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Abstract 

 
The article presents a novel control-flow based test 

sequence generation technique using UML 2.0 Activity 
Diagram, which is a behavioral type of UML diagram. 
Like other model-based techniques, this technique can be 
used in the earlier phases of the development process 
owing to the availability of the design models of the 
system. The Activity Diagram model is seamlessly 
converted into a Colored Petri Net. We proposed a 
technique that enables the automatic generation of test 
sequences according to a given coverage criteria from 
the execution of the Colored Petri Nets model. Two types 
of structural coverage criteria for AD based models, 
namely sequential and concurrent coverage are 
described. The proposed technique was applied to an 
example to demonstrate its feasibility and the generated 
test sequences were evaluated against selected coverage 
criteria. This technique can potentially be adapted to 
service oriented applications, workflows, and concurrent 
applications. 

1. Introduction 
 
UML is the de facto industry standard for software 

modeling and a key component in model driven 
development. Various UML diagrams, categorized as 
structural or behavioral, can be used to specify a 
particular view of the system. Structural diagrams such 
as the class, component and deployment diagrams are 
used to visualize the static view of the system. The 
behavioral diagrams include activity, state machine and 
interaction diagrams. The sequence diagram (one of the 
interaction diagrams) is provided for expressing time-
oriented inter-object message sequencing. The state 
diagram is used for specifying the dynamic view of the 
system in terms of the sequence of states that a system 
can pass through during its lifecycle. The Activity 
Diagram (AD) is devised to visualize the flow-oriented 
aspects of the system that may encompass simple 
sequential, branching, looping and concurrency. The 

advantages of UML are its simple and intuitive syntax as 
well as its expressiveness to model large complex 
systems visually and efficiently. However, the lack of a 
formal semantics has hindered the direct applications of 
automated techniques on UML models for test case 
generation. 

Model based testing (MBT) is an agile and systematic 
method which aims to automate the testing process 
through automated test suite generation and execution 
techniques and tools.  A model is an intuitive approach 
for describing the structure and behavior of the system 
and is specific in representing particular aspects of the 
system according to defined objectives, assumptions and 
structures. The benefit of MBT is that it facilitates the 
construction of behavioral models early in a development 
lifecycle, thus exposing ambiguities in the specification 
and design [1]. More importantly, it supports re-use in 
future testing as these models captures the behavior of a 
software system and in contrast to a test suite, they are 
much easier to update if the specification changes [1]. In 
addition, MBT potentially supports earlier fault detection 
and a higher level of coordination between design and 
testing activities. One approach to generate a test suite 
from models is based on model checking [2], [3]. Model 
checking is a static analysis technique used to determine 
whether a specific property of interest is verifiable or if 
the system exhibits a particular functional behavior that 
violates this property. As it involves an exhaustive 
analysis of a model, involving the creation and 
exploration of the state space,  it is prone to the state 
explosion problem [4], thus making it an infeasible 
approach for any analysis of non-trivial systems. In 
comparison, simulation, involving the execution of a 
model, is a dynamic and exploratory analysis of the state 
space and is relatively inexpensive.  Analogous to 
software testing, it requires test vectors to execute the 
model and these are referred to as test cases.  

In this paper we propose a test sequence generation 
(TSG) technique involving model execution of Colored 
Petri nets (CPN) that are derived from UML 2.0 AD. The 
resulting test sequences are then evaluated using two 
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types of AD based coverage criteria that are introduced 
in this paper, namely sequential and concurrent coverage. 
The proposed technique allows software developers to 
continue to design in their familiar modeling 
environment and the resulting UML 2.0 ADs are 
seamlessly transformed into CPN for subsequent 
automatic test sequence generation.   The developed 
technique has the advantages of both UML and CPNs 
whilst overcoming some of their shortcomings.  

2. Motivation 
 
A set of AD models can be seen as the visual 

"blueprints" of the functionality of the system and 
Kosters et al. [5] have stated that ADs can specify an 
entire set of use case scenarios in a single diagram.  
Lieberman [6] has suggested that specific scenarios can 
be generated by tracing a thread of execution from entry 
to exit through each AD. Stakeholders can easily 
understand the system behavior as well as monitor the 
development of system functionality by tracing execution 
paths through the ADs. A point to note is that deriving all 
possible usage scenarios manually from a set of realistic 
ADs can be a very time consuming task.  

The potential scope and application of AD models in 
testing has been recognized by many researchers, for 
example, Briand and Labiche [7] described the derivation 
of usage scenarios as test guideline from AD models, 
Lieberman [6] suggested their use in monitoring the 
testing process and Bai et al. [8] explored the application 
of AD in scenario-based software testing.  However, 
most of this work involved UML 1.x and UML 2.0 AD 
has significant changes from AD in UML 1.x.  While 
there is some emerging work involving UML 2.0 ADs, 
most of the approaches have involved other types of 
UML diagrams (e.g. class diagrams, statecharts, etc). 

While UML 2.0 AD has Petri Nets (PN)-like 
semantics, its informally defined semantics still have 
many ambiguities and inconsistencies, thus making it 
difficult to automatically derive test cases directly from 
ADs. The proposed technique resolves existing 
ambiguities and inconsistencies in a given AD and 
supports its seamless transformation into a CPN 
executable model, thus enabling the automatic generation 
of test sequences from an AD model for system 
behavioral testing. It brings the advantages of both 
domains, AD and PN, while overcoming their shortfalls. 
The rich syntax of AD is quite intuitive to program logic 
and is expressive enough to suit a wide range of 
application domains. It complements the daunting 
complexity of using CPN in designing complex and /or 
object-oriented systems. The well founded theory, strong 
analytical techniques and tool support of CPN and more 
importantly the informal foundation of the new UML 2.0 
AD also make CPN an ideal platform for further analysis 

and evaluation of the AD models. At the same time, the 
proposed technique frees a tester from learning a new 
language or redesigning his already built models in order 
to execute them. The introduction of model based 
concurrent coverage criteria is timely as UML is now the 
dominant and standard modeling language, model based 
testing is also getting popular and no such criteria are 
available for concurrent system testing. 

Section 3 describes related work and the proposed 
TSG technique is described in Section 4. Section 5 
describes the test objective in terms of the test suite 
evaluation criteria. The case study, corresponding results 
and discussion are presented in Section 6 and the 
summary and future work in Section 7. 

3. Related Work 
 
Generation of test cases in MBT can be carried out 

via techniques such as model checking, graph-based 
approaches (e.g. random walk, or the Chinese Postman 
Walk), symbolic execution, and deductive theorem 
proving. Sivaraj and Gopalakrishnan [9] proposed a 
random walk based approach for model checking in 
parallel and distributed environment together with 
breadth first search. They defined four heuristic-based 
algorithms with configurable coupling between random 
walk and breadth first search for state space exploration. 
Lee et al. [10] presented an idea of using random walk 
for generating test sequences from Communicating Finite 
State Machine (CFSM) in conformance testing. 
According to the method, an adaptable random walk is 
guided by classified transitions in a directed graph and 
visited states are sampled for test traces.  

Investigations involving the application of PN in 
software testing can be categorized into four groups: test 
suite generated (1) using typical state-space analysis 
techniques [11], (2) using invariant analysis [12], (3) 
deriving test scenarios by simulating or executing PN 
models and (4) directly deriving test data from a PN 
model using formal specification-based test generation 
techniques [13]. Ramaswamy & Neelakantan [14] 
showed the application of a PN based invariant analysis 
scheme for software design and testing. The proposed 
approach generates unique paths dubbed as sub-flows 
using the T-invariants obtained from a PN model. While 
the approach avoids the state explosion problem 
associated with model checking, it requires a high level 
of mathematical skills, thus inhibiting its applications at 
an industry level. Watanabe and Kudoh [11] proposed 
two CPN based algorithms for the automatic test suite 
generation in conformance testing involving concurrent 
systems. Their CP-tree method requires the generation of 
a reachability tree from a CPN model and test sequences 
are then produced by traversing through arcs and nodes 
from the root to the leaf nodes of the CP-tree.   

442442442442



Zhu and He [15] proposed four types of structural 
coverage criteria for testing PN model. The Transition 
based and State (place) based criteria are associated with 
the structural aspects of the Predicate (Prt) Net and the 
data (token) flow and specification oriented criteria are 
linked to the behavioral aspects of the Prt Net. However, 
a later study [16] identified some limitations with the 
proposed criteria (e.g. the ‘state transition path’ coverage 
and the ‘K-concurrency length-L trace’). While the 
criteria we propose here are in some ways similar to 
those in [15] they are, however, specific for addressing 
structural coverage in ADs. For example, they 
specifically address the issue of branch and edge 
coverage in an AD which is not addressed in the criteria 
defined in [15]. 

Mingsong, Xiaokang and Xuandong [17] reported a 
test generation technique that used UML 2.0 AD as the 
design specifications. In order to obtain the execution 
traces, the approach involved program instrumentation 
where probes are inserted into the code of the software 
under test. Three types of test adequacy criteria for an 
AD were addressed, namely activity, transition and 
simple path coverage. A simple path was defined by the 
authors to be a path that has no loops or concurrency and 
the set of simple paths is generated using a modified 
depth first search (DFS) algorithm. The proposed 
technique however is prone to generating many invalid 
test cases. 

Andrews, France and Craig [18] introduced a 
technique for dynamic analysis of the software design 
model comprising on class, activity and interaction 
diagrams. Their technique involved UML 1.4 and testing 
an executable model. An interesting aspect of this 
approach is that AD is used as a secondary artifact (to 
generate an executable model that captured the behaviour 
of a class and to obtain the interactions between objects 
from a set of ADs) and no coverage criteria for AD was 
considered here. Two sets of coverage criteria were 
subsequently used in [19] where UML design models 
were converted into an executable form  for  testing 
them. The approach used information from class and 
interaction diagrams  for generating the required test 
cases.  Dinh-Trong, Ghosh, & France [20] also used 
symbolic execution and a Variable Assignment Graph 
that incorporated information from UML class diagrams 
and sequence diagrams for generating test data which can 
then subsequently be used for testing design models. 

Due to the lack of formal and executable semantics,   
UML models are not suitable for automation or formal 
behavioral analysis [21], [22]. Thus, many researchers 
have tried to integrate UML with various well-defined 
formal languages [13], [23-25]. In [13], Buchs et al. 
proposed a formal specification based test suite 
generation approach that transforms the UML models 
(i.e. class, collaboration and state diagrams) into a high 

level PN (CO-OPN) and then generates test data for the 
specified input domain. Pettit and Gomaa [25] used 
described the behavioral analysis of the system by 
transforming UML Collaboration diagram into CPN. 
Eichner et al. [23] introduced the PN based semantic for 
Sequence diagram for taking advantage of formal 
analysis tools and techniques.  With the exception of the 
work in [13], most existing work involving UML have 
converted sequence diagrams to CPN for animation and 
for V & V of requirements and design models. 

4. Generating Test Cases 
 
Test case generation has always been fundamental to 

the testing process.  Bertolino [26] articulated that test 
case generation is a most challenging and an extensively 
researched activity. In software testing, the definition of 
a test case is contextual and relates to the corresponding 
test case generation technique. Thus, it is important to 
clearly define the basic terms and concepts used 
throughout this paper. The test data is a set of inputs, 
expected outputs and execution conditions derived from 
a low level platform specific model using other 
techniques (e.g. equivalence partitioning, boundary 
values etc.) for a particular test case. A test sequence is a 
high level test where a sequence of tasks or operations is 
directly generated from a high level behavioral model 
according to a particular test objective. As the focus of 
the proposed technique is the behavioral correctness of 
the system, the generated test sequences enforce the 
functional correctness of tasks/operations, order of 
execution and the dependencies among the various tasks 
or operations. The term test suite implies the collection 
of test sequences. 

Figure 1: Automated TSG Process 
Similar to execution paths in code based testing, it is 

the execution sequences of model artifacts that interest 
testers more than the execution of an individual artifact. 
For complete testing, it would need to test every possible 
combination of artifacts. Unfortunately, this approach is 
not scalable and is prone to combinatorial explosion. A 
manual exploration of the model or test suite generation 
is not viable and automatic TSG is most desirable as the 
test suite is automatically derived from the model 
according to the given test objective. The test objective 
specifies the required adequacy criteria as a guideline. 

443443443443



The overall process of the proposed TSG technique is 
illustrated in the figure-1. 

As shown in figure 1, we propose a three-stage TSG 
process. In UML 2.0, after major revision, AD has a new 
PN-like token flow semantic which lacks precision and 
consistency in the description of flow rules as reported in 
[22], [24]. The imprecision and ambiguity in the 
semantic could yield differing interpretations and even 
unexpected runtime behavior of a syntactically valid AD. 
Thus, deriving a test suite directly from an AD could 
result in invalid test sequences. In fact, it is implicitly 
required to formulate the exact runtime behavior by 
transforming the AD into a precise semantic for its 
execution and analysis. Hence the inspiration for 
transforming AD into CPN stems from the fact that the 
CPN is a formal modeling language that provides an 
unambiguous and executable specification which has 
been quite successful in modeling both concurrent and 
sequential systems.  

In the first stage, an AD model is transformed into a 
CPN model using the approach discussed in [27].  Then 
using the algorithm proposed in the following section, 
test sequences are generated and finally evaluated against 
a given test objective. If the test suite does not satisfy the 
required criteria then more test sequences are generated 
via another iteration of the random walk. This process 
continues until the required criterion specified in test 
objective is satisfied. In the next section, we introduce a 
random-walk based technique for automatic TSG. 

Figure 2: Pseudo Code for Random Walk Algorithm 
for TSG 

Random-walk based TSG 
The concept of a random-walk is based on the theory 

of probability and referred to a movement where the path 
is initiated from a specific point and each successive step 
is then made randomly. In a connected graph, the 
trajectory of a random walk includes all visited nodes. In 
general, a random-walk is considered suitable for 
discrete problems and needs adaptation for a particular 

application. This apparently simple technique has 
received a fair amount of attention and has been applied 
in areas such as wireless networking, World Wide Web, 
model checking etc. In fact, Robinson [1] has discussed 
its use for MBT and has stated that the very random 
nature of this approach produces useful test cases which 
overcome the “pesticide paradox” problem in testing.   

The graph based representation and formal executable 
semantic of CPN makes it ideal for using the random-
walk algorithm for executing the model and recording 
the execution traces. In CPN, a token can abstractly 
represent a control or stimuli in the model and therefore 
the walk will simulate the token-flow during the model 
execution. Although the walk progresses randomly, we 
have adapted the random selection process to the 
predefined semantic for CPN to avoid any invalid paths. 
Moreover, as the technique is based on pseudorandom 
exploration of the model, the model inscriptions such as 
conditions and data information are not used during the 
random walk. Therefore all the conditions and 
constraints associated with an AD model have not been 
mapped across to the CPN model. This is specific only to 
the proposed random-walk algorithm as it aims to 
generate all possible control flow paths from the model. 
Moreover, as the alternative paths at any branching node 
are selected randomly, the description and evaluation of 
condition statements becomes superfluous. However this 
condition and constraint information can be used 
subsequently in conjunction with the previously 
generated paths at the test data generation stage 
involving various black box testing techniques such as 
equivalence partitioning. Furthermore, as one of the 
many enabled transitions in CPN will eventually 
occur/fire, we postulate that the walk randomly selects a 
transition and in visiting it makes one step of the walk. 
Similarly, the traversal of the walk through a place node 
is also marked as a step of in its path.  A test sequence is 
any path in the CPN model from its initial node to its 
final node. Considering the concurrency support in CPN, 
the interleaving paths between fork/joins nodes 
intuitively constitute as potential test paths for concurrent 
testing i.e. synchronized sequence (SYN-sequence is 
defined as a sequence of synchronization events e.g. 
read/write, P/V, lock/unlock operations).  

Table 1: CPN nodes with corresponding AD nodes 
and observing token-game semantic 

AD2 
Node 

CPN 
Node 

Semantic  

Action Transition  An action can only start 
execution when all inputs 
have tokens. 
 When an action starts 
execution it consumes tokens 
on all inputs. 
 On completion, tokens are 
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offered on all outputs. 
Initial Place  Initialize with a token 

whenever the enclosing 
activity is invoked. 
 An outgoing token can follow 
only one edge. 

Activity 
Final 

Place  When a token reached it, the 
enclosing activity will be 
terminated; particularly, all 
executing actions are stopped, 
all other tokens are destroyed 
and all flows are terminated. 

Flow 
Final 

Place  All tokens arriving on it are 
destroyed. 

Fork Transition  Incoming tokens are 
duplicated to all outputs. 

Join Transition  All incoming tokens are 
joined according to the rules 
given in [28]. 

Decision Place  Each incoming token can 
traverse only one outflow. 

Merge Place  All incoming tokens are 
forwarded to a single outflow 
without synchronizing and 
joining them. 

  
The pseudo code for the adaptive random walk 

algorithm is described in figure 2. Unlike a conventional 
random-walk algorithm, where all subsequent transitions 
should be enabled after a step in a random-walk, in this 
proposed algorithm only those transitions that have 
satisfied CPN semantic (i.e. all input tokens are 
available, all pre and post conditions for a transition are 
satisfied) are to be enabled. 

Following the defined semantic in Table-1, the 
random walk begins from an initial node dubbed as ‘Init’ 
place in a CPN model. The walk then randomly selects 
one of the outgoing arcs according to the corresponding 
semantic of an initial node and the given token moves 
along the selected arc. After an occurrence of a transition 
a token is passed to each output place. The walk 
continues as long as it is visiting nodes with non-zero 
outgoing arcs. Currently the algorithm deals with an AD 
where there is only one Activity-Final node which is 
labeled as ‘Final’ to distinguish it from the flow final 
node. Once the walk reaches a node without any 
outgoing arc and explicitly labeled as ‘Final’, the walk 
terminates for the current iteration according to the 
semantic of an Activity-Final node. Using the random 
walk approach, test sequences are automatically 
generated in each iteration by recording the trace of the 
random walk starting from the initial node to the final 
node. At the end of each iteration the attained coverage 
of the test suite is evaluated against the specified test 

adequacy criteria and a decision is made whether to 
continue with another iteration of the random walk.  

5. How is the quality of the generated TS 
measured? 

Zhu et al. [29] described the use of coverage based 
test adequacy criteria for test quality measurement. 
Generally, coverage criteria are used to determine the 
adequacy of the test suite and therefore are considered as 
an essential part of a testing method. As a general rule of 
thumb, the test suite with a higher coverage is considered 
to be better in quality. This is based on the fact that a 
higher coverage could potentially reveal more defects 
[30], [31]; hence eventually improves the software 
quality. Test coverage is measured in terms of the 
percentage of specific constructs that have been executed 
at least once during execution according to the defined 
coverage criterion.  

Similar to code based testing techniques, in MBT, the 
test suite is also generated with the aim of providing 
maximum testing coverage of the system under test. 
However, during the test data generation process the 
coverage based adequacy metric usually relates to the 
nature of the source (e.g. code, model or fault-set) of the 
tests and therefore measures the artifacts of the source 
involved in TSG process. In this context, the coverage 
metric establishes the link between the test suite and 
source and further, imparts significant information about 
the contents and characteristics of the test suite. 
Coverage Criteria 

In the literature, a large number of coverage criteria 
have been suggested. However, we find only a few 
criteria that are appropriate for observing the coverage 
information in an AD model which has specific 
requirements such as an ordered execution of 
tasks/operations in isolated control paths or threads and 
coordinated execution of tasks/operations in 
synchronous/asynchronous parallel control paths or 
threads. In the following section, we present sequential 
and concurrent criteria adapted from [29] and [32] 
respectively. 
Sequential Coverage Criteria: 

Control flow based testing has already been 
extensively researched and a number of control flow 
based coverage criteria have been proposed. Although at 
the basic level, control based criteria are defined on a 
graph structure, and hence needs some adaptation to be 
associated with a particular technique and application. 
Testing in isolated control paths or threads is analogous 
to the control flow based testing. Therefore, sequential 
control flow based coverage criteria are considered 
appropriate here and are adapted for AD models. It will 
allow measuring and determining the scenarios that need 
to be covered by a behavioral test suite in order to be 
considered adequate. 
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• CPN Transition Coverage: A control flow based 
criterion that measures the number of transitions 
executed during testing. In CPN, a transition node is a 
set of outputs (a1, a2,.., an) that all are traversed after 
the transition’s execution. On mapping back to the 
AD, transition coverage would seek the execution of 
each action, fork and join node at least once, thus, the 
test suite at a minimum includes execution of all 
actions, forks and joins nodes at least once. It is 
analogous to node-coverage in state-based testing and 
could be considered as the elementary and minimal 
required testing criterion. 

• AD Branch Coverage: A control flow based criterion 
that measures the number of branches executed during 
testing at least once. In CPN, a place node with 
multiple outputs corresponds to a decision node in an 
AD with a set of branches (a1, a2,.., an) such that only 
one branch is traversed for an execution. For full 
branch coverage, a test suite needs to have at least one 
test case for each branch which also includes the 
execution of all transitions. Therefore, branch 
coverage subsumes the transition coverage. 

• AD Edge Coverage: According to this criterion, the 
number of edges traversed during testing is 
determined. In an AD model, a number of 
activities/actions are linked in a particular order which 
represents a sequential flow. This aspect of flow is 
visual and superficial. Thus we need to remember that 
AD has particular semantic as well which indicates the 
dependency between linked actions/activities. It 
means an action can only execute after the earlier 
action has completed and all input tokens are 
available. Note that visually, an edge is a link between 
two nodes or a link between two operations in a 
scenario and it only shows the sequence of actions. 
The edge coverage criterion ensures that all arcs 
between all types of nodes must be evaluated during 
testing. 

• All Path Coverage:  It is a given to ensure that all 
possible ordering and sequencing of flow occurred at 
least once during testing. Path based coverage 
criterion is the strongest but is difficult to achieve as 
there could potentially be an infinite numbers of 
execution paths. As an execution path can be 
represented by the combination of states, transition or 
both in CPN; the number of executions involving all 
combinations becomes so large, that in practice, 
exhaustive testing at this level is deemed to be 
impractical. 

Concurrent Coverage criteria:  
Studies have shown that conventional test coverage 

criteria are inadequate for concurrent program testing 
[33], [34]. Consequently, we seek further analysis of the 
generated test suite in relation with the concurrent nature 
of the AD, namely the concurrency and synchronization 

constructs (i.e. fork and join), to mimic the interactions 
between sub-processes. The fork node in an AD depicts 
the case where all of the actions following a specific 
action may execute concurrently. It splits the control into 
‘n’ sub-processes and allows all of them to execute 
simultaneously. On the other hand, the join node mimics 
the convergence point for all of the concurrent sub-
processes. Consequently a model based test suite could 
reveal concurrency faults such as failure to realize a 
certain execution order of concurrent operations and 
failure to identify the blocking/deadlocking. Definitions 
of concurrent coverage criteria modified from [32] are 
discussed below. 
• Interleaving node coverage: The interleaving node 

coverage criterion is about the execution of n-wise 
permutated set of concurrent nodes in ‘n’ 
synchronized sub-processes. In AD, the combination 
of all types of nodes (i.e. action, activity, decision and 
merge) will make up the permutated set. The degree to 
which the permutated set has been exercised by a test 
suite implies the coverage attained according to this 
criterion. 

• Interleaving edge coverage: Similarly, the 
interleaving edge coverage criterion requires that all 
the n-wise permutated set of edges in ‘n’ synchronized 
sub-processes are executed during testing. The 
percentage of the paired edges exercised during testing 
implies the degree in meeting this adequacy criterion. 

• Synchronized path coverage: The execution of the 
set of all possible interaction between concurrent sub-
processes is required in order to satisfy the 
synchronized path coverage criterion. Given the 
concurrent execution of sub-processes, the number of 
interleaving paths grows exponentially along with the 
growth of the number of sub-processes. In this way, 
attaining adequate coverage for this criterion is 
intractable and therefore it is mentioned here only for 
the purpose of completeness. 

6. Illustrated Example 
 
For evaluation and demonstration of the proposed 

technique, we use the model shown in figure 3. It 
describes an enterprise customer commerce system taken 
from [35] and contains an AD describing a system level 
process. It describes the process of online purchasing of 
products that is comprised of two sub-processes: 
authentication and shopping. The authentication process 
allows the user to login and in the case of a new user, it 
allows the new user to register first. Within the shopping 
process, a user can order the selected products and can 
configure his/her account if required. Following the 
technique proposed in section-4, this sample AD model 
is first converted into a CPN model. Using the 
transformation methodology proposed in [27], we 
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acquire the CPN version of this model as shown in 
Figure 4. 

Using the proposed random-walk based TSG 
algorithm and the resulting CPN model, a test suite is 
then generated. The trace of the walk is recorded for each 
iteration of the random-walk and the generated test suite 
is presented in Tables 2 and 3. The generated test 
sequences are then evaluated according to the coverage 
criteria described in the previous section.  

Results and Discussion 
Tables 2 and 3 summarized the degree to which the 

generated test suite, obtained from the example model 
via the proposed approach, meets the various test 
coverage criteria. Table 2 presents the evaluation of 
generated TS against the sequential coverage criteria. 
Similarly Table 3 presents the interleaving node and edge 
coverage analysis of the generated TS. The column 
names in both tables are abbreviated as Cd, Ud, Cov, Uq 
and CC for covered, uncovered, coverage, unique and 
cumulative coverage respectively. The numbers of 
executed and missed model artifacts are indicated in 
columns ‘Cd’ and ‘Ud’ respectively for a particular test 
sequence. The degree of individual coverage of each test 
sequence is presented in column ‘Cov’. In Table 3, the 
‘Cd’ and ‘Ud’ columns show the number of paired 
interleaving artifacts in the concurrent processes that 
have been exercised by an individual test sequence. The 
‘Uq’ column contains the number of unique artifacts that 
were previously uncovered. The ‘CC’ column is about 
the cumulative coverage gained by each additional test 
sequence. As an example, TS-1 in Table 2 tested 5 
artifacts and missed 12 artifacts according to the branch 
coverage criterion. As the total number of artifacts for 
branch coverage criterion was 17, the coverage it attained 
was 29.4%.  Moreover, as TS-1 was the first test from 
the suite, all tested artifacts were unique and therefore 
the cumulative coverage was also 29.4%. After that, TS-
2 tested 12 artifacts and missed only 5. It attained 70.6% 
coverage and, as only 8 out of 12 tested artifacts were 
unique, the coverage accumulated by this test sequence 
was 76.4%. With the execution of two new artifacts by 
TS-3, the CC reaches to 88.2%. However, from TS-4 to 
TS-9, the CC value does not improve as no new artifact s 
has been executed. The CC is further improved when TS-
10 executed a new artifact. After that, CC remains 
stagnant for TS-11 and TS-12. Finally, CC reaches to 
100% when TS-13 executed the remaining artifact. For 
the edge coverage criterion, the test suite attained 100% 
cumulative coverage in a similar pattern. Despite this 
apparent similarity at test suite level, the individual test 
case coverage reveals the fact that both the branch and 
edge coverage criteria are not similar and the edge 
criterion overlaps branch criterion.  

As seen from the given data, the generated test suite 
is adequate in meeting the sequential coverage criteria 
but is not sufficient in meeting the concurrent testing 
criteria, thus requiring more test cases to be generated. 
For a sound analysis we further analyze the generated 
test suite in terms of the following characteristics: 
redundancy, test priority and test suite size. 
Redundancy: The basic idea behind a random-walk 
based algorithm is enumerating all the possible and 
unique control flow paths in an AD model. With 
arbitrary interactions in the concurrent processes, the 
number of permutated paths grows exponentially and 
manual or exhaustive test generation techniques (e.g. 
depth first algorithm) are therefore infeasible. 
Consequently, the random-walk based TSG algorithm is 
deemed more than adequate because of the exploratory 
nature of the algorithm. The algorithm incrementally 
generates more test sequences and stops once a specified 
coverage criterion is achieved. However, the proposed 
algorithm is not ideal, since we can see from the 
coverage data in Tables 2 & 3 that it has some tendency 
to produce a number of redundant test cases as a result of 
the stochastic nature of the proposed algorithm. 
However, a careful analysis of the data at the test level 
reveals that some degree of redundancy is indispensible 
if the associated test cases add to the cummulative 
coverage at the test suite level. At the same time there are 
test cases such as TS-4,5,6,7,8,9 that do not bring any 
extra coverage and thus should be discarded. A future 
improvement to the existing algorithm is to modify the 
algorithm to guide the random-walk heuristic to skip any 
redundant tests cases for optimum test suite generation.  
Test priority: An analysis of the Tables 2 & 3 also 
indicates that some test cases have a higher coverage 
with respect to a specific criterion than others but at a test 
suite level, owing to the order of execution, it does not 
bring any additional coverage. For instance, in Table 2, 
TS-11 has almost double of the coverage of TS-1 but 
appears redundant due to the test execution order. Thus 
prioritizing the test cases according to their coverage 
criteria could further optimize the test suite. Future work 
in this project would also investigate approaches for 
prioritization of the generated test cases. 
Test suite size: Another important aspect is the size of 
the generated test suite or, in other words, the number of 
tests needed with this approach to attain adequate 
coverage. As a guideline we assume that there should be 
at least one test case for each independent path. Given 
the fact that an AD model itself depicts the control flow 
graph of a particular module, the cyclomatic complexty 
metric [36] was used to analyse the example model and 
12 distinct control flow paths were found.  Thus, 
initially, we ran the algorithm for 12 iterations and 
generated 12 test cases. The test suite is then evaluated 
for both sequential and concurrent coverage. 
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Subsequently more test cases are added incrementally 
until the complete coverage is achieved. The results 
indicate that the algorithm produces 100% coverage for 
sequential criteria after 13 iterations but as indicated in 
Table 3, many more tests cases will be required to be 
generated in terms of meeting the concurrent criteria. A 
point to note is that every test case generated here is 
essentially feasible as the execution of the algorithm is 
also guided by the default AD semantic. Due to space 
limitations we have omitted the action, all-path and 
synchronized-path coverage analysis. It is essential to 
note that the test suite is generated automatically; the 
coverage is analyzed manually for now and will be easily 
automated in the near future, as it is not a complex task.  

7. Summary and future work 
 
We described a TSG technique and two types of 

coverage criteria for AD based models. The technique is 
characterized by an automatic transformation of an AD 
model into a CPN model and then automatically deriving 
test sequences by executing the CPN model. We 
illustrated the test suite generation process with an 
example and demonstrated the usability of the technique 
by evaluating the generated test suite against some 
specified coverage criteria. Moreover we demonstrated 
the key characteristic of the technique in that it does not 
generate any infeasible test sequence.  

The technique proposed in this paper is defined along 
the concept of platform independent model (PIM) and 
platform specific model (PSM) in model driven 
architecture (MDA), where the PSM is developed in 
consistence with the PIM and then software is 
implemented according to the PSM. The contribution of 
this work is two fold: (1) it introduces a new model based 
TSG technique to automatically derive test sequences 
from UML 2.0 AD; (2) a framework is defined in 
section-4 for generating and measuring model based test 
suites and sets a base for developing exploratory testing 
techniques. The current work is limited to the 
intermediate level AD and covered only control flow 
related aspects of the model. Future work will expand to 
other aspects of AD such as data flow and high level 
design artifacts. Efficiency analysis of both the proposed 
TSG technique and coverage criteria will also be a part 
of our future work. 
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Table 2: Evaluation of the generated TS with branch and edge coverage criterion 

 Branch Coverage Analysis Edge Coverage Analysis 
Tests Cd Ud Cov % Uq  CC % Cd Ud Cov % Uq CC % 
TS-1 5 12 29.4 5 29.4 19 14 57.6 19 57.57 
TS-2 12 5 70.6 8 76.5 28 5 84.8 10 87.87 
TS-3 11 6 64.7 2 88.2 26 7 78.8 2 93.93 
TS-4 8 9 47.1 0 88.2 22 11 66.7 0 93.93 
TS-5 7 10 41.2 0 88.2 23 10 69.7 0 93.93 
TS-6 8 9 47.1 0 88.2 22 11 66.7 0 93.93 
TS-7 6 11 35.3 0 88.2 20 13 60.6 0 93.93 
TS-8 9 8 52.9 0 88.2 24 9 72.7 0 93.93 
TS-9 7 10 41.2 0 88.2 21 12 63.6 0 93.93 
TS-10 9 8 52.9 1 94.1 25 8 75.8 1 96.97 
TS-11 10 7 58.8 0 94.1 26 7 78.8 0 96.97 
TS-12 8 9 47.1 0 94.1 21 12 63.6 0 96.97 
TS-13 10 7 58.8 1 100 25 8 75.8 1 100 

 
Table 3: Evaluation of the generated TS with interleaving node and edge coverage criterion 
 Interleaving Node Coverage Analysis Interleaving Edge Coverage Analysis 
Tests Cd Ud Cov % Uq  CC % Cd Ud Cov % Uq CC % 
TS-1 2 12 14.3 2 14.3 2 26 7.1 2 7.14 
TS-2 1 13 7.14 1 21.4 1 27 3.6 1 10.7 
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TS-3 2 12 14.3 1 28.6 2 26 7.1 2 17.9 
TS-4 2 12 14.3 0 28.6 2 26 7.1 1 21.4 
TS-5 1 13 7.14 0 28.6 1 27 3.6 0 21.4 
TS-6 2 12 14.3 0 28.6 2 26 7.1 0 21.4 
TS-7 1 13 7.14 0 28.6 1 27 3.6 0 21.4 
TS-8 2 12 14.3 0 28.6 2 26 7.1 0 21.4 
TS-9 1 13 7.14 0 28.6 1 27 3.6 0 21.4 
TS-10 2 12 14.3 2 42.9 2 26 7.1 2 28.6 
TS-11 1 13 7.14 0 42.9 1 27 3.6 0 28.6 
TS-12 2 12 14.3 1 50 3 25 11 2 35.7 
TS-13 2 12 14.3 0 50 2 26 7.1 0 35.7 

 
 

 
Figure 3: AD model of an Enterprise Customer Commerce System[35] 
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Figure 4: CPN version of Enterprise Customer Commerce System (without initial marking)  
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