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Abstract

Three new iterative, dynamically self-ndaptive, derivative-free and training parameler free
artificial neural network (ANN) training algorithms are developed. They are defined as
self-adaptive back propagation, multi-directional and restart ANN training algorilbms.
The descent direction in seif-adaptive back propagation tsaining is determined implicilly
by a central difference approximation scheme, which chooses its step size according Lo the
convergence behavior of the error function. This approach trains an ANN when the
gradient information of the corresponding error function is not readily available. The self-
adaptive variable learning rates per epoch are determined dynamically using a constrained
interpolation search. As a result, appropriale descent 1o the error function is achieved.

The multi-directional training algorithm is self-adaptive and derivative free. It orients an
initial search vector in o descent location at the early stage of training. Individual learning
rates and momentum term for all the ANN weights are determined aptimally. The search
directions arc derived from rectilinear and Euclidean paths, which explore stiff ridges and
valleys of the error surface to improve training. The restart training algerithm is derivative
free. It redefines a de-generated simplex at a re-scale phase. This multi-parameter training
algorithm updates ANN weights simultancously instead of individually. The descent
directions are derived from the centreid of a simplex along a reflection point oppesite lo
the worst vertex, The algorithin is robust and has the ability to improve local search, These
ANN training methods are appropriate when there is discontinuity in corresponding ANN
error furction or the Hessian matrix is ill conditioned or singular.

The convergence properties of the algorithms are proved where possible, All the training
algorithms successfully train exclusive OR (XOR), parily, character-recognition and
forecasting problems. The simulation results with XOR, parity and character recognition
problems suggest that all the training algorithms improve significantly over the standard
back propagation algorithm in averape number of cpoch, function evaluations and
terminal function values. The multivariate ANN calibration problem gs a regression mode{
with smatl dato set is relatively difficult to train. In forecasting problems, an ANN is
trained to extrapolate the data in validation peried. The extrapolation results are compased
with the actual data. The trained ANN performs better than the statistical regression
method in mean absolute deviations; mean squared errors and relative percentage ¢ror.
‘The restart training algorithm succeeds in training a problem, where other training
algorithms face difficulty. It is shown that a seasonal time series problem possesses a
Hessian matrix that hes a high condition number. Convergence difficulties as well as slow
training are therefore not atypical. The research exploits the geometry of the error surface
to identify self-edaptive optimized learning rates and momentum tecmns. Consequently, the
algorithms converge with high success rate, These attributes brand the training algorithms
as self-adaptive, automatic, parameter free, efficient and easy to use.

Key words: Self-odaptive back propagation. Derivative free training, Multi-directional sraining, Restant
training, Oriented search, self-adoptive momentum tern and leamning rote, Anificial Neural Newwork.
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Notations

ANN = Artificial Neural Network

BP = Back Propagution

§=A feasible set of solution

1 =Total number of neuron in 1* layer (input layer)

N =Total number of neuron in 2 layer (hidden layer)

0 =Total number of neuron in 3" tayer (output layer)

izl A a=12 N, o=12 4]

p=12.... P, P=Total number of training set

¥, = Actual Qutput of Artificial Neural Network {ANN]) at output neuron o in 3" tayer
5, =Estimated output of ANN at output neuron o in 3" Jayer

¥, =Expected value of output of ANN at output peuron o in 3 layer

w), =ANN weight connecting newron i in 1 layer 1o neuron » in 2™ layer
w2 = ANN weight connecting neuron # in 2" layer to neuron o in 3" layer

x? =The training pattern defined as desigr variables {7 5f mnntf)

m =Total number of weights in ANN {Dimension of function to be minimized)

w, =One dimensional weight in ANN in 1* layer and 2™ layer

J= an index, indicating ANN weights, j=12..,m

& = Training cycle counter or epoch

1" = Adaptation length or learning rate in 1* layer

"= Adaptation length or learning rate in 2" layer

7" =Mamentum term to prevent oscillation in training (157”20

#f = Conjugate gradient coetficient to' generate linearly independent directions

1, = Yector of adaptation length or learning rate in 1* and 20 layer in; =(1,.1, 01wl
during iteration & .

¥g = First order gradient change in quasi Newton method

Vf (wg )= Gradient of ANN calculated at iteration &

o = Partial derivative

L=Interpolation search interval in parameter space

H = Hessian of ANN caleulated at iteration &

7 wIdentity matrix of size mxm

b =Deflected matrix of inverse Hessian

(A,a)=Largest and smallest eigenvalue in Hessian matrix #

w;, = ANN weight vector determined during iteration &

w' = Optimum training weight value

n* mOptimized learning rate

S y= Optimum function value

d, =Direction of move in parameter space corresponding to index f

@ = Activation function to be chosen
#, =Input to the hidden layer neuron o

XVj=



&, =Output from the hidden layer ncuron »

7, =Input to the outer layer neuron o

£ =Square error it ANN duc 1o the difference of outpul in neuron ¥ and actual output
a,.a,.2,; = Control parameters

c;.¢;,=Control parameters

b, .5, =Bounded intervals in interpolation search

s} = Norm of a vectar, usually the Euclidean norm

|[+]=Absolute value

MAPE = Mean absolute percentage ercor, wae ..»:_- Elu L P
-
.
MPE = Mean percentage efror, sss « L :I(,’ - ,’T
r ool
"
MAE = Mean absolute error, wis»— zll,’ -;'I
o

ME = Mean error, s -+ ?.Iu’ -
.
2
S5E = Sum of squared-error, sss- Elu' !
”

v'a o ¥2 ™| = Ventices are representing the simplex in E™,

v' =Initialization at vertex ¢ =1, with initial guess; [w, :w, Wy wn .

vo s . | at tihposition
b hd ons at vertex r: o'
d' w¥ectors specifying search directions at vertex ¢: d ={ 0 clsowhere

d™ = Vectors specifying restart search directions

X = A scalar quantiy that characterize simplex size at verlex ¢

J o' y=Objective function value of the function f being munimized in restan 1raining
a = Reflection coefficient, & >0

,8' = Expansion coefficient, § >0

y =Contraction coefficient, ¥ >0

¢ =Scaling coefficient, £ >0

¢ w=Scaling factor, { >0

{o=Termination criterin fo stop algorithm

¢ wCautrold of the simplex

r =Reflection of the simplex

¢ =Expansion of the simplex

g =Contraction of the simplex

v" aMinimum polnt found by simplex

$=arg{min, f£0v")} = Low index for function value at vertex ¢

hmerglmax, F00')) = High index for function value at veriex r

smargl(max, FO'N1#h)2 £0F) = 2™ high index for function value at vertex ¢

=X¥ii-



Chapter

1.1 Background of the Gradlent Based Back Propagation Training

Historically, the study of artificial neural network (ANN) as computational medel started
with the pioneering paper of McCulloch and Pitis {1943) who described the theery of
formal neural networks. The work on simulation of a neuron is also atiributed to Hebb
{1949), Rosenblat {1952; 1962) intreduced the concept of the antificial ncuron called the
perceptron whose dendrites are replaced by ANN connection weights. ANN s classified
as an intelligent system, which has the capability to represent knowledge (Haykin, 1994).
It is Rumelhart et al. (1986), who popularized the back propagation (BP) algorithm, which
has been widely used 10 train multi-layer feed forward Ann’s. This algorithm can evolve a
set of weights to produce an arbitrary mapping from input to output vectors (Li and Da,
2000). It is an ierative gradient descent algorithm designed to minimize a measure of the
difference between the actual cutput and the ANN output. The ANN is a form of function
approximation tailored by the designer to reflect the particular problem to be solved. The
BP training differs from the conventional optimization methods by the fact that in BP,
ANN are several magnitudes higher in dimension and contain gradient information in two
or more layers, The gradient descent BP uses first derivative information that is tangent to
the contour of an error function and the negative gradient points towards the minimum of
the error function. In classical optimization one works with single gradient vector, while in
ANN online computation the gradient vector is different (Jacobs, 1988; Salomon ¢t ak,
1996). The standard BP training algorithm is not self-adaptive and the training parameters
are determined by trial and error methods to accelerate training (Jang et al., 1997).

1.2 Difficulties with Self-Adaptive ANN Training Algorithms

The dynamically self-adaptive waining algorithms are those classes in which the learning
rates and momentum terms are determined antomatically in every stage of training. Mostly
such aigorithms take into account the local condition of the error surface to compute the
suitable learning rates and the momentum lerm that accelerate convergence and prevents
oscillation during training, There are few algorithms that can be considered fully self-
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adaptive. Such algorithms hizve the advanluge of improving Lruining solutions. They also
converge fuss while preventing severe oscillutions,

The standard back propagation-training algorithm updates ANN weights w, atileration &

according 10 the following expression:
Wy =Wy I SV (w1 {L.1)

The amount of learning rale, 1, , ar step size, which is also called the adaptation lenglh 1o

be taken in BP for training, is arbitrary. Proposing a suilable value of the adaptation length
is a controversial research issue. Mostly, ad hoc methods exist to sclect this parameter. In
standard back propagation, the direction is compuied using the gradient information,

dy, =~¥f{w,), from a single training pattern. In on line training, the gradient components

Vfiw,) may result in different directions for a particular weight (Kamarthi and Pitincr,
1999), therefore, a single descent direction is not generated. The fixed value of learning
rate i, does not always decrease the error function value. It alse depends on the shape of
the error function (Jacobs, 1988) from one iteration & to the next iteration k+1, &+2,...
and so on. Such iterative methads therefore, do nat produce a convergent sequence in the

strict sense, The fixed value of learning rate, 5, , may misdirect the search towards the

minimum and the directions 4, generated frem Vf{w,) are different for a single weight

component in standard back propagation {Jecobs, 1988; Weir, 1991; and Vogl, 1988).

The Newton type training algorithm performs well if the training is initiated close to the
optimum points. Convergence becomes difficult if the stating point is far from the
minimum, Levenberg (1944) and Marquardt (1963) type algorithms are modified versions
of Newton's method in which the Hessian matrix & is replaced with a comesponding

modified matrix [#+1,7] to maintain positive definite property. In another class, the
direction of movement 4, is taken to be -DVf(w,) where D is a positive definite matrix

that approximates the inverse of the Hessian matrix. This class is referred to as quasi
Neswton training methods. Broyden (1967) proposed a useful generalization of the
Davidon-Fletcher-Powell method. He introduced a measure of degrees of freedom in
updating the matrix p {Bazaraa et al, 1993). The Davidon-Fletcher-Powell method
converges to an optimal solutjon if the objective function is convex, if the Hessian matrix
is positive definite at the solution poiat, and if an exact line search is used. The method
converges super-linearly. In Newton type training methods the apiJroximation to the
Hessian matrix itself is a source of difficulty,
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The meshod of conjugale direction is an efficient wechnique. The method of Fletcher and
Reeves (1964) generates conjugate directions by 1aking a suitable combination of the
current gradient and the dircclion used al the previous ileration. The original idea
presented by Hestenes and Stiefel {1952) led 10 the development of this method, as well as
to the conjugate gradient algorithms of Polyak (1969) and Sorenson (1969). These
methods become indispensable when the problem size increases. Poluk and Ribiere (196%9)
propose another conjugate gradient scheme, which is preferable far non-quadratic ANN
error functions. The possible source of difficulty with this training method is the
requirement of linear independence of search and conjugate directions.

1.3 Development of Specialized Training Algorithms

Consider the case when the ANN ecrror function is discontinuous or ifl conditioned.
Convergence is a potential problem in such case. The difficulty also arises, as the ratio of
maximum and minimum eigenvalues of the Hessian matrix becomes large (Bishop, [995).
The convergence problem occurs due to scaling of variables {Oren and Luenberger, 1974).
It also occurs in parameter idemification problems. Most of the ANN applications are
closely related to such problems {(Warner et al, 1996). As the smallest eigenvalue
approaches a value nearly close (o zero, the convergence becomes slow excepl for
stationary points that fie in the range of the local minimum. The Hessian matrix in this
case is either ill conditioned or singular (Wang et al., 1998). These situations are commen
in parameter identification problems {Mechra and Stepner, 1973 and Gupta and Mehra,
1974). The derivative free training methods can resolve some of these difficullies. These
developments provide an altemative means to irain an ANN other than the purely
derivative based training methods. Therefore, new self-adaptive training algorithms that
will have important features in resolving some difficullies in existing ANN training
methods are proposed. In particular, the research intends to:

a.) train an ANN with self-adaptive learning rate parameter;

b.) abandon the arbitrarily selection of the training parameters;

¢.) relieve the user/ANN trainer from pre-optimizing the learning rate parameters;

d.) train an error function that is discontinuovs or ill conditioned or develops stiff
ridges in error surface;

e.) train an ANN for which the corresponding error function is not explicit {Conn et
al., 1997y,

f) develop multi-directional self-ndaptive training algorithm without the derivative
information of the error function;

g.) develop central difference approximation scheme that provides the derivative
information of the ervor function implicitly. The step size of the central difference
scheme is controlted by the convergence behavior of the error function;

h.) train an ANN without oscillations;
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i) “develop simplex search derivative free restart training algorithm to improve local
convergence,

All these issues are resolved by designing training algorithms and software developed
using the FORTRAN programming dinguage.

1.4 Content of the Thesis

The development of the self-adaptive derivative free training algorithms is the major
coneern of this research, To this end three new different derivative free training algorithms
are developed. In Chapter 1, the research issues and research problems are briefly
discussed. The salient feature of the research is presented and the significant contributions
of this research are listed. Chapter 2 provides a critical review of the current state af the art
in self-adaptive ANN training algorithms. Computational schemes are reviewed follawing
an introduction to the feed forward artificial neural network. The first order back
propagation theory that is most popular, is deseribed to facilitale the discussions in the
developments of self-adaplive back propagation training algorithms. The second order
training algorithms are presented from theoretical viewpoint to address the difficullies in
training. The research problems are identified in Chapter 3. It also includes the research
methodology, test problems and the data sel for the proposed problems. Approaches to
develop the training algorithms are briefly discussed in Chapter 3. A self-adaptive gradient
descent wraining algorithm is developed in Chapier 4. It provides theoretical base to the
development of descent directions and self-adaptive teaining algorithms. A specialized
interpolation scarch and a central difference gradient computation scheme are developed.
The self-adaptive parameters are determined from a consirained interpolation search.
Therefore, the ad hoc nature of training parameter seleciion is abandoned. The derivative
information is provided implicitly by a central difference approximation scheme, which
changes the finite difference step size according to the local condition of the error surface.
As a result, a suitable descent direction is obtained, The exclusive OR {XOR) problem is
solved to compare the results with the standard BP training. An improved multi-
directional self-adaptive derivative free training algorithm is developed in Chapter 5. A
search vector first orients the initial starting point o a descent location before attempting
the main phase of training. The search follows rectilinear directions. The algorithm
accelerates (raining with a restricted momentum search. The momentum term is
determined in a self-adaptive manner. To test the convergence properties of the algerithm,
the XOR problem is solved. A mew restart simplex teaining algorithm is presented in
Chapter 6. It is also a derivative free and parameter free training algorithm, which
improves the simplex search by maintaining a non-degenerate simplex at a defined restar
phase. The simplex is prevented form degenerating during search, A re-scale phase
constructs the simplex, which confines finite volume. The propesed algorithm finds a
good local minimum. The algorithm is compared with a standard test function before
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entering into anslysis with XOR problem. In Chapter 7, the performances of the newly
developed training algorithins are discussed wilh the parity, letter recognilion, seasonal
time scrics and mwhi-variate statistical analysis problems. The performances of the
training algorithms are compared with the slandard back propagation Lraining algorithm
and the standard regression method. The results suggest that the developed training
algorithms are an order of magnitude faster than the standard back propagation algorithm.
The restart algorithm improves over the statistical method in a seasonal time serigs-
forecasting problem. The convergence difficully of the self-adaptive back propagation
algorithm is discussed with a seasonal time series problem. The condition number of the
comesponding error function is high in magnitude and therefore, convergence difficulty is
expected. Finally, in Chapter 8 imponant conclusions of the research are drawn.

1.5 The Important Contributions

The research contributes in developing three new self-adaptive training algorithms in
neural computations and the following contributions are highlighted.

a.) A self-adaptive back propagation-training algorithm that does not require
training parameter is developed, The training parameters are derived from
prior information of the error function in a constrained search space, Thus,
instead of having a fixed value of the training parameier, the algorithm
determines variable learning rates dynamically. This approach makes the
ANN training method simpler, casier and efficient. The algorithm compuies
derivative implicitly to accommodate the situations where an analytical
expression of the derivative of an error lunction is difficult to obtain.

b.) A central difference derivative approximation scheme takes into account the
local canvergence behavior of the ANN error function. During forward pass
through the network, the step size is controlled in order to improve 1raining
performance.

¢.) A multi-directional self-adaptive and derivative free training algorithm s
developed, An initial positioning vector is designed to accelerate training.
The step length of a restricted momentum search is optimized such that the
search direction is not lost, The training algorithm is suitable for the case
where the corresponding ANN error function is discontinwous or ill
conditioned.

d.) A simplex restart training algorithm that produces a non-degenerate simplex
at a re-scale phase is developed. The simplex is prevented from degenerating
during search. In addition, a restart phase is designed to align the simplex in a
descent location. The algorithm does not require any training parameters.
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Uniike other training algorithms, it does not examine the behavior of the crror
function for one weight al a time. It updates weights concurrently in a single

epoch or iteration.

The related training sofwares for the new training methods are developed.
The parity, letier recognition and statistical analysis problems are solved
suecessfully, The algerithms are faster than the standard back propagation
training algorithm and avoid oscillations during training.

All the training algorithms are dynamically self-adaptive and derivative free,
Thefe is no user intervention to pre-optimize learning rate, momentum and
any other training parameters. The training algorithms sclf-adapt these
parameters according to the geometry of the error function.

A comprehensive review in the state of the art in first and second order self-
adaptive back propagation ANN 1iraining is provided. Sources of difficultics
in ANN computations are discussed. Standard reference in self-adaptive
training method is not readily available. This review brings the information
together as a source of reference in self-adaptive back propagation training
methods,




State of the Art in Self-Adaptive ANN
Computations and Training Algorithms

2.1 Introduction

A comprehensive review of the back propagation self-adaptive training method is
provided in this chapter. Sections 2.2 through 2.5 provide the descriptions of the standard
back propagation method. The self-adaptive training methods that are based on the theory
of first order training are discussed in Section 2.6 through 2.7. The second order training
methods are discussed in Sections 2.9 and 2.10. In Section 2.11 the sources of difficulties
with the self-adaptive training are provided and finally Section 2.12 provides some
relevant discussions on self-adaptive training methods.

2,2 Computations in ANN

Rumelhart et al. (1986), McClelland et al. (1986}, Werbos (1974), Bryson and Ho (1969)
and Parker (1985) introduce the BP -algorithm. Hechi-Niclsen {1990} formally described
the ANN function mapping through an error measure, It is stated as “givenr any scalar

sufficiently small ¢ 5 0% and any ¢, function f:{0.1})" = E", there exists a three-layer
back propagation ANN that can approximate [ within £ mean squared error accuracy”,
The function f belongs to ¢, if each of s's coordinate function is square integrable on
the unit cube [011° (Hecht-Nielsen, 1990). Although the theorem mentions a threelayer

ANN, more number of layers can be used to approximate a function (Heclit-Nielsen,
1990). The function-mapping concept is alse attributed to Kolmogorov (1957).

Feed forward ANN with neurons in one hidden layer is a class of ANN structure that has
one input and output layer neurons, Figure 2.1 depicts a three-tayer feed forward ANN. It
consists of autonomous processing units called neurons. Directed arcs join these neurans,
Each arc has a numerical weight that specifies the influence of ene neuron in one layer on
the neuron in other layer. Based on connections; ANN architecture is classified as feed
forward and recurrent ANN. In feed forward ANN, the neurons are arranged in layers and
have connections in one direction. Input from first layer gradually passes to the hidden
layer and finally to the outer layer and connections are only allowed to project forward,
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Connections between neurons on the same layer and feed back connections are not
allowed in such structure. In recurrent ANN architecture, feed back connections or back
coupling are common (Hopfield, 1982; Hopfield, 1984 and Deco et al., 1994). The
training methods for this class of ANN are different and are not discussed henceforth. To
facilitate the discussions in theoretical issues with self-adaptive ANN computations,
throughout the discussions here a three-layer feed forward neural network is considered.

Won
W
—
Input Hidden Qutput
Laye: i Layer: n Layer: o

Figure 2.1 BP Neural Network Architecture

In order to develop the neural computational algorithms and discuss different self-adaptive
training algorithms, this chapter attempts to present the mathematical computational
schemes comprehensively. The input layer consists of 7 neurons for 7 dimensional input
space. The purpose of this layer is to distribute the 7 components of the input vectors to
the input layer neurons and then to the hidden layer neurons. An ANN is obtained by
connecting a neuron from one layer to the next layer through weighted arc connections.
The I input layer neurons transmit signals through synapses (Haykin, 1994), which
represent connection weights wj, , from neuron i in first layer to neuron » in the hidden
layer in which there are N neurons. The input layer neurons receive a pattern at instance
p in the form xf =(x, x,.....x;) from an external source and propagate all the input to
the hidden layer neuron through the weighted arc connections. There are a total of P
patterns in the training set. For example I=6, N=4, 0=1 in Figure 2.1. The net input,

h? , to the hidden layer neuron = is given by:

- o

Y = B wial . (2.1)
i=/
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The net input, 0, coming from the first layer neurons through the weighted arc
connections, passes through the exponential 1ype activation function, @, (Haykin, 1994)
present in hidden layer neuron # to produce an output, £, as shown in the following

equation:

g =0, (1'1£)= 1+el"‘-' = [-I:‘:ww]' (2.2)
14 ™

This output from the hidden layer neuron » is fed to the output layer neuron o as inpul.
The net input, z7, to neuron o in the output layer is shown in Equation 2.3, when it passes
through the hidden layer weighted are connection w2, :

2= Swht. 2.3)

The neuron ¢ in the output layer produces an output, 7¢, using an exponential activation
function @, is shown in Equation 2.4. Here &, =®. =@ indicating the same function.

52 =0,e)= (2.4)

|
" e(-.%ws.r: ]

This ANN output, 37, is comnpared to the actual observation, y!, and the difference is

measured, The difference between the ANN output 37 and the actual observation yf? is
shown as an error in Equation 2.5:

=% 3hr-52). 2.5

pulaml

Usnally g is taken as 2. The back propagation training method suggested in Rumelhart et
al. (1986) minimizes the squared error £, and is shown in Equation 2.6:

e=3302-57 . 26)

To control this error, ANN connection weights are changed based on the magnitude of the
error. Once again the error in the network is compared for the next input paitern x¥ (o

change the weights. This process of changing weights is repeated until a desired level of
accuracy is achieved. As the error becomes smaller the ANN closely approximates ths
actual response.

9.



2.3 Choiee of Activation Funciion

The aclivation function ®(s) is used lo transform informution in the hidden layer and
output Jayer neuron. Different neurons can use different uctivation funciions. The typical
choices of activation functions are exponential (2.7), tanh {2.8), logistic {2.9), ramp {2.10},
step (2.11) and linear (2.12) (Deco and Obradoric, 1996). The example of a sigmoid
activation function used in the hidden layer neuron with input 42 is shown in Equation
27

Sigmoid activation: ®(i#)=—I-—. 2.7
J4ethe?
A few examples of activation functions in multi-layer perceptron are given below:
- _ Iy _ iR
Tanh activation: ®()) e 1anh(hf s ——— (2.8)
el"n LY e‘“‘. J
. e 1
Logistic activation: (4"} —80——; {2.9
g ') 1+ log{lh? 1) )
e, ifkfze,
Ramp activation: ®Gfy=1 if, if laf ke, (2.10)
—¢p, if hY s,
- qE
Step activation: mu.,r)=[+ i >0, (2.11})
— &5 otherwise
Linear activation: &{if)=cdi?, o=a constant. (2.12)

Similarly such activation function can be used in the oulput layer. The widely used
activation function is sigmeid activation {2.7). It takes a value in the interval [0,1], The
activation functions in equation (2.10) and {2.11) are discrete, An ANN modeler chooses
an appropriate activation function depending on the type of the problem under
consideration,

2.4 Gradient Calculations in ANN

The BP algorithm is dependent on the first to hidden and hidden to cuter layer gradient of
the error function in a three-layered feed forward artificial neural network. The gradients
of an ANN error function provide information about the direction of move in error space.
Equation 2.6 is rewritten using equations 2.2, 2,3, 2.4 and 2.7 to calculate the input and
hidden layer gradients and is expressed in equation 2.13;
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8=‘Zi{y:— >wl ):,.]H 213

pelom] L i=l

The minimization of the squared errer, £, approximates an unknown error funciion to the
actual problem (Hecht-Nielsen, 1990). The error function in Equation 2.13 i3 of a convex
type and unconstrained optimization principles minimize such an error finetion (Rothe,
1998}, The negative value of input and hidden layer gradient information points towards
the direction of the minimum function value. The following sections show gradient
calculations,

2.4.1 Hidden Layer Gradient

The gradiem of the hidden layer ANN eror function in equation 2.13 is given by

YFwl,) =[aai ] The partial derivatives of the error surface are calculated below and

shown in Equation 2.14:

de__ de &f oz}
WL L al oL @14

The individeal components of the partial derivatives are calculated in Equations 2.15
through 2.17;

Jde . r o ol

T E.("‘f 32); (2.15)
%=%(¢&.’ J=velo(e )= 520- 52); (2.16)
%3%‘( ihﬁ_lwij: ]=z§: : Q17

Using Equations 2.14 through 2,17, a directional vector -9/ (wZ,) that points toward the
minimum is defined and is expressed in Equation 2.18 with a simplified notation,

~VFwd) =YY, (3 -33E0-3NT 8 ‘ (2.18)

-11-



The hidden layer weights during training cycle % are updated for the next iieration £+1
uccording to the Equation 2.19. The suifix notation indicates that the weights are different
in different wraining cycles,

(i) =) +-mronan, . .19

The parameler #° is called the learning rate in the hidden to output layer. How 1o identify
this parameter is an open research issue. Including a momentum n* 1erin, the weight
update takes place according 1o the equation shown below:

bk =2k +brevrol bk 621 (.20

24,2 First Layer Gradient

The first layer error Gradient Vw), can be expressed by the following partial derivatives as
shown in Equation 2.21:

The individual gradients are shown below through Equations 2,22 to 2,26.

a?‘: =25E (! - 5003 2.22)
=305 (@.23)
%{;:i@=2wﬁ,; (2.24)

ﬂ---‘-’:'—@("7."))=Vﬁ(‘ﬁ(ﬁ:’n=§;ﬁ—E."]: (2.25)

akr k2

E a[f-'.:f!
oh! = "al,‘l. =Exlp . (2.26)

iy

Equation 2.27, witk simplified notation, is the descent directional vector —¥f(wl} that
points towards the minimem function valve.
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-Yfwi)=23 3 (rf—i:)if(l—i:)[}: v, }a:(w:){):xr]' @2n

Defining a learning rate n’, the ANN input layer weights are updated during training cycle
k , according 1o the Equation 2.28:

(ol kos = ) 41wl 2.28)
The weight update using s momentum term, n=, is shown in the following equation:

(el =) +l-vrll on (ol ), ~{ok ), | (2.29)

2.4.3 ANN Training

The algorithm for evaluating the derivatives of the error function is known as back
propagation {Bishop, 1995) as the crrors are propagated backward through the network.
However, the term back propagation is used in neural computing literature to mean
different things. The multi-layer perceptron is sometimes called a BP network (Bishop.,
1995). 1t also describes a method of reducing the sum of squared error measure of &
function. An important concept of BP is to provide an efficient method of computing the
derivatives,

Training algorithms jnvelve an iterative procedure for minimization of an error function,
by adjusting weights in sequence. The processes of adjusting weights constitute two
distinct passes. They are called the forward and the backward pass. The forward pass
determines the gradient with respect 1o the network weights, During the backward pass the
errors are propagated backwards through the petwork and the derivatives are used to
adjust the weights using a variety of optimization techniques. Rumelhart et al. (1986) uses
gradient descent minimization technique to accomplish this. Each pass through the ANN
is called an epocch which processes the input pattern through the network to gradually
adjust the weights with the aim of reducing the error measure,

This research views the training an ANN as the minimization of an error function of the
form 2.6 or 2,13, A feed forward ANN is trained either using a batch or on line training
method (Deco and Obradovie, 1996). In batch training the weights are modified afier
calculating the error on afl training patterns. On-line or inceemental training updates the
weights at each presentation of the training pattern. To train the ANN, a training set
{ y e y . Lx". ") is applied to the input layer. The notation (x”.y")

represents the input vector » and output vector y associated with paltern p=12....2.

The output 3? produced by the ANN becomes as close as pessible to the actual outpul
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y" due 10 the minimization of the ecror function (2.13). Training is accomplished by

successively adjusting the weights, wj, and w2, .
244 The Standard BP Algorithm

The standard BP (Rumelhart et al., 1986) relics on the first derivatives of the error
function in neural networks 10 find descent directions. The adaptation lengths %' and " in
the first to the hidden layer and the hidden to the output layer are fixed or varied
depending on the performance of the BP algorithm. A momenlum term n~ is also

selected to prevent oscillation in training (Rumelhart et 2., 1986). The algorithm that
trains a 3-layered feed forward ANN is deseribed below. The algorithm uses the gradient
information in the hidden and outer layers to determine the direction of move according to
Equations 2.18 and 2.27. Depending on the training method, the weights arc updated in
the two layers accordingly using the Equations 2,19 or 2,20 and 2.27 or 2.29, The back
propagation algorithm is described in Table 2.1,

Initialize

Set iteration or epoch counter k< 1; initialize adaptation length to a small valve

Ny «a,, 7y +a, ad momentum ferm 77 e e, 56t £, ¢ o a large value. Initialize

connection weights (w, , W, ,.......w,,) in all the layers and perform main step.

Main step

Compute outer layer gradient using equation 2.18
Update output layer weight using equation 2.19 or 2.20

Compute first layer gradient using equation 2.27
Update weight in first layet according to equation 2.28 or 2.29,

Stoppinp Criteria

If error in equation 2.13 is reduced to acceptable limit, then stop, otherwise set &k & k+1
and perform main step.

Table 2.1 The back propagation training algorithm
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2.5 Notation Sim plification

To simplify notation in ANN connection weights, the following convention is now
adopted to represent a one-dimensional ANN weight vector instead of a 1wo-dimensional
weight vector in a three-layered feed forward ANN, A vector w is defined as one-
dimensional vector and is transformed from two dimensional weight vectors w), and w?,.

The vector w represents the entire connection weights in ANN and is defined in Equation
2.30 and 2.31:

Weamnsi = Wias V) (2.30)
Win egi=1iN +5 =wl,.¥(n,0}. (2.31)

Clearly, the total numbers of elements in weight vector w are (F.¥+N.0). The notation,
w = (W, J = L (LN + N.O)), represents the ANN weights, As an example, in a 6-4-}
ANN,I=6, N=4, O=I and w=(w,j=12...28). This indexing melhod uniquely
describes the ANN weights from two dimensions to a one-dimensional weight vector. The
twe and one-dimensional weighis, for cxample, are related a8 wh =w,, wi =w,,

Whe = Wy, Wi = wag , and so on,

With this notation, the basic training scheme is expressed in Equation 2.32 and is similar
to 2.19 and 2,28, The learning rate parameters, 7, and %] are replaced by a single

learning rale parameter, 5, , in Equarion 2.32;
Wia =Wy 41 -9 (v, ). (232

This simplification is convenient in batch or off-line training implementations. In pradient
descent BP, the negative gradient -V (w) of the function f:w, e E" defines the direction

along which the function has the maximum local decrease in value.

2.6 Oscillations in BP Training a .

The error function forms geometry in the weight space, and the traininlg refers to locating
updated weight vector w, that minimizes the error function. An on-line training scheme
(Rumethart et al, 1986) modifies the weights ¢f the ANN immediately afier the
presentation of each input pattern with the target pntiern but in offline training, alf the
pairs of patterns in the training set are presented once to undate the ANN weights. The
vector w, is the updated network weight at jteration k. Ir. feed foreard ANN the weight
vector is adapted according to the recursion:
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Wia =Wyt d, {2.33)

10 find the trained weight vector. This adaptation is performed presenting a sel of pairs of
input and target vectors to the ANN sequentially. The parameter 5, , which is called Lhe
learning rate, is usually positive and is delermined by the user arbitrarily. The direction

vector 4, is the negative gradient of the error function f(w,) defincd as:

de ==Vfiw,). (2.34)

During training the weight update fotlows a direction that yields maximum local reduction
in the error function. Convergence can be achigved if the learning rate is small crough lo
provide a steepest descent move (Salomon and Yan Hemmen, 1996} and the convergense
difficully is noticed when the problem size increases. In seme experiments Jang el al.

(1997) observe that as the value of 7, =1, the search accelerates but oscillates at the
minimum without {ocating it precisely. With small value of 5, , the search process is

cxtremely inefficlent and requires large iterations to reach minimum. Jang ct al. (1997)
further claims in a given experiment that the search process is inefficient when », is

small, n, 02, and when n, is moderate, n, =0.6, the search path tends to show
oscillatory behavior (Jang et al., 1997). Using 5, > 0.6, 1he search path diverges and the
method fails (Jang et al., 1997). This behavior points to the difficulty in training.

2.7 Training with Momentum to Prevent Oscillations

Rumelhart and MeCleland (1986); Rumelhart, Hinton and Williams (1986) and Plaut et al.
{1986) propase to update ANN weights according to the following equation:

Wy =W, =N,V (w20 (wg —we ) . (2.35)
The momentum term ™ regulates the search directions. Chan et al, {1987} and Chan et al,
(1990} suggest a heuristic to update n based on the back propagation rule similar to the
expression 2.36, The update rule is given by:

M =’Tg..|(|+11'co-’¢l> (2.36}

where, the value of Cos¢, = LM,
a 05y ferelal
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This scheme aims at adjusting the slep size when the proper descent direclion is
determined. The momentum parameter measures the cffect of pust weight change on the
current training of the ANN. 1i acts as a memory term thal incorporates the weight change
of the previous step und slows down oscillation near the minimum of the error surface
(Salomon and Yan Hemmen, [996). Yu, Loh and Miller {1993} prepose a similar method
to compute 4, using information of the current gradicnl and the direction from the last

iterations,

The parameter 5 takes a value between 0 and L. It smoothes out the oscillation in

weight update and tends 10 resist erratic weight changes due to the non-quadratic error
surface along which gradient descent is oscillatory (Bishop, 1995). The use of a
menentum term does not always accelerate training and is dependent on application
{Widrow and Lehr, 1990). In some cases it plays a rele in preventing learning from being
trapped into poor local minimum. It may be beneficial to some local features of minimum
(Weir, 1991) but its acceleration features are limited, when small step sizes are required
near the minimum.

2.8 Heuristic Self Adaptive Training Methods

Hush et al. (1992) point out that the ANN error surface contains many flal surfaces and
steep regions. The search in the region of a flat surface causes the algorithm to decrease
the escor function slowly. The convergence thus becomes slow {Van Qoyen and Nicnhuis,
1992; Krzyzak ct al., 1990), The BP provides the direction of [earning but does not
suggest the amount of step to be taken in training.

Self-determination of adaptive length is considered in Weir {1991). The learning rate
parameter selection is based on extreme gradient information (Weir, 1991}. The extreme
gradients with respect to some training weights show the magnitude of the gradients and
do nol provide the informatior about the optimal move. The step length determined from
this information some times over shoots the minimum. Fahlman (1988) uses a heuristic
called quickprop. This methed approximates error surface by quadratic polynomial using
information during training and the minimum of the polynomial is used to update the
training weights. The heuristic of Hush and Salas (1988) suggest a method to re-use the
gradient. They use the gradient in as many iterations as possible so long as the decrease in
the error function is noticed. A new value of the learning rate is determined depending on
the re-use count.

Vogl et al. (1988) attempt to improve the BP by updating ANN weights afier cach pattern
is presented. All weight changes are celeulated as usual through back-propagation, but
these changes are not immediately applicd. Instead, the changes for each weight are
summed over all of the input patterns and the sum is applied to modify the weight after

each iteration over all the patterns. They vary the adaptation lenpth n, during iteration,
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according 10 the reduction in total error for all patterns. If an update reduces the creor
measure, then 7, is multiplied by a factor greater than one for the next iteration. If a step

increases the network error by a smali percentage of the order 1.5, then #, is mulliplied by
a factor less than one and the momentum term 77 is dropped. The process is repeated

until a successful step is taken. At this stage the momenium term 777 s included for the

next iteration. The rational behind such maneuwver is that when the 1opography is relalively
uniform and the descent dircetion is in a relatively smeeth line, the memery implicit
momentum 1erm will aid in convergence. If the lopography is such that the descent
direction is lost, then the direction is changed so that the search continues towards the
minimum direction. The persistence in addilion of momenlum term does not always lead
to improvement {Qian, [999). To oricnt the search in descent direction, the memory lerm
is set to zero so that 1the memory from previous step is fost.

Salomon and Van Hemmen (1996) provide a method to adjust the learning rate using the
following expression:

- =[ms i Jley-Tye6)S Sy -Tge 1) @37
N, f¢ oherwise .

The term e, is the unit vector in the direction Vf{w,) and Ihe suggested value of ¢ is 1.8,

This factor in combination with the learning rate controls the training performance as
shown in above equation. The method uses fixed value of learning rate, The sugpested

parameter in combination with the unit vector e, , which contains the sign of gradient of

error function, changes the learning rate dynamically. Due to the change in gradient, the
learning rate shows the effect of dynamic variations. Tt however does not perform a
steepest descent training or search in weight space. The algorithm is claimed to be
dynamic but at times the parameter is kept constant and recommends change when severe
oscillation is experienced. The methed looks after extreme oscillations rather than the
sensitive nature of the error surface, The direction is favorable but the step [ength is not
always correct in this training method, There exists a chance of missing the direction
towards the minimum, The selection of small step size or learning rate may nol overshoot
the minimum but may slow the convergence. According to Salomon and Van Hemmen
(1996 the algorithm is not restricted in determining the appropriate learning rate,

All ANN weights are dynamically adjusted in the training methods proposed by Cater
(1987}, Codrington and Mohandes (1994), Mohandes et al. (1994), Nachtsheim {1994),
Salomon and Van Hemmen (1996} and Weir (§991) based on heuristically determined
self-adaptive parameters. i

‘Individual learning rates for each weight are determined scparately in Jacobs (1988), Pirez
et al. (1993) and Silva et al. {1990}, They use a different heuristic to adapt the individual
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fearning rates from the information gained in earlier iterations. Jucobs (1988) determines
three parameters and needs fair amount of experiment to identify suitable valucs of these
parameters, while Silva and Almedia (1990) need two parameters but show unstable
convergence behavior,

According to Jacobs (1988), if the error surface is relatively flat along a weight dimension,
the derivative af the weight is small in magnitude und therefore the weight is adjusted by a
small amount. Alernately, where the crror surface is highly curved along a weight
dimension, the derivative of the weight is large in magnitude and consequently the weight
is adjusted by a large amount with the risk of overshooting the minimum. IT the
eignevalues of the Hessian matrix of the error function are far apart, the error function
forms a peometry that is skewed. The negative gradient vectar in stecpest descenl training
in this case may not point towards the minimum of the error surface. An arbilrary learning
rate is not appropriate for all portion of the error surface determined in these methods. The
component of the gradient vector is smaller in the direclion of the eigenvector
comesponding to the minimum eigenvaluc as compared to the direction of the eigenvector
with reference to the maximum eigenvalue (Jacobs, 1988 and Le Cun el al,, 1993). The
minor and major axes of the contour surface are related to the minimum and maximum
eigenvales of the Hessian matrix, The value of the learning rate thal preduces moderate
steps along major axes of the contour may produce large steps along minor axis in the
weight space and the training exhibits oscillations. In computation, the value of learning
rate is defined such that the successive steps in weight space do not overshoot the
minimum of the error surface. Most often the value of the learning rate is limited by the
magnitude of the largest eigenvalue and only small steps in weight space are taken in the
direction of major axes of the error surface {Jacobs, 1988). The learning rate is cither
dynamically adjusted for all weights or separately for each weight. These methods use
some local features of the error function to adjust weights during computation of the error
funiction. Johansson et al. (1992) repon a line search in the steepest descent BP. However,

in this method the user determines the {caming rate 5, arbitrarily.

2.8.1 Parameter Dependent Training

Kamarthi and Pittner (1999} propose 2 regression type training method. They observe that
in back propagation training the gradient of the error surface is either positive and
monotonically decreasing or negative and monotonically increasing for sevetal iterations.
This behavior suggests that {he error surface has a smooth variation along the respective
axis and therefore extrapolation is possible using the information of weights at the end of a
few iteratfons. The convergence patterns of the weights are examined and the weights for
the next iteration are predicted by extrapolation using the trends in weights. This
prediction relies on previous jterations and a coresponding extrapolation function. The
success of this method depends on the assumption that behavior of this kind must exist
during the entire training cycle, Such a phenomenon is not always true, since for some
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training cycles the reduction in error function is insignificant to uccommedate this
behavior,

2.9 Second Order Scif-Adaptive Newion Type Training Algorithms

Second order training methods are faster than the first order BP training {Johansson et al.,
1992 and Wang and Lin, 1998) and have quacdratic convergence properties. Second order
training suffers due to ill conditioning of the error funclion as the ANN grows in size
(Wang and Lin, 1998). The major cencern in second order Newlon based training
algorithms is the storage and inversion of the Hessian matrix. Training methods such as
variable metric, conjugate gradieni and other similar anes have improved convergence
properties. These algorilhms are concerned with Lhe generation of feasible learning
directions. The network weight update has the following form:

Wy =W =T (H IV (w0, (2.38)

The primary requirement in the second order training methods is to maintain at least
positive semi definite properties in the Hessian matrix. In the cvent the inverse Hessian
matrix [H17 is near singular, the algorithm fails to converge and results in premature

termination. A comman approach is therefore to design a deflecled matrix {£], which
possesses the requited properties of the inverse Hessian matrix [#17' and does not require

to be inverted. The deflected matrix must always posses al! the characteristies of the
inverse Hessian matrix [#]™' in full second order method and preserving these properties

results in new training methods.

Newton’s second order method to train ANN is not efficiem (Haykin, 1994}, The method
needs second order derivative information. The approximation of a Hessian matrix by its
diagonal term does not maintain the major propenties of the true Hessian matrix of a multi-
layer perceptron (Wang and Lin, 1998). The inversion of a large Hessian mattix poses
computational difficulty {Bazaraa et al,, 1993 and Luenberger, 1984). Newton's method
requires a good initial estimate for convergence, The full Newton's method in ANN
training is not globally convergent and does not consider the special properties of the
Hessian matrix. In a recent study, Wang and Lin (1998) attempt 1o improve Newton's
second order method to train ANN training wsing a black Hessian matrix derived from the
order-based-derivatives of multi-layer perceptrons, The following discussion is important
to describe the principle behind Mewton typs second order training.

2.9.1 Levenberg (1944)-Marquardt {1963) Hessian Update

‘The method due 1o Levenberg (1944) and Marquardt (1963) is similar to the Newion

algorithm. The method corrects the Hessian matrix from possible iff conditioning. To
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demonstrate the principle behind such a training scheme, consider the following sieps that
construct and improve learning directions d, . In Newton's method o, is constructed

using [-H'Vrw,)). However, il may not be a descent direction if the Hessian mairix #

is not positive definite (Luenberger, 1984). A busic modification is shown below:
d, =<{lm, T+ RT'Vrw)): 0, 20, (2.39)

The matrix I is the identity matrix. This modification provides the properly of positive
definiteness to the inverse Hessian matrix |#)™', a1 all stages of training while mainlsining
i1, »0. The weight update is similar 1o standard back propagation and the direction vector

is defined in Equation 2.39.

Newton type methods work weli for small problems (Dennis and Schnabel, 1983;
Lucnberger, 1984 and Bazaraa et al, 1993) but computationally Lhey are very expensive
due to the Hessian matrix update and inversion. The Newton type BP training method is
sensitive to initial weights (Kolen ang Pollack, 1991). Starling with inappropriate weights
causes poor convergence, The eigenvalues of the Hessian matrix are responsible for the
geemetry of the error surface (Moller, 1997). The Levenberg (1944) and Marguardt (1963)
method and all other similar methods force the Hessian matrix to be positive definite, This
can be fatal in situation when the Hessian is singular. The approximation satrix is
significantly different and convergence is greatly affecied {Eisenpress and Greenstadt,
1966),

2.9.2 Quasi Newton Condition

Buring training the change in gradient can be approximated (Rardin, 1998) as:

U win )=V Qo Ya—m T+ Hiwy, ~wy). (2.40)
Equivalently this is represented as:

Wy - W = T+ HT™ (FF (w4 )=V g D). (2.41)

Therefore, the directional vectors in equation 2.39 can be constritcted from the modified
Hessian matrix and first order gradient information. The update equation is given hy:

Wy Sy ([ T+ HI™ (U vy ) -V (e, N1 (2.42)

Define the quantities d, and Vg, , as the direction vector and gradient vector. They arc
approximated from the past training cycle and are shown in the following two equations;
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dy =W —w, (243)
Ug, =VF(w, -Yw,). (2.449)

The quantity, Ve, . determines the change in gradicnts as shown above. The deflection

matrix B, of quasi Newton algorithms approximates the gradient change behavior of

inverse Hessian matrices at cvery training cycle to salisfy the following condition:
d, =D,Vg,. (2.45)

To improve search directions with gradient information, when a move is made along the
direction d, , the training is improved if the condition 2.46 holds:

Vfiw, M, <0. (2.46)

Quasi Newton metheds are improved by imposing this condition. To see how the training
is improved, consider the following search vector 4, as directional derivative:

4, =—[H]"'Vf(w,). {247
Using the information of the deflection matrix the search vector is modified as:

dy =-D,Vf(w,}. (248)
Enforcing the inequality in equation 2.46, the descent directions are derived.
Consequently, the following condition must bold in quasi Newton training method
{Moller, 1997):

Vf (wy Dy VF (w ) = Vf (w, M=D JVF (w,) <0, (249

This inequality plays the crucial role in satisfying the second order training condition in
quasi Newton type training algorithms.

293 Method of Broyden (1967), Fletcher (1963), Goldfrab (1969, 1970) & Shanno
(1970)

The well-known BFGS update is based on a scheme that maintains a deflected matrix b,
with positive definite properties and the update scheme is shown below:
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The neural nctwork training using this training scheme is found in Battiti (1989). This
study implies that the update in Equation 2.50 changes deflection matrix modestly during
training.

2,10 Conjugate Gradient

Conjugale gradient methods are somewhere between gradient descent and Newton's
method. These methods accelerate the slow convergence of Lhe gradient descent method
while avoiding the compulation of inversion of the Hessian malrix and its storige.
Hestenes and Stiefel (1952) originally proposed the conjugate gradient method, which
preduces non-interfering directions of search. When the ANN error function is quadratic,
the method minimizes the error function over the whole sub-space spanned by all previous
search directions. The necessary and sufficient condilions for generating non-interfering
search directions are mutually conjugate in relation 10 the Hessian matrix; this is expressed
in Equation 2,51;

4 Hd; =0tiv j; (. em. . (2.51)

This condition implies that the leaming directions o, .4, :i=j are linearly independent.
This c¢an be verificd from the following argument. Consider the problem:

1), =arg(min f(wy, +n,d,}) in direction 4,. The minimum is achieved when -i!‘—'i';?"fﬂzﬂ.

This suggests that Vf(w,,,)’d, =0; which is a necessary condition for all minimization
|4 k4l

dircetions. Now consider the seecond order approximation of the ANN ecvor function in the
following form:

2
Swgy )= Flwy +n,dy )= Fiw M, [V (wy )M, +%‘—d{ﬂd,‘ . (2.52)

Differentiation of the function, after neglecting higher order terms, provides the Equation
2,53

VE (W, )=V (w4 Hd, ). (2.53)

At the minimum point Vf(w,, }=0 and pre-multiplying 2.53 by o, , the important result in
Eguation 2.54 is obtained, provided that the directions d, are linearly independent, In

other words, the mutual conjugacy condition holds. The expressian for i, is thus given
by:
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wfiw, 1T, .
n == (2.54)

From 2.53 it is eviden, when pre-multiplying by d,, {¥f{w,,,)7d)=0 al the minimum

point due to the first order condition and' consequently dy Hd, = 0. This condition i

equivalent to 2.51. The iterative expression for the weight update in the conjugale
direction is:

W = Wy 114, (2.55)

The successive conjugate gradient directions are generated by a lincar combination of the
current gradient and previous direction with respect 1o the coefficient 4, in equation 2.56:

Ay ==Vflw, )4+, - (2.56}

The standard BP (Rumelhart et al., 1986) uses this information to include a momentum
term (Bishop, 1995). The requirement that successive directions are H conjugate wilh the

coefficients #, , is determined from the equation 2.56 by multiplying # to obtain eguation
2.5%

Al Hd, =[-VF(w,, ) +iid, 1Hd, =0, {2.57)

The value of #, which generates conjugate directions can now be found using Equation
2.58:

. _ Vfiw, ) N,
T = fia, (2.58)

This can be interpreted as momentum term according to Bishop (1993).

Conjugaie gradient training methods work well on batch training with very careful
implementation of line search. The difficulties with line search computations are discussed
in {Shanno, 1978 and Luenberger, 1984). Multilayer pereeptren training using conjugate
gradients can be found in Watrous (1987); Kramer and Sangiovanni-Vincentelli (1989);
Makram-Ebeid et al. (1989); Barnard (1992) and Johansson et al, (1992}, The studies in
Johansson et al. {1992) demonstrate that the conjugate gradient methed due to Polak-
Ribiere {1969) and Hestenes-Stiefel {1952), perform better than Shanne (1978). The
performance of conjugate gradient method deteriorales with poor line search (Oren, 1972},
In some cases for badly scaled problems, the matrix b, may become singular as shown in

McCormic and Pearson {1969) due to the rounding off errors (Brad, 1968).
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2.11  Sonrce of Difficolties with Stundard BP

The dircction 4, is computed using the gradient, ¥f(w,), information from a single
training pattern in standard on line back propagation. In on-line training, the other training
paterns compute the pradient components, ¥f(w,), which would result in different
directions (Kamarthi and Pitiner, 1999} for a panicular weight. Therefore, a single descent
direction is not generated. The fixed value of a learning rate n, does not always lead 1o a
maximum loeal decrease of function value. The learning rate depends on the shape of the
error function (Jacobs, 1988) as it trains from the current iteration % to (he nexi ilcration
k+l, k+2... and so on. The iteraics therefore, do not produce a convergent sequence in

strict sense. The difficuity originates from 1wo different sources (Jacobs, 1988; Weir, 1991
and Vogl, 1988):

a.} the fixed value of learning rate s, may misdirect the search towards the
minimum during iteration & ;
b.} the directions ¢, penerated from Vf(w,} during iteration % are differem for a

single weight component in standard back propagation training.

Selecting arbitrary learning rates for each parameter the weights are modified, but a
steepest descent move is not performed. In this case the parameters are updated based on
the partial derivative of the error function with respect to the patterns in 1he training sel.
Due to the different gradient information of a weight resulting from different training
pattern in the training set, the directions of moves are different. If the valley has twists and
turns, farge value of n, will prevent the system from making reasonable progress across a

long fat slope (Vogl et al., 1988 and Jang et al., 1997). Choosing a suitable adaplation
length in a particular problem involves experimenting with different values of learning
rates that reduce the training time (Fahlman, 1938 and Hinton, 1987). Rumelhart et al,

{1986) suggests a [arge value of 7, for rapid learning without oscillations. As a matter of

fact, for some siep, a large value of 5, may be ideal but there is no goarantee that the
same adapiation length would be appropriate for other steps in the learning process
(Jacobs, 1988). The optimum value of , will depend on the topography of the domain

being traversed, If the contours of the error function are circular then the step size will
have little influence on the convergence in BP. The convergence difficulties arise when
the contours have stiff ridges and the error surface contains focal minimums while 1he
contours with elliptical or circular shape will favor convergence (Moller, 1997). The
convergence behavior of the BP is dominated by the cigenvectors asseciated with the
largest and least eigenvalues of the comesponding Hessian matrix (Vogl et al., 1988;
Bishop, 1995). The fixed learning rate or variable learning rate that do not fully consider
the geoinetry of the error surface would deviate the seapch from the minimum trajectory of
the error surface.
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2.11.1 Validation lssues

The issue of validation is closely rclaled to the training methods, fts prapedy in ANN are
affected by the following three major factors:

t. The elemenls y? in crror equation 2.6 or 2.13 are considered to be a random sample
from a purent population with the expecied value 37 given by the parent distribution.
The variations of y! about the expected values §? ure some time far wider than the

expected variance;
2, The error equations 2.6 or 2,13 are assumed to be a smooth funclions with respeet to

all the training weights w,;

3. The choice of ANN that is an approximation of the true function influences the ANN
training problem.

The error contribution due to factor | is difficult to cantrol. The only opticn is to repeat or
replace the observations, The weights are determined in BP by gradual adjustment using
gradient information. An unfavorable eigenvalue in the Hessian matrix produces coriplex
geometry and causes ill conditioning in the Hessian matrix. In this case the training
terminates prematurely. To control the difficulty arising from the second Ffaclor, a training
methed that overcomes this difficulty is desirable. Finally, the different ANN slructures
can be compared to determine the most suitable functional form of ANN as a
representative of the problem being solved (Adya and Collopy, 1997; Zhang ct al., 1999
and Atiyaet al., [999).

A relatively new method in statistical analysis proposed by Effron (1982}, known as
Jackknife or bootstrap method, can be used to test the validity of the ANN lcarning
(Tibshirani, 1996). However, in interval estimate of population parameters, the result is
not robust and yields biased values when the population is far from normal distribution
(Effron, 1982), The jackknife procedure (Diaconis and Effron, 1983} is robust and does
not require the population to have any specific distribution. It s applicable when the
normmality assumption is not met,

The validation method in ANN applications is an important issue in the context of
generalization and decision-making (Zhang et al,, 1998). The common approach is to
evaluate soms siatistical error measures (Tibshirani, 1996). A useful validation, which can
be regarded as generalization, is to compare performance of ANN in the training and test
period using bootstrap sampling method. The data set in the validation period is small and
the parameter estimate is not robust. Tibshirani (1996) compares the bootsirap error
estimation method with the standard statistical method given in Effron and Tibshirani
(1993), Kent (1982) and Effron (1982). The study demonstrates (hat the bootstrap method
gives better estimate.

Another problem in ANN training is the over (itting of a model (Weigend et al., 1990). It
occurs when the network his too many frez parameters that allow the network 1o fit the
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training data weil (Lisi et o)., 1999). This leads 1o poor generulization (Chaavin, 1990,
Morgan et al,, 1990).

2,12 Summary and Discussions

The standard BP is important from a theeretical viewpoint, 11 is one of the basic Iruining
methods and other improvements are motivated by an attempt lo medify the basic BP
teaining method to improve convergence (Sexton ct al., 1998; Archer ¢t al,, 1993; Hsiung
et al.,, 1990; Lenard at al., 1995; Subraminun et al., 1990; Wany, 1995, Watrous, 1937,
White, 1987 and Weigend et al., 1990). Most often it is iried on new problems. The
gradient descent BP converges loczlly but they ofien become trapped at sub-oplimal
solutions depending upon the serendipity of the initial random starling point, There have
been many atiempts to improve the local convergence of the gradient descent BP in Chen
and Mars (1990); Franzini (1987); Holt and Semaani {1990); LeCum i zl. ([989); Lee
and Bien, (1991); Matsuoka and Yi, {1991}; Samad {1990), Shoemaker et al. (1991);
Sietsma (1991); Solla (1988); VYan Qoyen and Nienhuis (1992); and Weigend et al. {1991).
The standard BP therefore remains as a standard reference algorithm and the improvement
issugs are concerned with the acceleration in computations, self-adaptation ol learning
rate, determination of appropriatc momentum term and global convergence.

2.12,1 Comments on the Scif-Adaptive First QOrder Training

The main factor limiting the convergence of gradient descent back propagation is the
contours of the error surface that have different shapes in different directions, The
contours that are skewed limit the value of the convergence rate; the circular contours
favor the convergence rate (Moller, 1997).

The determination of adaptation length and momentum term plays a crucial role in the
training process. Mostly the first order gradient descent BP computations {Jacobs, 1988;
Weir, 1991, Silva and Almedia, 1990) ignore 1his by choosing a fixed parameter or its
variation. A method that directly uses the local information of the error surface to
determine learning rate is more appropriate. The ANN training with line search is difficult
since the errar function is difficult to bound due to the large number of ANN weights. Fast
convergeuce is realized when a methed provides prior information abaut the optimal
parameter setting in training. Therefore, one needs a mechanism that precisely determines
this varisble learning rate and momentutn parameter automatically during training. It
suggests that the method generates a suitable direction vecter &, and the correct learning

rate n, in weight space w, . Dynamically adjusted correct training parameters do not
overshoot the minimum. Such a method can be regarded as self-adapiive training.

If computational difficulties are encountered due to ill conditioning in the error function,
then the derivative based training algorithms need modifications (Wang and Lin, 1998).
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Also, if the derivative information of an ANN error function is not readily availuble, then
the derivative frce methods are other aliernatives.

Due to the exislence of mulliple local minimums (Kantz and Schreiber, 1997, Azeff,
1994), 1t is hard to find the best tocal minimum. The algorilhm thal has a global training
feature is an important training scheme. Tabu search (Glover and Laguna, 1997) is the
recent trend in global eptimization and is a potential research issue in ANN computation,

2,12.2 Comments on the Second Order Training

As the ANN grows in size, the structure of the error functions begins to deteriorate. The
eigenvalues of the Hessian matrix are wide apart and consequently, the condition number
becomes larger (Ahmed and Cross 2000). As a result, stiff ridpes and sharp edges begin to
form in error surface. The funciion in several places becomes skewed and the derivative
based training methods tend to cncounter difficulties. The irairing algorithms rely on the
assumption that the ANN problem has an equivalent error function that is smooth,
differentiable and has positive definite Hessian matrix. The training suifers i these
conditions are not met. Newton's method converges in the neighborhood of local solution,
Newton type second order methods require Ihat the Hessian matrix to be evaluated and
inverted or an approximation 1o its inverse must be evaluated at each iteration. This poses
difficulty for large size problem. Second order methods are fast for small and moderate
stzed problems. The storage and computation requirements for large problems (Wu et al,,
1998) prevent Newton type training methed to be attractive. Becker and Cun (1989} use
variations of a quasi Newton method to speed up back propagation by approximating the
second otder derivatives, They report that the approximation method show oscillations
during convergence,

The second order training algorithms have quadratic convergence. Newton's method
becomes Impractical because of the size of Hessian matrix, although it bas a good
quadratic convergence property. Also, there are chances that these training algorithms face
ill conditioning. The Marquardt-Levenberg (M-L) algorithm improves such condition by
improving the Hessian matrix but also faces difficulty due to the matrix that is far from
true Hessian. Quasi Newton, conjugate gradient and other variable meteic training
algorithms depend on the quadratic and differentiable properties of the error function
(Shanno, [980). Quasi Newton type algorithms improve Newton’s method in preserving
and updating the Hessian matrix information in a deflected matrix. These methods deflect
the gradient in a negative direction using a previous direction of move. This is viewed as
an update of fixed symmetric, positive definite matrix in the form of an identity matrix
and hence is regarded as fixed metric in contrast with the term variable metric method in
quasi Newton methods. Conjugate direction methods converge in at most m iterations for
unconstrained quadratic minimization problems in E™ when using exact line search.

Davidon (1959), Fletcher and Powell (1963), Kowalik and Osborne {1968}, Luenberger
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(1984), Pierre (1969), Powell (1964), and Swann (§964) oullines the precautions 1o be
tuken when vsing line sesrch to achieve fast convergence, Conjugate gradient methods
provide better choice of directions and alse amomute the procedure of learning rate or
adaptation length by a line search technigue, These algorithms do not require adequate
storage and are relatively suncessful in training, They are also considered as some variant
of the quasi Newlon type algoerithms, The worsening condition number in ANN error
iunction put burden in compulation even with these algorithms. In general, the second
ordzr training algorithms are self-adaptive. McMenamin and Monforte (1998} report
resvlis using a Newton type-training algorithm with time series problem. Comparison of
the M-L algorithm with other training methods is given in Webb et al. (1988).

Kramer and Sangiovar..;-Vincentelli (1989) compare parallel implementations of the BP,
steepest descent anr v snjugate gradient methods using the Polak-Ribiere (1969} method.
The experimen: uiggests thal Polak-Ribiere (1969) method performs belier than the
conventional 172 ai-f steepest descent method for small Baolean encored problems and for
tie parity probk=n. These algorithms are super-linearly convergent in the neighborhood of
a’l__ local siation. The algorithm due to Polak-Ribiere (1969) is a variant of the Fletcher-
Recves mathod while the method of Broydon-Flatcher-Goldfrab-Shanno originates from
-'Devidon's algorithm, These algorithms have been used successfully for simply conducting
a descent search (Battiti, 1989). Conjugate gradient methods explicitly construct their
- semzches using linearly independent vectors that span the space.

2.12.3 Research Focus

To resolve some of the difficulties in BP training, we propose to automate the learning
rate by using the geometry of the error surface. The ill condilioning put pressure on BP
training. To tackle such problems, we propose some derivative free methods. These
training methods also have the characteristics of improving solutions in the presence of
unfavorable geometry of the errer functions and parameter identification problems
(Schwefel, 1981). The derivative free training methods can train an ANN with error
functions that may be discontinuous. These metheds can be developed as parameter free
training algorithms. The ill conditioning in training problem also eccurs due to scaling of
variables as a result of high condition number in the Hessian matrix. It is also noticed in
parameter identification problems, These issues are common in ANN computations,
Parameter identification is similar (o identifying trained weights in ANN (McMenamin
and Monforte, 1998; Warner and Misra, 1996). As the smallest eigenvalue approaches a
value close to zero, the convergence becomes slow. The performance of the derivative free
training is not readily available, Such training methods do not require derivative
information, however they adjust ANN weights gradually to approximate the ANN to the
actual problem. Hence such training approaches are different than the back propagation
training method. In the next chapter these issues are investigated,
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Research Probiems and Research Scope

3.1 Introduction

This chapter discusses the research issucs and research problems. Theoretical approaches
fo design the seif-adapiive and derivative free ANN training algorithms are briefly
discussed, The research design methodologies are addressed.

In Section 3.2, the problems in self-adaptive ANN training algorithms are briefly
highlighted. The research issues and research problems are presented in Section 3.3, The
test preblems are given in Section 3.4, The performance measures of the algorithms are
addressed in Section 3.5 and finally some conclusions are provided in Section 3.6.

3.2 Dilemma in Self-Adaptive Training

In the existing self-adaprive training algorithms some preliminary cxperiments are
necessary to determine appropriate learring rate parameters. For example, individual
learning rates for each weight are determined separaiely in Jacobs (1988}, Pirez ct al.
(1993) and Silva et al. (1990). They use different heuristics to adapt the individual
learning rates from the information gained in earlier iterations, Jacobs (1988) determines
three parameters and the algorithm needs considerable experimentation to identify suitable
values of these parameters, while the algorithm proposed by Silva and Almedia (1990)
need two parameters bul show unstable convergence behavior. According to Jacobs
(1988), if the contour surface is relatively flat along a weight dimension, the derivative of
the weight is small in magnitude and therefore the weight is adjusted by a small amount.
Alternately, where the conteur surface is highly curved along a weight dimension, the
derivative of the weight is large in magnitude and consequently the weight is adjusted by a
large amount with the risk of over shooting the minimum. This happens with the fixed
learning rate. If the eignevalues of the Hessian matrix of the error function are far apart,
the error function forms contour surfaces that arc skewed. In such a case the negative
gradient vector in steepest descent training may not point towards the minimum of the
contour surface. An arbitrary learning rate is not appropriate for all portion of the contour
surface determined in these methods. The component of the gradient vector is smaller in
the direction of the eigenvector corresponding to the minimum eigenvalue as compared to
the direction of the eigenvector with reference to the maximum eigenvalue (Jacobs, 1988),
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The fixed or arbitrary value of the learning rate that produces mederate steps along major
axes of the contour surface may produce large steps along minor axes in the weight space
and the training cxhibits oscillations (Jacobs, 1988 and Bishop, 1995).

Johansson et al. (1992) report a line search in the stecpest descent BF ANN training.
However, the user determines the learning rate 5, manually. Experimenting with such a

method is difficult and arduous, The value of Jearning rate should be defined such that the
successive steps in weight space do not overshoot the minimum of the contour surface.
Most often, the value of the learning rate is limiied by the magnitude of the largest
eigenvalue and only small steps in weight space are taken in the direction of major axis of
the contour surface (Jacobs, 1988). The learning rale is cither adjusied for all the weights
or separately for each weight. This may be a safe but an inefficient approach. These
algorithms use some local features of the error function to adjust weight during
cormputation of the error function. As a result the computational efforts arc large. In some
instances the algerithm cycles and faces difficulty in convergence, In general, slow
learning and convergence to a false local minimum is common (Fukuoka et al., 1998),

3.2.1 Research Issues

The aim of the research is to develop ANN training algerithms that automate the selection
of the learning rate parameters, the momentum term and the descent directions by
wionitoring the variations in error surface. Such algorithms provide the basis to adjust
dynamically the learning rate parameter in a self-adaptive manner. In contrast, the exisiing
algerithms necessitate the user to undenake experiments with a given problem to identify
the suitable training parameters depending on the type of the contour surface under
consideration. Hence, the proposed developments relieve the user frem pre-optimizing the
training parameters.

Consider also the issue of training an ANN that uses a non-smooth transfer function. The
research develops training algorithms that train ANN without derivative information in
cases where explicit derivative information of an error function is not easily available.

3.3 Research Scope

This research provides a theoretical framework to optimize the learning rate parameter, the
momentunt term and descent direction in ANN training. The self-adaptive training
algorithns that consider the geometry of the error surface in a constrained region are
developed. In addition, the development addresses the situstions when:

&) auser need not pre-optimize the learning rate parameter or need not select learning
rate parameter at all;
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b.} one needs a training algorithm 1hit does not require the derivative information of
the ercor function (Conn el al., 1997,

c.) it is difficutlt ta provide analytical expression of the derivative of the error function;
d.) there is discontinuity in the error function;

e.} the contour surface develops stiff ridges and results in an ill conditioned Hessian
matrix which makes ANN training difficult;

£.) the global convergence is an important issue, The proposed derivative free training
methods initiates research directions in global search. The recent development in
this ling is the tabu search first propoesed by Glover and Laguna (1997).

33.1 Research Problems

The following sections briefly present the self-adaptive, the multi-directional and restart
derivative free training algorithms and the methodoiogies to derive the self-adaptive
training methods are addressed.

3.3.1.1 Self-Adaptive Training With Gradient Information

The research aims at determining the learning rate n, and the descent direction d, in
Equation 3.1 such that an optimized [earning rale and the descent direction is identified
during training iteration or epoch & . The parameter n, is determined by an interpelation

search in a constrained space where the geometry of the contour surface is examined. The
error surface is sampled at discrete intervals and the function values are evaluated 1o
identify the appropriate learning rate. The error function f(w) at iteration % is perturbed

by an amount n, along a chosen direction 4, and the consequence of the change is

observed. The methed finds 5, such that the error function f(w, +n,d,) is minimized.
The problem is formulated as:

n larg{minimich(w‘ +n,d’,‘)} 3.1}

Svhjectto: L=(5 7, 20)

where, L is the constrained interpolation search that determines the learning rate, which is
restricted in sign, The search terminates at n=n, when the function fow, +1,d,) is

minimized with respect to 5, . An interpolation search method is used to find an optimized

learning vate. Given the vectors w, and 4, , the value of 1, is varied such that the value of

232.



the function f(w, +1,d, ) is changed. As n, is varied, a function fn,) of the learning
rate is formed. The search involves bracketing a minimum with other 1wo relalive
mibimum poinls in ihe neighborhood of the newly tronsformed error function. An
imerpolation through the trial points picks up the appropriale learning rate. Since this
parameter reduces the error function fw, +n,d, ), an optimized learning rale is, therefore,
identified. The learning rale parameler along with the direction vector 4, updates the

ANN weights, Constantly it provides descent to the error function, during all epochs of
training.

3.3.1.1.1 Central Difference Approximation of Descent Direction

The ANN training problem needs information on the descem direction d,. In standard
gradient descent BP, it is the negative gradient of the error function, Here we develop u
central difference approximation scheme that implicitly identifies the search vector and
hence the direction 4, is computed implicitly. The rate of converpence of the error
function and the information of the updated weights are used te choose the cenlral
difference step size that controls the accuracy in 2, . This allows the ANN training method

to move along the descent direction so that the training converges to a limit point that is a
mirimizer of the error function.

3.3.1.2 Self-Adaptive Multi-Directional Derivative Free Training Alporithm

Figure 3.1  Convergence Difficulty and Premature Termination

A muiti-directional training algerithm that does not require the derivative inlormation of
the ermor function is proposed. In addition, the training algorithm is designed with an
oriented search vector to improve the training performance. The initial trial vector is first
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positioned in a suitable location ut the beginning of training. This s done at most in m
steps, before 1he multi-directions are explored.

Given a descent error function f:we £, the multi-directional training algorithm reduces
the error function f(w} gradually, by changing its weights with respect (o the directions,
d; mid) dy,cnndy }, Where d; is a vector of zeros, except / al the j* position, The
value of the weight w; is thevefore changed in the 4, direction, while all other weights are
kept fixed. Moving in all m directions the algorithm changes all the value of the weights
(W Wjag peenesWpan) il directions. The process is again repealed to obtain change in
the function value f(w,) for the next iteration & . Given an initial weight vector w, , the
algorithm chaoses a search direction d; and the learning rate j; for a given value of 7,
where j=12....m . The selection of n; can take variety of forms. An interpolation search

is performed in a constrained space to determine the magnitude of the learning rate. The
interpolation search is defined as;

minimizef(w+f,ljdj] 3.2)

Subjectto B, € L

where, L has the form: L=E', The defised training problem explores in = different

directions to determine the m individual and variable learning rates. The network weights
have different learning rates according to this algorithm. To accelerale the training
performance, a momentum search, which is similar to the pattern move, is designed. The
length of the momentum term is determined in a self-adaptive manner. The dotted line in
Figure 3.1 defines a momenium search.

Also, notice the search path when it moves from point 2 to & in Figure 3.1. If the point &
is nearly sharp-edged, the search may cease at & Ssince the derivative is not defined,
Making a momentum search along the dotted line, the scarch is continued to point ¢ and
beyond until the search reaches the local minimum. This step is taken in the proposed
multi-directional search algorithm. Also observe the shape of the contour surfaces, which
is to some extent skewed. To reach a minimum point in such geometry, the training
algorithm would require exira effort due to the ridge like or curved structure.

3.3.1.3 Derivative Free Restart Training Algorithm

The simplex method propesed by Spendley, Hext and Himsworth (1962) is improved as a
derivative free training algorithm. In factorial design, the number of trials for experimental
identification method is about (4 f). These (m+1) equally spaced points are allowed to
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form a pattern or geometry that js known as regular simplex. The research improves the
method that maintains a set of (m+/) points in m dimensional spice to generiic non-
regular and non-degencrate simplex. When the simplex degenerates, a re-scale phase is
performed with a restant vector that forces the simplex to scarch & wider parameter space.

The proposed algorithm cvaluates the error function along all the vertices of the simplex,
The search method replaces a vertex with the fargest cbjeclive function value by n new
vertex situated at a reflection poini midway between other m vertices to find the descent
directions, This principle locates a new vertex at best minimum point, The midway point
plays the role of a centroid. It provides the descent direction to the error function. This
newest vertex car also be reflected 1o explore the best point in the neighborhood, Three
main strategies arc defined, They are called reflection, expansion and contraction, which
generate the directions of scarch. If the current new veriex improves the function value,
then the highest function value is replaced by the improved function value. The proposed
algorithm redefines a new simplex with lower function value at the vertex of a
degenerated simplex. The edge length of the polyhedron is changed so that the search does
not stagnate. The polyhedron is forced to change the size and direction of search. A non-
degenerate simplex that has finite volume is reflected with a new search vector to improve
the convergence of the algorithm.

3.4 Test Problems and Experimental Set up

The research provides theoretical anmalysis of convergence of the mewly developed
algorithms where possible. Some test problems are considered 10 observe the performance
of the algorithms namely:

a) the XOR problem with 2-2-1 ANN and parity problem with 5-5-1 ANN
configurations;

b.) character recognition with the letters L and T with different orientations in 3x3
pixel;

¢.) seasonal time series problem: Australian peak electric load forecast and

d.) hotel occupancy rate in Australia as multivariate statistical analysis with small
data set.

The purpose of these problems is to test convergence of the algerithms in classification
problems and its ability to replicate results as a forecast and regression model. The
standard back propagation algorithm is used to compare the results. Some published
results from literature are alse used to compare the performance of the algorithms.
Additionally, the standard statistical regression method (Mendenball and Sincich, 1996) is
used 1o compare the results of the last two {est problems. All the ANN architectures use &
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log transfer function in the hidden lsyer neurons and the oulput layer uses a constant
function,

34.1 Parity Problem

The Parity problem is a standard benchmark against which performance of an algorithm
can be measured, There are a number of reports on this problem in literature {(Johansson et
al., 1992; Jacobs, 1988, Kamarthi et al., 1999 and Salomon et al., 1995). In the parity
preblem we have a number of boolean input variables and onc boolesn output variable.
The input/output rules states that the output should be true in case an odd number of input
values are true. If there are just iwo input variables the problem is known as exclusive OR

(XOR). This rule states that either of the inputs can be truc but not both.

Input Layes  Hidden Layer  Quier Layer
i=l

E4!

Inpul Pattern

Figure 3.2 Three layer feed forward 5-5-1 ANN

Figure 3.2 shows the ANN that contains 5 neurons in the input layer, 5 nenrons in hidden
layer and one neuron in output layer. The 5-5-1-configuration network is chosen with full
training set for each problem. For example, there are 2° training pattem in a 5-5-1 ANN
configuration. The training data set is shown in Table A.1 (Appendix A). The pattern of 0
and | values are placed on the input layer neurons. The network then produces a 1 if there
are an 0dd number of I bits in the inpwt and a O if there are even numbers of 1 bits in the

input. The capability of the algorithm to solve the parity problems is investigatad,
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3.4.1.1 Starting Points for the Parity Prohlem

The starting points for the problem for 10 experiments are shown in Table A.2 (Appendix
A}, The weights have low as well as high magnitude 10 observe the performance of the
algorithms with different staring vectors. To create sturting points in small magnitude, the
weights given in Table A.2 (Appendix A) can be faclored appropriately to creale weighls
in different magaitudes.

34.2 Pattern Recognition Problem

A training experiment is considered to recognize the letters L and T, An ANN with nine
inputs, two hidden units and a single output unit is trained to recognize the letters Loand T,
Each input pattern consists of a 3x3 pixel binary image of the lelier. The training sel is
formed by four orientations of each letter as shown in Figure 3.3 and Figure 3.4. The
target values arc O and 1 respectively at the oulput unit, which identifies the letters L and
T. The training data set is shown in Table A.3 and A4 (Appendix A). The 9-2-1 ANN
configuration is chosen to compare the results given in Kamarthi and Pitiner (1999).

(a) (b) (c) (d)
Figure 3.4 Four Orientations of the Letter L

(a) (b)
Figure 3.4 Fonr Orientations of the Letter T

(@)

3.4.3 Seasonal Time Series Problem
A seasonal time series problem is considered as shown in Figure 3.5. In panicular,

quarterly seasonal peak electric load data in mega watt-hours is collected from Australian
Burean of Statistics time series data. The data set contains the values of peak ¢lectric toad,
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7, from September 1976 10 September 1998 and is shown in Table A5 (Appendix A).
To madel the behavior of the scasonal time series dala, an ANN with five nerons in the
input layer and five neurons in the hidden layer and one newron in the output layer is
proposed, The ANN configuration is similar 10 the problem discussed in scetion 3.4.1. The
output layer produces the estimated value for pattern p. The input layer neurons receive
the following input pattern x}:

. x{ =abias term for the input layer neuron

[

x§ = p, the pattern af instance g

3. af= i il‘qu:mcr'z falls at instance p
’ ¢ otherwise
p _ |7 ifquanes 3 fallsalinstance p
4, x!= .
0 otherwise

5. 12 ={J‘ it quartl:r.-i fallsat instance p
7 otherwise |

The purpose of this exercise is to notice the performance of the training algorithms in
converpence. A 5-5-1 ANN model is chosen to represent and predict Australia’s quarterly
peak electric load, The algorithm is tested to measure iis strength in the forecusting
problem. A reasonable procedure in forecasting validation/generalization is te split the
available data into two pars, which Snee (1977) calls the estimation data and the
prediction data, The estimation data is used to build the ANN medel and the prediction
data is then used to study the predictive ability of 1he model. Sometimes data splitting is
called cross-validation (Mosteller and Tukey, 1968 and Stone, 1974}, In a large data set,
the data can be separated into three parts. The third component of the data set is the testing
set, which could comprise the entire data set,

Load {MWH)
4, % N Y N N, B %,

o

)

L A I G A A A g e
Quartar
Flgrvre 3.5 Perak Elaciric Load

%
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The data set from September 1976 to Jupe 1993 is used to train the ANN. Sixicen
quarterly datu from Seplember 1994 to June 1997 are used 1o measure the Jorecasting
capability, The standard statistical regression methed (Mandenball and Sincich, 1996) is
used a5 2 benchmark 10 compure the performuance of the proposed algorithm.

4.4 Hotel Occupancy Rate

Table A.6 in Appendix-A shows the limiled tourism duta that is available from an ABS
repord. Eight quarterly data from March 97 through December 1998 is used to train the
ANN model. It is possible to work with the small data set in ANN modeling (Law, 1998).
Figure 3.6, 3.7 and 3.8 displays the pattern of the data set including room night spent,
consumer price index (CPI) and gross domestic product (GDP} respectively. The training
method investigates the capability of the algorithm to model the small seasonal data set as
the multivariate statistical analysis problem and its potential as an inlerpolation or
calibration model. All the data points are used for training and the frained ANN is used 10
compare the in-sample extrapolation capabilily. The muhivariate statistical method is used
as a benchmark te compare the performance of the algorithm,

121.5

121 /

T

;i 120.s \ //

tg 120 \/

g

— 118.5

o

[&]

118
118.5 T T T T T r T
Mas- Jun Sep Dec- Mar- Jun Sap Cac-
87 a7 a4 Quarler 11
Figure 3.6 CPIAN group
3.4.4.1 ANN Model

The room-nights spent constitutes the hotel occupancy rate y2. To develop an ANN
model using data st in Table A6 (Appendix A) the first layer neurons are parameterized
and the input 1o the neurons is described below. A 7-4-1 ANN configuration is chosen (o
study the performance of the algorithms. The hidden layer transfer functjons are similar to
the problem in section 4.1. The input layer neurons receive the following input patter »7 .
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1. xJ =u bias term as input for the input layer neuron
2. x{ = p.ihe paltern at instance p
3. x] =CPI{Consumer price Index)

4, x! =GDP (Gross Domestic Product}

ol I ilquanier 2 falls alinstance p
*7lo  olherwise

6 £ {I if quarizr 3 lalls atinstance p
. xf =

8 otherwise

! if quarter 4 Talls al instance p

7. :;:{

0 otherwise .
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3.4.4.2 The Stariing Points

The random staning poiats are according 1o the weights shown in Table 3.2 in which the
last two weights are repeated to complete the tolal weights for initialization, defined as

Wy =Wy ANd wyy =wy,

3.5 Performance Measure of the Algorithms

To compare the performance of the aigorithms we require some kind of metric, The
number of iterations or cycles or cpochs is not a valid metric (fohanssen el al., 1992}, In
BP, the training set is presented through the network once per iteration. In second erder
BP, the training set is presented several times per iteration and mest of the computation
time is spent in evaluating the error function and the gradient.

The conventional BP training requires one forward and backward propagation of the
signal per iteration. The second order algarithm on the other hand may invelve several
forward and backward propagations at cach iteration. Depending on the line search
method, the number of forward and backward propagations may or may not be the same
(Jobansson et al., 1992). There arc a variety of line search methods and some use function
evaluation and gradient at each step while some use only function value or gradient. The
methods that use only gradient information have the advantage of rapid convergence (Al
Sultan et al., 1997). The number of gradient evaluations is not usually reporled when the
performance measures are addressed.

An algorithm that starts in the vicinity of 2 minimum converges rapidly. To climinate this
biased performance, the algorithms are 1ested on random starting poinis. We propose (o
compare the algorithins based on average performance of the algorithms, In particufar we
address the following measures:

a.) number of iterations or epochs;
-b.) number of gradient evaluations;
c.) total number of function evaluations including pradient evaluations;
d.) standard deviations of the performances on the above measures;
e.) maximum, minimum, median and range on the above measures and
[) terminal error funciion value at the end of training as squared error measures.

The median value divides an ordered set of values into two halves, The maximum and
minimum valies indicate the worst-case performance through the measure called the
range. The convergence of the algorithm depends on the stating point and as the
algorithms are tested on random problems, the standard deviation measure is a good
indicator to judge the consistent performance of an algorithm, There would be some
instances where the training may not converge. Under such sitations, the algorithm is
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forced to terminate afier it has completed 50,000 numbers of epochs and the stalisties are
collected within this period of Lraining.

3.5.1 Performance Measure in Forecasting and Multivariale Analysis

To see the performance of the algorithm in scasonal time series forecasting and
multivariate analysis, the following measures are considered:

a.) mean squarcd error;

b.} mean absolute percemage error;
¢} mean percenlage error and

d} R*test.

It should be noted that a method to interpret the ANN weight similar to the multivariate
statistics is not yet developed. Nevenheless, the ANN computations provide a model in
multivariate statistical aralysis to represent and replicate the data.

As usual, the performance of the algorithm to this class of problems is first evaluated
according to 1he experimental set up in section 3.5. The experiment that finds the
minimum error function value is considered for forccast and multivariate statistical
analysis.

3,5.2 Termination Criteria of the Algorithms

The termination of the algorithm is based on the following criteria:

fov)~fiw, )Se (3.3)

where,  is set to 3. The convergence is checked when k23, This implies that the
* function improvement in three consecutive ilerations, £, is insignificant, The training is
teriminated when the relative improvement in error function is less that £=10"" in three

successive iferations. A maximum limit is also set for the total number of iterations/epech
as 50,000, The algorithm terminates if it does not converge within this allowed iteration,

3.6 Final Remarks in Research Design

The focus of the research is to provide a theoretical framework on the development of the
self-adaptive and derivative free training algorithms. Some test problems have been
selected only to test the performance of the alporithms. The selected problems address a
variety of characteristics of the self-adaptive and derivative free training algorithms. In
particular the performance and strength of the algerithms to solve problems i
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a.) classification;

b.} pattern recognition;

c.) forecasting and

d.) multivariate statistical analysis

are evaluated, This will identify the strength and weakness of the training algorithms,

Random starting points in a small and wide range are used to observe the sensitivily of the
algorithm to solve different test problems. The objective of the research, however, is not ta
solve a variety of problems and different ANN structures. The focus is the development of
self-adaptive and derivative free ANN training algorithms. The proposed problems are
used to test the efficiency of the algorithms in different classes of problems and its
convergence performance. The data sets for the problems are used without transformation,
Hence, the ANN configuration, initial starting points and data set are standardized. The
objective is to study the performance of the algorithms, which require minimum human
intervention with the data set or ANN configuration or training parameter selecticn,




4.1 Introduction

A gradient descent self-adaptive back propagation training method, which dynamically
adjusts variable learning rate is developed in this chapter. A specialized interpelation
search is developed to determine the optimized learning rates that do not aver shoot the
minimum. A central difference gradient approximation scheme is developed 10 provide
descent direction in training. The descent directions are controlled by the convergence rate
of the error function. The training method is derivative free in the sense that the derivative
informatien of the error function is provided by the ceniral difference gradient
approximation scheme implicitly rather than explicitly. The algorithm solves XOR
problems and results are repotted.

The disectional vector and self-adaptive learning rate parameter that provide appropriate
descent to the error function are developed in Scction 4.2, The interpolation search in
constrained space provides the appropriate learning rate, Hence an arbitrary or an ad hoe
method 1o select the learning rate ic abandoned. The algorithm is given in Section 4.3. A
central difference approximation scheme that uses convergence properties of the error
surface is developed in Section 4.4, The convergence of the error function controls the
central difference step size to compute suitable descent directions. The algorithms that
generate these vectors are presented. In Section 4.5, the first order gradient descent back
propagation training algorithm is developed using the descent direction vector and the
self-adaptive learning rate parameter. Section 4.6 shows that the algorithm generates a
convergent sequence of the network weights and terminates at a point, which is a
minimizer of the eror function. The XOR problem is used for the analysis of the
algorithm in Scction 4.7, Section 4.8 provides related discussious.

4.2 Definitlons in ANN Computations

To facilitate the development of the self-adaptive gradient based training algorithm some
definitions and properties of the ANN error function are introduced in the following
sections, The aim is te develop seli-adagtive learning rate and implicit descent directions
for efficient computations in ANN.
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4.2.1 Ervor Function

The notation fiw) represents the error function, which corresponds 1o the equation 2,6 or

2.13 in Chapter 2, The representation fw ;) means that the error function is consisting of
wy f=12...m number of weights. Hence the notations fw) and fiw;) are equivalent and

some times used interchangeably for convenience,
4.2.2 Error Surface

The locus of the ANN error functions with respect to w; =(w,,wy....w,} forms a
geometry that is defined as the response surface or error surface. For example in £2, the
intersection of the plane paralicl to the w, plane and the response surface constitules
contotrs with constant function values, If fiw) is continuous, the contours will be

connected, continuous and smooth curves.
42,3 Algorithmic Map and Iterative Process

An algorithm contains a set of instructions that performs a defined 1ask. Applying an
instruction on the errer function, the current weight vector w, during iteration or epoch &

is changed to a new veetor w,,,. The notation w, represents the vector of weights during

fteration &. The instruction generates a sequence of weight vectors with reference o a
vector preceding it. The instruction that generates the vector is called an afgorithmic map.
An algorithmic map M can be described by:

Wiy € Mw,). 4.0

Given an initial weight vector w,, the algorithmic map M generstes a sequence of

Vectors: Wi, s Wy, nd the process of generating this sequence is called an iterative

process or iterative algorithm.

4.2.4 Sequence

A sequence of vectors w,, w,, %, ..., is said to converge to the limit point w*, if
lw, =w" 10 as &k~ Alternately, for any given £>0, there exist a positive integer k,

such that lwy -w*llce for all k 2k, , The sequence is denoted by {w, ). The limit point

w® is represented byw, - w" as k —r < or Jimw, =w",
)
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42,5 Subsequence

A subsequence is oblained by dropping certain clements of a sequence (w,]. A

. subsequence is represented as (w, ), , where k, is the subset of all positive integers, say
; 1
k . Suppose that {w,.w,,wy;,wy,.....} denotes a subsequence in (w, ], , then the notation
]
g, also denotes a subsequence represented as (wg,wy, w5, W p.0.] by adding [ 10 ihe
1

indices of all the clements in the sequence [w, ),
1

4.2.6 Neighborhood

Given a relative local minimum #° e E® and an >0, the ball ¥, {(w"}=[wilw-w" <&}

is catled the £ neighberhood of w".

4.2.7 Global Convergence and Closed Map

When an jterative algorithm is applied to an error function with an initial arbitrary weight
vector w, , at the beginning of iteration &, the zlgorithm generates a sequence of vectors

W1 Wiepseeo during iteration k+1, &+2......, and so on. The itcrative algorithm is
globally convergent if the sequence of veclors converges to a solution set Q. Consider for
example the following training problem, where w is defined over £™:

minimize f(w) {4.2)

subjectto: we E™.

Let, Qe E* be the solution set, and the application of an algorithmic map, A, starting with

w, generates the sequence w,,,,w,,;.... such that (w,,,,w, ,...}e O, then the algorithm
converges globally and the algorithmic map is closed over Q1.

4.2.8 Descent Function

To define a descent function, consider the minimization problem stated abave. Let & be a
non-empty compact subset of £™, and if an algorithmic map generates a sequence:

iw,Je such that fw) decreases at each iteralion while satisfying

Aw )= Aw > Awyg)s..., then the function fw ) is said to be a descent function. In
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ANN computalion the error function f(w) is assumed 1o be a descent function possessing
convexity property due to the resulls given in Hecht-Nielsen (1990), Using this resull we
can define a descent direction along which the error function can be minimized and stale
the following proposition Lo demoenstrite this,

Propaosition 4.1

Suppose that [:E™ = E' und the gradiens, Vf (w), is defined then there is a vecior d& such
thar Vf(w) d <0, and fiw+nd)< f(w):ine (0,818 >0}, then the vector & is a descent

direction of fiw).
Proof

Expanding the error function f{w} by Taylor series and neglecting higher order terms, the
following expression can be obtained:

fowend)= £ 479 (w)Td . (4.3)
and therefore:

ﬂﬂn:)-.ﬂu) =Vf(w)rd . (4.4}
Since Vfw) d <0, then for & >0 and ne (0,5) we get:

Lt /) <o, it fotlows then f(v+1d)< £(w). This implics that ¢ is the descent

direction in ANN computation ¢.

4.2.9 Directional Derivative

In ANN computation the direction along which the emor function decreases is
conceptualized by a vector defined as directional derivative as shown in the following

section,

Let, f:E" 2 E', we E™ and d is 2 non-zero veclor satisfying (w+nd)e E”, >0 and

11— 0*. The directional derivative at w along the descent ditection 4 is given by:

Vfwid)=lim, SetEEiel, 4.5
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Assuming the error funclion is smooth and continuous, we can define ils directional
derivative from the following proposition.

Proposition 4.2

Let f:E™ =K' is a descent function. Consider any poini we E™ and de E™! 420,
Then the directional derivative Vf(w.d) af the error function fiw) in the direciion d

always exists.
Proof

Eet n, and n, are two arbitrary quantities that denotes the learning rate such that
1, >, >0, since f{w) is a descent function and posses convexity property (Hecht-
Nielsen, [1990), we get the following expressions: -

Sowsnd)=f [ﬁ';(w+n1d}+(l—§';)wl (4.6)

sgfftwnzd)afu—-;ﬂ:)ﬂw}.

This inequality implies that:

S{wy 4 di-fiw) £ Siwnd=fim)
[ 0 :

Thus, in general, (L2222 always decreases as 7 —0*. Again due to descent property
of the function fiw,) for n>0, we have:
£ = fil o=y b —— (w47}
) t+7

and hence:
S flwed)t—— f(w +7d)

I+ 1+n ’
Simplifying the above expressions we get:

Ll > fw)- fiw=d). X))
It implies that we have a sequence generated as: [ﬂ%’-‘&] that converges as 5 —0*

and k-»~ and this convergence is bounded by (fw,)-fiw, ~d,)] from below.

Therefore, the directional derivative is given by ¥f (w:d) shm, . -&ﬁ"ﬂ—" 9.
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4.3 The Interpotation Search Map

The central theme behind the BP computation is the computation of the search vector

and the learning rale parameter g in weight space towards the minitnum point. Since the
exact location of the minimum poinl is not known, there is an uncertainty in identifying
the boundary or region in weight space over which the search may explore. The
uncertainty can be reduced if we can eliminate the seetions of search boundary {Kicfer,
1953), which do net contain the minimum threugh an interpelation search in & constrained
interval, Therefore, what we need is a search map thut explores the constrained region of
the error surface. The search map samples the funclion value on Lhe error surface in
discrete length with a given direction. The following definitions are necded to describe the
interpolation search map. For convenience we define the notution:

ty mw, SRy L d, OF u=wand . (4.8}

Now consider a training problem with ANN crror function defined by:

1y =arg(min f{w+1d)} | subjectto: n, e L {4.9a)

in a closed interval L=(q:ne E'}. The interpolation map is defined as A:E™xE™ 2 E™
such that:

Alw,d)={u;u=(w+n d)In} € L (4.9b)

J(a)=min f{w+n 4); Subjecito: " ane L. {4.9c)

The map A produces the descent directions. The map should be closed as set value
mapping (Luenberger, [984) such that an appropriate learning rate is obtained, The
following proposition shows that the map A is closed over the interpolation search.

Proposition 4.3

Let f:E™ = B be the error function. Then the interpolation search map defined above is

closed at A(w,d) if d =0 over the defined search interval L=(n:ne E’}.
Proof

Let k be the iteration counter and suppose that the sequence (w,) and {4, ] are such that

wy = w*, d, -d" and d° #0 so that the search is active where w* and d* are considered
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as the limit points. Let o, € dgw, .d,) a0d u, ~>u" s limit poiot, The mapping is closed
when &® e A¢w,.d,) and this is what we need 1o demonsirate. Now consider an ceror
function that has produced s sequence of (g, } a8 k -3 «. The sequence of iterations is
generated as: {uy b= (w, +n,d, ) provided that ¢, #0. The learning rale parameter can be

expressed as 1, =ﬂf‘1'-. We know thal frw) is a descent function in BP, therefore, as
k-, 5, on". The notation n* is the limit peint. Also lel w, =x , w, »u and
dy —+d as k=, [t follows then, n* ="+" or allernatcly, we have o =w +n°d .

Suppose during iteration &, n,e L, then n'e L and w, »u’ a5 k—. Now denote
u'* U, for the training function, as ke « . The mapping, therefore, satisfies
Slug,) S Flw, +0,d, ) . Consequently we have, f(u,, ) S flw, +1°d,) and hence (w,} isa
convergent sequence. The sequence (u,) is derived from the map 4 and thercfore,

1 € A{w, ). It follows that the map is closed 0.

4,3.1 Interpolation Search by Sampling Ecror Surface

The requirement that & #0 is important in the search. If & =0, then theoretically algorithm
must have converged to minimum point or no search direction is generated, Now consider
the following training problem:

minimizef(w), Subjecito: we E™ {4.10a})
and transform the problem in the form:

N =n,n a.rg{i'm'ﬂf{w'i +1,d, )} o (4.10b)

subjectto:i ne L.

The problem is solved; setting the value of the vectors w jand d 4+ While the value of 7, is
adjusted such that f(w,+y,4,) is minimized. As nen, is varied, fip ) forms an
equivalent error function for the given value of w, and d, . To determine the learning rate
evaluate the training function at three different points 4, , 7, and 4, as £, ), fn,) and

Jt1y, ) respectively. The search involves bracketing the minimum learning rate with other

relative minimum points in a close neighborhood. An interpolation through these points
forms a convex function that picks an approximate leaming rate parameter as shown in the
following propaesition.
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Proposition 4.4

Let 1, 1,0, be the three relative leaming rate parameters defined vver a function fin;
such that 1, = {1+a; bi,, 0, =(i+a, B, and q° =(t+a, 7, . The quantity ag.a, a, dre such

that fen )< fea,} and fen,)» £(0,). Given a search map af current iterate k, w; titie

d;, the optimum learning rate to the probiem: min fw; +1,d; hsubjecttc 7, € L is given by:

O P CHCHY L DL (PR T U TEA @1
2 {a, —a, ifiti; Jra, i, )-a,fi1; )

Proaf

Select a search direction o, for a given j and sct r; «w; to determine £, ;. Now the

value of 15, is expressed as &, =(i{+e, b}, with respect tc an appropriately defined
percentage factar a, such that the condition: A, )< 7, ) holds, Tt implics that the value
of if, i5 a, % greater than 5, . If the condition f, )< fi4,) is not satisfied at this stage, a
lower value of i, with respect to s}, is generated. The gradual adjustment of the

parameter forces the condition fidi, )< f1, ) to exist, The search verifies the condilion:

1hy =(i+a, iy [ )< /3, ). (4.12)
Next the point s, is determined as i, ={{+a, m;, such that fis;)> f1,). This is done
gradually increasing the value of a, in comparison with the value of a,. The trial process
finally identifies the condition:

s =”"’ﬂzmﬂﬁ’h)‘>ﬂﬂ1)- 4.13)

Now define a quadratic function in 7, along the direction j. Consider that ¢,.¢, .4, sre the
parameters of the function expressed as:

Tm Y=ty +¢ (1 149, ). (4.14)
Let us assume that f(n ) takes the function values fi, )9, fd? at three different

positions 1 =1, 4,1, . Therefore, we can write the following relations:
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Sl =0, +8 1)+, 611 (4.15)
FUi) =9, ¢, i)+ ¢ 1)) (4.16)
SO =¢s +4, () +9,007). 417

Using the above relations following results are derived:

b = ity (s =45 3 Cy )4ty Cy =130 07 000 3+ 005y = 9 133 ) (4.18)
{fy =112 )085 = Tha Xy =iy )
g, ==l ~ DS @ )+ 6] )/ Ciy) + 3 — )/ ) (4.19)
Gy =T )0y =13y s =2 )
o (s =72 LA0R 0 =100 0350+ () — 1, ) S M . (4.20

{'i'; "ij Wiz — 'i: )(fh ‘7';'1 )

Suppose that n* is the minimum paint of the equation 4. 14, Then the condition that #° is

minimurm point requires ¢, > 0. Therefore it follows that:

NOR [ (4.21)
#,
Consequently:
A (U FEYAGPORS i R YRR R RV D) @)

2 (1jy =%y WA )4 {; Ty W0, JH{0, -0y Wty )
The corresponding condition that #* is minimum, is therefore:

[{ﬂj -TiZ)f{T}I )-I-(?h "il)f(f.'z}"'(ﬂz "'f;'[ )f(rh]] 0. (4.23)
(73 =713 )08 ~115 005 —7iy)

Further define a quantity a, in relation 10 the minimum point #* and #, such that the

following relation exists:

ﬂ' ={l+a, }fh . (4.24)

The value of g, is determined from the above relations. $implification and some

rearrangement results the following expression:

gy = L (el mad Uy )4l 1y =i 1) ' ' 425

2 fay —ay Jinh, )+ a, iy b a, 0y ) '

The optimized value of 1 is therefore given by:
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<[ 142000~ M P+ ;)= 0l A0 }}v. o

2 (ay =ay Jrhy Yoy i, )-a, fin; )

4.3.2 Difficulty in Interpolation Search and ils Correction

The method deseribed in Section 4.3.1 repeatedly monilors the error surface to determine
the variable learning rate. Since it takes inlo account the shape of the contour surface, zn
appropriate learning rate is therefore possible (o obtain. One possible difficulty inherent
with this methed is that during training the error function will not always behave as a
quadratic function and the interpolatior method may not produce comee! results. Further
away from the minimum point the value of 5° =¢/+a, 5, may actually be fin*)> fg, ). If

this happens, # is corrected by re-evaluating the minimum point as 1" =(/+a, j, so that
SOty )< fitiy ). A proper values of ag.a, .0, would uniguely bound the value of n* in

relation to 5, and #,. The quantities ,.a, .a, are expressed as relative percentage faclors

with reference to a trial point,
4.3.3 Algorithm to Determine Self-Adaptive Learning Rate Parameter

The algorithm that determines the setf-adaptive learning rate parameter by interpolation
search is described next.

Initialization:

Step:la Set je0, and g —0* as rermination criteria and 0" as interpolation search
- precession facior. Set §; « O\, § 0, let m =number of ANN connection weights,
set leaming rate parameter in direciion j, is defined by 11; 50, Myl =0,
Set §, «4, 8; « 25, Initiclize w 0 (W Wy W ) SEE

dad; s(d; . dyun.d,) 0.

Step:lb L1 Set, j & j+1

Stepilc L2 1y ewy, dy 1, f; « fiw;41),d, ) and perform next step

Stepi2 21 a8,
Step:3 30 sy e(14a

Step:d 4.1 fo « fwy+ipd; ) I fy < f, pecform step 5, else

42 a, « 8 (a;), ifla, K @, perform 8, othenwise perform step 3
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Step:5

Step:ti

Step:7

Step:8

Step 9.

5.1 a, —ua,

6.0 ay (8, Jut,
6.2 5y e llvay Wy o iy & fwariyd, ) i £y > £y pedform step 7, otherwise

6.3 a; —ay, f; & [, repeat siep 6

Find a,

71 an o df0] =ad ) Mol Ay d-af iy ).
* 14 - -
2 fay =y ATy a1y )=a, i1 )

720" «=(l+ap iy, f; &= fwpnid; ) i £, < f; perforn step 2, otherwise set

N" «—(i+a, i and _,f._;' — fwpnyd, ), 5o that f, < f, and perforin step 2.

231I11f, - f, Ke, perform siep 8, otherwise

7.4 Set _,f « fiw; +1'd 1); and monitor error fhﬁm‘mr wilue
7.5 change 1, PM and perform step le.
{t+og)
8.1 setd;mld, d;udn) =0, If j=n performsiep 9, else, perform step 1b.

9.1 Set k k], for next iteration. (d, ad, dy,..ndy) <0, 50t j 0, perform

step 1h.

Table 4.1 The interpolation search algorithm

4.3.3.1 Interpolation search Algorithm implementation

To begin the interpolation search, fisst set the equation +, ={/+a, i, and sample the

function value fis,) by a factor a, =5, =0,01 relative to the initial position 1, . 1f the

sampled function value is greater than the initial position, the factor &, is adjusted

depending on the condition of the error surface by the factor +8,, which is set as

a, =a 8, where 8 =4, If thc new sampled funciion value is less than the initial

position, the factor e, is mapnified by 8, =2.5. A new location 4, is now sampled with

reference to the initial position s, defined by #,=(/+a, i, to force the condition

Jg) > £(,). Otherwise, sesct the value of a, ¢-a, and reset the finction value
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f(i) & f4,) and again attempt to evaluate the function in other different location such

that the desired condition is found. When the three sampled errar surfuce locations are
suitable according to the proposilion 4, the best learning rate is determined according 1o
the expression given in proposition 4. Due to the complexity of the error function if we gel

the condition f¢r,)> f(1,), it is corrected by selting 7° = (1+a, ), , provided it satisfies

all other conditions.

4.4 Development of Descent Directions in ANN

The objective of this seclion is to construct normalized descent direction for ANN
training. It will be shown ihat the aormalized direction provides descent to the error

funetion, Let 4 be a m dimensional veclor defined as d s(d,.d;,......d,) to a function
Siw) at w, then there exist a scalar § >0 such that fiw+nd)< fow)for all ne(0.4). If
[[f(w+ndy— f(w)}/n]<0, then d is a decent dircction under the limiting condilion

=0, If the function is differentiable at w with non-zero gradient, then ";{":}; is the

normatized descent directicn. The following proposition supports this.
Propaosition 4.5

For a differentiable error function fiw): E® 2 E' at w, there exist a non-zero gradient

Vriw) such that the sieepest descent direction d'sd}al‘:}'ﬁ is the minimization
direction to the problent of the form:
min fiw; +i,d; } {4.26)

subject to ||“:|5" n;€(0,8), §>0.

Proof

For a differentiable and continuous descent error function f(w), the gradient at » with a
learning rate pe (0,8) in direction 4 (according to proposition 4.1) is expressed as:

Jim L4900 yr )Ty (4.27
H=

To prove that d is a descent direction, the condition Vf(w)"d <0 must hold (proposition
4.2),

Using Schwartz inequality with [d]<1, we obtain the following relation:
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Vrw) d 2-[ur w2 vr o). (4.28)

When 4* a%; the ubove inequality is satisfied and the given function is minimized

using Vf¢wy d subject to W< 1. Therefore the directional vector d* a% that reduces

the function value is the steepest descent direction ¢.
44,1 Approximation of Normalized Descent Direction

The normalized gradient of the error funciion is computed using the central difference
approximation scheme. Once the gradient is found, the normalization is a routine
procedure. The step size of the difference scheme is controlled by the convergence rate of
the function value. The central difference gradient approximation is discussed next.

The property of the error function f{w) depends an the ANN weights in different layers

explicitly, The error function f(w) is said to be differemiable at we E™ if %:{1-)— exists
W
i

for all j=12,..m. The gradient of f(w) at a trial poinl w is defined as

r
Vf{w)= Bf(w)laf(w)l ..... .af(w} . To compute the gradient of the error function f(»)

w,  dwy dw,,

each parameter is varied independently in the neighborhood of Ihe trial point to yield an
approximate value of the partial derivatives. The error function is perturbed by an amount

®; and its consequences are determined. Define a quantity y, is relation with the

convergence rate p and the step size, x,, according to the following expression:

xS Py {4.25)
where,
S(Way)
pte——— 4.30)
f (wy) ¢

is the rate of convergence of the error function and w ; is an arbitrary vecter containing m

values to be set at the beginning of the algorithm’s execution. The values of this vector are
the percentage factors that are related 1o the weight vector w ;- Hence the value of y, is

related with the ANN weights by a factor and can be defined as:
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¥, ={factor;)*w; . (4.31)

The quamity {facror,) has a magnitude of the order 1072 10 10™ und depends on the

magnitude of the weights. The pradient approximalion scheme is explained below.
Proposition 4.6

If frwe B™ is comtinuously differentiable, then for any non-zera perturbation n;, during
traiting iteration k the directional derivative of f(w;) at w, in direction d, is defined by
fw B )= fow-m,0 )

o, a=Vf(w,)m . (4.32)
rl ) 2
!

The tenn =, is the controlled central difference step size and 1, a(l,\ [y ln) s the

colutnn vector of { in the 7™ element and zero elsewhere.
Proof

Consider the Taylor series expansion of an ANN error function fw,+x,J;) and

Fiw, —#,7,) around w, with small perturbation x; as shown in 4.33 and 4.34:

_ _ oli
Fv, 47,112 Flw ) T G Im T 492 (0, ) 0 (4.33)
v, =1, 1)) ) -VF (v ), T, 492 £ 00 558 4.34)

Subtracting 4.33 from 4.34 we obtain the following result:

fowy v )= Fow w0 )

Vi (wy)= =
- %1
i

(4.35)

and this proves the proposition 4.

4.4.2 Issucsin Central Difference Approximations

The appropriate value of y; plays a significam role in approximating the gradient
information. Large value of v, would cause instability in the approximation process and

very small value would slow the convergence. Hence an appropriate selection of w,
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would be necessary, This may vary from one problem 1o another, A simulation experiment
determines the appropriate values of w, . The finite difference siep size is also controlled
by the convergence rate of the error function, Depending on the shape of the contour
surfoce the convergence ratio changes und therefore the central difference step size is

dynamically adjustcd, A simple approach is to use the value recommended in Section
44.1.

4.5 The Self-Adaptive Back Propagation Algorithm

The error funciion describes a hyper surface in m dimensional space. The training aims al
searching the space to locate a minimum weight vector. Usually, an error function
contains more that once local minimum (Bishop, 1995, [ the scarch space is resiricled to a
region in which it is known that there is a local minimum then a deterministic or stochastic
search method (Ma et al., 2000) can be employed to locate the minimum. The proposed
gradient descent training penerates search directions from the proposition 4.6, The value

of the central difference step size 7, = py, is chosen such that the minimum is reached in
fow steps. As the search converges to minimum, the magnitude of x, is medified to adjust
the direction. All the weights w, are adjusted according to 1he magnitude of Lhe learning

rate determined by constrained search so that the resultant direction of travel in parameter
space is along the deseent direction of the error surface, The results of the previous section
provid~. s the direction vector whose components are the rtes at which the error surface
decreases most rapidly.

To determine the gradient, the variation of f(w) in the neighborhood of a trial weight
vector is sampled independently for each parameter, To find an approximate value of the

partial derivatives, the amount by which w, i5 changed in order 10 determine the

derivative is kept smaller than the step size nr,. During the progress of training the value

of p issetto -’}%:’- The pradient components are sampled according to the convergence
s

rate of the error funciion. This provides a mechanism to approximate the gradient

according to the local condition of the error surface. The gradient has both magnitude and

direction. If the dimensions of the parameters w; are different, the components of the

partial derivatives are also different in dimensions. The direction, which the proposed

gradient descent back propapation follows, is the normalized gradient of the steepest
descent according to the proposition 4.5 and 4.6,

The search begins by incrementing ail the parameters by an amount #, in direction

- -Pf (%)
Wowyn

4, If the sampled gradients are fairly approximate, the method is reliuble. The

advantage of this method comes mainly from the proposition 4.6 and 4.4. The proposition
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4.4 and 4.6 choose its own learning rate and descent direction. Thus the user is sparcd
forin the problem of trying 10 optimize the leurning rate for convergence and precision.
The interpolation search over the error surface improves Lthe precision of localing the
minimum. The self-adaptive gradient descent BP algorithm is deseribed in Table 4.2,

Step |

Step 2:

Step 3:

Initialization:
a.} Set atermination criteria pp « 0%, iteration counter k = f, 5 0 (asa
percentage factor), j 1, setlimit 1o the itevation number as 50,000 and let w,_,

be the initial vector, execute step 1.

Determine direction of search by Central difference

- FALM]
a} Set.m;=py,. p=T""— and y; =(factor;)*w,
» f(wj +:rjf‘,)—f{wj—rrjf_,)
2,1,
c.) If j=m, perform step 2 elfse je j+1i and repeat step |

b.) Vf{\v!}

a) Set, jeI

vf(“‘_f)

b.) Vf(w})f—m

c) d; =¥ (w))
d) i |P,.\“{wl )”-:p. stop and report wy as the solution, otherwise perform

interpolation search.

Interpolation Search: Perform interpolations search according to Table 4.1 and
select adaptation length n, at iteration k. Soive the following minimization

problem;
a)n =minf v, +1,dy )

b) Setw,, —w,4md,

&} jel, k=k+1 and performstep |,

Table 4.2 Self-Adaptive Back Propagation Training Algorithm
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4.6 Convergence of the Algorithm

We need 1o consider a composite mapping for further analysis in back propagation
convergence, It i demonstrated in this scclion that the algorithm lerminales @t zero
gradients and hence the algorithm converges. We nole from Chapler 2 that the error
function of intercst is a complex geometry. The following seetion shows that the proposed
self-adaptive algorithm converges (o a lecal minimum point while salislying the first order
condition. This is done through a composite algorithmic mapping. It exploils the propery
of a closed mapping in order to generale & convergent sequence | fiw, J] . The convergence

characteristics of the proposed training method are discussed next.

Given a current weight w, 4t ileration & the next weight at ileration k+! is determined by
the algorithm as w,,,, the subsequent jterations generate the sequence wy ;. w,,,... and
50 on, Moving in direction d, =-Vf(w,) and determining a learning rate 7, the
interpolation search produce this sequence. The erver function fiw). therefore, generales a
sequence according to the following iterate:

Wyigy =W+l dy =w, IV, ik = L2 o), (4.36}

As usual 4, is the negative gradient vector at the point w, . The sequence generated by the

equation 4.36 converges to a local minimum point in the proposed training. The following
proposition provides sufficient condition for convergence.

Propaosition 4.7

The proposed self-adaptive back propagation training algorithm generates convergent
sequence and terminates at a point with zero gradients.

Proof

Let 2 be a solution set such that Q={w":9f(w")=0]. Define the algorithmic map

M =La, where Alw,¥f(w)) is the map that determines the descent direction and £ is the
interpolation search map. Assume that the derivative of fiw)is available, then A4 is
continuous. Furthermore, L is closed by the property of interpolation search due 10
proposition 4.3, Since 4 is continuous and L is closed, the map Afw ,9F(w)] is elosed at

w . The overall map M is therefore, closed at w . Using these propertics and with the help

of proposition 4.3 and 4.5 we have [irg_&ll’l"‘:"'ﬁll=v_f{wl"d~:n. Hence we have a
L 1
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vector which points towards the minimum trajectory. Since 4 is 4 descent direction, we
have fow, +0,d, )< fiwy) for g, e (0,6 and 5 > 0. Since the map M{w, ) is closed, the set

valte mapping is finite. Hence, we get the limit points w, - w* and (w, +n,d,)e M(w,),
The map M therefore generates a convergent sequence defined as (w, «1,d, ) or simply
{w,). Thercfore, as fiw, +m,d;)— f(v") for some value of & ~»=, and the convergent
sequence {w,} generated by the self-adapiive BP alporithm converges to a limit point w*

with zero gradients ¢.

4.6.1 Convergence to Local Minimum

The result in previous scction shows that the proposed self-adaptive back propagalion
algorithm converges to zero gradients. It implies that the error function f(w) is minimized
sequentially. Consequently, the proposed algorithm lerminates at a local minimurmn.. The

following proposition is put forward to demenstrate this.

Proposition 4.8

If the limit of sequence w, converges to w* and if the first order partial derivatives of
F(wy exists with respect to ail nepwork weight parameters in the neighborhood of w* e w

then fiw) has a local minimum at w=w".
Proof

By contradiction, assurme that f{w*) is not a local minimum of f(w ), then [Vf(#"))? >0,

Since the first derivative %f{w} of the error function is available, there exist the numbers
;>0 and >0 such that:

i. (PF(w)"¥fu Y2 g >0 forall w and 4 in some neighbothood of w*;

i},  If w, is a point in this neighborhood, then w,,, is also a neiplisashood point where

Way =wy — V(W ).

Suppose that the error function is a descent function and the sequence w, O w,,,
generated by the algorithin changes the function value. Then by the mean value theoterm,
the following condition holds:

Sy Y =S )=, VFUw, ) (VS wy —00, 9 (w,)1) 0S8 51, 4.37)
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In equation 4,37, the coefficient —x, is a1 least @ from (i} and (ii). Thus, the sequence

generated by the algorithm w, to w,,,, decreases the function value f{w) by at least n, .
There arc infinite sequences of {w,} in uny ncighborhood of w*. Since l|'|_r.r_|.w‘=w',

hence, by applying the algorithm for successive values of &, the error function valuc
fiw*) = —e, which contradicts the fact Vf(w") cxists. The assumption that fow®) is not

local minimum of fiw} is therefore false, and the proposition is proved ¢.
4.6.2 The Rate of Convergence of the Algorithm

For any we E™ the self-adaplive BP in quadratic case converges to the unique minimum
point w* of f(w). Since the proposed self-adaptive BP is similar to the first order gradien
descent algorithm, the following inequality in 4.38 exists (Luenberger, 1984);

1f wg ¥ (A—a
bl 1] Lig .
1fiwy s Am}z (4.38)

where, A and e ase the largest and lowes! eigenvalues of the Hessian matrix # which is
assumed to be positive definite, The convergence of the self-adaptive BPF algorithm will
slow if the contours are more eccentric, If A =q, the contours are circular and the
convergence is achieved with less efforts. Convergence will slow, if the eigenvalues are at
a greater distance (Luenberger, 1984). The above relation supgests that the self-adaptive

BF converge linearly with a convergence ratio no greater than (4 —a)#(4 +a)F . The ratio

Ala of the largest and lowest cigenvalue determines the condition number, which
influence the convesgence rate. The convergence ratio can be represented by

(ﬂf:)z = (:::+;:y It is this factor by which the error function is reduced per iterations.

The ratio A/a govems the convergence in the self-adaptive BP algorithm. The
convergence becomes slow if the condition numbes is high in magnitude. It is investigated
in Chapter 7 with a seasonal time series problem.

4.7 Performance of the Self-Adaptive BP Algorithm

The computational experience with the proposed algorithm and its convergence behavior
is discussed next. The XOR benchmark problem is chosen to demonstrate the various
aspect of the convergence of the algorithm. A trained 2-2-1 XOR is displayed in Figure
4.1, The zeto input to the hidden Jayer is approximated as 10, Sample caleulations are
shown in Table 4.3,
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4,71 Leurning Rate for Standard Buck Propagation Method

To select a suitable learning rate, an experiment with XOR problem is carried out. The
initial starting weight is the same but the learning rate is changed from one experiment to
another. The simulated resulls are given in Table 4.4 with learning rate and its effect on
function value, number of cpoch and number of function evaluations. This experiment
sugpests a reasonuble value of the learning rate is 0.1, which is a bargain between epoch
number, function evatuations and terminal function valee. The value marked with (*) sign
indicates that the training is not converging with the predefined convergence criteria as
discussed in Section 3.5.2 in Chapter 3.

2.13
.0&35
0.3}

.40
-09%

Flgure 4.0, A trained 2-2-1 ANN XOR

Trained XOR

=0, 2 M =0, B = (D040 0=0=2 107, A7 20330+ (I 0=0= 107"

=-0.078, gf '=m=—0‘078,

"' = (.085)*{-0.078) +(-0.098) * (—0.078) = 0.001

=—1i—.
g' D

=l 2T w0, BT = (213)* 14 (40020 =203, BT =(33)*14(3.13)*0=.33
=7 _ _ .z _ _
el =gy = 0569, g8 = 5l = -9.2027,

2% = (0B5)* (.569)+{~098)*(~9.2027) = 95

=0, 3" =1, a"’—(z13}*u+(.40)-=1=.4u. AP = (33)*0+ (3.13)*1=3.13
gl = =1195, g8 = iy =0467, 2™ = (085)*(11.95)+ (- 098)*(467) = 97

=1, =1, h,?"—(213)*1+(40)-1_253 ™ = (1B 14U *1=146
gl =pky=5186, g3 =l = 4461, 2™ = (0B5)*(.5186)+(—098)*(4461) = 0.00036

Table 4.3 Sample calculations with XOR (2-2-1 ANN) problem
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Experiment Number
1 2P 3456 7t8]9lwlnin
L. Rue GO | 0051 Q0 | 02|03 04 {05 0.6 | 67 | 08 | 09 |
Function  {0.0001 0.0005 u.mmjo.osmfi.u 1600,09 { 0(LOG000. | BO00,34000, 29000, 34000,4 204
Yalug S e
Heralions [SD000* | 5864 | 706 , 9 | 384 | 5 181 & 73 4 2] 25

Function |50000% 6866« 49506 71 ;2724 | 43 |1275] 50 1 519 | 36 [ (55| 183
Evaluation

Table 4.4 Learning rate and training perforr ance in standard back propagation
methad {{*) indicates training is not converging ]

Epoch | Function Scll-Adaptive Parameters
Yalue

& Sy 1, dy s diuy ey [ [ [

1 1.02E-G1 | 0.96023] | 0,00762 | -0.01923 | -0.03524 | 0.23718 [ -0.33601 [ -0.9{514
2 9.53E-02 | 0.361391 ) -0.07835 { 0.00459 | -0.51824 | -0.84664 | -0.03533 | -0.08485
3 9.22E-02 | 0.022106 | -0.01671 | 0.00155 | 0.74838 | 0.66273 | -0.00828 | -0.01515
4 8.99E-02 | 0.000457 | -0,00441 | 0.00052 | -0.65271 | -0.75757 | -0.00232 | -0.00523
5 8.87E-02 | 0.000037 | -0.00068 | 000008 | 0.92184 | 0.38756 | -0.00037 | -0.00082
6 8.71E-02 | 0.000002 | -0.00071 | 000013 | -D.ROS86 1 0.588 | -0.0004 [ -0.00087
7 8.58E-02 0 -0.00032 | G.O000S | -0.70311 1 D.71108 | -0.00018 | -0,0004

Table 4.5 Convergence with 2-2-1 ANN XOR problem with starting vector
(-1,2,2,-3,.1,.2) using self-adaptive BP training

4.7.2 Analysis with XOR Problem

The sclf-adaptive and parameter free (training algorithm is tested with 2-2-1 ANN
configuration XOR problem. Figure 4.2 displays the sclf-adaptive parameters generated
by the algorithm, while Figure 4.3 shows the convergence of the algorithm with reference
to the number of epoch/iterations. The input data for the XOR problem corresponds 10 the
subset of the Table A.l in Appendix A in rows I, 2, 3, 4 and column 4, 5. The random

starting weights w; =w,,w,,....,w, ar¢ taken from the Table A.2 in Appendix A, The
learning rate is 0.1 for the standard back propagation training.

The self-adaptive parameters and descent directions are computed according to the method
discussed in Section 4.3 and 4.4 with statting vector (-.1,.2,2.-.3..1,2). Sample
calculations are shown in Table 4.5, Figure 4.2 shows the sclf-adaptive learning parameter
chosen by the zlgorithm. It reduces the function value monotonically as shown in Figure
4.3,
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~+*—Parameler Value ~—™ Direction: 1 Directlion: 2 —*=—Direction: 3
—=—Direclion: 4 ~=—Direction: 5 ——Direclion: 6

1 — —

Parameter Value
o

Epoch

Figure 4.2 Self-Adaptive Parameter Generation

-” \

B.50E-02

Function Value .
L-]
o
o
m

B _0O0OE-02

] 2 3 4 5 & 74
Epoch
Figure 4.3 Function Convergence

4.7.3 Random Starting Weights in the Wide Range

Table 4.6 shows the results with random starting points that are according to the Table A.2
in Appendix A. The average epoch, function evaluations and gradient evaluations are
151.8, 916.8 and 2601.1 respectively. The corresponding values with the standard back
propagation method are 5142.3, 51443 and 30861.8 respectively. The median
performance of the proposed algorithm with epoch size, function evaluations and gradient
evaluations corresponds to the values 17, 108 and 206, while with the standard back
propagation method these counts are 3579, 3581 and 21480 respectively. The standard
deviations are higher in magnitude and suggest that some experiments show worst
performance. The experiment number 2, for example, with the proposed method shows
bad performance. It is due to the fact that the starting points are not in favorable location
in the error surface or the algorithm face geometry where the convergence is difficult.

The maximum and minimum epoch sizes are 1349 and 6 respectively with the proposed
method. The maximum and minimum numbers of total function evaluations including
gradient evaluations are 31896 and 126 respectively. The related value of the range
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statistics is ulso wide and hence it suggesls thal there arc considerable variations in the
experimental results,

The simulations with the standard BP method show that the maximum and minimum
numbers of epoch sizes are 17434 and 15 respectively. The corresponding figures for the
total number of function evaluations are 122046 and 133 respectively.

Proposed Method Standard Back Prapagation Methix] |

e lg |5f [3E |s8i|Esals |2E |BE lsgilEs.

g= |2 [EE |53 129E|eEE|E |ZE |3E 1E2d|Ei:

g @ |8 [SF [FE§|@2C|Y 8% [6F [T£E[Es”
153 1 L1 o o o u

I 16 | 102 | (83 | 285 L4JE-0] 22 24 | 138 ' 162 6.2E-04

2 1349 | BIOG 1 23796 | 31896 1 2E-8 5867 | 5869 | 35208 | 41077 [8.2E-4

3 14 90 154 289 : L5SE-8 2 N 180 211 T1.5E-02

4 10 66 147 213 11L3E-10] 17434 : 17436 [ 1946101 122046 15.1E-03

5 18 L) 218 332 1.6E-10] 4474 | 4476 | 26850 | 31326 12.5E-03

1] 47 288 713 1001 i 8.IE-5] 5737 : 5739 | 34428 | 40167 |4.6E-03

7 29 180 34 494 0 13E-B | 2137 ;2139 | 12828 | 14967 |3.0E-03

8 22 138 272 410 1 2AE-F | 13024 | 13626 ; 78150 | 91176 |B.9E-04

g 7 48 78 126 |B.58E-2] |5 17 116 i33 128E03

1¢ 5] 42 96 138 4E-§ 2684 | 2686 | 16110 | 18796 | 1.OE-02

Mean 151, | 916.8 | 26011 : 35184 | 0.00859 5142.3 | 5144,3 |3086]).8136006.110,00454

Median 17 108 206 | 310.5 | [.8E-08] 3579 | 3581 | 21480 [ 25041 {0.00295

Standard |420.828 [2524.97 | 7449.3019974.04 | 0.02713]5852.45 585245351 12.7;40965.2;0.00461
Devialion : : :

Range | 1343 | 8058 | 2371R | 31770 | O.085K) 17419 | 17419 | 104494 112191310.01438

Minimum| 6 42| 781 126 113E10 15 " i7 . 116 | 133 ;0.00062

aximum, 1349 | 8100 | 23796 i 31896 | 0.0858 17434 * (7436 | 1046101 122046 0.015

Table 4.6 Comparison with standard back prepogation method (2-2-1:ANN XOR
problen: siarting point in wide range )

4.7.4 Random Starting Weights in the Small Range

It is relevant to point out that the random starting points in a small range of magnitude
influence the average performance of the algorithm. Ten simulations are carried out to test
the proposed training methed and the standard BP algorithm with small random slarting
weights. The comesponding simulation results are shown in Table 4.7.

The average epoch, function evaluations and gradient evalvations are 10.8, 124.5 and 70.8
respectively. The corresponding values with the standard back propagation training are
463.6, 465.6 and 2787.6 respectively. The median performance of the proposed algorithm
with epoch size, function evaluations and gradient evaluations corresponds to the values
9.5, 108.5 and 63, while with the standard back propagation training these counts are 25.5,
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27.5 and 159 respectively. The related standard deviations are low with the proposcd
method and sugpest consistent performance. The standard back propagation show high
magnitude in standard deviations and therefore inconsistent behavior is expected.

Proposed Method Stundurd Back Propagation Methixl

= W w T wl © W e o

& 9% £ [BRE|Fe ©F |©% |[REE|FS

b1 17 108 163 271 300E-07) 25 156 1 27 ! I8} G.IKE-(4
2 19 120 222 342 DF0E-O6| 27 168 20 | 187 H.2IE-03
3 20 126 22) 33 1.40E-06| 26 162 28 | 190 CL.SCE-G2
4 3 4 54 7% 9Y0E-08| 24 150 26 | 176 'I.00E-02
5 1Y a6 124 - 190 '4.90E-07) 1751 , 10512 5 1753 | 12265 il.3UE-04
6 5 6 0§ 106 230E-06| 30 | 186 32 218 5.60E-03
7 12 78 115 + 193 |260E-07) 2687 | 16128 | 2689 , 18R17 |5.95E-03
8 9 60 102, 162 5.60E-07] 20 126 1 22 148 (R.97E-03
g ¥ 48 78 126 :2.60E-06] 23 144 | 25 169 [1.40E-03
10 i 42 86 138 13.00E-08] 23 144 ! 25 169 !1.80E-03

Mzan 10.8 70.8 124.5 | 1943 2,75E-06] 463.6 | 2787.6 | 465.6 | 3253.2 .005568

Median | 9.5 63 108.5 176 19.8E-07] 255 : 159 i 27.5 186.5 0.004775

Standard | 6.033 | 36,199 | 59.454 | 93,263 |3.81E-06]951.121 iS?Uﬁ.?Z?‘ 931,121 665?.849&0,004892

Devialion | t

Range 17 102 168 264 9.86E-06] 2667 | 16002 | 2667 | 18669 1001487

Minimum| _ 3 24 54 78 -A9E08| 20 126 22 148 |0.00013

Maximuny 20 126 222 342 199E-06| 2687 | 16128 | 2689 | 18817 | 0015

Table 4.7 Comparison wirth standard back propagaiion method (2-2-1 ANN: XOR
problem: small rage weight)

Refer to the Table 4.7 and note the maximum and minimum numbers of epoch are 20 and
3 respectively. The algorithm in some experiment trains the XOR with as low as 3
numbers of epoch, The maximum and minimum numbers of total function evaluations
including gradient evaluations are 342 and 78 respectively. The algorithm thm purely
operates on gradient information should take into account the efforts of gradiem
evaluations including function evaluations.

In standard back propagation training, the maximum and minimum aumbers of epoach are
2687 and 20 respectively. The corresponding figures for the total number of funetion
evaluations are 18817 and 148 respectively.

4,75 Comparison with Standard BP Method

The simulation results show that the convergence of the algorithm is influenced by the

small rmagnitude of the starting points. The average number of epoch is 10.8 when
experimented with smatl magnitude of starting weights. The simulation with wide range of
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starting points results average number of epoch as 151.8. The proposed method trains the
2-2-1 XOR problem efficiently with small magnitude of random starting points.

300 1 BJacobs ®Salomonetal. (1996) DOP-R(C.G) OSelf-adaptive

Epoch Function Evaluation
Training Methods

Figure 4.4 Comparison with different training methods

The results suggest that the proposed method is faster than the standard back propagation
method when simulating in the small rage of starting weights. The efficiency of the
proposed method over the standard back propagation method in average epoch, gradient
evaluations and function evaluations are (463.6/10.8) 42.9, (2787.6/70.8) 39.4 and
(465.6/124.5) 3.74 respectively. The magnitude of the random starting points affects the
performance of the proposed and the standard back propagation algorithms. The relative
efficiency in total number of function evaluation is (3253.2/194.3) 16.74

The convergence behavior of the standard back propagation training method is shown in
Figure 4.5. For a small size problem the convergence is pattern not oscillatory, however
later it will be seen in Chapter 7 that the standard BP training suffers from oscillations
with the large size problem or where the convergence becomes difficult. In a recent paper
Ampaziz et al. (1999) study the convergence characteristics with eigenvalue analysis.
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Figure 4.5 Convergence with standard back
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Proposed Method Standard Back Propagation Method  [Jacobs| Salomon
) {1988)] (1996}
E‘ =] ] W W W @ —
E s |BE §§. G.Eé.g.ﬁu-: §§ §§ zéé.g.gg-‘: 5
it (& [B322 BEliusd 3T (1 EEjeisi |2
== S H &g = s k=)
& g [ E €2 o5 |& g & alF
Mean | 10.B | 70.8 | 124.5 | {94.3 2. 75E-6/463.6 { 2787.6) 465.6 ; 3251,20.00557% 250 62
Median | 9.5 | 63 | 1085 | (76 j98E-7]|255] 159 | 27.5 | 184.5 [0.00M77
Standard 6.0332)36.199] 59.454 | 93.263 3.8 1 E-6P5 1. 1 45706.73951.12|6657.85] 0.0049 | 60

Beviation

Range | 17 1 102 | 168 264 |9.86E-6| 2667 | 16002 | 2667 | 18669 [.01487
Minimum| k) 24 54 78 |39E-8| 20 126 22 148 10.00013
Maximum 20 { 126 | 222 342 |9.9E-6| 2687 1 16128 | 2689 | 18817 | 0.015

Table 4.8 Comparison with other methiod (2-2-] ANN XOR Problem)

4,7.6 Comparison With Resulis in Literature

The simulation results are compared in Table 4.8 using the reports available in Jacobs
(1988) and Salomon et al, (1996} with XOR problem. We compare the performance of the
proposed algorithm that is initiated with random starting weights in small range. The
simulation results are taken from the Table 4.7. The proposed method needs 10.8 number
of epoch on average to train the XOR problem. The back propagation method due to
Salomon (1996) takes 62 number of epoch, while the delta bar delta method reported in
Jacobs (1988) takes 250 epochs to train the XOR problem. The standard back propagation
needs on average 463.6 numbers of epochs 1o train the 2-2-1 ANN XOR problems. It is
observed that the proposed method improves over the method due to Jacobs (1988),
Salomen (1996) and the standard back propagation method. The reasons for less number
of epoch with the proposed method are due to the constrained interpolation search
algorithm aad the controlled step size computations in central difference gradient
approximation scheme. The efficiency is gained, however, at the expense of function
evaluations. The carresponding total numbers of function evaluations are 194.3, Kamarthi
et al. {1999} report that the Polak and Ribiere conjugate geadient takes 14 epochs 1o train
XOR problem.

4.8 Discussions

A self-adaptive grodient descent BP raining method is developed. The convergence of the
algorithm is proved using descent and convexity properties of the error function. A
constrained interpolation search automates the selection of variable learning rates. The
descent directions are computed by central difference approximation scheme. The step
size of the difference scheme is controlled by the convergence behavior of the error
function. It computes suitable descent directions. The simulation with the small random
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starting weights show that the average number of cpoch, gradicnt cvaluations and function
evaleations are 10.8, 70.8 and 124.5 respectively with 2-2-1 ANN XOR problem. The
mean lerminal funclion value is low and therefore, better training resulls are oblained. The
proposed algorithm improves over the siandard BP algorithm in number of epoch,
function evaluations and terminal lunction value,

More comprehensive analysis and resulls are reported in Chapter 7 with several
benchmark problems in higher dimensions. Comparisons with different algorithims in
teaining the standard benchmark problems are also reperted in Chapier 7.
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* Chapter

Self-Adaptive Multi-Directional Training
Without Derivatives

5.1 Introduction

An efficient multi-directional sclf-adaptive derivative free ANN training method, which
evaluates only error function, is developed in this chapter. The error function is reduced to
a sub-problem in a constrained search space and the search directions follow rectilinear
and Euclidean moves. An interpolation search determines the self-adaptive parameters. To
accelerate the training algorithm, a momentum search is designed. An algorithm
determines the self-adaptive momentum term and hence the training method is parameler
free. To improve the convergence of the algorithm an oriented search vector [irst
positions the initial starting weight in a descent location. The proposed method is useful

when the function f(w,) is ill conditioned, the derivatives %?’—‘ are discontinugus, or the
I

derivative evaluation is difficult.

The multi-directional search method is discussed in Section 5.2, The new self-adaptive
parameter free training algorithm is developed in Section 5.3. A restricled momentum
search is designed and this step is taken only when there is improvement in function value.
The momentum term is determined dynamically, Tt prevents the training method from
overshooting the minimum. The convergence of the algorithm is discussed in Section 5.4.
In Section 5.5, simulation results with the XOR problem are presented and finally Section
5.6 provides some discussions.

5.2 Multi-Directiona! Search

Figures 5.1 and 5.2 show the all likefihoed outcomes of search in rectilinear direction
when m =2, Given an ANN error function f:we E™, the rectilincar search minimizes the

function f(w) cyclically changing its weights moving along one direction at a time. The

directions of moves are d, ,dy .....d, , where the direction vector 4 ; s defined as:
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d,=1,, where 1, ={
Fixing a value of j, the ANN weight w; is changed in 4, direction in small amount say,
Aw,, while all other weights are kept fixed. Moving in all = directions 1he algorithm
changes the value of all the weights w = (w,,w,,....uivy } . The process is again repeated 1o

obtain change in the function value fiw). The weight updale recursion is given in 5.2
Wyo = Wa +T,d, . (5.2)
5.2.1 Rectilinear Direclion Search

The training algorithm starts with a current trial vector marked as w, and the next
successful trial vector in direction j is marked w,,, at a distance Aw,. A successful trial

improves training from iteration & to the next iteration k+1. The dotted lines along Lhe
rectilinear directions are the intermediate trial steps. The dotted lines indicale that the
directions along which the error function f(w) is evaluated but fails 10 decrease the

function value, This direction is abandoned and the vecler w, remains the same. The
notation w} and w;' desipnate that the scarch directions are along the line j=1 bul in two
opposite directions with respect to a base point. Similacly, The notation w} and w;?
indicate that the reciilinear search are along the line f=2 in two opposite directions. In lhe
worst case, there are 2m evaluations, which do not decrease the function value, This is

shown in Figure 5.1 along third row and third column. The figure implies that w,,, =w, .
In such a case the step size Aw; can be changed for next phase of ileration. We define this
strategy as rectilinear search. Al the end of the rectilinear search the trial step w, is

redefined as w,,, and it is accepted when the condition: f(w,, )< fiw,) is lrue.

The algorithm updates weights moving in a suvitable direction d;, and identifying a
learning rate parameter 1, =aw,. The simplest form of reciilinear training is to have a
constant learning rate n, . To make the algorithm dynamically self-adaptive the learning

rale parameter n, is identified by a suitable methed that provides descent to the error

function. The learning rate parameters are unrestricted in sign and have different
magnitudes. Depending on the geemetry of the crror surfuace these paraniclers are
calculated. The search in the same direetion is continued when the chosen direction is
successful, until the function value fails to imprave further, The direction is then changed
and the s2arch repeats to improve the error function value,
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An algorithm that deseribes rectilinear search is given in Table 5.1a. The algorithm selecis
trial sieps depending on the success or failure of previous trial steps, There are 3

possible trial steps in similar coordinale search but in pructice the evalustions are in the
range m to Zm at any given intervals (Torczon, £1997).

Step 1:

Step 2:

Step 3

Step 4

Step 5

Step 6:

Choose @ staning  vecior  of weight  ar  iteration k. Define

Wy 2 {w, )= () Wy ). Let 7 be the momentum serm. Set 8, 1, 8, « 03,
200001, k=j=1, set w, to an initial value, Set an initial weight W) & r--] by

large imteger >w, such that f(w,_)> fw,).
Let fd; dy iy ) =0, st d; 0 for the current value of j.

al} if flw;+dwd )< flw;), the trial is success, fet, W=, tdw,d,) and
perform step 4.

&) If fiw pHaw,d )2 f(w,), the srial is failure, then

o) if Siwy—aw,d Y< flw;), the triol is a success and ler, Wy (w, —Awd,),
and perform step 4,

d) i flv,—dwd;)2 f(w,), then trial is failure and let, w, «w, and perform
step 4,

) if Jjem, set jejtl  ond  repear  step 3. otherwise,  set
Wg =W S0 Wy ) at iteration k .

b.) if Flw < flw,,) perform step 5, else

e} if Flw )2 fiw,_|) perform step 6

Momestum type or Pattern type search

a) 0y en; ‘[’5, ] Determine ny  according to the Table 5.1b,

B) wyy Ewpnp (v mw, ), Let k k41, je 1, and perform step 3,

a.} If &w, < stop ( go=stopping eriteria)and report w ¢ 05 the solution

b.} Otherwise, replace tw, « Aw, ’[52] cLet wy ew L Let kek+], jeL, and
perfornt step 3.

Table 5. 1a Muiti-directional training olgorithum with fixed step size
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Step 1 and 2 initinlizes \he algorithm. In step 3, the valuc of the weight is changed
according to the magnitude of aw,d, such that the error function is reduced. If the
function valie does net improve, the weight vector is left unchunged. Siep 4 determines il
a momentum search should be atiempted. If the current iteration is successful, a new step
size 4" is adjusted by the factor (&, ] in step 5. A momentum search is designed al this
stage to move the search into a new bul descent location. The choice of the factor is
important in successful implementation of this method. A method that updales the slep
size 7" is developed in Ahmed and Cross (1999) and is shown in Table 5.1b. The
suggested method varies the step size with the objective of identifying trial points thal
brackets the minimum with other relative minimums in & neighborhood. The methed given
in Table 5.1b determines the step size by repeated evalvation of the error function, The
step 6 deseribes the method of updating step lenglh, when the current phase of evaluation,
k, is not improving the function value. The step is decrensed by a faclor [§,]. The
training algorithm successfully models seasonal load forecasting problem (Ahmed and
Cross, 1999; 2000},

L. One weight parameter w, in a specified direction is ineremented at a time by an amount
Aw , where the magnitude of the quantity Aw is determined and the sign is chosen such
that the ANN error funiction is decreased.

2. The parameter w is repeatedly incremented by some amournt wntil the ervor surface begins
to increase it chosen direction.

3. The function Is evaluated ar regular interval during vis repeated trial and the evaluared
Junciion values determine the minimum of « quadratic funciion. Consider w*, w* and w™

as the points in specified intervals that defines a function in B, These points are defined

as: w'=w'+ 4w, such that f(w')> f(w") and w™=w'+ 20w, such that fiw™)y> f{w")

4. The minimum of the guadratic function is determined by (Mathews, 1992)

= w'-[ﬁw 40 T)=3F (W)~ F ") ]

Af(w*)=2f W )-2f (w7

3. "Repeat the process until precision is reached in finding n°  and obeain finally nj,,, =n".

Table 5.1b The interpolation method ro determine self-adaptive parameter
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5.2.2 Self-Adaptive Training With Momentum Search

Refer to the Figure 5.2 and consider a direction from x to & in order to move Lo a posilion
¢ without performing rectitinear scarch at point &, The method attempts to accelerate the
training using the previous successful training steps. The current evaluation begins by
performing a search along the direction (w, -w,_), il the trial fiw )< fiw, ) I8
successful. A momentum search similar to the patiern move (Hooke and Jeeves, 1961)
along the direction d, s(w, -w,.,) from w, is performed only when the condition
Fiw )< fiw, ) is true. Figure 5.3 shows the two solid arrows as the twe successive

rectilinear moves that are success. The dotted linc is the move by the momentum search,
The decision about the length of move is an imporant issue. If we 1ake a large stcp, the
minimum will be missed. In the following seclion we propose a method that takes a step
just close to the neighborhoed of the minimum. The function is evaluated at this trial step

and the method again searches from the current position in directions d, =ny (w, —w,_,).

The recommended weight updaie rule according to this method is shown below:

Wea =W, a5 =, 40 (ny -w, (5.3)

Flgure 5.3 Determination of momentum term
ns self-adaptive parameler

The momentum weight update step is only performed when the algorithm iterated more
than one epoch and when the current trial step is successful with reference tu the previous
move. It is a restricted step and executed only when there is success. This step forces the
training algorithm to reach the neighborhood of the minimum. The direction of successive
momentum search tends to become aligned with the ridges in error surface as long as the
method successfully follows the path according to the Figure 5.2 and Figure 3.1 in
Chapter 3.
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The term ny is the momentum term and ils approximale magnitude determines the
convergence of the algorithrn, If the rectilingar scarch about this position is suceessful
then the vectors generaled by rectilinear search is accepted as w,,, according to the Figure

5.2 and 5.3, The momentum lerm is determined from the scheme given in Table 5.1b, 1f
the seasch fails to improve the function value, then the method reduces to rectilinear

search at w, . The search along the direction x to0 & at z is the momentum search, and

can be considered as a variant of the multidirectional searchi {Torczon, 1997). Tie
algorithm that implements this training method is shown in Table 5.1a.

5.3 Pynamic Self-Adaptive Training

The methed described in Section 5.2.1 through 5.2.4, when combined together constitutes
the rulti-directional search. Now we develop a new training algorithm that is dynamically

self-adaptive. Fixing a search direction, the rectilinear training finds a learning rate, 5, for
the error function. To determine the suitable magnitude of learning rate n,, an

interpolation search is performed in a given direction j=12,..m. The search in a
constrained space is formulated as:

minmize f (w; +1;d;) (5.4a)

subjectto: 7, € L . (5.4b}

where, L is expressed by L=E'. The search along any reciilinear direction either must

yield a decrease or by the assumption, it cannot change posilion. Since the error function
is a descent function (Hecht-Nielsen, 1990), we must have decre:se in function vale in at
least one direction. If at a point the gradient Vf(w)=0, then 1 .- one cosmponent of

Vf{w)+ 0does not vanish and hence a search along the corresponding rectilinear direction
must yield decrease. Fixing the value of the weight w, and the dircction ¢; in all

rectilinear direction except in the current search direction j, the problem 5.4 is solved

according to the proposilion 4.4 in Chapter 4 to find the learning rate. Step 4 in Table 5.2
implements this algorithm. The proposed algorithm dynamically self-adapts the training
parameters,

53.1 Automatic Determination of Momentom Term

It is noted earlier that there exists a descent direction of the form &, =(w, —w,_,). The

appropriate magnitude of the momentum term ny  determines the step length in multi-

direction search and does not destroy the search direction. Tiis is done by the
interpolation search according 1o the probleny:

7.



minmize £ (e, +1] 4, ) a (5.5a)

subjectwo: 7y el (5.5b)

The value of n{ is oblained from the appropriate interpolation search method shown in
proposition 4.4 in Chapter 4 and £ is of the form L=£'. Step 5 in Table 5.2 determines
this parameter using the interpolation search algorithm developed in Chapler 4. It takes
regulated steps near the minimum and convergence is not at risk. Equation 5.5 determines
single momentum term, while in Equation 5.4 there are «» different variable learning
rales.

5.3.2 Self-Adaptive Derivative Free Mulli-Directional Training Method

The algarithm that automates the learning rate parameter and momentum term is shown
next in Table 5.2. The algerithm is initialized in step 1.

5.3.2.1 Oriented Search

The training is initiated by an oriented search to accelerate convergence. Imitially, an
oriented search is performed in step 2 (Table 5.2), where the directions veclor 4 ; in -l

and +1 are generated randomly using uniform distribution according to the Equation 5.6:

1 irgs<u01) s, G5

g {~1 if 0= u0,1)S05
The uniform distribution pencrates a number between 0 and 1. A value between 0 and 0.5
assigns the direction vector a value —I and +1 otherwise. The purpose is to Iocate the
initial descent position such that there are minimum efforis to reach the local minimum,
Care should be taken to prevent tics in generating the direction vector in a given set of m
or multiple of m trials. Evaluate the error function with the generated direction vector and
retain the minimum weight vector along with the direciion vector in a separate vector
denoted as w™ 4w, , which minimizes the error function. Perform this step m times or

multiples of m limes depending on the parameter setting. In step 3 (Table 5.2) the
preparation for the main search begins with the ariented search vector w*'

5.3.2.2 Seli-Adaptive and Momentum Parameter Determination

An interpolation search is performed in step 4 (Table 5.2) to determine the learning rate.
This tmakes the training method fully self-adaptive. At the end of siep 4, the momentum
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Step:2  FPosition the Search Yecior
Generate art index j€ m from uniform disteibution and d as the direction of search

in the following manner.
a} jejri

=1 il 05w 1}50.5

b} d; (—{ | i 0S<u0 <] {generate direction using uniform distribution)

c) set yd; «d,
d.) evaluate f i fw;+0d, ), ¥ f < e 568 foie & F and w e wd,

e} if j<m repeatthe step 2.
L) If j=m, perform next step.

Step:3  Prepare for Main Phase

a) Set k=j=1, set w; w™ and perform step 4,

Stepid o ) Set d; =dy =dy,ed, =0 and Lot 3) ; be an optimal solution te the problem
b.) ml‘nEl fwp+n;d; ) and set d; + I ar current index j.
L

o) Assign wy e dr,d; ),
Ld) If jem, set & j+1, set and repeat step 4.
e) Elseif j=m. set wy, —w,.

“F) IF (W —wy ) < o then stop ( p=stopping criteria)
g.) Otherwise, perform step 5.

Step:3  Pattern or Momentum Search:
a.) let dy «—(w,_,—w,) and let 1), be the optimal solution 1o the problem

b} min flwg +77 dy)
e
o} Set fiy & qp | wyy ewykthdy, let je 3, ki k+ ] and perform siep 4

Table 5.2 Multi-directional training algorithm with interpolation search
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search is performed. The interpolation search method developed in Chapter 4 Section 4.3
is used to identify the momentum 1erm. Therefore, there is no user inlervention to pre-
optimize the learning rate and momentum lerm. The derivative information of the error
function is not required in this training method. The error functions that are discontinuous
can be trained with the proposed method. In general, the training method is derivative free.

5.4 Convergence of the Training Method

To address the convergence of the algorithm, we assume that the error function possess
descent property and satisfy first order necessary condition. It will be shown next in a
propositicn that the algorithm converges to zero gradients under the hypothesis that the
error function fw) is differentiable.

Proposition 5,1

Define the multi-directional training algorithm as a map M according to the definitions
in Chapter 4 Section 4.1, The algorithmic map M generates the sequence of vector (w}

according towe Miw) moving along the directions d, ,dy.....d,. The search siaris at

iteration & with the vector w, and each dirvection d,.d,......d,, has a normn 1. Suppose

that the following properties are rue:

a.) There exist a p>0* such that dald(w))zp for each we E™ and [d), is @ aum matrix

whose colimns are the search directions generated by the algorithm and the
determinant of [dj is represented by deild|. Furcher assume that the search directions
are linearly independent.

b.) The minimization of f(w} along any direction in E% is possible.

Given a we E™, suppose that the algorithin gengrates the sequence (w.) such that if
Vf(wy }=0, then the algorithm stops with w, otherwise, w,, € M(w,) and replace & by
k+1 and repeat the process. Consider Qel(w,} is a solution set. If the sequence
W) Wysuutwy o] 5 contained in a compact subset of E™, then each accumudation point

w' € Q of the sequence {w, } must satisfy Vf(w*)=0.
Proof

If the sequence {w, ) is finite, then the algorithm converges 1o a solution and the gradient
approaches to a small value, due to the descent property of f(w). Suppose that the
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algorithm generates the sequence {w, 1, which is infinite, Let &, be an infinile sequence of
positive integers and assume that the sequence {w, }ll converges 1o & limit poinl w*,
Suppose by contradiciion thul ¥fiw* )= 0 and lake the sequence {w,,, Il. that is contained
in & compaet subset of £7. Il implies that |w“|I*. c £™ and there exist a subsequence
ky <k, suchthat l”'“l'a, converpes to some point defined us w' e {w, |. The vector w* I8
obtnined from minimizing the funetion fw) along a sel of m linearly independent
ditections {d, ,dy.ntfy e Lot d, be the e matrix and the scarch directions
), A yndy, ) dre itd column at itcration k. Thus, the wlgerithm generates the

scquence of training weighis according to the expression:w,,, =w, +[dn,| or

m .
equivalently: w,, =w,+Y [4,n,],. The quaniity 5, is the learning rute, which s
J=1

equivalent 10 a distance moved along 4, at iteration 4. The vector 4, is the descent
direction and also  from proposition 4.3 in  Chapler 4, we have
JUwy ) flwy +nd, l*}:qJeE‘.j=}.2...,m. We also have (.f'.:il[d’i]alg:wu+ and {d;) is
invertible, hence 5, =ld;l"("';+| ~w,) for all Ja iterution & . Since cach column of i4,]
has norm |, there exist a 'qu:mtity ky, gk, for a subsequence such that we have the limil
[4,1-31d]. Since detld, |z for each &, det ]2, 50 that [d] is invertible. Now for
kek, and as k —ee, we have: we, a2 w’, wy ow', |d; ], —+{d) s0 that the Ic{imi.ng rale

converges to a limit point n; =k, where =l (w" —w"). Therefore, »* =w* +[dn] =

sequentially along the directions (d,.d,....4,), il follows then f(w")< f(e ). Now

consider the case f(w')<fiw ), since |f(w;)] is a decreasing scqucnée and since

Flw, )= fw ) as kek, approaches lo =, we can also wrile llil:lf(w;):f(h‘ ). Thigi_ is
not possible, since w,,—=w" as kek, opproaches o e« and by assumplion
Sow*)< fiw ). Again consider the case, f{w')= fiw ). We obtain »w" from the veclor
w , minimizing f{w )} in direction {4,.d,,..d,) and by the property 5 of the
proposilion we get w’=w . This also implies that Vf{w}rd‘, =0.F=12,..m. Since

{d, dy....il,) sre linearly independent, ¥f(w*)=0, conradicting our assumption. This

proves the proposition ¢.



5.4.1  Characteristics of the Multi-directionzl Self-Adaptive Training

Two Lypes of training paranweter search eharacterize the proposed Lraining method. There
i sell-adaplive pacameter seurch followed by a momeniwm term search. Based on Lhe
ussumptions than the line joining the frst and Tast points of the rectilinear move represenis
un especially favorable direetion. In Figure 5.2, the direclion from x w2 is Lhe
momentunt search, while the searchi-al £ and & are the rectilinear seareh The rectilinear
and momentain search do nol always lead 16 an improvement in the error function value.
The suceess of Lhe iteration is only ehecked after (he reciilinear move has laken plice.

The magnitude of the momentum term 7y is determined rom the interpolation search

melhed acearding to the proposition 4.4 in Chupier 4, The important feature of this
mellod consisls of moving along the ridges and valleys. The momentum move takes long
slep in the directjon of valleys and the rectilinear move finds the path back to these valleys
when a momentuny move has climbed out of them. The method is successful in solving a
forecasting problem. which is ill conditioned {Ahmed and Cross, 1999d; Ahmed and
Cross, 2000e). Additional results are given in Chapter 7.

84.2 Convergence of the Algorithm to Local Minimum

The training algorithm only evaluates the error function value. Moving along the
reclilinear and momentum direction the algorithm pravides descent to the error function,
The search along the momentum direction is assumed similar to the coordinate search
{Torczon, 1997), The successive move along the rectilinear directions with the application
of the imerpolation search identifies a local minimum. It is shown in the fallowing
propasition.

Proposition 5.2

Let w* e be the point in a solution set to the error function f:we E™. The sequence

(%, Wiy o s generated by the algarithm converges to the local minimum w*,
Proof

Suppose that {w,} is an infinite sequence generated by the algorithm defined as
wy, =Mw. ) and if at any jleration w, e Q, then the algorithm steps. Consider that {w, 1,
is a convergent subsequence with limit »*. Further assume that the value of & is larger
than the infeger number &, and & denotes thie subset of all positive inlegers. Since f(w,)
is descent function fiw,)— f{w") for some ke & of the subsequence. Then for a given

#* >0 there oxists a relation fow, ) f(w’)<g for kzk, with ke K. 1 we let, k=k,,
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e f(w" - fiwT <. With k>k, and ke & the expression fiwy) <ﬂ"'n,} exists, since
Sowy) is a descent function, Therefare, with the above results the following expression is

derived for every k>4, .
Jo) = fw)= flw)= flw )H1S (0, 3= Sl <04 p=p0. (5.7%)

Since @' >0 iy arbitrary, il follows then

Jim fiwr=fw) (5.7h)

Alse M is closed al w* by definition {Scctien 4.3 and proposition 4.3 in Chapler 4) for

ke K. w, o w*. Apain consider the error fitnction in a small ngighborhoed al ileratjon &

al a distance n >0 and define Vf(w, )=

R

S rfety :f""’ according to the proposition 4.1 and

4.2 in Chapter 4. Since fow,) is a descent function and Jim f(w,)= f(w"). The overall

algorithmic map M is closed. Therefore, the training converges to the zero gradienls at
termination and hence the limit poinL »* is the local minimum 6.

5.5 Analysis with the XOR Problem

Figure 5.4 shows the convergence of the algorithm against the number of epochfilerations
and momentem term. The self-adaptive parameters that are penerated during training are
shown in Figure 5.5, The training initiates with starting vecier (0.22, 0.34, 0.97, 0.73, 0.1,
0.2)" and the sample calculations are shown in Table 5.3. It shows thal the self-adaptive
learning rate and momentum parameters deiermined by the algorithm approaches to a
smalt value as the training progress. The seli-udaplive parameters reduce the function
value monotanically, which is shown in Figure 5.4,

Epechno. | Self- Self- & Self- Self- Self- Self-~ |Momentum| Fanclion |
Adaptive | Adaptive | Adaptive | Adaplive | Adaptive | Adaplive | Term Value
Parameter: | Parameter: | Parameter; | Parameler: | Porameler: | Parameler:
I 2 3 4 5 6 )
I -0.05442 1 00641 1 053001 | -0.60881 | -0.24987 | -0,03935 | -0.00469 0591136
2 005427 0.047 | 0.01B047 | -D.0161N | G.O02517 | G.OOD146 | 0002194 | L25E-05
3 0.00027 | -1.4E-05 § 0.000255 | -0.00192 | 0000311 | -1.4L-05 | 0.145158 i I__92‘I‘:".:ﬂ?
4 | 3.45E-06 | -7.8E-07 | 6,87E-07 | -6.1E-06 | -34E-U7 | -A5E06 | -0.00414 {1.01E-Di0

Table 5.3 Self-adaptive prrameters , momentum term aud function value with
sarting vector (.22, .34, .97, .73, .1,.2)
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Figure 5.6. A trained 2-2-1 ANN XOR
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The proposed training method is tested with 2.2.1 ANN configuration XOR problems.
The input daty for the problem corresponds to 1he subsct of the Table A.1 in Appendix A
in rows }, 2, 3, 4 and column 4, 5. The random slarting points w, =0, .y ey ) dre
Luken from the Tuble A.2 in Appendix A, The leurning rale is .1 for the standurd back
propagation Lraining. The proposed methed is self-adaptive, parameter and derivative free,

5.5.1 Sample Calculations with 2-2-1 ANN XOR Problem
Figure 5.6 shows a trained 2-2-1 ANN configurution. Sample calculations are show in

Table 5.4 with the trained ANN configeration. The instance of zera input to the hidden
layer neuron is approximated to the value Lx 10°* for computational convenience,

=0, &M =0, 55 =(- os)'u+(nm*a 0, &7 =00%)*0 4010742 0=0

=-0478, g. =—L_=-0078,

g = mmm ] I+

2P = (~1.9)*(-0.078)+{1.8)*(-0.078) = 0.0078

a1, M =0, Y™ = (-06)* 1 +(06)0=.06, ™ =(10"%)*)+(10"¢)*0 = 10"
=] =
2l mm_—ossm 87 =l =-00247,

2§ = (=1.9)*(-0.5514) + (1.8)* (-0.0247) = 1.0032

2P0, 2 =1, PP = (-06)*0+(06)*1=.00, h"‘?—{m‘"‘}'u+(|n"°y1=10""
-l i

e =g =—05514, gi™ = —lom o 0.0279,

27 =(-1.9Y%(-0,5514)+ (1.8)* {-0.0279) = 0.9974

=1, o™ =1, A0 =061+ (06) 1 =0, BT =0y 14010 ) 1 = 1L01x (0
1 !

p-4 pﬁi
Ei 1+|nnn Trlano-1 =—0078, g T umo ) =-00219,

= (=L.9)* (~0.078) + (1.8)*(-0.0279) = 0.058

Table 5.4 Sample calculations with 2-2-1 trained ANN XOR

5.5.2 Random Starting Vector in Wide Range

The self-adaptive training paramelers and momenium pararneters are computed according
to the method discussed in Chapter 4 Section 4.3. Table 5.5 shows the resulls with random
starting points that are according 1o the Table A2 in Appendix A. The average epoch and
function evaluations are 6.3 and [122.6 respectively. The teaining method is not sensitive
to the magnitude of random starting peints. Compare the experiment numbers 1, 2, 9 and
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1€ with different magnitudes ef slarting weights, The experiniental results in Table 5.5 ure
Taily consistent. Toe average values of the epoch and tola) number of functien evaluations
witl the stundard BP method are 5142.3 and 360006 respectively. The refative efficiency of
the proposed methed over the standard BP method is (5142.3/6.3) 816 in number of epech
and it is (36006711226} 32.07 in number of function evaluations, The comparison with the
number of epoch is nol appropriute since, the proposed method uses a specialized
interpolation search for convergence und consequently, the number of epoch is reduced.
The total aumber of function evuluation is a valid metric.

Muldi-Diregtional Training Standard Back Propagation Method
ev & |23 [EEs [ |zE i 5 [E%3
5 2§ RS 53 2%
| xLOE-014
| 4 586 .65 | . L OINEH
2 4 i 86 i |
3 4 : =
T 2 d 104610
TS 303 5003 | Taa7a 26850 4476 3133
b 5 | B4 0.095 5737 428 | 5739 | 40167
7 5 949 L1 2137 12828 2139 14967 ; 3.001
8 5 #69 0.5 13024 | 78150 13026 9176 ; B9
9 4 ) 101 ) 15 16 17§ 133
10 4 | 612 : 23 2684 . 16110 P 2
Mean 6.3 11226 | 14758 | S5142.3 | 308618  5144.3 .
Median 4.5 7835 | LO05 [ 3519 172480 7 3581
Standard | 5.2 1073 .02 | 1.762
I)CViatinn 1 - P H ————— -
_ Range 7 3504 © 6,09 104494 121813«
Minimum 4 546 | 0003 15 e .17 13
Maximum A 419 | 6l 17434 @ MM6I0 . 17436 i 122046 © 0015

Table 5.5 Comparisan with BP Method (2-2-1 ANN XOR Problem) with
wide range of starting points

The median performance of the proposed algorithim with the number of epoch and total
number of functien evaluation corresponds 1o the values 4.5 and 783.5, while with the
standard back propagalion method these counts are 3579 and 25061 respectively, The
standard deviation in number of epoch is 5.2 with the multi-directional training method
and is low in magnitude, Il suggests that the training show consistent performance.

The maximum and minimum numbers of epoch are 21 and 4 respeclively with ihe
proposed method, while the maximum and minimum oumbers of lotal function
evaluations incheding pradient evaluations correspond to the values 4110 and 546
tespectively. '
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The simulations with the standard BP method show that the muximum and minimum
numbers of cpoch are 17434 und 15 respectively. The corresponding figures for the total
nienber of function evaluitions are 122046 and 133 respectively,

It is noticed in Chapler 4 thal the standard back propagation method performs well with
small random starting points, The proposed multi-directional training methoed is not
sensitive o the initial starting vector, Experiments number | and 2 have simali starting
vectors while experiment number ¢ and 10 have large stariing veclors. In most of the cases
the experiments suggest that the maguitude of the weights do not influence convergence of
the algorithm, The simulation results are compared with Ihe standard back propagution
mnethod in small range of weights next.

5.5.3 Performance of Training with Rundom Weighl in Smali Range
Table 5.6 com'parcs the performance of the proposed algorithm with standard back

propagation method. The small randem slarting vectors are used to train the 2.2-1 ANN
XOR problems,

Mulii-Directtonal Training Standard Back Propagation Metheo
pi 2 p P [
T & 33 |sEs e 3@ |2@ |3El liEs
& S-S L Y oO|FE @8 BT
I A 86 I IGGEID| 25 1S6 ., 27| 183 _|GIBEDL
2 ] 577 |SAIE00| 37 . 168 | 29 | 197 |§IIEQ
3 4 684 1.60E-10 6 - 162 28 0 190 1 1.50E-02
4 § 842 | 2.60E-07 2 150 6 ¢« 176 - 1,D0E-02
5 4 510 LOOE-16|_ 1751 10512 1753 12265 | 1.30E.-04
6 4 | 852 1.02E-10 30 6| 32 218 | 5.60E-03
7 5 831 [5.00E-08| 2687 | I6l28 | 2689 | 18817 |39SE-03
8 5 793 |3.30E-H0 20 | 126 |} 22 148 | B.97E-03
9 4 588 |3.50E.09 23 | 14, 35 16% 1.40E-D3
10 4 579 1,20E-09 23 f 144 a3 169 1.80E-03
Mcan 4.3 664.2 |3.22C-0B| 4636 | 27TR7.6 | 4656 | 32532 | 0.005568
Median 4 620 {7.65E-10y 255 159 275 186.5 | 0.004775
Standard | 0.483 11885 [8.16E-0R| 951.12 | 5706.737 | 951.12 {6657.849 | 0.004852
Deviation
Range | 32 2.8E.07 | 2667 16002 2667 18669 | 0.0i487
Minimum 4 510 1E-18 20 126 22t 148 0,00013 |
{Maximum| 5 842 26E07 | 2687 16128 2680 | 18817 | 0.015

Table 5.6 Comparison with BP method (2-2-1 ANN XOR Problem) with small
randam stariing points

-87-



The experimental results suggest that the proposed wmethod converges faster than the
standard back propagalion method. The relative cificiencies of (he proposed method vver
the standard buck propagation methods in average epoch size and function evaluations are
(463.6/4.3y 107.8 und (3253.2/654.2) 4.9 respectively. The muximum and minimum
numbers of epochs are 5 and 4 respeclively and the corresponding numbers of funclien
cvaluations are 842 and 510 respectively. The medion performance of the standard bick
propagation is however betler lhan the proposed iraining methed in tolal number of
function evaluations, The median values of the tolal number of function evaluations wilh
the proposed method and the standard back propagation method are 620 und 186.5
respectively. The mean ternvinal function value with the proposed method is 3.22x10® and
is comparatively less than the standard back propagastion method. The corresponding value
with the back propagation Lraining method is 0.005568,

5.5.4 Comparison with Results in Liferature
Table 5.7 compares the results with the proposcd .mclhod, standard back propagation

method and the results found in Jacobs (1988) and Salomen (1996} with the XOR
problem. The tratning iniliates with small random starting points.

Mulii-Birectional Training|  Standard Back Propagation Mcthod | Jacobs [Salomon|  C.G
- (L9883 | (1996) | {P.R)
: |e |5B |Esele |23 lsE Lsfms.ls o |22
£ 2 5% eSS |2 |9% (2% [BEEEfslE % |22
e & |E2|EET (& (B (€2 |EE3fEs & |E=&
] g =1 =
k: [ E =R CE |[=% « 3= 33
Mcan 4.3 | 664.2 |3.22E-08| 463.6 | 2787.6] 465.6 [3253.2|0.00357] 250 2 14
Median 4 620 |7.65E-10] 255 | 159 | 27.5 | 186.5 |O0.0(478
Standard | 0.483 | 118.85|8.16E-08 |951.12]3706.73) 951,12 |6657.85] 00049 | 60
Devialion
Range 1 332 | 2.6E-07 | 2667 | 16002 | 2667 | 18669 |0.01487

Minimum| 4 510 | 1E-10 | 20 126 22 148 10.00013
Maximurrj 5 842 | 2.6E-07 | 2687 | 16128 | 2649 | 18817] 0.015

Table 5.7 Comparison with other method (2-2-1 ANN XOR problem)

The proposed method needs 4.3 cpochs on average to train the 2-2-1 ANN XOR problem.
The back propagation method due to Salomon (1996) 1akes 62 cpochs, while the delta bar
delta method reported in Jacobs (1988} takes 250 cpochs to train the XOR problen. The
standard back propagation method needs on average 463.6 number of epochs to train 1he
2-2-1 ANN XOR problem. The propesed methed out performs the delta bar delta methad
reported in Jacobs (1988), the method suggested in Salomon (1996) and the standards
back propagation method in average cpoch. The reason for less number of epochs with the
proposed methed is due to Lhe interpelation search in addition to the momenun search
that has been made dynamicaily self-adaptive. [n addition, the proposed multi-directional
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search method performs better when the error function is ill conditioned and has stiff
ridges (Ahmed and Cross, 2000). The efficiency in average epoch size is gained at the cost
of function evaluations. The corresponding total numbers of function evaluations are
664.2 and are still significantly less compared to the number 3253.2 with the standard
back propagation method. The relative efficiency of the method against the standard back
propagation method is (463.6/4.3) 107.8. The corresponding figures against the method
due to Jacobs (1988), Salomon (1996) and Polak and Ribiere (reported in Kamarthi et al.,
1999) are (250/4.3) 58.14, (62/4.3) 14.4 and (14/4.3) 3.26 respectively.

Finally, the mean terminal function value is of the order 3.22x10™, Clearly the proposed
method improves the error function value with high precision. This is achieved with
relatively less number of function evaluations and number of epoch. Figure 5.7 and 5.8
compare the function evaluations and epoch with different training methods.
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& & o3 (fsf Direction 41 oihods
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3
Methods =
Figure 5.7 Epoch comparison

function evaluations

5.6 Discussions

In practice, the Multi-directional search methods without derivative information is reduced
into a constrained one-dimensional problem and the search is continued in the direction j

varying the learning rate parameter n; with the given value of w, and d;. The error

function is sampled in the weight parameter space with an order of magnitude n,d, . The

network weight is increased or decreased depending on the shape of the hyper surface.
The sampled function values are used to locate the minimum points according to an
interpolation search method shown in Chapter 4, Section 4.3. The search is repeated to
achieve high precision.

The rectilinear search strategy as discussed in Section 5.2 always converges according to
the proposition 5.2 under the hypothesis if f(w,) has partial derivatives and when

interpolation search is performed. Rapid convergence is achieved if the contour surface of
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Fow,)y is approximately concentric or if the principal axes of (he elliptic contours coincide
with the coordinate axes (Schwefel, 1981). When the numbers of ANN weights are lorge,
they influence each other during convergence. This causes he interpolation scarch to
mave a snxall distance and it affects the convergence. The method nceds smalt storage of
the order m. It is dilficult to compare the convergenee rate of this algorithm with the
standard back propagation ulgorithm such as suggested by Rumelhart et al., 1986, The
algorithm belongs to a different class and does not require gradienl information of the
function.

The mulli-directional search can be reduced te coordinate scarch and hence 1he

TR . H . I p— 1 twy g =S "N _ =l . .
convergence of the algorithm approximales to Ws(l d—“:-_T]" {Luenberger,

1984). The quantity, (A.a) are the largest and smallest eignevalues of the Hessian matrix
with dimension s and fiw®) is the local minimum, The bound in multi-directjonal

search algorithm depends on the largest and smallest eigenvalue of the Hessian matrix. In
fact, the convergence is damped by a fuctor (m—1}. The momenium search makes the
method effective and efficient. The specialized imerpolation search alse improves the
convergence. If the Hessiun matrix of the ANN error function is nearly diagonal, the
sleepest descent back propagation would suffer convergence due lo siff ridges and under
such circumstances the proposed multi-directional scarch method tend w0 improve
performance.

It 15 also noticed that the multi-directional training algorithm is not much sensitive to the
initial starting weights in comparison with the gradient-based methods. Therefore, it can
locate 2 relative Jocal minimum from anywhere of the error surface, This is cenainly an
important property of the developed training method, In first order and second order
training method, however, the initial starting vector affects convergence. Further analyscs
are reperied in Chapter 7.
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Restart Training Algorithm

6.1 Introduction

This chapter develops o new derivalive free simplex resturl training method, which
improves the geometry of the degenerate simplex by a restant and re-scale operation, The
new restart search is forced 10 continue into parameter space so that the local search is
improved (Ahmed, 19992; 1999b). Classificalion and statistical time series problems are
solved using this method. The improved search method sclves problems in higher
dimensions. [1 is an unconstrained non-linear tratning method and does not require the
derivative information of the error funclion.

Briefly, the properties of the simplex method are discussed in Seclion 6.2 and 6.3. The
improved methed is presented in Section 6.4, Section 6.5 compares the simplex method of
Nelder and Mead (1965) with some test problems and Section 6.6 presents some
experimental results with XOR problems, Finally Secticn 6.7 provides seme discussions,

6.2 Background of Restart Training

Given a collection of poinls in Euclidean space, a pattern is formed connecting all the
points. For example, a tetrahedron is formed in £” and a triangle in £2. This pattern or

georetry is called simplex. It must always enclose finite volume in m dimensional space,
To reduce the number of simullancous trials in the experimemal identification procedure

of factorial design, the minimum number of siarting points is suggested as g +1 in E”

(Spendley, Hext and Himsworth, [(962), Therefore, in simplex m+1 soluiions are
maintained to define enough vertices of a polylope surrounding a point. It starts with an
initial simplex and by repeatedly replacing its vertices with refleclion points; the method
gencrates lower function values. Nelder and Mead (1965} improved the simplex method
by muaintaining irregular simplex. It repeatedly reflects a vertex along the centroid such
that the function values at the vertices satisly some form of descent condition with
reference to the previous simplex. In the following sections a new search with simplex,
which confines finite volume, is developed. The proposed methed prevents the simplex te
stagnate during search 50 that the (raining conlinues inte parameter space.
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6.2.}  Derivative Free Simplex Search

The simplex optimization method is mulii-directional search and belongs ta the derivative
free elass. It is found Lo be robust for problems with discentinuily (MeKinnen, 1998) or
where the function values are noisy (McKinnon, 1998). The muli-directional search
method (Dennis and Torezon, [991: Torczon, 1989) mainlain  uniform  lincar
independence of the simplex edges and require only simple decrease in the funclion value
at cach iteration (Lagarias et al., 1998). Recently, Kelley (1999} propose a simplex searcl
method for sufficieat decrease which, guarantee convergence of the Nelder and Mead
{1965) iteration to a stationary point, if the objective function is smooth and the diameters
of the Nelder and Mead (1965) simplex converpes Lo zero. He propeses a new step, which
re-initializes the simplex to a smaller size with onhogonal edge whose orientation is
determined by an approximate descent dircction from the current best point. Results in
higher dimensions are not reporied in any of these studies.

The computational operation of the simplex search is of the order 0(m*) and according to
Nelder and Mead (1965); the number ol functjon calls increases approximately as 0(m*")

based on resuits up to ten variables (Schwefel, 1981} The method is efficient in finding
better funciion value even though it faces difficuity with Jarge size problem. Lagarias et al.
(1998) indicate the following reasons for its popularity:

a. In many applications, for example in industrial process control, the inlerest is to find
parameter values that impraove some performance measures. The method improves
significantly the function value in early stage of iteration;

b. In some applications, function evaluation is cxpensive or time consuming and the
derivative cannot be calculated. The Nelder and Mead (1965} method when succeeds,
tend to require {fewer function evaluations;

c. The scarch is simple, derivative free and robust.

The method is reliakle when working with few variables {Lagarias et al, !998;
McKinnon, 1998; and Tseng, 1995). McKinnon (1998) abserves that the Nelder and Mead
{1965} method fails when the search direction defined by the method becomes orthogonal
to the gradient directions. McKinnon (1998) presenls a family of functions af two
variables, which cause the Nelder and Mead {1963) method 1o converge to a non-
stationary point. These examples show thal the methed performs inside conlraction step
repeatedly with the best vertex remaining fixed. These results demonstrale the need to
improve the Nelder and Mead (1965) method, which in general have convergence
properties (McKinnon, 1998),

An improved simplex training algerithm that solves problems containing 36 variables is
developed. The proposed algorithm performs a re-scule operation when the simplex
degenerates. It defines a favorable simplex using the veriex where the funclion valug is
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minimuny, The siplex then performs a restart phase 1o change the direetion along which
the simplex initinles a new search. The proposed method converges earlier than the Nelder
and Mead (1965) methed and improves the error function value, The numbers of lunction
evalustions are reduced significantly.

6.3 Simplex Method

Simplex in £ consisis of m+1 points. All convex combination of these points docs not
test on hyper plane. Consider the problem of minimizing an ANN error function fow;},
where w =(w, Wy, ) is Lhe veclor conlaining ANN connection weights as variables,
The variables w, are stored in 2 verlex of the simplex. Let v' be an initial estimane of the
simplex at vertex I, which is sel initially to an asbitrary value stored in w,. The ‘other

vertices of the simplex are formed according to the Equation (6.1):

V=it (6.1

v

The values of A'd' shdui._i_i‘;i: such that the quantities &' = £0' + X d’ )= fiv' 1 are different.

The index 1 is defined a8 1= 1,2nim +1).

All the vertices ',v?....»™") of the initial simplex are, therefore, defined. The esror

function value is evalualed using all the vertices to delermine the lowest, highest and on
intermediate or second highest function valuc, The cormesponding vertex positions are
marked /, , & and these poinlers are determined in the following expressions:

t=arg [min, {7 (') ' (6.2)
hr=arg [max, [ £ (+' )] (6.3)
s=argtax, d fOr N 1= R) |2 FO0T), {6.4)

The average vatue of the simplex vertices corresponds te the centroid which is 2 midway
Joint given by:
] m+l
Centraoid: ¢ =;E(v'} . (6.5)
i=l

1k

An iteralion of the algorithm corresponds to the evaluation of (he Egquation 6.5. The
simplex scarch replaces the vertex with the highest error function value by a new vertex
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situated at a reflection point along the midway of other m vertices. Figure 6.1 shows the
interpretation of this strategy in two dimensions. This principle locates the new vertex at a
minimum point. The newest vertex is reflected according to the Equation 6.6 to explore
other minimum in the neighborhood.

Reflection: r =c¢ +a (¢ —v"). (6.6)

C idie=(1/ p, v oyt
\ entroid ¢ m ) X,y ¥

Reflectlonrecs+ (eah)
/
r// Expanston: e=c+ f(c+h)
Contraetlonygeues Y(heoo)
Rescale: p'wd ™ (v'Ca+0.5(v'=v'2E"))

Figure 6.1 Simplex formation strategy in tw o
dimensions

The refection point r is the line joining v" and ¢ on the extreme side of ¢ form »". The

function value f(r) is evaluated and three main strategies are followed to generate a new
exploration point. They are defined as expansion, contraction and re-scale and are shown
in Figure 6.1 in E*. The decision to follow a specific strategy is based on the function

value f(r) with reference to four search intervals. These intervals are defined below
through the expressions 6.7, 6.8, 6.9 and 6.10:

Interval 1: f(r<foh (6.7)

-94.



Interval 2: firfy< firys Isr:lsm"{f{v' Nt 2 k) {0.8)

Interval 3 max Ilf{v'}:r zhl < firyge (6.9)
I1si<m1

Interval 4; Fety< Sl (6,14}

If £ery is in inerval 1, un expansion of the simplex accerding to the expression 6.11 3

recommended:

Expansion: ¢ ¢ +f {r -c ). 6.11)

h L

If Fiey is in interval 1, the simplex search repluces »* with e, otherwise v* repluces r.
When the function value £(r) due to reflection falls in interval 2, it is only recommended
to replace v* with r. A contraction step is followed if f¢r) is in interval 3 and the

L}

simplex with highest function value »* is replaced with r. The simplex is then contracted

according to the Equation 6.12:

Contraction: g «c '+y ¥ -c ). {6.12)

Ifthe function value f{g) is in interval 1, 2 or 3, the vertex with highest funciion value v*

is replaced by e. If f(g) is in intcrval 4, Nelder and Mead (1965) at this stage seale or
reduce the curren! simplex with reference 1o the low veriex of the simplex given by:

v =l —vtyz). (6.13)

The evaluation of this slep in Equation 6,13 is defined ss resian efforl. Algorithm is said
to have converged when the relative improvement in function value is insignificant. The
standard devigtion, o, of the funclion value alang all the vertices is calculated. The
algorithm is terminated if the slandard deviation is significantly small. To terminate the
algorithm, the following termination criterion is used:

Convergence: If o= (6.14)

m+]

Y. rov')

where, f =t andsel »° ¥’ as the best point found so far,
m

05.



The perforance of the search methad is measured in total number of function eviluations

necded by the algorithm. Flhe Nelder and Mead (1965) simplex search algorithin is shown
in Figure 6.2,

2 Stant 1 izt mintfiv)) |_"'l ks::anm.tfﬂv’}d—’—l saf:amuxm\-'J,Ju.fl&aﬂv_l
:

o= HmEfv rah

I Reflect: r=cvatcv'l

I Expand; e=c+ ﬁ(,.‘ﬂ vi=r

<>
@

|C0n.'mc1:g=c+}{(-c,l |—(——

|

% v'= (ev'+)2 |-£—--—

Figure 6.2 Nelder and mead {1963) simplex algoritim
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64 Tmproved Restart Training Method

L]

The modilicd method is shown in Figure 6.3, It replaces + hy »* if the condition

Fohs fin < firtyis tue and anotber reflection is attempted. If the reflection is highly
successful and generates anew minimuwin such that f(r) < £v'), then the direction chosen
is o good direction and expansion is followed, Bused on the magnitude of fir) und fe)
either # or e replices »'. A new centroid js again is caleulated and reflection is
ultesmpted. However, U the reflection is not successful and the condition feryz fiv*y i
true, then the search is taking place in wrong direction and a coniritclion is performed, The
search bepins with cxpansion, if the contraction is successful and Flgy< fiv'y. Incase, we
have flgyz Sy a re-scale is attenpled and 1he direction of simplex search is changed

with the user defined search vector d ™ to restart the search. The re-seale phase construcls
simplex according to the Equation 6.15:

o =d‘"(v'§ + -;_',)]. (6.15)

The direction veetor ¢ ™ is changed 10 gencrale new centroid when 2 particular direction is
not favorable. The setting of this vector is shewn in Section 6.4.2. The search begins from
initial stage while retaining the besl funclion value found so far. This step is defined as
restart phase. The reflection is attempted when fiy < fir®y and another reflection is

suggested when f(e)> f{v*}. In this case »* is adjusted with reflection poinl. A new
centroid is calculaled when f(ry< fiv') and the index & is repluce by s. These sleps are

laken since the repeated reflection is successful with these adjusiments.

The edge length of the polyhedron is changed (o continue new search. These changes
allow the simplex to span in search space. Al the end of the routine evaluation, simplex
size is changed through the re.scafe scheme and a new search direction is initialized to
follow the restart phase. The search begins with a simplex of different edge lengths so that
the reflections, expansions of confractions steps improve the descent direction. This step
is suggested to maintain non-degenerate simplex. The non-depencracy of the initial
simplex implies non-degeneracy of all other subsequent simplex. Recently Lagarias et al.
(1998) proved this assumption. If a non-conlraction phase oceurs, the trial points replace
the worst vertex. If a contraction phase aceurs, Equation 6.15 replaces the current simplex
such that the geometry of the new simplex is non-degenerate, This is also equivalent to
starting search with different staning points in parameter space and a refined locul
minimum can be discovered by this method. According (o Lagarias et al. {1998) the
reflcction, expansion or contraction slep produce a convergent sequence in {£(vf)} when

the search starts with a non-degenerate simplex. The notalion & s embedded in fvf) to

7.



represent the lowest error function value st iteration & . Jtis due (o his propeny the restare
phuse is reduced considerubly in higher dimensions, The algorithm is shown in Figure 0.3
and the pseudo progrum is shown in “Table 6.1. The Nelder and Mead method require one
function evaluation when il lerminates in reflection ‘step. 1L requires two finetion
evaluations when it terminates in expansion or contractien step. There are #r+2 function
cvaluations, i & contraction step occurs {Lagarias el ul, 1998), The improved method
performs a resale phase instead of contzaction siep. The complexity of the reslan with
resafe i e same. Therefore, no additional funciion evaluations are needed. The
experimental results are discussed in Section 6.5.

: Stan 1 tmy= mind v )} ’_"l hat=maxffiv')) J—P{ itz maxffv' b d 2 fiv')

A
e={m Zivxh

- Convergence

‘gmes frec)

viu W'ty - v YE)

Figure 6.3 Restart training algarithm
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3.

5.

(3

Initialization:

L1 Construet o simpies in E™' choosing the starting points on veriex (v 07 >
1.2 The first wnd - second  loyer  weights are ra_*r!tﬁm'd UY Wymaiyei Whiin o
-,

“'.wmo-lm n Wi Mmaa .

1.3 Vertex number | initializes the initial steplex for ANN error function, v =
Ll L p e Ly

L4 The ather points of the simplex vertices are generated by appropriately selecting A" andl
d' defined by : v = U+ M 1SESm ), and v [T (AR L ™y and execute)
min step 2

Main Step:

2Hen v e e 0 bt e v ™) e such that 123 1Y )= LT TP ')

2.2 b fiv" )= makyeigny SO} atnd perform Step 3

3 Ler vt e (¢ 0 e, WY b such that 5= fiv' )= MUk ge,, [0V )20 £ R12 £

"+l
3.2 Centroid: les, ¢ d—-LZ(v*J s st k =k +1 and pecform Step 4

in]
i=h

4.! Reflection: r ¢ +a (¢ =»*)
4.210f £ir y< F") perform siep 6

43 If Fir Y2 Fo*) perform step 8
4.4 Otherwise pecform step 5

5.4 8¢t v —r and f(v"](—f{r )

S210f for )> foe'y perform step 4

5.3 Otherwise, It 5 and pé?}%{i\..icp ¥

6.1 Expansion: Set | (—/J';and ¢ —¢ +f (r —c)

8.21f fle < fir J.gc’:fi" —e and fO0' V= fle ), and perform step 7

6.3 Othernise, .ﬂ.’fjv' —r ., f e fir Y and perforn step 7

m+l

2.0

<@ where, [ =% , Report w' '
m

7.1 Convergence: If o = as the

+1

minimum point at k' iteration and stop,
}

7.2 Otherwise perform step 3
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& 8.0 Restam: g ¢ 4y (" -0 )
S8.21f fig 1< SOty perfonm step G
S fle 1< fivh) perform step 5, Otherwise pecform step 9

9. 9.4 Re-seale; v «d" (v'{ +0 —;;-}]. and perform step 2

Tuble 6.1 Restari training method

6.4.1 Parameter Selection

Initially the facior ¢ and &', =12..0m+] is set to one. When the simplex degenerates,

this fuclor is set to 3 and the current simplex is medified. At the end of simplex re-scale
phase the factor is set to one again and attempls a restars phase. The direction vector d ™ is
initially set to the unit vector [1,l....,1J%. [f the attempted re-scafe does not imprave
funciion value, the direction vector is changed to [-1,-1,...... ~117 and the parameter £* is

set to a value 0.856. Il can be any other user defined varisble value based on some
experiments. This can be tried when a consiant value is not appropriste for an application.
The restart vector 4  is again reset 1o vector [1,1,....11% afler the re-scale phase.

The parameters, e, § and y influence the convergence. One approach to determine these
parameters is to do a fill line search according to the methed given in Section 4.3 in
Chapter 4. This is a crude method. It does npot necessarily converge to minimum.
Consequently, it will result in large number of funclion evaluations. Alternately, fixing the
values of &, § and 7 the dircctions of scarch are gencrated by the simplex rom its
centreid using the reflection, expansion and contraction steps. The appropriate values of
@, p and y influence the simplex search. These values are fixed based on few
experiments. Several starting points are also nccessary to arrive at good estimate of the
threshold parameter values. These parameters, &, f and ¥, are cxperimentally
determined in such a way that the simplex search reaches the minimum trajectory without
putting extra burden on function evaluation, The experiments suggest that the values of «,
f and y; are 0.7675, 1.8755 and 0.4615 respectively.

6.5 Experimental Set up

To test the performance of 1the propesed algorithm in Table 6.1 against the Nelder and
Mead (1965} algorithm an ANN seasonal time serics problem and the Rosenbrock
function {Al-Sultan ¢t al., 1997) are evaluated. The performance of the algarithim against
standard back propagation algorithm with XOR problem is also evaluated,
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Function Value

Bimproved
=N M

Figure 6.4 Function Value with Improved Algorithm and Nelder
& Mead's Method (5-5-1: 30 variables)

Bimproved

* W
MNumber of Simplex Rstart

N M
6 6}‘% “9
Figure 6.5 Numberof Restart with Improved and Nelder 8 Mead's
Method (5-5-1:30 variables)
B

Eimproved g
N A M

] 'ﬁf

Figure 6.6 Numberofiterations with Improved and Nelder 8 Mead's Method
(5-5-1:30 Variables)

EBimproved
N a&M

Function Calls

Flgure 6.7 Numberof Function Calls with Improved and Nelder &
Mead's Method (5-5-1: 30 variables)
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Sugpested Method 5-6.1 ANN Nelder und Mead {19651 meihod
Experiment| Function No. of No. of No. of Starting Points Functinn Value! No.of | No.ofl New o
number Value Restart |Iteratlons| Fusnetion (®y4 j=1,2yueqm) SE Restart Tterations|  Function
SE Evaluatlvns| Evaluutivns
1. 191803810 | 25 48363 | 108203 7200,100500,700.800.331 342310312 21237143241 3. 14 435,55,54,53, OIREION0 " : IARTD - 34405 - 5603406
[ 52,54.4323,7463,6 58,6252, 9 HR.67,68,69,50,61,1,2,2,1, 1,1 ; : )
z N9im2060 ] 11 25823 | 51592 D00.100.900,700,800,331,342,310,3i 2312430 42"1.‘4'1?33-‘1’&35'5’5[}541 TYI038630 0 3561 w0 133W06
532.523.544.4323,7463,6158,6251 9348, 67,68,69,60, 1.5 | i : L
1, TI0A350 iz 28608 | 55893  200.100.900,700.800,331,342,310,312,213.23) 423 413, 435 550541, 1 (2040880 | adniT s2iERI 1340425
- r53’513 544,4323,7463,6358,6252,9348,675,686,697,604,619.1,2.2,1,1.1 | ) :
4, (191858300 12 23186 30103 DOO.100,500,700.500,331, 342,310,121 2301 335413, 393435,550.541, + 900 1R10™ 7" 7495 7 )3s53a06 T 2275398
| . 532,523,544.430,746.635,625,934,675.686,697,608,619,1.2,2.1,1,.1 :
5. 92040180 29 72880 | 135663 W300.5100 RO00.4700,8800,331,343,310.312.213,431 322 41 3.314.435.55  (WISTII0 T 6178 1309833 T 2108078
. | 0.541.532.523,544.430.746,635,625.934,675,686,697,608,619, 1,220, 1,1 | ' .
6 52044320 87 D591 § 247075  8200,8100.8900.8700,8800,331,342,310,312,212,421 422,403, 344,435,55 ' (io0dven0™ T 1732 | 376366 602270
; 0 541,512,523, 54323, 7463,6358 6252 U HR.675.686,607.608,619, |.2.2.
: 1.0.4
Table 6.2.a. Performance of algorithm using 5-6-1 ANN configuration with 36 variahles
Sugpested Method 5-5-1 ANN Nelder and Mead (1965) method
Experiment Function No.ol| Nooof No.of Starting Points Function Value| Nooof No. ol nNoof
number Value eslart| Iterations| Function [wy.j=12,....;m] SE Restant tltmlim Function
SE Evaluations Esalualions
1. : 189524570 : 235 | 211691 ' 362493 N211.13.13.1531.31.31,31,31,03030304 0355555101312, #9526290 W33 1aIARs FXTITEN
: : 115112
TR NETSETIS0, 28, 3994t | ERIRE N2 ILILISIS303I3131 AL 5 55500000 N5LET ses1Tss0 003 T a8ETIS T AEOAN0
i .13 : :
3. 89526770 3 S5 T TIe0R T T A M BRI A4 5 5.5 53000 v 1, U™ T T WRee T TaEse | 1zieade
: 0.11,0.51,1,2,1.3.1 ! ; .
T B9526740 T | 4636 5903 1 AR REENEGNEENE S 345.31.311.1; A 355554000372, (weRasio0 T T IE T 208503 Hs
¥ ILSLL2 L3 i ;
5. (87833350 | 17 t 19875 | 13324 334 100,900, 700.800,4330,333,351 5.0 16 21 2402 2RI SIR43458] 89395270 w07 T 14e78e9 T 2453ss9
o ; | 4345,645.515.515.765.765, 323400 6350. 523 934K, 32.22.01 93,12 o _ L
6. 89535370 6 1 13234 18430 | TII333324444355554.0.0.1.1.52,2232 (189436560 1574 2067 157517

Table 6,2.b. Performance of algorithm using 5-5-1 ANN configuration with 3t variables
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6.5.1 Secasonal Time Series Problem

Two test funclions are constructed using 2 three-layer Jeed forward anificial neora)
network with 5-6-1 and 5-5-1 conlfigurations, There are 36 and 3 variables wilh tese two
correspomding error lunctions. The time series data from September 1976 to Jun 1996 s
used to lest the performance of the algorithns, which use the same starting weights. The
two methods are compared with the numbers of function evaluations, number of restant
und number of ilerations. Six sets of experiments are performed with 5-6-1 and 5-5-1
ANN configurations (Ahmed, 1999b). The termination criterion is set te 107" The starting
weight vectors have low as well us high mugnitudes,

The restart phase is related with contraction phase in Nelder and Mead method (1965).
Table 6.2.a lists the results of the improved restan and the Nelder and Mead (1965)
method using 5-6-1 ANN cenfiguration. Table 6.2.b lists the similar resuhs for the 5-53-1
ANN configuration. The algorithm when fails 1o terminate is marked with aslerisk {*} sign
and forced to terminate if 20,000 towal restarts do nol improve function value. The
convergence difficulty occurs due 10 extremely small and almost equal edge lengths of the
simplex. The method, which identifics belter funciion value, is marked with dollar (%) sign
and the best function value for the entire set of experiment is marked with percent (%)
sign. Figure 6.4 through 6.7 show the performance of the improved and Nelder and Mead
(1965) algorithms in function value, number of restart, number of iterations and number of
function calls.

The suggested method improves function valug (sce * sign 1 Table 6.2.4 and 6.2.b) with
5-3-1 and 5-6-1 ANN configurations against the Nelder and Mead (1965) meihad in entire
set of experiment. The proposed algorithm shows improvement in restart effosts both in 5-
3-1 and 5-6-1 ANN problems as compared 1o Nelder and Mead (1965) method. The
number of iterations and function evaluations are less with the proposed method. In 5-5-1
ANN configuration, the Nelder and Mead (1965) method suffers convergence in three
experiments with 5-6-1 configuration. The minimum and maximum numbers of function
evaluations are 49,193 and 247,075 respectively with the improved method in 5-6-1 ANN
configuration. The corresponding numbers of functlion evaluations in Nelder and Mead
{1965) methed are 602,270 and 5,603,406 respectively. The minimum function value
identified by the improved method is 91,252,060, while with the Nelder and Mead (1963)
method it is 91,872,210, The algorithms converge 10 different points due to excessive
number of local minimum in ANN error function (Partridge, 1997}, Figure 6.5 compares
the nunber of restart cfforts, which is less with the proposed method. In lower dimensions
this phenomena, however, is insignificant according lo Lagaris ¢t al. {1998), Kelly (1999)
and Torczon {1989} for strictly convex functions. '

The restart method terminales with improved function value, which is 87,587,950 in 5-5-1
ANN configuration. It is marked with percentage (*} sign, In some experiment the Nelder
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and Mead (3965) method Bnds better finction value, This is sbserved in Tahle 6.2 and
6.2.1, marked with dollar () sign in experiments with the sone starting poinis.

6.5.2 Comparison with Rosenbiruck Funution

To compare 1he performinee of the method with reported resulis in Al-Sultan et al, (1997)
and Corana et al, (1YR7), we list the resulls in Table 6.3 on Rosenbrock function as shown
in Equation 6,22 in tour dimensions;

Al
Flr oxarn)= 3100 - xf ¥ = -2 {6.21)
I

The proposed melhod show improved converges in 2/10 experiments with less number of
function cvalvations. Thix can be observed in column 3 and 4 of Table 6.3. The
experiment oumber 1, 2 and 3 with the specified stanting points do not show significant
improvements bul converge 10 an acceptable limit of function value. The experiments in
wll remaining experiments, 4 ihrough 10 show significant improvements in function
evaluations. The Nelder and Mcad (196%) method on the other hand faces convergence
difficelly in experiment number | and 8. This demonstrales Lhe efficiency of the proposed
method with respeet to numiber of efforts needed to converge to a selution,

Expc:imcnl] Starting Poinls {Al- | Number of Function Evaluation Functinn ¥alue
No, Sultan et al., 1997 (Al-Sultan et al,, 1997) (AL-Sultan et al.. 1997)
Nelder & Mead |Proposed Method) Nelder & Mead |Prupuscd Method
{19631 Method {1965}
I 11101161101 ST T N A X =
2 101.101.101,-99 L2 IR X A X %
3 101.101,-99.-5% [ Em T TegEaR T I3RS
4 101,-99.-99.-1
s -99,-95,-99..99
] 1 -59,101,-99, 141
7 i 10],-99,101,.99 :
§ 201000 1419 16 37 | TTesET
9 1,201, 077 i W 94E18 Z58E-10
[11] 1,1,1,201 1263 1 27 19E-17 i 3.RIE-8

Table 6.3. Performance of the Algorithin With Rosenbrack Function in 4 Dimensions

The average number of function cvaluations with the restart method is 503.4. Results
seported in Al-Sultan et al. {1997) and Corna et ai, (1987) are repraduced in Table 6.3 wdl
it suggests that the average numbers of funciion evaluations are 1112,8 with the Nelder
and Mead {1965} method. The stating vectors arc the same as shown in Table 6,3, The
maximum and minimum number of iterations are 1929 and 27 respectively with the
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proposed method, whike the corresponding values with the Nelder and Mead (1965)
method are 1869 and 784 respectively,

.5.3  Discussions on the Performance of the Restard Algorithm

Twiy ANN medel with 5.6-1 and 5-5-1 configurations, which model seasonal time serics
with the {irst 84 data paints in Table A as lsted in Appendix A are trained with Nelder
and Mead {1965) and the improved algorithm. The equivalent numbers of variables are
thirly-six and thirty respeelively, In o six sel of experiments, the proposed method
converges with less number of function evaluations, resturt attempls and number of
iterations. The experiment wilth 36 variables show that the improved method evaluates
functions 51,592 numbers of times and converpes to a local minimum. The corresponding
number of fitnction evalualion is 2,109,075 with the Nelder and Mead {1985) method. The
minimum and maximunm numbers of restart atlempts are || and 87 respectively with the
proposed method in 3-6-1 ANN configuration, The corresponding numbers are 4201 and
6178 with the Nelder and Mead methog. To find improved function value in all six set of
experiment with 30 variables, the proposed method needs 88,288 number of function
evaluations and it is 457,517 with the Nelder and Mead method. The quality of solulion in
Nelder and Mead method is not as good as wilh the proposed method. The Nelder and
Mead method face convergence difficulty as the number of variable increases. However, it
identifies better function value in some experiments. This study demonstrates that the
improved method can solve problems in higher dimensions,

6.6 Sample Calculations with 2-2.1 ANN XOR Problem

The Figure 6.8 shows a trained XOR 2-2-1 ANN configuration, The training initiales with
a starting vector (1, 5, 3, 1, I, 2)7 and the sample calculations are shown in Table 6.4,
When there is zero input to the hidden layer neurons, the inpul to the hidden layer neuron
is approximated to the value 110" for computational convenience.

67184

64472.2

5821.3
-52.08

=51934.7

Filgure 6.8 A trained 2-2-1 ANN XOK

The sample calculations are shown next in the Table 6.4.
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=0, kS =0, AP S OI8O (5R21.28) 0= 1), AT = {644722) 0+ (5193473 0 =1}

L N o R
Ri 'ulnnu"l'_{]‘nw""! Te Tl =-0i7R,

= {5:.38)*(-—t].u?m+(—52.3u) (-1L078) 2 .0

xi‘" =1, x"'z =0,
"1 ={A71RYI* |+ (SH2L.28)* D =067I8Y , h;-z =(ﬁ4472.2]'|+[-5193_4.7]'(]:()44?2.2

=002, g0 s b= o3,

,n-: -
£ = o THERATTE 3

-I"l = (S2M)*(I02)+(=52.38) * {LO83) = LIKHS

xl ‘=0, x5 —I,
l"" = (A718.9)* 04 (5821 .28)* | = 582128, h{"‘ =(472.21* 0+ (-519M.7) 1 = =51934.7

8 =g = 10M, g2 = =0.0843,

—_—
1+[nl3B2). 34 Frini=3 97

zl""‘ = {1034 %{52.3R)+ (O8N * (~52.38) = 1.O015

=1, 2=,

"" =(6718.9)% |+ {5821, 28)* | = 1254018 , IJF"‘. =(OMTLP*F N+ (31934,70* 1 = 1253747

a

8 = v = W58, g5 = e = 09582,
2P 5= (0958)* (52.38) + (.09582)* (-52.38) = 0.0010

Table 6.4 Sample calculations with 2-2-1 trained ANN XOR

6.6.1 Analysis of the Training Method With XOR Problem

1.8
1.6 1t
g 1.4 “‘
2 12
§ ! \!.
g TN
E 0.6 .
L b4 N
0.2
-+~ 2 @ 2 @& § ¥ 8 5 8

Epoch

Figure 6.9 Convergance with re-start sfmp!ex
tralning
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Figure 6.9 shows that error function convergence Wy almost xero value within 36 cpochs.
More epochs ace taken 1o achicve higher precision, The inpuet data for the training problem
corresponds ¢ the subset of the Table A, | in Appendix A inrows 1,2, 3, 4 and column 4,
5. The random staning poins w, =tw, oy, w,) are laken from the Table A2 in

Appendix A, The proposed training method is self-adaptive and derivative free.
6.6.2 Random Starting Vector in the Wide Range

Table 6.5 shows the training results with random slaning weights. The experiment number
8. 9 and 10 fuiled 10 converge, The large weighs affect its convergence. The average
performance is repotted for the cases where the methed converged. 1t takes 268.4 epoch
and 642.3 number of function evalualions to train & 2-2-1 XOR ANN. The corresponding
figures for the standard buck propagation method are 5142.3 and 30,006 respectively. The
comparison is bissed since the methed suffers in three experiments, The experiment will
be repeated with random starting weights in small magnitude for detail analysis.

The median performance of the propesed algorithm with epoch size and total function
evaluations corresponds to the values 147 and 361, while with the standard back
propagation method these counts are 3579 and 25061 respectively.

The Restari Training Method Standard Back Propagation Meth ed
= = § =2 = E =] é 8- E -
E I8 15F |Efx |8 BE (3% (Fii |Eis
g |8 52 EEF & (&3 |3 |2Es |EE°
& =3 &< Y8 %% |g°E |F°
1 147 _¢_ 361 | 29E05 ] 72 2. 138 . 162 L6.2UE04
2 354 137 | 3AE0E | SB67 _ SBe9 35008 : 41077 -{8.20E-04
3 L8] 416 [ I.1E-08 | _ 29 Y] 180 211 | 1.50E-02
4 85 246 | J0E07 | 17434 | 17436 | 104610 | 122046 {5.10E-03
5 124 300 F14E-08 | 4474 | 4476 | 26850 ; 31326 |2.50E-03
6 132 36 _ | 7OE-09 | 5737 | 5739 | 34428 | 40167 !4.60E-03
7 856 2060 | BGE02 | 2037 | 2139 | 12428 | 14967 |3.00E.03
8 Failed | Failed | Failed | 13024 | 13026 | 78150 | 91176 ;&.S0E-04
9 Failed | Failed | Failed 15 17_.._ 16 1331 2.90E-03
10 Failed | Failed | Faifed | 2684 | 2686 | 16110 [ 18706 ,1.00E.02
Mean | 268,429 | 649.286 | 061229 | 51423 | 51443 | 3086).8 | 36006.1 | 0,004543
Median | 147 a6l | 3E-07 | 3s79 | 358i | 2480 | 35061 ! 0.00205
Standard | 273.273 | 689.26 | 0.0325 | 5852446 | 5852.446 | 3511273 | 40965.18 | 0.00461
Deviation !
Range | 771 | 1923 [ 0086 | 17419 | 17419 | 104454 | 121913 | 0.01438
Migimum) 85} 246 | 7E-09 15 1°717 & U6 133} 0.00062
Maximum! 856 | 2169 | 0.086 | 17434 | 17436 | 104610 | 122046 | 0.015

Table 6.5 Comparison with back propagation method (2-2-1 ANN XOR Problem)
with wide range of starting points
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The nuaximum and mivimun numbers of epoch are 836 and 85 respectively with e
proposed method, The corresponding mimbers are 17434 and 15 respectively with e
standard back propagation method. ‘The maximum and - minimum numbers of 1ol
function cvaluativns are 2169 mxd 246 respeetively with the proposed method. The related
alues are 122046 and 133 respectively with the standard buek propagation method, The
standard back propagation successfully converges in all the experiments.

The simulation results with the standard back propugation and the propased methiod in the
smull range of weights are compared in the following seetion.

6.6.3 Comparison with BP Method

Table 6.6 compares the performance of the proposed algorithm with standard back
propagation method, The small magritude random initial weights are used 1o iniliale
training. The experimental results suggest that the proposed method converge faster than
the standard back propagation method. The relalive efficiency of the proposed method
over the standard back propagation training in average number of epoch and funciion
evaluations is (463.6/278.2) 1.67 and (3253.2/6{4.9) 5.3 respeclively.

The RcsL:Lrt_ Traitine Method Stanzrd Back Propagation Method
* " n w 3 w
5 5 88 [E5. s E5 [BE |2EE |ESs
E é R EEE’. 2 S8 =] Z'58 |52
g 52 |BET e |85 i3 [ziF |Es°
LE &£ | = = L e H =
| 147 36l 3.00E-05 251 156 _. 6.18E-04
2 720 1505 | 8.50E-09 27 r _lag . B2E-03
3 181 416 1. 10E-06 26 | a2 190 _ : L.S0E-02
4 228 474 | TA0E-08 24 150 26 176, 1.00E-02
5 315 653 [9.30E-09] 1751 10512 1753 12265 | 1,30C-D4
[ 416 868 1.40E-07 30 186 2 218 5.60E-03
7 216 581 JA0E-Q8 | 2687 16128 2689 18817 | 3.95E-03
8 187 436 1.30E-08 20 126 2 148 | 8.97E-03
9 215 482 | 6.00E-09 23 44 4 25 169 14BE-03
10 157 373 2 40E-08 23 44§ 25 169 1L.80E-03
Mean 278.2 6142 | 3.14E-06]| 4616 QM6 ;i 465.46 1 33532 | 0.005568
Median | 2155 478 2.9E-08 255 159 | 275 186,5 | 004775
Standard | 174,99 | 348.17 {9.44E-058| 951.12 | 5706727 | 951,121 § 6657.845 | 0004892
Dreviation
Range 573 1144 3E-05 2667 16102 2667 18669 | 001487
Minimum| 147 361 6E-09 | 20 126 [ 22 | 148 080013
Maximum| 720 1505 | 0.00003 | 2687 16128 | 26K9 | 18817 0.015

Table 6.6 Comparison with back propagation training (2-2-1 ANN XOR
Prablem) with small range of sturting points
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The mean ternsinal function value is 3,14x10® with the propased nethod and is # beter
training performance, The maximum and winimum aumbers of epoch are 720 and 147
resulting in the range statistics 573, The corresponding values with the standard back
propagation (raining wre 2687 and 20 respectively and the rage statistics is 2667, The 1otal
number of nuximum and minimum function evaluations are 1505 and 361 respectively
and the range statisties is 1144 with the proposed method. The related figures are 18817
and 148 respectively with the standard back propagation method, The range stalistics is
18669. The experimental results suggest that the average performance of the restar
truining method is better than the standurd back propugation training method,

The nwedian performance of the standard back propagation is belter than the restan
training method. The median number of the cpoch is 25.5 with Lhe stundard back
propagation method against 2{15.5 with the proposed method. Similarly the median valoe
of the total number of function evaluation is 186.5 with the standard back prepagation
method. The corresponding value is 478 with the proposed method, which however,
improves in median performance in terminal function value at 2.9x10°* against the median
terminal function value 4.77x10° with the standard back propagation method. This
implies that the proposed method finds betier local minimum.

6.6.4 Comparison with the Results in Literature

Table 6.7 compares the results with the proposed method, standard back propagation
method and the methods reported in Jacobs (1988) and Salomon {1996) with the XOR
prablem. The proposed truining method und the standard back propugation method is
initiated with small magnitude random siarting poims. The simufation result for the
standard back propagation method is taken from the Chapler 4 in Table 4.8. The function
evaluations including gradient evaluations are not given in the reports in literature.

The Restart Training Standard Back Propagation Method | Jacebs | Salomon |P-R (C.G

Method (19881 (1996
E :E = c - :g :"f'il:
E -E 2 .2 :og.g g2 (8L |z.2 :o,.g Jé %
e = == = = B'E 5= 51
8 (& |52 |EE%(s |82 [£2 |BE2HEssls |F |&
& LE |== g 2§ £ SE =

Mean | 278.2 | 614.9 |3 19E-D5| 4636 | 27a7.6 | 465.6 | 42532 |0.005568] 250 62 15
Medan [ 72155 | 478 [29E-08f 255 | 158 | 275 | 1865 [0.004775)

E1andard [ 74,986 348.17 [9.44E-06|951.1215706,72 795112126657 0490.004892) GO
Drevalion
Range | 573 | 1144 | JE-O5 | 2667 | 16002 | 2667 | 18669 |0.01467
Minimam |~ 147 | 361 | GE09 | 20 | 126 | 22 148 | 0.00013

Mad 720 1505 1000003 | 2687 | 15128 | 2689 | 18817 | 0.015

Table 6.7 Comparison with other method (2-2-1 ANN XOR prolilem)
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The proposed method needs 278.2 epochs on average to train the 2-2-1 ANN XOR
problems. The back propagation method due to Salomon (1996) takes 62 epochs, while
the delta bar delta method reported in Jacobs (1988) takes 250 epochs to train the XOR
problem. The standard back propagation method needs 463.6 numbers of epochs to train
the 2-2-1 ANN XOR problems. The simplex restart training method improves over the
standard back propagation method in average epoch. It is derivative free and can train an
error function which is ill conditioned, discontinuous and contains stiff ridges. The
average numbers of function evaluations are 614.9 with the restart training method while
with the standard back propagation method it is 3253.2. The proposed method works on
function evaluations and needs no gradient information. Kamarthi et al. (1999) report that
the Polak and Ribiere conjugate gradient takes 14 epochs to train XOR problem.

@ Jacobs M Salomonetal. (1996) [OP-R (C.G) [1Restart M Standard BP

Value

Epoch Methiods Function EvaluationX10

Figure 6.10 Compariosn with different training methods

6.7 Discussions

The restart training method improves against the standard back propagation training
method in average number of epoch and total number of function evaluations. A factor
(463.6 /278.2) 1.67 in number of epoch and (3253.2/614.9) 5.3 in total number of function
evaluations indicate the relative improvement. The terminal function value is significantly
low with the proposed method, implying a well-trained ANN is found. The restart training
algorithm does not need gradient information. It performs on the basis of function
evaluations. Ill conditioned and discontinuous error functions can be trained and this is an
important characteristic of this training method. Additional performance analyses with the
proposed training method are given in Chapter 7.



Chapter

Additional Simulations and Other Results

7.1 Iniroduction

This chapter presents additional experimental results obtained from the three developed
training algorithms with 5-5-1 parity, the 9-2-1 L-T letter recognition, the Australiun peak
electric load forecast with 5-5-1 and Australian Hotel occupaney rate analysis problem
with 7-4-1 ANN configuration. The standard back propsgation method is used for
comparison in convergence analysis. To compare the performance of the last two
problems as forecast and multivariate regression model, the standard statistical regression
method is used as the benchmark for comparison,

It is noticed earlier that in genersl the small initial sitarting poimis improves the
convergence of the gradient based algorithms. Therefore, all the experiments are initiated
with small random starting weighs.

7.2 Performance Measure of Training Methods

It is a common praclice te report the performance of a training algorithm based on number
of epoch. To compare different algarithms: for example a variant of the first order, second
order and derivative free training methods, number of epoch is nol sufficient. For instance,
in second order training methods, the number of epoch is less due to the exiensive Hesstan
matrix computations, which determite descent directions and learning rates. The
derivative free training methods on the other hand depend cn the function evaluations. The
following discussions are pravided to peint out the issues that relale 1o the performance of
an algorithm.

7.3 Evaluation Metric
The factors, which are important te compare 1he algorithms, are the following:
a.} Generality, reliability and precision;

b.) Sensitivity 10 parameter and datu;
¢.) Computational efforts and
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d.} Convergence.

»  Generality of an algorithm refers to the wide variety of problems that the algorithm
can handle. It may be possible (0 construct a test problem thal o given ulgerithm
cannol solve effectively. This property also suggests that a trained ANN can replicule
the results in the presence of similar dala pattern.

®  Relighility or robustness points to the sbilily of the training method to solve mast of
the problems with reasonuble accuracy in the similar class for which it is designed.
The relationship between reliability of u training method, the problem size und its
structure should be tuken inte account. Some training algorithms are reliable if the
problem size is smalt and face difficulty if the problem size grows in size.

® Precision of an algorithm is its ability 10 achieve convergence quickly with
satisfactory limit. High precision can be realized al the cosl of computations for long
time,

& Sensitiviry of an algorithm is related with Lhe inilialization by user delined parameters
such as:
i) Starting/initial weight vector;
ii.}  Learning rate;
i)  Momentum term;
iv.}  Accelerating factor and
v.)  Termination criteria.

Some algorithms are sensitive lo these parameters and to the problem dala.
Initialization or starting point greatly influence the training performance and produce
different results. With a fixed set of parameters, the training algorithm should solve a
problem for 2 wide range of data and should be scale invarians. The algorithm should
be insensitive to data scaling or lransformation.

®  Computational efforts in total required by an algorithm are another measure for
performance analysis. The firsi and second order derivatives evaluation require
significant amount of time and has the advantage of fast convergence. Ofien these
efforts are nol measered in comparing performance of an algorithm. The algorithm
that uses this information is relatively faster {Al-Sultan, 1997, Johansson et al., 1992;
Luenberger, 1984 and Bazaraa et al., 1993). The computational efforts and its related
computational burden shonld be taken into account for unbinsed assessment, The
computer time, the number of iterations, and the number of function evalvations
measure the computational efforts of an slgorithm. Any of these measures alone is not
entirely a satisfactory metric. The efficiency of an algorithn not enly depends on
computer time bt also on the {ype of muchine used, the existing load on the machine,
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the efficiency of ceding and the character of the measured time, The number of
iterations ulone cannol be used as the only measure because the ¢fforls per iteration
may vary significantly from one method 1o anothee. The number of funetion
evitluations can also be misteading, since it ignores the large computational burden of
matrix multiphication, nutrix inversion and evaluation of suitable directional vectors,
The computations of the first and second order derivatives should be taken into
account 1o measure the efficiency of un algorithm.

®  Convergence is an important characterdstic and usually occurs in a limiting sense. The
quality or precision of xolution generated by a trained ANN provides an indication of
the algorithm’s efficiency with the piven amount of computationsl efforts. The
converpenee rale of un algorithm measures the amount by which an error function can
be improved per epoch. It is onc of the most important properties of an algorithm.
Given two algorithms thal converge, they could be compared on the basis of speed of
convergence or order ol convergence (Luenberger, 1984).

7.4 Experiment with 5-5-1 ANN Parity Problem

The 5-5-1 parity problem is simulated with small random weights. The training duta set
and related information are given in Chapter 3 and Appendix A. The experimental resulls
with these proposed methods and the standard back propagation method are given below.

7.4.1 Analysis with Self-adaptive Back Propagation Method

The self-adaptive back propagation training algorithm is tested with the parily problem
and Table 7.1 shows the resulls against the standard back propagalion method. First, we
observe the standard deviation and the range statistics to compare worst case behavior of
the algorithm. The standard deviations are higher than the mean value in all performance
measures with the proposed sclf-zdaplive back propuagation training method. It is
therefore, appasent that the method exhibits erratic behavior in some experiments. Notice
the experiment numbers 2, 8, 9 and 10, which show inconsistent performance,

The performance of the algorithm is inconsistent throughout with the standard back
propagation method. Mow let us look at the average perfornunce of the self-adaptive .
algorithm in number of epach and otal number of function evaluations, which are 1534.5
and 67,636.6 respectively. The corresponding figures are 17,354.4 and 593,182.6 with the
standard back propagation method. The maximum and minimum values for the oumber of
epochs are 6,700 and 483 respectively with the proposed methed while they are 49,709
and 765 with the standard back propagation method, Therefore, these are th: probable
litnits within which we expect 1o reach a solution. Some ileration with the slandard back
propagalion method is shown in Figure 7.1 1o visualize the oscillation during converpence.
An example of convergence with the proposed method is shawn in Figure 7.2 while the
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Figure 7.3 show the example of self-adaptive parameter penerated by the algorithm for

few cpochs, The proposed methed s showing betler average performance against the

stamded  back  propagmion training  method and  the  relative  improvements  are
(17,354,4/1,53.5) 1131 in number of epoch wd (538,072.4/67,636.0) 7.95 in Lol
number of function evaluations. The averuge quality of the solution is better with the

propased nethed, since the terminal function value is signilicantly Jower than the siandrd

back propagation Iraining method.
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Figurg 7.f Funcllonp canvergence with slandard back propagation
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Expl # Proposed Self-Adaptive Grdlical Descenl Standard Back Propagation Training Method
Training Methixl
£,k ‘g‘§ g Esgﬁs = £ [5% ésé?s
2 |d 8% |85 [EEE (&[S B3 (B3 (&5 (8E°
A R S S A CiI k3 ETEFS
| 877 26340 | 9447 | 3STHT [LIOE-O8] 1339 | 1M | 40200 | 41541 11.58E-04
2 1027 | 30840 | 10611 | 41451 |SA0G-08] 1246|3410 1 1278 | 38718 [LOE-2
3 433 14520 | 6330 | 208350 3.20508'_32_.18[1' 971430 | 32412 (1003872 [3.90E-12
] 898 26970 | 11859 | 2820 [3.60E-U6) 7855 | 235680 TEET 1 243507 §,161E-02
5 758 22770 | 10154 | 32924 [2.10E-08] 26576 {79730 26608 | 823948 [3.90E-02
i] Gi6d 19950 | 6969 26919 |3.40E-08] 49709 11491200| 49741 [154107] 4.57E6-02
7 il 2360 93569 1 33329 12.96E-0p] 18795 | 563480 | 18827 | SH2737 |5,15E-02
8 1737 | 52140 | 24778 | 76918 [I.20E-07] 6848 | 203470 | 6880 | 212380 15.00E-02
9 6700_ | 201030 | 109936 | 3i0966 |R.70C-06] 765 22980 97 23807 4.60E.03
14 141G | 42330 | 16063 | SB393 |).BOG-08] 28031 | R40960 { 28063 1 HGYOSD j1.20E-07
Mean 1534.5 | 43925 | 21571.6 ) 67636.6 |1,56E-06] 173544 |516776.1] 21264,3 1538072.4.0.03037
Mcdian 887.5 | 26655 {10342.5] 37308 {4.4E-0%| 13325 | 399750 | 22717.5 | 413167 | o3
[tondard | T851.52 [56896, 17(31500.15] 870) 1.0 [2.35E-06] 16551 261500848 9,1 6926.05(4 1 3095.310,(:2 1149
[Deviation
Range 6217 | 198630 [ 103606 [ 290116 H.ﬁHE—[]ﬁJ‘ 48944 | 1489950] 48944 | 1517264 0.051442
Minimum|__ 483 2160 6330 | 20850 | LSE-0R| 765 1341 07 23807 _0.000158)
Maximum, 6700 1 201030 | 109936 | MO966 | R.7E-06 | 4970% | L4U1300] 49741 1540711 0.0516

Table 7.1 Comparison with standard back propagation method and gradient descent self-
adaptive tratning method (5-3-1 ANN: parity problem) with starting vector in smalf range
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7.4.2  Analysis with Multi-directional Training Meihod

Table 7.2 displays the mulii-dircctional training resubs with the 5-5-1 ANN-parity
problem. Fipure 7.4 shows the function convergence. The self-adaptive parameters
gencrated by the algorithm that has different magniludes are shown in figure 7.5 and
Figure 7.6 shows the self-adaptive momentum term generaled by the algarithm.

The average number of epoch is only 45.0 and the standard deviation is 21.48. The
significant reduction in number of epoch, however, is not surprising. An interpolation
search that determines the self-adaptive parameters reduces the number of epoch. The to1al
numbers of functien evaluations are important information to measure the total efforts
made by the algorithm. Since this algorithm does not use gradient information, it 15 also
important to take into account the total number of gradient evaluations made by a
gradient-based algorithm. The average number of cpoch wilh the back propagation
training method is 17,354.4. The standard devistion in number of epoch is 16,551.26.
With the proposed self-adaplive and standard back propagation training method, the
average numbers of function evaluations arc 40,945.2 and 538072.4 respectively.
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The reluive efficiency of the nulj-directional wraining over the standard BP Lraining in
function evaluation is (538072.4/40,945.2) 13,14, The iinprovement can be atiributed to
the acceleration step, which includes an exact momentum search and the application ol an
eriented searcly veclor, The efficiency is alse gained by commating the self-adaptive
tearning rates (or all the nelwork weights independently. The algorithm trains successlully
an ANN without computing the derivative of the error function.

ExpL # Propused hulli-Directional Presposed) Restart Trajning  § Standard Back Propagalion
Training Mathod Meihod Training Methixd
%‘E ?Eé -] 'E:E =g E:é =
e |§ [3EZ|5EF |& |[REZ|5EF |§ (zEZ|Eft
i 2§ @2 222 |42 22 F |E2
vy = oo B oow o=
: 50| 44713 | T.63E05 [ 33019 | 43699 OD0SAR_| 1339 | 31541 |1.SRE-00
2 23 7839 . 9.45E-07 | 8260 ;11148 0.0083 1246 | 38714 | 1.02E-02
3 R 3271 _1L.8SE-06 | 1063]) i 14023 : {LOMKI3E | 32380
4 ‘33 D 30N ! 9.30E-06 ) 4524 al9§ . 1.1E06 | 7855
5 49 ¢ 45835 0 224E-06 [ 12416 16146 2E-07 | 26576 | 823948
6 51 45450 | 2.07E-06 | 7506 ¢ 10105 MIE-06 | 45709
i 19 16131 | I.36E-06 | 4430 : 5989  {.0(008 | 18795
8 6 22363 | 9.60E-07 6848
9 26 22293 | 6.20E-08 165 7
10 17| 10746 : 8.56E-07 28031 | 869053
Mean | 451 | 409452 358E06 17354.4( 538072.4|0.030376
Medi 43 36492  .6IE-06 51150845 0. 13325 | 413167 | 0.039
Standard | 21.476 {20507.73° 5.14E-06 [9010.461093G.14 0.002677 [16551.3|513095.4(0.02104%
Deviation ; i
Range 64 [ 61708 i 1.GIE-05 | 31542 ¢ 37710 00083 | 48944 | 1517264 g,_n‘gl_ﬁg
Minimum 19__|_16131 | 62E08 [ 1477 . 5989  2C-07 765 | 23807 |0.000158
Maximum 83 | 77839 | 1.62E.05 | 33019 | 43699 © 0.0083 [ 49709 | 1541071 0.05i6

Table 7.2 The multi-directional, restart and standard back propagation training methods
(3-5-1 ANN: parity problem) with starting vector in small range

7.4.3 Analysis with Restart Training Methed

The restart training results are listed in Table 7.2 and Figure 7.7 shows the convergence of
the algorithm in early stage of iterations. Interesting enough, the average value of the
number of epoch is 11,310 while the average numbers of total function evaluations are
only 16,583.2. I updates all the network weights concusrently in a single phase and the
method identifies better funciion value within few numbers of ilerations. The average
gains in epoch and function evaluations against the standard back propagation method are
(17,354.4/11,310) 1.53 and (538072.4/16,583.2) 32.45 respectively.
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744  Comparison with Different Training Methods

Table 7.3a shows the comparison with different training methods. The restan training
needs less number of function evaluations le reach acceptable solution. We exclude
number of epoch to rank an algorithm. 1t is not a correcl measure, since we have 1wo
algorithms that do not use gradienl information al all. The relative effectiveness of the
restart training over the standard back propapgmion method is 38.60, The restart training
algorithm ranks firs1 followed by the multi-directional and the scll-adaptive back
propagalion-training algorithm in function evaluations,

The result reported in Johansson el al. (1992) with Poluk-Ribierc (1969) conjupale
gradient method s considered for comparison. The averuge funciion evaluations are
10947.67. The training experinents that converge are considered. The minimum and
maximum numbers of function evaluations are 21633 and 1966 respectively. The
proposed method does nol improve over this method in function evaluations. Figure 7.8,
7.9 and 7.10 show the comparison in cpoch, function evaluations and relnive ¢fficicncics
belween the training methods,

25000
T 20000
15000
10000

5000
g +———

Epoch numbs

T T

Salf-adaptive BP  Multi-Direclional  Reslart Tralning  Slandard Back
Trainlng Propagation
Figure 7.8 Average spoch comparison with different iralning mehods
{5:5-1 parily preblem)
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745 Examples of Trained ANN Weights

Tuble 7.3b shows the examples of trained ANN weighis obtained by the selladaptive
back propagation triining method (Almed, Cross and Bouzerdoum, 2008b). The inpin and
autput comparison is shown in Tuble 7.3c.

Input Layer Weights {[wy,)}
n., 1 2 3 4 4
)
1 5262172 2.201292 ¢.133201 B.EUSRS) 0.073804
2 g.340192 2.345989 0.1461205 8.7227u9 0089164
3 0.129245 2.498341 -g.,18031 b,ASY93S 0500701
4 ~0.24419 -1.0464 1,500124 -2.41014 1.54867%
5 0.348717 2.365012 0.165818 0,741511 009158k
Qutput Layer Weights {wg)
o, 1 2 k] 4 g
ol
1 -8.906871 0.711706 0.803807 0.917288 0.658517

Table 7.3b Trained weights for 5-5-1 parity problem

¥
Actual
Eskimate:
Error

Table 7.3c The Input and output value comparison (5-5-1
ANN Parity problem)

7.5 Simulations with L-T Letier Recognition Problem

The 9-2-1 ANN mode] 1o recognize the letter L-T i now considered. The smal) random
starting points are used to initiate the training. The learning rate for standard back

propagation method is 0.001. The learning rales 0.1 und 0,01 face convergence
difficulties.
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7.5.1 Analysis with Sell-adaptive Back Propagation Methed

The self-aduptive back propagation (raining method is tested with the L-T Jetter
recopnilion problens. Table 744 shows the resulls against the stundard buck propagution
training method, The convergence of the algorithm is shown in Figure 7.11 and the seif-
adaptive purameter generated by the training algoerithm is shown in Figure 7.13. The
average number of ¢poch with the self-uduptive back propagation method is [78.8. T I}u
maximum and minimum values in numbers of epoch are 323 and 53 respeclively. The
average numbers of total function evaluations ure 6485.8 and the maximum and minimum
values are 10365 and 2967 respectively. The average lerminal function value is 1.28x10".

Expt# ! Self-adaptive hack propagalion Standard hack propagalinn
i : !

Gradicnt
evaluations
Tolal

vilue

Funclion
cevaluations

g
o
s
[

Gradiem
evaluations

L-T Letier

z '
glale|s|alain|sjw -~ Recognition

=

evaluations
Fuonction

cvalumiions
Funclion

evaluations
Function

| 323 | 4085 ' 6480 | 10565 9.06E-11| 2434
257 | 3200 : 5160 . 8450 ‘4.57E-10| 2569

265 | 3584 ¢ 5320 903 13.25E-10| 1203 1205 : 24080 | 25085
115 | 1360 ; 2320 3680 i&.83G-i0| 2277 | 2279 - 45560 |
303 | 3671 | 60B0 » 9751 |1.4IE-G0| 2254 | 2256 | ASI100 |
123 | 1545 2480 ; 4025 1.04E-05| 3065 | 3167 63320 -
N7 113705360 ¢ 3739 2.428-10F 2263 1 Z265 © 45280 1 47545 L7184
92 1107 | 1860 ; 2967 |L7JE-10] 2242 | 2244 . 44860 : 47104 4.76E-04
331 7030 | 1080 | 819 7.63E-09] 2568 | 2570 | 51380 | 53950 "4,70E-04
140 | I1B3R i 2820 | 4658 O.64E-10] 802 . BO4 | 16060 | 16863 4.99E-0%
I75.8 | 2880.8 | 3596 | 6485.8 [,28E-09| 2177.7 : 2179.7 (457537 43574 0000406
Median | 1315 | 2564 | 2650 | 6388.5 '5.2E-10{ 2270 | 3772 | 47691 | 45430 0.000478
Standard 197 5H06| T844.25 195088112922 523 2.27E-0916%4.306:3 644.5963(14372.32 1 3687.93,0.000 148
Deviation H ; o
Range | 270 1 5932 | 5400 | 7598 (7.54E-09] 2363 | 2363 | 40623 | 47260 0.000449
Minimum| 53 | 1107 | 1080 | 2967 9.06E-1i| 802 | 804 | 16864 | 16060 4.96E-C5

Maximum| 323 | 7039 | GABO | 10365 .7.63E-09] 3165 ! 3167 | 66487 | 63320 0.000499

Table 7.4 Comparison with standard back propagation and self-aduprtive trainiug methad
(9-2-1 ANN: L-T letter recognition problem) with starting point vector in small magnitude

The average number of epoch is 2177.7 with the standard back propagation training. The
maximum and minimum numbers of epoch are 3165 and 802 respectively. The
convergence patlern is shown in Figure 7,12, The average value of the total number of
function evaluation is 43547, The maximum and minimum valoes are 63,320 and 16,060
respectively. The relative efficiency of the self-adaptive back propagation training
algorithm over the standird back propagation training algorithm in number of cpoch is
(2177.7/178.8) 12.1B, while the efficiency in total number of function evaluation is
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(43,574/6485.8) 6.72. The standard back propagalion training metiod does not show
oscillations in convergence will this problen. The reason can be atiributed 1o the number

of paramelers, which i more thun the aumber of training sel availuble to the ANN,
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7.5.2 Analysis with Multi-directional Training Method

Table 7.5 also displays the results with the L-T letter recognition problem. Figure 7.15
shows the convergence of the method with momentum parameters. The dynamic self-
adaptive parameters generated by the algorithm are shown in Figure 7.14.
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Figure 7.14 Self-adaptive patrameters {L-T Problem ) generation in
mult-directional training method

Oirection 20

Expt # Multi-Directional Restart Standard back propagation
52 s |82 |Be |5 |58 |Es |5 |EE |5
20 |8 (32 (BT |5 |83 |2F |8 |83 |EG
o 53 3 o (5 3 [ (6 5 =
1 15 8645 | 1.51E-09] 1891 2815 |2.65E-08] 2434 | 51136 |4.87E-04
2 12 6909 |5.44E-10] 2653 | 3806 | 0.00109 | 2569 @ 53971 4.96E-05
3 16 9547 | 3.07E-09| 867 | 1452 |1.57E-08| 1203 | 25285 4.87E-04
4 1 6361 4.97E-10] 1582 | 2424 | 55E-09 | 2277 | 47839 4.80E-04
5 I 5981 |1.45E-10] 958 | 1674 | 7.2E-09 | 2254 | 47356 4.88E-04
6 10 5372 |8.I8E-10] 1118 1795 |1.49E-08] 3165 @ 66487 |3.50E-04
7 | 13 7249 1.90E-10] 992 | 1598 | 3.4E-00 | 2263 | 47545 2.71E-04
8 9 5032 |[1.24E-09| 741 | 1246 | 7.07E-7 | 2242 | 47104 4.76E-04
9 | 26 | 15422 [499E-09| 1169 | 1866 |3.12E-08] 2568 | 53950 |4.70E-04
10 14 7958 | 1.73E-09| 1196 .| 1786 |3.54E-08| 802 16864 |4.99E-04
Mean 13.7 | 7847.6 1.47E-09| 1316.7 2046.2 0.000109] 2177.7 | 43574 |0.000406

Median 12.5 7079 [ 1.03E-09) 1143.5 | 1790.5 [2.11E-08] 2270 45420 j_{).000478

Standard | 4.8545 | 3016.57 | 1.52E-09]580.1847 769.327 | 0.00035 | 684.396 | 13687.9 | 0.00015
Deviation |

Range | 17 10390 4.85E-09] 1912 2560 | 0.00109 | 2363 | 47260 _j‘0.06b213'9'
Minimum| 9 5032 | 1.45E-10| 741 1246 | 3.4E-09 | 802 16060 |4.96E-05

Maximum| 26 15422 |4.99E-09| 2653 | 3806 | 0.00109 | 3165 | 63320 |0.000499

Table 7.5 Comparison with multi-directional, restart and standard back propagation
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The average terminal error function value is of the order 1.47x10”. This indicates that the
training is able to escape local minimum. The average numbers of epoch are 13.7 and the
standard deviation is 4.85. The maximum and minimum numbers of epochs are 26 and 9
respectively.

The average numbers of function evaluations are 7847.6 and the maximum and minimum
values are 15,422 and 5032 respectively.

In comparison, the multi-directional training method improves by the factor
(43574/7847.6) 5.55 in total number of function evaluations. The epoch comparison is not
appropriate, since the proposed method used specialized interpolation search at the cost of
function evaluations. However, the relative efficiency is (2177.7/13.7) 158.95 over the
standard back propagation method in number of epoch.

7.5.3 Analysis with Restart Training Method

Table 7.5 also includes the results with the L-T letter recognition problem and Figure 7.16
shows the convergence of the method. The average terminal error function value is
0.000109. This indicates that the ANN is well trained. The average number of epoch is
1316.7 while the standard deviation is 580.18. The maximum and minimum numbers of
epochs are 2653 and 741 respectively. The average numbers of function evaluations are
2046.2 and the maximum and minimum values are 3806 and 1246 respectively.

In comparison, the restart training method improves by a factor (43574/2046.2) 21.3 in
total number of function evaluations against the standard BP training. The relative
efficiency is (2177.7/1317.7) 1.65 over the standard back propagation training method in
number of epoch.
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7.5.4 Comparison with Dilferent Training Methods

Table 7.6 shaws the comparison with different training methods including the result given
in Kamarthi et al. (1999) and Vop) el al. (1988).

All the proposed methods perform better than the weight extrapolation methed suggested
by Kamarthi ct al. (1999). They train L-T letter recognilion problem in 1811 epoch and the
terminal funclion value s 0.00001 al the end of training. The self-adaptive and multi-
directional training methods find terminal lunction value, which is comparatively less.

g 8y & = w |= E |32 |=2 £~
[ - 4 N : - = =E ~ E =
REE O|EE |sr ESZ |EE |33F (5 [3Zy |BEE
“3% a8 wEg [E88 [BE [29F [Ex [22% [SE3
g (&= 3 g |"F |7 & €47 [FE [ge=

__Epoch Averuge [ 1788 137 _| 13167 | 21777 | _RIl ;836 : 5

S. Devintion|_ 97.54 4.4 SE0.18_|  6B4d
Max 323 26 2653 3165

Min 53 9 41 §02 |
Specdup | 1218 | 15895 | 1.65 . !
Function | Average | 64838 ! 7847.4 ! 20462 | 435M
Evaluation !

S. Devialion| 29225 | 3016.6 | 769.32 | 136879
Max 10565 15422 3306 63320
Min 0AR7 §032 1246 §6060
Speed up 6.72 5.55 25.3 -
Function Average | 1.2ZBE-S | 1.47E-9 | 0.00011 |0.000406 | 0.00001
Value

8, Deviation| 2.27E-9 | 1.52E-9 |0.000345 | 0.000146
Max 16389 | 4.99E-9 | G001} | GOD0OS i
Min 9.06E-11 | 1.45E-101 34E9 | 4.96[-5 |

Speedup |- . - - |

Table 7.6 Training perfonmance with 9-2-1 ANN: L-T letter recognition problem

In a refated study Vogl et al. (1988) report computational experience with T-C letler
recognition problem, The back prapagation training method suggested by them takes 826
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epochs to train the ANN. The task is equivalent to the L-T letter recognition problem. The
proposed self-adaptive and multi-directional training method is efficient for this job. The
restart training method takes 1316.7 numbers of epochs to train the ANN and does not
improve against these methods. Kamarthi et al. (1999) report that the conjugate gradient
method takes 5 epochs to train this problem.

5000
4000 B self-adaptive BP
3000 B Mult-Directional
2000 O Restart
1000
=_S=L O Standard BP
0 == .

Epoch Function evaluationsx10
Figure 7.17 Function evalutions and epoch measure comparison

7.6 Simulation with Seasonal Time Series Problem

The forecast models are used extensively for prediction or estimation. Before a model is
released for use, validation should be made. We point out two measures namely, adequacy
checking and model validation. Model adequacy checking includes residual analysis,
testing for lack of fit and other internal analysis that investigate the fit to the forecast
model to the available data. The model adequacy checking is preformed based on the
measures given in Chapter 3, Section 3.5.1.

Model validation is directed towards determining if the model will function successfully
in its intended-operating environment. Three types of procedure are useful for validating a
forecast model. They are:

a.) analysis with the predicted values and comparison with prior experience;

b.)collection of fresh data with which to investigate the model’s predictive
performance and \

c.)data splitting: that is setting aside some of the original data and using these
observations to investigate the model’s predictive performance.

We use the last measure as discussed in Section 3.4.3 in Chapter 3. The 5-5-1 ANN model

1s trained to fit the seasonal time series data. The small magnitude random staring points
are used for simulation experiments.
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7.1.1 Analysis with Standard Statistical Regression Method

The time series model given in Chapter 3 is solved using standard statistical regression
method. The following Table 7.7 summarizes the results in error measure. The model is
evaluated with the data points in test period as explained in Chapter 3. The forecast is
validated in validation period data. The statistics of interest are MAPE, MAE, R’ and SSE.

The mean error in test period is zero, so that the model seems to produce approximately
unbiased predictions. Later, we will see that the standard statistical regression method and
the multivariate training method produce exactly the same results with a 5-5-1 ANN
configuration that models quarterly seasonal time series and hence the forecast
performance is equivalent.

Error measure MSE | MPE | MAE | MAPE R’

Tes! Period 461723.8| -0.04952 [566.1418| 1.801725 | 0.986

4 (6062733 | -5.34 — 54% -

Table 7.7 Results with standard statistical method

7.1.2 Analysis with Self-adaptive Back Propagation Training

Table 7.8 shows the self-adaptive training results against the standard back propagation
training and Figure 7.19 show the convergence of the forecasting problem with self-
adaptive training method. Figure 7.18 shows the plot in test and validation period.
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Figure 7,18 Training with self-adaptive BF (Seasonal
time series. §-5-1: ANN )
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From the given set of simulation results, we select an experiment that provides the best
function value in forecast problem. The results are compared with the standard regression
method. As usual, the convergence properties are compared against the standard back
propagation training. The results in Table 7.8 show that on average the self-adaptive
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(raining needs 1897 numbers of epochs and 75,94 1.4 function evaluations, The stanlard
bick propagation training is not converging witkin 50,000 epochs and the Function value
at the end of truining is repored. Therefore, the compirison is limiled  within the
developed algarithm that converge and the standasrd statistical regression method,

The average lunction vilue is 46924312 with the sell-aduptive back propapation training
and the runge skutistics is 1308.79. In u set of experiment the ulgerdithm finds function
vitlues that are not significantly different, The minimum function value is 46924099,
which could be used in forecast applications, Incidentally this value eoincides with he
statisticn] forecast methed. The self-adaptive parumelers generated for this problem is
shown in Figure 7,20 before convergence.

Expl # Self-adaptive BP Standard BP
¢E g5 1_=8= _ jzE|sE £
o o ﬁJ] |1-' o L] =
I 707_| 17 |21240] 28657 Hevzazazan|soom_ « T+ * 5469998666
2 556 | 5390 [16710] 22100 [deh2a270.59 50000, ¢ |+ = 5370187105
K] 3897 | 36219 [116940 153159[46929366.13 [ 50000+ {* * [54715517.40
4 4079 | 33426 122900 154826469241 75,58 [S0000 |+ i Isa7aT5
3 238 | 2960 | 7170 | 10130 [de92420392 (50000 * | +saTI2167.02
) 1500 | 18236 {47730 | 63966 |46925407.68 | Soog = [ ¥ ¥ |54T22449.65
7 5414 { 59002 162450 221452]46924099,67 | 50000+ | * *|54715157.89
g B38| 1IBI16 25170 36946 |6924147.59[50000 = | * * " 154720516.36
] 649 | 6229 [19500] 25720 [46924098 85 | 50000 "¢ 1 * |57
10 1002 | 10319 [30090] 40409 [46924100.65| 50000 * | = *i54710140.07
Mean 1897 [19001.4] 56940 759414 d6924312 | mot{ewvenging | 54714524
Median | 920 |11067.5 37630 [38697.5 46924189 54718338
Standard | 1546.00 18086.9] 55382 (732009, 34,6892 R802965
Deviation _ o
Range | 5176 | 56042 {155280:21)322] 1308792 27739.34
Minimum | 238 | 2960 | 7170 [ 10130 | 46924099 ’ 54609987
Maximum | 3414 | 59002 |162450,221452| 36035408 54727726

Table 7.8 Convergence with self-aduptive buck propagation training method
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Figure 7.20 Self-adaptive parameter generation with seasonal time

series problem

7.1.3 Analysis with Multi-directional Training Method

Table 7.9 displays the results with the multi directional training method. Figure 7.21

shows the convergence of the method. The average number of epoch to train this problem
is 13.4 and the average numbers of function evaluations are 21379.1. The average terminal
function value is 46924099. The Figure 7.24 shows the training performance of the
algorithm in test and validation period while the Figure 7.22 and 7.23 show the self-

adaptive and momentum parameters generated by the algorithm during training.
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Figure 7.24 Training performace with multi-directional training
method (Seasonal time series)
Expt # Multi-Directional Restart Standard BP
o s 5 = g5 | e g8 |8
§Fa  |a 5% |5°% i) 5§ 5°% t5) Ss |5°
wl (63 3 = 59 5 59 (59 5 L,
1 13 20694 46924098.8] 7058 | 11288 | 46924030 n/c n/c 54699986,6__
) 15 23074 146924098.8] 52217 | 27772 | 46894170 n/c n/c | 54701871.1
3 11 lBZR_{% 46924098 8 45529 @ 28725 | 46920720 n/c n/c | 54715517.6
4 11 18163 |46924098.8{ 12411 180%5_ _4_?_922080 n/c n/c | 54727725.9
] 13 20915 |46924098.8) 84829 | 162497 | 46889040 nlc n/c | 54712167.0
6 11| 18732 146924098.8| 48698 | 96635 | 45853060 | n/ic | n/c | 54722449.6
7 18 27512 46924098._8 _7?_5_§_ 13091 | 46923890 n/c n/c | 54715157.9
8 17 26367 46924098.8_ __2]953 3_90“ 46923790 n/c n{c 54720516.3
9 13| 20710 46924098.8] 6892 | 10708 | 46923020 | n/c | n/c | 547197029
10 12 19336 {46924098.8] 16181 | 10038 | 46923100 n/c n/c | 54710140.3
Mean 13.4 [21379.1 469240"9?_ 30372.6 41?75_)_ __46_805!(390 54714524
Median 13 20702 © 46924099 | 19067 22898.5 :49922550 54715338
Standard [2.50333 3292.69 0.666667 [26247.6{49717.1| 336381.6 8802.965
DeVialion ........... — — e e
Range 7 9}49 0.04099 | 77937 152459 | 1070970 27739.34
Minimum 11 18163 | 46924099 i 6892 | 10038 | 45853060 54699987 )
Maximum | 18 | 27512 | 46924099 | 84829 | 162497 | 46924030 54727726

Table 7.9 Comparison multi-directional, restart and standard back propagation method
with random starting point in small range
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7.1.4 Analysis with Restart Training Method

Table 7.9 also

problem is 30,

lists the restart training results with the seasonal time series problem and
Figure 7.25 shows the training performance. The forecast performance in training and
validation period is shown in Figure 7.26. The average number of epoch to train this
372.6 and the average numbers of function evaluations are 41,779. The
average terminal function value is 46809690. The minimum function value for this

training algorithm is 45853060, which is less than the statistical regression method.
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Figure 7.25 Function convergence with multi-directional training method
(Seasonal time series problem)
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Figure 7.26 Training performance with restart training method (Seasonal time
series: 5-5-1 ANN)
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Figure 7.27a An example of forecas! with 5-4-1 ANN
configuration (Restart training)
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As an example; a different 5-4-1 ANN configuration produces terminal function value,
which is 28495221 in training period and 48711721 in validation period. These values are
significantly less in comparison with the standard statistical regression method. The
corresponding MAPE values are 1.35 and 3.9 respectively. Figure 7.27a show the
comparison of forecast with the actual data.

7.1.5 Comparison with Different Training Methods

Table 7.10 shows the comparison between the different training methods. Figure 7.27b
compares the performance of the algorithms in function evaluations.

80000
B Self-adaptive BP
60000
B Multi_directional
40000
ORestart
20000 1 e
. S, Ostandard BP
Function Evaluations Epoch
Figure 7. 27b Comparison with average number of evaluation
w o
=R £ 8 & S o B0 - & 8
S 3 g = oo = 6 .E .8 g5z = i
iz © E 2 F 2 SEE [ZE T8 |
e S8 % & SEE (8% sag |§
(75 & 5 3 S a = 75 £ [
epoch Average 1897 | 134 | 30372.6 50000(*) g .
| S. Deviation 1846 2.5 | 262476 | £ 8 4 §
____________________ | Max 5414 18 | 84829 SEe5
i | Min 238 g 6892 w 5T £
Speed up £ - - =B §
Function Average 75941.4 21379 41779 s = 5D E
Evaluation LRy ’ = E &=
S. Deviation | 73200.94 3292.7 49717.13 o E S E
Max 221452 27512 162497 S E a2
N Min__ | | 10130 18163 10038 S5° %
Speed up - - - =
Function Average | 46924312 | 46924099 | 46809690 | 54714524
Value Ml
S. Deviation | 394.69 .66 336381.6 8803
Max | 46925408 @ 46924099 @ 46924030 | 54727726 |
Min | 46924099 | 46924099 | 45853060 & 54699987

Table 7.10 Comparison with different training methods
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The statistical error measures in training and validation period are shown in Table 7.11
and Figure 7.28, 7.29 and 7.30 show the comparisons in MAPE, MSE and MPE measures.
The forecast performance of the restart algorithm is the best with the given set of initial

conditions.

= & g 4 % =T 1) % =
g5 5 g E Vi L 8'8 g8 |- 83
gw =z £z i S5 E Zz &S g z <
5EE 82 %% [FEE |8 B 52
(75} & o 8 = g a [ =2 &
Training MSE 651723.6 | 651723.6 | 6368458.5 @ 689644 651723.6
Period
MAPE 1.8017 1.802 1.754 | 1.962 1.8017
MPE -0.0495 -0.050 0.163 -45 -0.0495
R’ 0.9857 0.986 0.99 945 0.986
Epoch 1897 134 30372.6 | Max limit H
Function 75941 21379 41779 Max limit .
Evaluation X
Test Period MSE 6062795 | 6062732.7 | 5187565 7485377 | 6062732.7
MAPE 5.475 5.476 5.0951 6.08 5.476
MPE -5.34 -5.336 485 | 605 -5.336

Table 7.11 Statistical measures in training and validation period

| B Training Period MAPE B validation Period MAPE I

6
5
w 4
28
=2
1
0 -4
Self-adaptive BP Multi-Directional Restart Simplex Statistical Method
Training Training

Figure 7.28 Performance measure in MAPE: Training period and Validation period

| BTrairing Pericd MSE

B Validation Period MSE

Training
Figure 7.29 MSE cormparison in training and validation period
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MSE value

Traning methock
Figure 7.30 Comparison in MPE in training and validation period

7.2 Simulation with Hotel Occupancy Rate Problem

The training performance with 7-4-1 ANN configuration to model the hotel occupancy
rate is now considered. The random staring points are small in magnitude in all set of
experiments.

7.2.1 Analysis with Standard Statistical Regression Method

The hotel occupancy rate problem is modeled as multivariate statistical regression
problem. Table 7.12 summarizes the results obtained form the standard statistical
regression method. The ANN is trained as multivariate statistical model. The modeling
aim is to calibrate the problem as spatial time series model (Ahmed and Cross, 1999d).

Error measure SSE MSE MPE = MAE ]| MAPE SEE | ME
Test Period 5814 | 7269 | -63xE-7 | 7.94 | 02023  .0000148 |.00000186
Validation Period | Analysis as|  Multi- variate statistical | (calibration) Problem |

Table 7.12 Results with standard statistical method

7.2.2 Analysis with Self-adaptive Back Propagation Method

Table 7.13 shows the self-adaptive training results against the standard BP training with
the hotel occupancy rate problem. The self-adaptive and the standard back propagation
training do not yield acceptable terminal function value in any experiments. The training
terminates at a point, which is far from the minimum function value that is found in
statistical regression method. This training problem appears to be difficult with the given
set of initial condition and ANN configuration. The first order gradient based algorithms
do not improve in function values and therefore the training performance with the standard
BP and self-adaptive BP training is not considered in detail.
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Tabie 7.13 Training perfarmance with self-adaptive back propagation and standard back

prapagation training method

7.2.3  Analysis with Multi-directional Training Method

Table 7.14 displays the multi-directional training resuits with the hotel oceupancy rate
preblem. Figure 7.31 shows the convergence of this training method, which also face
difficulty in some experiments. The training method idenlifies 800.89 as the lowest
function value and is higher than the value 581.5 found by repression method.
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Figure 7.3
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AT TTTS T 2696055 9iag6 | wel i asol i9s3ny
5 45 ITUANSEIT T gsear fioxodss | ieavaai s
I 501 259178 205 | 1087 195289
Ty aETs | s | Tes3nT
8 2609462 e | CUesEs
—— e st
0 T IEde 56917
Mean _ | 1 IBTGRON | 4279.918 | 2452652 | disdi4.
Median 2501 2475428 | 1533.08 193485 1 T M67TTS
" Standard 1000.099 1097560 6949.564 | 4166833 . 6584102
Deviation ; : .
Range 2467 2930637 ¢ 20RI9.61 1025838 | 1627834 | 1947315
Minimum 45 | JRsdl w0089 | W5 912 SIS
Maximum 3512 | 2968178 | 236205 | 103Ai83 | 1626766 | 193919

Table 7.14 Training performance with Multi-directional and restart training method

7.2.4 Analysis with Restart Training Method

Table 7.14 includes the restart training results with the hotel occupancy rate problent.
Figure 7.32 shows the convergence of the restart iraining algorithm. Although the problem
is difficult to train in some experiment, there is hope with the restart training that identifies
a function value in accordance with the standard statistical regression method. TFherefore,
the restart training algorithm can provide an estimate that could be s reference poinl.
Given a problem that is difficult 10 teain with the gradient-based algerithm, the restan
training methed is able (o reach a solution in a set of few experiments. The question of
improvement over the standard statistical regression method has to be addressed from the
modeling aspect and the configuration of an ANN, This altogether is a different issue.

As an example, z differem 7-2-1 ANN structure produce resuits in function value 216.86,
which is lower that the value 58L.5. Figure 7,33 shows the last few steps before
convergence to the minimum point. It takes 24,543 numbers of iteratiors and 42,113
numbers of function evaluations. Figure 7.34 shows the comparison in fit with different
ANN configurations and multivariate statistical regression methad,

The important aspect of this training method i not only the improvement over the
statistical regression method but also its ability 10 train an ANN, which face difficully with
gradient based training methods. This demonstrates the merit of the algorithm, These
experiments suggest that we have a training method a1 hand that is at least as good as
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statistical model. Therefore, there is chance to improve upon the calibration performance
based on further relevant research design (Badiru et al., 1998; Hurrion, 1998).
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Figure 7.34 Comparison of fit with actual data
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7.2.5 Comparison with Different “I'raining Methods

Table 7.15 shows the comparisen between the different teaining methods and Table 7.16
shows the performance in statistical measure in wrwining and validation periods.

Heel Pertormanee  [Self-adaplive BYMulii-directional| Restart Training] Standand Back
Qeeupancy Rote|  Mueasures Teaining ) Propagation
ey 2492652
ooy o d166833 - 204
-1 _lR2oig3
LS s
PN
Function 1 Averape ! 22,1 © IBTeROE - 4054146 1599.3
_Bvaluaon i i N
i_S, Deviation ' _ 557 10075601 6584102 1 9117
Ma TR0 Taedtzs T 1628766 3300
Mo 154 T 3RS4l Al
Speedup : Mol improving ! Nul improving
Function Yalue Average | 1952448 | 427993 486366 31928301
5. Deviation_ 104.25 | tYd9.6 _I0IBF2T 0 43943113
Max 195314 | 2162015 : 193319 ' 1. 19EX
Min 195032 1 8009 3815 ¢ 195335
Gain - ! - : - [ .
Table 7.15 Performance of different training methods
= 8 a = o _
58 g2 5 88 |gEE |3 B
g2 |E3  |3¢ |23s |FE: |3 g2
= ] = = [~ g 2=
& E = 3 sF & % &
Training MSE Not 114 7264 Not 7269
Perind converging ! converging |
MAPE 0,238 201 ! 12023
MPE | -0.801 245 ! -0, 3E-1
R 92 i 99 ! i 0,998
Epoch 1253 anan .
Fune, Eval. 3213807 753447 ¢ ! -
Validation MSE : e
Period MAPE Analysis as ;i mulli-variate | statistical
MPE Cualibration problem

Tabie 7.16 Statistical measures in training and validation period

7.3 Summary of Performance

Table 7.17 shows the ranking of the pragosed methods based on three different criteria, In
general no single training method performs well in all the 1est problems. Nevertheless, the
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gestart training method appears w perfonn well with sl the test prohlems. It bias the ability
to identify beter solutions in few experiments.,

Kamarthi et al, (19993 report that the Polak-Ribiere method solves XOR problem in 14
and L-T letter recognition problem in 5 epochs, The sesult i included for comparison.
This is however o second order training method, I uses second order approximation of
pradient t generale scarch directions.

Rapkipg g - co. o~ | £y
cileria ,5 E‘j E‘p_, ég E? é% Eg ?;é‘é@ ;% Gégs:
= EE I R 75 |3% |EF |Ezo|ET |23 |Yax
: ESgr® |58 [2F |42 15T |BafiEx [BS IDES
& e ' ESe T T g% ”
Function | 5-5-1: 4 | | 2 3 . i
vilue Parity | | ;
LT . &
Seasonal i 4
Flowe? | Tadled
XOR 4
Funstion | 55-1. 5
Evaluativn|  Parity |
LT 14
_ Seasonal 4
Hoete! 1 fatled
XOR 4
Epoch 5.5-1% 4
measure | Parity — i
L-T 7 3 2 P 6 ' 5 I
Seasonal q 2 i1 | — : —r
Hotel | fajled | failed | 1% S .
XOR 7 3 | q 2
Legend | Best= 1 Worst =7 Cases  thal  gonverge

Table 7.17 Summery of performnance of the proposed training wmethads and their raiking

7.4 Betier Performance of a Training Method

Among the three new proposed training methods, the restart training methed finds the
best function value and trains an ANN efficiently in all the experiments. The averape
number of epoch te train 5-5-1 parity problem is 11310 against 17,354.4 with the standard
back propagation method. The corresponding tolal numbers of function cvaluations arc
16583.2 and 538,072.4 respeciively. In L-T letter recognition problem the restant training
method takes 1316.7 epoch and 2046.2 number of function evaluations. The time series
and multivariate statistical modeling problems are solved with this methed. The other two
metheds face convergence difficulty in solving multivariate statistical modeling and
seasonal time gerics problems, Considering the terminal function value as the ranking
criteria, the restart iraining algorithm performs well in all the test problems.
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7.5 Examples of Trained ANN with XOR, L-T, Time Series problems

Table 7,18a, 7.18b, 7.18c, 7.18d show 1he trained ANN for the L-T elter recognition lask,
XOR, hotel soeupancy rate analysis and seasonal time series-lorecasting problem, The
network weights are oblained using the restan traising method. Also note that the network
weights are large in magnitude, The example of lurge weights and jts sample caleulations
are shown in Chapler 6, The restan algerithmy can produce trained network weights that
are small as wel) as large in magnitzdes, [t is also possible 1o Lrain the ANN wilh large
initinl weights as noted cardier.

Input Layer Weighls (w,) Inpul Layer Weights (w.) Example |
n—+ 1 2 n— 13 2
il il
1 14,58 2,561 1 -0.090% 41.377
2 26,71 4,363 ? -6,3872 1.162
3 0,94t -2.266 Qutput Layer Weiphts {w.,)
[ 9,319 4.440 - 1
5 2.956 -2.868 ol
& -1.432 ~0.235 1 -0.53189 1.59524
7 7.538 -3.298
|-|9 a.o008 0.885 Input Layer Weights {w.)Example 2
g 10.58 1.5333 1 -0,5351 9.2516
o 2 -0.3062 4.3462
Output Layer Weighis (wa,) Output Layer Weighls (w,.)
n—+ 1 2 Ti=t 1
Ol . Olv
1 -1.171 0,631 1 G.2374 =0.135%
Table 7.18a Trained weights for 9-2-11  Table 7.18b Trained weights for XOR
L-T letter recognition problem problem (Terminal function values are
{Terminal function value 0.00051) |’ 0.002294 & 0.0000597)

Input Layer Weights (w,)
2 3

n-+ i

il

1 -845086.48 -27632.% 7195, 24 1117,29
2 230&4%.5 ~8007.84 B9526, 86 -418%2.2%
3 76353 43 82448,94 1583.18 153949.3
4 4325,38 =338.212 -8732.1 -55280,92
s 225615.9 -80032.07 43121.135 =9479B.13
L} -B0SE.08 -6009,94 -78023,6% -18870.78
7 -17834.13 12.21 -32164.06 19.331

Output Layer Weights (w..)

n—+ 1 2 3 4

ol

1 -196078.13 78362.19 259801.6 64293,97

Table 7.18¢ Trained weights for 7-4-1 hotel accupancy rate prablem (Terminal
Junction value 237.32)
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Input Layer Weights (w.}

=+ 1 2 1 4 5
1l

1 459155200040 =Mt 4E TG00 THZR941000 ARG I0GA LRI04
2 139778500 1210163 SRS 52121750 -3441900
1 B13591300 274531000 246710200 4403205000 3LTEE9400
4 -41204300 442914900 h2475900 45471094400 -9600A4
5 950983.4 -BAIRZIN0 ~1651 412000 TIZI4CE00 ~2I471 6900

Outpul Layer Weights (va)

fi=+ 1 2 i 4 5
ol
1 -80L10760 3113718 HRT2E6A0 - 150385 .2 22R537.8

Table 7.18d Trained weighs for 5-5-1 seasonaf time eries probien (Terminal
Sfunctinn volue 43787180)

7.6 Training Performance with Seasonal Time Series Problems

With the given ANN architecture and initial condilion the forecast and multivariate
analysis preblem proved difficult to train, while the parily, XOR and the leuer recognition
problems are relatively easy to soive with the proposed methods,

The purpose of this research, howcver, is not to investigaie further 1he
forecast/multivariate problem with differeni ANN set up. This is a separate invesligation
by itself. The Research standardized the ANN architecture and inilizl slarting points 1o
study the convergence paitern. However, some cxamples of trained ANN results are
shown in previous sections with different ANN configurations. To overcome the difficulty
with the forecasting problems the following steps are suggested.

a.) Look for initial starting peints that are appropriate for initialization. This can be done
in & number of ways. One approach is to repeat the experiment with the optimized
ANN and start form this point changing the network weights with 10 % varjations.
Repeat the experiments until a better ANN is obiained.

b.) Sccondly, one can use other allernative melhod to idenlify the initial estimate of the
forecast problem to initialize the ANN training.

¢.) Thirdly, the ANN architecture can be varied both in the number of hidden layer
neurons and different transfer functions (Ahmed and Cross; 1999a; Ahmed Cross,
1999b; Ahmed and Cross, 1999c). Also the number of layers jn ANN can be varied to
observe the performance of the neural nelwork model. For example we have two
different ANN configurations in Chapter 6 where the restart method is examined
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apainst the Nelder and Mead (1965) methad, In Scetion 7.6.4 and 7.7.4 we have two
diflerent ANN that produce beter resulls,

7.7 Rectification of Slw Convergence

The interpolation search method developed in Chapter 4 prevents eyeling of the algorithm
on the error surface, oscillations during convergence and overshooting the local minimum,
These characteristics are the limilations with the standard buck propagation raining
(Kamarthi et al., 1999). The algorithms developed in this rescarch improve on these
drawbacks, The multi-directional 1rsining snd reslart training slgorithm do nol use
gradient information to explore descent directions. The rectilinear direction and the
direction from Lhe centroid of a simplex along one of its worst vertex in opposite side
provide the search directions. It is due 10 these search sirategies; the training methods
explore several local minimums with the possibilily of improving the (raining
performance. Consequently, the training methods developed in bis research cun be
considered as a valuable and viable alternalive 1o the existing Iraining methods. The
degree of improvement with the three proposed (raining methods in solving difficull
problems is greater than the slandard back propagation method,

7.8 The Rate of Convergence with Sell-Adaptive BP Training Method

It is noticed that the time serics problems face convergence difficulty. To observe the rale
of convergence of the self-adaptive BP training melhod and the complex nature of the
error surface, the eigenvalues of the Hessian matrix are computed, The error function is
expanded in the neighborhood of a minimum w* with ¥f(w*)=0 and neglecting higher

order terms the following error equation is approximated as quadratic function:
Smy=F (v 1+t lw—w") Hw-w") (7.1

2

v,

where, H = y =12y j =12t} (S the mem Hessian matrix of f(w).

The rate of convergence of the multi-directional training algorithm is observed with the
quarterly seasonal time series problem as discussed in Chapter 3. The eigenvalues of the
ANN 1time series are identified from the Hessian matrix # using standard eigenvalue
compuiation method such as Jacobi method as explained in Schwarz (1973). Given
fiweE” the algorithm theoretically converges to the unique minimum point #*. Also

during convergence, the following inequality exists (Luenberger, 1984):

st . 02
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The quantity, (A,a) are the largest and smallest eignevalues of the Hessian matrix.

Hessian matrix is positive definite implying that the values of (4.a)>0.

Convergence factor
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Figure 7.35 Function convergence with self-adaptive back propagation
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If A=a, the comours are circular and the converpenee is achicved with less effort. The
contours are more cccentric il e eigenvalues are al o greates distance and the
convergence of the training method will be slow. A single unfuvorable eigenvalue Fom
the sel of m eigenvalues will cause trouble in convergence of sleepest descent methods.
The relation 7.2 suggests that the method converge linearly with a convergence ratio no
greater than [(A-a)(A +alf =[(Afa—1]f[4fa+|)2] The ratio A/a of the larpest and lowest

eigenvalue delermines the condition number and it influences the convergence rate, The

convergence ratio can be represented by (:—‘:)2 =(“::::::]I [t is this Tactor by which the

ertor function during training is reduced per jteralions. The ratic A/fe governs the
convergence in proposed method. The Hessizn matrix of the 5-3-1 ANN seasonal time
model is shown in Tuble A.7 (Appendix A). The muximum and minimum ecigenvalue of
the matrix are 17.882 and 0.0001 respectively. The convergence ratio is 0.99997 and,
therefore, convergence of the algorithm is bounded by this factor. The corresponding
condition number is 179873, [t suggests that the ANN error surfuce is skewed and forms
ridges (Bishop, 1995; lacobs, 1988; Bazaran et al., 1993 and Luenberger, 1984). This will
slow the convergence of the training method due to the fact that the algorithm needs extea
efforts to climb up a valley and explore minimum in several flal surfaces as well as in
narrow valleys. The last few iteralions of the convergence are shown in Figure 7.35 and
the rate of convergence is shown in Figure 7.36. ARhough the error surface has bad
structure the self-adaptive BP training algorithm stilf can train the ANN.

The training algorithm gencrates a convergent sequence {f(w, )}, which can be scen in
Figure 7.35. Experimenlally, the training algorithm after a finile number of iterations
terminates according a ratio bounded by {(r~!)/(r+1)|2. The term » is the condilion
number, which is defined as r=A/e. This result provides bound on the convergence to

the proposed methed and is a reference peint in convergence analysis, IT r -», 1his ratio
approaches to 1 from below and the rate of convergence becomes slower.

Notice the change in convergence factor in Figure 7.36 in the interval 22 10 29, 36 10 43,
57 to 64 and 85 till the end of epoch. Compare 1he function convergence in Figure 7.35 in
the same interval, It shows that the search moves from the higher contour surface of the
error function to the next lower contour surface during iteration where there is change in
convergence ralio. Alse notice that when the convergence ratio is nearly equal to 1, the
change in error function is not significant, It indicates that the training fuce difficulty in
this region and the convergent sequence {f{w,)} is large due to the slow reduction in error

function.

The theoretical and experimental convergence ratio is nearly equal and this investigation
shows some of the difficuitics inherent with ANN {raining.
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7.9 Remurks

The performances of the three decivative free training methods are discussed in detail with
the predefined experimental set up, The self-adaplive back propugution training and the
multi-directional training algorithny train the ANN in parity and letter recognition
problenss efficiently. These two oethods however face convergence difficalty with the
seasonal time series and nuhivariate siastical anulysis problems. The restan training
method on the other hand is proved 10 be the best working tool with all type problems. It
not only trains an ANN cfficiently, but also improves the terminal function value. The
experiment suggests that the restant training method improves over the standard staistical
regression method and finds better local minimum in seasonal time series problem. 1t is
shown that the training problem in seasonal forecasting is difficull to train duc to the
nature of the Hessian matrix. The condition number of the error fuaction in 5-5-1 ANN
seasonal titne series problem is found of the arder 179873, Therefore, the crror surface is
complex in geotmetry and funclion convergence is slow. It often terminates al a local
minimum far from the desired local minimum, The experiments in this study show that the
derivative free restart training method reduces the error function monolonically and
converges to a solution that finds a solution better than the standard statistical regression
method.
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¥ Chapler

8.1 Iniroduction

The major concern of this research has been the developments of three new derivative free
self-adaptive training algorithms and the analysis of their convergence properties. The
variable learning rates of the selfadaprive back propagation are determined dynamically
in training iterations and hence, this approach eliminates the ad hoc method of parameter
selection in ANN training. The search directinns in self-adaptive BP are computed from a
comrolfed central difference approximation scheme that utilizes the convergence
characteristics of the error function. The proposed mulii-directional \raining algorithm is
derivative free and its training parameters are determined by the algorithm rather than by a
user. An optimized interpolation search determines the momentum term to accelerate
training performance. The restart training algorithm explores the geometry of the error
surface along a direction from the worst vertex to Lhe centroid of a simplex. The Iraining
algorithm finds better local minimum. All the training alporithms are faster than the
standard back propagation algorithm,

The restant training algorithm perfornis better than others. 1t is a derivalive free traiming
method and has the advantzpe to train an error funclion thal is discontinuous or ill
conditioned or the corresponding Hessian matrix is singular. It successfully trains an
ANN, where other training algorithms fails. The mudti-directional 1raining algorithm
needs few epochs 1o train an ANN at the cost of function evaluations. These algarithms
are designed such that the user needs minimum expertise to train an ANN,

8.1.1 Performance of the Training Algorithms

The convergence of the self-adaptive and derivative fiee training algorithms is proved.
The experiment with the XOR problem suggests that the proposed selfadaptive back
propagation training algorithm when compared with the standard back propagation
algorithm shows improvement in the total number of function evaluations by the order of
magnitude 16.74 and the relative efficicncy in average epoch is 42.9. Similarly the
proposed sandti-directional training  algorithm improves aover the standard Dback
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propagation algorithm by the factor 4.9 and 107.8 in function evaluation and epoch
measure. The restart training algerithm is an order of a magnitude faster by 5.3 over the
standard back propagation algotithm in function evaluations and 1.67 in epoch measure.
Since all the training algorithms are seff~aeduptive amd derivative free, there is no need to
pre-oplimize the training parameters with these algorithms. Few experiments can find
better solutions in parity, letter recognition and business forecast application problems.

8.2 Significauce of the Proposed Algorithms

The algorithms presented in Chapters 5 and 6 are imporiant due to the fact that they can
improve the local convergence in training. Tabu search is a new research area (Glover and
Laguna, 1997; Sexton et al., 1998) and the local converuence of the mudti-directional and
restart simplex training algorithm can be improved further to investigate the training
quality in ANN.

Business applications using ANN are increasing due to its ability to serve as flexible form
of estimators. In order to achieve a better estimate, an optimized ANN is desirable. Many
applications are currently using some variant of the back propagation algoritlim. An ANN
that is not properly trained often performs poorly when forecasting out of sample {Saxton
et al., 1998). A possible solution 10 this local convergence dilemma is the tabu search
method (Saxton et al, 1998). In forecasting problem the extrapolation and the
generalization capability of the proposed algorithm is as good as the statistical regression
methods and the restart algorithm improves over the standard statistical regression
methods, The proposed algorithms are efficient in solving parity and leiter recognition
problems. Training a multivariate statistical problem with small data set is dificult.

8.3 Theoretical Implications

The convergence analysis of the training algorithm is provided. The multi-directional
training algerithm solves forecasi problems to produce results that are identical to the
repression method, The mean square error is the same. This implies that the generalization
capability is as good as the standard regression method. However, different ANN structure
can be tested to see if there is further improvement over the standard statistical regression
method. The restart training algorithm, on the other hand, improves the local minimum
and finds better mean squared error value than the standard statistical regression method
without scaling data. The selfadaptive back propagation training algorithm performs
closely in identifying the mean squared error against the standard regression method. A
modeler, therefore, needs minimum efforts te train a problem.

The convergence difficulty of the ANN computation s highlighted with the analysis of a
time series problem in Chapter 7. The convergence becomes slow due to the high
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condition number in the Hessian matrix of the error function. Such incidents are not rare
in ANN compuations as 11l conditioning in error function arising due 10 high condition
number causes premature termination of the algorithm (Jacobs, 1988; Salomon et al.,
1995), The proposed algorithms developed in Chapter 5 and 6 can resalve some of the
difticulties.

The 1training with a mullivariate statistical model with a small daia set in some
experiments converges to a bad Jocal minimum. The reason can be altributed 1o the small
data set and 1the learning is insufficient. The error surface is complex and the training
terminates at a point far fram the minimum. However, the resfart training algorithm finds
a solution close to the regression method in mean square error measure. The remedy is to
repeat the experiment from the locally optimized point or vary the ANN configuration 1o
identify better local minimum. it is shown that a different ANN configuration identifies a
better solution than the standard regression method both in training and validation period.

The proposed algorithms are able to avoid local minimum. It is observed from the terminal
function vatues, which are ofien significantly low. This suggests that the algorithms find
an improved local minimuns,

It should be noted that the raw data for the forecasting and statistical regression problem
are used without any transformation, The ANN configuration and data have been
standardized. It gives the chance to test the alorithm’s ability to model a problem without
much intervention by the modeler or user,

8.4 Improved Performance and Convergence Without Oscillations

All the proposed algerithms are free from severe oscillations while the error function
convergences to a local minimum. This is one of the salient features of the proposed
algorithms. The training algorithims adjust the learning rate parameters according to ihe
geometry of the contour surface. Hence, the dynamic self-adaptive algorithm attains a
desired degree of accuracy in a finile number of steps. The restart training algorithm is
able to train an ANN where other training algorithms failed. The training successfully
converges o a minimum point without osciliations in most of the experiments.

8.5 Unique Properties of the Training Algorithms

The descent directions in self-adaptive BP training alporithm is derived from the central
difference gradient approximation scheme, which uses convergence property of the
algorithm, In contrast, the training algorithm developed in Chapter 5 and & do not use the
gradient information. The user defincd learning rate and momentum parameters are not
required. Hence, these developments are imporiant lor the case when:
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a.} the error function is discontinuous;

b.} the derivalive of the error function is not explicit (Griewank, 1994,
Griewank and Corliss, 1991);

c.) anapplication needs derivative free training algorithm (Conn et al., 1997);

d.) the pre-optimization of the learning rate and the momenlum term are
difficult, inconvenient and time consuming,

e.} the improvement in local minimum is desirable and

£) only few experiments are needed Lo find a better optimized ANMN.

The restart training algorithm proved 10 be a useful algorithm that has the ability to train
all the test problems. Only Few experiments are needed to identify acceptable trained
ANN. The quality of terminal function value is low and therefore the local minimum is
avaided with this training algorithm,

When gradient based training 2lgorithm faces difficulty, the resrart and multi-directional
traiing algorithn improves the training performance. These two training algorithms are
reliable to work with when the nature of the solution is not known, For new test problems
these two algorithms provide solutions that can be compared to measure the quality of &
trained ANN.

8.6 Practical Benefit Over Second Order Training Algorithms

Second order training algorithms have superior convergence properies. It is discussed in
Chapter 2. However, the storage requirement for the conjugate gradient method is about
four times than that of standard back propagation algorithm {Kamarthi et al., 1999}

Theoretically, the computational complexity of the Hessian mairix is of the order m’

(Chen at al., 1999). The computation per cycle significantly increases due to the line
search, which determines the appropriate learning rate in second order training methods.
In conjugate gradient algorithm the 1raining often converges to a bad local minimum from
which the conjugate gradient melthod cannet escape (Kamarthi et al., 1999). As a result, it
will impair the generalization ability of the network (Towsey, et al., 1995). This is a
limitation of the conjugate gradient method (Kamarthi et al., 1999). Newlon types training
algorithms require a starting point close to the minimum point for convergence. Any
arbitrary starting point does not necessarily provide convergence. The second order
training method also suffers from i1l conditioning due to the Hessian approximation and
approximation to the quadratic function itself, The derivative free training algorithms
require less storage as compared to the pradient-based training algorithms. They fnd
better local minimum compared to statistical regression method and standard BP training
and are reliable when the error function is unfaverable for training with gradient-based
training algorithms.
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8.7 Future Research Directions

Three new self-adaptive derivative free training algorithms and the related sofiware are
developed. These training algorithms solve different classes of problems and find betier
solution against the standard back propagation algorithm and, therefore, these algorithms
provide better quality decisions. There are a number of areas where further research could
improve the training performance and modeling strategics. Some of the issues are
discussed below.

8.7.1 Modeling Strategy

It is noticed that the multivariate statistical problem is difficult to train with the proposed
training algorithms. Therefore, it is important to investigate the underlying modeling
structure in detail. Zhang, Patuwo and Hu {1998) provide review of time series forecasting
using ANN and discuss mode] selection strategy. The simple approach is to vary the ANN
structure in number of hidden neurons and number of hidden layers. The examples of
variable hidden nodes 10 model seasonal time series problem are shown in Chapter 6,
Ahmed (1999b) and Park et al, (1991). The other aspect is to look into the
parameterization methodology in input layer neurons. The initial staring points are
extremely sensitive to this class of problem and therefore 2 methodology, which can
provide good initial estimate, is perhaps appropriate (Badiru and Sieger, 1998). One can
also study the performance of an algorithm with different data scaling methods both 1o see
its convergence and generalization properties,

Since the training algorithms are derivative free, it is easy to accommodate a variety of
ANN configurations, The number of layers can be easily increased or any other special
feed forward ANN structure can be trained using these algorithms.

8.7.2 Algorithmic Aspects

The proposed multi-directional derivative free training algorithm possesses important
attributes. It is a class of training algorithm, which can be improved as a global training
algorithm. Global training is a relatively new research area in ANN computation that
works on the theory of tabu search proposed by Glover and Laguna (1997). One
suggestion is to create a tabu list (Glover and Laguna, 1997; Sexton ef al., 1998 and Shang
et al, 1996) and explore several local minimums following the tabu list as the search
progresses. The other approach is to generate stochastic descent directions following some
specific distributions that may be beneficial to some training problem (Zhang and Xu,
1999),
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The restart training algorithm is perferming weil but the training difliculty is noticed in
multi-varisie statistical problem, The search coefficicals in the restert training algerithm
are pptimized by simulation experiment. Ui is worth investigating the performance of the
training algorithm with exact optimization method to idenify the restart scarch
cocflicients.

In self-adapiive back propagation Iraining algerithm, a central difference gradient
approximation computes the descent directions implicitly. Recently a new approach has
emerged in automalic differentiation tools (Griewank and Corliss, 1991; Griewank, 1994
and Coleman and Jonsson, 1999). There is potential in directing research in these aspects.

8.7.3 Problem Specific Training Performance

1t is also important to find some training problem, which has the corresponding error
functions that are il] conditioned or cannat be differentiated explicitly or has singular
Hessian matrix. The perlormance of the proposed algorithms with other different gradient
based training algorithms in solving these problems needs attention,

8.7.4 Forecasting with ANN

The science of forecasting with ANN needs more attentions according to Adya and
Collopy (1997). They study 48 published neural network applications and found only 11
are both efficiently implemented and validaied. The validation can also be addressed in
the context of bootstrap method (Diaconis and Effron, 1983; Effron and Tibshirani, 1986;
Flachaire, 1999 and Gunter, 1991).

The method or dynamics of introducing chacs into the system other than an auto
regressive process (Box et at., 1994; Kantz et al., 1977; Conway et al., 1998; Chakraborty
et al., 1992) needs attention. The art of meta modeling with ANN is beginning 1o emerge
(Kilmer et af,, 1999; Hurrion, 1998; Anjum et al, 1997 and McHaney, 1997). It is a
science that combines ANN computations, discrete simulation and multivariate statistics
as design of experiments. Such approach can be tntroduced in time series applications as
mode! selection strategy.

8.7.5 Market Research Applications

Market rescarch and conjoint analysis is another emerging trend and have far-reaching
implications. As the data processing and parameter estimation tccilnﬂ[agy evolves,
implementing more sophisticated techniques becones easier for analysis (Hanssens et al.,
1993; Green et al,, 1993; Van Wezel ot al., 1995; Hruschka and Natter, 1999). Many
service organizations such as banks, credil-card companies and airlines use their extensive
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customer datubases as sirategic assels to develop cross-selling and other customer loyalty-
focused marketing steategies. ‘To understand the driving foree of purchasing behavior and
to predict the likely outcomes of alternative markeling strategics, the ANN application in
markel research as a statistical tool remains an open issue.

8.7.6 Applications and Case Study

The applications of training algorithms can be further exiended 1o biometric applications,
fraud detecticn in commercial enterprises, e-commerce, dala warehousing, data mining,
health care {Goss and Ramchandani, 1998) and inventory control applications (Sieger and
Badiru, 1993}, due to the algorithm's ability to identify good local minimum.

8.8 Concluding Remarks

The first order BP training algorithm requires gradient info mation and a user defined
learning rate and momentum parameter to frain an ANN. The second order BP training
algorithms depend on the first and second derivatives. This research develops three
distinct derivative free ANN training algorithms. All the proposed algorithms are
dynamically self-adaptive and no user defined training paramelers are required 10 train an
ANN. These parameters are determined optimally during training to provide maximum
possible descent to the ANN error function. As a result fast convergence is achieved
without oscillations. All the algorithms have been developed as ANN training software
using FORTRAN programming language containing about 15,000 instructions in 1otal.

These algorithms successfully train character recognition, parity and forecasting probiems.
Extensive training experiments suggest that ihe proposed self-adapiive derivative free
algorithms are faste: than the standard first order BP algorithm in number of epech and
numbers of function evaluations. The proposed algorithms also improve in terminal
function value indicating that the improved local minimum is found. Hence, better training
results are achieved, 1t is also found that the derivative free restart training method
improves over the statistical regression method in training forecasting problems.

Further research is riecessary 10 test these algorithms in problems where the Hessian

matrix of the corresponding ANN error function is ill conditioned, error function is
discontinuous and derivative information is difficult to obtain.
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* Appendix

Experimental Data Set

A.l Parity Problem

The experimental dala set for the parity problem is listed in Table Al. There are 32 input
patierns with the corresponding output value. The ANN training determines whether an
algorithm can classify this data set or not. If so 10 what extent the output matches with the
actual data set. The performance of an algorithm in epoch measure, function evaluation

and terminal function value is noted.

Ingut Pattern Cutput Input Pattern Quiput

#1172[3]4]s #lri2israls
o |

1 i10]0|0J0j0] O i7|1/010!0]|0 1
21000011 1 18]11010]0}1 0
3iglofol1]of 1 g |1(ojof1]0f O
4 10010111 0 j2 | 1|60V ] 1
s Jojloftioelol 1 [z |eii]|ojof o
6 |0J0f150i1 )] 0 |22 |1 jO0f1(oy1] 1
7 lo0jop1i140) 0 (23([1fo]1f1]0 |
B |OJOt1]1}} 1 4|1 [0)1 111 0
g [0}j1]0|0t0]| 1 |1 (1|00l oO 0
0jof1|o0(0| 0 |26)1]1]l0o]oi1 1
1njoej1joj1|(aof o j27|1fL]lo]1]0 |
1210611011 1 21| Llo]1]lL 0
131014100 0 |91 (fL]T]O]O i
1410|1001 1 0111 fogl 0
15;0 1 (Lj1]0] 1 UL Lt f1]9Q 0
16 | Q41T i1 o I3t fifrjili 1

Table A1 Input pattern for 5-5-1 parity problem with one culpnt
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A 2 Random starting points

The randem starting points for the training problems are listed in Table A.2. To create
different starting points the numbers in Table A.2 can be factored zccording to the
requirements.

Experiment #
wid [0 T2 3 O ) [ S
i : i ; : ! : .

Hewey) | 02 ¢ 00 | -1 ' 1 . -1 1 . 20 | 22 100 323
2 o 2 3 3 3 U3 D34 U5 245
3 02 . 2 2 6 .3 122 5

4 03 0 03 | -3 G4 1

3 02 -2 3 z

6 05 ¢ o8 | 2 3 2 20

7 R I N S e

R 05 6T 37T

g 07 | 05 . 1 i 9 | 9 i3 .

10 | 02 | 02 . 8 | 9 | 8 1 § -

1 L R R - A - R - T

12 0| 02 8 | 4 2 0

13 03 | 03| -4 | 3 ERE

14 03 | 03 | .1 9 9 | 3 |

i3 D1 [ .01 |9 2 7 12

16 04 | 04 | 0 | 4 4 1T L

17 04 03 [ 7 2 20

18 03 [0 9 3 5 L

19 0 o4t -4 k) K 2

20 04 | 07 | 9 & [ 3

2 09 | 02 2 3 5 | 8§

73 03 | 07 | 2 2 3 3

3 04 | 04 | 7 [l 3 q

M 05 | 03 | 4 9 9 3

25 02 | 07 | -1 B 2 2

26 03 [ 02 | .1 1 1 3

27 05 | 01 [ 2 2 2 i

78 03 | 04 | 3 T )

29 07 | 07 | .5 3 3 3

Wfawe)| 08 | 02 | 4 | 1 5 5 | 7

Table 4.2 Random starting points with differem magnitudes
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A.3 The L-T Letter Rccoguil.iuu I'roblem

The ariemtations of the L-T letters in four different orientations according 1o the figure 3.3
and 3.4 {Chapler 3) in are listed in Table A.3 and A.4, These data constitute the training
set Tor the letter recognition problem.

12 73 "4 5 6 7 8 9 joutput
o a {1t o oL ]o 0|0 ! It o
S v To e o el o
=1 -4 i : - - [T wonrrmam e
R R T A A B A
d 1 ! 1 {1 :0:i0 1500, 0
Table A. 3 Iyt Training Pattern (1)
l 2 3004 5| 6 7 8 9 |output
“ a [ [ tro ool o
E o b 1 0 0 1 1 l__“_ 1 0 0 l‘_
E “le |0 1 0 0 1 0 1 I 1 1
d | o [0 |1 ;1 |1 o "o T
Tabie A4 Input Training Pattern (T)
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A3 Quarterly Seasonal Time Series Data

The seascnal lime series data shown in Table A5 for the Australian peak cleciric load is
collected from the reports available with the Australian Burcau of Statistics (ABS,
#8301.0, Jan, 1998). The data covers the period from September guarter 1976 to June
quarter 1997, These data are used 1o train an ANN time series model.

1976 | 77 | 78 | 79 | 80 | 81 | 82 | #3 1 B | & 1 386
$ep.07( 22272 | 23270 | 24494 | 25994 | 36690 | 28345 | 28590 | 29290 ; 31856 | 33163 | 34375
Dec.021 19684 | 20107 | 21396 | 22802 | 24132 | 24890 | 25371 : 26684 ; 28343 | 29648 1 31040
Mar. (03 10031 | 20084 | 31323 | 22604 | 23639 | 24675 | 24687 - 26641 ; 28982 | 29506 31015
Jun. (4] 21545 | 22634 | 23644 | 2431071 26320127123 1 37285 39042 | 30838 | 32002 © 33685

87 | 88 i 89 | 90 © 91 | 92 | 93 | 94 | 95 1 96 | 97
Sep.Q1{ 33850 | 37134 [ 40113 0766 [ 41124 [ 41936 | 42108 | 42891 [ 43894 | 43742 45521
Dec.Q21 33211 | 35303 | 36278 | 37353 | 37800 | 38187 | 40222 | 40326 | 40452 | 40761 | 43169
Mar. 03, 33142 | 36905 | 36715 | 37234 | 38024 | 38927 39177 40075 | 41076 41011 45920

Jun. 041 34664 | 37333 | 38801 | 38430 | 39466 [ 40822 140215 141773 | 42122 1 42001 | 44629

Table A.5: Peak Electric Load Quarwerly Daia

A.4 Hotel Occupancy Rate in Australian Hotel Industry

The data listed in Table A.6 show the hotel occupancy rate in terms of raom nights spent.
These data are collected form the Australian Bureau of Statistics report {ABS, #6401.1,
Sept, 1999; ABS, # 1350, Aug, 1998; # 1350, Sept, 1999; ABS #86350.0, Sept, 1999).
There are only limited data available. The training experiment involves in finding a
trained ANN that can be used as a calibration madel similar to mulii-variate siatistical
analysis approach.

Quarter CPI GDP Room Nights
All groups $Million x1000
March 97 120.5 133002 3797.5
Jun 120,2 135537 315758
Sep 119.7 136710 3869.8
Dec 97 1200 138489 | 4004.8
Mar 98 120.3 140081 Jiieg
Jun 1210 141637 36451
Sep 121.3 143024 4036.0
Dec 98 121.1 145240 4194 4

Table A.6 Hotel occupancy rate as room mights
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