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Abstract — Maximum Likelihood (ML) is a popular and effective 
estimator for a wide range of diverse applications and currently 
affords the most accurate estimation for source localisation in 
wireless sensor networks (WSN). ML however has two major 
shortcomings namely, that it is a biased estimator and is also 
highly sensitive to parameter perturbations.  An Optimisation to 
ML (OML) algorithm was introduced that minimises the sum-of-
squares bias and exhibits superior performance to ML in 
statistical estimation, particularly with finite datasets. This paper 
proposes a new model for acoustic source localisation in WSN, 
based upon the OML estimation process. In addition to the 
performance analysis using real world field experimental data for 
the tracking of moving military vehicles, simulations have been 
performed upon the more complex source localisation and 
tracking problem, to verify the potential of the new OML-based 
model. 

Keywords-Maximum likelihood; estimation; source 
localisation; wireless sensor networks. 

I.  INTRODUCTION 
The emergence of Wireless Sensor Networks (WSN) has 

provided considerable impetus to research in this area, because 
of the wide range of potential applications, from environmental 
monitoring and manipulation in physical world scenarios to 
pervasive computing [6], [7], [8], [1]. Typically, WSN 
comprise many disparate, small and usually inexpensive types 
of network nodes, such as control and sensing nodes, all of 
which are characterized by having limited sensing, 
communication and computational capability. Some control 
nodes possessing higher computational and communication 
capacity are also available in WSN for data aggregation and 
summarisation. 

Estimating the source locations within a region covered by 
a WSN is a very challenging task. Source localisation can be 
performed based on readings taken from different sensors, such 
as acoustic, seismic or infra-red. Seismic signal propagation for 
instance, is very sensitive to the medium and also there is no 
standard model to estimate the propagation speed while in 
contrast, acoustic signal propagation has a well established 
theoretical basis for estimating source location and direction 
[16]. This provided the motivation in this particular paper to 
focus upon localisation using acoustic sensors.  

There are many real world applications of source 
localisation employing acoustic sensors, including underwater 

acoustic localisation with hydrophone arrays in sonar [4], 
microphone arrays in room environments for speaker head 
location estimation and tracking [2], [14], [21] and vehicle 
location estimation in open-field sensor networks [15], [5].  

Localisation methods typically depend on three types of 
physical variables being either measured or derived from 
actual sensor readings, namely; i) the Direction Of Arrival 
(DOA), ii) Time Delay Of Arrival (TDOA) and iii) Received 
Signal Strength (RSS). DOA [13] can be estimated by 
measuring the phase difference at different sensors and is 
applicable to coherent, narrowband sources [17]. A drawback 
of such measurements is that they require costly antenna 
arrays at each node. Conversely, TDOA [11] is suitable for 
broadband sources and is more sensitive to accurate time delay 
measurements [15], while there are well-established acoustic 
energy decay models [23] that can be applied to measure the 
RSS and thereby a locus of source position from various 
sensor readings. A straightforward approach to localisation 
using RSS measurements is the Closest Point of Approach 
(CPA) [23] which assumes the source location being that of 
the nearest sensor, i.e., that which measures the largest RSS 
reading. More sophisticated strategies are based upon 
Maximum Likelihood (ML) methods [23], [24], which exhibit 
superior estimation accuracy as well as flexibility in handling 
multiple sources for localisation compared with other energy-
based source localisation methods [12]. ML however, has two 
major drawbacks in that it is a biased estimator and also highly 
sensitive to parameter perturbations [20].  

An Optimisation to Maximum Likelihood (OML) algorithm 
[19] has been developed that minimises the sum-of-squares 
bias, and it has been shown to consistently provide superior 
estimation performance compared with ML for some reference 
statistical datasets. It has also been proven in an asymptotic 
sense, that OML and ML are equivalent. To exploit its gain 
over ML in the finite sampling domain, this paper formulates 
an acoustic energy-based source localisation model as an 
OML estimation problem. Source localisation has many 
influencing factors in the decision making process and 
optimisation therefore affords many performance benefits by 
minimizing the bias.  
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The remainder of the paper is organized as follows: Section 
II presents a review of classical ML estimation theory and 
discusses an acoustic energy attenuation model for source 
location. Section III firstly presents a brief overview of the 
OML estimator before theoretically formulating a source 
localisation model, with the experimental performance of the 
proposed technique being numerically evaluated in Section IV. 
Section V provides some conclusions. 

II. MAXIMUM LIKELIHOOD AND ITS APPLICATION TO 
SOURCE LOCALISATION 

This section firstly presents an overview of the underlying 
principles of ML estimation before examining an acoustic 
energy decay model that uses ML for both single and multiple 
source localisation. 

A. Classical Maximum Likelihood Estimator 
ML estimation has been extensively employed because of 

its flexibility and simplicity of derivation. Given a set of 
observations ( ),,,,, 321 nzzzzZ …= represented by n random 
variables and parameter values to be estimated θ, the 
likelihood p(Z|θ) of these observations is defined as:- 

( ) )|(| 1 θθ i
n
i zpZp =∏=  (1)

 
Parameter values θ is estimated as the one which will 

maximise the likelihood function p(Z|θ). The log-likelihood 
function is defined as:- 

( ) ∑
=

==
n

i
izpZpl

1

)|(log|log)( θθθ  (2)

  
The fact the log-likelihood function can be used instead of 

the likelihood function in ML estimation highlights the unique 
invariance property of ML though in general, ML estimators by 
themselves are not a sufficient statistic to fully describe a 
distribution [22]. 

B. Acoustic Energy Based Source Localisation Model 
Let N and M be the number of sensors and acoustic sources 

in a WSN field respectively. The emission of acoustic signal 
energy can be modelled as omni-directional signal starting 
from a point sound source and attenuating at a rate inversely 
proportional to the square of the distance from the source [16]. 
It is assumed that the acoustic energy received by the ith sensor 
will be the linear summation of the attenuated energies 
without any interference between them. A sensor in a WSN is 
modelled by [pi, λi] where pi denotes a p dimensional position 
vector and λi is the gain factor for the ith stationary sensor, with 
the location of each sensor node being known a priori. The 
acoustic energy received at the ith sensor during time interval t 
is expressed as [23]: 
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where εi(t) is a perturbation term that summarizes the net 
effect of background additive noise and parameter modelling 
error. Em(t) and ρm(t) are the energy emitted by the mth source 
(measured 1 meter from the source) and its location during the 
tth time interval respectively. The distribution of εi(t) has been 
shown [24] to be an independent and identically distributed 
(iid) Gaussian random variable, whenever the time period T for 
averaging the energy is sufficiently large, i.e., T > 40/fs where fs 
is the sampling frequency. The mean μi(t) and variance σi

2(t) of 
each εi(t) are empirically estimated using a constant false alarm 
(CFAR) detector [24] and the proposed energy attenuation 
model has previously been validated [9].   

The estimation of a moving source, such as a vehicle is 
made at each time instance by a set of energy readings from 
different individual sensors. The acoustic energy model for a 
specific sampling interval t, is represented in a concise matrix 
notation, with the time index t omitted, adopting the same 
convention proposed by [23]. 
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(4) 

 
where as alluded above, ξi=(εi − μi)/σi∼ N(0, 1) are iid 

Gaussian random variables. Using this notation, (3) can be 
expressed as 

Z = λ DE + ξ = KE + ξ (5)

With the probability density function of Z given by:-  

)()(
2
1

2/)2()(
KEZKEZ

|Z
−−−−=

T

ef nπθ  (6)

where T
M

T
M

TT EEE ][ …… 2121 ρρρθ = is a vector of 

unknown parameters, with ρM and EM being the Mth source 
location and Mth source energy respectively. From [24], the 
parameter of the ML estimator θML is then calculated from the 
following equations:- 

{ })()(minarg †† ZKKZZKKZ −−= T
ML

θ
θ  (7)

where K† is the pseudo-inverse of matrix K and E = K†Z 
following the maximisation of (6)  with respect to E.   

In the next section, the optimisation of maximum likelihood 
(OML) estimator model is formulated for multiple source 
location estimation utilising the aforementioned acoustic 
energy decay model in (3). 
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III. OPTIMISATION OF MAXIMUM LIKELIHOOD AND ITS 
FORMULATION TO SOURCE LOCALISATION 

The rationale for the optimisation of maximum likelihood 
(OML) estimator is to improve the accuracy of acoustic 
energy-based source localisation by explicitly minimising the 
sum-of-squares estimation bias of the ML estimator identified 
in Section I. The optimisation for ML is discussed in [19] and 
so is only briefly outlined in this section to aid understanding 
of the underlying theory. A source localisation strategy based 
on OML for ad hoc WSN is then subsequently presented. 

A. Optimisation of Maximum Likelihood Estimation 
In an asymptotic sense, the ML estimation is equivalent to 

maximum entropy method and in [19] it has been shown that: 
[ ]{ })|(logmaxarg θθ

θ
ZpE fML −=  for n → ∞ (8)

where Ef [log p(Z|θ)] is the population mean of log 
likelihood i.e., the expected value of log p(Z|θ), and subscript f 
denotes the expectation is based on true probability 
distribution of the data. 

From (8), it is evident that ML is asymptotically efficient, 
since as the number of observations becomes large it tends 
towards the expected log-likelihood value with respect to the 
true distribution [22]. An alternative interpretation is that ML 
will always generate an optimal estimation provided the true 
distribution f is known and Ef [log p(Z|θ)] is accordingly 
estimated. In such circumstances, (8) is the optimal ML 
estimation θOML.  

The essential tenet underpinning OML is that while it is not 
feasible to find the true distribution from finite sampling, it 
can however be better approximated with respect to a 
particular parameter value θ by the uniform Gaussian Mixture 
Distribution of the likelihood functions through a sum-of- 
squares bias minimisation strategy (Lemma 2 of [19]).  

Let fOML be the optimal approximation of the true 
distribution. Following (8)    

( )[ ]{ }θθ
θ

|logmaxarg ZpE
OMLfOML −=   

simplifying, 
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which corresponds to the OML estimation of parameter θ. 
Note, that since there is only one additional term in (9), OML 
will have exactly the same order of computational complexity 
as ML. 

 

B. OML Source Location Estimation 
The optimal approximation of the true distribution using the 

uniform Gaussian mixture distribution of the likelihood and the 
acoustic energy decay model from (3), (4) and (5) can be 
written as: 
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From (6), (9) and (10), θOML can thus be expressed as:- 
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The minimisation process of (9) with respect to E and 

setting 
0
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 gives:  

E = K†Z (12)

where K† is the pseudo-inverse of matrix K. Substituting the 
value of E into (9) gives :- 
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Since all the terms of (13) are known for a specific 
parameter θ, (13) can be used to find the parameter set θ  that is 
most suitable under the OML criterion.  

IV. EXPERIMENTAL RESULTS 
The proposed OML source localisation model and other 

popular source localisation techniques including ML and CPA 
were implemented in Matlab 6.5.1. Firstly, a simulation for 
source localisation was performed in part A, and finally its 
application to a set of practical data obtained by a DARPA 
funded field experiment (ITO SensIT [18]) was conducted to 
evaluate the effectiveness of OML for the practical detection 
and tracking of moving vehicles within a WSN region. 

A. Simulation of Source Localisation Methods 
The formulation (3) is utilised for generation of acoustic 

energy readings for a 2-D (p= 2) sensor field of size 100 by 
100 2m . The source and sensor locations were uniformly 
distributed over the WSN field in each sample, with the source 
energy set at E = 5000 intensity and background noise level 
modelled as )/,( 22 ΔiiN σσ  with Δ = 100. 

The mean and covariance matrices of single source location 
estimation error for all dimensions (horizontal and vertical 
axes) are listed in Table 1.  
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Table 1: Mean and Covariance Matrices of Single Source 
Location Estimation Error 

 5 Sensors 10 Sensors 20 Sensors 

CPA [ ]21.144.2−  

⎥
⎦

⎤
⎢
⎣

⎡
34.58877.11

77.1185.631  

[ ]76.223.2 −−  

⎥
⎦

⎤
⎢
⎣

⎡
−

−
00.62568.23
68.2353.663  

[ ]46.041.1  

⎥
⎦

⎤
⎢
⎣

⎡
−

−
71.64632.40
32.4062.842  

ML [ ]92.031.2 −  

⎥
⎦

⎤
⎢
⎣

⎡
29.18000.5

00.583.153  

[ ]64.194.0  

⎥
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⎤
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16.6570.11
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−

−
83.2961.3
61.374.31  
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⎢
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⎡
15.4515.9

15.966.34  

[ ]56.094.0 −−  

⎥
⎦

⎤
⎢
⎣

⎡
77.3553.34
53.3423.45  

 

 

From simulation results, we observe that the mean error 
value in case of OML estimation is less than both ML and 
CPA. The covariance matrices show that errors in both 
dimensions are uncorrelated too. OML method outperforms 
ML consistently at low sensor density as well as higher 
densities. 

Another representation of the results showing the 
distribution of the magnitude of location estimation error is 
presented in Figure 1. 

 5 Sensors 10 Sensors 20 Sensors 

CPA  
 
 
 
 

 
 

 

ML  
 

  

OML 

 
 

  

Figure 1. Distribution of errors of the three localisation 
algorithms for single source localisation. 

 
The histograms of the errors are plotted with a bin size of 10 
metres. The histograms can be considered as a rough 
distribution of the errors and clearly OML distributions are 
better than CPA and ML as they generate most of the 
estimations within the low error ranges. 

 

B. Performance Analysis through practical data 
In the DARPA funded ITO SensIT project, custom-made 

prototype sensor nodes were deployed along the roadside. 
Military amphibious assault vehicles (AAV) were driven past 
the sensors and the corresponding data sampled by different 
sensor types (acoustic, seismic and polarized infrared) at each 
node. The ground truth was obtained by interpolating an 
onboard Global Positioning System (GPS) recording, which 
sampled a position at every 15 sec. The acoustic signal was 
sampled at 4.96 KHz at 16-bit resolution. The sampled energy 
readings were collated from all sensor nodes within the WSN 
region within a 750ms time window. The data segments used 
were taken from the acoustic signatures of a single AAV 
travelling from east to west along the road during a time 
period of approximately 2 minutes.  

Figure 2 shows the AAV ground truth and the localisation 
results based on the OML and ML estimations for run 6 of the 
practical data. For showing the tracking of the source within 
the field, the ground truth and locations estimated by OML 
and ML for each sampling interval are shown in different 
colours. 

Figure 2: Estimation error histogram for AAV experiment data 

 
If the estimated locations are compared with their 

corresponding ground truth, it is readily apparent that OML 
produced more accurate estimations in many more cases than 
ML. The middle portion of Figure 2 shows more accurate 
estimations for both OML and ML than the top region. Note 
the sampling process for this experiment occurred in a very 
noisy environment, with strong winds present which often blew 
directly into the microphone causing random energy transients. 
Also, many of the microphones were not properly calibrated 
[18], which is the reason for the presence of inaccurate 
estimates at the top of Figure 2. 

The localisation errors in terms of the number of estimation 
points within a range (in metres) of estimation errors are 
summarized in the histogram in Figure 3. This reveals that 
OML generated approximately 10% estimation points within 
the small error range between 0—30m, whereas ML was able 
to produce only 1.6% within this low error range due to 
presence of noisy conditions. In addition, as the number of 
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estimation points was fixed, more accurate estimations in the 
small error range reduces the probability for larger range 
errors. It is palpable that OML consistently provided more 
accurate estimations in comparison with ML, so corroborating 
the theory developed for the new OML estimator, in its ability 
to produce more accurate estimates than ML by reducing the 
error and thereby the bias. 
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Figure 3: Estimation error histogram for AAV experiment data 

 

V. CONCLUSIONS 
In this paper the Optimisation of Maximum Likelihood 

(OML) estimation for a passive acoustic source localisation 
problem in WSN has been mathematically formulated and its 
performance analysed and compared with the most accurate 
existing source localisation estimation e.g. Maximum 
Likelihood based approach and also for Closest Point of 
Approach (CPA) method. The results confirm the fundamental 
hypothesis that OML provides a consistently lower estimation 
error compared with ML and CPA, for the same order of the 
computational complexity of ML. Results for both simulated 
and field experimental data   also confirmed the effectiveness 
of the proposed technique.   
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