Edith Cowan University
Research Online

Theses : Honours Theses

2003

Improving the programming language translation process via
static structure abstraction and algorithmic code transliteration

Robert W. Chandler
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses_hons

b Part of the Management Information Systems Commons

Recommended Citation

Chandler, R. W. (2003). Improving the programming language translation process via static structure
abstraction and algorithmic code transliteration. https://ro.ecu.edu.au/theses_hons/134

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses_hons/134

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses_hons
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses_hons?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses_hons/134

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose
of your own research or study.

The University does not authorize you to copy, communicate or
otherwise make available electronically to any other person any
copyright material contained on this site.

You are reminded of the following:

e Copyright owners are entitled to take legal action against persons
who infringe their copyright.

e A reproduction of material that is protected by copyright may be a
copyright infringement.

e A court may impose penalties and award damages in relation to
offences and infringements relating to copyright material. Higher
penalties may apply, and higher damages may be awarded, for
offences and infringements involving the conversion of material
into digital or electronic form.

Improving the Programming Language Translation
Process via Static Structure Abstraction and
Algorithmic Code Transliteration

A thesis submitted in partial fulfilment of the requirements for the degreé of

Bachelor of Science Honours (Software Engineering)

By: Robert W Chandler
Student ID: 2003078

Faculty of Computing, Health and Science
Edith Cowan University

Supervisor: Michael Collins

Date of submission: 14™ November 2003

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

Abst'ract

Fully automated programming langnage translation has been described as an
unrealistic goal, with previous research being limited by a ceiling of 90% successfill

code translation. The key issues hindering auntomatic translation efficacy are the:

¢ maintainability of the translated constructs;
» full utilisation of the targetllanguage’s features; and

+ amount of manual intervention required to complete the translation process.

This study.' has concentrated on demonstrélting improvements to the
translation process by introducing the progranﬁning-_languﬁge-independent, Unified
Modelling Language (UML) and Computer Assisted Software Engineering (CASE)
tools to the legacy-system langnage hﬁgration project. UML and CASE tools may
be used to abstract the static .framework of the source application to reduce the so-
called “opaqueness” of the translated conétr’ucts, yieldihg a significantly more

maintainable product.

_ The UML and CASE tools also enhance use of the target lénguage features,
through forward engineering of the native constrﬁcts of the target language during -
the reproduction of the static framework. Source applicafion algorithmic code
translation, performed as a sep.arate process usirig translitération, may preserve
maximom functionality of the source application after compl.e'tion of the static
structure translation proceés. Introduction of the UML and CASE tools in
‘conjunction with algorithmic code transliteration offers a reduction of the manual

intervention required to complete the translation pfocess.

i

Table of Contents

1 Introduction... OO U PO |

2 . The Problem e etk e venaan e bbb e s enmeetstrsrareen

2.1 Background to the Study OO |

22 Significance of the Study e st s et g sn s ra staton O
23 Statement of the Problem.........occvmmermnsismessrsemiisiess en st i rr st srb e nr s 6

7

8

9

g

24 Research QUESHONS ... vvvcevirsrisresiesrsse s s ranssrssssnmssasasas sirsssessaresssesnns Ceenessisrrarons
25 Chapter Summary ... '

3 AReview ofthe therature v

31 Studies into System Evolutlon through Code M:g;ratlon et gt
3.2 Studies Similar to this SWAY.ccwrercermsmrernermressssstmmrerserasssarssssnses 13
33 Grammar development...............'............. " R |
34 Application Selection.......oveuriens, . reorear 20
.35 Chapter SUMIMATY «..u.cosnmrsrrerssnniiess st esmrastians sssrssiussmsnessessssns s 20
4 Research DesiBhi. .. iiinieniionmeresioseessissinmmesinsesssmerisessens 20
4.1 General Method.coconirrcenenne e e haernatent i ibben e e b e bR b e saa e 26
42 Specific PrOCEAUTES.ccvvimierirminiimnerenesrseresioserrasesssessassessassarassossssases suses S 27
4,3 Potential Enhancements not Incomorated in this Study L 33
4.4 Chapter Summarycoveenres b verraresters et bras e pe e v van san i TR abea 34
5 Implementation and FiNdings.........couemmrenisenminicsmmioisemerossssisereone 39
51 - Phase 1: The Static Structureceersevuirrrense earenrens SOTOTURU. +
52 Phase 2: The Algorithmic Code. ., OO USSR UR PR |
5.3 Phase 3: The Analysis and Fmdmgs e r st s onstavne s s nmttone e en O
5.4 FINAINGS .ovisrvvinerssirnimemiarasinne smummeivatsossaroses e ebe s s nnas s 65
55 DiSCuSsioN....cuuereresnenns veserrrasst et e g st srsnabes reesesraros s s e paarass st 66
56 Evidence Found To Support the Research QUESHONS.....c.uummuumesncrimsosscossersensennens 69
5.7 Chapter Summary e rar NI bR R RS A4 R £ 40 §EER e A4 RR S RO A b PR s e e 72
T 0 CONCIISIONS . ..cereiaeircsietiirrcnnersssaresesesssisarersassessasrsresesssssassarsmerossasssnsroncsaess 13
- Appendices.... - OO PORTPPRORRY b
~ Appendix A: Sample appllcatmn ’I‘owers of Hanm crersesersrasravesssentsrveasenss 19
Appendix B: The generated JADE Towers of Hanoi schema ﬁle teen . 77
Appendix C: Rational Rose mode] file grammar.........cvrecerereniesmsnamcciommmmisnenasenss vervene 79
Appendix D: A subset of CH grammar.iivniieninaneessis o 85
Appendix E: The JADE language grammar resenti s bbb ta s e senen 88
Appendix F: Sample application — Building [nherltancc ... 95
Appendix G: The generated JADE Building Inheritance schema hle 97
Appendix H: The converted Towers of Hanoi schema file.......cniveccmrcinmmnniccnssismnienins 99
Appendix I: The converted Building Inheritance schema ﬁle 103
Appendix J: Glossary of terms e erns e oS b AL A AP YL e eIt pane £ A e bR e 108
REfEIENCES c.vvrirrieirviserineeniisnst b sacissest b ansen st bsnase st sssassnsassesesisinsaessnssstsronsessaessinnas 113

1ii

Table of Figures

Figure 1; Example UML class diagram showing inheritance in a building contéxt;. 12

Figure 2: Framework propertles associated with JADE models...

Figure 3: A simple assignment statement grammar (Sebesta, 1999 p 113)

Figure 4: A sample parse tree, (Sebesta, 1999, p. 114)....
Figure 5; Building aparser with ProGrammar (NorKen, 2003 p. 14)
Figure 6: Terms used in program transformation (Harsu, 2000, p. 6). ..
Figure 7: The Towers of Hanoi problem. .. . ireirestrrersaas
Figure 8: A high-level view of the process for the study

Figure 9: Reverse engineered VC++ application....

Figure 10: The JADE root-schema class diagram....

Figure 11: VC++ model class attn'butcpmpenies.....;....... veebraentrasartprasetbar et raente
Figure 12;: JADE model class attribute properties. ..o,

Figure 13; The Towers of Hanoi program at run-time...........
Figure 14: Inheritance sample application class diagram. ...

. Figure 15: Re-assigning the application to the target language.

Figure 16: The JADE connection dialog....
- Figure 17: Assigning the class objects to the J ADE schema
Figure 18: Class relations, the parent class and the map file. ..

Figure 19: Re-assigning attribute types.....veerveecnmimiiimminiiecinns

Figure 20: The manipulated inheritance modelcoovevviiinenss

Figure 21: Import/Export progress report dialog.ccvvivnesirnisininsessernesonns
Figure 22: The converted model Design Objectviiiimeissniveisiiscinaiens

Figure 23: The blank model Design Objectcvvemnrmvicvsronsirecraanes
Figure 24: Converted model file Tower object.cceerieicrernneranns

Figure 25: Class method references to VO ... iinneiineniinsseisceninisnns
voreree 32
v 54

Figure 26: VC++ path reference. .. eterenesar

Figure 27: Extra VC++ node deﬁmtlons

Figure 28: Towers of Hanoi parse tree...

Figure 29: Regularly used algorithm example n pseudocode

Figure 30: A mapping of the data types (Tereckhov and Verhoef 2000 p 105)

Figure 31: Setup of a target file parser...

Figure 32: Searching a method for algonthmnc codc
Figure 33: Contents of current_statement_list. ..

Figure 34: Towers of Hanoi adlesks() parse tree
Figure 35: for_list node value. .. cevsenrrean
Figure 36: JADE equivalent to Flgure 35

Figure 37: Converts Figure 35 to Figure 36

- Figure 38: Method of inc_statement conversion
Figure 39: A converted schema imported into JADE

Figure 40: The building inheritance output as deplcted in F1gure 39 erresensirrerants

. Figure 41: Converted array assigning ‘for loop
Figure 42: The original C++ ‘for loop’. ...
Figure 43: Method signature alteration......

eens 16

17

......'17
veeeoseenns 19
e 20
e 21
o)
wriernnnns 30
veere 37

39

w39
s 40
vesrennier 41
e 42
veervannenn 43
verrersen. 46
—— 1|
w48
SR |
R

49

.55

56
enssens 58
eoreernins 59
roreerins 60
revens 60

eenes 61
S
-
N
oo 67
...68

iv

Declaration

. Fdeclare that this thesis does not incorporate without acknowledgment any material
previously submitted for a degree in any institution of higher education, and that, to
the best of my knowledge and belief, it does not contain any material previously

- published or person except where due acknowledgment is made.

Signature:
Date:

- Acknowledgements

Firstly, 1 would like to acknowledge the support Michael Collins has
- provided before and during this project. His encouragement and belief in me has
been immeasurably helpful. In addition, I would like to acknowledge Dr. Leisa
Armstrong and Chris Bolan, both of whom acted as reviewers for the propoéal of this
project, along with Daphne Brosnan for her grammar and structure insighté during

the early stages. Their comments and suggestions were invaluable.

I would like to thank the members of the ‘M-téam’, the ‘mentees’ and
honours students wading doggedly through the mire each Wednesday evening. In
addition, thanks must go to Judy Clayden for late pight editing and her pedantic
approach to all manner of references and to Dr. Karen Anderson for allowing me to
step out of another project, thereby giving me the opportunity to engross myself in

this investigation.

Thanks to my family and especially my wife Karen, who .provided me with
an environment in which to work'comfortably and quietly, for what must have
seemed like unending hours, days, weeks and months... Her endurance in
entertaining our children throughout this time was inspirational; 1 hope that soon we

will be able to have normal adult conversations once again.

Finally, Harry and Emily, my babies, now maybe we can have some fun. It

may not be long before you are using the computer all day and "night!

vi

1 Introduction

This chapter introduces the problems associated with legacy system
programming language conversion projects, a description of the aims of this study

and a synopsis of the remainder of this document.

The literature in the area of programming language translation, e.g. Harsu
- (2000), Moynihan and Wallis {1991) and Terekhov (2001), suggests that fully
automated translation of one programming language to another is an unrealistic goal.

Problems cited with the traditional process may be listed under the following points:
1. maintainability of the translated “objects” or “constructs™;
2. utilisation of the features of the target language; and

3. need for manua! intervention, either before or after the translation process.

Moynihan and Wallis (1991, p. 396) expressed concern over the first point
regarding the conversion of the constructs of the source application to another High-
Level Programming Language (HLPL), resuiting in “opaque” constructs that are
difficult to maintain. Also of éoncem to Moynihan & Wallis (1991), is the second
point in that a target system, created by the translation, may not benefit fully from
those features that made the target language attractive for the translation. The third
point relates to the amount of source-code that may be trénslated ﬁutomatically Harsu
(2000), Moynihan and Wallis (1991) and Terekhov (2001). Harsu (2000), for
example, reports the amount of code translated automatically at 90% of her legacy-
‘system project’s source-code, a significant improvement over the 70% - 80% success
rate reported by Markosian, Newcomb, Brand, Burson, and Kitzmiller (1994), 6 .

years earlier.

This study establishes the Unified Modelling Language (UML) and Computer
Aided Software Engineering (CASE) tools as essential components, capable of

enhancing the maintainability and efficiency of translated sofiware and reducing the
amount of source code requiring manual intervention. A consequence of the use of
such tools is the reduction of costs normally associated with manual language

translation processes.

| Chapter 2 presénts a background to the study and outlines Why researchers
suggest that modern applications must evolve. The significance of the study is
'presented followed by a description of the problems normally associated with the
traditional methods of programming language translation. The research questions are

then stated.

Chapter 3 provides a review of the literature relevant to the field of
programming language translation and the use of the UML and CASE tools. The
review describes system evolution, Source-to-Source translation and highlights
similar studies. The literature reviewed is used to support the justification for the

approach taken in this project.

Chapter 4 combines the needs outlined in the introduction and background
with the foundations provided by the literature review to develop the concepts
presented in this study. The research design and method are described, detailing the

specific processes used to generate the verifiable outcomes of this study.

Chapter 5 describes the findings of this study and presents evidence to answer
the fundamental research questions. The chapter provides relevant components of
those source and target model schemas that were compared and contrasted to support

the evidence that validates the findings of this study.

_ Chﬁpter 6 concludes the study. Implications of this study are discussed
together with the potential for further investigation and research in this field A
summary of the initial study proposal and the outcomes and strategies developed

during the course of the investigation are also outlined in the chépter. For the

reader’s convenience, a glossary of terms used in this document has been provided in

Appendix J.

~In summary, conventional automatic translation of legacy systems leaves, at
best, 10% of the total Lines of Code (LOC) for manual intervention to complete
“and/or refine the process. Where non-trivial systems are to be converted, such
manual intervention involves considerable costé. ‘The study concludes that such
costs may be minimised via conjoint activities of translation of both static and

algorithmic source application components.

2 The Problem

2.4 Background to the Study

The term. “legacy-system” is used to describe outdated applications built
using obsolescent languages (Ducasse, 2001). However, Ducasse (2001) concedes
that some applications, although writien using modern, Object-Oriented (OO0),
programming languages such as C++, Java and Smalltalk, may be considered as
legacy-systems. Those who adopted the QO paradigm early, according to Demeyer,
Rieger, & Tichelaar (1998), may now be faced with evolving existing OO systems.

Ducasse (2001) lists the following reasons why information systems must evolve:

» original developers may no longer be available;
» outdated development methods;

. moﬁolithic systems;

s code bloat;

+ lack of documentation; -

* misuse of language constructs; and / or

¢ Business Process Re-engineering (BPR).

~ Another compelling reason for evolving an existing system is that some of
the internal algorithmic f‘unctionality within a. legacy-system is too valuable to
discard and too expensive to reproduce (Skarmstad, Khan, & Rashid, 1999). If such
internal code is worth saving, then language translation may be one method of taking
advantage of the features of a more versatile programming language. Few modern.
programming languages match the versatility of JADE (O'Sullivan, 2000), an
application programming technology capable of dep'ldyment on most modern

platforms.

According to O'Sullivan (2000, p. 6), JADE provides such versatility via

features including:

» easily developed web functionality;
e automatic Hyper-Text Mark-up Language (HTML) and Java generation; and
o smart client technology.

JADE connects to existing relational databases and to its own persistent 00O
database management system. Its versatility renders JADE an effective choice as the
~ target language, when planning legacy Information System (IS) evolution. Another

valid reason for.selecting a langnage such as JADE is presented by Terekhov and _
- Verhoef (2000), who state that “Freshmen would expect thaf the more equal [sic] the
languages are, the more casy a conversion would be”. When translating between
similar languages, for example, C++ to JAVA, the developer must contend with
“semantic differences that we cannot even detect syntécticallf’ Terekhov and
Verhoef (2000). Such problems associated with similar language translations are
added to the problems of languége translation associated with syntax and type
conversion. Hence deciding on the target language is only one of the planning
decisions required prior to commencement. Another essential planning decision
involves Weighing the costs of a fully automatic translator against the effort required

_ for manual translation of the same source-code (Moynihan & Wallis, 1991).

2.2 Significance of the Study

The cost of manual language translation of source-code was estimated by Ben
Wilson, cited by Cowley (2003), at between $US8.00 and $US20.00 per LOC: a

considerable expense in large translation projects.

One such. converﬁs_ion performed by Terekhov (2001) was from a system
containing more than 1.5 million LOC in High-Productivity System (HPS) source
language to the target languages of Visual Basic and COBOL. In that conversion,
Terekhov achieved between 80% and 90% automatic translation of.the original

system. To estimate the cost involved in the manual translation of the remainder, we
US.e_ the figures presented by Cowley (2003). Using the upper extreme of Terekhov’s
(2001) 90% success in automatic translation, there remained approximately 150,000
LOC requiring manual intervention. At the lowest rate per LOC estimated by
Cowley (2003), i.e. $US8.00 per LOC, the cost of residual manual translation of

Terekhov’s project would have exceeded $US1.2 million,

In a smaller example, where Kontogiannis et al. (1998) translated 300,000
- lines of PL/IX code to C++, approximately 30,000 LOC may have required manual
intervention. Again, using a basis of $US8.00 per LOC, the cost of residual manual -

translation for this project would have exceeded $US240,000.

Both of the cost estimation examples immediately above involved the use of
the traditional method of translating programming languages. In this, the source
application is mapped sta'tement-by—stat'ement to an. equivalent representation in the
target language: a method referred to by Waters (1988) as transliteration. Waters
(1988) presented the idea of translating applications from one programining language
to another, via abstraction and reimplementation. It was concluded by Waters (1988,
p. 1227) that the benefits of translation via abstraction and reimplementation, at that
time, were “more of a promise than a reality”. This study shows that with the CASE

tools available today, Waters’ (1988) idea is now closer to reality.

2.3 Statement of the Problem

This study offers improvements in automatic programming-language
translation through a process that: |

e reverse engineers an existing, operati'onal C++ legacy application’s source-
code into a UML *class model’ schema file;

« converts the C++ UML schema file into a JADE equivalent schema file;

= imports the JADE root-schema into the model;

' exports the features of the converted model to a JADE working sc,he’mz; file; - -~

s extends the generated JADE schema file to include the necessary sections,
rendering the schema file syntactically correct; and then
» generates the algorithmic content of each class method using dynamic code

transliteration.

This process produces a JADE schema file, ready for importation into the
JADE development environmient. The improvement of the language translation
process, in consequence of the application of Rational Rose implementation of UML
(Rose/UML) and versatility offered in JADE, is shown to reduce significantly the

cost of legacy system evolutibn, by reducing the need for manual intervention.

2.4 Research Questions

Where sepéu‘ation of static and algorithmic components of code for forward
engineering of a legacy system is achieved, then may a reduction of manual

intervention be realised in automated code conversion?

2.4.1 The major components of the above question are:

1. Which model properties within a Rational Rose / UML model file are
associated with the reverse engineered application’s programming languagé?

2, Which components of the JADE schema file, produced by the
RoseJADELink add-in, may be used to construct the static framework in
preparation for code migration?

3. What improvement in the ratio of automatically to manually translated LOC
in a legacy system may be achieved using the abstraction and re-

implementation approach?

2.5 Chapter Summary

The problems associated with programmmg language code migration were
mtroduced and described. Traditionally, code migration is considered ar: expensive
solution; a reason why programming language translation is often overlooked as an
option for legacy system evolution. Such expense of traditional methods provides a
justification for the investigation into altémative methods of code migration and,
hence, to justify the sign.iﬁcance of this study. Finally, the research questions
associated with the study .were. presented.

3 A Review of the Literature

3.1 Studies into System Evolution through Code Migration

Terekhov & Verhoef (2000, p. 123) offer the following warnings regarding

system evolution and language conversion:

e conversions are difficult;
» conversions are always more difficult than you think;
~» the more semantic-eqﬁivalence is necessary, the more impossible [sic] it (the
conversion) becomes;
 going from a rich language to a minimal language is impossible; and

s casy conversion is an oxymoron.

Not“dthstan_ding the warnings of Terekhov & Verhoef (2000, p. 123},
research teams, for example, Kazman, O’Brien, & Verhoef, (2002), Seacord,
Comella-Dorda, Lewis, Place, & Plakosh, (2001), Ducasse (2001} and Haréu (2000),
have attempted to overcome the problems associated with the migration of one

programming language to another.

Seacord, Plakosh, & Lewis, (2003) recognise that the goals of legacy-system
modernisation prbjects often differ from those involved in the 'engineering of new
applications. When engineering a new application the goals of a project usually
revolve around providing the client with a product of the quality specified, delivered

on time and within the agreed budget.

Seacord et al,, (2003) define the goals of legacy-system modernisation as the

minimisation of:

» development and deployment costs;

+ the time required to develop and deploy the modernised syétem;

» risks to the successful completion of the modernisation process;

» the modernised system"s complexity;

» and the maximisation of the modernised system’s pérfonnance; and

» quality of both the product and the modernisation procéss.

Howcver, not all of the goals defined by Seacord et al. (2003) may be
achievable in all circumstances. In some situations tradeoffs may be necessary. For
example, the minimisation of the complexity of a modernised syét_em might involve
significantly more time for deployment and development than the time required to

" develop a new equivalent application, Therefore the developer must employ a

strategy to take into account the goals of the planned modernisation project.

R, Seacord et al. (2001) believe that a prerequisite to developing a
modemisation strategy requires a deveioper to understand the structure of the legacy-
system. One method available to a developer to gain an understanding of the
structure of a legacy-system is to use reverse engineering as part of the
modemisation process (Chikofsky & Cross, 1990, p. 15). Chikofsky and Cross

{1990) explain that the modernisation of a legacy-system usually includes:

» reverse engineering; followed by -
» inspection of the system’s architecture; and then

« forward engineering,

Reverse Engineering: To begin the process of reverse engineering, a CASE
tool, such as ROSE/UML, scans the source code of an application, collecting the

following static elements, listed by Boggs and Boggs (2002, p. 365) :

10

o classes;

* attributes;

e operations;

+ relationships; and

¢ packages,

Reverse engincering reveals the structural components of the application
together with their inter-connecting relationships. A diagrammuatic representation of
the components and their relationships, forming the static structure of the application,

is then presented via UML class diagrams.

Booch et al. (1999, p. 459) define a class as “a set of objects that share the
same attributes, operations, relationships and semantics.” Each of the classes ih a
class diagram shows the data-holding qualities, or attributes, of the class as well as
the internal and extemally visible methods or operations. The qualities of a class
diagram are highlighted in Figure 1, which shows a UML model of a building

inheritance application.

11

testSourcelnheritance Model Update Oveniew
This diagram was automatically created by Rational Rose Model Update Tool.
Friday, 24 October 2003 12:47:12 PM

Bullding

_Qarea timt
%ms tint
&floors : int

- $get_area() : int

get_rooms() : int
®get_floors(): int
*set_area(value : Int) : vold
‘Sset_rooms{value : int) : woid -
Wset floors(value : int) : wid

4
/

/

/!

House .

School

&bedrooms ; int
&bathrooms : int

Qofiices : int
&xclassrooms : int

$get_bedrooms() ; int
%get_bathrooms() : int
$sat_bedrooms(value : int) : void
®set_bathrooms{ialue : int) : void.

®get_offices() : int
®get_classrooms() : int -
¥set_offices(value : int} : wid
*set_classrooms{walue : int) : void -

~ Figure 1: Example UML class diagram showing inheritance in a building context.

Inspection of the System’s Architecture: On completion of the reverse
engineering process, the developer is able to inspect and alter the static structure of
the application. However, ROSE/UML does not capture the algorithmic source
code, within the reverse engineering process as its focus is on the static structure. In
coﬁsequence, during the forward engineering process, the developer is obliged' to
implement manually any source code within the ~new system’s methods
Krishnamoorthy (2003).

The UML gives a developer a clearer understanding of the functionality of
the legacy-system, by exposing the operations and attributes associated with each of
the classes within the application. Furthermore, the exposure of the components and

their relationships improves the perceived transparency of the converted internal

12

constructs by using the UML in the forward engineering process. The lack .of'
transparency of the traditionally converted constructs, referred to by Moynihah &
Wallis (1991) and Harsu (2000) has been a significant problem with contemporary
language translation processes. Such a lack of transparency is referred to as

“opaqueness”.

Forward Engineering: The target static structure generated by ROSE/UML
during the forward engineering or schema export process is representative of the
elements created in the UML during the réverse éngineering'of the legacy-system.
Completion of the conversion q.f the target system is then achieved by the translation

and inclusion of the algorithmic-source-code into that static structure.

3.2 Studies Similar to this Study

Waters (1988, p. 1207) suggested that traditional source-to-source translators
render the maintenahce of a translated system difficult to understand. Furthermore,
Waters (1988, p. 1225) estimated that of the translation systems available at the time,
most were “capable of handling only 90% of the source language”. Waters’ estimate
has been silpported by the experiments of Harsu (2000) and Terekhov (2001),
suggesting that no significant improvement in automated language translation
process has been realised since 1988. Additionally, Waters (1988, p. 1225} states
that source-to-source translators should not be referred to as “automatic systems”,
instead they should be referred 1o as “human-assisted translation systems”. In order
to achieve an accurate translation, Waters (1988) deduced that the developer must
alter the source code of either or both of the source and target programs before,

during or after the translation Pprocess.

Waters: (1988) proposed an alternative approach to the language translation
process to overcome problems associated with traditional source-to-source

translators. Waters (1988, p. 1208) suggested that the process should begin with the

13

source program being analysed to “obtain a programming-language-independent

abstract description” of the source application.

Echoing Waters’ (1988) suggestion, in a report on the evolution of legacy -
systems, Weiderman, Bergey, Smith, & Tilley, (1997, p. 25) offer the following

summary recommendations:

» understand the legacy system at a high level of abstraction using some kind of
system—undérstanding technology, paying particular attention to interfaces
and abstractions; and ' |

» find the encapsulate-able components of the legacy system on which to build.

Both points are directly applicable to this study in the way they relate to the
‘use of the UML in revérse and forward engineering. Waters (1988) recognised the
significance of abstracting both constructs and statements from within a source
program during programming language translation. Other researchers, Kontogiannis
et al. (1998); Skarmstad et al. (1999); Terekhov and Verhoef (2000); Weiderman et
al. (1997), have noted the benefits of abstracting the OO component-like constructs

within source applications for translation purposes.

- The Object Management Group (OMG) has identified a need to standardize
legacy transformation processes in order to “help build on prior experiences and best
practices” OMG (2003, p. 2). The OMG anticipates. that standardisation of legacy
transforﬁaation processes will “enable integration and interoperability between
solutions and vendor tools” OMG (2003, p. 2). The OMG-proposed standardisation
includes. the use of tools such as Metamodel Driven Architecture (MDA} and the
UML. The platform independent MDA enables the creation of a UML model of a
reverse engineered appl.ication “for the purpose of importing it into an MDA-enabled

development environment” OMG (2003, p. 3).

~ Meta _Object Facility (MOF), also defined by the OMG (2002), is 2

specification used to describe an abstract language and a framework for specifying,

14

constructing and managing technology neutral metamodels (OMG, 2002, p. 15). The
MOF, UML and eXtensible Mark-up Language (XML) Metadata Interchange (XMI)
are intended to provide a foundation for the MDA, The OMG proposes the
development of a standardised meta-language that may be used to describe UML
models to provide a complete alignment of the UML and the MOF (OMG, 2002).
The introduction of such a standardised ianguage “would assist in the process of
translating these models into software implementations” OMG (2002, p. 26).
Poteﬁtially imbroving on the structure of a Rational Rose Enterprise Edition 2002
“model file. '

The Rational Rose Enterprise Edition 2002 .development environment
produces a proprietarily structured model file containing the properties associated
with the current model. A framework *“wizard” template is used to determine the
structure of a Rational Rose Enterprise Edition 2002 model file. A framework in
Rose/UML is a set of predefined model elements that are needed to model a certain
kind of system (Rational, 2001). . However, when developing a new framework a
dew)eloper may associate additional descriptors with any or all of the properties in a
model. This flexibility in the framework development process allows for the
propeﬂies in @ model to be describ.ed using different ficlds and values. For example,
some of the extra properties e.g. Map File and subschema properties, associated with

a JADE model may be seen in Figure 2.

15

ass Specification:
'S oot

Figure 2: Framework properties associated with JADE models

The map file and subschema properties shown in Figure 2 represent a sample
of the properties that may be considered unique in a JADE model, in similar manner
to the peculiar model properties associated with ‘unsigned short int’ objects in a
C/C++ model. Consequently, it was necessary to develop a grammar to validate any

modifications made to an application’s model files during the translation process.

3.3 Grammar development

A grammar is a description and depiction of the syntax of a programming
language (Sebesta, 1999). It is beyond the scope of this document to detail the
history of programming language generation mechanisms, However, a simp.le
example may be useful to demonstrate the processes required to define and describe

a small language. Figure 3 defines a grammar for the simple assignment statement:

A=B*(A+ C) (Sebesta, 1999, p. 113).

16

<agaigns + <ld> 1= <exprs

<id> +A|B|C

<EXPI> + <¢id> + <exprs
| «id> * <expr>
| (<exprs>)
| <ids>

~ Figure 3: A simple assignment statement grammar (Sebesta, 1999, p-113).

Analysis of th° assignment statement may be pefforméd in any of three
manners: lineally, semantically or hierarchically (Aho, Sethi, & Ullman, 2003, p. 4).
Initially, linear analysis reads the characters of an input stream from léﬁ to right.
Then, semantic analysis ensures the sequence of characters or words forms a
meaningful statement. Finally, hierarchical analysis groups the contents of an input
stream into a set of hierarchically linked nodes representing the mput stream as a
parse tree (Aho et al. 2003, p. 4-5).

Aho et al. (2003, p. 6) describe the process of hierarchical analysis as
‘parsing’ the input. A grammar such as that shown in F'igure 3 may be used to
develop a parse tree representing the input that the grammar is to define (Sebesta,
1999) The parse tree shown in Figure 4 describes the assignment statement using

‘the grammar shown in Figure 3,

<assign>>
e T —
<id> 1= <expr> :
| e T T —
A <id> * <expr>
I m
B { <expr>)
m
<id> + <expr>
1 I
A <id>
!
C

Figure 4: A sample parse {ree, (Sebesta, 1999, p. 114)

17

The parser used in the investigation, ProGrammar (NorKen, 2003}, enabled
the converter application to extract nodes or entire lines of code from the parse tree.
N The parser applies a numbered index to each node in the parse tree and may retumn a
line-number-id for the current line of code on which a specific node is found.
Having both these resources available during the translation process allowed the
converter to extract node values to test conditions on the values contained in the
nodes of the parse tree or in a LOC of the source application. For example,'th.e
converter may request that only the children of a node with a certain value be
returned. Alternatively, return an entire LOC if the value of the first node, in a sub-

branch of the parse tree, matches a certain condition.

Such flexibility in the parsing tool provided the converter with enough
processing power to concentrate specifically on the algotithmic code contained
within each class method. Use of an existing tool with such flexibility was far more

appealing than creating a parser / compiler too! using Lex and Yace.

~ Lex and Yacc are tools that together, enable the developer to créate programs
capable 6f transforming structured input (Levine, Mason, & Brown, 1995). Lex is
used to build a lexical analyser that takes streams of input and returns tokens
representing the items in the input stream. Yace builds parsers created from rules
and grammars that describe the syntax of the input stream beihg analysed (Aho etal,
2003). The limited time available for this study, and the accessibility of a suitable

parsing tool, were reasons for not employing Lex and Yacc.

ProGrammar is such a parsing tool and was employed during the
investigation. 1t provides a visual environment for building parsers that are platform-
independent, programming language-independent and reusable (NofKen, 2003).
ProGrammar spared the researcher the burdeh of designing and developing the
lexical analyser and parsing tools with the ability to work in three languages (JADE,
C++ and Rose / UML), as well as a converter to use them. Figure 5 depicts the steps

necessary to build and use a parser with the ProGrammar tool.

18

1 2

IDE — builds

Grammar
{.GMR)

APl :
Parse methods

Client v

Application — .
arse 4
R l Eigine :
. Parse Tree ' /L

' Input Data
'\-________,-/

Figure 5: Building a parser with ProGrammar (NorKen, 2003, p. 14).

Each of the numbered stages shown in Figure 5 is outlined below.
1. Define the grammar for the input to be parsed in the IDE; |
2 ProGrammar then generaies a bin;ary érammar ﬁlé; :
3. The parser is called from the client application via an APT;

4. The runtime parse engine creates the parse tree representing the

source application as input data; and

5. The client application may then retrieve the data from the parse tree
via an API (NorKen, 2003, p. 15). '

According to Aho et al. (2003,.p. 1) parsing input streams is the basis for
compiling computer programs. In most situations the direction of language-
gene'ration or compilation, by a compiler, is from a high-level programming language
to a low-level ‘machine code’ language that the computer may understand.
However, some language compilers, for example: Safe C, Eiffel and Cfront, work
between high-level languages. Safe C was developed by Michael Collins (1993} as a
high-level compiler used for translating an ‘ADA-Like’ language to Safe C, which he

developed as a cheaper altermative for use in embedded systems. Eiffel, developed

19

by Beftrand Meyer “has all the typical features of a high-level language’ Gutschmidt
(2003) and translates it to C. Cfront is described by Wikipedia (2003) as “the
original compiler for C++, which converted C++to C”. :

Harsu (2000, p. 6) uses different terms to describe the concepts of
programming langnage transformation, Figure o shows that, accotding to Harsu
(2000), compilation generally works on high-level languages being transformed into
low-level languages, while the interchangeable terms, ‘conversion’ and ‘translation’,

describe language transformations at the same level.

Source to source translation

High-level source High-level target

h, 4

Conversion

Compilation ™ Decompilation

Low-level sonrce ' ' »| Low-level target

Conversion -

Figure 6: Terms used in program iransformation (Harsu, 2000, p. 6).

3.4 Application Selection

The applications selected for translation during this investigation are Widely '
available classical programs. The first deals with the Towers of Hanoi problem (Hill,
1995; Roeder, 2003; Suh & Allain, 2003), while the second describes inheritance in
an object-oriented environment (Liberty, 2001; Schildt, 2003). The implemehtation
of the Towers of Hanoi apblication used in ﬂﬁs investigation was selected from many-

available on the Internet.

The Towers of Hanoi problem, the character of which is depicted in Figure 7,
requires a solution that moves all four rings, one at a time, from one tower to another,

without allowing any ring to be placed on top of a smaller ring. The Towers of

20

Hanoj application used in this investigation was developed by Chris Roeder (2003)

and details of the source code are included in Appendix A.

Tower 1 Towet 2 Tower 3

Figure 7: The Towers of Hanoi problem.

Programmatically, a solution to the Towers of Hanoi problem usually
employs recursion to move the rings within the rules, While recursion does not make
the program complex, it adds a degree of complexity to the demonstration of this
investigation’s concept. Without the recursion factor included in the application, the
numbers of independent paths or conditions tested during the application at run-time
are few. Sultanoglu (1998) suggests that McCabe’s Cyclomatic Complexity (MCC)
“measures the number of independent paths in a program, thereby placing a
numeriéal value on thé complexity” of the applicaﬁon module. The formula for the
MCC meiric used to measure the complexity of the Towers of Hanoi sample

- application is:

MCC = edges - nbdes +2;

where the nodes “represent computational statements or expressions, and the
edge_s représent transfer of control betwsen nodes” (Watson & McCabe, 1996). The
MCC was used during this inv.estigation. to provide a measure of the complexity of
the sample application’s decision strucfure. The number of nodes in the Towers of

Hanoi application amounted to 46 while the number of edges totalled 47 yielding:

21

MCC=47-46+2=>3

Hence the Towers of Hanoi represents an MCC of 3. The MCC generally
maintains a maximum Hmit of 10 for extremely complex application modules as
recommended by Watson and McCabe (1996). An earlier study by McCabe énd
Butler (1989, p. 1416) reported that the modules of the evidently non-trivial AEGIS _
Naval Weapons System approximated 4.6 MCC. Tieman (2001) suggests that where
a MCC result lies between 6 and 10 a developer should consider ways of simplifying
a module. Consequently, it was considered by.the author that an MCC of 3
represented a module of reasonable complexity for the purpose of “proof of concept”

for the study in both the static structure abstraction and the transliteration processes.

The second application converted during this investigation, Schildt’s (2003,
p. 280) building inheritance example shown in Figuré 1, was measured using a
different set of metrics. The building inheritance application is highly OO0 in nature
and the MCC was unable to reflect its overall cdmplexity. Accordingly, a suite of
‘metrics based on measurement theory developed with the insights of experienced 0O
software developers, presented by Chidamber and Kemerer (1991, p. 197) was
applied. The tools presented within the Chidamber and Kemerer (1991) Metrics
Suite (CKMS) include the: |

o Weighted Methods per Class (WMC);
e Depthof Inhéritanc: Tree (DIT);

¢ Number of Children (NO'C);

o Coupling Between Objecfs (CBO);

e Response for a Class (RFC); and

e Lack of Cohesion in Methods (LCM).

* Each of these tools is described briefly below.

WMC is a measure of the number of methods in a class. Chidamber and

Kemerer (1991, p. 202) state that “the number of methods and the complexity of the

22

methods involved is an indicator of how much time anﬂ effort is required to develop
and maintain the object”. When the number of methods in a parent class increases,
the overall number of methods available to the combined inheritéd classes in a
module also expands, _thereby increasing the complexity of the application
(Chidamber & Kemerer, 1991).

In describing DIT as an appropriate metric for OO software application
measurement, Verbruggen (2003) cites Chidamber and Kemerer (19 91) quoting “the
deeper a class is in thé hierarchy, the greater the number. of methods it is likely to | _
inherit, making it more complex.” Deeper inheritance trees “constitute greater
design (:‘.omplexity, since more classes and methods are invoivc " (Chidamber &
Kemerer, 1991, p. 202). | |

Verbruggen (2003) alludes to the NOC metric as indicating both good and
bad properties in a class. Notably, higher NOCI may indicate either “greater re-use,
since inheritance promotes re-use” or “improper abstraction of the parent class™,
(Verbruggen, 2003). Notwithstanding, an increase in the NOC equates to an increase

in a module’s complexity.

CBO is a measure of “the degree of interdependence between modules”
(Chidamber & Kemerer, 1991, p. 203). The less dependent an object is hpon other
modules, the better equipped it is for re-use, Simple connectivity, or low coupling,
between modules prbduces applications which are “easier to understand” and “less
prone to the mipple effect” (Pressman, 2001, p. 354). The ripﬁle effect is aptly
described by Pressman (2001, p. 354) as being “caused when ermrors oceur at cne
location and propagate through the system”, making error detection and location

" more difficult.

RFC is an indication of the number of methods that are visible publicly to

objects communicating with the specific module. “The larger the number of methods

23

that may be invoked from a class, the greater the complexity of that class”
(Verbruggen, 2003). |

LCM is a “measure of the attributes of an object” (Chidamber & Kemerer,
1991, p. 204) and provides an indication of the level of cohesion or encapsulation of
an object. “Low cohesion increases complexity” potentially leading to an increase in
the number of errors during the development process (Chidamber & Kemerer, 1991,
p. 204),

The following' table suminarises the building inheritance épplication’s
- complexity using the CKMS. An average of the values for each metric associated
with the classes in the source application is calculated and presented in the right

column of Table 1.

Table 1: CKMS metric evaluation of building inheritance,

7.0 " Class Building Class Housé ~_ Class Sehool - ‘Average . _

WMC e 4) 4.66

DIT 1 2 2 1.66

| NOC 2 0 0 0.66

CBO 0 6 6 4.00

RFC 6 10 10 8.66

LCM 3 2 2 2.33
Class CKMS 3.00 4.00 4.00

. ' . Total 21.97

Totai number of clusses = Application CKMS 7.32

The application CKMS is the result of dividing the Total by the number of
classes in the application. Verbruggen (2003) suggests that a class CKMS level of 4
to 5 is considered “very good”. Unfortunately, a typical overall application CKMS
level for use as a comparison has nof been located in the literature revi_ewed by the

author.

24

3.5 Chapter Summary

Previous studies have been reviewed to highlight the difficulties associated
with the translation of programming languages using traditional source-to-source
translation methods.. It was suggested that no significant improvement_ in translation
system achievements had been realised between the time Waters (1988) presented
the abstraction and reimplementaﬁon idea, and those recent projects still using
transliteration, e.g. Harsu (2000). The goals of legacy-system translation projects
were discussed along with the prerequisite strategies to be considered prior to the

commencement of such projects,

The UML was presented during this chapter as a method of describing the
static structure of a legacy system, as sugg.ested by Waters (1988) and Weiderman et
al (19.97). Furthermore, ROSE/UML was offered as a CASE tool capable of reverse
engineering and then presentation of the static structure of a source application.
Programming language grammars were described before the methods of calculating
the complexity of the selected applications were discussed. The studies reviewed in

~ this chapter were provided for justification for this study’s purpose and approach.

25

4 Research Design

4.1 General Method

The Research Design is presented in three phases, each comprising multiple

steps.

‘Phase - i P e el L Py egeription | L

Phase 1 - The Staﬂc a) selecnon of source application(s) for translallon

| Structure - b) reverse engineering of each source application;
followed by the

c} manijpulation of the model properties to produce
a valid target language version of the model; and
finally the

d) exportation of the target language schema file.

Phase 2 - The A!gortthmzc ¢) development of the grammars describing each of
‘Code _ _ the source and target languages used during the
' investigation;

f) generation of the application parse trees;

g) extension of the target language [i.e. JADE])
schema file, with the details of the static
structure produced during phase I; and finally

h) translation and insertion of the algorithmic code
in the equivalent target methods of the target
schema file.

Phase 3 — The Analysis i) collection and correlation of the data resulting
and Findings from the translation of the sample application(s);
: - and the
~j} conclusion of the mvcstlgatlon by answering the
research questions w1th the findings of the data
analysis.

26

Figure 8 describes a high-level view of phases 1 and 2 at the right and left of

the diagram respectively. The details of these phases are described in section 4.2.

T, ey LEY
oy gl REf
i 4

Algarithms
in
G

AlgorHtins
n

From G4+ 10 JADE

Figure 8: A high-level view of the process for the study

4.2 Specific Procec_iures

The steps of the phases introduced in 4.1 are detailed in this section and
associations that each may have with the research questions posed in 2.4 are

clarified,

4.2.1 Phase 1 — The Static Structure

4.2,1.1 Selection of the source applications
The applications to be translated during this investigation were selected for

their availability in various forms; because they embody challenging concepts in the
field of programming; and because each offers reasonable complexity. These
applications were also selected for their object-oriented implementations which are
recognised by both the source and target languages and, importantly, to demonsirate

that the applications were not purpose built for the sfudy.

27

4.2.1.2 Reverse engineering

To provide an unswer to the first sub-question in section 2.4.1, the
investigation needed to compare the properties of a teverse engineered model file to
the properties in an equivalent mode] file associated with the target language. To
achieve a cdmpa_rison the source Microsoft Visual C++ (VC++) application was
| reverse engineered, using ROSE/UML, producing a static structure model file. The
author then created a second static structure model of the same application using
Rose/UML’s development environment, instead associating the second model with

- the target language, in this case JADE,

' The comparison of the properties in the two model files revealed the property
names and their values where each model is associated with the different
_programming languages. This comparison process also allowed the author to
recognise the options, available in the Rose/UML development environment, where
the property values may be manipulated to reflect the programming language
associated with the model. Data collected during this step in Phase 1 provided the
information required to answer sub-question 1 of section 2.4.1, which is repeated

here for convenience:

Sub-question 1: Which model properties within a Rational Rose model file

are associated with the reverse engineered application’s programming language?

4.2.1,3 Model manipulation _

Changing the reverse engineered model options in the Rose/UML
development environment enabled the author to alter the model:’s associaﬁon with
the original source application’s programming language. The author then imported
the target language’s root-schema, or base classes, allowing the model to be
associated with JADE. Each of the elements in the mode] was ihen manipulated to
reflect the equivalent element type in the target 1anguage. The elements being
manipulated involved attribute types along with the names of some of the elements in
the original application. Following the completion of the model element

manipulation, the modified model was ready for export to JADE.

28

4.2.1.4 Export to the target lJanguage

Initiation of the export process from within the Rose/UML development
environment produced a JADE schema file representing the basic static structure of
the original source application in the target language. Completion of this step in
phase 1 allowed the collection of data and the inspaction of the exported schema file
to determine an answer to the second sub-question in 2.4.1 repeated here for

convenience;

Sub-question 2: Which components of the JADE schema file, produced by the
RoSéJADELink add-in, may be used to construct the static framework in preparation

- for code migration?

4.2.1.5 Phase completion _ _
Phase 1 took a complete and working version of a VC-++ application and,

using Rose/UML, produced a UML model representing the static structure of that
application. The options within the development environment were then altered to
- remove the model’s associated programining language. The target language base
classes were then imported and the model’s options associated with JADE. The
attributes and operations contained in the mode! were then manipulated to reflect the
target language equivalent attribute types and names. Thé completed model was then
exported producing a JADE static structure schema file in readiness for extension

and population with the translated algorithmic code.

4.2.2 Phase 2 -The Algorfthmic Code.

4,2.2.1 Grammar development _
In translating the algorithmic content of the source application into the target

language, each word or token used in the source application was scanned and
inserted into a parse tree. In order to produce a parse tree, the structure of the
language must be known and syntactically correct.. Consequéntly, a grammar was
required fdr each application source-file used by the converter application to enable

it to recognise the components of each line of code in the source file.

29

4.2.2.2 Parse tree generation _

Using the grammars developed according to activities in section 4.2.2.1 and a
parser application developed outside this investigation, by Norken Technologies,
parse trees were created from each of the source files associated with the translation
investigation. The parser queries the parse trees fo locate nodes represénting the
equivalent element in the source file. The parse trees enabled the parser to return the
~ value stored at each of the parse tree nodes, when and as it was requested by the

converter application, during the translation process.

4 2.2.3 Schema file extension
The JADE schema file, exported from Rose/UML does not contam all the

section headings required by the JADE environment, for example, the
schemaViewDefinitions, _remapTableDefinitions, externalFunctionSources and
typeSources headings. Consequently, before adding any operational code to the
JADE schema file, the missing headings were appended to the end of the existing
content. Next, the classes and their methods, and the application schema methods
were appended to the JADE schema file. With each of the application and class
methods extracted from the parse tree, the algorithmic code for each was translated

and inserted during the appending process.

4.2.2.4 Translation of algorithmic code

_ As each algorithmic LOC in the source apphcatlon parse tree was queried, the
parser retumed the type of LOC being queried. The grammar categorised each
algorithmic LOC with a spéciﬁc ‘name, for example, the parser would retum
“for_statement” when a ‘for loop’ was encountered and “if statement” when an if
statement was encountered. The attributes and values making up the conditions or
expressions used in each case were then supplied as parameters to a translating
method which returned the formatted equivalent statement as a string which, in tum,

was then appehded to the appropriate position in the target schema file.

30

4.2.2.5 Phase completion
Phase 2 involved the development of the tools needed by the translation

application to pfoduce the translated algorithmic code for insertion into the target
-schema file. The tools included grammars for each of the programming languages
and another grammar used to validate Rose/UML model files. Other items used
during the translation were the parse trees and the parser that queried the contents,
then returning the values contained in the parse tree nodes. The converter
application used these tools to append the translated algorithmic code to the
appropriate position ih the target JADE schema file. Data collected during this phase
enabled the provision of answers to the third sub-question in 2.4.1 and to the main

research question in 2.4, both of which are repeated here for convenience:.

Sub-question 3: What improvement in the ratio of automatically to manually
translated LOC in a legacy system may be achieved using the abstraction and re-

implementation approach?

Main question: Where separation of static and algorithmic components of
code for forward engineering of a legacy system is achieved, then may a reduction of

manual intervention be realised in automated code conversion?

4.2.3 Phase 3 - The Analysis and Findings.

4.2.3.1 Data collection and analysis

The JADE schema files, produced by the abstraction and transliteration
process, were imported into the JADE development environment for testing. The
testing performed on the translated schema files included the importation process
itself. A schema fault report is produced where a schema does not conform to the

rules associated with the JADE language.

The testing during this step also included invoking the translated applications
in the JADE environment and then recording any changes required to enable the

translated application to operate entirely as it did in the original language

31

environment. The following variables were found to have an influence on the study,

each being identified in Table 2:

Table 2: The conversion data for analysis

Ttem . L e

Original Loc The number of LOC in the o

Converted Loc The number of LOC in the converted version of the
original application '

Manual Loc The number of LOC requiring manual intervention, either

before or after the translation process, to produce a
successful translation

Automatic Loc Original Loc — Manual Loc

Time Automatic Loc The time taken to translate Automatic. Loc

Time Manual Loc The time required to translate Manual Loc manually
Conversion Time Time Automatic Loc + Time Manual Loc

Environment Details of the computer performing both the conversion

and the compilation, for example:
e the platform;
e available memory; and
e processor speed.

Analysis of the data relating to the variables listed in Table 2 enabled the
comparison of equivalent data from both of the application conversions during this
investigation. To determine whether an improvement in the process had been
achieved, the percentage of Automatic Loc derived from the translation of the
Original Loc was compared with the previous research results reported by Moynihan

& Wallis (1991), Harsu (2000) and Terekhov (2001).

4.2.3.2 Findings and conclusions

Once the testing and analysis steps were concluded, the findings were then
developed and associated with the research questions to evaluate the investigation.
After the data analysis, conclusions were made regarding the abstraction and

transliteration process and whether further investigation was warranted.

During the investigation some processes may have been improved had certain
enhancements been incorporated into this study. However project constraints,

chiefly those of time, prevented their inclusion. Those enhancements not included

will now be explained.

32

4.3 Potential Enhancements not Incorporated in this Study

As some of the enhancements recognised during this investigation were
~ outside the scope of this project they were not included. However, in the event that
further investigation in the field may be considered, these enhancements are
mentioned. The enhancements omitted and the reasons for their non-inclusion are

discussed below.

e Automation of the Rose/UML model conversion process, using
Rose’s internal scripting language to provide the GUI and triggers for

the translation process.

o Although Rose/UML includes a scripting language, the time
required to reveal the processes necessary to make the
conversion was estimated to be more than that available to

warrant its inclusion.

* Model alterations to remove the external function section being

included in the reverse engineering process. -

‘0 Further investigation of the optiohs available within the
Rose/UML development environment may reveal alternative
methods of implementing the changes necessary to remove the
external function association with each of the cl.ass methods

during the conversion.

» Inclusion of the entire set of C++ statements and expressions in the

translation process.

o The complexity of the C++ language along with the ability to
instantiate objects within expressions makes the mapping of
statements from C++ to any other langunage extremely time

consuming. -
o GUI front end; -

o The creation of a Graphical User Interface (GUI) for the

converter was considered to have aesthetic appeal only.

33

Currently, the converter application presents text based
messages to the user within a console window during the

CONVersion process.

4.4 Chapter Summary

The three phases of the project were described. Eéch of the three phases was
présenled as a series of sub-tasks that were followed to address relevant components
of the research questions posed in section 2.4. The initial phase addressed the
development and réalisat_i'on of the static structure of the original applications being
translated. In describing the second phase, the processes of translation of the
algorithmic code and target schema method population were outlined. The final
phase outlined the testing of the translated applications and analysis of the data that
would be generated from those tests. In addition, pbtenﬁal enhancements that were

not addressed in the study were identified.

34

5 Implementation and Findings

In chapter 4, the three phases of the study were introduced together with their
subtasks and the relationship each may have to the research questions, This chapter
relates the phases and the subtasks introduced in chapter 4 in terms of how the

investigation’s goals were implemented and the findings that were realised.

5.1 Phase 1: The Static Structure |

5.1.1 Selection of the source applications

The investigation cbmmenced with a 'compérison of two Rose/UML model
files. The model files used were a reverse engineered VC++ sample-application
model file and a purpose built JADE model file representing the same application
functionality. The applications used during this procedure are described in section
3.2. Each of the selected applications represents a readily available classical
program. The implementations in C++ were not custom built for this smdy and may
be considered typical of programs-of this type and complexity that may be translated

in a “real world” situation.

5.1.2 Reverse engineering

The reverse engineering process performed using Rose/UML produces a
- model containing source cdde components and a class diagram representing the static

~ structure of the source applicatiOn; Each of the source code components represents a
source code file included in the original application (Quatrani, 2000). The
highlighted “Main” component of the Towers of Harnoi application may be seen in
the left window of Flgure S,

35

Rational Rose - Unconverted TOH.mdl - [Class Diagram: testSourceTowers / testSourceTowers Modef !Jp'datemmw];

stSourceTowers Model Update Overview
B UnconvertedTOH his diagram was automatically created by Rational Rose Model Up
E:;f;’v’b\:':" {Thursday, 30 October 2003 5:01:35 PM
&=-E3 VCe+ Reverse Engneeted
B3 testSowrceTowers
| testSourceT owers Model Update Ov:
Bl Tower testSowceT owers)
3, Associations

Tower
&owerumber: int
RdisksMANDISKS]: int
@ numDisks : int

\ :'int
Rtemp : int
ogcount [int

-] <CEXE>> testSourceT owers STowertn - int)
i3 Deployment View rn :)
Mode! Properties ®addDisks() : void
popQ : int
Spush(i ;. int) : void
rint():; void ;
®<cstatic> test() - void

Figure 9: Reverse engineered VC++ application.

Both the model that Rose/UML creates during a reverse engineering process
and/or a model created by a developer generate Rose/UML model file(s). These
contain a hierarchy of nodes and values representing the properties associated with a

model displayed in the Rose/UML development environment.

In section 4.2.1.2 it was stated that to arrive at an answer to the first research
sub-question, it was necessary to compare the contents in a reverse engineered model
file with the contents in a model file specifically built with an association to JADE,
the translation’s target language. A comparison of the model file contents is
necessary to determine those reverse engineered model file properties associated

with the source application’s programming language.

The comparison made between the two model files yielded some significant
discoveries. For example, to provide a definition of the target language model, the
purpose built JADE model file used more than twice the number of LOC than the

number required to describe the VC++ version of the same model. The Rose/UML

36

model file representing the VC++ application contained 4,815 LOC, with 18,644
property nodes defining the model. The equivalent JADE model file required 85,257
LOC and 383,177 property nodes to define the equivalent model associated with the

target language. The reasons for this apparent block are now explored.

A comparison of the nodes in the model files confirmed that the majority of
the extra data was related to the JADE root-schema. This is essential to the
application and is generated as a matter of course for all JADE applications. The
JADE root-schema is similar in purpose to Microsoft’s Foundation Classes (MFC).
Both archltectures i.e. the JADE root-schema and the MFC, are libraries of object-
oriented classes structured into their respective hierarchies. A small example of the
JADE root-schema may be seen in Figure 10. The libraries included in both JADE
and the MFC allow developers to include a wide range of visual components in an
application (White, Scribner, & Olafsen, 1999). The JADE root-schema also

includes the native types required by the language.

rSecurity | 'Jé’deSSLComen_‘l JadeSkin-| |-.J
T S e
7

110:59:07] [[Update Model Properties]]
0:59:07] [[Update Model Properties]]

Figure 10: The JADE root-schema class diagram.

37

PECE N A

Although the MFC was not included in the original reverse engineering
process, when the MFC was imported into the schema the difference in file contents
was still significant. With 30,824 LOC and 127,128 nodes, including the I\aleC, the
source application file still proved significantly smaller than the equivalent JADE
taf‘get modei. |

It is these major size and syntactic differences in the model files, representing
the same application, which led to the development of & chrd grammar duﬁng this
.investigatiorl. The Rose/UUML model file grarnmar was developed to provide the
parser with the rules used by Rose/UML to check a medel file for syntactic

correctness after the manipulation of a model’s properties.

5.1.3 Model manipulation
The RoseJADELink add-in used to export a model to JADE requires more

properties and associated values to define a model’s objects than the process used to
export a VC+ model. Some of the properties required by the RoseJADELink add-
in are unique to JADE models. This difference in properties and values is the result -
of different development teams being responsible for building the add-ins used by

each of the programming languages recognised by Rose/UML.

For the RoseJADELink add-in to produce a useable JADE schema file during
the export process, certain properties must be present in the model file being
exriorted to JADE. Unless the properties defining each object in the model are
correct, the export process either fails or produces a faulty schema. A brief example
of the differences in the sample application’s class aftributes may be seen in the
following code examples in Figure 11 and Figure 12. The code examples are taken
from the original reverse engineered VC++ model file and from the equivalent JADE
model file. |

38

claes_attributes {list class_attribute list

{ebject ClassAttribute "towerNumber”

quid "ar94B4300253"
type ingn))

{object ClaaaAttribute "disks [MAXDISKS]"
q'l_.l:i.d "IF94B4300261"
type "ink")

{object ClassAttribute "numbigks"

' quid n3AF94B4300262"
type ninth)

{object Claasaittribute *i"
quid . #3F94B4300271"
type ~ winen)

{object ClassAttribute "temp®
gquid "3IF94B4300272"
type naonte)}

Figure 11: V44 model class attribute properties.

Notice the ClassAttribute object property referring to the disks[MAjﬂ)ISKS]
item on the fifth line in Figure 11. The MAXDISKS component is not defined any

further than this in the VC++ model file, whereas in Figure 12, the JADE model file

‘devotes 13 LOC to define the MAXDISKS object.

class_attributes (liat clasa_attribute list
{ohject ClassAttribute "towsrNumber!

quid "IF93CD3B0344"

type " "Integer"

cuidu "3F93D1CD0083")
{chbject Claashttribute "disks [MAXDISKS]®

quid "IF93CH3803BRY

type "Integerhrray"”

quidu "3IFS3D04BOOD1"

exportControl “Protected")
(object Classattribute “numbisks®

quid "IF3CD3BCIBC"
type "Integer"
quidu W3IF93DLCDOCEAN)
{object Classhittribute "i"
quid "3F93CD3803D0O"
type "Integer"
. quidu "3F93D1CDO083 ")
{object ClassAttribute "temp”
quid - "IFS3CDAB0ADA"
type - "Integer"
quidu "3F93ID1CDO0BAY)
{chject ClaasAttribute "MAXDISKS"
attributes {list Attribute Set
{object Attribute
tool "JROE"
name "Read Omly"
value TRUE))
quid
"3F330DDBO312"
Bterectype "const"
type "Integexr®
guidu "3F9301CPooA3y
initw o ongu
exportControl "Protected" -
Containment - "By Value")]}

Figure 12: JADE model class atiribute properties.

39

Examination of the model files provided helpful insights into the object
properties requiring alteration and where those object specification options were to

be found in the Rose/UML class-modeiling environment.

To begin the conversion process, the Towers of Hanoi sample application,
described in section 3.2, was coded and compiled in VC++. The resulting

application runs in a console window as shown in Figure 13 below.

Figure 13: The Towers of Hanoi program at run-time.

The Towers of Hanoi application was then reverse engineered using
Rose/UML, which produced a UML model represented in a class diagram shown in
Figure 9. The Towers of Hanoi application contains one class, making it a simple
example of a UML class diagram. Coilsequently,- as a more complex UML
conversion process, the investigation was also occupied with the language migration
for a second application, based on an example of inheritance from a text by Schildt
(2003, p. 280), also described in detail in section 3.2,

40

The class diagram rendered from the reverse engineering process of the

second application, Schildt’s “building inheritance example” (2003, p. 280), is

shown in Figure 14 below.

testSource Inheritance Model Update Ovendew
This diagram was automatically created by Rational Rose Model Update Tool.
Friday, 24 Octoher 2003 1247:12 PM

Building]
&area: int
&rooms : int
&floors : int
%get_areal): int
“get_rooms() : int
®get_floors() : int
456t _areavalue ¢ Int) : void
$set_poms(alue :inty:void
936t floors{wlue : int) : void.
% ™
r"/ \\
a"lr s
! B
l — touss 1 C School
&bedrooms : int - Soffices : int

& bathrooms : int

%get_bedrooms() ; int
get_bathrooms() : int
Oset_bedmoms fvalue ; int) : void
*sat_bathrooms(walue ; int) ; void

&classmoms : int

®gt_offices) : int

“%gat_classmooms(: Int

st ofices(altue : int) : void

$sct_classroomsiwalue ; int): woid -

Figure 14: Inheritance sample application ¢lass diagram.

The next stage of the UML model languagé migration of the Towers of Hanoi

application, to the target language, was to remove the association that objects in the

class diagram have with VC-++. This was achieved by reversing the 'processes

described by Quatrani (2000, p. 211) for assigning a language to Rose/UML model

components,

The selection of the target language, shown in Figure 15 below,

associates the -overall model with the language option selected in the Rose

Component Specification dialog,

41

Component Specification for testSourcelnherita...

testSourcelnheritance

Visual Basic
B

Figure 15: Re-assigning the application to the target language.

Once the components of the source application were associated with the
target language, the JADE root-schema was imported into the model; this is initiated
by selecting the option from the Tools - JADE menu, which opens the JADE
import dialog shown in Figure 16.

JADE Connect

. IC:\JadeB0\system\jade.ini

Figure 16: The JADE connection dialog.

42

r

On completion of the importation process, a new application schema was
added to the model. With this addition, the model contains all the necessary classes
and components needed to generate the shell of a JADE schema file. An example of
the Towers of Hanoi schema file is attached at Appendix B. Before commencement
of the schema generation process, the individual class components must be assigned
to the newly created application schema as shown in Figure 17. The source
application’s original ‘base class’ must then be allocated to a new parent class which,

in this case, is JADE’s fundamental base class of ‘object’.

Libraries
Libraries
Libraries
Librares
Libraries
Libraries

Libraies

Libraties JADE
Libratias JADE
Libraries JADE
TestSowcelnherita JADE

L T ot T g wnmlinherit s . FANC
) . X v .}#;- 21,)

LS o T WA o e B v L SR W W pr ST S1 TR S 7o h

e Ty
drd H_ =

Figure 17: Assigning the class objects to the JADE schema.

Making these assignments alters the model file, thereby creatir_lg the extra
property fields and values such as those shown in Figure 12. These properties are
necessary to create a valid JADE schema file during the éxport process introduced at
the beginning of section 5.1.3. Some of the attribute property values in the model

file require changing to allow the correct assignment to JADE types. Each class in

43

the model is then associated with a map file that contains the details of each item in

the model, via the Class Specification dialog in Figure 18.

Figure 18; Class relations, the parent class and the map file.

Each of the attributes in the model was altered to reflect the equivalent target
language type. For éxample_, objects of type ‘int’ used in the VC++ application had
to be changed to ‘Integer’ for JADE to recognise them. Another necessary alteration
was the removal of the C++ keyword ‘void® from any class methods not returning a
value. There were multiple techniques available for performing such alterations, for
example, a global search and replace provided by some text editors, although the
process lends itself readily to automation, Though rudimentary, this method was
tested during the investigation and was foﬁnd. to be successful and éiglliﬁcantly
quicker than using the specification dialog windows in Rose/UML shown in Figure
19. These dialog windows provide accuracy for the process, as the developer may '

introduce spelling errors during the process. However, if the source application

44

contains a large number of classes, the time required to make manual alterations

would prove costly.

& IonlBold Appllcaho Boolean
o fontN ame Applicatio Sting}30]
& fontSize Aprlicatio Real
& farmMargin Applicatio Integer
o heightSingleLineControl Applicalio Integer
p.] helpFile Applicatio Stiing
P icon : Applicatio Binary : 5
g o mdiCaption Applicatio Sting s 3
nel & mousePointer Applicatio Integer [l
el o name Applicatio Sting[30) i |48
ﬁ-f, & shawBubbleHelp Applicatio Boolean 3l | E
% O userSecurity! evel Agpplicatio Integer 1
g o webMinimumBesponsaTime Applicatio Integer . ’E
HEG offices School int ?i',,-
=23 classrooms = _E

Figure 19: Re-assigning attribute types.

Upon completion of the model manipulation described in this section and in
section 4.2,1.3, the model was ready for the final step in the first phase, to be
exported to JADE.

5.1.4 Export to the target language

From the previous steps, the model included all the necessary properties and
components required by the RoseJADELink add-in to produce a syntactically correct
JADE schema file. The model, shown in Figure 20, was ready for the export process
" to begin. |

45

“RoatSchemaGiobal | RootSchemaSeasion

7, imm RootSchame) .. firom Roat3thema)
A -
lTI‘ Lr-
|
i R —
Chfect ‘ : mad
frmpaotscroms) | | | twm Rootsctems)
S e | I
|

i Bk
LGTestSmehhadlanceSchema l } [STaslSowcehhulmnneSchema J
- - |

Fokoors ; Inteper ; @b aSchool : School
ws hﬂemr i ek —wr i ,___..,_.__.___..,_._.. -
e | ring _ !
~ 'Ja()' ntoger . -
*got_fioors{) : integer
-'sm roomsi} ; Integer
“*s6t_preafvalue : Integer) .
et floom(alua : Inteper) i
5ot rooms{walue : Integer) |

(77 howse . | ; Schod |
?obalhroms Intager 1 ¥oclassmoma ; infteger |
Fabedrooms : Integer e @W__.hww o Mj
%get_bathrooms() : Integer : %get_ctassroomsd): In!auer

i %gat_bathmoms{ualua : Integer) " dnet clzasmoms e : Intager)

i
“gst_badmoms{) ; lteger] . “%pet ofices() : Integer _
[Sset_beswomsiyalun : teger) | $uetoficoatalvo : Mioger)

Fignre 20: The manipulated inheritance model

Initiation of the export process is by selecting the Tools - JADE — Export to
JADE... menu opfion. Selection of this option presents the developer with the JADE
connection dialog, shown as Figure 16, providing the option of naming the output
schema file. The final selection required before the export process begins is that of
the scherna to export. Once selected, the export process begins and a tﬁrget schema
file is generated. Finally, during the export process, the developer is presented with a
report dialog, shown as Figure 21, which displays the progress of the export process
through to it’s completion,

46

Imgort/Export Progress:, . o e Tt e
Ty Thide : ey '
S

ﬁ.‘v

T
1] ety e

oo
L

T

£y

[Pt

SRR

Figure 21: Import/Export progress report dialog,

To test whether the export process had succeeded, the schema was imported
into the JADE development environment, which tests a schema file for errors both
syntactically and semantically. This test showed a flaw in the conversion process,
where the class methods were erroneously declared as external functions under the
externalFunctionDefinitions section of the schema file. The JADE Developer’s
Reference (JADE, 2003, p. 134) describes external functions as those “which are not
necessarily associated with aﬂy specific class”. The externalFunctionDefinitions
section is not normally added to_. the schema file by the JADE development
environment unless the application is to access an external library or dynamic link
library (dl1) file.

The schema file was then compared to the purpose built sc]ien_la file exported
by the RoseJADELink add-in, revealing that the purpose built schema file contained
no such externalFunctionDefinitions secfion. In order to determine the conditions
that may have caused this anome.ly, the schema files were scrutinised node by node.
There are 93 property references made to “VC++', in the converted Rose/UML
ToWers of Hanoi model file. In contrast, there are 97 references made to ‘VC++’, in

an unconverted Rose/UML, reverse engineered C++ Towers of Hanol model file. As

47

an experiment, the converted JADE Towers of Hanoi application was also reverse
engineered. When the resuitant Rose/UML model file was searched for references to
VC++, it was revealed that this new reverse engineered mode! file made 76
references to the legacy VC++ language. A new blank JADE model 'w.as then
created, without aﬁy UML components being added to it, dr any reference made to
any other Ianguagé, other than the defaunlt language of JADE. The blank Rose/UML

“model file was then searched for references to VC++, revealing that a blank model
file, associated with JADE as the default language, also refers to VC++ 76 times.

Of the 17 non-default references made to VC++ in the converted Rose/UML
model file, the first is listed as an attribute property of the “Logical View” in the
Design Object node, shown in Figure 22,

{object Design "Logical View"

is_unit TRUE

is_loaded TRUE

attributes {list Attribute_Set

{object Attribute

tool YC "
name Seripting®
value FRLSE})

Figure 22: The converted model Design Object

The attribute property value in the Design Object in the blank model file
refers to Java, shown in Figure 23, even though the default language in the
Rose/UML development environment is set to JADE.

{object Depign "Logical View"

is_unit TRUE]
is_leoaded TRUE :
attributes (list Attribute Se
{ohject Attribute
tool : "Java"
name "IDE"

value nInternal Editor"))

Figure 23: The blank model Design Object

43

The second and third references to VC++ in the converted model file are
located in the Tower class object definition, shown in Figure 24. Both of these
references to VC++ are made within nodes that are included in neither the Purpose
built nor the new blank model files, |

{object Class "Tower"

attributes {list Attribute Set

‘{cbject Attribute
‘tocl YT+ 41
name "appliedPattern"
value "none")

{object Attribute '
tool) "YCH4N :
name "afxsupportMacro”
value usy

Figure 24: Converted model file Tower object.

The next six references to VC++ in the converted model file are in defining
each of the class methods, an example of which may be seen in Figure 25. ’I'hé {hird
line in Figure 25 begins the object attribute reference to VC++, which concludes at
the sixth line. Each of the class methods defined in the model file contains a similar
reference. |

{object Operation "tower"
attributes (list Attribute Set

{object Attribute
tool WICpn
name "Inline"
value TRUE)

{object Attribute
tool "JADE®
name "Updating"
value TRUE) }

Figure 25: Class method references to VC++.

The next four references were found to define the path to the original reverse

engineered VC++ project and workspace files, each reference is shown in Figure 26.

49

physical_models (list unit_reference list

{object module reegtSourceTowerat "NotAModuleTypa!
"HotAModulePart" .
attributes {ligt Attribute Set
{object Attribute
tool [+ I
name "Proj ect:File"
value

"oy \\convert\\myl:onverter\\testSourceTowerB\\teatsnurce'rowers dap")
{cbject Attribute

tool "IC44n
name . PWorkspaceFile"
value

e \\convert\\myc:onverter\\testScurceTowera\\teatSourceTowers dsw")
{ohject Attribute

tool VO

name "King"

wvalue {"KRindset® 302))
{object Attribute

taool "YCH4

name . "pProjegtMName!

value “testSourceTowers")}

Figure 26: VC++ path reference.

The final four references, displﬁyed in Figure 27, describe propetties in the
model-attribute property section of the model file.

{object Attribute
tool VO
© name "ForwardReferences"

value TRUE)

{object Attribute
tool "VCH4F
name "IndentType"
value - 1)

{chject Attribute
tool "VC4 40
name "NumTabaOrSpacea"
value . 1)

{object Attribute :
tool "YCH4H
name "MaxCharsOfComment Line"
value - 601)}

Figure 27: Extra VC++ node definitions.

All of the code examples in Figure 22 and Figure 24 through to Figure 27
refer to model properties found to occur in the converted model file and not in the
purpose built version of the same application. From the results of the comparison it |
was determined that it was one of these 17 nodes, still refemcing the original
: prograinming language, which was causing the application methods to be considered
as external methods by the RoseJADELink add-in. Removal of the offending

externalFunctionDefinitions section solved the problem,' leaving the static structure

30

conversion process complete and the schema ready to be populated with the

translated algorithmic code.
5.2 Phase 2: The Algorithmic Code.

As described in section 4.2.2, phase 2 involves development of the tools
needed by the conversion application to produce the translated algqﬁtlnnic code for
insertion into the target schema file. To provide the conversion application with the
functionality necessary to translate the algorithmic code from the source language to
| the target language, grammars were required. An additional grammar was also
required by the translation application to validate Rose/UML model files. |

5.2.1 Grammar development

The parser and parse trees used during this investigation’s transformation
process employed grammars developed specifically for high-level to high-level
~ translation described in section 3.2, The development of each of the individual

grammars is described in the following sub-sections.

5.2.1.1 The JADE grammar
A copy of the JADE ng developed during this study, is attached in
Appendix E. ' From the JADE grammar and from the JADE schema file contents
shown in Appendix B, it may be apparent that a JADE application schema file is
“highly structured. This inherent structure eased development of a grammar for JADE

schema files.

The final grammar was tested successfully on several complex JADE
applications, by parsing the schema files for the Erewhon example application found
in the examples subdirectory of the JADE install location, used for demonstration of
‘the JADE develo.pment environment, and the “StoryBook™ application developed for
handicapped children by a fellow student, (Church, 2003).

51

5.2.1.2 The C++ grammar & a subset of C++ grammar

For the C++ component of the investigation, it was determined initially that a
complete language grammar would be required. However, after significant research
and experimentation, it was decided that an existing grammar would be preferred to

building one for a language as complex as C++.

The most comprehensive grammar found and its associated parsing tool were
sourced from NorKen Technologies (NorKen, 2003). At the investigation stage of
using the parser to create the parse tree representing the source applications, it was
realised that the entire C++ language grammar was too complex to source the values
defining the specific nodes in the parse tree accurately and quickly. Consequently,
" the converter application developed to use the parse free information would also be
complex. A subset of the C++ language was then selected for the development of the
final grammar used by the parser and the converter. A segment of a parse tree,

representing the Towers of Hanoi application, is shown in Figure 28.

ProGramwnar - source _towers_of_hanoicpp

=) = class_declaration } lass Tower {
= ident = "Tower" rivate:
3~ = class_contents] int towerNumber:
=D access_specifier = "private” int disks[MAXDISKS]:
£ = class_attributes int numDisks;
5 b variable_declaration int i;
L o type = "int* int temp;
L. 2D ident = "towerNumber” ublic:
-} 2 class_attributes i Tower {int n) {
& = varlable_dedaration ' for (i=0; i<MAXDISKS; i++) (
i @ type= "int" disks[1]=0;
- o ident = "disks”)
5~ = array_dedaration numD isks=0:
B- = varisble towerNumber=n;
L. & ident = "MAXDISKS")
- < class_attributes
B = variable_declaration void addDisks () {
: for (i=0; i<MAXDISKS: i++) (
disks[i] = MAXDISKS - i;

& & class_attributes }

B~ % variable_declaration numD isks=MAXDISKS;
[2D type = "int" : }
Lo D ident = i

- D class_attributes int pop() {

5} = variable_declaration it {numDisks > 0} {

Figure 28: Towers of Hanoi parse tree

52

The subset C++ grémmar was developed by studying the content of the
applications. The same method was used in the development of the JADE grammar,
described in 5.2.1.1, which had earlier proved successful. Using descriptive field
names in the subset of C++ grammar enhanced the useability of the parse tree, by
making recognition of the fields and their values easier than using the full C++
grammar. The C++ grammar p.rovided'by Norken Technologies was detailed and
precise, but fhe complexity of the parse tree nodes made deciphering the values of
the stafements and expressions more difficult than expected. The knowledge gained
from building the TADE grammar assisted the development of both the C++ and

Rose grammars,

52.1.3 The Rose grammar _ _

The Rose grammar was deﬁeloped to validate alterations and their syntactic
correctniess before testing the model in the Rose/UML development environment.
The Rose grammar and parser were tested on more than forty model files, including
the entire MFC model, located in the Rose/UML application template subdirectories.
The gramumar successfully created a parse tree of the MFC model described in

“section 5.1.2. The tree contained more than 750,000 nodes and 255,000 LOC. This
indicated that the correctness and accuracy of the grammar would be sufficient for

validating the converted application model files.

-5,2.2 Schema file extension

As stated in section 4.2.2.3, the JADE schema file exported from Rose/UML
does not contain. all the section headings required by the JADE environment.
Consequently, before adding any operational code to the JADE schema file, it was
necessary for the converter to append the missing headings to the end of the existing _

schema file,

The converter then used the JADE schema parse tree to find thé name of the
application schema, this was then used to create the container for the application
methods. In a VC++ cdnsole application, a “main’ method is required as the entry
point for the application. The ‘main’ method and other methods present in the C++

Towers of Hanoi application in Appendix A are not associated with any specific

53

class in the source application. Conversely, all application methods in JADE must be

contained within either a class or the application schema.

To ovei‘cbme the lack of an application class in the source program, the
converter appends the name of the application schema to the end of the schema file
and then opens a set of brackets, which define the boundaries of the schema’s scope.
The closing bracket is appended once all the relevant method details and converted
algorithmic code have been inserted. The converter performs this functionality
regularly throughout the conversion process. An example of such functionality is

presented in Figure 29 using pseudocode:

For each clasa in the target schema file, append the class name;
Open a bracket on a new line; '
For each method in the class append the method name;
Append an opening brace ocn a new line;
Tranelate and pepulate the methed bedy:
Append a closing brace on a new line;
End For each methed;
Append a closing bracket on a new line;
End For each claes;

Figure 29: Regularly used algorithm example in pseudocode.

~ As the converter reaches the ‘Translate ahd populate the method body’ step,
of Figure 29, it calls the source application parse tree to provide the lines of code for
each of the methods contained by the class or schema application currently being

populated during the translation of the algorithmic code step.

5.2.3 Translation of the algorithmic code

One of the first tasks required by a progrﬁmming-language conversion
project, suggested by Terekhov and Verhoef (2000, p. 106), is a mapping f)_f the
constructs (or data types) between the source and target languages. Accordihg to
Terekhov and Verhoef '(2000, p. 105) many language conversion projects fail
because this issue is not addressed early enough. This task was addressed in section
5.1.3 describing the model manipulation. A diagrammatic representation of the

process based on their suggestion is presented in Figure 30 below.

54

Source application
Language

Target application
Language

[

[- Native construct]

Natiye construct

s

.....

User defined izt
construct

\ . construct

>,

"l Noequivalent

" construct

Figure 30: A mapping of the data types (Terekhov and Verhoef 2000, p. 105) .

A mapping of the types associated with C++ to the recommended equivalent
JADE type is to be found in the JADE Developer’s Reference (JADE, 2003, p. 144).

The mapping takes into account the activation frame size of the native constructs and

recommends an equwalent JADE type, shown in Table 3.

Table 3: C++ to JADE type mapping recommendations (JADE, 2003, p. 144)

C++data type Actwatmn frame Recommended JADE
SO snze/bytes . S type R
4 .I.n.t.f.;ger —
4 Integer
Short 4 Integer
Char 4 Character
Float 4 Real[4]
Double 8 Real[8]
long double 10 ~ Real[10]

The translation of the types was achieved in section 5.1.3 during the static
stfucnue transformation, with the type translation already performed satisfactorily,
the conversion application concentrated on the translation of entire siatements and

expressions returned from the parse tree.

5.2.3.1 A parser

The converter applicatioﬁ, which uses the ProGrammar parser described in
section 3.2, was deveioped using VC++.NET and runs in a console environment.
The converter aécesses the parse trees thrbu'gh. the ProGrammar Application
Programmer Interface (API) which provides an “abstract interface to the run-time
parse engine” (NorKen, 2003, p. 7). The API provides support for several
programming langhages, with C-H- having been chosen as it is the most familiar for

the author,

bool Converter::setup_targetparaer(;{
J/LE unable to create parser interface, ougput a megsage
//and end the cperation
if (pTargetParser == 0){
/{ Initialiaation error
cout << “\nTarget parser not initialised.* <« endl;
return falea;

)

f/Utherwiee, prepare the parser by providing the grammar to be used
if {pTargetParder->SetGrammar (target_grammar)){
/{5end the ocutput file to the parder
pTargetParper-»SetInputFilename (target_oucput_file);
/ibo the job on the target file .
pTargetFarger-»Parge{] ;

1f (pTargetParaer-»GetNumErrore () = 0}{
//deal with any errora
cout << "\nHumber of errors: * << pTargetParser-»>GetNumBrrors() << endl;

//output a meamage for each error

for{int i = 1; i <= pTargetPareer->GetMumErrore(); L++){
pGString errcr_meonage;
long error_code;

//get the error code and a deacription of the error
error_code = pTargetParser-»GetErrorCode(i};
error_meepage = DTargetPareer- aGebEr:nrDeucrlpt1on(errnr _vode) ;

‘Cout << "Brror: ™ <« error_code << ' " << error_meseage << endl;

) '
return false;

Jelae{ '

cout << *\nTargetParser -is setup and ready* << endl;

return true;

}else{//The grammar was not set properly!
coyt << "\nUnable to load TargetParger grammar® <« endl;
recurn falge;

}//eetup_taretParser

Figuré 31: Setup of a target file parser

56

The method shown as Figure 31 defines the process used to initialise a parser
object in readiness for use, displays errors on the console as they occur. The code
also shows thc method of directing the parser to the input stream and the grammar
used to define it. Each of these method calls is associating a file name with a stream
in the parse engine, using the setlnputFilename() and setGrammar() methods

respectively.

Once instantiated and ready for use, the converter uses the parser to search
the input file for -.ilgorithmic code contained in each of the methods within a class.
Figure 32 shows a sample of code from a converter method that searches for a
specific class mcthod contalmng algonthmlc code. If the name of the current method
matches the name of the method being searched within the target class, then the
value representing the code contained in that node is assigned to the
current_statement_list. The current statement list is then rctumcct to the calling

method for analysis and conversion.

current_statement_list = Mo statements avallable...\n%;

dof) : :
//Pind the next sccurence of the SearchID pattern.
current_method node_ID = pSourceParser->PindNext (SearchiD);

if (current_method node_iD » @) {//found a methed
//Get the method name for a comparlaon with the 'current_method_name'
long method_nameill = pSeurceParser-s>Pind{*methcd_name®, current “method _node_ID);
B35tring this _method_name = pSourceParser-»GetValue (methcd nu-nem) ;

if(this_methad_name wa current_method_name) (.
//Access the Statements withinh the curreant_methed_name Erom hare
//current_atatement_list = "Some statement details to go here.,.\n’;

Clung Bl = pSourceParser->Gel:Nexl:sih11ngtmethod_namem'};
{fcout < "A\nY¥ <¢ pSourceParser-stGecvalue (al) << *\an;
long 82 = pSourceParaer-»GetRextSibling (sl);

current statement_llat = pSourcefaraer-»GetValue(sl};
cout << "\n* <« pSourceParaer->GetValue{s2} << "\n";

Jelse cout << "\nNo methods..." << endi;
//Repeat until no more methods -
Jwhile{current_method_node ID > 0);

- Figure 32: Searching a methed for _algorithmic code

Results of the search for the algonthmnc code contamed in the adlesks()
method, the contents returned in the current statcment list ob]ect are shown in

Figure 33.

37

for (i=0; i<MAXDISKS: i+4+) |
diske{i}] = MAXDISKS - i;
Y

numDiaks=MAXDISKS ;

Figure 33: Contents of current_statement_list.

The content of the sample source file’s algorithmic code is assigned to
curre:it_statement_'list object in C+ form, one LOC at a time. Both the
current_statement _list and’ the - node id are then passed to the converter’s
'get__statcment__equiv_alent(lohg node_id, PGString current_statement_list) method,

which determines whether each LOC is either a statement or an expression.

‘Each node in the parse tree is defined by a node lahel, which.may be seen in
Figure 34 wﬁere, in the left winddw,- the highlighted assignment_statement node
repré:sénts the LOC in the codé window on the right. Use of the parse iree to return.
the node label matched to th_é node id parameter passed to the
get_statement_equivalent(long node id, PGString current statement list) method,
allows the éonvencr to concentrate on generating the. equival'ent JADE statement or

expression,

58

suutee_towers

£~ = method_hame
{i o ident = "addDisks" void addDisks()

tor (i=0:; i<MAZDISKS: i++) {

i @ parameters = ()"
£} & code_block ,
= @ nes_of_code
| B stotement
B = for_stabement
B @ for_kst

)
numDisks=MAXDISKS:

R

}

int pop() (
if (numDisks > 0) {
temp = disks[numDisks-1]:
)
disks[numDishe-1}=0;
numDisks--;
return temp:

}

void push(int i) (i3
dishs[numDisks] = i: v&"?s
numDisks++; he

"

}

void print() {
cout << towerNumber << “:* :

for (i=0: 1<MAXDISKS: -i++) (5

cout << disks[i] << " ": Vxﬁ:
) o
cout << " " << numDisks << endl: %4

}

static void test() {

Figure 34: Towers of Hanoi addDisks() parse tree

Some statements, for example the one highlighted in the right side window in
Figure 34, need very little alteration to transform them into the JADE equivalent.
Statements assigning a value to a variable, even an array variable like that shown
Figure 34, differ from source to target language only in the assignment symbol itself.
Where in C++ the assignment uses an ‘equals’ symbol (=), in JADE the ‘colon —
equals’ (:=) is used. The assignment statement translation is performed one character
at a time. When the ‘=" symbol is detected in an assignment statement, the
‘putback()’ function is used and a colon is inserted; then the rest of the LOC is
processed. This process is not affected by the detection of the C++ test for equality
symbol, i.e. “==". The grammar and parser recognise the “= =" pattern as part of an
expression rather than as an assignment statement. Once the conversion of the
assignment statement highlighted in Figure 34 is complete, the transformed
assignment statement is written to the target method inside the for_statement within

the JADE schema file.

Translation of a ‘for’ loop statement from the sample application source code,
is performed in a similar fashion. If the statement type query for a line of code

node returns a value equal to ‘for statement’, each component of that line of code is

59

dealt with in a series of steps. Figure 34 shows the for_statement as a grandchild
node of the ‘lines_of code’ node in the left window. The for_statement node has
intum two children of its own. These are shown to be the for_list “and
for_cdde_block nbde‘s. The for list nodé value represents the first line of the

for_statement shown below as Figure 35.

for (im0; L1<MAXDISKS; i++) {

Figure 35: for_list node value.

The translation process converts the Figure 35 LOC to the JADE equivalent,
shown as Figure 36, by dealirig-with'each componenf in the for_statement’s child

nodes or *sub-tree’.

foreach i in 0 to MAXDISKS do

Figure 36: JADE equivalent to Figure 35,

- A template writing method is used to produce the translated JADE equivalent
in Figﬁre 36 by usihg the parameters sent to it by the parser. When a “for loop’ is
recognised by the converter, the component parts of the for. list are extracted and
sent as parameters to the ggt_néw,_for_list method, shown in Figure 37, which then

returns the re-formatted statement to the calling converter method.

60

atring Statement::get_new_for list (PGString counter, PGString start_val,
PGString end_val) {

string new_ for list = "foreach ";

new_for_liat.append{counter) ;

new_for_list.append(" in ");

new_ for_ _list.append{staxt_val};

new_for_list.append{" to ");

new_for, " 1ipt.append{end_val);

new_for list.append(” do"};

raturn nei«_for_list :

//Note: string’s STL function append has been used for clarity,
//rather than its ‘3’ operator.

Figure 37: Converté Figure 35 to Figure 36.

The converter uses a similar method to that in Figure 37 to transform
incrementing or deci‘ementing statenients during a translation, When. an
inc_statement or a dec_statement is encountered during a conversion, the identifier
value is sént as a parameter to the 'get_new_ilnb;_s'tatement(PGString id) or
get_héw__dec_.statement(BGString id) method re_s'pe(-:tively. Figure 38 shoﬁs the

incremental statement conversion method,

Btring Statement::get_new_inc_statement {EGString id) {
string new_inc statement = id;
new_inc_| statement.append{* := U};
new_inc_statement .append {id);
new_inc_statement.append (" + 1"};

return new_inc atatement,
}//Returns id := 4id + 1

Figure 38: Method of inc_statement Eoversion.

Although simple in' their coding, these methods provide the necessary
translation to show proof of concept for the application translated in this
investigation. Once all the algorithmic code had been converted and deposited in the

target schema file, the analysis phase was initiated.

61

5.3 Phase 3: The Analysis and Findings

Recall from chapter 4 that, in order to achieve the goals of the investigation, .
it was necessary to deconstruct the processes involved in this study into 3 phases. To

recapitulate:

‘o Phase 1 involved the selection and reverse engineering of the source
applications, followed by the manipulation of the model properties and
finally the export process to produce a valid target language version of the

‘model;

e Phase 2 involved the develbpment of language grammars used by the
parser to produce'parse trEes that represent the subject input contents,
This phase also involved the development of an application capable of
extending the JADE schema file, produced by the RoseJADELink add-in

_ during the reverse and forward enginecrihg and subsequent export |
processes. The parse wees built here provide input details used by the
_converter to populate the methods with the translated algorithmic code.

s Phase 3 Having investigated the processes necessary to Ij'rovide a static
structure schema file of. the sample programs, and having built the
application capable of translating the algorithmic code, the investigation

proceeded to the collection and correlation of data for evaluation.

'53.1 Data Collection and Analysis

The converted schemas were tested in the JADE environment to detei'm_ine
. the usability of the converted code. When the sample inheritance schema was run,
the code was unsuccessful due to th.g missing ‘create’ ,-statemehts required to
instantiate a class object. Consequently, as may be seen immédiately after the
| ‘begin’ claﬁse in Figure 39, tﬁe ‘create’ .statements were added to the ‘main’ methoc_l
as part of the automatic- conversion process. This was nécessary as C++ does not
require the expliéit use of a create statement after the declaration of the object.
Therefore, as the statement does not exist in the sdurce_ application, it is hot

translatable yet must be included in the process.

62

: rob chandler : singleijs;erb)» »[Tés(SmifceInheril:anceSchema' Class

@ Object
& Application . 1S 4 ' maEin
L@ Roctschemalpp - - et RootSchemadpp™
T ourceinherts BT T e 4 plication?t**
Buildling % =**Ohjectts
@ House {
School

fpaint)
hrars

aHouse : House:

aSchool ': School:

jpegin

create aHouse transient; //Create statements added during the
create aSchool transient; //conversion

aHouse. set._bathroonms(3):

aHouse.set bedrooms(S);

aHouse.set_rooms(15):

aHouse,set_ floors(2):

aHouse.set_area(500):

aSchool.set classrooms(200);
aSchool.set_offices(10):
aSchool.set_area(25000):;
aSchool.set floors(3):
aSchool.set_rooms(250);

write "The house has " &« aHouse.get bathrooms().String & " bathrooms”;
write "It also has “ & aHouse.get_bedrooms().String & " bedrooms”:
write "It'zs area covers “ & aHouse.get_area().String & " unitz of area™;
write "Over " & aHouse.get floors().String & " floors";

write "The schosl haz " & aSchool.get_rooms().String & ' rooms ";
write "covering " & aSchool.get floors{).String & " floors, with a total ";
write "uf " & aSchool.get_area().String & " units of area.";

end;

Figure 39: A converted schema imported into JADE.

The inclusion of the ‘create’ statements in the main method of both the
applications translated during the investigation produced a complete sample
inheritance schema, which was parsed successfully using the JADE grammar and
one of which was operable from within the JADE environment. Invoking the
converted application from within the JADE environment initiates the ‘JADE
Interpreter Output Viewer’, as shown in Figure 40, which presents the application

output.

63

Jade Interpreter Outpit Viewsr,

o %

Figure 40: The building inheritance outpnt as depicted in Figure 39

The output presented in Figure 40 is the successful culmination of using the
static structure abstraction and transliteration method to translate Schildt’s (2003)
building inheritance application from VC++ to JADE. Use of the tools .de_veloped
throughout the investigation, in conjunction with the existing parsel: application
obtained from Norken Technologies, allowed the abstraction and transliteration

method to be realised and tested.

64

5.4 Findings

5.4.1 Findings from the building inheritance application conversion.

The following findings relate specifically to the 'conve_rsion of the sample
inheritance application taken from Schildt’s (2003, p. 280) text:

Table 4: building inheritance conversion data

dtem T ... Description

Original Loc 71L0OC

Converted Loc 292 LOC

Manual Loc - ZERO

Automatic_Loc 292 LOC

Time_Automatic Loc 1 second

Time Manual Loc 20 minutes

Conversion_Time 20 minutes 1 second

Environment © o Windows XP
¢ 512MB RAM
o 20GHz

5.4.2 Findings from the Towers of Hanoi conversion.

The following findings are specific to the conversion of the Towers of Hanoi

application taken from Roeder’s (2003) website:

Table 5: Towers of Hanoi conversion data

dtem: - T e i Deserdption. el TS

Original Loc 109 LOC

Converted Loc 268 LOC

Manual Loc 19

Automatic Loc 245 LOC

Time Automatic Loc¢ 1 second

Time Manual Loc 15 minutes

Conversion_Time 15 minutes 1 second

Environment - e Windows XP
¢ 512MBRAM
» 2.0GHz

Once the testing and analysis steps were concluded, the findings were

processed and associated with the research questions.

65

5.5 Discussion

Manual intervention to the Towers of Hanoi schema was requir-:ﬂ to enable
the schema to compile in the JADE environment, Although the schema , .wed
without any syntactic errors, the JADE environment found semantic érrors that
required debugging of the source.co de. Solutions to the errors found may have been
included in the conversion process if time had not been a limiting factor. For
exémple, JADE expects class methods that make assignments to have the method
option ‘updating’ included in the fnet_hod signature. To include the functionality
necessary fo implement adding the ‘updating’ option to each assigning method,
would have required significant alteration to the converter logic along with an
increase in investigation time. However, a manual insertion using text editor
facilities achieved a satisfactory result. Such insertions are consistent and lend

themselves to automation and were not regarded as significant.

During the JADE environment testing stage another error was discovered,
relating to the use of ‘for-loops’ and array objects. The conversion of Figure 35 to
‘Figure 36 results in a semantically and syntactically correct statement. However the
logic behind the use of the statement to instantiate an array object is incorrect. An
example of the completed conversion of a for-loop assigning values to the disks array
is shown in Figure 41. Running the code with Figure 41 in the schema results in an
- ‘array index out of bounds’ error, due to the array index being set to zero. This is not
allowed in JADE (JADE online help, 2001) as all JADE indices must be greater than
zero. A difference between the original C++ code and the translated version is the

maximum range to which each of the ‘for-loops’ will run.

In Figure 41, the converted for-loop would run from ‘i’ beginning at zero and
running to MAXDISKS (which has been instantiated to 4), a total of 5 iterations.
Whereas the original C++ for-loop, shown in Figure 42, would run from i°, again at
zero, whilst LESS THAN MAXDISKS, a total of 4 Iiterations.beforc exiting the loop.

66

foreach i in 0 to MAXDISKS do
diskp[i] := MAXDISKS - i ;
endforeach;

Figure 41: Converted array assigning ‘for loop®.

for (int i=0; i<MAXDISKS; i++) {
disgks[i] = MAXDISKS - i;
) .

Figure 42: The original C- ‘for loop®.

Automating the instantiation of the arrays to one instead of zero, may have
been achievable during the conversion; however, the process may have corrupted the
assigrment translation prbcess by adding one to every assignment statement
encountered, even in those statements not related to a for—loop.. | Again, such
adjustment lends itself readily to automation but with time restraints was not

regarded as significant.

5.5.1 The building inheritance conversion details

- In the building inheritance translation, there was a significant rise in the
number of LOC. This increase from 71 LOC to 292 LOC equals an increase of 221
1OC, which equates to an increase of over 311%. This is entirely due to the

necessary inclusion of the rootSchema and is of no consequence to the executable,

Manual intervention was not required iﬁ thé building inheritance conversion
to realise a useable schema once the process had been tested in the JADE
environment, This resulted in 100% of the converted schema being transiated
automaﬁéally. However, this figure still required time to modify the UML ﬁlodel in
readiness for export to JADE and the modifications took a total of 20 minutes.
Again, this might be automateci with scripting language in Rose and does not detract

from the overall automation of the process.

67

5.5.2 The Towers of Hanoi (Roeder, 20003) conversion details

As in section 5.5.1, an increase in the number of LOC from the original
source ai)plication, 109 LOC, to the convért_ed JADE equivalent application, 268
LOC, realised an increase of more than 145% in the number of LOC. The number of
LOC requiring h:anual intervention, before, during or aﬁe_r the conversion, amounted

to 19. The LOC requiring manual intervention, related to modification of:
. | array assignments;
o to not include zero;
) ins'tantiatiqn of obj ects to be used to as_sigh a value to an array;
o again zero not _éllowed;

. method options in.those methods which update the value held by a

variable;
o append the option ‘updating’ to a method signature; and
» method signatures to include parameter object accessibility;

o for example: the ‘io’ in Figure 43,

push{i : Integer iao) updating;

~ Figure 43: Method signature alteration

The manual intervention required to modify the converted Towers of Hanoi
schema _amounted to 19 LOC, which represents a total of 92.9% of the converfed
schema being translated automatically. As mentioned in section 5.5.1, time was also
requiréd to modify the UML model before the conversion in preparﬁtion for the
export of the model to-a JADE schema. In the case of the Towers of Hanoi
application, 15 minutes was reQuired for the lilodel to be altered in readiness for the
export process to begin, As before, all manual intervention noted above lends itself

readily to consistent automation and is of little negative significance to the study.

68

5.6 Evidence Found To Support the Research Questions

Section 5.6 restates and addresses each of the research sub-questions in turn,

followed by the main research question.

5.6.1 Sub-question 1

Which properties, within a Rational Rose model file, are associated with the

reverse engineered application’s programming language?

A summary list of the RoserML model file properties associated with the

reverse engineered Towers of Hanoi application’s programming language follows:
1. Logical View scripting field;
2. Tower class AppliedPattern field,
3. AfxSupportMacro field;
4. tower’s inline field;
5. addDisks’ inline field,
6. pop’é inline field;
7. push’s inline field;
8. print’s infine field;
9. test’s inline field;
10. physical_mddel’s'unit reference list fields;
a. ProjectFile,
b. WorkspaceFile,
c. Kind, _and
d. ProjectName,
11. ForwardReferences field;

12. IndemType field,

69

13. NumTabsOrSpaces field; and

14. MaxCiiarsOfCommeanine field.

- Apart from the default language prol.).erty nodes found in all model files, these -
seventeen properties are associated with the reverse engineered Tower of Hanoj |
application’s programming '1anguage. In the case of the building inheritance
application model files, the same nodes were repeated in relation to the source
Ia:iguage, however, there were more references in number. The number of
references to the source language in this converted model file numbered 29. This
was due to the e_xtfa classes and the number of methods per class associated with the
building inheritance application. Nine of the fields were repeated as in the Towers of
- Hanoi application. Fields 2 and 3 were repeated for each of the classes in the
building inheritance application model file, an ‘inline’ field was repeated for each
method in the classes included in the second application. Leaving fields 1 and 10 a,

b, c,d, 11 through 14 repeated for the building inheritance application’s model file.

5.6.2 Sub-question 2

Which components of a JADE schema file, produced by the
RoseJADELink add-in, may be used to construct the static framework in

preparation for code migration?

In answer to sub-question 2, all the components produced by the
RoseJADELink add-in were included in the working schema, except for the
externalFunctionDefinitions component discussed in detail in section 5.1.4. The

components that were included in the converted schema file were:
1. schemaDefinitions;
2. constantDéﬁnitions;
3. typeHeaders;
‘4. typeDefinitions;

5. databaseDefinitions;

70

6. schemaViewDefinitions;
7. _remapTableDefinitions;
- 8. externalFunctionSources; and

9. typeSources.

.5.6.3 Sub-question 3

Whas improvement in the ratio of automatically to manually translated
LOC in a legacy system may be achieved using the abstraction and re-

implementation approach?

_ An answer to this question depends on the complexity of the applicaiion
being converted, as shown by the results from each of the sample application
conversions. The building inheritance application (Schildt, 2003, p. 280) provided
100% automatic conversion of the algorithmic code, without requiring manual
intervention. This fizure does not take into account the model manipulation
mentioned in section 5.5.1 regarding the Rose/UML model, as this is in relation to

“the static structure abstraction and conversion.

The Towers of Hanoi achieved an improvement in the ratio of automatically
to manually translated LOC of 2.9%, using the abstraction and re-implementation
approach. An improvement of between 2.9% and 12.9% over the automatic
translation results reported by Harsu (2000) and Terekhov (2001) respectively. This
improvement translates into significant savings when applied to the figures described
in section 2.2. On Terekhov’s (2001) 1,500,000 LOC translation project, |
approximately 43,500 extra LOC may have been automaticaily converted, a saving

of approximately $US348, 000.

However, it is worth stating that the manual intervention noted in 5.5.2 lends

itself readily to automation that may enable a projected 100% automated conversion.

71

5.6.4 The main question

If separation of static and algorithmic components of code for forward
engineering of a legacy system is achieved, then may a reduction of manual

intervention be realised in automated code conversion?

Evidence produced during this investigation proves that a reduction of
manual i.ntervention would be realised when translating applications of similar
complexity using the abstraction and reimplementation approach.' In the translation
of legacy-system applications with an MCC rating of 3, a reduction of 2.9% in the
number of LOC requiring manual interven_tion' would be realised. With little

modification, zero manual intervention may be achievable.

5.7_ Chapter Summary

Details of the phases outlined in chapter 4 were presented. Implefnentation 6f
the steps incorporating the phases of the investigation combined the needs outlined in
the introduction and background, with the foundations provided by the studies in the
literature review to develop the concepts presented in the project proposal. The
chapter also stated and discussed the findings of this study, by showing excerpts of
source and target model schemas and comparing and contrasting their contents to
validate the findings. The study’s findings have then been used to provide answers

to the research questions as they were presented in section 2.4.

72

6 Conclusions

This investigation has detailed the phases involved in developing a
programming language converter capable of using the static structure abstraction and
transliteration method to translate a VC++ application to JADE. The concept
presented by Waters in 1988 as more of a promise than a reality, is now achievable

using today’s tools and methods.

One of the objecﬁves of this project has been to provide evidence that
translating a legacy application via the static structure abstraction and transliteration
method would result in a reduction of the amount of manual intervention required.
This objective has been realised as shown by the ﬁndiflgs in section 54. In
describing the significance of this study, in section. 2.2, the costs involved in
translating manually from a legacy system’s programming language were discussed
briefly. Insection 2.3, it was suggested that using the static structure abstraction and
transliteration method to automate the conversion process would yield significant
cost savings over the manual translation alternative. In answering the research
question§ in sections 2.4 and 2.4.1, the cost savings suggested by the author in

section 5.6.3 are shown to be realistic and achievable.

From using the Towers of Hanoi sample application as a test case, the study’s
findings showed that an application with the same MCC rating would realise a
reduction in manual intervention of 2.9% of the total LOC in the original application.
In fact, cost savings would be realised if a reduction in manual intervention of this
magnitude were applied to the best efforts of both Terekhov (2001) and
Kontogiannis et al., (1998). Automation of the consistant alterations made manually

may realise 100% automated code conversion.

As the study has been implemented, however, calculations from section 5.6.3

project a cost saving of approximately $US348,000 would be realised over

73

Terekhov’s (2001) best conversion efforts. A reduction in the number of LOC
requiring manual intervention in the Kontogiannis et al., (1998) conversion would
equate to approximately 8,700 LOC. Using the lower figure of $US 8.00 per LOC
(Cowley, 2003) for manual transation, a cost saving of around $US 69,600 would be

realised.

~ From the analysis of the data collected and correlated throughout the
investigation, each of the research questions has been answered successfully. The
goals of the prbject ‘have been _ﬁccomplish_ed and the findings presented and
discussed. Those findings revealed by this investigation advocate that significant
savings in legacy-system translation costs are achievable using the static structure

abstraction and reimplementation approach.

The test applications selected for translation were of lévels of complexity
representative of those that might be found in well-crafted application code and were
-not custom built for this study. These factors add to the veracity of the findings

presented in the study.

- Future studies include extending the translation mechanism to embrace the
full C++ language and of incorporating OO source language similar to C+ ¢.g, Java,
to extend evolution of legacy system modernisation while preserving valuable

original system code aspects.

74

APPENDICES

~ Appendix A: Sample application ~ Towers of Hanoi.

The Towers of Hanoi sample' application was used in _this investigation,
courtesy of Roeder (2003), as it was found on his website, Code comments have

‘neither been added nor removed; Roeder’s (2003) source code is presented below.

#include <iostreams
using namespace std;

const int MAXDISKS=4;

c¢lass Tower |
private:
int towerNumber;
int diaks[MAXDISKS] ;
int numbisks;
int I;
int temp;
public:
Tower (int n} {
for {i=0; 1<MAXDISKS; i++) {
dipke [i]1=0;

numbiske=0;
towerNumber=n;

void addniakﬁt} {
for (i=0; i MAXDISKS; i++) {
diska(i} = MAXDISKS - I;

numDisks=MAXDISKS;

int pop{) {
: if (oumbisks > 0) {
temp = disks[numbDiskse-1];

diske [numDisks-1]=0;
numbrigka--;
return temp;

}

veid push{int i) {
diska[numDisks) = I;
numDieke++;

void priat{) {
couk <« towerNumber << ":* ;
for (i=0; i<MAXDISKS; i++) {
cout << disks[i] << * *;

. coRt << * ™ < numbDiska << endl;

}

static void test{) {
Tower all);
a.print () ;
a.addDisks () ;

75

a.print();
cout << "pop ™ << a.popl) << endl;
a.print{);
a.push(99);
a.print();
}
}s

void move{Tower &from, Tower &to_, Tower &use, int depth){
if (depth==1) {
from.print{);
to_.print{);
use.print{);
COULt <& *—urm—-=-o * <o endl; .

if (depth > 0) {
move {from, use, to_, depth-1);
to_.push{from.pop{));
move (use, to_, from, depth-1);

}

if {@epth==1) {
from.print{) ;
to_.print{};
use.print{);

vold hanoi{) {

Tower afl);
Tower b{2};
Tower c{3};

a.addbiske () ;

a.print () ;
b.print{};
c.print(};

a.priat(};
b.print (};
e.print{};

}

void main{) {
Tower::test();
CcOUE ¢ *====m===" «< endl;
hanoi{};

76

Appendix B: The generated JADE Towers of Hanoi schema file.

jadeVersionNumber *6.0.08*;
schemalefinition
ConvertedTowersSample subschemaOf RootSchema partiallDefiniticn, modelSchema
constantDefinitions
‘categoryDefinition ConvertedTOHmodified
documentationText
Thls is the Application subclass.®
MAXDISKS : Integexr = 4;°
categoryDefinition Tower :
typeHeaders
ConvertedTOlmedified subclassof RootSchemalpp;
GConvertedTOHmodified pubclassOf RootSchemaGlobal;
SconvertedTOHmodified subclaes0Of RootSchemaSesgsion;
Tower subclasaOf Object transient;
typeDefinitions _
ConvertedTOHmodified completeDefinition
{ . .
documentationText
“This ig the Application subclasa.*™
constantDefiniticone
MAXDISKS : Integer = 4;
]adEMethOdDEflnitions
move |
from : Tower io;
to_ : Tower io;
uge : Tower io;
depth : Integer} updating;
hanoi {} updating;
main(} updating;
}
GConvertedTOHmodified completebefinition
{
documentationText
“This is the Global subclass.”
] .
SConvertedTOHwodified completeDefiniticn

documentationText

“This is the WebSession subclasa.®
] .
Tower completeDefinition

attrzbuteﬂefinltlona
towerNumber: Integer protected;

disks: Integerhrray protected;

nunbDi.gks : Integer protected;

i: Integer protected;

temp: Integer protected;
JadeMethodDef1n1tlons .

tower(n : Integer) updating;
addDlsks () updating;
pep{} : Integer updating;
push({r : Integer ic) updating;
print{} updating;
test{} updating;
!
ConvertedTOHmodified completePefiniticn
(.
documentationText
“This is the Application subclass.™
constantDefinitions
MAXDISKS : Integer = 4;
jadeMethodDefinitions
move(_
from : Tower io;
te. : Tower io;
uge : Tower io;)
depth : Integer} updating;
hanoi () updating;

maini{} updating;
)
Tower completeDefinition

{

JadeMethodDefinitions
tower{n : Integer} updating;
adapiska(} updating;
pop({) : Integer updating;
pushiIl : Integer io) updating;
print{} updating;
test {) updating;

)

databasepefinitions

ConvertedTowersSampleDb

{

databaseFileDetinitions

) *ConvertedTowersSample”;

defaultFileDefinition *ConvertedToweraSample”;

clamsaMapDefinitionsa

: ConvertedTOHmodified in *_userguix;
ConvertedTQHmodified in *ConvertedToweraSample”;
GConvertedTOHmodified in “ConvertedTowersSample”;
SConvertedTOHmodified in *ConvertedTowersSample”;

78

Appendix C: Rational Rose model file grammar.

/ii*l‘tUﬁI‘I‘i*'i*t*t*i‘*l'i*i’*iiiil‘*‘.lit**iii‘i*‘**ii*ik**il-****i\!*ii*

+*This grammar has been developed to parse UML model files, specifically
*Rational Rose .mdl files.

*It has been tested on over 40 sample modela created using
*Rose Enterprise Edition Version: 2002.05.20

*and pardes all of them succeasfully.

*It has not been teated on Rose models created with

*earlier or later versicons of Rakional modelling tools.

* .

*The gramvar has been developed using the NorKen Technologies
»+proGramwar* tool and their Grammar Definition Language
+(GDL} Available at www.programmar.com

L

*AUTH: Rob Chandler
*DATE: 20030521
*VERSION: 1.0.2.

ii‘*I‘!‘R*I“i*i‘ﬂl‘iiil‘*l‘****ii**ﬁll‘*****t*t*it*i**I‘i‘“*i‘iiﬁit*****l‘*“*i*,

grammar Rose <Bpace=" \n\r\t*,
matchease,
hideliterals,
showdelimiters,
version="1.0.2">»

achemas := [{object}]; //Depcribes the model itself

PR LR S At A S L R tlITERALS AND TERMINALS #kwkhikshndkaihdnsnn +f

literal ::= boolean literal | numeric_litera) | string_literal ;

boolean literal ::= “TRUE” | “FALSE" ; .

numeric_literal <TERMINAL, TOKEN=NULL»::= [sign] numeric [{({":" | *.”}
numeric}l ;

sign <TERMINAL, BACKTRACKs::= (*+* | "-*}

numexic = ' [0-9]+" :
string literal <TERMINAL, SPACE=""> :1:m “\7" % {u\nr} wiaw

obj ::= “cbject” ; // term used often

value ::= atValue

boclean_literal //TRUE / FALSE
value_set J/1111,111)
nuneric_literal //int or float
string literal //Rny double quote delimeted string
sub property //3 literal followed by a value
comment_line " f/comment or documentation begins a line with
the | : : i :
°{* Text *)* . //type of comment
"ugesi\Y . //irregular option
vextends* //ditto
"Lagt namel\” J/more of the pame
atvalue ::= “@&* literal ;
value_sget ::= *{* {numerie literal, *,*} *}" ;
sub_property ::= *(* literal value "}"
Text ::= value_type comment line ;
value_type ::= “value cardinality* | “value Text” ;
comment_line ::= {*|* stuff } | literal ; _
gtuff ::a *{comment_end) ;//regular expression
comment_end ::= #BOL ("\32* | ™\t"] ; © //Beginning Of Line followed by
whitespace . .

f! LIAR SRR RS EL SR L Ad) OBJECT FOMT LR R TR LR L EYS AL R LSS T */

Object ::= “{* obj Object_Name [{vaiﬁe}] [{Object_Properties}] nyn :

/i‘ LA R A ELTEE R ESERE LSS} GEJEC’TS NAMES ISR A ER R RETE R LR ELES */

79

Object Mame ::= “action”
*ActionTime”
“ActivityDiagram®
r*Activitystate”
“AckivityStateView”
“AssocAttachView”
*Asgociation®
"AgspciationViewlew”
“AttachView”
“Attribute”
*CategoryView”
“ClagsAttribute”
“Clasg_Category”
"Clase®”
“Class_Utility”
“"ClassDiagram”
*ClasaView”
*Compartment”
“Connection_Relationghip”
"ConnectionView"
"DataFlowView"
*Decision”
“Decivionview!
“defaults”
*Dependency Relationship”
"DEE ignl\l

*Device"
"DeviceView”

“Event”

Yexternal doc”
“Focus_Of Control”
“Font”

“ImportView"
“Inheritance_Relationship”
"InheritTreeViewr
“Inhericview®
"Instantiated_Clazs”
“Ingtantiation_Relationship”
*IngtantiateView”
“InteractionDiagram®
“InterfaceView”
“Intervesasview”
“InterChjview’
“"ItemLabel”

*Label”

“Link"
“LinkSelfvieu*
“"LinkView”
"Mechanism®
“Megaage”

"MegsView"
“Module_Diagram”
*module”

"Module”

"Madule Visibility Relatbicmship®
*Modview"

"ModvVisvView”

"NoteView"
*ObjectDiagram”

Ll Object'n

*ObjectView”

“Operation®

“Parameter" .
“Parameterized_Class
“Partition®

*Petal”
"Process_Diagram’
“Procesa”

"Proreaseg”

“Processor”
"BrocessorView”
"Properties”

“Realize Relationship®
"RealizevView®

“Role”

“RolaView"

“SzgLabel”

“SelfMessView"
“SelfTransView"
"sendEvent®
*State_Diagram®
"State_ Machine
“State

"State Transition*
*StateView"
"“SubSystem®
“SubSyaview"
“Hwimlane”
"SynchronizationState
“gynchronizationView”
“Tier Diagram”
“TierView"
“Transview"

“UpeCage" .
"UseCasaDiagram”
"UselaseView”
*JseaView"
“Uges_Helationship”
*Yisibility Relationship”

/I‘ LZZE R R RIS R R SR E L ER E N OEJECT pRoﬁER’I‘IES LA AR R AL EEIE LR R ELEERS}
Object_rroperties ::= Object_Key [value | Object | Object List) ;

object_Key ::= “abstract”
“action*

“actions”
*ActionTime”
“anchor”
vanchor loc”
*annotat ien”
*AggociationClassg”
“attributes”
“autoRegize”
“hold"
“hottomMargin”
*cardinality”
“characteristics”
*gharSec”

"wlass®
*class_attributes”
"elient”
*client_cardinality”
*rlipIconlabels”
“collaborators®

*colox”
“compartment®
“comparcementItema”
“concurrency”
*condition”
“gonnect ions”
~ponst”
“Constraints”
"Containment®
“oreation”
"greationdbj”
“DataFlowyiew"
"defaultFont”
*defaults”
*default_color”
“derived”

Mdirii
*dogumentaticn®
*dravwSupnlier”
“REvent”
“exceptions”.
“exportControl”
vexternal _doca”
grternal doc_path”
“external doc_url”
“face”

v"file name”

“Fill color”

‘Focug_Entry”
*Focus_Of_Control”
"Focus_src*®

~font”

"freguency”
*friend”

“glchal®

rgridx

*gridy~

“height”

*hidden”

“icon” .
*icon_height"
vicon_gtyle”
*icon_width”
vicon_y_otfset”
“IncludeAttribute”
*IncludeCperation”
vinitve
vingtantiavion_relationship”
“InterfbjView" i
“is_aggregate”
“is_loaded”
“is_navigable”
*is_principal”
*ia_unit®
*italics”

*itema~

“justify”

ukevsu

label

language
“leftMargin”
"line_colow”
*line_style”
“location”
"logical_models~
~logical_presentations”
*max_height”
*max_width
"mechanism_vef”
"messages”
*MessView"
*module”

"multi”

Ypame”

*Rested”
"nestedClasses”
*nlineg”
“nonclass”
*nonclasaname®
*notation”
“object_are"
“Operation”
“operatcicns”
“opExportControl”
“ordinal® i
*orientation”
*origin”
"origin_attachment”
“origin_x"
rorigin_v~
*pageDverlap”
"parameters”
“Parent_View"
*partitions”

" path"

spetbist”
“persistence”
~phyaical_models"
*physical_ presentations”
*priority” :
Tprocesp_structure”
“processeg”
"FrocsHDevn”
"propertins*
*protocol”

“guid”

*quidu®

“rank"
*realized_interfaces”
“result” . I
“rightMargin®

“roles*

roleview list
"root_category”
“root_subaystem*
*root_usecase_package”
“acheduling”
“sendEvent”

"gequence”
*showClansOfCbject”)
Y ShowCompartmentStereotypas”
"showMessagelum”
“ShowOperationSignatuxe®
rgiver

*anapToGrid”
*statediagram”
“statediagrama”
"statemachine”
“atates”

“gtatic*

“"stereotype”

“acrike”

"subsysten®
~subgbjects”
"guperclassen”
"supplier”

"supplier cardinaliky”
“supplier_is_device*
“gupplier_is_spec*
“supplier_is_subsyatem”
“Suppresshttribute”
"Suppresadperakt ion*
*oyne_is_horiceontale
"gynchronization”
“terminus®

“terminal _attachment”
“title”

“tool”

“topMargin®
“transitions*

“type®

“uig”

“underline”
"uped_nodes”

“valug"

“yersion”

“verticeg"

“virtyal”

mvrisible categories”
vigible_modulesn
*when”

“width*

~_writtent

vu_offset”

“y_coord”

“v_offpet*

“zacm®

!i L R T R R R N R R R R R gy LIS‘I‘ DEFINITIONS (AR A XA R EEE A AR LR EENNRENERRYN]

o

. Object_Liast ::m “{* “list® [Cbject_List_Typel (({Object | Object_Key value |
value})l] *)-; .

Object_List_Type ::= “action_list*
. | ~Artribute Set~
| "class_atrribure list~
| ~Compartment”
| “connecticn_list®
| *dependency_iist”
| “diagram_item_list~

83

.

"external_doc_list”

“inheritance_relaticnship_list-

link_liat
“Messagep”
"neetedClasses”
*Operaticons”®
“Parametars”
“"Partitions"”

“Points”

“processes”
"realize_rel list~
“role liat”
“RoleViews”
*StateDiagrams”
“States”
“transition_list®
Yunit_reference_list®
*uses_relationship lisc~

"vipibility_relationship_list~

84

Appendix D: A subset of C++ grammar,

//MyCPPsuhset is a subset of the C++ language, fecussing specifically on the .
//atatements contained within the methods of the Towers of Hanei application
//used by this investigation.

//pPermiseion for the use or alteration of this grammar, in full or in part
//is hereby given. :

/ /CRENTED BY: Rob Chandler

/ JCREATED ON: 20031023
grammar myCPP <HIDELITERALS,)
HIDEREPEATERS,
SPRCE="‘\n\r\t\32",
(NOBACKTRACK>

towers_of_hanol ::= [{file_contents}];

file contente ::= {pre_processor_statements) [namespace_declaraticn)
[{global_variable_declarations}) [{class_declaration))
[{application_methods}]

1

pre_processor_statements ::e pp_symbol *include* pp object ;

pp_symbeol ::e= “H°

pp_cbject ::= {open_delimeter pp_ suhject close_delimeter} I agtring_ literal :
open_delimeter ;:= "<” ;

close_delimeter ::= ">*;

pp_pBubject ::a *stdie.h” | "iostream* ;

namespace_gdeclaration ::= "using nameapace std;" ;

global_variable declarations ::=m
{type_preflx] variable declaration initializer ";*;
type_prefix :i:= “const” ;

variable_declaration ::=. type ident {array_declaration) ;
type ;:= *int® ;

array_declaration ::« *\{" {expression | variable) *\]* ;
inivializer ::= "=~ (numeric | ident) ;

variable ::= ident [array_declaration];

claps_declaration ::= -class" ident (base _class)*{* {class_contenta}l “}:« ;
base clasa ::= *:* access_specifier ident;)
class_contents ::= access_sapecifier *:~ [{class_attributes}] [{clasa_method}]

accegs_ppecifier ::a "public” | “protected* | “private ;
class_attributes ::= variable_declaration =;* ;
class_method ::a cperation ;

application_methods ::= operaticm ;

operation i:m [method type] [return_type] method name parameters cnde _block
method_type ::= "static” ; .

return_type ::= "void= | type ;

method_name ::= ident;

parameters ::= ~(" [parameter_list] ")- ;

parameter_list ::= parameter [{",* parameter]] ;

parameter ::= {type | *Tower-) {address delimeter] ident ;

address_delimeter ::= “&" ;

code_block :i= ={~ [{lines _of_code}] -}- ;

linen_of_code ::« statement
| expression
| method _call [*:7]
| output_call
| object_initializer

object initializer ::= ident [class_specifier] {method_call | ident) =;-;
clasa_specifier ::a "::"-;

expression ::= variable cperator (variable | numeric);

85

operator ::=s *-*
wew
-

I
I L)
| va=
method_call ::= (acoped_name | method_name} “{* [value_liat])~ ;
scoped_name ::= ident *." ident :
value_list ::= value {{*,* value}] ;
value ::= expression
| methoed_call
| variable
| numeric
| string_literal

output_call ::» "cout” [{output]}] [flush} ;" ;
output ::« output_operators {methed_call

| variable

| string_literal

| numeric)

output_operators ::m <<’
f£lush ::= cutput_cperators “endl" ;

statement ::= asslgnment_statement
| for_statement
| if_statement
| inc_statement
| dec_statement
| return_statement
r

agsignment_statement ::= variable “=- [expression | variable | numeric}*;*;

for_atétement 11m “for"* (" for_liat "} for_code_block;
for list ::= apsignment_statement expreaaion ";* inc_statement ;
for_code_block ::= code_block ;

if statement ::= *if- “{* expression “)1- if_code_block :
if_code block ::= code_block ;

inc_sta-ement ::= variable "+~ (*;"];
dec_statement ::= variable *-= [";"];
return_rtatement ::= “return” {variable | numeric} *;*;

atring_literal <TERMINAL,
SPACE=""> r:im .
{ vext_segment, [whitegpace]l} ;

text segment ::w _
[*L*] *** text_elem [more_text_elems] “\"- ;

te#t_elem tim
AR RS

more_text elema ::s
'\, Text_elem [more_text_elems] ;

ident <TERMIMAL> ::= :
identtfier (? YVALUE |::= reserved word; |:

identifier ::a
‘[a-zA-2_] [a-zA-20-9_5)* ;

reserved_word ::=

*_asm" | "elae- | ~operator-

| -aute | *enum” { *typedef*" .

| “bres .- | *extern® | =privacer ~union”

| "case" | ~far=) *_ far-

| *_bhuge* | “__huge®

| "protecteds | "unsigned- : }

| ~catch- | *float” | "publiec* !
*virtual~] .

| "edeclr | ~forr | “register® | “void*

86

| "char~ | “frienar | "revurn” |

volatile
class” | "gote” | "short | "using”
conat” | ~if | “signed~ | while~
“continue* | *inline* | *sizeof~
“namespace”
*defaulc” | *int* | *static" .] “typename*
*delete” | *long” { "struct”

¥ uwidof~
*do” | *near” | "switch” o] oty
_ try” | “throw '
“double” | *new~ | "templace* | “finally®
__Einally | “except* | _ except” | *__leave*
*__ints® | *_ int1s* | *__iwmcaz~ | *_intea4"
*_declspec” | ~__declspec” | *__baned”
*_ _forceinline~
“_wirtual inheritance” | *__multiple_ inheritance” |

»__single_inheritancer
’ | “explicit”
| “_export~ | *__ewporc”:
// call modifiers .)
] *_cdeel” | *_cdecl™ | *__fastcall”
| *_stdeall* | “__stdcall” | *_ ayseall” { *_ cldcall”
| *__unaligned*| *pascal” | *_pascal® | *__pascal*

87

Appendix E: The JADE language grammar

/,tt"‘tttit‘ilttit"‘**lt"t‘itt‘QQ'QQiti*ifiiltﬁttt!ttt#**tliOkil'it'.ii

ff-t*“*l!iiii‘*I'!*il'Qt"*ﬂﬂ*ttitﬁtiﬁ**'-iiii'i‘tt'i*itii‘i‘lit‘*l.i*ﬂll

/{Jade Grammar versiocn 1.5
//Date created 20030520
//Rob Chandler

//Modified: 20031005: R Chandler, To include changes to JADE schema files

//targeting external functions sections.
//ini'itl'tlitiiltiti.ﬂ'-ii‘lt'tt'iilititttlttttittiiiti*tii..*tttilt-i*ii

/f*iltli.tihttti‘i.ltiiﬁliiliii-iitttIt'*iittttittiliﬁiitilti‘tiiititiii*i

grammar Jade <SPACE=*)32\t\n\r",

{

HOBACKTRACK=

//SCHEMA STRUCTURE

achema ;:o

[versionSection)
[achemaDefinitionSection)
fglobalCeonstantSection)
[localeSection]
[translatableStxingSection]
[levaleFormatSection)
[librariessection)
[externalFunctionSection]
[eypeHeaderSection]
[typeMembershipSection}
[typeDefinitionSection)
{extKeyDefinitionSection]
[memKeyDefinitionSection]
{inverseDefinitionyect ion)
[databaseDefinitionSectionl]
[dbServerSection}
[echemaViewSection]
laxpoaedListSection]
[remapTableSection]
[external FunctionSourceSection}
[typeSourceSection]

versionSection ::= .
(*jadeVernionbumber® | *jadePatchRelease”} stringLiteral ;-

i*

v/

stringLiteral <TERMINAL, SPACE=""> iz "\~ s{*\n»] w\#w,

stringLiteral <TERMINAL, SPACE=""> ::= { textSegment, [whitespacel} ;
textSegment ::= [*L*] ™*" textElement [textElements] "\"*
textElements ::= '\\.’ textElement [textElements] ;

textEiement t:= *{C[VAA])

whitespace ::e ' [\32\t\n\rl+' ;

schemaDefinitjionSection ::=
gehemaDefinition

achemaName ["subschemadf* (schemaName | "mull~“}) schemaCptionList

achemaName ;:= identifier ;
identifier <TERMINAL» ::=
ident (? HVALUE |::= reservedwWord;);

ident ::=
‘la-zA-Z_] [a-ZA-20-9_8)+' ;

reservediord ::=

" [textSecticn) ;

ahortTransaction” | “and | “any”

| *as* | "app" | “artributeDefinitions~

| “begin- | “heginload” | “beginLock"

| “begintransaction” | "beginTransientTransaction”

| *Binary* | rBoolean- | *break" | ~call”

| “categoryDefinition” | “Character”

| "classMapbeEinitions® | ~_cloneot"

| *cowmirTransaction” | “commitTransientTransaction”

88

*_exposedMethodDefinitions”

!

“constantDefinitions® | *constanta”

*gontinue | “create” | “currentSchema”
“currentSession® | “databaseDefinitions”
"databaseFileDefinitions” | “Date~
*dbferverDefinitions” | *@efaultFileDefinition®
*Deecimal® | *delete” | *div~ | “do~ :
documentationText” | relae |. "elseif”
*_encryptedSource® | *_endEncryptedSource”

“end” | *endforeach” | *endif- | “endLoad"
“endbeock” | “endwhile” | “epilog”
"eventMethodMappings® | “exception*

*_exposedConatantbDefinitions”

*_exposedPropertyDefinitions” |

“externalFunctLonDeﬁinltlons"

"schemaViewDefinitions”

“externalFunctionSources” | *externalKeyDefinitions*

*externalMethodbefinitions” | "externalMethodSourcea”
“false” { “foreach" | *global® | “if+ | *in”
Integer” | “inverseDefinitions | “is"

*jadeMethodDef initions” | *jadeMetheodSources”
“jadePatchRelease” | *jadevVersionNumber*
*libraryDefinitions” | *localepefinitions”
localeFormatDefinitions® | “memberKeyDefinitons
"membershipDefinitiona” | *MemoryAddress®

*method~ | *methedImplementations” | *mod*

*node” | *not” | "null~ | "ef* | “on®

"or” | “Point” | rparentgf® | “peerofr
»primitive~ | *process* | *raise” "~ | mread~
“Real* | *referenceDefinitione*
*_remapTahlePefinitions” | “return® | "reversed”
*rootSchema” | *schemabefinitien” |

"gelf” | rsetModifiedTimestamp” | *step”

String® | “subclassOf | “subschemaOf”

*gystem | *terminace” | “then® ’ *Time"
“rTimeStamp” | *to” | *translatableStringDefinitiocns”
“Lrue” | “tvpebefinitions” | "typeHeaders”
“typeSources” | rvars” | "where” | ~while*
write | “xore

schemaOptionList ::= schewaoption ({*,” schemaCption}] ;

L schemaOption ::= completenessOption | ('patchversien” “=~
numericLiteral} | ([“patchVeraioningEnabled"” “=“ booleanLiteral) | schema_type;
completenessOption ::= “completebefinitvion” |}
spartialDefipnition” ;
numericliteral <TERMINAL, TOKEN=NULL>::= /*{Slgn}*f numeric
({{*:* | “."} numeric}} ;
aign ::= {"+” | ") ¢
numerie¢ ::= *[0-9]+*
booleanLiteral ::= “true” | “falae"

schema_type ::= *modelSchema”;

textSection ::= “"documenkationText” [textBlock]

textBlock ::
textBlockDelimeter ;

= textBlockDelimeter *ttextBlockDellmeter)

textBlockDelimeter ::i= *™* ;

globalConstantSection :1:=
rconstantDefinitions”
[{categoryDefinition | cons

tantneflnition}l :

categoryDefinition ::= “rategeryDefinition® identifier [{constantDefinition}]

i

conatExpresaicn [conetantCp

constantDefinition <TERMINAL, TOKEN=NULL>::= identifier [":* COnaﬁantType] hE

tionkist] *;” [“documentationText~ textBlock] timestamp] ;

constantType ::= fixedSizeType | “String” ["[* identifier | literal
1 1 | “Binary” { *[* identifier | literal "1" | | “Decimal” decimalDescriptor ;
. fixedSizeType ::= “"Integer” | "Character" | “Boolean® | "Real”
| *Date” | *Time* | “TimeStamp” | “Point” ;
literal ::= "null" | formLiteral] numericL1tera1 ;

characterlLiteral | booleanl

constExpress

iteral | stringbiteral ;

formtiteral ::= “'¢ *t"’") wra .

characterLiteral ::e | L") *\'\\2{[0-9A-Za-z]+|.}\'"’
ion ::= [“#~] expression ;

constantOptionList ::= constantOption {{~,* constantOpticn}] E
constantOption ::= "subschemaHidden” ; i

89

timestamp <BACKTRACK»>::= “a
[alphaliteral] [numeric] dateTime~;" ;

etModifiedTimeStamp” alphaLiteral

alphaLiteral ::= characterLiteral | stringLiteral ;
dateTime ::= numeriec [{(":* | *.*) numeric}] ;

localeSection ::=
"localeDefinitiong"
[{numericLiteral [stringliterall ["_clone®

translatableStringSection ::=
*translatablestringDefinitions”
[{localeTranslatablestrings}] ;
localeTranelatablestrings
{translatableStringDefinition ":*} ")* ;

£+ numericlLiteral] *;* });

1 1= numericliteral fstringhiteral] wiw

translatableStringDefinition ::= identifier [~({*

[identifierLiat] "}*] =" (transStringExp
(transStringExpression] }) ;
identifiexLi
transStringE
expressionList ;

expresaion}];

ression | (stringLiteral

Bt ::m identifier [{*,¢ identifier}] ;
wxpression ::= (*&” identifier) |

expresglionlist ::= expreasion [{[",” | *:*}

expression ::= [sign] (literal |

methodOrFunctionCall {{callArgument}]] [typ

eExpreasion] ;

typeExpresaion ::= arithmeticExpresaicn |

booleanExpression | relaticonExpression ;

arithmeticExpressicn ::= arithmeticOperator

[expresaicn] ;

arithmeticOperator ::= »4n | “-n.] Ssr | =/ |
"mod® | *div | "™ | & : o
C ‘ booleanExXpression ::= booleanOperator
[expreasion] ;

bacleanOperator ::= “and” | “or* | *not” |
“Ror”;]

relationExpression ::= relationOperator
[expression] ; :

relationOperator ::= “=" | “«»" | *<* | *»¢ |
cezn | Vet i S
localeFormatSection ::=

*localeFormatDefinitions”
({localeFormatDefinition}] ;

localeFormatDefinition ::= identifier *:* clasgsName "l" valueLiat “}a »;~ ;

claseName ::= modifiedIdent
modifiedldentifier ::
valueList ::= literal {*,~

" librariesSection ::=
"libraryDefinitions®
[“abibrary"] /+{{identifier}l=/ ;

externalFunctionSection ::=
*external FunctionDefinitions”
[{externalFunctionHeader [“documentationTe

1fier ;
= identifier [{*.* Identifler}],
literal) ;

X" textBlock] [timeatamp] }]

externalFunctionHeader ::= functionMName ~({* [functionParamDeclList] =)*

[functicnReturnType]l externallocation [fun
functionName ::= modifiedId

ctionoptionList] “;7 ;
entifier ;

functionParambeclList ::= functionParambeclGroup [{~;"

functlonParamDeclsroup}] ;

functionParamDeclGroup <TERMINAL, TOKEN=NULL>: 1= identifierList

wad externalType (paramOption] ;

externalType 1= *Integer* | “Character” | “"Boolean” |
*Real” [llteral] | *point” | “String” [literal]l | "Binmary* [literal])
“IntegerArray”;
paramOption ::= “"constant” | “input~” | “cutput* |~ io”
functicnReturnType <TERMINAL, TOKEN=NULL=»::= ":” externalType ;
exterpnallocation ::= *is” [({identifier | alphakLiteral)] “in®
identifier ;

functionOptionList ::= func
functionoption ::=
*presentationClientExecution” | “applicati

typeHeaderseckion ::=
~typeHeadexrs”
[{typeHeader}] ;

tionOption [{°,” functionoption}]l ;
‘subschemaHidden” |
cnServerExecution” ;

90

typeHeader ::= typelame “subclassOf” ({className | *null®)] “primitive")
[EypeOptionList]” ;" ;
typeName ::= className | primitiveType ;

: primitiveType ::= fixedSizeType | “any” | “Binary" | "Boolean*
| "Character” | "Date’ | *Decimal® | “Integer* | *Point” | *Real” | "String” | “Time~
| *TimesStamp* ;)
' typeGptiontiast ::= typeOption [{",” typeCption}] ;

typeCption ::= typeOptionNumeric | typeOptionString ;
o typeOptionNumeric ::= (*highestSubld® “=* .
numericLiteral) | t“number" "=¢ numericLiteral) | {*maxBlockSize" "=" numericLiteral)
typeOptionString ::= “abstract” | “transient” |
"protected” | “subscliemaHidden” | *duplicatesAllowed" ;

typeMembershipsSection ::w=
"membershipbDefinitiona”
[{membershipbefinition}] ;
membershipDefinition ::= claseName "of” typeSpecifier *:~ ;
typeSpecifier ::= dimensionedType | primitiveType | clasaNama ;
dimensionedType ::= (“String* ~[* literal “]") | fixedSizetype
| {“B;nary" *[* literal *]*) | .{"Decimal” decimalDescriptor) | “Any* ;
decimalPescripter ::= *[" constExpression [*,"
conBtExpresainn]"]" :

typebPefinitionSection ::=
“typeDefinitions” .
[{typeDefinition}] ; -
typeDefinition ::s
typeName [completenessOpticn] ~{* {textSectlon] [eimestamp])
{constantsSection] [attributesSection] [referencesSection] {jadeMethodpSecticon] [e
xternalMethedsSection) [eventMethodsSection])" ;
congtantgSection ::= “constantDefinitions® =
[{constantDefinition}] ; ' :
attributesSection ::= "attributeDefinitionu*
[{attributebefinition)] ; o
attributeDefinition ::= identifier :* typeSpecifier
[attributeCptionList] *;~ ["documentationText” textBlock] [timestamp] ;
) : attributecptionLiat ::= attributeOption [{~,~
attributeoption}] ; . :
attrlhuteOPtion ti=
attr;buteOptlonNumerzc | attributeOptionString ;
- atbributeOptionNumeric ::=-
{“nubId" et nﬁmerichiteral) { {"number* “=* numericLiteral) ;

. attributeOptionsString ;:=
"readonly* | “protectsd” | “virtual” | “required” | “subschemaHidden” |
implicitInverse | “implicitMemberInverse® | *explicitinverse* |
“explicitEmbeddedInverse” | “transientToPersistentAllowed”
referencesSéctlbn 't 1= *referenceDefinitions”
[{referencebefinition}] ; S
: referenceDefinition ::= identifier @:* typeSpeciE1er
[referenceOptionList]“;” [*documentationText* textBlock] [timestamp] F

referenceOptionList ::= referenceCption|{*,~*
. referenceOption}] ;
referenceOption ::=
: referenceoptlonNumeric | referencecptionsString ;
referenceCptionNumeric
<TOKEN=NULL>::= {"subId* *=* numericLiteral} | ("number* “=* numericLiteral) ;
’ i ' referenceOptionString ::=
“readonly” | “protected” | "virtual” | “required” | “pubschemakidden* |
“implicitInverse” | “implicitMemberInverse* | “explicitInverse* |
"explicitEmbeddedInverse” | “transientToPersiatentAllowed” ;
: jadeMethodsSection ::= “jadeMethodDefinitions”
[{jadeMetheddeader [“documentationText” textBlock] (timestampl}) ;
) JadeMethodHeader ::= methodName
{ [parameterList] ”}* [returnType] [methodoptionhist]”;~ ;
methodName ::= [“app® | “create” | “delete” |
“self"][ldentlfler][{“ * Identifier}]; :
parameterList ::= parameter [{";~ parameter}] ;
: parameter <TERMINAL, TOKEN=NULL>::= identifier
[*,~ identifier] °:” typeName [paramOption] ;

) returnType <TERMINAL, TOKENcNULL»::= “:"
typeName ;
methodOptionlist ::= methodoption [{",~
methodoption}] ;

: wethodOption ::= methodOptionString |
{*number* =" numericLiteral) ; :

N

methodOptionsString ::=

"protected” | “updating® | “abstract® | “mapping® | “subschemaHidden”
*clientExecution” | "serverExecution” | “lockReceiver;

externalMethodsSection ::= *externalMethodDefinitions*
[{externalMethodHeader [“documentationText” textBlock] [timestampl}l

externalMethedHeader ::= methedName *(* [parameterLiat)

ny [returnType] [externalLocation] [methedOpticnList] *;~ '

eventMethedsSection ::= “eventMethodMarpings” [{identifier "=*
identifier “of typeName =;"}]

extKeyDefinitionSection ::=
*extKeyDefinitions”
_[{claasExterualKeys}] ;
. ‘classExternalKeys ::= clagsName [completenessOption] *{*
[{externalkeyDefinition}) *)*
externalKeybDefinition <TERMINAL, TOKEN=NULL> : : = identifier “:”
typeSpecifier [keyCpticnbist] (sortOrder]”;” ;
keyOptionList ::= keyoptlen [{*," keyCption}] ;
keyoption ::s “descending” | ‘caseInsensitiver ;
sortOrder ::= numericLiteral ;

memKeyDefinitionSection ::=
*memberkeyDefinitionas”

[{classMemberKeyal}] ; .
classMemberKeys ::= claasName [completeneasoption] wi [{memherxeyneflnition}]
oyu
merberKeyDefinition ::= keyPath [keyOptionList]) [sortOrder]”

keypath <TERHINAL TCKEN=NULL>::= identifjer [{".* Identlfier}]

inverseDefinitionSecticon ::=
“inverseDefinitions~
[{invermeDefinition}] ;
invergseDefinition ::= referenceSpecifier referenceHierarchy referenceSpecifier
f{booleanCperator referenceSpecifier}] “;* ;-
referenceSpecifier ::= 1dent1f1er sof* clagaName [inverseQOption) ;

inverseOption ::= "manual” | “automatic* | “manuvalAutomatic” ;
referenceHierarchy ::= *peerOf” | "parentof”;
databaseDefinitionSection ::=
"databaseDefinitions~”
[{databageDefinition}] ;
databageDefinition ::= identifier *{* [databaseFileaSection]

ldefaultFileSection] [classMapsSection] *}”
databageFilegSection ::= “databaseFileDefinitiong*
{darabaserileDefinition} _
databaseFileDefinition ::= alphabiteral [~in* alphalLiteral}
[databaseFileoption]~;* ;
databaseFileOption ::= “number” *“=" numericLiteral ;
defaultFileSection ::= “defaultFileDefinition” alphalLiteral “;» ;
classMapsSection ::= “classMapDefinitiona* {className *in” (identifier
i alphaliteral) [classMapOption]”; ") o
classMapDption ::= “allInstances’ | “subobjectInstances" |
“extend” ; .

dbServerSecticn ::=
"dhServerDefinitions®
{{[identifier] “in* jdentifier [dbServerOptionList] *;*}1 ;
dbServerOptionlist ::= dbServerOption {",” dbServerOptiom)
dbServerOption ::= "remoteLocatien’ | “tepipConnection* ;

schemaViewSection ::=
*echemaViewDefinitions”
{{schemaviewDefinition}} ;
schemaViewDefinition ::= identifier *{" {className *“;*} *)*

exposedbListSection ::=

*_exposedListDefinitiona”

[{exposedliathefinition}] ;

exposedlistDefinition ::~ identifier (exposedListOptionList] *({~

{expogedClassbefinition) *}» ; ' ' :

exposedLiatOptionLiat ::= exposedbistOption {*,” exposedlistoption} ;
exposedListoption ::= “version” “=" numericLiteral |

“pricrVersion® “=" numericliteral | “registryld” "=" atringLiteral ;
exposedClasgDefinition ::= claseName [exposedClassOptionList] *({~

[exposedConstantaSection] {exposedPropertiesSection] [exposedMethodaSection] "}

92

exposedClassOpcionList ::= exposedClassOption {*,*
exposedClagsOption}
exposedClagsOption ::o "autocAdded” ;
exposedConstantsSection ::= "_exposedConstantDefinitions
{exposedconstantDefinition}
exposedConstantDefinition ::= identifier *;»
exposedpropertleaSection 1= ¥_exposedPropertyDefinitiong
{exposedPropertyDefinltlon}
exposedPropertyDefinition ::= identifier ";” ;
exposedMethodsSection ::= *_exposedMethodbDefinitions”
{exposedMethodDefinition}
i exposedMethedDefinition ::= methodName *;* :

remapTableSection ::=
_remapTableDefinitions
[{remapTableDefinition}] ;
remapTableDefinition ::= identifier [remapTahleOptzonLiBt] WY
[{xemapFileDefinition}] "1* ;
remapTableOptionList ::= remapTableoptiem{{™," remapTablertlcn}] ;
remapTableQption ::= “description” *=* stringlLiteral ;
remapFlleDeflnitzon ::= alphaLiteral *is® alphaLiterxal [“in”
alphaliteral]l *:" ; : o

externalFunctionSourceSection ::e

*externalFunctionSources”

[{functionName *{" externalFunctionSource *}*}! ; -
externalFunctionSource ::= externalFunctionfeader ;

typeSourceSection ::=
“typeSourcea”
[{typeSource}] ;
typeSource ::= typeName "({* [{JadeMethodSuurcesSection}]
[{externalMethodSourcesSection}] *)* ;
jadeMethodSourceasection ::= “jadeMethodSources” [{methodName *{*
({comment)] jadeMethodSource [{cowment}]®}*}1 ;
. jadeMethodSource ::= JadeMethodHeader [[10ca1ConstsSect10n]
[localVarsSection] *begin” [{inatructiong}) [*epilog” instructions] "end* »;"] ;
localConatsSection ::= “conastants”
(loralConstDefinition} ;-
localronstDefinition ::= identifier [v:”
constantType] "=* conetExpression ";* | comment; .
localVaraSection ::= *vars” [{localVarsDefinitisn}) ;
localvarsDefinition ::= identifierList ":~
typeSpecifier “;” | comment; : i
instructions.::= comment | statementlist |
methodOrFunctioncall [{callArgument}] [*;*) ; :
: comment <TERMINAL»::a */%¢ ¥ (mw/v) owjv |
commentCpp ; .
comment:Cpp ::= /7 ' [*\n\rl+' ;
) J/xwwkensennigtatementList defined
belowgkrhtrkexchhkrxkin ks
: _ methodOrFunctionCall ::= methodName [*("
({argbist}])"} | functioncall ; i

laxg] ;
argument ::=

["exception“][prlmltlveiype][methodOrFunctionCall][llteral][expreBsion] [{"&"
(methodOrFunctionCall | literall}] {{callArgument}] ;

argLiat <TOKEN=NULL»::= [*,"] arg [*,~]

arg ::= argument | expression ;

callArgument ::=

{[*.*] methodName {*{“ [argLiat] "“}”]} :
' functionCall ::= "pall” identifier ;

exterpalMethodSourcesSection ::= “externalMethodScurces* [{methodName

*{» externalMethodSource®}"}] ;
externalMethodSource ::= extermalMethodfeader;

//i*iiii*tti‘iiii‘*itil‘*lI‘**I’**I‘**i*“it***i*ii**ﬁit**ti********l‘**i**ii*****“t**
//**i**l‘*iit*tti‘*ii*i*ii**‘tiiii***i*i*********it****i**iiiiil‘t*i**wl‘il‘**** Wk
If4) STATEMENT DEFINITIONS

f!**ii_'i**it*ti*l‘“**i"‘!*“‘**““*ii‘i'****li**i*t**ii*i‘*****l‘ﬁ******il‘****“l“i***“t**
'//**iiiiii*t*****iiiI‘*I‘I‘**!‘**\‘**t*iii*ii**i**iii**iti‘i‘*’*il‘i****i‘i*"*****i**i

atatementList ::= statement 4;"[{statement “;"}] :

93

statement ::= terminateStatement | transactionStatement | icStatement |
ifStatement | whileStatement | foreachStatement | returnStatement | createStatement |
deleteStatement | breakOrContinueStatement | onExceptionStatement |
raiseExceptionStatement | asaignmentStatement ;

terminateStatement ::= “terminate” ; o
transactionStatement ::= “beginTransaction® | “commitTransaction®
*abortTransaction” | "beginTransientTransaction” | "commitTranaientTransaction" |
*beginload” | “emdLoad” | *beginlock” | “erdLock” ;
ioStatement ::=» ("read"” | “write") {arraylist] expresalon :
) breakQrContinueStatement ::= (“break” | “continue”) [identifier] ;-
_ . returnstatement ::= “return” [booleanLiteral |
methodOrFunctionCall {{argument}]] ; ' '
deleteStatement ::= “delete” [methodwame] ([“{" *)*] ;
whileStatement ::= “while* cendition [{booleanﬂperator condition}] "do*
[*:* identifier] [{lnatrnctlons}] *endwhile* [identifier] ;
: condition :.= lhe [relationOperator rhs] ;
lhs ::= modifledldentzfzer[{callnrgument}][arrayliat]

titeral | methodOr“unctionCall[{callArgument}],
rhe ::= *null" | expression | medifiedIdentifier
[methodOrFunctionCalll | methodOrFunctionCall;

) foreachStatement ::= “foreach” identifier “in* [{callArgument}l [*to*
expresgion] ["step” expreasion] ["reversed*] ["where” expression) “do* [*:”
identifier] [{instructions}] *endforeach” [identifier] ;

createStatement ::= *create* identifier [*aB” expreasion]
{vreateOpticn] ; .
createQption ::= "persistent* | "transient” | “sharedTransient”
onExceptionstatement ::= “on® expression “do* expression
[onExceptionOption | methodOrFunctionCall] ;
' onExceptionOption ::= "global® ;
raiseExceptionStatement ::= “raise” expression (raiseExceptionOption)

rajseExceptionOption :;= “internal* | "precondition” ;
ifStatement ::= "if* conditicn [{booleanQperator condition}] “then”
[{instructiona}] [{"eleseif* condition [{booleanOperator condition}] “then~
[{instructions}i]! (“else” [{imstructicns}]l “endif* ;
assignmentStatement ::= [arrayliat] “:=" [booleanOperator]
jarraylist] [{argument}] [literall;
: arrayList ::= [methodName) [{"". '™ modifiedIdentifier |
expression *\1* }] [*." modifiedIdentifier];

7

04

Appendix F: Samplé application — Building Inheritance

_Thé following source code haé been extracted from Schildt’s‘(2003, p- 280)
élassi'c text “C+ The Complete Reference”, with only minor modifications. The
modifications are made for brevity only, for example: class set and get methods were
incorporated into the class declaration. The modifications did not include code
commenting, as the Iapplication attribute names were considered self-explanatory as

supplied.

#include <instreams
using namespace gtd;

class Building {
private:
int area;
int rooms;
int floors;
public:
int get_area(){ return area; }
int get_rooms () { return roocms; }
int get_flooxs () { return floors; }
void set_area{int value){ area = value; }
void set_roomsiint value){ rooms = value; }
void set_fleoors(int value)|{ flooxs = value; }

}i

claes Honse : public Building {
private:
int bedrooms;
. int bathrooms;
public:
int get_bedrooms {}{ return bedrooma; }
int get_bathrooms(}{ return bathrooms; }
void set_bedrocme [int value) { bedrooms = value; }
void set bathrcoma{int value){ bathrocme = value; }

}:

c¢lass School : public Building {
private:
e int offices;
int clasarooms;
public:
int get_offices(}{ return cffices; }
int get classroomsz(} { return classrooms; }
void set_offices{int value){ offices = value;]
void set_classrooms{int value}{ classrooms = value; }

ay
int main()

House aHouse;
School aSchool;

aHouse . set_bathrooms (3) ;
aHouse.set_bedrocms (5) ;
aHouse.get_rooms (12) ;

. aHouse.set_floors(3);
aHouse ,set_area {800) ;

aSchool.set_classroomd (200} ;
aSchool.set_offices{10};
aschool.set_area {25000} ;

95

endl ;

agchocl.

aSchool

cout
cout
cout
cout

" cout

cout

cout

L1
o
L4
L1

e
s

(14

aet_floors (3);

.set_xooms (250) ;

*The house has * << aHouse.get_bathroows{) << ™ bathrooms” <« endl;
*It alse has * << aHouse.get_hedrooma(} << * bedrooms~ << endl;

*It’a area covers " << aHouse.get_area() << * units of area” <« endl;
*Over ™ << aHouse.get_floors() << * floors* << endl;

*The pchool has * << aSchocl.get_rooms{) << * rooms * << endl;
*covering * << aschool.get_floors() << * flocors, with a total * <«

“of ™ << aSchool.get_area{) << * units of area.\n" << endl;

return 0;

96

Appendix G: The generated JADE Building Inheritance schema file.

jadeVersicnumber *6.0.087;
schemaDefinition)
TestSourcelnheritanceSchema subschemaOf ReootSchema partialDefinition, modelSchema;
constantDefiniticna .
categoryDefinition Building
categoryDefinition House
categoryDefinition School
typeHeaders
Bullding subclassOf Object transient;
School subclass0f Building transient;
Houge guhelassCf Building transient;
TestScurceInheritanceSchema suhclassCf RootSchemalpp:
GtestSourceInheritanceSchema subclasa0f RooctSchemaGlobal;
StestSourcelnheritanceSchema pubclasaQf RootSchemaSessgion;
typeDefinitions :
TegtSourceInheritanceSchema completebefinition
(
dorumentationText
“Thie is the Application subclass,®
jadeMethodDefinitions
main () ;
)
GtestSourcelInheritanceSchema completeDafinition
{
documentationText
“This is the Global subclass.™
)
SteatSourceInheritanceSchema completeDefiniticn
{
documentationText
“This ip the WebSeesion subclaas.”

Building completeDefinition
{

attributeDefinitions
area: Inceger protected;
Yooma: Integer protected;
floors: Integer protected;
jadeMathodbDefinitions
get_area() : Integer;
get_roomg () : Integer;
get_f£loorsl) : Integer;

pet_area{value : Integer);
set_rooms(value : Integer};
. set_floora({value : Integer};
H
School completeDefinition ’ : L

{

.attributepefiniciona
affices: Integer protected;
classrocme: Integer protected;
" jadeMethodDefinitions
get_offices{) : Integer;
get_classrooma () : Integer;

set_officea{value : Integer);
set_classrooms (value : Integer);
)
House completeDefinition
(

attributepefinitions .
hedrooms: Integer protected;
bathrooma: Integer protected;
jadeMethedDefinitions

get_bedroems(} : Integer;
get_bathrooms({} : Integer;
set_bedrooms(value ; Integer);
get_bathroome {value : Integer};
)
Building completeDefinition

{
jadeMethodDefinitions

get_area{) : Integerx;
get_rooms(} : Integer;
get_£loora{] : Integer;

set_area(value : Integer};
sBet_rooms{value : Integer};
set_floors{value : Integer};
} _ :
House completeDefinition
(
jadeMethodDefinitions
get_bedrooms () : Integer;
get_bathrocoma{} : Integer;
set_bedrooms(value : Integer):
set_bathrooms(value : Integer};
1 _ '
School completeDefinition
{ -
jadeMethodDefinitions
get_officea{) : Integer;
get_classrooma(} : Integer;
set_offices(value : Integer);
.Bet_classrooms (value : Integer);
)

databaseDefinitions

TestSourceInheritanceSchemaDb
(-
datahaseFileDefinitions .
*TeatSourceInheritanceSchema”;
defaultFileDefinition "TeatSourceInheritanceSchema~;
classMapDefinitions
Building in *TestSourceInheritanceSchema*;
House in *TestSourcelnheritanceSchema* ;
Schoal in "TestScurcelnheritanceSchema*;
TastSourceluheritanceSchema in "_usergui~®;
GteatSourcelInheritanceSchema in “TeatScarcelnheritanceSchema*;
StestSourcelnheritanceSchema in “TestScurcelnheritanceSchema* ;

98

Appendix H: The converted Towers of Hanoi schema file

jadeVeraionNumber “6.0.0B";
schemaDefinition '
ConvertedTowersSample subachemadf RootSchema partialDefinition, modelschema;
constantDefinitions)
categoryDefinition ConvertedTOHmodified
documentationText
“This is the application gubeclass.”
MAXDISKS : Integer o 4.
categoryDefinition Tower
typeHeaders
ConvertedTOHmodified subclagsCf RootSchemalpp;
GConvertedTOHmedified subclaspOf RootSchemaGlobal;
sConvertedTOHmodi{fied subclagsOf RootSchemaSession;
Tower subclagsQf Object transient;
typeDefinitions
ConvertedTOHmodified completeDefinition
t .
documentationText
“This is the application subclass.™
constantDefiniticna
MAXDISKS : Intedger = §;
jadeMethodDefiniticns
movE {
from : Tower io;
te_ : Tower io;
use : Tower io;
depth : Integer) updating;
hanoi {}) updating;
main () updating:
1 .
gConvertedTOHmodified completeDefinition
(
documentationText
“This is the Global subclass.™
}) .
sConvertedTOHmodified completeDefinition
{
documentationText
“This is the WebSesgion subclaag.”
}
Tower completeDefinition

(
atkributeDefinitions

towerNumber : Integer protected;

diska: IntegerArray protected;

numDigks: Integer protected;

i: Integer protected;

temp: Integer protected;
jadeMethodDefinitions

tower{n : Integer) updating;
addbisks () updating;
pop{} : Integer updating;
push{l : Integer io) updating;
print{} updating;
test () updating;
} .
convertedTOHmedified completeDefinition
{
documentationText :
“This is the Application subclass.®
constantDefinitions
MAXDISKS : Integexr = 4;
jadeMethodDefinitions
move {
from : Tower io;
to_ : Tower io;
use : Tower io;)
depth : Integer} updating;
hanoi{) updating;

99

main{) updating;
)
Tower completeDefinition
{
jadeMethodDefinitions
. tower (n : Integer) updating;
addpisks |} updating;
popi{) : Integer updating;
-push{Il : Integer io) updating;
print{} updating;
test{) updating;

}
databageDefinitions

ConvertedToweraSampleDb

{ .

databageFileDefinitiona
*ConvertedTowersSample” ;

defaultFileDefinition *ConvertedTowersSample”:

classMapDefinitionsa
ConvertedTOHmodified in * uaergui”;)
ConvertedTOHmodified in *ConvertedToweraSample”
GConvertedTOHmodified in *ConvertedTowersSample~”;
SConvertedTOHmodified in *ConvertedTowersSample*;

)
schemaViewDefinitions
_remapTableDefinitiona
externalFunctionSources

typeSources
) ConvertedTCOHmodified (
jadeMethodSources

move

move |
from : Tower 10;
to_ : Tower io;
use : Tower io;
depth : Integer) updating;

vars

begin

if depth =1 then.
from.print();
to_.print{);
use.print () ;
endif;

if depth » 0 then
move (from, use, to_, depth-1};
to_.push(from.pop(}):
move (use, to_, from, depth-1}:
endif;

if depth =1 then
from.printi{};
to_.print{};
usa,print{};
endif; ’
end;

hanoi

hanoi{) updating;

wvare
a ;. Tower;
b 1 Taower;
4] 1 Tower;
begin

100

create a transient;
create b transient;
create ¢ transient;
a.toweril};
h.tower (2} ;
e.tower(3);

a.addDiaks{) ;
a.print(};
b.print{};
c.print{}; .
write Me---o--sesoemmmemoeewoemmeoa- "5
move{a, b, ¢, MAXDISKS);
WELtE M--mmsesmemmemme oo omeaoeem oo Ty
a.printi};
b.print(};
c.print{};
end; ’

main
main{) updating;

¥ara

aTower : Tower;
begin
create aTower transient;
aTower ., test () ;
write Momsoaa=="
hanoil();
end;
1
}
Tower |
jadeMethodSources
tower
{
: tower(n : Integer) updating;
vara
I : Integer;
begin
foreach I in 1 to MAXDISKS o
diskse [i] :=0;
endforeach;
numpiske:=0;
towerNumber:=n;
end;
addbizka

‘addDiske{) updating;

vars
) I : Integer;

begin
foreach I in 1 to MAXDISKS do
diske [1] := MAXDISKS - I;
endforeach;
numDiska : =MAXDISKS;

end;

pop

{

pop() : Integer updating;

vars .
temp : Integer;

bhegin

if numDisks » 0 then
temp := disks[numbDisks-1];
endif; i

101

digks [numDisks-1] :=0;
numbieks := numDisks - 1;
return ktemp;

end;

push
{.

‘push{I : Integer} updating;

" vars

begin
diska [numDiska)] := I;
numDiaks := numbBiska + 1;
end;
b
print
print{};
vars
I ;, Integer;
begin
write towerNumber,String & *:";
foreach I in 1 to MAXDISKS do
write disks[i] .String & ™ *;
endforeach;
write * " & numDisks.String;
end;
}
teat’
{
test {};
vars
a : Tower;
hegin
create a transient:
a.tower{l};
a.print{);
a.addDisgka () ;
a.print(};
. write *pop * & a.pop{).String;
a.print () ; :
a.push(99};
a.print{);
end;

102

Appendix I: The converted Building Inheritance schema file

jadeVersionNumber *6.0.08%;
schemaDefinition)
TeatSourcelnheritanceSchema subschemaOf RootSchema partialDefinition, modelSchema;
conatantDefinitions : .
categoryDefinition Building
categoryCefinition House
categoryDefinition Scheol -
typeHeadera)
Building subclass0f Chject transient;
School subglaesOf Building transient;
House subelass0f Building transient;
TestScurcelnheritanceSchema subclaesOf RootSchemahpp;:
GtestSocurcelnheritanceSchema subglasstf RootSchemaGlobal;
SteatScurceInheritanceSchema subclaesof RootSchemaSessicon;
typeDefinitions
TestSourceInheritanceSchema cowpleteDefinition
(.
documentationText.
*“This is the Application subclass.”
jadeMethodDefinitiong
main{);
)
GtestSourceInheritanceSchema completeDefinition
{ .
documentationText
“This is the Global aubclass.”
)
StestScurcelnheritanceSchema completebDefinition
0 -
documentationText
*This is the WebSession subclass.”
)
Building completeDefinition
(;

attributebefinitions
area: Integer protected;
Tooms: Integer protected;
" Eloora: Integer protected;
4adeMethodpefinitions
get_area{) : Integer;
get_roome() : Integer;
get_floors() : Integer;

set_area{value : Integer);
set_rooms (value : Integer);
set_floors(value : Integer);

) .

School completeDefinition

{

attributeDefinitions
offices: Integer protected;
¢lassroomsa: Integer protected;
jadeMethodpefinitions
get_offices() : Integer;
get_classrooma(} : Integer;

set_officesivalue : Integer};
set_classrooms (value : Integer);
)
House completeDefinition

{

attributenlefinitions
bedrooms: Integer protected;
bathrooms : ' Integer protected;
jadeMethodDefinitiona :
get_bedrooms () : Integer;

get_bathrooms() : Integer;
set_bedrcoms (value : Integer);
set_bathrooms(valuz : Integer);

3
Building completeDefinition

103

{

jadeMethodDefinitiong

}

get_areall ; Integer;
get_rocms(] : Integer;
get _floora() : Integer;

gset_area{value : Integer);
get_rocms (value : Integer];
aset_floorslvaiue : Integer);

Houge completeRefiniticn

{

jadeMethodDefinitions

)

get_bedrcoms{} : Integer;
get_bathrooma(} : Integer;
set_bedrooms (value : Integer);
get_bathrooma{value : Integer);

School completeDefinition

t .

jadeMethodrefinitions
get_offices() : lateger;
get_classroome() : Integer;
set_offices({value : Integer};
set_classrooms (value : Integex);

}

databaseDefinitions

TestSourcelnheritanceSchemalh

{

databaseFilebDefinitions

*TastSourcelnheritanceSchema” ;

defaultFilebDefinition *TestSourcelInheritanceSchema”;

claasaM

)

apDefinitionsa
Building in *TestSourcelnheritanceSchema~;
House in *“TestSourceInheritanceSchema*;
School in “TestSourceInheritanceSchema”;
TestSourcelnheritanceSchema in *_usergui”;
GtestSourceInheritanceSchema in “TestScurcelnheritanceSchema®;
SteatSourceInheritanceSchema in “TestSourceInheritanceSchema”;

schemaViewDefinitiona
_remapTableDefinitions
externalFunctionSources
typeSourcesa
TestSourcelInheritanceSchema {
jadeMethodSources

main
main{) ;

vars

begin

aHouse

: House;

aSchool : School;

create
create

aHouse
aHouge
aHouse
aHouse
aHouse
aSchoo

‘aScheo

aSchoo
aSchoo

" aSchoo

end;

write
write
write
write
write
write
write

aHouoe transient;
asSchool transient;

.8et_bathrooms {3} ;

.set_bedrooma (5) ;

-Aet_rooms {12} ;

.pet_floors(3);

.Bet_area{500);

1.z3et_classrooms {200) ;

1l.set_offices{10);

l.get_area (25000} ;

1.eet_floors(3);

1. set_rooms {250) ;

"The house has * & aHouse.get_bathrooms(}.String & * bhathrooms*;
*It alsc has * & aHouse.get_bedrooms{}.String & * bedrooms”;

*It‘g area covers * & aHouse. et_area{).String & * units of area~;
“Qvex * & aHoupe.get_floors() Atring & * floors*;

*The school has * & aSchool.get_rooms(}.String & * rooms *;
~covering * & aSchool.get_ flc¢ors() .String & ™ flecora, with a total
“of * & aSchool.get_area{).String & * unitg of area.”;

104

Builldingi
jadeMethodSources

get_area

get_area{) : Integer;

vars

begin .
raturn area;

end;

delt_roomsg

get_rcomg(} : Integer;
vars
begin

return rcoma;
end;

get_floors

get_floors{) : Integer;

vars
begin

return floors;
end; .
set_area

 get_area{value : Integer)updating;

vara
begin
area := value;
end;
Bet_rooms

set_rooms{value : Integer)updating;

vars
begin
rooms := value;
end;
set_floors

set_floors(value : Integer)updating;
vara
begin

floors := value;
~end;

105

House?
jadeMethodSources
get_bedrooms
get_hedrooma[] + Integer;
yars
begin

return bedrooms;
end;)

get_bathrooms
get_bathrooma () : Integer;
vars

begin

return bathrooms;
end;

}

set_hedrooms

set_bedrooms {value : Integer}updating;

vars
baegin

bedrooms := value;
end;
aet_bathrooms

set_bathrooms {value : Integerlupdating;

vara
begin
bathrooma := value;
end;
}
&chool {
jadeMethodSources
.get_offices

get_offices{) : Integer;
vars
begin

return offices;
- end;

.get_classroomg
get_claserooms() : Integer;
vars

begin

106

return classgooma;
end; :

set_offices
get_offices{value : Integer)updating;
vars
begin
] officea := value;
end;
!
set_classroome
set_classrooms(value : Integer)}updating;
vars
begin

classrooms := value;
end;

107

Appendix J: Glossary of terms

7 "DESCRIPTION -,

"SOURCE

Algorithm

A systematic problem-solving
procedure, especially an established,
recursive computational procedure for
solving a problem in a finite number of

steps.

{Howe, 2003a)

AP]

Application Programmer Interface:
The interface (calling conventions) by
which an application

program accesses operating system and
other services.

(Dictionary.com,
2003)

Application

A program that gives a computer

instructions that provide the user with
tools to accomplish a task.

(Dictionary.com,
2093) '

Architecture

The manner in which the components of
a computer or computer system are
organised and integrated

(Merri am-Webster,
2003a) '

Attribute

A quality or characteristic inherent in or
ascribed to someone or something. A
named value or relationship that exists
for some or all instances of some entity
and is directly associated with that
instance, '

(Howe, 2003b)

BPR

Business Process Re-engineering, An
initiative to modify and improve the
step-wise processes within an
organisation.

(Maylor, 2003)

CASE

- Computer Aided Software Engineering

Class

A set of objects that share the same
attributes, operations, relationships and
semantics

(Booch et al., 1999)

Code bloat

Software growth without obvious
benefit is the very definition of ““code
bloat.”

(Langa, 2001)

108

- DESCRIPTION = . :

.. SOURCE: -~

Construct

A ‘type’ for example: unsigned int;
OR a ‘statement’, for example:
condition statement, which may be
considered a native structure in a
programming language, -

The author of this

document

Converter

The tool used to perform the franslation
process

The author of this

document

dil

~ dynamic link library:

A library which is linked to apphcatxon
programs when they are loaded or run
rather than as the final

phase of compilation.

(Dictionary.com,

2003)

Forward engineer

Forward engineering is the process of
moving from a high-level abstraction
and logical implementation-independent
design, to the physical implementation

‘of that design.

(Chikofsky & Cross,

1990, p. 14)

Grammar

A mechanism used to describe the
syntax of a language

(Scbesta, 1999)

GUI

Graphical User Interface:

An interface for issuing commands to a
computer utilizing a pointing device,
such as a mouse, that manipulates and
activates graphical images on a monitor.

(Dictionary.com,
2003)

HLPL

High-Level Programming Language

HPS

High Productivity System

HTML

Hyper-Text Mark-up Language:

A markup language used to structure
text and multimedia documents and to
set up hypertext Iinks between
documents, used extensively on the
World Wide Web.

(Dictionary.com,
2003)

I8

Information System:
the network of all communication
channels used within an organization

(Dictionary.com,

©2003)

Legacy system

Any software application based on older
technologies and hardware that may still
provide core services to an organisation.

(Good, 2002)

109

U TERM.

. DESCRIPTION . . -

~__ SOURCE. _

LOC

Lines Of Code

MCC

McCabe’s Cyclomatic Complexity -

MDA

Metamodel Driven Architecture

(OMG, 2003)

meta

- A prefix meaning one level of
description higher. If X is some concept
then meta-X is data about, or processes

operating on, X,

(Dictionary.'com,
2003)

Metamodel

. “A metamodel is in effect an abstract_
language for some kind of metadata™.

(OMG, 2002, p. 15)

MOF

Meta_Object Facility

(OMG, 2002)

Method

In object-oriented programming, a
method is a programmed procedure that
is defined as part of a class and included
in any object of that class. A class (and
thus an object) can have more than one
method. A method in an object can only
have access to the data known to that
object, which ensures data integrity
among the set of objects in an
application. A method can be re-used in

multiple objects.

© (TechTarget, 1999)

MFC

Microsoft Foundation Classes

Monolithic sys‘em

Consisting of or constituting a single
unit — relating to the development style
used to implement a technical systemn,
usually in an imperative language.

(Mermriam-Webster,
2003b}

OMG

Object Management Group

00

Object Oriented: _
Of, related to, or being a language or
system that can use and support objects

(Dictionary.com,

. 2003)

parse tree

A hierarchical, linked set of nodes
representing the input stream.

(Aho et al., 2003)

110

'TERM

_DESCRIPTION. . ..

_SOURCE

pdf

Portable Document Format;

PDF is the file format for representing
documents in 2 manner that is
independent of the original application
software, hardware, and operating.

system used to create those documents.

(Dictionary.com,
2003)

Reverse engineer

Reverse engineering is the process of
analysing a subject system to: identify

the system’s components and their inter-

relationships create representations of

the system in another form or at a higher

level of abstraction.

(Chikofsky & Cross,
1990, p. 15)

Rose/UML

Rational Rose implementation of the
UML

Simulated
construct

" A construct devised to simulate the

properties or actions of a structure not
otherwise available in a programming
language.

The author of this

document

syntactically
correct

According to the rules of syntax, The
structure rules,

The author of this
document

Translate

In this context, to migrate the code in
one programming language to another
programming language, while
essentially maintaining the same
functionality,

The author of this
document

Transliterate

To transcribe (a word, etc., in one
alphabet) into correspondmg letters of
another alphabet, :

(W. Collins, 1988)

UML

Unified Modelling Language:
A non-proprietary, third generation
modelling language. The Unified

Modelling Language is an open method
used to specify, visualise, construct and

document the artefacts of an object-
oriented software-intensive system
under development.

(Dictionary.coni,
2003)

VC+H-

Microsoft Visual C++

XMI

XML Metadata Interchange

111

TERM - . DESCRIPTION -~ . -l 7 SOURCE. . =
XML eXtensible Mark-up Language: {Dictionary.com,
A metalanguage written in SGML that 2003)

allows one to design a mark-up
language, used to allow for the easy
interchange of documents on the World
Wide Web

112

REFERENCES

Aho, A, Sethi, R., & Ullman, J. (2003). Compilers: principles, technigues and tools.
New Jersey: Prentice Hall,

Boggs, W., & Boggs, M. (2002). Mastering UML with Ranonal Rose 2002
Alameda, California: Sybex.

Booch, G., Rumbaugh, J., & Jacobson, L. (1.999). The Unified Modeling Language
user guide. Upper Saddle River: Addison-Wesley.

Chidamber, S.R., & Kemerer, C. F. (1991, October). Towards a metrics suite for

' object oriented design, In A. Paepcke, (ed.) Object oriented prograrmming
systems, languages and apphcatlons (OOPSLA'91) SIGPLAN notices,
26(11), 197-211,

Chikofsky, E., & Cross, 1, (1990). Reverse engineering and desngn Tecovery: a
taxonomy IEEE Software, 7(1),13,17.

Church, I. StoryBoak; [Computer software]. (2003). Perth, Western Australia:. Edith
Cowan University.

Collins, M. (1993). An Ada-like language to facilitate reliable coding of low cost
embedded systems. Unpublished thesis, Edith Cowan University, Perth.

Collins English dictionary. (1988). London; William Collins & Sons.

Cowley, S. (2003). Vendors convene to examine legacy apps modernization.
Retrieved April 17, 2003 from
http://www.computerworld.com.au/pp,php?id=991088706&taxid=975794159

Demeyer, S., Rieger, M., & Tichelaar, S. (1998). Three reverse engineering patterns.
Retrieved November 12, 2003 from
hitp:/fwww.iam. umbe cJﬂ-famoosteme981)z'threerevnat 2pgup.pdf

Dictionary.com. (2003). On-line dictionary. Retrieved November 13 2003 from
http fdictionary.reference.cony/

Ducassc, S. E. (2001). Reengineering object-oriented applications. Unpubllshed
thesis, Universite Pierre et Marie Curie, Paris,

Good, D. (2002). Legacy rransfqrmarion. San]J ose: Technology.'Research Club.

Gutschmidt, T. (2003). Open source high-level languages in your neighborhood.
Retrieved November 11, 2003 from
htip://www.developer.com/lang/other/article.php/1 581881

—
—

Harsu, M. (2000). Re-engineerin g legacy software through language conversion.
Unpublished thesis, University of Tampere, Dept. of Computer Science,
Tampere, Finland. _

Hill, S. (1995). Towers of Hanot, Retrieved September 15, 2003 from
http://www.ecs.umass.edu/ece/hill/ece242 dirhanoi.c

Howe, D. (2003a). The free on-line dictionary of computing. [algorithm]. Retrieved
July 1, 2003 from hitp://dictionary,reference.com/search?q=algorithm

Howe, D. (2003b). The free on-line dictionary of computing. fatiribute]. Retrieved
July 1, 2003 from http://dictionary.reference.com/search?q=attribute

'JADE. (2003). JADE developer's reference. Retrieved November 13, 2003 from
hitp://www.jadeworld.com/downloads/iadetmanuals/devref.pdf

JADE online help. [Computer software]. (2001). Christchurch, NZ: Jade Software
- Corporation Ltd.

Kazman, R., O'Brien, L. & Verhoef, C. (2002). Architecture reconstruction
guidehnes (2nd ed.). (ESC-TR-2002-034). P1ttsburgh Carnegie Mellon
University, Soﬁware Engineering Institute,

Kontogiannis, K., Martin, J., Wong, K., Gregory, R., Muller, H., & Mylopoulos, J.
-(1998). Code migration through transformations: an experience report.
CASCON-98 IBM Conference, Toronto, Ontario, November 30-Drecember 3,
1998. Retrieved on November 12, 2003 from
http://www.notamusica.de/home/imartin/resume/cascon98 pdf

Krishnamoorthy, S. (2003). RE: [SR#167559387] -- How can I get Rose 20014 to
capture and retain funcnonal code. Personal communication, March 10,
2003.

Langa, F. (2001). Rethinking "Software bloat". Retrieved July 9, 2003 from
http://www.informationweek .comv/story/IWK2001121250003

Levine, J., Mason, T., & Brown, D. (1995). Lex & Yacc. Cambridge: O'Reilly.

Liberty, J. (2001). Teach yourself C-++ in 21 days. (4thed.). Indianapolis: Sams
Publishing.

Markosian, L., Newcomb, P., Brand, R., Burson, S., & Kitzmiller, T. (1994). Using
an enabling technology to reengineer legacy systems. Association for
Computer Machinery. Communications of the ACM, 37(5), 58-70.

Maylof', H. (2003). Project management. Esséx: Pearson Education.

McCabe, T., & Butler, C (1989). Design complexity measurement and testing,
Assocmnon Jor Computer Machinery. Communications of the ACM, 32(12),
1415-1425.

114

Merriam-Webster. {2003a). Merriam-Webster online dictionary - architecture.
Retrieved July 10, 2003 from http://www.m-w.com/cgi-
bin/dictionary?book=Dictionary&va=architecture

Merriam-Webster. (2003b). Merriam-Webster online dictionary - monolithic.
Retrieved July 9, 2003 from hitp://www.m-w.com/cgi-

bin/dictionary?book=Dictionary&va=monolithig

Moynihan, V., & Wallis, P. (1991). The design and implementation of a high-level
langnage converter. Software - Practice and JIfJ'xJ.w:riemcea 21(4), 391-400.

‘NorKen. (2003). ProGrammar - parser development toolkiz. Retrieved Apnl 24,
2003 from http://www.programmar.com/grammars.htm

Object Management Gmup (2002). Meta Object Facility (MOF) specification,
Retrieved November 13, 2003 from hitp.//www.omg. orf.rfcgl-
bin/apps/doc?formal/02-04-03 pdf

Object Management Group. (2003). Why do we need legacy transformation
standards? Retrieved November 12, 2003 from _
http://www.omg.org/registration/Legacy Transformation-whitepaper 06.pdf

O'Sullivan, J. (2000). JADE in action, Offline, 34(3), 6-8.

Pressman, R. (2001). Software engineering: a practitioners approach (5th ed.). New
York: McGraw-Hill.

Quatrani, T. (2000). Visual modeling with Rational Rose 2000 and UML. Upper
Saddle River: Addison-Wesley.

Rational Rose help. [Computer software]. (2001). Rational Software Corporation.

Roeder, C. (2003). The Towers of Hanoi in Three Styles of C, and C++. Retrieved
October 21, 2003 from http://www.croeder.com/motes/hanoi2.cpp

Schildt, H. (2003). The complete reference C++. (4th ed.). Berkeley, California:
McGraw-Hill Osborne.

Seacord, R., Comella-Dorda, S., Lewis, G., Place, P., & Plakosh, D. (2001). Legacy
system modernization straregzes thtsburgh Pa Carnegie Mellon University,
Software Engineering Institute,

Seacord, R. C,, Plakosh D., & Lewis, G. A, (2003). Modernizing legacy systems :
sofiware techno!ogres engineering processes, and business pracuces
Reading, Mass. : Addison-Wesley.

Sebesta, R. (1999). Concepts of programming language. (4th ed.). Reading, Mass:
Addison Wesley Longman.

Skarmstad, T., Khan, K., & Rashid, A. (1999). Constructing commercial oft-the-
shelf from legacy systems: a conceptual framework. Proceedings of the 10th
Australasian Conference on Information Systems, 1999, pp. 798-805.

115

{Electronic version]. Retrieved October 30, 2003 from
htip:/www.vuw,ac.iz/acis99/Papers/PaperSkramstad-092.pdf

Suh, E., & Allain, A. (2003), Code journal. Retrieved September 15, 2003 from
http://www.cprogramming. comy/codej/issue3.html '

Sultanoglu, S. (1998). Complexity metrics and models. Retrleved October 24 2003,
from http://yunus.hun.edu.tr/~sencer/complexity.html -

TechTarget. (1999). Whatis.com tech search. Retrieved July 1, 2003 from
htp://whatis.techtarget.com/definition/0..sid9 gci212559,00.html

‘Terekhov, A.A. (2001). Automating language conversion: a case study. Proceedings
of the IEEE International Conference on Software Maintenance, Florence,
Italy, 7-9 November 2001. pp. 654-658.

Terekhov, A., & Verhoef, C. (2000). The realities of language conversions. JEEE
Software, 17(6), 111-124.

Tieman, P. (2001). Cyclomatic complexity metric. Retrieved November 13, 2003
from http://www.delphifag.com/software/sc_help/cyclomatic.htm

'Verbruggén, R. (2003). Depth of inheritance tree. Retrieved September 17, 2003
from hitp://www.compapp.den.ie/~renaat/cad2 IIOOmetrics.pnt '

Waters, R. (1988). Program translation via abstraction and reimplementation. IEEE
Transactions on Sofnvare Engmeenng 14(8), 1207-1228.

Watson, A, H., & McCabe, T. 1. (1996). Stmctured testing: a tesrmg methodology
using the cyclomatic complexity metric. Retrieved October 24, 2003 from
http://www.mccabe.com/nist/chapter 2. php#446018

Weiderman, N, H., Bergey, I., Smith, D. , & Tilley, S. (1997). Approaches to Iegacy
system evolution, Pittsburgh, Pa.: Carnegie Mellon University, Software
~ Engineering Institute. .

‘White, D., Scribner, K., & Olafsen, E. (1999). MFC programming with Visual C++
6. Washington: Sams Publishing.

Wikipedia. (2003). Cfront. Retrieved November 11, 2003 from
http:/fen2. wikipedia.org/wiki/Cfront

116

	Improving the programming language translation process via static structure abstraction and algorithmic code transliteration
	Recommended Citation

	Improving The Programming Language Translation Process Via Static Structure Abstraction And Algorithmic Code Transliteration

