
Edith Cowan University Edith Cowan University

Research Online Research Online

ECU Publications Pre. 2011

2008

Mutation Analysis for the Evaluation of AD Models Mutation Analysis for the Evaluation of AD Models

Usman Farooq
Edith Cowan University

Chiou Peng Lam
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks

 Part of the Systems Architecture Commons

10.1109/CIMCA.2008.210
This is an Author's Accepted Manuscript of: Farooq, U. , & Lam, C. P. (2008). Mutation Analysis for the Evaluation of
AD Models . Proceedings of International Conference on Computational Intelligence for Modelling, Control and
Automation. (pp. 296-301). Vienna, Austria. IEEE Computer Society Press. Available here
© 2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.
This Conference Proceeding is posted at Research Online.
https://ro.ecu.edu.au/ecuworks/1217

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online @ ECU

https://core.ac.uk/display/41531196?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworks
https://ro.ecu.edu.au/ecuworks?utm_source=ro.ecu.edu.au%2Fecuworks%2F1217&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=ro.ecu.edu.au%2Fecuworks%2F1217&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1109/CIMCA.2008.210
http://dx.doi.org/10.1109/CIMCA.2008.210

Mutation Analysis for the Evaluation of AD Models

U. Farooq, C. P. Lam
School of Computer and Information Science

Edith Cowan University, Perth, Australia
ufarooq@student.ecu.edu.au, c.lam@ecu.edu.au

Abstract

UML has became the industry standard for analysis

and design modeling. Model is a key artifact in Model
Driven Architect (MDA) and considered as an only
concrete artifact available at earlier development
stages. Error detection at earlier development stages
can save enormous amount of cost and time. The
article presents a novel mutation analysis technique for
UML 2.0 Activity Diagram (AD). Based on the AD
oriented fault types, a number of mutation operators
are defined. The technique focuses on the key features
of AD and enhances the confidence in design
correctness by showing the absence of control-flow and
concurrency related faults. It will enable the automated
analysis technique of AD models and can potentially be
used for service oriented applications, workflows and
concurrent applications.

Introduction
UML is the de facto industry standard for software

modeling and a key component in model driven
development. Activity Diagram (AD) is one of several
behavioral diagrams in UML and attributed for wide
application scope. On one hand it supports the low
level detailed description of program logic for
modeling embedded hardware and software with
control flow and data flow concepts then on the other
hand it enables the depiction of high level (system
level) process modeling with token flow semantic.

Considering the impact of the errors introduced at
earlier stages, testing at earlier and each software
development stage is often advocated. For testing and
behavioral analysis of the systems depicted in AD
various techniques have been proposed [1-4]. They
allow the earlier detection of faults through simulation
and formal verification techniques. In [1], a formal
semantic was proposed to execute AD models. Paper
[2] proposes a testing methodology for the validation
of UML models. In [3], authors showed that how can
temporal analysis be performed with AD models.
Störrle has tried to transform AD into Colored Petri
Nets in order to apply formal verification techniques
[4].

Mutation testing is a promising testing technique
and empirical studies have already confirmed its
effectiveness. It aims to gain the confidence in the
correctness of the program as well as the adequacy of
the test suite. Albeit mutation testing was introduced as
code based technique [5]; however, since then it has

been extended to specification and design level in
various contexts such as specification evaluation [6-8],
design testing [9], protocol testing [10] and interface
testing [11]. In this paper, we embrace the application
of mutation testing for validating the behavioral
correctness of the system at the design level with AD
models.

The study aims to investigate the application of
mutation analysis to validate the behavioral aspects of
the system depicted in Activity Diagram. The
contribution of this work is two fold: (1) it introduces a
new mutation testing technique for AD based models;
(2) defined mutation operators for mutation analysis of
the AD models. The significance of this technique at
the design level for AD is that it enhances the
confidence in design correctness by showing the
absence of the potential and actual faults. Moreover, it
will provide an automated analysis technique for the
AD models that are often undervalued for their
informal semantic and the lack of automated analysis
tools.

This paper is organized as follows: Section 2
describes related work and Mutation Analysis is
described in Section 3. In section 4, the mutation
operators and application strategy for AD are defined.
In section 5, the application of mutation analysis is
demonstrated with an example model and the summary
and future work in Section 6.

Related Work
Recent developments in testing aim to find faults

earliest possible stages i.e. analysis and design stages.
Andrews, France and Craig (2003) introduced a
technique for dynamic analysis of the software design
model comprising on class, activity and interaction
diagrams [2]. Their technique was based on UML 1.4
and involved testing an executable model. The
approach used information from class and interaction
diagrams for generating the required test cases. Dinh-
Trong, Ghosh, & France (2006) also use symbolic
execution and a Variable Assignment Graph that
incorporated information from UML class diagrams
and sequence diagrams for generating test data which
can then subsequently be used for testing design
models [12].

Originally, the mutation analysis was developed for
program testing; however later, it was ‘mapped’ to
another application level that to validate the systems
specification. Fabbri et al. (1999) has conducted
mutation analysis for the Finite State Machine (FSM)
[6]. A set of mutation operators for FSM are defined to

CIMCA 2008, IAWTIC 2008, and ISE 2008

978-0-7695-3514-2/08 $25.00 © 2008 IEEE
DOI 10.1109/CIMCA.2008.210

296

confirm the absence of particular faults types in the
FSM model. In [7] authors extended the fault model
presented in [6] for FSM to Statecharts and introduced
new mutation operators to address the faults specific to
the Statechart features i.e. parallelism, communication
and hierarchy. Furthermore, Fabbri et al. has explored
the application of mutation analysis in other formal
specification languages such as Petri Nets [8] and SDL
[13]. In [10], Souza et al. used the mutation analysis
for Estelle specification. Although, the application of
mutation analysis for various specification and design
languages has been investigated, but according to our
best knowledge no work has been reported for UML.
Considering the pervasive use of UML, it is deemed
that mutation analysis can be of great help for
validating design models specified in UML. Thus
work reported in this paper is concerned with the
application of mutation analysis of UML v2.0 AD.

Mutation Testing
Mutation testing is a fault-based technique for

software testing that uses mutation operators to inject
simple faults into the artifacts (i.e. specification, design
or code) under test (AUT) to get a set of mutant
artifacts that are similar to AUT, and generating test
cases that can reveals the differences between each
mutant and AUT. Mutation testing is applied to gain
confidence in the correctness of an artifact ‘A’ towards
specific types of errors. The mutation score, computed
from the number of generated mutants ‘Mn’, the
number of equivalent mutants ‘Me’ and the number of
mutants killed ‘Mk’, gives an objective measure for the
confidence level of the AUT and the adequacy level of
the given test suite. The mutation score is defined as (
Mk / Mn - Me). Mutation testing ensures the test suite
adequacy by aiming 100% mutation score. Basically,
mutation testing relies on two hypothesis: (1) the
program produced by a competent programmer is
either correct or near correct, and (2) the coupling
effect as defined by DeMillo (1978) is the test data that
can detect the mutants with simple faults can detect the
most complex faults as well [5].

Mutant artifacts (mA) are generated by injecting
simple faults in the artifact under test (AUT). A mutant
is killed by a test case that causes the mutant artifact to
behave or output differently from the original artifact.
Mutation testing comprises of four steps: mutant
generation, execution of AUT using given test suite,
mutant (mA) execution with the given test suite and the
adequacy analysis. If a mutant (mA) behaves or output
differently from the AUT, it is said to be dead;
otherwise, it is considered alive. When a test suite fails
to kill a mutant then there could be two reasons for it.
Either the given test suite is not adequate to execute the
faulty block of the mutant or the original artifact
(AUT) and the living mutant (mA) are equivalent.
Equivalent mutants mean that the mutant artifacts are
functionally equivalent to the original artifact and
therefore couldn’t be killed by any test case in the test
suite. In the former case, more test cases are generated

until all the non-equivalent mutants are killed. While in
the latter case, manual interaction is usually adopted to
determine the equivalent mutants. So the objectives of
mutation testing always remain the same to assure that
the AUT is free from particular fault set and to
generate a test suite with an ability to kill all non-
equivalent mutants.

Mutation Testing applied to AD
The rich syntax of AD is quite intuitive to program

logic and expressive enough to suit wide application
domains. For the application of mutation analysis on
ADs, here we assume that both mutation testing
hypothesizes are valid such that the designer is
competent, and simple and composite faults have
coupling effect. It means that the AD model produced
by the competent designer is either correct or closely
correct; while the coupling effect means the test suite
that can detect simple faults is sensitive enough to
catch the complex faults as well.

In mutation testing, a fault set is devised based on
the simple errors that a competent programmer may
fall for in practice. For AD mutation analysis, we
derived the control-flow based fault types from the
semantic bugs referred in a recent study on software
error characteristics [14]. Moreover, we hypothesize
that these faults that a designer can fall for in modeling
system behavior can be detected earlier and fixed. The
set of faults that can be injected into an AD model
constitute as the operators for AD mutant generation.

AD Mutation Operators
Mutation operators are represented as a set of rules

that describe syntactic changes to the elements of the
AUT. We apply the operators for mutating to the
elements within the AD models. In order to generate
mutants, we need to identify a set of potential faults.
Following are the types of faults that a competent
designer can encounter in an AD modeling:

• Sequencing of operations (i.e. actions/
activities)

• Interface error (i.e. missing input/ output)
• Synchronization error that may happen because

of various situations such as deadlock and race
condition.

• Decision Errors
To define the mutant operators, the following

definition of AD is adapted from [15]. Let AD = (A, E,
B, M, F, J, AI, AF) be a 8-tuple Activity Diagram
where A = {a1,a2,…,an} is a finite set of action nodes;
E = {e1,e2,…,en} a finite set of edges; D = {d1,d2,…,dn}
a finite set of decision nodes such that ∀d∈D, d =
<c>bk + <c>bk+1 + …+ <c>bk+n where B =
{b1,b2,…,bn} a finite set of branches such that ∀b∈B,
B ⊂ E and c∈C, C = {c1,c2,…,cn} is a set of guard
conditions; M = {m1,m2,…,mn} a finite set of merges;
F = {f1,f2,…,fn} a finite set of forks; J = {j1,j2,…,jn} a
finite set of joins; AI is an initial node and AF is a
Activity-Final node.

297

In UML v2.0, AD got new token-game semantic
inspired from the Petri Nets. The token movement rules
allow the modeler to simulate the model and analyze
the runtime behavior of the system. The tokens are
moved by executing actions and activities. An action or
activity becomes enabled and ready to execute on
receiving token at all of its inputs. On execution
completion, the action/ activity consumes all of the
tokens on inputs and put one token on each of its
outputs.

It is important to mention that the new AD v.2.0
rich syntax supports the modeling of both control and
data (termed as ‘object’ in UML standard) flow views,
however the mutation operators defined here are
limited to the control-flow view of the AD model and
are a minimal set of operators. The consideration for
limiting the scope of this work to control-flow view is
as following: (1) the semantic of control flow view is
clear, well established and pragmatic; (2) the semantic
of the data (object)-flow view constructs has several
ambiguities and inconsistencies [16]; and (3) practical
problems with the application of object-flow and high-
level constructs [16]. Based on the fault types defined
here, we have developed a set of mutant operators for
ADs, given in table-1 and classified as follows.

Operator types:
 Operation Mutation Operator (OMO)

Functional errors often constitute as major part of
bugs in software [14, 17]. The operation mutation
operator is intended for functional faults such as
missing, wrong, incomplete and unnecessary features.

Definition of Missing Action Operator: The
operator omits one action node in the model for each
mutant model.

Mutant models Mk, 0 k |a|, are generated in
such a way that IE.target = OE.target for each ai such
that ai ∈ A, IE ∈ E and OE ∈ E.

Definition of Actions Exchanged Operator: The
operator depicts the error when the order or position of
two actions exchanged. It changes the position or order
of the action nodes in the model for each mutant
model.

Mutant models Mk, 0 k |a|, are generated in
such a way that IE.target = OE.target for each ai such
that ai ∈ A, IE ∈ E and OE ∈ E.

 Interface Mutation Operator (IMO)
The interface mutation operators inject faults that

are related with the interaction between the artifacts of
the model. This type of fault implies that the required
input is missing and output is not being produced.

Definition of Inflow Exchanged Operator: The
operator model wrong method call in the model for
each mutant model.

Mutant models Mk, 0 k |a|, are generated in
such a way that ai.IE.target = aj.IE.target for each ai
such that ai ∈ A, aj ∈ A and i ≠ j.

 Concurrency Mutation Operator (CMO)

Concurrency is an important factor in the behavior
of modern systems. AD provides the intuitive and
abstract mechanism for specifying the concurrency
logic by hiding the low-level implementation detail. It
captures application specific concepts that are
independent of the programming language concepts
and constructs. Concurrency mutation models the faults
(i.e. race condition and deadlock) related with the
concurrency logic such as shared memory access and
synchronization.

Definition of Missing Fork (thread) Operator: The
operator model the missing thread fault in the model
for each mutant model.

Mutant models Mk, 0 k |f|, are generated in such
a way that fi.IE.target = fi.OEj.target for each fi such
that fi ∈ F, IE ∈ E and OEj ∈ E.

Definition of Missing Join Operator: The operator
model the missing synchronization (race condition)
fault in the model for each mutant model.

Mutant models Mk, 0 k |j|, are generated in such
a way that ji.IEj.target = ji.OE.target for each ji such
that ji ∈ J, IEj ∈ E and OE ∈ E.

Definition of Invalid Join Operator: The operator
model the invalid synchronization (dead lock) fault in
the model for each mutant model. For instance, if a
Join is immediately preceded by Decision node (with
least two branches), then deadlock may occur in at
least one case.

Mutant models Mk, 0 k |j|, are generated in such
a way that ji.IE(n+1).source = dj for each ji and di such
that ji ∈ J and di ∈ D.

Table 1: AD Mutation Operators

Operator
types

 Mutation Operator

OMO Missing Action
OMO Actions Exchanged
IMO Extra Inflow (edge)
IMO Extra Outflow (Output)
IMO Inflow (Input) Exchanged
IMO Outflow (Output) Exchanged
IMO Missing Inflow (edge)
IMO Missing Outflow (Output)
DMO Missing Branch
DMO Extra Branch
DMO Missing Merge
DMO Negation of Condition
CMO Missing Fork (Thread)
CMO Missing Join (Synchronization)
CMO Invalid Join

 Decision Mutation Operator (DMO)
The objective of the decision mutation operators is

to validate the control logic of the system. The decision
mutation operator is intended for branch faults i.e.
unreachable path and missing path.

Definition of Extra Branch Operator: The operator
adds an extra branch fault in the model for each mutant
model.

298

Mutant models Mk, 0 k |d|, are generated in
such a way that di.OE(n+1).source = dj.OEn.source and
di.OE(n+1).target = aj for each di such that di ∈ D, aj ∈
A.

Definition of Missing Branch Operator: The
operator adds an extra branch fault in the model for
each mutant model.

Mutant models Mk, 0 k |b|, are generated in
such a way that bi.source = bi.target for each bi such
that bi ∈ B.

Definition of Missing Merge Operator: The
operator adds an extra branch fault in the model for
each mutant model.

Mutant models Mk, 0 k |m|, are generated in
such a way that mi.IEj.target = mj.OEn.target for each
mi such that mi ∈ M.

Where, IE and OE are respectively incoming and
outgoing edges of the Action ai, Join Ji, and Decision
Di as specified. ‘Source’ and ‘target’ are edge attributes
referring to the source and target nodes respectively.

The operators defined for AD models are aimed to
inject fault of both omission and commission types,
such as missing action is omission and extra action is
commission type of error. For the application of
defined operators, it is assumed/ constrained that the
model has already been refined by replacing each
implicit decision, fork and join with explicit decision,
fork and join respectively. The assumption is based on
the fact that the replacement of implicit decision, fork
or join with explicit counterpart does not affect the
logic of control-flow however it reduces the ambiguity
(i.e. multiple inputs or multiple flows).

Illustrated Example
For evaluation and demonstration of the proposed

technique, we use the model shown in figure 3 that
describes an enterprise customer commerce system
taken from [18] and contain an activity diagram
describing a system level process. It describes the
process of online purchase system. The system process
comprises of two sub-processes, authentication and
shopping. The authentication process allows the user to
login and in the case of a new user, it allows the new
user to register first. Within the shopping process, a
user can order the selected products and can configure
his/her account if required.

Studies [4, 16, 19] has showed that the imprecise
and informal AD semantic is a major source of
incorrect and ambiguous AD models. Moreover,
implicit and obscure functional assumptions in the
design that hide the critical details of the system could
end up with undesired characteristics in the
implementation. For example, according to the AD
semantic, Action is a basic artifact that enables the start
of execution when associated token(s) are available
from all inputs. However, the model specified in
figure-3 clearly seems to violate the standard. Thereby,
it is deemed necessary to unmask the necessary control
flow prior to the mutation analysis. The refined version
of the example model is presented figure-4.

Mutation Analysis of the AD model will be
comprises of six tasks as follows: original model
execution, test suite generation, mutant generation,
mutant execution, mutation analysis and mutant score
calculation. The application of the proposed mutation
analysis for AD models is demonstrated here with
example model.

For AD model execution and test sequence
generation, a Depth-First Search (DFS) based test
sequence generation (TSG) technique as purposed by
Wang et al. [20] is used. According to the technique,
basic paths (BPs) for the activity diagrams are defined
and DFS was used to derive test sequences from these
BPs.

We defined the mutation operators in the form of
XSL transformation rules. Mutants are generated by
introducing k simultaneous changes in the original
model and are named as k-order mutants. Earlier
studies [21] have suggested that there is only a minor
gain in the quality of the artifact in comparison to the
cost involved for mutant generation and execution in
higher-order mutation analysis. Therefore, the mutation
analysis applied here is limited to first order mutants.
Using the model transformation technique, the
mutation rules are applied and mutant models of the
example model are produced as shown in table-2. The
Negation of Condition operator could not produced any
mutant models because the example model does not
contain the required parameters.

All models are executed with the test suite
generated from the original AD model. The model is
considered a mutant and marked as dead if it fails to
execute any one of the test sequences in the given test
suite. Owing to the huge number of mutant models
manual mutation analysis is not practical and a tool has
been developed to detect mutant models. However, the
undetected mutants are analyzed interactively to
determine the equivalent mutants and deficiency of the
generated test suite.

Figure 1: Action Exchange mutant

Consider an initial test suite TS = {(AI, init, logon,
authentication, [select, verify], put, order, AF), (AI, init,
register, logon, authenticate, [select, verify], configure,
order, AF)} represents a typical test suite adequate for
all-actions coverage criteria, i.e. ensures that every
action is executed at least once. Consider that first two
mutant operators (OMO type as shown in table-1) are
selected and 36 mutants are generated as shown in first
two rows of table-2. The models are executed with an
initial test suite which detected 34 mutants. The
mutation score of the initial test suite is 0.9444;

299

whereas 2 (5.56%) mutants (as shown in figure 1 & 2)
generated from the given set of mutant operators are
still alive. With this level of analysis, the percentage of
undetected mutants indicates the probability of the
faulty design to be selected for further development.
Moreover, if one of the mutant model is forwarded as a
final design, the given test suite will not be able to
detect these types of faults. It also indicates the need
for more test sequences. In order to kill these two
mutants, the test suite needs two more test sequence i.e.
{(AI, init, logon, authentication, select, [put, verify],
select, order, AF), (AI, init, logon, authentication,
select, [configure, verify], select, order, AF)}.

Figure 2: Action Exchange mutant

The final test suite generated according to the DFS
technique [20] able to detect 116 mutants out of 134.
Although, there are 18 undetected mutants, these are
not caused by equivalent mutants. Rather these are due
to the limitation of the DFS test generation technique
that was employed for generating the initial test suite.

Table 2: Synthesis of the Mutation Analysis results

Mutation Operator # of
mutants

killed Alive

Missing Action 8 8 0
Action Exchange 28 28 0
Extra Inflow 9 0 9
Extra Outflow 9 0 9
Inflow Exchanged 22 22 0
Outflow Exchanged 22 22 0
Missing Inflow 9 9 0
Missing Outflow 9 9 0
Extra Branch 7 7 0
Missing Merge 1 1 0
Negation of Condition 0 - -
Missing thread 2 2 0
Missing Sync. 1 1 0
Invalid Join 7 7 0
Total 134 116 18

Summary and future work
In this paper we introduced a mutation analysis

technique for Activity Diagram, whose objective is the
application of mutation analysis for verification and
validation of the system design depicted in AD models.
The mutation operator set is defined for syntactic errors
according to the control-flow and concurrency features
of Activities.

The application of the technique is demonstrated
through example model. Currently, a tool is being

developed for automated support for the application of
the technique.

In future we are planning to extend mutation
analysis to semantic errors, data-flow and high-level
constructs of AD as well. The quality of the generated
test suite can be evaluated with this technique and
currently under study for comparative analysis of AD
based test generation techniques. In order to limit the
cost of mutation analysis, the coupling effect was
assumed true in this study but this hypothesis needs
validation study in the context of AD.

Bibliography

1. Eshuis, R. and R. Wieringa. An Execution

Algorithm for UML Activity Graphs. in The
Unified Modeling Language, Modeling
Languages, Concepts, and Tools. 2001.
Toronto, Canada: Springer.

2. Andrews, A.A., et al., Test adequacy criteria
for UML design models. Softw. Test., Verif.
Reliab., 2003. 13(2): p. 95-127.

3. Juan Pablo, L., et al., From UML activity
diagrams to Stochastic Petri nets: application
to software performance engineering, in
Proceedings of the 4th international workshop
on Software and performance. 2004, ACM:
Redwood Shores, California.

4. Störrle, H. Semantics of Control-Flow in UML
2.0 Activities. in VL/HCC 2004. Rome, Italy:
IEEE Computer Society.

5. DeMillo, R.A., R.J. Lipton, and F.G.
Sayward, Hints on Test Data Selection: Help
for the Practicing Programmer. Computer,
1978. 11(4): p. 34-41.

6. Fabbri, S.C.P.F., et al., Proteum/FSM: A Tool
to Support Finite State Machine Validation
Based on Mutation Testing, in Proceedings of
the 19th International Conference of the
Chilean Computer Science Society. 1999,
IEEE Computer Society.

7. Fabbri, S.C.P.F., et al., Mutation Testing
Applied to Validate Specifications Based on
Statecharts, in Proceedings of the 10th
International Symposium on Software
Reliability Engineering. 1999, IEEE
Computer Society.

8. Fabbri, S.C.P.F., et al., Mutation Testing
Applied to Validate Specifications Based on
Petri Nets, in Proceedings of the IFIP TC6
Eighth International Conference on Formal
Description Techniques VIII. 1996, Chapman;
Hall, Ltd.

9. Yuan, Z. and A.C. John, Search-based
mutation testing for Simulink models, in
Proceedings of the 2005 conference on
Genetic and evolutionary computation. 2005,
ACM: Washington DC, USA.

300

10. Souza, S.D.R.S.D., et al., Mutation Testing
Applied to Estelle Specifications. Software
Quality Control, 1999. 8(4): p. 285-301.

11. Marcio, E.D., C.M. Jos, and P.M. Aditya,
Interface Mutation: An Approach for
Integration Testing. IEEE Trans. Softw. Eng.,
2001. 27(3): p. 228-247.

12. Dinh-Trong, T.T., S. Ghosh, and R.B. France.
A Systematic Approach to Generate Inputs to
Test UML Design Models. in 17th
International Symposium on Software
Reliability Engineering. 2006. Raleigh, North
Carolina, USA.

13. Sugeta, T., J.C. Maldonado, and W.E. Wong.
Mutation Testing Applied to Validate SDL
Specifications. in TestCom. 2004. Oxford,
UK: Springer.

14. Zhenmin, L., et al., Have things changed
now?: an empirical study of bug
characteristics in modern open source
software, in Proceedings of the 1st workshop
on Architectural and system support for
improving software dependability. 2006,
ACM: San Jose, California.

15. Xu, D., H. Li, and C.P. Lam, Using Adaptive
Agents to Automatically Generate Test
Scenarios from the UML Activity Diagrams,
in Proceedings of the 12th Asia-Pacific
Software Engineering Conference. 2005,
IEEE Computer Society.

16. Tim, S. and F. Alexander, On the Pitfalls of
UML 2 Activity Modeling, in Proceedings of
the 29th International Conference on Software
Engineering Workshops. 2007, IEEE
Computer Society.

17. Beizer, B., Software testing techniques. 2nd
ed. 1990, New York: Van Nostrand Reinhold.
550.

18. Küster, J.M., J. Koehler, and K. Ryndina.
Improving Business Process Models with
Reference Models in Business-Driven
Development. in Business Process
Management Workshops. 2006: Springer.

19. Farooq, U., C.P. Lam, and H. Li.
Transformation Methodology for UML 2.0
Activity Diagram into Colored Petri Nets. in
4th IASTED International Conference on
Advances in Computer Science and
Technology 2006. Phuket, Thailand: ACTA
Press.

20. Wang, L., et al., Generating Test Cases from
UML Activity Diagram based on Gray-Box
Method, in Proceedings of the 11th Asia-
Pacific Software Engineering Conference.
2004, IEEE Computer Society.

21. Budd, T.A. Mutation Analysis: Ideas,
Exampies, Problems and Prospects. in
Summer School on Computer Program
Testing. 1981. Sogesta, Urbino, Italy: Elsevier
Science Inc.

Figure 3: AD model of an Enterprise Customer Commerce System

Figure 4: Refined AD model of ECCS

301

	Mutation Analysis for the Evaluation of AD Models
	Mutation Analysis for the Evaluation of AD Models

