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Abstract 

Three new iterative, dynamically self-adaptive, derivative-free and training parameter free 
artificial neural network (ANN) training algorithms are developed. They are dt!fincd a~ 
self-adaptive back propaga1im1, multi-directional and restart ANN training algorithms. 
The descent direction in self-adaprive back propagation training is determined implicitly 
by a central difference approximation scheme, which chooses its step size according to the 
convergence behavior of the error function. This approach trains an ANN when the 
gradienl information of the corresponding error function is not readily available. The self
adaptive variable learning rates per epoch arc determined dynamically using a constrained 
interpolation search. As a result, appropriate descent to the error function is achieved. 

The mlllti-direc:tionoltraining algorithm is sclf-udaptive and derivative free. It orients an 
initial search vector in a descent location at the early stage of training. Individual learning 
rates and momentum term for all the ANN weights a.t·e determined optimally. The search 
directions are derived from rectilinear and Euclidean paths, which explore stiff ridges and 
valleys of the error surface to improve training. The restart training algorithm is derivative 
free. It redefines a de-generated simplex at a re-scale phase. This multi-parameter training 
algorithm updates ANN weights simultaneously instead of individually. The descent 
directions are derived from the centroid of a simplex along a reflection point opposite to 
the worst vertex. The algorithm is robust and has the ability to improve local search. These 
ANN training methods are appropriate when there is discontinuity in corresponding ANN 
error function or the Hessian matrix is ill conditioned or singular. 

The convergence properties of the algorithms are proved where possible. All the truining 
algorithms successfully train exclusive OR (XOR), parity, character-recognition and 
forecasting problems. The simulation results with XOR, parity and character recognition 
problems suggest that all the training algorithms improve significantly over the standard 
back propagation algorithm in average number of epoch, function evaluations and 
tenninal function values. The multivariate ANN calibration problem 11s 11 regression mode! 
with Smllll data set is relatively difficult to train. In forecasting problems, an ANN is 
trained to extrapolate the data in validation period. The extrapolation results are compared 
with the actual data. The trained ANN performs better than the statistical regression 
method in mean ab<iolute deviations; mean squared errors and relntive percentage error. 
The restan training algorithm succeeds in training a problem. where other training 
algorithms face difficulty. It is shown thnt 11 seiiSonaltime series problem possesses a 
Hessian matrix that has a high condition n•;mber. Convergence difficulties as well as slow 
training are therefore not atypical. The research exploits the geometry of the error surfac<.' 
to identify self-adaptive optimized learning rates and momentum terms. Consequently, the 
algorithms converge with high success rate. These attributes brand the training algorithms 
as self-adaptive, automatic, parameter free, efficient and e115y to use. 

K., wortb: Self-odnprivt bock propagcuion. Dtrivotivt {rtt rroining, Multi-dirtctii»Ull rroi11ing, Rts•an 
/raining, Oritll/td starch, st/f-mhlptivt momentum ltrm and ltami11g ratt, Anijicia/ Nturol Ntnmrk. 
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Notations 

ANN= Artificial Neural Network 
BP =Back Propagation 
S =A feasible set of solution 
1 =Total number of neuron in I" layer (input layer) 
N =Total number of neuron in 2nd layer (hidden layer) 
o "'Total number of neuron in 3'd layer (output layer) 
i=\.2, ....... ,/, n=\,2, ....... ,N, o=\,2, ...... .,0 

p = 1,2, ...... P, I'= Total number of training set 

y~ "'Actual Output of Artificial Neural Network (ANN) at output neuron o in 3m layer 
;. = Estimllted output of ANN at output neuron o in 3'd layer 
;. =Expected value of output of ANN at output neuron o in 3m layer 

w~ =ANN weight connecting neuron ; in I" layer to neuron n in 2011 layer 
M'!. • ANN weight connectiflg neuron n in 2"d layer to neuron o in 3n1 layer 

x' =The training pattern defined as design variables Jx(,xf ......... ,xf J 

"'=Total number of weights in ANN (Dimension of function to be minimized) 
w1 =One dimensional weight in ANN in ! .. layer and 200 layer 

J• Ill\ index, indicating ANN weights, J = 1,2 .... ,111 

k .. Training cycle counter or epoch 
11''" Adaptation length or learning rate in 1'1 layer 
11•., Adaptution length or learning rate in 2"d layer 
11• .. Momentum tcnn to prevent oscillation in training (l SfJ'" ~0) 
fj"' Conjugate gradient coefficient to·generatc linearly independent directions 

IJ, "'Vector of adaptation length or learning rate in I" and 2"d layer [1J1 Q(fJ1,1J2 , ••• 1!.,lh 

during iteration k, 
V1• Flrllt order gradient change in quasi Newton method 

Vf(w1 l •Gradient of ANN calculated at iteration k 

a .Partial derivative 
I.• Interpolation search interval in parameter space 
H.., Hessian of ANN calculated at iteration k 
i• Identity Inlltrix of size m.xm 
D •Deflected matrix of inverse Hessian 
(.-\,4) .. Largest and smallest eigenvalue in Hessian matrix H 

w1 •ANN weight vector detennined during iteration k 

w' •Optimum training weight value 

11' •Optimized learning rate 

f(w'),.Optimum function value 

d1 •Direction of move in parameter space corresponding to index ) 

¢1• Activation function to be chosen 
ii • .,Jnputto the hidden layer neuron n 
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ii. =Output from the hidden layer neuron , 
;, =Input to the outer layer neuron u 
e =Square error in ANN due to the difference of output in neuron N und actuu! output 
o 1 ,a1 ,a,~ "Control parameters 

c1,c1 ,=Control parameters 

b 1 ,b1 =Bounded intervals in interpolation search 
II•J<> Nonn of a vector, usually the Euclidean nonn 
)•)=Absolute value 

MAPE =Mean absolute percentage error, •w~ • .!... f ,,,•- ;' '' ,•, , , .. 
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MAE= Mean absolute error, "'•~ ·.!... f I•' -,•1 , ,., 
ME"' Mean error, ME • .!...£ •l-1• , ,., 

' ' SSE= Sum of squared-error, .ss. t ,,• -;', ,., 
v' a (~ 1 , v2 ......... ,v"'+'l = Venices are representing the simplex in E"'+'. 

~· =lnitializntion at venex t =I, with initial guess; (w 1 : w1 , w2, ........ ,w., J • 

t1' • Vectors specifying search directions at vertex t: d' ,. ( 1 
ill 

1 th po'illon 
0 ch;cwhcre 

d" • Vectors specifying restart search directions 

X ,..A scalar quantly that charucteriz.e simplex size at vertex t 

/(v')•Objcctive function value of the function f being minimized in restart training 

o "' Reflection coefficient, a > o 

fJ .. Expansion coefficient, fJ > o 

r •Contraction coefficient, r >0 

~ .. scaling coefficient,~ >O 

' .. scaling factor,' >0 
P• Termination criteria to stop ulgorithm 
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r •Reflection of the simplex 

, •Expansion of the simplex 
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Introduction 

1.1 Background orthe Gradient Based Back Propagation Training 

Historically, the study of artificial neural network (ANN) as computational model started 

with the pioneering paper of McCulloch and Pitts (1943) who described the theory of 

formal neural networks. The work on simulation of a neuron is also auributcd to Hebb 

(1949). Rosenblat (1952; 1962) introduced the concept of the artificial neuron called the 

perceptron whose dendrites are replaced by ANN connection weights. ANN is classified 

as an intelligent system, which bas the capability to represent knowledge (Haykin, !994). 

It is Rumelhart et a!. ( 1986), who popularized the back propagation (BP) algorithm, which 

has been widely used to train multi-layer feed forward Ann's. This algorithm can evolve a 

set of weights to produce an arbitrary mapping from input to output vectors (Li and Da, 

2000). It is an iterative gradient descent algorithm designed to minimize a measure of the 

difference between the actual output and the ANN output. The ANN is a form of function 

approximation tailored by the designer to refle.:t the particular problem to be solved. The 

BP training differs from the conventional optimization methods by the fact that in BP, 
ANN are several magnitudes higher in dimension and contain gradient information in two 

or more layers. The gradient descent BP uses first derivative information that is tangent to 

the contour of an error function and the negative gradient points towards the minimum of 

the error function. In classical optimization one works with single gradient vector, while in 

ANN online computation the gradient vector is different (Jacobs, 1988; Salomon et al., 

1996}, The standard BP training algorithm is not self-adaptive and the training parameters 

are detennined by trial and error methods to accelerate training (Jang et a!., 1997). 

1.2 Dlfficullles with Self-Adaptive ANN Tminlng Algorithms 

The dynamically self-adaptive training algorithms are those classes in which the learning 

rates and momentum tei'ITL'> are determined automatically in every stage of training. Mostly 

such algorithms take into account the local condition of the error surface to compute the 

suitable learning rates and the momentum tenn that accelerate convergence and prevents 

oscillation during training, There are few algorithms that can be considered fully self-
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adaptive. Such algorithms have the advanwgc of improving training solutions. They also 

converge fast while preventing severe oscillmions. 

The standard tmck propagation-training algorithm updates ANN weights wJ at iteration k 

according to the following expression: 

( l.l) 

The amount of learning rate, I"IJ , or step size, which is also called the adaptation length to 

be taken in BP for training, is arbitrary. Proposing a suitable value of the adaptation length 

is a controversial research issue. Mostly, ad hoc methods exist to select this parameter. In 

standard back propagation, the direction is computed using the gradient information, 

dJ =-Vf{wJ), from a single training pattern. In on line training, the gradient components 

Vf{wll may result in different directions for a particular weight (Kamarthi and Pittner, 

1999), therefore, a single descent direction is not generated. The fixed value of learning 

rate I"IJ does not always decrease the error function value. It also depends on the shape of 

the error function (Jacobs, 1988) from one iteration k to the next iteration k+l. k+l, .... 

and so on. Such iterative methods therefore, do not produce a convergent sequence in the 

strict sense. The fixed value of learning rate, TIJ, may misdirect the search towards the 

minimum and the directions dJ generated from Vf{w1) arc differem for a single weight 

component in standard back propagation (Jacobs, 1988: Weir, I 991: and Vogl, 1988). 

The Newton type training algorithm performs well if the training is initiated close to the 

optimum points. Convergence becomes difficult if the starting point is far from the 

minimum. Levenberg (1944) and Marquardt (1963) type algorithms arc modified versions 

of Newton's method in which the Hessian matrix 11 is replaced with a corresponding 

modified matrix [ll+t~Jf] to maintain positive definite property. In another class, the 

direction of movement d4 is taken to be -DV/{w~ l where D is a positive definite matrix 

that approximates the inverse of the Hessian matrix. This class is referred to as quasi 

Newton training methods. Broyden (1967) proposed n useful generalization of the 

Davidon-Fletcher-Powell method. He introduced a measure of degrees of freedom in 

updating the matrix D (Bazaraa et al., 1993). The Davidon-Fletchcr-Powell method 

converges to an optimal solution if the objective function is convex, if the Hessian matrix 

is positive definite at the rolution point, and if an er.act line search is used. The method 

converges super-linearly. In Newton type training methods the apProximation to the 

Hessian matrix itself is a source of difficulty. 
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The me1hod of conjugate direction is un efficient technique. The method of Fletcher ami 

Reeves (1964) generates conjugate directions by taking a suitable combination of the 

current gradient and the direction used at the previous iteration. The original idea 

presented by Hcstcnes and Stiefel (I 952) Jed to the development of this method, as well a.~ 

to the conjugate gradient algorithnt~ of Polyak (1969) and Sorenson (1969). These 

methods become indispensable when the problem size increases. Polak and Ribiere { 1969) 

propose another conjugate gradient scheme, which is preferable for non-quadratic ANN 

error functions. The possible source of difficulty with this training method is the 

requirement of linear independence of search and conjugate directions. 

1.3 Development or Specialized Training Algorithm.~ 

Consider the case when the ANN error function is discontinuous or ill conditioned. 

Convergence is a potential problem in such case. The difficulty also arises, as the ratio of 

maximum and minimum eigenvalues of the Hessian matrix becomes large (Bishop, 1995). 

The convergence problem occurs doe to scaling of variables (Oren and Luenberger, 1974). 

It also occurs in parameter identification problems. Most of the ANN applications arc 

closely related to such problems (Warner et a]., 1996). As the smallest eigenvalue 

approaches a value nearly close to zero, the convergence becomes slow except for 

stationary points that lie in the range of the local minimum. The Hessian matrix in this 

case is either ill conditioned or singular (Wang et al., 1998). These situations are common 

in parameter identification problem~ {Mehra and Stepner. 1973 and Gupta and Mehra, 

1974). The derivative free training methods can resolve some of these difficulties. These 

developments provide an alternative means to train an ANN other than the purely 

derivative based training methods. Therefore, new self-adaptive training algorithms that 

will have important features in resolving some difficulties in existing ANN training 

methods arc proposed. In particular, the research intends to: 

a) train an ANN with self-adaptive learning rate parameter; 

b.) abao:lon the arbitrarily selection of the training parameters; 

e.) relieve the user/ANN trainer from pre-optimizing the learning rate parameters; 

d.) train an error function that is discontinuous or ill conditioned or develops stiff 

ridges in error surface; 

e.) train an ANN for which the corresponding error function is not explicit (Conn et 

al., 1997); 

f.) develop multi-directional self-adaptive training algorithm without the derivative 

information of the error function; 

g.) develop central difference approximation scheme that provides the derivative 

information of the error function implicitly. The step size of the central difference 

scheme is controlled by the convergence behavior of the error function; 

h.) train an ANN without oscillations; 
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i.) develop simplex search derivative free restart training algorithm to improve local 

convergence. 

All these issues are resolved by designing training algorithms and software developed 

using the FORTRAN progranuning language. 

1.4 Content of the Thesis 

The development of the self-adaptive derivative free training algorithms is the major 

concern of this research. To this end three new different derivative free training algorithm~ 

are developed. In Chapter I, the research issues and research problems are briefly 

discussed. The salient feature of the research is presented ami the significant contributions 

of this research are listed. Chapter 2 provides a critical review of the current state of the an 

in self-adaptive ANN training algorithms. Computational schemes arc reviewed following 

an introduction to the feed forward artificial neural network. The first order back 

propagation theory that is most popular, is described to facilitate the discussions in the 

developments of self-adaptive back propagation training algorithms. The secund order 

training algorithms are presented from theoretical viewpoint to address the difficulties in 

training. The research problems are identified in Chapter 3. It also includes the research 

methodology, test problems and the data set for the proposed problems. Approaches to 

develop the training algorithms are briefly discussed in Chapter 3. A self-adaptive gradient 

desceot training algorithm is developed in Chapter 4. It provides theoretical base to the 

development of descent directions and self-adaptive training algorithms. A specialized 

interpolation search and a central difference gradient computation scheme are developed. 

The self-adaptive parameters are determined from a constrained interpolation search. 

Therefore, the ad hoc nature of training parameter selection is abandoned. The derivative 

information is provided implicitly by a central difference approximation scheme •. which 

changes the rmite difference step size according to the local condition of the error surface. 

As a result, a suitable descent direction is obtained. The exclusive OR (XOR) problem is 

solved to compare the results with the standard BP training. An improved multi

directiooal self-adaptive derivative free training algorithm is developed in Chapter 5. A 

search vector first orients the initial starting point to a descent location before attemptiog 

the main phase of training. The search follows rectilinear directions. The algorithm 

accelerates training with a restricted momentum search. The momentum tenn is 

determined in a self-adaptive manner. To test the convergence properties of the algorithm, 

the XOR problem is solved. A new restart simplex training algorithm is presented in 

Chapter 6. It is also a derivative free and parameter free training algorithm, which 

improves the simplex search by maintaining a non-degenerate simplex at a defined restart 

phase. The simplex is prevented form degenerating during search. A re-scale phase 

constructs the simplex, which confines finite volume. The proposed algorithm finds a 

good local minimum. The algorithm is compared with a standard test function before 

.... 
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entering into analy~i~ with XOR problem. In Chapter 7, the performances of the newly 

developed training algorithms arc discussed with the parity, lel!er recognition, seasonal 

time series and multi-variate statistical analysis problem~. The performances of the 

training algorithms are compared with the standard hack propagation training algorithm 

and the standard regression rn:thoJ. The results suggc~t thut the developed training 

algorithms are an order of magnitude faster than the standard back propagation algorithm. 

The restart algorithm improves over the statistical method in a sea~onal time series

forecasting problem. The convergence difficulty of the sclf-udaptive back propagution 

algorithm is discussed with a seasonal time series problem. The condition number of the 

corresponding error function is high in magnitude and therefore, convergence difficulty is 

expected. Finally, in Chapter 8 important conclusions of the research are drawn. 

1.5 The Important Contributions 

The research contributes in developing three new self-adaptive training algorithms in 

neural computations and the following contributions are highlighted. 

a.) A self-adaptive back propagation-training algorithm that does not require 

training parameter is developed. The training parameters are derived from 

prior information of the error function in a constrained search space. Thus, 

instead of having a fixed value of the training parameter, the algorithm 

detennincs variable learning rates dynamically. This approach makes the 

ANN training method sin1pler, ca~icr and efficient. The algorithm computes 

derivative implicitly to accommodate the situations where an analytical 

expression of the derivative of an error function is difficult to obtain. 

b.) A central difference derivative approximation scheme takes into account the 

local convergence behavior of the ANN error function. During forward pass 

through the network, the step size is controlled in order to improve training 

performance. 

c.) A multi-directional self-ndaptivc and derivative free training algorithm is 

developed. An initial positioning vector is designed to accelerate training. 

The step length of a restricted momentum search is optimized such that the 

search direction is not lost. The training algorithm is suitable for the case 

where the corresponding ANN error function is discontinuous or ill 
conditioned. 

d.) A simplex restart training algorithm that produces a non-degenerate simplex 

at a re-scale phase is developed. The simplex is prevented from degenerating 

during search. In addition, a restart phase is designed to align the simplex in a 

descent location. The algorithm does not require any training parameters. 
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Unlike other training algorithms, it docs not examine the behavior of the error 

function for one weight at a time. It updmes weights concurrently in a single 

epoch or iteration. 

e.) The related training softwarcs for the new training methods arc developed. 

The parity, letter recognition and statistical analysis problems arc solved 

succe~sfully. The algorithms arc faster than the standard back propagation 

training algorithm and avoid o~illations during training. 

f.) All the training algorithms are dynamically self-adaptive ami derivative free. 

There is no user intervention to pre-optimize learning rate, momentum and 

any other training parameters. The training algorithm> self-adapt these 

parameters according to the geometry oft he error function. 

g.) A comprehensive review in the state of the art in first and second order self

adaptive back propagation ANN training is provided. Sources of difficulties 

in ANN computations arc discussed. Standard reference in self-adaptive 

training method is not readily available. This review brings the information 

together as a source of reference in self-adaptive back propagation training 

methods. 
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state of the Art in Self.Adaptive ANN 

Computations and Training Algorithms 

2.1 Introduction 

A comprehensive review of the back propagation self-adaptive trammg method is 
provided in this chapter. Sections 2.2 through 2.5 provide the descriptions of the standard 

back propagation method. The self-adaptive training methods that arc based on the theory 

of first order training are discussed in Section 2.6 through 2.7. The second order training 

methods are discussed in Sections 2.9 and 2.10. In Section 2.11 the sources of difficulties 

with the self-adaptive training are provided and finally Section 2.12 provides some 
relevant discussions on self-adaptive t~aining methods. 

2.2 Computallons In ANN 

Rumelhart et al. (1986), McClelland et al. (1986), Werbos (1974), Bryson and Ho (1969) 

and Parker (1985) introduce the BP-algorithm. Hecht-Niclsen (1990) formally described 

the ANN function mapping through an error measure. It is stated as "given any scalar 

sufficiently small e -+0+ and any t ~ function f: {0.1 jP -+E."', there exists a three-layer 

back propagation ANN that can approximate 1 within£ mean squared error accuracy". 

The function 1 belongs to t 2 if each of 1 's coordinate function is square integrable on 

the unit cube [0,1!' (Hecht-Nielsen, 1990). Although the theorem mentions a three-layer 

ANN, more number of layers can be used to approximate a function (Hec~!t-Nielsen, 

1990). The function-mapping concept is also attributed to Kolmogorov ( 1957). 

Feed forward ANN with neurons in one hidden layer is a class of ANN structure that has 

one input and output layer neurons. Figure 2.1 depicts a three-layer feed forward ANN. It 

consists of autonomous processing units called neurons. Directed arcs join these neurons. 

Each arc has a numerical weight that specifies the influence of one neuron in one layer on 

the neuron in other layer. Based on connections; ANN architecture is classified as feed 

forward and recurrent ANN. In feed forward ANN, the neurons are arranged in layers and 

have connections in one direction. Input from first layer gradually passes to the hidden 

layer and finally to the outer layer and connections are only allowed to project forward. 
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Connections between neurons on the same layer and feed back connections are not 

allowed in such structure. In recurrent ANN architecture, feed back connections or back 

coupling are common (Hopfield, 1982; Hopfield, 1984 and Deco et al., 1994). The 

training methods for this class of ANN are different and are not discussed henceforth. To 

faci litate the discussions in theoretical issues with self-adaptive ANN computations, 

tlu·oughout the discussions here a three-layer feed fon-vard neural network is considered. 

[11p11 I 
Laye: 

H idde!J.... 
Layer: 11 

Q_u lp u I 
Layer: o 

Figu r e 2. 1 BP Ne u ra l Netwo r k Arch itect ure 

In order to develop the neural computational algorithms and discuss different self-adaptive 

training algorithms, this chapter attempts to present the mathematical computational 

schemes comprehensively. The input layer consists of I neurons for I dimensional input 

space. The purpose of this layer is to distribute the I components of the input vectors to 

the input layer neurons and then to the hidden layer neurons. An ANN is obtained by 

connecting a neuron from one layer to the next layer through weighted arc connections. 

The I input layer neurons transmit signals through synapses (Haykin, 1994), which 

represent connection weights w), , from neuz:on i in first layer to neuron n in the hidden 

layer in which there are N neurons. The input layer neurons receive a pattern at instance 

p in the form xP = (x1 ,x 2 , .... .. ... x1 ) from an external source and propagate all the input to 

the hidden layer neuron through the weighted arc connections. There are a total of P 

patterns in the training set. For example I = 6, N = 4 , 0 = I in Figure 2.1. The net input, 

h/:, to the hidden layer neuron n is given by: 

(2.1) 
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The net input, ii:, coming from the first layer neurons through the weighted arc 

connections, passes through the exponential type activation function, <1> 1 , (Haykin, 1994) 

present in hidden layer neuron n to produce an output, r::, as shown in the following 

equation: 

(2.2) 

This output from the hidden layer neuron n is fed to the output layer neuron a a.~ input. 

The net input, t!, to neuron o in the output layer is shown in Equation 2.3, when it passes 

through the hidden layer weighted arc connection w~.: 

p H 2 vp 
z,"' tw.,g •. .. , (2.3) 

The neuron a in the output layer produces an output, Y!, using an exponential activation 

function $ 1 , is shown in Equation 2.4. Here $ 1 "'$: =$ indicating the same function. 

(2.4) 

This ANN output, Y!, is compared to the actual observation, J!, and the difference is 

measured, The difference between the ANN output Y! and the actual observation J! is 

shown as an error in Equation 2.5: 

(2.5) 

Usually q is taken as 2. The back propagation training method suggested in Rumelhart et 

al. (1986) minimizes the squared errore, and is shown in Equation 2.6: 

(2.6) 

To control this error, ANN connection weights are changed based on the magnitude of the 

error. Once again the error in the network is compared for the next input pattern ;rP to 

change the weights. This process of changing weights is repeated until a desired level of 
accuracy is achieved. As the error becomes smaller the ANN closely approximates th! 
actual response. 
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2.3 Choice of Activation I<unction 

The activation function <!>(•) is used to transform information in the hidden layer and 

output layer neuron. Different neurons can use different activation functions. The typical 

choices of activation functions arc exponential (2.7), tanh {2.!1), logistic (2.9), ramp {2. !0), 
step (2.11) and linear (2.12) (Deco und Obradoric, 1996). The example of a sigmoid 

activation function used in the hidden layer neuron with input 1~: is shown in Equation 

2.7: 

Sigmoid activation: <J>(i.!J=--1-~,-. 
1+~-lh.) 

A few examples of activation functions in multi-layer percept ron are given below: 

Logistic activation: W(i/P) = 
1 

_ 
" l+log(lh: I) 

Step activation: <t>th!>=(+c" if lr! > 0 ; 
-c1 ,otherwUe 

Linear activation: <t>Ch!) =all!, a= a constant. 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

Similarly such activation function can be used in the output layer. The widely used 

activation function is sigmoid activation (2.7). It takes a value in the interval [0,1]. The 

activation functions in equation (2.10) and {2.11) ill'C discrete. An ANN modeler chooses 

an appropriate activation function depending on the type of the problem under 

consideration. 

2.4 Gradient Calculations in ANN 

The BP algorithm is dependent on the first to hidden and hidden to ouJer layer gradient of 

the error function in a three-layered feed forward anificial neural network. The gradients 

of an ANN error function provide information about the direction of move in error space. 

Equation 2.6 is rewritten using equations 2.2, 2.3, 2.4 und 2.7 to calculate the input and 

hidden layer gradients and is expressed in equation 2.13: 
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(2.13) 

The minimization of the squared error, £, approximates an unknown error function to the 

actual problem (Hccht-Nielsen, )990). The error function in Equation 2.13 is of a convex 

type and unconstrained optimization principles minimize such an error function (Rothe, 

1998). The negative value of input and hidden layer gradient informntion points towards 

the direction of the minimum function value. The following sections show gradient 
calculations. 

2.4.1 Hidden Layer Gradient 

The gradient of the hidden layer ANN error function in equation 2.13 is given by 

'ii'f{w~.l .. [ '; ]- The partial derivatives of the error surface are calculated below and 
aw •• 

shown in Equation 2.14: 

The individual components of the partial derivatives are calculated 

through 2.17: 

"' ' Of ) -.-=-n r...,:- ;: ; a,: P-' .. , 

Uz!_fJ(N0 1_,] ., 
~-1 -,._ __ 2 IIw • .,g. =Ig •. 
aw..., aw .. ••"•l 

(2.14) 

in Equatiolt~ 2.15 

(2.15) 

(2.16) 

(2.17) 

Using Equations 2.14 through 2.17, a directional vector -Vf(w~.l that points toward the 

minimum is defined and is expressed in Equation 2.18 with a simplified notation. 

(2.18) 
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The hidden layer weights during training cycle k are updated for the nex.t iteration k + 1 

according to the Equation 2.19. The suffix notation indicates that the weights arc different 

in different training cycles. 

(2.19) 

The parameter 11" is called the learning mte in the hidden to output layer. How to identify 

this parameter is an open research issue. Including a momentum 11• term, the weight 

update takes place according to the equation shown below: 

(2.20) 

2.4.2 First Layer Gradient 

The first layer error Gradient Vw~ can be expressed by the following partial derivatives a.~ 

shown in Equation 2.21: 

The individual gradients are shown below through Equations 2.22 to 2.26. 

~=-2"'"'(,,_,.,,. il"' ...... • • ' 
'· 
a;• ---!:i!.=,··c•-,·•,. ik' • • ' 

• 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

Equation 2.27, witt: simplified notation, is the descent directional vector -Vf(w~) that 

points towards the minimum function value. 



(2.27) 

Defining a learning rate ,. , the ANN input layer weights arc updated during training cycle 

k , according to the Equation 2.28: 

(w~L~ .. ( ... ~1 +t~'J-V/Cw~l~. (2.28) 

The weight update using a momentum term, 11·, is shown in the following equation: 

(2.29) 

2.4.3 ANN Training 

The algorithm for evaluating the derivatives of the error function is known as back 

propagation {Bishop, 1995) as the errors are propagated backward through the network. 

However, the tenn back propagation is used in neural computing literature to mean 

different things. The multi-layer perceptron is sometimes called a BP network (Bishop, 

1995). It also describes a method of reducing the sum of squared error measure of a 
function. An important concept of BP is to provide an efficient method of computing the 

derivatives. 

Training algorithms involve an iterative procedure for minimization of an error function, 

by adjusting weights in sequence. The processes of adjusting weights constitute two 

distinct passes. They are called the forward and the backward pass. The forward pass 

detennines the gradient with respect to the network weights. During the backward pass the 

errors are propagated backwards through the network and the derivatives are used to 

adjust the weights using a variety of optimization techniques. Rumelhart ct al. ( 1986) uses 

gradient descent minimization technique to accomplish this. Each pass through the ANN 

is called an epcch which processes the input pattern through the network to gradually 

adjust the weights with the aim of reducing the error measure. 

This research views the training an ANN as the minimization of an error function of the 

fonn 2.6 or 2.13. A feed forward ANN is trained either using a batch or on line training 

method (Deco and Obradovic, 1996). In batch training the weights are modified after 

calculating the error on all training patterns. On-line or incremental training updates the 

weights at each presentation of the training pattern. To train the ANN, a training set 

Hr1,,'),(r1 ,iJ, ......... ,(r~",y~")J; is applied to the input layer. The notation (rP,y~) 

represents the input vector r and output vector y associated with paltern p = t,2 ..... ,P . 

The output Y' produced by the ANN becomes as close as possible to the actual output 
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y 1' due to the minimizntion of the error function (2.13). Training is accomplished by 

successively adjusting the weights, w). and w.; •• 

2.4.4 The Standard BP Algorithm 

The standard BP (Rumclhart et al., 1986) relies on the first derivatives of the error 

function in neural networks to find descent directions. The adaptation lengths rj' and 1( in 

the first to the hidden layer and the hidden to the output layer are fixed or varied 

depending on the performance of the BP algorithm. A momentum term 11· is also 

selected to prevent oscillation in !ruining (Rumclhurt et ul., 1986), The algorithm that 
trains a 3-layered feed forward ANN is described below. The algorithm uses the gradient 

information in the hidden and outer layers to determine the direction of move according to 

Equations 2.18 and 2.27. Depending on the training method, the weights are updated in 
the two layers accordingly using the Equations 2.19 or 2.20 and 2.27 or 2.29. The back 

propagation algorithm is described in Table 2.1. 

lnititJlize 

Set iteration or epoch counter k +-I; initialize adaptation length to a small value 

114 +- «1 , 11Z +-a2 and momentum term lj• +-a J. Set e1 +-oo to a large value. Initialize 

connection weights (w1 , w2 , ...... ,w.,) in all the layers and perform main step. 

Main step 

Compute outer layer gradient using equation 2.18 

Update output layer weight using equation 2.19 or 2.20 

Compute frrstlayer gradient using equation 2.27 

Update weight in first layer according to equation 2.28 or 2.29. 

Stopping Criteria 

I( error in equation 2.13 is reduced to acceptable limit, then stop, otherwise set k +-k+ I 

and perform main step. 

Table 2.1 The back propagation training algorithm 
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2.5 Notation Simpllncution 

To simplify notation in ANN connection weights, the following convention is now 

adopted to represent a one-dimensional ANN weight vector instead of a two-dimensional 

weight vector in a three-layered feed forward ANN. A vector w is defined a~ one

dimensional vector and is transformed from two dimensional weight vectors w). and w; •. 
The vector w represents the entire connection weights in ANN and is defined in Equation 

2.30 and 2.31: 

(2.30) 

\l'tN+(I·IJII'+o = ~~~ •. V(n,o). (2.31) 

Clearly, the total numbers of elements in weight vector w are (l.N +N.Q). The notation, 

w=(w1,j=I, ....... (I.N+N.0)), represents the ANN weights. As ao example, in a 6-4-1 

ANN, I =6, N = 4, o = 1 and w = (wri = 1,2, ..... ,28). This indexing method uniquely 

describes the ANN weights from two dimensions to a one-dimensional weight vector. The 

two aod one-dimensional weights, for example, are related a~ wl1 = w7 , wh = "'•• 

w~, = w21 , w]1 = w26 , and so on. 

With this notation, the basic training scheme is expressed in Equation 2.32 and is similar 

to 2.19 and 2.28. The learning rate parameters, IJ; and IJ; arc replaced by a single 

learning rate parameter, IJJ , in Equafion 2.32: 

(2.32) 

This simplification is convenient in batch or off-line training implementations. In gradient 

descent BP, the negative gradient -V/(w) of the function f: wJ e E"' defines the direction 

along which the function has the maximum local decrease in value. 

2.6 OsclllatJons In BP Training 

The error function forms geometry in the weight space, and the training refers to locating 

updated weight vector w1 that minimizes the error function. An on-line training scheme 

(Rumelhart et a!., 1986) modifies the weights c,f the ANN immediately after the 

presentation of each input pattern with the target pn!tem b'.lt in off-line training, all the 

pairs of patterns in the training set are presented once to LJ]date the ANN weights. The 

vector w~ is the updated network weight at iteration k. Jr. feed fCI!"1'ntd ANN the weight 

vector is adapted according to the recursion: 
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(2.33) 

to find the trained weight vector. This adaptation is performed presenting a set of pairs of 

input and target vectors to the ANN sequentially. The parameter 11 1 , which is called the 

learning rate, is usually positive and is detennined by the user arbitrarily. The direction 

vector d1 is the negative gradient of the error function f(w1 l defined as: 

(2.34) 

During training the weight update follows a direction that yields maximum local reduction 

in the error function. Convergence can be achieved if the learning rate is small enough to 

provide a steepest descent move (Salomon and Van Hemmen, 1996) and the convergence 
difficulty is noticed when the problem size increases. In some experiments Jang et a]. 

(1997) observe that as the value of 11,-+ t, the search accelerates but oscillates at the 

minimum without locating it precisely. With small value of 111 , the search process is 

extremely inefficient and requires large iterations to reach minimum. Jang et al. (1997) 

further claims in a given experiment that the search process is inefficient when f!1 is 

small, 11, :S0.2, and when 11, is moderate, '1. :0.6, the search path tends to show 

oscillatory behavior (Jang et al., 1997). Using '~• >0.6, the search path diverges and the 

method fails (Jang et al., 1997). This behavior points to the difficulty in training. 

2.7 Training with Momentum to Prevent Oscillations 

Rumelhart and McCleland (1986); Rumelhart, Hinton and Williams (1986) and Plaut et al. 

(1986) propose to update ANN weights according to the following equation: 

(2.35) 

The momentum tenn 11" regulates the search directions. Chan et al. ( 1987) and Chan et al. 

(1990) suggest a heuristic to update 71 based on the back propagation rule similar to the 

expression 2.36. The update rule is given by: 

where, the value of Cosf1 = IV/l .. , :.
1
..,

1
• 

Vflw1 1 d, 
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This scheme aims at adjusting the step size when the proper descent direction is 

detennincd. The momentum parameter measures the effect of past weight change on the 

current training of the ANN. 11 acts as a memory term that incorporates the weight change 

of the previous step and slows down o5cillation ncur the minimum of the error surface 

(Salomon and Van Hemmen, 1996). Yu, Lob and Miller (1993) propose a similar method 

to compute d1 using information of the current gradient and the direction from the last 

iterations. 

The parameter 11; takes a value between 0 and I. It smoothes out the oscillation in 

weight update and tends to rc.~ist erratic weight changes due to the non-quadratic error 

surface along which gradient descent is oscillatory (Bishop, 1995). The usc of a 

momentum tenn does not always accelerate training and is dependent on application 

(Widrow and Lehr, 1990). In some cases it plays a role in preventing learning from being 

trapped into poor local minimum. It may be: beneficial to some local features of minimum 

(Weir, 1991) but its acceleration features nrc limited, when small step sizes are required 

near the minimum. 

2.8 Heuristic Self Adaptive Training Methods 

Hush ct al. (1992) point out that the ANN error surface contains many flat surfaces and 

steep regions. The search in the region of a flat surface causes the algorithm to decrease 

the error function slowly. The convergence thus becomes slow (Van Ooyen and Nienhuis, 

1992; Krzyzak ct al., 1990). The BP provides the direction of learning but does not 

suggest the amount of step to be taken in training. 

Self-determination of adaptive length is considered in Weir (1991). The learning rate 

parameter selection is based on extreme gradient information (Weir, 1991). The extreme 

gradients with respect to some training weights show the magnitude of the gradients and 

do not provide the information about the optimal move. The step length determined from 

this information some times over shoots the minimum. Fahlman (1988) uses a heuristic 

called quickprop. This method approximates error surface by quadratic polynomial using 

information during training and the minimum of the polynomial is used to update the 

training weights. The heuristic of Hush and Salas ( 1988) suggest a method to re-use the 

gradient. They usc the gradient in as many iterations as possible so long as the decrease in 

the error function is noticed. A new value of the learning rate is determined depending on 

the re-use count. 

Vogl et al. (1988) attempt to improve the BP by updating ANN weights after each pattern 

is presented. All weight changes are calculated as usual through back-propagation, but 

these changes are not immediately applied. Instead, the changes for each weight are 

summed over all of the input patterns and the sum is applied to modify the weight after 

each iteration over all the patterns. Tbey vary the adaptation length q1 during iteration, 
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according to the reduction in total error for all patterns. If an update reduces the error 

measure, then r~. is multiplied by a factor greater than one for the m:xt iteration. If a step 

increases the network error by a small percentage of the order 1.5, then r~. is multiplied by 

a factor less than one and the momentum term 7J~ is dropped. The process is repeated 

until a successful step L'i taken. At this stage the momentum term 71;' is included for the 

next iteration. The rational behind such maneuver is that when the topography is relatively 

uniform and the descent direction is in a relatively smooth line, the memory implicit 

momentum term will aid in convergence. If the topography is such that the descent 

direction is lost, then the direction is changed so that the search continues towards the 
minimum direction. The persistence in addition of momentum term docs not always lead 

to improvement (Qiun, 1999). To orient the search in descent direction, the memory term 

is set to zero so that the memory from previous step is lost. 

Salomon and Van Hemmen (1996) provide a method to adjust the learning rate using the 

following expression: 

(2.37) 

The tenn e1 is the unit vector in the direction Vf(w 1 J and the suggested value of o; is 1.8. 

This factor in combination with the learning rate controls the training performance as 

shown in above equation. The method uses fixed value of learning rate. The suggested 

parameter in combination with the unit vector e1 , which contains the sign of gradient of 

error function, changes the learning rate dynamically. Due to the change in gradient, the 

learning rate shows the effect of dynamic variations. It however does not perfonn a 

steepest descent training or search in weight space. The algorithm is claimed to be 
dynamic but at ti100s the para100ter is kept constant and rcconunends change when severe 

oscillation is experienced. The method looks after extreme oscillations rather than the 

sensitive nature of the error surface. The direction is favorable but the step length is not 

always correct in this training method. There exists a chance of missing the direction 

towards the minimum. The selection of small step size or learning rate may not overshoot 

the minimum but may slow the convergence. According to Salomon and Van Hemmen 

(1996) the algorithm is not restricted in determining the appropriate learning rate. 

All ANN weights are dynamically adjusted in the training methods proposed by Cater 

(1987), Codrington and Mohandes (1994), Mohandes eta!. (1994), Nachtshcim (1994), 

Salomon and Van Hemmen (1996) and Weir (1991) based on heu~.istically determined 
self-adaptive parameters. 

Individual learning rates for each weight are detennined separately in Jacobs (1988), Pirez 

et al. (1993) and Silva et al. (1990). They use a different heuristic to adapt the individual 

-18-



learning rates from the information gained in earlier iterations. Jacobs ( 1988) dclcrmincs 

three parameters and needs fair amount of experiment to identify suitable values of these 

parameters, while Silva and Almedia (1990) need two parameters but show unst:~ble 

convergence behavior. 

According to Jacobs (1988), if the error surface is relatively flat along a weight dimension, 

the derivative of the weight is small in magnitude ~nd therefore the weight is adjusted by a 

small amount. Alternately, where the error surface is highly curved along a weight 

dimension, the derivative of the weight is large in magnitude and consequently the weight 

is adjusted by a large amount with the risk of overshooting the minimum. If the 

eignevalucs of the Hessi:~n matrix of the error function nrc far apan, the error function 

forms a geometry that is skewed. The negative gradient vector in steepest descent training 

in this case may not point towards the minimum of the error surface. An arbitrary learning 

rate is not appropriate for all ponion of the error surface determined in these methods. The 

component of the gradient vector is smaller in the direction of the eigenvector 

corresponding to the minimum eigenvalue as compared to the direction of the eigenvector 

with reference to the maximum eigenvalue (Jacobs, 1988 and Lc Cun et aL, 1993). The 

minor and major axes of the contour surface are related to the minimum and maximum 

eigenvales of the Hessian matrix, The value of the learning rate that produces moderate 

steps along major axes of the contour may produce large steps along minor axis in the 

weight space and the training exhibits oscillations. In computation, the value of learning 

rate is defined such that the successive steps in weight space do not overshoot the 

minimum of the error surface. Most often the value of the learning rate is limited by the 

magnitude of the largest eigenvalue and only small steps in weight space are taken in the 

direction of major axes of the error surface (Jacobs, 1988). The learning rate is either 

dynamically adjusted for all weights or separately for each weight. These methods use 

some local features of the error function to adjust weights during computation of the error 

function. Johansson et al. (1992) repon a line search in the steepest descent BP. However, 

in this method the user determines the learning rate '1, arbitrarily. 

2.8.1 Parameter Dependent Training 

Kamarthi and Pittner ( 1999) propose a regression type training method. They observe that 

in back propagation training the gradient of the error surface is either positive and 

monotonically decreasing or negative and monotonically increasing for several iterations. 

This behavior suggests that the error surface has a smooth variation along the respective 

axis and therefore extrapolation is possible using the information of weights at the end of a 

few iterations. The convergence patterns of the weights are examined and the weights for 

the next iteration are predicted by extrapolation using the trends in weights. This 

prediction relies on previous iterations and a corresponding extrapolation function. The 

success of this method depends on the assumption that behavior of this kind must exist 

during the entire training cycle, Such a phenomenon is not always true, since for some 
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training cycles the reduction in error function is insignificant to accommodate this 

behavior, 

2.9 Second Order Self·Adaptlve Newlon Type Training Algorithms 

Second order training methods are faster tha11 the first order BP training (Johansson et al., 
1992 and Wang and Lin, 1998) and have quadratic convergence properties. Second order 

training suffers due to ill conditioning of the error function as the ANN grows in size 

(Wang and Lin, 1998). The major concern in second order Newton ba~ed traini11g 

algorithms is the storage and inversion of the Hessian matriK. Training methods such a~ 

variable metric, conjugate gradient and other similar ones have improved convergence 
properties. These algorithms are concerned with the generation of feasible learning 

directions. The network weight update has the following form: 

(2.38) 

The primary requirement in the second order training methods is to maintain at least 

positive semi definite properties in the Hessian matriK. In the event the inverse Hessian 

matrix [H]-1 is near singular, the algorithm fails to converge and results in premature 

termination. A common approach is therefore to design a deflected matrix !Dl, Y!hich 

possesses the required properties of the inverse Hessian matrix rnr1 and docs not require 

to be inverted. The deflected matrix must always yosses all the characteristics of the 

inverse Hessian matrix rnr1 in full second order method and preserving these properties 

results in new training methods. 

Newton's second ordtr rrethod to train ANN is not efficient (Haykio, 1994). The method 

needs second order derivative information. The approximation of a Hessian matrix by its 

diagonal term does not maintain the major properties of the true Hessian matrix of a multi

layer perceptron (Wang and Lin, 1998). The inversion of a large Hessian matrix poses 

computational difficulty {Bazaraa et al., 1993 and Luenberger, 1984). Newton's method 

requires a good initial estimate for convergence. The full Newton's method in ANN 

training is not globally convergent and docs not consicler the special properties of the 

Hessian matrix. In a recent study, Wang and Lin (1998) attempt to improve Newton's 

second order method to train ANN training using a block Hessian matrix derived from the 

order-based-derivatives of multi-layer perceptrons. The following discussion is important 

to describe the principle behind Newton typ~ o;econd order training. 

2.9.1 bvenberg (1944)·Marquardt (1963) Hessian Update 

The method due to Levenberg (1944) and Marquardt {1963) is similar to the Newton 

algorithm The method corrects the Hessian matrix from possible ill conditioning. To 
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demonstrate the principle behind such a training scheme, consider the following steps that 

construct nnd improve learning directions d,. In Newton's method d1 is constructed 

using [-H-1Vf(w1 l). However, it may not be 11 descent direction if the Hessian matrix II 

is not positive definite (Luenbergcr, 19!14). A ba.~ic modification is shown below: 

(2.39) 

The matrix I is the identity matrix. This modification provides the propeny of positive 

definiteness to the inverse Hessian matrix 1Hr1 , at all stages of training while maintaining 

'lt >0. The weight update is similar to standard back propagation and the direction vector 

is defined in Equation 2.39. 

Newton type methods work well for small problems (Dennis and Schnabel, 1983; 

Luenberger, 1984 and Bazaraa et a!., 1993) but computationally they are very expensive 

due to the Hessian matrix update and inversion. The Newton type BP training method is 

sensitive to initial weights (Kolen and Pollack, 1991). Staning with inappropriate weights 

causes poor convergence. The eigenvalues of the Hessian matrix are responsible for the 

geometry of the error surface (Moller, 1997). The Levenberg ( 1944) and Marquardt ( 1963) 

method and all other similar methods force the Hessian matrix to be positive definite. This 

can be fatal in situation when the Hessian is singular. The approximation matrix is 

significantly different and convergence is greatly affected (Eisenpress and Greenstadt, 

1966). 

2.9.2 Quasi Newton Condition 

During training the change in gradient can be approximated (Rardin, 1998) as: 

(2.40) 

Equivalently this is represented as: 

(wHI -w, IE-IIJ,f +Hr1 (Vf(w.t+1 )- Vf(w1 )) • (2.41) 

Therefore, the directional v~tors in equation 2.39 can be constructed from the modified 

Hessian matrix and first order gradient information. The update equation is given by: 

(2.42) 

Define the quantities d~ and Vg,, as the direction vector and gradient vector. They arc 

approximated from the past training cycle and arc shown in the following two equations: 
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(2.43) 

(2.44) 

The quantity, Vg1 , determines the change in gradients a~ shown above. The deflection 

matrix D1 of quasi Newton algorithm~ approximates the gradient change behavior of 

inverse Hessian matrices at every training cycle to satisfy the following condition: 

(2.45) 

To improve search directions with gradient information, when a move is made along the 

direction d1 , the training is improved if the condition 2.46 holds: 

(2.46) 

Quasi Newton methods are improved by imposing this condition. To see how the training 

is improved, consider the following search vector d1 as directional derivative: 

(2.47) 

Using the information of the deflection matrix the search vector is modified as: 

(2.48) 

Enforcing the inequality in equation 2.46, the descent directions are derived. 

Consequently, the following condition must hold in quasi Newton training method 

(Moller, 1997): 

(2.49) 

This inequality plays the crucial role in satisfying the second order training condition in 

quas!. Newton type training algorithms. 

2.9.3 Method of Broyden (19&7), Fletcher (1963), Goldfrab (1969, 1970) & Shan no 

(1970) 

The well-known BFGS update is based on a scheme that maintains a deflected matrixD1 

with positive definite properties and the update scheme is shown below: 
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{2.50) 

The neural network training using this training scheme is found in Battiti (1989). This 

study implies that the update in Equation 2.50 changes deflection matrix mode.~tly during 

trniuing. 

2.10 Conjugate Gradient 

Conjugate gradient methods arc somewhere between gradient descent and Newton's 

method. These methods accelerate the slow convergence of the gradient descent method 

while avoiding the computation of inversion of the Hessian matrix and its storage. 

Hestenes and Stiefel {1952) originally proposed the conjugate gradient method, which 

produces non-interfering directions of search. When the ANN error function is quadratic, 

the method minimizes the error function over the whole sub-space spanned by all previous 

search directions. The necessary and sufficient conditions for generating non-interfering 

search directions arc mutually conjugate in relation to the Hessian matrix; this is expressed 

in Equation 2.51: 

d[Hd1 =O:h•j; (i,j)em. (2.51) 

This condition implies that the learning directions dl'dJ :i"'j are linearly independent. 

This can be verified from the following argument. Consider the problem: 

111 =arg(minj(w1 +1J1d 1 Jl in directi~n d1• The minimum is achieved when ;y,~,~~~'4' 1 
=0. 

This suggests that Vf(wt+1 )
1 

d 1 = 0; which is a necessary condition for all minimization 

dire1:tions. Now consider the second order approximation of the ANN error function in the 

following fonn: 

' f(wt+l l = f(wt +li1d1) = f(wt )+lit (V/(wt lldt + ~ df Hd1 . (2.52) 

Differentiation of the function, after neglecting higher order terms, provides the Equation 

2.53: 

(2.53) 

At the minimum point V/(wl+1) = 0 and pre-multiplying 2.53 by d1, the important result in 

Equation 2.54 is obtained, provided that the directions d 1 are linearly independent. In 

other words, the mutual conjugacy condition holds. The expression for 'h is thus given 

by: 
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(2.54) 

From 2.53 it i~ evident, when pre-muhiplying by J 1 , ]Vf(w"1)r d]=O at the minimum 

point due to the first order condition and· consequently d[ Hd 4 = 0. This condition is 

equivalent to 2.51. The iterative ellpression for the weight update in the conjugate 

direction is: 

(2.55) 

The successive conjugate gradient directions arc generated by a linear combination of the 

current gradient and previous direction with respect to the coefficient i/4 in equation 2.56: 

(2.56) 

The standard BP (Rumelhart et al., 1986) uses this information to include a momentum 

tenn (Bishop, 1995). The requirement that successive directions are H conjugate with the 

coefficients ij
4

, is determined from the equation 2.56 by multiplying H to obtain equation 

2.57: 

(2.57) 

The value of q4 which generates conjugate directions can now be found using Equation 

2.58: 

(2.58) 

This can be interpreted as momentum tenn according to Bishop ( 1995). 

Conjugate gradient training methods work well on batch training with very careful 

implementation of line search. The difficulties with line search computations arc discussed 

in (Shanno, 1978 and Luenberger, 1984). Multilayer pc:rceptron training using conjugate 

gradients can be found in Watrous (1987); Kramer and Sangiovanni-Vincentelli (1989); 

Makram-Ebeid eta!. (1989); Barnard (1992) and Johansson et al. (1992). The studies in 

Johansson ct a!. (1992) demonstrate that the conjugate gradient method due to Polak· 

RibieLe (1969) and Hestenes·Stiefel (1952), perform better than Shanno (1978). The 

performance of conjugate gradient method deteriorates with poor line search (Oren, 1972). 

In some cases for badly scaled problems, the matrill D4 may become singular as shown in 

McCormic and Pearson (1969) due to the rounding off errors (Brad, 1968). 
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2.11 Source of Difficulties with Stundurd BP 

The direction d, is computed using the grndicnt, Vj(w1J, information from :1 single 

training pattern in standard on line back propagation. In on-line training, the other training 

patterns compute the gradient components, Vj(w1J, which would result in different 

directions (Kamarthi and Pittner, 1999} for a particular weight. Therefore, a single descent 

direction is not generated. The fixed value of a learning rate "• does not always lead to a 

maximum local decrease of function value. The learning rate depends on the shape of the 

error function (Jacobs, 1988) as it trains from the current iteration k to the next iteration 

k+l, k+Z ..... and so on. The iterates therefore, do not produce a convergent sequence in 

strict sense. The difficulty originates from two different sources (Jacobs, 1988; Weir, 199 I 

and Vogl, 1988): 

a.) the fixed value of learning rate "• may misdirect the search towards the 

minimum during iteration k ; 

b.) the directions d 1 generated from Vj(w,) during iteration k are different for a 

single weight component in standard back propagation training. 

Selecting arbitrary learning rates for each parameter the weights are modified, but a 

steepest descent move is not performed. In this case the parameters are updated based on 

the partial derivative of the error function with respect to the patterns in the training set. 

Due to the different gradient information of a weight resulting from different training 

pattern in the training set, the directions of moves arc different. If the valley has twists and 

turns, large value of r~t will prevent the system from mal:ing reasonable progress across a 

long flat slope (Vogl et al., 1988 and Jang et al., 1997). Choosing a suitable adaptation 

length in a particular problem involves experimenting with different values of learning 

rates that reduce the training time (Fahlman, 1988 and Hinton, 1987). Rumelhart et al. 

(1986} suggests a large value of f/1 for rapid learning without oscillations. As a muller of 

fact, for some step, a large value of "• may be ideal but there is no guarantee that the 

same adaptation length would be appropriate for other steps in the learning process 

(Jacobs, 1988). The optimum value of 1J1 will depend on the topography of the domain 

being traversed, If the contours of the error function are circular then the step size will 

have little influence on the convergence in BP. The convergence difficulties arise when 

the contours have stiff ridges and the error surface contains local minimums while the 

contours with elliptical or circular shape will favor convergence (Moller, 1997). The 

convergence behavior of the BP is dominated by the eigenvectors associated with the 

largest and least eigenvalues of the corresponding Hessian matrix (Vogl et al., 1988: 

Bishop, 1995). The fixed learning rate or variable learning rate that do not fully consider 

the geometry of the error surface would deviate the search from the minimum trajectory of 

the error surface. 
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2.11.1 Validation Issues 

The issue of validation is closely reluted to the training methods. Its property in ANN arc 

affe<:ted by the following three major factors: 

I. The elements Y! in error equation 2.6 or 2.13 are considered to be a random sample 

from a parent population with the expected value ;: given by the parent distribution. 

The variations of y! about the expected values ;: are some time far wider than the 
expected variance; 

2. The error equations 2.6 or 2.13 are a~sumed to be a smooth functions with respect to 
ali the training weights w 

1
; 

3. The choice of ANN that is an approximation of the true function influences the ANN 
training problem. 

The error contribution due to factor l is difficult to control. The only option is to repeat or 
replace the observations. The weights are determined in BP by gradual adjustment using 

gradient information. An unfavorable eigenvalue in the Hessian matrix produces complex 

geometry and causes ill conditioning in the Hessian matrix. In this ca-.c the training 

terminates prematurely. To control the difficulty arising from the second factor, a training 

method that overcomes this difficulty is desirable. Finally, the different ANN structures 
can be compared to determine the most suitable functional form of ANN as a 

representative of the problem being solved (Adya and Collopy, 1997; Zhang ct al., 1999 

and Atiyaet al., 1999). 

A relatively new method in statistical analysis proposed by Effron (1982), known as 

Jackknife or bootstrap method, can be used to test the validity of the ANN learning 

(Tibshirani, 1996). However, in interval estimate of population parameters, the result is 

not robust and yields biased values when the population is fur from normal distribution 

(Effron, 1982). The jackknife procedure (Diaconis and Effron, 1983) is robust and does 

not require the population to have any specific distribution. It is applicable when the 

normality assumption is not met. 

The validation method in ANN applications is an important issue in the context of 

generalization and decision-making (Zhang et al., 1998). The conunon approach is to 

evaluate some statistical error measures (Tibshirani, 1996). A useful validation, which can 

be regarded as generalization, is to compare performance of ANN in the training and test 

period using bootstrap sampling method. The data set in the validation period is small and 

the parameter estimate is r.ot robust. Tibshirani (1996) compares the bootstrap error 

estimation method with the standard statistical method given in Effron and Tibshirani 

(1993), Kent (1982) and Effron ( 1982). The study demott<;tratcs that the bootstrnp method 
gives better estimate. 

Another problem in ANN training is the over fitting of a model (Weigend ct al., 1990). It 

occurs when the network h.-.s too many free parameters that allow the network to fit the 
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training data well (Li~i et ul., 1999). Thts leads to poor generaliz·,rtion (CirJuvin, 1990, 

Morgan et al., 1990). 

2.12 Summary and Dlscus.~lons 

The standard BP is important from a theoretical viewpoint. It is one of the ba.~ic training 

methods and other improvements are motivated by an attempt to modify the basic BP 

training method to improve convergence (Sexton ct al., 1998; Archer et al., 1993; Hsiung 

et al., 1990; Lenard at al., 1995; Subraminun eta!., !990; Wang, 1995; Watrous, 1987; 

White, 1987 and Weigcnd et al., J 990). Most often it is tried on new problems. The 

gradient descent BP converges locally but they often become trapped at ~ub-oplimaJ 

solutions depending upon the serendipity of the initial random starting point, There have 

been many attempts to improve the local convergence of the gradient descent BP in Chen 

and Mars (1990); Franzini (1987): Holt and Semaani (1990); LeCum eta!. (1989); Lee 

and Bien, (1991); Matsuoka and Yi, (1991); Samad (1990), Shoemaker et al. (1991); 

Sietsma (1991); Solla ( 1988); Van Ooycn and Nienhuis ( 1992); and Weigend et al. ( 1991 ). 

The standard BP therefore remains a.o; a standard reference algorithm and the improvement 

issues are concerned with the acceleration in computations, self-adaptation of learning 

rate, determination of appropriate momentum term and global convergence. 

2.12.1 Comments on the Self-Adaptive First Order Training 

The main factor limiting the convergence of gradient descent back propagation is the 

contours of the error surface that have different shapes in different directions. The 

contours that are skewed limit the value of the convergence rate; 1he circular contours 

favor the convergence rate (Moller, !997). 

The determination of adaptation length and momentum term plays a crucial role in the 

training process. Mostly the first order gradient descent BP computations (Jacobs, 1988; 

Weir, 1991; Silva and Almedia, 1990) ignore this by choosing a fixed parameter or its 

variation. A method that directly uses the local information of the error surface to 

determine learning rate is more appropriate. The ANN training with line search is difficult 

since the error function is difficult to bound due to the large number of ANN weights. Fast 

convergence is realized when a method provides prior information about the optimal 

parameter setting in training. Therefore, one needs a mechanism that precisely determines 

this variable learning rntc and momentum parameter automatically during training. It 

suggests that the method generates a suitable direction vector d,~ and the correct learning 

rate IJ.t in weight space w,~. Dynamically adjusted correct training parameters do not 

overshoot the minimum. Such a method can be regarded as self-adaplive training. 

If computational difficulties are encountered due to ill conditioning in the error function, 

then the derivative based training algorithms need modifications (Wang and Lin, 1998). 
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Also, if the derivative information of an ANN error function is not readily avaiJ'Jble, then 

the derivative free methods are other uhernatives. 

Due to the existence of multiple local minimum.~ (Kantz and Schreiber, 1997; A7.off, 

1994), it is hurd to find the best local minimum. The algorithm thnt has a global training 

feature is nn important training scheme. Tabu search (Glover and Lug una, I 997) is the 

recent trend in global optimization and is a potential research issue in ANN computation. 

2.12.2 Comments on the S~ond Order Training 

As the ANN grows in size, the strJcture of the error functions begins to deteriorate. The 

eigenvalues of the Hessian matrix are wide apart and consequently, the condition number 
becomes larger (Ahmed and Cross 2000}. As a result, stiff ridges and sharp edges begin to 

form in error surface. The function in several places becomes skewed and the derivative 

based training methods teOO to encounter difficulties. The training algorithms rely on the 

assumption that the ANN problem has an equivalent error function that is smooth, 
differentiable and has positive definite Hessian matrix. The training suffers lf these 

conditions are not met. Newton's method converges in the neighborhood of local solution. 

Ne:wton type second order methods require that the Hessian matrix to be evaluated and 

inverted or nn approximation to its inverse must be evaluated at each iteration. This poses 

difficulty for large size problem. Second order methods are fast for small and moderate 

sized problems. The storage and computation requirements for large problems (Wu et a!., 

1998) prevent Newton type training method to be attractive. Becker and Cun (1989) use 

variations of a quasi Newton method to speed up back propagation by approximating the 

second order derivatives. They report that the approximation method show oscillations 

during convergence. 

The second order training algorithms have quadratic convergence. Newton's .method 
bei:omes Impractical bccsuse of the size of Hessian matrix, although it has a good 

quadratic convergence property. Also, there are chances that these training algorithms face 

ill conditioning. The Marquardt-Levenberg (M·L) algorithm improves such condition by 

improving the Hessian matrix but also faces difficulty due to the matrix that is far from 

true Hessian. Quasi Newton, conjugate gradient and other variable metric training 

algorithms depend on the quadratic and differentiable properties of the error function 

(Shanno, 1980). Quasi Newton type algorithms improve Newton's method in preserving 

and updaling the Hessian matrix information in a deflected matrix. These methods deflect 

the gradient in a negative direction using a previous direction of move. This is viewed as 
an update of fixed symmetric, positive definite matrix in the form of an identity matrix 

and hence is regarded as fixed metric in contrast with the tenn variable metric method in 

quasi Newton methods. Conjugate direction methods converge in nt most m iterations for 

unconstrained quadratic minimization problems in E"' when nsing exact line search. 

Davidon (1959), Aetcher and Powell (1963), Kowalik and Osborne (1968), Luenbcrger 
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(1984), Pierre (1969), Powell (1964), and Swann (1964) oullines the precautions to be 

taken when using line su.rch to achieve fast convergence. Conjugate gradient methods 

provide better choice of Jirections and also automate the procedure of learning rate or 

adaptation length by a line search technique. These algorithms do not require adequate 

storage nnd are relatively sur:ccssful in training. They are also considered as some variant 

of the quasi Newton type algorithm~. The worsening condition number in ANN error 

f11nction put burden in computation even with these algorithm~. In general, the second 

or•''!r training algorithms arc self-adaptive. McMenamin and Monforte (1998) report 

results using a Newton type-training algorithm with time series problem. Comparison of 

the M-L algorithm with other training methods is given in Webb ct al. ( 1988). 

Kramer and Sangiovar.-.,-Vincentelli (1989) compare parallel implementations of the BP, 

steepest descent ar,r1 ,. ;njugate grudient methods using the Polak-Ribiere (1969} method. 

The experiment ·;::t~.gests that Poluk-Ribiere (1969) method performs betler than the 

c;.:nventional ?:"i" m;J steepest descent mc::thod for small Boolean encored problems and for 

tJ·,_, parity pro.bb;u. These algorithms are super-linearly convergent in the neighborhood of 

a local sniutiun. The algorithm due to Polak-Ribiere ( 1969) is a variant of the Fletcher

Reeves method while the method of Broydon-Flatcher-Go!dfrab-Shanno originates from 

Devidon's algorithm. These algorithms have been used successfully for simply conducting 

a descent search (Batliti, 1989). Conjugate gradient methods explicitly construct their 

searches using linearly independent vectors that span the space. 

2.12.3 Research Focus 

To resolve some of the difficulties in BP training, we propose to automate the learning 

rate by using the geometry of the error surface. The ill conditioning put pressure on BP 

training. To tackle such problems, we propose some derivative free methods. These 

training methods also have the chamcteristics of improving solutions in the presence of 

unfavomble georretry of the error functions and parameter identification problems 

{Sehwefel, 1981). The derivative free training methods can train an ANN with error 

functio!L'l that may be discontinuous. These methods can be developed as parameter free 

training algorithms. The ill conditioning in training problem also occurs due to scaling of 

variables as a result of high condition number in the Hessian matrix. It is also noticed in 

parameter identification problems. These issues are common in ANN computations. 

Parameter identification is similar to identifying trained weights in ANN (McMenamin 

and Monforte, 1993; Warner and Misra, 1996). As the smallest eigenvalue approaches a 

value close to zero, the convergence becomes slow, The performance of the derivative fret! 

training is not readily available. Such training methods do not require derivative 

information, however they adjust ANN weights gradually to approximate the ANN to the 

actual problem. Hence such training approaches are different than the back propagation 

training method. In the next chapter these issues are investigated. 
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II 
Research Problems and Research Scope 

3.1 Introduction 

This chapter discusses the research issues and research problems. Theoretical approaches 

to design the self-adaptive and derivative free ANN training algorithms are briefly 
discussed. The research design methodologies are addressed. 

In Section 3.2, the problems in self-adaptive ANN training algorithms are briefly 
highlighted. The research issues and research problems are presented in Section 3.3. The 

test problems are given in Section 3.4. The perfonnance measures of the algorithms are 

addressed in Section 3.5 and finally some conclusions are provided in Section 3.6. 

3.2 Dilemma in Selr-Adaptivc Training 

In the existing self-adaprive training algorithms some preliminary experiments are 
necessary to determine appropriate learning rate parameters. For e:\ample, individual 

learning rates for each weight are determined separately in Jacobs ([ 988), Pirez ct a!. 

(1993) and Silva et a!. (1990). They use different heuristics to adapt the individual 

learning rates from the information gained in earlier iterations. Jacobs (1988) determines 

three parameters and the algorithm needs considerable experimentation to identify suitable 

values of these parameters, while the algorithm proposed by Silva and A!media (1990) 

need two parameters but show unstable convergence behavior. According to Jacobs 

(1988), if the contour surface is relatively flat along a weight dimension, the derivative of 

the weight is sma[[ in magnitude and therefore the weight is adjusted by a small amount. 

Alternately, where the contour surface is highly curved along a weight dimension, the 

derivative of the weight is large in magnitude and consequently the weight is adjusted by a 

large amount with the risk of over shooting the minimum. This happens with the fixed 

learning rate. If the eignevalues of the Hessian matrix of the error function are far apart, 

the error function fonns contour surfaces that are skewed. In such a case the negative 

gradient vector in steepest descent training may not point towards the minimum of the 

contour surface. An arbitrary learning rate is not appropriate for aU portion of the contour 

surface determined in these methods. The component of the gradient vector is smaller in 

the direction of the eigenvector corresponding to the minimum eigenvalue as compared to 

the direction of the eigenvector with reference to the maximum eigenvalue (Jacob.~. 1988). 
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The fixed or arbitrary value of the learning rate that produces moderate ~!cps along major 

axes of the contour surface may produce large steps along minor axes in the weight space 

and the training exhibits oscillations (Jacobs, 1988 and Bishop, 1995). 

Johansson et al. ( 1992) report a line search in the steepest descent BP ANN training. 

However, the user determines the learning rate 114 manually. Experimenting with such a 

method is difficult and arduous. The value of learning rate should be defined such that the 
successive steps in weight space do not overshoot the minimum of the contour surface. 

Most often, the value of the learning rate is limited by the magnitude of the largest 

eigenvalue and only small steps in weight space are taken in the direction of major axis of 

the contour surface (Jacobs, 1988). The learning rate is either adjusted for all the weights 
or separately for each weight. This may be a safe but an inefficient approach. These 

algorithms use some local features of the error function to adjust weight during 

computation of the error function. As a result the computational efforts are large. In some 

instances the algorithm cycles and faces difficulty in convergence. In general, slow 
learning and convergence to a false local minimum is common (Fukuoka et al., 1998). 

3.2.1 Research Issues 

The aim of the reS<:arch is to develop. ANN training algorithm.~ that automate the selection 

of the learning rate parameters, the momentum term and the descent directions by 

monitoring the variations in error surface. Such algorithms provide the basis to adjust 

dynamically the learning rate parameter in a self-adaptive manner. In contrast, the existing 

algorithms necessitate the user to undertake experiments with a given problem to identify 

the suitable training parameters depending on the type of the contour surface under 
consideration. Hence, the proposed developments relieve the user from pre-optimizing the 
training parameters. 

Consider also the issue of training an ANN that uses a non-smooth transfer function. The 

research develops training algorithms that train ANN without derivative information in 

cases where explicit derivative information of an error function is not easily available. 

3.3 Research Scope 

This research provides a theoretical framework to optimize the learning rate parameter, the 

momentum tenn and descent direction in ANN training. The self-adaptive training 

algorithms that consider the geometry of the error surface in a constrained region are 

developed. In addition, the development addresses the situations when: 

a.) a user need not pre-optimize the learning rate parameter or need not select learning 
rate parameter at all; 
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b.) one needs a training algorithm that docs not require the derivative information of 
the error function (Conn et al., 1997): 

c.) it is difficult to provide analytical expression of the derivative of the error function; 

d.) there is discontinuity in the error function; 

e.) the contour surface develops stiff ridges and results in an ill conditioned Hessian 

matrix which makes ANN training difficult; 

f.) the global convergence is an important issue. The proposed derivative free training 

methods initiates research directions in global search. The recent development in 
this line is the tabu search first proposed by Glover and Laguna (I 997). 

3.3.1 Research Problems 

The following sections briefly present the self-adaptive, the multi-directional and restart 

derivative free training algorithms and the methodologies to derive the self-adaptive 
training methods arc addressed. 

3.3.1.1 Self-Adaptive Training Wllh Gradient lnfonnation 

The research aims at determining the learning rate 1]1 and the descent direction t/1 in 

Equation 3.1 such that an optimized learning rate and the descent direction is identified 

during training iteration or epoch k. The parameter T11 is determined by an interpolation 

search in a constrained space where the geometry of the contour surface is examined. The 

error surface is sampled at discrete intervals and the function values are evaluated to 

identify the appropriate learning rate. The error function f{w) at iteration k is perturbed 

by an amount T11 along a chosen direction d, and the consequence of the change is 

observed. The method finds "* such that the error function /{w1 +t)1d1 ) is minimized. 

The problem is formulatOO as: 

(3.1) 

Subjecuo: L=(t) :Tj1 ~0) 

where, L is the constrained interpolation search that determines the learning rate, which is 

restricted in sign, The search terminates at t) =f11 when the function f{w1 +t)1d1 l is 

minimized with respect to T11 • An interpolation search method is used to find an optimized 

learning rate. Given the vectors w1 and d1 , the value of Tj1 is varied such that the value of 
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the function t<w. +lhd•) is changed. As "• is varied, a function /(1!1 ) of the learning 

nue is formed. The search involves bracketing a minimum with other two relative 

minimum points in the neighborhood of the newly transformed error function. An 

interpolation through the trial points picks up the appropriate learning rate. Since this 

parameter reduces the error function f{w• +J1.d1), an optimi1.cd learning rate is, therefore, 

identified. The learning rate parameter along with the direction vector d1 updates the 

ANN weights. Constantly it provides descent to the error function, during all epochs of 

training. 

3.3.1.1.1 Central Difference Approximation of Descent Direction 

The ANN training problem needs information on the descent direction d•. In standard 

gradient descent BP, it is the negative gradient of the error function, Here we develop a 

central difference approximation scheme that implicitly identifies the search vector and 

hence the direction d• is computed implicitly. The rate of convergence of the error 

function and the information of the updated weights are used to choose the central 

difference step size that controls the accuracy in d•. This allows the ANN training method 

to move along the descent direction so that the training converges to a limit point that L~ a 

minimizer of the error function. 

3.3.1.2 Self-Adaptive Mulli·Directlonal Derivative Free Training Algorithm 

Figure 3.1 Convergence Difficulty and Premature Ter111ination 

A multi-directional training algorithm that does not require the derivative information of 

the error function is proposed. in addition, the training algorithm is de.~igned with an 

oriented search vector to improve the training performance. The initial trial vector is first 
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positioned in a suitable location ut the beginning of training. Thi.~ i~ done at most in m 

steps, bc[orc the multi-directions arc explored. 

Given a descent error function f: weE"', the multi-directional training algorithm reduces 

the error function j(w) gradually, by changing its weights with respect to the directions, 

d1 •(d1 ,d1, ........... d.,), where d1 L~ a vector of zeros, except 1 at the }'1 position. The 

value of the weight w 1 is therefore changed in the d1 direction, while all other weights are 

kept fixed. Moving in all m directions the algorithm changes all the value of the weights 

{w1• 1,w
1
•1 ......... w1 • .,) in m directions. The process is again repeated to obtain change in 

the function value f<w 1) for the next iteration k. Given an initial weight vector wl, the 

algorithm chooses a search direction d1 and the learning rate '1) 1 for a given value of 1, 

where 1= \,Z ...... m. The selection of TJ, can take variety of form~. An interpolation search 

is performed in a constrained space to detennine the magnitude of the learning rate. The 

interpolation search is defined as: 

(3.2) 

Subjec:tto TJ1 EL 

where, L has the form: L=E 1, The defined training problem explores in m different 

directions to determine the m individual and variable learning rates. The network weights 

have different learning rates according to this algorithm. To accelerate the training 

pcrfonnance, a momentum search, which is similar to the pattern move, is designed. The 

length of the momentum tenn is determined in a self-adaptive manner. The doued line in 

Figure 3.1 dcfmes a momentum search. 

Also, notice the search path when it moves from point a to b in Figure 3.1. If the point b 

is nearly sharp-edged, the search may cease at b since the derivative is not defined. 

Making a momentum search along the dotted line, the search is continued to point c and 

beyond until the search reaches the local minimum. This step is taken in the proposed 

multi-directional search algorithm. Also observe the shape of the contour surfaces, which 

is to some extent skewed, To reach a minimum point in such geometry, the training 

algorithm would require extra effort due to the ridge like or curved structure. 

3.3.1.3 Derivative Free Restart Training Algorithm 

The simplex method proposed by Spendley, Hext and Himsworth ( 1962) is improved as a 

derivative free training algorithm. In factorial design, the number of trials for experimental 

identification rrethod is about (m+1). These (m+/) equally spaced points are allowed to 
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form a pauern or geometry that is known us regular simplex. The research improves the 

method that maintuins a set of (m+l) points in m dimensional spuce to generate non

reguhu and non·degencratc simplex. When the simplex degenerates, a rc·sc:Jle phase is 

performed with a restart vector that forces the simplex to scurch a wider parumetcr space. 

The proposed algorithm evaluates the error function along all the vertices of the simplex. 

The search method replaces a vertex with the largest objective function value by a new 
vertex situated at a reflection poim midway between other m vertices to lirxl the descent 

directions. This principle locates a new vertex at best minimum point. The midway point 
plays the role of a centroid. It provides the descent direction to the error function. This 

newest vertex can also be renected to explore the best point in the neighborhood. Three 

main strategies are defined. They are called reflection, expansion and contraction, which 
generate the directions of search. If the current new vertex improves the function value, 

then the highest function value is replaced by the improved function value. The proposed 

algorithm redefines a new simplex with lower function value at the vertex of a 
degenerated simplex. The edge length of the polyhedron is changed so that the search does 

not stagnate. The polyhedron is forced to change the size and direction of search. A non

degenerate simplex that has finite volume is renected with a new search vector to improve 
the convergence of the algorithm. 

3,4 Test Problems and Experimental Set up 

The research provides theoretical analysis of convergence of the newly developed 

algorithms where po~ible. Some test problems are considered to observe the performance 
of the algorithms namely: 

a.) the XOR problem with 2-2-1 ANN and parity problem with 5-5-1 ANN 

configurations; 

b.) character recognition with the letters L ami T with different orientations in 3x3 

pixel; 

c.) seasonal time series problem: Australian peak electric load forecast and 

d,) hotel occupancy rate in Australia as multivariate statistical analysis with small 
data set. 

The purpose of these problems is to test convergence of the algorithms in classification 

problems and its ability to replicate results as a forecast and regression model. The 

standard back propagatio11 algorithm is used to compare the results. Some published 

results from literature are also used to compare the performance of the algorithms. 

Additionally, the standard statistical regre~ion method (Mendenhall and Sincich, 1996) is 

used to compare the results of the last two test problems. All the ANN architectures use a 
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log transfer function in the hidden layer neurons and the output layer uses a constant 

function. 

3.4.1 Parity Problem 

The Parity problem is a standard benchmark against which performance of an algorithm 

can be measured. There are a number of reports on this problem in literature (Johansson et 

al., 1992; Jacobs, 1988, Kamarthi et al., 1999 and Salomon et al., 1995). In the parity 

problem we have a number of boolean input variables and one boolean output variable. 

The input/output rules states that the output should be true in case an odd number of input 

values arc true. If there arc just two input variables the problem is known as exclusive OR 

(XOR). This rule states that either oft he inputs can be true but not both. 

Input Lay~r 
i:! 

{ 
Hidden Layer Outer Layer .. , 

Figure 3.2 Thru layer feed forward 5-5-1 ANN 

Figure 3.2 shows the ANN that contains 5 neurons in the input layer, 5 neurons in hidden 

layer and one neuron in output layer. The 5-5-I -configuration network is chosen with full 

training set for each problem For example, there arc 25 training pattern in a 5-5-1 ANN 

configuration. The training data set is shown in Table A. I (Appendix A). The pattern of 0 

and I values are placed on the input layer neurons. The network then produces a I if there 

are an odd number of I bits in the input and a 0 if there arc even numbers of I bits in the 

input. The capability ofthe algorithm to solve the parity proble11t'l is invC.'itiga:~d. 
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3.4.1.1 Starting Points for the Parley l'roblem 

The starting points for the problem for 10 experiments are shown in Table A2 (Appendix 

A), The weights have low as well as high magnitude to observe the performance of the 

algorithm.~ with different staring vectors. To create starting points in small magnitude, the 

weights given in Table A.2 (Appendix A) can be factored appropriately to create weights 

in different magnitudes. 

3.4.2 Pattern Recognition Problem 

A training experiment is considered to recognize the letters LandT. An ANN with nine 

inputs, two hidden units and a singlr output unit is trained to recognize the letters LandT. 
Each input pattern consists of a 3x3 pixel binary image of the Jetter. The training set is 

formed by four orientations of each Jetter as shown in Figure 3.3 and Figure 3.4. The 

target values arc 0 and I respectively at the output unit, which identifies the letters L and 
T. The training data set is shown in Table A.3 and A.4 (Appendix A). The 9-2-1 ANN 

configuration is chosen to compare the results given in Kamarthi and Pill ncr ( 1999). 

,,, (b) (o) (d) 

Figure 3.4 Four Oriemations of tire Let/er L 

,,, (b) (c) (d) 

Figure 3.4 Four Orientations of the Leiter T 

3.4.3 Seasonal Time Series Problem 

A seasonal time series problem is considered as shown in Figure 3.5. In particular, 

quarterly seasonal peak electric load data in mega watt-hours is collected from Australian 

Bureau of Statistics time series data. The data set contains the values of peak electric load, 
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1:, from September 1976 to September 1998 and is shown in Table A.5 (Appendix A). 

To model the behavior of the s~a.~onal time series data, :mANN with five neurons in the 

input layer and five neurons in the hidden layer and one neuron in the output layer is 

proposed. The ANN configuration is similar to the problem discussed in section 3.4. I. The 

output layer produces the estimated value for pmtern p. The input layer neurons receive 

the following input pattern X:; 

l. xf =a bias term for the input layer neuron 

2. xf = p, the pattern at instance p 

3
_ x' =(/ ifqu~ncr 2 tiltlsoti~.lt~nccl' 

·1 0 othcrwi~c 

4. Jl "' 
, (' ifquancr 3 tilll~~tinslanccp 
• 0 otherwise 

S , -(/ ifquancr 4 falloatinstancep 
' x,, - 0 otherwise . 

The purpose of this exercise is to notice the performance of the training algorithms in 
convergence. A 5-5-l ANN model is chosen to represent and predict Australia's quarterly 

peak electric load. The algorithm is tested to measure its strength in the forecasting 

problem. A reasonable procedure in forecasting validation/generalization is to split the 

available data into two parts, which Snee (1977) calls the estlmation data and the 

prediction data. The estimation data is u~ed to build the ANN model and the prediction 

data is then used to study the predictive ability of the model. Sometimes data splitting is 

called cross-validation (Mosteller and Tukey, 1968 and Stone, 1974). In a large data set, 

the data can be separated into three parts. The third component of the data set is the testing 

set, which could comprise the entire data set. 

Quartor 

F/pure 3.5 Peak Electric Load 
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The data set from Septcmhcr 1976 to June 1993 is used to train the ANN. Sixteen 

quarterly datu from September 1994 to June 1997 arc used to measure the forecasting 
capability. The standard statistical regression method (Mandenhall and Sincich, 1996) is 

used as a benchmark to compare the performance of the proposed algorithm. 

3.4.4 Hotel Occupancy Rate 

Table A.6 in Appendix-A shows the limited tourism data that is available from an ABS 

report. Eight quarterly data from March 97 through December 1998 is used to train the 
ANN model. It is possible to work with the small data ~et in ANN modeling (Law, 1998). 

Figure 3.6, 3.7 and 3.8 displays the pattern of the data ,.,et including room night spent, 

consumer price index (CPI) and gross domestic product (GOP) respcctively. The training 
method investigates the capability of the algorithm to model the small sea~onal data set as 

the multivariate statistical analysis problem and its potential as an interpolation or 

calibration model. All the data points are used for training and the trained ANN is u~cd to 
compare the in-sample extrapolation capability. The multivariate statistical method is used 

as a benchmark to compare the performance of the algorithm. 

121.5 

'" f 120.5 

.... 120 

!!. - 119.5 • u 

"' 
118.5 

~ 

Mar- Jun 

" 

3.4A.t ANN Model 

-----/ 
/ 

~ 

"' Dee- Mar· Jun Sep 
97 98 QuorLer 

Figur~ J.6 CPI All groul' 

Dec

" 

The room-nights spent constitutes the hotel occupancy rate :It. To develop an ANN 

model using data set in Table A.6 (Appendix A) the first layer neurons are parameterized 

and the input to the neurons is described below. A 7-4-1 ANN configuration is chosen to 

study the perfonnance of the algorithms. The hidden layer transfer functions ure similar to 

the problem in section 4.!. The input layer neurons receive the following input patter xt. 
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I. rr ::::a bius term as input for the inpm layer neuron 

2. rr :::: p. the pattern at instance fl 

3. xJ =CPI (Consumer price Index) 

4. x! =GDP (Gross Domestic Product) 

, -(/if quarter 2 fal\satinslan'el' 5. x, -
· 0 ntherwi•e 

6. • (/if quarter J ran~atinslancep 
x6 "' 0 mhcrwisc 

?. :r'=(' ifquartcr4 fa!Jsatinstan,ep 
1 0 otherwise . 

4400 

4200 

~ 4000 

• ,..----
~ 3800 

~ "'--- / 
! 3600 

• 3400 

3200 

~ 
~ 

Mar·97 Jun Sep Dac-97 Mar·9B Jun 

------/ 

Sap Dac·9B 
Quarter 

HBOOO 
H8000 
144000 

H2000 

:1 
uoooo' 
1nooo • 136000 • I HOOD • 0 132000 0 
130000 
128000 
126000 

Mar-97 '"" Sop Dec-97 Mar-98 Jun Sop Dec-98 
Quorter 

Fl~ort .l.N: GDP Jjl/1/l"o 

-40-



3.4.4.2 The Starting Pulnl-. 

The random starting poillts are acconling to the weights shown in Table 3.2 in which the 

lust two weights arc repeated to complete the total weights for initiali1.ation, defined as 

w.11 = w10 and w_,1 "'""Jo · 

3,5 Performance Measure of the Algorilhlllll 

To compare the performance of the algorithm.~ we require some kind of metric. The 

number of itcrotions or cycles or epochs is not a valid metric (Johansson et al., 1992). In 

BP, the training set is presented through the network once per iteration. In second order 

BP, the training set is presented several times per iteration and most of the computation 

time is spent in evaluating the error function and the gradient. 

The conventional BP training requires one forward and backward propagation of the 

signal per iteration. The second order ~lgorithm on the other hand may involve several 

forward and backward propagations at each iteration. Depending on the line search 

method, the number of forward and backward propagations may or may not be the same 

(Johansson et al., 1992). There arc a variety of line search methods and some use function 

evaluation and gradient at each step while some use only function value or gradient. The 

methods that use only gradient information have the advantage of rapid convergence (AI· 

Sultan et al., 1997). The number of gradient evaluations is not usually reported when the 

performance measures are addressed. 

An algorithm that starts in the vicinity of a minimum converges rapidly. To eliminate this 

biased performance, the algorithms arc tested on random starting points. We propose to 

compare the algorithms based on average performance of the algorithms. In particular we 

address the following measures: 

a.) number of iterations or epochs; 

·b.) number of gradient evaluations; 

c.) total number of function evaluations including gradient evaluations; 

d.) standard deviations of the performances on the above measures; 

e.) maximum, minimum, median and range on the above measures and 

f.) tenninal error function value at the end of training as squared error measures. 

The median value divides an ordered set of values into two halves. The maximum and 

minimum values indicate the worst-case performance through the measure called the 

range. The convergence of the algorithm depends on the starting point and a.~ the 

algorithms are tested on random problems, the standard deviation measure is a good 

indicator to judge the consistent performance of an algorithm. There would be some 

instances where the training may not converge. Under such situations, the algorithm is 
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forced to tcnninatc after it has completed 50,000 numbers of epochs und the statistic~ arc 

collected within this period of training. 

3.5.1 Performance Measure in Forecasting and Multivariate Analysis 

To sec the performance of the algorithm in seasonal time series forecasting and 

multivariate analysis. the following mea$ure~ are considered: 

a.) mean squared error: 
b.) mean absolute percentage error; 

c.) mean percentage error and 

d.) R2 test. 

It should be noted that a method to interpret the ANN weight similar to the multivariate 

statistics is not yet developed. Nevenheless, the ANN computations provide a model in 
multivariate statistical analysis to represent und replicate the data. 

As usual, the pcrfonnance of the algorithm to this class of problems is first evalumed 

according to the experimental set up in section 3.5. The experiment that finds the 
minimum error function value is considered for forecast and multivariate statistical 

analysis. 

3.5.2 Termination Criteria of the Algorithms 

The termination of the algorithm is based on the following criteria: 

(3.3) 

where, k is set to 3. The convergence is checked when k <t3. This implies that the 

function improvement in three consecutive iterations, k , is insignificant. The training is 

tenninated when the relative improvement in error function is less that e = 10"10 in three 

successive iterations. A maximum limit is also set for the total number of iterations/epoch 

as 50,000. The algorithm terminates if it does not converge within this allowed iteration. 

3.6 Final Remarks In Research DC5lgn 

The focus of the research is to provide a theoretical framework on the development of the 

self-adaptive and derivative free training algorithms. Some test problems have been 

selected only to test the performance of the algorithms. The selected problems address a 

variety of characteristics of the self-adaptive and derivative free training algorithms. In 

particular the performance and strength of the algorithms to solve problems in; 
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11.) classification; 

b.) pattern recognition; 

c.) forecasting and 

d.) multivariate statistical analysis 

are evaluated. This will identify the strength and weakness of the training algorithm.~. 

Random starting points inn small and wide range arc used to observe the sensitivity of the 

algorithm to solve different test problems. The objective of the research, however, is not to 

solve a variety of problems and different ANN structures. The focus is the development of 

self-adaptive and derivative free ANN training algorithms. The proposed problems are 
used to test the efficiency of the algorithms in different classes of problems and its 

convergence performance. The data sets for the problems are used without transformation. 

Hence, the ANN configuration, initial staning points and data set arc standardized. The 
objective is to study tbe performance of the algorithms, which require minimum human 

intervention with the data set or ANN configuration or training parameter selection. 
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4.1 Introduction 

A gradient descent self-adaptive back propagation training method, which dynamically 
adjusts variable learning rate is developed in this chapter. A specialized interpolation 

search is developed to detennine the optimized learning rates that do not over shoot the 

minimum. A central difference gradient approximation scheme is developed to provide 
descent direction in training. The descent directions are controlled by the convergence rate 

of the error function. The training method is derivative free in the sense that the derivative 

information of the error function is provided by the central difference gradient 

approximation ~cheme implicitly rather than explicitly. The algorithm solves XOR 

problems and results are reponed. 

The directional vector and self-adaptive learning rate parameter that provide appropriate 

descent to the error function are developed in Section 4.2. The interpolation search in 

constrained space provides the appropriate learning rate. Hence an arbitrary or un ud hoc 
method to select the learning rate i~ abandoned. The algorithm is given in Section 4.3. A 

central difference approximation scheme that uses convergence properties of the error 

surface is developed in Section 4.4. The convergence of the error function controls the 

central difference step size to compute suitable descent directions. The algorithms that 

generate these vectors are presented. In Section 4.5, the first order gradient descent back 

propagation training algorithm is developed using the descent direction vector and the 

self-adaptive learning rate parameter. Section 4.6 shows that the algorithm generates a 

convergent sequence of the network weights and tcnninates at a point, which is a 

minimizer of the error function. The XOR problem is used for the analysis of the 

algorithm in Section 4.7. Section 4.8 provides related discussiotJS. 

4.2 Definitions In ANN Computations 

To facilitate the development of the self-adaptive gradient based training algorithm some 

definitions and properties of the ANN error function are introduced in the following 

sections. ThP. aim is to develop self-adaptive learning rate and implicit descent directions 

for efficient computations in ANN. 
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4.2.1 Error Funcllon 

The notmion J(w) represents the error function, which corresponds to the equation 2.6 or 

2.13 in Chapter 2. The representation fiw1) means that the error function is consisting of 

w1 ,J = J,l,. ... m number of weights. Hence the notations Jr wJ and Jrw 1) are equivalent and 

some times used interchangeably for convenience. 

4.2.2 Error Surface 

The locus of the ANN error functions with respect to w i a (w1 , w1 ,. ... ,w.,) forms a 

geometry that is defined as the response surface or error .rurfoce. For example in £ 1 • the 

intersection of the plane parallel to the w1 plane and the response surface constitutes 

comours with constant function values. If pw1) is continuous, the contours will be 

connected, continuous and smooth curves. 

4.2.3 Algorithmic Map and Iterative Process 

An algorithm contains a set of instructions that performs a defined task. Applying an 

instrucdon on the error function, the current weight vector w1 during iteration or epoch k 

is changed to a new vector wh1. The notation w1 represents the vector of weights during 

iteration k • The instruction generates a sequence of weight vectors with reference to a 

vector preceding it. The instruction that generates the vector is called an algorilhmic mop. 
An algorithmic map M can be described by: 

(4.1) 

Given an initial weight vector w1 , the algorithmic mop M generates a sequence of 

vectors: wh1, w1• 2 , .... , and the process of generating this sequence is called an ilerarive 

process or iterative olgoritflm. 

4.2.4 Setjuence 

A sequence of vectors w1 , w2 , w3 .... , is said to converge to the limit point w', if 

II w1 -w"IH 0 as k -. .... Alternately, for any given r. >0, there exist a positive integer k
1 

such that II w • - w' II< e for all k ";?; k1 , The sequence is denoted by lw • ). The limit point 

w• is represented byw1 -. w· ask-. .. or lim "'• =w·. 
'"" 
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4.2,5 Subsequence 

A subsequence is obtained by dropping certain clements of a sequence (w1 J. A 

subsequence i.~ represented as (wt J , where k1 is the subset of all positive integers, say ., 
k . Suppose that (w •• w6 ,w11 ,wl6' .... (denotes a subsequence in [w1 J

1
,, then the notation 

{w1•1 J also denotes a subsequence represented as {wl, w1 , "'ll'"'ll'""'J by adding I to the 
•• 

indices of all the clements in the sequence (w1 J • . , 

4.2.fi Neighborhood 

Given a relative local minimum w' e 8'" and an e. >0, the ball N,(w')= [w:llw-w'll~£1 

is called the e. neighborhood of w'. 

4.2.7 Global Convergence and Closed Map 

When an iterative algorithm is applied to an error function with an initial arbitrary weight 

vector w1 , at the beginning of iteration k, the algorithm generates a sequence of vectors 

"'ul' "'t~1 , ... during iteration k+l, k+2, .... , .. , and so on. The iterative algorithm is 

globally convergent if the sequence of vectors converges to a solution set n. Consider for 

example the following training problem, where w is defined over £'": 

minimize f(w) (4.2) 

subject to: we£"', 

Let, ne £"' be the solution set, and the application of an algorithmic map, A, starting with 

w1 generates the sequence "'t+t•"'~+ 1 , .... such that <"'w•"'~+l"'")eO, then the algorithm 

converges globally and the algorithmic map is closed over 0. 

4.2.8 Descent Funclion 

To define a descent function, consider the minimization problem stated above. Let o be a 

non-empty compact subset of E"', and if an algorithmic map generates a sequence: 

[w1 ]en such that Jrw) decreases at each iteration while satisfying 

Jr w1 l> Jrw1+1) > Jrw 1H) , •••• , then the function Jr w ) is said to be a descent fimctiml. In 
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ANN computation tlr error function /(M') is il\~umcd to be a des('ent function pa.•;scssing 

convexity property due to the results given in Hecht-Niclsen ( 1990). Using this result we 
cnn define a descent direction along which the error function can he minimi~.cd and state 
the following proposition to demonstrate this. 

Proposition 4.1 

Suppose that f; E"' -+ E 1 w1d the grodielll, Vf(w), is defined then there is a vector d such 

that Vf(w/d<O, (11/d j(w+l)dJ</(w):liJE(O,Ii).li>O). then the vector d i.f a de.mmt 

direction of f(w). 

Proof 

Expanding the error function f(w) by Taylor series and neglecting higher order terms, the 

following expression can be obtained: 

/(w +Jjd) = j(w)+TjVf(w)r d . 

nnd therefore: 

Vf(w)r d. 

Since Vf(w)r d < o, then for li > 0 and T/E (O,Ii) we get: 

/lw+~([(wl <0, it follows then j(w+Jjd)!;f(w). This implies that d is the descent 

direction in ANN computation 0. 

4.2.9 Directional Derivative 

(4.3) 

(4.4) 

In ANN computation the direction along which the error function decreases is 
conceptualized by a vector defined as directional derivative as shown in the following 
section. 

Let, I: E"' -+ E1 , weE"' and d is a non-zero vector satisfying {w+1Jd)e E"', 11 > o nnd 

IJ-+ o•. The directional derivative at w along the descent direction d is given by: 

V'(w·d)=lim [lw+fl'l't-/lttl 
J• ~...a· q. 
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Assuming the error funclion is smooth and continuous, we can define its directional 

derivative from the following proposition. 

Proposition 4.2 

Let f; E"' -t E1 is a descent /WJction. Con.~ider any point wE £"' and dE£"': d ;< 0. 

T!Jen tile directio11ul derivative Vf(w;d) of the error j1mction f(w) in the direction d 

always exists. 

Proor 

Let 111 and lfz are two arbitrary quantities that denotes the learning rate such that 

71J >1J1 >0, since .f(w) is a descent function and posses convexity property (Hecht· 

Nielsen, 1990), we get the following expressions:. 

(4.6) 

This inequality implies that: /)w1 +~1 4)·/lw):!) /(Wfflf)-//w) • 

~. ~. 

Thus, in general, [ ll••"qJ-/I•Jl always decreases as 11-+o•. Again due to descent property 

of the function f(w1 ) for 11 >0, we have: 

/(w) = f[l(w -d)+-'- (w +7jd)} 
t+1J t+1J 

and hence: 

S ...!L.. f<w-d)+-
1
-J(w+1jd). 

IHJ l+l'f 

Simplifying the above expressions we get: 

(4.7) 

It 'implies that we have a sequence generated as: (/r•+q!J-/IwJl that converges as 'I-+ o• 

' 
and k-+ ... and this convergence is bounded by [/(w1 )-/{w1 -d1 )] from below. 

Therefore, the directional derivative is given by Vf(w·d) .. lim l!w«)!J-/<•J o. 
' q->0' q 
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4.3 The lnterpolalion Search Map 

The central theme behind the BP computation is the computation of the search vector d 

and the learning rule parameter 'I in weight space towards the minimum point. Since the 

exact location of the minimum point is not known, there is an uncertainty in identifying 

the boundary or region in weight space over which the search may explore. The 

uncertainty can be reduced if we can eliminate the sections of search boundary (Kiefer, 
1953), which do not contain the minimum through >IJI interpolation search in a constrained 

interval. Therefore, what we need is a search map that explores the constmined region of 

the error surface. The search map samples the function value on the error surface in 

discrete length with a given direction. The following definitions arc needed to describe the 

interpolation search map. For convenience we define the notution: 

(4.8} 

Now consider a training problem with ANN error function defined by: 

'l.t "arg[min/(w+fl</l] ; subjed to: IIJ e L (4.9a) 

in a closed interval L= ('I: 'I e E 1
]. The interpolation map is defined as A: E"' xE"' -t E'" 

such that: 

A(w,d)=[u:u=(w+lj d)l1!] E L (4.9b) 

f(u)"' mlnf{w+'l d); Subjoxlto: 11" a1je L. (4.9c) 

The map A produces the descent directions. The map should be closed as set value 

mapping (Luenberger, 1984) such that an appropriate learning rate is obtained, The 

following proposition shows that the map A is closed over the interpolation search. 

Proposition 4.3 

Let f: E"' -+ E 1 be the error junction. Then the interpolatiou search map defined above is 

closed at A(w,d) ijd .. o overthedefinedsearchinterval L=[lj:ljeE1]. 

·~· 
Let k be the iteration counter and suppose that the sequence (wll and (dl J arc such that 

wl -t w•, d• -+d' and d" .. o so that the search is active where ,.,• and d' are considered 
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us the limit points. Let u1 e A.(w1 ,d1 ) and u1 ~ u' a.~ limit point. The mapping is closed 

when u'EA(w1,d1) and this is what we need to demonstrate. Now consider an error 

function that has produced a sequence of [u1 1 a.~ k ~ ... The sequence of iterations is 

generated as: {u4 ]"{w4 +rJ1d 4 ) provided thnt d 1 .. o. The leaming rate parameter can be 

expressed as 'It =!C.!!., We know that f(w) is a descent function in BP, therefore, as 
'· 

k~ ... 171 ~tJ·. The notation tJ' i.~ the limit point. Also Jet u, ~u, w, ~~~ and 

d1 -td ask-too, It follows then, tj'=';" or alternately, we have •• =w +rJ'd. 

Suppose during iteration k , 'lt e L, then I!' e L and u1 -t u' as k ~ .... Now denote 

u'• Uk•l• for the training function, as k• • The mapping, therefore, satisfies 

j(uu1)S.f(w1 +1)1d1 ). Consequently we have, f<uu 1l !'.f(w1 +l)'d1 ) and hence (u1 ) is a 

convergent sequence. The sequence [u1 J is derived from the map A. and therefore, 

u,~ e A(w1 ,d 1). It foHows that the map is closed 0 . 

4,3.1 Interpolation Search by Sampling Error Surface 

The requirement that d "'0 is imponant in the search. If d = o, then theoretically algorithm 

must have converged to minimum point or no search direction is generated. Now consider 
the following training problem: 

minimizcj(w), Subject to: weE"' 

and transform the problem in the form: 

11' ='11 a arg{minf{w1 +T!1d 1 >} 

subject to: IJE L. 

(4.10a) 

(4.!0b) 

The problem is solved; setting the value ofthe vectors w 1 and d 1, while the value of IJ; is 

adjusted such that f(w1 +,.,1d 1 ) is minimized. As IJ(-IJI is varied, J(IJ) fonns an 

equivalent error function for the given value of w 1 and d 
1

. To detennine the learning rate 

evaluate the training function at three different points 1)1 , rj1 and 1)1 as /(1)
1 
;, f(rh J and 

J('l'/1 J respectively. The search involves bracketing the minimum learning rate with other 

relative minimum points in a close neighborhood. An interpolatio11 through these points 

forms a convex function that picks an approximate learning rate parameter as shown in the 
following proposition. 
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Proposition 4,4 

Let 1)1 ,rh,l)1 btt thtt tflrtte rellllivtt /ertming ruttt parumeler.\' de[i11ttd over aflmctirm flll, J 

that /(1) 1 )<./(1)1 ) and /(1)1 )>/(1)1 ), Given a search map at currem iterate k, w1 and 

d 1, tile oprimum teaming rate Ia tile prahlt!/11.' minflw 1 +q 1d 1 ),subject to q1 E L is given by: 

(4.1]) 

Select a search direction d1 for a given j and set rj1 rw1 to detennine /(1)1 J, Now the 

value of 1)1 is expressed as 1)1 =(l+a1 )1j1 with respect to an appropriately defined 

percentage factor ll1 such that the condition: .trl)1 /< /(1)1 / holds. It implies that the value 

of 1)1 is a1 % greater than rj 1 • If the condition fflh J <. Jfrj1 J is not satisfied at this stage, a 

lower value of 1)1 with respect to Jj1 is gener.tted. The gradual adjustment of the 

parameter forces the condition /(1) 1 )<. /(lj1 J to exist. The search verifies the condition: 

(4.12) 

Next the point lj1 is determined as Ji1 =(l+a1 )lj1 , such that /(1)1 J > ff1)1 J. This is done 

gradually increasing the value of a1 in comparison with the value of a1 • The trial process 

fmally identifies the condition: 

(4.13) 

Now define a quadratic function in 111 along the dircctionj. Consider that ¢0 .-1>1 ,.p" are the 

parameters of the function expressed as: 

(4.14) 

Let us assume that /(T! ) takes the function values f(rh ),ff1h ),Jfl)1·) at three different 

positions 11 arj1 ,1)1,1)1 , Therefore, we can write the following relations: 
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/(~1 )=fo +9, (rjl )+fz<lifl 

/(~J) =fo +9, (lj1)+4':!1ii> 

f<~.d =% +~ (~_,)+9, <Iii>. 

Using the above relations following results arc derived: 

fo = [liJij,(ljJ -lh)/(lj, )+~,rj, (ljl -rj,)J(rjz)+rj,rjz(rj,-ljl )/(lji)J 

<li1 -ri .• ><lirliJ)(JjJ li1l 

9 = [(rj;-lj})/(rjJ)+(Ijf-ljilf(ljzJ+(Iji rill/(lj,)J 

I (ljl -ljJ)(Ij, -ljJ)(IjJ -Jj,) 

(4.15) 

(4.16) 

(4,17) 

(4.18) 

(4.19) 

(4.20) 

Suppose that tl' is the minimum point of the equation 4.14. Then the condition that tl' is 

minimum point requires ;, > o. Therefore it follows that: 

'l'"'-1!._· 

"' 
Consequently: 

, I [(ljj lj~)f(lj,)+(ljJ ljj)/(ljz)+(lj~ -lillf(ljJ)) 

'l = 2 (lj1 -lj1 }jf1jt )+(ljJ li1 lll'liz )+(1jt -liz JRijJ J 

The corresponding condition that 'l' is minimum, is therefore: 

[(ljJ liz)f(ljJ )+(ljl -lj,)f(ljz)+(ljz-ljJ )/(lj_,)) >0. 

(ljl 1jJ)(Ih-IIJ)(JjJ ljl) 

(4.21) 

(4.22) 

(4.23) 

Further define a quantity a0 in relation to the minimum point 'l' and lj1 such that the 

following relation exists: 

(4.24) 

The value of a0 is determined from the above relations. Simplification and some 

rearrangement results the following expression: 

Ug=J.raf-aJJRijtJ+ailfl'lz) a;f(rj_,). 
2 (a1-a111l'1it )+azftljz )-a1/(ljJ) 

The optimized value of tl' is therefore given by: 
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4.3.2 Difficulty in Interpolation Search and its Correction 

The method described in Section 4.3.1 repeatedly monitors the error surface to determine 

the variable learning rate. Since it takes into account the shape of the contour surface, an 

appro;Jriate learning rate is therefore possible to obtain. One possible difficulty inherent 
with this method is that during training the error function will not always behave as a 

quadratic function and the interpolation method may not produce correct results. Further 

away from the minimum point the value ofT/' "'(/+a0 )lj1 may actually be trTJ' }> fti!1 }. If 

this happens, it is corrected hy re-evaluating the minimum point as TJ' =(l+a1 )1j1 so that 

j{iiJ J< trrj1 ). A proper values of a0 ,a1 ,a1 would uniquely \.lound the value of TJ' in 

relation to rj1 and i!J. The quantities a0 ,a, ,a1 are expressed as relative percentage factors 

with reference to a trial point. 

4.3.3 Algorithm to Determine Self-Adaptive Learning Rate Par.tmeter 

The algorithm that detennines the self-adaptive learning rate parameter by interpolation 

search is described next. 

lnitialiwtion: 

Step: Ia Set j +- 0, and e +-0' as tenni11atio11 criteria o11d p +- o• as inurpolotion searc/1 

Step:/b 
Step:/c 

Step: 2 

Step:3 

Step A 

precession factor. Set 8_1 +- .Ot, i ~ 0, let m "'"umber of ANN connection weights, 

set teaming rote parameter in directionj, is defined by TIJ a{T/1 ,I'!J, .... ,IJ.,) +-.0. 

Set 81 (-4, 81 +- 2.5, Initialize w ""'J !!(w1,,•1,. .... ,w,.). set 

dad 1 s(d 1 ,d1 , ..... ,d..,) +- 0. 

I./Set, j~j+l 

1.2 rj1 +-w1, d1 +-1, [1 +-}fw1+rj1d1 J andpe•farmnextstep 

2./ a1 +-83 

3.1 rj1 +-(J+a1 )111 

4.1 [1 +- j(wl +rj2d J ), if / 1 < / 1 perform step 5, else 

4,2 a1 +- 61 (a 1), if' I a1 k P, perform 8, othenviu perform step 3 
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Step:S 

Sup:6 

Step:7 

S1ep:8 

Step 9. 

6.1 u1 +-(61 )u: 

6.2 Ji.1 +-/I +u1 }lj1 , f1 +- ftw +lj1J 1 ), if [ 1 > / 1 peiform step 7, rlllicnvi.1·c 

6.3 a1 +-a1 , f 1 +-f,,repea/51ep6 

Fiud o0 

71 
I (uf -ai ))l'lj, )+aiJ!Ji, 1-afJIJjJ) 

• oo+-
2 (u 1 -u2 ))1'1)1 )+a1JIIj1 )-D1ftriJ I 

7.21)"+-(/+<>oJi/1 , [ 1 +-Jiw1 +1)jd1 J,if f 1 <f, peifarmsrep2,ot/ielwiusel 

l)"+-(l+a1 )1j1 and [1 +-ftw1 +1)jd1 ),sollrat [ 2 <!1 OJidpeiformstep2. 

7.3 lfl/1 - [2 IS:e, peiform Slef/8, mlrenl'ise, 

7.4 Set j +- J(w1 +r)"d 1); and mmriror error Ju!Jctimr vo/ue 

7.5 dratJge a11d peiform srep lr:. 

8.1 set d1 10 (d1 ,d1 ......... ,d,.) +-0, If j = m peifonn srep 9, else, peiform slep lb. 

9.1 Set k +- k +I ,for next iterariot!. (d 1 "'d1,d2 , ... .,d.,) +-0, sel j +- 0, peifonn 

step lb. 

Table 4.1 The interpolation search algorithm 

4.3.3.1 Interpolation search Algorithm Implementation 

To begin the interpolation search, first set the equation 1)1 =(/+a 1}r) 1 and sample the 

function value f(lj 2 ) by a factor a1 =OJ =0.01 relative to the initial position 7) 1 . If the 

sampled function value is greater than the initial position, the factor a1 is adjusted 

depending on the condition of the error surface by the factor ±01 , which is set us 

a1 =a1 •01 , where 01 =4. If the new sampled function value is less than the initial 

position, the factor a2 is magnified by 0 2 =2.5. A new location 7),, is now sampled with 

reference to the initial position lj1 defined by 1)1 =(/+a1 )111 to force the condition 

f(f'IJ)>/(1'1,). Otherwise, reset the value of <J 1 (-a1 and reset the function value 
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j(~;l t- j(ib) and ugain attempt to evaluate the function in other different loc~tion ~uch 

that the desired condition is found. When the three sampled error surface locations arc 

suitable according to the proposition 4, the best learning rate is determined according to 

the expression given in proposition 4. Due to the complexity of the error function if we get 

the condition J(rj1)>f(rj1), it is corrected by setting 11' =(1+a0 )1j1, provided it satisfies 

all other conditions. 

4.4 Development of Descent Diredions in ANN 

The objective of this section is to construct normalized descent direction for ANN 
training. It will be shown that the normalized direction provides descent to the error 

function. Let d beam dimensional vector defined ~s d .. (d1,d1, ...... ,d,.) to a function 

f(w) at w, then there exist a scalar li>O such that /(w+fld)</(w)for all l)e(O.li). If 

[(j(w+ijd)- j(w))/ij]<O, then d is a decent direction under the limiting condition 

1J --tO+. If the function is differentiable at w with non-zero gradient, then i:J/;J is the 

normalized descent direction. The following proposition supports this. 

Proposition 4.5 

For a differentiable error function f(w): E"' -+ E1 a/ w; there exist a noll-zero gradient 

Vf{w) such that the sreepest descem direction d' •d' a -V/
1
"

1 is the mi11imiwtio11 
I 1'~'11•1] 

direction to the problem ofthefoml.' 

minjj'w1 +1)1d 1 J (4.26) 

subjecl/o ~+:;1, 1)1e{O,li), 0>0. 

·~· 
For a differentiable and continuous descent error function j(w), the grndient at w with a 

learning rate !JE (O,li) in direction d (according to proposition 4.1) is expressed as: 

lim l!wff!IJ-flwl Vj{w)T d. 
~-+0' Q 

(4.27) 

To prove that dis a descent direction, the condition Vf(w/ d <0 must hold (proposition 

4.2). 

Using Schwartz inequality with l~lls I, we obtain the following relation: 
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(4,28) 

When d' a Ph<;~; the ubove inequality is satisfied and the given function is minimized 

using Vf(w);-d subject to ~~~ !i 1. Therefore the directional vector d' ., ;h<:4 that reduces 

the function value is the steepest descent direction 0. 

4.4.1 Approximation of Nonnallzed Descent Direction 

The normalized gradient of the error function is computed using the central difference 
approximation scheme. Once the gradient is found, the normalization is a routine 

procedure. The step size of the difference scheme i.~ controlled hy the convergence rate of 
the function value. The central difference gradient approximation is discussed next. 

The property of the error function J(w) depends on the ANN weights in different layers 

explicitly. The error function f{w) is said to be differentiable at weE"' if aj{w) exists a., 
for all )= t,2, ... m. The gradient of f{w) at a trial point w is defined as 

VJ(w)= [af{w), aj{w) ....... ilf{w)lr. TO compute the gradient of the error function /(wJ 
awl awl aw., 

each parameter is varied independently in the neighborhood of the trial point to yield an 

approximate value of the partial derivatives. The error function is perturbed by an amount 

If 1 and its consequences are determined. Define a quantity 'I' 1 is relation with the 

convergence rate p and the step size, " 1 , according to the following expression: 

(4.29) 

where, 

(4.30) 

is the rate of convergence of the error function and 'Y'; is an arbitrary vector containing m 

values to be set at the beginning of the algorithm's execution. The values of this vector arc 

the percentage factors that are related to the weight vector w J' Hence the value of 111 is 

related with the ANN weights by a factor and can be defined as: 

·56-



(4.31) 

The quantity (ftJctor1 ) has a magnitude of the order 10"1 to to-< and depends on the 

magnitude of the weights. The gradient approximation scheme is explained below. 

Proposition 4.6 

Iff: we£"' is cominuously differe/1/iab/e, then for any tWtHero perturbatimt 111, during 

trai11i11g iteratioll k tlte directional derivalive of f(w1) at w1 ill direction d1 is defined by 

,fc'c'"L' c•c'l'~i,cl0-"fc<c'"L' _-:'L''"'-, ' d1 s-V/(l•'j)a--
><; 

(4.32) 

Tire tenn rr1 is tlte controlled central differel/ce s/ep size a11d 71 s{71 .11 ...... ,7,.)7 is the 

colum11 vector of 1 in tire 71h efeme/11 and zero elsewhere. 

P~f 

Consider the Taylor series expansion of an ANN error function f<w1 +:rr/1 l and 

f<w
1 

-:rr 171 ) around w1 with small penurbation :rr 1 as shown in 4.33 and 4.34: 

(4.33) 

{4.34) 

Subtracting 4.33 from 4.34 we obtain the following result: 

(4.35) 

and this proves the proposition o, 

4.4.2 Issues in Central Difference Approxlmalions 

The appropriate value of Y'J plays a significant role in approximating the gradient 

information. Large value of 'I' 1 would cause instability in the approximation process and 

very small value would slow the convergence. Hence an appropriate selection of If 1 
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would be ncces~ury. This may vary from one problem to another. A simulation experiment 

determines the appropriate values of II' 
1

• The finite difference step size is also controlled 

by the convergence rate of the error function. Depending on the shape of the contour 

surface the convergence rutio changes and therefore the central difference step size is 

dynnmicnlly adjusted. A simple approach is to U!ie the value recommended in Section 

4.4.1. 

4.5 The Self-Adaptive Back Propagation Algorithm 

The error function describes a hyper surface in m dimensional spuce. The truining aims at 

searching the space to locate a minimum weight vector. Usuully, an error function 
contains more that one local minimum (Bishop, 1995). If the search space is restricted to a 

region in which it is known that there is a local minimum then a deterministic or stochastic 
search method (Ma ct al., 2000) can be employed to locate the minimum. The proposed 

gradient descent training generates search directions from the proposition 4.6. The value 

of the central difference step size 11
1 

= Pll' 1 is chosen such that the minimum is reached in 

few steps. As the search converges to minimum, the magnitude of 111 is modified to adjust 

the direction. All the weights w 1 are adjusted according to the magnitude of the learning 

rate determined by constrained search so that the resultant direction of travel in parameter 

space is along the descent direction of the error surface. The results of the previous section 
provid~ ~s the direction vector whose components arc the rtes at which the error surface 

decreases most rapidly. 

To determine the gradient, the variation of f(w) in the neighborhood of a trial weight 

vector is sampled independently for each parameter. To find an approximate value of the 

partial derivatives, the amount by which w 1 is changed in order to determine the 

derivative is kept smaller than the step size II' 1• During the progress of training the value 

of p is set to 11"•·•!. The gradient components are sampled according to the convergence 
11~,! 

rate of the error function. This provides a mechanism to approximate the gradient 

according to the local condition of the error surface. The gradient has both magnitude and 

direction. If the dimensions of the parameters w 1 are different, the components of the 

partial derivatives are also different in dimensions. The direction, which the proposed 

gradient descent back propagation follows, is the normalized gradient of the steept;!st 

descent according to the proposition 4.5 and 4.6. 

The search begins by incrementing all the parameters by an amount 111 in direction 

d 1 = -,'1'/l,.,! • If the sampled gradients are fairly approximate, the method is reliable. The 
l'f(Wj'/l 

advantage of this method comes mainly from the proposition 4.6 and 4.4. The proposition 
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4.4 and 4.6 choose its own learning rnte and descent direction. Thus the user is ~pared 

form the problem of trying to optimize the learning rate for convergence and precision. 

The interpolmion search over the error surface improves the precision of locating the 

minimum. The self-adaptive gradient descent BP algorithm is described in Table 4.2. 

lnitialiwticm: 

a.) Set a termitration criteria p (- O', iteration cmmter k oE- I, 0 +- O' (as o 

perumagefactor), j (-/ , set limit to the iteration number as 50,000 and let w*=1 

be the initial vector, execute step!. 

Step I Determine directimr of searr:h by Cemral difference 

a.} Set, tr 1 = PV'J, p = l<~ .. rr and VfJ = (/actor1 )• w1 /<•,I 

/(w1 +tr/1 )-f(w1 -n/1 ) 
b.) VJ(w1 )(- _ 

'brill 

c.) If j=m,perfonnstep2e/se j(-j+l andrepeatstepl 

Step 2: a.) Set, j (-t 

c.) d 1 (--Vf(w1 ) 

d.) If lf!Cwl~~<p, stop m1d reJWrt wl as the sol/Ilion, otherwise perform 

imerpo/ation search. 

Interpolation Search: Petfonn interpolations search according to Table 4.1 and 

select adaptation length '11 at iteration k. Solve the following minimizario11 

problem: 

a.) 1J ;omin/(wl+llldl) 
.~ 

Step3: a.) j(-t, k=k+l and perform step/. 

Table 4.2 Self-Adaptive Back Propagation Training Algorithm 
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4.6 Convergence of the Algorithnl 

We need to consider a composite mapping for further analysis in back propagation 

convergence. It is demonstrmed in this section that the algorithm terminates at 7-tro 
gradients and hence the algorithm converges. We note from Chapter 2 that the error 

function of interest is a complex geometry. The fo!lowing section shows that the proposed 

self-adaptive algorithm converges to a local minimum point while satisfying the first order 

condition. This is done through a composite algorithmic mapping. It exploits the propertY 

of a closed mapping in ordcrto generate a convergent sequence IJ<w1 Jl . The convergence 

characteristics of the proposed training method are discussed next. 

Given a current weight w.l at iteration k the next weight at iteration k +I is dt•tcrmincd by 

the algorithm as wup the subsequent iterations generate the sequence wH2 , w1+1 ••• and 

so on. Moving in direction d.1 =-V/(K'.t) and determining a learning rate q1 the 

interpolation search produce this sequence. The error function /(w), therefore, generates a 

sequence according to the following iterate: 

(4.36} 

As usual d1 is the negative gradient vectm at the point w1 • The sequence generated by the 

equation 4.36 converges to a local minimum point in the proposed training. The following 
proposition provides sufficient condition for convergence. 

Proposition 4.7 

The proposed self-adaptive back propagatio11 trai11i11g algurithm generales convergent 
seque11ce and terminates at a point with zero gradiems. 

Proof 

Let n be a solution set such that O=lw':Vj(w'J=OJ. Define the algorithmic map 

M =LA, where A[w, Vj(w)] is the map that detennines the descent direction and L is the 

interpolation search lllllp. Assume that the derivative of f{w) is available, then A is 

continuous. Furthennore, L is closed by the property of interpolation search due to 

proposition 4.3. Since A is continuous and L is closed, the lllllp A[w , Vf(w)] is closed at 

w. The overall map M is therefore, closed at w . Using these properties and with the help 

of proposition 4.3 and 4.5 we have lim flw,+~,d,l-flw,l Vf(w)rd<O. Hence we have a 
~· .... o• ~. 
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vector which points toward~ the minimum tmjectory. Since d is~ descent direction, we 

have f(wJ +l!id1)</(w1) for 'It E(0,6) and 6 >0. Since the map M(w 1 ) is closed, the set 

value mapping is finite. Hence, we get the limit points w1 ... w' and (w1 +rj1d1)e M(w1). 

The map Ill therefore gcnemtcs a convergent sequence defined a~ (w1 •TJ1d 1 1 or simply 

]w1 ). Therefore, a~ f(w1 +TJ1d 1 )-+f(w') for some value of .1:-+-, and the convergent 

sequence ]w1 1 generated by the self-adaptive BP algorithm converges to a limit point w' 

with zero gradients 0. 

4.6.1 Convergence to Local Minimum 

The result in previous section shows that the proposed self-adaptive back propagation 

algorithm converges to zero gradients. It implies that the error function f(w) is minimized 

sequentially. Consequently, the proposed algorithm terminates at a local minimum. The 

following proposition is put forward to demonstrate this. 

Proposition 4.8 

If the limit of sequence wJ converges to w' and if the first order partial derivatives of 

/(w) exists witlr respect to ali network weight parameters i11 the neighborhood of w' E w 

then f(w) hasaiocalminimtunat "'"'"''· 

By contradiction, assume that f(w'J is not a local minimum of J<w ), then [V'f(w')]1 >0. 

Since the first derivative V'f{w) ofthe error function is available, there exist the numbers 

p>O and 1!>0 such that: 

i). [V/(w))rV'/(u l 2!: J1 > 0 for all w and u in some neighborhood of w'; 

ii), If w1 is a point in this neighborhood, then "'J•I is also a ne:g;,:;.;;!lood point where 

~~'u1 =wJ -111 Vj(wl). 

Suppose that the error functio11 is a desce11t function and the sequence w1 to wh, 

generated by the algorithm changes the function value. Then by the mean value theorem, 

the following condition holds: 

(4.37) 
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In equation 4.37, the coefficient -171 is at least f! from (i} ami (ii). Thus, the sequence 

generated by the algorithm 11' 1 to ~~'it~, decreases the function value f(w) by at least T11 JS.. 

There 11ft! infinite sequences of [w1 1 in any neighborhood of w'. Since lim w1 = w' , 
'"" 

hence, by applying the algorithm for successive values of k , the error function value 

f(w')-to--, which contradicts the fact Vf<w') exists. The as.~umption that f<w') is not 

local minimum of f<w) is therefore false, and the proposition is proved 0. 

4.6.2 The Rate of Convergence of the Algorithm 

For any we E"' the self-adaptive BP in quadratic case converges to the unique minimum 

point w' of f(w). Since the proposed self-adaptive BP is similar to the first order gradient 

descent algorithm, the following inequality in 4.38 exists (Luenberger, 1984): 

lf(wi+,~ S (A-.:r r 
lf(w1 ~ A+a 

(4.38} 

where, A and o are the largest and lowest eigenvalues of the Hessian matrix H which is 

assumed to be positive defmite. The convergence of the self-adaptive BP algorithm will 

slow if the contours are more eccentric. If A =a, the contours arc circular and the 

convergence is achieved with less efforts. Corwergence will slow, if the eigenvalues are at 

a greater distance (Luenbcrger, 1984). The above relation suggests that the self-adaptive 

BP converge linearly with a convergence ratio no greater than [(A-o)I(A+aW. The ratio 

Ala of the largest and lowest eigenvalue determines the condition number, which 

influence the convergence rate. The convergence ratio can be represented by 

($:J = ~:;:~:Y. It is this factor by which the error function is reduced per iterations. 

The ratio Ala governs the convergence in the self-adaptive BP algorithm. The 

convergence becomes slow if the condition number is high in magnitude. It is investigated 

in Chapter 7 with a seasonal time series problem. 

4.7 Perfonnance of the Self-Adaptive BP Algorithm 

The computational experience with the proposed algorithm and its convergence behavior 

is discussed next. The XOR benchmark problem is chosen to demonstrate the various 

aspect of the convergence of the algorithm. A trained 2-2-1 XOR is displayed in Figure 

4.1. The zero input to the hidden layer is approximated as w·s. Sample calcuhllions arc 

shown in Table 4.3. 
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4.7.1 Learning Rate for Standard Buck Propagation Method 

To select a suitable learning rate, an experiment with XOR problem is carried out. The 

initial starting weight is the same but the learning rate is changed from one experiment to 

another. The simulated results arc given in Table 4.4 with learning rate and its effect on 
function value, number of epoch and number of function evaluations. This experiment 

suggests a reasonable value of the learning rate is 0.1, which is a bargain between epoch 

number, function evaluations and terminal function value. The value marked with(*) sign 

indicates that the training is not converging with the predefined convergence criteria as 

discussed in Section 3.5.2 in Chapter 3. 

!.ll 

Flgua ~./ . ..1 lruln~d 2·2·1 ..INN XOR 

Trained XOR 

xr-1 = 0' xr1 =0' /lr-1 = (2.13)*0+(.40)*0=0~ 10"1' hf~1 =(.33)*0+(3.13)*0 = 0= w-$ 
ci1 =~=-Q.D78, cr1 =~=-Q.D78, 

z{"1 = (.085)*{-Q.078)+(-Q.098)*(--D.D78) = 0.001 

x{"1 = 1' xr1 "'0' h/.1 "'(2.13)*t+(.40)*0 = 2.13' ht
1 = (.33)*1+(3.13)*0=.33 

g{"2 =~=0.569, cr2 =~=-9.2027, 

z{"2 = (.085)*(.569)+{-.098)*(-9.2027) = .95 

x(•l =0, xf•l =I, h{"3 =(2.13)*0+(.40)*1 =.40, hrl = (.33)*0+ (3.13)*1 =3.13 

g{"1 =~=11.95, cr) =~=0.467' z{"l =(.085)*(11.95)+(-.098)*(.467);;:.97 

xf,.. =I, xf•4 =I, h{'·• = (2.13)*1 +(.40) 0 I= 2.53, 11r• = (.33)*1+(3.13)*1 = 3.46 

cr' =~=.5186, c: ... =~=.4461' zr ... =(.085)*(.5186)+(-.098)*(.4461);;:0.00036 

Table 4.3 Sample calcu/ation.r with XOR (2-2-1 ANN) problem 
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llxpcrimcnl Number 

~:r-~ L~---14 [t I r._li Is~ I 10 I Ill 12_ 
L. Ra1c o.os1 0.1 ~-2 o~3 i o.4 ! OLI_o.r.. 1!,7 ~·~- ~ 

Funclion 0.000 I 0.00050.()(1060.05000.0 1600,09 100.06000.1 H,.34000.29000.341Xf43 

Voloo 1111 ~~-~ I llcmtion~ - S()O()(l• .511(>4' '"706T9tJ-glf' -,- -iiii- --6 n- -,-j-:iiJ 25 -

Funcli~n 15()()()0'!6866•1 4950 [ 71 i 2714 43 1275[ 50l 519 36 1155 [1113 
Evalual•oo : , 

Table 4.4 Leami11~ rate 1111d trainin~ perfonr :mce in sta11dard back propa~atioll 
method [(•) indicate.~ tminin~ i.r 1101 conver~i11~j 

Table 4.5 Convergence Willi 2-2-J ANN XOR problem with star/big we/or 
(-.1,.2,.2,-,3,. 1,.2;Tit.dng self-adaptive BP training 

4.7.2 Analysis with XOR Problem 

The self-adaptive and parameter free training algorithm is tested with 2-2-1 ANN 

configuration XOR problem. Figure 4.2 displays the self-adaptive parameters generated 

by the algorithm, while Figure 4.3 shows the convergence of the algorithm with reference 

to the number of epoch/iterations. The input data for the XOR problem corresponds to the 

subset of the Table A.l in Appendix A in rows l, 2, 3, 4 and column 4, 5. The random 

starting weights w1 =w1 ,w2 ,. ..... ,w6 arc taken from the Table A.2 in Appendix A. The 

learning rate ~~ 0.1 for the standard back propagation training. 

The self-adaptive parameters and descent directions are computed according to the method 

discussed in Section 4.3 and 4.4 with starting vector (-.l,.2,.2,-.3,.1,.2)r. Sample 

calculations are shown in Table 4.5. Figure 4.2 shows the self-ad:!plivc learning parameter 

chosen by the algorithm. It reduces the function value monotonically as shown in Figure 
4.3. 
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4. 7.3 Random Starting Weights in the Wide Range 

Table 4.6 shows the resu lts with random starting points that are according to the Table A2 

in Appendix A. The average epoclh, function evaluations and gradient evaluations are 

151.8, 916.8 and 2601.1 respectively. The corresponding values with the standard back 

propagation method are 5142.3, 5144.3 and 3086l.8 respectively. The median 

performance of the proposed algorithm with epoch size, function evaluations and gradient 

evaluations corresponds to the values 17; 108 and 206, while with the standard back 

propagation method these counts alt'e 3579, 3581 and 21480 respectively. The standard 

deviations are higher in magnitude and suggest that some experiments show worst 

performance. The experiment number 2, for example, with the proposed method shows 

bad performance. It is due to the fact that the starting points are not in favorable location 

in the error surface or the algorithm 1face geometry where the convergence is difficult. 

The maximum and minimum epoch sizes are 1349 and 6 respectively with the proposed 

method. The rnaJlimum and minimum numbers of total function evaluations including 

gradient evaluations are 31896 and 126 respectively. The related value _of the range 
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statistics is also wide and hence it suggests that there arc considerable variations in the 

experimental results. 

The simulations with the standard BP method show that the maximum and minimum 

numbers of epoch sizes arc 17434 and 15 respectively. The corresponding figures for the 

total number of function evaluations arc 122046 and 133 respectively. 

Table 4.6 Comparison with standard back propagatiml method (2-2-1 :ANN XOR 
problem: starling poilU in wide rm1ge) 

4.7.4 Random Starting Weights in the SmaU Range 

It is relevant to point out that the random starting points in a small range of magnitude 

influence the average performance of the algorithm. Ten simulations are carried out to test 

the proposed training method and the standard BP algorithm with small random starting 
weights. The corresponding simulation results are shown in Table 4.7. 

Tile average epoch, function evaluations and gradient evaluations are 10.8, 124.5 and 70.8 

respectively. The corresponding values with the standard back propagation training are 

463.6, 465.6 and 2787.6 respectively. The median perfonnance of the proposed algorithm 

with epoch size, functiun evaluations and gradient evaluations corresponds to the values 

9.5, 108.5 and 63, while with the standard back propagation training these counts are 25.5, 
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27.5 and 159 respectively. The related ~tandard deviations Me low with the proposed 

method and suggest consistent performance. The standard back propagation show high 

magnitude in standard deviations and therefore inconsistent behavior is expected. 

Table 4. 7 Comparison with standard back propagation mer/rod (2·2·1 ANN: XOR 
problem: small rage weight) 

Refer to the Table 4.7 and note the maximum and minimum numbers of epoch are 20 and 

3 re5pectively. The algorithm in some experiment trains the XOR with as !ow as 3 

numbers of epoch. The maximum and minimum numbers of total function evaluations 

including gradient evaluations arc 342 and 78 respectively. The algorithm thrt purely 

operates on gradient information should take into account the efforts of gradient 

evaluations including function evaluations. 

In standard back propagation training, the maximum and minimum numbers of epoch are 

2687 and 20 respectively. The corresponding figures for the total number of function 

evaluations are 18817 and 148 respectively. 

4,7.5 Compllrison with Standard BP Method 

The simulation results show that the convergence of the algorithm is influenced by the 

small magnitude of the starting points. The average number of epoch is 10.8 when 

experimented with small magnitude of starting weights. The simulation with wide range of 
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starting points results average number of epoch as 151 .8. The proposed method trains the 

2-2-1 XOR problem efficiently with small magnitude of random starting points. 

Q.l 
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Figure 4.4 Comparison with different training methods 

The results suggest that the proposed method is faster than the standard back propagation 

method when simulating in the small rage of starting weights. The efficiency of the 

proposed method over the standard back propagation method in average epoch, gradient 

evaluations and function evaluations are (463.6/10.8) 42.9, (2787.6170.8) 39.4 and 

(465.6/124.5) 3.74 respectively. The magnitude of the random starting points affects the 

performance of the proposed and the standard back propagation algorithms. The relative 

efficiency in total number of function evaluation is (3253.21194.3) 16.74 

The convergence behavior of the standard back propagation training method is shown in 

Figure 4.5. For a small size problem the convergence is pattern not oscillatory, however 

later it will be seen in Chapter 7 that the standard BP training suffers from oscillations 

with the large size problem or where the convergence becomes difficult. In a recent paper 

Ampaziz et al. ( 1999) study the convergence characteristics with eigenvalue analysis. 
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Table 4.8 Comparilfoll witll other method (2-2-1 ANN XOR Problem) 

4.7.6 Comparison With Results in Literature 

The simulation results are compared in Table 4.8 using the reports available in Jacobs 
(1988) and Salomon et al. (1996) with XOR problem. We compare the performance of the 

proposed algorithm that is initiated with random starting weights in small range. The 
simulation results are taken from the Table 4.7. The proposed method uceds 10.8 number 

of epoch on average to train the XOR problem. The back propagation method due to 
Salamon (1996) takes 62 number of epoch, while the delta bar delta method reported in 

Jacobs (1988) takes 250 epochs to train the XOR problem. The standard back propagation 

needs on average 463.6 numbers of epochs to train the 2-2-1 ANN XOR problems. It is 

observed that the proposed method improves over the method due to Jacobs (1988), 

Salomon (1996) and the standard back propagation method. The reasons for less number 

of epoch with the proposed method are due to the constrained interpolation search 

algorithm and the controlled step size computations in central difference gradient 

approximation scheme. The efficiency is gained, however, at the expense of function 

evaluations. The corresponding total numbers of function evaluations are 194.3. Kamarthi 

et al. (1999) report that the Polak and Ribiere conjugate gradient takes 14 epochs to train 

XOR problem. 

4.8 DiscllS.'iions 

A self-adaptive gradient descent BP training method is developed. The conve~gence of the 

algorithm is proved using descent and convexity properties of the error function. A 

coru;trained interpolation search automates the selection of variable learning rates. The 

descent directions are computed by central difference approximation scheme. The step 

size of the difference scheme is controlled by the convergence behavior of the error 

function. It computes suitable descent directions. The simulation with the small random 

.... 



starting weights show that the avcmgc number of epoch, gradient evaluations and function 
evaluations are JO.B, 70.8 and 124.5 respectively with 2-2-l ANN XOR problem. The 

mean terminal ft.mction value is low and therefore, better training results are obtained. The 

proposed algorithm improves over the standard BP algorithm in number of epoch, 

function evaluations and terminal function value. 

More comprehensive analysis atxl results arc reported in Chapter 7 with several 

benchmark problems in higher dimensions. Comparisons with different algorithms in 

training the standard benchmark problems arc also reported in Chapter 7. 
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Self-Adaptive Multi-Directional Training 
Without Derivatives 

5.1 Introduction 

An efficient multi-directional self-adaptive derivative free ANN training method, which 

evaluates only error function, is developed in this chapter. The error function is reduced to 

a sub-problem in a constrained search space and the search directions follow rectilinear 

and Euclidean moves. An interpolation search determines the self-adaptive parameters. To 
accelerate the training algorithm, a momentum search is designed. An algorithm 

detennines the self-adaptive momentum term and hence the training method is parameter 

free. To improve the convergence of the algorithm an oriented search vector flfst 

positions the initial starting weight in a descent location. The proposed method is useful 

when the function f(wt) is ill conditioned, the derivatives a'(wJ are discontinuous, or the .. , 
derivative evaluation is difficult. 

The multi-directional search method is discussed in Section 5.2. The new self-adaptive 

parameter free training algorithm is developed in Section 5.3. A restricted momentum 

search is designed and this step is taken only when there is improvement in function value. 

The momentum term is determined dynamically. It prevents the training method from 

overshooting the minimum. The convergence of the algorithm is discussed in Section 5.4. 
In Section 5.5, simulation results with the XOR problem arc presented and finally Section 

5.6 provides some discussions. 

5.2 Multi-Directional Search 

Figures 5.1 and 5.2 show the all likelihood outcomes of search in rectilinear direction 

when m = 2. Given an ANN error function J: wEE", the rectilinear search minimizes the 

function /(w) cyclically changing its weights moving along one direction at a time. The 

directions of moves are d1 ,d2, ...... ,d.,, where the direction vector d1 is defined as: 
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- - !I rurj .. i d1 =IIJ,wherc lu= .. ,1=1,2 ..... ,m, /«l,2,. ..... ,m. 
0 forJ"''· 

(5.1) 

Fixing a value of j, thll ANN weight "'J is changed in d 1 direction in small amount say, 

llw
1

, while all other weights arc kept fixed. Moving in all m directions the algorithm 

changes the value of all the weights w1 ,. (w1 , w2 ,. •••••• ,w.,). The process is again repeated to 

obtain change in the function value f(w). The weight update recursion is given in 5.2: 

(5.2) 

5.2.1 Rcdilinear Direction Search 

The training algorithm starts with a current trial vector marked as "'• and the next 

successful trial vector in direction j is marked wH, at a distance Aw 1 . A successful trial 

improves training from iteration k to the next iteration k + 1. The dotted Jines along the 

rectilinear directions are the intermediate trial steps. The dotted lines indicate that the 

directions along which the error function f(w) is evaluated but fails to decrease the 

function value. This direction is abandoned and the vector w1 remains the same. The 

notation w~ and w:; 1 designate that the search directions arc along the line j"' 1 but in two 

opposite directions with respect to a ba.'>e point. Similarly, The notation wi and wjl 

indicate that the rectilinear search are along the line j = 2 in two opposite directions. In the 

worst case, there arc 2m evaluations, which do not decrease the function value. This is 

shown in Figure 5.1 along third row and third column. The figure implies that w1 • 1 ="·1 . 

In such a case the step size Ow 1 can be changed for next phase of iteration. We define this 

strategy as rectilinear search. At the end of the rectilinear search the trial step w1 is 

redefmed as wt+1 and it is accepted when the condition: f(w 1+1)</(w1 ) is true. 

The algorithm updates weights moving in a suitable direction d 1 and identifying a 

learning rate parameter tJ, = Aw 1 • The simplest form of rectilinear training is to have a 

constant learning rate "*. To make the algorithm dynamically self-adaptive the learning 

rate parameter t}1 is identified by a suitable method that provides descent to the error 

function. The learning rate parameters are unrestricted in sign ami have different 

magnitudes. Depending on the geometry of the error surface these parameters are 

calculated. The search in the same direction is continued when the chosen direction is 

successful, until the function value fails to improve further. The direction is then changed 

und the !;"..atch repeats to improve the error function value. 
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An algorithm that describes rectilinear search is given in Table 5. Ia. The algorithm selects 

trial steps depending on the success or failure of previous trial steps. There arc 3'" 

possible trial steps in similar coordinnte search but in practice the evaluations arc in the 

range m to 2m at any given intervals (Torczon, 1997). 

Step 1: Choose u swnil1g vee/or of weigh! at iteration k. Define 

"'• B(w1)"' (w1,w2 ......... w,. ). Let 11'" be the momentum lerm. Set 81 ~I, 8 2 ~ 0.8, 

fp ~ 0.0001, k = ]= l, set "'• w an initiall'lll11e. Sel an initial weigh/ w,_1 ~ f•l by 

large imeger > wJ mch that f(wl-l) > j(wJ ). 

Step 2: Let (d 1 ,d1 ,. ...... ,d.,) ~o. set d 1 ~ 0 for the current value of j. 

Step3 a.) if f(w1+t.w1d1 )<j(w1), the trial is success, let, w1 ~tw1 +t.w1d1 ) and 

perform step 4. 

b.) If j(w 1 +t.w 1d 1 )'2 f(w 1 ), the trial is failure, then 

c.) if f(w 1-t.w 1d 1 )< f(w 1), tire trial is a success and let, w 1 ~ (w 1 -t.w 1d 1 ), 

and perform step 4. 

d.) if f(w1-t.w1d1)'2f(w1), then trial is failure a11d let, w1 ~w1 and perform 

step4. 

Step 4 a.) if j < m, set j ~ j +I and repeat step 3, othen••ise, set 

b.) if j(w4 )< /(WJ-I) perform step 5, else 

c.) if f(wJ) 2:j(w4_1) perform step 6 

Step 5 Momemum type or Pat/ern type search 

a.) 11;' ~11;' ·~1 ] Determine 'I;' accordingtotlreTable5.1b. 

b.) "'hi ~ wJ +11;' (wk -wl-l ), Let, k ~ k +I, j ~ l, and perform step 3. 

Step 6: a.) If t.w 1 ~p stop ( P=stoppil1g criteria),and repon wk os the so/utior1 

b.} Otherwise, replace l\w 1 ~ l\w 1 •~2 ], Let, w4•1 t-- wl, Let, k ~ k+l. j ~ t, and 

peiform step 3. 

Table 5./a Multi-directional training algorithm withfu:ed step size 
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Step I and 2 initializes the algorithm. In step 3, the value of the weight is changed 

according to the magnitude of ll.w 1d 1 such •,hat the error function is reduced. If the 

function value docs not improve, the weight vector is lefl unchanged. Step 4 determines if 

a momentum search should be allemptcd. If the current iteration is successful, a new step 

size q"' L~ adjusted by the factor [ 01 ] in step 5. A momentum search is designed at this 

stage to move the search into a new but descent location. The choice of the factor is 

imponant in successful implementation of this method. A method that updates the step 

size q"' is developed in Ahmed and Cross (1999) and is shown in Table S.lb. The 

suggested method varies the step size with the objective of identifying trial points that 

brackets the minimum with other relative minimums in a neighborhood. The method given 

in Table S.lb determines the step size by repeated evaluation of the error function. The 

step 6 describes the method of updating step length, when the current phase of evaluation, 

k , is not improving the function value. The step is decreased by a factor [ 01 ). The 

training algorithm successfully models seasonal load forecasting problem (Ahmed and 
Cross, 1999; 2000). 

I. One weight parameter w, itt a specified direction is incremented at a time by an amoum 

ll.w, where the magnimde of the quantity ll.w is determined and the sign i.r chasett such 

that/he ANN error function is decrt·ased. 

2. The parameter w is repeatedly incrememed by some amount umilthe error smface begitts 

to increase in chosen direction. 

3. The function is evaluated at regttlar imerva/ during this repealed trial and the evaluated 

function values determine tlte minimum of a qttadraticfimctimt. Consider w', w" and .., .. 

as the points /It specified ittterva/s t/tat defines afimctiott in 8 1 • These poims are defined 

as: w' = w' +ll.w, such that f(w') > f(w') and w" = w' + 2dw, such that j(w"') > j(w') 

4. The minimum of the qttadraticfunction is determined by (Mmftews, 1992) 

.. = w' -[.t.w 4/(w')-Jj(w')- f(w") l 
'1 4/(w') 2f(w') 2f(w•) 

5. Repeat the process until precision is reached infittding Tj.. and obtaiufinaliy q:.,, =IJ·. 

Table 5.lb The interpolatiou method to determine se/f-adap!ive parameter 
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5.2.2 Self-Adaptive Training With Momentum Search 

Refer to the Figure 5.2 and consider a direction frr,n x to b in order to move to a position 

z without perfonning rectilinear search at point b. The method attempts to accelerme the 

training using the previous successful training steps. The current evaluation begins by 

performing a search along the direction (w4 -wH), if the trial j(w1 )o::j(w1• 1) is 

successful. A momentum search similar to the pauern move (Hooke and Jceves, 1961) 

along the direction ii
1 

.. (w1 -w 4_
1

) from w1 is performed only when the condition 

ftw4 )</(wJ_1) is true. Figure 5.3 shows the two solid arrows as the two successive 

rectilinear moves that are success. The dotted line is the move by the momentum search. 
The decision about the length of move is an important issue. If we take a large step, the 

minimum will be missed. In the following section we propose a method that takes a step 

just close to the neighborhood of the minimum. The function is evaluated at thL~ trial step 

and the method again searches from the current position in directions J1 "''I~ (w1 -w1 _1). 

The recommended weight update rule according to this method is shown below: 

Flsurt 5.3 Delormlnalion ajmamtn/Um lerm 
ns ulf·adap//H 11aram t~u 

The momentum weight update step is only performed when the algorithm iterated more 

than one epoch and when the current trial step is successful with reference tu the previous 

move. It is a restricted step and executed only when there is success. This step forces the 

training algorithm to reach the neighborhood of the minimum. The direction of succes~ive 

momentum search tends to become aligned with the ridges in error surfnce as long as the 

method successfully follows the path according to the Figure 5.2 and Figure 3.1 in 

Chapter 3. 
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The term fJ; is the momentum term and its approximate magnitude determines the 

convergence of the algorithm. If the rectilinear search about this position is successful 

then the vectors generated by rectilinear search is accepted as w.l+1 according to the Figure 

5,2 and 5.3. The momentum term is determined from the scheme given in Table S.lb. If 
the search fails to improve the function value, then the method reduces to rectilinear 

search at w1 • The search along the direction x to b at z is the momentum search, and 

can be considered as a variant of the multidirectional scare:, (Torczon, 1997). Ti.~ 

algorithm that implements this training method is shown in Table 5.la. 

5.3 Dynamic Sel£-Adaptive Training 

The method described in Section 5.2.1 through 5.2.4, when combined together constitutes 

the multi-directional search. Now we develop a new training algorithm that is dynamical!y 

self-adaptive. Fixing a search direction, the rectilinear training finds a learning rule, tJ; for 

the error function. To determine the suitable magnitude of learning rate fl;, an 

interpolation search is performed in a given direction j:1,2, ..... m. The search in a 

constrained space is fonnulated as: 

minmizcf(w1 +l);d 1 ) (5.4a) 

subjccuo : fJ 1 E L . (5.4b} 

where, L is expressed by L= E 1
• The search along any rectilinear direction either must 

yield a decrease or by the assumption, it cannot change position. Since the error function 

is a descent function (Hecht-Nielsen, 1990}, we must have decrc.,e in function value in at 

least one direction. If at a point the gradient V/(w);<O, then "I J'. one compon:nt of 

'Vf(w)., odoes not vanish and hence a search along the correspomling rectilinear direction 

must yield decrease. Fixing the value of the weight w1 and the direction d1 in all 

rectilinear direction except in the current search direction j, the problem 5.4 is solved 

according to the proposition 4.4 in Chapter 4 to lind the learning rate. Step 4 in Table 5.2 

implements this algorithm. The proposed algorithm dynamically self-adapts the training 

parameters. 

5,3.1 Automatic Delennlnatlon or Momentum Term 

It is noted earlier that there exists a descent direction of the form J1 <>(w1 -wl-l). The 

appropriate magnitude of the momentum term 11; determines the step length in multi

direction search and docs not destroy the search direction. T:tis is done by the 

interpolation search according to the problem: 



(5.5a) 

subjc~l\o: 11: E L . (5.5b) 

The value of 114 is obtained from the appropriate interpolation search method shown in 

proposition 4.4 in Chapter 4 and L is of the form L = £ 1
• Step 5 in Table 5.2 determines 

this parameter using tbe interpolation search algorithm developed in Chapter 4. It takes 

regulated steps near the minimum and convergence is not at risk. Equation 5.5 determines 

single momentum tenn, while in Equation 5.4 there are m different variable learning 

rates. 

5.3.2 Selr-Adaptive Derivative Free Multi-Directional Training Method 

The algorithm that automates tbe learning rate parameter and momentum term is shown 

next in Table 5.2. The algorithm is initialized in step I. 

5.3.2.1 Oriented Search 

The training is initiated by an oriented search to accelerate convergence. Initially, an 

oriented search is performed in step 2 (Table 5.2), where the directions vector d1 in -1 

and +l are generated randomly using uniform distribution according to the Equation 5.6: 

{
-1 if o::;u(O,l).S0.5 

d ~ 
J 1 if0.5<u(O,l)Sl. 

(5.6) 

The uniform distribution generates a number between 0 and I. A value between 0 and 0.5 

assign~ the direction vector a value -1 ami +I otherwise. The purpose L~ to locate the 

initial descent position such that there are minimum effons to reach the local minimum. 

Care should be taken to prevent tics in generating !he direction vector in a given set of m 

or multiple of m trials. Evaluate tho error function with the generated direction vector and 

retain the minimum weight vector along with the direction vector in a separate vector 

denoted as wr.~ -1-d 1w 1, which minimizes the error function. Perform this step m times or 

multiples of m times depending on the parameter setti11g. In step 3 (Table 5.2) the 

preparation for the main search begins with the oriented search vector w"'1 • 

5.3,2.2 Selr·Adaptlvc and Momentum Parameter Determination 

An interpolation search is performed in step 4 (Table 5.2) to detennine the learning rate. 

This makes the training method fully self-adaptive. At the end of step 4, the momentum 
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Sup: J lllitit1/i:.:mio11 

a.) Let f..;, t- "'• set j t-o, set 111 e(d 1 ,d1, ........ d,) t--1 

Step:2 Positio11 1/Je Search Vee/Or 

Generate WI imlex j e m from uniform distribmion and d 1as the direclion of search 

inlhejolloll'ing 1/UIIJ/Jer. 

a.) jt-j+l 

if OS: u(O,l)S: 0·5 (generale direction using uniform distribution) 
if 0.5< u(O,l):S: 1 

e.) if j < m repeat the step 2. 
f.) if j=m,peiformnextstep. 

Step:J Prepare for Main Phase 

a.) Set k = j"' I, set w 1 t- ww and peiform step 4. 

Step:4 a.) Set d 1 =od2 "'d1 ........ ,d., =0 and Let 11
1 

be an oprimal solution to the problem 

b.) min Jrw 1 +111d 1 ) and ser d 1 t--1 01 currem index j. 
~,•£' 

c.) Assign w1 t-(w J +1!1d 1 ) . 

.. d.) If j <m, set j 4-· j+ I, set and repeat step 4. 

e.) Else if }=m,set ~~'li+l ~wJ' 

f.) If (wi+l- w,~) < P then stop ( jb=stopping criteria) 

g.) Otherwise, peiform step 5. 

Step:5 Pat/em or Momentum Search: 

a.) let d1 t-(w1_1-w1 ) andlrt1}1 betheoplinwlsolutiotllotheprab/em 

Table 5.2 Multi-directional training nlgoritlrm with interpolation search 
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search is performed. The interpolation search method developed in Chupter 4 Section 4.3 

is used to identify the momentum tcnn. Therefore, there is no user intervention to pre

optimize the learning rate and momentum term. The derivative information of the error 

function is not required in this training method. The error functions that arc discontinuous 

can be trained with the proposed method. In genera!, the training method is derivative free. 

5.4 Convergence or the Training Method 

To address the convergence of the algorithm, we assume that the error function possess 

descent property and satisfy first order necessary condition. It will be shown next in a 

proposition that the algorithm converges to zero gradients under the hypothesis that the 

error function f(w) is differentiable. 

Propooition 5.1 

Define tire multi-directional !raining algorithm as a map M according to the definitions 

in Chapter 4 Sectio11 4.1. The algorithmic map M generales the sequence of vector [wJ 

according tow~;M(w) moving along the directions d1 ,dl ........ ,d.,. Tire search starts at 

iteration k with the vector wk and each directiotJ d 1,dl ........ ,d., has a nann}. Suppose 

that the following properties are true: 

a.) There exist a p>O+ such that dct[d(w)]~p for each weE"' and [d], is a 111tm matrix 

whose colrmms are the search directions generated by the algorithm and the 

determinol/t of (dj is represented 'by deL[d]. Further assume tlwt the search directions 

are linearly independe11t. 

b.) The minimization of f(w) almrg any direction in E"' is possible. 

Given a weE"' , suppose that the algorithm generales the sequmce (wt] .mdr tlrat if 

Vf(w1 )=0, then the algorithm stops with wl otherwise, w~o 1 E M(wl) and replace k by 

k+l otul repeat the process. Consider ne [wl! is a solution set. If the sequence 

lw1 .w1, ..... w., ... J is contained in a compact subset of E"', then each acctmrulatio11 point 

w' en ofthe.requence lwl! must satisfy Vf(w')=O. 

Proor 

If the sequence [wl J is finite, then the algorithm converges to a solution and the gradient 

approaches to a smaU value, due to the descent property of J(w). Suppose that the 

.so. 



algorithm genemtes the SCIJUcncc (w1 ), which is infinite. Let k1 he an infiuitc .~equcncc of 

positive integers and assume that the sequence 1~· 1 ) converges to a limit point w' . . , 
Suppose hy contmdiction that Vjtw') ;< o and tuke the SCI)Uencc {wh11

1
, that is cont:tined 

in a compact subset of Ji"'. It implies that )w1 , 11 eli"' and there exist a subsequence 
•• 

k, c k1 such that [11•.,,1 converges to soniC point defined as w' e {w1 ) • The vector w' is . .. 
obtnincd from minimizing the function JtwJ along a set of m linearly indcpcndem 

directions {d1 ,d 1, ........ d.,). Let d1 be the IIUIIJ nmtrix and lite ~carch directions 

{d1 ,d 1 ,. • ...... d.,) nrc its column at iteration k. Thus, the algorithm gencmtes the 

sequence of tmining weights according to the expression: "'to• "w, +(d J'lJ I or 

• 
cquivnlcntly: ~~· .. ,=~~·,+L,IdJ'JJit· The quantity fJJ is the lcnrning rate, which is ,., 
equivalent ton distnncc moved along d1 at iteration k. The vector d1 is the de~ccnt 

direction and also from proposition 4.3 in Chapter 4, we have 

j(w .. tJS/{w1 +[1J1d1l,l:1)1e£1,j=!,2 .. .,m. We also have dCt[d1 )~p;.O+ nnd td11 is 

invertible, hence 111 =[d1 r'lwt+1-w1 ) for all J at iteration k. Since each column of ld1 I 

has norm I, there exist a quantity k, ck1 for a subsequence such that we hnve the limit 

[d 1 ]-)[d). Since det[d 1 1 <!: j;J for each k , del )d)<!: fP, 50 that [d) is invertible. Now for 

ke k_1 and as k --t .. , we have: w.t.l --t ~~··, w, --t ,..·, ld 1 1,., -)!d) so that the lc~rning rate 

converges to a limit point '!J -)rj, where TJ=Idl-'fw' -w'), Therefore, ~~·· =w'+!dl!) = 

• 
w' + L,!d1TJ1 I; 111 e £ 1,j=l,2 ..... ,m. The vector, ,..·, is obtained from minimizing j(K" ) ,., 
sequentially along the directions (d1,d2, .... ,d,.), it follows then f(w')S/(K' ). Now 

consider the case J<w')<ffw ), since {j(w,)] is a decreasing sequence and since 

j(wk)--tj(w) as kek 1 approaches to .. , we can also write tim/(w1 ),/(K' ), This is 
'"" 

not possible, since w1•1 --tw' as kek1 approaches to "' und by as~umption 

j(w')<f(w ). Again consider the case, j(w')=flw ). We obtain w' from the vector 

w, minimizing j(w) in direction (d1 ,d1 ,. ... ,d.,) nod by the property b of the 

proposition we get w'=w. This also implies that Vj(w)rd,"'O.j=t,2,. . .,m. Since 

(d1 ,d1 , ... .,d.,) are linearly independent, Vf(w'),.o, contradicting our a.~sumption. This 

proves the proposition 0. 
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5.4.1 Churnctcristics of the Multi-dircdiunalliclf-Adaptivc Training 

Two types oftn1ining parameter search chamcteril.ll the prupu ... ed training method. There 

is self-adaptive parameter search followed h_y a momentum term search. Based 011 the 

assumptions tlmtthe line joining the first am! last points of the rectilinear move represents 

an especially l'nvorablc direction. In Figure 5.2, the direction from .r tu z is the 

11101\lt:lllU!ll ~'Cllrch, while the ~~·ttrcl; at c and b arc the rectilinear .~earch. The rectilinear 

amlmomentum search do not always lead to an improvement in the error function value. 

The success of the iterution is only checked after the rectilinear move has taken place. 

The nmgnitudc of the momemum term ~~~ is determined from the interpolation ;,earch 

method according to the proposition 4.4 in Chapter 4. The important feature of thh 
method consL~ts of moving along the ridges and valleys. The momentum move takes lung 

step in the direction of valleys and the rectilinear move finds the path back to these valleys 
when a momentum move has climbed out of them. The method is successful in solving a 

forecasting problem. which is ill conditioned (Ahmed and Cross, 1999d; Ahmed and 

Cro~-s. 2000e). Additional result.~ arc given in Chapter 7. 

5.4.2 Convergence or the Algorithm to Local Minimum 

The tmining algorithm only evaluates the error function value. Moving along the 

rectilinear and momentum direction the algorithm provides descent to the error function. 

The search along the momentum direction is assumed similar to the coordinate scnrch 

(Torczon, 1997). The successive move along the rectilinear directions with the application 

of the interpolation search identifies a local minimum. It is shown in the following 

proposition. 

Proposition 5.2 

Let w' en be the poitJI in a solulion set /a tlw error function f: weE"'. The seqmmce 

[w1 , w1 ........ wt ..... )ge11erated by the algorithm converges to the toea/minimum w'. 

Proof 

Suppose that [wJ) is an infinite sequence generated by the algorithm defined as 

w~o 1 =M(wJ) and if at any iteration w1 en, then the algorithm stops. Consider that {w1 )~ 

is a convergent subsequence with limit w'. Further assume that the value of k is larger 

than the integer number k1 and K denotes the subset of all positive integers. Since j(w1 ) 

is descent function f{w 1 l-t j{w') for some k e K of the subsequence. Then for a given 

p+ >0 there exists a relation j(wJ )- f<w'l < p for k <!k1 with k e K. If we let. k = k, , 
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then j(w )- j(w") <J~. With k > k, aml k e K the expression j(w1 ) < j(K' J exists, since ., ., 
j(w1 ) is u llescent function. Therefore, with the uhuvc results the following cxpressinn is 

llcrivcll for every k > k1 . 

/{M·1 )- [(~<•") = /(~<·1 )- f(w
1 

)+ l/{w1 )- [(w" Jl < O+P= p. 
' ' 

(5.7n) 

Since p• >U is arbitrary. it follows then 

tim/(~<• 1 )=/(w') • ... {5.7h) 

Also M is closcllut ,..· by definition {Section 4.3 and proposition 4.3 in Chapter 4) for 

k e K, w, -+ w'. Again cons iller the error function in a small neighborhood at iteration k 

at a distance 11 >ll and define Vf(w1 )= 1 '"•~1''"'! according to the proposition 4.1 anll ··-
4.2 in Chapter 4. Since ftw1) is a llcsccnt function and lim /(w1 )= /(~<·'). The overull ··-
ulgorithmic map M is closed. Therefore, the training converges to the zero grallicnts at 

tcrminution und hence the limit point w' is the locul minimum 0. 

5.5 Analysis with the XOR Problem 

Figure 5.4 shows the convergence of the algorithm against the number of epoch/iterations 

and momentum term. The self-udaptivc parameters that arc generated during training arc 

shown in Figure 5.5. The training initiates with starting vector (0.22, 0.34, 0.97, 0. 73, 0.1, 

0.2l and the sample culculations ure shown in Table 5.3. It shows that the self-adaptive 

learning rate and momentum parameters determined by the algorithm approaches to a 

small value us the training progress. The sclf-uduptivc parumeters reduce the function 

value monotonicully, which is shown in Figure 5.4. 

Table 5.3 Se/f-m/aplivc. parameter.r, IIWIIW/Itum ten11 amlfmction \'lillie wirh 
.rtartmg vector(.22, .34, .97, .73 .. I, .2) 
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The proposed training method is tested with 2·2·1 ANN configuration XOR prohlcms. 

The input data for the prohlcm corresponds to the suhset of the Table A. J in Appendix A 

in rows ], 2, 3, 4 :md column 4, 5. The r:mdom starling points w
1 

=(w1 ,w1 ....... ,w~) arc 

taken from the T:tblc A.2 in Appendix A. The learning rule is 0. J for the stundard back 

propagntiontraining. The proposed method is self-adaptive, parameter and derivative free. 

5.5.1 Sample Calculations with 2-2-1 ANN XOR Problem 

Figure 5.6 shows a trained 2-2-l ANN configuration. Sample calculations arc show m 
Table 5.4 with the trained ANN configuration. The instance of zero input to the hidden 

layer neuron is approximated to the value l x lO's for computational convenience. 

xf"' =0' xf"1 "'0' /rf"1 =(-.06)*0+(.06)•0 =0' 1<["1 = (1{)"
13 J *0+(10"16 ) •o = 0 

'
p•l- 1 -..0078 gP"1-__L._-..0078 
I - l+ln110'11- " ' l - l+lnii0'11- ' ' 

zf"1 = (-1.9)*(..0.078)+(1.8)*(..0.078) = 0.0078 

x(~1 =I, xf"2 =0, h(•1 = (-.06)*1 +(.06)*0 = .06, 11f"2 = (10' 1 ~)*1 +(10' 16 J •o = 10'11 

p•2 --'---{)SS\4 p•l _ ___L__ 00247 
gl -l+lniOO- ' ' g2 - ltiJIIIO'"I-- . ' 

zf"1 = (-1.9)*(..0.5514)+(1.W(-0.0247)E 1.0032 

xf"; <>0, xf"3 =I, ht; =(-.06)*0+(.06)*1 = ,06, /•f"3 = (10" 18 )*0+(10"16 )*t = !0'16 

'

p•.l_ I -..05514 p•.l_ I --{10279 
I -i+iiitliii- • • gl -~- • • 

zr•) =(-l.9)*(..0.5514)+(1.8)*(..0.Ql79) :0.9974 

..0.02'19. 

zr-l = (-1.9)*(-{).Q78)+(1.8)*(-0.Ql79) E 0,098 

Table 5.4 Sample calcularions will! 2-2-ltrained ANN XOR 

5.5.2 Random Starting Vector In Wide Range 

The self-adaptive training parameters and momentum parameters arc computed according 

to tbe method discussed in Chapter 4 Section 4.3. Table 5.5 shows the results witb random 

starting points that are according to the Table A.2 in Appendix A. The avcrnge epoch and 

function evaluations arc 6.3 and 1122.6 respectively. The training method is not sensitive 

to tbe magnitude of random starting points. Compare the experiment numbers I, 2, 9 and 

-85-



IU with different magnitudes nf startiug weight~. The cxpcriruernal results in Tuhlc 5.5 urc 

fairly consistent. Tne avemgc values of the epoch and total rlllrnher of functinu evaluatious 

with the standard Bf> method are 5142.3 ;md 361Xl6 respcctiwly. The relative efficiency of 

the proposed method over the swntlard BP method is (5 142.3/6.3) !! 16 in number of epoch 

and it is (36006!1 1226) 32.07 io number of fun~tiun evaluations. The comparison with the 

number uf ~poch is not appropriate since, the prnpnsed method uses u specialized 

intcrpol~tion search fur convcrgcrtcc and consequently, the numhcr of epoch is reduced. 

The total number of function evalumion is a valid metric. 

Mulli-Dirccti<>ll<lt Tminin' 

~l.OE-OHJ 

Table 5.5 Comparismt with BP Melhvd (2-2-1 ANN XOR Problem) with 
wide range of starting poims 

The median performance of the proposed algorithm with the number of epoch and total 

number of function evaluation corresponds to the values 4.5 and 783.5. while with the 

standanl back propagntion method these counts arc 3579 and 25061 respectively. The 

standard deviation in number of epoch is 5.2 with the multi-directional training method 

and is low in magnitude. It suggests that the training show consistent performance. 

The maximum and minimum numbers of epoch arc 21 and 4 respectively with the 

proposed method, while the maximum and minimum numbers of totlll function 

evaluations including gradient evaluations correspond to the values 4110 and 546 

respectively. 
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The simulations with the standard BP method show that the maximum and minimum 

numbers of epoch arc 17434 and 15 respectively. The corresponding figures for the tow! 

nu!llbcr of function evaluations me I 22046 ami I 33 respectively. 

It is noticed in Chapter 4 that the standard back propagmion method perform~ well with 

small random starting points. The proposed multi-directional trJining method is not 

sensitive to the initial starting vector. Experiments numher 1 and 2 have small sturting 
vectors while experiment numhcr 9 and 10 have large starting vectors. In mo~t of the cases 

the experiments suggest that the magnitude of the weights do not influence convergence of 

the :ligorithm. The simulation results arc compared with the standard back propagation 

method in small range of weights next. 

5.5.3 Perfonnance or Training with Random Weight in Small Range 

Table 5.6 compares the performance of the proposed algorithm with standard back 

propagation method. The small random starting vectors arc used to train the 2·2-1 ANN 

XOR problems. 

Table 5.6 Comparison with BP method (2-2-1 ANN XOR Problem) with .!mall 
mndom .flartillg point,! 
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Th~ experimcntul results suggest that the proposcll method l;UilVcrges faster than the 

swndard buck propag:ttion method. The relative efficiencies of the proposed method uvcr 
the standard back propagation mcth01.ls in average epoch size and function evaluations arc 
(463.6!4.3) 107.S and (3253.2/664.2) 4.9 respectively. The maximum and minimum 

numbers of epochs arc 5 und 4 respectively and the corresponding numbers of function 

evaluations arc 842 and 510 respectively. The median performance of the standan.l back 

propagation is however better than the proposed training method in total number of 

function evaluations. The median values of the total number of function evaluations with 
the proposed method and the standard back propaglllion methnd arc 620 and 186.5 

respectively. The mean terminal function value with the proroscd method is 3.22:do·K and 

is comparatively less than the standard back propagation method. The corresponding value 

with the back propagation training method is 0.005568. 

5.5.4 Comparison with Results in Liicraturc 

Tnble 5.7 compares the results with the proposed method, standard bnck propngation 
method nnd the results found in Jncobs (1988) nnd Snlomon (1996) with the XOR 

problem. The !mining initintcs with smnll mndom starting points. 

Table 5.7 Comparison with other method (2-2-1 ANN XOR problem) 

The proposed method needs 4.3 epochs on average to train the 2-2-1 ANN XOR problem. 

The back propngation method due to Salomon ( 1996) takes 62 epochs, while the delta bar 

delta method reported in Jacobs ( 1988) takes 250 epochs to train the XOR problem. The 

standard back propagation method needs on avemgc 463.6 number of epochs to train the 

2-2-1 ANN XOR problem. The proposed method out performs the delta bar delta method 

reported in Jacobs (1988), the method suggested in Salomon (1996) and the standards 

back propagation method in average epoch. The reason for less number of epochs with the 

proposed method is due to the interpolation search in addition to the momentum search 

that has been made dynamically self-adaptive. In addition. the proposed multi-directional 
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search method performs better when the error function is ill conditioned and has stiff 

ridges (Ahmed and Cross, 2000). The efficiency in average epoch size is gained at the cost 

of ·function evaluations. The corresponding total numbers of function evaluations are 

664.2 and are still significantly less compared to the number 3253.2 with the standard 

back propagation method. The relative efficiency of the method against the standard back 

propagation method is ( 463.6/4.3) I 07 .8. The corresponding figures against the method 

due to Jacobs ( 1988), Salomon (1996) and Polak and Ribiere (reported in Kamarthi et al., 

1999) are (250/4.3) 58.14, (62/4.3) 14.4 and (14/4.3) 3.26 respectively. 

Finally, the mean terminal function value is of the order 3.22xl0·8. Clearly the proposed 

method improves the error function value with high precision. This is achjeved with 

relatively less number of function evaluations and number of epoch. Figme 5.7 and 5.8 

compare the function evaluations and epoch with different training methods. 
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In practice, the Multi-directional search methods without derivative information is reduced 

into a constrained one-dimensional problem and the search is continued in the direction j 

varying the learning rate parameter 171 with the given value of w1 and d1 . The error 

function is sampled in the weight paramet~r space with an order of magnitude 17 1d 1 . The 

network weight is increased or decreased depending on the shape of the hyper surface. 

The sampled function values are used to locate the minimum points according to an 

interpolation search method shown in Chapter 4, Section 4.3. The search is repeated to 

achieve high precision. 

The rectilinear search strategy as discussed in Section 5.2 always converges according to 

the proposition 5.2 under the hypothesis if f(w k ) has partial derivatives and when 

interpolation search is performed. Rapid convergence is achieved if the contour surface of 
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j(w1 ) is approximately concentric or if the principal axe~ of the elliptic contour~ coincide 

with the coortlinute axes (Schwefel, 198!). When the numbers of ANN weights arc !urge, 

they influence each other during convergence. This causes the interpolation scurch to 

move tl small distance and it uffects the convergence. The method needs small storage oi 

the order m. It is difficult to compare the convergence rate of this 11lgorithm with the 

standard buck propagation algorithm such as suggested by Rumelhart et al., 1986. The 

algorithm belongs to a different class and docs not require gradient information of the 

function. 

The multi-directional search can be reduced to coordinate search and hence the 

convergence of the algorithm approximates to 111 ~ .. ,l-/lw·~ s (•--• -}"-1 (Luenbcrger 
1/1~,1-JI~'~ M"'-11 ' 

1984). The quantity, (A,a) arc the largest and smallest elgncva[ues of the Hessian matrix 

with dimension llltm and f(w') is the local minimum. The bound in multi-directional 

search algorithm depends on the largest and smallest eigenvalue of the Hessian matrix. In 

fact, the convergence is damped by a factor (m-1). The momentum search makes the 

method effective and efficient. The specialized interpolation search also improves the 
convergence. If the Hessian matrix of the ANN error function is nearly diagonal, the 

steepest descent back propagation would suffer convergence due to stiff ridges and under 

such circumstances the proposed multi-directional search method tend to improve 
performance. 

It is also noticed that the multi-directional training algorithm i~ not much sensitive to the 

initial starting weights in comparison with the gradient-based methods. Therefore, it can 

locate a relative local minimum from anywhere of the error surface. This is certainly an 

important property of the developed training method. In first order and second order 
training method, however, the initial starting vector affects convergence. Further analyses 

are reported in Chapter 7. 
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Restart Training Algorithm 

6.1 Introduction 

This chapter develops a new derivative free simple,.. restart twining method, which 

improves the geometry of the degenerate simplex by a rest~rt and re-scale operation. The 

new restart search is forced to continue into parameter space so that the local search is 
improved (Ahmed, l999a: 1999b). Classification and statistical time series problems arc 

solved using this method. The improved search method solves problem~ in higher 

dimen$ions. II is an unconstrained non-linear training method and docs not require the 

derivative information of the error function. 

Briefly, the properties of the simplex mr.:thod are discussed in Section 6.2 and 6.3. The 

improved method is presented in Section 6.4. Section 6.5 compares the simplex method of 

Neider and Mead (1965) with some test problems and Section 6.6 presems some 

experimental results with XOR problem<;, Finally Section 6.7 provides some discussions. 

6.2 Backgrourtd of Restart Training 

Given a collection of points in Euclidean space, a pattern is formed connecting all the 

points. For example, a tetrahedron is formed in £J and a triangle in £ 2 • This pattern or 

geometry is called simplex. It must always enclo~c finite volume in m dimensional space. 

To reduce the number of simultaneous trials in the experimental identification procedure 

of factorial design, the minimum number of starting points is suggested as m +I in £"' 

(Spendley, Hext and Himsworth, 1962). Therefore, in simplex m+l solutions arc 

maintained to define enough vertices of a polytope surrounding a point. It starts with an 

initial simplex and by repeatedly replacing its vertices with reflection points; the method 

generates lower function values. Neider and Mead ( 1965) improved the simplex method 

by maintaining irregular simplex. It repeatedly reflects a vertex along the centroid such 

that the function values at the vertices satisfy some form of descent condition with 

reference to the previous simplex. In the following sections a new search with simplex, 

which confines finite volume, is developed. The proposed method prcverlts the simplex to 

stagnate during search so that the training continues into parameter space. 
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6.2.1 Derivative Free Simplex Search 

The simplex optimi1.ation method is multi-directional search and belongs to the derivative 

free class. It is found to be robust for problems with discontinuity (McKinnon, 1998) or 

where the function values me noisy (McKinnon, 1998). The multi-directional search 

method (Dennis and Torcron, 1991; Torcron, 1989) maintain uniform linear 

independence of the simplex edges and require only simple decrease in the function value 
at each iteration (Lagarias ct al., 1998). Recently, Kelley (1999) propose a simplex ~carclt 

method for sufficient decrease which, guarantee convergence of the Neider and Mead 

( 1965) iteration to a stationary point, if the objective function is smooth and the diameters 

of the Neider and Mead ( 1965) simplex converges to 1.ero. He proposes a new ~tcp, which 

rc-initializes the simplex to a smaller size with onhogonal edge whose orientation is 
detennined by an approximate descent direction from the current best point. Results in 

higher dimensions arc not reponed in any of these studies. 

The computational operation of the simplex search is of the order 0(m 1 l and according to 

Neider and Mead ( 1965); the number of function calls increases approximately as O(m ' 11
) 

based on results up to ten variables (Sehwcfel, 1981). The method is efficient in finding 

better function value even though it faces difficulty with large size problem. L~garias et al. 

( 1998) indicate the following reasons for its popularity: 

a. In many applications, for example in industrial process control, the interest is to find 

parameter values that improve some performance measures. The method improves 

significantly the function value in early stage of iteration; 

b. In some applications, function evaluation is expensive or time consuming and the 

derivative cannot be calculated. The Neider and Mead ( 1965) method when succeeds, 

tend to require fewer function evaluations; 

c. The search is simple, derivative free and robust. 

The method is reliab:e when working with few variables {Lagarias ct al., 1998; 
McKinnon, I 998; and Tseng, 1995). McKinnon ( 1998) observes that the Neider and Mead 

(I 965) method fails when the search direction defined by the method becomes onlJOgonal 

to the gradient directions. McKinnon (1998) presents a family of functions of two 

variables, which cause the Neider and Mead (1965) method to converge to a non

stationary point. These examples show that the method performs inside contraction step 

repeatedly with the best vertex remaining fixed. These results demonstrate the need to 

improve the Neider and Mead (1965) method, which in general have convergence 

properties (McKinnon, 1998). 

An improved simplex training algorithm that solves problems containing 36 variables is 

developed. The proprosed algorithm performs a re-scale operation when the simplex 

degenerates. It defines a favorable simplex using the vcncx where the function value is 
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minimum. The simplex then pcrl'ornt'i a restart phase In chang~ the direction along which 
th~ simplex initiulcs a new search. The proposed method converges earlier than the Neider 
and Mead (1965) method :tnd improves the error function value. The numbers of function 

evaluations arc reduced significantly. 

6.3 Simplex Mclhod 

Simplex in E"' const-~ii; of m+l points. All convex combination of these points docs not 

rest on hYJ>er plane. Consider the problem of minimizing an ANN error function f<-..· 1>, 
where w = (w1 , w1 , .... , w.,) is the vector containing ANN connection weights as variables. 

The variables -..·1 are stored in a vertex of the simple.\. Let •' be an initial cstinMe of the 

simplex at vertex I, which is set initially to an arbitrary value stored in "'I' The ·,lthcr 

vertices ofth~ simplex arc formed according to the Equation (6. J ): 

{6.1) 

The values of A'd' sh01•'·' 1,_; such that the quantitie,'i O' o=!f(v' +A!d')- /(v' )I arc different. 

The index 1 is defined as 1 = t,2 ........ (m +I). 

All the vertices (v1 , v2 , ...... v"'•1) of the initial simplex arc, therefore, defined. The error 

function value is evaluated using all the vertices to determine the lowe,11, higheo~t ewe/ em 

iiJtcnm:cliate or .recrmcl higlw.rt function value. The corresponding vertex positions nrc 
marked I, h, sand these pointers are determined in the following expressions: 

l=arg lmin,lf(v'): (6.2) 

h=arg [max,(f(v1
))) (6.3) 

s = arg[ma~, lf(v1)) 1"'1•)1 <?:f(v1). (6.4) 

The average value of the simple,x vertices corresponds to the centroid which is a midway 
.JOint given by: 

Centroid: c (6.5) 

An iteration of the algorithm corresponds to the evaluation of the Equation 6.5. The 
simplex search replaces t~ vertex with the highest error function value by a new vertex 
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situated at a reflection point along the midway of other m. vertices. Figure 6.1 shows the 

interpretation of this strategy in two dimensions. This principle locates the new vertex at a 

minimum point. The newest vertex is reflected according to the Equation 6.6 to explore 

other minimum in the neighborhood. 

Reflection: r = c +a (c - v"). (6.6) 

~ c c n I r 0 i d : t' • ( I I Ill ) r ,, ' I' • v A I • ----__ 

~ ~ K t• flct• llun : r • r+ a (r·h) 

~-··········~ 

~ ~!~ ltllr1•1un : l' • r+/S(t'+ /1 ) 

Figure 6.1 

C u 11 I f II ~ I In II o' ~ t' + y ( h · I' ) 

Rescale: v'• tl ''(v 1 ~ +/I,J(v 1-1• 11~ 1 )) 

Simplexformalion slralegy in lovo 
dim eiiSiOIIS 

The refection point r is the line joining v" and c on the extreme side of c form v''. The 

function value f (r ) is evaluated and three main strategies are followed to generate a new 

exploration point. They are defined as expansion, contraction and re-scale and are shown 

in Figure 6.1 in E 2
. The decision to follow a specific strategy is based on the function 

value f(r) with reference to four search intervals. These intervals are defined below 

through the expressions 6.7, 6.8, 6.9 and 6.10: 

Interval 1: f(r) ~ f(v 1
) (6.7) 
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lntcrvul2: ft•·'l<f(r)!f. rm1~ [f(••');/"i'/rl ... ~ .... (6.H) 

lntcrv:LIJ: ma~ lfl•'l:l>'ltl<f(rl!f.••~ (6.9) , .. ~ .... 
lnterval4; fi•A )< f(r). (6. ]()) 

If j(r) is in int~rvn[ I, an expunsion uf the simplex according tu the expression 6.11 is 

recommended: 

Expansion: ~ <- c + p (r -c J. (6.11) 

If f(e) is in interval I, the simplex search replaces v• with ~,otherwise v• replace.~ r. 

When the function value f(r) due to reflection falls in interval 2, it is only recommended 

to replace v• with r. A contraction step is followed if j(r) is in interval 3 and the 

simplex with highest function value v• is replaced with r. The simplex is then comractcd 

according to the Equation 6.12: 

Contraction: g +-c +r (vh -c ). (6.12) 

If the function value f(g) is in interval I, 2 or 3, the vertex with highest function value .• 

is replaced by e. If f(g) is in interval 4, Neider and Mend (1965) at this stage scale or 

reduce the current simplex with reference to the low vertex of the simplex given by; 

(6.13) 

The evaluation of this step in Equation 6.13 is defined as restart effort. Algorithm is said 

to have converged when the relative improvement in function value i~ insignificant. The 

standard deviation, r1, of the function value along all the vertices is calculated. The 

algorithm is terminated if the standard deviation is significantly small. To tcnninate the 

algorithm, the followir.g lenninalion criterion is used: 

""(r ' I (~'>-h 
Con~ergence: If r1"'l''""'--=--- <p. 

m 

••• I,Jcv') 
where, j =-•·-• -- and set ~ • t- v1 as the best point found so far. 

m+l 
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The pcrfllntl:lllCe ufthe search methnd is measurctl in tutal numhcr of funetiun evaluation~ 

needed by the algorithm. The Neider ;m(l Meutl (I 965) simplex .~eareh algorithm is shown 

in Figure 6.2. 

fir!<:'"'" , .. f/1•·'!1 

Figure 6.2 Neider and mead ( /965) simplex a/goritllm 
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6.4 lmJirund Kcsturl Tminin~-: Method 

Th~ mmlilicd n~~:thud is shown in Figur~ 6.3. Jt r~pla~~s r hy v~ if th~ contlitinn 

/l•·'JS/(r)</(•·A) is true and ;mother reflection is a1te1uptcd. If the re!lcctiun i.., highly 

successful and genemtes u new minimum sneh that /(r) < /(• 1 ), then the direction chosen 

is a good direction and expansion i.o; followed. Uascd on the magnitude of /fr) und /(~) 

either r or e rcph1ces 1·
1

• A new centroid is aguin is calculated and reflection is 

uuemptul. However, if the reflection is not successful and the condition /lrl ~/IvA J is 

true, then the search is taking place in wrung direction and a cuntruction is performed. The 

search begins with c:t>pansion, if the contraction is ~ucccssful and /(gJ</(•1 J, In case, we 

have f{g)~ /{•·") a re-scale is attempted and the direction of simple~> search is changed 

with the user defined search vector d '·' to restart the search. The re-.~cale phase constructs 
simple~> according to the Equation 6.15: 

The direction vector cf'·' is changed to generate new centroid when a particular direction is 

not favorable. The setting of this vector is shown in Section 6.4.2. The search begins from 

initial stage while retaining the best function value found so far. This step is defined as 

resrart phase. The reflection is attempted when /(rJ</(•hJ und another reflection is 

suggested when f{r) > f{v'). In this case vA is adjusted with reflection point, A new 

centroid is calculated when /(r) s ff•') and the index II is replace by s. These steps are 

taken since the repeated reflection is successful with these adjustments. 

The edge length of the polyhedron is changed to continue new search. The~e ctianges 

allow the simple~> to span in search space. At the end of the routine evaluation, simplex 

size is changed through the re-scale scheme and a new search direction is initialized to 

follow the restart phase. The search begins with a simplex of different edge lengths so that 

the reflections, expansions or contractions steps improve the descent direction. This step 

is suggested to maintain non-degenerate simple~>. The non-degeneracy of the initial 

simplex implies non-degeneracy of all other subsequent simple~>. Recently Lagarias et al. 

(1998) proved this assumption, If a non-contraction phase occurs, the trial points replace 

the worst vertex. If a contraction phase occurs, Equation 6.15 replaces the current ~imp lex 

such Utat Ute geometry of the new simplex is non-degenerate. This ·~.~ also equivalent to 
starting search with different starting points in parameter space and n refined local 

minimum can be discovered by this method. According to Lagarias et al. {1998) the 

reflection, expansion or contraction step produce a convergent sequ~nce in lffd J! wh~n 

the search starts with a non-degenerate simple~>. The notation k is embedded in /(vi) to 
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rcpn!SCnlth~ luw~st ~rmr l'undion valu~ lit it~mtiun k. It i~ du~ tu this prupcr1y the fl'.l'/1/r/ 

plm~~ is reduced cotl.~idcrahly in higher dimensions. The ulgorithrn is shown in Figure 6.3 

and the pseudo program is shuwo in Table 6.1. The Neider :md Mcadnll!thod require uuc 

function evaluation when it tenninutcs in reneetion step. It requires two function 

evaluations when it terminates in expansion or contraction step. There arc m+2 function 

evaluations, if a comraction step occurs (Lagarias ct al., 199K). The improved method 

perform~ u rl.'sllle phase instead of contraction step. The complexity of the restar1 with 

rl.'sale is the same. Therefore. no additional function cvuluations me needed. The 

cxpcrimenwl results arc discussed in Section 6.5. 

s .... 

>'• v'C+I•'- •·'IEJ 

Figure 6.3 Reswrr lraiuing cilgorillrm 
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lnitiali:.atitm: 

1. 1.1 ConJ/rtt!'lll .fimplo itt /t"'1 r!wo.,·im: tlw ,\lllrlinJ.Iflllitl/,r mt l'l'ri<'X <•' , •1 
.......... v"'" J. 

1.2 nw first wul S<'coml /tl,l'<'r ll'<'iJ:hl.~ un.• rnhfitil'd u.1· "'••~111 , 1 ... ~·l.:w.. mu 

' 
k' ·""'"'"'' •• ·- ... ; •• ~ •••• 

!.3 \1t•n1•x llutnht•r I initit11i:••s t/w initio/ .l'implt•x for ANN ~''"" fimttirm, v'"'" 

~(11',,11'!""""''"'.,[, 

/A Tlu· mlwr points /J[ tilt• simpkr •wtiC<'.I' are ~:enermnl by Uf'f""l"iutt!ly ,\·electing ).' um 

d' dtjined hy: 1·"1 =•'(1+.1.'Jd'.lStSm+l, ami v' "(v1,v1, ........ ,v'""J ami cxecme 

lll<lill 5/t'l' 2 

Mai11 Step: 

2. 2.1/et, 1·1 ,,.• e (v 1, v1 , ........... ••"'" J be s11ch th<ll I~ /(v1 )= min 1 .,~.,, 1 f(v') 

2.2 h ~ /(•·~) = ma~ 1 .,,;.., 1 f(v') , mul perform Step 3 

3, 3.1 Let ••'e(v 1,r 1., ........ ,,.""1) besttclttlrut s~j(v')=mux 1~1 .:.,, 1 [/(v 1 )!/i--/t)~f(•·'J 

3.2 Centraid: let, c 
l ... , 

I--~(•') , set k +- k + [ 11111/ perfr!rm Step 4 
m 1•1 ... 

4, 4.1 Reflection: r f-<' +a (c -vh) 

4.2 If f<r )< f(v 1
) perform stet• 6 

4.3/f f(r )~f(v•) pcrfarmsl<'p8 

4.4 Othem•ise petform step 5 

5. 5.1 Set.~ f-r m1d f(v•)f-[(r 

5.2/f f(r )>f(v') performslc!t4 

5.3 Otlremise, It ~ s tmd peijii!~·-·•iep3 
/-' 

6./E.rpamion:Setl~h'inde 1--c +/J (r -c) 
-'/ / _, t 

6.2iff(e )</(r )s'"··• f-e amlf(v )f-/(~ ).mtdperformstep7 
// 

6.3 Othemise, set ~1 1- r , f(v1) 1- f(r ) uml perform step7 
I ' 

7, 

',\\ ""(r ' :E ,,.,_lr 
7.1 Convergence: If 11 = '"1 <p ,where, 

m 

m/ltimum poi111 at k'" iterotim1 mtd stap. 

7.2 Othen11se peifrmu .wep J 
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IJ. IJ.I He.11arr: ~ r-r +r (vh -r 1 

8.2 If f(g ) < f(v 1) lll'iform .\'/1'116 

S.J If /(J: ) < /(1'~) {Wrflmu .WI' I' 5, Utlrml'i.I'C l"'rfimu .Ill'/' !) 

9. 9.1 He-scale: v' r-d" ( v'' + (v1 -F)} mrd peifllrm ,1/t'f' 2 

1ilble 6./ Rrswrt traillinllltWIIwd 

6.4.1 PammelerSelection 

Initially the factor.; and ~',t=l,2, .... .m+l is set to one. When the simplex degenerates, 

this factor is set to 3 and the current simplex is modified. At the end of simplex re-.1ca/e 

phase the factor is set to one again and attempts a reJtarr phase. The direction vector d" is 

initially set to the unit vector [l,[, ... ,lf. If the attempted re-scale does not improve 

function value, the direction vector i~ changed to [- 1,- I, ...... ,-1] T and the parameter ~· is 

set to a value 0.856. It can be any other user defined variable value based on some 

experiments. This can be tried when a constant value is net appropriate for an application. 

The restart vector d '·'is again reset to vector [I, I, ... , If after the re-scale phase. 

The parameters, a, fJ and r influence the convergence. One upp10ach to determine these 

parameters is to do a fu!J line sea~h uccording to the method given in Section 4.3 in 
Chapter 4, This is a crude mctho~. It does not necessarily converge to minimum. 
Consequently, it will result in large number of function evaluations. Alternately, fixing the 

values of a, f1 und r the directions of search are generated by the simplex from its 

centroid using the reflection, expansion and contraction steps. The appropriate values of 

a, fJ and r influence the simplex search. These values are fixed based on few 

experiments. Several starting points are also necessary to arrive at good estimate of the 

threshold parameter values. The:-e parameters, a, (J and r, are experimentally 

determined in such a way that the simplex search reaches the minimum trajectory without 

putting extra burden on function evaluation. The experiments suggest that the values of a, 

fJ andy; are 0.7675, 1.8755 and 0.4615 respectively. 

6.5 Experimental Set up 

To test the performance of the proposed ulgorithm in Table 6.1 ugainst the Neider und 

Mead (1965) algorithm an ANN seasonal time series problem and the Rosenbrock 

function (Al-Sultan et al., 1997) are evaluated. The performance of the ulgorithm against 

standard back propagation algorithm with XOR problem is also evaluated. 

-100-



~ .. 
" Jj .. 
> 
c 

I 2 
u c 

" ? u. 

elm proved 

N & M 

Figure 6 . 4 Function Value with Improved Algorithm and Neider 
& Mead's Met.hod (5·5·1 : 30 variables) 

~ 
~ " 

i ~ 
.!1 

i ~ 
ell 

Ellm proved ~ 0 

N & M # ~ 
" 2 

() z 

6 " """ '1>'0,. .., 
~ 

Figure 6 5 Number of R e sra rl w llh lm proved and N elder & Mea d's 
Method (5·5·1 30 vartabtes) 

Cl i m p r ove d 

~ N & M 

F lg u re 6 6 N u m be r o file rations w 1111 lm proved B n d N elder & M e 11 d 's Me 111 o d 
(5 · 5·1: 30 Variables) 

Cllmprovecl 
N & M 

6 
.< """ "b"b, .., 

"~>-
Figure 6.7 Number of Function Calls with Improved end Neider & 

Mead's Me thod (5·5·1: 30 vltrlables) 

-101-



Su atcd Method 5·6-IANN N~lder and M.,.d 11%5~ meth•><l 
Experiment 

numb.or 
Function 

Value 
SE 

No.ol' I No.of No.or 
Restart [ll...,.tloru Funcllon 

I EvalualltlilS 

St.orting Points 
(w1,j=l,2, ••. ~m) 

L ' ( )91803810 I 25 I 48~363 I 101!203 r"00.100,900,700,800,331.342,3JO,J12,212.421.42:!.413.344.435,55,54.53.: YI~H4~MO'' lfo~l2 34-IOJMS 5603-IIJG 
1 52,54 ,43 2 3, 7 463,6358,6252,9 J.IR.6 7,68 ,69,1\0.6J,J,2,2,1.1,1 , 

2 [1'1191252060 11 -"--lsm 51592 lioo.Joo.900.700:800--:-3ji-.>-t2.31o.Jii.212-.421--:42I4i3.344:43S:s5o.s4t., 
-1- I sn..s2J.S#AJH.7463.635s.625~~s,67,6s.~~·~}>:l·ld~.J,.s J 

9203~620 4561 """" l~'.I'Jif> 

--'__ I 92044390 12 28698 55893 F?.?·I00,900,700.800,JJJ,342,J10.312,212,421,422.4l3,344,435,550.541,! 
Jl12.5~P:!-f.4~2},74_6.~.~Jss,6252.9J:l~,Q?,!i_!!_6,fo'I1~~_.6_19A_.~_2.1.1.1 . 

'- I ( )9!868300 II 12 22186 49193 t!OO.I00.900.700.800,3Jl.J-12.JJO.JI2.2l2.421.42:!.413.344.4J5..550.541 •. 
,---j-,,..,~ I sJ2.sn.5.w.4J2.746.635.625.934.67s.6s6.6'n.60s,6J9.1.2.!.l.l .. t 

,_ I 92040180 r. 29 72889 --Jjf693kiOO.iii00.8900.ii7oiJ:Siioo.:nl.34-fliQ.'Ji2:212.4!i:422.413.34-1.4JS.~5 
I OJ~!_J_J_;!_J_;!},S#.-:!_3_2_,?:!~d>~?A~_.'ll:!_.~75._6~6.697,608,619.1 ,2,2_.1.1.1 . 

6:----;- 92044320 I 87 95924 247075 ~200.8100.8\100.8700,8800,J3l.J42.JIO.Jl2.212.421.422.41J.J4-I.HS.55 ' 

1
0,541.532.523.5#.432U463.6358.6252.YJ..IH.675.6!!6,697_60M19.1.2.2.: 
I 1,1,_4 

6~2040~80 420-1 823881 1349·121 

92021~10''' 74YS 135~.:tl6 ~~7~49~ 

1'191M72210 617X 1309033 W.l'X'!7~ 

I'J920.W'IOO''' 17.12 376366 602270 

Table 6.2.a. Peifomumce of algorithm ll.l'ing 5-6-1 ANN mnfigurutimz with 36 mriahles 

' .':"':"~~ ·~.oc.·- ,'·.~- 1 ~-untli;~. Yaluo \ R~~~ L_ So.1i"':_ .~~.;:., ... ,,. 
" -~ ' ' ~~~ ~II<>YI " ' ' 

_, 
' 

,_ 
' ' '"""''' "'' ""' I ' -' _, 

I •:1 <,· I ,;-' ,~, - ij ' ' " ' 8X288 ' --' "" "" !11.1 ' ~95tn~o 201.1 )5~715 ~~()~:'\) 

' 
,_ 

' """" 

M>O I --29050 !; ,-, ;:; ' ' ""'''' l 'JS952-M-W"'' -4i9-6 " "" ,_ """no I ' . ~~{i;j·~! ' -· 72.1516 12~fo 

I ' ' ' -I'JS95252iil 
" ----· 

20~5@ 342SS~ ,_ 
""'"'" ' "" '~' 1H9 

' "''' " 

'" ~!; 
l_ .1 __ .1_ 

' ''"· 
_,_ ,_ 

I ' ''"" I """ 
_, S'}-195170 ., ' 14tois.<~ 245455q 

' ' . " ' 
"" ., " ,,,;, 

' ' ' .1- .1- ' ' "" 

Table 6.2.h. Perfomrwrce of al~-:oritl!m using 5-5-1 ANN mnfiguration with 3/J Wlriabfe.< 
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6.5.1 Seusomal Time Series l'l'()blcm 

Two te~t functions :1re con~tructell using a three-layer fccll furwarll artilicial ncurul 

network with 5-6-l anll 5-5-! cunligumtions. There arc 36 anll 30 vuriablcs with these twu 

corrcsponlling error functions. The time series !.lata frum Scptemhcr 1976 to Jun 1996 is 

uscllto test the performance of the algorithms, which usc the same swning weights. The 

two methods arc comparell with the numbers of function evaluations, number of rcst:art 

anll number of itermions. Six sets of experiments arc pcrformcll with 5-6-J anll 5-5-1 
ANN conligurations (Ahmcll, 1999h}. The termination criterion is set to I o·10• The swning 

weight vectors have low a~ well as high magnitulle~. 

The restart phase is rclatell with contmction phase in Nclller anll Meall method ( J 965}. 
Tnble 6.2.a lists the results of the improved restart and the Nelller and Mcall (1965) 

method using 5-6-1 ANN configuration. Table 6.2.b lists the similar results for the 5-5-1 

ANN configuration. The algorithm when fails to terminate is marked with asterisk(*} sign 

and forced to terminate if 20,000 total restarts do not improve function value. The 
convergence difficulty occurs due to extremely small and almost equal edge lengths of the 

simplex. The method, which identifies better function value, is marked with dollar (s} sign 

and the best function value for the entire set of experiment is marked with percent (-:;) 

sign. Figure 6.4through 6.7 show the performance of the improved and Neider and Mead 

( 1965) algorithms in function value, number of restart, number of iterations and number of 

function calls. 

The suggested method improves function value (sec 'l- sign m Table 6.2.a and 6.2.b) with 

5-5-1 and 5-6-1 ANN configurations against the Neider and Mead (I 965) method in entire 

set of experiment. The proposed algorithm shows improvement in restart efforts both in 5-

5-1 and 5-6-1 ANN problems as compared to Neider and Mead (1965) method. The 

number of iterations and function evaluations are less with the proposed method. In 5-5-1 

ANN configuration, the Neider and Mead (1965) method suffers convergence in three 

experiments with 5-6-1 configuration. The minimum and maximum numbers of function 

evaluations are 49,193 and 247,075 respectively with the improved method in 5-6-1 ANN 

configumtion. The corresponding numbers of function evaluations in Neider and Mead 

(1965) method are 602,270 and 5,603,406 respectively. The minimum function value 

identified by the improved method is 91,252,060, while with the Neider and Mead (1965} 

method it is 91,872,210. The algorithms converge to different points due to cxce~sivc 

number of local minimum in ANN error function (Partridge, 1997). Figure 6.5 compares 

the number of restart efforts, which is Jess with the proposed method. In lower dimensions 

this phenomena, however, is insignificant according to Lagaris ct a!. ( 1998),. Kelly ( 1999) 
and Torczon ( 1989) for strictly convex functions. 

The restart method terminates with improved function value, which is 87,587,950 in 5-5-1 

ANN configuration. It is marked with percentage ("> ~ign. In some experiment the Neider 
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:md Me:u! (!Y65) mcthml tinds heuer litn~tinn value. This i~ uh~ervcd in Tahle 6.2.a ;uul 

6.2.h, marked with dullar (s) ~ign in experiment~ with the same st:trting puinl.~. 

6,;<;,2 Comjlllrison with Rosenbruck Fu01'tiun 

To compare the pcrfurnmncc of the method with reported resul1.~ in Al-Sultan et aJ. ( JW7) 

and Coran;1 ct al. ( 19R7), we list the results in Table 6.3 nn Roseuhrock function a~ shown 

in Eqo:ttion 6.22 in litur dimensions: 

(6.22) 

The proposed method show improved converges in 7/!0 experiments with less number of 
function evaluations. This can be observed in column J and 4 of Table 6.3. The 

c.~periment number l, 2 and 3 with the specified stnning points do not show significant 

improvements hut converge to ;m acceptable limit of function value. The experiments in 

;til rem·clining experiment>, 4 through 10 show significant improvements in function 
evaluations. The Neider and Mead (1965) method on the other hand faces convergence 

difficulty in experiment number I and 8. This demonstrates the efficiency of the proposed 

method with respect to number of efforts needed to converge to a solution. 

E~pcrimcm 
Nn. 

2 
3 
4 
3 
6 
1 

" 9 
(0 

Starting Points {AI- Numl>.:r llf Fun~tinn Evaluation Function V~luc 

Sultan ct al.. 1997) '-,;w,;~(A"fi-Sj''":;";o"'c' Ti"c"o'"c'c''\"'/';,;;;;;:;h;,;;;co' A')<;;·So"oll:o'"o"i>' ~ai:O"o' '~'"c'o' c:;;;;:;i 
I Neider & Mead ll'roposcd Mctho.l Nclo.kr & Mead jl'ropt>'oCd Mclh<><.l 

(1965lMcthod I 11%51 I 
LJ_I}_I,.~OI,I0\.101 .... )869 ; _1914 •.. 3.7 _.__ }.42E·6 

j 1,201.1.1 1077 _!_ 320 .! 2.5BE-10 
I 1.1.1.201 1265 1 27 I - --3.9E-i'f .. ·1 J.HIE-S 

Table 6.3. Peifonnance of I he Algorilhm Wilh Ro.w:nhrock Ftmclirm in 4 Dimensions 

The ~verage number of function evaluation~ with the resturt method is 903.4. Results 

reported in Al-Sultan el al. ( 1997) and Corn;l et al. ( 1987) are reproduced in Tublc 6.3 aml 

it suggests that the average numbers of function evaluations arc 1112.8 with the Neider 

and Mead (1965) method. The stuting vectors arc the same as shown in Tuble 6.3. The 

maximum and minimum number of iterations are 1929 and 27 respectively with the 
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propo~cd tnethod, whik tl1c corrcspo1Hiing values with the Neider and Mc:tt! (J!J(>.5) 

mcthml arc 11169 and 7114 rc~pcctivc!y. 

6.3.3 Discussions on the l'crfonm•ncc nr the Rcsturt Algorithm 

Two ANN model with 5-6-I and .5-5-1 configuration~. which model sea.~unal time scrb 
with the first 84 datu points in Table A..5 a.~ listed in Appcm!ix A nrc trained with Neider 

and Mead {196.5) and the improved algorithm. The equivalent numbers of variables arc 
thirty-&ix and thirty respectively. In a six ~ct of experiment~. the proposed method 

converge~ with less number of function evaluations, restart 11ttempts and number of 

iteratiom •. The experiment with 36 variables show tlmt the improved method evaluates 

functions 51,592 numbers of times and converges to a local minimum. The corresponding 
number of function ev-Jiuution is 2,109,075 with the Neider nnd Mead ( 1965) method. The 

minimum and maximum numbers of restart attempts arc I I and 87 respectively with the 

proposed method in 5-6-1 ANN configurmion. The corresponding numbers arc 4201 and 

6178 with the Neider and Mead method. To lind improved function value in all six set of 
experiment with 30 variables, the propmed method need.'> 88,288 number of function 

evaluations und it is 457,517 with the Neider and Mead mctlmd. The quality of solution in 

Neider and Mead method is not as good as wilh the proposed method. The Neider and 

Mead method face convergence difficulty as the number of variable increases. However, it 

identities beucr function value in some experiments. This ;tudy demonstrate~ that the 

improved method can solve problems in higher dimensions. 

6.6 Sample Calculations with 2-2-l ANN XOR Problem 

The Figure 6.8 shows a trained XOR 2-2-1 ANN configuration. The training initiates with 
a starting vector (1, 5, 3, I, l, 2)T and the sample calculations llfC shown in Table 6.4. 

When there is zero input to the hidden layer neurons, the input to the hidden layer neuron 
is approximated to the value I xl0'5 for computational convenience. 

64472.2 

S82l.l 

The sample calculations llfC shown next in the Table 6.4. 
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.rf"' "'0, .rf"1 =0, hf"1 = ((17il!,'J)'0+ 15H2!.2l!)' n =U, /if"' = lM472.2!' 0+ I-51'J34.7JJ' U = U 

,,'"' ,-L......, =-1Ul7S, gf"1 =~ =-il.II7H, 
l<lnllll" I • I!I,.IIW I 

:f"1 = {5UHJ'Hl.U7Hl+(-52JHJ '(-ll.ll7H) aU.O 

.rf"1 =1,xf"1 =0, 

hf"1 = (671H.9)*1 +15!!21.28)'0= h71H.'J, /rf"1 = (M472.2J'I + (-51934.7)'0"' 64472.2 

~:,'"1 = l+ln~m ... =0.102, gf"1 =~=.UHJ, 

:{"1 = (52.3!!)'(.102)+(-52.38) 0 {.083) = ].(~).t5 

.r("·'.,o, xf"·'=l, 

h("J "'(6718.9)•0+(5821.28)"1 =5H21.2H, hrJ = (M472.2)*0+(-51934.7)'1 = -51934.7 

gf"' = 101,~~1 , !!A= JOJ4. 8r' = ,.,, ... ,,.,. 71 =O.OMJ, 

zf"·' = (.1034)'(52.3HJ+(.08431'(-52.J~J = 1.0015 

xr ... =l, xf"4 =1, 

,r·· = (67!8.9)'1 +<5821.28)*1, 12s4o.1s. ,r• = (6-t472.2J'' + (·51934.731' 1 = 12537.47 

gf"• = Hlnll~.l~l "'.IJ<J58 • gf"" = Hlnii~<JlAll =Jl95H~, 

zf"' = (.0958)*(52.38)+(.09582)*(-52.38) = 0.0010 

Table 6.4 Sample culcullllirms with 2-2-/trained ANN XOR 

6.6.1 Analysis or I he Training Method With XOR Problem 

'-' 
'-' 

• "' ~ "' 
~ ••• 
" ••• ••• 

'·' 0 
• 

Epoch 

Figure 6.9 Convergence With 
trelnlng 
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Figure 6.9 ~hows that error limction cuuvcrgcncc tu almost zero value within 36 epochs. 

1\.·lo~ epochs arc taken hl :tchk\'C higher prcch;iun. The input dma for the training pruhktn 

corn!spmnls tot he subset of the Table A. I in Appendix A in rows I, 2, 3, 4 ~m.l column 4, 

5. The randurn ;.t:u1ing points ""; =t.,·,.w1 •......• ..-,,) ~rc taken from the Tuhle A.2 in 

Ap[ll!ndix A. The prOfXlSCd twining method is ~elf-adaptive and derivative free. 

6.6.2 Random Slartinj.l Vector in lhe Wide Ranl(c 

Table 6.5 shows the training rc~uhs with random st:trting weights. The experiment number 

8, 9 and 10 failed to converge. The large weighs uffect its convergence. The average 

performance is reponed for the cases where the method converged. It takes 268.4 epoch 

and 649.3 number of function evaluations to train a 2-2-1 XOR ANN. The corresponding 

figures forthe st3ndard b~ck propagmion method arc 5142.3 and 30,006 respectively. The 

comparison is biased since the method suffers in three experiments. The experiment will 

b.:: repeated with random ~taning weights in small magnitude for detail analysis. 

The median perfornr.lllce of the proposed algorithm with epoch size and total function 

evaluations corresponds to the values 147 and 361, while with the standard back 

propagation method these counts are 3579 and 25061 re~pectivcly. 

Table 6.5 Comparison with back propagation method (2-2-1 ANN XOR Problem) 
with wide range of starting poim.r 
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The ma.xinnun and Uliuimum numhcr.~ nf cptKh arc !!56 mu! X5 IC~flCCtivc!y with ll1c 

propuscd method. Th~ corrc.~punding number~ arc !7434 ami 15 rc~pcctivcly with lhc 

standanl hack prop;tgatiun nll!thud. The nmximum and minimum numbers of tuwl 

function cvuluminus ;trc 2169nnd 246 respectively with the prnposcd IIICthtld. The rcl<ttcd 

values arc 122{).16 and !33 rc~pcctivcly with the st;mdard hack pmpagmion niCthod. The 

standard back propagation successfully converges in all the experiments. 

The simulation result.~ with the standard hack propagmion and the proposed method in the 

sm~II range of weight.~ arc compared in the fnlluwing section. 

6.6,3 ComparisHn with BP Method 

Table 6.6 cump<Jrcs the performance of the propose{] algorithm with standard back 

propagation method. The small mugnitu!.lc random initial weights arc used to initiate 

training. The experimental results suggest that the propo~cd method converge faster than 

the standard back propagation method. The relative efficiency of the proposed method 
over the standard back propagation training in average number of epoch and function 

evaluations is (463.6/278.2) 1.67 and (3253.2/6!4.9) 5.3 respectively. 

• 

i 
I 

' 3 
4 
5 
6 
1 
8 
9 
10 

Mean 
Median 

Stillldard 
Deviation 

"'"' Minimum 
Maximum 

The Rest an Train in Mel hod 

'" no 

"' 228 
315 
416 
216 
187 
215 
157 

278.2 
215.5 
174.99 

513 
147 
no 

361 
t505 
416 
474 
653 
868 
581 
436 
482 
J1J 

614.9 
418 

348.17 

I 144 
361 
t505 

! J.!lOE-05 
I H.SOE-09 

I.IOE-06 
7.40E-08 
9.306-09 
1.406-07 
3.40E-08 
l.30E-08 
6.00E-09 
2.406-08 
3.146-06 
2.9E-08 

9.44E-06 

JE-05 
6E-09 

0.00003 

Standard Back Pro a atinn Mclhod 

25 ' 156 27 183 . 6.18E-().I 
27 ."1- f~g .... 29 ..•.. l<ii -- S.21E-i))" 

26 1 162 211 t90 : 1.50E=ii2 

24 ·- rso I 26 -j t76 · 1.ooE:oi 
mt 1 tosn __ . 11~3 12265 -J-po~-o{ 
3o , IJ!~---- . 32 1 ... m. s.wE-03 

2687 16128 I 2689 j t8817 13.956-03 

2~- !~~2 ... 1-. t'![_j8.97_!;-0~. 
23 144 ... 25 i 169 i.1.40E-OJ 

23 ~- .!. 25 i 169 j I.SOE-03 
463.6 27H7.6 465.6 ! :~~53.2 0.005568 
25.5 . IS?_ I 27.5 .i.. 186.5 0.004775 

951.12 5706.727-l-95t.l21 16657.849 0.00489·~-

2667 t6oo2... 2667 ! tsti69 1 o.oi4H7 
20 \ 116 I 12 I 148 I 000013 

.. 2687T t612il ·1 26119 -··j 1H817 j O.DIS 

Table 6.6 Campa rison wilh back propagatio11 training (2-2-1 ANN XOR 
Problem) with .mw/1 range ojslllrting poi/1/s 
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The mean terminal fllnction value is 3.J4xl0 1
' with the propnsetl mcthotlund is u bcucr 

!ruining performance. The maximum and minimum number.\ of epoch arc 720 and 147 

n.'sulting in the range stutistic.~ 573. The corresponding values with the standard hack 

propagation !mining ;trc 261!7 and 20 rcspecli11Cly and the rage statistics is 2667. The Wtal 

number of maximum and minimum function evaluation.~ arc 1505 and 361 respectively 

and the nmge statistics is I 144 with the proposed method. The related figure.; arc 18817 

;md 148 respectively w'tth the s111ndard back propagation method. The range statistics i.\ 
18669. The experimental results suggest that the average performance of the restart 

training method is better than the standard back propagation truining method. 

The median performance of the standard hack propagation i~ better than the rcstan 

training method. The median number of the epoch is 25.5 with the standard back 

propagation method again51 215.5 with the proposed method. Similarly the median value 

of the total number of function evaluation is 186.5 with the Mandard back propagation 

method. The corresponding value is 478 with the proposed method. which however, 

improves in median performance in terminal function value at 2.9xl0"~ against the median 

terminul function value 4.77xl0'3 with the ~tandurd back propagation mcthOO. Thi~ 
implies that the proposed method finds beller local minimum. 

6.6.4 Comparison with the Re.~ults in Literature 

Table 6.7 compares the results with the proposed method, ~tandard back propagation 

method and the methods reponed in Jacobs (1988) and Salomon (!996) with the XOR 
problem. The JX'Oposed training method mrl the standard back propagation method is 

initiated with small magnitude random starting points. The simulation result for the 

standard back propagation method is taken from the Chapter 4 in Table 4.8. The function 

evaluations including gmdient evaluations arc not given in the repons in literature. 

Table 6.7 Conlparison with o/her method (2-2-1 ANN XOR problem) 
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The proposed method needs 278.2 epochs on average to train the 2-2-1 ANN XOR 

problems. The back propagation method due to Salomon ( J 996) takes 62 epochs, while 

the delta bar delta method reported in Jacobs (1988) takes 250 epochs to train the XOR 

problem. The standard back propagation method needs 463.6 numbers of epochs to train 

the 2-2-1 ANN XOR problems. The simplex restart training method improves over the 

standard back propagation method in average epoch. It is derivative free and can train an 

error function which is ill conditioned, discontinuous and contains st iff ridges. The 

average numbers of function evaluations are 614.9 with the restatt training method while 

with the standard back propagation method it is 3253.2. The proposed method works on 

function evaluations and needs no gradient information. Kamarthi et at. ( 1999) report that 

the Polak and Ribiere conjugate gradient takes 14 epochs to train XOR problem. 

500 
0 Jacobs • Salomon et al. (1996) 0 P-A (C. G) 0 Restart • Standard BP 

400 

200 

100 

0 +---'---
Epoch l\.t1ethods Function EvaluationX1 0 

Figure 6.10 Compariosn with different training methods 

6. 7 Discussions 

The restart training method improves against the standard back propagation trammg 

method in average number of epoch and totaJ number of function evaluations. A factor 

(463.6 /278.2) 1.67 in number of epoch and (3253.2/614.9) 5.3 in total number of function 

evaluations indicate the relative improvement. The terminal function value is s ignificantly 

low with the proposed method, implying a we11-trained ANN is found. The resta11 training 

algorithm does not need gradient information. It performs on the basis of function 

evaluations. [I) conditioned and discontinuous error functions can be trained and this is an 

important characteristic of this training method. Additional performance analyses with the 

proposed training method are g iven in Chapter 7. 
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n 
Additional Simulations and other Results 

7.1 Introduction 

This chapter presents additional experimental results obtnined from the three developed 

training algorithms with 5-5-1 parity, the 9-2-1 L-T letter recognition, the Australian peak 

electric load forecast with 5-5-1 and Australian Hotel occupancy rate analysis problem 

with 7-4-1 ANN configuration. The standard back propagation method i~ U>cd for 

comparison in convergence analysis. To compare the performance of the last two 

problems as forecast and multivariate regression model, the standard statistical regression 

method is used as the benchmark for comparison. 

It is noticed earlier that in general the small initial starting points improves the 

convergence of the gradient bac;ed algorithms. Therefore, all the experiment.~ are initiated 

with small random starting weight~. 

7.2 Perfonnance Measure or Training Methods 

It is a common practice to rcpon the performance of a training algorithm ba>cd on number 

of epoch. To compare different algorithms; for example a variant of the first order, second 

order and derivative free training methods, number of epoch is not sufficient. For instance, 

in second mrler training methods, the number of epoch is Jess due to the extensive Hessian 

matrix computations, which determine descent directions and learning rates. The 

derivative free training methods on the other hand depend on the function evaluations. The 

following discussions are provided to point out the issues that relate to the performance of 

an algorithm. 

7.3 Evaluation Metric 

The factors, which are important to compare the algorithms, are the follqwing: 

a.) Generality, reliability a11d precisioa; 
b.) Sensitivity to parameter a11d data; 
c.) Computatio11al efforts mtd 
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cl.) Cmu•ersl'nc<'. 

• Generality of an algorithm n:fers to the wide vuriety of probl~ms that the algorithm 

can handle. It may be possible to construct a test problem tlwt a given algorithm 

cannot solve effectively. This property al~o suggests that a trained ANN can rcplicute 

the results in the presence of similar data pal! ern. 

• Re/iuhility or robustness points to the ability of the training method to solve most of 

the problems with reasonable accuracy in the similar class for which it is designed. 

The relationship between reliability of a training method, the problem size and its 

structure should be taken into account. Some training algorithms arc reliable if the 

problem size is small and face difficulty if the problem size grows in size. 

• Precision of an algorithm is its ability to achieve convergence quickly with 

satisfactory limit. High precision can be realized at the cost of computations for long 

time. 

• Sensitivity of an algorithm is relmcd with the initialization by user defined parameters 

such as: 

i.) Starting/initial weight vector; 

ii.) Learning rate; 
iii.) Momentum term; 

iv.) Accelerating factor and 

v.) Tennination criteria. 

Some algorithms are sensitive to these parameters and to the problem data. 

Initialization or starting point greatly influence the training performance and produce 

different results. With a fixed set of parameters, the training algorithm should solve a 

problem for a wide range of data and should he scale inmricmt. The algorithm should 

be insensitive to data scaling or transformation. 

• Computational efforts in total required by an algorithm are another measure for 

performance analysis. The first and second order derivatives evaluation require 

significant amount of time and lms the advantage of fast convergence. Often these 

efforts arc not measured in comparing performance of an algorithm. The algorithm 

that uses this information is relatively faster {Al-Sultan, 1997, Johansson et al., 199::!; 

Luenbcrger, 1984 and Bazaraa et al., 1993). The computational efforts and its related 

computational burden should be taken into account for unbiased assessment. The 

computer time, the number of iterations, and the number of function evaluations 

measure the computational efforts of an algorithm. Any of these measures ulone is not 

entirely a satisfactory metric. The efficiency of an algorithm not only depends on 

computer time but also on the type of nrJchine u.>ed, the existing load on the machine, 
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the dficieney of coding und the dmrnctcr ur the meusured time. The nurnher of 

itcrmions :1lonc cannot be u~cd as the only measure because the dfons per iteration 

may vmy signilic:mtly from nne n1cthotl to another. The number of function 

e1•aluatiuns cun also be misleading, since it ignores the !urge computational hurtlen nf 

matri:ot multiplication, matrix inversion and evaluation of suitable directional vectors. 

The computations of the first and second order tlerivatives should be taken into 

necount to mc:1sure the efliciency of un ulgmithm. 

• Cmn•erJit'llCC is an irnporta11t churactcdstk and usually occurs in a limiting sense. The 

quality or prcci.~ion of solution generated by a trained ANN provitlcs an indication of 

the algorithm's efticicncy with the given amount of computational efforts. The 

convergence mte of an algorithm measures the amount by which an error function can 

be improved per epoch. It is one of the most important properties of nn algorithm. 

Given two algorithms that converge, they could be compared on the basis of speed of 

convergence or order of convergence (Lucnbergcr, 1984). 

7.4 Experiment with 5-5·1 ANN Parity Problem 

The 5-5-1 parity problem is simulated with small random weights. The training data set 

and related information arc given in Chapter 3 and Appendix A. The experimental results 

with these proposed methods and the standard back propagatio11 method are given below. 

7.4.J Analysis with Self-adaptive Back Propagation Method 

The self-adaptive back propagation training algorithm is tested with the parity problem 

and Table 7.1 shows the results against the standard back propagation method. First, we 

observe the standard deviation and the range stati~tic~ to compare worst case behavior of 

the algorithm. The standard deviations arc higher than the mean value in all perfor~nnce 

measures with the proposed sclf-aduptivc back propagation training method. It is 

therefore, apparent that the method c~>hibits erratic behavior in some e;t;pcriments. Notice 

the e~>periment numbers 2, 8, 9 and 10, which show inconsistent performance. 

The performance of the algorithm is inconsistent throughout with the standard back 

propagation method. Now Jet us look at the average performance of the self-adaptive 

algorithm in number of epoch and total number of function evaluations, which are 1534.5 

and 67,636.6 respectively. The corresponding figures are 17,354.4 and 593,182.6 with the 

standard back propagation method. The maximum and minimum values :or the number of 

epochs are 6,700 and 483 respectively with the proposed method while they nrc 49,709 

and 765 with the standard back propagation method. Therefore, these Jrc th-., probable 

limits within which we expect to reach a solution. Some iteration with the standard ha•k 

propagation method is shown in Figure 7 .Ito visualize the oscillation during cnnvergence. 

An example of convergence with the proposed methO!I is shown in Figure 7.2 while the 

-113-



Figme 7.3 ~h11W the ex:nnple of self·mlaptive pai"arlleter generated hy I he :ilgorithm fur 

few epochs. The proposed method is showing hcttcr avemge perlhrrmmcc against the 

stnndard hack pwpagathm training melhod and the rcl:11ivc improvements an! 

( 17,354.4/1.534.5) I 1.31 in number ur epoch and (53!1,072.4/67,636.6) 7.95 in IOta! 

numhcr of funcliun cvnlumions. The avcn1gc qu:llily of lhe ~ululion is llCiler with the 

proposed method, since lhe lenninal function v:llttc i~ signilicantly Jnwcr than lite slandmd 

hack prupagmiun training method . 

... 
••• 

I •• 

l ••• ... . , . , 
liNN~ 
+--------_3 

E pooh 

Fog"'~ ;,r F"ncllon conve•genoo w/lh uon~a.d Pack propog~r.on 
lralning tporllypro•lom;SomolnlormU•Oio >Oopo a/long opoOIJ 

long/h) 

Table 7.1 Comparison with standcml back pmpagrUitm method (Ill(/ grruliem des cell/ ,\'<'if

adaptive trtli11ing method (5-5-I ANN: pariry pmhlem) ll'itfl.!lllr/iug I'I!C/or ill ,11/JIIf! rclll).)<' 
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Flguro 7.3 Se/f.adapUve parametergenota!ion wlrll se/l·adap/we bock propagation 
/raining muthod (Pamy Problem) 

7.4.2 Analysis with Multi-directional Training Method 

Table 7.2 di;-plny.'> the multi-directional tmining rc.•;u ks with the 5-5-1 ANN parity 

problem. Figure 7.4 shows the function convergence. The self-adaptive parameters 
generated by the algorithm that has different nmgnitudcs arc shown in figure 7.5 and 

Figure 7.6 shows the self-adaptive momentum term generated by the algorithm. 

The average number of epoch is only 45.1 and the standard deviation is 21.48. The 

significant reduction in number of epoch, however, is not surprising. An interpolation 

search that determines the self-adaptive parameter.; reduces the number of epoch. The total 

numbers of function evaluations are important information to measure the total efforts 

made by the algorithm. Since this algorithm does not usc grudient information, it is also 

important to take into account the total number of gradient evaluations made by a 

grudient-bascd algorithm. The average number of epoch with the hack propagntion 

training method is 17,354.4. The standard deviation in number of epoch is 16,551.26. 

With the proposed self-adaptive and standard back propagntion training method, the 

average numbers of function evaluations arc 40,945.2 and 538072.4 respectively. 
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Th~ r~lmiv~ crfi~icncy of the muhi-directionultdning over the Mamlard BP training in 

function evaluation is (5JR072.4/40,945.2) 13.14. The improvement can h~ aurihuted to 

the accelcr:uion step, which includes an exact momentum ~carcll :lml the llpplkation of un 

oriented search vector. The efficiency is ulso g;Lined hy computing the sclf-mlaptive 

learning rates for all the network weights independently. The algorithm trains succe~sfu!Jy 

an ANN without computing the derivative of the error function. 

Table 7.2 The multi-directiolla{, restart and standard buck propagation trai11i11g methods 
(5-5-1 ANN: parity problem) with starting vector in small ra11ge 

7.4.3 Analysis with Restart Training Method 

The restart training results are listed in Table 7.2 and Figure 7.7 shows the convergence of 

the algorithm in early stage of iterations. Interesting enough, the average value of the 

number of epoch is 11,310 while the average numbers of total function evaluations arc 

only 16,583.2. It updates all the network weights concurrently in a single phase and the 

method identifies better function value within few numbers of iterations. The average 

gains in epoch and function evaluations against the standard back propagation method are 

(17,354.4/11,3 10) 1.53 and (538072.4/16,583.2) 32.45 respectively. 
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Figure 7.7 Function convetgence wilh reslarl training method (5-5-1; P11r!ty 
Prob/om} 

7.4,4 Compurison with Different Trainin11 Methods 

Table 7.3a shows the comparison with different training methods. The restart tmining 

needs less number of function evaluations to reach acceptable solution. We exclude 
number of epoch to rank an ulgorithm. It is not a correct mcm;urc, since we have two 

algorithms that do not usc gradient information at all. The relative cffcctivencs~ of the 

restart training over the standard back propagation method is 38.60. The restart training 

algorithm runks first followed by the multi-directional and the ~elf-adaptive back 

propagation-training algorithm in function evaluation.~. 

The result reported in Johansson ct al. ( 1992) with Polak-Ribicre (1969) conjugate 

grodicnt method is considered for comparison. The avcrnge function evaluations are 

10947.67. The training experiments that converge me considered. The minimum and 

maximum numbers of function evalumions nrc 2!.633 and 1966 re~pcctively. The 

proposed method docs not improve over this method in function evnluations. Figure 7.8, 
7.9 and 7.10 show the comparison in epoch, function evaluations and relative efficiencies 

between the training methods. 

Sell-adaptive BP Mulll·Directlonal Restart Training Standard Back 
Training Propagation 

Figure 7.8 Average 11poch comparison with diffaranttralning mehods 
(5·5·1 parity problem) 
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7.4.5 l~xampl~s uf '!'mined ANN Weight~ 

Table 7.3b shows the exal!lples uf trained ANN weights obtained hy the se[f.:ulaptivc 

ha~k propngation training lllC!hod (Ahmed, Cross and Buuzerduum, 2000b). The input and 

output ~omparison is shown in Tahlc 7.3c. 

Input Layer Weights (Wtnl 

"~ ,, 
' ~.282\7l 2012n O.!lll~l ~O>~~l O"lle"4 

' O.H0\92 J45989 o. l'.i!l05 0.1227"9 ~~91~4 

' o .l292H l.4~8l41 ·0 .!UDll O.ijS89lS 0.'.00"101 

' •0.2HB ·J.OH4 l.OO~lH ·2.41014 1.548~7<, 

' 0.)49717 2.l6~91l O.IG>Bl8 0. 741~)1 ~.D9t~ee 

output Layer Weights (Wn~l 

"~ 
Oj 

' ·0.906871 0.711706 0.80)807 0.917;188 6Sij5!1 

Table 7.3b Trained weights for 5-5-1 parity problem 

Table 7.3c The Input and output value comparison (5-5-1 
ANN Parity problem) 

7.5 Simulations with L-T Letter Ret:ognltlon Problem 

The 9-2-1 ANN mode1to recognize the Jetter L-Tis now considered. The small random 

staning points are used to initiate the training. The learning rate for standard back 

propagation method is 0.001. The learning rules 0.1 and 0.01 face convergence 

difficulties. 
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7.5.1 Annlysis with Sclr-adapti~c Huck l'ropagnthm Method 

The ~clf-ullupdve hack prupugatiun tr<~ining mcthnll is !estell with the L-T letter 

recognition problem. Table 7.4 shows the results uguinst the Manll<~rll back propagation 

training method. The convergence of the ulgurithm is show11 in Figure 7.11 ;md the ~df

allllptive parmttetcr gcnermell by the training algorithm i~ shown in Figure 7.13. The 
average numhcr of epoch with the self-aduptive back propagution metholl is 171!.8. The 

maximum anll minimum values i11 numhcrs of epoch arc 323 anll 53 respectively. The 

average numbers of totul function cvaluutions arc 6485.8 anll the maximum unll minimum 
values are 10565 ;mll2967 respectively. The aver<~gc terminal function v:llue is 1.28x 10·~. 

Table 7.4 Comparismr with standard back propagation and self-adaplive training mef/wd 
(9-2-J ANN: L-T Iefier recognition problem) with starting poim vector itt smrr/1 magnilude 

The average number of epoch is 2177.7 with the standard back propagation traini11g. The 

maximum and minimum numbers of epoch arc 3165 and 802 respectively. The 

convergence pattern is shown in Figure 7.12. The average value of the total number of 

function evaluation is 43547. The maximum and minimum values are 63,320 and 16,060 

respectively. The relative efficiency of the self-adaptive back propagation training 

algorithm over the standard back propagatio11 training algorithm in number of epoch is 

(2177.7/178.8) 12.18, while the efficiency in total numher of function cvaluatio11 is 
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(43,574/6485.8) 6.72. The ~tmulanl back prop11gatinn training method due~ not show 

oscillation~ in convergence with this problem. The rcasun can he mtrihutcdto the numhcr 
of parameters, which is more than the number nf \mining ~ct :wailuhlc to the ANN. 

• ii 
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Figure 7.11 Convergence with self-ada live back 
propagation training method ( L-T letlar recognition) 
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7.5.2 Analysis with Multi-directional Training Method 

Table 7.5 also displays the results with the L-T letter recognition problem. Figme 7. 15 

shows the convergence of the method with momentum parameters. The dynamic se lf

adaptive parameters generated by the algo rithm are shown in Figure 7 .14. 
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0:: u u u 

I 15 8645 1.51E-09 1891 ! 2815 2.65E-08 2434 51136 , 4.87E-04 _, 
I4.96E-05 2 12 6909 5.44E- 10 2653 3806 i 0.00109 2569 5397 1 

3 16 9547 3.078-09 867 1452 i ISiE:os 1203 25285 4.87E-04 
·-· ,, __ . t"·-· ...... ,_,,,_,, ..... _ 

4 11 636 1 4.97E-I O 1582 2424 , 5.5E-09 2277 47839 4 .80E-04 
,_,, __ ,_ -- ,_, 

5 II 598 1 1.45E-IO 958 1674 7.2E-09 2254 47356 4.88E-04 
....... _ .. 

6 10 5372 I8. 18E-IO 111 8 1795 1.49E-08 3165 66487 3.50E-04 

7 13 7249 1.90E-1 0 992 1598 3.4E-09 2263 47545 2.71E-04 

8 9 5032 1.24E-09 741 1246 7.07E-7 2242 47 104 4 .76E-04 
·---· 

9 26 15422 4.99E-09 11 69 1866 3.12E-08 2568 53950 4.70E-04 

10 14 7958 1.73E-09 1196 I 1786 3.54E-08 802 16864 4.99E-04 
·~-·-·-·-""-

t3 t6.7 I 2046.2 ci-:-oooT69 
·-· 

Mean 13.7 7847.6 1.47E-09 2177.7 43574 0.000406 _, ____ ,,, .. __ ;-·--·--r··-.......... -...... 
Median 12.5 7079 1.03E-09 

5~~
4

~8~7 ;::.~~1 j~ 
2270 45420 0.000478 

Standard 4.8545 3ot-6.57 .. l i.52E-o9 684.396 13687.9 0.00015 
Deviation 

Range 17 10390 I4.85E-09 1912 2560 0.00109 2363 47260 0.000449 
·--

Minimum 9 5032 -~:E- 10 741 1246 3.4E-09 802 16060 4.96E-05 

!Maximum 
-·-··---

3806 26 15422 4 .99E-09 2653 0.00109 3 165 63320 0.000499 

Table 7.5 Comparison with multi-directional, restart and standard back propagation 
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The average terminal error function value is of the order 1.47xl0·9. This indicates that the 

training is able to escape local minimum. The average numbers of epoch are 13.7 and the 

standard deviation is 4.85. The maximum and minimum numbers of epochs are 26 and 9 

respectively. 

The average numbers of function evaluat ions are 7847.6 and the maximum and minimum 

values are 15,422 and 5032 respectively. 

In comparison, the multi-directional tralilll1g method improves by the factor 

(4357417847.6) 5.55 in total number of function evaluations. The epoch comparison is not 

appropriate, since the proposed method used specialized interpolation search at the cost of 

function evaluations. However, the relative efficiency is (2177 .7 IJ 3. 7) 158.95 over the 

standard back propagation method in number of epoch. 

7.5.3 Analysis with Restart Training Method 

Table 7.5 also includes the results with the L-T letter recognition problem and Figure 7.16 

shows the convergence of the method. The average terminal error function value is 

0.000109. This indicates that the ANN is well trained. The average number of epoch is 

1316.7 while the standard deviation is 580.1 8. The maximum and minimum numbers of 

epochs are 2653 and 741 respectively. The average numbers of function evaluations are 

2046.2 and the maximum and minimum values are 3806 and 1246 respectively. 

In comparison, the restart training method improves by a factor (43574/2046.2) 21.3 in 

total number of function evaluations against the standard BP training. The relative 

efficiency is (2177.7/1317.7) 1.65 over the standard back propagation training method in 

number of epoch. 
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Epocl> 
Figure 7.16 F~nclion convergence w•rh resrarr lraming melhmi (L·T lel/er 

recagnilion problem! 

7.5.4 Comparison with DiiTercnt Tro~lnlng Methods 

Table 7.6 shows the comparison with different training method~ including the result given 

in Kamarthi et al. { 1999) and Yogi et al. ( !988). 

All the proposed methods perform better than the weight extrapolation method suggested 

by Kaman hi ct al. ( 1999). They train L-T letter recognition problem in I 81 l epoch and the 

terminal function value is 0.00001 at the end of training. The self-adaptive and multi· 

directional tmining methods find tcnninal function value, which is comparmivcly l~ss. 

Table 7.6 Trai11i11g perj'omza11ce with 9-2·1 ANN: L·T Iefier recognitimr prohlem 

In a related study Vogl et al. (1988) report computational experience with T-C lcuer 

recognition problem. The back propagation training method suggested by them takes 826 
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epochs to train the ANN. The task is equivalent to the L-T letter recognition problem. The 

proposed self-adaptive and multi-directional training method is e fficient for this job. The 

restart training method takes 13 16.7 numbers of epochs to train the ANN and does not 

improve against these methods. Kamarthi et al. ( 1999) repo1t that the conjugate gradient 

method takes 5 epochs to train this problem. 

5000 

-
f--4000 

0 Self-adaptive BP 

3000 f-- 1!1 Mull-Directional 

2000 - f-- 0 Restart 

1000 
.-- f--

I 1L-..II ...-----. I 0 
0 Standard BP 

Epoch Function evaluationsx 10 
Figure 7. 17 Function evalutions and epoch measure comparison 

7.6 Simulation with Seasonal Time Series Problem 

The forecast models are used extensively for prediction or estimation. Before a model is 

released for use, validation should be made. We point out two measures namely, adequacy 

checking and model validation. Model adequacy checking includes residual analysis, 

testing for lack of fit and other internal analysis that investigate the fit to the forecast 

model to the available data. The model adequacy checking is preformed based on the 

measures given in Chapter 3, Section 3.5.1. 

Model validation is directed towards determining if the model will function successfully 

in its intended-operating environment. Three types of procedure are useful for validating a 

forecast model. They are: 

a.) analysis with the predicted values and comparison with prior experience; 

b.)collection of fresh data with which to invest igate the model's predictive 

performance and 

c.) data spl itting: that is setting aside some of the original data and using these 

observations to investigate the model's predictive performance. 

We use the last measure as discussed in Section 3.4.3 in Chapter 3. The 5-5-1 ANN model 

is trained to fit the seasonal time series data. The small magnitude random staring points 

are used for simulation experiments. 
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7.1.1 Analysis with Standard Statistical Regression Method 

The time series model given in Chapter 3 is solved using standard statistical regress ion 

method. The following Table 7.7 summarizes the results in error measure. The model is 

evaluated with the data points in test period as explained in Chapter 3. The forecast is 

validated in validation period data. The statistics of interest are MAPE, MAE, R2 and SSE. 

The mean error in test period is zero, so that the model seems to produce approximately 

unbiased predictions. Later, we will see that the standard statistical regress ion method and 

the multivariate training method produce exactly the same resu lts with a 5-5-l ANN 

configuration that models quarterly seasonal time series and hence the forecast 

performance is equivalent. 

Error measure I SSE~ MSE MPE I MAE MAPE I Rz 

~ Test Period [ 4692~_099 461723.8 -0.04952 !.566. 141 8 1.80 1725 I 0.986 

Validation Period 1 97003724 . 6062733 -5.34 1 523-23.9 5.48 I -

Table 7. 7 Results with standard statistical method 

7.1.2 Analysis with Self-adaptive Back Propagation Training 

Table 7.8 shows the self-adaptive training results against the standard back propagation 

training and Figure 7.19 show the convergence of the forecasting problem with self

adaptive training method. Figure 7.18 shows the plot in test and validation period. 
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Figure 7 . 18 Tra ining w i th self -adap tive BP (Seasonal 
rime series : 5-5-1 : ANN) 

From the given set of simulation results, we se lect an experiment that provides the best 

function value in forecast problem. The results are compared with the standard regression 

method. As usual, the convergence properties are compared against the standard back 

propagation training. The results in Table 7.8 show that on average the self-adaptive 
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training nee1h I!W7 numbers ul"epuehs und 75,<J4!.4 function ev:illlations. Tile standard 
hack propngntiun training is not converging within 50,()(}() epochs mul the function value 
at the end 11f training is repurtcd. Therefore, the comparison is limited witl1in tl1e 
developed algnrithmtlmt converge and the stmulard stmistical regression method. 

The ;werage runction value is 46924312 with the scll"-:~daptivc back propagation training 
nnd the mnge stutistics is 1308.79. In a set of experiment the ulgorithm find.'\ function 
values tlmt arc not signil'icantly difl"crcnt. The minimum function value is 46924099, 
which could be used in furccust npplieations. Incidentally this value coincides with the 
stntistical fureca.~l method. The self-adaptive parameters generated l'ur thh; pwblcm is 
shown in Figure 7.20 before cnnvcrgcncc. 

• ' ' l 

Table 7.8 Convergence with se{f-tulaptil'e hack pmpagation tmiuing method 
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b.~-"-
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' ' • ' ' ' ' ' ' E p o o~ ' ! ! 
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Figure 7.20 Self-adaptive parameter generation w i th seasonal lime 
series problem 

7.1.3 Analysis with Multi-directional Training Method 

<£) 
0 .... 

Table 7.9 displays the results with the multi directional training method. Figure 7.2 L 

shows the convergence of the method. The average number of epoch to train thjs problem 

is 13.4 and the average numbers of function evaluations are 21379.1. The average terminal 

function value is 46924099. The Figure 7.24 shows the training performance of the 

algorithm in test and validation period while the Figure 7.22 and 7.23 show the self

adaptive and momentum parameters generated by the algorithm during training. 
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F igure 7.21 Training convergence with m ufli·directional training 
method (Seasonaltime series) 
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M u 1Li-Direcli ona1 Restart Standard BP 
i 

c:: § § v ! c:: § c:: c:: § c:: 
..c:: 0·- ..c:: ' 0 ·- .g g ..c:: 0·- 0 v g ·.::: c; ·..:::: :1 g 1·-- g ·,o ~ ·.;:; ::J - ro (.) ::J u- i g .2 u - u ::J u-
tfr C::- c:: ro c. c:: ro c. C::- c:: ro 

:::~ ro ::J > UJ 1 :::~ ro ::l > UJ ::J ro ::J > u.. > u.. ILL. r; lL. lL. > lL. v v 

13 20694 146924098.8 7058 L~~~.~-- 46924030 n/c n/c 54699986.6 
-· r-46894 1.70 

"-" 

15 23074 46924098.8 52217 1 27772 n/c n/c 5470187 1.1 

II 18288 46924098.8 45529 28725 46920720 n/c n/~········· 54715517.6 
-H _,_, 

1241 I I 18025 
·-- ····-····-··-····· 

ll 18163 46924098.8 46922080 n/c n/c 54727725.9 
........... -..... ·-· -·-·---

13 20915 46924098.8 84829 162497 46889040 n/c n/c 54712167.0 
,_,,, _, ___ . ---

11 18732 46924098.8 48698 96635 45853060 n/c n/c 54722449.6 
18 27512 46924098.8 7958 13091 46923890 n/c n/c 54715157.9 

17 26367 46924098.8 21953 I 390 11 46923790 n/c n/c 54720516.3 

20_?_!_0. J%924098.8 I 10708 i 46923020 
,_, __ 

13 6892 n!c n/c 54719702.9 _ ,,_ ................ , __ 
12 19336 46924098.8 16181 10038 46923100 n/c n/c 54710140.3 - ·----.. 

2t379.1 1 46924099 Mean 13.4 30372.6 41779 46809690 54714524 
--·- ·- ···-- ,. ~ .-....... _ __ ,,,,_,,,,_, ___ 

Median 13 20102 I 46924099 19067 22898.5 46922550 54715338 
1-·····----

3292.69 1 0.666667 
- _,,,_, 

Standard 2.50333 26247.6 49717.1 336381.6 I 8802.965 
Deviation --l-- I 

Range 7 9349 i 0.04099 77937 152459 1070970 i 27739.34 
Minimum II 18163 46924099 6892 10038 45853060 54699987 
Maximum 18 27512 46924099 84829 162497 46924030 54727726 

Table 7.9 Comparison 1nulti-direction.al, restart and standard back propagation method 
with random starting point in small range 
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7 .1.4 Analysis with Restart Training Method 

Table 7.9 also lists the restart training results with the seasonal time series problem and 

Figure 7.25 shows the training performance. The forecast performance in training and 

validation period is shown in Figure 7.26. The average number of epoch to train this 

problem is 30,372.6 and the average numbers of function evaluations are 41,779. The 

average terminal function value is 46809690. The minimum function value for this 

training algorithm is 45853060, which is less than the statistical regression method. 
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Figure 7.25 Function convergence with multi-directional training method 
(Seasonal time series problem) 
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As an example; a different 5-4- L ANN configuration produces terminal function value, 

which is 28495221 in training period and 48711721 in validation period. These values are 

significantly less in comparison with the standard statistical regression method. The 

corresponding MAPE values are 1.35 and 3.9 respectively. Figure 7.27a show the 

comparison of forecast with the actual data. 

7.1.5 Comparison with Different Training Methods 

Table 7.10 shows the comparison between the different training methods. Figure 7.27b 

compares the performance of the algorithms in function evaluations. 
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Figure 7. 27b Comparison with average number of evaluation 

epoch A verag':-c-t---'18:-':9-'7--1---'-13:...;...4 __ 1--:3-':0":-37':-::2-'.6:--l--'-5.:...00:;...;;0..:.:.0(,_*."-) _, 13 -o . 
S. Deviation 1846 2.5 26247.6 ..c ~ 

0 
g 

Max 5414 18 84829 ~ ..c u -~ e:! g ~ l<i 
Min 238 I I ~~9_2_-1----------1 ~o fr~ E 

Speed up - - - :§ 'o ~ 8 
Function Average 7594l.4 21379 41779 e.::: '6h E _. E ..... o 

Evaluation o.. :..= ~ <!:: 

t_:= __ :::::=ns[.]o~e~v~ia~ti~<?.-~n_.t7~3~2:Qoo[.294LL~~-r_:= .. t·---~4~ .. 92.7I·i-7[ .... :I13Ct:=:=:=:=:==j ~ § 8 13 
l-----i---..:..M.;;.;a.:.;.;x'-----1 __ ....::2:..::2~1 4_:;5=:=2~+- 275 :..:12=---r--__:_16=::2=:.:4.:..,97_ __ ------l ~ -~ g ~ 

Min 10130 18163 10038 ~ E ~ 

Function 
Value 

Speed up 
Average 46924312 46924099 I 46809690 I 54714524 

S. Deviation 394.69 .66 I 336381.6 --.. 8803 
I-----I...;:;_;_..;::.M~ax=.;..:.;_;_l--4...:;.69~2.:..;,5.:..:40-:-::8-+l _4_6_9-~2=4-~:..0 .. 9--9-t" 46924030-- - 5--4-...:::7.::...27::..::7-,..26-,--+---1 

Min 46924099 I 46924099 ! 45853060 54699987 

Table 7.10 Comparison with different training methods 
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The statistical error measures in training and validation period are shown in Table 7.11 

and Figure 7.28, 7.29 and 7.30 show the comparisons in MAPE, MSE and MPE measures. 

The forecast performance of the restart algorithm is the best with the given set of initial 

conditions. 

MSE 651723.6 651723.6 6368458.5 689644 651723.6 Training 
Period 

MAPE 1.80 17 _,_ ......... j·:-8o··-2--1--1--. 7-54--l---1-.9-6-2--+--1-.8-0 .. -1 .. -7 -

l----j-.....::MP.....:;;;.,:E:~~;_-....:._-=-o:..:..;.;.,.;o:....;4~9....,.5=---~~-=---':-'o=.:...·"':-'o:..:5~o':::_-:=_:-=.....:.o:..:..;. 1~6~3 --~--_..,:.-.4_;;5~ .. _ -o_.Oi9_5 _ 
t--·----+--= _R_- -:---l--0-:-.9'::-8:-'::5:--7 --t-.:...:0.~98'-"6- 0.99 .945 0.986 

Epoch I 1897 13.4 30372.6 Max limit 
Function i 75941 21379 41779 Max limit 

Evaluation I 
1-T;::..e;;..::s.:...:t P:....:e:..:...ri:...:.od.=..-r-_ .:....M;;..::S_;;;:E':---tl__;;6:...:.06.:..:2:....7..:...9 5::...........j--=-60:::...:..:627 3 2. 7 --=-5 .:..:1 8:...;_7;::..56::.::5-+_7 4...:..:8;;..::5:...:.3 7.:....:7_ 1......:606273 2. 7 

-·-·---~--~·-E·--~1--~5-·\-=7;-·-- --1:~~-~r-s.~:f:a~~ -~~~ -~·~~~ 

Table 7.11 Statistical measures in training and validation period 
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7.2 Simulation with Hotel Occupancy Rate Problem 

The training performance with 7-4-1 ANN configuration to model the hotel occupancy 

rate is now considered. The random staring points are small in magnitude in all set of 

experiments. 

7.2.1 Analysis with Standard Statistical Regression Method 

T he hotel occupancy rate problem is modeled as multivariate statistical regression 

problem. Table 7.12 summarizes the results obtained form the standard statistical 

regression method. The ANN is trained as multivariate statistical model. The modeling 

aim is to caUbrate the problem as spatial time series model (Ahmed and Cross, 1999d). 

Error measure SSE MSE 

I 
MPE I MAE MAPE I SE ME 

I ·- . 
Test Period 581.4 72.69 -6.3x.E-7 I 7.94 0.2023 i .0000148 .00000186 

Validation Period Analysis as Multi-jvariale I statistical (calibration) !Problem 

Table 7.12 Results with standard statistical method 

7.2.2 Analysis with Self-adaptive Back Propagation Method 

Table 7.13 shows the self-adaptive training results against the standard BP training with 

the hotel occupancy rate problem. The self-adaptive and the standard back propagation 

training do not yield acceptable terminal function value in any experiments. The training 

terminates at a point, which is far from the minimum function value that is found in 

statistical regress ion method. This training problem appears to be difficult with the given 

set of initial condition and ANN con figuration. The first order gradient based algorithms 

do not improve in function values and therefore the training performance with the standard 

BP and self-adaptive BP training is not considered in detail. 
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Table 7.13 Trai11ing perfomumce with self-adaptive back propagmion and standard back 
propagatioll trai11ing method 

7.2.3 Analysis with Mulli-directional Training Method 

Table 7.14 displays the multi-directional training results with the hotel occupancy rate 

problem. Figure 7.31 shows the convergence of this training method, which also face 

difficulty in some experiments. The training method identifies 800.89 as the lowest 

function value and is higher than the value 581.5 found by regression method. 
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Table 7.14 Training perfomumce with Multi-directional and restart truilliiiJ.! method 

7.2.4 Analysis with Restart Training Method 

Table 7.14 includes the restart training results with the hotel occupancy rate problem. 

Figur<' 7.32 shows the convergence of the restart training algorithm. Although the problem 

is difficult to train in some experiment, there is hope with the restart trainiog that identifies 

a function value in accordance with the standard statistical regression method. Therefore, 

the restart training algorithm can provide an estimate that could be a reference point. 

Given a problem that is difficult to train with the gradiem-based algorithm, the restan 

training method is able to reach a solution in a set of few experiments. The question of 

improvement over the standard statistical regression method has to be addressed from the 

modeling aspect and the configuration of an ANN. This altogether is a different issue. 

As an example, a different 7-2-1 ANN structure produce results in function value 216.86, 

which is lower that the value 581.5. Figure 7.33 shows the last few steps before 

convergence to the minimum point. It takes 24,543 numbers of iterations and 42,113 

numbers of function evaluations. Figure 7.34 shows the comparison in lit with different 

ANN configurations and multivariate statistical regression method. 

The important aspect of this training method is not only the improvemcm over the 

statistical regression method but also its ability to train an ANN, which face difficulty with 

gradient based training methods. This demonstrates the merit of the algorithm. These 

experiments suggest that we have a training method at hand that is at least a.~ good a~ 
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statist ical model. Therefore, there is chance to improve upon the calibration performance 

based on further relevant research design (Badiru et al. , 1998; Hun·ion, 1998). 
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1.2.5 Comp:1risun with Uiffcn-nt 'l'minln~ Methods 

T:1ble 7.1 S show~ the comparison I>~! tween the tlifl'crcm training metlmtls anti Tuhlc 7.16 

shows the perfonmm~e in swtistic:ll measure in training am! validution periods. 

·ti 
.l 

" 

Training 
Period 

Vnlidllion 
Period 

Table 7.15 Peifomrw•ce of differellf trab1ing methods 

MSE j N01 i I 17.4 . 72.64 : N<~ I 72.69 
______ J.E~!!~!!l!i.!'gj _____ : _____ !_s_nJ.!.':qs!!!gJ _____ _ 
~APE j ___ [ 0.23B I 0,201 ! ____ [ 0.202L_ 

MPE I __ ) -O.IJOI i -2.4E-5 ' _! -.f•,JE-7 
______g____ -l- __J .92 _)r .99 j • Q.998 

Epoch 1 1453 471442 i · 
Func. Eva!. 

MSE 
MAPE 
MPE 

I I J2tiil01 i- 753447 : -
- I -- __ , __ __! ! 

--I __ Anal~sis as j muhi-vnrlalc_j_ statiotical 
1
1 

Calibralinn : roblcm I 

Table 7.16 Statistical meamre.~ in traiuing a11d validution period 

7.3 Summary of Performance 

Table 7. l 7 shows the ranking of the proposed method~ based on three different criteria. In 
general no single training method performs well in all the test problems. Nevertheless, the 

-138-



re~tart tminiug methud appe:m; to perform well with :11lthe test pmhlems. It lm~ the :1hility 

to idemify hetler .~<Jlutiun~ in few e,;periments. 

Kanmrthi et al. (1999} report that the l'olak-Rihicre methm.l solves XOR prohh:m in 14 

ami L-T letter n:cognilion problem in 5 epoch~. The n•suh is included fur compari~on. 

This is however a second order training method. It uses second order approximution 1Jf 

gradient to generate .~carch directions. 

Ranking 
crileria 

I --•----i· 

. . :: =-i.~=l, 

XORI7Jt!654 l 
Lc end I Best= 1 Wnr~t=7 ''= Case.< that convcr•c 

Table 7.17 Summery of perfomwllcC of tile propo.red trailling met/md.r tmd tlleir rtmkiug 

7.4 Better Performance of a Tmining Mel hod 

Among the three new proposed training methods, the re.rtart training method finds the 

best function value and trains an ANN efficiently in all the experiments. The average 

number of epoch to train 5-5- I parity problem is 11310 against 17,354.4 with the standard 

back propagation method. The corresponding total numbers of function evaluations arc 

16583.2 and 538,072.4 respectively. In L-T leuer recognition problem the restart training 

method takes 1316.7 epoch and 2046.2 number of function evaluations. The time series 

and multivariate statistical modeling problems are solved with this method. The other two 

methods face convergence difficulty in solving multivariate stntistical modeling :md 

sea'>Onal time series problems. Considering the terminal function value as the mnking 

criteria, the restart training algorithm performs well in all the test problems. 
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7.5 Examples or'l'rulncd ANN with XOR, 1.-T, Time Series problems 

Table 7.11\n, 7.11\h, 7.11\c, 7.11\dshnwthe trained ANN ]()r the L.'f letter recognition tu.~k. 
XOR, hotel uccupnncy rate mmlysis and .\casunal time series.l()rcca~ting pruhleru. The 
network weights nrc uhtained using the restart training method. Also note that the network 
weights arc large in magnitude. The example of large weight~ and it~ S<~mplc calculation<; 
nrc shown in Chapter 6. The rc~tart algorithm cnn produce trained network weight~ that 
arc small ns well as large in magnitude.~. It i~ u!sn pussihle to truin the ANN with large 
initial weights as nuted earlier. 

Input Layor Wci~hl.> (~.) Input LJycr Weight' (w.) E~arnplc I 

"" ' ' "" ' ' 
" 

,, 
' 14, ss 2. 567 ' -0.0909 H.l'l7 

' 26. ;I 4 .Hl ' ·6,)61) I .192 

' 0.941 -2. <6& Output Layer Weights (w.,) 

• 9.319 4.440 "" ' ' ' 2.956 -;!.868 ol 

' -1.432 -o .236 ' -0 .9)39 ' .SS24 

' 7.538 -1.298 

,,• s.ooo8 0. BBS Input LJycr Weight.> ("~lE~amplc 2 

"' IO.SB l.Sll ' -0,5151 0.2516 

' -0.1062 0.3462 
Output Llyer Weight~ (w.,} Output Layer Weight.! (w •• ) 

"" ' ' "" ' ' ol ol 

' -1.171 0.613 ' 0.2)74 _, ll91 

Table 7.18a Trained weights for 9-2-1 Table 7.!8b Trained weights for XOR 
L-T feller recognition problem problem (Temri11aljimc1irm values are 

(Tennina/flmction value 0.00051) 0.002294 & 0.0000597) 

Input Layer Weights (w.) 

"" ' ' ,, 
' -95086.48 -27632.5 '1395.:!4 3337.29 

' 230649.5 ~8007.84 89596,86 -4189<!.25 

' 76391 43 82448,94 1583.18 153949.) 

• 4325,00 -ll9.32 -8ll2 .I -55280.9:! 

' 225615.9 -80032.07 4l121.lS -94798.1) 

• -8056.88 -6009.94 -'18021,65 -188'10.'18 
-17834 ,)) 12.21 -32164.06 19.331 

Output Layer Weights (w •. ) 

"" ' ' ol 

' -396016.3 78362.39 259801.6 64291.97 

Table 7./Bc Trai11ed weights for 7-4-1 hore/ occupam:y rille pmblem (Tcmrinal 
fmtction value 237.32) 
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,_, ,, 

' ' 

"" ol 

' 

H91~~2UOOO 

IHT/8~00 

~11?1~00 

·4\lOHOO 
~~09til. ~ 

-eOIIOHO 

Input Layer Weights (w.} 

-J~74t"I~OO )HUo~~lGQO 

12101 OJ ·1'.~'-~. 1 
214~410000 l40'/l'JlUO 
H29H~QO r.H'/5900 
-90r.98ll00 -lt~-~~l;>ouo 

Output Layer Weights(~ •. ) 

l71l7H 

4f,MOIJOOQ 
~llll'/~0 

4•,r,nor,ooo 
4~1-IO?aM 

71214~<.00 

r,9fo'/l01o 
·H'IIol~OO 

1~'1~~9400 

-~r,r,r,H 

·2lWilr.900 

Table 7.18d Tmi11rd ll'eiglllsfor 5-5-1 ~-ea.wmallime .rerie.r problem (Termilwl 
fimclirm mlue 437N7 180) 

7.6 Training Performance with Seasonal Time Series Problems 

With the given ANN architecture and initial condition the forecast and multivariate 

analysis problem proved difficult to train, while the parity, XOR and the lener recognition 

problems are relatively easy to solve with the proposed methods. 

The purpose of this research, however, is not to investigme further the 

forecast/multivariate problem with different ANN set up. This is a separate investigation 

by itself. The Research standardized the ANN architecture and initial staning points to 

study the convergence pattern. However, some e~~:amples of trained ANN results arc 

shown in previous sections with different ANN configurations. To overcome the difficulty 

with the forecasting problems the following steps are suggested. 

a.) Look for initial starting points that are appropriate for initialization. This can be done 

in a number of ways. One approach is to repeat the e~~:periment with the optimized 

ANN and start fonn this point changing the network weights with 10 % variations. 

Repeat the e~~:perimcnts until a better ANN is obtained. 

b.) Secondly, one can use other alternative method to identify the initial estimate of the 

forecast problem to initialize the ANN training. 

c.) Thirdly, the ANN architecture can be varied both in the numb<!r of hidden layer 

neurons and different transfer functions (Ahmed and Cross; 1999a; Ahmed Cross. 

1999b; Ahmed and Cross, I 999c). Also the num~cr of layers in ANN can be varied to 

observe the performance of the neural network model. For example we have two 

different ANN configurations in Chapter 6 where the restart method is examined 
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against the Neider and Me~d (1965) method. In Section 7.6.4 and 7.7.4 we have twn 

different ANN that produce better results. 

7.7 Rectification of Sluw Cunvcrgcncc 

The interpolation search method developed in Chapter 4 prevents cycling of the algorithm 

on the error surface, oscillations during convergence and overshooting the local minimum. 

These chamctcristics arc the limitations with the .'>tandard back propagation training 

(Kamarthi ct al., 1999). The algorithms developed in this research improve on these 

drawbacks. The multi-directional training and restart training algorithm do not usc 

gradient information to C,'(plore descent directions. The rectilinear direction and the 

direction from the centroid of a simple,'( along one of its wor~t vertex in oppo~itc side 

provide the search directions. It is due to these search strategies~ the training methods 

explore several local minimums with the possibility of improving the training 

perfornmnce. Consequently, the training methods developed in this research can be 
considered as a valuable and viable alternative to the existing training methods. The 

degree of improvement with the three proposed training methods in solving difficult 

problems is greater than the standard back propagmion method. 

7.8 The Rate of Convergence with Self-Adaptive BP Tmining Method 

It is noticed that the time series problem.~ face convergence difficulty. To observe the rate 

of convergence of the self-adaptive BP training method and the complex nature of the 

error surface, the eigenvalues of the Hessian matrix are computed. The error function is 

expanded in the neighborhood of a minimum w' with V/(K'') "'o and neglecting higher 

order terms the following error equation is approximated a~ quadratic function: 

f(w)"'f(w'J+t(w-w')" ll(w-w") (7.1) 

,, 
where, H "'---, (1"'!,2,. .. .,m;j"'l,2,. ... .,m) is the mxm Hessian matrix of f(w). 

aw1aw1 

The rale of convergence of the multi·directional training algorithm is observed with the 

quarterly seasonal time series problem as discussed in Chapter 3. The eigenvalue~ of the 

ANN time series are identified from the Hessian matrix 11 using standard eigenvalue 

computation method such as Jacobi method as explained in ~chwarz (1973). Given 

/: "'" E"' the algorithm theoretically converges to the unique minimum point w'. Also 

during convergence, the following inequality exists (Luenbcrger, 1984): 

(7.2) 
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The quantity, (A ,a) are the largest and smallest eignevalues of the Hessian matrix. The 

Hessian matrix is positive definite implying that the values of (A,a) > 0. 
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Figure 7.35 Function convergence with self-adaptive back propagation 
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If ,, "'a, the contours arc circular :md th~ conv~rgcucc h, :tchicvcll wit!< less cffurl. The 

comours arc more eccentric if the eigenvalues urc :11 a greater dislllncc unll the 

convergence of the training mctholl will be slow. A single unfavorublc eigenvalue from 

the set of m eigenvalues will cuusc trouble in convergence uf Slccpc~l dcscenl methuds. 

The relation 7.2 suggests that the n~ethmJ converge linearly with u convergence ratio no 

greater than [(..t-a)l(,t+a)f =[(Aia-!)I(Ma+tf]. '['he ratio Ma of the largest and lowe~! 

eigenvalue llctcrmincs the conllition number and it influences the convergence rule. The 

convergence ratio can be represented by (;;:'f=~~;::::f. It is this factor by which the 

error function during training is reduced per iterations. The ratio Ala governs the 

convergence in ptoposed method. The Hessian matrix of the 5-5-1 ANN seasonal time 
model is shown in Table A.7 (Appendix A}. The maximum and minimum eigenvalue of 

the matrix arc 17.882 and 0.0001 respectively. The convergence rutin is 0.99997 and, 

therefore, convergence of the algorithm is bounded by this factor. The corresponding 
condition number is 179873. It suggests that the ANN error surface is skewed and form'i 

ridges (Bishop, 1995; Jacobs, 1988; Bazaraa et al., !993 and Luenbcrger, 1984). This will 

slow the convergence of the training method due to the fuel that the algorithm needs extra 

efforts to climb up a valley and explore minimum in several flat surfaces as we!! as in 

narrow valleys. The last few itermions of the convergence are shown in Figure 7.35 and 

the rate of convergence is shown in Figure 7 .36. Although the error surface has bad 
structure the self-adaptive BP training algorithm still can train the ANN. 

The training algorithm generates a convergent sequence {/(w1 Jl, whirh can be seen in 

Figure 7 .35. Experimentally, the training algorithm after a finite number of iterations 

tenninates according a ratio bounded by {(r-IJ/(r+IJI 1 . The term r is the condition 

number, which is defined as ro.A/a. This result provides bounll on the convergence to 

the proposed method and is a reference point in convergence analysis. If r -t"", this ratio 

approaches to I from below and the rate of convergence becomes slower. 

Notice the change in convergence factor in Figure 7.36 in the interval22 to 29, 36tu 43, 

57 to 64 and 85 till the end of epoch. Compare the function convergence in Figure 7.35 in 

the same interval. It shows that the search moves from the higher contour surface of the 

error function to the next lower contour surface during iteration where there is change in 

convergence ratio. Also notice that when the convergence ratio is nearly equal to I, the 

change in error function is not significant. It indicates that the training face difficulty in 

this region and the convergent sequence {/(w1 JI is large due to the slow reduction in error 

function. 

The theoretical and experimental convergence ratio is nearly equal and this investigation 

shows some of the difficulties inherent with ANN training. 
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7.9 Remark.~ 

The performances of the three <.lerivmive Ji·cc training methods ure discussed in detuil with 

the predefined experimental set up. The self-adaptive hack propagation training and the 

multi-directional training algorithm train the ANN in parity and Jetter recognition 

problems efficiently. These two methods however face convergence difficulty with the 

sensorml time series and muhivarime statistical anulysis problems. The rc.~tart tmining 

method on the other hand is proved to be the best working tool with all type problems. It 
not only trains an ANN efficiently, but also improves the terminal function value. The 

experiment suggests that the restart training method improves over the standard statisticltl 

regression method and finds better local minimum in sea.~onal time series problem. It is 

shown that the training problem in seasonal forecasting is difficult to train due to the 

na10rc of the Hessian matrix. The condition number of the error function in 5-5- I ANN 

seasonal time series problem is found of the order 179873. Therefore, the error surface is 

complex in geometry and function corwergence is slow. It often terminates at a local 

minimum far from the desired local minimum. The experiments in this study show that the 

derivative free restart training method reduces the error function monotonically and 

converges to a solution that finds a solution better than the standard statistical regression 

method. 
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Conclusions 

8.1 Introduction 

The major concern of this research bas been the developments of three new deril'atiw free 
sefj-adaptil'e training algorithms and the analysis of their convergence properties. The 

variable learning rates of the sclj-adaptil'<! hack pmfmJ;alirm are determined dynamically 
in training iterations and hence, this approach eliminates the ad hoc method of parameter 

selection in ANN training. The search directions in self-adaptive BP arc computed from a 

comrol/ed cemraf difference apprm:imatirm .Yd11:me that utilizes the convergence 

characteristics of the error function. The proposed multi-Jireclionaltraining algorithm is 

dr:ril•atiw free and its training parameters arc determined by the algorithm rather than by a 
user. An optimized illlerpolation search determines the momentum term to accelerate 

training performance. The restart training algorithm explores the geometry of the errOr 
surface along a direction from the worst vertex to the centroid of a simplex. The training 

algorithm finds better local minimum. All the training algcnithms are faster than the 

standard back propagation algorithm. 

The restart training algorithm performs better than others. It is a derivative free train"1ng 

method and has the advantage to train an error function that is discontinuous or ill 
conditioned or the corresponding Hessian matrix is singular. I! successfully trains an 

ANN, where other training algorithms fails. The nmlli..Jirrclional training algorithm 

needs few epochs to train an ANN at the cost of function evaluations. These algorithms 

are designed such that the user needs minimum expertise to train an ANN. 

8.1.1 Performance of the Training Algorithms 

The convergence of the self-adaptive and derivative free training algorithms is rroved. 

The e11periment with the XOR problem suggests that the proposed sdf-adaplil'e hack 
propagation training algorithm when compared with the standard back propagation 

algorithm shows improvement in the total number of function evaluations by the order of 

magnitude 16.74 and the relative efficiency in average epoch is 42.9. Similarly the 

proposed multi-directirmol training algorithm improves over the standard back 
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propagation algorithm by the ti!ctor 4.9 and 107.8 in function cvalumion and epoch 

measure. The restart training algorithm is an order of a magnitude faster by 5.3 over the 

standard back propagation algorithm in function evaluations and 1.67 in epoch measure_ 

Since all the training algorithms are sefj-aduplit'l' and derhutil'e frrr, there is no need to 

pre-optimize the training parameters with these algorithms. Few experiments can find 

better solutions in parity, letter recognition and business forecast application problems. 

8,2 SignifiL.~oiCC of the Proposed Algorithms 

The algorithms presented in Chapters 5 and 6 are important due to the fact that they can 

improve the local convergence in training. Tabu search is a new research area (Glover and 

Laguna, 1997; Sexton et a!., 1998) and the local convergence of the multi-directional and 

restart simplex training algorithm can be improved further to investigate the training 

quality in ANN. 

Business applications using ANN are increasing due to its ability to se!Ve as flexible form 

of estimators. In order to achieve a better estimate, an optimized ANN is desirable. Many 

applications are currently using some variant of the back propagation algoritJ,m. An ANN 

that is not properly trained often performs poorly when forecasting out of sample (Saxton 

et al., 1998). A possible solution to this local convergence dilemma is the tabu search 

method (Saxton et al., 1998). In forecasting problem the e:~:trapolation and the 

generalization capability of the proposed algorithm is as good as the statistical regression 

methods and the res/art algorithm improves over the standard statistical regression 

methods. The proposed algorithms arc efficient in solving parity and letter recognition 

problems. Training a multivariate statistical problem with small data set is difficult. 

8,3 Theoretical Implications 

The convergence analysis of the training algorithm is provided. The multi-directional 

training algorithm solves forecast problems to produce results that are identical to the 

regression method. The mean square error is the same. This implies that the generalization 

capability is as good as the standard regression method. However, different ANN structure 

can be tested to see if there is further improvement over the standard statistical regression 

method. The restart training algorithm, on the other hand, improves the local minimum 

and finds better mean squared error value than the standard statistical regression method 

without scaling data. The .w!lf-adaptive back propagation training algorithm performs 

closely in identifying the mean squared error against the standard regression method. A 

modeler, therefore, needs minimum efforts to train a problem. 

The convergence difficulty of the ANN computation is highlighted with the analysis of a 

time series problem in Chapter 7. The convergence becomes slow due to the high 
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condition number in the Hessian matrix of the error function. Such incidents arc not mre 

in ANN compmatiuns as Ill conditioning in error !Unction arising due to high condition 

number causes premature tcm1ination of the algorithm (Jacobs, 1988; Salomon et al., 

1995). The proposed algorithms developed in Chapter 5 and 6 can resolve some of the 

diflicuhies. 

The training with a multivariate statistical model with a small data set in some 

experiments converges to a bad local minimum. The reason can be allributed to the small 

data set and the learning is insufficient. The error surface is complex and the training 

tennioates at a point tilr from the minimum. However, the n:s/arltraining algorithm finds 

a solution close to the regression method in mean square error measure. The remedy is to 

repeat the experiment from the locally optimized point or vary the ANN configuration to 

identitY better local minimum. It is shown that a different ANN configuration identifies a 

beuer solution than the standard regression method both in training and validation period. 

The proposed algorithms are able to avoid local minimum. Jt is observed from the terminal 

function values, which are often significantly low. This suggests that the algorithms find 

an improved local minimum. 

It should be noted that the raw data for the forecasting and statistical regression problem 

are used without any transformation. The ANN configuration and data have been 

standardized. It gives the chance to test the algorithm's ability to model a problem without 

much intervention by the modeler or user. 

8.4 Improved Performance and Convergence Without Oscillations 

All the proposed algorithms are free from severe oscillations while the error function 

convergences to a local minimum. This is one of the salient features of the proposed 

algorithms. The training algorithms adjust the learning rate parameters according to the 

geometry of the contour surface. Hence, the dynamic sdf-adaplil'!: algorilhm attains a 

desired degree of accuracy in a finite number of steps. The reslarl training algorithm is 

able to train an ANN where other training algorithms failed. The training successfully 

converges to a minimum point without oscillations in most of the experiments. 

8,5 Unique Properties of the Training Algorithms 

The descent directions in self-adaptive BP training algorithm is derived from the central 

difference gradient approximation scheme, which uses convergence property of the 

algorithm. In contrast, the training algorithm developed in Chapter 5 and 6 do not usc the 

gradient information. The user defined learning rate and momentum parameters are not 

required. Hence, these developments arc important !Or the case when: 
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a.) the error lilnetion is discontinuous; 

b.) the derivative of the error lilnction is not explicit (Gricwank, 1994; 

Griewank and Corliss, 1991 ); 

c.) an application needs derivative free training algorithm (Conn ct al., I 997)., 

d.) the pre-optimization of the learning rate and the momentum term arc 

difficult, inconvenient and time consuming; 

c.) the improvement in local minimum is desirable and 

[) only few e:o.pcriments are needed to lind a better optimized ANN. 

The restart training algorithm proved to be a useful algorithm that has the ability to train 

all the test problems. Only few e~periments arc needed to identify acceptable trained 

ANN. The quality of terminal function value is low and therefore the lor.al minimum is 

avoided with this training algorithm. 

When gradient based training algorithm faces difficulty, the resrar/ and multi-directional 

trai11ing algorithm improves the training performance. These two training algorithms are 

reliable to work with when the nature of the solution is not known. For new test problems 

these two algorithms provide solutions that can be compared to measure the quality of a 

trained ANN. 

8.6 Practical Benefit Over Second Order Training Algorithms 

Second order training algorithms have superior convergence propenies. It is discussed in 

Chapter 2. However, the storage requirement for the conjugate gradient method is about 

four times than that of standard back propagation algorithm {Kamanhi et al., 1999). 

Theoretically, the computational complexity of the Hessian matrix is of the order m1 

(Chen at al., 1999). The computation per cycle significantly increases due to the line 

search, which determines the appropriate learning rate in second order training methods. 

In conjugate gradient algorithm the training ofien converges to a bad local minimum from 

which the conjugate gradient method cannot escape (Kamanhi et al., 1999). As a result, it 

will impair the generalization ability of the network (Towsey, eta!., 1995). This is a 

limitation of the conjugate gradient method (Kamarthi et al., 1999). Newlon types training 

algorithms require a starting point close to the minimum point for convergence. Any 

arbitrary starting point does not necessarily provide convergence. The second order 

training method also suffers from ill conditioning due to the Hessian approximation and 

approximation to the quadratic function itself The derivative free training algorithms 

require less storage as compared to the gradient-based training algorithms. They find 

better local minimum compared to statistical regression method and standard BP training 

and are reliable when the error function is unfavorable for training with gradient-based 

training algorithms. 
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8,7 Future Research Directions 

Three new .w:lf-adoplin: dcriralil'O: free training algorithms and the related software arc 

developed. These training algorithms sol•1e different classes of problems and lind bellcr 

solution against the standard back propagation algorithm and, therefore, these algorithm~ 

provide better qunlity decisions. There arc a number of areas where further research could 

improve the training performance and modeling strategies. Some of the issues are 

discussed below. 

8,7.1 Modeliilg Strategy 

It is noticed that the multivariate statistical problem is di!Ticu!t to train with the proposed 

training algorithms. Therefore, it is important to investigate the underlying modeling 

structure in detaiL Zhang, Patuwo and Hu ( 1998) provide review of time series forecasting 

using ANN and discuss model selection strategy. The simple approach is to vary the ANN 

structure in number of hidden neurons and number of hidden layers. The examples, of 

variable hidden nodes to model seasonal time series problem are shown in Chapter 6, 

Ahmed (1999b) and Park et al., (1991). The other aspect is to look into the 

parameterization methodology in input layer neurons. The initial staring points are 

extremely sensitive to this class of problem and therefore a methodology, which can 

provide good initial estimate, is perhaps appropriate (Badiru and Sieger, 1998). One can 

also study the perfonnance of an algorithm with different data scaling methods both to see 

its convergence and generalization properties. 

Since the training algorithms are derivative free, it is easy to accommodatt: a variety of 

ANN configurations. The number of layers can be easily increased or any other special 

feed forward ANN structure can be trained using these algorithms. 

8.7.2 AlgorithmicAspects 

The proposed mulli-direclional derivative free training algorithm possesses important 

attributes. It is a class of training algorithm, which can be improved as a global training 

algorithm. Global training is a relatively new research area in ANN computation that 

works on the theory of tabu search proposed by Glover and Laguna (1997). One 

suggestion is to create a tabu list (Glover and Laguna, 1997; Sexton et al., 1998 and Shang 

et al., 1996} and eKplore several local minimums following the tabu list as the search 

progresses. The other approach is to generate stochastic descent directions following some 

specific distributions that may be beneficial to some training problem (Zhang and Xu, 

1999). 
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The restor/training algorithm is performing well but the training dinlculty is noticed in 

multi-variate statistical problem. The search coellicients in the rcsrurltraining algorithm 

are optimized by simulation experiment. It is wonh investigating the performance of the 

training algorithm with e.~act optimization method to idcnti(y the re.,·turl search 

cocfiicients. 

In .w!lj-adapliW back proJJn):alion training algorithm, a central difference gradient 

approximation computes the descent directions implicitly. Recently a new approach has 

emerged in automatic ditreremiation tools (Gricwank and Corliss, 1991; Griewank, 1994 

and Coleman and Jonsson, 1999)_ There is potential in directing research in these aspects. 

8, i,J Problem Specific Training Performance 

It is also important to find some training problem, which has the corresponding error 

functions that are ill conditioned or cannot be differemiated explicitly or has singular 
Hessian matrix. The perfonnance of the proposed algorithms with other different gradient 

based training algorithms in solving these problems needs attention. 

8, 7.4 Forecasting with ANN 

The science of forecasting with ANN needs more attentions according to Adya and 

Collopy (1997). They study 48 published neural network applications and found only I I 

are both efficiently implemented and validated. The validation can also be addressed in 

the context of bootstrap method (Diaconis and Effron, 1983; Effron and Tibshirani, 1986; 

Flachaire, 1999 and Gunter, 1991). 

The method or dynamics of introducing chaos into the system other than an auto 

regressive process (Box eta!., 1994; Kantz ct a!., 1977; Conway eta!., 1998; Chakraborty 

et a!., 1992) needs attention. The art of meta modeling with ANN is beginning to emerge 

(Kilmer et a!., I 999; Hurrion, 1998; Anjum et al., 1997 and McHaney, 1997). It is a 

science that combines ANN computations, discrete simulation and multivariate statistics 

as design of experiments. Such approach can bt: introduced in time ser'1es applications as 

model selection strategy. 

8.7.5 Market Research Applications 

Market research and conjoint analysis is another emerging trend and .have far-reaching 

implications. As the data processing and parameter estimation technology evolves, 

implementing more sophisticated techniques becomes easier for analysis (Hanssens ct a!., 

1993; Green eta!., 1993; Van Wezcl eta!., 1995; Hruschka and Natter, !999). Many 

service organizations such as banks, credit-card companies and airlines use their extensive 
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customer databases as strategic assets to develop cross-selling and other customer loyalty· 

focused marketing strategies. To understand the driving force of purclutsing behavior and 

to predict the likely outcomes of alternative marketing strategies, the ANN application in 

market research as a statistical tool remains an open issue_ 

8.7.6 Applica\i(lns and Case Study 

The applications of training algorithms can be further extended to biometric"applications, 

fraud detection in commercial enterprises, e-commercc, data warehousing, data mining, 

health care (Goss and Ramchandani, 1998) and inventory control applications (Sieger and 

Badiru, 1993), due to the algorithm's ability to identify good local minimum_ 

8.8 Concluding Remarks 

The first order BP training algorithm requires gradient info -'llation and a user defined 

learning rate and momentum parameter to train an ANN_ The second order BP training 

algorithms depend on the first and second derivatives. This research develops three 

distinct derim1i1·e free ANN training algorithms. All the proposed algorithms arc 

dynamically se/f-!ldaplil'e and no user defined training parameters are required to train an 

ANN. These parameters are determined optimally during training to provide maximum 

possible descent to the ANN error function. As a result fast convergence is achieved 

without oscillations. All the algorithms have been developed as ANN training software 

using FORTRAN programming language containing about l 5,000 instructions in totaL 

These algorithms successfully train character recognition, parity and forecasting problems. 

Extensive training e:o~periments suggest that the proposed selj-!ldaptil•e derimtiw free 

algorithms are fasteJ than the standard first order BP algorithm in number of epoch and 

numbers of function evaluations. The proposed algorithms also improve in terminal 

function value indicating that the improved local minimum is found. Hence, better training 

results arc achieved. It is also found that the derivative free res/art training method 

improves over the statistical regression method in training forecasting problems. 

Further research is necessary to test these algorithms in problems where the Hessian 

matrix of the corresponding ANN error function is ill conditioned, error function is 

discontinuous and derivative information is dillicult to obtain. 
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Experimental Data Set 

A. I Parity Problem 

The experimental data set for the parity problem is listed in Table AI. There are 32 input 
patterns with the corresponding output value. The ANN training determines whether an 
algorithm can classify this data set or not. If so to what extent the output matches with the 
actual data set. The perfommnce of an algorithm in epoch measure, function evaluation 
and terminal function value is noted. 

I !O OI~-J-010 0 17 I 0 0 0 0 __ 1.. 
2 ! 0 0 0 1 0 I 1 I \8 I 0 0 0 I 0 
~-q o o ~-ro-· 1 19 1 o o 1 o o 
41000iljL_o 2010011 I 
5 0 0 l 0 I 0 I 21 I 0 l 0 0 0 
6 o oltiO!l_O __ 22 1 o\·o-t·-,--
7DIOtJL!_o 2310\l+o l 
SOIO!lll 124101110 
9 tQ·· I 0 0 i 0 I ·25"-1 10-QQ_o_ 
10 0 I 0 0 I + 26 I 1 0 0 I I 

___!]_01010 0 2711010 I 
12 lo I 0 I l _ I 28 I l 0 I l 0 
13 0 I 1 0 0 0 29 I l 1 0 0 l 
14 0 I I 0 I I 30 I I I 0 l 0 
15 0 I I I 0 __ I 31 I I I I 0 0 
16 0 I I I I 0 32 I I I I I I 

Table A.llnpul pattemjor 5-5-1 pariry problem wilh one oulpul 
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A 2 Random sl:lrling Jloincs 

The random starti11g poincs for the training problems arc listed in Table A.2. To create 

different starting points the numbers in Table A.2 can be factored according to the 

requirements. 

Ex eriment # 
___ !!;_-!-__ -'-~-2 ~L. 3·---r -~" ... +--.?___ 6 _. ·- -~---1--l!...._ ______ 9 ___ .. J.~ 

~ ... ~!L .02 ; -.ol I -.1 I .I -1 I 2/J i .22 100 323 
2 .o-t : _)JCl-~2 =~.s--~=- 3 ~~:~·:·s· -- -·- J4n·"-- ~--545" .... _2_~~-

__ ,_ .o2 .o2 I ..:L_. __ :..Z ____ ---~ ..... 3 .. ·-·- ·n-;--:n-.. -~n-· 322 
4 .03 .03 I -.3 I 4 I . ·-i3--l-)f"';·--4"3'i-- .. 231 

-,----:or---~62-... -.i· .. ··- .. :3·-·-- 2---: 1 .... :··42 .. -~--.w-·--32._6 ___ t26 
-,- .05 ' .os I ... ,.2.__!_.3 ____ .1._ ___ :2-~ 57 I .20 "'TiOO! 125 
--,-- .o'l .!~--:o::r··- -.3 _____ .I ..... -1 __ 6 .• , ··g"····r·-:ss--·-·54{:~::·141 

E .05 ~- .7 j .3 7 3 .. 55" ) .35 553 .. 253 
'I .07 i .05 . . I ; .9 i 9 3 75 1 .25 559 !59 
10 ·.02 I -.02 . .8 _l _,y_ L 8 I '9- - 22 i .82 ' 229 ____ 229 
11 031 .OJ; .1 I .3 5 I 3 Jo-·i .93 300 433 
12 03 .02 ! .8 i A 'i 2 ' I I 32 I .83 I 321 311 
13 ___,_QU :o3l -.4 ' .5 i -5 " 33 i .73 '335 421 
14 .03 I 03 1 ... I I .9 ! 9 l 3 ' 33 I .63 339 : 78'} 
15 .01 I .01 I .9 ! .2 i 7 !. 2 I II : .51 j_ __ _ll7_ .. :_i43 

_j~ .04 .04 .I _1 ~~'(_II= 4 _:_ 7 __ j ___ ~Q_ I -.22 400 ... 973 
17 .04 .03 I .7 _j__.2 _!._ 2 ! 0 I 43 T:_-_33 432 2?~. 
18 .o3 

1 
.o'LJ .9 LJ.... .. l 5 I 1_ ----3.:CL -.44 345 : _345 

19 .03 .04 ! -.4_j .9 __j -9 ! 2 ; 37 i -.67 449 ' 249 
20 .04 I -.07 I .9 I .6 I 6 I 3 ! 44 I -.54 I 446 I 141\ 
21 .09 -.02 i .2 .3 I 5 I 6 ! 92 i AI J 120 -; 431 

22 .03 .07 I .2 H=2 I 5 L 3 ~~ .3~- ' 300 i" 727 
2
24

3 ._,", ._o
0

4
3 

_.
4
7 _.

9
1 __ L_:

9
5 -J-.... ,1 L_44 . .i .. JLL:!~U:E5 

I I ! I i 53 1:23-- I 439 Llli 
25 .02 .07 -1 .8 I -2 I 2 23 .13 432 I 132 
26 .03 .02 !I .I I .!.._'II! 3 __ -- 33 _l_]l 1 __ 12! 133 
21 .os .o1 .2 .2 i 2 j~-- ~-- 25 L2,~3 _____ ._:_ 2

1
2
22

1 2s4 
28 .03 .04 I .2 .I i I 9 I 43 ~ _ 243 

30 ;! '" :~~ :~~ 1~ ; -· ~--·--rl ~~ 1 :~~ ! ;~~ r !;~ 
Table A.2 Random starling points with differem magnitudes 

-165-



A,3 The L-'1' Letter Recognition l'rohlem 

The orientations of the L-T letters in four diflbrent orientations according to the !igure 3.3 
and 3.4 (Chapter 3) in arc listed in Table AJ and A.4. These data constitute the training 
set for the leiter recognition problem. 

.:' 

l " ~ 

Table A.3/npul Training l'aucm (L) 

- ' : I : 1__:_ i u;_=[l~ ::_t+ I+ 1-: -[:;: 
--"---'---'-t+i_I_LI_- '-1--' I 0 L_o_j_l-

c 0 I OIOt-+-t--f I !]ill 
-,-~o -,- I I I I ! ! -~-0 I 0 -11--i--1 

,, ,, 
' J 

Table A..llnpul Training Pal/em(/) 
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A.J Qunrterly Sea~nnnl Time Series Dntn 

The seasonal time series data shown in Table A.5 for the Australian peak electric load i~ 

collected from the reports available with the Australian llurcau of Stati~tics (ABS, 

#8301.0, Jan, 1998). The data covers the period from September quarter 1976 to June 

quarter 1997. These data arc used to train an ANN time series model. 

LJ976 77 I 78 I 79 I 80 I 8@ 82 I 83 I /i.l I !IJ i !16 

~;~gl~;~~= ~d~:: fg~~~~~:;~±1¥-iili~};Yill~Y'_m~f l:i.f:r;::,;: 
~-Q1J 19031 12_Qp_M.~Jf:J}~}_J.~_!;_04_!l_3_6}2)_2_~~2.,tl46~7 .2~M!iJ!!.~_2_: 29_5U6: J.ltJIS 
Jun.0-1)11545 22634 i 23644:24510! 26320! 27122127285 29042130838 i 32002 33(>85 

Table A.5: Peak Electric Load Qll(/rterly Da1a 

A.4 Hotel Occupancy Rate in Australiau Hotel Industry 

The data listed in Table A.6 show the hotel occupancy rate in terms of room nigllls .~pe/11. 
These data are collected form the Australian Bureau of Statistics report {ABS, #6401.1, 

Sept, 1999; ABS, # !350, Aug, 1998; 111350, Sept, 1999; ABS #86350.0, Sept, 1999). 

There are only limited data available. The training experiment involves in flndi11g a 

trained ANN that can be used as a calibration model similar to multi-variate statistical 
analysis approach. 

Table A.6 Hotel occupancy raw as room nigh/.\" 
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