
Edith Cowan University Edith Cowan University

Research Online Research Online

Theses: Doctorates and Masters Theses

2000

The Application Of Object-oriented Techniques To Preliminary The Application Of Object-oriented Techniques To Preliminary

Design Problems Design Problems

Patrick S. Mackessy
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses

 Part of the Computer and Systems Architecture Commons

Recommended Citation Recommended Citation
Mackessy, P. S. (2000). The Application Of Object-oriented Techniques To Preliminary Design Problems.
https://ro.ecu.edu.au/theses/1548

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses/1548

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses?utm_source=ro.ecu.edu.au%2Ftheses%2F1548&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=ro.ecu.edu.au%2Ftheses%2F1548&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses/1548

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons
who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement. Where the reproduction of such material is

done without attribution of authorship, with false attribution of

authorship or the authorship is treated in a derogatory manner,

this may be a breach of the author’s moral rights contained in Part

IX of the Copyright Act 1968 (Cth).

 Courts have the power to impose a wide range of civil and criminal

sanctions for infringement of copyright, infringement of moral

rights and other offences under the Copyright Act 1968 (Cth).

Higher penalties may apply, and higher damages may be awarded,

for offences and infringements involving the conversion of material

into digital or electronic form.

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

The Application of

Object-Oriented Techniques

to Preliminary Design Problems

by

Patrick S Mackessy B.Sc., Grad Dip (Comp)

A Thesis Submitted in Partial Fulfillment of the

Requirements for the A ward of

Master of Science (Computer Science)

At the

Faculty of Communications, Health & Science,

Edith Cowan University, Mount Lawley.

Date of submission: 31st October 2000

I certify that this thesis does not incorporate without acknowledgment any
material previously submitted for a degree or diploma in any institution of
higher education; and that to the best of my knowledge and belief it does
not contain any material previously written by another person except
where due reference is made in the text.

Signature
�-�� Date �

°'(S
'3. \ rt, . 2a9 \, .

I

ACKNOWLEDGMENTS
I wish to thank my supervisor, Mr. Maurice Danaher for his valuable
advice. I am grateful to Mr. Danaher for his unstinting time and enduring
patience throughout the past three years. I would also like to thank Ms.
Ursula Ladzinski, Ms. Marea Carfax-Foster, Ms. Kathleen Henderson and
Mr. Lewis Corner for their proofing and comments and more than
anything else for their unstinting encouragement. I am also grateful to Mr.
Mark Tait of Intellicorp, who lent me his KEE Manual, which also proved
indispensable.
I also wish to acknowledge the help and support provided by the Office of
the Auditor General. In particular Mr. Pearson, the Auditor General and
Mr. Tuffley, the IS Audit Manager have created an environment, which
has inspired the pursuit of excellence in the study of the use and control of
IT. The Office also provided an IBM ThinkPad, which proved
indispensable.

II

ABSTRACT

The Application of Object-Oriented Techniques

To Preliminary Design Problems

Preliminary structural design is an early stage in building design during which the

engineer formulates and assesses a number of different structural schemes. It is

conceptual in nature and involves decision making, which relies on heuristics.

Whilst preliminary structural design has not been well supported by PC software,

recent research has indicated the potential for knowledge-based, object-oriented

systems to assist in the area.

This thesis explores the issues that arise when object-oriented techniques are used

to develop knowledge-based software. It reviews certain basic principles of

structural design, methods of representing structural design knowledge and earlier

approaches to the design of software to support preliminary structural design.

The thesis describes how the writer created a software development methodology

to apply object-oriented analysis and design techniques. It then describes the use

of this methodology to develop a system for preliminary structural design,

including the drafting of requirements, the creation of an object model for these

requirements and their implementation in Kappa-PC software.

The thesis proposes an approach to the development of software to support

preliminary design in buildings and has demonstrated this approach in a prototype

design tool. It has also described some of the difficulties hindering the effective

application of the object-oriented methods.

III

USE OF THESIS

DECLARATION

ACKNOWLEDGMENTS

ABSTRACT

LIST OF CONTENTS

LIST OF CONTENTS

TABLE OF CONTENTS AND APPENDICES

LIST OF TABLES

LIST OF FIGURES

IV

I

II

II

III

IV

V-VII

VIII

IX X

CHAPTER 1.
1.1
1.2
1.3
1.4
CHAPTER 2.
2.1
2.2
2.3
2.4
2.5

2.6
2.7
Summary
CHAPTER 3.
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
Summary
CHAPTER 4.
4.1
4.2
4.3
4.4
4.5
4.5.1
4.5.2
4.5.3
Summary
CHAPTER 5.
5.1
5.2

5.3
Techniques
5.4
5.5
5.6
5.7
5.8
5.9
Summary
CHAPTER 6.
6.1
6.2

TABLE OF CONTENTS

Introduction .. 1
Aim of the Study .. 1
Problems Addressed ... 1
Significance .. 3
Structure of the Thesis .. 8
Design ... 12
Design ... 12
Basic Ideas on Design ... 13
Problem Solving, Artificial Intelligence and the Search Process 13
Complex Systems, Hierarchical Organisation and Decomposition 20
State Description and Process Description ... 22
Design as a Constraint Driven Activity .. 22
Difficulty of Design .. 24
25

Structural Design .. 29
Introduction .. 29
Structural Design .. 29
Preliminary Structural Design and the Building Design Process 39
How Building Subsystems are Organised into a Hierarchy 40
Vertical Structural Subsystems ... 45
Horizontal Structural Subsystems .. 46
Selection of Subsystems ... 48
Expertise ... 49
Approximate Calculations .. 51
52

Object-Oriented Design Support Tools .. 53
Objectives ... 53
Object-Oriented Design Support Tools .. 53
Examples of Systems, which Support Preliminary Structural Design 57
Multiple Selection-Development (MSD) ... 68
Issues in the Development of Object-Oriented Design Systems 72
Object-oriented Languages - Procedural and Declarative 72
Frames and Objects - Similarities and Differences 74
Object-Oriented Modeling of Design Knowledge 78
81
An Object-oriented Software Methodology 83
Introduction .. 83
Developing the Methodology for the Project 83
Selecting Appropriate Object-oriented Analysis and Design
86
The Software Engineering Methodology .. 92
High-Level Analysis Stage ... 95
Requirements Specification Stage .. 96
Object-oriented Analysis Stage .. 98
Object-oriented Design Stage ... 98
Problems Encountered During Development of the Methodology 99
101
Development Project - Initial Stages ... 102
Introduction .. 102
High-Level Analysis Stage ... 102

V

6.2.1 Conceptual Model and High-Level System Overview 103
6.2.2 High-Level fuformation Analysis ... 104
6.2.3 Summary of Functions .. 108
6.3 Requirements Specification Stage .. 108
6.3.1 Summary of Functions and Design Processes 108
Summary 110
CHAPTER 7. Development Project - Final Stages ... 111
7 1 Object-oriented Analysis .. 111
7 .1.1 Identify the objects . .. 111
7 .1.2 Determine the Responsibilities of the Objects 114
7 .1.3 Determine the Associations between the Objects 121
7.1.4 Determine the attributes contained by the objects 122
7.1.5 Organise Object Hierarchy and Establish fuheritance Links 122
7.2 Object-oriented Design ... 129
7 .2.1 Design Details .. 129
7.3 Difficulties Encountered During the Development Project.. 145
Summary 147
CHAPTER 8. The Kappa-PC Application Development Toolkit 148
8 .1 futroduction and Description .. 148
8.2 Kappa-PC Structures Used to Describe Objects 151
8.3 The Kappa-PC Application Language .. 160
8.4 Kappa-PC Reasoning Mechanism .. 162
8.5 Difficulties Encountered in using Kappa-PC 171
Summary 171
CHAPTER 9. Implementation of the Object-Oriented Design 172
9.1 Design Architecture for the NOV A Design Tool on Kappa-PC 172
9.2. Implementation of the Structural Hierarchy in NOVA 174
9 .3 Implementation of the Software for the Design Processes 17 6
9 .4 Control of the Design Process - the Schedule 181
9 .5 Difficulties Encountered During Implementation 182
Summary 186
CHAPTER 10. Operating the Nova Design Tool.. .. 187
10.1 futroduction .. 187
10.2 Demonstration of the design tool... ... 187
Summary 201
CHAPTER 11. Conclusion .. 202
LIST OF REFERENCES .. 213
APPENDIX A Functional Requirements .. 224
Detailing of Braced Frame Design Options .. 230
APPENDIX B System Notes .. 240
APPENDIX C Detailed Requirements ... 244
fuitial Sizing in Reinforced Concrete Buildings ... 244
fuitial Sizing in Steel Buildings .. 246
General Functions 248
Element functions 249
Braced Frame 250
Rigid Frame 250
Shear Wall 250
Floors 251
Cost Functions 251
Evaluation Functions .. 252
Design Process Functions ... 252
Utility functions 253

VI

Reporting Functions .. 254
APPENDIX E NOV A Rules .. 255
Rules 255
Rulesets 257
APPENDIX F Class Diagrams ... 258
Building System Object Classes ... 258
APPENDIX G Class Attributes .. 264

VII

LIST OF TABLES

Table 4.1 Knowledge based Structural Design Systems ... 67
Table 6.1 Preliminary structural design functions ... 104
Table 6.2 The main design processes identified for the design tool system 109
Table 7.1 Table of key design events 120
Table 7.2 Table of object methods 121
Table 7 .3 Design processes at the vertical structural subsystem level. 133
Table 7.4 Levels in the building hierarchy .. 134
Table 8.1 Rules for the demonstration system .. 165
Table 9.1 NOVA System Rule Base ... 173
Table 10.1 Input of building requirements .. 192
Table A.1 List of functional requirements 227
Table G 1 Class attributes for major classes .. 267

VIII

Figure 2.1
Figure 5.1
Figure 5.2
Figure 6.2
Figure 6.3
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7
Figure 7.8
Figure 7.9
Figure 7.10
Figure 7.11
Figure 7.12
Figure 7.13
Figure 7.14
Figure 7.15
Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 8.5
Figure 8.6
Figure 8.7
Figure 8.8
Figure 8.9
Figure 8.10
Figure 8.11
Figure 8.12
Figure 8.13
Figure 8.14
Figure 8.15
Figure 8.16
Figure 8.17
Figure 8.18
Figure 9.1
Figure 9.2
Figure 9.3
Figure 9.4
Figure 9.5
Figure 9.6
Figure 10.1
Figure 10.2
Figure 10.3
Figure 10.4
Figure 10.5
Figure 10.6
Figure 10.7

LIST OF FIGURES

Search Trees .. 18
Overview of the Software Methodology Created for the Project. 86
Detailed View of the Software Engineering Methodology 94
Overview of Preliminary Structural Design Processes 106
High Level Data Model for Preliminary Structural... 107
Object classes in a completed design, which is displayed hierarchically .. 112
Object model of the user interface 113
Object model for the NOVA design tool... .. 114
State transition diagram for session, showing specification events 115
State Transition Diagram for the User Interface 117
Formulation stage for a generic partial design class 118
State transition diagram, showing update offeature attributes 118
Object Model for the evaluation process ... 119
User Interface Associations ... 122

Subsection of Design Hierarchy Showing Multiple Inheritance 125
The Building hierarchy- horizontal structural subsystem 127
The Building hierarchy- (vertical structural subsystem) 128
Kappa-PC Session Window, showing graphic images 130
The Kappa-PC image editor .. 131
Flow chart for formulation .. 13 7

Kappa-PC application development input screens 150
The Rib-Moulds Object Hierarchy .. 151
Class Editor showing the slots in a Rib Mould . .. 15 3
The Slot Editor .. 154
The Kappa-PC Method Editor. .. 157
The Floor Alternatives Class ... 159
The generic class Building, the root of the NOVA search tree 159
Debugger Display During Function Trace 161
Session window for the rule demonstration program 164

Rule Relations Window for the rule demonstration program 166
Rule Relations Window query for rule 1 .. 166
Rule Trace Window set up dialog ... 166
Input arguments to BackwardChain rule trace 167
System query window output during reasoning 167
Rule Trace Window showing the results of the testing 168
Input arguments to BackwardChain control using Inference Browser . 168
System announces the start of the inference process 168
Inference Browser tracing progress of demonstration program 170

Overview diagram of the NOVA preliminary structural design tool 172
NOV A's hierarchy of structural subsystems ... 175
NOV A's hierarchy of alternative subsystems . .. 175
NOV A's hierarchy of location alternatives ... 175
The NOVA Search Tree .. 176
The Button image, image editor and session window 176

The Kappa-PC application development screen 187
The Session Dialog Box .. 188
The NOV A application user interface .. 189
System query regarding user designed locations 190
Multiple input form for input of building design requirements 190
Plan of building ... 191
User request prompt asking user to review default design parameters. 192

IX

'
,·,,

Figure 10.8 Multiple input form for review of default design parameters 193
Figure 10.9 Multiple input form for system evaluation features 194
Figure 10.10 Object Browser Display showing search tree for vertical subsystem ... 195
Figure 10.11 Display from the steel sections spreadsheet.. .. 196
Figure 10.12 Rule for uplift.. .. 197
Figure 10.13 Completion of detailing message at the vertical subsystem level.. 198
Figure 10.14 System prompt and corresponding acknowledgment 198
Figure 10.15 System transcript window shows top 4 designs produced 199
Figure 10.16 System transcript window showing details for selected design 199
Figure 10.17 System transcript window showing evaluation results 200
Figure 10.18 Excel spreadsheet with design details from NOVA 200
Figure A.1 Detail Braced Frame options ... 229
Figure A.2 Braced Frame Construction ... 230
Figure A.3 Resistance to Wind Load ... 230
Figure B.1 Top level functional model for Design Vertical Subsystem process 240
Figure B.2 Functional Model for the Detail Braced Frame process 241
Figure B.3 Workings for inheritance relationships ... 242
Figure B.4 Workings made to establish the inheritance links between objects 243
Figure F.1 Object classes, in the building hierarchy (the Product Model) 258
Figure F.2 Object classes, which constitute the levels in the building hierarchy 258
Figure F.3 Object classes in a completed design, which is displayed hierarchically .. 259
Figure F.4 Object classes, which make up the building design alternatives 260
Figure F.5 Object classes, which make up the location alternatives hierarchy 261
Figure F.6 Object classes, which represent precast concrete units 262
Figure F.7 The Schedule object class, contains the plan for the design process 262
Figure F.8 The Default Design Parameters object class . .. 262
Figure F.9 The Evaluation Features object class 263
Figure F.10 The Session object class and some of its associate classes 263

X

The Application of Object-Oriented Techniques to Preliminary Design Problems

CHAPTER 1. Introduction

1.1 Aim of the Study

This study concerns methods for the application of object-oriented computing techniques to
the production of computer systems that can assist with preliminary structural design. The
research proposal for this study was drafted in May 1997. The primary objectives included
in the proposal were to:
• Adopt and analyse a particular approach to the application of computers in the support

of preliminary structural design; and
• Determine whether or not it was practical to implement this approach in software using

a PC-based object-oriented knowledge engineering environment to develop a knowledge
based design system.

1.2 Problems Addressed

The first problem addressed was to find a suitable approach to the problem of providing
support for structural design. After some preliminary reading the writer decided to adopt an
approach to the problem, which was first reported by Maher (1984). During the early
phases of the study this approach was analysed in depth.
The approach chosen relies upon a formalised model of the design process, which several
researchers, including Krishnamoorthy (1996) have described as the decomposition-based
model, and which provides computer support by way of an expert system. Maher has
described this approach in several papers and used it to produce an expert system, known as
HI-RISE, which was designed to assist with the preliminary design of tall buildings. Other
researchers have also adopted this approach, including Harty (1987), who also demonstrated

1

The Application of Object-Oriented Techniques to Preliminary Design Problems

its implementation in an expert system known as DOLMEN, which was designed to extend

the range and functionality of HI-RISE. Sause et al. (1992) have extended this

decomposition-based approach and proposed the 'multilevel selection-development' (MSD)

model, which is a process generalisation model for structural design.

The writer considered several other approaches including those employing case based

reasoning, described by Lim et al (1996), transformation, described by Fenves & Baker

(1987), and neural networks, described by Liu & Gan (1990). These approaches were

rejected because of the initial level of domain knowledge required, the difficulties involved

in obtaining suitable software and the complexity of programming required. The writer

chose to adopt the approach described by Maher and Harty because:

• This approach was based on a formalised model of the design process, which other

researchers have taken up and incorporated in prototype systems;

• It incorporated basic structural engineering concepts described in the standard textbook,

by Lin & Stotesbury (1981);

• The approach was well documented by Maher and Harty; and

• The approach appears well suited for implementation in an object-oriented knowledge

based system.

The writer reasoned that it would be feasible to implement this approach in a knowledge

based system by creating a series of prototypes, building on the experience documented by

the developers of the HI-RISE and DOLMEN systems. These prototypes would be refined

gradually, as the writer became more familiar with the domain knowledge of structural

engineering. This reasoning was borne out during the study and the project resulted in the

2

The Application of Object-Oriented Techniques to Preliminary Design Problems

partial completion of a prototype expert system, which incorporated most of the

functionality required for the design of simple, rectangular buildings.

The second problem was to determine a suitable PC-based object-oriented knowledge

engineering environment on which to implement the approach chosen. The writer chose the

Kappa-PC development application because of its availability, low cost and its ability to run

under Windows 95. In addition, Hasan et al (1994), Kiernan et al (1996) and Tsang and

Bloor (1994) had indicated that Kappa-PC had been used to produce expert systems quickly

and economically. As the writer was intending to work with Kappa-PC, which was an

object-oriented development system, it also became necessary for the writer to develop an

object-oriented software methodology. The methodology developed for the study is

described in chapter 5.

1.3 Significance

Preliminary structural design is an early stage in the design process during which a number

of different structural schemes are formulated and assessed. Harty (1987) pointed out that

this task involved decision-making, which relied on heuristics and that it was not well

defined. Furthermore, commercial programmers had not written software for it.

As already noted in section 1.1, the primary purpose of this study was to adopt a suitable

approach to the provision of computing support and to identify the difficulties involved in

using this approach to implement a prototype system on a microcomputer using an object

oriented, knowledge engineering toolkit.

The study also set out to assess what other research work was being done in this field and to

determine what kinds of approaches had been proposed for representing design knowledge

and activities.

3

The Application of Object-Oriented Techniques to Preliminary Design Problems

Since 1984 several researchers have published research on expert systems intended to

support various aspects of preliminary structural design. Maher (1984) is one of the earliest

sources in this area, she demonstrated a mainframe system to support structural design,

which she referred to as HI-RISE, this was probably the first expert system for the

preliminary structural design of high rise buildings.

Harty (1987) extended the approach described by Maher and implemented it in the

DOLMEN system, an expert system for use with multi storey buildings. She reported that,

although the approach adopted in DOLMEN was similar to that of HI-RISE, DOLMEN was

significantly more advanced, using the knowledge of experts and incorporating methods for

design evaluation. She contended that systems could be written to support the designer in

the exploration of alternatives by performing routine tasks, making intelligent suggestions,

and producing, evaluating and ranking designs but leaving overall control with the designer.

DOLMEN was created on the KEE application development environment on a Sperry

Explorer minicomputer. In Artificial Intelligence terms KEE is referred to as a hybrid

development environment, because it allows the system developer to combine various

knowledge representation schemes including, frame-based representation and rule-based

reasoning. Kee also provides LISP, which can be used to create functions interactive

graphics, active values, which are also referred to as monitors and rule-based reasoning.

The Kee system is also an object-oriented programming environment, which provides

objects, methods, message passing, encapsulation and inheritance. It is an expensive,

specialised development application, which allows the user to combine AI methodologies,

functional programming and interactive graphical user interfaces.

In her report, Maher (1984) concluded that the HI-RISE system illustrated that computer

aids could be developed for preliminary design, but much more work needed to be done

4

The Application of Object-Oriented Techniques to Preliminary Design Problems

before such aids could be practical. Harty's subsequent work demonstrated that a more

user-friendly prototype system could be developed on a minicomputer. Furthermore, in her

report she pointed out that "the ultimate objective was to be able to use systems like

DOLMEN on a computer to which most engineers have access". This objective was

achieved to a certain extent by Gavin (1988), who used LISP to write a PC program to

replicate the major features of the KEE system, known as SPIKEE, a Simple Prototype

Implementation of KEE. Gavin then demonstrated that the DOLMEN system could run on

SPIKEE and produce the same results as it had on the Explorer minicomputer.

Gavin's suggested that systems like DOLMEN could be:

• Interfaced with other PC software, so that CAD drawings of the design could be

produced and design data could be transferred to other PC analysis software including

spreadsheets and databases; and

• Incorporated into integrated design software packages.

Since DOLMEN was first developed in 1987 and subsequently implemented on SPIKEE,

more user-friendly and efficient PC tools have become available. In particular, flexible

integrated development toolkits are now available, which allow programmers to design and

modify expert systems. These tools also allow the creation of portable software, which can

be integrated, with a wide range of business software including spreadsheets and databases.

For example, expert systems can now be embedded in production applications, can be

integrated with CAD packages and can read and write data to and from spreadsheets and

databases.

In order to produce a knowledge-based system, which incorporated a decomposition based

model of the design process; the writer initially reviewed the reports of both Maher and

5

'
;t

The Application of Object-Oriented Techniques to Preliminary Design Problems

Harty and prepared an analysis of their approaches. The writer then commenced to model

an approach using this analysis in a prototype design system. The writer then installed the

Kappa-PC software on a PC and learned how to use it.

The writer than focused on designing a prototype, which operated like the DOLMEN

system and had most of the functionality required to provide assistance during the early

stages of structural design. The new system was expected to allow the user to generate

alternative solutions to a structural design problem and then to rank them against each other

using a series of evaluation parameters. The system would then assist in the selection of an

optimal structural design from a ranked list of possible schemes.

The structural design domain knowledge to be incorporated in the prototype was located in

Lin, (1981), Structural Concepts and Systems for Architects and Engineers and from reports

on the HI-RISE system by Maher (1984) and the DOLMEN system by Harty (1987).

Further knowledge was indicated by Harty, which was published in British Standards and in

the Handbook for Steel Construction.

During design of the prototype it was intended to exploit the features of the Microsoft

Windows operating system including Dynamic Data Exchange, (DDE) and to allow the

system to communicate with other DDE enabled applications such as Microsoft Excel. This

would confirm the potential for future work in the Windows environment, which would

include the development of an interface to a PC based CAD application and the embedding

of the system in other software products available to the structural designer.

This study is significant because it seeks to bring the power of modem desktop computing

to design problems that had hitherto been limited to computing environments that were

much less accessible and flexible. The use of object oriented technology and the prospect

6

The Application of Object-Oriented Techniques to Preliminary Design Problems

of linking to other GUI-based software could see considerable interest in a prototype expert

system for an economically important area of structural design, which currently is not well

supported.

Evidence gathered during the research phase of this study supports assertions made by made

by Harty & Danaher (1994) that:

• Preliminary design is rarely described in books on structural design and it is not a well

defined task. It involves decision making based on heuristics, which is a difficult area

for conventional programmers; and

• Commercial structural engineering software does not cater for preliminary structural

design tasks.

This thesis also presents a new software methodology, which facilitates the object-oriented

development of IT-based tools, which support the decision-making activities needed for

successful building engineering design. Furthermore, these tools use open-architecture

software, which allows them to be integrated with other design software.

Furthermore, if designers in consultant engineering firms are to obtain increased benefits

from already existing computer systems, then these systems must be able to integrate both

support and design features. If the time consuming manual transfer of information between

design applications can be avoided by facilitating integration of software products, then

resources will be available for the more challenging issues of design. In addition to the

effects of integration, introducing software, which supports design decision-making, as

opposed to existing software, which supports the production of design documentation, will

enable engineers to work more efficiently, and to obtain more effective use of the available

computer hardware.

7

The Application of Object-Oriented Techniques to Preliminary Design Problems

1 .4 Structure of the Thesis

On commencing the project, the writer completed a survey of literature covering design

concepts, preliminary structural design, object-oriented analysis and design and the use

knowledge based systems to support engineering design.

While reviewing object-oriented analysis and design issues, the writer focused his attention

on the selection and application of object-oriented analysis and design methods. This

research is described in chapter 5 and it assisted the writer with the creation of a software

design methodology, which combined various object-oriented techniques. The

methodology commenced with a high-level analysis stage, followed with a requirements

definition stage and then completed overlapping object-oriented analysis and design stages.

Chapter 2 provides general definitions and covers the state space search model, of Newell

and Simon (1972), and Simon's ideas on the process of design, artificial intelligence and the

relationship between problem solving and search techniques.

Whilst chapter 2 focuses on design in the abstract, chapter 3 introduces the practical

considerations required to address the field of structural design. It defines structural design,

quoting from Ambrose (1 967) and includes a description of how building designs are

created in practice, which is taken from Merritt's (1985), Building Design and Construction

Handbook. The chapter also introduces basic principles of structural design as outlined by

Lin and Stotesbury in their book Structural Concepts and Systems for Architects and

Engineers (1 98 1).

Chapter 4 describes the results of research into the use of computer systems to support

preliminary structural design and provides an understanding of the issues involved in the

application of object-oriented concepts and techniques in the development of knowledge-

8

The Application of Object-Oriented Techniques to Preliminary Design Problems

based design systems. The chapter summarizes several common features in the various

approaches reviewed.

The chapter also traces the evolution of intelligent systems; in particular the study revealed

that there are two predominant ways to represent knowledge in computer systems. One of

these is rule-based representation and the other method is frame-based, which uses a

network of frames or nodes connected by relations and organized into a hierarchical

structure. Each node represents a concept that may be described by attributes associated

with the node. The topmost nodes represent the general concepts and the lower nodes

represent more specific instances of these concepts. The chapter covers Hayes-Roth's

(1 985) work on production rule systems, and Fikes & Kehler's (1 985) work on the frame

based representation of domain knowledge. It also includes Kunz, Kehler & Williams's

(1 984), work on hybrid systems.

Chapter 5 describes research completed, which allowed the writer to draw together a set of

development methods, which included object-oriented analysis and design techniques to

create a structured software engineering methodology. In particular the writer adopted a

simplified six step object-oriented analysis and design process, which was described in

Cross (1 996) and which used modeling techniques adapted from Rumbaugh et al. (1 99 1)

and Embley et al. (1 992). This methodology, which consisted of four different stages: high

level analysis, requirements development, object-oriented analysis and design, allowed the

writer to exploit appropriate object-oriented techniques to develop a knowledge-based

design system. The writer also describes lessons learned during the creation of the

methodology.

Chapter 6 describes completion of the first two stages of this methodology in the

development of a knowledge-based design tool. The first stage produced a high-level

9

The Application of Object-Oriented Techniques to Preliminary Design Problems

analysis of the problem situation and an accompanying conceptual model for a new system.

Chapter 6 also describes the second stage, which resulted in the preparation of the

requirements specification for the new system, which was proposed as a knowledge based

design tool, which was similar to the DOLMEN system described by Harty (1987).

Chapter 7 describes the completion of the final two stages object-oriented analysis and

design . The chapter describes the use of six-step analysis process, which was introduced in

chapter 5 . This process was used as a framework, to guide the analysis and to ensure that

the problem was fully understood and that the required diagrams were created.

Chapter 7 also describes the object model, which facilitated the design of the new system.

The chapter concludes with a discussion of the difficulties encountered during completion

of the development process, which include: difficulties in analysing a conceptual design

process, difficulties in applying object-oriented techniques to a knowledge based application

and problems caused by the overlapping of the analysis and design phases.

Chapter 8 describes the Kappa-PC application development system including the structures

it provides to describe objects, the KAL high level language, the development environment,

the debugger and Kappa-PC 's reasoning mechanisms.

Chapter 9 describes how the key features of the design model of the proposed new system

were converted into a working prototype program. It also describes how the writer used the

Kappa-PC development tools for entering and editing code and creating the graphic user

interface. A simplified overview of the system is provided and the chapter ends with a

discussion of some of the difficulties encountered during implementation.

Chapter 10 covers the operation of the design tool prototype. The chapter describes the key

design activities simulated in the prototype system. These include: input of the design

10

F
t

The Application of Object-Oriented Techniques to Preliminary Design Problems

specifications of the building, input of system evaluation features, design of the vertical

subsystem, initial sizing of components, use of the steel sections database, detailing of

vertical subsystem, design of the horizontal subsystem, detailing of horizontal subsystem,

evaluation of design alternatives proposed and the selection of the final design. Various

system reports are also described.

Chapter 11 concludes the thesis. It discusses the lessons learned during the study and

describes the difficulties encountered during the development of the design tool prototype.

It concludes with recommendations for future work.

1 1

The Application of Object-Oriented Techniques to Preliminary Design Problems

CHAPTER 2. Design

2.1 Design

This chapter introduces some of the basic ideas, which have contributed to the development

of design as a science. The writer used these ideas as a framework to assist with the

development of a model of the structural design process. This model was used to develop

requirements for the knowledge-based design tool developed during the study.

Sriram et al (1989) say design can be viewed as the process of specifying a description of an

artifact that satisfies constraints arising from a number of sources, by using diverse sources

of knowledge.

The writer took the following comprehensive definition of the word "design" from the

Encyclopaedia Britannica; it expands on Sriram's definition:

Design :

Plan or scheme as the pattern for making a product, indicates primarily an inter

relation of parts intended to produce a coherent and effective whole, ordinarily

planned with four limiting factors in mind; the capacities of the materials employed,

the influence of the methods adapting the material to their work, the impingement of

parts within the whole, and the effect of the whole on those who may see it, use it or

become involved in it.

Encyclopaedia Britannica (1988)

The key requirements needed for an effective knowledge-based product design system can

be drawn from this definition. They include the ability to represent the product, the parts

that make up the product and a plan or scheme to put them together into a coherent and

12

The Application of Object-Oriented Techniques to Preliminary Design Problems

effective whole. In addition the design system must be able to synthesise alternative,

feasible plans and be able to test these plans against the limiting factors.

2.2 Basic Ideas on Design

Several researchers in design including Gero, Maher & Zhang (1988), Dasgupta (1 992),

Sause et al (1 992), and Quinn (1993) have traced the roots of knowledge-based design

research to Simon's "The Sciences of the Artificial" . Simon (1969) described design in terms

of a process of search through large combinatorial spaces of partial design alternatives and

he asserted that the theory of design is a general theory of search. Simon addressed several

approaches to the study of design, which he referred to as "devising artifacts to attain

goals". His ideas covered:

• Problem Solving, Artificial Intelligence, the Search Process and Heuristics;

• Complex Systems, Hierarchical Organisation and Decomposition, and

• State Description and Process Description.

These ideas are discussed in the following sections.

2.3 Problem Solving, Artificial Intelligence and the Search Process

Simon (1969, p 123) considered design to be a form of problem solving, which he likened

to a form of search for appropriate solutions from a population of possible alternatives. The

solution to the problem or final design is a complete operation, which is built-up from a

sequence of component operations. This sequence of operations or solution path starts at

the initial problem state and consists of all the states that lead from the initial state to the

goal state. It is possible that the space of alternative states could grow to an enormous size,

because there are innumerable ways in which the component operations could be combined

13

r
t The Application of Object-Oriented Techniques to Preliminary Design Problems

into sequences. Problem-solving systems, which carry out design procedures, do not merely

assemble possible problem solutions from the components available; they must also search

for appropriate assemblies.

Gardner (1989) expands on Simon's ideas adding that problem-solving systems usually have

three main components:

• A database, which describes the task/domain situation and the goal, which the

problem solving system is trying to achieve. This goal is achieved by applying an

appropriate sequence of operators to the initial task/domain situation;

• A set of operators, which are used to manipulate the database. She says these could

be rules that can be used to generate new assertions from the database or specialised

operators, which can create new assertions from the existing ones; and

• A control strategy for deciding what to do next. In particular, which operator to

apply and where to apply it.

The term search describes the process that the system applies to discover the appropriate

sequence of operators. In general, search techniques are used to find a sequence of operator

actions that will move the system from the given initial state to the desired goal states. This

view is endorsed by Mittal and Araya (1986), who say that many design problems can be

formulated as a process of searching a 'well defined' space of alternative artifacts with

similar functionality.

The writer's literature survey identified two basic approaches to search in problem solving;

these are state space search and problem reduction. In the state space search approach the

search system reasons forward applying the operators to the structures in the database,

which describe the task/domain situation. The objective of applying the operators is to

14

The Application of Object-Oriented Techniques to Preliminary Design Problems

produce a modified situation, which will eventually become the goal situation. These

modified situations can be represented as nodes in a search tree. Simon (1969) has described

this in terms of generating trees of partial solution possibilities. Successive application of

the operators to the modified situation will result in further modified situations, which can

be represented as successor nodes in the search tree. A search system, which reasons

backwards and; for which each application of an operator to a problem yields exactly one

new problem, whose size or difficulty is less than that of the previous problem, may also be

said to be using the state space search representation.

In the problem-reduction approach the search system reasons backwards applying an

operator not to the current task/domain situation but to the goal. The goal or problem

statement is converted to one or more subgoals, whose solutions are sufficient to solve the

original problem. These subgoals may in turn be reduced to subgoals, and so on, until each

of them is reduced to a trivial problem. In the problem-reduction approach a node in the

search tree is a goal (or set of goals) to be satisfied. Successor nodes will be the different

subgoals that can be used to satisfy that goal.

Alison (1994) states that most problems could, in principle, be formulated in either state

space search or problem-reduction terms. However, usually one way of formulating the

problem will be more natural and more efficient. The appropriate technique to use in a

particular case will depend on the nature of the solution to the problem and on the most

natural way to go about solving it. In general, state space search is best applied when the

solution to a problem is naturally expressed in terms of a final state, or a path from an initial

state. Problem-reduction may be better if it is easy to decompose a problem into

independent subproblems. In either case, state space search or problem-reduction

15

The Application of Object-Oriented Techniques to Preliminary Design Problems

representation, a solution is obtained by finding appropriate finite sequences of applications

of available operators.

Where a tree structure is used to represent the progress of a state space search, the nodes of

the tree represent the set of problem states produced by successive operator applications.

The root node of the tree represents the initial problem situation or state and each of the new

states are represented by the successor nodes, which emanate from the root. A new state

can be produced from an initial state by the application of just one operator. Subsequent

operator applications produce successors of these nodes, and so on.

Gardner (1989) says that instead of a tree structure, a graph may be used to better represent

the search space. In a graphical representation a directed arc represents each application of

an operator. The advantage of the graphical representation is that it accommodates more

than one path from the root to a node. Gardner then restates the problem of finding a goal

situation in terms of searching a graph to find a node whose associated state description

satisfied the goal. She also distinguishes the graph to be searched from the tree or graph

that is constructed as the search proceeds. She describes the graph, which is created as the

search proceeds as the search graph or tree. This is an explicit graph of nodes and arcs,

which grows as the search proceeds. She says the search graph is an implicit graph, which

represents the state space or search space. This graph may be thought of as having one node

for every state that can be described whether or not there is a path to the node from the root.

Many problem domains may have an infinite or very large search space. A search, which

examined the effects of all possible sequences of n operator actions, may experience

combinatorial explosion of the resulting search tree, because the number of effects to

examine expands exponentially with n. If the search space is a general graph, then the

search graph may be a tree or subgraph containing a path to a search space node, which is

16

The Application of Object-Oriented Techniques to Preliminary Design Problems

replicated as a search graph node. This concept is illustrated in Figure 2.1, which shows

part of a search space and the corresponding search tree, or solution path.

Gardner explains that searching becomes a problem of making just enough of the search

space explicit in a search graph to contain a solution of the original goal. This reflects

Simon's point that in general AI search-based problem solvers will tend to produce

satisfactory solutions but not optimal ones. They will find a solution but, because resources

are limited, they may not be able to search long enough or far enough to reach the optimal

solution.

Gardner suggests several strategies for limiting the search process by reducing the search

space or the number of nodes to be examined. These strategies include recasting the

problem so that the size of the search space is reduced; finding a better way to represent the

problem; and the use of heuristic knowledge from the problem domain to guide the search.

Gardner points out that the term heuristic search is imprecise and she cites several different

definitions, including: Polya (1957, p. 112), Newell, Shaw and Simon, (1963) and Nilsson

(1971). According to Nilsson " . . . a blind search corresponds approximately to the

systematic generation and testing of search space elements. Heuristic search can be

achieved if additional information from the specific problem domain can be introduced so

as to drastically restrict the search space" .

In the 1975 Turing Lecture, Simon and Newell (1976, p . 113) introduced the idea of the

symbol structure to their discussion of the role of search in intelligence. Their 'Heuristic

Search Hypothesis' was that intelligent problem solving involves search, which involves

generating and progressively modifying symbol structures until a solution structure is

produced. Their terminology differs slightly from Gardner's, which was described earlier in

17

'
��· The Application of Object-Oriented Techn iques to Prelim inary D esign Problems

this section. They asserted that a problem has a test for a class of symbol structures

(solutions of the problem) and a generator of potential solutions. To solve a problem is to

generate a structure that satisfies the test. Thus there is a problem if it is known what is to

be done (the test) and if it is not known immediately how to do it, (the generator).

Likewise, a system can state and solve problems because it can generate and test. For there

to be a generator of solutions for a given problem there must be a problem space and a

space of structures in which problem situations, including the initial and goal situations can

be represented. Solution generators are processes for changing one situation in the problem

space into another.

Search Space

Alternatives at
the top level 'a'

/
/

/
al!'
"'

"'
"' "

/
/

/
a2

""
"'

"'

Alternatives at Alternatives at
the next level
'b'

.................... ,

albl ::::::

the next level
'c'

·- ...

alb I c l

:: lblc2
NJ,lblc3

_ alb2cl
m:i'.b2:- alb2c2

------ ,-�':3

-- alb3cl

,alb3 --- alb3c2
--.

r-alb3c3

a2b lc l
Ab I --::_- a2blc2

----i-a2blc3

� a2b2c l

a2b2 _...- a2b2c2
--- a2b2c3

� a2b3c l

a2b3 _...- a2b3c2

.............

Figure 2.1 Search Trees

One Possible Search Tree

·-

al

solution path

alp� ----a1li2cs

18

'

I I I I

i

i
i

i
J

-<

-

The Application of Object-Oriented Techniques to Preliminary Design Problems

Figure 2.1 shows a tree representation of a search. In this case the product can be

decomposed into a hierarchy of three levels: a, b, c. There are three possible design options

available at each level, these are: at level a: al ,a2,a3, at level b: b 1,b2,b3, and at level c:

c 1,c2,c3 . The final product will contain one component from each level.

If all possible combinations at each level were allowed, the search space would appear like

the tree on the left of the diagram. The number of possible alternatives at level 'c' could be

calculated by applying the multiply rule for combinations. Thus:

Number of alternatives at 'c' = number at 'a' x number at 'b' x number at 'c'

= 3 X 3 X 3 = 27

If some form of heuristics were applied to eliminate infeasible options and if in the example

the only acceptable option was 'alb2c3', then the corresponding search tree would appear

like the tree on the right hand side of the diagram.

The test for a successful problem solving system is that when faced with a problem and a

problem space it can use limited processing resources to generate possible solutions, one

after another, until it finds one that satisfies the problem defining test. The system's

generator produces successive solutions, each obtained by modifying the previous one. The

modifications in each case are aimed at reducing the difference between the form of the

input structure and the form of the final (test) solution, while maintaining the other

conditions for a solution.

Simon and Newell (1976) say that in solving combinatorial type problems, tree search can

seldom be avoided, and success depends on heuristic search methods. In a heuristic tree

search the questions are:

• From what node in the tree should the search resume? and

19

The Application of Object-Oriented Techniques to Preliminary Design Problems

• What direction should the search take from that node?

Different strategies exist to gather information to assist in answering these questions and in

most cases, the information used, may be drawn from the problem domain. For example,

the best-first search strategy calls for searching next from the node that appears closest to

the goal.

2.4 Complex Systems, Hierarchical Organisation and Decomposition

Simon (1969) noted that complex structures are hierarchical in nature and therefore they

may be analysed or decomposed into their constituent components, which correspond to

their functional parts. This reflects the fact that the components in any complex system

perform particular subfunctions, which in turn contribute to the overall function.

In his book 'Computer Aided Architectural Design ', Mitchell (1997, p27) explains how the

search process might be effected during design; he proposed the 'generative system' as a

means for producing potential solutions or paths to the final goal state. He traces the idea of

the generative system back to Aristotle (Politics, Section 1290). Aristotle's idea was that an

object could be decomposed into a number of components. A list of the components could

be maintained and a new object could be conceived of as a combination of the individual

components from the list. Furthermore, as many different new objects could be assembled

as there are possible combinations of the components. A generative system then, is a

system, which decomposes objects into components and then creates a diverse range of new

potential objects by recombining these individual components.

Mitchell contended that historically generative systems have played an important role in the

development of engineering and architectural design methodology. He also addressed the

issue of the combinatorial explosion of potential solutions, which could be created if a

20

-/

r
f ,it

The Application of Object-Oriented Techniques to Preliminary Design Problems

generative system were to generate all the possible combinations of the component parts.

He then attributed to Leibnitz, the discovery that the exhaustive generation of possibilities

can be practical and useful if the range of alternatives is carefully limited and well defined.

This limiting of alternatives opened up the way to the widespread application of generative

systems in engineering design.

In theory, a complex structure could be designed by decomposing it into semi-independent

components, which correspond to its functional parts. The design of each component could

then be carried out independently. This could be done because each component affects the

others through its functions and not through the details of its mechanisms for achieving

those functions.

Simon also pointed out that there might be more than one way to decompose a complex

structure and successive decompositions may produce different alternative collections of

subcomponents. Various alternative designs of the top-level object could then be

synthesised by recombining the individual subcomponents. Combining alternative options

at each level in the hierarchy facilitates the decomposition and subsequent recomposition.

Simon suggested the design process could be viewed as a repetitive cyclic process with two

stages; one stage, which generated alternatives and a subsequent stage, which involved

testing these alternatives against an array of requirements and constraints. The 'generate'

steps may be nested into a whole series of cycles. He says the generators implicitly define

the decomposition of the design process, as alternative decompositions correspond to

different ways of dividing the responsibilities for the final design between generators and

tests. The designer must organise the design process and decide how far the development of

possible subsystems will be carried out before the overall coordinating design is developed

21

The Application of Object-Oriented Techniques to Preliminary Design Problems

in detail. Conversely the designer must also decide how far the overall design might

proceed before the components are designed.

Simon's idea of design as a hierarchical decision-making process, dependent on heuristic as

well as technical knowledge maps directly to his state space search model of the human

problem-solving process, which was introduced in section 2.3.

2.5 State Description and Process Description

Simon (1969, p 211) provided two different descriptions of a given product. A state

description, addresses the actual product object; and a process description describes how to

create it. Pictures, blueprints and diagrams are state descriptions and recipes, equations and

assembly instructions are process descriptions. Process descriptions facilitate the means for

generating products.

Simon creates a link between his concept of design as a problem solving exercise and of

search and his ideas of state and process descriptions, by saying a problem can be proposed

by describing the state description of the solution.

"the task is to discover a sequence of processes that will produce the goal state from

the initial state. Translation from this process description to the state description

enables us to recognise when we have succeeded."

He expands on this, saying problem solving requires a continual translation between the

state and process descriptions of the same complex structure.

2.6 Design as a Constraint Driven Activity

Harty (1984, p. 14) says design objects are devised with the basic objective of attaining a

specific set of goals. This introduces the idea of limiting factors or constraints. She points

22

The Application of Object-Oriented Techniques to Preliminary Design Problems

out that for the product to be effective, it must attain the specific set of goals for which it

was designed. She cites Eastman (1981) who says that design is "the specification of an

artifact that achieves both desired performances and is realisable with high degrees of

confidence".

Goals, desired performances and realisability are grouped together as constraints. A

constraint is a limitation or requirement that restricts or constrains something. Some design

goals are determined by the required functionality of the product. However, the product

must also be practical and this creates additional design goals. These design goals act as

constraints on the solution and that design can be regarded as a constraint driven activity.

Harty (1984, p. 15) cites Mostow (1985) who outlines five categories of constraints, which

govern most designs regardless of context. These categories are: functional specification;

limitations in the design medium; performance requirements; design criteria on the form of

the product; and restrictions on the design process. Harty also cites Maher, (1984), who

states that these generic constraints influence the design process in two different ways and

can therefore be divided into two categories: "hard" and "soft". Hard constraints are those

which must be fully satisfied by the design, while soft constraints need not be fully satisfied.

Soft constraints may be represented by numerical variables, whose values will vary. They

may be combined and used in algorithms to evaluate and then rank potential design options.

Harty (1984, p. 15) says that Malhotra and Thomas (1980) have shown that new design

constraints may be identified during the design process and that design is a cyclic process.

An iteration in the cycle occurs when a partial design is evaluated and new constraints are

identified, the design goal is subsequently changed and the process is repeated until a

satisfactory solution is achieved.

23

I
I
('

The Application of Object-Oriented Techniques to Preliminary Design Problems

She says that this view leads to another definition of design, which is that it is a type of

problem solving in which the "goal, initial conditions and allowable transformations are ill

defined", or are perceived to be so by the problem solver. She concludes by saying, "thus

both identification and integration of constraints are part of the design process.

2. 7 Difficulty of Design

Sriram et al (1989) note that significant design problems are ill defined because they do not

have a clearly defined algorithmic solution. There are no clear-cut methods to solve these

problems and the engineer deals with them using judgment and experience. They note that

artificial intelligence techniques, in particular knowledge based technology, offer a

methodology to solve these ill-defined problems. Harty describes two types of difficulty,

which may arise in design. The first is related to the complexity of the problem. The

second type she describes relates to the degree of novelty of the problem. Harty refers to

Brown and Chandrasekaran's (1985) system for classifying design problems. They provide

three classes of problems; class 1 problems require pure invention, class 2 problems are

close to routine design, but require some innovation when standard methods do not work,

and class 3 problems can be solved by routine design.

Routine design is a subset of creative design that does not require any innovation because

the problem has been solved before. In a routine design the required functionality is

completely specified and can often be described with a number of parameter values for the

particular problem. Standard solutions are known, and the resulting design is usually one

(or more) of these with the appropriate parameter values determined so that the design

satisfies the constraints. Harty says class 3, routine design problems, are the most likely

type to elect for automation.

24

The Application of Object-Oriented Techniques to Preliminary Design Problems

Summary

The chapter has presented an outline of the key ideas concerning design. Succeeding

chapters will abstract key design activities from this framework to create a model of the

design process.

Simon explained the design process in terms of a hierarchical decision-making search

process, dependent on heuristic as well as technical knowledge. Furthermore, the elements

of this hierarchical design process could be mapped onto Newell and Simon's state space

search model of the human problem solving process. Such a mapping would consist of a

state space, rules for traversing the state space and a function that determines whether the

element under consideration is an acceptable solution.

The state space if fully expanded will eventually contain all the possible design solutions

and a design search process should be able to traverse through the state space in stages.

Each stage of the design process corresponds to a level in the decomposition hierarchy

produced for the design product object and at each stage the design system generates the

next level of the state space and then evaluates all the elements on that level. The system

generates the next level by combining the attributes of the partially designed objects with

the attributes of each alternative available at the new level. This process is accelerated

through the use of heuristics, which reduce the number of alternatives generated at each

level.

In this state space search model of the design process the state space can be represented as a

set of nodes in the form of a tree or graph. The root node of the tree represents the initial

start state of the problem. The search process can be considered to be a tree or graph

traversal exercise. In a state space search the search progresses when the search agent or

25

The Application of Object-Oriented Techniques to Preliminary Design Problems

program applies an operator; initially to the start state and subsequently to the current state,
and in the process creates a new state. A successor node of the root node represents each of
the new states that can be produced from the initial state by the application of an operator.
Subsequent operator applications produce successors of these nodes and a directed arc of
the tree represents each operator application. As the search progresses the system examines
each node until a goal state is found.
Dasgupta (1992) says that Simon introduced a new paradigm, which he refers to as the
artificial intelligence (Al) design paradigm. Dasgupta says that according to the AI design
paradigm, the design process begins with a symbolic representation of the problem in a state
space; the problem space. The problem representation may include the 'initial' state and a
specification of the goal state. The goal state, which is to be achieved, will be a 'data path'
consisting of the designs for the components and subsystems of the complete structure and a
scheme for fitting them together.
Dasgupta points out that in addition to the goal and initial states, the problem space allows
for the representation of partial designs, designs satisfying other requirements, sub
assemblies and components. He says the problem space is a space of possible design states.
Applying a finite sequence of operators effects transitions from one state to another. The
result of applying these operations in effect causes a search for the solution through the
problem space. Dasgupta adds that since the problem space can be very large, heuristics are
needed to control the amount of search so that the goal state can be reached. Dasgupta adds
that Simon had recognised the need to distinguish between optimal and satisficing design.
The key ideas presented so far include:

26

The Application of Object-Oriented Techniques to Preliminary Design Problems

• Design is a special kind of problem solving, which involves the search for or selection

of a satisfactory combination of components. It operates by arranging combinations of

known components and creating new components by applying design rules.

• Design is a hierarchical process. It starts with an abstract high level or global view and

ends with a detailed configuration.

• During the design process an object is decomposed, layer-by-layer and subsequently

recomposed by combining the alternative options at each layer or level in the hierarchy.

These combinations of subcomponents form the substance of the search space.

• There are various strategies for controlling the search process, including the use of

heuristics. These strategies reduce the number of new combinations of components,

produced and evaluated during the process.

• Different perspectives of design exist; these include the state descriptions, which are

product focused and process descriptions, which focus on design activities.

• Design constraints act to limit the feasibility of possible design alternatives produced.

• Design problems can be classified by the degree of complexity involved. Three classes

of design problems have been proposed. Most sources consulted place preliminary

structural design in the 'routine design' class. This implies that the possible design

solutions produced in the process are predetermined.

• A design system must contain knowledge about how to refine an intermediate design in

a stepwise manner. It must be able to represent the initial state of the object, and any

intermediate or partial designs and the final design solution created during the process.

27

....

The Application of Object-Oriented Techniques to Preliminary Design Problems

• A design system must be able to represent design constraints and must have a

mechanism to test the designs it has created against the constraints it has represented.

Chapters 3 and 4 cover structures and structural design, they introduce more product and

process related information. Chapter 3 provides an overview of the structural design

process and chapter 4 describes how structural design knowledge has been represented in

various knowledge based design systems.

28

--

The Application of Object-Oriented Techniques to Preliminary Design Problems

CHAPTER 3. Structural Design

3.1 Introduction

This chapter provides an overview of the structural design process. Section 3.2 of the

chapter defines structural design and introduces the term systems thinking as it relates to

structural design; section 3.3 describes what preliminary structural design is, and where it

fits in the overall design process. Sections 3.4 through 3.6 explain how the subsystems in a

building can be conceptually organised into a hierarchy of vertical and horizontal

subsystems. Section 3.7 focuses on how the selection of acceptable designs may be handled,

section 3.8 discusses the expertise required to complete successful preliminary structural

designs and section 3.9 introduces some of the approximate calculations required in the

process.

3.2 Structural Design

Ambrose (1967) describes a building design as 'the projected image of a building which

may be presented in any or all of the following forms: a verbal or graphic description, a

scaled model, or some other representation'. Ambrose says that the design activity is

essentially a synthetic process, which involves the bringing together of many disparate

objects into a composite whole. Ambrose points out that design requires:

• Examination of the design problem;

• Establishing of criteria for the design;

• Selective isolation of design alternatives; and

• Evaluation of the completed design.

29

i
r
(,
�'

The Application of Object-Oriented Techniques to Preliminary Design Problems

Each of these tasks is essentially analytical in nature. The purpose of structural design is to

provide a plan to build the stable underlying structure for a building, which can safely

satisfy the requirements of its owners. Planning requirements include structural stability,

functional capability and buildability within predetermined economic constraints.

Economic constraints include factors such as the cost of construction and the time taken to

complete construction. Structural design consists of the selection, manipulation and

association of the form, scale and material of a structure in response to the needs dictated by

specific building problems. These specific problems are elaborated when the designer starts

to determine how the building must be built so that it fulfils the requirements of its owners.

Lin (1981) provides a comprehensive description of structural design in terms of the

provision for a 'need to transmit loads in space to a support or foundation, subject to

constraints on costs, geometry, or other criteria' . The process should finish with the

production of a detailed specification of a structural configuration capable of transmitting

these loads and maintaining system integrity.

Several sources, Maher (1984), Harty (1987), Merritt, D. (1985), Sriram et al. (1989) agree

that the following stages will be identified in any structural design process:

• Preliminary structural design or conceptual design, which involves the synthesis of

potential feasible configurations, followed by the evaluation and selection of the

optimal configuration;

• Analysis, which involves modeling the selected structural configuration and

determining its response to external forces;

• Detailed design, which involves the selection and proportioning of the structural

components, so that all applicable constraints are satisfied; and

30

The Application of Object-Oriented Techniques to Preliminary Design Problems

• Evaluation and Optimisation, where the detailed design alternative is evaluated.

This may require some backtracking to earlier stages to achieve an optimum design.

'Systems thinking ' is a general term to describe a certain way of thinking and working. It

has emerged as a powerful and innovative tool for building the necessary frameworks for

dealing with complex issues. It allows the user to see whole systems and interrelationships,

and to pull out the important data and complex patterns that are at work in a system.

,;; Leclerc (1979) has described what this means in terms of engineering. He says it requires

thinking in terms of a whole system, describing the components of the system and how they

interact, it also requires the use of optimisation techniques, the use of mathematical models

to simulate complex data, and it requires data analysis and the comparison of alternatives.

f
r,

i

Merritt (1985) provides a useful description of design, which introduces the concepts of

systems thinking and the need for information. He defines system design as:

"systems design is the application of scientific methods to the selection and

assembly of components or subsystems to form the optimum system to attain

specified goals and objectives while subject to given constraints and restrictions.:_:

According to Merritt, (1985, p 1-9) the simplest building system consists of only two

components, these being a floor or flat horizontal surface, and an enclosure that extends

over and around the floor to provide shelter. He states that both components must be

designed so that they transmit the vertical (gravity) loads, horizontal (lateral) loads and the

horizontal and vertical components of inclined loads, to the foundations. Harty (1987) notes

that this is done by providing a path for the loads through the structure to the ground below,

which provides the ultimate resistance. This path, which is in effect the design, and which

31

r

The Application of Object-Oriented Techniques to Preliminary Design Problems

must be documented, is a configuration of walls, columns, beams and floors, which act as a

unit to provide overall structural stability.

Both Lin and Merritt refer throughout their accounts to building systems and the systems

thinking paradigm. Merritt (1 985) explains how systems thinking, which he also refers to as

systems design, applies to building design. He says that systems design is the process of

providing all the information necessary for the construction of a building that will meet its

owner's requirements and also satisfy public health, welfare and safety requirements.

He contrasts the systems design approach to building design with traditional building

practices. He contends that traditionally buildings were designed by effecting some form of

imitation or modifying of designs of existing buildings combined with some form of trial

and error. Gordon (1978) also supports this point of view. Merritt asserts that the

introduction to building design, of systems thinking, in the guise of operations research or

systems design methodologies, has made major advances possible in creativity and

innovation. He says that any innovations were rare with traditional building design and were

developed fortuitously. In contrast systems design is a more precise procedure that guides

creativity towards the best design decisions.

Systems design comprises a rational, orderly series of steps that leads to the best decision

for a given set of conditions. These steps include a repetitive series of cycles of the

following activities :

• Analysis;

• Synthesis; and

• Appraisal.

32

The Application of Object-Oriented Techniques to Preliminary Design Problems

The system design process requires that the building be analysed as a system from the

outset. This is followed by synthesis or selection of components to form a collection of

candidate systems, which meet specific objectives, while at the same time being subject to

constraints or variables controllable, by the designer. The final stage includes appraisal of

the system's performance, which also includes comparisons with alternative systems. The

final stage also allows for feedback to the earlier analysis and synthesis stages, of

information obtained in systems evaluations to improve the design. This feedback should

result in incremental improvement to the evolving design.

Merritt contends that the major advantage of the systems design methodology is that,

through comparisons of alternatives and data feedback to the design process, it results in the

system's design converging on an optimum system for the given conditions.

Merritt identifies nine separate steps that make up the building design process. These are:

• Analysis of the building as a system commences at step 1, where the definition of

purpose and goals is elaborated. The designers obtain a building program and collect

any information on existing conditions that will affect building design. The designers

define the goals to be met by the building. These goals state the purpose of the building

and how it will interact with the environment and with other systems, including heating,

ventilation and the utilities. These design goals should be sufficiently specific to guide

the generation of initial and alternative designs and to control selection of the best

alternatives.

• In step 2, the designers establish the building's objectives and constraints. These

objectives are meant to guide design of the building systems at the more detailed levels.

The objectives may be numerous and cover such things as minimisation of cost and

33

The Application of Object-Oriented Techniques to Preliminary Design Problems

construction time, health and welfare considerations and zoning. Merritt says the

objectives should contain sufficient information to allow the designer to plan the

building's interior spaces and to design specific characteristics of the building and its

components including appearance, strength, durability, stiffness, operational efficiency,

maintenance and fire resistance. Criteria should be developed for these objectives and

the objectives should be weighted to reflect their relative importance to the building

owner.

A series of design variables should be developed to represent the values of physical

forces calculated or estimated for a particular building system design.

Constraints are restrictions on the values of design variables that represent the properties

of the system and are controllable by the designer. Again Merritt adds that standards

must be associated with each constraint. A standard is a value or range of values

governing an attribute of the system.

• Merritt 's third step is the synthesis stage, where the designer puts forward specifications

for at least one system that satisfies the objectives and constraints established. It is at

this stage that the designers rely on past experience, knowledge and skills. He notes that

synthesis often requires input from specialists in several different disciplines including

structural engineers, construction experts and materials specialists.

• In step 4 the designers create a model of the system that will allow them to analyse it

and evaluate its performance. Merritt describes three classes of models: iconic, symbolic

and analog. The most important class of model from the point of view of this study is

the symbolic model. Merritt identifies four separate substages in step 4:

• Select and calibrate a model to represent the system for optimisation and appraisal;

34

l '

...

The Application of Object-Oriented Techniques to Preliminary Design Problems

• Estimate values for the uncontrollable independent design variables;

• Determine values for the controllable design variables; and

• Determine the output or performance of the system from the relationship of

dependent and independent variables by use of the model.

• In step 5 the designers evaluate the results output from in step 4.

• Step 6 is where value analysis is applied to the whole building system. This may result

in either a change to the whole system, thereby producing a new one or in changes to

parts of the system.

• In step 7 new models are created for the new systems or at least those designs with good

prospects.

• In step 8 these models are further evaluated. During and after step 8 completely

different alternatives may be conceived. As a result, steps 4 through 8 should be

repeated for the new concepts.

• In the final step the best of the systems are selected. Selection is based on the results of

some form of ranking of the scores compiled during the evaluation steps.

Merritt says that systems design processes may be used in all phases of building design.

However, he stresses that systems design is most advantageous in the early or preliminary

design stages, which corresponds to steps 1, 2 and 3, described in the previous paragraph

above. During preliminary design one system may be substituted for another and

components may be eliminated or combined in those stages with little or no cost.

The writer obtained a description, which complements Merritt's, from Bedard and Gowri

(1990). Their description stresses the idea of decision making in the structural design

35

I

The Application of Object-Oriented Techniques to Preliminary Design Problems

process. They regard the process, as a decision-making process that generates the detailed

documents, which enable the construction of a product to satisfy a need. The process,

which they describe, consists of four interrelated subprocesses, which are shown in Figure

3.1.

The definition subprocess involves the identification of a need and the specification of the

object to be designed. In this model the synthesis and analysis subprocesses are interrelated

and in the process information cycles back and forth between them until a specification for a

feasible alternative has been compiled and has passed the testing and optimising stage of the

analysis subprocess. During synthesis, components or subsystems are combined, and then

tested in the analysis subprocess. These two subprocesses are repeated until the assembled

product reaches an appropriate standard. The final subprocess, documentation, involves the

production of drawings and written specifications. These should contain sufficient

information to allow the building to be assembled.

These subprocesses can also be viewed as a sequence of time-related events. At the

conceptual (definition) stage different roughly defined schemes are proposed. Then in the

preliminary design (synthesis and analysis) stage, which follows, the designer selects the

best alternative and in the final stages this alternative will be designed in detail.

Bedard and Gowri also draw attention to some of the unique characteristics and inherent

difficulties encountered in developing building designs. They say the design of a building is

unique because: a single product is designed and is only built once, and; the product will be

built in a natural environment.

The design process is inherently difficult because:

36

The Application of Object-Oriented Techniques to Preliminary Design Problems

• Contributions are required from several disciplines: engineering, architecture, suppliers

and contractors;

• Buildings are made of several subsystems, which interact with each other but which

operate on different principles;

• Typically the subsystems are designed by different groups;

• The overall design concept is usually imposed at an early stage in the design in the

absence of knowledge of how the subsystems will interrelate with each other; and

• The building industry is fragmented into numerous distinct and diverse organisations.

Other factors that the designer must be aware of are: government regulations, standards,

building codes and local authority by-laws. All of these contribute to a complex and

difficult process. They suggest that the process could be improved if a method could be

found to integrate the different viewpoints of the key participants. It could also be

improved if there were better ways to consider buildings as complex systems, containing

subsystems, whose interactions with each other were key design considerations. They stress

that priority should be given to the support of decision-making procedures that incorporate

multi disciplinary knowledge and make the resulting information available at the earliest

possible stage in the design process.

37

/:

The Application of Object-Oriented Techniques to Preliminary Design Problems

Definition

• Recognition of Need
• Problem Statement

Objectives, Constraints, Criteria
Design Variables

• Information gathering based on experience
Past Designs, Available Components

Synthesis

• Assembly of Feasible Alternatives from
Components within Design Constraints

Feasible Alternative
To Verify

Figure 3.1

Analysis

• Modeling/Representation
• Calculation of Performance Characteristics
• Test against Evaluation Criteria
• Optimise Satisfaction of Objectives

Documentation
• Production of Specifications and

Drawings for Construction
• Communication

The Structural Design Process

Adapted from
Bedard, C. & Gowrt K.
Automating Building Design
Process With KBES
Journal of Computing in
Civil Engineering
Vol. 2, No 2, April 90, p 70

Unsatisfactory Alternative
To Improve

Optimal Solution has
Been Determined

38

....
....

�
1,

The Application of Object-Oriented Techniques to Preliminary Design Problems

3.3 Preliminary Structural Design and the Building Design Process

As noted in the Section 1 .3, preliminary structural design is an early stage in the design

process during which the engineer formulates and assesses a number of different structural
schemes or configurations. The schemes are assessed in order to enable selection of the
one, which best satisfies a variety of constraints. This scheme will then be used to produce
the detailed design, which determines the overall form of the structure and produces a
scheme for constructing it. The results of this process are documented in the initial design

f specification. According to Harty (1987), the preliminary structural design task is ill
r' � defined, it relies on experience and judgment and it involves activities and decisions, which
"'
�'

r are heuristic in nature.
r

During preliminary structural design, the designer explores possible alternatives by
producing rough designs, which contain approximate measurements, but which still
maintain the important features of the design problem. In cases ofroutine design an
experienced designer should be able to easily identify, which features are important.
Eventually the designer will produce a set of feasible designs, which will satisfy the hard
design constraints. The designs produced are then examined to determine how well each
one satisfies a series of soft constraints, which have been weighted in order of importance.
The feasible designs can then be ranked in order of how well they satisfy these soft
constraints.
Lin (1981) says that structural design should be approached hierarchically. The architect
should think of the design of the building environment as a total system of interacting and
space-forming subsystems. This approach will require a hierarchical design process that
provides "at least 3 levels of feedback thinking: schematic, preliminary and final."

39

The Application of Object-Oriented Techniques to Preliminary Design Problems

According to Lin the schematic feedback level generates and evaluates the overall site-plan,

scheme of activity, organisation and building configuration options. At the preliminary

level, the architect will focus on his or her more promising schematic design options at the

same time as addressing the approximate design of specific subsystem options. He or she

will consult with the structural designer to identify and design the major subsystems to the

extent that their key geometric, component and interactive properties are established. Basic

subsystem interaction and design conflicts will be identified and resolved in the context of

the total-system objective.

The key objective of preliminary structural design is to select the structural configuration to

be used for the final design. During the process a number of rough designs will be

produced. When the designer and the architect are satisfied with the feasibility of a design

proposal at the preliminary level, then the basic problems of overall design will have been

solved and subsequent detailed analysis is not likely to produce major changes. The design

process then moves into the final level, which involves in-depth design refinement of all

subsystems and components and the preparation of working documents. In summary at the

preliminary stage the designer must be able to identify the major subsystem requirements

implied by the scheme proposed by the architect and must be able to substantiate their

interactive feasibility by approximating key component properties. The designer will at this

stage have worked out the properties of the major subsystems in sufficient detail to verify

the inherent comparability of their basic form-related and behavioural interactions.

3.4 How Building Subsystems are Organised into a Hierarchy

Lin (1981) stresses the need for designers to understand the overall relationship between the

structural and the space form prospects of proposed architectural schemes. To do this,

40

The Application of Object-Oriented Techniques to Preliminary Design Problems

designers must first conceptualise the schematic options for providing total-system integrity

and then compare the likely alternatives for designing the major subsystems. In tum the

designers must be able to optimise the interaction of key force and geometric properties of

these subsystems at a preliminary design level. This means that the final design should

provide the desired size and shape required by the owner, at the same time the underlying

structure supporting the building must be able to resist the forces acting on the building to

maintain its integrity.

Lin explains the term total-system integrity, saying that a given form option is assumed to

behave as a structural whole, which can be analysed as a whole to determine its overall load

and the corresponding resistance to that load, which must be designed into the form. This

consideration of load will take into account: that the form is fixed to the ground, the form

will have a mass, which must be supported, by the ground; and that the form will have to

resist horizontal wind and earthquake forces.

When designing a building form, a designer must consider the subsystems that are required

to substantiate this assumption of total-system integrity. In tum this means that the designer

must be able to understand what subsystems are required and how they will interact to

actually achieve this integrity. Furthermore, at the schematic level the designer should be

able to identify design options for laying out the interaction of key subsystems. Then, at the

preliminary level the designer should work hierarchically to prove the feasibility of such

systems by determining their key properties. At this level the designer can use approximate

values and the detailed calculations can be postponed until the final stage of design.

Harty (1987) interprets Lin' s view of a hierarchy of structural actions in building forms as

follows. She says that this view of the design process envisages 3 stages, schematic,

preliminary and final, which represents a hierarchical approach going from the total system

41

t

i

The Application of Object-Oriented Techniques to Preliminary Design Problems

to subsystems to components. First a three-dimensional (3-D) schematic design of the total

structure is produced; this is followed by the preliminary design of the major two

dimensional (2-D) subsystems. This, in tum, is followed by the final design of all the

individual components, which may be considered one-dimensional.

Harty envisages a repetitive cycle of design stages, which are not usually finalised in one

pass through the hierarchy. Each stage provides feedback to the stage before it so that there

is considerable iterative refinement before the final design is produced.

It is usually at the 2-D stage that the structural engineer becomes involved in the design,

after the 3-D concept has been chosen. The 2-D subsystems examined in preliminary

design are the vertical and horizontal structural subsystems. These resist lateral wind and

earthquake forces, and the building's gravity loading respectively. The horizontal

subsystem is a frame of floors, beams and columns. There is a wide range of combinations:

flat plate, slab and beam, slab and main and intermediate beams, waffles and space trusses.

Lin describes the horizontal subsystems as 2-D wholes that act vertically to carry the floor

or roof loads in bending, and act horizontally as diaphragms and/or column connectors.

Similarly, the vertical subsystems are visualised as wholes that act to pick up loads from the

horizontal subsystems and also act to resist the horizontal, laterally acting forces. The

horizontal subsystems must be supported by the vertical subsystems, likewise the vertical

subsystems, which are generally slender in nature and unstable, must be held in place by the

horizontal subsystems.

There are three primary types of 2-D vertical subsystems found in buildings, these are wall

subsystems, vertical shafts and rigid beam-column frames. In contrast, horizontal surfaces

can be designed as plate, slab, beam, grid, or truss subsystems, which can be realised in

42

The Application of Object-Oriented Techniques to Preliminary Design Problems

various materials. As noted in the previous paragraph, the design and construction of

horizontal subsystems is related to the arrangement of the supporting vertical subsystem,

which consist of regular patterns of columns, frames, bearing walls and/or shafts. The

vertical subsystem is usually designed before the horizontal.

Lin notes that during the design process whilst the subsystems are designed separately, they

must both be considered more-or-less simultaneously. The designer must keep in mind that

they react together to form a 3-D building and that each load bearing subsystem interacts

with the other. Thus vertical systems also transmit components of the gravity load to the

ground. Likewise the horizontal load bearing systems contribute stiffness resistance to the

vertical systems, by acting as diaphragms, which hold the vertical subsystem in place.

Harty (1987) proposed a shortcut to simplify the design process. She says the subsystems

can be treated separately by assuming that the vertical subsystem accounts for the entire

lateral loading and that the horizontal takes all the gravity loading. This is a conservative

approximation, which is adequate for low rise but not suitable for very tall buildings (over

30 floors). She says that this assumption simplifies the design process and she used it in the

DOLMEN system.

The height of a building influences much of its design, in particular its horizontal load

resisting requirements. While vertical load effects increase linearly with the number of

storeys, horizontal load effects vary non-linearly; the overturning moment due to horizontal

loading is proportional to the square of the building height, while the horizontal sway is

proportional to the fourth power of the building height. Therefore, in a high-rise building,

which Lin defines as one, which has at least ten stories, the choice of vertical structural

subsystem tends to govern design and must be completed first. In contrast the columns,

43

The Application of Object-Oriented Techniques to Preliminary Design Problems

walls and stair cores of low and medium rise buildings can usually resist most of the

horizontal forces and the choice of the floor system is the predominant design activity.

Lin says this approach reflects the natural hierarchy of an architectural design problem. The

structural elements will become architecturally relevant only when it is understood how

they can work together, organising, and building subsystems to contribute to the fulfillment

of the broader need for enclosing spaces using the 2-D forms. Similarly, these 2-D

subsystems become architecturally relevant, when it is understood that they contribute to the

overall effectiveness of the 3-D space-form scheme as a total environmental system.

To summarise:

• At the 3-D schematic level, the structure-form relationships are analysed as a total

system and the architect aims to provide for overall total-system integrity;

• At the 2-D preliminary level, basic horizontal and vertical subsystems are identified and

key component properties and interactions are established; and

• At the 1-D final level all the linear elements, the beams and columns and their

connection details are specified in sufficient detail for the preparation of engineering and

construction documents.

According to Lin, at the preliminary or conceptual stages, the designer need only keep in

mind the four basic structural subsystem interactions that must be accommodated in order to

achieve overall integrity in the structural action of a building form. These are:

• Horizontal, gravity-resisting subsystems must pick up and transfer vertical loads to the

vertical subsystems and maintain sectional geometry.

44

The Application of Object-Oriented Techniques to Preliminary Design Problems

• Horizontal subsystems must also pick up any horizontal loads accumulated along the

height of a building and distribute them to the vertical shear-resisting subsystems.

• The vertical subsystem must carry the accumulated dead and live loads, and where

required, be capable of transferring shear from the upper portions of a building to the

foundation.

• The vertical subsystems must resist the bending and/or axial forces due to overturning

moments, caused by the lateral wind load. Where possible, these subsystems should be

tied together by horizontal subsystems to optimise overall resistance.

3.5 Vertical Structural Subsystems

This section, is taken from Lin (1981), it describes examples of the commonly occurring

types of subsystems. There are three main types of vertical structural subsystems, which are

m common use:

• Vertical Shaft. This is a tube of walls around a hollow core, in many buildings the shaft

would enclose the stair-core or lift-shaft;

• Wall Subsystems. These include solid shear walls of reinforced concrete, masonry, or

paneled timber, and trussed walls made of braced steel or timber frame; and

• Frames of Rigid Beam or Columns. These frames are rigidly jointed and may be made

out of reinforced concrete or structural steel. The rigid joints make the structure capable

of resisting horizontal loading.

According to Harty (1987) a shaft could be considered to be a 3-D unit, which on its own

may supply complete stability. The wall and frames subsystems are considered to be 2-

Dimensional, as they are only designed to resist the in-plane horizontal loading. In order to

45

.....

The Application of Object-Oriented Techniques to Preliminary Design Problems

have complete stability, 2-D subsystems must be used in two orthogonal directions. Many

combinations of these subsystems may be used, for example, shear walls in one direction

and rigid frames in the perpendicular direction, or a shaft together with shear walls.

Harty explains that in addition to selecting which subsystem to use, the designer must

determine the location of the subsystem within the building. Usually a grid-like, layout

diagram is drawn up for the building. The locations of the walls or frame systems are then

mapped on to this layout grid. In general the designer aims to:

• Minimise the number of vertical subsystems, to reduce expense;

• Minimise the area of the walls to maximise the space available in the building; and

• Place the systems in a symmetrical pattern to avoid torsion in the structure.

Usually the architect's plans already indicate the placement of the walls and the engineer

needs to incorporate this given information into the design. Having done this the engineer

may need to suggest additional walls or structures to complete the design.

3.6 Horizontal Structural Subsystems

Harty explains that any horizontal subsystem will consist of a frame of floors, beams and

columns. In general its structural behaviour will be analysed in terms of the overall bending

of the frame and in terms of the concentration of shearing forces around the support. Lin

divides the overall design methods for horizontal subsystems into two groups, one-way and

two-way subsystems. For one-way designs, for example for a slab, any strip or the whole

slab can be designed to carry its full tributary load. In a two-way slab the total load will be

carried one-half in each of two orthogonal directions and any strip should be designed to

carry one-half of its load in simple bending. Furthermore, it is essential to provide

46

The Application of Object-Oriented Techniques to Preliminary Design Problems

sufficient material or resisting strength around the vertical supporting members to avoid

failure in shear transfer of loads to the columns.

There are many combinations of components, which are commonly used in horizontal

subsystems. The following descriptions are taken from Lin (1981, pp. 157-200):

• Flat Plate: the floor acts as a plate supported only by columns without beams. Most

flat plates are of reinforced or prestressed concrete.

• Slab and Beam: one-way or two-way slabs spanning across beams, which are

located along column lines. One-way slabs span between 2 beams, whereas two

way slabs are supported by beams on all 4 sides. A one-way slab may be made from

precast, reinforced or prestressed concrete, timber, or concrete topped steel decking.

A two-way slab is usually only reinforced or prestressed concrete. The slab

transmits the gravity load, horizontally by shear and bending resistance, to the walls;

the load then goes directly through the walls and into the foundations.

• Slab, and Main and Intermediate Beams: also referred to as Joist and Girder

subsystems. Joists are closely spaced small beams, beams are larger and heavier

members and often-span as much as 10 metres apart and girders are deep beams.

Girders are designed to pick up heavy loads accumulated from many joists and

beams.

In this type of subsystem, where the slab is not capable of spanning the full bay

width, then beams are placed between the column lines to provide support. This

may be because of a limitation of the slab material or because the slab depth is

required to be very small. When the slab depth is restricted, a type of subsystem

known as Ribbed Slab may be used. This type involves the use of steel and

47

\I:,
�;

The Application of Object-Oriented Techniques to Preliminary Design Problems

concrete, the steel is corrugated and the concrete is placed on top of it in the form of

a slab or in the heavier form is poured into the corrugations. Moulds are used to

form the ribbed slabs and intermediate beams, which then span onto main beams.

• Waffles: these are a two-way version of ribbed slab; they are also constructed using

moulds, which form the beams and slabs. Usually waffles are used without separate

deep beams, but the waffle hollow may be filled in around the columns, or along

column lines, forming beam strips of the same depths as the rest of the floor.

• Space Trusses: these are used to cover a very large clear-span area with a flat floor

or roof. These consist of large trusses running in one direction and spanning

between the columns, which serve as the main carrying members. Smaller trusses

span between these large trusses, perpendicular to them. Trusses are similar to the

Joist and Girder subsystems, but use trusses instead of joists and girders.

Harty adds that horizontal subsystems also include all those support columns, which are not

part of the vertical subsystem. Their sole purpose is the transmission of gravity loads to the

ground, and they may be made from concrete, structural steel or timber.

3. 7 Selection of Subsystems

From the discussion included in sections 3.5 and 3 .6 it can be seen that the two major tasks

of preliminary structural design are to select the vertical and horizontal subsystems to make

the 3-D concept a reality. Harty says it requires a considerable amount of expertise to select

the most appropriate configuration for the project from the wide range of alternatives

available. Each building is different, with its own unique set of constraints. The

appropriate loadings must be estimated, usually with reference to appropriate Building

Codes, and initial sizes chosen for the building components. Furthermore, structural

48

-

The Application of Object-Oriented Techniques to Preliminary Design Problems

analysis of the building must be carried out for the particular geometrical constraints, which

apply.

3.8 Expertise

To improve the efficiency of the design process it is necessary to capture the expertise

required to quickly identify a small number of alternatives, which are worth considering,

and to produce outline designs, which are very close to the final detailed designs.

This section explores various aspects of design expertise encountered in preliminary

structural design. Experienced engineers use their knowledge of previous projects, together

with technical expertise to produce suitable preliminary designs and to advise on the

selection of one of them. In practice this expertise is held by experienced designers, who

have developed their knowledge by being involved in a large number of projects. This type

of knowledge is expressed in the form of either comparisons with previous projects, or in

rules of thumb. Harty (1987) stresses the fact that the rules of thumb are all based on

generalisations made from a large set of examples, which were produced using sound

engineering calculations. In practice, designs effected by rules of thumb are always

confirmed by calculation. Sometimes this results in the engineers unearthing cases where

the rules of thumb do not work. This adds to their knowledge, which they can apply to

subsequent projects.

At the preliminary stage the structural engineer is required to assess values for loading and

sizing and to select a structural configuration. In estimating the lateral and gravity loadings

for which the building should be designed the engineer is usually guided by the relevant

building code, for example Harty (1987) quotes standard number BS6399, British Standards

49

The Application of Object-Oriented Techniques to Preliminary Design Problems

Institute (1984). This code suggests typical loads and the engineer can start with these

values and work out a reasonable figure given the circumstances of the particular project.

After selecting the loading the engineer selects a suitable structural configuration. Then the

displacements and forces on structural members are calculated. The beams, columns, slabs

and walls are then designed. The engineer uses judgment and experience to reduce the

number of possible choices by eliminating options, which can be seen to be unsuitable from

the onset.

The next stage involves selecting the initial sizes for the different schemes and analysing

them. Rules of thumb may again be used in this stage for example to choose sizes based on

span to depth ratios. Harty (1987) says the 'Manual for the Design of Reinforced Concrete

Building Structures ', (RC Manual), (Institute of Structural Engineers, 1985), includes many

standard rules of thumb, which have been adopted from building code BS81 10. They were

compiled specifically to assist with the preliminary design of reinforced concrete buildings.

They include recommendations for dead loads and the material strengths to be used,

maximum slabs and beam spans, and initial sizing of members.

After completing the estimates for loading, selecting configurations and sizing, the engineer

is required to evaluate the designs, comparing the alternatives in terms of several different

factors. Expertise is required here to establish what factors must be considered and what

relative importance should be attached to them. It is at this stage that soft constraints must

be addressed. These constraints are of the type, which can be satisfied to a greater or lesser

degree, for instance, cost minimisation. Soft constraints differ from hard constraints, which

act in an all or nothing manner. Harty says that knowing what factors must be considered

and what relative importance should be attached to them requires a great deal of expertise

and judgment.

50

The Application of Object-Oriented Techniques to Preliminary Design Problems

3.9 Approximate Calculations

Harty (1987) cites the recommendations made in the RC Manual of the Institute of

Structural Engineers (1985) mentioned above, which says that initial design methods should

be simple, quick, conservative and reliable, and that lengthy analytical methods should be

avoided. The structural schemes produced should be suitable for the building's function,

they should be economical and should allow for the inevitable design modifications.

Typical preliminary structural design includes the design of representative parts of a

building, which include estimates for foundations and edge, interior beams, slabs and edge,

and interior columns. These estimates need only be compiled every 2 or 3 floors of the

building.

Harty has incorporated several recommendations from the RC Manual into her model, these

are listed below:

• Sizing of beams based on the longest spans,

• Simple formulae for the calculations of moments on slabs and beams (not to be used for

rigid frames),

• Stress checks on elements,

• Recommendations for the arrangement of reinforcement in concrete,

• Methods for estimating the total weight of reinforcement for the required areas of main

steel, which has been calculated during design.

Harty has also incorporated simplified analysis methods for rigid frames from Lin (1981)

and for steel from Joannides (1987).

51

The Application of Object-Oriented Techniques to Preliminary Design Problems

Summary

This chapter has provided a limited outline of the structural design process and shown how

preliminary structural design fits into this process. It has also presented outlines of more

formal descriptions provided by Ambrose, Lin, Merritt and Bedard and Gowri. In particular

it has relied on material taken from Lin (1981) who has recommended a systems based

approach, which perceives the building as a hierarchical organisation of subsystems and

which requires the designer to assess the building structure as a whole, to be able to :

• Estimate loadings based on relevant Building Codes,

• Select and assess different combinations of subsystems,

• Size and test members of these subsystems using approximate calculations.

It is clear that the process of creating structural designs is extremely complex and requires

input from many disciplines. In particular it requires significant architectural and

engineering input. Furthermore, the process must take account of a very wide range of

limiting factors including legal requirements and building codes. It is also constrained by

economic factors, which include cost of construction and availability of materials.

Although the preliminary structural design process is ill defined several identifiable stages

may be recognised. Unfortunately, these stages are also neither precisely defined nor are

they clearly distinguishable from each other. The process is further complicated by the fact

that these stages are repetitive and the whole process may go through several iterations.

52

I

The Application of Object-Oriented Techniques to Preliminary Design Problems

CHAPTER 4. Object-Oriented Design Support Tools

4.1 Objectives

A literature survey was completed to review developments in computer assisted design. It

was intended to support the following tasks:

• Determine what progress had been made with the use of computers to support

preliminary structural design;

• Gain an understanding of the issues involved in the application of object-oriented

concepts and techniques in the development of knowledge-based design systems. In

particular what methods had been used to represent preliminary structural design

knowledge.

These tasks were intended to support the primary objectives of the study, which were to:

• Adopt and analyse a particular approach to the application of knowledge based

computer systems to the task of preliminary structural design; and

• Determine whether or not it was practical to implement this approach in a PC-based

object-oriented knowledge engineering environment by developing a prototype,

knowledge based design system.

4.2 Object-Oriented Design Support Tools

The survey indicated that research in design theory and methodology and problem solving

in Artificial Intelligence has provided a basis for the development of systems based on

several different types of models of design processes. These models include decomposition;

case-based reasoning and transformation based models. Furthermore, there is a large and

growing body of literature related to knowledge based systems in structural design. A

53

The Application of Object-Oriented Techniques to Preliminary Design Problems

bibliography published by B.H.V Topping et al. (1991) included over 280 papers on the

subject, and many more papers have been added since then. Given such a large source of

references, it was necessary to restrict the scope of this review to reports dealing with

systems, which implemented decomposition based process design models of the type

described by Maher (1984) and Harty (1987), which supported preliminary structural

design.

The papers presented by Maher (1984) and Harty (1987) identified the potential of

knowledge-based expert systems to assist with the task of preliminary structural design. In

1984 Maher built a relatively simple mainframe system, called HI-RISE, using PSRL, a

frame-based production system language developed at Carnegie-Mellon University. Harty

followed in 1987, with an approach similar to that described by Maher, and built a more

complex prototype system, which she referred to as the Dolmen system. She used KEE; a

powerful commercial hybrid development environment to build this prototype and it was

implemented on a smaller UNIX workstation. Harty (1984, p. 202) predicted that

eventually this kind of decision-support software would be implemented on smaller more

user-friendly and portable computers, where it would be of most use to designers, whose

work required them to move to and fro between office and building site.

Both author 's reports focused on systems developed for the preliminary design of regularly

shaped buildings; however, the literature survey also located reports describing systems,

which supported preliminary design in other structural areas. From these reports the writer

selected 18 for further examination. These systems, which are described in section 4.3,

were developed using a variety of software packages, which included specialised

knowledge engineering development tools, such as ART-IM, KEE and Knowledge Craft.

These systems met a wide range of user requirements and were implemented in different

54

The Application of Object-Oriented T.echniques to Preliminary Design Problems

ways. Several types of approach were used including transformations, case-based
reasoning, neural networks and genetic algorithms. However, in 11 out of 18 reports
examined during the review, the approach used involved a knowledge-based expert system,
which implemented some form of hierarchical decomposition product data model. The
systems described in the reports had several common features in that they:
• Addressed routine design problems, where all possible solutions were predetermined,

without attempting any innovative input to the process;
• Identified separate and clearly identifiable phases in the design process, in Harty's

model for example, there are three phases:
• Specification, which established design context, including user requirements.
• Formulation, which included the synthesis of feasible alternative structural

configurations, using some form of generate-and-test strategy. Included in the
strategy was some form of analysis, designed to provide values for various attributes
belonging to the alternatives, for use in testing against elimination constraints.

• Evaluation, where alternatives were assessed and compared. This involved
consideration of proposed design solutions in terms of several different features, or
soft constraints such as cost, time to build and resistance to sway. Usually designs
were ranked and the designer made a selection based on inspection of the list of
ranked items.

• Used some form of hierarchical planning, plans being developed at successive levels of
abstraction;

• Combined production rules and some form of linked data structure or network of frames
or objects;

55

I

The Application of Object-Oriented Techniques to Preliminary Design Problems

• Decomposed the design product into a hierarchy of object classes and subclasses, which

were represented in a tree like structure;

• Expanded each class in the hierarchy into its various subclasses at each level in the

hierarchy, using some form of frame based representation, implemented in a language,

which supported object-orientation;

• Used inheritance for each subclass in the hierarchy, allowing the more general attributes

of its parent class to be inherited;

• Implemented an optimal search of a predetermined space of design alternatives;

• Used heuristic knowledge about the problem to limit the search space;

• Used knowledge bases, designed to store domain (product and process) knowledge,

constraint knowledge, procedural knowledge, analysis algorithms and solution

knowledge;

• Implemented domain, constraint, and procedural knowledge in a hierarchical manner;

• Included various methods of knowledge acquisition to obtain the required preconditions,

decompositions, constraints, evaluation criteria and functions;

• Implemented user interfaces, usually in the form of multi-window displays with various

input images, including menus, dialog boxes, input forms and buttons; and

• In some cases the systems were incorporated into integrated design systems, which

catered for other stages of the design process including analysis, and detailed design.

Table 4.1 provides a list of these reports, which address the design of a range of structures

including:

(, .

L
Building foundations;

56

.....

The Application of Object-Oriented Techniques to Preliminary Design Problems

• Building envelope systems;

• Building facades;

• Building energy systems;

• Fixed offshore jacket structures; and

• Reinforced concrete industrial buildings.

4.3 Examples of Systems, which Support Preliminary Structural Design

The following paragraphs describe key aspects of the more significant systems covered in

the survey. Aspects discussed include: sources of the design knowledge used in the system,

implementation strategies and knowledge representation.

• A Building Foundation Design System

Bravo et al. (1996) discussed the design of a system to assist with the selection of building

foundations. They noted that the preliminary design of foundations is done in two stages.

In the first stage one or more generic types of foundations are selected and in the second

stage the most economical solution is identified and designed.

Selection of the foundation starts with the examination of the results of the soil exploration

report and with consideration of the building characteristics. This stage includes the

following subtasks:

• Soil classification;

• Determination of soil properties;

• Determination of the minimum depth of the foundation;

• Estimation of allowable bearing pressure;

57

The Application of Object-Oriented Techniques to Preliminary Design Problems

• Location of possible supporting strata, and;
• Selection of generic type of foundation.
Each type of foundation system has its own specific preliminary design process, which
requires information about the vertical subsystems directly supported by the foundation,
including the layout of those structural components and the loads transmitted by them.
Subsequent stages of design form part of the detailed design of the foundation and are not
included in the process of preliminary design.
The knowledge-based system described by Bravo, produced designs for shallow

I foundations, (footings and mat foundations); semi-deep foundations, (block foundations),
fi and deep foundations (pile foundations). The design solutions were restricted, only square
r and rectangular footings were used and only mat foundations with uniform thickness.
i In describing the model, the authors say the system is designed to address routine design,

I
!
r

I:
f
i,

l

where all possible solutions are predetermined. The system uses a single solution problem
solving process and there is no strategic knowledge used in the application.
They say the application system captures the structure reflected in the models they produced
for the design process. The system architecture was established on the basis of the
decomposition, which they found at the global problem solving level for the foundation
task. They add that the hierarchical decomposition of functional and structural components
has been reflected in the data structures in the application and that the system has procedural
code to replicate the process activities.
The modeling scheme represents three types of domain knowledge:
• Real-world object classes;

58

I

I
r �
t

:.,,, '

l:

The Application of Object-Oriented Techniques to Preliminary Design Problems

• A framework of conceptual knowledge including physical, behavioural, functional and

environmental interactions and state characteristics; and

• Control knowledge to model basic design operations, the relationship between them,

their organisation in design tasks and the design strategies that are appropriate.

They used the ART-IM development tool to implement the system. They described it as a

hybrid tool that integrates several programming paradigms including, production rules,

frames, object-oriented and procedure programming.

Schemes, (ART-IM frames) were used to represent the object classes included in the object

model and other concepts identified in the domain knowledge analysis. Production rules

and functions were used to effect inferencing applied to relations between object attributes.

Functions were also used for the user interface and in attribute or parameter calculations.

ART-IM 'facts' were used to store some data elements and intermediate results that did not

justify the creation of new object classes.

• A Building Envelope Design System

Bedard & Gowri (1990) described this system, which generates feasible combinations of

building envelope components. Initially it presents the designer with a list of feasible wall

and roof types. The designer can then input data to specify his/her preferences among them

and to specify relative levels of preference from a series of performance attributes. The

system then ranks the alternatives. The design process model includes the following core

preliminary design functions: establish the context; generate feasible design alternatives;

and evaluate the feasible alternatives to select the best one.

The modeling device used to develop the system is a frame based knowledge representation

scheme. It allows the designers to integrate building code requirements, weather data, and

59

L

�
I

t
I·
i

'

�,

The Application of Object-Oriented Techniques to Preliminary Design Problems

information on constructional types and building material properties. The model was

designed to complete extensive searching through a large 'design space' , which comprised a

collection of possible envelope design alternatives. The finished system was implemented

using the Knowledge Craft development tool, which was running on a DEC VAX 11/785

platform. The knowledge base, which consists of 80 frames, was created using ESCHER, a

front-end program developed at the Centre for Building Studies, for encoding engineering

knowledge. The user interface, program requirements for calculating thermal performance

and energy efficiency and the generation and evaluation of alternatives were developed

using Common LISP functions.

The authors report that this tool meets the essential requirements for effective design

automation, which are multi disciplinary expertise and availability of results at an early

stage in the design process. They add that more significantly, the system provides real

preliminary design capability, and that it requires little input data and provides meaningful

comparisons between partial design alternatives.

• A System for Designing Building Facades

Karhu (1997) describes a prototype system for designing building facades. His paper

focuses on research on the development of a product data model to exchange data about the

design of precast building facades between architects, structural engineers and precast

element manufacturers. The aims of the research were to:

• Define a basic activity model of the building process of precast concrete facades

emphasizing the architectural design;

• Analyse the problems occurring in a typical design process;

• Define a product model of a precast concrete facade;

60

l

The Application of Object-Oriented Techniques to Preliminary Design Problems

• Draw up a checklist for the data requirements and the information produced;

• Develop software based on the product model;

• Test the prototype software in a real project;

• Assess whether or not the product model based architectural design process enhances

the building design process; and

• Propose guidelines for using the product model based approach in architectural design.

The project described by Karhu produced a process data model to reflect the prevailing way

of designing facades. Activities were drawn as boxes, with inputs and outputs shown as

arrows. Karhu used a formal structural methodology, Structured Analysis and Design

Technique (SADT), to create a model of process activities. Activity diagrams were

decomposed hierarchically to allow for more detailed information and design activities were

described in the lower levels of the diagrams. Then after analysing the data needed in the

different stages of the design process, it was possible to develop a product data model of a

facade.

The data in the product model was arranged in a systematic way using object-oriented data

base principles, which in this case involved the use of schema. The schemas were organised

hierarchically and reflected the precast concrete elements, which make up the facade and the

type of wall openings, which in turn dictated the shape of the facade. These schemas

reflected the decomposition hierarchy of the facade, which includes the following layers:

structural system, external subsystem, facade, precast unit and element. These layers are

represented by the schema, which use slots to represent attributes, for example, edges,

shapes and insulation details.

61

The Application of Object-Oriented Techniques to Preliminary Design Problems

The schema were developed using the EXPRESS language and its graphical counterpart

EXPRESS-G. This language is provided by the International Standards Organisation, (ISO)

and is associated with the STEP model. The STEP model, ISO-STEP, (ISO 1992) is the

Standard for the Exchange of £roduct Model Data, (STEP); it is being developed by the

ISO-TC1 84/SC4 Committee of the ISO. STEP is a series of international standards devised

to achieve faster design times, better communication of design information and long term

archiving of designs. In particular it facilitates the communication of product data to

customers and suppliers worldwide.

As part of the project the team developed a prototype computer application to test the

product data model. The software platform used was AutoCAD. The AutoCAD AutoLISP

programming language was used for the procedural programming. The prototype was

tested successfully with data taken from a real design project. Karhu's report describes the

difficulties encountered when one tries to use object-oriented analysis and design methods

for both process model and product model. Eventually Karhu used the non object-oriented,

structured SADT methodology to model the process and he says it was well suited for the

provision of an overall description of the activities that occur during the traditional building

process. However, an object modeling approach was used to analyse and design the product

model.

• A Design System for the Energy Systems in Buildings

Doheny and Monaghan (1987) described the development of an expert system, IDABES,

which supported the preliminary stages of design for energy systems for buildings. The

system's process design model was based on an optimal search of a space of design options,

which included all possible solutions, using heuristic knowledge about the problem.

Problem knowledge captured in the system comprised five categories: domain knowledge,

62

The Application of Object-Oriented Techniques to Preliminary Design Problems

constraint knowledge, procedural knowledge and algorithms for analysis and solution

knowledge.

The domain, constraint and procedural knowledge were implemented in a hierarchical

manner using production rules and a linked data structure of objects. In the model the

energy system was decomposed into subsystems and components. The authors refer to the

hierarchy produced as an approximation hierarchy. They say a hierarchy is only an

approximation to a real world system. Thus a single component may perform more than

one function, ie. a pump may be used to heat or cool a space. Likewise, a pump may use

components, which are also used in other devices. Nevertheless, they added that the

approximation hierarchy should be designed to correspond to the goal nature of the design

process.

The key part of the design process is the selection of the subsystem, and at the next level,

the selection or addition of components. This selection process may be modularised into

goals and subgoals. The design process is modeled as follows:

• Formulation of building specification, including data gathering;

• Determination of the thermal characteristics of the building and its different zones;

• Determination of priority factors (constraints) for the building; and

• Selection of a basic system type.

The selection process starts with selection of a basic system for each zone of the building

based on the cooling and ventilation requirements of the building. This is followed by the

selection of a system subtype, descended from one of the basic types. A form of evaluation

is completed for the subtype and a Relative Benefits Factor (RBF) value is computed.

63

The Application of Object-Oriented Techniques to Preliminary Design Problems

The authors describe a hierarchical testing and elimination scheme, which they have

incorporated in the system to prune the size of the search tree. They say that each system

class is expanded into its various subtypes at each level in the hierarchy. These subtypes

inherit the attributes of the system from which they are descended and, as each subtype is

expanded, the knowledge about its attributes becomes more specific.

Each system class is then evaluated and an RBF is computed for each level of the hierarchy.

The total RBF of each system subtype is evaluated and subtypes with low RBFs are pruned

from the search tree. The search proceeds down the tree until the leaf nodes are reached and

finally the system with the highest RBF is selected. The procedure is repeated for all zones

in the building and a number of different system subtypes may be selected.

The authors found that production rules were ideal for representing surface type knowledge

but that the rules became very complex as the level of knowledge becomes deeper. They

noted that the frame-based representation they used was more suitable for representing the

deep knowledge in their system.

They also recognised the feasibility of using expert systems in simulations, where they

could be used both as preprocessors of data and postprocessors of output data.

• A System for the Design of Fixed-Steel Offshore Jacket Structures

Soh, C.K., & Soh, AK., (1988) describe the Interactive Preliminary Design of Fixed-Steel

Offshore Jacket Structures System (IPDOJS), which is designed to select an appropriate

basic structural configuration for fixed-steel offshore jacket structures. The system does not

operate as a standalone system; it is incorporated into the Intelligent Structural Design

System (ISTRUDS). 1STRUDS couples a knowledge engineering environment, known as

the General Engineering Problem Solving Environment (GEPSE) with a conventional

64

The Application of Object-Oriented Techniques to Preliminary Design Problems

structural design system, STRUDS, so as to utilise the encoded expert knowledge in the

GEPSE system to guide the numerical processing procedures in the latter.

IPDOJS is confined to the routine design of the oil and gas related platforms, which are

typically the four-, six-, and eight-legged fixed-steel offshore jacket structures, and which

are without skirt-piles for water depths less than 1 OOm.

IPDOJS has a knowledge base containing objects and rules. The objects represent the basic

components and geometry of the jacket structures. They are stored in the 'objects' segment

of the relational database provided in the GEPSE environment. The portion of active

process knowledge in IPDOJS is represented in production rules and stored in the 'rules'

segment of the central knowledge base. Algorithms for numerical computations are also

embedded within the consequence parts of the production rules, and they generally apply

only to the 'if conditions of the relevant production rules.

The system selects appropriate basic structural configurations, after first solving the

following subproblems:

• Select application dimensions for the jacket structures;

• Decide upon the number of jacket legs to use;

• Determine the height of the structure;

• Decide upon a suitable batter for each jacket leg;

• Determine the required number of horizontal framings;

• Compute the dimensions for the jacket bottom; and

• Select appropriate bracing systems for the horizontal framings and the vertical bents.

65

The Application of Object-Oriented Techniques to Preliminary Design Problems

These tasks must be completed in the sequence shown above, as the output from the first

four steps is required as input to step 6. In order to keep control of the processes the system

has a set of goal bases and subgoal bases. The goal list serves as a checklist to verify that

all the subtasks have been competed before terminating the inference process.

• A Design System for Reinforced Concrete Buildings

CIB - Dresden, LAP - Stuttgart (1995), describe PRED, an intelligent prototype, which was

developed as part of the Computer Integrated Object-Oriented Model for the Building

Industry, (COMBI), project. This project spanned 3 years, from October 1992 to December

1995, and was part of the European Union Esprit Project. COMBI involved 6 separate

teams, including software developers, construction engineers and consultants, it was

established to develop a prototype of a computer integrated environment for cooperative

design and concurrent engineering in the building industry. This prototype was to facilitate

the development of intelligent systems for computer assisted engineering.

The scope of the COMBI project system covers the structural foundation and architectural

design of reinforced concrete industrial and office buildings in the feasibility, preliminary

design, sketch, outline and detailed design phases.

The PRED system provides an interactive, integrated and intelligent tool for assistance in

the preliminary design of the bearing structure of reinforced concrete industrial buildings. It

has been implemented as an independent submodule of the COMBI system. The system has

an object-oriented design and uses artificial intelligence techniques to derive suggestions for

appropriate design steps and system solutions in a given design context.

The functionality provided by PRED includes: hierarchical design support, 2D visualisation,

integration of analysis tools for verification, an interface to the STEP product (ISO 1992), a

66

The Application of Object-Oriented Techniques to Preliminary Design Problems

modeling integration framework, cost estimation and automatic re-configuration in the case

of changes.

The PRED system helps to derive early conclusions on the structural system of a building

and the dimensions of its main members, allowing subsequent evaluation of a proposed

solution against present constraints, rules and criteria. Its display screens allow the designer

to develop the structural bearing system interactively. It uses the knowledge base to try to

interpret the path of design decisions and make suggestions for further steps and solutions.

The engineering knowledge represented in PRED includes structural rules, predimensioning

rules, knowledge about critical ranges of dimensioning, minimum dimensions of structural

elements and rules for the combination of structural elements to a consistent bearing

structure. The design system is intentionally not developed as an expert system. It rather

combines methods of artificial intelligence with CAD-technology to form an interactive

intelligent tool. CIB-Dresden say that the goal of the system is to overcome the often

insufficient transparency and difficult operation of pure expert systems, while at the same

time enhancing computer assisted design with knowledge-based components. The

implemented prototype demonstrates the use of advanced CAB-technology to support high

level interaction between the designer and computer based modeling and reasoning in the

field of preliminary structural design.

The COMBI prototype includes several design agents, including PRED, which are

knowledge based decision support systems. These design agents have application specific

data models and COMBI has provided strategies to address communication and

interoperability problems to enhance information transfer. COMBI also adheres to the ISO

STEP methodology and its conceptual product-modeling framework is created by using

STEP modeling tools.

67

The Application of Object-Oriented Techniques to Preliminary Design Problems

The scale of investment in the COMBI project reflects the economic significance of

computerised design systems and illustrates the increasing sophistication of systems being

developed.

4.4 Multiple Selection-Development (MSD)

Maher (1984) and Harty (1987) both described standalone systems designed to assist with

preliminary structural design. By contrast Sause et al. (1991) considered integrated

systems, which comprised several otherwise standalone systems. In their paper they discuss

integrated design computer systems, which provide support for several aspects of building

design. They say such systems should "organise, process, manage and communicate the

multi-disciplinary information associated with complex design problems." They describe

the Integrated Building Design Environment system, which was documented by Sriram and

Groleau (1989), and which uses blackboards to coordinate and integrate systems, which

support architectural design, structural design and construction planning.

Sause et al. proposed a framework of concepts and tools to support an integrated structural

engineering design system. Their framework required well-defined models for engineering

design that would serve as a theoretical basis for integrated design systems; and suitable

approaches for implementing these models. They anticipated two types of models for

engineering design; the first type was a product model, which represents the design entities

and the relationships among them; and the second type was a process model, which models

design activities.

They also described the capabilities of the object-oriented approach, which would facilitate

the implementation of these models and which would further act as a unifying concept

between the product and process models. They described the Multiple Selection-

68

The Application of Object-Oriented Techniques to Preliminary Design Problems

Development (MSD), model, which they refer to as a process generalisation model, which

represents design knowledge in a manner similar to that of the DOLMEN system. The

MSD model organises the design process into:

• Selection subproblems, which involve identifying, ranking, eliminating and selecting

from a number of competing alternatives, and

• Development subproblems, which involve design and evaluation of a single alternative.

They noted that, at the time of their report, design product models had not been well defined

enough for their MSD model. In their report they list several advantages to be gained by

using the object-oriented approach for implementing product and process models, however,

they also noted that the approach provided little aid in developing such a model. The

advantages they list include:

• Clean mapping. They asserted that entities and activities in a model could correspond

directly in the implementation.

• Enforced modularity. They explained that each object is a well defined software

module, which is coupled to other objects though, a well-defined message interface.

This modularity produces a uniform implementation of entities and activities of different

types.

• Data abstraction. They noted that object-orientation provides a mechanism, whereby the

internal details of an object can be changed, by changing instance variables, without

changing the object's behaviour or message interface.

They also pointed out that there were difficulties in using object-oriented techniques and

that the advantages could only be realised if sufficient effort was made in defining the

instance variables, methods and message interfaces for each object class. They emphasized

69

The Application of Object-Oriented Techniques to Preliminary Design Problems

that the objects must be carefully identified and the desired states and behaviours clearly

defined and that these tasks could be difficult.

70

1 ne fippucauon or uo1ect-unentea 1 ecnn1ques to 1�re1Iminary Design Problems

Year Name of System Area of Preliminary Structural Design Authors Approach Used Software
1997 No name given Building facades Karhu, V. Development of product EXPRESS & AutoLisp

model and data exchange
with AutoCad

1996 ODESSY Reinforced concrete regularly shaped Suresh, S., & Krishnamoorthy, Integrated system, Not included in report
multi-storey buildings C.S. includes genetic

algorithms
1996 TALLEX Tall regularly shaped multi-storey Sabouni, A.R., & Al-Mourad, KBES EXSYS Professional &

buildings O.M. QBasic
1996 No name given Building foundations Bravo. G., Hernandez, F. & KBES ART-IM

Martin, A.
1995 C-LIFT Offshore heavy lift system Lim, C.K., Choo, Y.S. & Nee, Knowledge base and ART*ENTERPRISE

A.Y.C. case based reasoning
1994 DIANAS Reinforced concrete frame walled Turk, Z., Isakovic, T., & KBES Prolog & Object Store

buildings Fischer, M.
1993 No name given Tall regularly shaped multi-storey Jayachandran, P., Tsapatsaris, Not described Prolog, Fortran, C and C++

buildings N & Goldstein, B.R.
199 1 Hall Layout Module Reinforced concrete halls Yehia, N.A.B., et al Transformational Prolog
1 990 Building Envelope Building envelope systems Bedard, C. & Gowri, K. KBES KnowledgeCraft & Escher

Design System & Common LISP

1990 SPRED- 1 Space grid structure Gan, M., & Liu, X. Neural network Not included in report
1 988 TREE Rectangular halls Borkowski, A., Fleischman, Intelligent access to data PDC-Prolog & dBaseIV

N. & Bletzinger, K.V. base of previous designs
1988 IPDOJS Fixed offshore jacket structures Soh, C.K., & Soh, A.K. KBES GEPSE General Engineering

Problem Solving Envirment
1 987 DOLMEN Regularly shaped multi-storey Harty, N. KBES KEE

buildings
1987 STRUPLE Structural configurations Zhao, F. KBES OPS83
1987 IDABES Building energy systems Doheny, J.G. & Monaghan, KBES OPS5 & Fortran

P.J.
1986 LOCATOR Location of lateral load resisting Smith, D.F. KBES KnowledgeCraft & CRL

systems within a 3-D grid
1985 FLODER Floor systems and framings Karakatsanis, A. OPS5 & LISP
1984 HI-RISE Tall regularly shaped multi-storey Maher, M.L. KBES PSRL

buildings

Table 4.1 Knowledge based Structural Design Systems

71

C 1-
-1-

f------ -
-

I � -1

�

--+-I

'---

I

-

I

-

I
I

-

I I
I

-

-·-

J
I

-

- -

I '

' I
I
I

-� -

-
I I -

I

I I
I

I -� -

-

I I
I I
I I t I

I

I I

I

-

I I

- -

I I

T

- I---

LT

L

-

I

-

I

l

- I---

I
-�

-

The Application of Object-Oriented Techniques to Preliminary Design Problems

4.5 Issues in the Development of Object-Oriented Design Systems.

4.5.1 Object-oriented Languages - Procedural and Declarative

The second objective of the literature survey was to gain an understanding of the issues

involved in the application of object-oriented techniques in the development of knowledge

based systems designed to support preliminary structural design. This understanding was

required in order to:

• Form a preliminary assessment of the usefulness of object-oriented techniques in this

area; and

• Anticipate problems likely to occur in the implementation of the selected approach to

providing computer support in the Kappa-PC object-oriented knowledge engineering

environment.

In Computer Science literature, computer languages are divided into two overall classes:

procedural and declarative. Procedural languages, such as C and BASIC, require the

programmer to specify the procedures or algorithms the computer has to follow to

accomplish the task. In contrast declarative languages, such as SQL, remove this

requirement from the programmer, who is merely required to describe a set of facts and

relationships, usually stored in tables. A user of such a declarative language may then

subsequently query the system to get a specific result.

Webster 's New World Dictionary of Computer Terms, (1997) describes an object-oriented

program language as a

"non-procedural (declarative) language in which program elements are

conceptualised in objects that can pass messages to each other by following

established rules"

72

The Application of Object-Oriented Techniques to Prel iminary Design Problems

A procedural language, such as C, may allow the programmer to implement certain object

oriented programming techniques, however, the C++ language, which was originally

developed as an extension of C, is designed to support object-oriented programming, as well

as procedural programming. In this context C++ is described as a hybrid language. There

are also languages like Smalltalk, which are described as pure object-oriented languages,

which provide full object-orientation, going beyond the mere support of techniques.

Procedural computer programs contain data structures and algorithms. These data structures

are restricted to basic data types such as integer and character and simple abstract data types

such as arrays and queues. The programs are organised in a modular fashion, where the

modules represent functions or procedures, which are abstracted from the problem domain.

In contrast an object-oriented program consists of objects, which contain both procedures

and data. Object-oriented programs are organised around hierarchies of objects, which

reflect the relationships of real world objects. The basic mechanisms of object-orientation

include message passing and the invocation of object methods and inheritance. In general

object-oriented languages also provide abstract data types for use in their object methods,

however, the dominant type is the class, which allows the abstraction of real world objects.

Object-oriented analysis and design assists the system developer to model problem

situations in terms of real world objects and events. It should be pointed out that a given

system development, may combine a conventional or structured design process with a

subsequent implementation on an object-oriented hybrid object-oriented language.

Likewise an object-oriented analysis and design may be subsequently implemented in a

non-object-oriented language.

During this study the writer had of necessity to learn how to program the Kappa-PC

development application using the KAL language. While Kappa-PC can fully support

object-orientation, it is not exclusively object-oriented, having characteristics of a hybrid

73

The Application of Object-Oriented Techniques to Preliminary Design Problems

environment. This hybrid functionality made it quite difficult for the writer to learn how to

use Kappa-PC effectively. A significant part of the finished prototype design system

consists ofKAL functions, which perform the algorithmic programming required to

simulate design synthesis, detailing and testing and design evaluation. While the structural

design objects and subsystems could be represented as objects in the object-oriented

paradigm, the writer had to resort to various conventional or structured programming

techniques, including program flowcharts to design the algorithmic program functions. The

writer also had difficulty in deciding how to represent the multitude of intermediate or

transitory variables used in the detailing calculations. The writer made some use of the

local variable syntax provided by Kappa-PC, but this was difficult to use and the writer

eventually had to create classes to hold these variables as class attributes. As the Kappa-PC

classes have global scope, this made algorithmic programming even more difficult and

made it essential to keep track of variable names. This was also made difficult by the

limitation of identity name size to 31 characters.

4.5.2 Frames and Objects - Similarities and Differences

Fikes and Kehler (1985) state that the fundamental observation arising from work in

artificial intelligence has been that:

"Expertise in a task domain requires substantial knowledge about that domain. The

effective representation of that domain knowledge is therefore generally considered

to be the keystone to the success of artificial intelligence programs."

They add that if a knowledge system is to use domain specific knowledge then it must have

a language for representing that knowledge. Historically frame based languages have been

very important developments in the application of knowledge representation. These

languages have complemented and extended the production rule systems, found in the

74

The Application of Object-Oriented Techniques to Preliminary Design Problems

original artificial intelligence systems. Furthermore, with the availability of object-oriented

languages and integrated development environments developers have used objects (classes

and instances) to implement and enhance frame based representation schemes and to

combine frames and production rules to create hybrid systems.

Early artificial intelligence programs were mainly based on production rules. Hayes-Roth

(1985) stated that rule-based systems, which used pattern/action decision rules, had played

an important role in the development of intelligent software; however, these rule-based

systems were without several features that would make them more suitable in a general

computing approach. In particular they lacked a theory of knowledge organisation, which

would facilitate the scaling up of systems without corresponding loss of intelligibility.

Furthermore, rule-based systems were difficult to manage and extend. According to Fikes

and Kehler (1985) production rules were an effective way, at that time, of representing

domain-dependent behavioural knowledge in knowledge systems. They said that

production rules could be easily understood by domain experts and had sufficient expressive

power to represent a useful range of domain-dependent inference rules and behaviour

specifications. However they also noted that, by themselves, production rules did not

provide an effective representation facility for most knowledge-system applications. In

particular, their expressive power was inadequate for defining terms and for describing

domain objects and static relationships among objects. Furthermore rule based systems

could become very complex if they were scaled up.

Minsky (1975) introduced the frame concept as a means of representing domain knowledge

in a program. Since then frame oriented representation had been used to code knowledge in

systems where the attributes of the projects were very complex. In these systems the frames

were organized into a taxonomy. Each frame contained a set of slots, representing the

attributes. Frames were appropriate for defining terms and for describing objects and

75

The Application of Object-Oriented Techniques to Preliminary Design Problems

taxonomies of classes and subclasses and their relationships. However, Fikes and Kehler

(1985) added that although frames could describe the objects, they could not describe how

the objects were to be used. They then described how domain-dependent behaviour could

be attached to frames in the form of methods or procedures written in some other

programming language such as Lisp. However, they added that further enhancement to the

frame representation scheme was needed to provide domain-dependent inferential

reasoning, decision-making and control. This enhancement was already available in the

form of production rules, which could represent domain-dependent inference rules and

object behaviour. In addition, software was becoming available, which would allow a

developer to integrate production rules with the frame-based languages.

Fikes and Kehler (1985) and Kunz, Kehler and Williams (1984) both noted that the major

inadequacies of production rules were found in the same areas, which were effectively

handled by frames; the strengths and weaknesses of rules and frames were complementary

to each other. Thus a system designed to integrate the two would benefit from the

advantages of both techniques. Fikes and Kehler (1985) explained the advantages of

integrating production rules and frames into a single hybrid representational facility and this

has since led to the development of hybrid systems that combine the advantages of both

component representation techniques. Both sources also assert the ability of object-oriented

computing to provide a principle for unifying these representations and reasoning

techniques thereby allowing the development of object-oriented, hybrid rules and frames

systems, where the frames were represented by objects.

On the negative side Merritt (1998) noted that, whilst there is a synergy between objects and

knowledge bases, objects are not frames. He also noted that, some implementations of

object-oriented technology are procedural in nature, and do not resemble the logical

programming commonly found in expert systems. Logical programming involves the

76

The Application of Object-Oriented Techniques to Preliminary Design Problems

dynamic matching of patterns. Several other writers also support Merritt's note of caution;

thus Moss (1991) and Gailly (1991) separately noted that:

• Compromises must be made for objects to work properly in a knowledge-based

environment; and

• Difficulties arise when systems, which require logical programming techniques, are

implemented in a procedural-programming environment.

Luger and Stubblefield (1993) support the notion that object-oriented programming

improves on the ability of frames to provide a natural way to represent classes, inheritance

and default values. However, they also add that frames behave passively in contrast to

objects. Object behaviour is implemented as attached procedures, called methods, which

are invoked through messages, sent to the object by the user or other objects. This contrasts

with the behaviour of frames, which have passive monitoring. In effect, from a

programming perspective, frames have global scope, whereas in accordance with the object

oriented principle of encapsulation, object variables are private and have restricted scope

and object methods react to specific messages.

Objects have characteristics of both data and programs in that they retain state variables as

well as being able to react procedurally in response to appropriate messages. They are

active in the sense that the methods are bound to the object itself, rather than existing as

separate procedures for the manipulation of a data structure.

Notwithstanding these apparent contradictions, overall this review found enough evidence

to conclude that the object-oriented approach promised considerable advantages for

organising and representing the knowledge required to design objects and for combining

this knowledge with production rules, which simulated design practices.

77

The Application of Object-Oriented Techniques to Preliminary Design Problems

4.5.3 Object-Oriented Modeling of Design Knowledge

Booch (1994) describes an object model design method as being one, which "lets us map

our abstractions of the real world directly to the architecture of our solutions" . Such a

design method allows the designer to focus on both the objects and the operations in the

model of the real world. In Henderson-Sellers (1 997) this is referred to as the process of

creating a model of the real system to be represented in the computer system. Booch (1994)

cites Ledgard's model of this programming task, which is described as follows. In

Ledgard's model the system developer models the real world problem, in this case structural

design, in terms of a problem space. This problem space has real world objects, each of

which has a set of appropriate operations and real world algorithms, or procedures for

solving problems. These algorithms operate on the objects and provide transformed objects

as results. Ledgard continues saying that, when a computer system is developed, the real

world problem is modeled in the software.

Some of the references cited in section 4.2 described the application of object-oriented

analysis and design techniques to model domain dependent design knowledge and some

went further and described the use of object-oriented programming techniques to implement

design systems. In total, these references allowed the writer to understand how object

oriented techniques had been used. Turk et al. (1 994) argue that all engineering software

operates on models and that the object-oriented paradigm is well suited for the modeling of

engineering products and processes. In their paper they demonstrate that object-oriented

analysis can be successfully applied to the modeling of an engineering domain, in this case a

system for the analysis, design and proportioning of buildings. Their model contains a

hierarchy of class objects, which is based on the same criteria for modeling space

decomposition as the Standard for the Exchange of Product Model Data (STEP), ISO,

(1992).

78

The Application of Object-Oriented Techniques to Preliminary Design Problems

La Rota (1990) et al also propose a model-based approach as a framework for integrating

various aspects of the structural engineering design process. They characterise the design

task as an under-constrained and ill-structured problem solving process, which involves a

search for solutions in a large space of alternatives. They developed an interactive design

assistant to aid design engineers in viewing and analysing an evolving design at various

levels of abstraction and from multiple viewpoints. This system was designed and

implemented using an object-oriented approach, which provided the necessary mechanism

for integrating multiple abstractions and perspectives.

They contend that model-based reasoning when applied to structural design implies the

ability to derive system behaviour from a structural description of the system. The design of

a structural system can be looked upon as a successive refinement of a functional

description in a hierarchical manner, which continues until the functional elements are

specific enough to be replaced by specific structural components, such as beams, girders

and columns. As well as a functional perspective this iterative process incorporates a

physical description of the objects being designed and a behavioural description. Both

physical and behavioural descriptions evolve during the design as different components are

selected, described, sized, located and finally tested and the structure is analysed and

evaluated at successively more detailed levels of abstraction. They describe the advantages

of the object-oriented approach, which allowed them to represent the required knowledge

base in terms of the interacting components, which include:

• The integration of the functional, behavioural and physical aspects of the system in a

hierarchy of structural components;

• Knowledge associated with spatial descriptions in terms of location and connections of

substructures; and

79

The Application of Object-Oriented Techniques to Preliminary Design Problems

• Knowledge associated with tools for analysis, evaluation and selection.

They contend that the object-oriented approach is also suited for the representation of

topological and geometrical description in Formex 1 algebra. They also note that a Formex

representation can be associated with an object that will respond to messages, perform the

appropriate transformations and display itself in an efficient manner. They also reported

that they had considered other computer languages and had found that their limited data

structures and limited graphics capabilities would make the implementation task difficult.

Lofqvist (1993) has further expanded on this theme; he contends that the next generation of

computer programs for use in building design must also be able to exchange information

between each other. A significant part of this information relates to objects and includes the

relationships between objects and their properties and functions. This generation of

programs must also be able to exchange knowledge such as experience and heuristics.

Lofqvist makes the point that structural designers traditionally use many different forms to

record structural knowledge; he says these include sketches, drawings, flow diagrams, and

results from analyses. He adds that the computer programs used for drafting and analyses

are designed to process the appropriate data structures for these forms but because these

forms are so different it is difficult to transfer data between the programs. Thus an analysis

program would find it difficult to extract information from a fragment of a drawing used in

a CAD program.

1 Formex algebra provides a formal mathematical approach to the spatial

description of the structural system.

80

The Application of Object-Oriented Techniques to Preliminary Design Problems

Lofqvist (1993) proposed a product model, which he says, is a computerised model of a

product component as a solution to these problems. He says the product model can be used

to reflect all aspects of building design, however, it must be able to describe the overall

structure as well as the structural components. Each subcomponent as well as the

assembled components will be described as a separate product model. He adds that the

product model must not only describe itself but also include information about the

relationships between the component and the overall structure. He says these requirements

make it necessary to use a hierarchical data structure to build such a product model and that

the object-oriented approach is well suited to the modeling of hierarchical organisations of

real world objects. He says this is usually done in an object-oriented environment by using

a frame data structure.

Sause et al (1992) have concluded that two types of engineering design models can be

determined, in addition to the product model they also propose that design activities should

be modeled, and this requires the creation of a process model. They assert that these models

are essential steps toward the development of integrated computer design systems, and that

the object-oriented approach is attractive as an implementation tool and as a unifying

concept between models.

Summary

This chapter has described the results of the writer's literature survey of systems, which

support preliminary structural design. The most common approach noted in the survey was

one that involved a knowledge based expert system, which implemented some form of

hierarchical decomposition, which decomposed the design product into a hierarchy of object

classes and subclasses, which were represented in a tree like structure;

81

�-\

The Application of Object-Oriented Techniques to Preliminary Design Problems

Several researchers described engineering design applications, which applied object

oriented methods and reported that the object-oriented methods allowed easy representation

of knowledge in different perspectives, in different levels of abstraction and in providing the

appropriate links and relationships between them. They also reported that object-orientation

also makes the task of the reasoning system easier in that the transition from one level or

perspective to another can be performed easily, while maintaining overall consistency in the

evolving structure.

However, other researchers have drawn attention to some of the difficulties, which may

arise as developers combine the technologies.

The chapter also provided a brief outline of the evolution of knowledge representation in

intelligent systems and introduced the concept of frame based reasoning. The writer also

observed the relationship between frames and object-oriented objects

82

The Application of Object-Oriented Techniques to Preliminary Design Problems

CHAPTER 5. An Object-oriented Software Methodology

5.1 Introduction

This chapter describes how a set of software development methods, which included object

oriented analysis and design techniques, was drawn together to create a structured, software

engineering methodology. This methodology allowed the writer to address the primary

purpose of the study, which was to investigate whether or not object-oriented analysis and

design techniques could assist with the development of a knowledge-based design tool. The

chapter also discusses lessons learned during the creation of this software development

methodology.

The software methodology was designed to allow a developer to move from high-level

abstract design down to low-level component design. Additionally it ensured that work

products, their relationships, and the processes applied to produce them were clearly

documented. The software methodology assisted the writer to develop:

• Prepare an initial problem scope statement;

• Document high level requirements for the new software;

• Specify detailed system requirements; and

• Apply appropriate object-oriented techniques to assist with the conversion of these

requirements into an architectural design.

5.2 Developing the Methodology for the Project

During the initial literature survey, the writer attempted to determine what object-oriented

analysis and design techniques were available and whether or not they would be suitable for

use with the design tasks, envisaged. The research is summarised in section 5.3 . The writer

then arranged certain of these object-oriented techniques in an ordered series of steps to

83

The Application of Object-Oriented Techniques to Preliminary Design Problems

create a development process. Initially the writer had determined that the whole software

development project could be completed in two stages, these being object-oriented analysis

and object-oriented design. However, it was soon realised that a preliminary high-level

analysis stage was required to focus project objectives.

During the initial survey the writer had identified a high-level analysis process, which was

part of an approach attributed to Checkland (1981) and which was described by O'Connor

(1992). The process relied upon a simplified application of the Soft Systems Methodology

(SSM) to provide a definition of the problem to be solved and a model of the system

proposed as part of the solution. This model, which included the system tasks and

associated procedures, was used as a framework for a high-level system description. The

writer adopted O'Connor's approach and used it to complete the high-level analysis stage.

The high-level stage was intended to clarify the scope of the problem and to develop the

objectives of the project. It was to identify and separate concerns and determine what areas

of the problem were to be analysed. Analysis at this stage would determine what actions

were necessary to fulfill the primary objectives of the project and would document these

actions in the form of a root definition of the problem. This analysis would also establish a

relevant system, which would form a proposed solution to the problem. At the same time a

conceptual model would be built up to show the relationships between the activities

required and to represent the system processes encapsulated in the root definition, which in

this case were the steps required to create a structural design. During the high-level analysis

attention was focused upon the information gathered during the literature survey, which

covered the basic principles of preliminary structural design and the application of

knowledge-based computing to support this phase of design.

After reviewing reports describing the use of several of these object-oriented analysis and

design methods, the writer realised that these methods:
84

The Application of Object-Oriented Techniques to Preliminary Design Problems

• Assumed that a requirement specification already existed; and

• Did not provide any techniques to produce such a specification.

This realisation made it necessary to include another stage in the proposed methodology.

Thus after the completion of the high-level analysis a stage was proposed which would help

to specify detailed system requirements for the new design tool. This requirement

specification was to serve the following purposes:

• Communicate precisely, what the proposed design tool ought to do, from the user's

perspective;

• List the functionality required from the relevant system for the design tool;

• Describe overall the approach, which was selected for the provision of computer

support; and

• Document an understanding of the key aspects of the domain of structural knowledge,

which were to be represented in the relevant system.

The writer then selected a set of methods to use in the requirements stage. These methods

are described in section 5.6. The high level analysis and requirements stages were expected

to establish a sufficiently detailed system requirement specification to allow subsequent

object-oriented analysis to proceed. This would provide an 'object model' for the system

and the following design phase would complete the system architecture, which would then

be implemented in a fifth and final stage. During the final stage the writer would then

complete the coding and implementation of a system prototype.

Figure 5. 1 provides an overview of the software engineering methodology arranged for the

project. The next section describes the analysis and design techniques selected for the

project.

85

�
•
r,

The Application of Object-Oriented Techniques to Prelim inary D esign Problems

Figure 5.1

Problem Definition

Object-oriented
Design

System Implementation

Overview of the Software Methodology Created for the Project.

5.3 Selecting Appropriate Object-oriented Analysis and Design

Techniques

One of the primary objectives of the study was to identify and apply suitable object-oriented

analysis and design techniques, rather than conventional ones. Furthermore, the techniques

chosen had to accommodate the analysis and subsequent modeling of structural objects and

complex design events.

The selection process was a difficult task. Several different approaches to object-oriented

analysis and design were identified in the literature survey. In particular, Graham (1994, pp.

196-224) outlines the following object-oriented design methods : Booch's Method, Booch

(1986) and Booch (1991), General Object-oriented Design (GOOD), Seidwitz and Stark

(1986), Hierarchical Object-oriented Design (HOOD), HOOD Working Group (1989),

Object-oriented Structured Design (OOSD), Wasserman, Pircher and Muller (1990),

86

Object-oriented
Analysis

............___

The Application of Object-Oriented Techniques to Preliminary Design Problems

Jackson Structured Design (JSD), Jackson (1983) and Case Responsibility and

Collaboration (CRC), Beck and Cunningham (1989).

To compound the difficulty, Graham (1994, pp. 229-256) also describes a number of

separate object-oriented analysis methods, which include the following: OMT, Rumbaugh et

al (1991), Ptech, Martin and Odell (1992), OSA, Embley et al (1992), CRC, Wirfs-Brock et

al (1990) and Coad/Yourdon, Coad and Yourdon (1990) and Henderson-Sellers, (1992).

Reflecting the trend for integrated methodologies, Page-Jones (2000) describes the Unified

Modeling Language (UML), which seeks to provide an integrated approach to object

oriented analysis and design. This writer also noted that the UML has been taken up into

various commercial, proprietary, software development methodologies. For example, the

Rational Software Corporation' s methodology, Rational Software (2000), provides a set of

UML tools and techniques, which accommodate the complete software development life

cycle.

To facilitate the search for appropriate methods, the writer found it necessary to revert to

first principles, he therefore researched how the terms analysis and design, were used in the

object-oriented paradigm.

The term 'analysis' was addressed first. The purpose of analysis is to describe a problem,

ie. to formulate a model of the problem domain, it is concerned with what happens rather

than how it happens, and it focuses on behaviour not form. The writer notes that a model is

a complete description of a system from a particular perspective. By way of contrast, the

purpose of design is to create an architecture for the evolving implementation and to

establish common approaches that must be used with the disparate elements of the system.

According to Booch (1991), software architecture encompasses the set of significant

decisions about the organisation of a software system. This includes the structural elements

87

l

The Application of Object-Oriented Techniques to Preliminary Design Problems

and their interfaces, the behaviour of these elements, as specified in a collaboration among

them and the subsequent composition of these elements into larger subsystems. Booch adds

that design should begin as soon as a model of the system has been created.

r According to Graham (1994) analysis means the decomposition of problems into their

component parts. In conventional computing, analysis is understood to include the

specification of user requirements and the system's structure and function. Analysis does

not cover implementation. Furthermore, the high-level, strategic and business analysis is

usually separated from system analysis. Object-oriented system analysis also contains an

element of synthesis. It involves abstracting user requirements and identifying key domain

objects, which is followed by the assembly of these objects into an object model that will

support physical design at some later stage. Graham says that the synthetic aspect arises

because the analysis is applied to a system, and this requires the analyst to impose a

structure on the domain.

Graham (1994) says that object-oriented analysis must describe 3 key aspects for a proposed

system:

• Data; objects and/or concepts and their structure, which are described in analysis in the

conventional paradigm by entity relationship (ER) diagrams;

• Process, which is described in conventional analysis by data flow diagrams, (DFDs) or

activity diagrams; and

• Control of system behaviour, which is described in conventional analysis by state

transition or entity life cycle diagrams.

He adds that object-orientation combines two of these aspects, data and process, by

encapsulating local behaviour, in the guise of object methods, with data. However, Graham

(1994, p. 228) also says, that the control aspect for a proposed system is more difficult to

88

The Application of Object-Oriented Techniques to Preliminary Design Problems

integrate and that in several of the approaches he described, control in the form of rules

and/or constraints, appears to be accommodated as an afterthought.

The primary purpose of design is to decide how the system will be implemented. During

design strategic and tactical decisions are made to meet the functional requirements of the

system. The term design implies a form of architectural modeling, which comprises logical

and physical design. Design adds detail, precision and implementation dependent features

to the model created during analysis. Object-oriented design methods have the following

basic design steps:

• Identify the objects and their attribute and method names;

• Establish the visibility of each object in relation to other objects;

• Establish the interface of each object and procedures for exception handling; and

• Implement and test the objects.

According to Henderson-Sellers, (1997, p. 69), one can identify three distinct phases in the

traditional software life cycle: analysis, design and implementation. In the analysis phase,

the problem is examined in terms of user requirements and it is set in the problem space.

Usually, it is agreed that the transition from analysis to design occurs when the project

moves into the solution space, to provide the software solution. The design phase is a phase

of progressive decomposition, where more and more detail is provided. He adds that the

stage after design is implementation, where the program is written, tested and put into use.

The traditional life cycle is a series of steps with gaps between them. The steps are well

defined and are associated with clearly identified deliverables. The deliverable, output by

one step, becomes part of the input for the next step. Henderson-Sellers contrasts this well

ordered life cycle with the object-oriented life cycle and notes several differences. He says

that object-orientation supports a seamless transition from phase to phase and this makes it
89

The Application of Object-Oriented Techniques to Preliminary Design Problems

difficult to pinpoint where one stage ends and another begins, likewise it is difficult to

detect the point at which the deliverable should be achieved. In the object-oriented life

cycle the project is grounded in the user/real world and the user requirement analysis and

design specification stages are highly merged. Focus is placed on classes and not on

systems, and clusters of classes may be developed. Furthermore, the project status of

individual clusters will not necessarily be synchronized.

Henderson-Sellers provides a rationale for separating object-oriented analysis and design as

follows. He says that in the analysis stage, which he refers to as conceptual modeling, the

developer is trying to represent an information system design. Thus during analysis the

developer is creating a model (of the human perception of) of the real system to be

represented in the information system. By way of contrast, design is the process of creating

a model of the information system (artifact) to be constructed based upon the model of the

real system.

In contrast to this view, Graham (1994, p. 194) says that object-oriented methods include

methods for analysis and design, and that the two stages overlap. He says that analysis and

design, at least up until the logical design stage, can't be distinguished as separate activities,

in the way they are separated in conventional methodologies. This lack of separation is

most clearly manifested when systems are prototyped. When prototyping takes place, the

development process goes through an iterative cycle of overlapping analysis and design

stages.

After considering the discussion above, the writer decided that the analysis stage would

require the creation of a model of the problem area, which would represent what the new

system should do, whereas during the design stage, appropriate strategies to implement this

model would be developed. The information describing what the new system should do

was to be provided in the requirements stage.
90

The Application of Object-Oriented Techniques to Preliminary Design Problems

After distinguishing the terms, analysis and design, the writer went on to select appropriate

analysis and design techniques from the wide range available. This task was facilitated by

reference to Cross (1996), who has described a simplified object-oriented analysis and

design process, which is based on the work of Wirfs-Brock et al. (1990) and Rumbaugh et

al. (1991). This process was adopted by the writer, who used it as a framework to guide the

object-oriented analysis and design phases of the project. The key steps in this process, as

described by Cross (1996), are set out below:

• Understand the problem. Gain sufficient understanding to be able to begin to solve the

problem;

• Identify the objects. Group real life objects that exhibit identical behaviour into classes;

• Determine the responsibilities of the objects, which are to be represented by object

methods;

• Determine the associations between objects, including the links between them and the

messages they send;

• Determine the attributes, slots and methods, contained by the objects; and

• Complete the system design by organising the objects into a hierarchy and establishing

the inheritance links required.

Cross (1996) adds that the steps in this process should be facilitated by the use of modeling

and diagramming techniques based on those described by Rumbaugh et al. (1991) and

Embley et al. (1992). This writer distinguishes diagrams from models, noting that the

diagram is a view into a model from a particular perspective and it provides a partial

representation of a system. Cross describes three types of diagrams:

91

The Application of Object-Oriented Techniques to Preliminary Design Problems

• Object model diagrams, which describe the static structure of the objects in a system and

their relationships. In this type of diagram, the objects, including classes, subclasses and

instances are drawn as rectangles. Different types of straight lines with variously shaped

arrow heads are used to represent different types of associations of classes;

• State transition diagrams; these are also known as dynamic models and are used to

describe the control aspects of a system. They are used to reflect changes in object

states, which are caused by system events, which may be effected by interactive

functions, such as monitors and demons. These diagrams use rectangles with rounded

edges to represent objects' states and connecting lines to represent events; and

• Functional diagrams or data flow diagrams, which describe computations, processes,

non-interactive functions and data flows within a system. They use rectangles to

represent objects, ellipses to represent processes and the '==' symbol to represent stored

data.

To summarise the writer referred to Graham (1994) to gain an understanding of the various

object-oriented analysis and design techniques available before selecting the ones to be used

in the project. He then referred to Cross (1996) to clarify their appropriate use. The six

step process, described above and attributed to Cross (1996), was then used as a framework,

within which to apply modeling techniques appropriated from Rumbaugh et al. (1991) and

Embley et al. (1992). These modeling techniques were applied to develop an object model,

state transition and functional diagrams and several informal diagrams.

5.4 The Software Engineering Methodology

The software engineering methodology was finally arranged as follows:

92

The Application of Object-Oriented Techniques to Preliminary Design Problems

• Stage 1 - High-level, problem/situation analysis; which effected a simplified application

of the Soft Systems Methodology and which produced an initial problem scope

statement;

• Stage 2 - Requirement specification. Structural design information assembled from Lin

(1981), Maher (1984) and Harty (1987) was reexamined and key elements documented.

The developer obtained an understanding of the domain and identified requirements for

the system, which included a list of design activities;

• Stage 3 - Object-oriented analysis. This stage created a model to incorporate the

requirements, previously identified; and

• Stage 4 - Object-oriented design. The writer then completed the software design process

by preparing the architectural model for the new system, keeping in mind the

requirements of the Kappa-PC application development system.

Figure 5.2 illustrates the software engineering methodology and the individual stages in the

project are described in the following sections.

93

The Application of Object-Oriented Techniques to Prelim inary D esign Problems

Key Design Processes

High-Level Analysis

Requirements Definition

Object-oriented
Analysis

Object-oriented
Design

Root Definition

Conceptual Model

High-Level Data Model

Key Design Tasks

Functional Requirements

Function/Process Descriptio

Ob,ject Model

Object Responsibilities

Object Associations

Object Attributes

I Architecture Model

Figure 5.2 Detailed View of the Software Engineering Methodology

I

I

94

.----------,�

Object Hierarchy

I

The Application of Object-Oriented Techniques to Preliminary Design Problems

5.5 High-Level Analysis Stage

The high level analysis was completed to:

• Facilitate an understanding of the problem situation;

• Clarify the scope and objectives of the project;

• Take into account the different perceptions of the problem situation, which were

expressed by the various researchers whose reports were consulted; and

• Separate concerns and identify areas where further analysis and development might be

required.

The high-level analysis stage was designed to follow the process described in O'Connor

(1992). The two main activities completed in this stage were problem analysis and

information analysis. The problem analysis activity was designed to develop a relevant

system for the problem of the structural design problem solving process and root definition

describing the relevant system and a conceptual model to represent the design tasks

associated with the root definition. During the information analysis phase, the information

requirements associated with the design tasks were identified and a high-level data model

developed.

Investigation of the problem situation was initially expected to develop a number of

problem situation descriptions reflecting the differing perspectives of the preliminary

structural design process of the different researchers referred to. From these descriptions, it

was then possible to develop a root definition of the problem.

According to O'Connor (1992) a conceptual model is created as a logical expansion of the

root definition to represent the minimum set of activities, which are needed to define what a

proposed system was meant to achieve at an overall level. This model was to be the basis

95

The Application of Object-Oriented Techniques to Preliminary Design Problems

for enquiring into the domain of structural design knowledge in order to produce a

framework for the specification of an information system. In effect the conceptual model

would create a system model of the preliminary structural design domain. Information

flows and processing requirements were to be established to extend the conceptual model.

Relying mainly on references to Lin (1981), Maher (1984) and Harty (1987) the high-level

design stage was also expected to establish the key design issues, information requirements

and design tasks, which the new design tool system was to support. It would also establish

the information model to describe the necessary design information and relationships. From

a system design perspective, the major objectives of this phase were to define the:

• Hierarchy of functions for the system, which was to support the preliminary structural

design tasks;

• Likely menu and screen layouts, by which the user would operate the new system;

• Strategies for the integration of the system and its external data sources;

• Representation of the structural design product and process models, underlying the

system; and

• Output process, whereby design information would be made available to the user.

This phase would create a series of diagrams for the individual design tasks and

corresponding information flows between them. Furthermore, the conceptual model

together with the information flows and processing requirements, also established, would

allow the requirements stage to proceed.

5.6 Requirements Specification Stage

According to Perry (1995), there is no one right way to specify requirements; the area is a

difficult one to work in and has plagued the IT industry for decades. Perry provides some

96

The Application of Object-Oriented Techniques to Preliminary Design Problems

guidelines to assist with the correct specification of requirements; he says requirements

should:

• Identify the necessary functions to be executed;

• Identify the information required by these functions;

• Be comprehensive; and

• Be unambiguous.

In addition he says that requirements must state the problem to be addressed and identify

any implementation constraints and performance characteristics. Perry describes a seven

stage process for specifying requirements:

• Identify needs:

1. Determine the problem or objective;

2. Determine the desired characteristics, success factors and assumptions made.

• Analyse Requirements:

1. Define the scope;

2. Identify the rules, processes and data involved;

3. Determine the task the system is to perform;

4. Identify all data and processes required; and

5. Uncover business details, rules and policies inherent in the processes and data

described above.

In this project, the requirements stage was designed to expand upon the conceptual model of

the problem situation. It was also designed to incorporate material assembled during the

literature survey, which included research notes regarding design principles and methods

97

The Application of Object-Oriented Techniques to Preliminary Design Problems

and notes taken from detailed reports of the knowledge-based design tools developed by

Maher and Harty.

The writer completed a detailed analysis of the reports of Maher (1984) and Harty (1987) to

enable him to draft a list of functional requirements for the new system. In particular the

writer documented the simulation of the major structural design tasks in the two systems.

The writer then created a description for each design task, in order to build up the

conceptual model for the new system.

5.7 Object-oriented Analysis Stage

Object-oriented analysis was completed to identify and model domain objects and their

behaviour, structures and users. The writer ensured that this analysis covered the relevant

structural design rules and processes. An overall model and a series of smaller object class

diagrams were prepared and these became progressively more detailed as analysis and

design proceeded.

The model of the system served as a partial solution for the requirement specification

described in the previous section and it was accompanied by a collection of other informal

diagrams and notes, which were intended to capture enough information about the relevant

system to allow design of the new system to proceed.

During the analysis stage the writer re-read the reports of Maher (1984) and Harty (1987),

along with the requirement specification and accompanying notebooks. He then applied the

six step object-oriented analysis and design process, described in section 5.3, as a

framework, to guide the analysis and to ensure that the problem was fully understood and

that the required diagrams were created.

5.8 Object-oriented Design Stage

98

The Application of Object-Oriented Techniques to Preliminary Design Problems

This stage was concerned with how to implement the object model in the Kappa-PC

environment. During the design stage, considerations of various underlying application

development system objects, such as the Kappa-PC inferencing mechanism and the user

interface components were factored into the analysis model. In addition, components of the

object model were reviewed for technical feasibility to ensure that they could actually be

implemented on the Kappa-PC platform. The products of design modeling included object

diagrams and message passing schemes. The design stage was enhanced through the

creation and modification of a series of system prototypes, which were written after some

preliminary analysis and outline design. The techniques used in this phase were:

• Identify names for the objects and their attributes and methods;

• Establish the visibility of each object in relation to other objects;

• Establish the interface for each object and its exception handling, where required; and

• Prepare for the implementation and testing of the objects.

It was intended to use only one overall model in the two object-oriented stages and it was

expected that the transition from analysis to design would be straightforward.

5.9 Problems Encountered During Development of the Methodology

The writer encountered several difficulties in drawing together appropriate methods and

techniques to create an object-oriented software design methodology, which would be

suitable for use with knowledge-based systems; this section describes the more significant

ones.

• Selection of Techniques

It was initially anticipated that it would be straightforward to establish an appropriate

object-oriented analysis and design methodology to complete the development project. In

99

The Application of Object-Oriented Techniques to Preliminary Design Problems

practice the writer found that it was difficult to select a set of suitable object-oriented

analysis and design methods because there was such a large range of approaches described

in the literature. The writer eventually relied upon a simplified framework and set of

techniques, described by Cross (1996), which allowed him to complete the project.

• Lack of High-Level Analysis and Problem Solving Tools

Graham (1994) notes that unfortunately, the high-level, strategic and business analysis stage

is usually separated from the object-oriented system analysis. This writer encountered the

same problem and he was unable to identify any object-oriented techniques, which would

have provided assistance with the initial high-level analysis stage. The writer finally used a

process based on Checkland (1991) and described in O'Connor (1992),

• Lack of Object-Oriented Input to the Requirements Document Stage

During the development the writer discovered that object-oriented analysis and design

techniques required the prior preparation of a requirements specification. He therefore

added a further preliminary stage, during which, the necessary requirement specification,

was prepared. The writer also originally understood that the object-oriented analysis and

design stages were intended to produce a model of the "real world" problem situation. In

effect the real description of what happened in the real world was produced 'outside of the

object-oriented paradigm".

• Problems with the Object Model

The writer had planned to use object models, state transition diagrams and functional

diagrams to model the system in the object-oriented analysis stage, and had therefore

consulted various references, in order to ensure the proper use of these techniques. The

writer found that these references had indicated that object-oriented analysis worked well

with 'state transition machine'-like objects, which included ATMs and graphical user

1 00

The Application of Object-Oriented Techniques to Preliminary Design Problems

interface components, which don' t change their physical form. However, during this

project the writer observed that it was difficult to create object hierarchies and state

transition diagrams for:

• Transient objects, which either did not exist at the start of system operations; or

which were created and destroyed during operations; and

• Objects, which changed identity, becoming subsumed into other accumulation type

objects during operations.

The writer also had difficulty in incorporating the system's rule-base into the object model.

He was also unable to locate any references, during the literature survey, which might have

assisted in this area and thus resorted to the use of a 'back box' to represent the rule-base in

the object model.

Summary

This chapter has described the creation of a software engineering methodology and several

problems, which were overcome during the process.

101

The Application of Object-Oriented Techniques to Preliminary Design Problems

CHAPTER 6. Development Project - Initial Stages

6.1 Introduction

The four-stage software engineering methodology created for this project was introduced in

the previous chapter. This chapter describes the first two stages in its application to develop

a knowledge-based design tool. Stage one produced a high-level analysis of the design

problem and stage two a list of requirements for the new system.

Section 6.2 describes the high-level analysis stage and section 6.3 describes the

requirements stage.

6.2 High-Level Analysis Stage

This section describes the high-level analysis stage of the software design process. The key

inputs to this stage came from the following sources of information:

• Principles and recommendations concerning structural design, Lin (1981);

• Maher (1984) and Harty (1987), these reports describe two knowledge-based expert

systems, which incorporated Lin's recommendations; and

• Sause and Powell's (1992) description of the Multiple Selection-Development (MSD)

process generalisation model proposed for structural design.

The writer completed two main activities during the high-level analysis stage; these were

problem analysis and information analysis. Problem analysis produced a root definition,

which described the problem situation and a conceptual model, which represented the

design processes associated with the root definition. The information analysis phase

identified a set of generic information requirements, associated with structural design

activities, and a set of specific information requirements, associated with the conceptual

model. These information requirements were combined into a high-level data model.

102

The Application of Object-Oriented Techniques to Preliminary Design Problems

The root definition of the problem was formulated as follows:

Provide a knowledge-based system, which would assist an engineer by proposing

preliminary designs for buildings in structural steel and reinforced concrete.

Analyse the domain of structural engineering and a proven approach to the

representation of this domain knowledge in knowledge-based systems.

This analysis would enable the writer to produce the required models, data obiects

and algorithms to represent this knowledge in software. Subsequent implementation

of this software would also allow the writer to determine whether object-oriented

computing techniques were suitable for implementing the required system.

The outcome of the high level analysis indicated that assistance could be provided in the

form of a knowledge-based expert system.

6.2.1 Conceptual Model and High-Level System Overview

A simplified diagram of the conceptual model is shown in figure 6.1. The conceptual model

was created to extend the root definition and to represent the minimum set of activities

needed to define what the proposed system was meant to achieve at a high-level. The writer

also created a simplified overview diagram, shown in figure 6.2, to illustrate the preliminary

structural design tasks and the associated system functions incorporated in the conceptual

model. The writer used the same names for the design tasks: specification, formulation and

evaluation, as did Harty (1987) Table 6.1 lists the high-level design tasks and their related

functions, which must be supported by the system, in order for it to complete the required

design tasks. The overview is accompanied by a summary of functions, which presents a

high-level description of the function supported by the system.

103

I
(,·

--

The Application of Object-Oriented Techniques to Preliminary Design Problems

Subtask System Function

I �p�i:Jf.it;.?.�.�.�.� g���!<.:Q��.i.�P� ��!�.!1?:�!�E� ..

Formulation

Input user requirements
Review Evaluation Features

..... Design Vertical .. Subsystem
Get Assumed Sizes
Set Initial Sizes ,,
Detail Vertical Subsystem

Evaluation ! Evaluate Vertical Subsystem .
.. : :

Formulation

Evaluation '

[Output
Table 6.1

Evaluation Report
Design Horiz Subsystem

... . Detail. Horizontal .. Subsystem
Evaluate Horiz. Subsystem
Evaluation Report

..... Design Report ...
Preliminary structural design functions

6.2.2 High-Level Information Analysis

The writer also completed an information analysis to establish outlines for the information

flows, which are required to support the system functions identified. These information

flows are summarised in the high-level data model shown in figure 6.3.

104

.........

. ·····

; ;

;

The Application of Object-Oriented Techniques to Preliminary Design Problems

Context Architect

tJ Functional Behavioural

Contractor

E
Building Codes

· ---- --

Design Standards

//

(Rules of Thurrb

··�

Figure 6.1

Knowledge Base

Functional

Transcript
� -- -- Gra-ph-

ics
- - - -�

I

·

1

_ _

R
_

e
_
p
_
o

rt-
in
_

g
/
D

_
a
_
ta
_

E
xpo_

rt
_ _ �

-Algorithmc Processing
\ '� and

Behavioural Constraints

User Interface

.:

Agure 5.1 Conceptual Model

efault Design
Parameters

Evaluation Targets
- - --/

Control Module

Detailing

R Evaluation Schedule
Selection

·------

!----."'
(, Architect's

Requirements

Structural
Designer

_J

Conceptual model for preliminary structural design

105

no
I

·
1
1 (;=-· -=--____l_ __ -=- _1 �

• .___

I

-� .______________�

I I

u u nc
+

--

�
/-- ---- I

/ \
\)-

- /
---------------�-

The Application of Object-Oriented Techniques to Preliminary D esign Problems

Specification
Feedba

• Input Building Requirements
Evalua

+

Formulation
� • Design Lateral Load Resisting System

• Test Lateral Load Resisting System

i

Evaluation
• Evaluate Lateral Load Resisting System

Feedba ck from ..

Evalua tion Step
Formulation

� • Design Gravity Load Resisting System
• Test Gravity Load Resisting System

1

Evaluation
• Evaluate Gravity Load Resisting System

11r

Output
• Report selected design information

Figure 6.2 Overview of Preliminary Structural Design Processes

1 06

ck from I
tion Step

.

I

·1
Ir

I

The Application of Object-Oriented Techniques to Prelim inary D esign Problems

Building Requirements: HARD
Imposed load [kN per m**2] CONSTRAINTS
Wind load [kN per m**2]

Architect/ Number of stories Dead Load
Designer Minimum floor to ceiling clear height [m]

Number of bays in narrow direction Live Load
Width of each bay in narrow direction [mm]
Number of bays in wide direction Beam Size
Width of each bay in wide direction [mm]
Fire rating [hours] Column
ls there a centrally located shaft? S ize
Function of the building
Status of the building New
Number of staircases Design
Location of the building System
Is the site restricted?
Is there a tenant?
Number of designs to be considered

Custom Location Alternatives

Default Design Parameters
Assumed Cover To Bottom Steel Defaults
Assumed Cover To Steel In Slabs New

Designer Assumed Cover To Top Steel Design
Assumed Steel Density In Slabs System
Concrete Design Strength
Cover To Main Steel In Columns
Grade Of Structural Steel
Maximum Shear Wall Thickness
Minimum Re Beam Width
Minimum Dimension Of Square Re Columns
Partitions and Finishes Estimate
Steel Yield Stress
Steel Yield Stress For Columns
Yield Strength Of Shear Steel
Weight Of Concrete For Steel Deck

SOFT CONSTRAINTS New Evaluation
Design

Targets for Evaluation Features System Ranking
Description
Importance Selection
Importance Factor
Target Maximum set Design Proposal
Target Minimum set
Target Set
Type Of Target

Contractor Design Proposal
�

Design Information

Figure 6.3 High Level Data Model for Preliminary Structural

107

c=)

The Application of Object-Oriented Techniques to Preliminary Design Problems

6.2.3 Summary of Functions

This section covers documentation of the major functions identified for the design system.

During the high-level analysis stage the writer identified twelve system functions. By way

of an example, one of these functions, Check_Design_Parameters is described below. The

remaining function descriptions are reproduced in Appendix A.

The requirement specification stage, which is described in section 6.3, followed on from the

high-level stage and was designed to provide more information about each function,

including the lower level processes within each function.

SUBTASK

Specification

SYSTEM FUNCTION

Check Design Parameters

.

The Check Design Parameters function is required to allow the user to
input and review the default design parameters in the knowledge base and
to ensure that they are appropriate to the type of design envisaged by the
user.

6.3 Requirements Specification Stage

In the requirements specification stage the writer analysed the key functions, identified in

the high-level stage, which the system was to support. The writer identified and

documented the lower-level processes within each function. These processes are listed in

Table 6.2.

6.3.1 Summary of Functions and Design Processes

This section concerns the lower-level processes within each function. In order to document

these lower-level processes, the writer analysed the reports of Lin (1981), Maher (1984) and

Harty (1987), he then determined which design tasks the new system needed to be able to

perform and then how a suitable set of system functions could be organised to support these

108

The Application of Object-Oriented Techniques to Preliminary Design Problems

tasks. Once the functions were identified and organised the writer then determined what

lower processes were required and then at a still lower level what activities were needed to

ensure that these processes could be completed.

Subtask System Function ! Design Process

Specification · j Inp�t/Re;iew ri"e�ig� P�ramete;s

Formulation

ation

tion

Output

Table 6.2

......
i ::�

n;���:::;_:p
v:;�!��=:�tures

Assumed Sizes

Initial Sizes

LDetailV ertical .. Subsystem

Evaluatey ertical .. Subsystem.
n Report

Detail Horizontal Subs

Evalua

Design Report

i Design Vertical-3D-Levd ... JDesign . V ertical-2D-Narrow __ Level
l pesignV ertical-2D_-WideLevel

Vertical-2D-Material Level
esign . V ertical-2D_-Narrow-Location J .. Design .Vertical-2D-Wide-LocationLevel _
t Initial Steel Deck Unit, Slab Depth,
amSpacing,Slab Type and FloorDepth ..

Steel Sizes and Wall Thicknesses

Detail Braced .. Frame. Narrow Options
- · id Frame .NarrowOptions

U N arrow Options
Options

ugiu __ r.rnme __ Wide.Options
_ilShear.WaU.Wide Options

ction.of Best .. n .. Options

The main design processes identified for the design tool system

During this stage the writer identified twenty-eight different key design processes, which

were required to support the major functions of the new system. Due to the limited size of

this report, the writer has not included details of these twenty-eight processes in the report.

109

!··········- .. ;,,:: i Revie� Evai�atioii Features !
...................................... ,., 1 fup�t::�s·e�::�equire�e�ts:::::::·············· ···· ____________ _

l.Design .. VerticalSubs.ysieiii. ::: l_

1
·····

_
······

_
·····

_
······

_
······

_
···· ·

; ... ;···+····Design
Get Se

1 Be
;··· ····························+···+ ---------------Set Find ; ------ ----. jDetaiiKig ---------

! Detail Shear W a
i Detail Braced Frame Wide

........ :············ ! Detail P'-'_, .,., __ _
i···i·· ··············i···································-- --- ------! Deta ----------

......................... � .. ··········· ··i·· · ························ ··································•··· ······················· · ··i �y:..11::1... ·------ ____ J.Sele ____ _
tio ... �

! ��i��i.:i.i:!!�.r.! i. Design .. Horiz .. Subsystem ·················l··· ·��:�r�;�o�� L����fi�atio�s. for Build.
;. ; Design . Support .BeamsLevel Desi n Intermediate Beams Level ystem LP..�!�.il Floo�.:I.::.�vel

.... . . J . Detail.Support Beams Leve} , i : Detail Intermediate Beams Level
l EvaI.1::1.:. •. te .Ho�:·s·�bsy.ste�· +·selection .. of.Best .. ;�����s) Evaluation . Report. ! .Evaluation Report . . .

; IDesign Report

The Application of Object-Oriented Techniques to Preliminary Design Problems

However, Appendix A contains example descriptions for the processes required to support

the key Design Vertical Subsystem function.

Summary

This chapter has described the high-level analysis and requirements stages of a software

design project. The literature survey completed at the start of the high-level stage provided

an understanding of a systems approach to preliminary structural design from Lin (1981). It

also provided examples of the successful application of knowledge-based systems to

support this approach to design from Maher (1984) and Harty (1987).

This survey research was used extensively in the high-level analysis described in this

chapter. This analysis produced a root definition of the design problem situation and a

closely associated conceptual model for a new design system.

The survey stage was also used in the requirements documentation stage, where particular

emphasis was placed on the reports of Maher (1984) and Harty (1987). This stage produced

a list of functional requirements for the new system. These functions were based on the list

of design tasks, which accompanied the conceptual model. These tasks fulfill the design

activities associated with the root definition and together they constitute an outline for a new

system to address the problem of assisting with preliminary structural design.

110

The Application of Object-Oriented Techniques to Preliminary Design Problems

CHAPTER 7. Development Project - Final Stages

7 1 Object-oriented Analysis

This chapter describes the final stages of the design project, during which the writer applied

object-oriented analysis and design techniques to the functional requirement specification to

create an object model to be used in the final design of the new structural design tool.

Completion of these two stages involved re-reading the original reports of Maher (1984)

and Harty (1987), along with the lists of design processes and user displays drawn up during

the requirements specification stage.

During the requirements stage the writer had produced several notebooks with informal

diagrams, flowcharts and fragments of pseudo code and these were referred to during the

final stages. The six step object-oriented analysis and design process, described in chapter

5, was used as a framework to guide the analysis and to ensure that problems were fully

understood and that the required diagrams were created. The following paragraphs describe

how this part of the project was completed.

7.1.1 Identify the objects.

In this step, the writer created the object model by abstraction from the requirement

specification. The work started with the identification of objects, which exist in the design

environment, and with the subsequent grouping of those objects, which exhibited similar

behaviour, into a hierarchy of object classes. Several groups of building system objects

were identified, during the process. The structural design object classes, which make up the

building hierarchy, are shown below in Figure 7. 1 , which shows one completed design with

appropriate alternatives attached at each level.

1 1 1

The Application of Object-Oriented Techniques to Preliminary Design Problems

At each level in the hierarchy, the design tool was required to provide an appropriate set of

design options, from which it could generate alternatives for that level. In the model for the

new design tool these options were represented by the Alternatives class, which was also

organised in an object hierarchy, which is shown in Figure F.4, in appendix F.

Design Object Class

Building_!

Level of Abstraction

Orthogonal_ 2D _ Systems
Rigid _Frame:._Narrow

Rigid_Frame_ Wide
Reinf Concrete

Vertical 3D Schematic Level
Vertical Structural Subsystem

Figure 7.1

RF 2 Narrow
RF 2 Wide

Reinf Concrete Slab Horizontal
Structural

-
2 Narrow Beams - -
Intermediate_ None Subsystem

Object classes in a completed design, which is displayed hierarchically.

From the research work done earlier in the project, it was realised that structural engineers

have a large range of possible layout options, at the vertical 2D level, for their structural

schemes. Thus the DOLMEN system, for example, had four possible rigid frame, four

braced frame and five shear wall layouts, in both narrow and wide perspectives. In the

DOLMEN system, a separate object hierarchy of KEE class units, which was called the

Location Alternatives was used to represent the various layout options. In the model for the

new system, the writer also assigned the location alternatives into a separate class, which

resulted in a much simpler object model. This class is shown in Figure F.5, in appendix F.

Separate classes were also required to model the different types of composite physical units.

For example, the hierarchy shown in Figure F.6, in Appendix F, was designed to represent

the precast concrete unit options. Each lower level class, in that diagram, represents a

separate Bl 1, precast unit. The new model also required classes to represent intangible

aspects of the structural design domain. These non-physical entities included elements of

the plan used to guide the building design process, and the default design parameters. Other

112

r

...

The Application of Object-Oriented Techniques to Prelim inary D esign Problems

non-physical entities such as the evaluation features were also represented in the object

model and some of these are shown in Figure F. 9, in appendix F. A separate class was

created for each evaluation feature.

Session
Window

I I
Status Status Status
Display Display Display
Object 1 Object 2 Object 3

Figure 7.2 Object model of the user interface.

I I
Input Report
Button Object
Object *

* Required for:
Review of Design Parameters
Review of Evaluation Features
Start of Design
Ranking of Designs
Reports

The user interface in the new system was designed to allow the writer to control each phase

of the operation of the system. This was done to facilitate debugging during system

implementation; it did not resemble the interfaces in the completed HI-RISE and DOLMEN

systems. The model of the new user interface included the session windows, input buttons

and output displays and reports required to facilitate this interaction. It comprised an

association of several object classes, which is shown in Figure 7 .2.

A primary purpose of the design project was to develop the new design tool on an object

oriented knowledge-based application development system, Kappa-PC being the system

selected. However Kappa-PC applications will not operate without the Kappa-PC run time

environment being in memory, that is unless they are compiled into stand alone, executable

1 1 3

D
I

DDDDD

-

The App lication of Object-Oriented Techniques to Prelim inary D esign Problems

C programs or into a dynamic link library. The run time environment provides a wide range

of system objects, including an object browser, inference system, and rule base, which form

part of the new design tool. Unfortunately the writer was unable to find references, which

described how their inclusion in the model should be diagrammed. These features were

therefore shown as a 'black box' in the writer's object model. Production rules were also

treated as black boxes; the writer also being unable to find references describing the

t
modeling of production rules. A diagram of the overall object model is shown below, in

i-
r Figure 7 .3 . Other classes of objects identified included those used to represent the Default

Design Parameters, the Evaluation Features and the Schedule class, which was used to hold

information required to control the sequence of design activities. Appendix F contains

several diagrams, which collectively comprise the object model.

Design

I I I
Building Building Design Parts Designs Location Physical

Alternatives Alternatives Components

I I I I I

System Default Evaluation User Kappa-PC

Schedules Parameters Features Interface System
Objects

Figure 7.3 Object model for the NOV A design tool.

7.1.2 Determine the Responsibilities of the Objects.

In order to document what each object was supposed to do, the writer followed the process

recommended by Rumbaugh et al. (1991). In this process state transition diagrams, also

114

I

..

The Application of Object-Oriented Techniques to Preliminary Design Problems

known as dynamic models, were developed for key objects. According to Henderson

Sellers (1992) the state transition diagram provides the basic mechanism for documenting

the behavioural aspects of the object model, showing how a class responds to events. He

recommends that diagrams should be produced for all non-trivial classes.

The writer initially encountered difficulties in preparing these dynamic diagrams, finding

them to be non-intuitive to implement. However, state transition diagrams were produced

for the user interface, a generic partial design class and for the evaluation feature classes.

Because of the size of the system it was necessary to divide it into three arbitrary

subsystems, these were the three design stages: specification, formulation and evaluation.

The writer used the same names for these three stages of design, as did Harty (1987).

• Specification

During the specification task, the system was designed to allow the user to input the

(

check default
design parameters

Session Input
do:Default Design
Parameters

review evaluation
features

/ I Session Input
Session

M
do:Review

Idle Evaluation Features

Session Input
do:Input User
Requirements

Design Vertical
Subsystem

I Session Update default
do:Default Design

\
design

Parameters parameters
updated

l
Se,,;on Update
do:Update

\ Evaluation Features J�
Session
Idle

Session Update
do:Update User
Reauirements

design
Vertical
Subsystem

Vertical
subsystem
complete

Figure 7.4 State transition diagram for session, showing specification events.

115

The Application of Object-Oriented Techniques to Preliminary Design Problems

requirements for the new building, to confirm the draft design parameters and to review the

evaluation features. Figure 7.4 shows the effects of this phase on the user interface.

• Formulation

During the formulation stage of the design process envisaged for the new design tool, it was

necessary to simulate a process of design synthesis, which was to be followed by the

detailing and testing of the physical components making up these designs. Synthesis

required that the design tool would initially create and subsequently modify a set of design

objects. In the Dolmen system the program code, which effected these changes was

invoked through the use of slot monitors or demons, which were located in the appropriate

classes or frames. In the prototype, developed for the new design tool, these changes were

designed to be initiated by the user. In effect, the user was required to select the appropriate

input button and then the system would execute the code, associated with the button.

Subsequent processing was effected via a series of design functions, which communicated

with each other via a message-passing scheme. This arrangement allowed the writer to

control the starting of each separate stage of the design process and it also facilitated

debugging and system enhancement. In a finished system, (ie. not a prototype), the input

buttons would be removed and the system would proceed automatically.

Several events were identified, which effected the user interface, these included:

review_ evaluation Jeatures, design_ vertical_ subsystem, design_ horizontal_ subsystem,

check_ default_ design _yarameters and evaluate_ designs. These events were modeled in

state transition diagrams; Figure 7.6 shows the design, display and evaluation events. The

event design_vertical_subsystem changes the status display object to

Design_Vertical_Subsystem; this starts the system design process. The first phase of the

series of Design_Vertical_Subsystem functions corresponds to the specification phase,

during which the user inputs the building requirements. The system was designed to move

116

The Application of Object-Oriented Techniques to Preliminary Design Problems

automatically into the formulation phase and start to execute a whole series of design

functions.

Idle

design vertical

Design Vertical
Structural Subsystem

display designs
rnmn/pfp

.,-c,1 £P..-WI- i.lUUJf.J£«;..tH

complete

design horizontal subsystem horizontal subsystem
complete

Design Horizontal
Structural Subsystem

Rank Design

Idle

rank designs
rank designs
complete

display designs Display Design

Figure 7.5 State Transition Diagram for the User Interface

DOLMEN commenced design synthesis by then setting up the root of the search tree by

creating a subclass of the object Building. Then after enquiring whether or not the use

wishes to review the Default_Design_Parameters, the system initiates the design synthesis

process.

• Evaluation

The evaluation process represented in the new system tries to reproduce the functions

exhibited by DOLMEN. Figure 7.7 shows state diagrams for the evaluation events.

117

The Application of Object-Oriented Techniques to Preliminary Design Problems

select

Idle

Detailing
do:detailing

detail

check design

Detail Status
Unsatisfactory

Detail Status
Satisfactory

eliminate
inappropriate
designs

Detail Status
Delete

Idle

Recycle
unsatisfactory
designs

Figure 7.6 Formulation stage for a generic partial design class.

and figure 7.8 provides a composite picture of the interplay of the evaluation process

objects, superimposed on a layout for the evaluation report. This diagram is intended to

show how the evaluation feature objects are intended to operate in the new system, taking

advantage of the object-oriented message-passing paradigm.

user input

Figure 7.7

Session
Idle complete

Session Update
do:Update Feature
Attributes

State transition diagram, showing update of feature attributes

118

The Application of Object-Oriented Techniques to Preliminary Design Problems

Layout for Evaluation Re

Evaluation
Alternative
Feature Sway

X

� : [.............. .
f Percentage r 53.52 i X

optimisation
Total score .l.Q.1.M

User input

Evaluation
features
hierarchy

Evaluation
Features Class

Input
Button
Instance

Message
to feature
class

Vertical
Evaluation
Features
Class

Horizontal
Evaluation
Features
Class

Time

X

X

Clear

X

X

X

Vertical
System
Height
Feature
Class

Column size

X

X

Calculate
Height
Method

Target Set

Target Max

Target
Ministry

Target Obj

Type of

Total

Evaluation
Feature Object

Other vertical evaluation
feature classes

Each evaluation feature
has its own class object,
which has methods for
calculating the
evaluation value

Figure 7.8 Object Model for the evaluation process

119

I
t

The Application of Object-Oriented Techniques to Preliminary Design Problems

In the model, each evaluation feature is given the appropriate methods and attributes to

allow it to calculate the feature value for a given design option, the identity of which is

passed to the feature, as part of the message invoking the class method, when the system

requires the feature value.

• Other System Processes

Dictionaries in the form of a series of tables were completed to describe the activities and

actions of the objects in the object model, most of which were not described individually in

state transition diagrams. The main table is shown in Table 7 .1.

Class Activities Associated With The ! Description
Class

Session """'""'"""'"""""""""""'"""""'"'"' .. """'"""'"""
Input Button Clear_ Hierarchy I Clear the search tree from the object Kappa

I browser
...... Input .. Button L

.................. Input Button (
Input Button

'Count .L.count,designsin .. the search,,tree
...... Check Design Parameters .J Review .. and u pdate .. design. parameters

Review Evaluation Features Check each feature and change if required
Input Button ! Design_ Vertical_Subsystem I Create the search tree for the vertical 2D

. ! subsystem .. .
Input Button Detail_ Vertical_Subsystem i Calculate sizes of physical components, check

. ! against .. rule .. base
Input Button ! Design_Horizontal_Subsystem ! Create the search tree for the horizontal 2D

l ! subsystem """"""'""""""""""""'"'"""""""""""'i""" "'"""""""'" """"""""""""" """"'""""""""""""""""""'""''"'"""""""""""""""'""' """""""""""'"'' "" """"""'" '"""'""''''''"""
Input Button i Detail_Horizontal_Subsystem I Calculate sizes of physical components, check

}nput .. Button ; :::Design·
·
··Report:: :i::::�::i:����e�;:�:designs........... ..

Input Button J Rank_ Design J Display evaluation values for a top given

Input Button i
. ! ... number .. of .selected .. designs .

Display_Status_l I Indicate which load resisting system being
I designed

Display_Status_2 j Indicate which level in the design hierarchy is on

,Input .. Butt�n
....
] Di�playStatus 3 .. 1

· ..

��£��tr��{��
·
design.task is .. �--x--.-.---......... . '

Input Button ! Evaluation Report i Display evaluation values for all designs
H>H>H>••••" HMHHHHHHHU<H>HHHHHHOHH•••••

..... ..Input .Button , -.. --c--,, -... ----- -.. -.--.,-·
........... Input .. Buttonj -

Table 7.1 Table of key design events.

Table 7.2 shows examples of object activities in the form of methods, which represent the

behaviour of particular objects.

120

L

The Application of Object-Oriented Techniques to Preliminary Design Problems

Class

Design
Alternatives

Activities scription

Alternatives Calculate Depth of Suppu1uu� 1

Location
: Alternatives

Evaluation
Features

Table 7.2

Beam i
Calculate Depth of Beam Under

Floor
Calculate Cost

Detail I
Calculate Number of Frames Determine how may subsystems will be used

Calculate Number of Interior I Determine how may interior subsystems will be
Frames I used

Calculate Width of Shear Wall ! Determine width of wall subsystem
Feature Calculation I Calculate feature value, weighted value and

.. optimisation .. score
Table of object methods.

Appendix B - System Notes contains rough workings for the functional diagrams, which

describe computations and non-interactive functions within the system. These rough

functional diagrams were used extensively to model formulation and evaluation events.

7.1.3 Determine the Associations between the Objects.

• User Interface

Analysis of the user interface revealed that it was associated with the Building, Design

Parameters, Evaluation Features, Status Display and Reports object classes: in the control of

the design process, in the execution of input and output events and in the display of the

design results to the user. This is shown in Figure 7.9.

The association relationship also formed the basis for the design of the search tree of partial

design objects. Analysis revealed that an association, between the classes in the Building

hierarchy and the corresponding classes in the Alternatives and Location Alternatives

hierarchies, was required to form the search tree. How these classes associate to form the

search tree is displayed in Figures 7.12 and 7.13. The graph, which connects the shaded

classes or objects forms one instance of a path through the search tree, and represents one

partial design solution.

121

The Application of Object-Oriented Techniques to Preliminary Design Problems

In the new system formulation processing includes design synthesis followed by detailing

and testing. The approach to the design of the synthesis activity was similar to that used in

the DOLMEN system as described by Harty (1987).

Design

Figure 7.9

changes and
displays

Status
Displays

Building
Requirement

User Interface

displays

User Interface Associations

Evaluation

Reports

7 .1.4 Determine the attributes contained by the objects.

Attributes were determined for each of the objects identified in the system object model.

Attributes for the significant design objects are shown in Tables in Appendix G. The

attributes were initially identified by reference to the documentation provided in the reports

of Maher (1984) and Harty (1987). These attributes were refined and more details were

added as the design progressed.

7.1.5 Organise Object Hierarchy and Establish Inheritance Links

In this step the objects were placed into hierarchies of classes and inheritance links were

determined between the class members. Simple inheritance links were developed for the

122

The Application of Object-Oriented Techniques to Preliminary Design Problems

alternative hierarchies, which included the design options and configuration location

alternatives, and for those classes representing physical components. More complex

inheritance links were required to design the search tree.

• Formulation

The designers of HI-RISE and DOLMEN followed the principle oflocating generic class

attributes as high as possible in the class hierarchy. This allowed them to distribute these

attributes, using their respective system's inheritance facilities to the best advantage.

Specialised attributes were added to the objects, which appeared lower down in the

hierarchy, these attributes had a smaller or non-existent range over which they were

inherited. This reflected the fact that these objects were more specialised and were

beginning to more closely resemble the real world objects, which they represented.

In the new system, generation of alternatives at the Vertical_3D stage involved the creation

of subclasses of Core and Orthogonal_2D _Systems (Core_] and

Orthogonal_2D_Systems_l). These two were attached, using the subclass relationship, to

the Building_] class, which contained the original specification for the building, which all

alternative designs must accommodate and which formed the root node of the hierarchy.

Kappa-PC provides two forms of system objects, classes and instances. Kappa-PC allows a

class to form a subclass, which can inherit the parent class's attributes and methods. A

Kappa-PC class can also form an instance of itself, which also inherits its attributes and

methods; however, no further descent is allowed from the instance, which is not allowed

any subtypes. Attachment of the new design classes to the search tree, using the subclass

relationship, allows the new objects to inherit their parent class's slot values. They can also

pass on these attributes, and any they might have of their own, to their subclasses.

123

The Application of Object-Oriented Techniques to Preliminary Design Problems

The new system was designed to construct the search tree in a manner similar to that of the

DOLMEN system. Analysis of this feature resulted in several sketches and working

diagrams, which were drawn to determine how this process had been effected. Two of these

diagrams are reproduced in Appendix B in Figures B. 3 and B.4, which show some of the

workings made for the design of the inheritance links required in the search tree of partial

design objects. As in the DOLMEN system, the hierarchy for the new system was designed

such that the Braced _Frame_ Narrow_ 1, Rigid _Frame_ Narrow_ 1, and Shear_ Wall_

Narrow_ 1 classes were created and attached to Core_ I during generation of Vertical_ 2D _

Narrow alternatives. Likewise, the Braced _Frame_ Narrow_ 2, Rigid _Frame_ Narrow_ 2,

and Shear_ Wall_ Narrow_ 2 were also attached to Orthogonal_ 2D _Systems_ 1. In this way

a hierarchy or tree of possible alternatives was built up, with the leaves defining the current

partial designs.

This organisation of the classes and subclasses is shown in Figures 7.11 and 7.12. In the

new system each node in the tree can inherit all of the slots of its parent, through the

subclass (part_oj) relationship and those of its alternative parent class, through the (is_alt)

relationship, via a copy function, which copies attributes from the appropriate alternative

class. This method of constructing the search tree requires the use of multiple inheritance.

Multiple inheritance was provided as a standard feature on the KEE system, which was used

to develop the DOLMEN system. However, it is not available on Kappa-PC and the writer

had to program a series of copy functions to provide a work-around. Figure 7.10 shows

how this was conceived for the new system.

For example, the partial design class at the 2D-Narrow level, Rigid_Frame_Narrow _1

inherits the slots of Core_ I and Building_ 1, (simple or direct inheritance) as well as the

slots of the Rigid_Frame_Narrow class (through multiple inheritance). These slots contain

the attributes, which define the characteristics of braced frame structures. As the search for

124

The Application of O bject-Orien ted Techniqu es to Preliminary Des ign P roblems

alternatives proceeds down the hierarchy each new level adds the appropriate functionality

required at that level.

I Building Part

. level
Vert 3 D

Vert 2 D N

Figure 7.10

I Alternatives

I Vert 3 D I Vert 2 D N

I I
__:I._C_o_J_·e ______ _JI Braced _Frame _N

[ndirect inheritance

' hear_ Wall_Nnrrow_ 'gid_ Frame_Na.rrow_
I

"' Partial design Rigid_Frame_Narrmv _I
mherits some of its attributes directly from
Building via Core_ l and some indirectly fi·om
the 2D vertical Narrow alternative sclwmn
Rigid Frame Narrow.

Shear Wall N
I Rigid Frame N

··-·-········---------------
Subsection of Design Hierarchy Showing Multiple In herita nce

ln the design of the new system it was found to be difficult to determine an appropriate

scheme for method placement in the partial design classes. Several different schemes all

involving elaborate message-passing schemes were tried before the tinal scheme was

chosen.

The new object model incorporated both product and process models, which represented the

design process and the building product being designed. The hierarchy in the object model

was intended to support the product model and represents aspects of the structure, function

and behaviour of the building subsystems. The process model simulated the activities

performed by the structural designer, who creates and works with the product model. To u

large extent process activities were simulated by the algorithms in the synthesis component,

125

The Application of Object-Oriented Techniques to Preliminary Design Problems

which included the 'generate new units ', detailing and testing (elimination) functions and in

the subsequent evaluation and ranking components. The functions simulate the synthesis of

new design classes, the application of heuristic knowledge to eliminate infeasible designs

and the completion of the rough calculations, which are used to size beams and columns.

They also eliminate those designs, which cannot accommodate the required stresses.

Several functional, data flow diagrams were created to facilitate the modeling of these

process flows and subsequently to facilitate the required design methods and functions for

these processes. Figures B.1 and B.2 in Appendix B show some of the workings for these

diagrams.

• Evaluation

In order to support evaluation the new system is required to accommodate hard and soft

design constraints. The hard constraints represent building requirements, which must be

achieved. Failure to meet these requirements should result in the elimination of the design

from further consideration. The soft constraints were to be represented by numerical

variables. These were to be set up in the form of design targets and by a set of evaluation

criteria for each synthesis mode or subsystem level of abstraction.

The evaluation criteria were represented by a hierarchy of evaluation objects. The generic

attributes of this hierarchy were located in the root object of the hierarchy. An Evaluation

Feature object at the lowest and most specialised level in the hierarchy represented each soft

constraint. Each object at this level has its own method, which allowed it to calculate the

required feature value and other values including the optimisation score. These calculations

are invoked via a message-passing scheme, which is shown in figure 7.8.

126

The Application of Object-Oriented Techniques to Preliminary Design Problems

VLS

Reinf.
Concrete

4-Beams

Figure 7.1 1

Ribbed Slab

,. -

2-Narrow
Beams

Narrow

Building Hierarchy
Horizontal (Floor)
Subsystem

Waffle Slab Precast Panels

I •
2-Wide
Beams

Wide

0-Beams
(no beams)

None
(no beams)

Floor level

-"
Steel Decking

The shaded objects
represent one path
through the search
tree, which is one
design soultion.

Support
Beams
Level

Intermediate
Beams
Level

The Building hierarchy- horizontal structural subsystem

127

The Application of Object-Oriented Techniques to Preliminary Design Problems

Building
Bu ild ing Hierarchy
Vertical Subsystem

_{
I

I I Core
J

Orthogona1_2
D .-� �- Vertical 3-D Level

I -

•
Shear Wal l

Narrow

Vertica l 2-D Wide
Level

�

Material
Level - �- --------.

..
Rigid Frame

Narrow

•
Shear Wall

Wide

�
Reinforced

Concrete

Vertical 2-D Narrow Locations
�

RF-2-Narrow RF-3-Narrow RF-4-Narrow

t •
RF-2-Wide I

I
RF-3-Wide RF-4-Wide

Vertical 2-D Wide Locations /

The shaded objects

form one instance of a path

through the search tree,

which represents one

partial design solution .

•
Braced Frame

Narrow

•
Rigid Frame

Wide

I
I

� r---
I l _st� _

._ Vertical 2-D Narrow
Level

I
T

j Braced Fra,;;;
l Wide

RF-A-Narrow RF-Shaft-Narrow

---------------�-J

I RF-ShL��

I
RF-A-Wide

Figure 7.12 The Building hierarchy - (vertical structural subsystem)

128

The Application of Object-Oriented Techniques to Preliminary Design Problems

7.2 Object-oriented Design

This section describes the fourth stage of the analysis and design project, which is object

oriented design. This stage was concerned with how to model the software required to

implement the object model established in the analysis stage.

The design stage was intended to complete the object model, which comprised the models,

diagrams, flowcharts and accompanying notes, which were produced in the analysis stage.

Other objects, such as the Kappa-PC inferencing system and certain user interface

components were also integrated with the model. In addition, the analysis objects were

reviewed for technical feasibility to ensure that they could actually be implemented on the

Kappa-PC platform.

The main products of the design stage were object diagrams and message passing schemes.

During this stage several system prototypes were created. The design process required

several iterations, each iteration resulting in a more sophisticated prototype.

7.2.1 Design Details

• Specification

The user interface part of the object model was used as the basis for describing the input and

status display objects, required to support the specification functions and processes. These

allowed the user to input and review Default Design Parameters and Evaluation Features

and subsequently to input the specifications from which the new building was to be

designed.

The writer relied on the display images provided in the Kappa-PC libraries to design the

user interface. These images are accessed via and used in conjunction with the Session

Window.

129

The Application of Object-Oriented Techniques to Preliminary Design Problems

Figure 7.13 Kappa-PC Session Window, showing graphic images

The KAPPA-PC Session Window allows the user; to customize the interface with a choice

of graphics and display objects, to create the interface required.

The KAPPA-PC images are able to display the output of the application or to accept input

from the user. The Session Window consists of a display area and a menu bar. The display

area contains all the images, which can be defined either progran1mat ically or via the

graphics ToolBox, or the Select menu, which is shown in figure 7.13.

The Session Window has two modes: Layout and Runtime. Layout Mode is used to

manipu late graphic images through the mouse-and-menu interface. Runtime Mode is used

when the system is being used to present the app)jcation interface to an end user.

The menu bar of the Session Window contains seven pull-down menus: Align, Image, Edit,

Control, Options, Window, and Select. Figure 7.14 shows the image edit windows, which

include the lnstance Editor and the Button Options windows, which the writer used to tailor

the mput objects used in the system. The final NOV A application user interface is

reproduced in figure 10.3.

130

The Application of Object-Oriented Techniques to Preliminary Des ign Problems

Figure 7.14 The Kappn-PC image editor

• Formulation

Preliminary structural design requires the selection of subsystems at both the vertical and

horizontal levels, this requires two sets of formulation functiOns, which are arranged

according to the subsystem level. The selection process comprises a series of steps at which

alternative design are produced and tested.

This section describes design considerations for the key design processes. Several

generations of flowcharts were required to design the formulation component , which

simulated the system plan-generate-test activities, which included processes for design

synthesise, component detailing and testing.

NOV A incorporates both product and process models. A hierarchy of object classes. which

are shown in Figures 7.11 and 7.12, represents the product model, which describes aspects

of the structure, function and behaviour of the building hierarchy. The process model has

been designed as a series of detailing and testing (elimination) functions, which effect the

plan-generate-test activities completed during design synthesis. These functions simulate

the application of heuristic knowledge to eliminate infeasible designs. They also simulate

131

The Application of Object-Oriented Techniques to Preliminary Design Problems

the rough calculations used to determine the sizes required by the beams and columns and to

eliminate those designs, which cannot accommodate the required stresses.

NOV A has a knowledge base, which includes decomposition, planning, constraint and

evaluation knowledge. The decomposition knowledge is represented in the system as a

hierarchy of systems and subsystems, which are implemented as Kappa-PC classes, which

are shown in table 7.5. These classes have attributes, which are represented in the slots,

which contain descriptive values and have a set of procedures, which are represented by the

methods attached to the classes.

t
The planning knowledge in the system includes a Schedule class, which has several slots,

f which contain lists of sequences of operations for the design process. These sequences are

t referred to by the program code, which effects the design synthesis.

• Design Synthesis

The following section describes synthesis at the vertical structural subsystem. It includes

the processes shown in table 7.3.

On start up the user enters a number of details for the new building, for example the number

of stories and the various dimensions of bays. The system then builds the search tree by

creating a subclass of the class Building, which is called Building_ 1. It then creates further

classes called Core_ 1 and Orthogonal_ 2D _Systems_ 1 . It continues down the hierarchy

creating new subclasses, ie. Braced _Frame_ Narrow_ 1 and Braced _Frame_ Narrow_ 2,

checking them against its design rules before adding them to the search tree/object

hierarchy.

Each new class added to the search tree inherits attributes:

• from its parent class, through the Kappa-PC single inheritance mechanism, which is

provided by the MakeC/ass function; and

132

l ,, � t
� ti

L

The Application of Object-Oriented Techniques to Preliminary Design Problems

• From the appropriate Alternative class, through a user function, Slot_ Copy, which

was written to simulate multiple inheritance, which is not provided by Kappa-PC.

I Subtask , ____ __ i System Function I Design Process
! 1 1..
i Formulation ... j . ..Oesign VerticalSubsystem ! .�es}i�.��:!�:��;���::�

w Level
sign Vertical-2D-Wide Level
sign .Vertical-2D-Material .. Level
sign_ Vertical-2D-N arrow-Location

Design Vertical-2D-W ide-LocationLevel

Table 7.3 Design processes at the vertical structural subsystem level.

The system keeps on adding new classes at each level and deleting inappropriate ones

according to its rules. By the time the system reaches the ninth level in the hierarchy, the

Intermediate_Beams level it has created a search tree/object hierarchy of valid designs.

The following pseudo code describes this design process.

• Design Process Pseudo Code

The process commences with the function, Design_Vertical_Subsystem, which clears out

any existing search tree and then loads the sequence of design steps into the appropriate slot

in the Schedule class. This function then checks whether the user wishes to review the

Default Design Parameters and Evaluation Features and then creates the new building object

and queries the user for the input of the building requirements.

/**/

FUNCTION: Design_ Vertical_Subsystem

CALL THE FUNCTION Ask_About_User_Locations

APPEND CLASSES Vert_3D, Vert_2D_Narrow, Vert_2D_ Wide,
Material, Vert _2D _Narrow_ Loe, Vert_ 2D _Wide_ Loe, Floor, Support_ Beams,
Intermed Beams
TO SLOT Sequence_Of_Parts_To_Be_Design IN CLASS Schedule

MAKE A NEW CLASS Building_ 1 , FROM CLASS Building

CALL THE FUNCTION Input_ User_ Requirements FOR Building_ I

CALL THE FUNCTION Set Defaults

Ask Value Global:Review _ Defaults _Flag

Set up the sequence of
levels to be designed

Check if defaults to

13 3

The Application of Object-Oriented Techniques to Preliminary Design Problems

be reviewed
IF Yes

THEN CALL THE FUNCTION Check_Design_Parameters

AskValue Global:Review_Evaluation_Features Check if evaluation
features to be
reviewed

IF Yes
THEN CALL THE FUNCTION Review_ Evaluation_Features

CALL THE FUNCTION Generate_ New_ Units

/**/

The function Generate_New_Units starts by looking at the sequence object, the

Sequence_of_parts_to_be_designed slot in the Schedule object to see which level is to be

designed next. This part corresponds to the respective level in the building hierarchy, see

figure 7. 1 5

Design Alternatives
.............................. �.� "" .. .

Schematic Level i Vertical 3D J Core
........................ ········· · · J · · ! Orthogonal 2Dimension _ Systems

i i Braced Frames

Vertical
Structural
Subsystem

Table 7.4

l Vertical 2D Narrow Perspective i Shear Walls
,........... ! Rigid .. Frames

j Braced Frames
Shear Walls Vertical 2D Wide Perspective

Material
...) Rigid .. Frames

j Reinforced Concrete
Steel

Vertical 2D .. Narrow.Location \...Various .. Configurations
Vertical 2D Wide Location I Various Configurations

Levels in the building hierarchy

Having noted the level, the function refers to the Alternatives hierarchy and adds a class,

bearing the part name to the search tree and then calls one of a series of functions named

Design_ xx_ Level, where xx is the appropriate level. This function creates a list of all the

alternatives at that level, ie. at the Vertical_ 2D _ Narrow level it will have the names

Rigid Frame Narrow, Braced Frame Narrow and Shear Wall Narrow. For each item on - - - - - -
the list it creates a subclass, which it attaches to the search tree at the level indicated. These

134

The Application of Object-Oriented Techniques to Preliminary Design Problems

subclasses are given the appropriate level name with the suffix _Alt_ xx, where xx is a

number, which is incremented for each new class created.

/**/

FUNCTION: Generate New Units

ASSIGN Generate TO SLOT Task IN CLASS Schedule

ASSIGN O TO SLOT Number IN INSTANCE Global

COPY THE 1 ST ITEM FROM THE FOLLOWING LIST (Schedule:Sequence_Of_Parts_To_Be_Design)
TO SLOT Part_To_Design IN CLASS Schedule

COPY THE 1 ST ITEM FROM THE FOLLOWING LIST Schedule:Sequence_Of_Parts_To_Be_Design)
TO SLOT Current_Design_Level IN INSTANCE Global

MAKE A LIST OF ALL THE SUBCLASSES OF Global:Current_Design_Level
AND PUT THE LIST INTO SLOT Current_Design_Level_Subs IN INSTANCE Global

FOR EACH ITEM X ON THE FOLLOWING LIST(Global:Current_Design_Level_Subs,
DO THE FOLLOWING ACTIONS

CALL THE FUNCTION Slot_Copy_Levels(x, COPY THE 1 ST ITEM FROM THE
FOLLOWING LIST (Schedule:Sequence_Of_Parts_To_Be_Design))

CALL THE FUNCTION Design_First_Level_Down(Building_l)

REMOVE THE 1 ST ITEM FROM THE FOLLOWING LIST
(Schedule: Sequence_ Of_ Parts_ To_ Be_ Design

ASSIGN SLOT VALUE New_ Designs_ In_ Creation IN INSTANCE Global TO
Global:New_Designs_In_ Vert_2D _N

COPY THE 1 ST ITEM FROM THE FOLLOWING LIST
(Schedule: Sequence_ Of_ Parts_ To_ Be_ Design) TO SLOT Part_ To_ Design IN CLASS Schedule

COPY THE 1 ST ITEM FROM THE FOLLOWING LIST
(Schedule:Sequence_Of_Parts_To_Be_Design) TO SLOT Current_Design_Level IN INSTANCE
Global

MAKE A LIST OF ALL THE SUBCLASSES OF (Global:Current_Design_Level COPY THIS
LIST TO SLOT Current_Design_Level_Subs IN INSTANCE Global

FOR EACH ITEM X ON THE FOLLOWING LIST(Global:Current_Design_Level_Subs,
DO THE FOLLOWING ACTIONS

Slot_Copy_Levels(x, COPY THE 1 ST ITEM FROM THE FOLLOWING LIST
(Schedule:Sequence _ Of _Parts_ To_ Be_ Design))

FOR EACH ITEM X ON THE FOLLOWING LIST (Global:New_Designs_In_ Vert_2D_N,
DO THE FOLLOWING ACTIONS
CALL THE FUNCTION Design_ Vert_ 2D _ N _ Level(x)

FROM THE FOLLOWING LIST REMOVE X
(Global:New_Designs_In_ Vert_2D_N, x)

135

The Application of Object-Oriented Techniques to Preliminary Design Problems

REMOVE THE 1ST ITEM FROM THE FOLLOWING LIST
(Schedule: Sequence_ Of_ Parts_ To_ Be_ Design

ASSIGN SLOT VALUE New_ Designs_ In_ Vert_ 2D _ W IN INSTANCE Global TO VALUE OF
SLOT New_ Designs_ In_ Vert_ 2D _ N IN INSTANCE Global

COPY THE 1ST ITEM FROM THE FOLLOWING LIST
Schedule:Sequence _ Of_Parts _To_ Be_ Design) TO SLOT Part_ To_ Design IN CLASS Schedule

COPY THE 1ST ITEM FROM THE FOLLOWING LIST
Schedule:Sequence _ Of_Parts _To_ Be_ Design) TO SLOT Current_ Design_ Level IN INSTANCE
Global ADD THE STRING Alts TO THE END OF THE NAME

COPY A LIST OF ALL THE SUBCLASSES OF Global:Current_Design_Level TO SLOT
Current_ Design_Level_Subs IN INSTANCE Global

FOR EACH ITEM X ON THE FOLLOWING LIST Global:Current_ Design_ Level_ Subs,
DO THE FOLLOWING ACTIONS

CALL THE FUNCTION Slot_Copy_Levels(x, COPY THE 1ST ITEM FROM THE
FOLLOWING LIST(Schedule:Sequence_Of_Parts_To_Be_Design))

FOR EACH ITEM X ON THE FOLLOWING LIST (Global:New_Designs_ln_ Vert_2D_W,
DO THE FOLLOWING ACTIONS

CALL THE FUNCTION Design_ Vert_ 2D _ W _ Level(x)
FROM THE FOLLOWING LIST Global:New_Designs_In_ Vert_2D_ W
REMOVE x

/**/

1 36

�
l
r: ,, ' ,,

The Application of Object-Oriented Techniques to Preliminary Design Problems

9
Generate_
New_Units

,
[Generate_
\ New_Units

End

Design_
Level_Down

Test Not OK

Figure 7.15 Flow chart for formulation

Eliminate

!** */

FUNCTION: Design_First_Level_Down [First_Level]

ADD TO THE FOLLOWING LIST (Global :New_Designs,First_Level)
EACH OF THE CLASSES CREATED IN THE FOLLOWING STATEMENT

FOR EACH ITEM X ON THE FOLLOWING LIST (Global:Current_Design_Level_Subs,

DO THE FOLLOWING ACTIONS
Global :Number � Global:Number + I

FOR EACH ITEM Y ON THE FOLLOWING LIST(Global:New_Designs, y ,
DO THE FOLLOWING ACTIONS

MAKE A NEW CLASS(x # _ # Global:Number,
FROM CLASS y)

137

I
t
I
f
'
[

l ' "
?, '

The Application of Object-Oriented Techniques to Preliminary Design Problems

CALL THE FUNCTION Slot_Copy_Alts(x)
CALL THE FUNCTION Check_ Vert_3D(x # _ # Global:Number
LET
[xx +- x # _ # Global:Number]

IF (xx:Eliminated #= Yes)
THEN

If the new class fails the elimination test for the designs
at the vertical 3D level, then it is removed from further consideration.

DeleteClass(x # _ # Global:Number)
ELSE

If the new class passes the elimination test, then it is added to the list of new
designs.

ADD TO THE FOLLOWING LIST (Global:New_Designs_ln_ Creation, x
_ # Global:Number)

/**/

• Detailing and testing.

Testing of Alternatives - NOV A has a series of 'test and eliminate' functions, with names

of the form Valid-xx-Alt, where xx is the name of the level in the hierarchy. For instance

function Valid-2D-N-Alt is used to test and eliminate new designs generated for the

Vertical_2D_Narrow level. Functions have been written for designs at each level and are

used in the first instance to prevent unlikely designs being added to the search tree. They

use heuristic knowledge to delete alternatives without further study, however, they do not

invoke the inference engine and no production rules are used. The functions are called

during the generation of the new designs, which are represented as classes.

A second level of testing is applied to designs, which are not eliminated at the outset. This

type of testing requires a more detailed look at the design and invokes the inference engine

referring to the material elimination rules, Global:Rs _For_ Material_ Elim, which is a subset

of the production rules.

The inference engine is invoked by a checking function, which calls the system's forward

chaining inference mechanism,

138

The Application of Object-Oriented Techniques to Preliminary Design Problems

These rules contain more heuristic knowledge; for example one rule is used to eliminate

designs, which have proposed to build more than 20 stories with a rigid frame design.

Detailing - As NOV A proceeds to generate design candidates at each level of the building

hierarchy the likely designs are added to the search tree. A second form of testing is now

applied to reduce the size of the search tree thereby preventing a combinatorial explosion

and at the same time weeding out those designs that are not structurally sound.

This testing requires the partial designs to be quite well defined; therefore it cannot be

applied until the designs in the search tree have accumulated sufficient design information.

The information required for these tests is created through the process of detailing. This

involves calculating estimates for the physical components. Subsequent testing relies on the

ability of the system to locate suitably sized steel sections in the steel sections database. If

the system is unable to locate a section big enough, then it marks the design to be

eliminated.

There are two subsets of detailing functions, those required for the vertical subsystem and

those required for the horizontal. Detailing is applied to the vertical subsystem when the

locations of the structural alternatives have been selected, ie. at the

Vertical_2D _ W_Location_Level. For the horizontal subsystem or floor system, it is

performed when the locations of the support and intermediate beams have been decided and

the floor system has been designed. This is at the final level in the building hierarchy, the

Intermediate Beam Level.

There is a subset of detailing functions, which designs the vertical subsystem. This contains

functions to detail the three vertical structural subsystem options: braced frame, rigid frame

and shear wall. The horizontal subsystem detailing functions perform the design of the

flooring systems. These include the following concrete flooring options, flat slabs, Re

139

The Application of Object-Oriented Techniques to Preliminary Design Problems

slabs, ribbed slabs and waffle slabs, which each have their respective units comprising

precast-floor-units, rib-moulds, ribbed-slabs and waffle-moulds. The system can also

design a steel deck floor system, which has a series of possible steel deck units of different

sizes.

The detailing functions involve the following steps:

• Select Design Parameters;
• Estimate Initial Sizes;
• Calculate Loadings;
• Select Loadings; and
• Check Design.

The NOVA system has a series of rulesets for checking the validity of roughly designed

alternatives. Some checks are concerned with the satisfaction of the most important parts of

the structural codes. These rulesets are shown in table 9 . 1 . They also check that designs are

of reasonable dimensions, which have been predetermined during the specification stage.

These rulesets all have names of the form Rs_For _Chk_Det_xx_Alts, where xx is the name

of the option to which the ruleset relates. Each detailing function calls the Check_ Design

function to test the designs at various stages in the process. The function is always called

with a parameter. For example, when rigid frame checking is required the function call is

coded Check_Design(Bldg, RF); the parameter RF indicates that the function is to use the

ruleset Rules _For_ Checking_ Detailed_ RF_ Alternatives.

Check_ Design uses the appropriate rule from the Rules _For_ Checking_ Detailed

Alternatives to check and eliminate any unsatisfactory design. Every time a function needs

to check if a steel section has been found, then Check_ Design is called with the parameter

Element and it refers to ruleset Rules_For _Checking_Detailed_ Elements_Alternatives,

which contains one rule RI_ About_ Steel Sections. This check is used with all design option

tests to ensure that a section has actually been found.

140

The Application of Object-Oriented Techniques to Preliminary Design Problems

In the NOV A prototype, the detailing processes are started when the user selects the

appropriate input button. However, in a finished version of the system the program would

do this automatically. Initially the user requests the system to estimate assumed floor sizes,

then the user sets the initial sizes for beams and columns and then selects the

Detai/_The_Vertical_Subsystem input button. There are two common series of functions,

which are executed for all design options, and which estimate the floor and beam and

column sizes. Then three alternate process flows are used for detailing the rigid frame,

braced frame and shear wall partial designs.

When the Detail_ Vertical_ System input button is selected, the detailing function is called

and an initial list of items to be designed and analysed,

Global:New _Designs_In_Vert_2D _W_Loc is created. This list consists of the partial

designs on the fringe of the search tree, which have been created at the

Vertical_2D_ Wide_Location_Level of the hierarchy. Each item on the list is detailed in

tum; the Kappa messaging facility is used to initiate the appropriate design method. This

messaging system is described later in this section.

Details of the design and programming of the Detailing functions have been omitted to

restrict the size of this report. However, Appendix C describes the design of the detailing

programming for braced frame options. Similar functions are applied to rigid frame and

shear wall partial designs ; however, their descriptions have not been included in this report.

• Evaluation

In the evaluation stage all the likely feasible alternatives are considered in terms of different

features such as cost, time to build and overall height. The method used in the design of this

system is based upon the one used in the DOLMEN system. It has the following steps :

• Identify relevant features;

141

J
r-
i:

"

The Application of Object-Oriented Techniques to Preliminary Design Problems

• Formulate the features into soft constraints;

• Allocate soft constraint to target, which can be maximised or minimised or accepted
at any value;

• Evaluate and rank proposed designs; and

• Allow the user to change, reiterate this step as many times as necessary;

Evaluation criteria were based on approximations of the following features: construction

cost, time, clear-space, sway, column size and height. The user could select any or all of

these features for a particular design. For each feature selected, a target setting was defined,

which could be one of the following: the maximum value, the minimum value, the objective

(ie. maximise, minimise, or accept any value), and the importance of the feature (ie.

irrelevant, not-so, quite, very, and extremely). For example, the cost of a building might

have a maximum value of $ 450,000, a minimum value of $ 300, 000, an objective of

minimise, and an importance of extremely. This implies that it is extremely important to

minimise the cost of the building, as long as it costs not less than $ 300, 000.

The system used heuristic rules to establish target settings. These rules were invoked at the

start of the evaluation stage. For example rule Rule _For _Prestigious_ Building_ Cost stated

that if the function of the building (input by the user, at the specifications stage) was such

that the building would be considered to be prestigious, then the following target settings

were to be established for the cost feature:

• maximum value worked out as a function of total floor area.

• minimum value worked out as a function of total floor area.

• objective minimise

• importance very

Once the values had been calculated for each of the evaluation features, they were presented

to the user for verification. If a value was unacceptable, the user was able to re-specify the
142

The Application of Object-Oriented Techniques to Preliminary Design Problems

required criteria, after which the system proceeded to evaluate each alternative. It did this

by first computing a percentage optimisation value for each feature. This was, in effect, the

degree to which the value of the feature (as calculated for each alternative by a procedure

associated with that feature) approached the optimum value, so long as it was within the

specified range. For example, if the objective, for an evaluation feature was to minimise the

value, then the formula for determining the percentage optimisation was calculated as:

{(maximum value) - (feature value)) * 100%

(maximum value) - (minimum value)

If the predetermined maximum cost was $ 450,000, the minimum cost was $ 300,000, and

the calculated feature value was $420,000, then the percentage optimisation for the feature

was found as follows:

(450,000 - 420,000) * 100%

450,000 - 300,000

30,000 * 100%

1 50,000

20%

After the percentage optimisations had been calculated for each feature they were weighted

and accumulated to form an evaluation value for the building. The weighting process

associated a numerical value with the importance of each feature. For example, irrelevant

corresponds to 0, not-so corresponds to 1, quite corresponds to 2, very corresponds to 3, and

extremely corresponds to 4. If the importance target setting for cost was extremely, then the

weighted percentage optimisation was: 20 * 4 = 80. Similar values were calculated for each

feature selected by the user. The values calculated were then accumulated to determine the

building's total evaluation value.

When an evaluation score had been determined for each partial design, then the system

ranked them and displayed the best ' n ' alternatives, where the number 'n ' had been

determined by the user during the specification stage. If he/she did not verify the system's

selections, then an option to re-select the number of design alternatives to be considered was

143

The Application of Object-Oriented Techniques to Preliminary Design Problems

provided. Additionally, the user could revert to altering the target settings, thus invoking

the re-evaluation of the alternatives.

The system repeated the evaluation process, for the remaining design alternatives after it

had completed the design of the flooring system. This provided the user with a final ranked

list of designs. The user was again offered the options to reselect an alternative or modify

the target settings. The same evaluation features were used for this evaluation, though the

calculation methods differed slightly in some cases, because more accurate information had

been made available, when the floors were designed.

In its present state of development the system only performs evaluation after the whole

search tree has been completed and it is only coded to evaluate the vertical structural

subsystem.

144

The Application of Object-Oriented Techniques to Preliminary Design Problems

7.3 Difficulties Encountered During the Development Project

• Difficulties in Analysing Preliminary Structural Design

Preliminary structural design is a form of conceptual design. The writer noted several

references including Maher (1984) and Harty (1987) that referred to conceptual design as

being ill defined and which also advised that it was a difficult area for which to provide

computer software. It is a problem solving activity, which comprises a series of conceptual

decision making tasks interspersed with a series of calculation tasks. It is often difficult to

determine in advance, which particular design tasks may be required in a particular project

and in what order the tasks are to be applied.

In order to develop computer software to support a given design project, the developer must

be able to document precisely what it is that the designer will actually do during the project.

This task is difficult because the designer may not proceed in a methodical or structured

manner. For example the designer may:

• Switch the way he/she approaches a design task;

• Mix and match design techniques;

• Bypass certain preliminary steps;

• Take risks; and

• Be inspired or use very innovative techniques.

The research completed for this project indicated that system developers had used several

different approaches in the provision of intelligent design software, including simulations of

decomposition, design transformation and case based reasoning. Regardless of which

approach was used, several sources indicated that a promising approach to software support

for conceptual design, is one which provides a range of tools, which assist with various

phases of the design project and which can be used in a flexible, interactive and iterative

manner.

145

The Application of Object-Oriented Techniques to Preliminary Design Problems

• Difficulties in applying object-oriented techniques to knowledge based applications

Graham (1994) says that object-orientation addresses two of the 3 key aspects, required to

specify a proposed system, these are data and process. He adds that control of system

behaviour is more difficult to integrate into an object model and in several of the approaches

he had reviewed, control in the form of rules and/or constraints, appeared to be

accommodated as an afterthought.

In this project the writer found it difficult to include the production rules in the object

model, other than as a 'black box'. This approach appears to leave something to be desired,

but the writer was unable to find a better way to include them, given the object-oriented

analysis and design tools selected for the project.

• Overlapping of the analysis and design phase

It was difficult to manage the object-oriented stages of the development project. The writer

was unable to clearly separate the analysis and design stages and was also unable to

precisely distinguish which deliverables were worked upon in each stage. These difficulties

resulted in the failure of the writer to produce accurate time estimates for project

completion.

The purpose of analysis is to describe a problem, ie. to formulate a model of the problem

domain, analysis is concerned with what happens rather than how it happens, and it focuses

on behaviour not form. The primary purpose of design is to decide how the new system,

which constitutes the solution to the problem, will be implemented. Design creates

architecture for the evolving system and establishes common approaches that must be used

with the disparate elements of the system. According to Booch (1991), design should begin

as soon as a model of the system has been created. However, during this project the writer

146

The Application of Object-Oriented Techniques to Preliminary Design Problems

produced several models and it was difficult to recognise, which model was the appropriate

starting point for the design stage.

The conventional system development life cycle is a series of steps with gaps between them.

The steps are well defined and are associated with clearly identified deliverables. The

deliverable output by one step then becomes part of the input for the next step. However, as

Henderson-Sellers (1992) notes object-orientation supports a seamless transition from phase

to phase and this makes it difficult to pinpoint where one stage ends and another begins,

likewise it is difficult to detect the point at which a deliverable should be achieved.

Summary

This chapter has described the completion of the analysis and design stages for a knowledge

based PC design tool, which was intended to assist the engineer with preliminary structural

design tasks. The final two stages were effected via of a simplified object-oriented analysis

and design process, which was described in Cross (1996) and which used modeling

techniques adapted from Rumbaugh et al. (1991) and Embley et al. (1992).

The object-oriented analysis stage provided a model of the "real world" design problem, by

analysing the functional requirements required to support preliminary structural design. On

completion of analysis, the design stage developed the systems architecture for the new

system. This architecture consisted of notes regarding the structure of the design object,

diagrams and flow charts for the algorithmic functions. This chapter has also described

several difficulties encountered during completion of the development process. These

difficulties are described under the following headings:

• Difficulties in analysing preliminary structural design,

• Difficulties in applying object-oriented techniques to knowledge based application, and
• Overlapping of the analysis and design phases.

147

The Application of Object-Oriented Techniques to Preliminary Design Problems

CHAPTER 8. The Kappa-PC Application Development Toolkit

8.1 Introduction and Description

Kappa-PC (Intellicorp 1996) is an application development system for PCs. It is designed

to provide the following:

• Graphical object-oriented application development in a standard C implementation;

• Integration with existing MS-Windows applications including support for Windows

Dynamic Data Exchange (DDE), and Dynamic Link Libraries (DLLs);

• Production of ANSI C program code executables, which allow for the efficient

distribution of the finished programs;

• Interfaces to SQL databases, spreadsheet programs and CAD packages; and

• Expert system tools, including an inference system.

In particular it can be used as a domain-independent expert system shell. Hasan et al.

(1994), Kiernan et al. (1996) and Tsang and Bloor (1994) have indicated that Kappa-PC has

been used to produce expert systems quickly and economically. From research of their

work it appeared that Kappa-PC would be a suitable platform on which to develop a system

to support preliminary structural design.

The writer therefore installed a copy of Kappa-PC on an IBM 600E Thinkpad laptop and

proceeded to explore its system development capabilities. The copy used in the study was

Version 2.4 of the Kappa-PC Applications Development system as supplied by the

Intellicorp Corporation. This required a 386 type PC or above with a math co-processor, it

also needed 4 MB RAM or higher, 4 Mb of hard disk space and the Microsoft Windows 3 .1

or one of the Windows 9x series of operating systems. The PC used in the study had an

Intel Pentium chip, with 8 MB RAM and the PC also had 4 Gb storage and ran the

148

The Application of Object-Oriented Techniques to Preliminary Design Problems

Windows 98 operating system, which supports Kappa-PC as a 16 bit Windows application.

The Borland Turbo C++ version 4.5 compiler was also installed to facilitate the generation

of standard ANSI C code.

Intellicorp (Intellicorp 1996), describe Kappa-PC as a complete development environment,

which provides a wide range of edit tools and debuggers for designing and running

applications. In the Kappa-PC system, the active components of the application domain are

represented by data structures called objects. These objects can be either classes or

instances within classes and they may represent concrete things like building subsystems,

such as the floors or the walls or components like beams and columns. The objects can also

represent intangible concepts like cost or evaluation criteria. A developer can link objects

together into an object hierarchy to represent the equivalent relationships among the objects

in a model abstracted from a particular domain.

The object-oriented programming tools within Kappa-PC can be used to provide these

objects with methods, which contain algorithmic code like that found in the functions in

conventional programs. Once the objects and methods have been identified for a knowledge

base, then the system can be developed. System development commences with the

production of a specification to describe how the objects are to behave and how the system

will reason about the objects. Systems built on Kappa-PC usually require a set of pre

written rules, where each rule specifies a set of conditions and a set of conclusions to be

made if the conditions are true. The conclusions may represent logical deductions about the

objects in the knowledge base and how they might change over time.

In Kappa-PC each rule is a relatively independent module and a reasoning system can be

built gradually, rule by rule. Kappa-PC also allows the developer to use object-oriented

programming to combine and unify many standard AI methodologies such as, frame-based

149

The Application of Object-Oriented Techniques to Preliminary Design Problems

representation, production rules, demons or monitors and graphics into a comprehensive

hybrid system.

L• t1111 W.....,._ ~

~ g
o-..c• s-.........

fjQWft51!11! II

--
Figure 8.1

11 ...

~ m rill ~ ~ I§) ~ <AI. ICAl.lr- ,w'loC. ·- r..._.,oe 0- ,._.. n • ...,.~. ltMO-e
.,..,, tlll

lUI

IUJ

Kappa-PC application development input screens

To start Kappa-PC the user can double-click on the Kappa-PC icon. The package will open

up with a series of windows, which appear as in Figure 8.1 These windows control the

operallon oflhe Kappa system and allow the user to bnng into view a numher of other

windows. Figure 8.1 shows the Object Browser, which allows the user to view graphically

and edit the class structure of a program, and to access the EditTools windows, which

provides the facility to edit data objects, which consist of classes and instances, rules, goals

and functions

User interaction with Kappa-PC proceeds graphically. the system being accesses v1a a

mouse, or by typing into one of the five custom editors or via the Interpreter Window,

which allows commands, statements and functions to be input and executed interactively.

Graphical input can also be effected via the Object Browser or via one of Kappa-PC's

Session Windows

The following sections briefly outline the specific Kappa-PC facilities used in the study.

150

The Application of Object-Oriented Techniques to Preliminary Design Problems

8.2 Kappa-PC Structures Used to Describe Objects

• Objects

Objects are represented in Kappa-PC as classes and instances of classes. These can be

orgamsed mto hierarchies or taxonomies using subclass and instance relations. Figure 8.2

reproduces the Object Browser, which displays part of the knowledge base developed

during the study. These objects are all classes and the links between them are shown. They

represent the R600, Rib Mould class. which represents those moulds with a grid size of

600mn1. Within tllis class ofRib-Moulds there are 4 main types of moulds, based on mould

depth m mrn, 175, 250, 325 and 400, which are represented by the subclasses R600-l75.

R600-250, R600-325 , R600-400.

Uh1oc ' Urnwu u l!l[i) D

Figut•e 8.2

tl ..
1 R<.OO 1/!i !iO ~

ru;oo 115 75
Rhll(l tf5~ 1\i>Oil 115 1VU

• \ ftbUU 115. 12!>
Jl.600 175 150
11.600_.Z50 .50
MOO 250 7!i

R611U_250 R600_250_1UU
MOO 250 125
R£00_25U_150
RllOO 325 SO
MOO 325 75

RllOO. J25 RGOO_J25_100
RGOO_J25_125
Rll00_325_ 150 ..J

/ rwnn_ 40o_:sn
,y· RGIJU ~uu 75

n.r.un_40ll~R600=400=100
'\R600 40(1 1:15

c:u;nn- 4nn -1~r~

T he Rib-Moulds Object Hierarchy

The solid lines indicate subclass links, which partition the Rib-Moulds class. These links

represent ts_a_subc/ass (is_a_member _of) relationships Kappa-PC also provides ror the

is_a_kiml_ofor instance_ of relationship. However, these are the only relationship~

provided for explicitly in Kappa-PC and other kinds of relationships must be implemented

indirectly. For example a developer can use the slots in objects to create links to other

objects m order to represent association type relationships. These is_a_memher_of

relationships are used throughout the design tool system created during the study to

15l

The Application of Object-Oriented Techniques to Preliminary Design Problems

construct representations of the design alternatives at different levels and of the

hierarchically organised product model.

The links between objects also provide the paths via which objects inherit attributes from

other objects higher in the hierarchy. Each class can have any number of slots and Kappa

PC provides two kinds of slots, member and own. The member slots of a class are inherited

by its subclasses while the own slots are not. Furthermore, when a subclass inherits a

member slot the slot also acts as a member slot for the subclass, if this subclass is a subclass

of the parent. Otherwise it inherits it as an own slot and cannot pass it on to its subclass.

The user can create classes graphically in the object browser window or create them

indirectly by using the class edit tool. To use the object browser, the user can click on the

class 'root ' and then select 'AddSubClass ' from the edit menu. The user then inputs an

appropriate class name.

• Slots

Kappa-PC provides a data type, referred to as a slot, which resides in the Kappa object,

which may be either a class or instance. The user can update the slots to tailor an object so

that it may represent the important properties of a real object. Each slot can be used to

describe a characteristic or attribute of the object. To specify the attribute, the user assigns a

value to the slot. For example, within the Rib Mould Class noted above, the user has

created slots for average-rib-width, depth-of topping, gridsize, mould-depth, supplier and

total-depth. These attributes complete the description of the 600-mm. size mould and are

displayed in the Class Editor window shown in Figure 8.3.

15 2

The Application of Object-Oriented Techniques to Preliminary Design Problems

c; l.tt • • f:. dtl u r tUi UU 325_ 11JU R-

Slow:.

- o-,o._ or_T...,.t..c
-c..w_s_
• Me..w_o,..-o.
•S-.ppiJ.er
• T•ta.l_ Depdl

Co~nl'l

100
• 600
• :J:;!!§

•cKN
42o5

Figure 8.3 Class Editor showing the slots in a llib Mould.

Slots are inherited down the object hierarchy, and as the hierarchy grows, the classes lower

down gradually accumulate inherited slots. As noted above, objects can have their own

slots and they can inherit slots from ancestor classes, ie. classes above them in the class

hierarchy.

When an object inherits a slot from an ancestor, the object does not have to maintain the

inherited slot value, the user can make the slot local to the subclass and then insen a

different value from the one inherited by the slot. Kappa-PC also allows slot values to be

changed programmatically. Thjs feature is very useful for programming knowledge-based

systems. Slot mhentance provides a shortcut to updatmg attribute v~:~lues throughout the

hierarchy. 1[a slot value is changed at a point in the hierarchy then the change will be

reflected in values of the slots lower down the hierarchy, which have been inherited down

through the hierarchy.

Local slots describe features that are private to the object that contains them. [fthe object1s

a class, its local slots describe that class itself (as opposed to its members). Ifthe object is

an instance, its local slots provide information about that panicular instance. The user can

input and change slot values using the slot editor, which is shown in Figure 8.4.

153

The Application of Object-Oriented Techniques to Preliminary Design Problems

.,.,
Jllllll

F igure 8.4

-... v-·-·• ---- ~ ... _. ·-... -..._.

The Slot Editor

···--· l

"{... •• _J
I

Once a slot is made local and the value of the slot is changed, all classes and instances that

subsequently inherit the slot get the new value. This feature was used in the system

designed during the study. As the system's search tree of design objects grows, new partial

designs are added and at certain levels in the tree detai ling calculations are done to estimate

and fix the initial s izes of component parts. These calculations result in changes to various

slot values in the design objects. These changes are effected programmatically using a

variety of assignment functions and the new values are then renected in the sub~equent

levels in the hierarchy. This shadowing effect of mheritance is a useful feature of obJeCt-

onentcd programmmg, all ObJects below an object with a local slot are affected by the

change. The following paragraph describes several types of slot assignments, which are

provided by Kappa-PC and which were used in the study.

The Kappa-PC Set Value command assigns a value in a single-valued slot or a set of values

m a m ultiple-valued slot. The code fragment shown in item (i) shows how the writer set up

a slot in the global instance to act as a loop counter.

(i) SetValue(Giobal:Loopcounter, 1);

This Set Value functton sets the slot value at 1. Kappa-PC uses multiple valued slots to hold

lists and has several functions, which emulate LISP list processing functions. For !!>.ample:

(ii) SetValue(Giobai:List_Of_Designs. Vertical-3D, Verttcai-20-N);

In ilem (1i) above the function assigns the value of multiple-valued slot List_O.f_Designs,

with the two items, Vetiical-3 0 , andVertical-20 -N, thereby creating a list and returning the

154

The Application of Object-Oriented Techniques to Preliminary Design Problems

values of the list, => Vertical-3D, Vertical-2D-N. The AppendToList function adds items

to the end of a list and the GetNthltem function returns part of the list. For example:

(iii) AppendToList(Global :List, a,b,c);

returns ==> x,y,z,a,b,c and adds items a,b and c to the end of the list.

(iv) GetNthltem(Global:List, 5);

returns ==> b

Kappa-PC provides a set of standard slot options to describe and manipulate object slot

values. These slot options describe slots in much the same way that slots describe the

attributes of objects. Furthermore, a given slot can have many different options, while at the

same time having no value assigned. If a slot does not have a value, at a point in time, then

Kappa-PC assigns it the value NULL. Also if a slot value is reset (and it did not have a

value before it was assigned one), the new value of the slot will be NULL.

The types of slot options provided by Kappa-PC are:

• Cardinality (single or multiple), this specifies the number of slot values allowed, if

multiple is chosen the slot can have multiple values, which are input in the form of a list;

• Allowable Values, this describes the set of allowable slot values, ie. a Boolean slot

would have two values; TRUE and FALSE;

• Value Type, this option controls the type of the slot values, ie. text, number, Boolean or

object, which can be the name of a class or an instance;

• Slot Inheritance. This option controls the inheritance behaviour of the slots; the values

of which can be passed down the hierarchy or stopped at this object using the Slot

Inheritance option; and

155

The Application of Object-Oriented Techniques to Preliminary Design Problems

• Change monitors or demons, these options include the If Needed, WhenAccessed, Before

Change and After Change monitors. These are methods that are activated when object

and slot pairs are accessed. They are used extensively in systems, which rely on rule

based reasoning. Monitors may be defined as private functions or functions that change

the value of slots elsewhere in the object hierarchy. The If Needed option contains the

name of a method in this object. The method is automatically executed when the value

of the slot is requested and there is no value in the slot ie. when a value is needed.

Likewise if the WhenAccessed option is attached to the slot, then the method is

executed when the slot is accessed, even if the value of the slot is known.

• Methods

Apart from information that describes the object's characteristics each object also contains

information that specifies its behaviour. Each action that an object can carry out is

represented by a method, which is a procedure, usually written as a KAL program function.

Furthermore, Kappa-PC facilitates the characteristic object-oriented process of method

activation by programmatically sending and receiving messages. When an object receives a

message that corresponds to one of its methods that method is activated and the object

carries out whatever procedure is specified by the method. Kappa objects inherit methods

in the same way that they inherit slots and this feature has been used during the study to

organise the behaviour of the new system.

Kappa-PC methods provide for the object-oriented characteristic of polymorphism. Thus

different Kappa objects can have their own individual methods with the same name as the

methods in other objects. This then allows the different objects to respond in their own

characteristic way, to the same message put out by the application. This facility was used in

the new design system to incorporate an element of polymorphism. Thus the new

application can issue a single instruction to commence the detailing process of all the partial
1 56

The Application of Object-Oriented Techniques to Preliminary Design Problems

design objects in the vertical subsystem. This is done when the design has proceeded down

the design hierarchy as far as producing partial designs at the Vertica/-2D-Wide-Location

level. The instruction to commence detailing is then passed rolmd the design hierarchy at

that level , using a series of messages and each object reacts according to its type. The user

can create object methods via the method editor, which is shown in Figure 8.5.

•

Figure 8.5

1t (GecV~ue(Bu1~dLCq:N~~ow_Bay~ I ·- ~)
Then (GecV~ue(BUi~~nq:Vide_Bav.) - ~)
E~se z • (GecVa~~(Bui~d~no:Wide_Boya 1 - ~

fhe Kappa-PC Method Editor

The method shown in the figure. is a method for calculating the number of frames in the

BF-3?/us-Narrow locat1on obJect Methods can also be created programmatically usmg the

MakeMerllod function ; however, this facility was not used in the study.

A method can be coded to include any KAL function or sequence of fllnctions. Each

method has three default arguments: self. theParent and tlleOwner. The value of the se(f

variable is the object that receives the message and it allows methods to access the values of

other slots in the same object. They can also initiate other methods in the same object by

sending the message to self Methods can perform several kinds of actions:

• Change the state of the application, generally by changing slot values in an object;

• Send messages, either to the same object or to other objects; and

• Activate other facilities of the Kappa-PC system, such as rule-based reasoning or data

access.

157

The Application of Object-Oriented Techniques to Preliminary Design Problems

If a method causes changes in an application, the changes are typically to slot values in the

object that receives the message. If changes need to be made outside of the object that

receives the message, then appropriate messages can be sent to the necessary objects.

Method inheritance acts in a similar way to the inheritance of slot values. It can be used

efficiently to create and refine the behaviour of objects. Like slots, methods can be

inherited, made local and edited at the class or instance level. If the object contains a

method, any of its subclasses that do not contain a method of the same name will inherit the

method unchanged. If a message is sent to an object to invoke a named method then that

method will be invoked in the object, which receives the message, not the other objects in

the hierarchy, which may have methods with the same name.

• Object-oriented Programming

The Kappa-PC objects, which have been described above, allow the user to describe real

world objects and support the main characteristics of object-oriented programming, which

are: inheritance, encapsulation and polymorphism.

Inheritance has been used in this study to achieve conceptual clarity via the object model

created for the study; thus similar types of objects are grouped into subclasses, which share

a common parent. For example, design options, which include Rib-moulds, Waffle-moulds

and Steel-decks are grouped into their own distinct class groupings. Each of these

groupmgs has a common parent class, which has the generic attributes for the whole

hierarchy.

In the study the writer also created an Alternatives class, to allow the system to refer to the

design options, which include the same floor alternatives, collectively. Thus during the

generation of alternatives, these objects or at least a subset of their attributes can be included

in the subclass of floor alternatives. Thus the floor alternative class contains the Ribbed-

158

The Application of Object-Oriented Techniques to Preliminary Des ign Problems

slab, Waffle-slabs and Steel-deck classes, which in tum include respectively the Rib-moulds,

Waffle-moulds and Steel-decks. This class is shown in the object browser display in Figure

8.6.

• Obtecl OtowU"t ~ 1!11!1

Relnf_ Concre

Ribbed Slab

Floor_AJts Steei_Deck

Figure 8.6

wame_Siab

Precast_ Pam

The Floor Alternatives Class

Inheritance simplifies object creation. Thus if a new class is to be created, which is similar

to an existing one. then it can be created as a subclass of the existing class. The new class

automatically inherits its parent slots and the user need add only the new slots, which are

reqUired to dtfferentiate it from tts parents. This facility ts used tn the study system during

the creation of the design objects. whtch make up the search tree of design alternatives. The

generic class Building is placed at the root of this tree and the inheritance mechanism is

used to create new subclasses at each design level.

Kappa-PC can only support single inheritance and the system created during the study

required additional functional coding to provide for the multiple inheritance required during

the generation of the new levels in the tree.

iY" Cion EdtiOI . Butldtng a•E3

S lots:

C lear _ HA>ic;kt
con.c:af Sh.orl Oeser
Deca.U_:-Status
Elintlftatecl
Fire _Ratiltc

Com.tnent:

1:1elp

Cak_Nwnber _ Ot_ F.........,s
Calc N umber Of b\tr Fn
caJc:Weic;kr_:-or_:-noor_M
Calc Width O f SJu:ar W
Deta.ii_M.ethDd - -

b Jj
Figure 8.7 The generic class Building, the root of the NOVA search tree.

159

The Application of Object-Oriented Techniques to Preliminary Design Problems

8.3 The Kappa-PC Application Language

• KAL

KAL is a high-level application development language, which allows users to program the

functions required to support procedural programming. During the development of the

system used in the study procedural programming was used extensively to program the

design synthesis and evaluation activities.

KAL can be used to manipulate application objects, mathematical functions, strings, lists,

files, control blocks, windows, popup menus, input forms, application graphics, interfaces,

and system access. It also allows the user to write functions, methods and rules, create

message passing schemes and activate the inference engine, to complete calls to external

functions, employ graphics and animation and to facilitate data access.

KAL source code can be compiled to ANSI C. Furthermore, a suitable C compiler can

further compile this C code into a dynamic link library (DLL), which runs an average three

times faster than the original interpreted KAL code.

As well as object-oriented programming KAL allows the user limited access to non-object

local variables, which are used with Let and loop constructs and which are settable, ie. they

can be used in assignment statements.

• KAL Source Code Debugger

The debugger provides the user with a means to debug KAL source code. The user can

view functions, methods and the execution stack and can set break points for functions and

methods. The user can also set watches on the value of object slots or any other coding

entity, by selection. The debugger has two modes; 'step-over' and ' trace-into'. In addition

Kappa-PC provides a 'Find/Replace Utility' to allow for local and global find and replace

capabilities. Figure 8 .8 shows a typical debugger display, this one was created when the

160

The Application of Object-Oriented Techniques to Preliminary Design Problems

writer was tracing the execution of a function (the Select_Reinf_Centres function) during

the study project.

l!!i IV\LVrow Oebuoocr

fie ll.,w .B•e• Warc:h
EnurnList(Oefaulls:Ust_ Of_Bar_Oiameters. X

l
Sc:tValuc: (FNVar:Bar_Arc:a. 0); I
SetVelue(fNVar:Spac.lng_Of_Bars. UJ;
SetValue(FNVar:Totai_Area. 0);
II ((X <= Max_Acceptable_Oiameter) And (X.>= t<.un_Acceptable_OiameterJI

Then (
SetValuc:(FNVar:Bar_Area.[J.142B5n 4285714 w X • XJ /4);

- D

SetValuc(FNVar:Spacln!,l Of Bars. Round5({1 000.0 • FNVar:Ba!,..Arc:aJ I Requlrc:d...,Arc:a) - 5);

II (FNVnr:Sp11clng_Of_ Bars < Mln_Acceiplable_Spaclng)
Then {

SctValuc:(rNVar:Total_Arc:a. 1 000000);
J
Else If (FNVar:Spaclng_ Of_Bars > Mal<_Accep tablc_Spaclng)

Then (
Sc:tValue(FNVar:Spaclng_ Of_Bars. Max_Acceptablc:_ Spaclng);
SetValuc(FNVar:Tolai_Area. [1 000.0 • FNVar:Oar_AreaJ/ FNVar:Spaclng_ OI_ BarsJ;

);
u ff~V•••T ... ••• A••• - a.,. .. ,, .. ,. ,.,. , 1' n:;NV•rC::•1•.-t•r4 A••• - Q.,. .. ~rt ,. u

E246 -: Divide by zero I

Rc:qulred_Arca s ·62.41693616941 529
Ma>c_Acceplable_Spaclng = 300
Mln_Acceptablc:_ Spaclng = 150
Max_Acceptabte_Oiarnc:tc:r ~ 20
Mln_Acceptablc:_Oiametc:r r 10

Go Step Trace Here:

Figure 8.8 Debugger Display During Function Trace.

• Local Variables

A bon

The KAL language allows local variables, declared in function code with certain key words

including Let. For, ForA/f. AreAl!? EnumList, as well as variables, which are used as

arguments in [unctions, methods and rules, to be assigned in the body of KAL code in

scope.

For example, the following code is allowed:

Lel [x 0] While (x < 10) x== x + 1;

This evaluates an expression with temporary arguments, ie. x l ... x 10, which are mapped into

the express ton. However, the Let only maps x l...x 10 within the scope of the expression

statement.

16L

The Application of Object-Oriented Techniques to Preliminary Design Problems

8.4 Kappa-PC Reasoning Mechanism

Kappa-PC provides facilities for rule-based reasoning, which allows the user to develop

rule-based systems. These systems represent knowledge in terms of a set of rules, which

determine what the system should do or what conclusions the user should draw in different

situations.

In Kappa-PC the rules are represented as "if' (conditions) and "then" (actions) statements,

they are associated with a subset of facts, represented as a set of object and slot pairs drawn

from the domain knowledge in the system. The Kappa-PC reasoning mechanism consists

of a combination of the rules and object slots, which are organized into an inference

network and a system interpreter, which controls the application of the rules.

The interpreter has two main modes of reasoning: agenda-controlled forward chaining and

goal-driven backward chaining. The study system employs forward chaining through out.

In forward chaining the facts in the system are held in working memory, which is

continually updated as rules are invoked. The rules represent possible actions to take when

predetermined events change these facts in working memory. These actions usually involve

adding or deleting items from working memory.

The interpreter controls the application of the rules, given the contents of working memory,

and thus controls the actions taken by the system. The interpreter works through the rules in

cyclic manner as follows :

• Check to find rules, which have the conditions satisfied;

• Select a rule, based on a predetermined strategy; and

• Perform the action in the action part of the rule, thereby modifying current working

memory.

162

The Application of Object-Oriented Techniques to Preliminary Design Problems

Kappa-PC has several features to enhance its rule-based reasoning, these include four rule

firing schemes: depth-first, breadth-first, best-first, and selective, pattern matching on

objects. It also allows priorities to be set for conflict resolution, and provides a flexible

explanation facility to explain the conclusions arrived at by the inference mechanism.

Kappa-PC also provides features, which allow a developer to debug the inferencing scheme

being used. These include, rule trace and break capabilities, slot trace and break capabilities

and the ability to "step through the inferencing process".

These tools are accessed through three specialised editor windows in the development

environment:

• The Rule Relations Window, which dynamically displays rule networks and

interdependent rules. It displays "if' and "then" dependencies for related rules and

allows browsing through the compiled rule network and provides interactive editing of

rules and their relationships.

• The Rule Trace Window allows the user to specify application components to be

examined during the inferencing process. It provides capabilities for active trace, where

the user can step through inferencing one step at a time and can momentarily stop

inferencing at pre-defined states, change parameters, and then resume the process. The

rule trace window displays the active rule list, agenda contents, and trace outputs. The

system provides a choice of automatic or active trace, as well as an interactive stepper

mechanism.

• The Inference Browser Window facilitates graphical debugging of the rule systems and

allows interactive editing of rules. It shows the active path, and the status of slots

(known or unknown, which are to be queried from the user, or which are to be deduced

163

The Application of Object-O riented Techniques to Preliminary Design Prob lems

from rules), rules (active or inactive, to be expanded, rules pending, or tired to true or

false), and goals (true, false, or unknown). It also provides a step mechanism.

• Demonstration of the Kappa-PC lnferencing Mechanism

In the following section the writer describes a simple KAL program. which demonstrates

Kappa-PC's mferencing facilities and which also allows the writer to demonstrate Kappa-

PC's rule trace facilities, which include the Rule Trace Window and the Inference Browser ..

The example shows a trace through the system's rule base as 1! generates new conclusions.

The program was written to operate on a fragment of a ru le-base, which was described by

Krishnamoorthy and Rajeev (1996).

The program 's rule base contains the 9 rules shown below, which allow 11 tu solve a sclli~s

of structural design problems. On stru1up the systems prompts the user to input in fom1ation

concerning the number of stories proposed for the new structure and whether or not there

are good quality bricks available . Using this infom1at10n the system then estaohshcs the

required load bearing structure. It then requests more information concerning the structural

subsystem and eventually it detennines the type of :floor system.

The rules in the system are shown in Table 8.1 . The program ha::. a simple session window,

which is shown in Figure 8.9. and which allowed the user to operate the system.

I M*Pi' II - I CJIEI

......
Figure 8.9 Session window for the rule demonstra tion prograru

164

The Application of Object-Oriented Techniques to Preliminary Design Problems

RULE: 1
IF no_of_stories <= 5 AND good_quality_bricks #= available
THEN load_ bearing � masonry_ wall

RULE: 2
IF no_ of_ stories <= 5 AND good_ quality_ bricks #= not_ available
THEN load_ bearing � rec_ framed_ structure

RULE: 3
IF no of stories > 5
THEN load_ bearing � rec_ framed_ structure

RULE: 4
IF load_bearing #= rcc_framed_structure AND no_of_stories <= 20
THEN structural_system � rcc_rigid_frame

RULE: 4a
IF load_ bearing #= masonry_ wall AND no_ of_ stories <= 5
THEN structural_system � rcc_rigid_frame

RULE: 5
IF load_bearing #= rcc_framed_structure AND no_of_stories <= 35 AND no_of_stories
> 20
THEN structural_ system � rec_ frame_ with_ shear_ wall

RULE: 6
IF structural_ system #= rec_ rigid_ frame AND maximum_ span_ in_ M < 10 AND
clear_height_in_M < 3 AND clear_height_in_M > 2.5
THEN floor_system � flat_slab

RULE: 7
IF structural_ system #= rec _rigid_ frame AND maximum_ span_ in_ M > 8 AND
maximum_span_in_M < 20 AND clear_height_in_M > 3
THEN floor_system � waffle_slab

RULE: 8
IF structural_ system #= rec_ rigid_ frame AND maximum_ span_ in_ M < 8 AND
clear_height_in_M > 3
THEN floor_ system � beam_ and_ slab

Table 8.1 Rules for the demonstration system

Figure 8. 10 shows the program's rules in the Rule Relations Window, which dynamically

displays rule networks and rule interdependencies. This window allows the user to query the

rule objects in the display, using the right hand side mouse button. Figure 8.11 shows the

results obtained when the system is queried to determine, which object slot pairs are related

to rule 1.

165

The Application of Object-Oriented Techniques to Preliminary Design Problems

• Rule Rel.tltMt - • t l!ll!J
IIP'Ilr• tl"'

vo_..._ TH£ND_.,._.

...... ~ ~
~ ... 1 ... 4

~:: 2

Figure 8.10 Rule Relations Window for the r ule demou~tration program

flel<tled S lots •

I bldg:load_ bearlng

OK

Figure 8.1 J Rule Relations Window query for rule 1

The Rule Trace Window allows the developer to view the rules that the inference engine

invokes in the form of a transcript and to follow the impact of the reasoning process on

particular slots in the knowledge base. In a trace the developer can see how the system

generates new conclusions, and can trace the source of errors in the application's knowledge

base. The Rule Trace window may be used to trace either forward chaining or backward

chaining, as the system goes through each particular stage. Figure 8.12 shows the Trace

Setup dialog, which must be used to set tracing and breaking on particular rules and/or slots

before the reasoning process is initiated. For this demonstration, the writer set up tracing on

all 9 ru les.

Rule Trace St>lup -~&3 1

Figure 8.12

->

->>>

<-

<<<-

OK

Selccmol Rules

rulol
rv.Je3
.-..Le2
naJe.4
rv.Je5
rv.le6
rule7
rv.Je8
rv.Je4a

C:uoeel

Rule Trace Window set up dialog

166

The Application of Object-Oriented Techniques to Preliminary Design Problems

Once the traces had been set up the writer used the Control Menu to begin the reasoning

process, he selected the BackwardChain option to begin chaining, this function calls the

KAL BackwardChain function. In the demonstration program the rules were organized into

a ruleset, named Global: rules. This ruleset was represented by a multiple or list slot in the

Global instance, which contained the names ofthe nine rules used. This allowed the user to

refer to the rules collectively in the program code. The string goa/2, Global: rules was input

as the argument to the function, see Figure 8.13. Figure 8. 14 shows the query window

output by the system, which seeks missing information, as it goes through the reasoning

process.

S pecrlv Func hon Argume nts :1:3

~uments:

Can.cetj

F igure 8.1 3 Input arguments to BackwardChain rule trace

The Rule Trace Window shows the results of the testing done by the system on the rules

selected for the trace, thjs is shown in Figure 8.15.

J User Request

Please enter the value ofb~ :.m.aJdmum_spall_ .ih_ M

~---
OK Co.nun.enT... I

Figure 8.14 ystem query window output during reasoning

167

The Application of Object-Oriented Techniques to Preliminary Design Problems

811ulolro>ft l~lllt.IIVI llotlllllll l!!lf!l£)
£• (dl (""'cj l•or.•/9""* ~

Testing Rule: rule4e NUll
T eating Rule: rule I mUE
T utlng Rule: rult2 FALSE
Testing Rule: rvle4 FALSE
T e'ting Rule: tulde mUE
T ts"ng Rule: ruleS muE
8eO;wardClleii>-Coellt t~tltlled.

Figure 8.15 Rule Trace Window showing tbe results of the testing

)

The Inference Browser window allows the developer to view the rules that the inference

engine invokes in the form of a graphical network. In the browser the developer sees how

the system arrived at its conclusions by examining its lines of reasoning once the reasoning

process is complete. The Inference Browser can also be used to trace the source of etTors in

the application's knowledge base.

Clicking the mouse on the appropriate icon in the Kappa-PC Window starts the Inference

Browser. The system then requests the user to select a function, for this demonstration it

was necessary to select the BackwardChain function and supply an appropnate argtunent as

shown in Figure 8.l6.

S p ccrly F unc h o n A1 g ume n ts -.~fi3 1

~~oal:2 , Glohal:n⩽

I OK I Cwell
Figure 8.16 Input arguments to Backward Chain control using Inference Browser

The system then acknowledges the input argument and sets off to test the rules m the

sequence required to satisfy goal2, which in this case was a requirement to determine the

noor system.

BackwardChain 113

Testing Goal 'goa12'

lc~l

Figure 8.17 System announces the star t of the inference process.

168

The Application of Object-Oriented Techniques to Preliminary Design Problems

The Inference Browser then graphically displays the chaining relations among rules. In this

demonstration the writer used it in a stepwise manner, proceeding to test each rule. A series

of displays was produced as the Inference Browser worked through the chain of reasoning

in the demonstration program. These displays are shown in figure 8.18. As each rule was

tested, the system displayed the newly asserted facts, summarized in terms of object:slot

pairs and the rules considered. The dashed lines in the displays, link new facts and rules

whose conclusions mention the new facts stored in the appropriate object:slot pairs. Among

the rules considered, only some apply. Applicable rules have solid lines leading from them

toward the facts (pairs), which they mention in their premise. From the window displays it

can be seen that the inference browser is a useful tool for analysing the inferencing process

and debugging the system once it has been tested.

169

The Application of Object-Oriented Techniques to Preliminary Design Problems

Jil e: :p.

• .. • ·jlil l' ,.: ...
_ _. • • --- - -· - - - ~·I

_.,_JPI
,L:...t ..__...,.. __

EJ .!:=

~ D ~·
!Q ;:.. v•

• •• ,.

Figure 8.18

...._...,._ .. ---.w ~

......-.... - -~=\\

-w
':-.::- ·-- ,__

, __
-----~-,- 1
t·---

_!!J .= ..=.J .:I
"' " . tO,_ -..-,\ \:::;::-;: ·' __ _. _

·--~-.... 1: ;

Inference Browser tracing progress of demonstration program

.... _...,..

170

The Application of Object-Oriented Techniques to Preliminary Design Problems

8.5 Difficulties Encountered in using Kappa-PC

• Long Learning Curve

The writer found that there was a steep learning curve to be completed if one was to use

Kappa-PC effectively. The system has facilities to support object-oriented programming

and at the same time it has the inferencing mechanism necessary for logical programming.

This task is made more difficult due to the large range of specialist debugging and tracing

tools both for the KAL language and for the inferencing mechanism.

To use the system properly the user has to understand how to integrate the object hierarchies

used to represent domain objects with the production rules needed for inferencing. The

writer noted that certain programming tasks might be achieved by using either object

oriented programming or by using the inferencing capability provided by production rules.

Unfortunately there are few sources ofreference to guide the programmer as to which is

suitable in a given case.

Summary

This chapter has described those Kappa-PC facilities used to implement the prototype

design tool system.

171

The Application of Object-Oriented Techniques to Preliminary Design Problems

CHAPTER 9. Implementation of the Object-Oriented Design

9.1 Design Architecture for the NOV A Design Tool on Kappa-PC

This chapter describes how the design for the new system was implemented using Kappa

PC. At the completion of this report the new system, referred to the NOVA design tool

system, had reached the stage of working prototype,. A simplified overview of the system

is provided in Figure 9 . 1. The prototype has a Windows based graphical user interface.

This interface allows the user to input building specifications changes to design parameters

and changes to the evaluation features. During design synthesis, the system displays the

current state of the design process. The user can monitor the synthesis process as a tree of

design solutions is generated and displayed in the object browser window. The user

interface also allows the user to display ranked lists of alternative designs and to display the

details of individual designs.

PROCESSING:

Input Design Specifications
Review Default Design Parameters
Review Evaluation Features
Design Vertical Subsystem
Calculate Assumed Sizes
Calculate Initial Sizes
Detail Vertical Subsystem
Design Horizontal Subsystem
Detail Horizontal Subsystem
Evaluate Designs

KEY INPUTS: KEY OUTPUTS:
FILES: Kai File

User Requirements Rule Base/ Partial Designs
New Default Design Parameters Object Base Final Design
Rules for Elimination etc Object Hierarchy Evaluation
Changes To Evaluation Features Rules Functions Report

Figure 9.1 Overview diagram of the NOV A preliminary structural design tool

The overall organisation of the NOV A prototype is shown in Figure 9.1.

172

The Application of Object-Oriented Techniques to Preliminary Design Problems

Heuristic design experience is represented in the NOV A system as a rule-base, which is

used in conjunction with the inferencing mechanism. The rule base, which is shown in

Table 9 . 1 , includes:

• Rules for finding default design parameters;

• Rules to establish and customise the evaluation functions including target settings for

individual features;

• Elimination rules for each level of the design hierarchy, which are used for pruning the

search space during design synthesis; and subsequently to test designs after detailing has

been completed.

Design Task
Design rules

Rule Sets
I Rules_ For_ Finding_ Default_ Design_ Parameters
I Rules_For_Finding_Default_Target_Settings

......... [.Rules For Estimating Floor Depth
Elimination rules I Rules For Vertical 3D Elimination
for Vertical Subsystem ! Rules= For= Vert_ 2D_ N�ow _ Elimination
used during Synthesis I Rules_For_ Vert_2D _ Wide_Elimination

i Rules For Material Elimination
i Rules-For-Vert 2D-Narrow Location Elimination
! Rules-For-Vert -2D -Wide L�cation Elimination

................................... .. :,..... -....... . . .
Elimination rules ! Rules_For_Floor_Elimination

1 for Horizontal Subsystem ! Rules_ For_ Support_ Beams_ Elimination
I .used during Synthesis JRules For Intermed Beams Elimination .. .
I Elimination rules used during I Rules _For_ Checking_ Detailed_ Rigid_ Frame_ Alternatives
! Vertical Subsystem I Rules _For_ Checking_ Detailed_ Braced_ Frame_ Alternatives
jDetailing _ J. Rules For Checking Detailed Shear Wall Alternatives
! Elimination rules used during I Rules _For_ Checking_ Detailed_ Pre_ Panels_ Alternatives
! Horizontal Sub system I Rules _For_ Checking_ Detailed_ Rc _Slab_ Alternatives
I Detailing ! Rules_ For_ Checking_ Detailed_ Ribbed_ Slab_ Alternatives

Table 9.1
rules

· Rules _For_ Checking_ Detailed_ Steel_ Deck_ Alternatives
Rules _For_ Checking_ Detailed_ Waffle_ Slab_ Alternatives
Rules For Checking Detailed Elements Alternatives
Rules For Ranking Location Alternatives

NOV A System Rule Base

NOV A has a knowledge base, which includes decomposition, planning, constraint and

evaluation knowledge. The decomposition knowledge is represented in the system as a

hierarchy of systems and subsystems, which are implemented as Kappa-PC classes. These

173

The Application of Object-Oriented Techniques to Preliminary Design Problems

classes have attributes, which are represented in the slots, which contain descriptive values

and have a set of procedures, which are represented by the methods attached to the classes.

The planning knowledge in the system includes a Schedule class, which has several slots,

which contain lists of sequences of design goals and the sequence in which they are to be

satisfied. These sequences, which are referred to by the program code determine the flow of

processing, which effects the design synthesis.

The NOV A system accommodates hard and soft design constraints. The hard constraints

are implemented via the elimination functions, which are supported by the rule sets in the

knowledge base. Each constraint is a combination of design decisions and a corresponding

design context that is deemed not feasible. The constraints are used during the synthesis

process to eliminate infeasible alternatives.

Soft constraints are represented by numerical variables. They are represented by the design

target attributes and their associated criteria, which are attributes of the Evaluation Features

classes. There is a set of evaluation criteria for the synthesis of both the vertical 2D and

horizontal subsystems. These targets, which may be achieved to a greater or lesser extent,

are set by the user and are used in a series of evaluation functions, which calculate

performance values for the design candidates. The performance values are based on the

attributes of the design candidates in the search tree.

9.2. Implementation of the Structural Hierarchy in NOV A

The NOVA system represents structural subsystems as a hierarchy of Kappa classes. The

relations between these classes reflect the interactions between their physical equivalents.

The hierarchy in the NOVA model is based on that described by Lin (1981) and is similar to

that used in both the HI-RISE and Dolmen systems. This hierarchy of classes is shown in

Figure 9.2.

1 74

The Application of Object-Oriented Techniques to Preliminary Design Problems

EJ Oboocl Ooow•e• 1!!113E.J
F~" £d~ !lea~ch jlplfons

Figure 9.2

Floor
lntcr-med_ Boat

Materi al

Support_ Beam
Vert 20 Narro

Bulldlng_ Pans o::--.vert::::zo::::N •uro·

Ver1_20_Wide

Vert_2D_Wide.
Vert_30
Building

NOVA's hierarchy of structural subsystem~.

r"tW!tHftiili!l\ I I I

... ,.,. __

Figure 9.3 NOV A's hierarchy of alternative subsystems.

_j

The system provides a set of alternative design options for each level of abstraction in its

decomposition of the structural system. Thus at the material level the system can provide

steel or reinforced concrete designs. Figure 9.3 shows the Alternati ves hierarchy. Figw·e

9.4 shows the hierarchy of classes, which represent the location alternatives. Figure 9.5

shows part of the hierarchy of classes, making up the search tree of partial design objects,

which the NOV A system has produced during the solution of a particular design problem.

Figure 9.4

E
--- .t:::::=.:::

{-··~ --- ;~~1 ~{:-:::::::;:; --- ~ -----
-- ~==~£-·--··--· ... ____ _ _ _,_ __ _

··--.--··--f·-~1{~
- ----(=::.-.::::.:.~ _._ ...

NOV A's hierarchy of location alternatives.

175

The Application of Object-Oriented Techniques to Preliminary Design Problems

E Dboucl Brow•or 1!!1~13

euroona---lluloong_,

Figure 9.5 The NOV A Search Tree

9.3 Implementation of the Software for the Design Processes

• Specification

The software required to implement the Specification functions, consisted of a collection

G) 0-.. ._
wm

Figure 9.6

~ ~ lril
Se"'-"

Tid<
raedt.W7

n~N·-

llowoflltN.-

Tlolo

~ r
~ 1
~c ol

~ ~ [ZJ . 0
r..., """' """' n..,_. R.t.M10nt f tac•

HO\IA do•I1Jn• l l!llo••-~le I a. .. ,_,. • .., II c.- I ••twte n .. ,.,.,,ut
•ft,..~Rttttt
••'-'-'• th• Y&~hc.t

~~O••iP-... t3 abUChM.t t rlt lh4tn ft ••Met• 1\ocw .,.t ... 101
e.c:h ol ,..._..

ftCJYfMIJ[Y tun
f.atutea

(o .. f'Qlln V•tic.el Subarli-1

'(llor)
• CUo•J
•num:
•TOW£

o

· c bncwr
•o..,
•o.•o.G t ·o-

1 ·r.cw
.:J . L..IK'tld.

The Button image, image editor and session window.

Nova

ind_Oet~•

176

The Application of Object-Oriented Techniques to Preliminary Design Problems

of input and status display objects, which allowed the user to input and review Default

Design Parameters and Evaluation Features and to input the specifications for the new

building. These objects form part of the system's user interface. The design details for the

Specification functions are described in section 7.2.1 at page 13 0 and in more detail in

Appendix A on page 220. Figure F. 10 in Appendix F shows the classes used. Figure 9 .6

shows the Check_ Design_ Parameters input button as it appeared in the Instance Editor,

during development.

• Formulation

The Formulation subtask is completed twice, once during design of the Vertical Subsystem

and then again during the design of the Horizontal Subsystem. It consists of the following

system functions: Design Vertical Subsystem, Get Assumed Sizes, Set Initial Sizes, Detail

Vertical Subsystem, Design Horizontal Subsystem, Detail Horizontal Subsystem. These

functions are also referred to collectively as Design Synthesis functions.

The design details for the Formulation functions are described in section 7.2. l on pages 13 2

to 142 and in Appendix A on pages 220-222. Figures F.1-F5 in Appendix F show the main

design classes used.

• Design Synthesis

On start up the user enters a number of details for the new building, for example the number

of stories and the various dimensions of bays. The system then builds the search tree.

The system keeps on adding new classes at each level and deleting inappropriate ones

according to its rules. By the time the system reaches the ninth level in the hierarchy, the

Intermediate_Beams level it has created a search tree/object hierarchy of valid designs.

The pseudo code for the key design synthesis components is shown in section 7. 2. 1. The

process commences with the function, Design_ Vertical_ Subsystem, which clears out any

177

The Application of Object-Oriented Techniques to Preliminary Design Problems

existing search tree and then loads the sequence of design steps into the appropriate slot in

the Schedule class.

• Detailing and Testing.

In order to test proposed designs, the system must calculate certain details for each design.

The section, which follows, describes how this testing is carried out in the system.

Testing of Alternatives - NOVA has a series of 'test and eliminate' functions, with names

of the form Valid-xx-Alt, where xx is the name of the level in the hierarchy.

The functions are called during the generation of the new designs, which are represented as

classes. This is shown in the example below:

IfValid_Material_Alt (x # _ # Global:Number, y) Then

{

MakeClass(x # _ # Global:Number, y);

The functions are of the form:

MakeFunction(Valid_Material_Alt, [x y],

{

IfDrop_IdNum(GetParent(y)) #= Shear_ Wall_Narrow And

Drop_IdNum(x) #= Steel Then

Not(Valid_ Material_ Alt)

Else

Valid_ Material_ Alt;

});

This example shows the function written to implement the heuristic knowledge that shear

wall subsystems are not allowed in steel buildings. Such a design is not allowed and no

further consideration is required.

A second level of testing is applied to designs, which are not eliminated at the outset. This

testing function is called as follows:

178

The Application of Object-Oriented Techniques to Preliminary Design Problems

Check_Material(x #_ # Global:Number);

If (xx:Eliminated #= Yes) Then DeleteClass(x # _ # . . .

The inference engine is invoked by the checking function, which calls the system's forward

chaining inference mechanism, as shown below:

MakeFunction(Check_Material, [x] ,

{

F orwardChain([NOASSERT],NULL,

RI_ Abt_ Reinf _Concrete_ Material,

R2 _ Abt_ Reinf _Concrete_ Material,

R3 _ Abt_ Reinf _Concrete_ Material,

Rl_ About_ Steel_Material

);

If :Eliminated #= Yes) Then

DeleteClass(x);

These rules contain more heuristic knowledge; for example this rule is used to eliminate

designs, which have proposed to build more than 20 stories with a rigid frame design.

/*************************************

**** RULE: Rl_Abt_Reinf_Concrete_Material
**** A building over, 20 stories high cannot

be built with a Re rigid frame

*************************************!

MakeRule(Rl _ Abt_ Reinf_ Concrete_ Material, [],

(If) Altbldg: Vert_ 3D _ Level #= Orthogonal_ 2D _Systems_ I And

(Drop_IdNum(Altbldg:Vert_2D_N_Level) = #= Rigid_Frame_Narrow And

Altbldg:Stories > 20 And

Drop _IdNurn(Altbldg:Material_ Level) #= Reinf _ Concrete,

(Then) Altbldg:Eliminated = Yes);

• Evaluation

This section explains how the evaluation components of the object model were converted

into Kappa-PC classes and functions. The Kal functions contain algorithms, which deliver

179

The Application of Object-Oriented Techniques to Preliminary Design Problems

the processing, which was identified in the requirements statements. A set of input buttons

allows the user to input evaluation features and subsequently review and adjust these items.

An input button is provided to initiate the evaluation process and a dialog box is displayed

to allow finer tailoring of design processing. A transcript window allows the user to display

the evaluation report and another inset window displays rankings for the top "n" designs.

/**/
FUNCTION: Write_ Vert_Eval_Report[],
{

DisplayText(

SendMessage(Vert _ System_ Column, Feature_ Calculation,x)));

/**/

/**/
FUNCTION: Calculate_ Column[Bldg],
{
IF Vert_2D _N_Level EQUALS Shear_ Wall_Narrow THEN
{
Valuel +- 0.0

}
ELSE
IF Vert_2D_N_Level) EQUALS Rigid_Frame_Narrow AND

Bldg IS concrete THEN
{

Value2 +- (Bldg:Width_Of_Column_Narrow)"2
}

!**!

/**!
FUNCTION: Calculate_Percent_Optim [Bldg Feat],
{
Feat Value +- SendMessage(Feat, Feature_ Calculation, Bldg)

IF Feat:Target_ Set EQUALS No THEN 0.0
ELSE
IF Feat_ Value > Feat:Target_Max OR

Feat_ Value < Feat:Target_Min AND
Feat:Type_Of_Target EQUALS Any OR
Feat:Type_Of_Target EQUALS Achieve THEN 0.0

ELSE
IF Feat:Type _ Of_ Target EQUALS Min AND

Feat_ Value <= Feat:Target_Max AND
Feat_ Value >= Feat:Target_Min THEN

Feat:Target_Max - Feat_ Value/
Feat:Target_Max - Feat:Target_Min*l OO

ELSE

180

The Application of Object-Oriented Techniques to Preliminary Design Problems

IF Feat:Type_ Of_Target EQUALS Min AND
Feat_ Value < Feat:Target_Min THEN 100.0

ELSE
IF Feat:Type _Of_ Target EQUALS Min AND

Feat_ Value > Feat:Target_Max THEN 0.0
ELSE
IF Feat:Type_ Of_Target EQUALS Achieve AND

Feat_ Value = Feat:Target_Max THEN 100.0
ELSE
IF Feat:Type_Of_Target EQUALS Any AND

Feat_ Value <= Feat:Target_Max AND
Feat_ Value >= Feat:Target_Min THEN 100.0

ELSE
IF Feat:Type _ Of_ Target EQUALS Max AND

Feat_ Value <= Feat:Target_Max AND
Feat_ Value >= Feat:Target_Min THEN

Feat_ Value - Feat:Target_Min/
Feat:Target_Max - Feat:Target_Min* lOO

ELSE
IF Feat:Type _ Of_ Target EQUALS Max AND

Feat_ Value < Feat:Target_Min THEN 0.0 ;

9.4 Control of the Design Process - the Schedule

The flow of control in NOVA is determined by a plan, part of which is represented by the

Sequence_ Of_Parts _To_ Be_ Designed slot described above. A body of code is executed for

each level (design goal) of the hierarchy, in the order indicated in the sequence. This code

determines the order in which synthesis should be implemented.

181

ii
11

ii:
:11,

'P

The Application of Object-Oriented Techniques to Preliminary Design Problems

9.5 Difficulties Encountered During Implementation

• Trade-off between dynamic rule based programming and sequential procedural

programming.

One of the primary purposes of this study was to explore the issues that arise when one uses

object-oriented computing techniques to develop knowledge-based software, which in this

case consisted of a new design tool.

To this end, it was intended from initiation to develop this new software on the Kappa-PC

application development product, which would provide the required object-oriented

language and environment. It was also decided in the design stage of the project, that the

system design would use rules, following the same strategy as that used in both the HI-RISE

and DOLMEN systems. This would require that a significant component of the system's

design knowledge, especially the heuristic knowledge concerning the testing of potential

structural design solutions, would be represented in the form of a rule base.

This strategy of using rules was expected to realise several advantages. Thus, when there

are a large number of decision points in a piece of software, it easier to understood the effect

they will have when they are written in the simple Kappa rule syntax, than when they are

written as conditional statements in KAL programming code. Furthermore, the use of rules

would allow the writer to take advantage of Kappa-PC 's inference system, which is a

systems program for managing rules and applying them dynamically, as appropriate.

Dynamic application of knowledge-base rules allowed the writer to use them flexibly during

coding of the design synthesis functions. If the writer had taken a conventional approach,

by contrast, he would have had to indicate explicitly when any given conditional statements

should be applied.

182

'II '

The Application of Object-Oriented Techniques to Preliminary Design Problems

However, during the design stage, the writer had difficulty in incorporating the rule base

into the object model for the system and during the subsequent implementation stage he also

noticed that :

• The knowledge-base rules were similar in form and effect to conditional, 'IF, THEN,

ELSE' statements found in conventional procedural computer programs; and that

• In most cases, an equivalent conditional statement could replace any such a rule.

The writer then had to decide which design decisions would be based on knowledge

represented by rules and which design decisions would be simulated in KAL function code,

using the appropriate conditional statements. He was able to gain limited guidance on this

issue from the Kappa-PC 2.4 Online Help facility, which recommended that :

• Rules are useful if the rule conditions can be broken up into small rules, and if the

control structure provided by the inference engine (the forward and backward chaining

mechanisms) is appropriate;

• Rules are inappropriate, where the reasoning process requires only a few conditions, but

instead calls for a predetermined series of steps; and

• Rules are also inappropriate, where the sequence of events is complicated and needs to

be managed. The Online Help facility provides the following example, which it says

should be programmed in a conventionally written KAL function:

("First, test this; if X, then do this;
Otherwise, ifY, then do that,
Except in the special case of Z, when you should do something else;
Or if Q, then go back and test whether ... ")

The writer also obtained the following limited guidance from a white paper issued by "The

Haley Enterprise" (1992), which recommends that as long as the particular conditional

situation can be flow-charted then a rule-based system is not required.

183

The Application of Object-Oriented Techniques to Preliminary Design Problems

The writer found that each particular simulation of a design decision had to be considered

separately. Thus where a single condition had to be tested, which was the case during the

early stage of design synthesis when the system seeks to ensure that only valid designs are

added to the search tree, then the elimination test was coded as conditional KAL function.

In the later stages of synthesis, where the designs were detailed, the system needs to test

several conditions and these decisions were represented in the form of rules. The associated

decision making processes were simulated using functions, which invoked the Kappa

inference system.

• Inconsistency in the system; global scope for object attributes versus principles of

encapsulation and information hiding.

In order for the system's inference system to function properly it needs to be able to react

dynamically to changes in appropriate object attribute values, this requires that these

attributes are provided with global scope, this requirement is inconsistent with the object

oriented principles of information hiding.

• Difficulties caused by Kappa-PC's lack of support for multiple inheritance

Section 7. 1 .5 describes design synthesis in the new system. During synthesis Class

Building_ I forms the root node of the search tree hierarchy and all the new designs are

created under this generic building object. It contains the user's input requirements for the

building, which all alternative designs must accommodate. As the design proceeds two

subclasses of Building_ I ; Core_ I and Orthogonal_ 2D _Systems_ 1 are created, which inherit

the attributes from Building_ 1. The system then creates a new level in the tree by creating

subclasses from these first two subclasses. These new subclasses also inherit attributes from

the appropriate Alternative class.

1 84

The Application of Object-Oriented Techniques to Preliminary Design Problems

This form of subclass inheritance is known as multiple inheritance and because Kappa-PC

does not explicitly provide support for it, the writer had to design a work around to provide

the inheritance links required in the search tree of partial design objects. This work around

required the writing of a Slot_ Copy function to copy the class attributes from the

appropriate Alternative class at each level in the design hierarchy.

• Difficulties caused by Kappa-PC's limited provisions for local variables

Kappa-PC supports a full object-oriented programming model, in which all programming

entities are viewed as objects. Consequently there is limited programming support for the

use of temporary variables, which do not merit the allocation of a permanent system object.

Kappa-PC has a programming language called KAL, which supports settable local

variables, which can be declared with reserved words like Let, For, For All. For example,

the following code shows the use of a local variable, x, in the Let construct

Let [x O]

While (x < 1 0)

X = x + 1 ;

In the example the programmer evaluates an expression with the temporary arguments, x.

This form of expression is limited, the language only maps x within the expression.

Although the programmer is allowed to use {} to include multiple expressions in

expression, it is still difficult to use local variables in any extended function. Because, the

new NOV A design tool is required to complete lengthy calculations for design variables

like sway the writer had to resort to the use of several classes of temporary design variables.

This was difficult to program and resulted in much duplication of code.

1 85

The Application of Object-Oriented Techniques to Preliminary Design Problems

Summary

This chapter has described the implementation of a design for a knowledge based PC design

tool, which was intended to assist with preliminary structural design tasks.

The design was implemented as a graphical user interface, a series of Kappa-PC classes

with appropriate methods and accompanying KAL functions, which simulated a version of

design synthesis based on a hierarchical planning process and a decomposition based

implementation of the plan-generate-test strategy

186

·•i

The Application of Object-Oriented Techniques to Preliminary Design Problems

CHAPTER 10. Operating the Nova Design Tool

10.1 Introduction

Chapters 6, 7 8 and 9 described the development of software for a knowledge-based design

tool. Th1s chapter describes the resulting prototype system Cu!Tently the prototype will

allows the user to enter building details, review and change default design parameters and

evaluation features and produce un·linished designs for a class of regularly shaped buildings.

fhe system IS capable of designmg, testmg, evaluatmg and ranlcing the vertical structural

subsystems, which fonn part of a building system. Further work is necessary to finish the

K.AL functions requ1red to complete the design of the horilontal structural subsystem,

which makes up the building's floor system.

10.2 Demonstration of the design tool.

The following sect1ons describe the prototype system, which ts refeiTed to as the NOV A

system. The writer has described bow the system was used to create partial designs for a

shopping centre. Ftgure 10.1 shows the initial Kappa-PC graphical user interface display.

Thjs screen has three windows, the fust window displays icons for the developer tools,

which are along the top; the edit tools window is along the side and below these is the object

browser display window.

Figure 10.1 The Kappa-PC application development screen

187

Tile Application of Object-Oriented Techniques to Preliminary Design Problems

To invoke the NOVA application the user clicks on the file option in the Kappa-PC menu

bar, this opens the file selection dialog box and the user then selects Nova.kal. This loads

the NOV A application. To commence working the user clicks on the Session window. see

Figure I 0.2. and selects Session from the dialog box.

Figure 10.2

~ t "'SIO~,.,_
~-~·--

The Session Dialog Bo~

c-.-e• 1

This opens the NOVA graphical user interface window, see Figure 10.3 . This screen allows

the user to control the design process. The display consists of a selection of appropriately

labeled button images, which allow the user to complete each stage of the design process.

As this is a prototype system, se\ era! input buttons have been left in place to allow the user

to execute parts ofthe design process manually. These buttons'' auld be removed when the

final application IS completed. The Coum button has beenlel1 uvailable so that tht user can

count the number of classes, which represent the partial designs in the senrch tree at any

particular time. The Clear_ Hierarchy button has also been left so that the user can

explicitly clear the object hierarchy of partially completed designs. Tbe Assumed Sizes and

Initial Si::es buttons have also been left in place. These are used during the design of the

Vertjcal Subsystem to set assumed sizes for those components, whose sizes can not be

calculated properly until the Honzontal Subsystem is designed and to set the initial sizes for

certam Vertical Subsystem components.

188

The Application of Object-Oriented Techniques to Preliminary Design Prob lems

I C loarHte • .,c:f'ut I ~
I Ch•ck D • ••an P•t•m•t•••l

Rev1.ew £val~hon
F eal ur• •

NOVA de atg:na fooeafble
srtu ctu:rat alternativo. fur
a fromo build ing., Fir•t it
eotocta tho v eftic,ol
•Uucturet a,yatem• ... t hen it
eotoct.s ttoot •y•tem• for
eoch o r the.e*

o • .-. n

(ASi~:;':d) l •n•l•AI Si~o• l e••an. 03./10/99

I O o tbtt Vorh cal S uba.JI •le m I • • •on: t nttu m od_Wido_2

M .eterra l: Aeinf_ Concrote

N ova
Bui&dtno

V e<L:JD

I V e.-L20_ N anow l
I V •rL20_ wtdo l
I i .. l I
(Vort _ 2D_N •••ow_ Loc1

~ Ve• t._20 _ Widc __ Loc l
I F loo•- l
I S upp oct_,B c.am• l
l lr•f<el tno-d_ OOftf"AS

D•••an Hofl.tOI'•&at
S ub• yatom Height ' motre~) 3G

Coe t. Co•t

S chodut• Patl To O o-.ion

O e t otl Horiaon to l
Sub ay .. to m

Figure 10.3

Ytme : Tima -30 dt~•c.. •pt..on: Con: ("···)
Load Aoalating S_yee e ti a l avate m oorollel 10 nanow -. .

The NOV A applica tion user interface

E¥ah,~thon
O e po' t

P1int Finctl
Dosign

The NOV A application user interface has three output display statebox images, which

dtsplay the current state of the following slots in the Schedule class, Task. Part_To_Design

and Load_Resisting_System. The images consist of columns of display icons, whtch allow

the user to track the progress of the design process. The Task image displays the program's

current destgn task. The Part_To_Design image indicates the level m the hterarchy, which

is being designed, and the Load_Resisting_System image indicates the major subsystem,

which is being designed.

The design process starts when the user clears the object hierarchy and starts to design the

Vertical Subsystem. After pressing the Design Vertical Subsystem button the user is

presented with a query fom1, which asks whether the user wishes to supply a custom

location layout scheme. If the user enters NO. the system uses its default locations. In the

example documented here the user has decided to rely on the locations provided by NOVA

and has entered NO, see figure 1 0.4. The corresponding system response, which

acknowledges the user's input, is also shown.

189

T he Application of Object-Oriented Techniques to Pre liminary Design Problems

Figure J 0.4

Ye•o.rNo

0. ,... wlsJ\ .. Up1rt -.
~-ollo>c:ad•u•?

KAPPA ..

Deloult location• wilJ be used

:::n

ystem query regarding user designed locations

The user is then presented with a multiple input form, see Figure 1 0.5, which allows the

requirements for the building to be input to the system. These requirements maJ..e up the

design specification for the building.

Figure 10.5 Multiple input for m for input of building design requirements

ln the example described here NOV A was used to design a 4 storey, city centre, shopping

centre. The area of the shopping centre was made up of a 5m x 8m grid. The plan of the

buildmg was 40m x 64m, with storey heights, floor to ceilmg ofJm. fhe loading chosen

was an 8.5 kN/m2 uniformly distributed imposed load, which included 1.0 kN/m2 for

movable partitions. The dead load included 0.95 kN/m2 for screed and 0.5 kN/m2 for

services, and loading for block waLl partitions along column lines. A value of 1.0 kN/m2

was used for wind Joadmg. The system produced 207 designs schemes and the writer

reviewed the top four design schemes from the ranked list. These included:

i) Two designs with one-way ribbed slabs, which spanned onto

reinforced concrete beams along column Jines.

190

The Application of Object-Oriented Techniques to Preliminary Design Problems

ii) Two designs with precast panels, which spanned 4m and which were

supported by main composite steel beams.

The system contained these design defaults : concrete of strength 35 kN/m2, structural steel

grade 50 and lightweight concrete was used for the composite steel decks. The fire rating

selected for the building was taken as 2 hours. The location for the stairwells and

corresponding walls, which would be either shear walls or braced frames, were assumed to

be located as shown in Figure 10.6.

Figure 10.6

<---- 8 bays at Sm --------->

[key: walls shown by --]

Plan of building

5 bays

at Sm

The input form is programmed to prompt the user to provide a value for each of the building

requirements. The system maps these requirements to the slots of the Building_ I class,

which is the root class in the hierarchy of design objects. The Kappa-PC input form is

designed to retain any slot values, which have been used before. Therefore, if the user is

happy to accept the existing value of the attribute, displayed in the input form, then he/she

ignores the slot in question, otherwise it is necessary to put a mouse click on the input form

and enter the new value. For the example used, the following items are input:

191

The Application of Object-Oriented Techniques to Preliminary Design Problems

·~·-···-·-··· ··-·-~ -.. -·-·-.. -.. ·-·-·-·-....... ,_, ___ ... _ .

I Building Requirement System Input Variable Exa mple
.... ,_ .. I -·-------...,-;-- .. __ . ____ .. _____

Imposed load [k.N Eer m**2] 1 Imposed Load s.s I r--·-·-...... - _ .. ___ ' - .. --·--
Wind load fk.N_e.~r m**11_ _ .. _ I Wind Load 1 I ·-·-·-·-·-.. ...
Number of stories Stories i 4
Minim~m floo~ .!~ ... ~eiling cle.~-height [m] I 13. _,_, ___

Height Clear
Narrow I s -

u:~umber of bays in narrow direction Bays - ---·-+--·--·--.. --·--

I
Width of each bay in narrow direction [mm] Narrow Dimension j 8
Number of bays in wide direction Wi~~ys I 8
Width of each bal:: in wide direction [mm] Wide Dimension I 8
Fire ra ting.Jl~.ours L. t Fire Rating 2 -
Is there a centrally located shaft? 1 Shaft No

I'"'"F'="u"""n-'c-ti,..;..o-n-o-::f-:tl-1e-:b-"u'7.il:-:d-:-in-~==============--.. ++-:._-=F,..;..u-nc-t-:-i~-n------------..., Shopping Centre

1 Status of the buildin Status .. ,.
2
urb:...:;a:.:::n _____ ,

! N~rof"staircases .-....... !:i~~f Staircases Per Floor
Location of the buildin Location City Centre

~---,.;---,.;---:-------
Is the site restricted? Site ~estricted No

l
is there a tenant? Tenanc Known , No
Number of desi s to be considered Numb~r:_Q£...!2.~ To Be Considered f 4

Table 10.1 Input of building requirements

The initial input to Nova was as shown in Table 1 0.1. The site was not restricted, as 1t was

a shopping centre, the tenants were not known. Once the design requirements had been

input the system prompts the user to review the default design parameters already input to

the knowledge base, see Figure 10.7.

Figure 10.7

t1•e-r .l"t.eqW!Iet
Ntn~• Jt..u- •et t r;p e-.n:aln a. &ult .,_s-lc;n p ara..t• JI!tfre.7'15.

wo\lld. yo~ Uk.o to ••":Ltw t,ke...-n?

C u:rn.me.AL..... I

OK

User request prompt asking user to review default design parameters

The user can accept this activity or bypass it altogether, thereby leaving the existing values

unaltered. These parameters include values for certain commonly occurring variables.

They cover the amount of concrete applied to cover the bottom and top steel and steel in

slabs and the dimensions for walls and steel beams. They also include constraints to be

used in calculations for concrete design strength, grade of s tructural steel and steel yield

stresses. The system then presents the user with a multiple input form, see Figure l 0.8, who

192

The Application of Object-Oriented Techniques to Preli minary Design Problems

is given the option to accept or change the values. Where a variable has been set up with a

range of acceptable values the system presents this range for selection. All these variables

are represented as slots or attributes of the Defaults class.

Figure 10.8

,lMu ~II. (-'-I C.HW'I tf~......,-j'n.. p__...,.._...
T•lSrU...tNTIIIto...tps

w....,.. r...,r 1'"• O.ae•._,.~t.

·- c-r To.,.J-1,"'-$"";'JOU =,.,...IJ --

A-_..._c _T._'l-. ~-.1; j:50D
'-.-4_.•-t_O..:..IQ'_a._s~]O ~,=,...--=---=..

c:. P.•It•_itn.-c!lt • Jiio
"""-'.__......__S•dJa_C•'---: ""l•u,.;;-» --

~ 01 .srtw·hl.nl._,w..a : IJOJJ
Mu _., _w • .u_~., ;.,jAou=~--

~~on._tu_u-._wuu-· Jloo
·-•"-r•r_.._..,._R._c.l•~p '=::oo=n---

Multiple input form for review of default design parameters

The system also has a display facility to allow the user to review the system evaluation

features. These features represent 'soft' design constraints. TherL are two sets, one set fot

the Vertical Subsystem and one set for the Horizontal Subsystem. there are 12 features in

each set. They arc rcptesented tn the system as subclasses of the 2 respective subsystem

evaluation classes Vertical Subsystem Evaluation Features and Horizontal Subsystem

Evaluation Features.

bach feature has the fo llowing attnbutes: descnptton, importance, importance factor, target

maximum value, minimum, target type or objective and target set flag. If the user decides to

use a particular feature in the evaluation process, then the target set attribute must be set to

YES. The user ts then required to make a series of subjective decisions regarding the

attributes of that particular feature and then mput them using the multiple input fonn. The

values selected for the Buildability feature are shown in Figure I 0.9.

193

The Application of Object-Oriented Techniques to Preliminary Design Problems

d.eJiJcrlpdon ; ldf!f!iil
... _ dascrlpd.o ,. : r-~B-uil.obl>--lli-.cty---

._o~e : jvery .------.;.J-.j
t:..w·~· -..: : fi.o
.......-..... : r-lt-00-.0,--------.

1 .0- 100.0 ~tUft. ... : 11..0
=----=----....... .,.,, ' lv.... ::=JI

~.,. ~.. , "'"IMa.x-,------- ~.,._ _____ .::.11...~~·

' OK I -· '
Figure 10.9 Multiple input for m for system evaluation features

Ln the example documented the user has decided to use the Buildahility attribute in the

evaluation process. The ta1get set flag has been set to yes and then the importance value

has been selected from the pull down selection dialog box. In this example the imp01tance

factor has been given a value of 3 and the maximum and minimum attribute value targets and

the tl'pe of the target have been set. In the example the user is interested in maximising the

value of the buildability feature. On completion of the input of the design requirements the

system has all the information it needs to design the Vertical Subsystem.

The system has two major design tasks. These are to select the vertical and horizontal

subsystems, which consti tute the 3-D whole. The system selects the most suitable

configurations for the building, from the alternatives available at each level in the building

hierarchy. These alternatives are stored in the knowledge base as members of the

Alternatives c lass.

NOV A estimates loadings, chooses initial sizes and completes a limited range of strucrural

analyses for each partial design. NOV A designs in three stages, specification, formulation

and evaluation.

194

The Application of Object-Oriented Techniques to Preliminary Design Problems

I ~Mf#liilil ;;, -1t9 l x l

~~"·'-

..:.J

Figure 10.10 Object Browser Display showing search tree for vertical subsystem

As explained in section 7 1.5, the system builds a search tree of partial designs Each

succeeding level in the tree stores the design knowledge accumulated down to that level.

The design classes at any particular level inhetit the de:.ign atu ibute::, or th~ir 111tcnnt:dtat~::

parent class PLUS the design attributes fi·om their respect!\ c altcmattvc class. The system

constructs the tree by successtvely creatmg subclasses of the unmedtate supe1 class tn the

hierarchy starting with Building_ I. Figure 10.10 shows the search tree for a particular

design project. which is displayed by the Kappa-PC Object Browser. The KAL function for

this task reads through the altemative design options available at each level, which ::tre to be

found in the Alternatives hierarchy and copies the slot values from these options, into the

newly created partial design. This process is described in sect10n 7. 1.5. As the synthesis

process continues system message are output, which indicate that assumed floor sizes have

been established for the vertical subsystem and that approxtmate sizes have been calculated

for the physical components of the structural subsystems. Figure 10.1 I shows the

spreadsheet from which the system extracts the steel section parameters, which it requires.

195

The Application of Object-Oriented Techniques to Preliminary Design Problems

fhc..-~ .. -· s....~· ~
O oit Q. !JI.!!'-JL,.a<>'

· U~ · a .rv. aw•ID• ;:.:; -.. tSvP!\11t
--~ --· ·i - 0117&

' Ol"SC:It~O"~ . nE:.W t.XJC
& •

' TVP• BOCJ(UMG ~ ~~~Ptn , ,. AA,AJII E"nfl M t fA.(

' - 1;1ncr6)(1) 1600 """' l7TOQ C?:>O ,., ""' • a ,..,_,.,.
"'"" 0- '"'"" -·~ '"'" . ~ ..

• .,._
·~I)XlCJ;"X''9 ;-.. ~ 0- 111 f!O '""'"" '"'00 .,....,

~r:::
<li(l')Yl07l'....rl ,..,., o§l Xl3 3l

,._en 1(.1('1'1 TJCYI ,.,..,U>C> llJUI ;o3160oo l10CU """' 0··- EJ~l::J3M:X) . .,., g · ~~ >EflOI>"' -DD ,.,..,
IU a, Z.,.,Ct(12Ja"l :-8.&il ·- ,..~ """ ... "''""' ;['1(. ,, ~ ,...,.otl(J:7liQ'i "};')10 :>900 :Jot H) c."> 0"'1 ,..
li :::: Y JC107JQO oet3 ,..,.., •OtOdu •7eCD ,.,.,...,.,.-.a, ..,., 0 " 1'9 :"S1 so ··~uo · ·~lit)tf1!1 ,. ···"" ,464'(146)07 ""' . .,.. ,..,DO """""" ~/lW , "" .. a •• ,.. >S4ll.1 4~,...l ~hl ,....,,..., r.11 W
•• o • • "" .J06JI,10JIIr:l'1lo l1 • O

0 ~·· »<.a> d'3000 •="lw ::.w

" a •• ,.,. .IICA!iJt1CJ2"JQtl -.a ,..., .. ,.,ao '''OO •• oo
,0 ,., "'05l(102Xn .,...,]lt,70,00 •onoo nco
•• ,.. «.6)(U1l07 .. "' 087\ 30360 7ti!C [I) -00 ~lUll

~~" tt•...:.'\ .. -.;~n27XU: "'~ 0Jil2_306.to._ .JJt•o..oo I• ~ oo 4:0:00

~ -_,

Figure 10.1 1 Display from the steel sections spreadsheet

._._

MOth~ Ot- J\AOI~~C or .
t,YtV\ttOH coYMAttOH

"" vv -• • .S:J ' >' ,., .,...
~ .. " , " 0
lj, ••• •uw ,.,.,, , .
·~ ... ·~ ·~ ... -~
•O.O ...
liDO '"' ,, "' >oM ,.., I''!:

'"" ~· ..
I ,, ·~ .. '.'\f;

After the design of the Vertical Subsystem, which results in the construction of a search tree

of partial destgns, the user is given the option to start the next phase of design, which

involves the detailing the Vertical Subsystem. To continue the user selects YES, in the User

Request dtalog box, he ts then prompted to choose whether to proceed to detail either: all

the designs in the search tree; all the remforced concrete designs; all the steel designs, or~~

selection of designs chosen by the user. The system then applies its detailing functions to

the chosen destgns At the Vertical Subsystem level, the system can offer designs for 3

different types of structures, braced-frame, rigid-frame or shear-wal l. The K.AL functions,

which perfonn the processing for these tasks are organised into three cotTesponding groups.

As a result of the detailing process the system will remove several partial design alternatives

from the search tree. These are partial designs, which have been detailed and which have

subsequently fa iled one of a series of elimination tests designed for that particular structural

subsystem type.

For example when the system details a braced frame option it wi II proceed as follows. First

it will calculate the dead load estimate for the design, which requires tt to find the weight of

the tloor per square millimetre, which in turn requires the calculation of the volume of

concrete on the steel deck. The system then applies the specific weight of concrete retrieved

as an attribute or slot value from the Default class. The system continues and calculates the

196

The Application of Object-Oriented Techniques to Preliminary Design Problems

load on the frames due to the beams. To compute these load figures the system needs

access to the information stored in the Steel Sections Excel spreadsheet, shown in Figure

10. 1 1.

The program then calls the Check Design function to test the design. Check Design uses the

forward chaining facility of the inference processor to apply a series of elimination tests.

These tests are represented by the rules in the rule class Rules _For_ Checking_

Braced_Frame_Alternatives. The tests are applied to all the braced frame designs, that is

those designs at the Vertica1_2D_ Wide_Location level, which have used the braced frame

option at the Vertical_ 2D _ Narrow or Vertical_ 2D _ Wide levels. An example of one of these

rules is shown below, this rule eliminates those designs where the calculated uplift is greater

than the dead load on the columns. Such designs would be expected to fail against a lateral

force and would tip over.

RULE: Rl For Braced Frame - - -
Uplift greater than dead load

*************************************/

Rl _For_Braced_Frame, [AltbldglTest_Class],

IF Altbldg:Uplift_ Wide > Altbldg:Deadload_On_Column_ Wide,

THEN SetValue(Altbldg:Detail_Status, Unsatisfactory));

Figure 10.12 Rule for uplift

In this example, if a design fails the test, then the program will repeat the test for a

predetermined maximum number of times, each time selecting a larger steel section, until it

has either found a suitable section or the maximum number of tests has been exceeded. If

the program exceeds the maximum number of tests or if it fails to fins a suitable section it

will eliminate the design.

197

The Application of Object-Oriented Techniques to Preliminary Design Problems

KAPPA •

Detaas now completed I Of Ve~tical Subsystem

Figure 10.13 Completion of detailing message at the vertical subsystem level

To continue the design process the user will respond to the system's prompts, by using the

computer's mouse to click on the appropriate input buttons. The system will then complete

design and detailing for the horizontal structural subsystem. On completion of the design

process the system will output a completion message. The user may then instruct the

system to rank either all the designs produced or input a number, thereby instructing the

system to rank that number of designs. See Figure I 0.19.

Figure 10.14

User R.equ.es"t

Ple-e e>Uer "the value ot
Gloluo.J.:Nunoher _ Or_ DesJc...,_To_Be_ C oh&i<l

OK Co.Jft..111.e:nt:_

KAPPA f3

Designs now ranked

lr oK···, ... , .. ll
{ , ... ,

System prompt and corresponding acknowledgment

The system's transcript window, which is shown in Figure l 0.15, displays the list of items

in their respective ranking. Figure 10.16 shows the details listed in the transcript window,

in response to the user chcking on the design report input button and supplytng the name of

the design, for which details are required.

198

The Application of Object-Oriented Techniques to Preliminary Des ign Problems

liiJ Oe$tgn_ Vetltcdi_Systeons l!lreJ E3

Cleat Hierarchy

Check Oeaign Pa1ameten

Review Evalua tion
Feoturec

Oeaign Horizontol
Subsyatem

Detail Horizontol
Subayatem

Oeaign Report

Rank Oeaignt

Figure 10.15

NOVA de.igna leacible
crtuctural altemativB* lor
a frame building. Fir•t it
selects the vertical
structural sydemc. then it
celecta floor system• lot
each of thece.

Decian

Finoi_Deaigm 03/10/99

Design: 1 lntermed_\tlide_B

Decign: 2 1ntermed_None_1•

Oecign: 31ntermed_\tlide_7

Decign: 4 lnlermed_None_13

Nova

Schedule Tack

• (Vett)

Lood Resisting Sysl

(Building)
(Vert_ 3D)
(Vert_2D_ Narrow)
~ Veri_ 2D_Wide)
(Material)
(lerL2D_ Norrow_Loc)

(Vert_20_\tlide_Loc J
(Floor l
(S upport_B earns)

Schedule Port To Deaign

Evaluation
Report

Print Final
Derign

System transcript window shows top 4 designs produced

!:!elp

jiJ Dcatgn_ VcohcOli_Systcmr ~ E3
81o0n ! mage E dot tonuol Qphons

ClearHoerarchy I Count I
Check Deaign Parameteoc

Review Evaluation
Featurea

Design Horizontol
Subayctem

Deloit Horizontol
Subcyate•

Design Report

Rank Oecigna

NOVA designs feasible
arluclural alternativeS" for
a frame building. Firat it
selects the vertical
structurol tyatemt. then it
selects floor ayatema lor
eoch or theca.

oJnotss

eaign: lntermed_ \tlide_ 8

at avctem oarallel to na11ow
•

N ova

Schedule Tack

-{Vert)

load Reticling Syat

(Building

[Vert_ 30

[Ve rt_ 2D_ Na llow

(Vert_20 _\tlide

{ Material

ferL20 _ Na11ow_ l oc)

(VerL20 _\tlide_ loc J
[Floor)

(Support_ Beamc)

l lntermed_Beams _

Schedule Part To Oeaign

Evaluation
Report

P oint Final
Oeaign

Figure 10.16 System transcript window showing details for selected design

The user also has the option to produce a report showing the results of the evaluation

process. The report, which appears in its own transcript window is shown in Figure 1 0.17.

199

The Application of Object-Oriented Techniques to Preliminary Design Problems

[iijJ Evai_Repo<ls 1!11!!113
6Jign jmege Edit Control Qptions

I W<ite_ Verticai_Evaluation_~ I Ret urn To M a in Screen

Vertical Evaluation S umm ary

Evalu.otion of Alternative Uuildinga- Ver tical Sysh :un

F eeturo Ouildability

T a rget Set
T arget M ax
Target M in
T ype_Of_ T argot
Importance

F eature

Yea
100. 00
1 . 00

Max
Very

1 S W _S h aiLWide_ 1
100. 0 0
t.!:rcent Oplim
1- e ig hle d V a l

2 RF 2 Wide_ 5
20.00
~jrr.,nt Onlim

Height

0 . 04

100. 00
400. 00

0 . 04

1 00 oo

Space

Ye•
100. 00
50. 00
Max
Very

C .olumn

Yea
5 000. 00
400. 00
Min
N otSo

Time

4 2. 00

42.00

Coat

Y es
3 072 000.00
2 048000. 00
Min
Exttemely

Sway

0 . 00

137. 92

Figure 10.17 System transcript window showing evaluation results

~

-
F lex

No

Any
l rrel•

Clea

0 . 0 1

.c-

The NOVA design prototype takes advantage of Microsoft's Dynamic Data Exchange

J::ielp

(DDE) feature, which can be used with many Windows applications. By exchanging data

dynamically NOV A can send and receive data from other applications either through a

request or by establishing hot links with them. It can also execute commands in another

applications via a DDE message. Thus as described earlier NOV A extracts the infonnation

about steel sections from an Excel spreadsheet. The user may also export the design details

created by the system to Excel. This facility allows the user to use the NOVA system with

other PC tools, thereby achieving a degree of integration of the software tools.

X hloc rosolt Excel - . .. • . -~ 4R(!i)E:J

I
2 ,
•
1

1l
l)

10
II
1:2
1:1
I~

16

-"' 17
18
IS
20

£xcciR 1 xis

M..-~.n ...
M•iphf. (m•O••J
Cosc
Tlm• to cons•-,.vot (_months)
3 0 d•~ollpuon

V•ttio•) •vt.•m ..,..., , t.o 4 0 .0 m s....t.-
9•..-nS•odoo
Cok.dnn S.et . .on
Ol•oon.~ S • orion

V•tUo.-t SJst.•m p., •• ,., to 6 4 0 m «t<d•
S..MnS•ouon
C<MUrnn S.ct10n
D•JJon•t S.0-11on

Ftoof ,s'•••rn
Ov•• •" oon01'•l• •l""b d•plh
St••• O.ck u,.,k:
Jnc«,•di•t• ~··
SpO<>lng
a ms.ouon
$Vf'1>0'' b4>•ms:
e ... m s • otlen

6

A•inf-Conor•••
12000
Cost
Tom.
OfthOgor.~t_~_S)I•t•m•

RF _AILN•.no"'
1 27)(1$){1~

1 !5::!)(t ~JV<2'3
.:!~3

RF_2._'\ti•O•
12:?><'16><13
15.2Xt52X23

Pt•c •s:'-P~
ZG<I
no d...ck u .. 4'd

I

127><76)(13

Suppoft ooto~ t 21')(7$)(13
~-~~~ S~e~tl;----------------~--------~~~~

Figure 10.18 Excel spreadsheet with design details from NOV A

10 - !I

200

The Application of Object-Oriented Techniques to Preliminary Design Problems

Figure 1 0.18 shows the Excel spreadsheet designed to collect finished design details from

NOV A, which is acting as a DDE server.

Summary

This chapter has described what has been achieved regarding the implementation of the

software design, which was documented in chapters 6, 7 and 8. A knowledge-based, PC

prototype, design tool has been partially implemented on the Kappa-PC application

development system. The design tool provides assistance to the structural engineer during

the early stages of structural design. It aims to remove some of the tedium involved in

preparing design schemes and it provides information to assist the user with design problem

solving. The system outputs design information and its open architecture allows it to

transfer this information to other PC packages including Excel.

This implementation has demonstrated that object-oriented computing techniques can be

used successfully to create a model of a software approach, which supports intelligent

design problem solving and which may be translated into a software design for

implementation in an application system.

201

The Application of Object-Oriented Techniques to Preliminary Design Problems

CHAPTER 1 1 . Conclusion

This report describes a research project concerning effective methods for the application of

object-oriented computing techniques to support preliminary structural design. The report

focuses on a software development process created by the writer, which facilitated the use

of object-oriented analysis and design techniques. The process enabled the writer to design

a knowledge-based prototype for preliminary structural design, which was implemented on

the Kappa-PC application development system.

The software development process comprised four stages: high-level analysis, requirements

development and object-oriented analysis and design. The high-level analysis stage

allowed the writer to adopt and analyse a particular approach to developing systems for

preliminary structural design. During the requirements development stage, the writer

produced a list of functional requirements for a design tool. The object-oriented analysis

and design stages then allowed the writer to continue and produce a system architecture for

the proposed design tool software.

The writer then completed a final implementation stage, which confirmed that it was

practical to implement the selected approach in software using Kappa-PC.

The software development process allowed the writer to ensure that:

• The analysis and design activities were properly organised and coordinated; and

• A set of functional requirements was produced to communicate what the proposed

system ought to do from the user 's perspective.

The object-oriented analysis techniques allowed the writer to produce a series of models of

the design process, which specified:

202

The Application of Object-Oriented Techniques to Preliminary Design Problems

• The objects in the design environment;

• The relationship between the objects;

• The design processes that create, maintain and use the design objects; and

• The rules for the management and use of these design objects.

The research project was organised in a logical pattern, which comprised preliminary,

development and reporting stages. The preliminary stage commenced with a literature

survey, which facilitated an examination of various aspects of preliminary structural design,

after which the principles of object-oriented analysis and design were reviewed. The

preliminary stage was brought to a close with the completion of a review of literature

covering the use of knowledge-based systems to support engineering design.

The first problem addressed in the preliminary stage of the project was to find a suitable

approach to the problem of providing support for structural design. After the literature

survey the writer decided to adopt an approach to the problem, which was first reported by

Maher (1984). This approach was analysed in depth during the subsequent development

stage.

The writer chose to adopt the approach described by Maher because:

• This approach was based on a formalised model of the design process, which other

researchers have taken up and incorporated in prototype systems;

• It incorporated basic structural engineering concepts described in the standard textbook,

by Lin & Stotesbury (1981);

• The approach was well documented by Maher (1984) and Harty (1987); and

203

The Application of Object-Oriented Techniques to Preliminary Design Problems

• The approach appears well suited for implementation in an object-oriented, knowledge

based system.

The approach chosen relies upon a formalised model of the design process, which several

researchers, including Krishnamoorthy (1996) have described as the decomposition based

model, and which provides computer support by way of an expert system. Maher has

described this approach in several papers and used it to produce an expert system, known as

HI-RISE, which was designed to assist with the preliminary design of tall buildings. Other

researchers have also adopted this approach, including Harty (1987), who implemented it in

an expert system known as DOLMEN, which was designed to extend the range and

functionality of HI-RISE. Furthermore, Sause et al. (1992) have extended this

decomposition-based approach and proposed the 'multilevel selection-development ' (MSD)

model, which is a process generalisation model for structural design.

The second problem in the preliminary stage was to determine a suitable PC-based, object

oriented, knowledge engineering environment on which to implement the selected approach.

The writer chose the Kappa-PC development application because of its availability, low cost

and its ability to run under Windows 95 and because research revealed that it had been used

to produce expert systems quickly and economically. The writer subsequently installed

Kappa-PC and proceeded to learn how to use it.

Having solved two key problems; the adoption of a proven approach to the problem and the

selection of an application development system the study progressed to the development

stage.

In the project development stage, the writer initially organised the software development

process, which comprised the various analysis tools and methods required to complete the

study. The writer then applied this process to create a software design for the proposed

204

The Application of Object-Oriented Techniques to Preliminary Design Problems

design tool, which was then implemented. Activities completed in the development stage

included analysis of the problem solving approach adopted and production of a conceptual

model for a new system. The writer then prepared a list of functional requirements for the

new system, which was based on the list of design tasks accompanying the conceptual

model, which were similar to functions in the DOLMEN system described by Harty (1987).

The object-oriented analysis and design stages used a six-step analysis process, as a

framework, to guide the analysis and to ensure that the problem was fully understood and

that the required diagrams were created. The object-oriented analysis stage provided an

object model of the "real world" design problem, by analysing the functional requirements

required to support preliminary structural design.

During the design stage the writer developed the systems architecture for the new system

and developed strategies to implement the object model in the Kappa-PC environment. This

required consideration of the various Kappa-PC system objects, such as the inferencing

mechanism and the user interface components, which were to be factored into the analysis

model. The writer produced several notebooks containing notes regarding the structure of

the design objects, diagrams and flow charts for the algorithmic functions and object

diagrams and message passing schemes. The design stage was enhanced through the

creation and modification of a series of system prototypes, which were written after some

preliminary analysis and outline design.

As in any design project, the writer encountered several difficulties and has described them

under the following headings:

• Difficulties in analysing preliminary structural design,

• Difficulties in applying object-oriented techniques to knowledge based application,

• Overlapping of the analysis and design phases, and

205

The Application of Object-Oriented Techniques to Preliminary Design Problems

• Difficulties encountered during implementation.

The following paragraphs summarise these difficulties and describe how they were

addressed. Chapter 5 described the creation of a software engineering methodology and

several problems, which were overcome during the process.

The writer's initial problem was to select a set of suitable object-oriented analysis and

design methods, this was found to be difficult due to the large range of approaches

described in the literature. The writer eventually relied upon a simplified framework and set

of techniques, described by Cross (1996), which allowed him to complete the project.

The writer also failed to identify suitable object-oriented techniques, which would have

provided assistance with the initial high-level analysis stage. The writer eventually used a

process based on Checkland (1991) and described in O'Connor (1992) to complete the high

level analysis stage. Again, the writer had to look outside of the object-oriented paradigm

to find techniques to allow him to complete the requirements specification process, which

was found to be a necessary precursor to the object-oriented analysis and design stages.

During the object modeling stage the writer observed that it was difficult to create object

hierarchies and state transition diagrams for several objects. These included transient

objects, which either did not exist at the start of system operations; or which were created

and destroyed during operations; objects, which changed identity, becoming subsumed into

other accumulation type objects during operations; and the system's rule-base into the

object model. The writer solved these problems by resorting to the use of 'back box' type

diagrams to represent these objects.

Chapter 7 described how the analysis and design stages for the software were completed and

how the problems, which were encountered in these stages, were solved. Three types of

problem were encountered and are discussed below:

206

The Application of Object-Oriented Techniques to Preliminary Design Problems

• Difficulties in analysing the preliminary structural design process.

During research into the analysis of preliminary structural design, the writer noted that

several sources including Maher (1984) and Harty (1987) maintained that this type of

design was ill defined and also advised that it was a difficult area for which to provide

computer software. These sources also noted that the activity required the completion of

problem solving techniques, which in tum comprised a series of conceptual decision making

tasks, which were interspersed with a series of calculation tasks. They added that it was

often difficult to determine in advance, which particular design tasks may be required in a

particular project and in what order the tasks are to be applied.

In attempting to complete the necessary analysis the writer documented what he had

identified as the most significant decision making tasks and created a system model, which

reflected these tasks and the associated calculations, which were interspersed these tasks.

This resulted in a system, which simulated a central hierarchical product decomposition, and

which also attempted to facilitate the provision of a range of tools, which assist with various

phases of the design project.

• Difficulties in applying object-oriented techniques to knowledge based application.

The writer also found that it was conceptually difficult to applying object-oriented

techniques to this particular knowledge based application. The writer's difficulty in this

area, is best explained with reference to Graham (1994) who said that object-orientation

addressed two of the 3 key aspects, required to specify a proposed system, these were data

and process. He added that control of system behaviour is more difficult to integrate into an

object model and in several of the approaches he had reviewed, control in the form of rules

and/or constraints, appeared to be accommodated as an afterthought. Thus, in this project

the writer found it difficult to include the production rules in the object model, other than as

207

The Application of Object-Oriented Techniques to Preliminary Design Problems

a 'black box' . This approach appears to leave something to be desired, but the writer was

unable to find a better way to include them, given the object-oriented analysis and design

tools selected for the project.

• Overlapping of the analysis and design phases.

The writer found that it was difficult to manage the object-oriented stages of the

development project. He was unable to clearly separate the analysis and design stages and

was therefore also unable to precisely distinguish which deliverables were worked upon in

each stage. These difficulties resulted in the failure of the writer to produce accurate time

estimates for project completion.

The writer was aware that the purpose of the analysis stage was to describe the structural

design process, ie. the problem and to formulate a model of the problem domain. He was

also aware that the purpose of the design stage was to decide how the new system, which

constitutes the solution to the problem, would be implemented and how the architecture for

the new system would be created. However, during this project the writer produced several

models and it was difficult to recognise, which model was the appropriate starting point for

the design stage.

The writer's was also aware that the conventional system development life cycle could be

represented as a series of steps with gaps between them and where the steps are well defined

and are associated with clearly identified deliverables. The deliverable output by one step

then becomes part of the input for the next step. However, the writer 's experience in this

project, has lead him to agree with Henderson-Sellers (1 992). This source had noted that

object-orientation supports a seamless transition from phase to phase and that this made it

difficult to pinpoint where one stage ends and another begins, likewise it is difficult to

detect the point at which a deliverable should be achieved.

208

/

The Application of Object-Oriented Techniques to Preliminary Design Problems

Chapter 9 describes the implementation of the software designed during the project, it

included several difficulties encountered during the process. These are summarised below:

• Trade-off between dynamic rule based programming and sequential procedural

programming.

One of the primary purposes of this study was to explore the issues that arise when one uses

object-oriented computing techniques to develop knowledge-based software, which would

necessarily use rules to represent a significant component of the knowledge base.

Using heuristics represented as rules was expected to realise several advantages including

simplification of design. Thus, when there were a large number of decision points in a piece

of the software, it should have been easier to understood the effect that they would have,

when they were coded as rules, than when they were written as conditional statements in the

system's procedural code. Furthermore, the use of rules should have allowed the writer to

take advantage of the inference system. This systems program would be expected to apply

rules dynamically, as appropriate, thereby eliminating the need for the programmer to

indicate explicitly when any given conditional statements should be applied.

However, during the design stage, the writer had difficulty in incorporating the rule base

into the object model for the system. Furthermore, during the subsequent implementation

stage he also noticed that in most cases, an equivalent conditional statement could replace

any rule. He then had to decide which design decisions would be based on knowledge

represented by rules and which design decisions would be simulated in procedural code,

using the appropriate conditional statements. The writer found only limited guidance on

this issue. Thus according to a white paper issued by "The Haley Enterprise" (1992), as

long as the particular conditional situation can be flow-charted then a rule-based system is

not required.

209

The Application of Object-Oriented Techniques to Preliminary Design Problems

In practice the writer found that each particular simulation of a design decision had to be

considered separately. Thus where a single condition had to be tested, which was the case

during the early stage of design synthesis when the system seeks to ensure that only valid

designs are added to the search tree, then the elimination test was best coded as a

conditional KAL function. In the later stages of synthesis, where the designs were detailed

and the system needed to test several conditions, then these decisions were best represented

in the form of rules.

• Conflict between the requirement for global scope for object attributes versus the

object-oriented principles of encapsulation and information hiding.

The writer understood that in order for the system's inference system to function properly it

needs to be able to react dynamically to changes in appropriate object attribute values, this

requires that these attributes are provided with global scope. However, the writer was also

aware, that this requirement is inconsistent with the object-oriented principle of information

hiding. The writer was unable to resolve this conflict himself and was also unable to locate

any other sources, which had satisfactorily addressed the issue.

• Difficulties caused by Kappa-PC's lack of support for multiple inheritance

The final system design required multiple inheritance, which is not explicitly provided by

Kappa-PC. The writer had to design a 'work around' to provide the inheritance links

required in the system's search tree of partial design objects.

• Difficulties caused by Kappa-PC's limited provisions for local variables

Kappa-PC supports a full object-oriented programming model, in which all programming

entities are viewed as objects. Consequently there is limited programming support for the

use of temporary variables, which do not merit the allocation of a permanent system object.

However, because, the new NOV A design tool was required to complete lengthy

210

The Application of Object-Oriented Techniques to Preliminary Design Problems

calculations for design variables, the writer had to resort to the use of several classes of

temporary design variables. This was difficult to program and resulted in much duplication

of code.

The writer implemented the key features of the design model of the proposed new system as

a working prototype program. The prototype included a graphical user interface, a series of

Kappa-PC classes with appropriate methods and accompanying KAL functions, which

simulated a version of design synthesis based on a hierarchical planning process and a

decomposition based implementation of the plan-generate-test strategy.

The writer found that there was a steep learning curve to be completed if one was to use

Kappa-PC effectively. The system has facilities to support object-oriented programming

and at the same time it has the inferencing mechanism necessary for logical programming.

Leaming was made more difficult due to the large range of specialist debugging and tracing

tools both for the KAL language and for the inferencing mechanism.

To use the system properly the user has to understand how to integrate the object hierarchies

used to represent domain objects with the production rules needed for inferencing. The

writer noted that certain programming tasks might be achieved by using either object

oriented programming or by using the inferencing capability provided by production rules.

Unfortunately the writer was unable to find sources of reference to guide the programmer as

to which is suitable in a given case.

During the reporting stage the writer documented the key design activities simulated in the

prototype system. These include: input of the design specifications of the building, input of

system evaluation features, design of the vertical subsystem, initial sizing of components,

use of the steel sections database, detailing of vertical subsystem, design of the horizontal

211

The Application of Object-Oriented Techniques to Preliminary Design Problems

subsystem, detailing of horizontal subsystem, evaluation of design alternatives proposed and

the selection and output of the final design.

In summary a design tool to assist the structural engineer during the early stages of

structural design has been partially implemented on the Kappa-PC application development

system. It aims to remove some of the tedium involved in preparing design schemes and it

provides information to assist the user with design problem solving. The system outputs

design information and its open architecture allows it to transfer this information to other

PC packages including Excel.

This implementation has demonstrated that object-oriented computing techniques can be

used successfully to create a model of a software approach, which supports intelligent

design problem solving and which may be translated into a software design for

implementation in an application system.

212

The Application of Object-Oriented Techniques to Preliminary Design Problems

LIST OF REFERENCES

Alison, J., (1 994), State Space Search vs. Problem Reduction Available WWW

http:/www.cee.hw.ac.uk/-alison/ai3notes/Subsection2 _ 6 _3 _I .html_,_

Ambrose, J.E. (1967) Building Structures Primer. John Wiley & Sons, Inc. pp. 7&8.

Beck, K., & Cunningham, W., (1989), A laboratory for teaching object-oriented thinking.

In OOPSLA'89 ACM Conference on Object-Oriented Programming Systems,

Languages and Applications (Meyrowitz, N., Ed) Reading, MA: Addision-Wesley,

1 989.

Bedard, C., & Gowri, K., (1990). Automating Building Design Process with KBES. Journal

of Computing in Civil Engineering 4,2_pp. 69-82.

Bobrow, D.G., & Stefik, M.J., (1986) Perspectives on Artificial Intelligence. Programming

Science 23 1(8), pp. 23-35.

Bobrow, D.G., Mittal, S., & Stefik, M.J., (1986), Expert Systems: Perils and Promise.

Communications of the ACM, September, Vol. 29, no. 9, pp. 880 - 894.

Booch, G (1986), Object-Oriented Development IEEE Transactions on Software

Engineering, 1986, Vol. SE-12(2), PP. 21 1 -21.

Booch, G (1991), Object-Oriented Design with Applications. Redwood City, California:

Benjamin Cummings, 1991.

Booch, G and Bryan, D., (1 994), Software Engineering with ADA. 3rd edition, The

Benjamin/Cummings Publishing Company Inc., California.

Bravo, G., Hernandez, F., & Martin, A., (1996) Knowledge-Based Design System for

Preliminary Design of Foundation Systems. In B.H.V. Topping (Ed.), Advances in

Computation Structures Technology Civil_ Comp Press, UK.

213

The Application of Object-Oriented Techniques to Preliminary Design Problems

British Standards Institution, BS6399 Design Loadings for Buildings, Part 1 : Code of

Practice for Dead and Imposed Loads BSI, London, 1 984.

British Standards Institution, Structural Use of Concrete, BS8 1 1 0: Part 1 : 1985, BSI,

London, 1985.

Brown, B. C. , & Chandrasekaran, B., (1985) Expert Systems for a Class of Mechanical

Design Activity, in Knowledge Engineering in Computer Aided Design (Gero, J.S.,

Ed), North Holland, pp. 259 - 290, 1 985.

CIB - Dresden, CIB - Dresden, LAP - Stuttgart, 1995, http://wwwcib.bau.tu

dresden.design/combi/wpd2.htm.

Coad, P., & Yourdon, E. (1990), Object-Oriented Analysis. Englewood Cliffs, New Jersey:

Yourdon Press/Prentice Hall, 1 990.

Cross, R. (1 996) A Search Tool to Enhance the Selection and Utilisation of Reusable

Software Modules within the Object-Oriented Paradigm. Faculty of Science,

Technology and Engineering, Edith Cowan University, Perth, Western Australia,

Master of Science. Thesis, 1 996.

Dasgupta, S., (1992) Herbert Simon's "Science of Design" Two Decades Later Keynote

paper, Proc. 1 st Int. Conf. on Intelligent Systems Eng., Aug. 1 992, Edinburgh.

Doheny, J.G., & Monaghan, P.F., (1987) An Expert System for the Preliminary Stages of

Conceptual Design of Building Energy Systems. Artificial Intelligence in

Engineering. 1987, Vol. 2, No. 2.

Eastman, C.M., (1981) Recent Developments in Representation in the Science of Design,

Proceedings of the 1 8h Design Automation Conference. Nashville, Tennessee,

U.S.A., pp. 1 3 - 21 .

214

The Application of Object-Oriented Techniques to Preliminary Design Problems

Embley, D.W., Kurtz, B.D., & Woodfield, S.N., (1992), Object-Oriented Systems Analysis:

A Model Driven Approach. Englewood Cliffs, New Jersey: Y ourdon Press, 1992.

Fenves, S., & Baker, N., (1987). Spatial and Functional Representation Language for

Structural Design. In Gero, J., (Ed.). (1987). Expert Systems in Computer-Aided

Design. Amsterdam: Elsvier, 5 11, 1987.

Fikes, R., & Kehler, T. (1985). The Role of Frame-Based Representation in Reasoning.

Communications of the ACM, 28(9), p. 904.

Fraser, DJ., (1981) Conceptual Design and Preliminary Analysis of Structures. Pitman

Publishing Inc., Massachusetts.

Gailly, P.J. & Binot, J.L., (1991) Workshop on Merging Object-oriented and Logic

Programming International Conference on Logic Programming, Paris, June 24,

1991.

Gardner, A.v.dL., (1989), Search An Overview., in The Handbook of Artificial Intelligence

(Barr, A., Cohen, P.R., & Feigenbaum, E.A., (eds.), William Kaufmann, 1989.

Gavin, T.D., (1988) Design and Implementation of SPIKEE (Simple Prototype of an

Intelligent Knowledge Engineering Environment. Submitted for MSc Degree,

University of Dublin, Trinity College, October 1988.

Gero, J.S., Maher, M.L., & Zhang, W. (1988) Chunking Structural Design Knowledge as

Prototypes. In Artificial Intelligence in Engineering: Design (Ed. J .S. Gero) pp. 3-

21. Computational Mechanics Publications, Southampton, UK.

Ginsberg, M., (1993) Essentials of Artificial Intelligence. p. 12l_Morgan & Kaufman.

Gordon, J.E., (1978), Structures or Why Things Don't Fall Down. Penguin.

Graham, I.M., (1994), Object-Oriented Methods. Second Edition, Addision-Wesley, 1994.

215

The Application of Object-Oriented Techniques to Preliminary Design Problems

Harty, N. & Danaher, M. (1994) A Knowledge-Based Approach to Preliminary Design of

Buildings. Paper presented in the Proceedings of the Institution of Civil Engineers

Structures and Buildings, 1994, 104, May, pp. 1 35-144. Structural Board Paper

103 1 2.

Harty, N. (1987) An Aid to Preliminary Design. In Sriram, D. & Adey, RA. (Eds.). (1987).

Knowledge Based Expert Systems in Engineering: Planning and Design.

Computational Mechanics Publications.

Harty, N. (1987) An Aid to Preliminary Design. Department of Civil Engineering, Trinity

College, Dublin, 1987, Ph.D. thesis.

Hasan, K., Ramsay, B., Ranade, S., & Ozveren, C.S., (1994) An Object-oriented Expert

System for Power System Alarm Processing and Fault Identification. Proceeding 7th

IEEE Electrotechnical Conference.

Hayes-Roth, F., (1985) Rule-Based Systems. Communications of the ACM, September

1985, 28(9), p. 921 .

Henderson-Sellers, B., (1992), A Book of Object-Oriented Knowledge. Brookvale, NSW:

Prentice Hall

Henderson-Sellers, B., (1997), A Book of Object-Oriented Knowledge - An Introduction to

Object-Oriented Software Engineering. Upper Saddle River, New Jersey: Prentice

Hall PTR, 1997.

HOOD Working Group (1989), HOOD Reference Manual. Issue 3 .0. European Space Agency,

Noordwijk, Netherlands, 1989.

Hopgood, A.A., (1993) Knowledge Based Systems for Engineers and Scientists. CRC Press.

216

The Application of Object-Oriented Techniques to Preliminary Design Problems

Institution of Structural Engineers and The Institution of Civil Engineers, (1985) Manual for

the Design of Reinforced Concrete Building Structures The Institution of Structural

Engineers, UK 1985.

Intellicorp, (1996) Kappa-PC - System Description and Data Sheet.

http://www.intellicorpcom/ kappa-pc /kappa-pc-24. html .

Intellicorp, (1996), Intellicorp Inc 1990-1997, Kappa-PC 2.4 Online Help - Kappa-PC 2.4

User Guide, Mountain View: California, Intellicorp Inc

ISO, 1992, Draft International Standard, DIS 10303 (STEP), Part l : Overview and

Fundamental Principles, TC l 84SC4.

Jackson, M.A., (1983), System Development. Englewood Cliffs, New Jersey: Prentice Hall,

1983.

Joannides, F., & Weller, A. (1987) Structural Steelwork {Elementary Design to BS5950)

Dublin, Ireland: Parthenon Press 1987.

Karhu, V. (1997) Product Model Based Design of Precast Facades. Itcon, Vol. 2 (1997), p.

l .

Kiernan, M.J., & Brown, K.E. (1996) The Application of Knowledge Based Techniques To

Subsea Acoustic Data Interpretation. IEEE ??

Krishnamoorthy, C.S. & Rajeev, S. , (1996), Artificial Intelligence and Expert Systems for

Engineers (New Directions in Civil Engineering. CRC Press

Kunz, J.C., Kehler, T.P., & Williams, M.D., (1984) Applications Development Using

Hybrid AI Development System. AI Magazine, Vol. 5, No. 3, pp. 41-54, Fall 1984.

217

The Application of Object-Oriented Techniques to Preliminary Design Problems

La Rota, J.L., Biswas, G. & Basu, P.K. (1 990), A Model-Based Approach to Structural

Design. Proceedings of fifth Intl. Conference Applications of Artificial Intelligence

in Engineering, 1990, p 3-22 Vol. 1 .

Leclerc, A., (1979) Systems Engineering and the Civil Engineering Programme at Ecole

Polytechnique De Montreal. Paper presented in the Proceedings of the 1st Canadian

Seminar on Systems Theory for the Civil Engineer. Calgary, Alberta, 18-19

October, 1979. In Wirasinghe, S.C., & Jordaan, I.J. (Ed), pp. 9- 1 7, University of

Calgary, Alberta, Canada.

Lim, C. K, Choo, Y.S. , & Nee. A.Y.C. (1996). Integrating Experienced-Based Knowledge

in Design for Lift Installation of Offshore Structures. Paper presented in the First

International Conference on Computing & Information Technology for Architecture,

Engineering & Construction, 1996, 16-17 May 1 996, Singapore .

Lin, Y.T, & Stotesbury, S.D. (198 1). Structural Concepts and Systems for Architects and

Engineers. New York: John Wiley and Sons, 198 1 .

Liu, X., & Gan, M., (1 990). Neural Networks in Structural Preliminary Design. Paper

presented at Conference 1990 .

Lofqvist, P . (1993). Preliminary Design of Bridges Used Knowledge-Based Systems.

IABSE Colloquium "Knowledge-Based Systems in Civil Engineering", (pp. 223 -

232) . Beijing, China.

Luger, G.F. & Stubblefield, W.A., (1993) Artificial Intelligence: Structures and Strategies

for Complex Problem Solving 2nd Ed, 1993 , Redwood City: Benjamin Cummings.

Maher, M.L., Fenves, S.J. & Garrett, J.H., (1988) Expert Systems for Structural Design In H

Adeli (Ed.) Expert Systems in Construction and Structural Engineering 1988 pp. 87-

121, London: Chapman and Hall Ltd.

218

The Application of Object-Oriented Techniques to Preliminary Design Problems

Maher, M.L., Fenves, SJ. & Sriram, D. (1984) Tools and Techniques for Knowledge Based

Expert Systems for Engineering Design Advances in Software Engineering, 1984,

Vol. 6, No. 4, pp. 1 78-1 88.

Maher, ML. (1984) HI-RISE: A Knowledge Based Expert System for the Preliminary

Structural Design of High Rise Buildings. Department of Civil Engineering,

Carnegie-Mellon University, Pittsburg, 1984, Ph.D. thesis.

Maher, ML. (1987) Expert Systems for Structural Design. Journal of Computing in Civil

Engineering, Vol. 1, No. 4, October, 1987, pp. 270- 283.

Malhotra, A., Thomas, J.C., Caroll, J. , M. & Miller, L. A., (1980) Cognitive Processes in

Design. International Journal of Man-Machine Studies, Vol. 12, pp. 1 19 - 140.

Martin, J., & O'Dell, J., (1 992), Object-Oriented Analysis and Design. Englewood Cliffs,

New Jersey: Prentice Hall, 1992.

Means (1982), 1 982 Building Systems Cost Guide, Robert Snow Means Company Inc,

1 982.

Merritt, D. (1998). Integrating Objects with Knowledge Bases. Object Magazine, March -

April 1998, New York, SIGS Publications.

Merritt, F. S. (1985), Building Design and Construction Handbook. 4th Edition McGraw -

Hill Inc.

Minsky, M. (1975), A Framework for Representing Knowledge In P. Winston (Ed.), The

Psychology of Computer Vision, New York: McGraw-Hill, 1975.

Mitchell, NJ., (1997) Computer Aided Architectural Design. New York, Van Nostrand

Rheingold Company, Inc, p.27.

219

The Application of Object-Oriented Techniques to Preliminary Design Problems

Mittal, S & Agustin, A, (1 986) A Knowledge-based Framework for Design Engineering

Applications. International Artificial Intelligence Conference Proceedings pp. 856-

865 .

Mittal, S., & Araya, A., (1986) A Knowledge-Based Framework for Design. Proceedings of

the Fifth National Conference on Artificial Intelligence., AAAI-86, pp. 856-865,

August 1 986.

Moss, C., (1991), Object-oriented Logic Programming. International Conference on Logic

Programming, Paris, June 24th 1 99 1 .

Mostow, J., (1985) Towards Better Models of the Design Process AI Magazine, Vol. 6, no.

1 , pp. 44 - 57,.

Newell, A., Shaw, J .C., & Simon, H.A., (1963) Empirical Explorations with the Logic

Theory Machine: A Case History in Heuristics. In Computers and Thought (Eds.,

E.A. Fegenbaum and J. Feldman), New York: McGraw-Hill, 1 963, pp. 1 09-1 3 3 .

Newell, A., and Simon, H.A., (1972), Human Problem Solving. Englewood Cliffs, NJ. :

Prentice-Hall, 1 972.

Newell, A., and Simon, H.A., (1976) Computer Science as Empirical Inquiry: Symbols and

Search . 1 975 ACM Turing Award Lecture, Communications of the ACM, March

1976, Vol. 1 9, no. 3 pp. 1 1 3 - 1 26.

Nilsson, NJ. (1971), Problem-Solving Methods in Artificial Intelligence. New York:

McGraw-Hill, 1971 .

O'Connor, AD., (1 992) Soft Systems Methodology - A Case Study of its use within an

Australian Organization The Australian Computer Journal, Vol. 24, No 3, November

1 992.

220

The Application of Object-Oriented Techniques to Preliminary Design Problems

Page-Jones, M., (2000) Fundamentals of Object-oriented Design in UML New York, New

York: Adison-Wesley, 2000.

Perry, W.E., (1995), A Standard for Auditing Computer Applications - Auditing System

Requirements, New York: Auerbach Publications, Warren, Gorham & Lamont,

1995.

Pfaffenberger, P., (1997), Webster' s New World Dictionary of Computer Terms Sixth

Edition, New York: Macmillan, 1997.

Polya, G., (1957) How to Solve It. 2nd edition, New York: Doubleday Anchor, 1957 p. 112.

Quinn, M., (1993) Knowledge Based Expert Systems and Structural Engineering - Towards

Expert Structural Computing. Department of Civil Engineering, University College,

Galway, 1993, unpublished dissertation submitted for the requirements of the degree

of Master of Engineering Science.

Rich. (1983) Artificial Intelligence {International Student Edition). Auckland, McGraw-Hill,

p307.

Rumbaugh, J., Blaha, M., Premerlani, W., et al. (1991), Object-Oriented Modeling and

Design. Englewood Cliffs, New Jersey: Prentice Hall, 199 1 .

Sabouni, A.R., & Al-Mourad, O.M., (1996). Quantitative Knowledge-based Approach for

Preliminary Design of Tall Buildings. Artificial Intelligence in Engineering UK,

Elsevier Science Ltd., pp. 143 - 1 54.

Sause, R., Martini, K. & Powell, G.H., (1992), Object-Oriented Approach for Integrated

Engineering Design System. Journal of Computing in Civil Engineering, Vol. 6, No

3, July 1992, pp. 248-265.

221

The Application of Object-Oriented Techniques to Preliminary Design Problems

Seidwitz, E., & Stark, M., (1986), General Object-Oriented Software Development.

Software Engineering Letters, 86-002, 1986.

Simon, H.A., (1969) The Sciences of the Artificial. 2nd Edition, Cambridge, Massachusetts,

The MIT Press, Massachusetts Institute of Technology.

Simon, H.A., (1996) The Sciences of the Artificial. 3rd Edition, Cambridge, Massachusetts,

The MIT Press, Massachusetts Institute of Technology.

Soh, C.K., & Soh, A.K., (1988), IPDOJS - Example of lntelligent Structural Design System

Journal of Computing in Civil Engineering October, Vol. 2, no. 4, pp. 329 - 345.

Sriram, D., Stephanopoulos, G., Logcher, R. Gossard, D. Groleau, N. Serrano, D., &

Dundee, N. (1989) Knowledge based Application in Engineering Design: Research

at MIT AI Magazine, Fall 1989, pp. 79-95.

The New Encyclopaedia Britannica, Volume 4, Macropaedia l fifth Edition, 1988, p33 .

The Haley Enterprise, (1992), Answers to Common Questions About Al. Available WWW

http://www.haley.com/197475 7313845250/PDF/AnswersToCommonQuestionsAbo

utAI.pdf

Topping, B.H.V., Jadid, M., & Kumar, B. (1991) Artificial Intelligence and Structural

Engineering: A Bibliography. In B.H.V. Topping (Ed.), Artificial Intelligence and

Structural Engineering, Civil_ Comp Press, Edinburgh:UK, 1 991, pp295-3 20.

Tsang, C.H.K., & Bloor, C., (1994), A Medical Expert System Using Object-oriented

Framework. Proceeding 7th Annual IEEE Symposium on Computer Based Medical

Systems.

222

The Application of Object-Oriented Techniques to Preliminary Design Problems

Turk, Z. Isakovic, T. and Fischinger, M., (1994), Object-Oriented Modeling of Design

Systems For Re Building. Journal of Computing in Civil Engineering, Vol. 8, No 4,

October 1994, p. 479.

Wasserman, A.I., Pircher, P.A., & Muller, R.J., (1990), The Object-Oriented Structured

Design Notation for Software Design Representation. IEEE Computer, March 1990,

pp. 50-62.

Wirfs-Brock, R., Wilkerson, B. , & Wiener, L., (1990), Designing Object-Oriented Software.

Englewood Cliffs, New Jersey: Prentice Hall.

223

The Application of Object-Oriented Techniques to Preliminary Design Problems

APPENDIX A Functional Requirements

The following table lists the functional requirements drafted for the new design tool,

referred to as the NOV A prototype system.

SUBTASK SYSTEM FUNCTION

Specification Check Design Parameters

The Check Design Parameters function is required to allow the user
to input and review the default design parameters in the knowledge
base and to ensure that they are appropriate to the type of design
envisaged by the user.

Review Evaluation Features

The Review Evaluation Features system function is required to allow
the user to input and review a series of evaluation features also
referred to as soft constraints for each structural subsystem. Each
feature has an associated set of numerical variables, which are set up
in the form of design targets. The user is required to review all
variables and determine for each one whether or not it will be used
for the current design, ie. ' set' and if so whether the parameter to be
minimised, maximised or optimised or whether a set figure is to be
achieved.

Input User Requirements

The Input user requirements system function is required to allow the
user to input and review the specifications from which the new
building is to be designed. The specifications include a list of the
owner's requirements, which includes the type of building, location
and dimensions. The user is also required to enter values for the
loadings imposed on the floor and the wind loading acting on the
sides of the building.

Formulation Design Vertical Subsystem

The Design Vertical Subsystem system function is required to
address the first of the two major tasks of preliminary structural
design, which is to select the vertical structural subsystem.
This subsystem must be designed to resist lateral wind and
earthquake forces.

The system is required to provide three potential types of 2D
vertical subsystems; these are wall subsystems and rigid and
braced beam and column frames. In the design process they are
conceived as 2D, wholes that act to pick up loads from the
horizontal subsystems and also act to resist the horizontal,
laterally acting forces.

224

The Application of Object-Oriented Techniques to Preliminary Design Problems

Formulation The horizontal subsystems must be supported by the vertical
(continued) subsystems, likewise the vertical subsystems, which are

generally slender in nature and unstable, must be held in place
by the horizontal subsystems.

The system is required to select all possible combinations of the
subsystems available in the knowledge-based and subsequently to
eliminate any infeasible design proposals. The system simulates the
designer's decision-making process, which uses heuristic knowledge.
The design process is a series of steps at which alternative designs
are produced repeatedly with greater levels of detail.

Get Assumed Sizes

The Get Assumed Sizes function is required to estimate values for
the overall floor depth, including beam and slab values. The function
is based upon the one in the DOLMEN system and it performs a
similar action. The function simulates the design processes for
reinforced concrete structures as recommended in the 'Manual for the
Design of Reinforced Concrete Building Structures ', Institute of
Structural Engineers (1 985), except in the case of rigid frame
designs. These processes were written to effect designs in accordance
with the British Standards Structural Codes of Practice, BS 1 (1985,
1) , BS8 1 10 : Part 1 : 1 985 and BS 1 (1 985, 2), BS5950:Part 1 : 1 985.

For reinforced concrete buildings the system is required set the
floor depth, slab depth and initial beam depth and for steel
buildings to set the slab type, floor depth, slab depth,
intermediate beam spacing and steel deck unit.

Set Initial Sizes

The Set Initial Sizes system function is required to set the initial sizes
for the beam and column sections.

Detail Vertical Subsystem

The Detail Vertical Subsystem system function is required to assess
proposed structural configurations for loading and sizing, with
reference to relevant building codes and to select or eliminate them.

Detailing is required after completion of the final level of the vertical
structural subsystem, which is the Vertical_ 2D _Wide_ Location level.

The system simulates the engineer's design process, completing
approximate analysis, detailing and subsequent checking. The
system initially selects an appropriate loading then applies it to the
structural configuration. Then it calculates the displacements and
forces on the structural members and then it selects initial sizes for
the beams, columns, slabs and walls, which make up the different
configurations and then analyses them, using heuristic rules.

225

The Application of Object-Oriented Techniques to Preliminary Design Problems

Formulation Design Horizontal Subsystem
(continued The Design Horizontal Subsystem system function is required to

address the second of the two major tasks of preliminary structural
design, which is to select the horizontal structural subsystem. This is
a frame of floors, beams and columns, which must be designed to
resist the building's gravity loading. It is described in Lin (1981) as a
2D whole that acts vertically to carry the floor or roof loads in
bending mode, and that acts horizontally as a diaphragm and/or
column connector.

The system is required to form horizontal subsystems from a wide
range of combinations of flat plates, ribbed slabs, reinforced
concrete, slabs and beams, waffle moulds, precast units and
composite steel decking.

Detail Horizontal Subsystem

The Detail Horizontal Subsystem system function is required to
assess proposed floor systems for loading and sizing, with reference
to relevant building codes and to select or eliminate them.

Detailing is required after completion of the final level of the
building hierarchy, which is the Intermediate _Beams level. As with
the vertical subsystem, the system simulates the engineer's design
process, completing approximate analysis, detailing and subsequent
checking.

Several floor system options are available and different detailing
processes are required for them. In the case of reinforced concrete
slabs, the system initially sets values for the slab depth, floor depth
and the maximum moments on the slab in the X and Y directions. It
then calculates the area of steel in the slab and in the comers of the
slab in the X and Y directions and the mass of steel in the slab per
cubic metre.

Evaluation Evaluate Vertical/Horizontal Subsystem

The Evaluate Vertical Subsystem and Horizontal subsystem system
functions are required to calculate the values of the different
evaluation features. The appropriate features are identified based on
the initial selection made by the user and the values are calculated
using the appropriate methods attached to the feature objects in the
system.

Produce Evaluation Report

The Evaluation Report system function produces a report in
columnar form, which displays for each whether or not the feature
has been selected for use in the evaluation, the minimum and
maximum values, the objective of the target and its importance value.

The report then displays the feature values for each proposed design,
including the feature value, the percentage optimisation achieved for
the value and the weighted value of the feature's evaluation score.

226

The Application of Object-Oriented Techniques to Preliminary Design Problems

Evaluation The also ranks the proposed designs and displays the top n designs,
(continued) where n is a value preselected by the user. The display is presented

in a transcript window in the centre of the main session window.

User Produce Design Reports
Interface The Design Report system function also produces a transcript

window report in the centre of the main session window. The
function displays key design details for designs, which the user can
request via a window dialog. The display overwrites anything
previously displayed in the window.

Table A.1 List of functional requirements.

During the high-level analysis stage the writer identified twelve system functions. The

requirement specification stage, which is described in section 6.3, followed on from the

high-level stage and was designed to provide more information about each function,

including the lower level processes within each function. During the requirements stage the

writer identified twenty-eight different key design processes, which were required to

support the twelve major functions of the new system.

Due to the limited size of this report, the writer has not included details of all twenty-eight

processes in the report. However, Detail Braced Frame Narrow Options, one of the key

processes required to support the Detail Vertical Subsystem function is described below as

an example of how the requirements were documented.

SUBTASK Formulation

SYSTEM FUNCTION Detail Vertical Subsystem

Definition

• The design tool has an initial series of 'test and eliminate' functions, which have been written
for designs at each level in the building hierarchy and which are used in the first instance to
prevent unlikely designs being added to the search tree. They use heuristic knowledge to delete
alternatives without further study, however, they do not invoke the inference engine and no
production rules are used.

The detailing process is a secondary level of testing, which weeds out those designs that are not
structurally sound and which is applied to designs, which are not eliminated at the outset. This
type of testing requires a more detailed look at the design and invokes the inference engine

227

The Application of Object-Oriented Techniques to Preliminary Design Problems

referring to a set of rules designed to check design alternatives . The inference engine is invoked
by a checking function, which calls the system's forward chaining mechanism.

Detail Vertical Subsystem Process Flow (see figure A.1)
• The Detail Vertical Subsystem function consists of processes for six particular designs :

• Detail Braced Frame Narrow Options;
• Detail Rigid Frame Narrow Options;

• Detail Shear Wall Narrow Options;

• Detail Braced Frame Wide Options;

• Detail Rigid Frame Wide Options;

• Detail Shear Wall Wide Options

• Listed below are the major steps in the Detail Vertical Subsystem process for a particular design :

• Select Design Parameters;

• Estimate Initial Sizes;

• Calculate Loadings;

• Select Loadings;

• Check Design .

Detailing involves calculating estimates for the physical components. Subsequent testing then
relies on the ability of the system to locate suitably sized steel sections in the steel sections
database. If the system is unable to locate a section big enough, then it marks the design to be
eliminated.

There are two subsets of detailing functions, those required for the vertical subsystem and those
required for the horizontal. Detailing is applied to the vertical subsystem when the locations of
the structural alternatives have been selected, ie. at the Vertical_2D _W_Location_Level. For
the horizontal subsystem or floor system, it is performed when the locations of the support and
intermediate beams have been decided and the floor system has been designed.

The vertical subsystem detailing functions contains functions to detail the three vertical
structural subsystem options: braced frame, rigid frame and shear wall.

The system requires a series of rulesets for checking the validity of roughly designed
alternatives. Some checks are concerned with the satisfaction of the most important parts of the
structural codes. These rulesets are shown in table 9 . 1 . They also check that designs are of
reasonable dimensions, which have been predetermined during the specification stage.

The rulesets all have names of the form Rs_For _Chk_Det_xx_Alts, where xx is the name of the
option to which the ruleset relates. Each detailing function calls the Check_ Design function to
test the designs at various stages in the process. The function is always called with a parameter.
For example, when rigid frame checking is required the function call is coded
Check_Design(Bldg, RF); the parameter RF indicates that the function is to use the ruleset
Rules _For_ Checking_ Detailed_ RF _4/ternatives.

Check_ Design uses the appropriate rule from the Rules _For_ Checking_ Detailed Alternatives to
check and eliminate any unsatisfactory design . Every time a function needs to check if a steel
section has been found, then Check_ Design is called with the parameter Element and it refers to
rules et Rules _For_ Checking_ Detailed_ Elements _Alternatives, which contains one rule
RI _About_ Steel Sections. This check is used with all design option tests to ensure that a section
has actually been found.

228

The Application of Object-Oriented Techniques to Preliminary Design Problems

/T\\
U V

Design
Synthesis

Figure A.1

Detail_Braced_Frame
(Building)

Detail_ Braced_ Frame_
Beam(Building)

Detail_Braced_Frame_
Column (Building)

Detail_Braced_Frame_
Diagonal (Building)

Detail Braced Frame options

Detail
Support
members

In the Detail_The_Vertical_Subsystem process flow, there are two common series of functions,
which are executed for all design options, and which estimate the floor and beam and column
sizes. Then three alternate process flows are used for detailing the rigid frame, braced frame and
shear wall partial designs.

When the Detail _Vertical_ System input button is selected, the detailing function is called and an
initial list of items to be designed and analysed, Global:New _ Designs _In_ Vert_ 2D _ W_ Loe is
created. This list consists of the partial designs on the fringe of the search tree, which have been
created at the Vertical_2D _Wide_Location_Level of the hierarchy. Each item on the list is
detailed in tum; the Kappa messaging facility is used to initiate the appropriate design method.
This messaging system is described later in this section.

Details of the design and programming of the detailing function for Braced Frame options are
reproduced below. Similar functions are applied to rigid frame and shear wall partial designs;
however, their descriptions have not been included in this report.

The system should be support the following major steps associated with processing detailing for
braced frame options.

229

The Application of Object-Oriented Techniques to Preliminary Design Problems

Detailing of Braced Frame Design Options

For the purposes of this model the braced frame was treated as a vertical truss, where the
columns act as chords and the bracing acts as diagonals in a K shape. The arrangement of
uprights, horizontal members and diagonals was deemed to be as shown in Figure A.2.

wk�

Wind
load

Figure A.2

a angle of the
diagonal

width of frame

Braced Frame Construction

h'
l

h' height of frame

H

H height of
building

Joists were not designed and the beams and columns were Universal Beam Sections and
Universal Column Sections; the diagonals were formed by using two equal angle sections. The
overturning moment due to the wind load was assumed to be equally distributed to all the braced
frames. Only the most heavily loaded frame was designed, furthermore, only columns for the
bottom storey were designed. This is in contrast to the design strategy used in HI-RISE, which
designs one column every 'n' floors.

Sizing. Uplift; the wind load acting on the side of the building causes an overturning moment,
which must be resisted by the reaction R, shown in Figure B . 10, to provide a stable structure.

Wind load wk�

I
uplift

R resistance to uplift

Figure A.3 Resistance to Wind Load

230

The Application of Object-Oriented Techniques to Preliminary Design Problems

The download reaction must be provided by the dead load, and thus the dead load in the column

must be greater than the uplift to prevent overturning. The uplift was calculated as:

Uplift = wind load x (height ofbuilding)2 x width of building = wk H2 B

2 x number of frames x width of frame 2nfL

An overview of the process, used to detail braced frame options, is shown in Figure
C.3 .
After the initial sizing had been completed, the first detailing function called, which
was specific to detailing braced frame options, was the function Detail _Braced _Frame.
This function first checked to see if the aspect was narrow or wide. Then it calculated
or set the following variables:

• width of building perpendicular to frames,

• width of frame,

• weight of column,

• type and location.

It then started a looping process, which continued until the slot, used to flag the function' s
termination condition; Detail_Status was either set to Satisfactory or to Deleted. Inside the loop
the program calculated the following variables :

• dead load estimate,

• number of frames,

Then using the dead load estimate the function calculated the

• dead load on columns,

• uplift.

The function then called the Check_ Design function with the Braced Frame parameter (BF) to
determine the Detail_ Status. The Check_ Design function referred to the 2 rules, which were
written for checking detailed braced frames. These rules are used to check whether or not uplift
was greater than dead load. If the uplift was greater then the Detail_Status was set to
Unsatisfactory and a function was called to increase the sizes of beams and columns. The new
sizes were then fed back into the looping process.

With regard to the wind load, the uplift had to be less than the dead load calculated using the
appropriate steel sections, and if it was not; larger, heavier sections were to be selected, until the
dead load was greater than the uplift. If that proved to be impossible, the design alternative in
question was deleted. When a suitable section had been chosen, the function passed control to
the next function in the sequence, Detail_Braced_Frame_Beam, which initially calculated the

• live load estimate as follows:

Live Load Estimate +-- -

• moment in the beam,

lmposed_Load * 1 .6 *
Width_Of_Bay_Perp_To_Frame *

Largest_Number_Of_Area_Units * 0.5 *
Width_Of_Frame

231

and

The Application of Object-Oriented Techniques to Preliminary Design Problems

Moment In Beam +- Live Load Estimate + Deadload Estimate - - -
* 1 .4 * Width Of Frame

I 8.0

• design strength of steel, and then

• the SXX parameter

It then chose a steel beam section using the SXX parameter. Again the Check_Design function
was called to ensure that a section had been selected, and if so, the function continued and then
re-calculated a new live load estimate, then it re-calculated the dead load estimate and the depth
of the beam, for which it called the function Get_ Steel_ Section_ Value, with the parameter set to
'depth ' . If the detail status, as determined by the Check_Design function, was Satisfactory, the
function then called the next function in the sequence, Detail_ Braced _Frame_ Column. If the
detail status had been set to Delete then the design was eliminated from further consideration.

The next function in the sequence, Detail_ Braced _Frame_ Column, initially calculated

• dead load on column,

• imposed load on the column,

• axial load on the column as follows:

Axial Load Due Wind Load Column +- Wind Load * - - - - -

and then,

• force in the column.

Force In Column

Next it calculated the:

• slenderness ratio,

+-

Width_ Of _Perp _To_ Frames

* Height 2
/ Width_ Of_ Frame

* 2 * Number Of Frames Narrow - - -

Max(Deadload_On_Column* 1 .4

+ lmposed_Load_On_Column * 1 .6,

Deadload On Column * 1 .2

+ lmposed_Load_On_Column * 1 .2,

Axial_Load_Due_ Wind_Load_Column * 1 .2)

• compressive strength of the steel in the section, and then

• assumed radius of gyration of the column, and

• compressive strength of the steel in the column,

It then calculated the area of steel required in the column using the ratio of the force in the
column divided by the compressive strength of steel in the section, then it chose a new section,
using the area parameter and finally it checked the design. If the detail status of the design was
Satisfactory, it then called the next function in the series, which was
Detail_ Braced _Frame _Diagonal.

232

The Application of Object-Oriented Techniques to Preliminary Design Problems

This function selects the diagonal sections. This selection is based on a calculation of the force
in the diagonals. First the function calculates the base shear, V, which is found from the
following relationship:

V = wk * H * B

where:

wk

H

nf

wind load

height

B

Nf =

width of the building perpendicular to the frame

the number of frames

a = the angle shown in Figure B.9

The force is then found from the relationship:

F<liag = base shear on the frame

2 sin a

F<liag = V * 1 = wk * H * B

2 sin a nf2 sin(tan-1 (2 h'/L)

This value is then calculated in the following steps :

Width Of Frame � Narrow Dim

Width_Of_Bldg_Perp_To_Frames � Wide_Dim * Number_Of_ Wide_Bays

* Width Of Frame

Height

Sine_Alpha

Force_ In_ Diagonal_ Narrow

�

�

�

Total_Height

Sin(Atan(Height

/ ((Number_Of_Stories)

* Width Of Frame * 0 .5))))

(Wind_Load)

* 1 .4 *
Height)

Width_Of_Bldg_Perp_To_Frames *

/ (2 * Sine_Alpha * Number_Of_Frames_Narrow

)))

Having calculated the force in the diagonal the function then:

• sets the slenderness ratio to 400 to 1 ,

• computes the area of reinforcement required in the section using the relationship

Area � Force_ In_ Diagonal_ Narrow

23 3

The Application of Object-Oriented Techniques to Preliminary Design Problems

/ (100.0 * 100.0 * 2.0))

then it sets the compressive strength of the section to I and then the function enters a
looping process, whereby it resets the slenderness ratio as the maximum of

I) 0 .85 times the length, divided by the radius of gyration about the x axis, and

2) the sum of 0.7 times the length, divided by the radius of gyration about the x axis
plus 30.00

3)

The designer of DOLMEN attributes this relationship to clause 4.7 . 10.3 ofBS5950. The
following pseudo code reflects these computations:

Length *- Sqrt((Storey_ Height) 2·0
)

Diag_RXX *-

Slenderness Ratio *-

+ ((0.5 * Width_Of_Frame) 2·0))

Get_Steel_Section_ Value(Diagonal,

Diagonal_ Section_ Narrow,

Radius_Of_Gyration_XX))

Max((Lengthl * 0.85) I (Diag_RXX * 10 .0),

((Length! * 0.7) / (Diag_RXX * 10 .0))

+ 30.0))

The function then chooses a section with the required area, which is calculated after making the
assumption that the design stress is 100 N/mm2

. If this yields a column with slenderness greater
than 1 80, then a section with slenderness as close as possible to and under 1 80 is chosen. When
a section has been chose, the detailing of the braced frame design option is complete and the
function calls the Approximate_ Supports_ Detail function to detail the supporting beams. If a
section cannot be chosen design is eliminated from further consideration.

The process may be summarised as follows:
/***/

Detail_Braced_Frame for selected Building

/***/
• calculate Width_ Of_ Building_Perp _ To _Frames using Wide _Dim * Building: Wide_ Bays
• calculate Weight_ Of_ Column using Get_ Steel_ Section_ Value(Column, Column_ Section_ Narrow ,

Mass_Per_Metre)
* 9 .8 1 * 0.00 1 * Storey_ Height

• repeat until Design_ Status is equal to Satisfactory or Design_ Status is equal to Deleted
• calculate Dead_Load_Estimate using the Calculate_ Dead_ Load_ Estimate_ For_ Braced_ Frame

function (which calculates the largest dead load due to floor and beams on an area unit in knewtons)
• calculate Height using Building:Total_Height

• calculate Uplift using

Wind_Load * 1 .4 * Width_Of_Bldg_perp_To_Frames

234

The Application of Object-Oriented Techniques to Preliminary Design Problems

* (Height)"2 / (2 * Width_Of_Frame * Number_Of_Frames

• calculate Deadload _On_ Column using

(Deadload_Estimate_Narrow * 0.5) + Weight_Of_Column)* (Stories)

• reduce the value ofDeadload_On_Column by 10 .0

• set the value of Design_ Status using function Check_ Design Building using parameter Braced_ Frame

Check_Design uses the following rule to check the design for uplift.
/*************************************

RULE: R2_For_Braced_Frame

Uplift greater than dead load
*************************************!

MakeRule(R2_For_Braced_Frame, [],

Altbldg: Uplift _Narrow > Altbldg:Deadload _On_ Column _Narrow,

SetValue(Altbldg:Detail_Status, Unsatisfactory));

SetRuleComment(R2_For_Braced_Frame, "Uplift greater than dead load");

• if Design_ Status is equal to Unsatisfactory

then call function Increase_ BF_ Sizes(Bldg)

• if (Design_ Status is equal to Satisfactory)

then call function Detail_ Braced_ Frame_ Beam(Bldg)

else eliminate the design
/**!

Detail_Braced_Frame_Beam for selected Building (for the Narrow perspective)
/**!

• assign Width_Of_Bay_Perp_To_Frames the value Wide_Dim

• assign Width_Of_Frame the value Narrow_Dim

• assign Dead_Load_Estimate the value Dead_Load_Estimate_Narrow

• calculate Live_ Load_ Estimate using

Imposed_ Load

* 1 .6 * Width_Of_Bay_Perp_To_Frame

* Largest_Number_Of_Area_Units

* 0.5 * Width Of Frame

• assign New_Dead_Load_Estimate the value Dead_Load_Estimate

• repeat until the Design_ Status is equal to Deleted or until Design_ Status is equal to Satisfactory

• increment the loop counter

• if loop counter >= 1 then assign Beam_Section the value ofNew_Beam_Section

• calculate Moment_ In_ Beam using

Live Load Estimate

235

The Application of Object-Oriented Techniques to Preliminary Design Problems

+ (New_Deadload_Estimate * 1 .4) * Width_Of_Frame / 8.0

• set the value of Design_ Strength_ Of_ Steel using the function Cale_ Design_ Strength_ Of_ Steel(
Beam_ Section_ Narrow, Beam)

• set the value of SXXParm to Moment_ In_ Beam / Design_ Strength_ Of_ Steel

• find the New_ Beam_ Section_ Narrow using the function Choose_ Steel_ Beam_ Section_ SXX(SXXParm)

• set the value of Design_ Status using function Check_ Design Building using parameter Elements

The function uses the following rule to determine whether or not a steel section has been chosen.

/************ *** ************** **** * * **

** ** RULE: Rl_About_Steel_Sections

******* ******* * * ************* * ** * ** **/

MakeRule(Rl_About_Steel_Sections, [] ,

Altbldg:Test_Section #= Nil,

SetValue(Altbldg:Detail_Status, Deleted));

• if Design_ Status is equal to Satisfactory

then calculate New_ Dead_ Load_ Estimate using function
Calculate_ Dead_ Load_ Estimate_ For_ Braced_ Frame Building

• ifNew_Beam_Section is equal to Beam_Section or

loop counter >= 10 and New_Dead_Load_Estimate < Dead_Load_Estimate

then assign Design_ Status the value Unsatisfactory

increment loop counter

• if Design_ Status is equal to Satisfactory

then assign the value of Dead_ Load_ Estimate_ Slot New_ Dead_ Load_ Estimate

• assign the value ofBeam_Depth with the value Get_Steel_Section_ Value (Beam New_Beam_Section,
Depth)

• call function Change_ Steel_ Beam Building (New_ Beam_ Section) to input the new beam section.

!**!

Detail_Braced_Frame_Column for selected Building
!**!

• assign the value of Width_Of_Building_Perp_To_Frames to Wide_Dim * Wide_Bays

• assign the value of Width_Of_Frame to Narrow_Dim

• assign the value of Width_Of_perp_Bay to Wide_Dim

• assign the value of Dead_Load_Estimate to Dead_Load_Estimate_Narrow

• assign the value of Dead_Load_On_Colurnn to Deadload_On_Colurnn_Narrow

• assign the value of Height to Total_Height of the Building

• calculate Imposed_ Load_ On_ Column using

Imposed_ Load * Width_ Of_ Perp _ Bay
* 0.5 * Width Of Frame * Stories

• calculate Axial_ Load_ Due_ Wind_ Load_ Column using

236

The Application of Object-Oriented Techniques to Preliminary Design Problems

Wind_Load * Width_Of_Bldg_Perp_To_Frames

* (Height)" 2 / Width_Of_Frame *
2 * Number Of Frames Narrow

• calculate Force_ In_ Column using
- - -

Max(Deadload _On_ Column

* 1 .4 + Imposed_Load_On_Column * 1 .6 * Deadload_On_Column * 1.2

+ Imposed_ Load_ On_ Column * 1.2 Axial_ Load_ Due_ Wind_ Load_ Column * 1.2
• select Column_Section using function Choose_Steel_Column_Section_Area(Force_In_Column I 100.0 *

100.0
• calculate Slenderness_Ratio using

Clear_ Height * 1

I Get_ Steel_ Section_ Value(Column, Column_ Section, Radius_ Of_ Gyration_ YY)

I 10.0
• if Slenderness_Ratio >= 1 80.0)

then calculate Assumed_ Column_ Radius_ Of_ Gyration using

(Round5 Building:Clear_Height * 1 .0 I 1 80.0)
• select Column_ Section using function

Choose_ Steel_ Column_ Section_ With_ Radius_ Of_ Gyration(
Assumed_ Column_Radius_Of_ Gyration / 10)

• assign the value of Building Column_Section_Slot Column_Section)
• calculate Design_ Status (Check_ Design Building Elements))
• if Design_ Status is equal to Satisfactory

• then increment the loop counter
• repeat until the Design_ Status is equal to Deleted or until Design_ Status is equal to Satisfactory

• assign Compressive_Strength_Of_Section the value 1
• If New_ Column_ Section is equal to Column_ Section or

loop counter >= 10 and

Get_Steel_Section_ Value(Column,Column_Section, Area) <

(Force_ In_ Column / Compressive_ Strength_ Of_ Section I 100.0)))
• if loop counter >= 1

then assign Column_ Section the value New_ Column_ Section

• calculate Slenderness using

Clear_Height * 1.0

I Get_ Steel_ Section_ Value (Column, Column_ Section, Radius_ Of_ Gyration_ YY)

* 10.0
• calculate Compressive_ Strength_ Of_ Section using

function Calc.Compr.Str.Of.Steel.In.Column(Slenderness, Column_Section,
Column)

• calculate New_ Column_ Section using

237

The Application of Object-Oriented Techniques to Preliminary Design Problems

Get_ Steel_ Section_ Value(Column, Column_ Section, Area, Force_ In_ Column I
Compressive_ Strength_ Of_ Section /100.0)

• assign the value of Building Column_ Section_ Slot the value Column_ Section

• Detail_ Braced_ Frame_ Diagonal Building

/**/

Detail_Braced_Frame_Diagonal for selected Building
/**/

• calculate Width_Of_Building_Perp_To_Frames using Wide_Dim* Wide_Bays

• calculate Width_Of_Frame using Building:Narrow_Dim

• calculate Height Building:Total_Height))

• calculate Sine_Alpha using Sin(Atan(Height / Stories * Width_ Of_Frame * 0.5))

• calculate Force_In_Diagonal_Narrow using

Wind_Load * 1 .4 * Width_Of_Bldg_Perp_To_Frames* Height) / (2 * Sine_Alpha *
Number_Of_Frames_Narrow)));

• assign Slendemess_Ratio the value 400.0

• calculate Areq using BFVar:Force_ln_Diagonal_Narrow / (100.0 * 100.0 * 2.0)

• repeat until Slendemess_Ratio >180.0

• assign Diagonal_ Section using the function Choose_ Steel_ Diagonal_ Section_ With_ Area(Areq)

• calculate Lengthl using Sqrt(Storey_Height) I\ 2.0) + ((0.5 * Width_ Of_Frame) I\ 2.0)

• calculate Diag_ RXX using

Get_ Steel_ Section_ Value(Diagonal,Diagonal_ Section_ Narrow, Radius_ Of_ Gyration_ XX)

• calculate Slenderness_ Ratio using

Max((Length! * 0.85) / (Diag_RXX * 10.0),

((Lengthl * 0.7) / (Diag_RXX * 10.0)) + 30.0));

• assign the value of Areq to Areq + 1

• calculate Design_ Status using function Check_ Design Building Elements

• if Design_ Status is equal to Satisfactory

• then increment the loop counter

• repeat until the Design_ Status is equal to Deleted or until Design_ Status is equal to Satisfactory

• repeat until the New_Diagonal_Section_Narrow is equal to Diagonal_Section _Narrow and

loop counter < 10 and

Get_Steel_Section_ Value(Diagonal, Diagonal_Section_Narrow, Area) >

(Force_In_Diagonal_Narrow / (Compressive_Strength_Of_Section * 1 00.0 * 2.0

if loop counter >= 1

then assign the value of Diagonal_Section to New_Diagonal_Section

• calculate Length! using Sqrt(Storey_Height) I\ 2.0) + ((0.5 * Width_Of_Frame) I\ 2.0)

• calculate Diag_ RXX using

Get_ Steel_ Section_ Value(Diagonal,Diagonal_ Section_ Narrow,Radius _Of_ Gyration_ XX));

238

_......

The Application of Object-Oriented Techniques to Preliminary Design Problems

• calculate Slenderness_ Ratio using

Max((Length! * 0.85) / (Diag_RXX* 10.0),

((Length} * 0.7) / (Diag_RXX * 10.0)) + 30.0));

• calculate Compressive_ Strength_ Of_ Section

using function Cale_ Compr _ Str _Of_ Steel_ In_ Column(Slendemess,
Diagonal_ Section, Diagonal))

• calculate New_Diagonal_Section using

function Choose_Steel_Diagonal_Section_ With_Area

(Force_In_Diagonal / Compressive_Strength_ Of_Section) * 1 00.0 * 2)

• assign the value of Building Diagonal_Section_Slot Diagonal_Section))

• check if the system is detailing at the Vertical_ Subsystem level and if it is call the function
Approximate_Supports_Detail to start sizing and checking the Building' supports.

239

The Application of Object-Oriented Techniques to Preliminary Design Problems

APPENDIX B System Notes

The following section contains rough workings and informal diagrams

t 'D-;¥= -\{c-,k J - �g;f\

.. f" t: u___. s

1 1 3

i-

I)..},-

• ., I- �

..... � ,,._.... ., ... 1 · ��1 If. 1.'- .. P-..J A / tt-, I - \ \ I � I I - 7
If- l.h

aA � - - --- - - --- --

- j\ IA � • _/\ ,{,£ '2. W.,4 I ;

�

-
1 J)<U 4

-
-

- --
--- -

-
- -� - � Q.Jl(J�� ,' . .,, ·· ·· · - - --�-�r:: 'uh..J � ,._J

.

�--!
- . . -----

Q..J,., {3........ 1>-: µ,,-..�. - - ---,-- �--�------- - -- ---
.p;1}� b D-� \(k'f' :6;¥ ��=-� ------�-
- ---- - - - - -

Figure B.1 Top level functional model for Design Vertical Subsystem process

240

The Application of Object-Oriented Techniques to Preliminary Design Problems

''t°....-Sl&-1 -� .. .,,;..:· �

.. cp

97

BF

·- -� ----· -- - --
---- -

�·· � .. ··.··� ···· •. t.� 7. �c�;;;;;;�{ ==�==-�· .. .····�· ··
, - 1 -?- ..b----<-f;:..__ --> --<:;;: r··----------·----

- - ,_ -J_TaJ,-�-��-t'-=-�)------�-- --�-"'/=��{At�- ��
-""F=--=cc--=""""---�----?.- -·-------------- ---------------------·

. ---,�fb:.,.!._

'· .-.�����. � ���·� ·
Figure B.2 Functional Model for the Detail Braced Frame process

241

The Application of Object-Oriented Techniques to Preliminary Design Problems

� 2.B'
n.-

"' Artt;. ·

e� v.....r1� \
'\

"•-t n::: A
Lo

;
"-<-ib- ···

.
v.; •. �..

/ \ ; � ·� �
-r vur, o- - \t- --�t:.'2\'L'"' v,,,,,-_.,_ ,'b,11,� ·· {.J- H M1i.. ..

_,.- �/\.,,)tjr�7,1-'"" -�" at�
.......

�'3 11) e

V..,t-_,.P • ..S

-
���---- - /!/\ /A"-

___ ,._ I.;,._� -- · - ---· -- --- ------· -- ·

.. - - - - '51,,,...-t D • .s �- -- ·
; •. • n. ,o f'.l ... l.c ci.,,., .. B....:\4·...-- I

· · � � ;;=;��'"' ••..
��---· - .

"c..--\" _ '>�

�.� - �· . a...--..t":-�d"" -'-'
v,.c ?,'b

. . . !Hr ._ � 5-i.,......;__�k- i'-L-T�_e_._�bc.,..'tr·-- ttd 9' _ . s

_: :. - ==�-;:J�.,.�: .")
. C . ----·----------a-.,_� kH -_ , � ,.A- . --

�-�z,- _ L.--\ ""�""-�_r::} _-:> l,-. t--- 4.,_.,,�-�

-

,..�--S..J- ..
C '-' -Ml-<>. , :::,

I>,,.!- 45 ...J.t-,. _ I _..... -� � .. ;.r (;��:�,1� � -:�- __ :� =����-=:=�==�:-:-==:_-' �- - --
. £-... F--c t2c� c � c.'- � �-�.:;_?)h':;J=':_'� � --=�� -- .

-S ..1<1:,--' "" ..h,. __ ... _ .cl- . . -1 .,t" ..,_Cr ,-lc..-,.�
O-

- o-, __ f:!.t, __ 1""·-e __ t_ __ � � �-�

; -----·- . . - .
-

· · ·� - .• ·-·----· ---·---·- - ..

.

·-·-·-- . . . - -· - \/.,;.k.!2-\>c.N··-----·--- ·----·-·--- --
-

--- -·-- -···· ··· ·- --- -� tl...µ.� � - c...-..t-.Jl-��ts--1 � ,ts- 4._._ __ Pf _ P...k_.,. _ _ Bc _l:. •• ,. . , �
_ �-- ·, f'._J- .s;.;i,.c.t....-. '<) . . -�- De..,--� ----� O&!.,a----� - 9..l.�--

- >,� - ��'""'a-�1,...,-.t. g� =-,e..__i.,lt->_�r-----

Figure B.3 Workings for inheritance relationships

242

J,&

The Application of Object-Oriented Techniques to Preliminary Design Problems

i'J'\ �

,,,

��!_ ·
=- .. � '

' � l. - I : I : ' ...1- i- : I !

� "\���:\� ��1;
����-t · £��

�� \ "�'\�i ���i)
�t� r f\, � t, -�

� � -
J ' �

\"Z-� _V
Jc:.- C::- � or..,..

� !1.. �
�>v, � \.�\
-'}:,..,.%.\.

··i -,

---� .

� ;J,.,,��
�\)),\;�

. �\ \-;

� Ula) �
q p �

·.;t ��- / · �-
�=-:-: _ __ '•,, � - , ,

=1
<i5 ·:£; u

• ' • ' I • \ '

+--'-· -� -- •· i, L • - -:� . �

: c!J .1L':_J 1 �\�t!J 8� r'l
I J i J. j �. �

.:J . �
i-,

I i • I

' i
i

= -::i:
p. ""' r'

>\l
·a

I �

Figure B.4 Workings made to establish the inheritance links between objects.

243

The Application of Object-Oriented Techniques to Preliminary Design Problems

APPENDIX C Detailed Requirements

Initial Sizing in Reinforced Concrete Buildings

The following details were sourced from Harty (1987) In order to make initial estimates of

floor depth and beam and column sizes in reinforced concrete buildings the floor was

assumed to be a reinforced concrete slab supported by beams on column lines. If the larger

bay dimension was more than 1.5 times the smaller, then the slab was treated as spanning

one-way, with a span equal to the smaller bay size. Otherwise it was treated as a two-way

spanning slab. The depth of the slab was estimated as follows:

IF the slab is a flat slab and the imposed load is less than 0.0051
THEN the effective depth is found by the ratio Span /36.0.
IF the load is greater than or equal to 0.0051
THEN effective depth is Span /33.0.
IF slab is one-way and imposed load is less than 0.0051
THEN the effective depth is Span / 3 1.0.
IF the load is greater than or equal to 0.0051
THEN effective depth is Span / 28.0.
IF the slab is two-way
THEN a separate function is called to find the effective depth. This function uses
interpolation to find the correct ratio.

Beams. The effective depth of a reinforced concrete beam was initially estimated using the

ratio of span to effective depth as 15 to 1 . The cover to main steel was then added to the

effective depth and the sum was rounded up to the nearest 25 mm to give the beam depth

and the overall floor depth.

The width of a reinforced concrete beam was estimated by limiting the shear stress in it to 2

N/mm2
, which gave a width of (1000V/2d) mm where Vwas the maximum shear force in

the beam in kN, and d was the effective depth in mm. This width was rounded up to the

nearest 25 mm, and it or the minimum beam width required for the fire rating of the
244

The Application of Object-Oriented Techniques to Preliminary Design Problems

building was used, whichever was the greater. If the calculated width was greater than the

depth, then the depth was increased in increments of 50mm and the width was recalculated

until it was less than the depth.

Columns. All reinforced concrete columns were of square cross-section h x h. The initial

sizing of a column in a reinforced concrete rigid frame was estimated by assuming that the

column was short and unbraced, which meant that the ratio lelh must be less than 10 to 1.

The effective height le was calculated as 1.2 times the clear height. The value of h obtained

from this, was rounded up to the nearest 25 mm and it or the minimum column dimension

required for the fire rating was used, whichever was the greater . All other reinforced

concrete columns were part of the horizontal structural subsystem and were designed as

short and braced. The size was initially calculated by taking the slenderness ratio (ratio of

effective length to width) as less than or equal to 15, where the effective height was taken as

0.85 times the clear height. The h value, thus calculated, was rounded up to the nearest 25

mm and it or the minimum column dimension of square reinforced concrete columns, as

determined by the fire rating, whichever was the greater, was used.

245

The Application of Object-Oriented Techniques to Preliminary Design Problems

Initial Sizing in Steel Buildings

The initial sizes for floors, beams and columns in steel buildings were estimated as follows.

When the vertical subsystem was being designed initially, the horizontal structural

subsystem was unknown and was assumed to be a steel deck topped with reinforced

concrete, and supported by steel beams. A steel deck unit was selected, together with the

spacing of intermediate beams. These were required if the decking could not span the

shorter bay dimension. In this case, intermediate beams spanned the longer dimension onto

main beams, which spanned the shorter bay dimension. Initial beam sections were then

selected using the method for steel beams described below. In contrast, when the system

designed the horizontal subsystem, the floor system had already been selected and the initial

size of the slab was found using the methods described above for reinforced concrete

buildings.

Beams. The initial beam depth was calculated by taking the span to depth ratio as 12. The

beam section with the smallest depth greater than that assumed, was then selected from the

steel section database.

Columns. All initial column sections were selected from values obtained from published

tables of Universal Columns by limiting the slenderness to 180. Slenderness was computed

by dividing the effective length by the smaller radius of gyration. The chosen section had

the smallest radius of gyration greater than that required for a slenderness of 180.

The function Find_Assumed_Steel_Sizes_Braced_Frame, (the main function), performed

the following tasks. It initially selected the beam section, first in the narrow perspective and

then in the wide. It then called the function Choose_Steel_Beam_Section_With_Depth

using the initial beam depth as the selection parameter. This function read through a list of

beam section data, which was created from the class hierarchy of steel sections, and selected

246

The Application of Object-Oriented Techniques to Preliminary Design Problems

the appropriate beam section. It then used the Check_Design function, with the parameter

Element, to ensure that a section had been found. If a section had been found, then the

function continued and calculated an assumed radius of gyration for the columns. It then

used this value as a parameter to choose a column section and again used Check_Design to

determine whether or not it had managed to select a section from the data base list. If an

appropriate section had been found, the function then called the Change_ Steel _Beam

function to update the assumed floor depth. If the function was unable to select either beam

or column sections, then the design was eliminated from further consideration and deleted

from the search tree. These actions were then repeated for the wide perspective of the

design.

The next section explains how the detailing of braced frame design options was performed.

Similar functions were applied to rigid frame and shear wall partial designs; however, their

descriptions have not been included in this report.

247

The Application of Object-Oriented Techniques to Preliminary Design Problems

APPENDIX DNOVA Functions

The following tables list the KAL functions used in NOV A.

General Functions

Calc_Buckling_Resistance_Of_Steel_In_Col [Column_Sect ion]
Calc_Compr_Str_Of_Steel_In_Col [Section]
Calc_Percent_Optim []
Calc_Total_Bldg_Cost [Test_Li st , Fn]
Calc_Total_Bldg_Cost [Test_List , Fn]
Calc_Des ign_Strength_Of_Steel , [Section Type]
Check_Des ign_Parameters []
Check_I f_Ready []
Check_If_User_Loc [Locations_Clas s]
Choose_Steel_Beam_Section_Wi th_Depth_Method [Depth]
Choose_Steel_Beam_Section_With_SXX_Method [S_XX]
Choose_Steel_Column_Section_With_Area_Method [Area]
Choose_Steel_Column_Section_With_Radius_Of_Gyrat ion_Method []
Choose_Steel_Diagonal_Section_With_Area_Method ,
Copy_To_Hori z [Unit , Slot]
Create_New_Units []
Current_Sys []
Detai l_Bldgs []
Evaluate_Alternatives []
Evaluate_Bldg_Method [Bldg]
Evaluation_Display_Method []
Find_Best_Alternatives []
Find_Alt_Name [Part Bldg]
Find_Next_Loc_Alt [Loc_Alt]
Get_Steel_Section_Value [Type , Section , Slot]
Hori z_Sys_P []
Median_Calc_Costs [Test_Li st , Cost_Slot]
Median_Target_Costs [Test_Lis t , Fn]
Multiple_P [X , Y]
Rc_Bldg_P [Bldg]
Rccoldesign [Fcu , Fy , Danh , Nonbh, Monbhh]
Review_Evaluation_Features_Method []
RoundO l [Realnumber]
Round2 5 [Realnumber]
Round_2_Places [Realnumber]
Rounds [Realnumber]
Roundpoint2 5 [Realnumber]
Roundup [Realnumber]
Select_Reinf_Centre s , [Required_Area Max_Acceptable_Spacing
Min_Acceptable_Spacing Max_Acceptable_Diameter Min_Acceptable_Diameter]
Select_Reinforcement_Bars , [Required_Area Max_Acceptable_Number_Of_Bars
Min_Acceptable_Number_Of_Bars Max_Acceptable_Diameter Min_Acceptable DiametE
Selected_Area Selected_Diameter Selected_Number_Of_Bars]
Setup_Arrays [Type]
Set_Up_Log_File []

Sort_Steel_Children [Parent , Link_Type]
Steel_Bldg_P [Bldg]
Test_Alternatives []
Try_Next_On_List [Bldg]
Valid_2D_N_Alternative , [x y]

248

The Application of Object-Oriented Techniques to Preliminary Design Problems

[x y] Valid_2D_N_Location_Alternative ,
Valid_2D_W_Alternative , [x y]
Val id_2D_W_Location_Alternative , [x y]
Valid_Intermed_Beams_Alternative , [x y]
Valid_Material_Alternative , [x y]
Valid_Support_Beams_Alternative ,
Vert_Sys_P []

Element functions

[x y]

Acheckset [N_Or_W , Arraycol s , I , J]
Approximate_Supports_Detai l [Bldg]
Approx_Rc_Supports_Detail [Bldg]
Approx_Steel_Supports_Detail [Bldg]
Aset , [N_Or_W i j]
Calc_Axial_Load_In_Reinforced , Concrete_Column_Due_To_Cols_And_Beams []
Calc_Axial_Load_In_Steel_Column_Due_To_Cols_And_Beams [Bldg]
Calc_No_Of_Supp_Beams_Incl_Interm [Bldg]
Calc_Number_Of_Support_Columns [Bldg]
Calc_Approx_Interm_Bms [Bldg , Lx]
Calc_Load_On_Frame_Due_To_Beams [Bldg]
Calc_Load_On_Walls_Due_Beams , [Bldg]
Calculate_Numbers_Of_Approximate_Support_Elements []
Calculate_Precast_Panels_Beam_Depth_Under_Floor []
Calculate_Precast_Panels_Supp_Beam_Depth [Bldg]
Calculate_Precast_Panels_Weight [Bldg]
Calculate_Reinforced_Concrete_Slab_Beam_Depth_Under_Floor []
Calculate_Reinforced_Concrete_Slab_Supp_Beam_Depth [Bldg]
Calculate_Reinforced_Concrete_Slab_Weight [Bldg]
Calculate_Ribbed_Slab_Beam_Depth_Under_Floor []
Calculate_Ribbed_Slab_Supp_Beam_Depth [Bldg]
Calculate_Ribbed_Slab_Weight [Bldg]
Calculate_Steel_Deck_Beam_Depth_Under_Floor [Bldg , Beam_Depth]
Calculate_Steel_Deck_Weight [Bldg]
Calculate_Volume_Of_Concrete_On_Steel_Deck [Slab_Depth , Deck_Unit]
Calculate_Waffle_Slab_Weight [Bldg]
Change_Rc_Beam_Size [Bldg , Depth_Slot]
Change_Steel_Beam [Bldg , Beam_Section]
Check_Des ign [Bldg , Type]
Column_Check [Bldg , Beam_Span]
Decrease_Rc_Beam_Size [Bldg , Decr_Depth , Depth_Slot , Decr_Width]
Decrease_Rf_Rc_Beam_Size [Bldg]
Delete_Unit_Because_Looped_Too_Many_Times [Bldg]
Find_Req_Area_Of_Reinf_In_Rc_Beam [Max_Sagging_Moment_In_Beam]
Find_Req_Area_Of_Reinf_In_Rc_Beam_Incl_Compression_Steel []
Find_Approx_Rc_Supports_Sizes [Bldg]
Find_Approx_Steel_Supports_Si zes [Bldg]
Find_Approx_Support_Sizes [Bldg]
Find_Default_Width_Of_Support_Beam [[Bldg Beam_Depth Beam_Depth_Under_Slab

Effective_Depth Beam_Span Slab_Span]]
F ind_Depth_Of_Beam_Under_Floor [Bldg , Beam_Depth]
Find_Initial_Rc_Support_Beam_Depth [Bldg]
Find_Initial_Steel_Support_Si zes [Bldg]
Find_Max_Rc_Beam_Depth [Bldg]
Find_Max_Steel_Beam_Depth [Bldg]
F ind_Slab_Type_For_Approximate_Supports [Bldg]
Find_Weight_Of_Floor_Per_Mm_Squared [Bldg]
Get Assumed Sizes []

249

The Application of Object-Oriented Techniques to Preliminary Design Problems

Increase_Rc_Beam_Size [Bldg , Incr_Depth , Depth_Slot , Incr_Width]
Increase_Rf_Rc_Beam_Size [Bldg]
Main_Support_Steel_Beam_Detail [Bldg , Section_Slot , Moment_Slot]
Rc_Beam_Check [Bldg , Beam_Span , Slab_Span , Beam_Depth]
Rc_Beam_Detail [Bldg , Max_Moment_In_Beam, Type]
Rc_Beam_Detail_And_Check [Bldg , Moment_Slot , Type]
Rc_Column_Detail [Bldg , Max_Axial_Load]
Rc_Main_Beam_Check [Bldg , Beam_Span, Intermediate_Beam_Span]
Rc_Support_Beam_Detail [Bldg , Beam_Depth_S lot , Beam_Width_S lot]
Rc_Supports_Detai l [Bldg]
Set_Init ial_S i zes [Bldg]
Steel_Beam_Check [Bldg , Beam_Span , Slab_Span , Beam_Section]
Steel_Beam_Section_Select , [BldgMax_Moment_In_Beam Beam_Sectionin]
Steel_Column_Detail [Bldg , Max_Axial_Load]
Steel_Main_Beam_Check [Bldg , Beam_Span , Slab_Span]
Steel_Supports_Detail [Bldg]
Supports_Detail [Bldg]
Support_Steel_Beam_Detail []

Braced Frame

Calculate_Dead_Load_Es timate_For_Braced_Frame []
Detai l_Braced_Frame [Bldg]
Detai l_Braced_Frame_Beam [Bldg]
Detai l_Braced_Frame_Column [Bldg]
Detail_Braced_Frame_Diagonal [Bldg]
Find_Assumed_Steel_Sizes_In_Braced_Frame ,
Increase BF Si zes [Bldg]

Rigid Frame

Calculate_Dead_Load_Estimate_For_Rigid_Frame []
Calculate_Forces_In_Rigid_Frame [Bldg]
Detai l_Rc_Beam_In_Rigid_Frame [Bldg]
Detai l_Rc_Beam_In_Rigid_Frame_For_Shear [Bldg]
Detail_Rc_Column_In_Rigid_Frame [Bldg]
Detai l_Rigid_Frame [Bldg]
Detai l_Steel_Beam_In_Rigid_Frame [Bldg]
Detai l_Steel_Column_In_Rigid_Frame [Bldg]
Find_As sumed_Si zes_In_Rigid_Frame [Bldg , Type]

Shear Wall

Calc_Load_On_Wall_Due_To_Beams [Bldg]
Calculate_Compress ive_Stress_In_Wall [Bldg]
Des ign_Shear_Wall [Bldg]
Detai l_Shear_Wall [Bldg]
Detail_Steel_In_Wall [Bldg]
Find_Initial_Shear_Wall_Thickness [Bldg , Type]
Increase Shear Wall Thicknes s [Bldg]

25 0

The Application of Object-Oriented Techniques to Preliminary Design Problems

Floors

Calc_Shear_In_Flat_Sl ab [Bldg Ult_Load_On_S lab_Kn_Per_M_Sq]
Calculate_Ultimate_Load_On_Ribbed_Slab [Bldg]
Calculate_Ul timate_Load_On_Sl ab [Bldg Depth]
Calculate_Ul timate_Load_On_Waffle_S lab [Bldg]
Detail l_Rc_Slab [Bldg]
Detai l l_Ribbed_Slab [Bldg]
Detail l_Waffle_Slab [Bldg]
Detail2_Ribbed_S1ab [Bldg , Effective_Depth]
Detai l2_Waffle_S1ab [Bldg , Effective_Depth]
Detail_Precast_Panel s [Bldg]
Detail_Rc_Slab [Bldg]
Detai l_Ribbed_Slab [Bldg]
Detail_Steel_Deck [Bldg]
Detail_Waffle_Slab [Bldg]
Display_Waffle_Moulds []
Find_Effective_Depth_Of_Rc_Floor []
Find_Effective_Depth_Of_Two_Way_Spanning_Rc_Slab []
Find_Grid_Si ze_For_Rib [Bldg]
Find_Grid_Si ze_For_Waffle [Bldg ,
Find_Intermediate_Beam_Spacing [Max_Spacing , Lx]
Find_List_Of_Steel_Deck_Units [Load , Insulation_Thickne ss , Lx]
Find_Max_Span [Unit , Load , Depth , Lx]
Find_Max_Span_Of_Precast_Pane ls []
Find_Required_Thickness_Of_Slab_On_Stee l_Deck [Fire_Rating]
Find_Slab_Type [Bldg]
Identi fy_Rib_Mould_Class [Grid_Size]
Identi fy_Waffle_Mould_Class []
Increase_Flat_Slab_And_Column_Size [Bldg]
Increase_Flat_Slab_Size [Bldg]
Select_Precast_Floor_Unit [Span , Load]
Select_Rib_Mould [Depth , Grid_Size]
Select_Steel_Deck_Unit , [Loadi insulation_ThicknessLX]
Select_Waffle_Mould [Depth , Grid_Size]

Cost Functions

Calc_Approximate_Supports_Cost [Bldg]
Calc_Cost_Of_External_Wal l s []
Calc_Cost_Of_Stair_Core [Bldg , Height]
Calc_Cost_Of_Stai rs [Bldg]
Calc_Superstructure_Floor_Area [Bldg]
Calc_Supports_Cos t [Bldg]
Cal culate_Approx_Rc_Floor_Cost [Bldg]
Calculate_Approx_Stee l_Floor_Cos t []
Calculate_Bldg_Floor_Cost [Bldg]
Calculate_Braced_Frame_Narrow_Cos t [Bldg]
Calculate_Braced_Frame_Wide_Cost [Bldg]
Calculate_Cost [Bldg]
Calculate_Cost_Of_Finishes [Bldg]
Calculate_Precas t_Panel s_Cost [Bldg]
Cal culate_Rc_Rigid_Frame_Narrow_Cost [Bldg]

251

The Application of Object-Oriented Techniques to Preliminary Design Problems

Calculate_Rc_Rigid_Frame_Wide_Cost [Bldg]
Calculate_Rc_Vertical_System_Cost [Bldg]
Calculate_Reinforced_Concrete_Slab_Cost [Bldg]
calculate_Ribbed_Slab_Cost [Bldg]
Calculate_Roof_Cos t [Bldg]
Calculate_Shear_Wall_Narrow_Cost [Bldg]
Calculate_Shear_Wal l_Wide_Cost [Bldg]
Calculate_Steel_Rigid_Frame_Narrow_cos t [Bldg]
Calculate_Steel_Rigid_Frame_Wide_Cost [Bldg]
Calculate_Steel_Vertical_System_Cost [B ldg]
Calculate_Steel_Deck_Cost [Bldg]
Calculate_Waffle_Slab_Cost [Bldg]
Cost_Rc_Beam [Depth , Width , Length , Steel_Mass_Per_Metre]
Cost_Rc_Column [Depth , Width , Length , Steel_Mas s_Per_Metre]
Cost_Steel_Section [Section , Length , Type]
Log_Cost [Bldg , Amount , Descr]
Log_Cos t_Beams [Bldg , Amount]
Log_Cost_Columns [Bldg , Amount]
Log_Cost_Diags [Bldg , Amount]
Log_Cos t_Elem [Bldg , Amount , Descr]
Log_Item_Cost [Bldg , Item_Cost_List]
Log_Tot_Elemental_Cost [Bldg]
WriteO_Cost_Log [W , Bldg , Slot]
Writel_Cost_Log [W, Cost_Li st]
Write_Cos t_Log [W , System]
Write_Elemental_Costs [W, Bldg]

Evaluation Functions

Calculate_Buildabil ity [Bldg]
Calculate_Clear_Space [Bldg]
Calculate_Column [Bldg]
Calculate_Flexibi lity [Bldg]
Calculate_Height [Bldg]
Calculate_Maintenance [Bldg]
Calculate_Prefab [Bldg]
Calculate_Sourcing [Bldg]
Calculate_Sway [Bldg]
Calculate_Time [Bldg]
Estimate_Column_Max [Bldg]
Estimate_Column_Min [Bldg]
Estimate_Height [Bldg]
Estimate_Maintenance_Max [Bldg]
Estimate_Maintenance_Min [Bldg]
Calculate_Percent_Optim, [Bldg Feat Res]
Weighting , [Feat Factor]
Review_Hori z_Evaluation_Features , []
Review_Vertical_Evaluation_Features , []

Design Process Functions

Check_Floor , [x]
Check_Intermed_Beams , [x]

252

The Application of Object-Oriented Techniques to Preliminary Design Problems

Check_Material , [x]
Check_Support_Beams , [x]
Check_Vert_2D_N , [x]
Check_Vert_2D_N_Loc , [x]
Check_Vert_2D_W , [x]
Check_Vert_2D_W_Loc , [x]
Check_Vert_3D , [x]
Clean_Up, []
Cleanup_Of_Vertical_Subsystem, []
ClearHierarchy , []
Count []
Current_Sys , []
Design_First_Level_Down , [First_Level]
Des ign_Floor_Level , [Floor_Level]
Design_Hori zontal_Subsystem , []
Design_Intermed_Beams_Level , [Intermed_Beams Level l
Design_Material_Level , [Material_Level]
Design_Shear_Wall , [Bldg]
Des ign_Support_Beams_Level , [Support_Beams_Level]
Des ign_Vertical_2D_N_Level , [Vertical_2D_N_Level]
Des ign_Vertical_2D_N_Location_Level , [Vert ical_2D_N_Location_Levelin]
Des ign_Vertical_2D_W_Level , [Vertical_2D_W_Level]
Design_Vertical_2D_W_Location_Level , [Vertical_2D_W_Location_Levelin]
Design_Vertical_Subsystem , []
Detai l , [Bldg]
Detail_Floor_Level , []
Detail_V2Dloc_Level , []
Detai l_Vertical_Subsystem , []
Generate_New_Units , []
Make_Beam_Steel_Section_List , []
Make_Column_Steel_Section_List , []
Make_Diag_Steel_Section_Lis t , []
Make_List_Of_Floors_To_Detail , []
Make_List_Of_Steel_Deck_Units , []
Make_List_Of_V2Dlocs_To_Detail , []
MakeBeamLists , [BeamList]
MakeBeamLists2 , [BeamList]
MakeBFVars , []
MakeELVars , []
MakeEVVars , []
MakeFLVars , []
Make FNVars , []
MakeRFVars , []
MakeSDVars , []
MakeSWVars , []

Utility functions

Comparefn_Depth_Topping , [argl arg2]
Comparefn_Mould_Depth , [argl arg2]
Continue_Initial_S i z ing , []
Drop_IdNum, [Alt]
Even , [x]
Fix , [number]
Get_Load_From_Span_Load_Table , [Alt]
Get_Span_From_Span_Load_Table , [Alt]
Input_User_Requirements , [Building_l]
LoadExcelProgram, []

253

The Application of Object-Oriented Techniques to Preliminary Design Problems

Mod, [numDen]
Multiple_P , [numDen]
Percentage_Optimi zation , [Altblg_Value]
Quit , []
ReWrite_Short_Descr , [Bldg]
Set_Defaults , []
Set_N_Or_W , [Building]
Slot_Copy_Alts , [x]
Slot_Copy_Levels , [Alts_At_This_Leve lLeve l]
Update_Last_Level , []

Reporting Functions

Write_Excel_Design_Report , []
Write_Report_l , []
Write_Temp_Excel_Report l , []
Write_Temp_Excel_Report2 , []
Write_Vert_Eval_Report , []

254

The Application of Object-Oriented Techniques to Preliminary Design Problems

APPENDIX E NOV A Rules

This table lists the rules used in NOV A.

Rules

Detail_Rule , []
Evaluate_Rule , []
Find_Defs_l_Rule , []
Find_Defs_2_Rule , []
Generate_Rule , []
Rule_About_l_Hour_Fire_Rating , []
Rule_About_2_Hour_Fire_Rating , []
Rule_About_4_Hour_Fire_Rating , []
Rule_About_Floors_For_Rc_Bldgs , []
Rule_About_Floors_For_Steel_Bldgs , []
Rule_About_Precast_Panel_Select , []
Rule_About_Precast_Panel_Span , []
Rule About Rib Grid Size , []
Rule=About=Rib=Mould_Select , [Altbldg \ Test_Class]
Rule_About_Steel_Deck_Select , []
Rule_About_Waffle_Grid_Size , []
Rule_About_Waffle_Mould_Select , []
Rule_About_Waffle_Slabs , []
Rule_Abt_Max_Span_Precast_Panels , []
Rule_For_Aparts , []
Rule_For_Bui ldabi lity , []
Rule_For_Car_Park , []
Rule_For_ClrSpce_In_Car_Parks , []
Rule_For_ClrSpce_In_Hotels_Aparts , []
Rule_For_ClrSpce_In_Offices , []
Rule_For_ClrSpce_In_Other_Bldgs , []
Rule_For_Column , []
Rule_For_Flexibil ity_Not_Req , []
Rule_For_Flexibility_Req , []
Rule_For_Height_In_Urban_Areas , []
Rule_For_Height_Outof_Urban_Areas , []
Rule_For_Hotel , []
Rule_For_Large_Job , []
Rule_For_Maintenance , []
Rule_For_Non_Prestg_Buildings_Cost , []
Rule_For_Offices , []
Rule_For_Prefab_Important , []
Rule_For_Prefab_Not_Important , []
Rule_For_Prestg_Buildings_Cost , []
Rule_For_Reinf_Concrete_Bldg , []
Rule_For_Small_Job , []
Rule_For_Sourcing_Important , []
Rule_For_Sourcing_Not_Important , []
Rule_For_Steel_Bui lding , []
Rule_For_Sway , []
Rule_For_Time_Important , []
Rule_For_Time_Not_So_Important , []
Rulel_About_l_Way_Spanning_Slabs , []
Rulel_About_Car_Parks , []
Rulel_About_Combination_Systems , []
Rulel_About_Concrete_Strength , []

255

The Application of Object-Oriented Techniques to Preliminary Design Problems

Rulel_About_Core , []
Rulel_About_Cover_To_Reinfmnt , []
Rulel_About_Den_Reinfmnt_In_Slabs , []
Rulel_About_Flat_Slabs , []
Rulel_About_I_Way_Slabs , []
Rulel_About_Offices , []
Rulel_About_Orthogonal_2D_Sys , []
Rulel_About_Parts_Finishes_Weight , []
Rulel_About_Rc_Slab_Span , []
Rulel_About_Reinf_In_Shear_Wal l , []
Rulel_About_Ribbed_Slab_Span , []
Rulel_About_Rigid_Frame_N, []
Rulel_About_Rigid_Frame_Wide , []
Rulel_About_Shear_Wall_N, []
Rulel_About_Shear_Wall_Parms , []
Rulel_About_Shear_Wall_Thick , []
Rulel_About_Shear_Wall_Wide , []
Rulel_About_Steel_Deck_Span , []
Rulel About Steel Material , []
Rulel=About=Steel=Sections , [Altbldg l Test_Clas s]
Rulel_About_Strength_Shear_Steel , []
Rulel_Abt_Grade_Structural_Steel , []
Rulel_Abt_Reinf_Concrete_Material , []
Rulel_For_Braced_Frame , [Altbldg l Test_Class]
Rulel_For_Reinf_In_Rc_RFB , []
Rulel_For_Shear_In_Flat_Slabs , [Altbldg i Test_Class]
Rulel_For_Shear_Stress_In_Rc_RFB , []
Rulel For Steel Yield Stress , []
RulelA_For_Brac�d_Fra�e , [Altbldg l Test_Class]
RulelA For Shear
Rule2_About_l_Way_Spanning_Slabs , []
Rule2_About_Car_Parks , []
Rule2_About_Combination_Systems , []
Rule2_About_Core , []
Rule2_About_Flat_Slabs , []
Rule2_About_Offices , []
Rule2_About_Parts_Finishes_Weight , []
Rule2_About_Rc_Slab_Span , []
Rule2_About_Reinf_In_Shear_Wall , []
Rule2_About_Ribbed_Slab_Span , []
Rule2_About_Shear_Wall_Thick , []
Rule2_About_Steel_Deck_Span , []
Rule2_Abt_Reinf_Concrete_Material , []
Rule2_For_Braced_Frame , [Altbldg l Test_Clas s]
Rule2_For_Reinf_In_Rc_RFB , []
Rule2_For_Shear_Stress_In_Rc_RFB , []
Rule2_For_Steel_Yield_Stress , []
Rule2A_For_Braced_Frame , [Altbldg l Test_Class]
Rule3_About_Rc_Slab_Span , []
Rule3_About_Steel_Deck_Span , []
Rule3_Abt_Reinf_Concrete_Material , []
Rule4_About_Rc_Slab_Span , []
Rule4_About_Steel_Deck_Span , []
Ruleank_R , []
Test _Rule , []

256

The Application of Object-Oriented Techniques to Preliminary Design Problems

Rulesets

Global:Rs _For_ Chk _ Det_ RF_ Alts
Rulel For Shear Stress In Re RFB - - - - - -
Rule 1 _For_ Too_ Little_ Reinf _In_ RcRFB
Rule l _For_ Too _Much_ Reinf _In_ RcRFB
Rule2 For Shear Stress In Re RFB - - - - - -
Rule2 _For_ Too_ Little_ Reinf _In_ RcRFB
Rulel For Reinf In Re RFB - - - - -
Rule2 For Reinf In Re RFB - - - - -

Global:Rs For Chk Det BF Alts - - - - -
Rulel_For_Braced_Frame
Rule2 _ For _Braced _Frame
RulelA For Braced Frame - - -
Rule2A_For_Braced_Frame

Global:Rs_For_Chk_Det_Pre_Panels_Alts
Rule_ About_Precast_Panel_ Select;

Global:Rs _For_ Chk _ Det_ Re_ Slab_ Alts
Rulel_For_Shear_In_Flat_Slabs
RulelA For Shear In Flat Slabs - - -

Global:Rs _For_ Chk _ Det_ Ribbed_ Slab_ Alts
Rule_ About_ Rib _Mould_ Select;

Global:Rs_For_Chk_Det_Steel_Deck_Alts
Rule_ About_ Steel_ Deck_ Select;

Global:Rs_For _ Chk_Det_ Waffle_ Slab _Alts
Rule About Waffle Mould Select - - - -
Rule About Waffle Grid Size - - - -
Rule About Rib Grid Size - - - -

Global:Rs _For_ Chk _ Det_ Elements_ Alts
Rule I_ About_ Steel_ Sections;

Global:Rs _For_ Chk _ Det_ SW_ Alts
Rule 1 About Shear Wall Thick - - - -
Rule2 _ About_ Shear_ Wall_ Thick
Rule 1 _ About_ Reinf _In_ Shear_ Wall
Rule2 _ About_ Reinf _In_ Shear_ Wall

257

The Application of Object-Oriented Techniques to Preliminary Design Problems

APPENDIX F Class Diagrams

Building System Object Classes

During development of the NOVA design tool an object model was created, by abstraction

from the requirement specification. The work started with the identification of the structural

design objects and the subsequent grouping of those objects, where possible, into a

hierarchy of classes. Objects placed in the same hierarchy are those which exhibited similar

behaviour. The following diagrams show key groups of building system object identified.

Building
Behavioural Level

Functional Level
Functional Level

Physical Level

Level of Abstraction
Vertical 3D Schematic Level
Vertical Structural Subsystem
Horizontal Structural Subsystem
Subsystem Components

Figure F.1 Object classes, in the building hierarchy (the Product Model).

Building_ Parts Level of Abstraction
Building

Vert 3D Vertical 3D Schematic Level
Vert 2D Narrow
Vert 2D Wide
Material
Vert 2D Narrow Loe - - -
Vert 2D Wide Loe
Floor
Support_ Beams
Intermediate Beams

Vertical Structural Subsystem

Horizontal Structural Subsystem

Figure F.2 Object classes, which constitute the levels in the building hierarchy.

258

The Application of Object-Oriented Techniques to Preliminary Design Problems

The design object classes, which make up the building hierarchy, are shown below in Figure

F.3 , in the form of one completed design with appropriate alternatives attached at each

level.

Building_ I Design Object Class Level of Abstraction
Orthogonal_ 2D _ Systems Vertical 3D Schematic Level

Rigid_Frame_Narrow Vertical Structural Subsystem

Figure F.3

Rigid_Frame_ Wide
Reinf Concrete

RF 2 Narrow
RF 2 Wide

Reinf Concrete Slab Horizontal - -
2 Narrow Beams Structural - -
Intermediate_None Subsystem

Object classes in a completed design, which is displayed hierarchically.

259

The Application of Object-Oriented Techniques to Preliminary Design Problems

At each level in the hierarchy, the system designers were required to provide an appropriate

set of design options, which made up the alternatives designs, which the system could

generate for that level. These design options were represented by the Alternatives Classes.

These classes were organised in an object hierarchy, which is shown in Figure F.4.

Alternatives

Vert 3D Alternatives
Core
Orthogonal_ 2D _ Systems

Vert 2D Narrow Alternatives - - -
Braced Frame Narrow - -
Rigid_ Frame_ Narrow
Shear Wall Narrow

Vert 2D Wide Alternatives - - -
Rigid_Frame_ Wide
Braced Frame Wide - -
Shear Wall Wide

Material Alternatives
Reinf Concrete
Steel

Floor Alternatives
Reinf Concrete Slab - -
Ribbed Slab
Steel Deck
Waffle Slab
Precast Panels

Support_ Beams_ Alternatives
aO Beams
a2 Narrow Beams - -
a2 Wide Beams - -
a4 Beams

Intermed Beams Alternatives - -
Interrned Narrow
Interrned None
Interrned Wide

Level in the building hierarchy
Available Options

Level in the building hierarchy
Available Options

Level in the building hierarchy
Available Options

Level in the building hierarchy
Available Options

Level in the building hierarchy
Available Options

Level in the building hierarchy
Available Options

Level in the building hierarchy
Available Options

Figure F.4 Object classes, which make up the building design alternatives.

260

-

The Application of Object-Oriented Techniques to Preliminary Design Problems

A separate object hierarchy; the Location Alternatives, was used to represent the various

layout plans, which were available for use with the structural systems, both in the narrow

and wide perspectives, at the Vertical 2D level. These classes could have been included in

the Alternatives hierarchy, however they were split out into a separate class to simplify

identification and reduce complication. These location alternatives are shown in Figure F.5.

Location Alternatives

Vert 2D Narrow Loe Alternatives - - - -
Rigid_Frame_Narrow_Loc_Alternatives

RF 2 Narrow
RF 3 Narrow
RF 4 Narrow
RF All Narrow
RF User Loe Narrow - - -

Braced Frame Narrow Loe Alternatives - - - -
BF 2 Narrow
BF _3Plus_Narrow
BF Comers Narrow - -
BF Inside Narrow - -
BF User Loe Narrow - - -

Shear Wall Narrow Loe Alternatives - - - -
SW 2 Narrow
SW 3 Narrow
SW 4 Narrow
SW All Narrow
SW Shaft Narrow - -
SW User Loe Narrow - - -

Vert_ 2D _Wide_ Loe_ Alternatives
Braced Frame Wide Loe Alternatives - - - -

BF 2 Wide
BF 3Plus Wide - -
BF Comers Wide - -
BF Inside Wide - -
BF User Loe Wide - - -

Rigid_Frame_ Wide_Loc_Alternatives
RF All Wide
RF 3 Wide
RF 2 Wide
RF 4 Wide
RF User Loe Wide - - -

Shear Wall Wide Loe Alternatives - - - -
SW 2 Wide
SW All Wide
SW Shaft Wide - -
SW 3 Wide
SW 4 Wide
SW User Loe Wide - - -

Each item at this level
represents a different configuration
option.

Figure F.5 Object classes, which make up the location alternatives hierarchy.

261

The Application of Object-Oriented Techniques to Preliminary Design Problems

Object classes were also required to model the different types of composite physical units.

The precast concrete units group is shown below in Figure F. 7. Each lower level class

represents a separate B 1 1 , precast unit.

Precast Units
Bl 1

B 1 5

Bl 1 46
Bl l 56
Bl 1 66
Bl 1 76
Bl 1 86

B15 56
B15 66
Bl 5 76
B15 86
Bl 5 96

Figure F.6

Physical components.

Object classes, which represent precast concrete units.

Other object classes were required to represent the non-physical components of the

structural design domain. These less visible system entities included the elements of the

building plan, which was used to guide the building design process, and the default design

parameters. The building plan was represented by the attributes of the Schedule unit.

System_ Schedules
Schedule

Figure F.7

Defaults

Figure F.8

Building Plan, which includes the sequence of design activities.

The Schedule object class, contains the plan for the design process.

Design Parameters

The Default Design Parameters object class.

262

The Application of Object-Oriented Techniques to Preliminary Design Problems

Other non-physical entities such as the evaluation features, were also represented by object

classes, these are shown in Figure F.9. A separate class was created for each evaluation

feature.

Eval Features
Vert_ System _Eval_Features

Vert_ System_ Buildability
Vert_ System_ Clear_ Space
Vert_ System_ Column
Vert_ System_ Cost
Vert_ System_ Flexibility
Vert_ System_ Height
Vert_ System _Maintenance
Vert_ System_ Prefab
Vert_ System_ Sourcing
Vert_ System_ Sway
Vert_ System_ Time

Horiz _System_ Eval_ Features
Horiz _System_ Flexibility
Horiz _System_ Height
Horiz _ System _Maintenance
Horiz _System_ Prefab
Horiz _System_ Sourcing
Horiz _System_ Sway
Horiz _System_ Time

Evaluation features

Figure F.9 The Evaluation Features object class.

A series of objects were also required to model the user interface specified in the

requirements. The objects in this part of the model included the session windows, input

buttons and output displays required to facilitate interaction with the system user.

Session
Session Instances

Input Button Input Button Instances
Status Display Status Display Instances
Report Report Instances

Window

Figure F.10 The Session object class and some of its associate classes.

263

The Application of Object-Oriented Techniques to Preliminary Design Problems

APPENDIX G Class Attributes

.
����

.�.
�

efaults

: ::::::::::::::: ::··
· .. ·

: :::: ::::::::: :::::: :::: :: ... J:::::�?;:�����t���
t

:::::::::::: ::: ::::: :::::::::::::::::::::::::::::: ... :
· ·
·
··
·
··
···········

·· . ·· ····
::
·
:
·
.. ··················· ····-· ··· Ass Cover To Bottom Steel - - - -

................
Ass Cover To Steel In Slabs - - - - -

l VALUE TYPE, NUMBER
! Ass Co;er To Bottom Steel = 50.0
j VALUE_ TYPE, NUMBER
i Ass Cover To Steel In Slabs = 35 .0
l VALUE TYPE, NUMBER

.. 1 .Ass_Co�r To Top Steel .= 50.o.
i "Density in Tonne-Per-Cu-M. Used when approximating the cost of

! Ass_Cover_To_Top_Steel

I Ass_ Steel_ Density_ In_ Slabs i the slabs at the vertical system stage."
I VALUE_ TYPE, NUMBER
1 Ass Steel Density In Slabs = 0.0785

Assd Sd Den In Slabs On Stl Dk i Assd Stl Den In Slabs On Stl Dk, "Density inTonne-Per-Cu.M. - - - - - - -
! used �he; calZulating th-;; coit of steel decks"
! VALUE_ TYPE, NUMBER

.J .Assd Stl Den In Slabs_ On Stl Dk = 0.03925
Concrete_ Design_ Strength [VALUE_ TYPE, NUMBER

....... - . J <;:?.���.�!�J?.(!.�.ig�_§.!:r.:��g!� : ... ? .. ? .. :.Q
: Cover To Main Steel In Columns i VALUE TYPE, NUMBER
I - - - - -

! Cover T-;; Main Steel In Columns = 40.0
; Estimated_Costs_Except_Superstr j VALUE_TYPE, NUMBER

................ J Estimated Costs Except Superstr.= .. 2036350.605 _ .. .
Grade Of Structural Steel ! VALUE TYPE, NUMBER

- - - ' MINIMUM_ VALUE, 43
MAXIMUM_ VALUE, 55
Grade Of Structural Steel = 50.0

List_ Of_ Bar_ Diameters [List_ Of_ Bar_ Diameters, "Diameters of Reinforcing Bars to be
considered when Detailing."
MULTIPLE VALUE_ TYPE, NUMBER

. List Of Bar Diameters, 6, 8, 1 0, 12, 1 6, 20, 25, 32, 40, 50
I Max_Diam_Of_Bars_In_Beams I Max_Diam_Of_Bars_ln_Beams, "Max Diameter of reinforcing bars

· in Rc Beams."
VALUE_ TYPE, NUMBER

i Max Diam Of Bars In Beams = 32
Max Diam Of Bars In Ribs - - - - -

Max_ Diam_ Of_ Bars _In_ Ribs, "Max Diameter of reinforcing bars in
Re Beams."

I VALUE_ TYPE, NUMBER
Max Diam Of Bars In Ribs = 25

I Ass_Spec_Weight_Of_Pre_Pnls ! VALUE_TYPE, NUMBER
. ! Ass Spec Weight Of Pre Pnls =.0.00001
: Ass_Spec_ Weight_Of_ Wfle_Slbs ! VALUE_TYPE, NUMBER
I _ \...Ass_Spec Weight Of Wfle Slbs .. = 0.0000 1
! Max_ Number_ Of_ Reinforcing_ Bars ! Max_ Number_ Of_ Reinforcing_ Bars, "the acceptable maximum ·

\ number of reinforcing bars to be considered as acting together to give
a total effective area."
VALUE_ TYPE, NUMBER
Max Number Of Reinforcing Bars = 24

I Max Shear Wall Thickness I VALUE TYPE, NUMBER . -
. _

-
............

-
. LMax Shear Wall Thickness .. = .. 400.0

Max_ Spacing_ Of_ Reinforcing_ Bars \ VALUE_ TYPE, NUMBER
................................ . . . __ j. :M;�x_S.pacing_.0.fJ:le,in,forcing_Bar.s..� 1000.0
Maximum_Section_Depth ; Maximum_Section_Depth, "Used when detailing to find minimum

\ depth section possible"
. VALUE_TYPE, NUMBER

, , Maximum Section Depth = 20000
j-··· ! -.................................... �
i Min_ Dimen .. Of Square Re_ Cols ! Min Dimen . Of . Square_ Re_ Cols, !'basedon min300X300 in Re

264

The Application of Object-Oriented Techniques to Preliminary Design Problems

Design Manual and the fire rating"
V ALUE_TYPE, NUMBER
Min Dimen Of SQuare Re Cols = 300.0

Min_Number_Reinforcing_Bars V ALUE_TYPE, NUMBER
Min Number Reinforcing Bars = 1

Min_Rc_Beam_ Width Min_Rc_Bearn_ Wicltb, "based on RC Design Manual and fire rating"
VALUE_TYPE,NUMBER
Min Re Beam Width = 200

Min_ Shear_ Wall_Thickness VALUE_TYPE,NUMBER
Min Shear Wall Thickness = 180

Min_ Spacing_ Of_ Reinforcing_ Bars VALUE_TYPE,NUMBER
Min Spacing Of Reinforcin.l! Bars = 65.0

Min_ Topping_For_Ribs VALUE_TYPE,NUMBER
Min Topping For Ribs = 75.0

Min_ Topping_For_ Waffies VALUE_TYPE,NUMBER
Min Toppin.I! For Waffles = 75

Partitions_ Finishes_ Est Partitions_Finisbes_Est, "estimate of weight of partitions and finishes
Npermm•2"
VALUE_TYPE,NUMBER
Partitions Finishes Est = 0.0028

Percent_ Of_Ext_ Surface_In _ Wndws VALUE_TYPE, NUMBER
Percent Of Ext Surface In Wndws = 5

Spn_ Eff _Dpth_Rtio_Fr_R.tbbd_Slbs Spn _ Eff _ Dpth _ Rtio _Fr_ Rl.bbd _ Slbs, "from IStructE Manual Section
4.2.6.2"
VALUE_TYPE,NUMBER
Spn Eff Dpth Rtio Fr Ribbd Slbs = 20.8

Spn_Eff _Dpth_Rtio_Fr_ Wafle_Slbs Spn_Eff_Dpth_Rtio _Fr_ Wafle_Slbs, "from IStructE Manual Section
4.2.6.2"
VALUE_TYPE,NUMBER
Spn Eff Dpth Rtio Fr Wafle Slbs = 18.72

Steel_ Yield_Stress Steel_ Yield_Stress, "yield stress of steel in N per mm"'2"
VALUE_TYPE,NUMBER
Steel_ Yield_Stress = 460.0

Spec_ Wght_Of_Reinf_ Concrete VALUE_ TYPE, NUMBER
Spec_ Wght_ Of_Reinf_ Concrete = 0.0000236

Steel_ Yield_Stress_For_ Columns VALUE_TYPE,NUMBER
Steel_ Yield_Stress_For_ Columns = 460.0

Table_ For _Insulation_ Thickness Table_For_Insulation_Thickness, "table used to find required slab
thickness for composite steel deck floors -Table 4.3 from Newman
(1983)"
MULTIPLE
Table_For_Insulation_Thickness, 23,60_0.5_065.0, 23.60_1.0_090.0,
23.60_1.5_105.0, 23.60_2.0_115.0, 23.60_3.0_135.0,
23.60_ 4.0_150.0, 18.64_0.5_055.0, 18.64_1.0_065.0,
18.64_1.5_075.0, 18,64_2.0_085.0, 18.64_3.0_t 15.0,
18.64 4.0 130.0

Wt_ Of_ Conct_For_Steel_Deck Wt_Of_Conct_For_Steel_Deck, "in kN per cubic m
VALUE_TYPE, NUMBER
MINIMUM_VALUE, 18.64
MAXIMUM_ VALUE, 23.6
Wt_Of_Conct_For_Steel_Deck = 23.6

Yield_Strength_ Of_Shear_Steel VALUE_TYPE, NUMBER
Yield Strength Of Shear Steel= 460.0

Youngs Modulw Of Concrete· Younu Modulus Of Concrete,

265

The Application of Object-Oriented Techniques to Preliminary Design Problems

Youngs_ Modulus_ Of_ Rein_ Steel

I Youngs_ Modulus_ Of_ Struct_ Steel

Max_Precast_Panel_ Span_ Gn_Load

Max Diam Of Bars In Columns

Max No Of Bars In Beams

Max No Of Bars In Columns

"Young's Modulus for concrete"
VALUE_TYPE, NUMBER
Youngs Modulus Of Concrete = 26567.52403
VALUE_TYPE, NUMBER

... ..Youngs Modulus_ Of Rein Steel .. = .. 2.1.0000
"Young's Modulus for structural steel
VALUE_TYPE, NUMBER
Youngs Modulus Of Struct Stee1=205000

1 VALUE TYPE, NUMBER
! Max Pr�cast Panel Span Gn Load=)lOOO ..
i VALUE TYPE, NUMBER
i Max Di;m Of Bars In Columns = 32

Max_No_Of_Bars_In_Beams, "max number of reinforcing bars in re
beams"
VALUE_TYPE, NUMBER
Max No Of Bars In Beams = 8

: Max_No_Of_Bars_In_Columns, "max number of reinforcing bars in
! re beams"
! Max No Of Bars In Columns = 1 6

.... • . .. : mm,, .. , ... mm,,,,,, .. ,, .. , •••••

Max No Of Bars In Ribs - - - - -

Min Diam Of Bars In Beams - - - - -

Min Diam Of Bars In Columns

Min_ Diam_ Of_ Bars_ In_ Ribs

Max_No_Of_Bars_In_Ribs, "max number ofreinforcing bars in re
beams"
VALUE _TYPE, NUMBER
Max No Of Bars In Ribs = .2
Min_ Diam_ Of_ Bars_ In_ Beams, "min diameter of reinforcing bars in
re beams"
VALUE_TYPE, NUMBER
Min Diam Of Bars In Beams = 10 - - - - -

Min_ Diam_ Of_ Bars_ In_ Columns, "min diameter of reinforcing bars
in re beams"
VALUE_ TYPE, NUMBER
Min Diam Of Bars In Columns = 10 - - - - -

Min_Diam_ Of_Bars_In_Ribs, "min diameter ofreinforcing bars in re
beams"
VALUE_TYPE, NUMBER

. Min Diam Of Bars In Ribs = 10 ·
Min _No_ Of_ Bars_In_ Beams

Min No Of Bars In Columns

Min No Of Bars In Ribs

[Min_ Re_ Slab_ Depth

Min_No_Of_Bars_In_Beams, "min number ofreinforcing bars in re
beams"
VALUE_TYPE, NUMBER
Min No Of Bars In Beams = 2 - - - - -
Min_No_Of_Bars_In_Columns, "min number of reinforcing bars in
re beams"
VALUE_TYPE, NUMBER
Min No Of Bars In Columns = 4 - - - - -

l �iin No Of Bars In Ribs,··;,�� �ii�b�� of reinforcing bars in re ! - - - - -

! beams"
I VALUE_TYPE, NUMBER
I Min No Of Bars In Ribs = 2
I VALUE TYPE, NUMBER

j Min Re -Slab Depth=}25

266

' ,
The Application of Object-Oriented Techniques to Preliminary Design Problems

S : Eval Features

Importance

! Target_ Min

Set
Type_ Of_ Target

Methods:

Importance_ Factor
................
Target_Max

Target_Min

Target_Set

Type_ Of_ Target

Methods:

n

ot

ALLOW ABLE_ VALUES, Extremely, Very, Quite,
.... Not So,)rrelevant
VALUE TYPE, NUMBER

i VALUE TYPE, NUMBER
I -

....... ! Target Max.= .O
! Target_ Min,
! VALUE_TYPE, NUMBER

Target Min = 0
OW ABLE VALUES, Yes, No

ALLOWABLE_ VALUES, Max, Min, Achieve,

Superclass: Vert System Eval Features
! Characteristics:
! Description = "Max Col Size Cm**2"
! ALLOW ABLE_ VALUES, Extremely, Very, Quite,
· NotSo, Irrelevant

Importance .. = .. NotSo
VALUE_TYPE, NUMBER
Importance Factor .. = ... 1 .. 0
Target_Min,
VALUE_TYPE, NUMBER
Target Max = 5000.0
Target_ Min,

, VALUE TYPE, NUMBER
. !.Target Min .. = .. 400.0

! Target_ Set, ALLOW ABLE_ V ALS, Yes, No
Target Set = Yes
Type_ Of_ Target, ALLOW ABLE_ VALUES, Max,
Min, Achieve, Any
Type Of Target = Min

re Calculation J Calculate Column(Bldg);······
Table Gl Class attributes for major classes

267

	The Application Of Object-oriented Techniques To Preliminary Design Problems
	Recommended Citation

	Page 1

