
Edith Cowan University Edith Cowan University

Research Online Research Online

Theses : Honours Theses

2003

Improving the programming language translation process via Improving the programming language translation process via

static structure abstraction and algorithmic code transliteration static structure abstraction and algorithmic code transliteration

Robert W. Chandler
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses_hons

 Part of the Management Information Systems Commons

Recommended Citation Recommended Citation
Chandler, R. W. (2003). Improving the programming language translation process via static structure
abstraction and algorithmic code transliteration. https://ro.ecu.edu.au/theses_hons/134

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses_hons/134

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses_hons
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses_hons?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses_hons/134

 Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons

who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement.

 A court may impose penalties and award damages in relation to

offences and infringements relating to copyright material. Higher

penalties may apply, and higher damages may be awarded, for

offences and infringements involving the conversion of material

into digital or electronic form.

Improving the Programming Language Translation
Process via Static Structure Abstraction and

Algorithmic Code Transliteration

A thesis submitted in partial fulfilment of the requirements for the degree of

Bachelor of Science Honours (Software Engineering)

By: Robert W. Chandler
Student ID: 2003078

Faculty of Computing, Health and SCience
Edith Cowan University

Supervisor: Michael Collins

Date of submission: 141
h November 2003

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

Abstract

Fully automated programming language translation has been described as an

unrealistic goal, with previous research being limited by a ceiling of 90% successful

code translation. The key issues hindering automatic translation efficacy are the:

• maintainability of the translated constructs;

• full utilisation of the target language's features; and

• amount of manual intervention required to complete the translation process.

This study has concentrated on demonstrating improvements to the

translation process by introducing the programming-language-independent, Unified

Modelling Langnage (UML) and Computer Assisted Software Engineering (CASE)

tools to the legacy-system language migration project. UML and CASE tools may

be used to abstract the static framework of the source application to reduce the so

called "opaqueness" of the translated constructs, yielding a significantly more

maintainable product.

The UMLand CASE tools also enhance use of the target language features,

through forward engineering of the native constructs of the target language during

the reproductiort of the static framework. Source application algorithmic code

translation, performed as a separate process using transliteration, may preserve

maximum functionality of the source application after completion of the static

structure translation process. Introduction of the UML and CASE tools in

conjunction with algoritlnnic code transliteration offers a reduction of the manual

intervention required to complete the translation process.

II

Table of Contents

1 Introduction .. 1
2 The Problem ... 4

2.1 Background to the Study ... 4
2.2 Significance of the Study .. 5
2.3 Statement of the Problem .. 6
2.4 Research Questions ... 7
2.5 Chapter Summary ... 8

3 A Review of the Literature ... 9
3.1 Studies into System Evolution through Code Migration .. 9
3.2 Studies Similar to this Study ... 13
3.3 Grammar development. ... 16
3.4 Application Selection .. 20
3.5 Chapter Summary ... 25

4 Research Design .. : 26
4.1 General Method .. 26
4.2 Specific Procedures ... 27
4.3 Potential Enhancements not Incorporated in this Study 33
4.4 Chapter Summary ... 34

5 Implementation and Findings ... 35
5.1 Phase 1: The Static Structure .. 35
5.2 Phase 2: The Algorithmic Code .. 51
5.3 Phase 3: The Analysis and Findings ... 62
5.4 Findings .. 65
5.5 Discussion ... 66
5.6 Evidence Found To Support the Research Questions ... 69
5.7 Chapter Summary ... 72

6· Conclusions .. 73
Appendices ... 75

Appendix A: Sample application- Towers of Hanoi. ... 75
Appendix B: The generated JADE Towers of Hanoi schema file 77
Appendix C: Rational Rose model file grammar ... 79
Appendix D: A subset of C++ grammar .. 85
Appendix E: The JADE language grammar .. 88
Appendix F: Sample application- Building Inheritance ... 95
Appendix G: The generated JADE Building Inheritance schema tile 97
Appendix H: The converted Towers ofHanoi schema file .. 99
Appendix 1: The converted Building Inheritance schema file ... 103
Appendix J: Glossary oftenns ... 108

References .. 113

Ill

Table of Figures

Figure 1: Example UML class diagram showing inheritance in a building context.._l2
Figure 2: Framework properties associated with JADE models 16
Figure 3: A simple assignment statement grammar (Sebesta, 1999, p. 113) 17
Figure 4: A sample parse tree, (Sebesta, 1999, p. 114) .. 17
Figure 5: Building a parser with ProGrammar (NorKen, 2003, p. 14)•................. 19
Figure 6: Terms used in program transformation (Harsu, 2000, p. 6) 20
Figure 7: The Towers of Hanoi problem ... 21
Figure 8: A high~ level view of the process for the study ... 27
Figure 9: Reverse engineered VC++ application ... 36
Figure 10: The JADE root-schema class diagram .. 37
Figure 11: VC++ model class attribute properties ... 39
Figure 12: JADE model class attnDute properties ... 39 ·
Figure 13: The Towers of Hanoi program at run-time ... 40
Figure 14: Inheritance sample application class diagram .. 41
Figure 15: Re-assigning the application to the target language 42
Figure 16: The JADE connection dialog .. 42
Figure 17: Assigning the class objects to the JADE schema 43
Figure 18: Class relations. the parent class and the map file 44
Figure 19: Re-assigning attribute types .. 45
Figure 20: The manipulated inheritance model ... 46
Figure 21: Import/Export progress report dialog .. 47
Figure 22: The converted model Design Object .. 48
Figure 23: The blank model Design Object ... 48
Figure 24: Converted model file Tower object. ... 49
Figure 25: Class method references to VC++ .. 49
Figure 26: VC++ path reference .. 50
Figure 27: Extra VC++ node definitions .. 50
Figure 28: Towers of Hanoi parse tree ... 52
Figure 29: Regularly used algorithm example in pseudocode 54
Figure 30: A mapping of the data types (Terekhov and Verhoef 2000, p. I OS) 55
Figure 31: Setup of a target file parser ... 56
Figure 32: Searching a method for algorithmic code ... 57
Figure 33: Contents of current_statement_]ist. .. 58
Figure 34: Towers of Hanoi addDisks() parse tree .. 59
Figure 35: for_list node value .. 60
Figure 36: JADE equivalent to Figure 35 .. 60
Figure 37: Converts Figure 35 to Figure 36 ... 61
Figure 38: Method of inc_ statement conversion .. 61
Figure 39: A converted schema imported into JADE .. 63
Figure 40: The building inheritance output as depicted in Figure 39 64
Figure 41: Converted array assigning •for loop' .. 67
Figure 42: The original C++ 'for loop' .. 67
Figure 43: Method signature alteration .. 68

iv

Declaration

I declare that this thesis does not incorporate without acknowledgment any material

previously submitted for a degree in any institution of higher education, and that, to

the best of my knowledge and belief, it does not contain any material previously

~7'"J'l'1"Y ot r P,erson except where due acknowledgment is made.

Signature:-j

Date: __ :=."-'---=--ade~OO=Ij¥-· _

v

Acknowledgements

Firstly, I would like to acknowledge the support Michael Collins has

provided before and during this project. His encouragement and belief in me has

been immeasurably helpful. In addition, I would like to acknowledge Dr. Leisa

Annstrong and Chris Bolan, both of whom acted as reviewers for the proposal of this

project, along with Daphne Brosnan for her grammar and structure insights during

the early stages. Their comments and suggestions were invaluable.

I would like to thank the members of the 'M~team', the 'mentees' and

honours students wading doggedly through the mire each Wednesday evening. In

addition, thanks must go to Judy Clayden for late night editing and her pedantic

approach to all manner of references and to Dr. Karen Anderson for allowing me to

step out of another project, thereby giving me the opportunity to engross myself in

this investigation.

Thanks to my family and especially my wife Karen, who provided me with

an environment in which to work comfortably and quietly, for what must have

seemed like unending hours, days, weeks and months... Her endurance in

entertaining our children throughout this time was inspirational; I hope that soon we

will be able to have nonnal adult conversations once again.

Finally, Harry and Emily, my babies, now maybe we can have some fun. It

may not be long before you are using the computer all day and night!

vi

1 Introduction

This chapter introduces the problems associated with legacy system

programming language conversion projects, a description of the aims of this study

and a synopsis of the remainder of this document.

The literature in the area of programming language translation, e.g. Harsu

(2000), Moynihan and Wallis (1991) and Terekhov (2001), suggests that fully

automated translation of one programming language to another is an unrealistic goal.

Problems cited with the traditional process may be listed under the following points:

1. maintainability of the translated "objects" or "constructs";

2. utilisation of the features ofthe target language; and

3. need for manna! intervention, either before or after the translation process.

Moynihan and Wallis (1991, p. 396) expressed concern over the first point

regarding the conversion of the constructs of the source application to another HighM

Level Programming Language (HLPL), resulting in "opaque" constructs that are

difficult to maintain. Also of concern to Moynihan & Wallis (1991), is the second

point in that a target system, created by the translation., may not benefit fully from

those features that made the target language attractive for the translation. The third

point relates to the amount of source-code that may be translated automatically Harsu

(2000), Moynihan and Wallis (1991) and Terekhov (2001). Harsu (2000), for

example, reports the amount of code translated automatically at 90% of her legacyM

system project's source-code, a significant improvement over the 70%- 80% success

rate reported by Markosian, Newcomb, Brand, Burson, and Kitzmiller (1994), 6

years earlier.

This study establishes the Unified Modelling Language (UML) and Computer

Aided Software Engineering (CASE) tools as essential components, capable of

enhancing the maintainability and efficiency of translated software and reducing the

amount of source code requiring mt".nual intervention. A consequence of the use of

such tools is the reduction of costs normally associated with manual language

translation processes.

Chapter 2 presents a background to the study and outlines why researchers

suggest that modem applications must evolve. The significance of the study is

presented followed by a description of the problems normally associated with the

traditional methods of programming language translation. The research questions are

then stated.

Chapter 3 provides a review of the literature relevant to the field of

programming language translation and the use of the UML and CASE tools. The

review describes system evolution, Source-to-Source translation and highlights

similar studies. The literature reviewed is used to support the justification for the

approach taken in this project.

Chapter 4 combines the needs outlined in the introduction and background

with the foundations provided by the liter.iture review to develop the concepts

presented in this study. The research design and method are described, detailing the

specific processes used to generate the verifiable outcomes of this study.

Chapter 5 describes the findings of this study and presents evidence to answer

the fundamental research questions. The chapter provides relevant components of

those source and target model schemas that were compared and contrasted to support

the evidence that validates the findings of this study.

Chapter 6 concludes the study. Implications of this study are discussed

together with the potential for further investigation and research in this field. A

summary of the initial study proposal and the outcomes and strategies developed

during the course of the investigation are also outlined in the chapter. For the

2

reader's convenience, a glossary of terms used in this document has been provided in

Appendix J.

In summary, conventional automatic translation of legacy systems leaves, at

best, 10% of the total Lines of Code (LOC) for manual intervention to complete

and/or refine the process. Where non~trivial systems are to be converted, such

manual intervention involves considerable costs. The study concludes that such

costs may be minimised via conjoint activities of translation of both static and

algorithmic source application components.

3

2 The Problem

2.1 Background to the Study

The tenn "legacy-system" is used to describe outdated applications built

using obsolescent languages (Ducasse, 2001). However, Ducasse (2001) concedes

that some applications, although written using modem, Object-Oriented (00),

programming languages such as C++, Java and Smalltalk, may be considered as

legacy-systems. Those who adopted the 00 paradigm early, according to Demeyer,

Rieger, & Tichelaar (1998), may now be faced with evolving existing 00 systems.

Ducasse (2001) lists the following reasons why information systems must evolve:

• original developers may no longer be available;

• outdated development methods;

• monolithic systems;

• code bloat;

• lack of documentation;

• misuse of language constructs; and I or

• Business Process Re-engineering (BPR).

Another compe11ing reason for evolving an existing system is that some of

the internal algoritlunic functionality within a legacy-system is too valuable to

discard and too expensive to reproduce (Skarmstad, Khan, & Rashid, 1999). If such

internal code is worth saving, then language translation maybe one method of taking

advantage of the features of a more versatile programming language. Few modem

programming languages match the versatility of JADE (O'Sullivan. 2000), an

application programming technology capable of deployment on most modem

platforms.

4

According to O'Sullivan (2000, p. 6), JADE provides such versatility via

features including:

• easily developed web functionality;

• automatic Hyper-Text Mark-up Language (HTML) and Java generation; and

• smart client technology.

JADE connects to existing relational databases and to its own persistent 00

database management system. Its versatility renders JADE an effective choice as the

target language, when planning legacy Infonnation System (IS) evolution. Another

valid reason for selecting a language such as JADE is presented by Terekhov and

Verhoef (2000}, who state that "Freshmen would expect that the more equal [sic] the

languages are, the more easy a conversion would be". When translating between

similar languages, for example, C++ to JAVA, the developer must contend with

"semantic differences that we cannot even detect syntactically" Terekhov and

Verhoef (2000). Such problems associated with similar language translations are

added to the problems of language translation associated with syntax and type

conversion. Hence deciding on the target language is only one of the planning

decisions required prior to conunencement. Another essential planning decision

involves weighing the costs of a fully automatic translator against the effort required

for manual translation of the same source-code (Moynihan & Wallis, 1991).

2.2 Significance of the Study

The cost of manual language translation of source-code was estimated by Ben

Wilson, cited by Cowley (2003), at between $US8.00 and $US20.00 per LOC: a

considerable expense in large translation projects.

One such conversion perfonned by Terekhov (2001) was from a system

containing more than 1.5 million LOC in High-Productivity System (HPS) source

language to the target languages of Visual Basic and COBOL. In that conversion,

Terekhov achieved between 80% and 90% automatic translation of_ the original

5

system. To estimate the cost involved in the manual translation of the remainder, we

use the figures presented by Cowley (2003). Using the upper extreme ofTerekhov's

(2001) 90% success in automatic translation, there remained approximately 150,000

LOC requiring manual intervention. At the lowest rate per LOC estimated by

Cowley (2003), i.e. $US8.00 per LOC, the cost of residual manual translation of

Terekhov's project would have exceeded $USI.2 million.

In a smaller example, where Kontogiannis et al. (1998) translated 300,000

lines of PUIX code to C++, approximately 30,000 LOC may have required manual

intervention. Again, using a basis of $US8.00 per LOC, the cost of residual manual

translation for this project would have exceeded $US240,000.

Both of the cost estimation examples immediately above involved the use of

the traditional method of translating programming languages. In this, the source

application is mapped statement-by-statement to an equivalent representation in the

target language: a method referred to by Waters (1988) as transliteration. Waters

(1988) presented the idea of translating applications from one programming language

to another, via abstraction and reimplementation. It was concluded by Waters (1988,

p. 1227) that the benefits of translation via abstraction and reimplementation, at that

time, were "more of a promise than a reality''. This study shows that with the CASE

tools available today, Waters' (1988) idea is now closer to reality.

2.3 Statement of the Problem

This study offers improvements in automatic programming-language

translation through a process that:

• reverse engineers an existing, operational C++ legacy application's source-

code into a UML 'class model' schema file;

• converts the C++ UML schema file into a JADE equivalent schema file;

• imports the JADE root-schema into the model;

• exports the features of the converted model to a JADE working sc_hema file; · - ----

6

• extends the generated JADE schema file to include the necessary sections,

rendering the schema file syntactically correct; and then

• generates the algorithmic content of each class method using dynamic code

transliteration.

This process produces a JADE schema file, ready for importation into the

JADE development environment. The improvement of the language translation

process, in consequence of the application of Rational Rose implementation ofUML

(Rose!UML) and versatility offered in JADE, is shown to reduce significantly the

cost of legacy system evolution, by reducing the need for manual intervention.

2.4 Research Questions

Where separation of static and algorithmir.: components of code for forward

engineering of a legacy system is achieved, then may a reduction of manual

intervention be realised in automated code conversion?

2.4.1 The major «:omponents of the above question are:

1. Which model properties within a Rational Rose I UML model file are

associated wi~h the reverse engineered application's programming language?

2. Which components of the JADE schema file, produced by the

RoseJADELink add-in, may be used to construct the static framework in

preparation for code migration?

3. What improvement in the ratio of automatically to manually translated LOC

in a legacy system may be achieved using the abstraction and re

implementation approach?

7

2.5 Chapter Summary

The problems associated with programming language code migration were

introduced and described. Traditionally, code migration is considered an expensive

solution; a reason why programming language translation is often overlooked as an

option for legacy system evolution. Such expense of traditional methods provides a

justification for the investigation into alternative methods of code migration and,

hence, to justify the significance of this 3tudy. Finally, the research questions

associated with the study were presented.

8

3 A Review ofthe Literature

3.1 Studies into System Evolution through Code Migration

Terekhov & Verhoef (2000, p. 123) offer the following warnings regarding

system evolution and language conversion:

• conversions are difficult;

• conversionS are always _more difficult than you think;

• the more semantic-equivalence is neces:::;ary, the more impossible [sic] it (the

conversion) becomes;

• going from a rich language to a minimal language is impossible; and

• easy conversion is an oxymoron.

Notwithstanding the warnings of Terekhov & Verhoef (2000, p. 123},

research teams, for example,. Kazman, O'Brien, & Verhoef, (2002}~ Seacord,

Comella-Dorda, Lewi~ Place, & Plakosh, (2001}, Ducasse (2001) and Harsu (2000),

have attempted to overcome the problems associated with the migration of one

programming language to another.

Seacord, Plakosh, & Lewis, (2003) recognise that the goals of legacy-system

modernisation projects often differ from those involved in the engineering of new

applications. When engineering a new application the goals of a project usually

revolve around providing the client with a product of the quality specified, delivered

on time and within the agreed budget.

9

I

Seacord et al., (2003) define the goals of legacy-system modernisation as the

minimisation of:

• development and deployment costs;

• the time required to develop and deploy the modernised system;

• risks to the successful completion of the modernisation process;

• the modernised system's complexity;

• and the maximisation of the modernised system's perfonnance; and

• quality of both the product and the modernisation process.

However, not all of the goals defined by Seacord et al. (2003) may be

achievable in all circumstances. In some situations tradeoffs may be necessary. For

example, the minimisation of the complexity of a modernised system might involve

significantly more time for deployment and development than the time required to

develop a new equivalent application. Therefore the developer must employ a

strategy to take into account the goals of the planned modernisation project.

R. Seacord et al. (2001) believe that a prerequisite to developing a

modernisation strategy requires a developer to understand the structure of the legacy

system. One method available to a developer to gain an understanding of the

structure of a legacy-system is to use reverse engineering as part of the

modernisation process (Chikofsky & Cross, 1990, p. 15). Chikofsky and Cross

(1990) explain that the modernisation of a legacy-system usually includes:

• reverse engineering; followed by

• inspection of the system's architecture; and then

• forward engineering.

Reverse Engineering: To begin the process of reverse engineering, a CASE

tool, such as ROSEIUML, scans the source code of an application, collecting the

following static elements, listed by Boggs and Boggs (2002, p. 365) :

10

• classes;

• attributes;

• operations;

• relationships; and

• packages.

Reverse engineering reveals the structural components of the application

together with their inter-connecting relationships. A diagrammatic representation of

the components and their relationships, forming the static structure ofthe application,

is then presented via UML class diagrams.

Booch et al. (1999, p. 459) define a class as "a set of objects that share the

same attributes, operations, relationships and semantics." Each of the classes in a

class diagram shows the data-holding qualities, or attributes, of the class as well as

the internal and externally visible methods or operations. The qualities of a class

diagram are highlighted in Figure 1, which shows a UML model of a building

inheritance application.

II

testSourcelnheritance Model Update ~ew
This diagram was automatically created by Rational Rose Model Update Tool.
Friday, 24 October 2003 12:47:12 PM

Building

~-rea: tnt
~ms:int
~floors: lnt

~et_area() : int
"tJet_rooms(): inl
~et_floors(): int
"set_area(va!ue : tnt) : wid
~et_rooms(value : int) : wid
~et_floors(wlue: lnt) : wid

<I

/
House

~rooms:lnt
~bathrooms : int

~at_ bedrooms(): int
~at_ bathrooms(): int
~el_bedrooms(vatue : int) : \Oid
~et balhrooms(wlue : tnt) : \Old

I>
' \

' ' ' '
~ffices: int

School

~lassrooms : int

~et_offices() : inl
~et_classrooms() : inl
~et_offices(wlue: int): \Oid
~et_classrooms(vatue : in!) : \Old

Figure 1: Example UML class diagram showing inheritance in a building context.

Inspection of tbe System's Architecture: On completion of the reverse

engineering process, the developer is able to inspect and alter the static structure of

the application. However, ROSEIUML does not capture the algorithmic source

code, within the reverse engineering process as its focus is on the static structure. In

consequence, during the forward engineering process, the developer is obliged to

implement manually any source code within the new systemys methods

Krishnamoorthy (2003).

The UML gives a developer a clearer understanding of the functionality of

the legacy-system, by exposing the operations and attributes associated with each of

the classes within the application. Furthennore, the exposure of the components and

their relationships improves the perceived transparency of the converted internal

12

constructs by using the UML in the forward engineering process. The Jack of

transparency of the traditionally converted constructs, referred to by Moynihan &

Wallis (1991) and Harsu (2000) has been a significant problem with contemporary

language translation processes. Such a lack of transparency is referred to as

"opaqueness".

Forward Engineering: 'The target static structure generated by ROSEIUML

during the forward engineering or schema export process is representative of the

elements created in the UML during the reverse engineering of the legacy-system.

Completion of the conversion of the target system is then achieved by the translation

and inclusion ofthe algoritlunic-source-code into that static structure.

3.2 Studies Similar to this Study

Waters (1988, p. 1207) suggested that traditional source-to-source translators

render the maintenance of a translated system difficult to understand. Furthennore,

Waters (1988, p. 1225) estimated that of the translation systems available at the time,

most were "capable of handling only 90% of the source language ... Waters' estimate

has been supported by the experiments of Harsu (2000) and Terekhov (2001),

suggesting that no significant improvement in automated language translation

process has been realised since 1988. Additionally, Waters {1988, p. 1225) states

that source-to-source translators should not be referred to as "automatic systems",

instead they should be referred to as "human-assisted translation systems". In order

to achieve an accurate translation, Waters (1988) deduced that the developer must

alter the source code of either or both of the source and target programs before,

during or after the translation process.

Waters (1988) proposed an alternative approach to the language translation

process to overcome problems associated with traditional source-to-source

translators. Waters (1988, p. 1208) suggested that the process should begin with the

13

source program being analysed to "obtain a programming-language-independent

abstract description" of the source application.

Echoing Waters' (1988) suggestion, in a report on the evolution of legacy

systems, Weiderman, Bergey, Smith, & Tilley, (1997, p. 25) offer the following

summary recommendations:

• understand the legacy system at a high level of abstraction using some kind of

system-understanding technology, paying particular attention to interfaces

and abstractions; and

• find the encapsulate-able components of the legacy system on which to build.

Both points are directly applicable to this study in the way they relate to the

use of the UML in reverse and forward engineering. Waters (1988) recognised the

significance of abstmcting both constructs and statements from within a source

program during programming language translation. Other researchers, Kontogiannis

et al. (1998); Skarmstad et al. (1999); Terekhov and Verhoef(2000); Weidennan et

al. (1997), have noted the benefits of abstracting the 00 component-like constructs

within source applications for translation purposes.

The Object Management Group (OMG) has identified a need to sta.'ldardise

legacy transformation processes in order to "help build on prior experiences and best

practices" OMG (2003, p. 2). The OMG anticipates that standardisation of legacy

transformation processes will "enable integration and interoperability between

solutions and vendor tools" OMG (2003, p. 2). The OMG-proposed standardisation

includes the use of tools such as Metamodel Driven Architecture (MDA) and the

UML. The platfonn independent MDA enables the creation of a UML model of a

reverse engineered application "for the purpose of importing it into an MDA-enabled

development environment" OMG (2003, p. 3).

Meta_Object Facility (MOF), also defined by the OMG (2002), is a

specification used to describe an abstract language and a framework for specifying,

14

constructing and managing technology neutral metamodels (OMG, 2002, p. 15). The

MOF, UMLand eXtensible Mark-up Language (XML) Metadata Interchange (XMI)

are intended to provide a foundation for the MDA. The OMG proposes the

development of a standardised meta-language that may be used to describe UML

models to provide a complete aligmnent of the UML and the MOF (OMG, 2002).

The introduction of such a standardised language ''would assist in the process of

translating these models into software implementations" OMG (2002, p. 26).

Potentially improving on the structure of a Rational Rose Enterprise Edition 2002

model file.

The Rational Rose Enterprise Edition 2002 development environment

produces a proprietarily structured model file containing the properties associated

with the current model. A framework '\vizard" template is used to detennine the

stru.-::ture of a Rational Rose Enterprise Edition 2002 model file. A framework in

Rose/UML is a set of predefined model elements that are needed to model a certain

kind of system (Rational, 2001). However, when developing a new framework a

developer may associate additional descriptors with any or all of the properties in a

model This flexibility in the framework development process allows for the

properties in a model to be described using different fields and values. For example,

some of the extra properties e.g. Map File and subschema properties, associated with

a JADE model may be seen in Figure 2.

15

Figure 2: Framework properties associated with JADE models

The map file and subschema properties shown in Figure 2 represent a sample

of the properties that may be considered unique in a JADE model, in similar manner

to .the peculiar model properties associated with 'unsigned short int' objects in a

CIC++ model. Consequently, it was necessary to develop a grammar to validate any

modifications made to an application's model files during the translation process.

3.3 Grammar development

A grammar is a description and depiction of the syntax of a programming

language (Sebesta, 1999). It is beyond the scope of this document to detail the

history of programming language generation mechanisms. However, a simple

example may be useful to demonstrate the processes required to define and describe

a small language. Figure 3 defines a grammar for the simple assignment statement:

A:~ B * (A+ C) (Sebesta, 1999, p. 113).

16

<assign,.
<id,.
<ex:pr,.

~ <id,. := <ex:pr,.
~AI BIC
~ <id,. + <ex:pr,.

1 dd,. " <ex:pr,.
I (<expr>l
1 <id,.

Figure 3: A simple assignment statement grammar (Sebesta, 1999, p. 113).

Analysis of the assignment statement may be perfonned in any of three

manners: lineally, semantically or hierarchically (Abo, Sethi, & Ulhnan, 2003, p. 4).

Initially, linear analysis reads the characters of an input stream from left to right.

Then, semantic analysis ensures the sequence of characters or words fonns a

meaningful statement. Finally, hierarchical analysis groups the contents of an input

stream into a set of hierarchically linked nodes representing the input stream as a

parse tree (Abo eta!. 2003, p. 4-5).

Aho et al. (2003, p. 6) describe the process of hierarchical analysis as

'parsing' the input. A grammar such as that shown in Figure 3 may be used to

develop a parse tree representing the input that the grammar is to define (Sebesta,

1999). The parse tree shown in Figure 4 describes the assignment statement using

the granunar shown in Figure 3.

<assign>

<id> : = <expr>
~

A <id> • <expr> ___,......__
B (<expr>)-------,-

<id> + <expr>
I I
A <id>

I
c

Figure 4: A sample parse tree, (Sebesta, 1999, p. 114)

17

The parser used in the investigation, ProGrammar (NorKen, 200j), enabled

the converter application to extract nodes or entire lines of code from the parse tree.

The parser applies a numbered index to each node in the parse tree and may return a

line-number-id for the current line of code on which a specific node is found.

Having both these resources available during the translation process allowed the

converter to extract node values to test conditions on the values contained in the

nodes of the parse tree or in a LOC of the source application. For example, the

converter may request that only the children of a node with a certain value be

returned. Alternatively, return an entire LOC if the value of the first node, in a sub

branch of the parse tree, matches a certain condition.

Such flexibility in the parsing tool provided the converter with enough

processing power to concentrate specifically on the algorithmic code contained

within each class method. Use of an existing tool with such flexibility was far more

appealing than creating a parser I compiler tool using Lex and Yacc.

Lex and Yacc are tools that together, enable the developer to create programs

capable of transforming structured input (Levine, Mason, & Brown, 1995). Lex is

used to build a lexical analyser that takes streams of input and returns tokens

representing the items in the input stream. Yacc builds parsers created from rules

and grammars that describe the syntax of the input stream being analysed (Aho et al.,

2003). The limited time available for this study, and the accessibility of a suitable

parsing tool, were reasons for not employing Lex and Yacc.

ProGrammar is such a parsing tool and was employed during the

investigation. It provides a visual environment for building parsers that are platform

independent, programming language-independent and reusable (NorKen, 2003).

ProGrammar spared the researcher the burden of designing and developing the

lexical analyser and parsing tools with the ability to work in three languages (JADE,

C++ and Rose I UML), as well as a converter to use them. Figure 5 depicts the steps

necessary to build and use a parser with the ProGrammar tool.

18

EJ}-bui/ds 2
Grammar
(.GMR)

1

API
Parse methods

Client

.... - --~

Application

M Parse
EiHJine

3
Parse Tree i

4

5
Input Data

FigureS: Building a parser with ProGrammar (NorKen, 2:003, p. 14).

Each of the numbered stages shown in Figure 5 is outlined below.

1. Define the grammar for the input to be parsed in the IDE;

2. ProGrammar then generates a binary grammar file;

3. The parser is called from the client application via an API;

4. The runtime parse engine creates the parse tree representing the

source application as input data; and

5. The client application may then retrieve the data from the parse tree

via an API (NorKen, 2003, p. I 5).

According to Abo et at. {2003, p. I) parsing input streams is the basis for

compiling computer programs. In most situations the direction of language

generation or compilation, by a compiler, is from a high-level programming language

to a low-level 'machine code' language that the computer may understand.

However, some language compilers, for example: Safe C, Eiffel and Cfront, work

between high-level languages. Safe C was developed by Michael Collins (1993) as a

high-level compiler used for translating an 'ADA-Like' language to Safe C, which he

developed as a cheaper alternative for use in embedded systems. Eiffel, developed

19

by Bertrand Meyer "has all the typical features of a high-level language" Gutschmidt

(2003) and translates it to C. Cfroot is described by Wikipedia (2003) as "the

original compiler for C++, which converted C++ to C".

Harsu (2000, p. 6) uses differeD.t terms to describe the concepts of

programming language transformation. Figure 6 shows that, according to Harsu

(2000), compilation generally works on high-level languages being transformed into

low-level languages, while the interchangeable terms, 'conversion' and 'translation',

describe language transformations at the same level.

r------, Source to source translation r------,
High-level source 1--------_,~ High-level target

Conversion

Compilation Decompilation

Low-level source 1---------_,~ Low-level target

Conversion

Figure 6: Terms used in program transformation (Harsu, 2000, p. 6).

3.4 Application Selection

The applications selected for translation during this investigation are widely

available classical programs. The first deals with the Towers ofHanoi problem (Hill,

1995; Roeder, 2003; Sub & Allain, 2003), while the second describes inheritance in

an object-oriented environment (Liberty, 2001; Schildt, 2003). The implementation

of the Towers of Hanoi application used in this investigation was selected from many

available on the Internet.

The Towers of Hanoi problem, the character of which is depicted in Figure 7,

requires a solution that moves all four rings, one at a time, from one tower to another,

without allowing any ring to be placed on top of a smaller ring. The TDwers of

20

(

Hanoi application used in this investigation was developed by Chris Roeder (2003)

and details of the source code are included in Appendix A.

Tower 1 I I Tower 2 I I Tower 3

_[]~~
l Rmgl I

l Rmg2 l
l ru,.3 I

I Rmg4 I

Figure 7: The Towers of Hanoi problem.

Programmatically, a solution to the Towers of Hanoi problem usually

employs recursion to move the rings within the rules. While recursion does not make

the program complex, it adds a degree of complexity to the demonstration of this

investigation's concept. Without the recursion factor included in the application, the

numbers of independent paths or conditions tested during the application at run-time

are few. Sultanoglu (1998) suggests that McCabe's Cyclomatic Complexity (MCC)

"measures the number of independent paths in a program, thereby placing a

numerical value on the complexity" of the application module. The formula for the

MCC metric used to measure the complexity of the Towers of Hanoi sample

application is:

MCC =edges- nodes + 2;

where the nodes "represent computational statements or expressions, and the

edges represent transfer of control between nodes" (Watson & McCabe, 1996). The

MCC was used during this investigation to provide a measure of the complexity of

the sample application's decision structure. The number of nodes in the Towers of

Hanoi application amounted to 46 while the number of edges totalled 47 yielding:

21

Hence the Towers of Hanoi represents an MCC of 3. The MCC generally

maintains a maximum limit of I 0 for extremely complex application modules as

recommended by Watson and McCabe (1996). An earlier study by McCabe and

Butler (1989, p. 1416) reported that the modules of the evidently non-trivial AEGIS

Naval Weapons System approximated 4.6 MCC. Tieman (2001) suggests that where

a MCC result lies between 6 and 10 a developer should consider ways of simplifying

a module. Consequently, it was considered by the author that an MCC of 3

represented a module of reasonable complexity for the purpose of "proof of concept"

for the study in both the static structure abstraction and the transliteration processes.

The second application converted during this investigation, Schildt's (2003,

p. 280) building inheritance example shown in Figure 1, was measured using a

different set of metrics. The building inheritance application is highly 00 in nature

and the MCC was unable to reflect its overall complexity. Accordingly, a suite of

metrics based on measurement themy developed with the insights of experienced 00

software developers, presented by Chidamber and Kemerer (1991, p. 197) was

applied. The tools presented within the Chidamber and Kemerer (1991) Metrics

Suite (CKMS) include the:

• Weighted Methods per Class (WMC);

• Depth of Inheritance Tree (DIT);

• Number of Children (NO C);

• Coupling Between Objects (CBO);

• Response for a Class (RFC); and

• Lack of Cohesion in Methods (LCM).

Each of these tools is described briefly below.

WMC is a measure of the number of methods in a class. Chidamber and

Kemerer (1991, p. 202) state that ''the number of methods and the complexity of the

22

methods involved is an indicator of how much time and effort is required to develop

and maintain the object". When the nwnber of methods in a parent class increases,

the overall number of methods available to the combined inherited classes in a

module also expands, thereby increasing the complexity of the application

(Chidamber & Kemerer, 1991).

In describing DIT as an appropriate metric for 00 software application

measurement, Verbruggen (2003) cites Chidamber and Kemerer (1991) quoting ''the

deeper a class is in the hierarchy, the greater the number of methods it is likely to

inherit, making it more complex." Deeper inheritance trees "constitute greater

design complexity, since more classes and methods are involved" (Chidarnber &

Kemerer, 1991, p. 202).

Verbruggen (2003) alludes to the NOC metric as indicating both good aod

bad properties in a class. Notably, higher NOC may indicate either "greater re-use,

since inheritance promotes re-use" or "improper abstraction of the parent class",

(Verbruggen, 2003). Notwithstanding, an increase in the NOC equates to an increase

in a module's complexity.

CBO is a measure of "the degree of interdependence between modules"

(Chidamber & Kemerer, 1991, p. 203). The less dependent an object is upon other

modules, the better equipped it is for re-use. Simple connectivity, or low coupling,

between modules produces applications which are "easier to understand" and "less

prone to the ripple effect .. (Pressman, 2001, p. 354). The ripple effect is aptly

described by Pressman (2001, p. 354) as being "caused when errors occur at one

location and propagate through the system", making error detection and location

more difficult.

RFC is an indication of the number of methods that are visible publicly to

objects communicating with the specific module. "The larger the nwnber of methods

23

that may be invoked from a class, the greater the complexity of that class"

(V erbruggen, 2003).

LCM is a "measure of the attributes of an object" (Chidamber & Kemerer,

1991, p. 204) and provides an indication of the level of cohesion or encapsulation of

an object. "Low cohesion increases complexity'' potentially leading to an increase in

the number of errors during the development process (Chidamber & Kemerer, 1991,

p. 204).

The following· table summarises the building inheritance application's

complexity using the CKMS. An average of the values for each metric associated

with the classes in the source application is calculated and presented in the right

column of Table I.

Table 1: CKI\18 metric evaluation of building inheritance.
. · :ciass.nnilding CJ3ss:House ·· · ClasS SchOOl'' ··: :·'AVera2i(.::,;.

WMC 6 4 4 4.66
DIT I 2 2 1.66
NOC 2 0 0 0.66
CBO 0 6 6 4.00
RFC 6 10 10 8.66
LCM 3 2 2 2.33

Class CKMS 3.00 4.00 4.00
Total 21.97

Tota{ number of classes- Application CKM:S 7.32

The applicntion CKMS is the result of dividing the Total by the number of

classes in the application. Verbruggen (2003) suggests that a class CKMS level of 4

to 5 is considered "very good". Unfortunately, a typical overall application C.KMS

level for use as a comparison has not been located in the literature reviewed by the

author.

24

3.5 Chapter Summary

Previous studies have been reviewed to highlight the difficulties associated

with the translation of programming languages using traditional source~to-source

translation methods. It was suggested that no significant improvement in translation

system achievements had been realised between the time Waters (1988) presented

the abstraction and reimplementation idea, and those recent projects still using

transliteration, e.g. Harsu (2000). The goals of legacy-system translation projects

were discussed along with the prerequisite strategies to be considered prior to the

commencement of such projects.

The UML was presented during this chapter as a method of describing the

static structure of a legacy system, as suggested by Waters (1988) and Weidennan et

al (1997). Furthermore, ROSEIUML was offered as a CASE tool capable of reverse

engineering and then presentation of the static structure of a source application.

Programming language grammars were described before the methods of calculating

the complexity of the selected applications were discussed. The studies reviewed in

this chapter were provided for justification for this study's purpose and approach.

25

4 Research Design

4.1 General Method

The Research Design is presented in three phases, each comprising multiple

steps.

'PhaSe · · ·.·. ' .. , · Description ' '.

Phase 1 - The Static a) selection of source application(s) for translation;
Structure b) reverse engineering of each source application;

followed by the
c) manipulation of the model properties to produce

a valid target lanl,ruage version of the model; and
finally the

d) exportation of the target language schema tile.

Phase 2 - The Algorithmic e) development of the grammars describing each of
Code the source and target languages used during the

investigation;
t) generation of the application parse trees;
g) extension of the target language [i.e. JADE]

schema file, with the details of the static
structure produced during phase 1; and finally

h) translation and insertion of the algorithmic code
in the equivalent target methods of the target
schema file.

Phase 3 - The Analysis i) collection and correlation of the data resulting
and Findings from the translation of the sample application(s);

and the
j) conclusion of the investigation by answering the

research questions with the findings of the data
analysis.

26

Figure 8 describes a high-level view of phases I and 2 at the right and left of

the diagram respectively. The details of these phases are descnbed in section 4.2.

• ,..,.

furlctionbl cftcr:~jon
fi..111 C... to JADE

Figure 8: A high-level view of the process for the study

4.2 Specific Procedures

'"'"' ""

The steps of the phases introduced in 4.1 are detailed in this section and

associations that each may have with the research questions posed in 2.4 are

clarified.

4.2.1 Phase 1 -The Static Structure

4.2.1.1 Selection of the source applications

The applications to be translated during this investigation were selected for

their availability in various fonns; because they embody cha1lenging concepts in the

field of programming; and because each offers reasonable complexity. These

applications were also selected for their object-oriented implementations which are

recognised by both the source and target languages and, importantly, to demonstrate

that the applications were not purpose built for the study.

27

4.2.1.2 Reverse engineering

To provide an llnswer to the first sub-question in section 2.4.1, the

investigation needed to compare the properties of a reverse engineered model file to

the properties in an equivalent model file associated with the target language. To

achieve a comparison the source Microsoft Visual C++ (VC++) application was

reverse engineered, using ROSE!UML, producing a static structure model file. The

author then created a second static structure model of the same application using

Rose!UML's development environment, instead associating the second model with

the target language, in this case JADE.

The comparison of the properties in the two model files revealed the property

names and their values where each model is associated with the different

programming languages. This comparison process also allowed the author to

recognise the options, available in the Rose!UML development environment, where

the property values may be manipulated to reflect the programming language

associated with the model. Data collected during this step in Phase 1 provided the

information required to answer sub-question 1 of section 2.4.1, which is repeated

here for convenience:

Sub-question 1: Which model properties within a Rational Rose model file

are associated with the reverse engineered application's programming language?

4.2.1.3 Model manipulation

Changing the reverse engineered model options m the Rose!UML

development environment enabled the author to alter the model's association with

the original source application's programming language. The author then imported

the target language's root-schema, or base classes, allowing the model to be

associated with JADE. Each of the elements in the model was then manipulated to

reflect the equivalent element type in the target language. The elements being

manipulated involved attribute types along with the names of some of the elements in

the original application. Following the completion of the model element

manipulation, the modified model was ready for export to JADE.

28

4.2.1.4 Export to the target language

Initiation of the export process from within the Rose!UML development

environment produced a JADE schema file representing the basic static structure of

tbe original source application in the target language. Completion of this step in

phase 1 allowed the collection of data and the inspJction of the exported schema file

to detennine an answer to the second sub-question in 2.4.1 repeated here for

convenience:

Sub-question 2: Which components of the JADE schema file, produced by the

RoseJADELink add-in, may be used to construct the static framework in preparation

for code migration?

4.2.1.5 Phase completion

Phase 1 took a complete and working version of a VC++ application and,

using Rose!UML, produced a UML model representing the static structure of that

application. The options within the development environment were then altered to

remove the model's associated programming language. The target language base

classes were then imported and the model's options associated with JADE. The

attributes and operations contained in the model were then manipulated to reflect the

target language equivalent attribute types and names. The completed model was then

exported producing a JADE static structure schema file in readiness for extension

and population with the translated algorithmic code.

4.2.2 Phase 2- The Algorithmic Code.

4.2.2.1 Grammar development

In translating the algorithmic content of the source application into the target

language, each word or token used in the source application was scanned and

inserted into a parse tree. In order to produce a parse tree, the structure of the

language must be known and syntactically correct. Consequently, a grammar was

required for each application source-file used by the converter application to enable

it to recognise the components of each line of code in the source file.

29

I

4.2.2.2 Parse tree generation

Using the grammars developed according to activities in section 4.2.2.1 and a

parser application developed outside this investigation, by Norken Technologies,

parse trees were created from each of the source files associated with the translation

investigation. The parser queries the parse trees to locate nodes representing the

equivalent element in the source file. The parse trees enabled the parser to return the

value stored at each of the parse tree nodes, when and as it was requested by the

converter application, during the translation process.

4.2.2.3 Schema file ext~nsion

The JADE schema file, exported from RosefUML, does not contain all the

section headings required by the JADE environment, for example, the

schemaViewDefinitions, _remapTableDefinitions, externalFunctionSources and

typeSources headings. Consequently, before adding any operational code to the

JADE schema file, the missing headings were appended to the end of the existing

content. Next, the classes and their methods, and the application schema methods

were appended to the JADE schema file. With each of the application and class

methods extracted from the parse tree, the algorithmic code for each was translated

and inserted during the appending process.

4.2.2.4 Translation of algorithmic code

As each algorithmic LOC in the source application parse tree was queried, the

parser returned the type of LOC being queried. The grammar categorised each

algorithmic LOC with a specific name, for example, the parser would return

"for_statement" when a 'for loop' was encountered and "if_ statement" when an 'if

statement was encountered. The attributes and values making up the conditions or

expressions used in each case were then supplied as parameters to a translating

method which returned the fonnatted equivalent statement as a string which, in turn,

was then appended to the appropriate position in the target schema file.

30

4.2.2.5 Phase completion

Phase 2 involved the development of the tools needed by the translation

application to produce the translated algorithmic code for insertion into the target

schema file. The tools included grammars for each of the programming languages

and another grammar used to validate Rose/UML model files. Other items used

during the translation were the parse trees and the parser that qu,eried the contents,

then returning the values contained in the parse tree nodes. The converter

application used these tools to append the translated algorithmic code to the

appropriate position in the target JADE schema file. Data collected during this phase

enabled the provision of answers to the third sub~question in 2.4.1 and to the main

research question .in 2.4, both of which are repeated here for convenience:.

Sub-question 3: What improvement in the ratio of automatically to manually

translated LOC in a legacy system may be achieved using the abstraction and re

implementation approach?

Main question: Where separation of static and algorithmic components of

code for fonvard engineering of a legacy system is achieved, then may a reduction of

manual intervention be realised in automated code conversion?

4.2.3 Phase 3 - The Analysis and Findings.

4.2.3.1 Data collection ~nd analysis

The JADE schema files, produced by the abstraction and transliteration

process, were imported into the JADE development environment for testing. The

testing performed on the translated schema files included the importation process

itself. A schema fault report is produced where a schema does not conform to the

rules associated with the JADE language.

The testing during this step also included invoking the translated applications

in the JADE envirorunent and then recording any changes required to enable the

translated application to operate entirely as it did in the original language

31

environment. The following variables were found to have an influence on the study,

each being identified in Table 2:

Table 2: The conversion data for analysis

, • , • , ',, .,, >,,
It�m . 1 ,'., •• ,

Original Loe
Converted Loe

Manual Loe

Automatic Loe
Time Automatic Loe
Time Manual Loe
Conversion Time
Environment

, ,, \

.
• ,'j •

.,, ,' , , ,., ·: ::tfescnnti:' <',',,,, , \,',,'·•· ,,,,'',' .,' ,, , •. PU , •

The number of LOC in the original aoolication

,, \

,

The number of LOC in the converted version of the
original application

The number of LOC requiring manual intervention, either
before or after the translation process, to produce a
successful translation
Original Loe - Manual Loe
The time taken to translate Automatic, Loe
The time required to translate Manual Loe manually
Time Automatic Loe + Time Manual Loe
Details of the computer performing both the conversion
and the compilation, for example:

• the platform;
• available memory; and
• processor speed .

Analysis of the data relating to the variables listed in Table 2 enabled the

comparison of equivalent data from both of the application conversions during this

investigation. To determine whether an improvement in the process had been

achieved, the percentage of Automatic_ Loe derived from the translation of the

Original_Loc was compared with the previous research results reported by Moynihan

& Wallis (1991), Harsu (2000) and Terekhov (2001).

4.2.3.2 Findings and conclusions

Once the testing and analysis steps were concluded, the findings were then

developed and associated with the research questions to evaluate the investigation.

After the data analysis, conclusions were made regarding the abstraction and

transliteration process and whether further investigation was warranted.

During the investigation some processes may have been improved had certain

enhancements been incorporated into this study. However project constraints,

chiefly those of time, prevented their inclusion. Those enhancements not included

will now be explained.

32

4.3 Potential Enhancements not Incorporated in this Study

As some of the enhancements recognised during this investigation were

outside the scope of this project they were not included. However, in the event that

further investigation in the field may be considered, these enhancements are

mentioned. The enhancements omitted and the reasons for their non-inclusion are

discussed below.

• Automation of the Rose/UML model conversion process, using

Rose's internal scripting language to provide the GUI and triggers for

the translation process.

o Although Rose/UML includes a scripting language, the time

required to reveal the processes necessary to make the

conversion was estimated to be more than that available to

warrant its inclusion.

• Model alterations to remove the external function section being

included in the reverse engineering process.

o Further investigation of the options available within the

Rose/UML development environment may reveal alternative

methods of implementing the changes necessary to remove the

external function association with each of the class methods

during the conversion.

• Inclusion of the entire set of C++ statements and expressions in the

translation process.

o The complexity of the C++ language along with the ability to

instantiate objects within expressions makes the mapping of

statements from C++ to any other language extremely time

consuming.

• GUI front end;

o The creation of a Graphical User Interface (GUI) for the

converter was considered to have aesthetic appeal only.

33

Currently, the converter application presents text based

messages to the user within a console window during the

conversion process.

4.4 Chapter Summary

The three phases of the project were described. Each of the three phases was

presented as a series of sub-tasks that were followed to address relevant components

of the research questions posed in section 2.4. The initial phase addressed the

development and realisation of the static structure of the original applications being

translated. In descnbing the second phase, the processes of translation of the

algorithmic code and target schema method population were outlined. The final

phase outlined the testing of the translated applications and analysis of the data that

would be generated from those tests. In addition, potential enhancements that were

not addressed in the study were identified.

34

5 Implementation and Findings

In chapter 4, the three phases of the study were introduc~d together with their

subtasks and the relationship each may have to the research questions. This chapter

relates the phases and the subtasks introduced in chapter 4 in tenns of how the

investigation's goals were implemented and the findings that were realised.

5.1 Phase 1: The Static Structure

5.1.1 Selection of the source applications

The investigation commenced with a comparison of two Rose!UML model

files. The model files used were a reverse engineered VC++ sample-application

model file and a purpose built JADE model file representing the same application

functionality. The applications used during this procedure are described in section

3.2. Each of the selected applications represents a readily available classical

program. The implementations in C++ were not custom built for this study and may

be considered typical of programs of this type and complexity that may be translated

in a "real world" situation.

5.1.2 Reverse engineering

The reverse engineering process performed using Rose!UML produces a

model containing source code components and a class diagram representing the static

structure of the source application. Each of the source code components represents a

source code file included in the original application (Quatrani, 2000). The

highlighted "Main" component of the Towers of Hanoi application may be seen in

the left window of Figure 9.

35

UnconvertodTOH
�--1!!!1 Use Case View
� ft! Logical View
i El·· II VC++ Reverse Engineered
! · El Ill testSourceT owers
[[[Iii! testSourceT owers Model Update O
! ! [fl- !!l Tower (test Source Towers)

I ��.::�
ffl

! - -� Aosociatm
13· Ill Component View
! ·filllll
i .::l[] «EXE» testSourceTowers
[[iJ Deployment View
L ·Iii Model P,operties

estSourceTowers Model Update Overview
his diagram was automatically created by Rational Rose Model Updi

ursday, 30 October 2003 5:01 :35 PM

Tower
�owerNumber; int
�isks(MAXOISKS] : int
�umDisks; int
�:int
li,temp : int

�ower(n : int)
�ddOisksQ : void
�opQ: int
�ushQ : int) : void
•printO : .void
•«static» testQ : void

Figure 9: Reverse engineered VC++ application.

Both the model that Rose/UML creates during a reverse engineering process

and/or a model created by a developer generate Rose/UML model file(s). These

contain a hierarchy of nodes and values representing the properties associated with a

model displayed in the Rose/UML development environment.

In section 4.2.1.2 it was stated that to arrive at an answer to the first research

sub-question, it was necessary to compare the contents in a reverse engineered model

file with the contents in a model file specifically built with an association to JADE,

the translation's target language. A comparison of the model file contents is

necessary to determine those reverse engineered model file properties associated

with the source application's programming language.

The comparison made between the two model files yielded some significant

discoveries. For example, to provide a definition of the target language model, the

purpose built JADE model file used more than twice the number of LOC than the

number required to describe the VC++ version of the same model. The Rose/UML

36

model file representing the VC++ application contained 4,815 LOC, with 18,644

property nodes defining the model. The equivalent JADE model file required 85,257

LOC and 383,177 property nodes to define the equivalent model associated with the

target language. The reasons for this apparent block are now explored.

A comparison of the nodes in the model files confirmed that the majority of

the extra data was related to the JADE root-schema. This is essential to the

application and is generated as a matter of course for all JADE applications. The

JADE root-schema is similar in purpose to Microsoft's Foundation Classes (MFC).

Both architectures, i.e. the JADE root-schema and the MFC, are libraries of object

oriented classes structured into their respective hierarchies. A small example of the

JADE root-schema may be seen in Figure 10. The libraries included in both JADE

and the MFC allow developers to include a wide range of visual components in an

application (White, Scribner, & Olafsen, 1999). The JADE root-schema also

includes the native types required by the language.

Figure 10: The JADE root-schema class diagram.

37

..

·�

t'
:i
1a:

Although the MFC was not included in the original reverse engineering

process, when the MFC was imported into the schema the difference in file contents

was still significant. With 30,824 LOC and 127,128 nodes, including the MFC, the

source application file still proved significantly smaller than the equivalent JADE

target model.

It is these major size and syntactic differences in the model files, representing

the same application, which led to the developme~t of~ m::rd grammar during this

investigation. The Rose/UML model file grammar was developed to provide the

parser with the rules used by Rose/UML to check a m<.1del file for syntactic

correctness after the manipulation of a model's properties.

5.1.3 Model manipulation

The RoseJADELink add-in used to export a model to JADE requires more

properties and associated values to define a model's objects than the process used to

export a VC++ model. Some of the properties required by the RoseJADELink add

in are unique to JADE models. This difference in properties and values is the result

of different development teams being responsible for building the add-ins used by

each of the programming languages recognised by Rose/UML.

For the RoseJADELink add-in to produce a useable JADE schema file during

the export process, certain properties must be present in the model file being

exported to JADE. Unless the properties defining each object in the model are

correct, the export process either fails or produces a faulty schema. A brief example

of the differences in the sample application's class attnb'utes may be seen in the

following code examples in Figure 11 and Figure 12. The code examples are taken

from the original reverse engineered VC++ model file and from the equivalent JADE

model file.

38

class_attributes {list class_attribute_list
{object ClassAttribute "towerNumber"

quid "3F94B4300253"
type "int")

{object ClassAttribute "disks [MAXDISKS]"
quid "3F94B4300261"
type "int")

{object ClassAttribute •numDisks"
quid "3F94B4300262"
type "int")

{object ClassAttribute "i"
quid 11 3F94B4300271"
type "int")

{object ClasBAttribute "temp"
quid "3F94B4300272"
type 11 int•))

Figure 11: VC-1+ model class attribute properties.

Notice the ClassAttribute object property referring to the disks[MAXDISKS]

item on the fifth line in Figure 11. The MAXDISKS component is not defined any

further than this in the VC++ model file, whereas in Figure 12, the JADE model file

devotes 13 LOC to define the MAXDISKS object.

class_attributes (list class attribute list
(Object ClasSAttribute "towerNumber"

quid 11 3F93CD380344"
type "Integer"
quidu "3F9301CD0083")

(object ClaseAttribute "disks[MAXDISKS]"
quid "3F93CD3803B2"
type "IntegerArray"
quidu "3F93004B000l"
exportcontrol "Protected")

(object ClassAttribute "numDisks"
quid "JF9JCD380JBC"
type "Integer"
quidu "JF9301CDOOS3")

{object ClassAttribute "i"
quid "3F93C03B0300 11

type "Integer"
quidu 11 3F9301CD0093 11

)

{object ClasBAttribute "temp"
quid "3F93CDJ8030A"
type "Integer"
quidu "3F9301CD0083")

(object ClassAttribute "MAXDISKS"
attributes {list Attribute Set

(object Attribute -
tool "JADE"
name "Read Only"
value TRUE))

quid
"3F93DOOB0312"

stereotype
typo
quidu
initv
export Control
Containment

"const"
"Integer'
"3F93DlCDOOBJ"
"4"
"Protected"
"By Value"))

Figure 12: JADE model class attribute properties.

39

Examination of the model files provided helpful insights into the object

properties requiring alteration and where those object specification options were to

be found in the Rose/UML class-modelling environment.

To begin the conversion process, the Towers of Hanoi sample application,

described in section 3.2, was coded and compiled in VC++. The resulting

application runs in a console window as shown in Figure 13 below.

Figure 13: The Towers of Hanoi program at run-time.

The Towers of Hanoi application was then reverse engineered using

Rose!UML, which produced a UML model represented in a class diagram shown in

Figure 9. The Towers of Hanoi application contains one class, making it a simple

example of a UML class diagram. Consequently, as a more complex UML

conversion process, the investigation was also occupied with the language migration

for a second application, based on an example of inheritance from a text by Schildt

(2003, p. 280), also described in detail in section 3.2.

40

The class diagram rendered from the reverse engineering process of the

second application, Schildt's "building inheritance example" (2003, p. 280), is

shown in Figure 14 below.

tes!Sourcelnheritanc:e Model Update OWI'IIIew
This dlagmm was automatically created by Rational Rose Model Upclate Tool.
Friday, 240ctober200312:47:12 PM

-
Building

~rea: lnt
~ms:lnt
_,floors : lnt

'\get_areao: lnt
"'get_roomsO: lnt
~el_flOOI'S(): lnt
~et_area(wlue: lnt): \Old
'set_roorns(wlue : lnt): \Did
~et_floors(\Siue: lnt): \Old

<!
/

i
!
'

Hou"
~rooms:lnt
~bathrooms : int

~et_be!:iroomso : lnt
~et_bathroomsO : lnt
~et_bedrooms(>,alue: int): \Old
~et_bathrooms(..alue : In!) : \Did

I)
' ' ' ' ' ' '

~et_offices() : In!
'get_classroomsQ: lnt
~el_offices(\Eilue: lnt) : wid
~et_classrooms{value : In!): \Old

Figure 14: Inheritance sample application class diagram.

The next stage of the UML model language migration of the Towers of Hanoi

application, to the target language, was to remove the association that objects in the

class diagram have with VC++. This was achieved by reversing the processes

described by Quatrani (2000, p. 211) for assigning a language to Rose/UML model

components. The selection of the target language, shown in Figure 15 below,

associates the overall model with the language option selected in the Rose

Component Specification dialog.

41

Figure 15: Re-assigning the application to the target language.

Once the components of the source application were associated with the

target language, the JADE root-schema was imported into the model; this is initiated

by selecting the option from the Tools - JADE menu, which opens the JADE

import dialog shown in Figure 16.

Figure 16: The JADE connection dialog.

42

. �

On completion of the importation process, a new application schema was

added to the model. With this addition, the model contains all the necessary classes

and components needed to generate the she1l of a JADE schema file. An example of

the Towers of Hanoi schema file is attached at Appendix B. Before commencement

of the schema generation process, the individual class components must be assigned

to the newly created application schema as shown in Figure 17. The source

application's original 'base class' must then be allocated to a new parent class which,

in this case, is JADE's fundamental base class of 'object'.

JADE
JADE

Libraries JADE
Libraries JADE
Libraries JADE
Libraries JADE
Libraries JADE
Libraries JADE
Libraries JADE

Figure 17: Assigning the class objects to the JADE schema.

Making these assignments alters the model file, thereby creating the extra

property fields and values such as those shown in Figure 12. These properties are

necessary to create a valid JADE schema file during the export process introduced at

the beginning of section 5.1.3. Some of the attribute property values in the model

file require changing to allow the correct assignment to JADE types. Each class in

43

the model is then ru.sociated with a map file that contains the details of each item in

the model, via the Class Specification dialog in Figure 18.

Figure 18: Class relations, the parent class and the map file.

Each of the attributes in the model was altered to reflect the equivalent target

language type. For example, objects of type 'int' ·used in the VC++ application had

to be changed to 'Integer' for JADE to recognise them. Another necessary alteration

was the removal of the C++ keyword 'void' from any class methods not returning a

value. There were multiple techniques available for perfonning such alterations, for

example, a global search and replace provided by some text editors, although the

process lends itself readily to automation. Though rudimentary, this method was

tested during the investigation and was found to be successful and significantly

quicker than using the specification dialog windows in Rose!UML shown in Figure

19. These dialog windows provide accuracy for the process, as the developer may

introduce spelling errors during the process. However, if the source application

44

contains a large number of classes, the time required to make manual alterations

would prove costly.

Applicatio String[30]
FontSizE:t Ap:Jficatio Real
FormMargin Appflcatio Integer
heightSingleLineControl Appflcatio Integer·
helpFile Applicatio String
icon AppUcatio Binary
m<fiCaption Appftcatio String
rnousePointer AppfiCall"o Integer
name Applicalio String[30)
showBubbleHelp Applicatio Boolean
userSecuritylevel Applicatio Integer
webMinimumResponseTime Applicatio Integer

offfces School int
classrooms

Figure 19: Re-assigning attribute types.

Upon completion of the model manipulation described in this section and in

section 4.2.1.3, the model was ready for the final step in the first phase, to be

exported to JADE.

5.1.4 Export to the target language

From the previous steps, the model included all the necessary properties and

components required by the RoseJADELink add-in to produce a syntactically correct

JADE schema file. The model, shown in Figure 20, was ready for the export process

to begin.

45

'-;;;=;;;;;-,;;Hoo:;•;;·--~ !
l=:i~_ ---1
~LbalhroomsQ: ln!eger

i "vet_bodrooms(): lnleger
: ~_bathmttnS(o.oiLIII: ln!eger)

L~-~-~&{~uu: ~
I
I

' ----------~' -~-------,

~
TesiSoureelnherllaeSchema ~

~Housll : House -;
~hool : School : --- - - ... --- ---~- - --- -I
1-oo __ J

: School "l
;~laaSiOOiiiS: ~n~eg&r--~

~~_:_Integer . ·- ----- -----'

~-classrooms{): lnleQer
~-olllce!J(): Integer
~_elaiBrooms(\800: Integer)
~_ol8cas(\8hlll: trteoer)

Figure 20: The manipulated Inheritance model

Initiation of the export process is by selecting the Tools- JADE -Jo Export to

JADE ... menu option. Selection of this option presents the developer with the JADE

connection dialog, shown as Figure 16, providing the option of naming the output

schema file. The final selection required before the export process begins is that of

the schema to export. Once selected, the export process begins and a target schema

file is generated. Finally, during the export process, the developer is presented with a

report dialog, shown as Figure 21, which displays the progress of the export process

through to it's completion.

46

Figure 21: Import/Export progress report dialog.

To test whether the export process had succeeded, the schema was imported

into the JADE development environment, which tests a schema file for errors both

syntactically and semantically. This test showed a flaw in the conversion process,

where the class methods were erroneously declared as external functions under the

externalFunctionDefinitions section of the schema file. The JADE Developer's

Reference (JADE, 2003, p. 134) describes external functions as those "which are not

necessarily associated with any specific class". The extemalFunctionDefinitions

section is not nonnally added to the schema file by the JADE development

environment unless the application is to access an external library or dynamic lirik

library (dll) file.

The schema file was then compared to the purpose built schema :file exported

by the RoseJADELink addMin, revealing that the purpose built schema TI.le contained

no such extemalFunctionDefinitions section. In order to determine the conditions

that may have caused this anomaly, the schema files were scrutinised node by node.

There are 93 property references made to 'VC++', in the converted Rose/UML

Towers of Hanoi model file. In contrast, there are 97 references made to 'VC++', in

an unconverted Rose/UML, reverse engineered C++ Towers of Hanoi model file. As

47

an experiment, the converted JADE Towers of Hanoi application was also reverse

engineered. When the resultant Rose!UML model file was searched for references to

VC++, it was revealed that this new reverse engineered model file made 76

references to the legacy VC++ language. A new blank JADE model was then

created, without any UML components being added to it, or any reference made to

any other language, other than the default language of JADE. The blank Rose!UML

model file was then searched for references to VC++, revealing that a blank model

file, associated with JADE as the default language, also refers to VC++ 76 times.

Of the 17 non~default references made to VC++ in the converted Rose!UML

model file, the first is listed as an attribute property of the "Logical View" in the

Design Object node, shown in Figure 22.

(object Design "Logical View"
is unit TRUE
is-loaded TRUE
attributes (list Attribute Set

(object Attribute -
tool "VC++tt
name "Scripting"
value FALSE))

Figure 22: The converted model Design Object

The attribute property value in the Design Object in the blank model file

refers to Java, shown in Figure 23, even though the default language in the

Rose/UML development environment is set to JADE.

(object Design "Logical View"
is unit TRUE
is-loaded TRUE
attributes (list Attribute_set

(object Attribute
tool "Java"
name
value

Figure 23: The blank model :Design Object

"IDE"
"Internal Editor"))

48

The second and third references to VC++ in the converted model file are

located in the Tower class object definition, shown in Figure 24. Both of these

references to VC++ are made within nodes that are included in neither the Purpose

built nor-the new blank model files.

{object Class "Tower"
attributes (list Attribute_set

{object Attribute
tool

value
(object Attribute

tool
=m•
value

Figure 24: Converted model rue Tower object.

"VC++"
"AppliedPattern"
~none~)

"VC++"
"AfxsupportMacro~
un)

The next six references to VC-H- in the converted model file are in defining

each of the class methods, an example of which may be seen in Figure 25. The third

line in Figure 25 begins the object attribute reference to VC++, which concludes at

the sixth line. Each of the class methods defined in the model file contains a similar

reference.

{object Operation "tower"
attributes (list Attribute Set

{object Attribute -
tool "VC++"
name
value

{object Attribute
tool
=~
value

Figure 25: Class method references to VC+!-.

"Inline"
TRUE)

"JADE"
"Updating"
TRUE))

The next four references were found to define the path to the original reverse

engineered VC++ project and workspace files, each reference is shown in Figure 26.

49

physical models (list unit reference list
(objE!ct module -,testSourCeTowersn "NotAModuleType"

"NotAModulePart ~
attributes (list Attribute Set

(object Attribute
tool "VC++"
name "ProjectFile"
value

"C:\\convert\\myconverter\\testSourceTowers\\testSourceTowers.dsp")
(object Attribute

tool "VC++"
name "WorkspaceFile"
value

"C: \\convert\ \myConverter\ \testSourceTowers\ \testSourceTowers. dew•)
(object Attribute

tool "VC++"
name
value

(object Attribute
tool
name
value

Figure 26: VC++ path reference.

"Kind"
("KindSet" 302))

"VC++"
"ProjectName"
"testSourceTowers"))

The final four references, displayed in Figure 27, describe properties in the

model~attribute property section of the model file.

(object Attribute
tool

value
(object Attribute

tool
name
value

(object Attribute
tool

value
(object Attribute

tool
name
value

Figure 27: Extra VC++ node definitions,

"VC++"
"ForwardReferences"
TRUE)

"VC++'
"IndentType"
l)

"VC++"
"NumTabsOrSpaces"
l)

"VC++"
"MaxCbarsofcommentLine"
60)))

All of the code examples in Figure 22 and Figure 24 through to Figure 27

refer to model properties found to occur in the converted model file and not in the

purpose built version of the same application. From the results of the comparison it

was detennined that it was one of these 17 nodes, still referncing the original

programming language, which was causing the application methods to be considered

as external methods by the RoseJADELink add~in. Removal of the offending

extemalFunctionDefinitions section solved the problem, leaving the static structure

50

conversion process complete and the schema ready to be populated with the

translated algorithmic code.

5.2 Phase 2: The Algorithmic Code.

As described in section 4.2.2, phase 2 involves development of the tools

needed by the conversion application to produce the translated algorithmic code for

insertion into the target schema file. To provide the conversion application with the

functionality necessary to translate the algorithmic code from the source language to

the target language, grammars were required.· An additional granunar was also

required by the translation application ~o validate Rose/UML model files.

5.2.1 Grammar development

The parser and parse trees used during this investigation's transfonnation

process employed grammars developed specifically for high-level to bigh.:.tevel

translation described in section 3.2. The development of each of the individual

grammars is described in the following sub-sections.

5.2.1.1 The JADE grammar

A copy of the JADE grammar developed during this study, is attached in

Appendix E. From the JADE grammar and from the JADE schema file contents

shown in Appendix B, it may be apparent that a JADE application schema file is

highly structured. This inherent structure eased development of a grammar for JADE

schema files.

The final grammar was tested successfully on several complex JADE

applications, by parsing the schema files for the Erewhou example application found

in the examples subdirectory of the JADE install location, used for demonstration of

the JADE development environment, and the "StoryBook" application developed for

handicapped children by a fellow studen~ (Church, 2003).

51

5.2.1.2 The C++ grammar & a subset of C++ grammar

For the C++ component of the investigation, it was determined initially that a

complete language grammar would be required. However, after significant research

and experimentation, it was decided that an existing grammar would be preferred to

building one for a language as complex as C++.

The most comprehensive grammar found and its associated parsing tool were

sourced from NorKen Technologies (NorKen, 2003). At the investigation stage of

using the parser to create the parse tree representing the source applications, it was

realised that the entire C++ language grammar was too complex to source the values

defining the specific nodes in the parse tree accurately and quickly. Consequently,

the converter application developed to use the parse tree information would also be

complex. A subset of the C++ language was then selected for the development of the

final grammar used by the parser and the converter. A segment of a parse tree,

representing the Towers of Hanoi application, is shown in Figure 28.

!.... <I> ident • "Tower"
E;J· <I> class_contents

' ·· · ct> access _specifier -"private•
8 · _,. class _attributes

E} · <I> variable declaration .
i· type--·int·
L ·• <I> ident • "towerNunber"

$1· · <>I> class_attributes
I::}· <> varlable_dedarotion

L .. <I> type-"int"
.. ident - "disks"

B·· ,c, array_declaration
B·· _,. variable

; · <I> ident -"MAXDISKS"
i;J··· <I> class_attributes

B ·· _,. varlable_declarotion
.. type-"int"
.. ident - "numDisks"

B <I> class attribu:es
i El·· <I> v�_declaration

... type-"",nt"
.. ident - "i"

El· <I> class _attribu:es
l"I ·· <I> varlable_declaratlon

Figure 28: Towers of Hanoi parse tree

int toverNumber;

int disks[MAXDISKSJ;

int numDisks;

Tower (int n) (

for (i•O; i<KAXDISKS; i++) (

disks [i] •O;

numD isks•O;

towerNumber•n;

void addDisks() {

tor (i•O; i<KAXDISKS; i++) {

disks[i] - KAXDISKS - i;

52

The subset C++ grammar was developed by studying the content of the

applications. The same method was used in the development of the JADE grammar,

described in 5.2.1.1, which had earlier proved successful. Using descriptive field

names in the subset of C++ grammar enhanced the useability of the parse tree, by

making recognition of the fields and their values easier than using the full C++

grammar. The C++ grammar provided by Norken Technologies was detailed and

precise, but the complexity of the parse tree nodes made deciphering the values of

the statements and expressions more difficult than expected. The knowledge gained

from building the JADE grammar assisted the development of both the C++ and

Rose grammars.

5.2.1.3 The Rose grammar

The Rose grammar was developed to validate alterations and their syntactic

correctness before testing the model in the Rose!UML development environment.

The Rose grammar and parser were tested on more than forty model files, including

the entire MFC model, located in the Rose/UML application template subdirectories.

The granunar successfully created a parse tree of the MFC model described in

section 5.1.2. The tree contained more than 750,000 nodes and 255,000 LOC. This

indicated that the correctness and accuracy of the grammar would be sufficient for

validating the converted application model files.

5.2.2 Schema file extension

As stated in section 4.2.2.3, the JADE schema file exported from Rose!UML

does not contain all the section headings required by the JADE environment.

Consequently, before adding any operational code to the JADE schema file, it was

necessary for the converter to append the missing headings to the end of the existing

schema file.

The converter then used the JADE schema parse tree to find the name of the

application schema, this was then used to create the container for the application

methods. In a VC++ console application, a 'main' method is required as the entry

point for the application. The 'main' method and other methods present in the C++

Towers of HanOi application in Appendix A are not associated with any specific

53

class in the source application. Conversely, all application methods in JADE must be

contained within either a class or the application schema.

To overcome the lack of an application class in the source program, the

converter appends the name of the application schema to the end of the schema file

and then opens a set ofbrackets, which define the boundaries of the schema's scope.

The closing bracket is appended once all the relevant method details and converted

algorithmic code have been inserted. The converter perfonns this functionality

regularly throughout the conversion process. An example of such functionality is

presented in Figure 29 using pseudocode:

For each class in the target acnema file, append the class name;
Open a bracket on a new line;
For. each method in the class append the method name;

Append an opening braca on a new line;
Translate and populate the method bodr;
Append a closing brace on a new line;

End For each method;
Append a closing bracket on a new line;

End For each class;

Figure 29: Regularly used algorithm example in pseudocode.

As the converter reaches the 'Tran-slate and populate the method body' step,

of Figure 29, it calls the source application parse tree to provide the lines of code for

each of the methods contained by the class or schema application currently being

populated during the translation of the algorithmic code step.

5.2.3 Translation of the algorithmic code

One of the first tasks required by a programming-language conversion

project, suggested by Terekhov and Verhoef (2000, p. 106), is a mapping of the

constructs (or data types) between the source and target languages. According to

Terekhov and Verhoef (2000, p. 1 05) many language conversion projects fail

because this issue is not addressed early enough. This task was addressed in section

5.1.3 describing the model manipulation. A diagrammatic representation of the

process based on their suggestion is presented in Figure 30 below.

54

Source application
Language

Native construct

User defined
construct ·,

·, ·, ·-.
'·

Target application
Language

Native construct

-·--·-· -·-·

·,, No equivalent
construct

Figure 30: A mapping of the data types (Terekhov and Verhoef2000, p. 105)

A mapping of the types associated with C++ to the recommended equivalent

JADE type is to be found in the JADE Developer's Reference (JADE, 2003, p. 144).

The mapping takes into account the activation frame size of the native constructs and

recommends an equivalent JADE type, shown in Table 3.

Table 3: C++ to JADE type mapping recommendations (JADE, 2003, p.l44)

C++ data type Activation·rrame· Recommended.JADE

siZe/bytes type

lnt 4 Integer

Long 4 Integer

Short 4 Integer

Char 4 Character

Float 4 Real[4]

Double 8 Real[8]

long double 10 Real(lO]

55

The translation of the types was achieved in section 5.1.3 during the static

structure transfonnation, with the type translation already perfonned satisfactorily,

the conversion application concentrated on the translation of entire statements and

expressions returned from the parse tree.

5.2.3.1 A parser

The converter application, which uses the ProGratnmar parser described in

section 3.2, was developed using VC++.NET and runs in a console environment.

The converter accesses the parse trees through the ProGrammar Application

Programmer Interface (API) which provides an "abstract interface to the run-time

parse engine" (NorKen, 2003, p. 7). The API provides support for several

programming languages, with C++ having been chosen as it is the most familiar for

the author.

bool converter::setup_targetParser(){
//If unable to create parser interface, output a mesaage
//and end the operation
H (pTargatParser •• 0) {

II Initialisation error
ccut ~~ '\nTaro;et paraer not initialhed.• <~ endl;
return false;

//Otherwise, prepare the pauer by providing the gra!'mlllr to be used
if (pTargetParser-~setGn~m~~~r (target_granrnar)) {

//Send the output file to the parser
pTarge t Parser-~ Set lr{IUtFi lename (target_ output_! ile) ;
//Po the job en the target file
pTargetParser-~Parae!lr

if (pT!IrgetParaer->GetNumErrors () > 0) {
//deal with any errora
ccut ~< '\nNumber of errors: • << pTargetParser->GetNumRrrors() « endl;

//Output a message for each error
!or(int I- 11 i <• pTargetParser-~GetNumErrors(l; 1++1{

PGString errcr_mesoage:
long error_ccde1

//get the error code and a description Of the error
error cede • pTargetParaer->GetErrc-rCcde(i):
error=message • PTargetPa-raer-~GetErrorOescript ion (error _code);

cout ~< 'Error: • « er-ror_ccde « • • ~< error_mesuge « endlr

return falser
)else{

ccut ~~ '\nTargetParaer is setup and re11dy• « endl;
retu-rn true:

l
)else{I/The gralmlllr was net set properly!

l

cout « •\nUnable to lead TargetPIIrser granrn.:~r• c< endl;
retum falser

)//setup_ta%!JetParser

Figure 31: Setup of a target file parser

56

The method shown as Figure 31 defines the process used to initialise a parser

object in readiness for use, displays errors on the console as they occur. The code

also shows the method of directing the parser to the input stream and the grammar

used to define it. Each of these method calls is associating a file name with a stream

in the parse engine, using the setlnputFilenameO and setGramrnar() methods

respectively.

Once instantiated and ready for use, the converter uses the parser to search

the input file for algorithmic code contained in each of the methods within a class.

Figure 32 shows a sample of code from a converter method that searches for a

specific class method containing algorithmic code. If the name of the current method

matches the name of the method being searched within the target class, then the

value representing the code contained in that node IS aSsigned to the

current_ statement_list. The current statement list is then returned to the calling

method for analysis and conversion.

current_atatement_liut • •No atotementu available ••• \n"t

oo{
//Find the next occurence of the SearchiD pattern.
current_method_node_ID • psourceParuer->FindNext (SearchlD) 1

if(current_method_node_ID > 0) {//found a method
//Get the method name for a comparison with the 'current_method_name'
long method_namelD • psourceParser->Find(•method_name•, current_method_node_lD);
PGString this_method_name • psourceParser->GetValue(method_no....eiD);

if(this_method_name u current_method_name) (
//Access the Statements within the current_method_nell\1! from here
//current_atatement_liat • •Some statement detaila to go here ••• \n·•;

}

lung al • pSourceParaer•>GetNextSibling (method_nameiD) t
1/cout << •\n' << psourceParoer->GetValue(al) << "\n•;
long o2 • pSourceParser·>GetNextSibling (sl) 1

current_atatement_list • pSourceParaer->GetValue (B2);
cout << "\n' << pSourceParaer·•GetValue(S2) << "\n•;

)else cout << '\nNe methods .•• • -<< endl1
//Repeat until no m:>re methods

)while(current_method_node_ID > 0) t

Figure 32: Searehing a method for algorithmic code

Results of the search for the algorithmic code contained in the addDisksO

method, the contents returned in the current_statement_list object are shown in

Figure 33.

57

for (i=O; i<J.IAXDISKS; i++J {

dieka{i] ., MAXDISKS- i;

Figure 33: Contents of current_statement_list.

The content of the sample source file's algorithmic code is assigned to

current_statement_list object in C++ fonn, one LOC at a time. Both the

current statement list and the- node_id are then passed to the converter's

get_ statement_ equivalent(long node jd, PGString current_ statement_ list) method,

which detennines whether each LOC is either a statement or an expression.

Each node in the parse tree is defined by a node label, which may be seen in

Figure 34 where, in the left window, the highlighted assignment_statement node

represents the LOC in the code window on the right. Use of the parse \Tee to return

the node label matched to the node id parameter passed to the

get_statement_equivalent(long node_id, PGString current_statement_li.st) method,

allows the converter to concentrate on ge~erating the equivalent JADE statement or

expression.

58

E;l·· • ...,.t,,d_nome
.... klent - "add!lisl<s"

: parameter, -"(r
E;J • codo_block

E;J _ol_code
E} .. s:totemcnt

8 • f<W _statement
8 ,Ofor_l,t

E;J ,0 05591fllOntJtotement
i;:. • variable
. ... • !dent-·r
, r....--·O"

$ ""expression
' 8 ·•variable

,O ldent-T
. . .c, operol:CJ' • • <'
: f:}-:" variable

' klent -'MAXO(Sl(S"
8 ,o ilcJtotement

El-·• variable
: .. • ldont-T

8·· • for _codo_t,lock
:,;1-.. • code block

i:; • lines_ol_code
B·•statement

8···-+ iiili#MMMII
;�}- .. ya,iable .

i • ldont-"<lsl<s"
i:;;. • array_dodaration

e·••ariobio

Figure 34: Towers of Hanoi addDisks() parse tree

}
numDi:sks•IU.XDISKS;

int pop() {
if (numDisk:!!1 > 0) {

temp • dizsk!l[numDizskz,-1];
}
disk:!!! [numDi:,Jt!l-1] •0;
numDisk!I--;
return temp;

void pu:sh (int 1) {
disk!l[numDisks] • 1;
numDisks++;

void print() {
cout << towerNUldJer << rf:" ;
tor (i•O; 1<11llDISK5; 1++) {

cout << di:slt:s [i] << " ";

}
cout << " � << numDisk!I: << endl;

Some statements, for example the one highlighted in the right side window in

Figure 34, need very little alteration to transform them into the JADE equivalent.

Statements assigning a value to a variable, even an array variable like that shown

Figure 34, differ from source to target language only in the assignment symbol itself

Where in C++ the assignment uses an 'equals' symbol (=), in JADE the 'colon -

equals' (:=) is used. The assignment statement translation is performed one character

at a time. When the '=' symbol is detected in an assignment statement, the

'putback()' function is used and a colon is inserted; then the rest of the LOC is

processed. This process is not affected by the detection of the C++ test for equality

symbol, i.e. "= =". The grammar and parser recognise the"= =" pattern as part of an

expression rather than as an assignment statement. Once the conversion of the

assignment statement highlighted in Figure 34 is complete, the transformed

assignment statement is written to the target method inside the for_statement within

the JADE schema file.

Translation of a 'for' loop statement from the sample application source code,

is performed in a similar fashion. If the statement type query for a line_of_code

node returns a value equal to 'for_statement', each component of that line of code is

59

,,
:I
,I

:/
l!

dealt with in a series of steps. Figure 34 shows the for_statement as a grandchild

node of the 'lines_ of_ code' node in the left window. The for_statement node has

intum two children of its own. These are shown to be the for _list and

for_code_block nodes. The for _list node value represents the first line of the

for_statement shown below as Figure 35.

for (i .. O; i<MAXDISKS; i++) {

Figure 35: for_llst node value.

The translation process converts the Figure 35 LOC to the JADE equivalent,

shown as Figure 36, by dealing with each component in the for_statement's child

nodes or 'sub-tree'.

foreach i in 0 to MAXDISKS do

Figure 36: JADE equivalent to Figure 35.

A template writing method is used to produce the translated JADE equivalent

in Figure 36 by using the parameters sent to it by the parser. When a 'for loop' is

recognised by the converter, the component parts of the for _list are extracted and

sent as parameters to the get_new_for_Iist method, shown in Figure 37 .• which then

returns the re-formatted statement to the calling converter method.

60

string Statement: :get_new_for_liat(PGString counter, PGString s.tart_val,
PGString end_val) {

string new for list = "foreach ";
new_for_liSt.aPpend(counter);
new_for_liat.append(" in ");
new_for_liat .append(start,_val) ;
new_for_liat.append(" to");
new_for_list.append(end_val);
new_for_liat.append(" do");

return new_for_list;

//Note: string's STL function append has been used for clarity,
//rather than its '+' operator.

Figure 37: Converts Figure 35 to Figure 36.

The converter uses a similar method to that in Figure 37 to transfonn

incrementing or decrementing statements during a translation. When an

inc_ statement or a dec_ statement is encountered during a conversion, the identifier

value is sent as a parameter to the get_new)nc_statement(PGString id) or

get_new_dec_statement(PGString id) method respectively. Figure 38 shows the

incremental statement conversion method.

string Statement::get_new_inc_statement{POString id) {
string new inc statement Q id;
new_inc_stitement.append(" ,, ");
new_inc_statement.append(id);
new_inc_statement.append(" + l");

return new inc statement;
}//Returns id := Id +1

Figure 38: Method of ine_statement conversion.

Although simple in their coding, these methods provide the necessary

translation to show proof of concept for the application translated in this

investigation. Once all the algoritlunic code had been converted and deposited in the

target schema file, the analysis phase was initiated.

61

5.3 Phase 3: The Analysis and Findings

Recall from chapter 4 that, in order to achievt. the goals of the investigation,

it was necessary to deconstruct the processes involved in this study into 3 pha~>es. To

recapitulate:

• Phase 1 involved the selection and reverse engineering of the sOurce

applications, followed by the manipulation of the model properties and

finally the export process to produce a valid target language version of the

model;

• Phase 2 involved the development of language granunars used by the

parser to produce parse trees that represent the subject input contents.

This phase also involved the development of an application capable of

extending the JADE schema file, produced by the RoseJADELink add-in

during the reverse and forward engineering and subsequent export

processes. The parse trees built here provide bput details used by the

converter to populate the methods with the translated algorithmic code.

• Phase 3 Having investigated the processes necessary to provide a static

structure schema file of. the· sample programs, and having built the

application capable of translating the algorithmic code, the investigation

proceeded to the collection and correlation of data for evaluation.

5.3.1 Data Collection and Analysis

The converted schemas were tested in the JADE environment to detennine

the usability of the converted code. When the sample inheritance schema was run,

the code was unsuccessful due to the missing •create' statements required to

instantiate a class object. Consequently, as may be seen immediately after the

'begin' clause in Figure 39, the •create' statements were added to the 'main' method

as part of the automatic conversion process. This was necessary as C++ does not

require the explicit use of a create statement after the declaration of the object.

Therefore, as the statement does not exist in the source application, it is not

translatable yet must be included in the process.

62

L

ars
eHouse: House;
aSchool: School;

, , •'*Roc4Schem,�App' ..

'*' Application''"
·- - t1:1:

egin
cceate aHouiie tr8ll.sient; / /Create statements added during the
create aSchool transient; //conversion
eHouse.iiet_bathl::ooms(3);
aHouse.set_bedcooms(S);
eHouiie.set_roomii(l5);
eHouse.set_floocs(2);
eHouse.set_acea(SOO);

aSchool.set_classcooms(200);
aSchool.set_offices(lO);
a5chool.iiet_acea(2SOOO);
aSchool.set_floocs(3);
a5chool.iiet_coomii(2SO);

write "The house has " & aHouse.get_bathcooms().Stting & "bathrooms";
wr ite "It also has " & aHouse.get_bedcooms().String & "bedtoollls";
wcite "It's acea covets " & aHouse. get_atea(). Sttin,;i & " units of acea";
write "OVer " & aHouse.get_floocs().Stting & " floors";

write "The school has " & aSchool.get_cooms().Stting & " cooms ";
write "covering" & aSchool.get_floots().Stcing & " floors, with a total";
wcite ",,f " & aSchool.get_acea() .Sttin,;i & " units of acea. ";

Figure 39: A converted schema imported into JADE.

The inclusion of the 'create' statements in the mam method of both the

applications translated during the investigation produced a complete sample

inheritance schema, which was parsed successfully using the JADE grammar and

one of which was operable from within the JADE environment. Invoking the

converted application from within the JADE environment initiates the 'JADE

Interpreter Output Viewer', as shown in Figure 40, which presents the application

output.

63

Figure 40: The building inheritance output as depicted in Figure 39

The output presented in Figure, 40 is the successful culmination of using the

static structure abstraction and transliteration method to translate Schildt's (2003)

building inheritance application from VC++ to JADE. Use of the tools developed

throughout the investigation, in conjunction with the existing parser application

obtained from Norken Technologies, allowed the abstraction and transliteration

method to be realised and tested.

'

64

5.4 Findings

5.4.1 Findings from the building inheritance application conversion.

The following findings relate specifically to the conversion of the sample

inheritance application taken from Schildt's (2003, p. 280) text:

Table 4: building Inheritance conversion data

Item • ::;,
• ... _: .,DesCrlptii:iii-.: ··:·:- .. ~,: ;, \ ',,, ~':/:':i!''t,i>,·- :-

Original Loc 71LOC
Converted Loc 292 LOC
Manual Loc ZERO
Automatic Loc 292LOC
Time Automatic Loc 1 second
Time Manual Loc 20 minutes
Conversion Time 20 minutes 1 second
Environment • WindowsXP

• 512MB RAM

• 2.0GHz

5.4.2 Findings from th'~ Towers of Hanoi conversion.

The following findings are specific to the conversion of the Towers ofHanoi

application taken from Roeder's (2003) website:

Table 5: Towers of Hanoi conversion data

'Item· Description · . . . · ..

Original Loc 109LOC
Converted Loc 268LOC
Manual Loc 19
Automatic Loc 249LOC
Time Automatic Loc 1 second
Time Manual Loc 15 minutes
Conversion Time 15 minutes 1 second
Environment • WindowsXP

• 512MB RAM

• 2.0GHz

Once the testing and analysis steps were concluded, the findings were

processed and associated with the research questions.

65

5.5 Discussion

Manual intervention to the Towers of Hanoi schema was require.:' to enable

the schema to compile in the JADE envirorunent. Although the schema • , rerl.

without any syntactic errors, the JADE envirorunent found semantic <~'Tors L'>.at

required debugging of the sowce code. Solutions to the errors found may have been

included in the conversion process if time had not been a limiting factor. For

example, JADE expects class methods that make assignments to have the method

option 'updating' included in the method Signature. To include the functionality

necessary to implement adding the 'updating' option to each assigning method,

would have required significant alteration to the converter logic along with an

increase in investigation time. However, a manual insertion using text editor

facilities achieved a satisfactory result. Such insertions are consistent and lend

themselves to automation and were not regarded as significant.

During the JADE environment testing stage another error was discovered,

relating to the use of 'for-loops' and array objects. The conversion of Figure 35 to

Figure 36 results in a semantically and syntactically correct statement. However the

logic behind the use of the statement to instantiate an array object is incorrect. An

example of the completed conversion of a for-loop assigning values to the disks array

is shown in Figure 41. Running the code with Figure 41 in the schema results in an

'array index out of bounds' error, due to the array index being set to zero. This is not

allowed in JADE (JADE online help, 2001) as all JADE indices must be greater than

zero. A difference between the original C++ code and the translated version is the

maximum range to which each of the 'for-loops' will run.

In Figure 41, the converted for-loop would run from 'i' beginning at zero and

running to MAXDISKS (which has been instantiated to 4), a total of 5 iterations.

Whereas the original C++ for-loop, shown in Figure 42, would run from 'i', again at

zero, whilst LESS THAN MAXDISKS, a total of 4 iterations before exiting the loop.

66

fcreach i in o to MAXDISKS de
disks[i] '= MAXDISKS- i

endfcreach;

Figure 41: Converted array assigning 'for loop'.

fer {int i~o; i<MAXDISKS; i++) {
disks[i] = MAXDISKS - i;

Figure 42: The original C++ 'for loop'.

Automating the instantiation of the arrays to one instead of zero, may have

been achievable during the conversion; however, the process may have corrupted the

assignment translation process by adding one to every assignment statement

encountered, even in those statements not related to a for-loop. Again, such

adjustment lends itself readily to automation but with time restraints was not

regarded as significant.

5.5.1 The building inheritance conversion details

In the building inheritance translation, there was a significant rise in the

number ofLOC. This increase from 71 LOC to 292 LOC equals an increase of221

LOC, which equates to an increase of over 311%. This is entirely due to the

necessary inclusion of the rootSchema and is of no consequence to the executable.

Manual intervention was not required in the building inheritance conversion

to realise a useable schema once the process had been tested in the JADE

environment. This resulted in 100% of the converted schema being translated

automatically. However, this figure still required time to modify the UML model in

readiness for export to JADE and the modifications took a total of 20 minutes.

Again, this might be automated with scripting language in Rose and does not detract

from the overall automation of the process.

67

5.5.2 The Towers of Hanoi (Roeder, 20003) conversion details

As in section 5.5.1, an increase in the number of LOC from the original

source application, 109 LOC, to the converted JADE equivalent application, 268

LOC, realised an increase of more than 145% in the number of LOC. The number of

LOC requiring manual intervention, before, during or after the conversion, amounted

to 19. The LOC requiring manual intervention, related to modification of:

• array assigrunents;

o to not include zero;

• instantiation of objects to be used to assign a value to an array;

o again zero not allowed;

• method options in those methods which update the value held by a

variable;

o append the option 'updating' to a method signature; and

• method signatures to include parameter object accessibility;

o for example: the 'io' in Figure 43.

push(i Integer io) updating; J
Figure 43: Method signature alteration

The manual intervention required to modify the converted Towers of Hanoi

schema amounted to 19 LOC, which represents a total of 92.9% of the converted

schema being translated automatically. As mentioned in section 5.5.1, time was also

required to modify the UML model before the conversion in preparation for the

export of the model to a JADE schema. In the case of the Towers of Hanoi

application, 15 minutes was required for the model to be altered in readiness for the

export process to begin. As before, all manual intervention noted above lends itself

readily to consistent automation and is of little negative significance to the study.

68

5.6 Evidence Found To Support the Research Questions

Section 5.6 restates and addresses each of the research sub-questions in tum,

followed by the main research question.

5.6.1 Sub-question 1

W/1ich properties, wit/lin a Rational Rose model file, are associated with tl1e

reverse engineered application's programmi11g language?

A summary list of the Rose/UML model file properties associated with the

reverse engineered Towers of Hanoi application's programming language follows:

I. Logical View scripting field;

2. Tower class AppliedPattem field;

3. AfxSupportMacro field;

4. tower's in/ine field;

5. add.Disks' inline field;

6. pop's inline field;

7. push's inline field;

8. print's inline field;

9. test's inline field;

10. physical_ model's unit reference list fields;

a. ProjectFile;

b. WorkspaceFile;

c. Kind; and

d. ProjectName;

11. ForwardReferences field;

12.IndentType field;

69

13. NumTabsOrSpaces field; and

14. MaxCharsOfCommentLine field.

Apart from the default language property nodes found in all model files, these

seventeen properties are associated with the reverse engineered Tower of Hanoi

application's programming language. In the case of the building inheritance

application model files, the same nodes were repeated in relation to the source

language, however, there were more references in number. The number of

references to the source language in this converted model file numbered 29. This

was due to the extra classes and the number of methods per class associated with the

building inheritance application. Nine of the fields were repeated as in the Towers of

Hanoi application. Fields 2 and 3 were repeated for each of the classes in the

building inheritance application model file, an 'inline' field was repeated for each

method in the classes included in the second application. Leaving fields I and 10 a,

b, c, d, 11 through 14 repeated for the building inheritance application's model file.

5.6.2 Sub-question 2

Which components of a JADE schema file, produced by the

RoseJADELink add-in, may be used to construct the static framework in

preparation for code migration?

In answer to sub-question 2, all the components produced by the

RoseJADELink add-in were included in the working schema, except for the

extemalFunctionDefinitions component discussed in detail in section 5.1.4. The

components that were included in the converted schema file were:

I. schemaDefinitions;

2. constantDefinitions;

3. typeHeaders;

4. typeDefinitions;

5. databaseDefinitions;

70

6. schemaViewDefinitions;

7. _remapTableDefinitions;

8. extemalFunctionSources; and

9. typeSources.

5.6.3 Sub-question 3

What improvement in the ratio of automatically to manually translated

LOC in a legacy system may be achieved using tl1e abstraction and re·

implementation approach?

An answer to this question depends on the complexity of the application

being converted, as shown by the results from each of the sample application

conversions. The building inheritance application (Schildt, 2003, p. 280) provided

100% automatic conversion of the algorithmic code, without requiring manual

intervention. This figure does not take into account the model manipulation

mentioned in section 5.5.1 regarding the Rose/UML model, as this is in relation to

the static structure abstraction and conversion.

The Towers of Hanoi achieved an improvement in the ratio of automatically

to manually translated LOC of 2.9%, using the abstraction and re-implementation

approach. An improvement of between 2.9% and 12.9% over the automatic

translation results reported by Harsu (2000) and Terekhov (2001) respectively. This

improvement translates into significant savings when applied to the figures described

in section 2.2. On Terekhov's (2001) 1,500,000 LOC translation project,

approximately 43,500 extra LOC may have been automatically converted, a saving

of approximately $US348, 000.

However, it is worth stating that the manual intervention noted in 5.5.2 lends

itself readily to automation that may enable a projected 100% automated conversion.

71

5.6.4 The main question

If separation of static and algorithmic components of code for forward

engineering of a legacy system is achieved, then may a reduction of manual.

intervention be realised in automated code conversion?

Evidence produced during this investigation proves that a reduction of

manual intervention would be realised when translating applications of similar

complexity using the abstraction and reimplementation approach. In the translation

of legacy-system applications with an MCC rating of 3, a reduction of 2.9% in the

number of LOC requiring manual intervention would be realised. With little

modification, zero manual intervention may be achievable.

5. 7 Chapter Summary

Details of the phases outlined in chapter 4 were presented. Implementation of

the steps incorporating the phases of the investigation combined the needs outlined in

the introduction and background, with the foundations provided by the studies in the

literature review to develop the concepts presented in the project proposal. The

chapter also stated and discussed the findings of this study, by showing excerpts of

source and target model schemas and comparing and contrasting their contents to

validate the findings. The study's findings have then been used to provide answers

to the research questions as they were presented in section 2.4.

72

6 Conclusions

This investigation has detailed the phases involved in developing a

programming language converter capable of using the static structure abstraction and

transliteration method to translate a VC++ application to JADE. The concept

presented by Waters in 1988 as more of a promise than a reality, is now achievable

using today's tools and methods.

One of the objectives of this project has been to provide evidence that

translating a legacy application via the static shucture abstraction and transliteration

method would result in a reduction of the amount of manual intervention required.

This objective has been realised as shown by the findings in section 5.4. In

describing the significance of this study, in section 2.2, the costs involved in

translating manually from a legacy system's programming language were discussed

briefly. In section 2.3, it was suggested that using the static structure abstraction and

transliteration method to automate the conversion process would yield significant

cost savings over the manual translation alternative. In answering the re~earch

questions in sections 2.4 and 2.4.1, the cost savings suggested by the author in

section 5.6.3 are shown to be realistic and achievable.

From using the Towers of Hanoi sample application as a test case, the study's

findings showed that an application with the same MCC rating would realise a

reduction in manual intervention of2.9% of the total LOC in the original application.

In fact, cost savings would be realised if a reduction in manual intervention of this

magnitude were applied to the best efforts of both Terekhov (2001) and

Kontogiannis et al., (1998). Automation of the consistant alterations made manually

may realise 100% automated code conversion.

As the study has been implemented, however, calculations from section 5.6.3

project a cost saving of approximately $US348,000 would be realised over

73

Terekhov's {2001) best conversion efforts. A reduction in the number of LOC

requiring manual intervention in the Kontogiannis et al., (1998) conversion would

equate to approximately 8,700 LOC. Using the lower fignre of$US 8.00 per LOC

(Cowley, 2003) for manual translation, a cost saving of around $US 69,600 would be

realised.

From the analysis of the data collected and correlated throughout the

investigation, each of the research questions has been answered successfully. The

goals of the project have been accomplished and the findings presented and

discussed. Those findings revealed by this investigation advocate that significant

savings in legacy-system translation costs are achievable using the static structure

abstraction and reimplementation approach.

The test applications selected for translation were of levels of complexity

representative of those that might be found in well-crafted application code and were

not custom built for this study. These factors add to the veracity of the findings

presented in the stu~y.

Future studies include extending the translation mechanism to embrace the

full C++ language and of incorporating 00 source language similar to C++ e.g. Java,

to extend evolution of legacy system modernisation while preserving valuable

original system code aspects.

74

APPENDICES

Appendix A: Sample application- Towers of Hanoi.

The Towers of Hanoi sample application was used in this investigation,

courtesy of Roeder (2003), as it was found on his website. Code comments have

neither been added nor removed; Roeder's (2003) source code is presented below.

#include <,ioatream>
using namespace std;

const int MAXDISKS~4;

class Tower {
private:

int towerNumber;
int disks [MAXDISKS];
int numDisks;

public:

int I;
int temp;

Tower(int n) {
for (i=O; i<MAXDISKS; i++) {

disks[i] .. o;

I
nurnDisks=O;
towerNUmber=n;

void addOisks() {
for (i~o; i<MAXDISKS; i++) {

disks[!] = MAXDISKS- I;

numDisks=MAXDISKS;

int pop() (
if (numDisks > 0) {

temp= disks[numDisks-1];
I
disks[numDisks-1]=0;
numDisks--;
return temp;

void push(int i) {
disks [numDisks] I;
numDisks++;

void print {) {
cout << towerNumber << •:• ;
for (i=O; i<MAXOISKS; i++) {

cout << disks [i] « • •;

cout << • • << numDiaka << endl;

static void teat ()
Tower all);
a.print ();
a.addDiaka();

75

a.print();
cout << ~pop • << a.pop() << endl;
a.print ();
a.push(99);
a.print();

void move{Tower &from, Tower &to_, Tower &use, int depth){
if (depth==1) {

from.printO;
to_.print{),·
use.printO;

cout << •--------• << endl;

if (depth > 0) {

I

move{from, use, to , depth-1);
to_.push(from.pop{));
move(use, to_, from, depth-1);

if {depth==1) {
frcm.print();
to .print 0 1
usii.printO;

cout << •--------• << end1;

void hanoi() {

Tower a(1);
Tower b(2) 1
Tower c(J);

a.addDisksO;

a.print ();
b.print ();
c.printO;

cout << •--------------------------------• << end1;
move(a, b, c, Ml\XDISKS);

cout << •----------------------------------~ << end1;

a.print 01
b.printO 1
c.printO;

void main()
Tower,,test(ll
cout << "====~~==w << endl;
hanoi{) 1

76

Appendix B: The generated JADE Towers of Hanoi schema file.

jadeVereionNumber "6.0.08";
schemaDefinition
ConvertedTowersSample subschemaOf RootSchema partialDefinition, modelSchema;
constantDefinitions

categoryDefinition ConvertedTOHmodified
documentationText

'This is the Application subclass. •
MAXDISKS : Integer 4;

categoryOefinition Tower
typeHeaders

ConvertedTOHmodified subclassOf RootSchemaApp;
GConvertedTOHmodified subclassOf RootSchemaGlobal;
SConvertedTOHmodified subclassOf RootSchemaSession;
Tower subclasaOf Object transient;

typeDefinitions
ConvertedTOHmodified completeOefinition
(
documentationText

'This is the Application subclass.'
constantoefinitions

MAXDISKS : Integer 4;
jadeMethodOefinitions

)

move(
from : Tower io;
to Tower io;
use : Tower io;
depth : Integer) updating;

hanoi() updating;
main() updating;

GConvertedTOHmodified completeDefinition
(
documentationText

'This is the Global subclass. •
)
SConvertedTOHmodified completeDefinition
(
documentatienText

'This is the Websession subclass.·
)
Tower completeDefinition
(
attribut~Definitions

towerNumber:
disks:
numDisks:

Integer protected;
IntegerArray protected;
Integer protected;
Integer protected;
Integer protected;

i:
temp:

jadeMethodDefinitions

)

tower(n : Integer) updating;
addDisks() updating;
pop() : Integer updating;
push(I : Integer io) updating;
print() updating;
test() updating;

ConvertedTOHmodified completeOefinition
(
documentationText

'This is the Application subclass.·
constantoefinitions

MAXDISKS : Integer 4;
jadeMethodDefinitions

move(
f:ro1~ : Tower io;
to Tower io;
use : Tower io;
depth : Integer) updating;

hanoi() updating;

77

main() updating;

Tower completeDefinition
{
jadeMethodDefinitiona

{

tower(n : Integer) updating;
addDiaka () updating;
pop() : Integer updating;
puah(I : Integer io) updating;
print() updating;
teat() updating;

databaaeoefinitions
ConvertedToweraSampleDb
{

databaseFileDefinitiona
•convertedTowerssample•;

defaultFileDefinition •convertedToweraSample";
claa~MapDefinitiona

ConvertedTOHmodified in • usergui•;
ConvertedTOHmodified in •ConvertedToweraSample~;
GConvertedTOHmodified in •convertedTowerssample";
SConverted~OHmodified in •convertedTowerssample";

78

Appendix C: Rational Rose model file grammar.

!···
*This grammar has been developed to parse UML model files, specifically
*Rational Rose .mdl files.
*It has been tested on over 40 sample modele created using
*Rose Enterprise Edition Version: 2002.05.20
•and parses all of them successfully.
•It has not been tested on Rose models created with
•earlier or later versions of Rational modelling tools .
•
*The grammar has been developed using the NorKen Technologies
••ProGrammer• tool and their Grammar Definition Language
*(GDL} Available at www.programmar.com
•
*AUTH:
*DATE:

Rob Chandler
20030921

*VERSION: 1.0 ,2

grammar Rose <space=" \n\r\t",
matchcase,
hideliterals,
showdelimiters,
version="l.0.2">

schema::= [{Object}]; //Describes the model itself

/* **"************* LITERALS AND TERMINALS ******************* */

literal ::~ boolean_literal 1 numeric_literal 1 string_literal
boolean_literal : := "TRUE" 1 "FALSE" ;
numeric literal <TERMINAL, TOKEN=NULL>: := [sign] numeric [{ (" :'' I •. ")

numeric J l ; -

the I

sign <TERMINAL, BACKTRACK>::= ("+" j "-~)
numeric : ,., '[0-9] +' :
atring_literal <TERMINAL, SPACE=""> ''" "\"" *("\"") "\""

obj ::- "object" : II term used often

value : := atValue
I boolean_literal

I
I

value set
numeric_literal
string_ literal
sub _property
comment_line

•(• Text ")"
"uses\\"
"extends\\"
"Last name\\"

atValue : : = "®" literal ;

//TRUE I FALSE
//(111,111)
/lint or float
//Any double quote delimeted string
//A literal followed by a value
//Comment or documentation begins a line with

//type of comment
//irregular option
//ditto
//more of the same

value_set ::= "(" {numeric_literal, •,•} ")"
sub _property : := "(" literal value ")' :
Text : : = value type comment line ;
value_type ,, .. -•value cardiilality" I •value Text"
comment line ::= {"I" stuff } I literal ;
stuff ,-;-, •(comment_end) ;//regular expression
comment_end : := !IBOL ("\32" J "\t") //Beginning Of Line followed by

whitespace

Object ::= "(" obj Object_Name [{val.ue)l [{Object_Properties}l "l" ;

79

Object Name ::~ "action"
- I "l'.ctionTime"

'

I
I

I
I

"ActivityDiagram•
~ActivityState•

"Act i v ityStateView"
"AssocAttachView"
"Association•
"AssociationViewNew"
"AttachView"
"Attribute•
"CategoryView•
"ClassAttribute"
"Class Category"
"Class-;
"Class utility"
"Classiliagram"
"ClassView•
"Compartment"
"Connection Relationship"
"ConnectionView"
"DataFlow'/iew•
"Decj sion"
"Deci>.ionview"
"defaults"
"Dependency_Relationship"
"Deaign"
"Device"
"DeviceView"
"Event"
•external doc"
"Focus_o(:control"

• ImportView"
"Inheritance Relationship"
"InheritTreeView
"InheritView•
"Instantiated Class"
"Instantiation_ Relationship"
"Instant iateViel'.'"
"InteractionDiagram"
"InterfaceView"
"Intet;·lessView"
•rnterObjView"
"ltemLabel"
"Label"
"Link"
"LinkSelfView•
"Linkview"
"Mechanism"
"Message"
"MessView"
"Module_Diagram"
"module"
"Module"
"l~odul e _Visibility_ Relationship'
"ModView"
"l>lodvisview"
"NoteView•
"Object Diagram"
"Object"
"ObjcctView"
"Ope1·ation"
"Parameter•
"Parameterized_ Class"
"Partition"
"Petal"
"Process_Diagt·am"
"Process"
"Processes"
~Processor"

"ProcessorView•
"Ptoperties"
"Realize Relationship"
"RealizeView•
"Role"
"RoleView•
"SegLabel"

80

'SelfMessView"
•seHTransView"
"sendEvent'
"State Diagram•
"State :::Machine•
"State"
•state_Transition"
•stateview"
"SubSystem•
"Subsyaview"
·s~timlane"

"S ynchronizat ionsta t e"
"Synchroni~ationview"

"Tier Diagram"
"Tierl/ie•,.;"
"Transview•
"UaeCase"
•useCaseDiagram"
"UseCaseView"
"UsesView"
"Uses _Relationship"
~visibility_Relationship"

/* ************************ OEJECT PROPERTIES •••••••••••~•••••••••• */

Object_Properties ::= Object_Key (value I Object I Object_List) ;

Object_Key : := 'abstract•
I "action•

I~~~ :mm~:::: "annotation"
"Associationclass•

I

I "attt·ibutes"
•autoReaize"

I "bold"
"bottomMargin"

I •cardinality"
I "characte~iatica"
I "charSet"

"class•
"class attributes"
"client•
"client cardinality"
•clipicOnLabels"
•collaborators"
"color"
"compartment"
"compartment I tema"
"concurrency"
"condition"
"connections"

I

I :~~~=~~·aints"
"Containment"
"cL·eation"

I "creationObj"
•oataFlowView"
"default Font"
"defaults"
"default color"
"derived-;
"dir"
"docum.:.ntation"
"dl·awSup~)lier"
"Event"
"exceptions"
"export control"
"eJ.:ternal_docs"
•external_doc_path"
"eJ.:ternal_doc_url"
"face"
"file_namen
"fill_ color"

~I

"f'OC\111 Entr•J"
~rocus-Of_C~ntrol"
"Focus Src"
•font"-
" frequency"
•friend"
•global"
•gridX"
•grid'l"
"height"
"hidden"
•icon"
•icon_beight•
"icon atvle"
"icon-width"
• icon:=:.' _ot fset"
"Incl udeAt tribute"
"lncl 1 ldeOperat ion"
"initv•
"instantiation_relationship•
"InterC!bjView"
•is_aggregate"
•is_loaded"
"is navigable"
"isYrincipal"
•is unit"
•italics"
"items•
•justify"
•keys"
"label"
'language"
"leftMargin"
"line colo-:"
"line:=style"
•location•
•logical models•
•logic:alYresentat ions"
"max_height"
"max_ width"
·•mechanism_l·ef"
•messages·
"MessView"
"module"
•multi"
•name"
"Nested"
•nestedclasses"
"nlines•
"nonclans"
"nonclassname"
"notation•
•object arc'
"Operation"
"operations"
"opElqlOl"tContl'Ol"
•ordinal"
•orientation"
~origin"

"origin attachment"
"origin-:x•
"origin:=::·
•pageOverlap"
•parameters"
"Parent Vie"'"
•partitions"
"path"
"pc:tOist"
"per!listence"
•physical models'
"physical-present at ions"
·p~·iority-;
• proc:en ~ _ st ruct u l'e •
•processes"
"ProcsNDe•Ju"
"propertius"
"protocol"

82

.,

"quid"
~quidu"

"rank"
~realized_inter faces•
~result"

~dght.Hat·gin"

•roles"
"t·olevie•,;_list"
•root_category•
"t·oot_subsystem"
~root_usecase_package•

"scheduling"
• sendEvent •
"sequence•
"showClassOfObject"
'ShowCompartmentStereotypes•
"showMessageNum"
"ShoWOperationSignature•
"size"
~snapToGrid"

"statediagram"
~statediagrams•

"statemachine"
"states•
•atatic"
"stereotype"
"strike"
"Subsystem•
•subobjects"
"Supercl<'lsses"
•supplier•
~supplier cardinalityh
"supplier-is device"
"supplier-i!J-spec•
"supplier-is-sub~ystem•
"SuppressAt tt:ibute"
"SuppressOpet·at ion"
"s:,•nc_i s_hot:i~onta 1"
"synchronization'
"terminus•
"'terminal_attachment"
•title"
"tool"
·•topr~argin•

··trilnsitions'
"type"
"uid"
"undet·line•
"used_nodes"
"value"
"version·•
•vet·tice!l"
•virtual"
•visible categories•
"visible -module!!"
"when" -
"width"
·_•,;ritten•
•x_offset•
"y_coord"
"y_offoet•
"zoom•

/' ••••••••••••••••••••••••••••• LIST DEFINITIONS ••••••••••••••••••••••••••••

Object List,,,."(" "liot• [Object_Liot_Type] (!(Object I Object_Key value I
value))] ")";-

Object_List_Type ::• "action list"
I "Attribute Sr;t"
I "cla~s_att~ibute_lint"
I "Compartrr.ent"
I ~connecticn_list"
I "dependc:1-::~· liat"
I "diagr.m_lt;;.,_list•

83

"e;.;ternal doc list"
~ inheritaOce i.=elat ionship liot •
"link_liot" - -
"Messages"
"nel.'!tedClasseG"
~operations"

"Pan•meters~

"Partitions"
"Points"
"pt·acesses"
"realize rel_list"
"t·ole_li'iit"

"StateDiagrams"
"States~

"transition_list•
"unit reference list"
"11ses-relationship 1 ist"
"v ill ibil i ty _relat iOnship_list •

84

Appendix D: A subset of C++ grammar.

//MyCPPaubset is a subset of the C++ language, fccussing specifically on the
//statements contained within the methods of the Towers of Hanoi application
//used by this investigation.
I /Permission for the use or alteration of this grammar, in full or in part
//is hereby given.
//CREATED BY: Rob Chandler
//CREATED ON: 20031023
gt·ammar myCPP <HlDELITERALS,

HIDEREPEATERS,
SPACE"" \n\r\t \32",
NOSACKTRACK~

towers_of_hanoi : :~ [(file_contents}l;

file _contents : : • {pre_processor_statementa} [namespace_declaratioll]
[{global_ variable_deelarations)) [{ class_declara.tion)]
[{application~methods)I

pre_proceosor_statements : :• pp_symbol "include" pp_object ;
pp_symbol ::• "II" ;
pp_object ::a (open_delimeter pp_subject cloae_delimeter) I string_ literal
open delimeter : := ·~· ;
close delimeter : =~ ·~·:
pp_subject ::• •atdio.h" I •iontream• ;

name11pace_declaration : :" "using name apace std: •

global variable declarations ::•
- {type_pr-efixl variable_declaration initializer •;•;

type _prefix : :• •conat• ;

variable declaration : :• type ident {array_declaration)
type : , .. -·int' :

array declaration''" "\1" {expreBaion I variable) "\]"
initiilizer : ,,. ·~· (numeric I identl ;

variable ::• ident (array_declaration];

class declaration : :• "class" ident (baae_claBa)•(• (clasa_contenta} "):• ;
baae_Clasa ::• •:• acce11s_specifier ident;
clasa_contentB : :" acce11a_specifier •: • ({ claaa_attributeB)J ({ claaa_method)]

access specifier : :• •public' I •protected" I ·pri•:ate'
claa11 ittributes : :• variable_declaration ";'
clas11-method :''"operation ;
appliCation_methodn :'"operation ;

operation : :• {method_type] (return_type] method_name parameters code_blocK
method type : '" ·stat 1c"
return= type : :• ··:aid" I type ;
method name ::• ident;
parameters : :• • (• {parameter li11tl ") • ;
parameter_list : :• parameter [{•, • parameter) I
parameter :: • (type I "To.,·er·) {address_delimeter] ident
address delimeter : :• "I." ;

code_blOcK ::• ·{· !{lines_of_code)J •)•;

linea of code : , .. statement
- 1- expression

I method call [•;·]
I output-call
I object=initializer

object initializer ::" ident [class_specifierl {method_call 1 ident) ·; ·;
class_fipecifier ::a •:: • ;

expression ::• variable operator (variable I numeric);

85

operator ,, .. ·-·

I
... ,.

I

method_ call : :• (acoped_name 1 method_name) • (• [value_liat] ~) N

acoped name ::• ident •.• ident :
value_liat : :• value [{•,• value)l :
value : :• expression

1 method_call
1 variable
1 numeric
1 string_literal

output_call : '" •cout• [{output)] [flush! •;•
output ::• output_operators {method_call

I variable
I string_literal
I numeric)

output_operators ::• "<~· 1
flush : '" output_operators "end\"

statement

I
I

: :• assignment_statement
for atatement
if iitatement
inC atatement
dec=:atatement
return_ statement

assignment_statement : :• variable ·~· (expresoion J variable J numeric) • 1 •;

for statement : : • • fo> • • ! • for liat •! • for code block;
for=list ::• assignment_statement expressioO ···-inc_statement
for_code_bloek : :• code_bloek

if statement : :• "if• "(" expression "1" if_eode_block
if=~ode_bloek : :• eode_bloek ;

inc sta':ement :: .. variable • ••" {";"I:
dec=:statement ::• variable •.• [";");
return_rtatement :: • ·wturn" {variable I numeric) •; • 1

string_literal<TERMINAL,
SI'ACE•"";. ::•

text_aegment, (whiteopacell

text segment : :•
- ["L"] "\"" text_elem [more_text_elems] "\""

text elem : : •
- *{'[\\\"]');

more text eleme : :•
- •\\,• Text_elem [more_text_elems]

ident <TERMINAL> : : •
identifier {? ~VALUE I: :• reserved_word1 l;

identifier : , ..
'[a·::;A-Z_] [a·zA·Z0·9_$J••

reaerved_word : :•
_aB!t·"

'aute
"bref .'
"CCI5e"

"elge" J •operator·

•virtual"

• _huge"
"protected·
·catch"

•nlecl"

•enum• I 'trpedef'
•extenl' J ·private"
•far· 1 '_far·

I ·_huge·
•unsigned'

I "float" 1 ·public"

•fot·' J "register" I •·:oid'

•union•

86

"chat·" "friend" I "return"
"volatile"

~clasa"

~conat"

~continue"

•nameapace"
"default"
"delete"

"goto"
·u· I

I "sbot·t"
"aigned•
"si::eof•

I •using"
•while•

•inline" I

'int•
'long"

•static• •typename•
I "struct" I

_uuidof"
"do" •near• I ·try•
• _try• I "throw•
"double" I •new• I "template" "finally"

I
• finallv" "except" I ·_except" I _leave•
-ints• · I "_intl5" I •_int32" I _int64"

"_declspec" I ·_declspec• I •_baaed"
• forceinline•

I _virtual inheritance"
• single inheritance•
- - I "explicit"

I ·_export• I ·_export"
II call modifiers

_multiple_inheritance"

1 ~_cdecl" 1 ·_cdecl" 1 _fastcall"
I "_stdcall" I •_stdcall" I ·_nyscall• 1 •_oldcall"
I ·~unaligned"! •pa!lcal" I "_paecal" I •_paecal"

87

Appendix E: The JADE language grammar

,, ..•...............
/!··
//Jade Grammar version 1,5
//Date created 20030520
//Rob Chandler
//Modified: 20031005: R ChandleL", 'ro include changes to JADE schema files
//targeting external functions sections. ,, ...•..................
/!••··
grammar Jade cSPACEA"\32\t\n\r",

NOBACKTRACK>

//SCHEMA STRUCTURE

schema : , ..
[versionSection]
[schemaDefinitionSection]
{globalConatantSectionl
[localeSection]
[tranalatableStringsection]
[localeFormatsection]
[librarieasection]
[externalFunctionsection]
[typeHeaderSection]
[typeMemberahipSection]
[typeoefinitionSection]
[extKeyDefinitionsection]
[memKeyDe f init ionSect ion]
I inveraeDefini t ion~ect ion]
[databaaeDefinitionSection]
[dbServerSection]
[achemaViewSection]
[expoaedLiatSect ion]
[remapTableSectionl
[externalFUnctionSourcesection]
[typeSourceSection]

veraionsection : :~
t~jildeVet·nionUumber• I •jadePatchRelease•) BtringLiteral •;• ;

atringLiteral <TERMINAL, SPACE="">::="\"" •("\"") "\"";
/• atrlngLiteral <TERMINAL, SPACE="">::= { te,;tSegn:ent, [whiteapace)}

•!

te,;tSegment : :D ["L"] "\"" textElement [te,;tElementa] "\""
textElements ::= '\\.' telltElement [textElementa]

textE~ement ::a •('[\\\"]') ;

whiteapace ::" '[\32\t\n\rl +' ;

achemaDefinitionSection : :=
"schemaoefinition•
achemaName [• ~ubschemaOf" [achemaName I •null•) l schemaOptionLiat ";• [textSection]

achemaName : :• identifier ;
identifier <TERMINAL:> : :=

ident (? #VALUE I::= reaervedword;) ;

ident ::=
'[a-:A-Z_] [a-:A-Z0-9_$]•'

reaervedWord ::=
"abortTransaction•
I •as• I

I

"and" I "i\n;·"
"app• I "attl"ibuteDefinitiono•
"beginLoad" j "beginLock" I "begin·

I "besi01.Transact ion• I "beginTrallsientTrans.:tct ion"

I
"Binary• I •eoole,~n· "break" I -call"
•categoryDefinition• I "Chat·acter•
"clasaMapDeEinitions•

1

1 "_cloneOf"
• commit T r nnsac t ion.. • co:l\!Tli t T ransi en t Tr ansaction•

88

"constantDefinitions• j "constant!!"
"continue" j "cl·eate" j •currentSchema"
"currentsession• I "databaseoefinitions"
"databaseFileDefinitions• j •oate•
"dbServerDe fin it ions •
"Decimal• I "delete" I

I "defaultFileDefinition•
"div" I •do•

"docurnentationText" I "elae• I "elseif•
•_encL·yptedSouL·ce" I "_endEncryptedsource"
•end" I "endforeach" I •endif• I "endLoad"
•endr..ock" I •endwhile" I "epilog"
•eventMethodMappings• j •exception•
·_exposedConat.antDefinitions" I

• exposedMethodDefinitions"
- j •_exposedPropert:,•Definitions" I

• external F\mct ionDe f ini t ions"
•externalFunctionsources• j •externalKeyOefinitions"
"externalNethodDefinitions• I "externalMethodSources"
•false" I "foreach" I •global" I "if• I "in"
"Integer• I "inverseDefinitions~ I •is"
"jadeMethodDefinitiona• I •jadeMethodSources"
"jadePatchRelease" I •jadeveraionNumber•
"libraryDefinitions" I "localeOefinitiona"
"localeFormatoeFinitions• I •memberl<e:,•Definitons•
"membershipDefin~tions• I "MemoryAddreas•
•method• I •methodimplementations" I "mod~
"node" I •not" I "null• I "of" I "on"
•or• I "Point" I •pareutOf" I "peerOf"
•primitive• I "process" I "l·aise" I ·"read•
"Real" I •referenceDefinitions"
•_remapTableOefinitionEI" I •return•
•rootSchema• I "schemaDefinition"

"reversed"

• schemaViewDefinit ions•
"self"

1

1 •setModifiedTimestamp• I "step"
"String• •subclas.!lOf" I "si.lbschemaof•
"s:,!Stem• I "terminate" I "then" l "Time"
"TimeStamp" I •to" I •translatableStringDefiuitions"
"true• I "t'!pe:Jefinitions• I "typefteadera"
"typeSources" I •vars" I "where" I "while"
•write" I "xor"

schemaOptionList : := schem.aOption [{ •, " schemaOption}] 1
schemaOption : := completenessOption I ("patchVersion• "="

numericLiteral) I ("patchVe~:sioningEnabled" """ booleanLiteral) I schema_type1
ccmpletenesaOption : := QcompleteDefinition•)

•partialDefinition" ;
numericLiteral <TERMINAL, TOKEN~NULL>::= /*(sign)*/ numeric

[{(":" I ".") numeric}l ;
sign : := ("+" I "-")
numeric::= '[0-9]+'

booleanLiteral : '" "true" I "false"
schema_type ::~ •modelSchema";

textSeotion :: .. "documentationTe>:t" [textBlock]
textBlock ''" textBlockOelimeter *(textBlockOelimeter)

textBlockDelimeter ;
textBlockDelimeter

globalConstant~ection ::=
"constantDefinitione"

: :=

J{categoryDefinition I conatantDefinition}l
categoryDefinition : := "categOl-yDefinition• identifier l{constantDefinition}l

constantDefinition <TERMINAL, TOKEN,NULL>::= identifier [•:• constantType] •,•
conatExpression [constantOptionLiat] ";" ["documentationText" textBlock] timestamp}

constantType : ''" fixedSizeType I "String" [" [" identifier ! literal
")"] I "Binary• ["["identifier I literal"]" I I "Decimal• decimalOescriptor;

fixedsize'I'ype : := "Integer• I "Character" I "Boolean" I "Real"
I "Date" I "Time" I "TimeStamp• I "Point" ;

literal : := "null" I formLiteral l numericLiteral
characterLiteral I booleanLiteral I atringLiteral 1

formLiteral ::= "'" "("'") "'" ;
characterLiteral ,,,. L"L"] '\'\\?([0-9A-Za-zl+l.)\''

conatExpression ''" ["#"] expression ;
conatantOptionList ''" constantOption {{"," constantOption}J

constantOption ''" "subschemaHidden" ;

89

timestamp <BACKTRACK>:'" "aetl4odifier\TimeStamp" alphat.iteral
[alphaY.iteral] [numeric] dateTime":' :

lccaleSection ::=
"localeDefinitions"

alphaY.iteral : := characterLiteral I stringLiteral
dateTime ::=numeric[{{":" I~.") numeric)] ;

l{numericLiteral [stringY.iteral] ["_cloneOf" numericLiteral] ~1" }l;

translatableStringSection ::=
~translatableStringDefinitions"
[{ localeTranslatableStrings}] ;

localeTranslatableStrings : := numerict.iteral [stringr,iteral] "(~
{ translatableStringDefinition ":" } ") " ;

translatablest:ringDefinition : := identifier [" (~
[identifierY.ist] ")"] •.,• (transSt:ringExpression I (stringLiteral
[transStringExpression])) 1

expressionList

identifierList =•= identifier 1{"," identifier}]
transStringExpression : := (~&" identifier) I

expressionList ::=expression!{[",~ I •:•]
expression)];

expression : :.. [sign] [literal I
methodOrfunctionCall[{callArgument)ll [typeExpressionJ;

typeExpresaion : := arithmeticExpression I
booleanExpression I relationExpreasion 1

arithmeticExpresaion ::~ arithmeticOperator
[expression] ;

arithmeticOperator : : = ~+" I "-" I ••" I "/"
"mod" I "div• I •"• I "&" J

booleanExpression ::= booleanOperator
[expression]

booleanOperator : := "and" I •or• I "not"
"r.or•;

relationExpression ::= relationOpe:rator
[expreBsionJ

relationOperato:r : '" "=" I "<>" I •..,• I ~~" I
"<=" I ">=" I

localeFormatSection : :=
"localeFormatDefini tiona"
[{localeFormatDefinition}J

localeFormatDefinition ::" identifier ":" className " (" valueList ") •
className : := modifiedidentifier 1

...
modifiedidentifier ::= identifier [(•.• Identifier)];

valuet.ist ::=literal (•,• literal} ;

librariessection ::=
•libraryDefinitions•
["aLibrary"] /•[(identifier)]~/

externalFunctionSection : :=
~externalFunctionDefinitions"

[{ externalFunctionHeader [~documentationText • textBlock] [timestamp])] ;
externalFunctionHeader : '"' functicnName " (• [functionParamDeclList] ~1"

[functionReturuType] externalLocation [functionoptionList] ";" ;
functionName : := modifiedidentifie:r ;
functionParamDeolList ::= functionParamDeclGroup I{";"

functionParamDeclGroup)l ;

'

functionParamDeclGroup <TERMINAL, TOKEN=NULL>: := identifierList
":" externalType {paramOption] ;

external Type : :~ "Integer• I
~Real" [literal] I "Point" I "String" [literal] I "Binary•

"Character• I
[literal] I

"Boolean• I

"IntegerArray";

identifier

paramOption : := "constant" I "input" I "output" l"io"
functionReturnType <TERMINAL, TOKEN=NULL>::= ":" externalType
externalLocation ''"~is" [(identifier I alphaLiteral)] •in•

functionOptionList : := functionOption [{•,• functionOption)J
functionOption : := "subschemaHidden" I

"presentationClientBxecution• I "applicationserverExecution" ;

typeHeadersection ::=
~typeHeaders"

[{typE'.Header)l 1

90

typeHeader : :~ typeName •aubclassOf" ((className
[typeOptionListl";" ;

I ~null") I "primitive")

typeName : :~ className I primitiveType 1
primitiveType : ,,. fixedSh:eType f

"Character" J "Date" I ~oecimal" I "Integer" I ~Point"
"Any" I "Binary" I "Boolean"
I "Real" I "String" I ~Time•

"TimeStamp" 1
typeOptionList ::= typeOption [{"," typeOption}l 1

typeOption ::= typeOptionNumeric J typeOptionString
typeOptionNumeric : =~ (~highestSubld" "="

numericLiteral) ("number" "=" numericLiteral) I (~maxBlockSize" ~=· numericLiteral)

"protected"
typeOptionString : := "abstract" I •transient" I

•subschemaHidden" I ~duplicatesAllowed" 1

typeMembershipSection ::=
"membershipDefini t ions"
[{memberahipDefinition}l ;

memberahipDefinition ::= className "of" typeSpecifier ";" ;
typeSpecifier ::~ dimensionedType I primitiveType I className

dimensionedType ''" ("String" ·r~ literal"]") I fixedsbetype
I ("Binary" " r. literal ") N) I ("Decimal" deoim.alDescriptor) I "Any" I

constExpression]"]" ;

typeDefinitionSeotion : :=
"typeDefinitions"
l{typeOefinition}l 1

typeDefinition ::~

deoim.alDesoriptor ::= "[" constExpression [","

typeName [completenessOption] "i" {textSection] [timestamp]
[constantsSection] [attributesSection] [:.:eferencesSection] {jadeMethodsSect'ion] [e

xtemalMethodsSection] [eventMethodsSection] ")" 1
constantsSection : := "constantDefinitions"

l{constantOefinition}l 1
attributesSection : := "attributeDefinition~·

I { attributeDefinition}] ;
attributeOefinition ,,,. identifier":" typeSpecifier

lattributeOptionList] ":" ["documentationText" textBlock] [timestamp] 1

attributeOption}l 1

attributeOptionNume:.:ic

attributeOptionList : : = attributeOption [{ •, "

attributeOption : : =
attributeOptionString 1

at~ributeOptionNumeric ::~
{"subid" ""'" numericLite:.:al) I {"number• "=~ numericLiteral) 1

attributeOptionString : : ..
"readonly~ I •protected" I "virtual") •required~) "subschemaHidden" I
"implicitinverse" I "implicitMemberinverse~ I ~explicitinverse• I
"explicitEmbeddedinverse" I "trana,i~ntToPeraistentAlloW"ed" ;

referencessec_t;Lbn ·., := ~referenceDefinitions"
l{referenceDefinition)l ;

referenceDefinition ::g identifier •,~ typeSpecifier
[referenceOptionLiat] ~ 1" ["documentation'I'ext" textBlock] [timestamp]

referenceOption}l 1

referenoeOptionNumeric

referenceoptionList ::= referenceOption[{","

referenceOption : :=
referenceOptionString

referenceOptionNumeric
<TOKEN .. NULL>: := ("subid" •,• numericLiteral) I ("number" ""'" numericLiteral)

referenceOptionString : : ..
"readonly" I "protected• J "virtual" I "required" I "subschematiidden• I
"implicitinverse" I "implicitNemberinvel·se• I "explicit!nverse" I
"explicitEmbeddedinverse") "transientToPersistentAllowed" ;

jadeMethodsSection ::= "jadeMethodDefinitions"
t{jadeMethodHeader ["documentationText" textBlock} [timestamp] }l

JadeMethodHeader ::= methodName
" (" [parameterList] ")" [returnType] [method.OptionList]•;" 1

1nethodName : ,,. [•app• I •create" I "delete• I
"self~] [identifier] [{~.• Identifier)] 1

parameterList :,.,parameter !{";" parameter)]
parameter <TERMINAL, TOKEN=NULL>::= identifier

[", • identifier] ":" typeName [paramOption] 1
returnType <TERMINAL, TOKEN=NULL>::= ":"

typeName 1

method.Option}l
methodOptionList : : .. method.Option [{ ", ~

("number" "=" numericLiteral)
methodOption ::= methodOptionString

91

methodOptionString : : =
"protected" I "updating• I "abatract• I "mapJ,>'.ns• I "subschemaHidden" I
"clientE:xecution• I "serverExecution• I "locklleceiver•l

externalMethodsSection ::,. "externalMethodDefinitions"
l(externalMethodHeader ["documentationText" textBluck] [timestamp] }I 1

externalMethodHeader ::= methodName "(" [parameterList]
") " [returnType] [externalLocation] [methodOptionList] ";" 1

eventMethodaSection : := "eventMethodMa{;pings" [\identifier "="
identifier "of" typeName ~;"}1

extKeyDefinitionSection ::=
•extKeyDef in it ions"
[{ clasaExternalKeys} 1 1

classExternalKeys : := className [completenesaOptian] "("
l{externalKeyDefinition}l ")" 1

externalKeyDefinition <TERMINAL, TOKEN .. NULL>: '" identifier ": •
typeSpecifier [keyOptionList] (sort Order] ";" ;

keyOptionLiat ::~ keyOption !{"," keyOption}l ;
keyOption : := "descending• I •caoeinsensitive•

sortOrder : := numericLiteral ;

memKeyDefinitionSection ::=
•memberKeyDef ini tiona"
[{ claasMemberKeys)] ;

classMemberKeys : := claasName [completeneasOption] • (" l{memberKeyDefinition)]
•) " I

memberKeyDefinition : ,= keyPath [keyOptionList] [sortOrder] •; • ;
key Path <TERMINAL, TQKEN,.NULL>: :" identifier [{"." Identifier}]

inveraeDefinitionSection ::=
"inveraeDefinitions"
l{inverseDefinition}l ;

inverseDefinition ::= referenceSpecifier referenceHierarchy referenceSpecifier
l{booleanOperator referenceSpecifier}l ~;• ;

referenceSpecifier ::c identifier •of" className [inverseOption] 1
inverseOption : := •manual" I "automatic" I "manualAutomatic"

referenceHierarchy : '"' "peerOf" I "parentOf";

databaseDefinitionSection : :=
"databaseDef ini t ions •
[(databaseDefinition)l ;

databaaeDefinition ::=identifier "(" [databaaeFileaSection]
LdcfaultFileSection] [claaaMapasection] ~1" 1

databaaeFilesSection ::~ "databaseFileDefinitions•
{dat.abaseFileDefinition} ;

databaaeFileDefinition ::= alphaLiteral [•in" alphaLiteral]
[databaseFileOption] • ; • 1

databaseFileOption : := "m1'11ber• "=" numericLiteral 1
defaultFileSection , '" "defaultFileDefinition" alphaLiteral " ; " ;
classMapsSection : ,., ~classMapDefinitions• {clasaName "in" (identifier

alphaLiteral) [classMapOption]";"} 1

"extend" ;

dbserverSection ::=
"dbServerDef ini t ions"

classMapOption : := "allinstancesn I •subobjectinstances" I

[([identifier] "in• identifier [dbServerOptii:mList] "; •}] 1
dbServerOptionLiat : : = dbServerOption { ", " dbServerOption} 1

dbServerOption : := •remoteLocation" I "tcpipConnection•

achemaViewSection : :"
~achemaViewDefinitions"

{{schemaViewDefinition}l
schemaViewDefinition : : = identifier " (" { className ";"} •) "

expoaedListSection : , ..
" exposedListDefinitions"
!{exposedLiatDefinition}l

exposedLiatDefinition : ,, identifier {exposedListOptionList] "("
{ exposedClaaSnefinition} •)"

exposedListOptionList : : = exposedListOption i •·," expo,qedListOption}
expoaedListOption : := "version" ~=· numericLiteral I

"priorVersion" ""'" numericLiteral I ~regiatryld" "=o stringLiteral ;
exposedClasaDefinition ::= claasName {exposedClassOptionList] "("

[exposedConstantsSection] [expoaedl?ropertieaSection] [exposedMethodaSection] ")"

92

exposedClassOpcionList ::~ exposedClassOption {",'
exposedClassOption) ;

exposedClassOption : '"' "autoAdded" ;
exposedConstantsSection : := " exposedConstantDefinitions•

{exposedConstantDefinition) ; -
exposedConstantDefinition ::=identifier";" ;

exposedPropertiesSection ::= ~_exposedPropertyDefinitions"
{exposedPropertyDefinition} ;

exposedPropertyDefinition ::= identifier ";~ ;
exposedMethodsSection : :D " exposedt~ethodDefinitions"

{exposedMethodDefinition) ; -
exposedMethodDefinition : :"' methodName ";"

remapTableSection : : =
•_remapTableDefinitions"
[{remapTableDefinition} l

remapTableoefinition ::=identifier [remapTableOptionList] "("
l{remapFileDefinition}l ") • ;

remapTableOptionList ::= remapTableOption[{"," remapTableOption)l
remapTableOrtion : := "description" "=" stringLiteral

remapFileDefinition ::= alphaLiteral •is" alphaLiteral ["in"
alphaLiterall •;" 1

externalFUnctionSourceSection ::~
•external Functi onSouroes"
[{ functionName " {" externalFUnotionSource •)"}] ;

externalFunctionSource : =~ externalFunctionHeader

typeSourceSection ::=
"typeSources"
[{ typeSource}] ;

typeSource : : = typeName " (• [{ jadeMethodSourcesSection} l
l{externalMethodSourcesSection}l ")" ;

jadeMethodSourcessection : := "jadeHethcdSources• [{methodName •{"
[{comment)] jadeMethodSource [{comment)l")")l ;

jadeMethcdSou:J:ce : := JadeMethod.Header [[localConstsSection]
[localVarasection] "begin" l{inatructiona)l ["epilog" instructions] "end" ";"] ;

localConatsSection ::= "constants"
{localConstDefinition} ;

localConstDefinition ::=identifier [":"
constantType] "o" constExpression ";" I comment;

localVarsSection: :o •vars" [{localVa:J:sDefinitiOn)l
localVarsDefinition ::= identifie:J:List ":"

typeSpecifier ";" I comment;
instructions :: = comment I statementList I

methodOrFunctionCall [{ callA:J:gument) [[• 1"] ;

commentCpp 1

[{ argLiet)] •) "] I functionCall

[arg];

comment "TERMINAL:>::" ~1•• *("*l"l "*./"

commentCpp ""' "II" '[A\n\rl+'
ll***********statementLiet defined

methodO:z:FunctionCall : :" methodName [• ("

arg : :"' argument I expression
argument : :"

("exception"] [primitiveType] [methodOrFunctionCall] (literal] [eXpreasion] I{"&"
(methodOrFunctionCall I literal))l !{call.Al:gument}l

callArgument : :=
([•."] methodName {"(" [argList] ")"]) 1

. I .

functionCall : ,,. "call" identifier
externalMethcdSourcesSection : : .. "exteirnalMethodSources" [{ methodName

externalMethodsource")") 1 1
externalMethodSouxce : •= externalMethodHeadel:;

II··
II··
II
II STATEMENT DEFINITIONS
II
II··
IJ•···
statementList ::=statement-";" !{statement •;•)] 1

93

statement : := terminateStatement I tranaactionstatement I ioStatement I

ifStatement I whileStatement I foreachstatement I returnStatement I createstatement
deleteStatement I breakOrContinuestatement I onExceptionStatement I

raiseExceptionStatement I asaignmentStatement ;
terminateStatement :: = "terminate" ;
tranaactionStatement : := "beginTrar,saction• I "commitTransaction' I

"abortTransaction" I 'beginTransientTransaction" I "commitTranaientTransaction"
~beginLoad" I "endLoad" I "beginLock" I •endLock" ;

ioStatement : :D ("read" I "wl"ite") [arraylist) expression ;
breakOrContinueStatement : := ("break• I "continue") [identifier]
returnStatement : := "return" (booleanLiteral I

methodOrFunctionCall[{argument)Jl ;
deleteStatement : : = •delete" [methodName] [" (" ~) "] ;
whilestatement : := "while• condition [{booleanOperator condition}] "do"

(": .. identifier] [{instJ:uctions}l "endwhile" [identifier] ;
condition : ··= lha [relationOperator rhs] ;

lhs : : = modifiedidentifier { { callArgument}] [arrayliat]
Literal I methodOr~ctionCall[{callArgument)];

rhs : : = "null" I expression I modifiedidentifier
[methodOrFunctionCall] / methodOrFunctionCall;

foreachStatement : := "foreach" identifier "in• l{callArgument}l [•to"
expreaaion] ["step• expression] ["l:eversed"l ("where" expression] "do" r~,.
identifier] [(instructions)J "endT.oreach" [identifier) ;

createStatement ':= "create" identifier ["as" expression]
(createOption]

createOption : := "persistent• I "transient" I 'sharedTransient•

onExceptionStatement : '"' "on" expression "do" expression
[onExceptionOption I methodOrFunctionCalll ;

onExceptionOption ::D "global" ;
raiaeExceptionStatement :: = "raise" expression {raiseExceptionOption]

raiaeExceptionOption : := "intel·naP I "precondition• ;
ifStatement ''"' nif" condition [{booleanOperator condition)] "then"

[{instructiona)l [{"elseif" condition {{booleanCperato:r condition)] "then"
[{inatructiona}J)J ["else" [{instructions)] J "endif" ;

assignmentstatement : '"' (arrayliat] ":=" [booleanOperatorJ
[<~:rrayliatJ !{argument)] (literal];

arrayList :: = [methodName] [i ·•. r" modifiedidentifier
expression "\1")l ["." modifiedidentifier];

94

Appendix F: Sample application- Building Inheritance

The following source code has been extracted from Schildt's (2003, p. 280)

classic text "C++ The Complete Reference", with only minor modifications. The

modifications are made for brevity only, for example: class .c:;et and get methods were

incorporated into the class declaration. The modifications did not include code

commenting, as the application attribute names were considered self~explanatory as

supplied.

#include ~iostream>
using namespace std1

class Building \
private:

public:

int area;
int rooms;
int floors;

int get area() { return area; }
int get-rooms () { return rooms;)
int get-floors() { return floors; }
void set area(int value) {area= value;)
void set-rooms (int value) { rooms " value;
void set=floors(int value){ floors= value;

class House : public Building
private:

public:

int bedrooms;
int bathrooms;

int get_bedrooms(){ return bedrooms;)
int get batl1rooms () { return bathrooms;
void set_bedrooms(int value) { bedrooms ~value;
void set_bathz:ooms(int value) { bathrooms = value;

class School : public Building
private:

public:

int offices;
int classrooms;

int get offices() { return offices;)
int get=classrooms() { return classrooms;)
void set_offices(int value) { offices ~ value;)
void set_clsssrooms(int value){ classrooms= value;

int main()
I

House aHouse;
School aschool;

aHouse.set bath:rooms(J);
aHouse.set-bedrooms(S);
aHouse.set-rooms(12) 1
aHouse.set-floors(3);
aHouse.set=a:rea(SOO);

aSchool.set class:rooms(200);
aSchool.set-offioes(lO) 1
aSchool.set:a:rea(2S000);

95

endl;

aSchool.set floors(Jl;
aSchool.set:rocms(250);

cout << ~The house has • << aHcuse.get bathrooms() << ~ bathrocmsd << endl;
cout << ~rt also has ~ << aHouse.get_bedrooms(J << • bedroomsw << endl;
cout << "It's area covers ~ << aHouse.get area() << • units of areaN << endl;
cout << •over ~ << aHouse.get_floors() <<-. floorsN << endl;

ccut << "The school has ~ << aSchool.get rooms()
cout << •covering ~ << aschool.get_floorS() <<

<< • rooms • << endl;
floors, with a total

cout << •of • << aSchool.get_area() << • units of area.\n~ << endl;

return 0;

<<

96

Appendix G: The generated JADE Building Inheritance schema file.

jadeVersionNumber "6.o.oa-:
uchemaDefinition
TestSourceinheritanceSchema subschemaOf RootSchema partialDefinition, modelSchema;
ccnstantDefinitions

categoryDefinition Building
categoryDefinition House
categoryDefinition School

type Headers
Building aubclassOf Object transient;
School subclassOf Building transient;
House suhclaasOf Building transient;
Testsourcelnheritanceschema subclaasOf RootschernaApp;
Gtestsourt~elnhe:dtanceSchema subclassOf RootScbemaGlobal;
StestSour~elnheritanceschema subclassOf RootScbemaSession;

typeDefinitions
TestSourceinheritanceSchema completeDefinition
I
documentationText

~This is the Application subclasa, •
jadeMethodOefinitions

main();
I
GtestsourceinheritanceSchema completeDefinition
I
documentationText

'This is the Global subclass.'
)
StestSourceinheritanceSchema completeDefinition
I
documentationText

'This is the WebSession subclass.'
)
Building completeDefinition
I
attributeDefinitiona

area:
rooms:
floors:

Im::eger
Integer
Integer

protected;
protected;
protected;

jadeMethodDefinitions
get_area() : Integer;
get rooms () : Integer:
get-floors() : Integer;
set-area(value : Integer):
set-rooma(value : Integer);
set=floors(value : Integer);

School completeDefinition
I
attributeoefinitiona

offices:
classrooms:

Integer
Integer

jadeMethodDefinitions
get_offices () Integer;

protected;
protected;

get classrooms() : rnteger;
set-offices(value : Integer);
set=classrocms(value : Integer);

House completeDefinition
I
attributeDefinitions

bedrooms:
bathrooms:

j adeMethodDefinitions

Integer
Integer

protected;
protected;

get bedrooms () Integer:
get-bathrooms (l : Integer;
set=bedrooms(value : Integer):
set_bathrooms(value : Integer);

)
Building completeDefinition

97

I
jadeMethodDefinitions

get area() : Integer;
get-r0001s () : Integer;
get-floors{) : Integer;
set-area(value : Integer);
set-rooms(value : Integer);
set=floors(value : Integer);

House completeOefinition

jadeMethodDefinitions
get bedrooms() : Integer;
get-bathrooms() : Integer;
set-bedrooms(value : Integer);
set:bathrooms(value : Integer);

School completeDefinition
I
jadeMethodDefinitions

I

get offices() : Integer;
get-classrooms () : Integer;
set-offices(value : Integer);

.set:classrooms(value : Integer);

databaseOefinit ions
TestSourceinheritanceSchemaDb
I
databaseFileDefinitions

"TestSourceinheritanceSchema•;
defaultFileDefinition "TestSourcelnheritanceSchema";
classMapoefinitions

Building in "TeatScurceinheritanceSchema•;
House in -TeatScurceinheritanceSchema•;
School in "TeotsourceinheritanceSchema• 1
TestSourceinheritanceSchema in • usergui";
GtestSourceinheritanceSchema in ~TestS~~rceinheritanceSchema•;
StestScurceinheritanceSchema in "TeotSourceinheritanceSchema•;

98

Appendix H: The converted Towers of Hanoi schema file

jadeVersionNumber •G.O.OB•;
schemaDefinition
ConvertedTowersSample aubschemaof RootSchema partialDefinition, modelschema;
constantoefinitions

categoryDefinition ConvertedTOHmodified
documentationText

'This is the Application subclass.·
MAXDISKS : Integer 4;

categoryDefinition Tower
typeHeaders

QonvertedTOHmodified aubclassOf RootSchemaApp;
GConvertedTOHmodified aubclassof RootSchemaGlobal;
sconvertedTOHmodified subclassof RootSchemasession;
Tower aubclassOl Object transient;

typeDefinitiona
ConvertedTOHmodified ccmpleteDefinition
I
documentationText

'This ia the Application subclass.'
constantDefinitiona

MAXDISKS : Integer ·I;
jadeMethodDefinitions

I

move{
from : Tower io;
to Tower io;
use : Tower io;
depth : Integer) updating;

hanoi{) updating;
main{) updating;

GConvertedTOHmodified completeDefinition
I
documentationText

'This is the Global subclass.'
I
sconvertedTOHmodified completeDefinition
I
documentationText

'This is the WebSession subclass.'
I
Tower completeDefinition
I
attributeDefinitions

tower Number:
disks:
numDisks:
i:
temp:

Integer protected;
IntegerArray protected;
Integer protected;
Integer protected;
Integer protected;

j adeMethodoef initions

I

tower{n : Integer) updating;
addDisks{) updating;
pop{) : Integer updating;
pusb{I : Integer io) updating;
print{) updating;
test{) updating;

convertedTOHmodified completeDefinition
I

documentationText
'This is tbe Application subclass.'

constantDefinitions
MAXDISKS : Integer 4;

jadeMethodoefinitions
move(

from : Tower io;
to_ Tower io;
use : Tower io;
depth : Integer) updating;

hanoi{) updating;

99

main() updating;

Tower completeOefinition
I
jadeMethodOefinitions

)

tower(n : Integer) updating;
addDiaks l) updating;
pop{) : Integer updating;
push(I : Integer io) updating;
print() updating;
teat() updating;

databaaeDefinitiona
ConvertedTowerssampleDb
I
databaaeFileDefinitions

•convertedToweraSample-;
defaultFileDefinition •convertedTowersSample-;
claasMapDefinitions

ConvertedTOHmodified in • uaergui";
ConvertedTOHmodified in •ConvertedTowersSample-;
GConvertedTOHmodified in •convertedTowerssample•;
SConvertedTOHmodified in •convertedTowerssample•;

)
schemaviewDefinitions
_remapTableDefinitions
externalFunctionsources
typeSourcea

move
I
move(

vars

begin

end;
I
hanoi
I

ConvertedTOI!modified(
jadeMethodSources

from : Tower io;

to_ Tower io;

use Tower io;

depth : Integer) updating;

if depth =1 then
from.print ();
to .print 0 1
use .print() ;

endif;

if depth > 0 then

endif;

move(from, use, to_, depth~l);

to .push(from.pop()) 1
moVe(uae, to_, from, depth~l);

if depth ~1 then
from.printO;
to .print 0:
us'Ei.print ();

endif;

hanoi {) updating;

vars

begin

•
b

'

Tower;
Tower;
Tower;

100

end;
}

~in

I

create a transient;
create b transient;
create c transient;
a.tcwer(1);
b.tower(2);
c.tower(l);

a.addDiaks(l;
a. print();
b.print();
c. print{);
write ·~~~---~--~~------------------~--•;
move(a, b, c, MAXDISKS);
write •--·-··----------------------------•;
a.print();
b.print ();
c.print();

main() updating;

vara

begin

end;
}

tower
I
vara

begin

aTower Tower;

create aTower transient;
a Tower. teat () ;
write "=E=~m~==";

hanoi();

Tower(
jadeMethcdSourcea

tower(n : Integer) updating;

I : Integer;

foreach I in 1 to MAXDISKS do
diaka[i] :=0;
endforeach;
numDiaka: =0;
towerNumber: .. n;

addDiaka
I
addDiska() updating;

vars

begin

end;
I
pop
I
pop()

vara

begin

I : Integer;

foreach I in 1 to MAXDISKS do
disks [i] :" MAXDISKS - I;
endforeach;
numDiaks:=MAXDISKS;

Integer updating;

temp : Integer;

if numDiaka > 0 then
temp := diska(numDiaka-1];
endif;

101

end;
I
push
I
puah(I

vara

begin

end;
I
print
I

diaka[numDiaka-1] :=0;
numDiaka := numDiaka 1;
return temp;

Integer) updating;

disks [numDiska] '"" I;
numDiska := numDiaka + 1;

print();

vara

begin

end;
I
teat
I
teat() ;

vara

begin

end;
I

I :. Integer;

write towerNumber.String & •:•;
foreach I in 1 to MAXOISKS do
write disks [i] .String & • •;
endforeach;
write • ~ & numDiaks.String;

a : Tower;

create a transient;
a.tower{l);
a.printO;
a.addDisks();
a. print();
write •pop • & a.pop() .String;
a.print (};
a.puah(99);
a.print{);

102

Appendix I: The converted Building Inheritance schema file

jadeVersionNumber "6.o.oa~;
schemaDefinition
TeatSourcelnheritanceSchema subschemaOf RootSchema partialDefinition, modelSchema;
conatantDefinitions

categoryDefioition Building
categoryDefinition House
categoryDefinition School

typeHei:lders
Building subclaseOf Object transient;
School subclaesOf Building transient;
House subclassOf Building transient;
TestScurceinheritanceSchema subclassOf RootSchemaApp;
GtestsourceinheritanceSchema subclassOf RootSchemaGlobal;
StestSourcernheritanceSchema subclassOf RootSchemaSession;

typeDefinitiona
TestSourceinheritanceSchema completeDefinition
I
documentationText

~This is the Application subclass.'
jadeMethodDefinitions

main{);
I
GtestSourceinheritanceSchema completeDefinition
I
documentationText

·This is the Global subclass. •
)
StestsourcelnheritanceSchema completeDefinition
I
documentationText

•This is the WebSesaion subclass.•
I
Building completeDefinition
I
attributeDefinitiona

area:
rooms:
floors:

Integer
Integer
Integer

protected;
protected;
protected;

jadeMethodDefinitions

I

get area {) : Integer;
get-rooms{) : Integer;
get-floors() : Integer;
set-area{value : Integer);
set-rooms{value : Integer);
set=floora(value : Integer);

school completeoefinition
I
attributeDefinitions

offices:
classrooms:

j adeMethodDefinitions

Integer
Integer

get offices() : Integer;

protected;
protected;

get-classrooms () : Integer;
set-offices ivalue : Integer) ;
set=clasarooms(value : Integer);

House completeDefinition
I
attributeDefinitions

bedrooms:
bathrooms:

jadeMethodDefinitiona

Integer protected;
Integer protected;

get bedrooms() Integer;
get-bathrooms() : Integer;
set -bedrooms (value : Integer);
set=bathrooms(value : Integer);

Building completeDefinition

103

{
jadeMethodDefinitions

get_area() : Integer;
get_rooms() : Integer;
get_floors() : Integer;
set_area(value : Integer);
set rooms(value : Integer);
set=floors(value : Integer);

House completeDefinition
{
jadeMethodDefinitions

get_bedrooms() : Integer;
get bathrooms () : Integer;
set=bedrooms(value : Integer);
set_bathxcoms(value : Integer);

School completeDefinition
{

jadeMethodDefinitions
get_offices() : Integer;
get_classrooms() : Integer;
set_offices(value : Integer);
set_classrooms (value : Integer);

databaseDefinitions
TestSourceinheritanceSchemaDb
{
databaseFileDefinitions

~TestSourceinheritanceSchema~;
defaultFileDefinition •TestSourceinheritanceSchemaN;
classMapDefinitions

Building in "TestSourceinheritanceSchemaw;
House in ~TestSourceinheritanceSchema•;
School in ~TestSourceinheritanceSchema•;
TeatsourceinheritanceSchema in •_usergui•;
GtestsourceinheritanceSchema in "TestSourcelnheritanceSchema•;
StestsourceinheritanceSchema in "TestSourceinheritanceSchema•;

l
achemaViewDefinitiona
remapTableOefinitions

externalFunctionSourcea
typesources

=in
I
main{);

vara

begin

TeatSourceinheritanceSchema{
jadeMethodSources

aHouae : House;
aschool : School;

create aHouse transient;
create aSchool transient;

aHouse.aet bathrooms{J);
aHouse.aet-bedrooms{S)I
aHouse.aet-rooms{12);
aHouse.set:floors{3) 1
aHouse.set area{SOO);
aSchool.set_classrooms(20D);
aSchool.set_officea(lO);
aSchool.set_area{25000) 1
aSchool.set_floora(J) 1
aSchool.set_rooms{250);
write ~The house has • &' aHouse.get_bathrooms ().String & ~ bathrooms•;
write ~rt also has ~ & aHouse.get bedrooms{) .String & ~ bedrooms~;
write "It's area covers ~ & aHouse .. et_area(J .String & • units of area~;
write •over • & aHouae .get floors () ;1tring & • floora~ 1
write "The school has " & ischool.get_rooms() .String & • rooms •;
write •covering • & aSchool.get flc>Or>' () .String & • floors, with a total • 1
write •of • & aschool.get_area{).Strlng & • units of area,•;

end;
I

104

Building(
jadeMethodSources

get area
I -
get_area() Integer;

vara

begin
return area;

end;
)

get rooms
I -
get_rooms () : Integer;

vara

begip
return rooms;

end;
)

get floors
I -
get_floorsO Integer;

vars

begin
return floors;

end;
)

set area
I -
set_area(value Integer) updating;

vars

begin
area :=value;

end;
)

set roOms
I -
set_rooms(value Integer) updating;

vars

begin
rooms :,. value;

end;
I

set floors
I -
set_floors(value Integer) updating;

vars

begin
floors :~ value;

end;
I

105

House(
jad~MethodSourcea

get bedrooms
I -
get_bedrooms () Integer;

vars

begin
return bedrooms;

end;
I

get bathrooms
I -
get bathrooms() Integer;

vars

begin
return bathrooms;

end;
I

set bedrooms
I -
set_bedrooms(value Integer) updating;

vars

begin
bedrooms :=value;

end;
I

{et_bathrooma

set_bathrooms(value Integer) updating;

vars

begin

end;
I

bathrooms := value;

School(
jadeMethodSources

get_offices
I
get_offices() Integer;

vara

begin
return offices;

end;
I

get_clasarooms
I
get_classrooms() Integer;

vars

begin

106

return classrooms;
end;
)

set offices
I -
set_offices(value Integer)updating;

vars

begin
offices =~ value;

end;
)

set classrooms
I -
set_classrooms(value Integer)updating;

vars

begin
claasroomu :~ value;

end;
)

107

Appendix J: Glossary of terms

TERM DESCRIPTION' '-, ,_,_ ,': •SOURCE-~
Algorithm A systematic problem~solving (Howe, 2003a)

procedure, especially an established,
recursive computational procedure for
solving a problem in a finite number of
steps.

API Application Programmer Interface: (Dictionary.com,
The interface (calling conventions) by 2003)
which an application
program accesses operating system and
other services.

Application A program that gives a computer (Dictionary.com,
instructions that provide the user with 2003)
tools to accomplish a task.

Architecture The manner in which the components of (Merriam-Webster,
a computer or computer system are 2003a)
organised and integrated

Attribute A quality or characteristic inherent in or (Howe, 2003b)
ascribed to someone or something. A
named value or relationship that exists
for some or all instances of some entity
and is directly associated with that
inst:mce.

BPR Business Process Re-engineering. An (Maylor, 2003)
initiative to modify and improve the
step-wise processes within an
organisation.

CASE Computer Aided Software Engineering

Class A set of objects that share the same (Booch et a!., 1999)
attributes, operations, relationships and
semantics

Code bloat Software growth without obvious (Langa, 2001)
benefit is the very definition of"code
bloat."

108

TERM DESCRIPTION · .· SOURCE

Construct A 'type' for example: unsigned int; The author of this
OR a 'statement', for example: document
condition statement, which maybe
considered a native structure in a
programming language.

Converter The tool used to perfonn the translation The author ofthis
process document

dll dynamic link library: (Dictionary.com,
A library which is linked to application 2003)
programs when they are loaded or run
rather than as the final
phase of compilation.

Forward engineer Forward engineering is the process of (Chikofsky & Cross,
moving from a high-level abstraction 1990, p. 14)
and logical implementation-independent
design, to the physical implementation
of that design.

Grammar A mechanism used to describe the (Sebesta, 1999)
syntax of a language

GUl Graphical User Interface: (Dictionary.com,
An interface for issuing commands to a 2003)
computer utilizing a pointing device,
such as a mouse, that manipulates and
activates graphical images on a monitor.

HLPL High-Level Programming Language

HI'S High Productivity System

HTML Hyper-Text Mark-up Language: (Dictionary.com,
A markup language used to structure 2003)
text and multimedia documents and to
set up hypertext links between
documents, used extensively on the
World Wide Web.

IS Infonnation System: (Dictionary.corn,
the network of all communication 2003)
channels used within an organization

Legacy system Any software application based on older (Good, 2002)
technologies and hardware that may still
provide core services to an organisation.

109

TERM, DESCRIPTION SOURCE.

LOC Lines Of Code

MCC McCabe's Cyclomatic Complexity

MDA Metamodel Driven Architecture (OMG, 2003)

meta A prefix meaning one level of (Dictionary.com,
description higher. If X is some concept 2003)
then meta-X is data about, or processes
operating on, X.

Metamodel "A metamodel is in effect an abstract (OMG, 2002, p. 15)
language for some kind ofmetadata".

MOF Meta_ Object Facility (OMG, 2002)

Method In object-oriented programming, a (TechTarget, 1999)
method is a programmed procedure that
is defined as part of a class and included
in any object of that class. A class (and
thus an object) can have more than one
method. A method in an object can only
have access to the data known to that
object, which ensures data integrity
among the set of objects in an
application. A method can be re-used in
multiple objects.

MFC Microsoft Foundation Classes

Monolithic sy.~~em Consisting of or constituting a single (Merriam-Webster,
unit- relating to the development style 2003b)
used to implement a technical system,
usually in an imperative language.

OMG Object Management Group

00 Object Oriented: (Dictionary.com,
Of, related to, or being a language or 2003)
system that can use and support objects

parse tree A hierarchical, linked set of nodes (Abo et al., 2003)
representing the input stream.

\ 10

TERM DESCRIPTION SOURCE

pdf Portable Document Fonnat: (Dictionary.com,
PDF is the file fonnat for representing 2003)
documents in a manner that is
independent of the original application
software, hardware, and operating
system used to create those documents.

Reverse engineer Reverse engineering is the process of (Chikofsky & Cross,
analysing a subject system to: identifY 1990, p. 15)
the system's components and their inter-
relationships create representations of
the system in another fom1 or at a higher
level of abstraction.

Rose/UML Rational RoSe implementation of the
UML

Simulated A construct devised to simulate the The author ofthis
construct properties or actions of a structure not llocument

otherwise available in a programming
language.

syntactically According to the rules of syntax. The The author ofthis
correct structure rules. document

Translate In this context, to migrate the code in The author ofthis
one programming language to another document
programming language, while
essentially maintaining the same
functionality.

Transliterate To transcnbe (a word, etc., in one (W. Collins, 1988)
alphabet) into corresponding letters of
another alphabet.

UML Unified Modelling Language: (Dictionary.com,
A non-proprietary, third generation 2003)
modelling language. The Unified
Modelling Language is an open method
used to specify, visualise, construct and
document the artefacts of an object-
oriented software-intensive system
under development.

VC++ Microsoft Visual C++

XMI XML Metadata Interchange

Ill

TERM

XML

DESCRIPTION

eXtensible Mark-up Language:
A metalanguage written in SGML that
allows one to design a mark-up
language, used to allow for the easy
interchange of documents on the World
Wide Web

·.' SOURCE

{Dictionary.com,
2003)

112

REFERENCES

Abo, A., Sethi, R., & Ul1man, J. (2003}. Compilers: principles, techniques and tools.
New Jersey: Prentice Hall.

Boggs, W., & Boggs, M. (2002). Mastering UML with Rational Rose 2002.
Alameda, California: Sybex.

Booch, G., Rumbaugh, J., & Jacobson, I. (1999). The Unified Modeling Language
user guide. Upper Saddle River: Addison-Wesley.

Chidamber, S.R., & Kemerer, C. F. (1991, October). Towards a metrics suite for
· object oriented design. In A. Paepcke, (ed.) ObjeCt oriented programming

systems, languages and applications (OOPSLA'91). SJGPLAN notices,
26(11), 197-211.

Chikofsky, E., & Cross, J. (1990). Reverse engineering and design recovery: a
taxonomy. IEEE Software, 7(1), 13, 17.

Church, J. StoryBook, [Computer software]. (2003). Perth, Western Australia: Edith
Cowan University.

Collins, M. (1993). An Ada-like language to facilitate reliable coding of low cost
embedded systems. Unpublished thesis, Edith Cowan University, Perth.

Collins English dictionary. (1988). London: William Collins & Sons.

Cowley, S. (2003). Vendors convene to examine legacy apps modernization.
Retrieved April 17, 2003 from
http://www.computerworld.eom.au/pp.php?id=991088706&taxid=975794159

Demeyer, S., Rieger, M., & Tichelaar, S. (1998). Three reverse engineering patterns.
Retrieved November 12, 2003 from
http://www.iam.unibe.ch/-famoos/Deme98p/threerevoat.2pgup.pdf

Dictionary. com. (2003). On-line dictionary. Retrieved November 13, 2003 from
http://dictionary.refercnce.com/

Ducasse, S. E. (2001). Reengineeri"g object-oriented applications. Unpublished
thesis, Universite Pierre et Marie Curie, Paris.

Good, D. (2002). Legacy transformation. San JOse: Technology Research Club.

Gutscbmidt, T. (2003). Open source high-level languages in your neighborhood.
Retrieved November 11,2003 from
http://www .developer .com/lang/other/artie I e. php/ 15 818 81

113

Harsu, M. (2000). Re-engineering legacy software through language conversion.
Unpublished thesis, University ofT ampere, Dept. of Computer Science,
Tampere, Finland

Hill, S. (1995). Towers of Hanoi. Retrieved September 15, 2003 from
http://www .ecs.umass.edu/ece!hill/ ece24 2 .dir/hanoi .c

Howe, D. (2003a). The free on-line dictionary of computing. [algorithm]. Retrieved
July 1, 2003 from http://dictionary.reference.com/search?q=algorithm

Howe, D. (2003b). The free on-line dictionary of computing. [attribute]. Retrieved
July 1, 2003 from http://dictionary.referencc.com/search?q=attribute

JADE. (2003). JADE developer's reference. Retrieved November 13, 2003 from
http://www.jadeworld.com/downloads/jade6manuals/devref.pdf

JADE online help. [Computer software]. (2001). Christchurch, Nz:· Jade Software
Corporation Ltd.

Kazman, R., O'Brien, L., & Verhoef, C. (2002). Architecture reconstruction
guidelines. (2nd ed.). (ESC-TR-2002-034). Pittsburgh: Carnegie Mellon
University, Software Engineering Institute.

Kontogiannis, K., Martin, J., Wong, K., Gregory, R., Muller, H., & Mylopoulos, J.
(1998). Code migration through transformations: an experience report.
CASCON-98/BM Conference, Toronto, Ontario, November 30-December 3,
1998. Retrieved on November 12,2003 from
http://www .notamusica.dclhome/j martinlresume/cascon98.pdf

K.rishnarnoorthy, S. (2003). RE: [SR#167559387] --How can 1 get Rose 2001A to
capture and retain functional code. Personal communication, March 10,
2003.

Langa, F. (2001). Rethinking "Software bloat". Retrieved July 9, 2003 from
http://www .informationweek.com/story/IWK200 11212S0003

Levine, J., Mason, T., & Brown, D. (1995). Lex & Yacc. Cambridge: O'Reilly.

Liberty, J. (2001). Teach yourself C++ in 21 days. (4th ed.). Indianapolis: Sarns
Publishing.

Markosian, L., Newcomb, P., Brand, R., Burson, S., & Kitzmiller, T. (1994). Using
an enabling technology to reengineer legacy systems. Association for
Computer Machinery. Communications of the ACM, 37(5), 58-70.

Maylor, H. (2003). Project management. Essex: Pearson Education.

McCabe, T., & Butler, C. (1989). Design complexity-measurement and testing.
Association for Computer Machinery. Communications of the ACM, 32(12),
1415-1425.

114

Merriam-Webster. (2003a). Merriam-Webster online dictionary- architecture.
Retrieved July 10,2003 from http://www.m-w.com/cgi
bin/dictionary?book=Dictionary&va-architecture

Merriam-Webster. (2003b). Merriam-Webster online dictionary - monolithic.
Retrieved July 9, 2003 from http://www.m-w.com/cgi
bin/dictionary?book=Dictionary&ya monolithic

Moynihan, V., & Wallis, P. (1991). The design and implementation of a high-level
language converter. Software- Practice and Experience~ 21(4), 391-400.

NorKen. (2003). ProGrammar- parser development toolkit. Retrieved Apri124,
2003 from http://www.prQgrammar.com/grammars.htm

Object Management Group. (2002). Meta Object Facility (MOF) specification.
Retrieved November 13, 2003 from http://www.omg.org/cgi
bin!apps/doc?foimal/02-04-03.pdf

Object Management Group. {2003). Why do we need legacy transformation
standards? Retrieved November 12, 2003 from
http://www.omg.org/registration/Legacy Transfonnation-whitepaper 06.pdf

O'Sullivan, J. (2000). JADE in action. OjJ/ine, 34(3), 6-8.

Pressman, R. (2001). Software engineering: a practitioners approach (5th ed.). New
York: McGraw-Hill.

Quatrani, T. (2000). Visual modeling with Rational Rose 2000 and UML. Upper
Saddle River: Addison-Wesley.

Rational Rose help. [Computer software]. (2001). Rational Software Corporation.

Roeder, C. (2003). The Towers of Hanoi in Three Styles ofC, and C++. Retrieved
October 21, 2003 from http://www.croeder.com/notes/hanoi2.cpp

Schildt, H. (2003). The complete reference C++. (4th ed.). Berkeley, California:
McGraw-Hill Osborne.

Seacord, R., Comella-Dorda, S., Lewis, G., Place, P., & Plakosh, D. (2001). Legacy
system modernization strategies. Pittsburgh, Pa.: Carnegie Mellon University,
Software Engineering Institute.

Seacord, R. C., Plakosh, D., & Lewis, G. A. (2003). Modernizing legacy systems :
software technologies, engineering processes, and business practices.
Reading, Mass.: Addison-Wesley.

Sebesta, R. (1999). Concepts of programming language. (4th ed.). Reading, Mass:
Addison Wesley Longman.

Skarmstad, T., Khan, K., & Rashid, A. (1999). Constructing commercial ofl'the
shelf from legacy systems: a conceptual framework. Proceedings of the 1Oth
Australasian Conference on Information Systems, 1999, pp. 798-805.

115

[Electronic version]. Retrieved October 30, 2003 from
http://www. vuw .ac.nz/acis99/Papers/PaperSkramstad-092. pdf

Sub, E., & Allain, A. (2003). Code journal. Retrieved September 15,2003 from
http://www.cprogramming.com/codei/issue3.html

Sultanoglu, S. (1998). Complexity metrics and models. Retrieved October 24,2003,
from http://yunus.hun.edu.tr/~sencer/complexity.html

TechTarget. (1999). Whatis.corn tech search. Retrieved July I, 2003 from
http ://whatis. techtarget.com/defini tion/O,sid9 gci2125 59.00 .html

Terekhov, A.A. (2001). Automating language conversion: a case study. Proceedings
of the IEEE International Conference on Software Maintenance, Florence,
Italy, 7-9 November 2001. pp. 654-658.

Terekhov, A., & Verhoef, C. (2000). The realities of language conversions. IEEE
Software, 17(6), 111-124.

Tieman, P. (2001). Cyclomaticcomplexity metric. Retrieved November 13,2003
from http://www.delphifag.com/software/sc help/cyclomatic.htm

Verbruggen, R (2003). Depth of inheritance tree. Retrieved September 17, 2003
from http://www .compapp.dcu.ief,....renaat/ca421100metrics.ppt

Waters, R. (1988). Program translation via abstraction and reimplementation. IEEE
Transactions on Software Engineen'ng, 14(8), 1207-1228.

Watson, A. H., & McCabe, T. J. (1996). Structured testing: a testing methodology
using the cyclomatic complexity metric. Retrieved October 24, 2003 from
http://www .mcca be.com/nist/c hapter2. php#4460 18

Weiderman, N.H., Bergey, J., Smith, D., & Tilley, S. (1997). Approaches to legacy
system evolution. Pittsburgh. Pa.: Carnegie Mellon University, Software
Engineering Institute.

White, D., Scribner, K., & Olafsen, E. (1999). MFC programming with Visual C++
6. Washington: Sams Publishing.

Wikipedia. (2003). Cfront. Retrieved November II, 2003 from
http://en2.wikipedia.org/wiki/Cfront

116

	Improving the programming language translation process via static structure abstraction and algorithmic code transliteration
	Recommended Citation

	Improving The Programming Language Translation Process Via Static Structure Abstraction And Algorithmic Code Transliteration

