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Abstract 

 
UML has became the industry standard for analysis 

and design modeling. Model is a key artifact in Model 
Driven Architect (MDA) and considered as an only 
concrete artifact available at earlier development 
stages. Error detection at earlier development stages 
can save enormous amount of cost and time. The 
article presents a novel mutation analysis technique for 
UML 2.0 Activity Diagram (AD). Based on the AD 
oriented fault types, a number of mutation operators 
are defined. The technique focuses on the key features 
of AD and enhances the confidence in design 
correctness by showing the absence of control-flow and 
concurrency related faults. It will enable the automated 
analysis technique of AD models and can potentially be 
used for service oriented applications, workflows and 
concurrent applications. 

 

Introduction 
UML is the de facto industry standard for software 

modeling and a key component in model driven 
development. Activity Diagram (AD) is one of several 
behavioral diagrams in UML and attributed for wide 
application scope. On one hand it supports the low 
level detailed description of program logic for 
modeling embedded hardware and software with 
control flow and data flow concepts then on the other 
hand it enables the depiction of high level (system 
level) process modeling with token flow semantic.   

Considering the impact of the errors introduced at 
earlier stages, testing at earlier and each software 
development stage is often advocated. For testing and 
behavioral analysis of the systems depicted in AD 
various techniques have been proposed [1-4]. They 
allow the earlier detection of faults through simulation 
and formal verification techniques. In [1], a formal 
semantic was proposed to execute AD models. Paper 
[2] proposes a testing methodology for the validation 
of UML models. In [3], authors showed that how can 
temporal analysis be performed with AD models. 
Störrle has tried to transform AD into Colored Petri 
Nets in order to apply formal verification techniques 
[4]. 

Mutation testing is a promising testing technique 
and empirical studies have already confirmed its 
effectiveness. It aims to gain the confidence in the 
correctness of the program as well as the adequacy of 
the test suite. Albeit mutation testing was introduced as 
code based technique [5]; however, since then it has 

been extended to specification and design level in 
various contexts such as specification evaluation [6-8], 
design testing [9], protocol testing [10] and interface 
testing [11]. In this paper, we embrace the application 
of mutation testing for validating the behavioral 
correctness of the system at the design level with AD 
models.  

The study aims to investigate the application of 
mutation analysis to validate the behavioral aspects of 
the system depicted in Activity Diagram. The 
contribution of this work is two fold: (1) it introduces a 
new mutation testing technique for AD based models; 
(2) defined mutation operators for mutation analysis of 
the AD models. The significance of this technique at 
the design level for AD is that it enhances the 
confidence in design correctness by showing the 
absence of the potential and actual faults. Moreover, it 
will provide an automated analysis technique for the 
AD models that are often undervalued for their 
informal semantic and the lack of automated analysis 
tools. 

This paper is organized as follows: Section 2 
describes related work and Mutation Analysis is 
described in Section 3. In section 4, the mutation 
operators and application strategy for AD are defined. 
In section 5, the application of mutation analysis is 
demonstrated with an example model and the summary 
and future work in Section 6. 

Related Work 
Recent developments in testing aim to find faults 

earliest possible stages i.e. analysis and design stages. 
Andrews, France and Craig (2003) introduced a 
technique for dynamic analysis of the software design 
model comprising on class, activity and interaction 
diagrams [2]. Their technique was based on UML 1.4 
and involved testing an executable model. The 
approach used information from class and interaction 
diagrams  for generating the required test cases. Dinh-
Trong, Ghosh, & France (2006) also use symbolic 
execution and a Variable Assignment Graph that 
incorporated information from UML class diagrams 
and sequence diagrams for generating test data which 
can then subsequently be used for testing design 
models [12]. 

Originally, the mutation analysis was developed for 
program testing; however later, it was ‘mapped’ to 
another application level that to validate the systems 
specification. Fabbri et al. (1999) has conducted 
mutation analysis for the Finite State Machine (FSM) 
[6]. A set of mutation operators for FSM are defined to 
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confirm the absence of particular faults types in the 
FSM model. In [7] authors extended the fault model 
presented in [6] for FSM to Statecharts and introduced 
new mutation operators to address the faults specific to 
the Statechart features i.e. parallelism, communication 
and hierarchy. Furthermore, Fabbri et al. has explored 
the application of mutation analysis in other formal 
specification languages such as Petri Nets [8] and SDL 
[13]. In [10], Souza et al. used the mutation analysis 
for Estelle specification. Although, the application of 
mutation analysis for various specification and design 
languages has been investigated, but according to our 
best knowledge no work has been reported for UML. 
Considering the pervasive use of UML, it is deemed 
that mutation analysis can be of great help for 
validating design models specified in UML.  Thus 
work reported in this paper is concerned with the 
application of mutation analysis of UML v2.0 AD. 

Mutation Testing 
Mutation testing is a fault-based technique for 

software testing that uses mutation operators to inject 
simple faults into the artifacts (i.e. specification, design 
or code) under test (AUT) to get a set of mutant 
artifacts that are similar to AUT, and generating test 
cases that can reveals the differences between each 
mutant and AUT. Mutation testing is applied to gain 
confidence in the correctness of an artifact ‘A’ towards 
specific types of errors. The mutation score, computed 
from the number of generated mutants ‘Mn’, the 
number of equivalent mutants  ‘Me’ and the number of 
mutants killed ‘Mk’, gives an objective measure for the 
confidence level of the AUT and the adequacy level of 
the given test suite. The mutation score is defined as ( 
Mk / Mn - Me ). Mutation testing ensures the test suite 
adequacy by aiming 100% mutation score. Basically, 
mutation testing relies on two hypothesis: (1) the 
program produced by a competent programmer is 
either correct or near correct, and (2) the coupling 
effect as defined by DeMillo (1978) is the test data that 
can detect the mutants with simple faults can detect the 
most complex faults as well [5]. 

Mutant artifacts (mA) are generated by injecting 
simple faults in the artifact under test (AUT). A mutant 
is killed by a test case that causes the mutant artifact to 
behave or output differently from the original artifact. 
Mutation testing comprises of four steps: mutant 
generation, execution of AUT using given test suite, 
mutant (mA) execution with the given test suite and the 
adequacy analysis. If a mutant (mA) behaves or output 
differently from the AUT, it is said to be dead; 
otherwise, it is considered alive. When a test suite fails 
to kill a mutant then there could be two reasons for it. 
Either the given test suite is not adequate to execute the 
faulty block of the mutant or the original artifact 
(AUT) and the living mutant (mA) are equivalent. 
Equivalent mutants mean that the mutant artifacts are 
functionally equivalent to the original artifact and 
therefore couldn’t be killed by any test case in the test 
suite. In the former case, more test cases are generated 

until all the non-equivalent mutants are killed. While in 
the latter case, manual interaction is usually adopted to 
determine the equivalent mutants. So the objectives of 
mutation testing always remain the same to assure that 
the AUT is free from particular fault set and to 
generate a test suite with an ability to kill all non-
equivalent mutants. 

Mutation Testing applied to AD 
The rich syntax of AD is quite intuitive to program 

logic and expressive enough to suit wide application 
domains. For the application of mutation analysis on 
ADs, here we assume that both mutation testing 
hypothesizes are valid such that the designer is 
competent, and simple and composite faults have 
coupling effect. It means that the AD model produced 
by the competent designer is either correct or closely 
correct; while the coupling effect means the test suite 
that can detect simple faults is sensitive enough to 
catch the complex faults as well. 

In mutation testing, a fault set is devised based on 
the simple errors that a competent programmer may 
fall for in practice. For AD mutation analysis, we 
derived the control-flow based fault types from the 
semantic bugs referred in a recent study on software 
error characteristics [14]. Moreover, we hypothesize 
that these faults that a designer can fall for in modeling 
system behavior can be detected earlier and fixed. The 
set of faults that can be injected into an AD model 
constitute as the operators for AD mutant generation. 

AD Mutation Operators 
Mutation operators are represented as a set of rules 

that describe syntactic changes to the elements of the 
AUT. We apply the operators for mutating to the 
elements within the AD models. In order to generate 
mutants, we need to identify a set of potential faults. 
Following are the types of faults that a competent 
designer can encounter in an AD modeling: 

• Sequencing of operations (i.e. actions/ 
activities)  

• Interface error (i.e. missing input/ output) 
• Synchronization error that may happen because 

of various situations such as deadlock and race 
condition. 

• Decision Errors 
To define the mutant operators, the following 

definition of AD is adapted from [15]. Let AD = (A, E, 
B, M, F, J, AI, AF ) be a 8-tuple Activity Diagram 
where A = {a1,a2,…,an} is a finite set of action nodes; 
E = {e1,e2,…,en} a finite set of edges; D = {d1,d2,…,dn} 
a finite set of decision nodes such that ∀d∈D, d = 
<c>bk + <c>bk+1 + …+ <c>bk+n where B = 
{b1,b2,…,bn} a finite set of branches such that ∀b∈B, 
B ⊂ E and  c∈C, C = {c1,c2,…,cn} is a set of guard 
conditions; M = {m1,m2,…,mn} a finite set of merges; 
F = {f1,f2,…,fn} a finite set of forks; J = {j1,j2,…,jn} a 
finite set of joins; AI is an initial node and AF is a 
Activity-Final node. 
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In UML v2.0, AD got new token-game semantic 
inspired from the Petri Nets. The token movement rules 
allow the modeler to simulate the model and analyze 
the runtime behavior of the system. The tokens are 
moved by executing actions and activities. An action or 
activity becomes enabled and ready to execute on 
receiving token at all of its inputs. On execution 
completion, the action/ activity consumes all of the 
tokens on inputs and put one token on each of its 
outputs. 

It is important to mention that the new AD v.2.0  
rich syntax supports the modeling of both control and 
data (termed as ‘object’ in UML standard) flow views, 
however the mutation operators defined here are 
limited to the control-flow view of the AD model and 
are a minimal set of operators. The consideration for 
limiting the scope of this work to control-flow view is 
as following: (1) the semantic of control flow view is 
clear, well established and pragmatic; (2) the semantic 
of the data (object)-flow view constructs has several 
ambiguities and inconsistencies [16]; and (3) practical 
problems with the application of object-flow and high-
level constructs [16]. Based on the fault types defined 
here, we have developed a set of mutant operators for 
ADs, given in table-1 and classified as follows.  

Operator types: 
 Operation Mutation Operator (OMO) 

Functional errors often constitute as major part of 
bugs in software [14, 17]. The operation mutation 
operator is intended for functional faults such as 
missing, wrong, incomplete and unnecessary features.  

Definition of Missing Action Operator: The 
operator omits one action node in the model for each 
mutant model.  

Mutant models Mk, 0  k  |a|, are generated in 
such a way that IE.target = OE.target for each ai such 
that ai ∈ A, IE ∈ E and OE ∈ E. 

Definition of Actions Exchanged Operator: The 
operator depicts the error when the order or position of 
two actions exchanged. It changes the position or order 
of the action nodes in the model for each mutant 
model.  

Mutant models Mk, 0  k  |a|, are generated in 
such a way that IE.target = OE.target for each ai such 
that ai ∈ A, IE ∈ E and OE ∈ E. 

 Interface Mutation Operator (IMO) 
The interface mutation operators inject faults that 

are related with the interaction between the artifacts of 
the model. This type of fault implies that the required 
input is missing and output is not being produced. 

Definition of Inflow Exchanged Operator: The 
operator model wrong method call in the model for 
each mutant model.  

Mutant models Mk, 0  k  |a|, are generated in 
such a way that ai.IE.target = aj.IE.target for each ai 
such that ai ∈ A, aj ∈ A and i ≠ j. 

 Concurrency Mutation Operator (CMO) 

Concurrency is an important factor in the behavior 
of modern systems. AD provides the intuitive and 
abstract mechanism for specifying the concurrency 
logic by hiding the low-level implementation detail. It 
captures application specific concepts that are 
independent of the programming language concepts 
and constructs. Concurrency mutation models the faults 
(i.e. race condition and deadlock) related with the 
concurrency logic such as shared memory access and 
synchronization. 

Definition of Missing Fork (thread) Operator: The 
operator model the missing thread fault in the model 
for each mutant model.  

Mutant models Mk, 0  k  |f|, are generated in such 
a way that fi.IE.target = fi.OEj.target for each fi such 
that fi ∈ F, IE ∈ E and OEj ∈ E. 

Definition of Missing Join Operator: The operator 
model the missing synchronization (race condition) 
fault in the model for each mutant model.  

Mutant models Mk, 0  k  |j|, are generated in such 
a way that ji.IEj.target = ji.OE.target for each ji such 
that ji ∈ J, IEj ∈ E and OE ∈ E. 

Definition of Invalid Join Operator: The operator 
model the invalid synchronization (dead lock) fault in 
the model for each mutant model. For instance, if a 
Join is immediately preceded by Decision node (with 
least two branches), then deadlock may occur in at 
least one case.  

Mutant models Mk, 0  k  |j|, are generated in such 
a way that ji.IE(n+1).source = dj for each ji and di such 
that ji ∈ J and di ∈ D. 

 
Table 1: AD Mutation Operators 

Operator 
types 

 Mutation Operator 

OMO  Missing Action 
OMO  Actions Exchanged 
IMO  Extra Inflow (edge) 
IMO  Extra Outflow (Output) 
IMO  Inflow (Input) Exchanged 
IMO  Outflow (Output) Exchanged 
IMO  Missing Inflow (edge) 
IMO  Missing Outflow (Output) 
DMO  Missing Branch 
DMO  Extra Branch 
DMO  Missing Merge 
DMO  Negation of Condition 
CMO  Missing Fork (Thread) 
CMO  Missing Join (Synchronization) 
CMO  Invalid Join 

 Decision Mutation Operator (DMO) 
The objective of the decision mutation operators is 

to validate the control logic of the system. The decision 
mutation operator is intended for branch faults i.e. 
unreachable path and missing path. 

Definition of Extra Branch Operator: The operator 
adds an extra branch fault in the model for each mutant 
model.  
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Mutant models Mk, 0  k  |d|, are generated in 
such a way that di.OE(n+1).source = dj.OEn.source and 
di.OE(n+1).target = aj for each di such that di ∈ D, aj ∈ 
A. 

Definition of Missing Branch Operator: The 
operator adds an extra branch fault in the model for 
each mutant model.  

Mutant models Mk, 0  k  |b|, are generated in 
such a way that bi.source = bi.target for each bi such 
that bi ∈ B. 

Definition of Missing Merge Operator: The 
operator adds an extra branch fault in the model for 
each mutant model.  

Mutant models Mk, 0  k  |m|, are generated in 
such a way that mi.IEj.target = mj.OEn.target for each 
mi such that mi ∈ M. 

Where, IE and OE are respectively incoming and 
outgoing edges of the Action ai, Join Ji, and Decision 
Di as specified. ‘Source’ and ‘target’ are edge attributes 
referring to the source and target nodes respectively. 

The operators defined for AD models are aimed to 
inject fault of both omission and commission types, 
such as missing action is omission and extra action is 
commission type of error. For the application of 
defined operators, it is assumed/ constrained that the 
model has already been refined by replacing each 
implicit decision, fork and join with explicit decision, 
fork and join respectively. The assumption is based on 
the fact that the replacement of implicit decision, fork 
or join with explicit counterpart does not affect the 
logic of control-flow however it reduces the ambiguity 
(i.e. multiple inputs or multiple flows).  

Illustrated Example 
For evaluation and demonstration of the proposed 

technique, we use the model shown in figure 3 that 
describes an enterprise customer commerce system 
taken from [18] and contain an activity diagram 
describing a system level process. It describes the 
process of online purchase system. The system process 
comprises of two sub-processes, authentication and 
shopping. The authentication process allows the user to 
login and in the case of a new user, it allows the new 
user to register first. Within the shopping process, a 
user can order the selected products and can configure 
his/her account if required. 

Studies [4, 16, 19] has showed that the imprecise 
and informal AD semantic is a major source of 
incorrect and ambiguous AD models. Moreover, 
implicit and obscure functional assumptions in the 
design that hide the critical details of the system could 
end up with undesired characteristics in the 
implementation.  For example, according to the AD 
semantic, Action is a basic artifact that enables the start 
of execution when associated token(s) are available 
from all inputs. However, the model specified in 
figure-3 clearly seems to violate the standard. Thereby, 
it is deemed necessary to unmask the necessary control 
flow prior to the mutation analysis. The refined version 
of the example model is presented figure-4.  

Mutation Analysis of the AD model will be 
comprises of six tasks as follows: original model 
execution, test suite generation, mutant generation, 
mutant execution, mutation analysis and mutant score 
calculation. The application of the proposed mutation 
analysis for AD models is demonstrated here with 
example model. 

For AD model execution and test sequence 
generation, a Depth-First Search (DFS) based test 
sequence generation (TSG) technique as purposed by 
Wang et al. [20] is used. According to the technique, 
basic paths (BPs) for the activity diagrams are defined 
and DFS was used to derive test sequences from these 
BPs.  

We defined the mutation operators in the form of 
XSL transformation rules. Mutants are generated by 
introducing k simultaneous changes in the original 
model and are named as k-order mutants. Earlier 
studies [21] have suggested that there is only a minor 
gain in the quality of the artifact in comparison to the 
cost involved for mutant generation and execution in 
higher-order mutation analysis. Therefore, the mutation 
analysis applied here is limited to first order mutants. 
Using the model transformation technique, the 
mutation rules are applied and mutant models of the 
example model are produced as shown in table-2. The 
Negation of Condition operator could not produced any 
mutant models because the example model does not 
contain the required parameters.  

All models are executed with the test suite 
generated from the original AD model. The model is 
considered a mutant and marked as dead if it fails to 
execute any one of the test sequences in the given test 
suite. Owing to the huge number of mutant models 
manual mutation analysis is not practical and a tool has 
been developed to detect mutant models. However, the 
undetected mutants are analyzed interactively to 
determine the equivalent mutants and deficiency of the 
generated test suite. 

 

 
Figure 1: Action Exchange mutant 

Consider an initial test suite TS = {(AI, init, logon, 
authentication, [select, verify], put, order, AF), (AI, init, 
register, logon, authenticate, [select, verify], configure, 
order, AF)} represents a typical test suite adequate for 
all-actions coverage criteria, i.e. ensures that every 
action is executed at least once. Consider that first two 
mutant operators (OMO type as shown in table-1) are 
selected and 36 mutants are generated as shown in first 
two rows of table-2. The models are executed with an 
initial test suite which detected 34 mutants. The 
mutation score of the initial test suite is 0.9444; 

299



whereas 2 (5.56%) mutants (as shown in figure 1 & 2) 
generated from the given set of mutant operators are 
still alive. With this level of analysis, the percentage of 
undetected mutants indicates the probability of the 
faulty design to be selected for further development. 
Moreover, if one of the mutant model is forwarded as a 
final design, the given test suite will not be able to 
detect these types of faults. It also indicates the need 
for more test sequences. In order to kill these two 
mutants, the test suite needs two more test sequence i.e. 
{(AI, init, logon, authentication, select, [put, verify], 
select, order, AF), (AI, init, logon, authentication, 
select, [configure, verify], select, order, AF)}. 

 

 
Figure 2: Action Exchange mutant 

The final test suite generated according to the DFS 
technique [20] able to detect 116 mutants out of 134. 
Although, there are 18 undetected mutants, these are 
not caused by equivalent mutants. Rather these are due 
to the limitation of the DFS test generation technique 
that was employed for generating the initial test suite. 

 
Table 2: Synthesis of the Mutation Analysis results 

Mutation Operator # of 
mutants 

killed Alive 

Missing Action 8 8 0 
Action Exchange 28 28 0 
Extra Inflow 9 0 9 
Extra Outflow 9 0 9 
Inflow Exchanged 22 22 0 
Outflow Exchanged 22 22 0 
Missing Inflow 9 9 0 
Missing Outflow 9 9 0 
Extra Branch 7 7 0 
Missing Merge 1 1 0 
Negation of Condition 0 - - 
Missing thread 2 2 0 
Missing Sync. 1 1 0 
Invalid Join 7 7 0 
Total 134 116 18 

Summary and future work 
In this paper we introduced a mutation analysis 

technique for Activity Diagram, whose objective is the 
application of mutation analysis for verification and 
validation of the system design depicted in AD models. 
The mutation operator set is defined for syntactic errors 
according to the control-flow and concurrency features 
of Activities.  

The application of the technique is demonstrated 
through example model. Currently, a tool is being 

developed for automated support for the application of 
the technique. 

In future we are planning to extend mutation 
analysis to semantic errors, data-flow and high-level 
constructs of AD as well. The quality of the generated 
test suite can be evaluated with this technique and 
currently under study for comparative analysis of AD 
based test generation techniques. In order to limit the 
cost of mutation analysis, the coupling effect was 
assumed true in this study but this hypothesis needs 
validation study in the context of AD.  
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Figure 3: AD model of an Enterprise Customer Commerce System 

 

 
Figure 4: Refined AD model of ECCS 
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