
Edith Cowan University Edith Cowan University

Research Online Research Online

EDU-COM International Conference Conferences, Symposia and Campus Events

1-1-2006

Reusable and Sharable Learning Objects Supporting Students’ Reusable and Sharable Learning Objects Supporting Students’

Learning of Data Structures in University Courses Learning of Data Structures in University Courses

K Chansilp
Suranaree University of Technology

Ron Oliver
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/ceducom

 Part of the Educational Methods Commons

Recommended Citation Recommended Citation
Chansilp, K., & Oliver, R. (2006). Reusable and Sharable Learning Objects Supporting Students’ Learning of
Data Structures in University Courses. Retrieved from https://ro.ecu.edu.au/ceducom/67

EDU-COM 2006 International Conference. Engagement and Empowerment: New Opportunities for Growth in Higher
Education, Edith Cowan University, Perth Western Australia, 22-24 November 2006.
This Conference Proceeding is posted at Research Online.
https://ro.ecu.edu.au/ceducom/67

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online @ ECU

https://core.ac.uk/display/41531073?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ceducom
https://ro.ecu.edu.au/conference
https://ro.ecu.edu.au/ceducom?utm_source=ro.ecu.edu.au%2Fceducom%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1227?utm_source=ro.ecu.edu.au%2Fceducom%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages

105

Chanslip, K. and Oliver, R. Suranee University of Technology, Thailand and Edith Cowan
University, Australia. Reusable and Sharable Learning Objects Supporting Students’
Learning of Data Structures in University Courses

K Chansilp1 and R Oliver2

1School of Computer Engineering
Suranaree University of Technology, Thailand,
E-mail: kacha@sut.ac.th

2School of Communications & Contemporary Arts
Edith Cowan University, Australia,
E-mail: r.oliver@ecu.edu.au

ABSTRACT

Data structures are a conceptually demanding topic which confronts many computer science
students early in their course. The topic has a strong conceptual basis and often proves difficult for
many to grasp. This paper reports on a project which has developed a range of learning objects to
help students learn about the different data structures and the algorithms by which they are
controlled. Called VIDSAA, the suite of learning objects provides a visual representation which
enables students to observe and interact with a large number of data structure algorithms as they
are run and to observe and view the outcomes. The objects have been designed to enable
students to explore and investigate the data structures as a means of developing their knowledge
and understanding. The paper describes the design and development strategies that underpinned
the development of the learning objects and showcases the resulting products. It discusses a
project to explore how teachers and students might use the objects and the support they provide
for learning.

INTRODUCTION

Data structures is a conceptually demanding topic which confronts many computer science and
engineering students early in their courses. Students can have difficulty in understanding some
programming concepts. They need to visualise what is actually happening inside of the computer
memory when each statement of the program is executed. The problem is also caused by the
change processes inside the computer. Students can often not fully understand these because
they cannot see what is going on inside the computer (du Boulay, 1986, Mulholland and
Eisenstadt, 1998).

Contemporary technologies appear to provide many opportunities to seek to address the learning
needs of novice programmers in relation to learning difficult computer programming concepts.
Kann, Lindeman & Heller (1997) suggest that the practice of using graphic representation of
algorithms in textbooks provides constructs that are too abstract to aid learners to develop the
logical thinking required in computer science courses. Many students who finish introductory
classes, are still weak in their understanding of basic concepts. Students typically differ in their
ability to comprehend and understand abstract material due to their inability to visualize the
concepts. Previous research has proposed a number of ways to improve instructional materials
and therefore student outcomes. For example, instruction can be made to incorporate dynamic
explanations and conceptual maps can be developed to help students visualise the steps in
program execution (Karsten & Kaparthi, 1998; Lischner, 2000; Rowe & Thorburn, 1999).

106

COMPUTER-BASED INTERACTIONS

Recent research into the cognitive load associated with student learning suggests a number of
advantages can be gained in learning computer programming through the informed design of
computer-based visualisations (Sweller, 1998). This research has demonstrated that when
students are exposed to difficult concepts, their understanding can be enhanced through
representations that enable the elements to be connected and linked by learners in ways that limit
the extent of the cognitive load. When students learn from diagrams in textbooks, often their
attention is split between explanations and the visual elements. The split-attention effect (Mayer &
Anderson, 1991) has been shown to hinder learning but can be reduced through the use of
imagery that combines the appropriate instructional text within the diagrams (Chandler & Sweller,
1992). In associated research, it has also been found that detailed textual descriptions
accompanying graphics and images creates redundant information which also can impose extra
load on students‘ learning (Chandler & Sweller, 1991). These difficulties can be overcome through
representations which reduce the information redundancy, for example, through interactive
applications which reduce the need for descriptions.

This provides an opportunity to investigate ways to enhance learning through the informed use of
contemporary graphics programs. With emerging technologies, there are many ways to improve
instructional materials and to help instructors and students improve the teaching and learning
environment. This paper describes a study that sought to develop an instructional model using the
most recent developments in technology as a means to enhance student learning.

In line with these ideas, The Dynamic Interactive Visualisation Tool in teaching C (DIVTIC) was
designed as an interactive learning tool for introductory programming to help students to learn
programming through the provision of a raft of useful resources supported by a tool to visualize and
conceptualize programming constructs (Chansilp and Oliver, 2002; Chansilp and Oliver, 2004). A
study of DIVTIC was implemented with learners and data gathered to explore their levels of use of
the various tools and their degree of acceptance of the tool as a support for learning. The results
from the study demonstrated that students made significant use of the tool and its various elements
as a support for their learning. The results revealed the successful use of the animation tool as a
strong online support tool for the teaching of this subject and as an appropriate learning support
tool choice.

After the promising results of DIVTIC, the conceptual framework of the Dynamic Interactive
Visualisation Tool in teaching Data Structure (DIVTIDS) was designed (Chansilp and
Mukviboonchai, 2004). The foundation of DIVTIDS was designed around DIVTIC. However, some
functionality had been adapted to be appropriate to the nature of the data structure course.
Following the designed conceptual framework of DIVTIDS, the design and development of
Dynamic Interactive Visualisation Tool in teaching Data Structure (DIVTIDS) had been conducted
and presented (Chansilp and Mukviboonchai, 2005). The development of DIVTIDS was continued
and supported by the 2006 Endeavour Australia Cheung Kong Awards and Department of
Education, Science and Teaching, Australian government and given a more appropriate name,
VIDSAA, Visualisation In Data Structure And Algorithms.

LEARNING OBJECTS

The development of computer-based resources for learning is very much guided these days by
issues of sustainability and reuse. Whereas previously resources tended to be developed for use
in particular settings, there are now strategies that can be adopted that provide increased
opportunities for resources to be useful to users outside institutional contexts. The design of the
learning resources within the VIDSAA environment sought to gain the opportunities from what has
been discovered about the design and use of learning objects (Downes, 2000).

Current work with learning objects is seeking to explore and provide enabling systems and
processes to enable teachers creating learning environments to be able to discover and locate
online resources that can be seamlessly incorporated into learning environments. When one

107

examines the nature of e-learning and its use in educational settings, there are many factors that
potentially limit a number of the goals and aims of the learning object movement (Polsani, 2003).
For example:

 Learning resources come in a huge variety of forms and sizes;

 Most e-learning resources are developed and built for personal and local use without regard
for reuse beyond the immediate context;

 They are built from a variety of technologies and in a variety of architectures which tend to
tie them to particular platforms and operating systems;

 The resources have often been designed for use in a single setting, with hard links and
connections that cannot be easily disconnected if the materials are to be used elsewhere;

 The resources contain references and descriptions from the local setting which could be out
of place if the materials were reused.

VIDSAA

The development of the interactive resources in VIDSAA as learning objects to support student
learning appeared as a useful design strategy that could heighten their usefulness and capacity to
impact. Their development as stand-alone resources with a capacity for interoperability within
existing delivery systems was seen as an important outcome. At the same time, it was evident that
by considering in their design and development such aspects as their accessibility and
interoperability would create flexibility in their capacity for reuse.

In planning the form of the various resources, a number of the issues associated with the design
and development of learning objects guided many of the decisions taken in relation to the form and
structure that was used. For example: the granularity (Duncan, 2003) was influenced by the
opportunity to provide discrete resources for the various data structures and their algorithmic
process. A consistent grain size was planned to facilitate the development of resources across the
broad scope of data structures; the instructional form of each resource was planned to ensure
there was a degree of neutrality within the instructional support and context to create flexibility in
how and by whom the resources could be used (Friesen, 2004); the resources were planned as
stand-alone entities each of which could be used independently of others and any overarching
structure to facilitate reuse (Koper, 2003); the resources were to be designed as Flash animations
as a means of ensuring their interoperability and capability for implementation within a broad range
of courseware management systems (Koppi, 2005); and the use of the Flash format provided the
opportunity to develop appropriate metadata descriptors which could be attached to each resource
to aid discovery and reuse (Friesen, 2002) and provided opportunities for subsequent
customisation and editing as part of the reuse process (Friesen, 2004).

THE DESIGN AND DEVELOPMENT OF VIDSAA

The learning objects in VIDSAA system comprised the major data structure forms including
Recursion, Lists, Stacks, Queues, Trees, Sorting & Searching and Graph that are usually covered
in an introduction course in Data Structures and Algorithms. There are 55 animations in total. The
objects were designed as interactive animations each with three discrete components:

Overview: used to present information describing its topic (Figure 1), Algorithm and Source Code:
used to present the algorithm and source code used to solve that problem (Figure 2), and
Graphical Representation: used to show graphically on how the algorithm or source code is used
(Figure 3).

The overview within each animation provides an interactive visual representation of the algorithm
and/or data structure which the student can control. The use of play, stop, forward and backward
buttons enables the student to step through the processing and to observe the changes to the
variables and the relevant data. This animation provides the student with an overview of the
process involved and is intended to help learners to conceptualise how the algorithm/data structure

108

functions. As the student plays the animation, the variables and data change enabling the student
to observe what is typically concealed and hidden from view (Figure 1).

Figure 1: Data Structure Overview

The second element of VIDSAA displays the actual algorithm and source code. The algorithm is
presented in a pseudocode form that highlights the variables and control structures. The logic that
controls the algorithm is displayed and linked to the relevant lines of the source code. This element
enables the students to examine the algorithmic processes and to see how these are translated
into the actual programming code (Figure 2).

Figure 2: Data Structure Showing Algorithm and Source Code

The final element in VIDSAA is a representation which links the source code to a visual
representation of the processing. The linking is provided in the form of a communication which
enables the student to walkthrough the code from the commencement to the completion and to
observe how the algorithm carries out the intended function (Figure 3).

109

Figure 3: Data Structure Graphical Representation

To control each animation, learners use six static buttons, Play, Step-Backward, Step-Forward,
Stop/Pause, Go to the End, and Go to the Beginning buttons, one slider bar and one dynamic
slider button (Figure 4) that can be dragged into any position on the slider bar to see any particular
spot of the animation. The slider allows students to control the animation process. It works the
same way as the video controller buttons. This feature was intended to enable students to pause
and think before watching a further step of the animation and this was intended to provide an
opportunity for students to become active learners.

VIDSAA was planned to contain with all necessary elements needed to support normal classroom
activity, supporting both teacher and student use. The animations can be used by the teacher to
demonstrate and explain algorithms and data structures as part of an instructional presentation. As
well as this, VIDSAA was designed with a capacity for installation onto a student‘s computer for use
outside classroom activities as part of their independent learning..

Figure 4: The control buttons

A SAMPLE INTERACTION

The following example demonstrates how students are able to use VIDSAA to develop their
understanding of algorithms and data structures. Consider recursion, a data structure which many
students find difficult to understand and apply. Figure 5 shows the flowchart from the learning
object designed to demonstrate recursion. It provides a walkthrough on how to find the factorial
value of a given number, 5, by using a function called recursive_factorial() and sending 5 as an
argument.

Slider

bar

Dynamic slider

button
6 static buttons

110

Figure 5: A flowchart of recursive factorial

Students can visualise and control the animation step-by-step on how the problem would be
solved. The first step is to compare that given number, 5, to 1. If it is equal to 1, then return 1 to the
caller, otherwise return that number multiply by function recursive_factorial (given number – 1), that
is 5*factorial(4). The flowchart builds as the algorithm proceeds and the various comparisons,
decisions and steps are followed. The repetition demonstrates how recursion enables calculations
to be performed until a certain condition is met, at which stage the processing. The step is
repeated until the argument is equal to 1 (Figure 6). Then, the value would be returned to the caller
recursively.

Figure 6: A flowchart of recursive factorial when argument is equal to 1

The interactions have been designed to give students full control over the animation. If at any
stage the student wishes to stop the algorithm and to retrace the steps, the various controls
facilitate this. The animation stops when the processing is complete and the final values are
returned (Figure 7).

111

Figure 7 shows the returned values to the caller recursively back to the beginning of the function.
The returned value would be computed and returned as the result to the caller. The various
elements in VIDSAA operate in a consistent fashion across the broad range of data structures and
algorithms usually contained in an introductory programming course.

Figure 7: A flowchart of recursive factorial demonstrates the returned values

RESEARCH PLANS

There are many factors which can influence the success of learning objects as supports for student
learning in university settings. As independent learning resources, students will often need to be
motivated and encouraged to use them. Also, it is unclear as to what forms of learning support
best facilitate their use. For example, is it best for teachers to set independent tasks for the
students to complete or to simply encourage student exploration and inquiry? It will be important
in the process of implementing these learning objects to explore what are the optimal strategies for
encouraging and facilitating student use of them.

The question of student access is also an issue which can influence student use. If the learning
objects are stored on servers, students will need to be reminded as to where they are located and
what resources are available. On the other hand, if the learning objects are provided for students
on their own computers, the increased accessibility might encourage their use. Understanding how
best to provide access to resources will be an important issue to address.

A research project is now underway which is exploring implementation strategies and learning
outcomes from the use of VISDAA in a large university in Thailand. The research involves the
implementation of the learning objects as resources for students to access as part of their learning
experience. The research is exploring such outcomes as: the scope and extent of student use of
the resources; students‘ patterns of usage of the resources and the way in which the interactivity is
used to support learning; factors influencing students‘ use of the resources; and teaching strategies
that encourage and support students‘ independent use of the resources.

It is intended to use the findings from this research to develop guidelines to support the further
development of learning objects of this form and to inform and guide teachers in optimal strategies
for employing the learning objects in their teaching processes.

112

SUMMARY AND CONCLUSIONS

The paper has described the design and development of a set of learning objects, VIDSAA,
Visualisation In Data Structure And Algorithms, intended to support the learning of data structures
and their algorithms. The project recognized the difficulties faced by novice programmers and the
opportunities provided by new learning technologies. Developed as learning objects, the resources
have been designed to support student-centred learning across a variety of settings and learning
platforms. The innovative elements of the project include the various forms of interactivity and
engagement provided to support student learning derived from previous research of the authors.

The project is now exploring issues associated with the implementation of the resources to
discover strategies that teachers can use to maximize their learning potential. Areas being
explored include strategies to encourage student-centred activities and interaction patterns that
maximize the learning potential. The outcomes from the study will provide information that can
guide not only the implementation of these resources but also the design, development and
application of resources as learning objects supporting learning in other conceptually demanding
subjects and disciplines.

REFERENCES
Chandler, P. and Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition
and Instruction, 8(4), 293-332.

Chandler, P. and Sweller, J. (1992). The split-attention effect as a factor in the design of
instruction. British Journal of Educational Psychology, 62(2), 233-246.

Chandler, P. and Sweller, J. (1996). Cognitive load while learning to use a computer program.
Applied Cognitive Psychology, 10(2), 151-170.

Chansilp, K. and Mukviboonchai, S. (2004). The conceptual framework of dynamic interactive
visualisation tool in teaching data structure (DIVTIDS). EDU-COM 2004: New Challenges for
Sustainability and Growth in Higher Education, Khon Kaen, Thailand.

Chansilp, K. and Mukviboonchai, S. (2005). The design and development of dynamic interactive
visualisation tool in teaching data structure (DIVTIDS). The Seventh International Conferrence on
Information Integration and Web-based Application & Services (iiWAS2005), Kuala Lumpur,
Malaysia.

Chansilp, K. and Oliver, R. (2002). Using multimedia to develop students' programming concepts.
EDU-Com 2002: Higher Education without Borders Sustainable Development in Higher Education,
Khon Kaen, Thailand.

Chansilp, K. and Oliver, R. (2004). Students' responses to the use of a multimedia tool for learning
computer programming. Ed-Media 2004: World Conference on Educational Multimedia,
Hypermedia & Telecommunications, Lugano, Switzerland.

Downes, S. (2000). Learning Objects. Retrieved June 2001, from
http://www.atl.ualberta.ca/downes/namwb/column000523_1.htm

du Boulay, B. (1986). Some difficulties of learning to program. Journal of Educational Computing
Research, 2(1), 57-73.

Duncan, C. (2003). Granularization. In A. Littlejohn (Ed.), Reusing Online Resources: A
Sustainable Approach To E-Learning (pp. 12-19). London: Kogan Page.

Friesen, N. (2004). Learning objects and standards: Pedagogical neutrality and engagement.
Retrieved 15 November 2004, from www.learningspaces.org/ n/papers/pedagogical_neutrality.pdf

113

Kann, C., Lindeman, R. W., and Heller, R. (1997). Integrating algorithm animation into a learning
environment. Computers and Education, 28(4), 223-228.

Karsten, R., and Kaparthi, S. (1998). Using dynamic explanation to enhance novice programming
instruction via the World Wide Web. Computers and Education, 30(3/4), 195-201.

Koper, R. (2003). Combining reusable learning resources and services with pedagogical purposeful
units of learning. In A. Littlejohn (Ed.), Reusing Online Resources: A Sustainable Approach to e-
learning (pp. 46-59). London: Kogan Page.

 Koppi, T., Bogle, L., and Bogle, M. (2005). Learning objects, repositories, sharing and reusability.
Open Learning, 20(1), 83-91.

Lischner, R. (2000). Programming Language And Tools For Deep Learning. Retrieved August 22,
2000, from http://www.cs.utexas.edu/users/csed/doc_consortium/DC99/lischner-abstract.html

Mulholland, P. and Eisenstadt, M. (Eds.) (1998) Using Software To Teach Computer Programming:
Past, Present And Future. MIT Press, Cambridge, Massachusetts.

Polsani, P. (2003). Use and abuse of reusable learning objects. Journal of Digital Information, 3(4).
Retrieved 11 September 2006, from http://jodi.tamu.edu/Articles/v03/i04/Polsani/

Rowe, G., and Thorburn, G. (1999, August). Evaluate of VINCE - a tool for teaching introductory
programming. Paper presented at the 7th Annual Conference on the Teaching of Computing,
University of Ulster, Northern Ireland.
Sweller, J. (1998). Cognitive load during problem solving: Effects on learning. Cognitive Science,
12, 257-285.

http://jodi.tamu.edu/Articles/v03/i04/Polsani/

	Reusable and Sharable Learning Objects Supporting Students’ Learning of Data Structures in University Courses
	Recommended Citation

	EDU-COM 2006

