
Edith Cowan University Edith Cowan University

Research Online Research Online

ECU Publications Pre. 2011

2008

Towards Automated Test Sequence Generation Towards Automated Test Sequence Generation

Usman Farooq
Edith Cowan University

Chiou Peng Lam
Edith Cowan University

Huaizhong Li
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks

 Part of the Systems Architecture Commons

10.1109/ASWEC.2008.4483233
This is an Author's Accepted Manuscript of: Farooq, U. , Lam, C. P., & Li, H. (2008). Towards Automated Test
Sequence Generation. Proceedings of 19th Australian Conference on Software Engineering ASWEC 2008 (pp.
441-450). Australia: Perth WA. IEEE Conference Publishing Services. Available here
© 2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.
This Conference Proceeding is posted at Research Online.
https://ro.ecu.edu.au/ecuworks/1211

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online @ ECU

https://core.ac.uk/display/41531194?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworks
https://ro.ecu.edu.au/ecuworks?utm_source=ro.ecu.edu.au%2Fecuworks%2F1211&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=ro.ecu.edu.au%2Fecuworks%2F1211&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1109/ASWEC.2008.4483233
http://dx.doi.org/10.1109/ASWEC.2008.4483233

Towards Automated Test Sequence Generation

U. Farooq, C. P. Lam and H. Li
School of Computer and Information Science

Edith Cowan University, Perth, Australia
ufarooq@student.ecu.edu.au, c.lam@ecu.edu.au, h.li@ecu.edu.au

Abstract

The article presents a novel control-flow based test

sequence generation technique using UML 2.0 Activity
Diagram, which is a behavioral type of UML diagram.
Like other model-based techniques, this technique can be
used in the earlier phases of the development process
owing to the availability of the design models of the
system. The Activity Diagram model is seamlessly
converted into a Colored Petri Net. We proposed a
technique that enables the automatic generation of test
sequences according to a given coverage criteria from
the execution of the Colored Petri Nets model. Two types
of structural coverage criteria for AD based models,
namely sequential and concurrent coverage are
described. The proposed technique was applied to an
example to demonstrate its feasibility and the generated
test sequences were evaluated against selected coverage
criteria. This technique can potentially be adapted to
service oriented applications, workflows, and concurrent
applications.

1. Introduction

UML is the de facto industry standard for software

modeling and a key component in model driven
development. Various UML diagrams, categorized as
structural or behavioral, can be used to specify a
particular view of the system. Structural diagrams such
as the class, component and deployment diagrams are
used to visualize the static view of the system. The
behavioral diagrams include activity, state machine and
interaction diagrams. The sequence diagram (one of the
interaction diagrams) is provided for expressing time-
oriented inter-object message sequencing. The state
diagram is used for specifying the dynamic view of the
system in terms of the sequence of states that a system
can pass through during its lifecycle. The Activity
Diagram (AD) is devised to visualize the flow-oriented
aspects of the system that may encompass simple
sequential, branching, looping and concurrency. The

advantages of UML are its simple and intuitive syntax as
well as its expressiveness to model large complex
systems visually and efficiently. However, the lack of a
formal semantics has hindered the direct applications of
automated techniques on UML models for test case
generation.

Model based testing (MBT) is an agile and systematic
method which aims to automate the testing process
through automated test suite generation and execution
techniques and tools. A model is an intuitive approach
for describing the structure and behavior of the system
and is specific in representing particular aspects of the
system according to defined objectives, assumptions and
structures. The benefit of MBT is that it facilitates the
construction of behavioral models early in a development
lifecycle, thus exposing ambiguities in the specification
and design [1]. More importantly, it supports re-use in
future testing as these models captures the behavior of a
software system and in contrast to a test suite, they are
much easier to update if the specification changes [1]. In
addition, MBT potentially supports earlier fault detection
and a higher level of coordination between design and
testing activities. One approach to generate a test suite
from models is based on model checking [2], [3]. Model
checking is a static analysis technique used to determine
whether a specific property of interest is verifiable or if
the system exhibits a particular functional behavior that
violates this property. As it involves an exhaustive
analysis of a model, involving the creation and
exploration of the state space, it is prone to the state
explosion problem [4], thus making it an infeasible
approach for any analysis of non-trivial systems. In
comparison, simulation, involving the execution of a
model, is a dynamic and exploratory analysis of the state
space and is relatively inexpensive. Analogous to
software testing, it requires test vectors to execute the
model and these are referred to as test cases.

In this paper we propose a test sequence generation
(TSG) technique involving model execution of Colored
Petri nets (CPN) that are derived from UML 2.0 AD. The
resulting test sequences are then evaluated using two

19th Australian Conference on Software Engineering

1530-0803/08 $25.00 © 2008 IEEE
DOI 10.1109/ASWEC.2008.64

441

19th Australian Conference on Software Engineering

1530-0803/08 $25.00 © 2008 IEEE
DOI 10.1109/ASWEC.2008.64

441

19th Australian Conference on Software Engineering

1530-0803/08 $25.00 © 2008 IEEE
DOI 10.1109/ASWEC.2008.64

441

19th Australian Conference on Software Engineering

1530-0803/08 $25.00 © 2008 IEEE
DOI 10.1109/ASWEC.2008.64

441

types of AD based coverage criteria that are introduced
in this paper, namely sequential and concurrent coverage.
The proposed technique allows software developers to
continue to design in their familiar modeling
environment and the resulting UML 2.0 ADs are
seamlessly transformed into CPN for subsequent
automatic test sequence generation. The developed
technique has the advantages of both UML and CPNs
whilst overcoming some of their shortcomings.

2. Motivation

A set of AD models can be seen as the visual

"blueprints" of the functionality of the system and
Kosters et al. [5] have stated that ADs can specify an
entire set of use case scenarios in a single diagram.
Lieberman [6] has suggested that specific scenarios can
be generated by tracing a thread of execution from entry
to exit through each AD. Stakeholders can easily
understand the system behavior as well as monitor the
development of system functionality by tracing execution
paths through the ADs. A point to note is that deriving all
possible usage scenarios manually from a set of realistic
ADs can be a very time consuming task.

The potential scope and application of AD models in
testing has been recognized by many researchers, for
example, Briand and Labiche [7] described the derivation
of usage scenarios as test guideline from AD models,
Lieberman [6] suggested their use in monitoring the
testing process and Bai et al. [8] explored the application
of AD in scenario-based software testing. However,
most of this work involved UML 1.x and UML 2.0 AD
has significant changes from AD in UML 1.x. While
there is some emerging work involving UML 2.0 ADs,
most of the approaches have involved other types of
UML diagrams (e.g. class diagrams, statecharts, etc).

While UML 2.0 AD has Petri Nets (PN)-like
semantics, its informally defined semantics still have
many ambiguities and inconsistencies, thus making it
difficult to automatically derive test cases directly from
ADs. The proposed technique resolves existing
ambiguities and inconsistencies in a given AD and
supports its seamless transformation into a CPN
executable model, thus enabling the automatic generation
of test sequences from an AD model for system
behavioral testing. It brings the advantages of both
domains, AD and PN, while overcoming their shortfalls.
The rich syntax of AD is quite intuitive to program logic
and is expressive enough to suit a wide range of
application domains. It complements the daunting
complexity of using CPN in designing complex and /or
object-oriented systems. The well founded theory, strong
analytical techniques and tool support of CPN and more
importantly the informal foundation of the new UML 2.0
AD also make CPN an ideal platform for further analysis

and evaluation of the AD models. At the same time, the
proposed technique frees a tester from learning a new
language or redesigning his already built models in order
to execute them. The introduction of model based
concurrent coverage criteria is timely as UML is now the
dominant and standard modeling language, model based
testing is also getting popular and no such criteria are
available for concurrent system testing.

Section 3 describes related work and the proposed
TSG technique is described in Section 4. Section 5
describes the test objective in terms of the test suite
evaluation criteria. The case study, corresponding results
and discussion are presented in Section 6 and the
summary and future work in Section 7.

3. Related Work

Generation of test cases in MBT can be carried out

via techniques such as model checking, graph-based
approaches (e.g. random walk, or the Chinese Postman
Walk), symbolic execution, and deductive theorem
proving. Sivaraj and Gopalakrishnan [9] proposed a
random walk based approach for model checking in
parallel and distributed environment together with
breadth first search. They defined four heuristic-based
algorithms with configurable coupling between random
walk and breadth first search for state space exploration.
Lee et al. [10] presented an idea of using random walk
for generating test sequences from Communicating Finite
State Machine (CFSM) in conformance testing.
According to the method, an adaptable random walk is
guided by classified transitions in a directed graph and
visited states are sampled for test traces.

Investigations involving the application of PN in
software testing can be categorized into four groups: test
suite generated (1) using typical state-space analysis
techniques [11], (2) using invariant analysis [12], (3)
deriving test scenarios by simulating or executing PN
models and (4) directly deriving test data from a PN
model using formal specification-based test generation
techniques [13]. Ramaswamy & Neelakantan [14]
showed the application of a PN based invariant analysis
scheme for software design and testing. The proposed
approach generates unique paths dubbed as sub-flows
using the T-invariants obtained from a PN model. While
the approach avoids the state explosion problem
associated with model checking, it requires a high level
of mathematical skills, thus inhibiting its applications at
an industry level. Watanabe and Kudoh [11] proposed
two CPN based algorithms for the automatic test suite
generation in conformance testing involving concurrent
systems. Their CP-tree method requires the generation of
a reachability tree from a CPN model and test sequences
are then produced by traversing through arcs and nodes
from the root to the leaf nodes of the CP-tree.

442442442442

Zhu and He [15] proposed four types of structural
coverage criteria for testing PN model. The Transition
based and State (place) based criteria are associated with
the structural aspects of the Predicate (Prt) Net and the
data (token) flow and specification oriented criteria are
linked to the behavioral aspects of the Prt Net. However,
a later study [16] identified some limitations with the
proposed criteria (e.g. the ‘state transition path’ coverage
and the ‘K-concurrency length-L trace’). While the
criteria we propose here are in some ways similar to
those in [15] they are, however, specific for addressing
structural coverage in ADs. For example, they
specifically address the issue of branch and edge
coverage in an AD which is not addressed in the criteria
defined in [15].

Mingsong, Xiaokang and Xuandong [17] reported a
test generation technique that used UML 2.0 AD as the
design specifications. In order to obtain the execution
traces, the approach involved program instrumentation
where probes are inserted into the code of the software
under test. Three types of test adequacy criteria for an
AD were addressed, namely activity, transition and
simple path coverage. A simple path was defined by the
authors to be a path that has no loops or concurrency and
the set of simple paths is generated using a modified
depth first search (DFS) algorithm. The proposed
technique however is prone to generating many invalid
test cases.

Andrews, France and Craig [18] introduced a
technique for dynamic analysis of the software design
model comprising on class, activity and interaction
diagrams. Their technique involved UML 1.4 and testing
an executable model. An interesting aspect of this
approach is that AD is used as a secondary artifact (to
generate an executable model that captured the behaviour
of a class and to obtain the interactions between objects
from a set of ADs) and no coverage criteria for AD was
considered here. Two sets of coverage criteria were
subsequently used in [19] where UML design models
were converted into an executable form for testing
them. The approach used information from class and
interaction diagrams for generating the required test
cases. Dinh-Trong, Ghosh, & France [20] also used
symbolic execution and a Variable Assignment Graph
that incorporated information from UML class diagrams
and sequence diagrams for generating test data which can
then subsequently be used for testing design models.

Due to the lack of formal and executable semantics,
UML models are not suitable for automation or formal
behavioral analysis [21], [22]. Thus, many researchers
have tried to integrate UML with various well-defined
formal languages [13], [23-25]. In [13], Buchs et al.
proposed a formal specification based test suite
generation approach that transforms the UML models
(i.e. class, collaboration and state diagrams) into a high

level PN (CO-OPN) and then generates test data for the
specified input domain. Pettit and Gomaa [25] used
described the behavioral analysis of the system by
transforming UML Collaboration diagram into CPN.
Eichner et al. [23] introduced the PN based semantic for
Sequence diagram for taking advantage of formal
analysis tools and techniques. With the exception of the
work in [13], most existing work involving UML have
converted sequence diagrams to CPN for animation and
for V & V of requirements and design models.

4. Generating Test Cases

Test case generation has always been fundamental to

the testing process. Bertolino [26] articulated that test
case generation is a most challenging and an extensively
researched activity. In software testing, the definition of
a test case is contextual and relates to the corresponding
test case generation technique. Thus, it is important to
clearly define the basic terms and concepts used
throughout this paper. The test data is a set of inputs,
expected outputs and execution conditions derived from
a low level platform specific model using other
techniques (e.g. equivalence partitioning, boundary
values etc.) for a particular test case. A test sequence is a
high level test where a sequence of tasks or operations is
directly generated from a high level behavioral model
according to a particular test objective. As the focus of
the proposed technique is the behavioral correctness of
the system, the generated test sequences enforce the
functional correctness of tasks/operations, order of
execution and the dependencies among the various tasks
or operations. The term test suite implies the collection
of test sequences.

Figure 1: Automated TSG Process
Similar to execution paths in code based testing, it is

the execution sequences of model artifacts that interest
testers more than the execution of an individual artifact.
For complete testing, it would need to test every possible
combination of artifacts. Unfortunately, this approach is
not scalable and is prone to combinatorial explosion. A
manual exploration of the model or test suite generation
is not viable and automatic TSG is most desirable as the
test suite is automatically derived from the model
according to the given test objective. The test objective
specifies the required adequacy criteria as a guideline.

443443443443

The overall process of the proposed TSG technique is
illustrated in the figure-1.

As shown in figure 1, we propose a three-stage TSG
process. In UML 2.0, after major revision, AD has a new
PN-like token flow semantic which lacks precision and
consistency in the description of flow rules as reported in
[22], [24]. The imprecision and ambiguity in the
semantic could yield differing interpretations and even
unexpected runtime behavior of a syntactically valid AD.
Thus, deriving a test suite directly from an AD could
result in invalid test sequences. In fact, it is implicitly
required to formulate the exact runtime behavior by
transforming the AD into a precise semantic for its
execution and analysis. Hence the inspiration for
transforming AD into CPN stems from the fact that the
CPN is a formal modeling language that provides an
unambiguous and executable specification which has
been quite successful in modeling both concurrent and
sequential systems.

In the first stage, an AD model is transformed into a
CPN model using the approach discussed in [27]. Then
using the algorithm proposed in the following section,
test sequences are generated and finally evaluated against
a given test objective. If the test suite does not satisfy the
required criteria then more test sequences are generated
via another iteration of the random walk. This process
continues until the required criterion specified in test
objective is satisfied. In the next section, we introduce a
random-walk based technique for automatic TSG.

Figure 2: Pseudo Code for Random Walk Algorithm
for TSG

Random-walk based TSG
The concept of a random-walk is based on the theory

of probability and referred to a movement where the path
is initiated from a specific point and each successive step
is then made randomly. In a connected graph, the
trajectory of a random walk includes all visited nodes. In
general, a random-walk is considered suitable for
discrete problems and needs adaptation for a particular

application. This apparently simple technique has
received a fair amount of attention and has been applied
in areas such as wireless networking, World Wide Web,
model checking etc. In fact, Robinson [1] has discussed
its use for MBT and has stated that the very random
nature of this approach produces useful test cases which
overcome the “pesticide paradox” problem in testing.

The graph based representation and formal executable
semantic of CPN makes it ideal for using the random-
walk algorithm for executing the model and recording
the execution traces. In CPN, a token can abstractly
represent a control or stimuli in the model and therefore
the walk will simulate the token-flow during the model
execution. Although the walk progresses randomly, we
have adapted the random selection process to the
predefined semantic for CPN to avoid any invalid paths.
Moreover, as the technique is based on pseudorandom
exploration of the model, the model inscriptions such as
conditions and data information are not used during the
random walk. Therefore all the conditions and
constraints associated with an AD model have not been
mapped across to the CPN model. This is specific only to
the proposed random-walk algorithm as it aims to
generate all possible control flow paths from the model.
Moreover, as the alternative paths at any branching node
are selected randomly, the description and evaluation of
condition statements becomes superfluous. However this
condition and constraint information can be used
subsequently in conjunction with the previously
generated paths at the test data generation stage
involving various black box testing techniques such as
equivalence partitioning. Furthermore, as one of the
many enabled transitions in CPN will eventually
occur/fire, we postulate that the walk randomly selects a
transition and in visiting it makes one step of the walk.
Similarly, the traversal of the walk through a place node
is also marked as a step of in its path. A test sequence is
any path in the CPN model from its initial node to its
final node. Considering the concurrency support in CPN,
the interleaving paths between fork/joins nodes
intuitively constitute as potential test paths for concurrent
testing i.e. synchronized sequence (SYN-sequence is
defined as a sequence of synchronization events e.g.
read/write, P/V, lock/unlock operations).

Table 1: CPN nodes with corresponding AD nodes
and observing token-game semantic

AD2
Node

CPN
Node

Semantic

Action Transition An action can only start
execution when all inputs
have tokens.
 When an action starts
execution it consumes tokens
on all inputs.
 On completion, tokens are

444444444444

offered on all outputs.
Initial Place Initialize with a token

whenever the enclosing
activity is invoked.
 An outgoing token can follow
only one edge.

Activity
Final

Place When a token reached it, the
enclosing activity will be
terminated; particularly, all
executing actions are stopped,
all other tokens are destroyed
and all flows are terminated.

Flow
Final

Place All tokens arriving on it are
destroyed.

Fork Transition Incoming tokens are
duplicated to all outputs.

Join Transition All incoming tokens are
joined according to the rules
given in [28].

Decision Place Each incoming token can
traverse only one outflow.

Merge Place All incoming tokens are
forwarded to a single outflow
without synchronizing and
joining them.

The pseudo code for the adaptive random walk

algorithm is described in figure 2. Unlike a conventional
random-walk algorithm, where all subsequent transitions
should be enabled after a step in a random-walk, in this
proposed algorithm only those transitions that have
satisfied CPN semantic (i.e. all input tokens are
available, all pre and post conditions for a transition are
satisfied) are to be enabled.

Following the defined semantic in Table-1, the
random walk begins from an initial node dubbed as ‘Init’
place in a CPN model. The walk then randomly selects
one of the outgoing arcs according to the corresponding
semantic of an initial node and the given token moves
along the selected arc. After an occurrence of a transition
a token is passed to each output place. The walk
continues as long as it is visiting nodes with non-zero
outgoing arcs. Currently the algorithm deals with an AD
where there is only one Activity-Final node which is
labeled as ‘Final’ to distinguish it from the flow final
node. Once the walk reaches a node without any
outgoing arc and explicitly labeled as ‘Final’, the walk
terminates for the current iteration according to the
semantic of an Activity-Final node. Using the random
walk approach, test sequences are automatically
generated in each iteration by recording the trace of the
random walk starting from the initial node to the final
node. At the end of each iteration the attained coverage
of the test suite is evaluated against the specified test

adequacy criteria and a decision is made whether to
continue with another iteration of the random walk.

5. How is the quality of the generated TS
measured?

Zhu et al. [29] described the use of coverage based
test adequacy criteria for test quality measurement.
Generally, coverage criteria are used to determine the
adequacy of the test suite and therefore are considered as
an essential part of a testing method. As a general rule of
thumb, the test suite with a higher coverage is considered
to be better in quality. This is based on the fact that a
higher coverage could potentially reveal more defects
[30], [31]; hence eventually improves the software
quality. Test coverage is measured in terms of the
percentage of specific constructs that have been executed
at least once during execution according to the defined
coverage criterion.

Similar to code based testing techniques, in MBT, the
test suite is also generated with the aim of providing
maximum testing coverage of the system under test.
However, during the test data generation process the
coverage based adequacy metric usually relates to the
nature of the source (e.g. code, model or fault-set) of the
tests and therefore measures the artifacts of the source
involved in TSG process. In this context, the coverage
metric establishes the link between the test suite and
source and further, imparts significant information about
the contents and characteristics of the test suite.
Coverage Criteria

In the literature, a large number of coverage criteria
have been suggested. However, we find only a few
criteria that are appropriate for observing the coverage
information in an AD model which has specific
requirements such as an ordered execution of
tasks/operations in isolated control paths or threads and
coordinated execution of tasks/operations in
synchronous/asynchronous parallel control paths or
threads. In the following section, we present sequential
and concurrent criteria adapted from [29] and [32]
respectively.
Sequential Coverage Criteria:

Control flow based testing has already been
extensively researched and a number of control flow
based coverage criteria have been proposed. Although at
the basic level, control based criteria are defined on a
graph structure, and hence needs some adaptation to be
associated with a particular technique and application.
Testing in isolated control paths or threads is analogous
to the control flow based testing. Therefore, sequential
control flow based coverage criteria are considered
appropriate here and are adapted for AD models. It will
allow measuring and determining the scenarios that need
to be covered by a behavioral test suite in order to be
considered adequate.

445445445445

• CPN Transition Coverage: A control flow based
criterion that measures the number of transitions
executed during testing. In CPN, a transition node is a
set of outputs (a1, a2,.., an) that all are traversed after
the transition’s execution. On mapping back to the
AD, transition coverage would seek the execution of
each action, fork and join node at least once, thus, the
test suite at a minimum includes execution of all
actions, forks and joins nodes at least once. It is
analogous to node-coverage in state-based testing and
could be considered as the elementary and minimal
required testing criterion.

• AD Branch Coverage: A control flow based criterion
that measures the number of branches executed during
testing at least once. In CPN, a place node with
multiple outputs corresponds to a decision node in an
AD with a set of branches (a1, a2,.., an) such that only
one branch is traversed for an execution. For full
branch coverage, a test suite needs to have at least one
test case for each branch which also includes the
execution of all transitions. Therefore, branch
coverage subsumes the transition coverage.

• AD Edge Coverage: According to this criterion, the
number of edges traversed during testing is
determined. In an AD model, a number of
activities/actions are linked in a particular order which
represents a sequential flow. This aspect of flow is
visual and superficial. Thus we need to remember that
AD has particular semantic as well which indicates the
dependency between linked actions/activities. It
means an action can only execute after the earlier
action has completed and all input tokens are
available. Note that visually, an edge is a link between
two nodes or a link between two operations in a
scenario and it only shows the sequence of actions.
The edge coverage criterion ensures that all arcs
between all types of nodes must be evaluated during
testing.

• All Path Coverage: It is a given to ensure that all
possible ordering and sequencing of flow occurred at
least once during testing. Path based coverage
criterion is the strongest but is difficult to achieve as
there could potentially be an infinite numbers of
execution paths. As an execution path can be
represented by the combination of states, transition or
both in CPN; the number of executions involving all
combinations becomes so large, that in practice,
exhaustive testing at this level is deemed to be
impractical.

Concurrent Coverage criteria:
Studies have shown that conventional test coverage

criteria are inadequate for concurrent program testing
[33], [34]. Consequently, we seek further analysis of the
generated test suite in relation with the concurrent nature
of the AD, namely the concurrency and synchronization

constructs (i.e. fork and join), to mimic the interactions
between sub-processes. The fork node in an AD depicts
the case where all of the actions following a specific
action may execute concurrently. It splits the control into
‘n’ sub-processes and allows all of them to execute
simultaneously. On the other hand, the join node mimics
the convergence point for all of the concurrent sub-
processes. Consequently a model based test suite could
reveal concurrency faults such as failure to realize a
certain execution order of concurrent operations and
failure to identify the blocking/deadlocking. Definitions
of concurrent coverage criteria modified from [32] are
discussed below.
• Interleaving node coverage: The interleaving node

coverage criterion is about the execution of n-wise
permutated set of concurrent nodes in ‘n’
synchronized sub-processes. In AD, the combination
of all types of nodes (i.e. action, activity, decision and
merge) will make up the permutated set. The degree to
which the permutated set has been exercised by a test
suite implies the coverage attained according to this
criterion.

• Interleaving edge coverage: Similarly, the
interleaving edge coverage criterion requires that all
the n-wise permutated set of edges in ‘n’ synchronized
sub-processes are executed during testing. The
percentage of the paired edges exercised during testing
implies the degree in meeting this adequacy criterion.

• Synchronized path coverage: The execution of the
set of all possible interaction between concurrent sub-
processes is required in order to satisfy the
synchronized path coverage criterion. Given the
concurrent execution of sub-processes, the number of
interleaving paths grows exponentially along with the
growth of the number of sub-processes. In this way,
attaining adequate coverage for this criterion is
intractable and therefore it is mentioned here only for
the purpose of completeness.

6. Illustrated Example

For evaluation and demonstration of the proposed

technique, we use the model shown in figure 3. It
describes an enterprise customer commerce system taken
from [35] and contains an AD describing a system level
process. It describes the process of online purchasing of
products that is comprised of two sub-processes:
authentication and shopping. The authentication process
allows the user to login and in the case of a new user, it
allows the new user to register first. Within the shopping
process, a user can order the selected products and can
configure his/her account if required. Following the
technique proposed in section-4, this sample AD model
is first converted into a CPN model. Using the
transformation methodology proposed in [27], we

446446446446

acquire the CPN version of this model as shown in
Figure 4.

Using the proposed random-walk based TSG
algorithm and the resulting CPN model, a test suite is
then generated. The trace of the walk is recorded for each
iteration of the random-walk and the generated test suite
is presented in Tables 2 and 3. The generated test
sequences are then evaluated according to the coverage
criteria described in the previous section.

Results and Discussion
Tables 2 and 3 summarized the degree to which the

generated test suite, obtained from the example model
via the proposed approach, meets the various test
coverage criteria. Table 2 presents the evaluation of
generated TS against the sequential coverage criteria.
Similarly Table 3 presents the interleaving node and edge
coverage analysis of the generated TS. The column
names in both tables are abbreviated as Cd, Ud, Cov, Uq
and CC for covered, uncovered, coverage, unique and
cumulative coverage respectively. The numbers of
executed and missed model artifacts are indicated in
columns ‘Cd’ and ‘Ud’ respectively for a particular test
sequence. The degree of individual coverage of each test
sequence is presented in column ‘Cov’. In Table 3, the
‘Cd’ and ‘Ud’ columns show the number of paired
interleaving artifacts in the concurrent processes that
have been exercised by an individual test sequence. The
‘Uq’ column contains the number of unique artifacts that
were previously uncovered. The ‘CC’ column is about
the cumulative coverage gained by each additional test
sequence. As an example, TS-1 in Table 2 tested 5
artifacts and missed 12 artifacts according to the branch
coverage criterion. As the total number of artifacts for
branch coverage criterion was 17, the coverage it attained
was 29.4%. Moreover, as TS-1 was the first test from
the suite, all tested artifacts were unique and therefore
the cumulative coverage was also 29.4%. After that, TS-
2 tested 12 artifacts and missed only 5. It attained 70.6%
coverage and, as only 8 out of 12 tested artifacts were
unique, the coverage accumulated by this test sequence
was 76.4%. With the execution of two new artifacts by
TS-3, the CC reaches to 88.2%. However, from TS-4 to
TS-9, the CC value does not improve as no new artifact s
has been executed. The CC is further improved when TS-
10 executed a new artifact. After that, CC remains
stagnant for TS-11 and TS-12. Finally, CC reaches to
100% when TS-13 executed the remaining artifact. For
the edge coverage criterion, the test suite attained 100%
cumulative coverage in a similar pattern. Despite this
apparent similarity at test suite level, the individual test
case coverage reveals the fact that both the branch and
edge coverage criteria are not similar and the edge
criterion overlaps branch criterion.

As seen from the given data, the generated test suite
is adequate in meeting the sequential coverage criteria
but is not sufficient in meeting the concurrent testing
criteria, thus requiring more test cases to be generated.
For a sound analysis we further analyze the generated
test suite in terms of the following characteristics:
redundancy, test priority and test suite size.
Redundancy: The basic idea behind a random-walk
based algorithm is enumerating all the possible and
unique control flow paths in an AD model. With
arbitrary interactions in the concurrent processes, the
number of permutated paths grows exponentially and
manual or exhaustive test generation techniques (e.g.
depth first algorithm) are therefore infeasible.
Consequently, the random-walk based TSG algorithm is
deemed more than adequate because of the exploratory
nature of the algorithm. The algorithm incrementally
generates more test sequences and stops once a specified
coverage criterion is achieved. However, the proposed
algorithm is not ideal, since we can see from the
coverage data in Tables 2 & 3 that it has some tendency
to produce a number of redundant test cases as a result of
the stochastic nature of the proposed algorithm.
However, a careful analysis of the data at the test level
reveals that some degree of redundancy is indispensible
if the associated test cases add to the cummulative
coverage at the test suite level. At the same time there are
test cases such as TS-4,5,6,7,8,9 that do not bring any
extra coverage and thus should be discarded. A future
improvement to the existing algorithm is to modify the
algorithm to guide the random-walk heuristic to skip any
redundant tests cases for optimum test suite generation.
Test priority: An analysis of the Tables 2 & 3 also
indicates that some test cases have a higher coverage
with respect to a specific criterion than others but at a test
suite level, owing to the order of execution, it does not
bring any additional coverage. For instance, in Table 2,
TS-11 has almost double of the coverage of TS-1 but
appears redundant due to the test execution order. Thus
prioritizing the test cases according to their coverage
criteria could further optimize the test suite. Future work
in this project would also investigate approaches for
prioritization of the generated test cases.
Test suite size: Another important aspect is the size of
the generated test suite or, in other words, the number of
tests needed with this approach to attain adequate
coverage. As a guideline we assume that there should be
at least one test case for each independent path. Given
the fact that an AD model itself depicts the control flow
graph of a particular module, the cyclomatic complexty
metric [36] was used to analyse the example model and
12 distinct control flow paths were found. Thus,
initially, we ran the algorithm for 12 iterations and
generated 12 test cases. The test suite is then evaluated
for both sequential and concurrent coverage.

447447447447

Subsequently more test cases are added incrementally
until the complete coverage is achieved. The results
indicate that the algorithm produces 100% coverage for
sequential criteria after 13 iterations but as indicated in
Table 3, many more tests cases will be required to be
generated in terms of meeting the concurrent criteria. A
point to note is that every test case generated here is
essentially feasible as the execution of the algorithm is
also guided by the default AD semantic. Due to space
limitations we have omitted the action, all-path and
synchronized-path coverage analysis. It is essential to
note that the test suite is generated automatically; the
coverage is analyzed manually for now and will be easily
automated in the near future, as it is not a complex task.

7. Summary and future work

We described a TSG technique and two types of

coverage criteria for AD based models. The technique is
characterized by an automatic transformation of an AD
model into a CPN model and then automatically deriving
test sequences by executing the CPN model. We
illustrated the test suite generation process with an
example and demonstrated the usability of the technique
by evaluating the generated test suite against some
specified coverage criteria. Moreover we demonstrated
the key characteristic of the technique in that it does not
generate any infeasible test sequence.

The technique proposed in this paper is defined along
the concept of platform independent model (PIM) and
platform specific model (PSM) in model driven
architecture (MDA), where the PSM is developed in
consistence with the PIM and then software is
implemented according to the PSM. The contribution of
this work is two fold: (1) it introduces a new model based
TSG technique to automatically derive test sequences
from UML 2.0 AD; (2) a framework is defined in
section-4 for generating and measuring model based test
suites and sets a base for developing exploratory testing
techniques. The current work is limited to the
intermediate level AD and covered only control flow
related aspects of the model. Future work will expand to
other aspects of AD such as data flow and high level
design artifacts. Efficiency analysis of both the proposed
TSG technique and coverage criteria will also be a part
of our future work.

Bibliography

[1] H. Robinson, "Graph Theory Techniques in Model-Based

Testing," presented at International Conference on Testing
Computer Software, 1999.

[2] M. P. E. Heimdahl, S. Rayadurgam, W. Visser, G. Devaraj,
and J. Gao, "Auto-generating Test Sequences Using Model
Checkers: A Case Study," presented at Formal Approaches to
Software Testing, Montreal, Quebec, Canada, 2003.

[3] S. Khurshid, C. S. Pasareanu, and W. Visser, "Generalized
Symbolic Execution for Model Checking and Testing,"
presented at Tools and Algorithms for the Construction and
Analysis of Systems, Warsaw, Poland, 2003.

[4] S. Merz, "Model Checking: a tutorial overview," presented
at Modeling and verification of parallel processes 2000.

[5] G. Kosters, H. W. Six, and M. Winters, "Coupling Use
Cases and Class Models as a Means for Validation and
Verification of Requirements Specification," Requirements
Engineering, vol. 6, 2001.

[6] B. Lieberman, "UML Activity Diagrams Versatile
Roadmaps for Understanding System Behavior," The
Rational Edge, pp. 12, 2001.

[7] L. Briand and Y. Labiche, "A UML-Based Approach to
System Testing," Carleton University TR SCE-01-01-
Version 4, June, 2002 2002.

[8] X. Bai, C. P. Lam, and H. Li, "An Approach to generate the
Thin-threads from the UML Diagrams," presented at
Computer Software and Applications Conference
(COMPSAC), 2004.

[9] H. Sivaraj and G. Gopalakrishnan, "RandomWalk Based
Heuristic Algorithms for Distributed Memory Model
Checking," University of Utah, School of Computing, Salt
Lake City 2003.

[10] D. Lee, K. K. Sabnani, D. M. Kristol, and S. Paul,
"Conformance Testing of Protocols Specified as
Communicating Finite State Machines - a Guided Random
Walk Based Approach," IEEE Trans. on Communications,
vol. 44, pp. 631-640, 1996.

[11] H. Watanabe and T. Kudoh, "Test Suite Generation
Methods for Concurrent Systems Based on Colored Petri
Nets " in Asia-Pacific Software Engineering Conference:
IEEE Computer Society, 1995.

[12] S. Ramaswamy and R. Neelakantan, "Software Design and
Testing Using Petri Nets: A Case Study Using a Distributed
Simulation Software System," in Performance Metrics for
Intelligent Systems. Gaithersburg, MD, 2002.

[13] D. Buchs, L. Pedro, and L. Lucio, "Formal Test
Generation from UML Models," in Research Results of the
DICS Program: Springer, 2006.

[14] S. Ramaswamy, " A Petri net based approach for
establishing necessary softwaredesign and testing
requirements," presented at Systems, Man, and Cybernetics,
2000 IEEE International Conference on, Nashville, TN,
USA, 2000.

[15] Hong Zhu and X. He, "A theory of testing high level Petri
nets," Oxford Brookes University, Technical Report CMS-
TR-2000-02, January, 2000 2000.

[16] Junhua Ding, Peter J. Clarke, Gonzalo Argote-Garcia, and
X. He, "Evaluating Test Adequacy Coverage of High Level
Petri Nets Using Spin," Florida International University,
Miami, Technical Report FIU_SCIS 2006-05-02, 02-05-2006
2006.

[17] Q. X. Chen Mingsong, Li Xuandong, "Automatic Test
Case Generation for UML Activity Diagrams," presented at
AST, Shanghai, China, 2006.

[18] A. A. Andrews, R. B. France, S. Ghosh, and G. Craig,
"Test adequacy criteria for UML design models," Softw.
Test., Verif. Reliab., vol. 13, pp. 95-127, 2003.

[19] T. T. Dinh-Trong, N. Kawane, S. Ghosh, R. B. France, and
A. A. Andrews, "A Tool-Supported Approach to Testing

448448448448

UML Design Models," presented at International Conference
on Engineering of Complex Computer Systems (ICECCS
2005), Shanghai, China, 2005.

[20] T. T. Dinh-Trong, S. Ghosh, and R. B. France, "A
Systematic Approach to Generate Inputs to Test UML Design
Models," presented at 17th International Symposium on
Software Reliability Engineering, Raleigh, North Carolina,
USA, 2006.

[21] J. B. Jørgensen, "Coloured Petri Nets in Development of a
Pervasive Health Care System," presented at 24th
International Conference Applications and Theory of Petri
Nets (ICATPN 2003), Eindhoven, The Netherlands, 2003.

[22] H. Störrle, "Semantics of Control-Flow in UML 2.0
Activities," presented at VL/HCC Rome, Italy, 2004.

[23] C. Eichner, H. Fleischhack, R. Meyer, U. Schrimpf, and C.
Stehno, "Compositional Semantics for UML 2.0 Sequence
Diagrams Using Petri Nets," presented at 12th International
SDL Forum, Grimstad, Norway, 2005.

[24] R. Eshuis and R. Wieringa, "A Formal Semantics for UML
Activity Diagrams - Formalising Workflow Models,"
University of Twente, Department of Computer Science,
Enschede, Netherlands, CTIT technical reports 04-2001
2001.

[25] R. G. Pettit and H. Gomaa, " Modeling State-Dependent
Objects using Coloured Petri Nets " presented at Workshop
on Modelling of Objects, Components, and Agents, Aarhus,
Denmark, 2001.

[26] A. Bertolino, "Software Testing Research and Practice,"
presented at 10th International Workshop on Abstract State
Machines (ASM'2003), Taormina, Italy, 2003.

[27] U. Farooq, C. P. Lam, and H. Li, "Transformation
Methodology for UML 2.0 Activity Diagram into Colored
Petri Nets," presented at 4th IASTED International
Conference on Advances in Computer Science and
Technology Phuket, Thailand, 2006.

[28] C. Bock, "UML 2 Activity and Action Models," Journal of
Object Technology vol. 2, pp. 43-53, 2003.

[29] Z. Hong, A. V. H. Patrick, and H. R. M. John, "Software
unit test coverage and adequacy," ACM Comput. Surv., vol.
29, pp. 366-427, 1997.

[30] P. G. Frankl and S. N. Weiss, "An Experimental
Comparison of the Effectiveness of Branch Testing and Data
Flow Testing," IEEE Transactions on Software Engineering,
vol. 19, pp. 774-787, 1993.

[31] W. E. Wong, J. R. Horgan, L. London, and A. P. Mathur,
"Effect of Test Set Minimization on Fault Detection
Effectiveness," presented at 17th International Conference on
Software Engineering, 1995.

[32] M. Factor, E. Farchi, Y. Lichtenstein, and Y. Malka,
"Testing concurrent programs: a formal evaluation of
coverage criteria," presented at Israeli Conference on
Computer-Based Systems and Software Engineering
(ICCSSE '96) Washington, DC, USA, 1996.

[33] R.-D. Yang and C.-G. Chung, "A path analysis approach to
concurrent program testing," presented at Ninth Annual
International Phoenix Conference on Computers and
Communications, Scottsdale, AZ, USA, 1990.

[34] K. Tai, "Testing of concurrent software," presented at 13th
Annual International Computer Software and Applications
Conference, 1989.

[35] J. M. Küster, J. Koehler, and K. Ryndina, "Improving
Business Process Models with Reference Models in
Business-Driven Development," presented at Business
Process Management Workshops, 2006.

[36] T. McCabe and C. Butler, "Design Complexity
Measurement and Testing," Communications of the ACM,
vol. 32, pp. 1415-1425, 1989.

Table 2: Evaluation of the generated TS with branch and edge coverage criterion

 Branch Coverage Analysis Edge Coverage Analysis
Tests Cd Ud Cov % Uq CC % Cd Ud Cov % Uq CC %
TS-1 5 12 29.4 5 29.4 19 14 57.6 19 57.57
TS-2 12 5 70.6 8 76.5 28 5 84.8 10 87.87
TS-3 11 6 64.7 2 88.2 26 7 78.8 2 93.93
TS-4 8 9 47.1 0 88.2 22 11 66.7 0 93.93
TS-5 7 10 41.2 0 88.2 23 10 69.7 0 93.93
TS-6 8 9 47.1 0 88.2 22 11 66.7 0 93.93
TS-7 6 11 35.3 0 88.2 20 13 60.6 0 93.93
TS-8 9 8 52.9 0 88.2 24 9 72.7 0 93.93
TS-9 7 10 41.2 0 88.2 21 12 63.6 0 93.93
TS-10 9 8 52.9 1 94.1 25 8 75.8 1 96.97
TS-11 10 7 58.8 0 94.1 26 7 78.8 0 96.97
TS-12 8 9 47.1 0 94.1 21 12 63.6 0 96.97
TS-13 10 7 58.8 1 100 25 8 75.8 1 100

Table 3: Evaluation of the generated TS with interleaving node and edge coverage criterion
 Interleaving Node Coverage Analysis Interleaving Edge Coverage Analysis
Tests Cd Ud Cov % Uq CC % Cd Ud Cov % Uq CC %
TS-1 2 12 14.3 2 14.3 2 26 7.1 2 7.14
TS-2 1 13 7.14 1 21.4 1 27 3.6 1 10.7

449449449449

TS-3 2 12 14.3 1 28.6 2 26 7.1 2 17.9
TS-4 2 12 14.3 0 28.6 2 26 7.1 1 21.4
TS-5 1 13 7.14 0 28.6 1 27 3.6 0 21.4
TS-6 2 12 14.3 0 28.6 2 26 7.1 0 21.4
TS-7 1 13 7.14 0 28.6 1 27 3.6 0 21.4
TS-8 2 12 14.3 0 28.6 2 26 7.1 0 21.4
TS-9 1 13 7.14 0 28.6 1 27 3.6 0 21.4
TS-10 2 12 14.3 2 42.9 2 26 7.1 2 28.6
TS-11 1 13 7.14 0 42.9 1 27 3.6 0 28.6
TS-12 2 12 14.3 1 50 3 25 11 2 35.7
TS-13 2 12 14.3 0 50 2 26 7.1 0 35.7

Figure 3: AD model of an Enterprise Customer Commerce System[35]

s

s

s

s

s

s

s

s

s

s
s

s

s

sss

s

s

s

s
s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

ss

s

s

s

ss

DmyM11

DmyM2

DmyM4

DmyM1

DmyM3

DmyM0

Order

Register

Authenticate

F4

LogonInit

TOKEN

DmyM2

TOKEN

DmyM1
TOKEN

TOKEN

P6

D3

TOKEN

TOKEN

D2

TOKEN

D4

TOKEN

D1

TOKEN

Final

Init

TOKEN

DmyM7

DmyM3

Configure

D7

s

s

DmyM5 Select

s

Dmy2

TOKEN

P5

s

D5

DmyM8

M

F3

TOKEN

s

s
s

F1

s
TOKEN

s

s
TOKEN

s

s

s s

TOKENTOKEN

TOKEN

Dmy1

Verify

TOKEN

Dmy3

TOKEN

F2

DmyM6

DmyM4

DmyM10D6

Put

Dmy1

DmyM9

Dmy4

Figure 4: CPN version of Enterprise Customer Commerce System (without initial marking)

450450450450

	Towards Automated Test Sequence Generation
	Towards Automated Test Sequence Generation

