.007
0.1057
0.0051
-0.0007
0.0031
-0.0301
-0.0432

60.00m,
(Geologist

Lol

0.1207
0.1764
1.4832
0.0302
0.0164

0.014
-1.709
-0.194

Mn

0.0025
-0.0275
0.0171
0.015
0.0003
0.0001
-0.0011
-0.0064

15.00m
5.00m,
Plane)

Mn
0.0166
-0.0011
0.0051
0.0016
-0.0002
0.0003
-0.0112
-0.0046

60.00m
15.00m,
Plane)

Mn
0.0232
-0.0136
0.0302
0.0193
0.0003
-0.0005
-0.0622
0.0034

P
-0.0037
-0.0021

0.0113
0.0003
0.0007
-0.0003
-0.0065
0.0003

15.00m)

P

-0.0105
0.0008
-0.0007
-0.0002
0.001
-0.0001
0.0009
0.0074

60.00m)

P
-0.0247
0.1339
0.0164
0.0003
0.0025
0.0003
-0.1746
0.0405

S
0.0362
-0.0776
0.0271
0.0001
-0.0003
0.0036
0.0422
-0.0313

S

0.0155
-0.001
0.0031
0.0003
-0.0001
0.005
-0.004
-0.0061

S

0.0303
-0.0501
0.014
-0.0005
0.0003
0.0007
0.0158
-0.0165

Sio2
2.5155
-12.5326
0.6705
-0.0011
-0.0065
0.0422
14.35
-5.0338

Sio2
-0.1087
0.0076
-0.0301
-0.0112
0.0009
-0.004
0.0906
0.0168

Sio2

12.7097
-56.868
-1.709
-0.0622
-0.1746
0.0158
63.438
-17.2195

r

-1.4632
5.1276
-0.6307
-0.0064
0.0003
-0.0313
-5.0338
2.038

-0.1954
0.0136
-0.0432
-0.0046
0.0074
-0.0061
0.0168
0.1019

-3.9343
16.2178
-0.194
0.0034
0.0405
-0.0165
-17.2195
5.2082

Figure J.2: Semivariogram model tabulation - East zone Spacing 2 true values
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---> Set name : East_3_raw

S1 Nugget effect

Variance-Covariance matrix

Variable 1 Al203 Fe LOI Mn P S Si0o2 r

Al203 1 1.98 -3.7932 0.7321 0.0025 -0.0037 0.0362  2.5155 -1.4632
Fe 2 -3.7932 12.95 -1.644 -0.0275 -0.0021 -0.0776 -12.5326  5.1276
LOI 3 0.7321 -1.644 0.82 0.0171 0.0113 0.0271 0.6705 -0.6307
Mn 4 0.0025 -0.0275 0.0171  0.015 0.0003 0.0001 -0.0011 -0.0064
P 5 -0.0037 -0.0021 0.0113 0.0003 0.0007 -0.0003 -0.0065 0.0003
S 6 0.0362 -0.0776 0.0271 0.0001 -0.0003 0.0036 0.0422 -0.0313
Si02 7 2.5155 -12.5326 0.6705 -0.0011 -0.0065 0.0422 14.35 -5.0338
r 8 -1.4632 5.1276  -0.6307 -0.0064 0.0003 -0.0313 -5.0338 2.038

S2 Spherical - Range = 15.00m
Directional Scales = ( 15.00m, 5.00m, 15.00m)

Local Rotation

Azimuth=N110.00 (Geologist Plane)

Variance-Covariance matrix

Variable 1 Al203  Fe LOI Mn P S Si0o2 r

Al203 1 2.5856 -7.5506 0.7658 -0.0127 -0.0013 -0.0125 6.246  -2.0065

Fe 2 -7.5506 31.0952  -2.6566 0.0129 0.0112 0.0249 -27.8038  7.2035

LOI 3 0.7658 -2.6566 1.8519 -0.0468 0.0337 -0.0142  1.5414 -1.3367

Mn 4 -0.0127 0.0129  -0.0468 0.018 -0.0009 0.0002 -0.0087 0.0128

P 5 -0.0013 0.0112 0.0337 -0.0009 0.0009 -0.0002 -0.0247 -0.0105

S 6 -0.0125 0.0249  -0.0142 0.0002 -0.0002 0.0003 -0.0097 0.0141

Sio2 7  6.246 -27.8038 1.5414 -0.0087 -0.0247 -0.0097  25.697 -5.8668

r 8 -2.0065 7.2035 -1.3367 0.0128 -0.0105 0.0141 -5.8668  2.0944
S3 Spherical - Range = 60.00m

Directional Scales = ( 60.00m, 15.00m, 60.00m)

Local Rotation = Azimuth=N110.00 (Geologist Plane)

Variance-Covariance matrix

Variable 1 Al203 Fe LOI Mn P S Si02 r

Al203 1 2.4902 -7.5948  -0.3808 -0.1063 -0.0414 -0.0031 8.7058 -2.9441
Fe 2 -7.5948 25.6822 1.6651 0.3256 0.129 0.0236 -30.1857  9.6437
LOI 3 -0.3808 1.6651 0.2925 0.0051 0.0047 0.0042 -2.1313  0.5316
Mn 4 -0.1063 0.3256 0.0051 0.0581 0.0017 -0.0005 -0.368  0.1304
P 5 -0.0414 0.129 0.0047 0.0017 0.0053 0.0004 -0.1516 0.0492
S 6 -0.0031 0.0236 0.0042 -0.0005 0.0004 0.0001 -0.0326  0.0069
Si02 7 8.7058 -30.1857  -2.1313 -0.368 -0.1516 -0.0326 35.7744 -11.2186
r 8 -2.9441 9.6437 0.5316 0.1304 0.0492 0.0069 -11.2186  3.6769

Figure J.3: Semivariogram model tabulation - East zone Spacing 3 true values
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---> Set

s1

Variance-Covariance
Variable

Al203

Fe

S2
Directional
Local

Variance-Covariance
Variable

Al203

Fe

S3
Directional
Local

Variance-Covariance
Variable

Al203

Fe

name
Nugget effect
matrix
1 Al203
1 1.98
2 -3.7932
3 07321
4 0.0025
5 -0.0037
6  0.0362
7 2.5155
8 -1.4632
Spherical -
Scales =
Rotation =
matrix :
1 Al203
1 0
2 0
3 -0.0004
4 0
5 0
6 -0.0001
7 0
8 0
Spherical -
Scales =
Rotation =
matrix :
1 Al203
1 5.1983
2 -19.5941
3  -0.1745
4 -0.0047
5 -0.0324
6 0.0108
7 20.1853
8 -5.3968

East_4_raw

Fe
-3.7932
12.95
-1.644
-0.0275
-0.0021
-0.0776
-12.5326
5.1276

Range

(
Azimuth=N110.00

Fe

0

0.0002

-0.0057

0

0

-0.0002

-0.0001

-0.001

Range

(
Azimuth=N110.00

Fe

-19.5941

81.2524

1.4409

0.0152

0.1929

-0.016

-84.5106

21.2388

LOI

0.7321
-1.644
0.82
0.0171
0.0113
0.0271
0.6705
-0.6307

15.00m,
(Geologist

LOI
-0.0004
-0.0057

0.1885
0.0003

0
0.0061
0.0039
0.0334

60.00m,
(Geologist

LOI

-0.1745
1.4409
0.4378
-0.0009
0.0078
0.0038
-1.9525
0.241

Mn

0.0025
-0.0275
0.0171
0.015
0.0003
0.0001
-0.0011
-0.0064

15.00m
5.00m,
Plane)

0.0001
0.0006

60.00m
15.00m,
Plane)

Mn

-0.0047
0.0152
-0.0009
0

0

0
-0.0145
0.0045

P
-0.0037
-0.0021

0.0113
0.0003
0.0007
-0.0003
-0.0065
0.0003

15.00m)

0.0001
0
0.0015

60.00m)

P

-0.0324
0.1929
0.0078

0

0.0017
0.0001
-0.2074
0.0426

S

S

0.0362
-0.0776
0.0271
0.0001
-0.0003
0.0036
0.0422
-0.0313

-0.0001
-0.0002
0.0061
0
0.0001
0.0018
-0.0017
0.0031

0.0108
-0.016
0.0038

0
0.0001
0.0012
0.0055
0.0002

Si02
2.5155
-12.5326
0.6705
-0.0011
-0.0065
0.0422
14.35
-5.0338

Sio2

0

-0.0001
0.0039
0.0001

0

-0.0017
0.0024
-0.0017

Si02

20.1853
-84.5106
-1.9525
-0.0145
-0.2074
0.0055
88.4598
-21.9797

r

-1.4632
5.1276
-0.6307
-0.0064
0.0003
-0.0313
-5.0338
2.038

-0.001
0.0334
0.0006
0.0015
0.0031

-0.0017
0.0123

-5.3968
21.2388
0.241
0.0045
0.0426
0.0002
-21.9797
5.802

Figure J.4: Semivariogram model tabulation - East zone Spacing 4 true values
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---> Set

S1

S2

S3

Variance-Covariance
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable

Directional
Local

Variance-Covariance
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable

Directional
Local

Variance-Covariance
Variable

Al203

Fe

name

Nugget

matrix
1

00O NOULL A WN B

Spherical
Scales
Rotation

matrix

Spherical
Scales
Rotation

matrix

effect

Al203

1.98
-3.7932
0.7321
0.0025
-0.0037
0.0362
2.5155
-1.4632

Al203
2.301
-9.5157
-0.3749
0.0019
0.0213
-0.0113
10.5106
-2.9396

Al203
3.0453
-11.2182
-0.4723
-0.0723
-0.0797
-0.0154
12,3111
-3.4567

East_5_raw

Fe

Range

(

-3.7932
12.95
-1.644
-0.0275
-0.0021
-0.0776
-12.5326
5.1276

Azimuth=N110.00

Fe

Range
(

-9.5157
44.0515
1.1854
-0.0088
0.0314
0.0615
-48.4825
12.8812

Azimuth=N110.00

Fe

-11.2182
43.6116
2.1981
0.19
0.2465
0.008
-47.8008
12.8873

Lol

0.7321
-1.644
0.82
0.0171
0.0113
0.0271
0.6705
-0.6307

15.00m,
(Geologist

LOI
-0.3749
1.1854
0.2188
-0.0008
-0.0027
-0.004
-1.3399
0.4247

60.00m,
(Geologist

LOI
-0.4723
2.1981
0.1973
-0.004
0.0029
-0.0059
-2.4137
0.5054

Mn

0.0025
-0.0275
0.0171
0.015
0.0003
0.0001
-0.0011
-0.0064

15.00m
5.00m,
Plane)

Mn
0.0019
-0.0088
-0.0008
0.0038
-0.0005
0.0003
0.0493
-0.0049

60.00m
15.00m,
Plane)

Mn

-0.0723
0.19
-0.004
0.0048
0.0038
0.0019
-0.2094
0.0763

P
-0.0037
-0.0021

0.0113
0.0003
0.0007
-0.0003
-0.0065
0.0003

15.00m)

P
0.0213
0.0314
-0.0027
-0.0005
0.0051
0.0001
-0.0262
-0.0139

60.00m)

P
-0.0797
0.2465
0.0029
0.0038
0.0033
0.0014
-0.2692
0.0875

S
0.0362
-0.0776
0.0271
0.0001
-0.0003
0.0036
0.0422
-0.0313

S
-0.0113
0.0615
-0.004
0.0003
0.0001
0.0003
-0.0613
0.0149

S

-0.0154
0.008
-0.0059
0.0019
0.0014
0.0026
-0.009
0.0121

Sio2
2.5155
-12.5326
0.6705
-0.0011
-0.0065
0.0422
14.35
-5.0338

Si02

10.5106
-48.4825
-1.3399
0.0493
-0.0262
-0.0613
54.0106
-14.2855

Sio2

12.3111
-47.8008
-2.4137
-0.2094
-0.2692
-0.009
52.4523
-14.096

r

-1.4632
5.1276
-0.6307
-0.0064
0.0003
-0.0313
-5.0338
2.038

-2.9396
12.8812
0.4247
-0.0049
-0.0139
0.0149
-14.2855
3.9835

-3.4567
12.8873
0.5054
0.0763
0.0875
0.0121
-14.096
4.0587

Figure J.5: Semivariogram model tabulation - East zone Spacing 5 true values
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--> Set

S1

S2

S3

Variance-Covariance
Variable

Al203

Fe

Directional

Variance-Covariance
Variable

Al203

Fe

Directional

Variance-Covariance
Variable

Al203

Fe

name

Nugget

matrix

1

1
2
3
4
5
6
7
8

effect

Al203

0.9
-1.2778
0.3884
0.0173
0.0018
0.0052
0.5238
-0.5617

Spherical -

Scales

matrix

1

0 NO UV A WN B

Al203

1.3878
-3.4074
0.1959
0.0547
0.0051
0.0077
2.785
-1.0289

Spherical -

Scales

matrix

1

00O NOUL A WN R

Al203
0.6194
-1.4092
0.0683
-0.0059
-0.0126
0.0009
1.2177
-0.4785

West_1_raw

Fe

-1.2778

2.8

-1.1403
-0.4174
-0.0095
-0.0094
-0.9407
1.0111

Range

(

Fe
-3.4074
9.5069
-1.0295
-0.1752
-0.023
-0.0161
-7.7349
2.8792

Range

(

Fe
-1.4092
4.4685
-0.4028
-0.0532
0.0388
-0.0028
-3.8609
1.2217

LOI

0.3884
-1.1403
0.675
0.0999
0.007
0.0023
0.4167
-0.4455

18.00m,

LOI
0.1959
-1.0295
0.8864
0.0596
0.0234
0.0063
0.1854
-0.3275

70.00m,

LOI
0.0683
-0.4028
0.6854
0.0396
-0.0188
0.0025
-0.1872
-0.187

Mn P
0.0173
-0.4174
0.0999

0.0018
-0.0095
0.007
0.36  0.0008
0.0008 0.0005
-0.0004 0
-0.0021 0.0031
-0.0597 -0.0036

18.00m

12.00m, 18.00m)

Mn P

0.0547
-0.1752
0.0596
0.0506
0.0019
0.0022
0.0593

-0.053

0.0051
-0.023
0.0234
0.0019
0.0008
0.0002
-0.001
-0.0074

70.00m

27.00m, 70.00m)

Mn P
-0.0059
-0.0532

0.0396
0.074
0.0004
-0.0002
-0.0614
0.0068

-0.0126
0.0388
-0.0188
0.0004
0.0008
-0.0001
-0.0233
0.0149

S

0.0052
-0.0094
0.0023
-0.0004
0

0.0002
0.0054
-0.0033

S

0.0077
-0.0161
0.0063
0.0022
0.0002
0.0004
0.004
-0.0046

S
0.0009
-0.0028
0.0025
-0.0002
-0.0001
0.0001
0.0011
-0.0014

Si02

0.5238
-0.9407
0.4167
-0.0021
0.0031
0.0054
0.42
-0.4218

Si0o2

2.785
-7.7349
0.1854
0.0593
-0.001
0.004
7.0328
-2.3306

Si0o2
1.2177
-3.8609
-0.1872
-0.0614
-0.0233
0.0011
3.9372
-1.0231

r
-0.5617
1.0111
-0.4455
-0.0597
-0.0036
-0.0033
-0.4218
0.4845

-1.0289
2.8792
-0.3275
-0.053
-0.0074
-0.0046
-2.3306
0.8728

r
-0.4785
1.2217
-0.187
0.0068
0.0149
-0.0014
-1.0231
0.4467

Figure J.6: Semivariogram model tabulation - West zone Spacing 1 true values
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---> Set name : West_2_raw
S1 Nugget effect

Variance-Covariance matrix

Variable 1 Al203 Fe LOI Mn P S Si02 r

Al203 1 0.9 -1.2778 0.3884 0.0173 0.0018 0.0052 0.5238 -0.5617

Fe 2 -1.2778 2.8 -1.1403 -0.4174 -0.0095 -0.0094 -0.9407 1.0111

LOI 3 0.3884 -1.1403 0.675 0.0999 0.007 0.0023 0.4167 -0.4455

Mn 4 0.0173 -0.4174 0.0999 0.36 0.0008 -0.0004 -0.0021 -0.0597

P 5 0.0018 -0.0095 0.007 0.0008 0.0005 0 0.0031 -0.0036

S 6 0.0052 -0.0094 0.0023 -0.0004 0 0.0002 0.0054 -0.0033

Si02 7 0.5238 -0.9407 0.4167 -0.0021 0.0031 0.0054 0.42 -0.4218

r 8 -0.5617 1.0111 -0.4455 -0.0597 -0.0036 -0.0033 -0.4218 0.4845
S2 Spherical - Range = 18.00m

Directional Scales = ( 18.00m, 12.00m, 18.00m)

Local Rotation = Azimuth=N80.00 (Geologist Plane)

Variance-Covariance matrix

Variable 1 Variable 2 Variable 3 Variable 4 Variable 5
Al203 1 0.0812 -0.2344 0.0569 0.0374 0.0013 -0.004 0.2069 -0.087
Fe 2 -0.2344 1.2649 -0.7438 -0.0912 -0.0254 0.0058 -0.7696 0.4553
LOI 3 0.0569 -0.7438 0.68 0.0046 0.0216 -0.0044 0.2517 -0.2062
Mn 4 0.0374 -0.0912 0.0046 0.0182 0.0002 -0.0011  0.0964 -0.0395
P 5 0.0013 -0.0254 0.0216 0.0002 0.0018 -0.0005 0.0101 -0.0105
S 6 -0.004 0.0058 -0.0044 -0.0011 -0.0005 0.0113 -0.0024 0.0008
Si02 7 0.2069 -0.7696 0.2517 0.0964 0.0101 -0.0024 0.6577 -0.3433
r 8 -0.087 0.4553 -0.2062 -0.0395 -0.0105 0.0008 -0.3433 0.2524
S3 Spherical - Range = 70.00m
Directional Scales = ( 70.00m, 27.00m, 70.00m)
Local Rotation = Azimuth=N80.00 (Geologist Plane)

Variance-Covariance matrix

Variable 1 Variable 2 Variable 3 Variable 4 Variable 5
Al203 1 1.8783 -5.5872 -0.3308 0.0223 -0.0071 0.013 5.3753 -1.3535
Fe 2 -5.5872 19.0693 0.963 -0.0081 0.0466 -0.0122 -18.5428  4.469
LOI 3 -0.3308 0.963 0.4372 0.0864 -0.0051 0.0172 -1.283 0.2345
Mn 4 0.0223 -0.0081 0.0864 0.0242 -0.0032 0.0046 -0.0808 -0.0119
P 5 -0.0071 0.0466 -0.0051 -0.0032 0.0154 0.0032 -0.0403 0.0221
S 6 0.013 -0.0122 0.0172 0.0046 0.0032 0.0027 -0.0122 0.0046
Si02 7 5.3753 -18.5428 -1.283 -0.0808 -0.0403 -0.0122 19.1095 -4.3956
r 8 -1.3535 4.469 0.2345 -0.0119 0.0221 0.0046 -4.3956 1.1889

Figure J.7: Semivariogram model tabulation - West zone Spacing 2 true values
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---> Set name : West_3_raw

S1 Nugget effect

Variance-Covariance matrix

Variable 1 Al203 Fe LOI Mn P S Si02 r

Al203 1 0.9 -1.2778 0.3884 0.0173 0.0018 0.0052 0.5238 -0.5617

Fe 2 -1.2778 2.8 -1.1403 -0.4174 -0.0095 -0.0094 -0.9407 1.0111

LOI 3  0.3884 -1.1403 0.675 0.0999 0.007 0.0023 0.4167 -0.4455

Mn 4 0.0173 -0.4174 0.0999 0.36 0.0008 -0.0004 -0.0021 -0.0597

P 5 0.0018 -0.0095 0.007 0.0008 0.0005 0 0.0031 -0.0036

S 6  0.0052 -0.0094 0.0023 -0.0004 0 0.0002 0.0054 -0.0033

Si02 7 0.5238 -0.9407 0.4167 -0.0021 0.0031 0.0054 0.42 -0.4218

r 8 -0.5617 1.0111  -0.4455 -0.0597 -0.0036 -0.0033 -0.4218 0.4845
S2 Spherical - Range = 18.00m

Directional Scales = ( 18.00m, 12.00m, 18.00m)

Local Rotation = Azimuth=N80.00 (Geologist Plane)

Variance-Covariance matrix

Variable 1 Al203 Fe LOI Mn P S Si02 r

Al203 1 3.7345 -10.4468 13953 -0.171 0.009 0.0359 8.7671 -3.4595

Fe 2 -10.4468 40.9101  -3.9346 0.4441 -0.0077 -0.0708 -38.9995 12.2373

LOI 3 1.3953 -3.9346 2.0338 -0.1241 0.0269 0.0083 2.6121 -1.8449

Mn 4 -0.171 0.4441  -0.1241 0.0104 -0.0014 -0.0015 -0.3289  0.1733

P 5 0.009 -0.0077 0.0269 -0.0014 0.0011 0.0001 -0.0133 -0.0109

S 6  0.0359 -0.0708 0.0083 -0.0015 0.0001 0.0005 0.0507 -0.0226

Si02 7 87671 -38.9995 2.6121 -0.3289 -0.0133 0.0507 38.9215 -11.0156

r 8 -3.4595 12.2373  -1.8449 0.1733 -0.0109 -0.0226 -11.0156  4.1089
S3 Spherical - Range = 70.00m

Directional Scales = ( 70.00m, 27.00m, 70.00m)

Local Rotation = Azimuth=N80.00 (Geologist Plane)

Variance-Covariance matrix

Variable 1 Al203 Fe LOI Mn P S Si02 r

Al203 1 3.1335 -8.8092  -0.9391 -0.0252 -0.075 -0.0254 10.0036 -2.9342
Fe 2 -8.8092 31.6933 3.1573  0.141 0.2085 0.0626 -37.4422 10.9104
LOI 3 -0.9391 3.1573 0.3844 0.009 0.0316 0.0071 -3.6336 1.0577
Mn 4  -0.0252 0.141 0.009 0.0232 0.0004 0.0009 -0.1034 0.0349
P 5 -0.075 0.2085 0.0316 0.0004 0.0062 0.0014 -0.229 0.0638
S 6 -0.0254 0.0626 0.0071 0.0009 0.0014 0.0009 -0.0669 0.0199
Si02 7 10.0036 -37.4422  -3.6336 -0.1034 -0.229 -0.0669 44.7857 -13.0231
r 8 -2.9342 10.9104 1.0577 0.0349 0.0638 0.0199 -13.0231  3.7965

Figure J.8: Semivariogram model tabulation - West zone Spacing 3 true values
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S1

S2

S3

---> Set name

Nugget effect
Variance-Covariance matrix
Variable 1 Al203
Al203 1 0.9
Fe 2 -1.2778
LOI 3 0.3884
Mn 4 0.0173
P 5 0.0018
S 6 0.0052
Si02 7 0.5238
r 8 -0.5617

Spherical -
Directional Scales =
Local Rotation =
Variance-Covariance matrix
Variable 1 Al203
Al203 1 3.1015
Fe 2 -9.3158
LOI 3 -0.4612
Mn 4 -0.3834
P 5 -0.0338
S 6 0.0235
Si02 7 8.5267
r 8 -1.4208

Spherical -
Directional Scales =
Local Rotation =
Variance-Covariance matrix
Variable 1 Al203
Al203 1 0.0717
Fe 2 0.0209
LOI 3 0.0642
Mn 4 0.0555
P 5 0.0188
S 6 -0.0179
Si02 7 -0.0209
r 8 0.1525

West_4_raw

Fe

-1.2778

2.8

-1.1403

-0.4174

-0.0095

-0.0094

-0.9407

1.0111

Range

(
Azimuth=N80.00

Fe
-9.3158
32.5452
1.5931
1.2671
0.0661
-0.0003
-29.638
5.1624

Range

(
Azimuth=N80.00

Fe

0.0209

0.016

-0.0152

0.0261

0.0121

-0.0029

0.011

0.0919

LOI

0.3884
-1.1403
0.675
0.0999
0.007
0.0023
0.4167
-0.4455

18.00m,
(Geologist

LOI

-0.4612
1.5931
0.9925
0.2345
0.0201
0.0601
-1.6455
0.063

70.00m,
(Geologist

LOI
0.0642
-0.0152
0.2271
-0.0205
-0.0293
-0.0174
-0.0954
0.1387

Mn

0.0173
-0.4174
0.0999
0.36
0.0008
-0.0004
-0.0021
-0.0597

18.00m
12.00m,
Plane)

Mn
-0.3834
1.2671
0.2345
0.1148
-0.0137
0.0142
-1.2065
0.1385

70.00m
27.00m,
Plane)

Mn
0.0555
0.0261

-0.0205
0.0798
0.0301

-0.0271
0.0097

0.074

p
0.0018
-0.0095
0.007
0.0008
0.0005

0

0.0031
-0.0036

18.00m)

P
-0.0338
0.0661
0.0201
-0.0137
0.0139
0.0007
-0.0566
0.0195

70.00m)

P
0.0188
0.0121
-0.0293
0.0301
0.0451
0.0306
0.0303
-0.0459

S

0.0052
-0.0094
0.0023
-0.0004
0

0.0002
0.0054
-0.0033

S
0.0235
-0.0003
0.0601
0.0142
0.0007
0.0341
-0.0074
-0.0196

S
-0.0179
-0.0029
-0.0174
-0.0271

0.0306
0.1292
0.0271
0.0771

Si02

0.5238
-0.9407
0.4167
-0.0021
0.0031
0.0054
0.42
-0.4218

Si02

8.5267
-29.638
-1.6455
-1.2065
-0.0566
-0.0074
31.6378
-5.07

Sio2

-0.0209
0.011
-0.0954
0.0097
0.0303
0.0271
0.0674
0.0628

r
-0.5617
1.0111
-0.4455
-0.0597
-0.0036
-0.0033
-0.4218
0.4845

-1.4208
5.1624
0.063
0.1385
0.0195
-0.0196
-5.07
1.0769

r
0.1525
0.0919
0.1387

0.074
-0.0459
0.0771
0.0628
2.8723

Figure J.9: Semivariogram model tabulation - West zone Spacing 4 true values
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---> Set name : West_5_raw

S1

S2

S3

Nugget effect

Variance-Covariance matrix

Variable 1 Al203 Fe LOI Mn P S Sio2 r

Al203 1 0.9 -1.2778 0.3884 0.0173 0.0018 0.0052 0.5238 -0.5617
Fe 2 -1.2778 2.8 -1.1403 -0.4174 -0.0095 -0.0094 -0.9407 1.0111
LOI 3 0.3884 -1.1403 0.675 0.0999 0.007 0.0023 0.4167 -0.4455
Mn 4 0.0173 -0.4174 0.0999 0.36 0.0008 -0.0004 -0.0021 -0.0597
P 5 0.0018 -0.0095 0.007 0.0008 0.0005 0 0.0031 -0.0036
S 6 0.0052 -0.0094 0.0023 -0.0004 0 0.0002 0.0054 -0.0033
Sio2 7 0.5238 -0.9407 0.4167 -0.0021 0.0031 0.0054 0.42 -0.4218
r 8 -0.5617 1.0111 -0.4455 -0.0597 -0.0036 -0.0033 -0.4218 0.4845
: Spherical - Range = 18.00m

Directional Scales = ( 18.00m, 12.00m, 18.00m)

Local Rotation = Azimuth=N80.00 (Geologist Plane)

Variance-Covariance matrix

Variable 1 AI203 Fe LOI Mn P S Si02 r

Al203 1 3.2036 -12.3901  -0.2018 -0.035 -0.0056 -0.0006 11.7517 -1.9367

Fe 2 -12.3901 49.437 1.0511 0.1633 0.0188 0.0084 -46.692 7.5374

LOI 3 -0.2018 1.0511 1.0711 -0.03 0.0146 0.0028 -1.9433 0.2765

Mn 4 -0.035 0.1633 -0.03 0.0023 -0.0005 0.0001 -0.1151 0.0166

P 5 -0.0056 0.0188 0.0146 -0.0005 0.0003 0 -0.0325 0.0055

S 6 -0.0006 0.0084 0.0028 0.0001 0 0.0002 -0.0089 0.0008

Si02 7 11.7517 -46.692  -1.9433 -0.1151 -0.0325 -0.0089 45.0786 -7.2848

r 8 -1.9367 7.5374 0.2765 0.0166 0.0055 0.0008 -7.2848 1.1934
Spherical - Range = 70.00m

Directional Scales = ( 70.00m, 27.00m, 70.00m)

Local Rotation = Azimuth=N80.00 (Geologist Plane)

Variance-Covariance matrix

Variable 1 AI203 Fe LOI Mn P S Sio2 r

Al203 1 0.0011 -0.004 -0.0015 -0.001 -0.0002 0 0.0036 -0.0007
Fe 2 -0.004 0.0157 0.0015 0.0043 0.0007 0.0002 -0.0128 0.0086
LOI 3  -0.0015 0.0015 0.0109 -0.0003 0.0002 -0.0005 -0.004 -0.0126
Mn 4 -0.001 0.0043 -0.0003 0.0039 -0.0002 0 0.007 0.0034
P 5 -0.0002 0.0007 0.0002 -0.0002 0.0003 0 -0.0016 0.0003
S 6 0 0.0002 -0.0005 0 0 0 -0.0003 0.0007
Si02 7 0.0036 -0.0128 -0.004 0.007 -0.0016 -0.0003 0.0666 -0.0072
r 8 -0.0007 0.0086 -0.0126 0.0034 0.0003 0.0007 -0.0072 0.0232

Figure J.10: Semivariogram model tabulation - West zone Spacing 5 true values
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J.2 Logratio Models

S1

S2

S3

---> Set name east_1_logratio
Nugget effect
Variance-Covariance matrix
Variable 1 In(AI203/filler) In(LOI/filler)
In(AI203/filler) 1 0.347 0.072
In(LOI/filler) 2 0.072 0.078
In(Mn/filler) 3 0.0617 0.0592
In(P/filler) 4 0.029 0.0427
In(S/filler) 5 0.134 0.0552
In(SiO2/filler) 6 0.2428 0.0638
In(fe/filler) 7 0.0001 -0.0016
Spherical - Range
Directional Scales = (
Variance-Covariance matrix :
Variable 1 In(AI203/filler) In(LOI/filler)
In(AI203/filler) 1 0.49 0.078
In(LOI/filler) 2 0.078 0.0542
In(Mn/filler) 3 -0.0399 0.0483
In(P/filler) 4 -0.0285 0.0252
In(S/filler) 5 0.2281 0.0747
In(SiO2/filler) 6 0.466 0.08
In(fe/filler) 7 -0.033 -0.0015
Spherical - Range
Directional Scales = (

Variance-Covariance matrix
Variable

In(AI203/filler)

In(LOI/filler)

In(Mn/filler)

In(P/filler)

In(S/filler)

In(Si02/filler)

In(fe/filler)

Figure J.11: Semivariogram model tabulation - East zone Spacing 1 logratios

NOoO s WNR R

0.15
-0.0022
-0.0443

0.0063
0.0356
0.0061
-0.0002

In(AI203/filler) In(LOI/filler)

-0.0022
0.0021
0.02
0.0028
-0.0007
-0.0248
0.0001
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In(Mn/filler) In(P/filler) In(S/filler) In(SiO2/filler) In(fe/filler)

0.0617
0.0592
0.2308
0.0309
0.0569
-0.0024
-0.0019

33.00m,

0.029
0.0427
0.0309
0.0534

0.013
0.0683

0

13.00m
13.00m,

0.134
0.0552
0.0569

0.013
0.1086
0.1213

-0.0019

13.00m)

0.2428
0.0638
-0.0024
0.0683
0.1213
0.3243
-0.0001

0.0001
-0.0016
-0.0019

0
-0.0019
-0.0001

0.0005

In(Mn/filler) In(P/filler) In(S/filler) In(SiO2/filler) In(fe/filler)

-0.0399
0.0483
0.48
0.0904
-0.09
-0.121
-0.0082

100.00m,

-0.0285
0.0252
0.0904

0.089
-0.0015
-0.1
0.006

25.00m
25.00m,

0.2281
0.0747
-0.09
-0.0015
0.34
0.1969
-0.0023

25.00m)

0.466
0.08
-0.121
-0.1
0.1969
0.59
-0.0325

-0.033
-0.0015
-0.0082

0.006
-0.0023
-0.0325

0.0051

In(Mn/filler) In(P/filler) In(S/filler) In(SiO2/filler) In(fe/filler)

-0.0443
0.02
0.33

-0.0078

-0.1376

-0.166
0.0014

0.0063
0.0028
-0.0078
0.05
0.0493
-0.065
0.0035

0.0356
-0.0007
-0.1376

0.0493

0.185
-0.0965
-0.0006

0.0061
-0.0248
-0.166
-0.065
-0.0965
0.35
-0.0012

-0.0002
0.0001
0.0014
0.0035

-0.0006

-0.0012
0.0053



---> Set name

s1

S2

S3

Nugget

Variance-Covariance matrix

Variable 1
In(AI203/filler) 1
In(LOI/filler) 2
In(Mn/filler) 3
In(P/filler) 4
In(S/filler) 5
In(SiO2/filler) 6
In(fe/filler) 7

Spherical
Directional Scales
Local Rotation

Variance-Covariance matrix
Variable 1
In(AI203/filler)
In(LOI/filler)
In(Mn/filler)
In(P/filler)
In(S/filler)
In(SiO2/filler)
In(fe/filler)

NOoO s WN

Spherical
Directional Scales
Local Rotation

Variance-Covariance matrix
Variable

In(AI203/filler)

In(LOI/filler)

In(Mn/filler)

In(P/filler)

In(S/filler)

In(Si02/filler)

In(fe/filler)

Figure J.12: Semivariogram model tabulation - East zone Spacing 2 logratios

N O UV bs WN R

east_2_logratio

effect

In(AI203/filler) In(LOI/filler)
0.347 0.072
0.072 0.078
0.0617 0.0592
0.029 0.0427
0.134 0.0552
0.2428 0.0638
0.0001 -0.0016
- Range
= (

= Azimuth=N110.00

In(AI203/filler) In(LOI/filler)
0.5371 0.0694
0.0694 0.0242
-0.0707 0.038
-0.0576 0.0197
0.2573 0.0838
0.5229 0.0411
-0.023 0.0018
- Range
= (
= Azimuth=N110.00
In(AI203/filler) In(LOI/filler)
0.152 0.032
0.032 0.0096
0.0464 0.0206
0.0048 -0.008
0.0243 0.0097
0.1841 0.0477
-0.0429 -0.0095
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In(Mn/filler) In(P/filler) In(S/filler) In(SiO2/filler) In(fe/filler)

0.0617
0.0592
0.2308
0.0309
0.0569
-0.0024
-0.0019

33.00m,
(Geologist

0.029 0.134
0.0427 0.0552
0.0309 0.0569
0.0534 0.013

0.013 0.1086
0.0683 0.1213

0 -0.0019
33.00m

13.00m, 33.00m)
Plane)

0.2428
0.0638
-0.0024
0.0683
0.1213
0.3243
-0.0001

0.0001
-0.0016
-0.0019

0
-0.0019
-0.0001

0.0005

In(Mn/filler) In(P/filler) In(S/filler) In(SiO2/filler) In(fe/filler)

-0.0707
0.038
0.5057
0.1149
-0.1028
-0.2173
0.0067

100.00m,
(Geologist

In(Mn/filler)
0.0464
0.0206
0.0814

-0.0373
0.0065
0.1319

-0.0214

-0.0576 0.2573
0.0197 0.0838
0.1149  -0.1028
0.1171 0.0378
0.0378 0.4532

-0.1535 0.1936
0.0137 0.0032

100.00m

25.00m, 100.00m)
Plane)

In(P/filler) In(S/filler)
0.0048 0.0243
-0.008 0.0097
-0.0373 0.0065
0.0293 -0.0105
-0.0105 0.0242
-0.0298 0.0145
0.0014 -0.0032

0.5229
0.0411
-0.2173
-0.1535
0.1936
0.6244
-0.0214

-0.023
0.0018
0.0067
0.0137
0.0032

-0.0214
0.0074

In(SiO2/filler) In(fe/filler)

0.1841
0.0477
0.1319
-0.0298
0.0145
0.3178
-0.0637

-0.0429
-0.0095
-0.0214

0.0014
-0.0032
-0.0637

0.0139



---> Set

S1

S2

S3

Variance-Covariance
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable

Directional
Local

Variance-Covariance
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable

Directional
Local

Variance-Covariance
Variable
In(AI203/filler)
In(LOI/filler)
In(Mn/filler)
In(P/filler)

In(S/filler)
In(Sio2/filler)
In(fe/filler)

Figure J.13:

name

Nugget

matrix

effect

east_3_logratio

1 In(AlI203/filler) In(LOI/filler)

N O s WN R

Spherical
Scales
Rotation

matrix

Spherical
Scales
Rotation

matrix

Semivariogram model tabulation - East zone Spacing 3 logratios

N O s WN R

NOoO s WN R

0.347
0.072
0.0617
0.029
0.134
0.2428
0.0001

In(AI203/filler)
0.406
0.1169
-0.0741
0.0306
0.2023
0.3619
-0.0119

In(AlI203/filler)
0.4586
0.0379
0.0511
-0.188
0.0501
0.5551

-0.0827

0.072
0.078
0.0592
0.0427
0.0552
0.0638
-0.0016

Range

(
Azimuth=N110.00

In(LOI/filler)
0.1169
0.0486
0.0366
0.0462
0.0663
0.1012
-0.0055

Range

(
Azimuth=N110.00

In(LOI/filler)

0.0379

0.008

-0.0022

-0.0149

0.0253

0.0446

0.0016

155

In(Mn/filler) In(P/filler) In(S/filler) In(SiO2/filler) In(fe/filler)

0.0617
0.0592
0.2308
0.0309
0.0569
-0.0024
-0.0019

33.00m,
(Geologist

0.029
0.0427
0.0309
0.0534

0.013
0.0683

0

33.00m
13.00m,
Plane)

0.134
0.0552
0.0569

0.013
0.1086
0.1213

-0.0019

33.00m)

0.2428
0.0638
-0.0024
0.0683
0.1213
0.3243
-0.0001

0.0001
-0.0016
-0.0019

0
-0.0019
-0.0001

0.0005

In(Mn/filler) In(P/filler) In(S/filler) In(SiO2/filler) In(fe/filler)

-0.0741
0.0366
0.6205
0.1405

-0.081

-0.0687

0.0022

100.00m,
(Geologist

0.0306
0.0462
0.1405
0.1478
0.0529
-0.0361
-0.0002

100.00m
25.00m,
Plane)

0.2023
0.0663
-0.081
0.0529
0.2927
0.1079
-0.013

100.00m)

0.3619
0.1012
-0.0687
-0.0361
0.1079
0.3989
-0.0145

-0.0119
-0.0055
0.0022
-0.0002
-0.013
-0.0145
0.0019

In(Mn/filler) In(P/filler) In(S/filler) In(SiO2/filler) In(fe/filler)

0.0511
-0.0022
0.0146
-0.0231
-0.0221
0.0651
-0.0204

-0.188
-0.0149
-0.0231

0.0805
-0.0178
-0.2319

0.035

0.0501
0.0253
-0.0221
-0.0178
0.0971
0.0548
0.0283

0.5551
0.0446
0.0651
-0.2319
0.0548
0.6778
-0.1033

-0.0827
0.0016
-0.0204
0.035
0.0283
-0.1033
0.0323



---> Set

S1

S2

S3

Variance-Covariance
Variable

In(AI203 /filler)
In(LOI/filler)
In(Mn/filler)
In(P/filler)

In(S/filler)
In(Si02/filler)
In(fe/filler)

Directional
Local

Variance-Covariance
Variable

In(AI203 /filler)
In(LOI/filler)
In(Mn/filler)
In(P/filler)

In(S/filler)
In(Sio2/filler)
In(fe/filler)

Directional
Local

Variance-Covariance
Variable

In(AI203 /filler)
In(LOI/filler)
In(Mn/filler)
In(P/filler)

In(S/filler)
In(Sio2/filler)
In(fe/filler)

Figure J.14:

name

Nugget

matrix
1

N O s wWwN R

Spherical
Scales
Rotation

matrix

Spherical
Scales
Rotation

matrix

N O s WN PR

N O s WN PR

east_4_logratio

effect
In(AlI203/filler) In(LOI/filler)
0.347 0.072
0.072 0.078
0.0617 0.0592
0.029 0.0427
0.134 0.0552
0.2428 0.0638
0.0001 -0.0016
- Range
= (

= Azimuth=N110.00

In(AlI203/filler) In(LOI/filler)
0.6205 0.0668
0.0668 0.0077
-0.1044 -0.019
-0.0244 -0.004
0.0819 0.0156
0.6464 0.0682
-0.0446 -0.0042

- Range

= (

= Azimuth=N110.00

In(AlI203/filler) In(LOI/filler)

0.2928 0.0674
0.0674 0.0178
0.1501 0.029
-0.0397 -0.0069
0.1993 0.0645

0.314 0.0694

-0.064 -0.0099

In(Mn/filler) In(P/filler) In(S/filler) In(SiO2/filler) In(fe/filler)

0.0617
0.0592
0.2308
0.0309
0.0569
-0.0024
-0.0019

33.00m,
(Geologist

0.029
0.0427
0.0309
0.0534

0.013
0.0683

0

33.00m
13.00m,
Plane)

0.134
0.0552
0.0569

0.013
0.1086
0.1213

-0.0019

33.00m)

0.2428 0.0001
0.0638 -0.0016
-0.0024 -0.0019
0.0683 0
0.1213 -0.0019
0.3243 -0.0001
-0.0001 0.0005

In(Mn/filler) In(P/filler) In(S/filler) In(SiO2/filler) In(fe/filler)

-0.1044
-0.019
0.2053
0.0295
-0.1846
-0.0677
0.0095

100.00m,
(Geologist

-0.0244
-0.004
0.0295
0.1235
-0.0131
-0.1104
0.022

100.00m
25.00m,
Plane)

0.0819
0.0156
-0.1846
-0.0131
0.1682
0.0378
-0.0067

100.00m)

0.6464 -0.0446
0.0682 -0.0042
-0.0677 0.0095
-0.1104 0.022
0.0378 -0.0067
0.7513 -0.061

-0.061 0.0102

In(Mn/filler) In(P/filler) In(S/filler) In(SiO2/filler) In(fe/filler)

0.1501
0.029
0.0912
-0.0256
0.0556
0.1684
-0.0453

-0.0397
-0.0069
-0.0256

0.0262
-0.0054
-0.0604

0.0122

0.1993
0.0645
0.0556
-0.0054
0.2911
0.1871
-0.0035

0.314 -0.064
0.0694 -0.0099
0.1684 -0.0453
-0.0604 0.0122
0.1871 -0.0035
0.3533 -0.0746
-0.0746 0.0253

Semivariogram model tabulation - East zone Spacing 4 logratios
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---> Set

S1

S2

S3

Variance-Covariance
Variable
In(AI203/filler)
In(LOI/filler)
In(Mn/filler)
In(P/filler)

In(S/filler)
In(SiO2/filler)
In(fe/filler)

Directional

Variance-Covariance
Variable
In(AI203/filler)
In(LOI/filler)
In(Mn/filler)
In(P/filler)

In(S/filler)
In(SiO2/filler)
In(fe/filler)

Directional

Variance-Covariance
Variable
In(AI203/filler)
In(LOI/filler)
In(Mn/filler)
In(P/filler)

In(S/filler)
In(SiO2/filler)
In(fe/filler)

name east_5_logratio

Nugget effect

matrix
1 In(AI203/filler) In(LOI/filler) In(Mn/filler) In(P/filler) In(S/filler) In(SiO2/filler) In(fe/filler)
1 0.347 0.072 0.0617 0.029 0.134 0.2428 0.0001
2 0.072 0.078 0.0592 0.0427 0.0552 0.0638 -0.0016
3 0.0617 0.0592 0.2308 0.0309 0.0569 -0.0024 -0.0019
4 0.029 0.0427 0.0309 0.0534 0.013 0.0683 0
5 0.134 0.0552 0.0569 0.013 0.1086 0.1213 -0.0019
6 0.2428 0.0638 -0.0024 0.0683 0.1213 0.3243 -0.0001
7 0.0001 -0.0016 -0.0019 0 -0.0019 -0.0001 0.0005

Spherical - Range = 33.00m

Scales = ( 33.00m, 13.00m, 33.00m)

matrix
1 In(AI203/filler) In(LOI/filler) In(Mn/filler) In(P/filler) In(S/filler) In(SiO2/filler) In(fe/filler)
1 0.7188 0.0598 -0.25 0.1559 0.1917 0.6069 -0.0072
2 0.0598 0.0055 -0.0247 0.0076 0.0152 0.0512 -0.0005
3 -0.25 -0.0247 0.1946 -0.0064 -0.1775 -0.1964 0.0062
4 0.1559 0.0076 -0.0064 0.0875 0.0344 0.1268 -0.0023
5 0.1917 0.0152 -0.1775 0.0344 0.2199 0.1319 -0.0089
6 0.6069 0.0512 -0.1964 0.1268 0.1319 0.5185 -0.0047
7 -0.0072 -0.0005 0.0062 -0.0023  -0.0089 -0.0047 0.0005

Spherical - Range = 100.00m

Scales = ( 100.00m, 25.00m, 100.00m)

matrix
1 In(AI203/filler) In(LOI/filler) In(Mn/filler) In(P/filler) In(S/filler) In(SiO2/filler) In(fe/filler)
1 0.3102 -0.0064 0.0814 -0.1966 -0.0081 0.4847 -0.1011
2 -0.0064 0.0025 -0.0127  -0.0026 0.0165 -0.0073 0.0045
3 0.0814 -0.0127 0.089 -0.0177 -0.1089 0.1164 -0.0386
4 -0.1966 -0.0026 -0.0177 0.1967 -0.0138 -0.3484 0.0429
5 -0.0081 0.0165 -0.1089  -0.0138 0.1907 -0.0181 0.0121
6 0.4847 -0.0073 0.1164 -0.3484 -0.0181 0.7823 -0.1461
7 -0.1011 0.0045 -0.0386 0.0429 0.0121 -0.1461 0.0395

Figure J.15: Semivariogram model tabulation - East zone Spacing 5 logratios
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---> Set name

S1

S2

S3

Nugget

Variance-Covariance matrix

Variable 1
In(AI203/filler) 1
In(LOI/filler) 2
In(Mn/filler) 3
In(P/filler) 4
In(S/filler) 5
In(SiO2/filler) 6
In(fe/filler) 7

Spherical
Directional Scales

Variance-Covariance matrix
Variable

In(AI203/filler)

In(LOI/filler)

In(Mn/filler)

In(P/filler)

In(S/filler)

In(SiO2/filler)

In(fe/filler)

Spherical
Directional Scales

Variance-Covariance matrix
Variable

In(AI203 /filler)

In(LOI/filler)

In(Mn/filler)

In(P/filler)

In(S/filler)

In(SiO2/filler)

In(fe/filler)

N O s WN R

N O s WN R

effect

In(AI203/filler)
0.3294

0.063

0.0088

0.0653

0.1538

0.2127

-0.0006

In(AI203/filler)
0.2394
0.0381
0.0099
0.0239
0.0984
0.1683

-0.0026

In(AI203/filler)
0.3638
0.0211
0.0122

-0.0773
0.0872
0.3623

-0.0177

west_1_logratio

In(LOI/filler)
0.063
0.03
0.0512
0.041
0.0333
0.0537
-0.0006

Range

In(LOI/filler)
0.0381
0.0318
0.0475
0.0239
0.0618
0.0378
-0.0011

Range

In(LOI/filler)
0.0211
0.0176
0.0412
-0.0065
0.0441
0.0021
-0.0009

In(Mn/filler) In(P/filler) In(S/filler) In(SiO2/filler) In(fe/filler)

0.0088
0.0512
0.3784
0.0494
0.0477
0.0732

-0.002

18.00m,

In(Mn/filler)
0.0099
0.0475
0.3729
0.0213
0.0608
0.0268

-0.0042

70.00m,

In(Mn/filler)
0.0122
0.0412
0.1873
0.0332
0.0295

-0.0509
-0.0017

0.0653
0.041
0.0494
0.0623
0.0327
0.056
-0.0011

12.00m
12.00m,

In(P/filler)
0.0239
0.0239
0.0213
0.0326
0.0333
0.0205

-0.0009

27.00m
27.00m,

In(P/filler)
-0.0773
-0.0065

0.0332
0.0628
-0.0712
-0.085
0.0047

0.1538
0.0333
0.0477
0.0327
0.1506
0.0942
-0.0002

12.00m)

In(S/filler)
0.0984
0.0618
0.0608
0.0333

0.157
0.0805
0.0007

27.00m)

In(S/filler)
0.0872
0.0441
0.0295

-0.0712
0.1801
0.0554

-0.0023

0.2127
0.0537
0.0732

0.056
0.0942
0.1742
0.0006

In(SiO2/filler)
0.1683
0.0378
0.0268
0.0205
0.0805
0.1346

-0.0034

In(SiO2/filler)
0.3623
0.0021

-0.0509
-0.085
0.0554
0.3869
-0.0181

-0.0006
-0.0006
-0.002
-0.0011
-0.0002
0.0006
0.0001

In(fe/filler)
-0.0026
-0.0011
-0.0042
-0.0009

0.0007
-0.0034
0.0013

In(fe/filler)
-0.0177
-0.0009
-0.0017

0.0047
-0.0023
-0.0181

0.0034

Figure J.16: Semivariogram model tabulation - West zone Spacing 1 logratios
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---> Set name

S1

S2

S3

Nugget

Variance-Covariance matrix

Variable

n(AI203/filler)
n(LOI/filler)
n(Mn/filler)
n(P/filler)
n(S/filler)
n(Si02/filler)
n(fe/filler)

NoO s WwN e

Spherical

Directional Scales
Local Rotation

Variance-Covariance matrix
Variable

n(AI203/filler)
n(LOI/filler)
n(Mn/filler)
n(P/filler)
n(S/filler)
n(SiO2/filler)
n(fe/filler)

Spherical

Directional Scales
Local Rotation

Variance-Covariance matrix
Variable

n(AI203/filler)
n(LOI/filler)
n(Mn/filler)
n(P/filler)
n(S/filler)
n(Sio2/filler)
n(fe/filler)

NO s WNR

NO U WNRP PP

effect

0.3294
0.063
0.0088
0.0653
0.1538
0.2127
-0.0006

In(AlI203/filler)
0.1814
0.0259
0.2346

-0.0154
0.0514
0.2037

-0.0053

In(AlI203/filler)
0.4304
-0.0214
-0.1975
-0.0742
0.1037
0.326
-0.0282

west_2_logratio

1 In(AlI203/filler) In(LOI/filler)

0.063
0.03
0.0512
0.041
0.0333
0.0537
-0.0006

Range

(
Azimuth=N80.00

In(LOI/filler)
0.0259
0.0112
0.0286
0.0001
0.0416
0.0249
-0.0008

Range

(
Azimuth=N80.00

In(LOI/filler)

-0.0214

0.017

0.0239

0.0036

0.0351

-0.0245

0.0013

In(Mn/filler) In(P/filler) In(S/filler) In(SiO2/filler) In(fe/filler)

0.0088
0.0512
0.3784
0.0494
0.0477
0.0732

-0.002

18.00m,
(Geologist

In(Mn/filler)
0.2346
0.0286
0.4277

-0.0014
0.0334
0.3442

-0.0155

70.00m,
(Geologist

In(Mn/filler)
-0.1975
0.0239
0.1069
0.0464
-0.0155
-0.1618
0.012

0.0653
0.041
0.0494
0.0623
0.0327
0.056
-0.0011

18.00m
12.00m,
Plane)

In(P/filler)
-0.0154
0.0001
-0.0014
0.0054
0.0046
-0.0057
-0.001

70.00m
27.00m,
Plane)

In(P/filler)
-0.0742
0.0036
0.0464
0.1052
-0.0553
-0.0952
0.0087

0.1538
0.0333
0.0477
0.0327
0.1506
0.0942
-0.0002

18.00m)

In(S/filler)
0.0514
0.0416
0.0334
0.0046
0.1863
0.0312
0.0059

70.00m)

In(S/filler)
0.1037
0.0351

-0.0155
-0.0553
0.1461
0.0728
-0.006

0.2127
0.0537
0.0732

0.056
0.0942
0.1742
0.0006

In(SiO2/filler)
0.2037
0.0249
0.3442

-0.0057
0.0312
0.2814

-0.0119

In(SiO2/filler)
0.326
-0.0245
-0.1618
-0.0952
0.0728

0.268

-0.024

-0.0006
-0.0006
-0.002
-0.0011
-0.0002
0.0006
0.0001

In(fe/filler)
-0.0053
-0.0008
-0.0155

-0.001
0.0059
-0.0119
0.0042

In(fe/filler)
-0.0282
0.0013
0.012
0.0087
-0.006
-0.024
0.0065

Figure J.17: Semivariogram model tabulation - West zone Spacing 2 logratios

159



---> Set name

S1

S2

S3

Nugget

Variance-Covariance matrix

Variable 1
In(Al203/filler) 1
In(LOI/filler) 2
In(Mn/filler) 3
In(P/filler) 4
In(S/filler) 5
In(Si02/filler) 6
In(fe/filler) 7

Spherical
Directional Scales
Local Rotation

Variance-Covariance matrix

Variable 1
In(AI203/filler) 1
In(LOI/filler) 2
In(Mn/filler) 3
In(P/filler) 4
In(S/filler) 5
In(Si02/filler) 6
In(fe/filler) 7

Spherical
Directional Scales
Local Rotation

Variance-Covariance matrix
Variable

In(AI203/filler)

In(LOI/filler)

In(Mn/filler)

In(P/filler)

In(S/filler)

In(SiO2/filler)

In(fe/filler)

NOoO U WN R

effect

In(AI203 /filler)
0.3294

0.063

0.0088

0.0653

0.1538

0.2127

-0.0006

In(AI203 /filler)
0.3098

0.058

0.3153

0.0866

0.0366

0.1345

0.0286

In(AI203/filler)
0.2176
-0.0152
-0.1644
-0.0762
-0.0137
0.204
0.0012

west_3_logratio

In(LOI/filler)
0.063
0.03
0.0512
0.041
0.0333
0.0537
-0.0006

Range

(
Azimuth=N80.00

In(LOI/filler)

0.058
0.0543
0.1127
0.0042
0.0226
0.0616
-0.002

Range

(
Azimuth=N80.00

In(LOI/filler)

-0.0152

0.0027

0.0141

0.0041

0.0162

-0.015

0

In(Mn/filler) In(P/filler) In(S/filler) In(SiO2/filler) In(fe/filler)

0.0088
0.0512
0.3784
0.0494
0.0477
0.0732

-0.002

18.00m,
(Geologist

0.0653
0.041
0.0494
0.0623
0.0327
0.056
-0.0011

18.00m
12.00m,
Plane)

0.1538
0.0333
0.0477
0.0327
0.1506
0.0942
-0.0002

18.00m)

In(Mn/filler) In(P/filler) In(S/filler)

0.3153
0.1127
0.5104
0.0431
0.0704
0.1485
0.0114

70.00m,
(Geologist

0.0866
0.0042
0.0431
0.0351
0.0025
0.0359
0.0118

70.00m
27.00m,
Plane)

0.0366
0.0226
0.0704
0.0025
0.0117
0.0253
-0.0002

70.00m)

In(Mn/filler) In(P/filler) In(S/filler)

-0.1644
0.0141
0.2246
0.0276
0.0766

-0.1169

-0.0068

-0.0762
0.0041
0.0276
0.0382

-0.0147

-0.0755

-0.0007

-0.0137
0.0162
0.0766

-0.0147
0.1921

-0.0181
0.0071

0.2127
0.0537
0.0732

0.056
0.0942
0.1742
0.0006

In(Si02/filler)
0.1345
0.0616
0.1485
0.0359
0.0253
0.0984
0.0083

In(Si02/filler)
0.204

-0.015
-0.1169
-0.0755
-0.0181
0.2504
-0.0184

-0.0006
-0.0006
-0.002
-0.0011
-0.0002
0.0006
0.0001

In(fe/filler)
0.0286
-0.002
0.0114
0.0118
-0.0002
0.0083
0.005

In(fe/filler)
0.0012

0

-0.0068
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Figure J.18: Semivariogram model tabulation - West zone Spacing 3 logratios
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---> Set name

S1

S2

S3

west_4_logratio

Nugget effect
Variance-Covariance matrix
Variable 1 In(AI203/filler) In(LOI/filler)
In(AI203 /filler) 1 0.3294 0.063
In(LOI/filler) 2 0.063 0.03
In(Mn/filler) 3 0.0088 0.0512
In(P/filler) 4 0.0653 0.041
In(S/filler) 5 0.1538 0.0333
In(Si02/filler) 6 0.2127 0.0537
In(fe/filler) 7 -0.0006 -0.0006

Spherical - Range
Directional Scales = (
Local Rotation = Azimuth=N80.00
Variance-Covariance matrix
Variable 1 In(AI203/filler) In(LOI/filler)
In(AI203/filler) 1 0.0882 -0.021
In(LOI/filler) 2 -0.021 0.0116
In(Mn/filler) 3 -0.0817 -0.0159
In(P/filler) 4 -0.0232 -0.0013
In(S/filler) 5 -0.1136 0.055
In(SiO2/filler) 6 0.1208 -0.0238
In(fe/filler) 7 -0.0199 0.0057

Spherical - Range
Directional Scales = (
Local Rotation = Azimuth=N80.00
Variance-Covariance matrix
Variable 1 In(AlI203/filler) In(LOI/filler)
In(AI203/filler) 1 0.5382 0.1033
In(LOI/filler) 2 0.1033 0.0222
In(Mn/filler) 3 0.0641 0.032
In(P/filler) 4 -0.0571 -0.0155
In(S/filler) 5 0.3599 0.0741
In(Si02/filler) 6 0.4639 0.0895
In(fe/filler) 7 -0.0146 -0.0048

In(Mn/filler) In(P/filler) In(S/filler) In(SiO2/filler) In(fe/filler)

0.0088
0.0512
0.3784
0.0494
0.0477
0.0732
-0.002

18.00m,
(Geologist

In(Mn/filler)
-0.0817
-0.0159

0.2696
0.058
-0.0441
-0.1422
0.0104

70.00m,
(Geologist

In(Mn/filler)
0.0641
0.032

0.256
-0.0377
0.0801
0.036
-0.0115

0.0653 0.1538 0.2127

0.041 0.0333 0.0537
0.0494  0.0477 0.0732
0.0623 0.0327 0.056
0.0327 0.1506 0.0942

0.056  0.0942 0.1742
-0.0011  -0.0002 0.0006

18.00m

12.00m, 18.00m)

Plane)

In(P/filler) In(S/filler) In(SiO2/filler)
-0.0232  -0.1136 0.1208
-0.0013 0.055 -0.0238

0.058 -0.0441 -0.1422
0.0227 0.0012 -0.0459
0.0012 0.2647 -0.1349
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0.0089 0.0295 -0.0285
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Plane)
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0.0042

Figure J.19: Semivariogram model tabulation - West zone Spacing 4 logratios
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---> Set name

S1

S2

S3

Nugget

Variance-Covariance matrix

Variable 1
In(AI203/filler) 1
In(LOI/filler) 2
In(Mn/filler) 3
In(P/filler) 4
In(S/filler) 5
In(SiO2/filler) 6
In(fe/filler) 7

Spherical
Directional Scales

Variance-Covariance matrix
Variable

In(AI203/filler)

In(LOI/filler)

In(Mn/filler)

In(P/filler)

In(S/filler)

In(SiO2/filler)

In(fe/filler)

Spherical
Directional Scales

Variance-Covariance matrix
Variable

In(AI203 /filler)

In(LOI/filler)

In(Mn/filler)

In(P/filler)

In(S/filler)

In(SiO2/filler)

In(fe/filler)

N O s WN R

NGO UhAWN R R

effect

In(AI203/filler)
0.3294

0.063

0.0088

0.0653

0.1538

0.2127

-0.0006

In(AI203/filler)
0.0125
-0.0086
0.0053
-0.0033
-0.0364
0.0255
-0.0125

In(AI203/filler)
0.9714
0.0176

-0.0066

-0.1284
-0.125
0.9347

-0.1543

west_5_logratio

In(LOI/filler)
0.063
0.03
0.0512
0.041
0.0333
0.0537
-0.0006

Range

(

In(LOI/filler)
-0.0086
0.0286
-0.0395
0.0257
0.0331
0.0049
0.0082

Range

In(LOI/filler)

0.0176

0.0715

0.1561

0.0497

0.0461

0.017

-0.0034

In(Mn/filler) In(P/filler) In(S/filler) In(SiO2/filler) In(fe/filler)

0.0088
0.0512
0.3784
0.0494
0.0477
0.0732
-0.002

18.00m,

In(Mn/filler)
0.0053
-0.0395
0.071
-0.0204
-0.055
-0.0367
-0.0057

70.00m,

In(Mn/filler)
-0.0066
0.1561
0.4827
0.1125
0.1438
-0.0213
-0.0139

0.0653 0.1538 0.2127

0.041 0.0333 0.0537
0.0494 0.0477 0.0732
0.0623 0.0327 0.056
0.0327 0.1506 0.0942

0.056 0.0942 0.1742
-0.0011  -0.0002 0.0006

18.00m

12.00m, 18.00m)

In(P/filler) In(S/filler) In(SiO2/filler)
-0.0033  -0.0364 0.0255
0.0257 0.0331 0.0049
-0.0204 -0.055 -0.0367
0.0526  -0.0225 -0.002
-0.0225 0.1769 -0.0292
-0.002  -0.0292 0.098
0.0019 0.0295 -0.0351

70.00m
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-0.1284 -0.125 0.9347
0.0497 0.0461 0.017
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0.055 0.0512 -0.1233
0.0512 0.0588 -0.1242
-0.1233  -0.1242 0.901
0.0202 0.0159 -0.147

-0.0006
-0.0006
-0.002
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0.0006
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0.0019
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-0.0034
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0.0259

Figure J.20: Semivariogram model tabulation - West zone Spacing 5 logratios
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Appendix K

Histograms - Sample and estimated

data
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Figure K.1: Sample and Estimate histograms A/, O3 plots
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Figure K.3: Sample and Estimate histograms LOI plots
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Figure K.4: Sample and Estimate histograms Mn plots
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Figure K.5: Sample and Estimate histograms P plots
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Figure K.6: Sample and Estimate histograms S plots
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SiO2

Figure K.7: SiO; plots
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Figure K.8: Filler plots
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Figure K.9: Histograms of Jack-knife informing data, Al,O3, Fe, LOI, and Mn
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Appendix L

Scatter plots - Univariate errors
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Figure L.1: Error Scatter plots - By column A, O3 far left, Fe near left, LOI near right,
and Mn far right in row order of decreasing data density, Spacing 1 on the top and Spacing
5 at the bottom. The abscissa in each case is the GH distribution, the ordinate is the OK
distribution.
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Appendix M

Histograms - Univariate errors
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Figure M.1: Histograms of univariate errors generated from the OCK method - By column
Aly O3 far left, Fe near left, LOI near right, and Mn far right in row order of decreasing
data density, Spacing 1 on the top and Spacing 5 at the bottom.
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Figure M.2: Histograms of univariate errors generated from the OCK method - By column
P far left, Filler near left, S near right, and SiO; far right in row order of decreasing data
density, Spacing 1 on the top and Spacing 5 at the bottom.
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Figure M.3: Histograms of univariate errors generated from the GH method - By column
Aly O3 far left, Fe near left, LOI near right, and Mn far right in row order of decreasing
data density, Spacing 1 on the top and Spacing 5 at the bottom.
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Figure M.4: Histograms of univariate errors generated from the GH method - By column
P far left, Filler near left, S near right, and SiO; far right in row order of decreasing data
density, Spacing 1 on the top and Spacing 5 at the bottom.

181



182



Appendix N

Histograms - Compositional errors
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Figure N.1: Histograms of Euclidean errors - OCK estimates on the left and GH estimates
on the right, in order of decreasing spatial density Spacing 2 on top, Spacing 5 on bottom.
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Figure N.2: Histograms of Aitchison errors - OCK estimates on the left and GH estimates
on the right, in order of decreasing spatial density Spacing 2 on top, Spacing 5 on bottom.
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Appendix O

Univariate error base maps
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Figure O.1: Base maps of univariate Al, O3 errors generated by GH.
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Figure O.2: Base maps of univariate A/, O3 errors generated by OCK.
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Figure O.3: Base maps of univariate Fe errors generated by GH.
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Figure O.4: Base maps of univariate Fe errors generated by OCK.
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Figure O.7: Base maps of univariate Mn errors generated by GH.
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Figure O.10: Base maps of univariate P errors generated by OCK.
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Figure O.11: Base maps of univariate filler errors generated by GH.
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Figure O.12: Base maps of univariate filler errors generated by OCK.
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Figure O.13: Base maps of univariate S errors generated by GH.
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Figure O.14: Base maps of univariate S errors generated by OCK.
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Figure O.15: Base maps of univariate SiO; errors generated by GH.

202

| | | |
720900 721000 721100 721400
| | | |
720900 721000 721100 721400
| | | |
720900 721000 721100 721400
| 1 | |
720900 721000 721100 721400
| 1 | |
720900 721000 721100 721400




6678025

6678000

6677975

6677950

6677925

6678025

6678000

6677975

6677950

6677925

6678025

6678000

6677975

6677950

6677925

6678025

6678000

6677975

6677950

6677925

6678025

6678000

6677975

6677950

6677925

|
720900

| | L | |
721000 721100 721200 721300 721400

T
° o
L o _
L o _
S
o o
| | | | | |
720900 721000 721100 721200 721300 721400
L o _
)
o s
| | | | | |
720900 721000 721100 721200 721300 721400
C T ]
o ©
- o) -
L o _
(o)
o 5
| | | | | |
720900 721000 721100 721200 721300 721400
T
(o)
L ° _
e fed
| | | | | |
720900 721000 721100 721200 721300 721400

Figure O.16: Base maps of univariate SiO, errors generated by OCK.
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Appendix P

Compositional error base maps
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Figure P.1: Base maps of Euclidean errors generated by OCK.
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Figure P.2: Base maps of Euclidean errors generated by GH.
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Figure P.3: Base maps of Aitchison errors generated by OCK.
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Figure P.4: Base maps of Aitchison errors generated by GH.
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Appendix Q

Accuracy and Precision plots
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Figure Q.1: Accuracy and precision of OCK estimated distributions as a function of de-
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data density.
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Figure Q.2: Accuracy and precision of GH estimated distributions as a function of de-

creasing data density.
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