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Abstract—– Resource sharing between Book-Ahead (BA) and 
Instantaneous Request (IR) reservation often results in high 
preemption rate of on-going IR calls. High IR call preemption 
rate causes interruption to service continuity which is considered 
as detrimental in a QoS-enabled network. A number of call 
admission control models have been proposed in literature to 
reduce the preemption rate of on-going IR calls. Many of these 
models use a tuning parameter to achieve certain level of 
preemption rate. This paper presents an Artificial Neural 
Network (ANN) model to dynamically control the preemption 
rate of on-going calls in a QoS-enabled network. The model maps 
network traffic parameters and desired level of preemption rate 
into appropriate tuning parameter. Once trained, this model can 
be used to automatically estimate the tuning parameter value 
necessary to achieve the desired level of preemption rate. 
Simulation results show that the preemption rate attained by the 
model closely matches with the target rate. 

Keywords: quality of service, preemption, resource reservation. 

I.  INTRODUCTION  
For the past decades, Quality of Service (QoS) provisioning 

has been a major research issue mainly because of increasing 
demand of multimedia and distributed applications. Resource 
reservation is one of the widely practiced techniques that are 
used to ensure guaranteed QoS of applications. Two types of 
reservation techniques have been proposed by researchers: i) 
Book-Ahead (BA) reservation ii) Instantaneous Request (IR) 
reservation. Multimedia and distributed applications that 
require long duration, high bandwidth demand and have time 
sensitive significance are good candidates for  Book-Ahead 
reservation [1-5]. In BA reservation, resource is reserved well 
in advance from the announced starting time over the declared 
duration to ensure that the application will not experience 
scarcity of resource at the point of its activation. Contrarily, an 
IR call connection requests for immediate reservation and 
usage of resources. Resource sharing between BA and IR 
requests imposes a number of challenges. One of them is to 
keep the preemption rate of on-going IR calls very low as 
preemption is considered as an interruption to service 
continuity and is thus perceived as a serious issue from users’ 
perceived QoS point of view. In this paper, a novel application 
of ANN is shown to maintain service continuity of on-going IR 
calls in a QoS-enabled network with provision for BA 
reservation. 

Artificial Neural Network (ANN) has been a useful tool to 
solve a number of complex problems in relation to Quality of 
Service (QoS) provisioning in communication research. Chou 
and Wu proposed a neural network based model [6] which 
adaptively adjusts network parameters like threshold, push-out 
probability and incremental bandwidth size of virtual path to 
maintain guaranteed QoS in ATM networks. Kumar et al. 
demonstrated that reduction of assigned resources needed to 
maintain guaranteed QoS under network overload conditions 
could be successfully done in real time with the assistance of 
neural networks [7]. Rovithakis et al. [8] proposed a method 
which uses neural networks as a controller to map QoS 
parameters at the application level for multimedia services into 
appropriate values for the media characteristics in order to 
achieve the required user satisfaction without violating the 
available bandwidth constraints. Tong et al. [9] investigated the 
application of a multi-layer perceptron (MLP) network and a 
radial basis function (RBF) network to estimate packet loss rate 
which is considered as an important QoS parameter in a 
computer network. Application of Hopfield Neural Network 
(HNN) for dynamic channel allocation (DCA) in cellular radio 
network was shown by Lazaro et al. [10]. In this work, we use 
an ANN model for estimation of the value of a tuning 
parameter for a previously proposed call admission control 
scheme to achieve a target level of operating IR call 
preemption rate.  

Researchers have proposed different models to keep the IR 
call preemption rate low in a QoS-enabled network where 
resources are shared between IR and BA calls. Greenberg et al. 
[1] proposed an approximate interrupt probability based 
admission control scheme that showed that resource sharing 
between IR and BA calls achieves better network performance 
than strict partitioning of resources proposed in [11], [12]. 
Schelen and Pink [2] proposed a model to reduce the number 
of preemption by introducing the concept of look-ahead time. 
Look-ahead time is defined as the pre-allocation time, i.e., the 
time for starting to set aside resources for advance reservations 
so that there is no resource scarcity at the stating time of a BA 
call. Ahmad et al. [3] proposed a Dynamic Look-Ahead Time 
(DLAT) based call admission control model that considered 
network dynamicity and attained better performance than 
CLAT based CAC model. Lin et al. [4] proposed an 
application aware look-ahead time based admission control 
scheme which considered different look-ahead time for 
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different applications. Preemption rate is a key parameter in a 
QoS-enabled network. High preemption rate causes service 
degradation on users’ side. From network perspective, high 
preemption rate causes extra over-head for re-routing, heavy 
signalling messages and congestion of traffic while very low 
preemption rate causes low utilization of network capacity. 
Desired level of preemption rate is not often a fixed value for 
all operating conditions in a particular network. Operating 
preemption rate is governed by the interests of both users and 
network provider and can be best addressed as an optimization 
problem. If most of the on-going applications are highly 
sensitive to service interruption, preemption rate should be 
maintained very low and vice versa. As a result, operating 
preemption rate is not a fixed value and should be adaptive 
with changing network conditions. CLAT model uses look-
ahead time as the tuning parameter to achieve different values 
of preemption rate while DLAT model uses a tuning parameter 
‘c’ to achieve operating preemption rate.  

The model proposed in [4] is unable to adjust itself to 
achieve different values of preemption rate as it uses no tuning 
parameter. A model would be extremely useful to map the 
desired operating preemption rate and the current network 
traffic parameters into the tuning parameter which when fitted 
into CAC models attains the desired preemption rate in a real 
time network. The relationship among the tuning parameter, 
preemption rate and other network traffic parameters in DLAT 
model is very complex to determine using non-linear 
regression approach. Non-linear regression approach is thus 
restricted to a limited number of network parameters. This 
makes neural network a suitable candidate for this problem 
because of its capability of realizing any complex input-output 
relationship to an arbitrary degree of accuracy. This paper 
proposes an artificial neural network model to map the desired 
preemption rate and traffic parameters to the tuning parameter 
of DLAT based CAC model. Simulation results show that the 
proposed model successfully achieves the target preemption 
rate with different network conditions. 

II. DYNAMIC LOOK-AHEAD TIME (DLAT) BASED CAC  
A BA call request is characterized by two additional 

parameters, starting time and call holding time along with other 
QoS parameters. If the request is granted the application is 
guaranteed to have required resources at the time of its start. In 
contrast, starting time for an IR call is immediate and call 
holding time is open ended. Problem occurs when a BA call 
becomes active at certain point of lifetime of an on-going IR 
call and there does not exist enough available resources to 
support the BA call (Fig. 1). On-going IR calls are required to 
be preempted to meet BA bandwidth demand. IR call 

preemption rate which indicates the ratio of preempted IR calls 
to accepted IR calls should be reasonably small in a QoS-
enabled network. It is the responsibility of CAC model to keep 
the preemption rate low. 

Dynamic Look-Ahead Time (DLAT) based CAC model 
calculates look-ahead time taking the dynamicity of traffic 
pattern and network state into consideration. It considers the 
current IR load, future BA load, IR call release rate, variation 
in load and arrival rate to calculate the look-ahead time. It 
dynamically updates the value of look-ahead time at regular 
time interval. Look-ahead time is calculated by the following 
equation ([3]): 

max ( ( ) ( ) (1 ) ( ) , 0) 1( , ) ( )
(1 )

IR

IR IR IR

A s R t l CLAT t s c
b

σ τ σ
τ λ λ

+ + + −= +
−

  

                                                                                                 (1) 

Here, LAT(t,s) is the look-ahead time w.r.t traffic condition 
at current time t and BA activation time s (t<s). A(s) is the 
aggregate bandwidth reserved for BA calls to be activated at 
time s, R(t) is the aggregate bandwidth used by IR calls at time 
t, IRτ is the mean bandwidth demand of IR calls, IRλ  is the 
mean arrival rate of IR calls, l is the normalized BA limit 
which determines maximum allowable aggregate BA load, b is 
the call blocking probability for IR calls, σ(.) is the standard 
deviation and c(>1) is the tuning parameter. The value of ‘c’ 
affects look-ahead time which, in turn, controls preemption 
rate. 

Look-ahead time (LAT) is calculated at regular intervals of 
operating time and IR calls are checked against the following 
rule at call admission time. 

))((max sARrC
LATs

++>
∈                                         (2) 

Here C is the total capacity of the link, r is the bandwidth 
demand of the IR call, R is the aggregate bandwidth consumed 
by on-going IR calls. 
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Look-ahead time is computed at each interval for a number of 
entries in the Book-ahead table. Those entries are taken into 
calculation for which the following rule satisfies: 

( ) ( )
(1 )

i
i

IR IR

A s A tt s
b τ λ

−> −
−

                                                       (3) 

The right hand side is conservatively computed on the 
worst case assumption that the network is completely utilized.  
In summary the algorithm is given as follows: 

 

As mentioned earlier, DLAT model can successfully achieve 
low preemption rate in QoS-enabled network. However, the 
desired operating level of preemption rate is subject to change 
depending on users’ demand and network management. For 
example, at a certain operating period if 80% of the total calls 
in the network are sensitive to service interruption, it is 
important for the network enterprise to maintain the 
preemption rate less than 0.2 to ensure that QoS guarantee is 
properly maintained. Otherwise it will result in user 
dissatisfaction due to excessive interruption of guaranteed 
service. Similarly, if the number of QoS-sensitive applications 
is small at a certain operating period, the network can operate 
at a reasonably high preemption rate. To assess and reflect the 
change in network condition, interval based monitoring is often 
used in a network which effectively determines the up-to-date 
traffic conditions and the desired level of preemption rate for 
the next operating interval. To achieve the desired but changing 
preemption rate in a real time network by using a model like 
DLAT model, it is important to devise an intelligent model 
which will automatically respond to the changing network 
condition and accordingly set the tuning parameter value so 
that the desired level of preemption rate is duly maintained. 
This work uses such an intelligent model using neural network 
to address this issue in the following section. 

III. ANN BASED MODEL OF LOOK-AHEAD TIME 

A. The Proposed Model 
A network is characterized by network parameters like 

mean bandwidth demand of BA calls BAτ , mean bandwidth 
demand of IR calls IRτ , mean arrival rate of BA calls BAλ , 
mean arrival rate of IR calls IRλ , mean call holding time of 

BA calls BAT , mean call holding time of IR calls IRT , BA 
limit l and the IR call preemption rate ρ. The nature of 
distribution for bandwidth demand, arrival rate and call holding 
time can be found from proper periodic traffic analysis. 
Preemption rate is a complex non-linear function of the 
network parameters. The aim of this work is to find the value 
of tuning parameter ‘c’ which when fitted into Eq. (1) provides 
the desired operating preemption rate. The variable network 
parameters, as shown in Fig. 2, are the inputs to the ANN and 
produces tuning parameter ‘c’ as the output. Parameters IRτ , 

IRλ , BAτ , BAλ , IRT , BAT , l  and ‘c’ are the inputs to the DLAT 
model which again provides look-ahead time LAT as the 
output. New calls are checked against the LAT according to 
Eq. (2).  

The ANN is trained with a wide range of network 
parameters for different network conditions. The training 
dataset is created by simulating the DLAT model as follows: 
for a particular set of IRτ , BAτ , IRλ , BAλ , IRT , BAT , l and 
tuning parameter ‘c’,’, the simulation is done for 2.5x106 sec 
calculating look ahead time at 10s interval. At the end of each 
simulation the number of calls preempted is calculated and 
preemption rate is determined. To cover a large spectrum of 
network operating points, the parameters were varied over a 
wide range. For each combination of parameters, the value of 
‘c’ was varied from 1~21 (c = 21 provides acceptably low 
preemption rate for different traffic parameters in our 
simulation) yielding different preemption rate. This procedure 
generates a data set where each set of traffic parameters and 
preemption rate is associated with a ‘c’ value, necessary to 
train an ANN model. Once the ANN model is trained with 
sufficient amount of training data, the network is expected to 
estimate the appropriate value of ‘c’ in response to the network 
state.  

B. Learning Algorithms  
Neural networks are a class of nonlinear model that can 

approximate any nonlinear function to an arbitrary degree of 
accuracy and have been used to realize complex input-output 
mapping in different domains. The most commonly used neural 
network architecture is multilayer feedforward network. It 
consists of an input layer, an output layer and one or more 
intermediate layer called hidden layer. All the nodes at each 
layer are connected to each node at the upper layer by 
interconnection strength called weights. A training algorithm is 
used to attain a set of weights that minimizes the difference 
between the target and actual output produced by the network. 
For supervised learning, Backpropagation [13] is the most 
commonly used algorithm to train multi-layer feedforward 
network. In this study, we experimented with two improved 
variants of backpropagation algorithm: Scaled Conjugate 
Gradient (SCG) [14] and Backpropagation with Bayesian 
Regularization (BR) [15]. 

IV. SIMULATION RESULTS 
Both training and testing data have been collected from the 

simulation results carried by Ahmad et al. [3]. A dataset 
consisting of 880 data has been used in the ANN model. The 

Step 1: At a time t of a time interval, for all entries is  in 
Book-ahead table that satisfy Eq. (3) follow step 2. 
Step 2: Calculate look-ahead time ),( istLAT . 
Step  3:     Find       the    ),( istLAT       for        which 

),( ii stLATst −>  and )),(( ii stLATst −−  is minimum. 
Step 4: If no such ),( istLAT  is found then LAT  is set 
to zero. Go to step 6. 
Step 5: Set LAT  equal to ),( istLAT . 
Step 6: Quit the algorithm and go to step 1 when the 
next interval is due. 
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dataset covers wide range of combinations of network and 
traffic parameters. 85% of the total data set was used for 
training purpose and the rest 15% was used to test the ability of 
the model to produce correct value of ‘c’ (tuning parameter). 
Scale conjugate gradient (SCG) and Bayesian Reguralization 
(BR) back propagation algorithm has been used for training the 
data. The network consists of 8 inputs and 1 output (Fig. 2).  
The experiment was conducted using different combination of 
hidden layers and hidden units. Three hidden layers consisting 
of 40, 25, 15 neurons, respectively were found to provide the 
best match on the test data measured in terms of mean squared 
error calculated over the target and estimated ‘c’ values. Since 
the performance of an ANN network depends on the initial 
weights and other learning parameters, a number of trails were 
conducted; each trail was continued for 40,000 epochs unless   

 

terminated at a predefined mean squared error. For simulation 
of this model we used the standard ANN tools in MATLAB. 

Table 1 shows the mean squared error, maximum deviation 
with respect to target ‘c’ and mean error on test data for the 
best trial in SCG and BR algorithms. The table indicates that 
BR algorithm is more suitable for estimation of ‘c’ values 
(3.4% less mean error) compared to SCG algorithm. Results 
found on the test data for SCG and BR algorithm are also 
reported in Fig. 3. It shows that in almost 47% of the test data, 
the ‘c’ value estimated by BR algorithm lie within 1% error 
margin with respect to the target value while for SCG 
algorithm around 38% of the test data lie within 1% error. In 
23% of the test data, estimated ‘c’ value differs from the target 
value in BR algorithm by an error margin in the range of 1.0 ~ 
2.5% while in almost 21% cases, error lies within the range of 
2.5~5.0%. Around 5% of the total output was found to deviate 
by more than 5% error on target value. These data causing high 
deviation are mainly for higher target value of ‘c’ (c>11.0) for 
which preemption rate approaches very close to zero and larger 
‘c’ values result in very small difference in preemption rate. In 
only 0.7% of test data, the estimated ‘c’ value deviates 10% or 
more from its actual value in BR algorithm. From Table 1 and 
Fig. 3, it can be concluded that the BR algorithm is best suited 
for the current problem and hence the rest of the simulation 
results presented in this section are based on BR algorithm.  A 
potential problem in learning is the lack of smoothness of the 
trained weights which may contribute to a network’s poor 
performance in generalization. Bayesian regularization 
technique incorporate the magnitude of weight values into the 
objective function to minimize leading to a network with less 
variation among the trained weights which results in better 
performance. 

The value estimated by the ANN model with BR algorithm 
is then fed to DLAT model. Because of the deviation of ANN 
estimated value from the target value, network performance 
parameters like preemption rate, utilization and call blocking 
rate also deviate from the desired values. Further investigation 
was done to assess this impact. Since the test data is quite large 
(132), a certain number of test samples were chosen for 
presentation following the frequency distribution shown in Fig. 
3. These samples, target and predicted ‘c’ values and their 
deviations are shown in Fig. 4: sample  number 1-4 (<1%), 5-6 
(1~2.5 %), 7-8(2.5~5%), 9(5~7.5%), 10(7.5~10%) and 11( 
>10%), the number within the bracket indicates the error range. 

Table 1: Accuracy of Estimation in ANN model. 

Training 

Algorithm 

Mean 

Square 

Error 

Maximum 

Deviation (%) 

Mean % 

Error  

 

SCG 0.0764 12.7 2.51 

BR 0.0610 11.2 1.88 
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Figure 3: Frequency distribution of percentage error on test 
data. 

Figure 4: Comparison of ‘c’ values on test data. 

Figure 5: Comparison of preemption rate on test data. 
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Figure 4 shows that actual value of ‘c’ provided by the 
ANN model is very close to the target value of ‘c’. Impact of 
actual and target value of ‘c’ on preemption rate is reported  in 
Fig. 5. In the worst case for sample #11 which is the 
representative of ANN estimated ‘c’ value with the maximum 
percentage (11.2%) error, the difference in preemption rate is 
found to be 2.29%. For most of the data, the achieved 
preemption rate matches very  closely with the preemption rate 
corresponding to the target value of ‘c’.  

V.      CONCLUSION 
This paper demonstrates the use of neural networks in 

modelling of look-ahead time in BA reservation for controlling 
preemption rate of on-going IR calls in a QoS-enabled 
network. The data set to train the model was created by 
simulating the previously proposed DLAT based CAC model 
with different traffic and tuning parameter values that govern 
the preemption rate. Once trained, the ANN model can 
estimate the value of tuning parameter under all network 
operating conditions to achieve the desired preemption rate. 
Simulation results demonstrate close match between the target 
and actual value of tuning parameter ‘c’ and preemption rate. 
The ANN model when used in conjunction with DLAT model 
can further improve its potential to maintain QoS by 
appropriately controlling the IR call preemption rate. 
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