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REVIEW ARTICLE

J Sci Cycling. Vol. 2(1), 11-24

Pedal force effectiveness in Cycling: a review
of constraints and training effects

Rodrigo R Bini' ?DX, Patria Hume', James Croft®, Andrew Kilding*

Abstract

Pedal force effectiveness in cycling is usually measured by the ratio of force perpendicular to the crank (effective
force) and total force applied to the pedal (resultant force). Most studies measuring pedal forces have been
restricted to one leg but a few studies have reported bilateral asymmetry in pedal forces. Pedal force effectiveness is
increased at higher power output and reduced at higher pedaling cadences. Changes in saddle position resulted in
unclear effects in pedal force effectiveness, while lowering the upper body reduced pedal force effectiveness.
Cycling experience and fatigue had unclear effects on pedal force effectiveness. Augmented feedback of pedal
forces can improve pedal force effectiveness within a training session and after multiple sessions for cyclists and
non-cyclists. No differences in pedal force effectiveness were evident between summarized and instantaneous
feedback. Conversely, economy/efficiency seems to be reduced when cyclists are instructed to improve pedal force
effectiveness during acute intervention studies involving one session. Decoupled crank systems effectively improved
pedal force effectiveness with conflicting effects on economy/efficiency and performance.
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Introduction

During cycling, lower limb movement in the sagittal
plane is constrained to a circular path by the geometry
of the bicycle (i.e. cranks and pedals). Within these
constraints the cyclist can vary pedaling technique by
changing the kinematics of their lower limbs (thigh,
shank and foot) and the activation of muscles.
Technigue in cycling can be assessed through
measurement of joint kinematics (Bini et al. 2010;
Chapman et al. 2008b; Hasson et al. 2008) and muscle
activation patterns (Bini et al. 2008; Candotti et al.
2009; Dorel et al. 2009b). Alternatively, pedal force
effectiveness (ratio of the force perpendicular to the
crank and the total force applied to the pedal) has also
been used as a gold standard measure of technique in
cycling (Dorel et al. 2009a; Dorel et al. 2009b; Rossato
et al. 2008). However, there has been criticism recently
regarding using pedal force effectiveness exclusively
for feedback as pedal force effectiveness may not
provide a full representation of pedaling technique of
cyclists (Bini and Diefenthaeler 2010). Pedaling
technique is probably too complex to be summarized
by force effectiveness alone given that technique

strategies may not be fully translated into better force
effectiveness. However, cyclists can improve power
output if they improve force effectiveness, but they
cannot improve power output exclusively by
improvements in pedaling technique (Bini and
Diefenthaeler 2010). For a similar pedaling technique
(e.g. focus on pushing down forces applied at the
downstroke phase) power output can be improved by
increasing magnitude of force application (assuming
similar directions of the force). However, changing
technique to a more circling action (i.e. greater force
effectiveness for similar magnitude of forces) power
output can be improved, but only because force
effectiveness is improved. In a mechanical perspective,
applying pedal forces perfectly perpendicular to the
crank in the direction of crank motion (force
effectiveness equal to 100%) is only possible if a
perfect circling action is performed by the cyclist.
Existing evidence is conflicting regarding the
relationship between pedal force effectiveness and
performance in cycling. Most research suggests that
when the effectiveness of the force applied on the pedal
is optimized, the economy/efficiency (i.e. ratio between
mechanical energy produced and physiological energy
demand) is reduced (Korff et al. 2007; Mornieux et al.
2008). No research has been conducted to quantify the
relationship between symmetry in pedal forces and
performance. We chose to review the use of pedal force
effectiveness during cycling as pedal force systems are
now commercially available to monitor cycling training
and performance. Therefore, it is important to analyze
what we know and what we still need to learn in terms
of pedal force effectiveness to better advise cyclists and
coaches.

CYCLING © 2013 Bini; licensee JSC. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
RESEARCH (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original

CENTER work is properly cited


mailto:bini.rodrigo@gmail.com

J Sci Cycling. Vol. 1(2), 11-24

Bini et al.

The purpose of this review was to summarize current
knowledge on pedal force effectiveness during cycling
and how it is affected by task constraints such as
workload, pedaling cadence, body position, fatigue and
cycling ability. Limitations and benefits of measuring
and using pedal force effectiveness feedback
exclusively are discussed throughout the article.
Interventions to improve force effectiveness and
cycling performance are also considered to identify
interactions  between  technique training and
performance.

Methods

Academic databases (MEDLINE, SCOPUS, ISI Web
of Knowledge, EBSCO, and GOOGLE SCHOLAR)
were searched for peer-reviewed journals, books,
theses, and conference proceedings since 1960 with the
keywords pedal force effectiveness, workload, pedaling
cadence, saddle position, cycling, fatigue, and
symmetry. Articles were not included when they could
not be retrieved without at least an English abstract.
Journal articles (82), book chapters (4), and conference
articles (10) were included in this review based on
exclusion criteria of articles that were not related to

pedal force measurements.

Results

Most studies measuring pedal forces have been
restricted to one leg but a few studies have reported
bilateral asymmetry in pedal forces. Pedal force
effectiveness is increased at higher workload level and
reduced at higher pedaling cadences. Changes in saddle
position resulted in unclear effects in pedal force
effectiveness, while lowering the upper body reduced
pedal force effectiveness. Cycling experience and
fatigue had unclear effects on pedal force effectiveness.
Augmented feedback of pedal forces can improve pedal
force effectiveness within a single training session and
after multiple sessions for cyclists and non-cyclists. No
differences in pedal force effectiveness were evident
between summarized and instantaneous feedback.
Conversely, economy/efficiency seems to be reduced
when cyclists are instructed to improve pedal force
effectiveness during acute intervention studies
involving one session (Korff et al. 2007; Mornieux et
al. 2008). Decoupled crank systems effectively
improved pedal force effectiveness with conflicting
effects on economy/efficiency and performance.

Table 1. Scientific papers reporting different systems to measure the force applied on the pedals during cycling.

Reference
Guye (1896)
Sharp (1896)
Hoes et al. (1968)

Sargeant & Davies (1977)
Dal Monte et al. (1973)

Hull & Davis, (1981)

Harman et al. (1987)
Newmiller et al. (1988)

Broker & Gregor (1990)
Alvarez & Vinyolas (1996)
Boyd et al. (1996)
Nabinger et al. (2002)
Reiser li et al. (2003)

Chen et al. (2005)

Mornieux et al. (2006)
Stapelfeldt et al. (2007)
Valencia et al. (2007)

Dorel et al. (2008)
Chunfu (2009)

Sensor type

Pressure®
Pressure”
Strain gauge
Strain gauge
Strain gauge
Strain gauge
Strain gauge
Strain gauge
Piezoelectric
Strain gauge
Strain gauge
Strain gauge

Strain gauge

Load cell

Cycle ergometer
mounted on a force
plate

Hall effect sensor

Piezoresistive force
sensor attached to
the pedal

Strain gauge

Strain gauge

" No details about the measurement system characteristics.
® No details about pedal-shoe interface characteristics.
“The system was only analyzed using theoretical loads (finite elements).

Journal of Science and Cych'ng

Force components and moments  Cleats type  Application
Normal (Fz) No cleats Unknown®
Normal (Fz) No cleats Laboratory
Normal (Fz) Toe clips Laboratory
Normal (Fz) Toe clips Laboratory
Normal (Fz) and anterior-posterior (Fx) Toe clips Laboratory
Normal (Fz), anterior-posterior (Fx) and .
medio-lateral (Fy), and related moments vzl Lalbarisly
Normal (Fz) and anterior-posterior (Fx) Unknown® Laboratory
Normal (Fz) and anterior-posterior (Fx) Clip in Laboratory
Normal (Fz), anterior-posterior (Fx) and Toe clips and Laborator
medio-lateral (Fy), and related moments Clip in y
Normal (Fz) and anterior-posterior (Fx) Clip in Road
Normal (Fz), anterior-posterior (Fx) and o
medio-lateral (Fy), and related moments Clip i LEEBIER
Normal (Fz), anterior-posterior (Fx) and o
medio-lateral (Fy), and related moments Clp LeloeiEliar)
Normal (Fz) and anterior-posterior (Fx) Clip in Laboratory
Normal (Fz) and anterior-posterior (Fx) Unknown® Road
Normal (Fz), anterior-posterior (Fx) and "
medio-lateral (Fy), and related moments e Al Lalbarisly;
Normal (Fz) and anterior-posterior (Fx) Selectable Laboratory
Normal (Fz) and anterior-posterior (Fx) Selectable Laboratory
Normal (Fz) and anterior-posterior (Fx) clip 'Qli?)gd toe Track
Normal (Fz) N.A® N.AS
Page 12
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Discussion

Measuring pedal forces

Over the last 30 years technology has allowed pedal
force measurement to advance to the stage where it is
now possible to measure three components of force
(Fx, Fy and Fz) and three associated moments (Mx, My
and Mz) (Hull and Davis 1981). Systems have been
used during cycling on the road (Alvarez and Vinyolas
1996; Dorel et al. 2008) and off-road (Rowe et al.
1998). A summary of the systems used to measure
forces applied during cycling is provided in Table 1.
The component of the force applied on the pedal in the
frontal plane (medio-Ilateral) is presented in Figure 1.

compute the effective force, pedal angle in relation to
the crank has been acquired wusing angular
potentiometers (Hull and Davis 1981), videography
(Rossato et al. 2008) or digital encoders (Martin and
Brown 2009). By trigonometry, normal and anterior-
posterior forces were converted into components
tangential to the crank. Effective force can produce
propulsive or retarding force on the crank depending on
the direction of the force applied on the pedal during
the crank revolution (see Figure 2).

Fy = Normal force

Fx = Anterior-posterior force
EF = Effective force

RF = Resultant force

EF

Figure 2. Diagram of the normal (Fy) and anterior-posterior (Fx)
components of the total force applied on the pedal (resultant force — RF) in
the sagittal plane. The effective component (EF) of the resultant force
applied on the sagittal plane is also shown.

Figure 1. Frontal view image of one cyclist illustrating the normal and
medio-lateral components of the force applied on the pedal. Dotted arrow
shows the projection of the pedal in the frontal plane and highlights the
medial-displacement of the knee. Image provided by the first author.

The medio-lateral component (Fz), does not contribute
to bicycle propulsion and is usually ignored despite
suggestions that inter-segmental forces at the knee joint
may be associated with injury (Ericson et al. 1984;
Ruby et al. 1992).

The total force applied on the pedal in the sagittal plane
can be computed by the two components on the pedal
surface (normal - Fy and anterior-posterior - Fx). A
percentage of the total force on the pedal will be
directed perpendicular to the crank (effective force). To

Page 13

Pedal force effectiveness during cycling has been
defined as the ratio of the force perpendicular to the
crank (effective force) and the total force applied to the
pedal (resultant force). This ratio has been defined as
the index of effectiveness, which is the ratio of the
impulse of the effective force to the impulse of the
resultant force over a complete crank revolution (see
equation 1) (LaFortune and Cavanagh 1983).

360 360

|E=jEmijMt
0 0

Equation 1. Index of effectiveness (IE) is the ratio of
the impulse of the effective force (EF) to the impulse of
the resultant force (RF) over a complete crank
revolution (LaFortune and Cavanagh 1983).

The index of effectiveness is the most used measure of
technique in cycling because more skilled cyclists have
higher pedal force effectiveness (Bohm et al. 2008;
Hasson et al. 2008; Holderbaum et al. 2007). However,
other studies have reported that pedal force
effectiveness may not fully represent joint kinetic and
kinematic patterns associated with changes in pedaling
technique (Bini and Diefenthaeler 2010; Korff et al.
2007; Mornieux et al. 2008). The reason is that cyclists
change joint kinetics and kinematics towards an
improved technique (e.g. greater knee and hip joint
flexor moments at the upward phase) but they do not
necessarily convert these greater moments into better
force effectiveness (Bini and Diefenthaeler 2010).
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The pedal cycle is usually divided into two phases
(propulsive or downward and recovery or upward) or
four quarters. Average normal and anterior-posterior
forces from one male competitive cyclist (20 years old,
375 W of maximal aerobic power output and 65 ml'kg’
Ymin? of VO,us) and hypothetical ideal force
application are presented in Figure 3 (unpublished
data). The ideal force direction is based on the
assumption that all the force applied to the pedal should
be converted into effective force in favor of crank
motion.

Radial forces at the bottom (or top) dead centres of
crank revolution (commonly observed in cyclists) do
not create angular motion, and therefore, do not help
produce crank motion. Inertial moment from the
cyclist’s leg may result in angular motion. Although

8

4™ quarter <

34 quarter

Left pedal

related to inertial components of leg segments, the
radial force applied on the pedal is not free of energy
cost because energy is spent to convert potential energy
at the top dead centre to kinetic energy towards the
bottom dead centre (Kautz and Hull 1993). If the
cyclist is riding with no resistance on the bicycle wheel,
energy is still required to keep pedaling resulting in
internal work production (Minetti 2011). Potential
energy is stored in muscle-tendon units at the top and
bottom dead centres and is converted to kinetic energy
at the upstroke and downstroke phases. Changing the
motion of the limb from downward to upward does not
require energy from the ipsilateral leg. However, the
connection with the contralateral leg (which will spend
energy lifting the other leg) and the inertial effect (or
potential to kinetic energy conversion) will create
angular motion at the bottom
dead centre transition. The
reason for the extra metabolic
energy to reduce radial forces
and increase tangential forces on
the crank is likely due to an
additional recruitment of
muscles (i.e. knee and hip
flexors) that would not be used
by cyclists for this particular task
(Mornieux et al. 2010).

Pedal force application from the
example cyclist was different
from the hypothetical ideal force
application presented in Figure
3. For normal force, propulsion
is maximized by applying a
downward force during the
propulsive phase (from the top
dead centre to bottom dead
centre) and an upward force

1%t quarter

2" quarter

during the recovery phase (from
the bottom dead centre to the top
dead centre). Similarly for the
anterior-posterior force,
propulsion is maximized with
anterior force during the first and
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the fourth quarters, and posterior
force during the second and the
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third quarters. However, these
idealized force profiles are not
observed in cyclists (Korff et al.
2007; Mornieux and Stapelfeldt
2012; Mornieux et al. 2008).

In the propulsive phase the
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Crank angle (°)

Figure 3. Representative diagram of pedal force directions at the four quarters of a pedal revolution. White
arrows indicate ideal pedal force application to optimize force effectiveness and black arrows show normal
and anterior-posterior pedal force application for one male competitive cyclist riding at 90 rpm and 350 W
(unpublished data from our laboratory). Plots of right (black line) and left (grey line) normal and anterior-
posterior force of one male competitive cyclist riding at 90 rpm and 350 W. Right and left effective (EF),
resultant (RF), normal (Fy) and anterior-posterior (Fx) forces.
propulsive effective force. For normal force, positive values indicate force applied to pull the pedal, and for
anterior-posterior force, positive values indicate a forward force applied to the pedal.

For effective force, positive values indicate

resultant force is consistent
between cyclists (variance ratio
= 0.063 [CV% = 10%]) but in
the recovery phase normal force
is more variable between cyclists
(variance ratio = 0.204; CV% =
31%) (Hug et al. 2008), possibly
because some cyclists try to pull
the pedal upward to improve
force effectiveness (Mornieux et

180 270 360

Page 14
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al. 2008). Upward pulling of the pedal is possible
during the recovery phase because most cyclists use a
system (clipless or clip in) where the shoe is attached to
the pedal by a cleat. Differences in anterior-posterior
force between cyclists predominantly occur during the
recovery phase, when some cyclists try to pull the pedal
backwards (Coyle et al. 1991; Kautz et al. 1991).

Most of the effective force is produced during the
propulsive phase with the highest force generated at
approximately 90° (Coyle et al. 1991). Propulsive
effective force is rarely observed during the recovery
phase and most studies reported negative effective
force during the recovery phase (Dorel et al. 2009b;
Rossato et al. 2008; Sanderson and Black 2003) which
indicates that the effective component of pedal force is
in the opposite direction to the crank movement,
thereby resulting in resistive force for the contralateral
leg (Coyle et al. 1991). This resistive force can be seen
in Figure 3 where the effective force is negative during
the third and the fourth quarters of crank revolution.
Separate analyses of pedal force effectiveness during
the propulsive and the recovery phases has been
performed using the index of effectiveness for each
phase (i.e. integral limits from the top dead centre to
the bottom dead centre) (Rossato et al. 2008).
According to Mornieux et al. (2008), higher pedal force
effectiveness is found during the propulsive phase,
compared to the recovery phase, with lower
effectiveness during the recovery phase possibly related
to an inability of the cyclists to generate effective force
from the knee and hip joint flexors at higher workloads
similar to those observed during racing.

Pedal force effectiveness can also be calculated over a
complete pedal revolution by the instantaneous “ratio
of effectiveness”, which has been used to assess
different parts of the pedal cycle (Sanderson 1991).
When the ratio of effectiveness is close to 1, a greater
percentage of the resultant force is transferred as
effective positive force. Conversely when the ratio of
effectiveness is close to -1, most of the resultant force
is transferred as effective force in the opposite direction
of crank movement, resulting in resistive
force for the contralateral leg. Typical
values for the ratio of effectiveness are
shown in Figure 4 using unpublished data
from Rossato et al. (2008) for eight elite
cyclists right pedal forces.

The ratio of effectiveness was close to 1
during the propulsive phase and close to -1
during the recovery phase indicating that
the ipsilateral leg was directing most of
the force applied on the pedal to generate
propulsive torque on the crank (positive
effective force). Conversely, during the
recovery phase, most of the force applied 0
on the pedal was creating resistive force
for the crank (negative effective force).
Similar ratios of effectiveness have been
previously reported (Sanderson 1991;
Sanderson and Black 2003).

Limitations on the exclusive use of force

Ratio of effectiveness (%)
=)
o =)
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High +20%
—o— Freely chosen
Low-20%

effectiveness analysis have been suggested because
force effectiveness mixes muscular and non-muscular
components (Leirdal and Ettema 2011a) and does not
fully represent cyclists pedaling technique (Bini and
Diefenthaeler  2010). An alternative  analysis
(decomposition method) separates the muscular and
non-muscular components (mass and inertia) of pedal
and intersegmental joint forces (Kautz and Hull 1993).
A limitation of this method is the mechanical
dependence of non-muscular components on the
muscular component pattern where muscular action
will affect non-muscular components, and vice versa.
For practical application, the decomposition method
requires the analysis of joint kinematics to determine
joint moments, which are not always possible. Analysis
of muscle moments from net moments is prone to
errors due to limitations of the inverse dynamics
technique (i.e. absence of co-contraction in the model).
Another approach (ratio between the mechanical work
at the top and bottom dead centers by the overall
mechanical work of crank revolution) has provided
conflicting relationships with economy/efficiency in
recent studies (Leirdal and Ettema 2011a, b). Loras et
al. (2009) assessed non-muscular component by
measuring forces during unloaded cycling. However,
this method is limited because a residual muscular
component is still required to move the legs along with
inertial components. Therefore, an ecologically valid,
sensitive and reliable method of analysis of pedal force
effectiveness to better represent cyclists pedaling
technique is still required.

Most previous studies were conducted assuming
symmetry between the right and left pedal forces.
However, pedal force symmetry of non-injured athletes
has ranged between ~2% (Smak et al. 1999) to ~3%
(Bini et al. 2007). In injured non-athletes, pedal force
asymmetry up to 400% has been reported between the
non-injured and injured leg (Hunt et al. 2003; Mimmi
et al. 2004). Further analysis should explore the degree
of symmetry of each force component during the pedal
cycle and whether the force symmetry is related to

90 180 270 360
Crank angle (°)

Figure 4. Average ratio of effectiveness for eight cyclists pedaling at 80% of their maximal
power output. Freely chosen cadence was determined by the cyclists. “Low-20%”"
indicates pedaling cadence 20% lower than the freely chosen cadence and “High+20%”
indicates pedaling cadence 20% higher than the freely chosen cadence. Unpublished
data from previous research (Rossato et al. 2008).
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cycling ability, or other factors. Currently, few studies
have presented asymmetries in crank torque for
uninjured cyclists (Carpes et al. 2007; Daly and
Cavanagh 1976).

Constraints on force effectiveness

Pedal force effectiveness depends on constraints that
could be workload level (Kautz et al. 1991; Zameziati
et al. 2006), pedaling cadence (Candotti et al. 2007;
Patterson and Moreno 1990), body position on the
bicycle (Bini et al. 2009; Diefenthaeler et al. 2006;
Diefenthaeler et al. 2008; Dorel et al. 2009a), fatigue
(Diefenthaeler et al. 2007; Dorel et al. 2009b) and
cycling experience/ability (Candotti et al. 2007;
Sanderson 1991) (see Table 2).

On cycle ergometers, workload is measured by the
average power output (in Watts) or the total mechanical
work over time (in Joules) and calculated from the
torque and angular velocity of the cranks. Crank torque
depends on the mechanical characteristics of the
bicycle (crank arm length) and on the effective force.
The longer the crank arm length, the higher the torque
for the same angular velocity and effective force.

Most studies assessed pedal force effectiveness during
laboratory controlled trials at aerobic levels of
workload (submaximal cycling). Pedal forces acquired
during sprint cycling (5 s) conducted on a cycle
ergometer were only reported by Dorel et al. (2010).

75% of POjyay

90% of POy

Therefore, little is known about the effects of
supramaximal (or anaerobic) workload levels for
cycling variables (e.g. body position on the bicycle,
fatigue and cycling experience/ability).

Figure 5 shows the normal, anterior-posterior, effective
and resultant force components applied on the right
pedal during three stages of an incremental maximal
cycling test (75%, 90% and 100% of the maximal
aerobic power output) from eleven competitive male
cyclists (Bini et al. 2007). At higher workload levels,
the peak of the effective force was ~20% greater during
the propulsive phase (between 0° and 180° of crank
angle) and ~110% lower (less negative) during the
recovery phase (between 180° and 360° of crank
angle). Increases in the effective force are usually due
to higher resultant and normal forces during the
propulsive phase. At 100% of the maximal aerobic
power output there was a ~58% reduction in the
forward (positive) pedal force component and a ~175%
increase in the backward (negative) pedal force
component.

—— 100% of POyyay

500 , 200
Normal Anterior-posterior
e 100} :
Z 300
(-4}
0
&
100}
. 400}
%% 90 180 270 360 200 90 180 270 360
500 500
Effective Resultant
= 300 300
[ 5}
Q
S 100!
T
100}
A0 90 180 270 360 % 90 180 270 360
Crank angle (°) Crank angle (°)

Figure 5. Average normal (Fz), anterior-posterior (Fx), effective (EF), and resultant (RF) forces applied to the right pedal from eleven cyclists during
three stages of an incremental test (75, 90 and 100% of the maximal power output). Propulsive effective force is positive. Positive normal force is force
applied to pull the pedal. Positive anterior-posterior force is forward force applied to the pedal. Unpublished data from previous research (Bini et al.
2007).
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It is unclear why cyclists present lower pedal force
effectiveness at lower workload levels. Studies showed
that wide increases in workload level (i.e. from 60% to
98% of maximal aerobic power output) led to higher
force effectiveness (Black et al. 1993; Zameziati et al.
2006), which was not observed when smaller
differences in workload level (i.e. from 75% to 100%
of maximal aerobic power output) were assessed (Bini
and Diefenthaeler 2010). One possibility is that when
improving pedal force effectiveness cyclists may
increase activation of muscles that are less efficient (i.e.
hip and knee flexors) which may increase energy
expenditure and reduce economy/efficiency (Korff et
al. 2007; Mornieux et al. 2008). Therefore, to maintain
a lower oxygen uptake cyclists may postpone recruiting
these less efficient muscles and rely on the knee and
hip joint extensors to produce power (Fernandez-Pena
et al. 2009). Indeed, differences in results from
previous studies may also be because the 60% of
maximal aerobic power output is potentially a very low
intensity effort for trained cyclists.

The effect of pedaling cadence on pedal force
effectiveness is uncertain (Ansley and Cangley 2009).
When cycling at constant workload in the laboratory,
cyclists can minimize resultant force application by
riding at approximately 90 rpm (Candotti et al. 2007;
Neptune and Herzog 1999; Patterson and Moreno
1990). Most studies have shown higher pedal force
effectiveness at lower pedaling cadences (i.e. 60 rpm)
when compared to self-selected cadences (Candotti et
al. 2007; Ericson and Nisell 1988). Improved pedal
force effectiveness at low cadence may be due to lower
overall muscle activation (Macintosh et al. 2000),
lower joint moments (Marsh et al. 2000; Takaishi et al.
1998) and reduced co-activation of extensor/flexor
groups (Candotti et al. 2009; Neptune and Herzog
1999). In contrast, Rossato et al., (2008) reported that
pedal force effectiveness of cyclists did not differ at a
cadence 20% higher than the self-selected cadence.
Experienced cyclists typically pedal at high cadence
(~100 rpm) resulting in reduced activation of the main
driving muscles (i.e. vastus lateralis and gluteus
maximus) (Lucia et al. 2004), lower joint moments (i.e.
reduced resultant moments) (Marsh et al. 2000) and
less effort perception (Ansley and Cangley 2009).
Experienced cyclists may be able to sustain pedal force
effectiveness while cycling at high pedaling cadences
(Candotti et al. 2007; Rossato et al. 2008).

The configuration of bicycle components determines
the position of the body on the bicycle, though it is
acknowledged that different body positions can be
obtained despite no change in bicycle geometry (e.g. by
varying hand placement). Any change in body position
resulting from a change in saddle height will affect
knee angle (Nordeen-Snyder 1977; Sanderson and
Amoroso 2009), muscle activation (Ericson et al. 1985;
Jorge and Hull 1986), muscle length (Sanderson and
Amoroso 2009), and oxygen uptake (Nordeen-Snyder
1977; Shennum and DeVries 1976). For trained
cyclists, a 3% increase in saddle height resulted in 7%
increase in force effectiveness (Bini et al. in press-a).
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Ericson & Nisell (1988) found that seat height changes
(8% of the ischial tuberosity to the floor) did not
affect pedal force effectiveness of non-cyclists. It is
likely that the experienced cyclists who were adapted to
their bicycle configuration due to training were
sensitive to the small changes in saddle height resulting
in the acute effect on pedal force effectiveness, or it
was simply a sub-optimal position.

In addition to the height of the saddle, the forward-
backward position of the saddle changes ankle joint
kinematics (Price and Donne 1997) and muscle
activation (Ricard et al. 2006). However, moving
forward or backward by ~3° did not affect force
effectiveness in trained cyclists/triathletes (Bini et al. in
press-b).

Trunk angle (upright versus the most aerodynamic
position) has an effect on effective force (Dorel et al.
2009a). With the trunk in the most aerodynamic
position the effective force was 9.5% lower during the
recovery phase compared to the upright position (Dorel
et al. 2009a). In the aerodynamic position, the angle
between the trunk and thigh was smaller which reduced
the activation and possibly the length of hip joint flexor
muscles, thereby decreasing the ability to generate
pulling force during the recovery phase (Dorel et al.
2009a). In contrast, Emanuele et al. (2011) observed no
changes in effective force when cyclists used a position
of the hands on the drops of the handlebars compared
to the upright position (hands on the top of the
handlebars). Increased hip power production and
reduced knee joint power when the hands were on the
drops were in contrast to findings from Dorel et al.
(2009a). Further research is required to assess to what
extent upper body flexion compromises hip and knee
muscle actions and pedal force effectiveness.

Cyclists usually stand up on the bicycle to ride uphill to
benefit from using their upper body mass to apply force
on the pedal in the downstroke phase (Caldwell et al.
1998). Specifically, Caldwell et al. (1998) reported that
the peak torque for the same workload level and
pedaling cadence increased by ~30% and total pedal
force increased by ~50% when standing compared to
seated cycling uphill. Therefore any changes in torque
profile would have come from changes in total pedal
force with potential decreases in pedal force
effectiveness. Consequently, the 30% higher (and
delayed) peak torque and 50% greater total pedal force
suggests reduced pedal force effectiveness when
standing on the bicycle during uphill riding.
Conversely, cycling at 75% of the workload of
maximal oxygen uptake at 11% of incline has not
changed pedal force effectiveness compared to level
cycling for another study (Leirdal and Ettema 2011b).
Most studies failed to show a consistent change in
pedal force effectiveness when cyclists were in a
fatigued state (Diefenthaeler et al. 2007; Sanderson and
Black 2003). Studies that did report changes with
fatigue showed an increase in pushing down normal
force during the propulsive phase (Amoroso et al.
1993; Dorel et al. 2009b), in resistive force during the
recovery phase (Sanderson and Black 2003), and in the
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pulling backward force on the pedal surface during the
recovery phase (Dorel et al. 2009b). For these studies,
cyclists were either assessed at a fixed workload level
of 300 W (Amoroso et al. 1993) or at 80% of maximal
aerobic power output (Dorel et al. 2009b; Sanderson
and Black 2003) during time to exhaustion testing.
These results suggested that lower limb mechanics
change to balance for fatigue and sustain pedal force
effectiveness. Increased ankle dorsi-flexion (Amoroso
et al. 1993; Sanderson and Black 2003), higher range of
motion for the ankle joint (Bini et al. 2010) and
reduced knee flexion angle (Bini et al. 2010) have been
found during fatigue. The increased activation of hip
extensor muscle activation (Dorel et al. 2009b)
contrasted with the unchanged individual joint
contribution to the absolute joint moments (Bini et al.
2010). Further research could assess changes in pedal
forces during time trial events, when fatigue is
postponed by pacing strategy.

It is unclear how experience in cycling affects pedal
force effectiveness. From a cross-sectional perspective,
differences were found between cyclists and non-
cyclists (Mornieux et al. 2008), cyclists and triathletes
(Candotti et al. 2007), but no differences were found
between competitive and recreational  cyclists
(Sanderson 1991). If pedal force effectiveness is
important for performance it may be expected that
pedal force effectiveness would be related to
competitive results within a cohort of cyclists.
However, a study of 14 competitive cyclists reported
that the cyclists who achieved better performance
indices where the ones who had lower pedal force
effectiveness but were able to apply higher normal
force on the pedal (Coyle et al. 1991). Recent studies
(Korff et al. 2007; Mornieux et al. 2008) have analyzed
pedal force effectiveness and cycling efficiency with
the aim of determining why there is a lack of
relationship between pedal force effectiveness and
performance in cycling. No relationship was found
between economy/efficiency and pedal force
effectiveness during sub maximal trials at constant
aerobic power output, yet in the cycling community, it
is advocated that better force effectiveness can be
translated to higher economy/efficiency (Cavanagh and
Sanderson 1986). Further research is needed to increase
our understanding of the implications of cycling
experience on pedal force effectiveness.

Technique training effects on cycling performance
Improved pedal force effectiveness should theoretically
result in an increase in economy/efficiency but this has
not been the case (Korff et al. 2007). However, cyclists
still aim to improve pedaling technique via improving
pedal force -effectiveness. Research studies have
provided visual feedback of pedal forces or have used
assisting devices (e.g. decoupled cranks) to stimulate
the cyclist to change their natural movement to improve
pedal force effectiveness.

When cyclists are given feedback of pedal forces they
can improve their force effectiveness (Broker et al.
1993; Sanderson and Cavanagh 1990; Ting et al. 1998).

Journal of Science and Cych'ng

Visual (augmented) feedback of pedal force has been
used in different phases of the pedal cycle (Hasson et
al. 2008; Henke 1998; Holderbaum et al. 2007) without
differences between summarized and real time
feedback (Broker et al. 1993). Presentation of an ideal
force diagram and the actual force (similar to the one
presented in Figure 3) has been used as feedback
(Hasson et al. 2008; Holderbaum et al. 2007). Cyclists
were instructed to apply force on the pedal so their
normal and anterior-posterior components of pedal
force were closer to the ideal profile. Regardless of
whether they focused only on the recovery phase or on
specific quarters of pedal cycle, force effectiveness had
similar improvements after training.

Changes in pedal force effectiveness with feedback
occurs rapidly with one study reporting significant
changes in novice cyclists after one session (Hasson et
al. 2008). Sanderson & Cavanagh (1990) showed that
after the first two days of training, recreational cyclists
improved pedal force effectiveness (lower resultant
force during the recovery phase). No marked
differences between the second and the 10" training
sessions indicated that a plateau exists in pedal force
effectiveness  development. Retention of force
effectiveness was similar one week and three months
after cessation of the training period (Broker et al.
1993).

Provision of visual feedback for trained (Henke 1998)
and recreational cyclists (Sanderson and Cavanagh
1990) has resulted in improvements in force
effectiveness ranging from 17% to 40%. Studies with
non-cyclists (Broker et al. 1993; Hasson et al. 2008;
Holderbaum et al. 2005; Holderbaum et al. 2007;
Nishiyama and Sato 2005) have reported improvements
in force effectiveness between 24% and 55%.
However, Mornieux et al. (2008) compared pedal force
effectiveness of cyclists and non-cyclists who were
instructed to increase pulling upward forces during the
recovery phase (one trial of feedback).
Economy/efficiency reduced by 3% in non-cyclists and
10% in trained cyclists. Both groups reduced
economy/efficiency by improving pedal force
effectiveness, with worst results for trained cyclists.
Long term adaptation to a specific motion (i.e. higher
pushing forces during the propulsion phase) can result
in neuromuscular adaptation for cyclists (Candotti et al.
2009; Chapman et al. 2008a), and changes in pedal
force profile (Candotti et al. 2007), which may limit
their acute adaptation to changing motion (i.e. pedaling
with  higher force effectiveness). Physiological
adaptation of highly trained cyclists (Coyle et al. 1991)
may support the hypothesis that cyclists are more
efficient recruiting the quadriceps muscle group during
a cycling task compared to non-cyclists (Takaishi et al.
1998). When improving pulling upward forces during
the recovery phase, cyclists recruited “less efficient”
muscles, which resulted in a reduced
economy/efficiency (Edwards et al. 2009; Korff et al.
2007; Mornieux et al. 2008). However, Theurel et al.
(2012) reported smaller reductions in sprint cycling
power due to fatigue from 45 minutes of cycling at
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75% maximal aerobic power output when cyclists
received feedback to improve pedal force effectiveness.
There was smaller economy/efficiency during the first
15 minutes of the test when using feedback, without
differences in the following 30 minutes. Further
research should be conducted using a control group (no
feedback) to ascertain any learning effects, which were
not addressed in this previous study.

To date only Mornieux & Stapelfeldt (2012) have
assessed the effects of longer training (four weeks)
using force effectiveness feedback for 12 sessions of 30
minutes at 60% maximal aerobic power output and 80
rpm pedaling cadence. No improvements in maximal
aerobic power output occurred for the feedback group
compared to the control group (no feedback during
training). The feedback group did reduce force
effectiveness during the propulsive phase of crank
revolution (lower index of effectiveness) and increased
force effectiveness during the recovery phase (greater
index of effectiveness). It is therefore unlikely that
improving pedal force effectiveness with training may
enhance performance in cycling. Further research at
higher workload levels (>60% maximal aerobic power
output) and pedaling cadence (>80 rpm) for training
may provide evidence of whether force feedback
training may (or may not) be useful in improving
cycling performance.

On a normal bicycle the cranks are diametrically
opposed (180°) and fixed which links the forces at each
pedal. In an attempt to encourage higher force
effectiveness, novel systems have been developed
where the cranks are decoupled. These Powercranks®
(or Smartcranks®) require a pulling force during the
recovery phase of the crank cycle, and at the bottom
dead centre, because the crank is attached to the chain
ring via a free bearing system. This higher pulling
force on the recovery phase was previously related to
higher force effectiveness using decoupled cranks
(Bohm et al. 2008).

Only one study (Luttrell and Potteiger 2003) reported
benefits after training with decoupled cranks in cycling
economy/efficiency. Six novice cyclists trained using
Powercranks® (Walnut Creek, CA) for six weeks at
70% of VOyua for one hour per day. After the training
period, cyclists who trained using Powercranks®
improved economy/efficiency by 2.3% during a one
hour constant load test, compared to the group who
trained using normal cranks. Changes in
economy/efficiency may have been caused by changes
in muscle activation profiles of knee and hip flexor
groups. A study showing decreased activity of vastus
lateralis and increased biceps femoris after two weeks
of training for 30-45 minutes per session at undefined
workload using Powercranks® provided some support
for this suggestion (Fernandez-Pena et al. 2009). In
contrast, a similar study with five weeks training twice
per week at 80% of the individual’s anaerobic threshold
found no changes in economy/efficiency for ten trained
cyclists (Bohm et al. 2008), even though force
effectiveness did improve. It is unclear why the results
from the two studies differed following such similar
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interventions. Possible lower fitness level of the
“novice” cyclists from the study of Luttrell & Potteiger
(2003) may explain the differences. Another study
(Williams et al. 2009) found no changes in power
output at lactate threshold, economy/efficiency during
steady state cycling, and time trial performance, of
well-trained cyclists following training using decoupled
crank systems. Until more evidence is available it is
difficult to assess the potential benefit of training with
decoupled cranks.

There are several areas that research could contribute to
improving the understanding of the relationship
between optimal force effectiveness and performance.
Establishing a “natural” range of symmetry of pedal
forces should be the goal of future research and may
explain the influence of symmetry in cycling
performance and injury prevention. In addition, the
effects of pedal force -effectiveness training on
economy/efficiency may be a focus of future research.
Higher levels of workload (>60% maximal aerobic
power output) and pedaling cadence (>80 rpm) for
training should be used in future research, which may
allow adaptation of the higher hip and knee flexors
recruitment to pulling forces. Cycling experience may
reduce adaptation to technique training. Comparison of
competitive cyclists, triathletes and recreational cyclists
may help identify populations likely to benefit from
force effectiveness training. The use of decoupled
crank systems should be investigated for longer
training periods with different experience and ability
levels in cycling.

Practical applications

Pedal forces are often based on the measurement of
normal, anterior-posterior, effective and resultant
force components, with analysis of pedal force
effectiveness based on the computation of the index
of effectiveness. Workload level and pedaling
cadence affect pedal force effectiveness, but there are
unclear effects of body position on the bicycle,
fatigue state, cycling experience and ability on pedal
force effectiveness.

Technique training, using either augmented feedback
of pedal forces or decoupled cranks, increases pedal
force effectiveness in short duration studies but
evidence of augmented feedback efficacy in long
term studies is lacking. The effects of technique
training trying to improve force effectiveness on
economy/efficiency and performance are unclear.

References

1. Alvarez G, Vinyolas J (1996) A new bicycle pedal
design for on-road measurements of cycling forces.
Journal of Applied Biomechanics 12: 130-142

2. Amoroso A, Sanderson DJ, Henning EM (1993)
Kinematic and kinetic changes in cycling resulting from
fatigue. 14th ISB Congress in Biomechanics.
International Societey of Biomechanics, Paris, France,
pp. 94-95

3. Ansley L, Cangley P (2009) Determinants of "optimal”
cadence during cycling. European Journal of Sport
Science 9: 61-85



J Sci Cycling. Vol. 1(2), 11-24

Bini et al.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Bini R, Hume P, Kilding A (in press-a) Saddle height
effects on pedal forces, joint mechanical work and
kinematics of cyclists and triathletes. European Journal
of Sport Science

Bini RR, Carpes FP, Diefenthaeler F (2009) Effects of
knee frontal plane position on pedal forces during
cycling: A preliminary study. Brazilian Journal of
Kineantropometry and Human Performance 11: 142-
150

Bini RR, Carpes FP, Diefenthaeler F, Mota CB,
Guimardes ACS  (2008)  Physiological  and
electromyographic responses during 40-km cycling
time trial: Relationship to muscle coordination and
performance. Journal of Science and Medicine in Sport
11: 363-370

Bini RR, Diefenthaeler F (2010) Kinetics and
kinematics analysis of incremental cycling to
exhaustion. Sports Biomechanics 9: 223-235

Bini RR, Diefenthaeler F, Carpes FP, Mota CB (2007)
External work bilateral symmetry during incremental
cycling exercise. In: Menzel H-J, Chagas MH (eds) 25
International Symposium on Biomechanics in Sports.
International Society of Biomechanics in Sports, Ouro
Preto, Brazil, pp. 168-171

Bini RR, Diefenthaeler F, Mota CB (2010) Fatigue
effects on the coordinative pattern during cycling:
Kinetics and kinematics evaluation. Journal of
Electromyography and Kinesiology 20: 102-107

Bini RR, Hume PA, Lanferdini FJ, Vaz MA (in press-b)
Effects of body positions on the saddle on pedaling
technique for cyclists and triathletes. European Journal
of Sport Science

Black AH, Sanderson DJ, Hennig EM (1993)
Kinematic and Kinetic changes during an incremental
exercise test on a bicycle ergometer. 14th ISB
Congress in Biomechanics, Paris, France, pp. 186-187
Bohm H, Siebert S, Walsh M (2008) Effects of short-
term training using SmartCranks on cycle work
distribution and power output during cycling. European
Journal of Applied Physiology 103: 225-232

Boyd T, Hull ML, Wootten D (1996) An improved
accuracy six-load component pedal dynamometer for
cycling. Journal of Biomechanics 29: 1105-1110
Broker JP, Gregor RJ (1990) A dual piezoelectric
element force pedal for kinetic analysis of cycling.
International Journal of Sports Biomechanics 6: 394-
403

Broker JP, Gregor RJ, Schmidt RA (1993) Extrinsic
feedback and the learning of kinetic patterns in cycling.
Journal of Applied Biomechanics 9: 111-123

Caldwell GE, Li L, McCole SD, Hagberg JM (1998)
Pedal and crank kinetics in uphill cycling. Journal of
Applied Biomechanics 14: 245-259

Candotti CT, Loss JF, Bagatini D, Soares DP, da Rocha
EK, de Oliveira AR, GuimarAfes ACS (2009)
Cocontraction and economy of triathletes and cyclists at
different cadences during cycling motion. Journal of
Electromyography and Kinesiology 19: 915-921
Candotti CT, Ribeiro J, Soares DP, De Oliveira AR,
Loss JF, Guimardes ACS (2007) Effective force and
economy of triathletes and cyclists.  Sports
Biomechanics 6: 31-43

Carpes FP, Rossato M, Faria IE, Mota CB (2007)
Bilateral pedaling asymmetry during a simulated 40-km
cycling time-trial. Journal of Sports Medicine and
Physical Fitness 47: 51-57

Cavanagh PR, Sanderson DJ (1986) The biomechanics
of cycling: Studies of the pedaling mechanics of elite

Journal of Science and Cych'ng

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

pursuit riders. In: Burke ER (ed) Science of Cycling.
Human Kinetics Publishers, Champaign, IL, pp. 91-122
Chapman A, Vicenzino B, Blanch P, Hodges PW
(2008a) Patterns of leg muscle recruitment vary
between novice and highly trained cyclists. Journal of
Electromyography and Kinesiology 18: 359-371
Chapman AR, Vicenzino B, Blanch P, Dowlan S,
Hodges PW (2008b) Does cycling effect motor
coordination of the leg during running in elite
triathletes? Journal of Science and Medicine in Sport
11: 371-380

Chen JY, Wen F, Lin CH, Lin DF (2005) A new
automatic measurement system for a bicycle.
Proceedings of the 2005 IEEE International Conference
on Mechatronics, ICM '05 2005: 514-519

Chunfu G (2009) Study on the sensor for the pedal push
force of bicycle. ICEMI 2009 - Proceedings of 9th
International Conference on Electronic Measurement
and Instruments 1: 2977-2980

Coyle EF, Feltner ME, Kautz SA, Hamilton MT,
Montain SJ, Baylor AM, Abraham LD, Petrek GW
(1991) Physiological and biomechanical factors
associated with elite endurance cycling performance.
Medicine and Science in Sports and Exercise 23: 93-
107

Dal Monte A, Manoni A, Fucci S (1973)
Biomechanical study of competitive cycling: The forces
exercised on the pedals. In: Venerando S, Wartenweiler
A (eds) Medicine and Sport: Vol 8 Biomechanics IlI.
University Park Press, Georgia, USA, pp. 434-439

Daly DJ, Cavanagh PR (1976) Asymmetry in bicycle
ergometer pedaling. Medicine and Science in Sports
and Exercise 8: 204-208

Diefenthaeler F, Bini RR, Carpes FP, Vaz MA (2007)
Analysis of pedaling technique during a maximal
cycling exercise. In: Menzel H-J, Chagas MH (eds) 25
International Symposium on Biomechanics in Sports.
International Society of Biomechanics in Sports, Ouro
Preto, Brazil, pp. 394-397

Diefenthaeler F, Bini RR, Laitano O, Guimardes ACS,
Nabinger E, Carpes FP, Bolli C (2006) Assessment of
the effects of saddle position on cyclists pedaling
technique. Medicine and Science in Sports and Exercise
38:5181

Diefenthaeler F, Bini RR, Nabinger E, Laitano O,
Carpes FP, Mota CB, Guimardes ACS (2008)
Methodological proposal for evaluation of the pedaling
technique of cyclists: A case study. Brazilian Journal of
Sports Medicine 14: 155-158

Dorel S, Couturier A, Hug F (2009a) Influence of
different racing positions on mechanical and
electromyographic patterns during pedaling.
Scandinavian Journal of Medicine and Science in
Sports 19: 44-54

Dorel S, Couturier A, Lacour JR, Vandewalle H,
Hautier C, Hug F (2010) Force-velocity relationship in
cycling revisited: Benefit of two-dimensional pedal
forces analysis. Medicine and Science in Sports and
Exercise 42: 1174-1183

Dorel S, Drouet J-M, Hug F, Lepretre P-M, Champoux
Y (2008) New instrumented pedals to quantify 2D
forces at the shoe-pedal interface in ecological
conditions: Preliminary study in elite track cyclists.
Computer Methods in Biomechanics and Biomedical
Engineering 11: 89-90

Dorel S, Drouet JM, Couturier A, Champoux Y, Hug F
(2009b) Changes of pedaling technique and muscle

Page 22



Bini et al. (2013). Pedal force effectiveness in Cycling: a review of constraints and training effects. Journal of Science and Cycling,
1(2): 11-24

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

coordination during an exhaustive exercise. Medicine
and Science in Sports and Exercise 41: 1277-1286
Edwards LM, Jobson SA, George SR, Day SH, Nevill
AM (2009) Whole-body efficiency is negatively
correlated with minimum torque per duty cycle in
trained cyclists. Journal of Sports Sciences 27: 319-325
Emanuele U, Horn T, Denoth J (2011) Influence of
racing position on cycling patterns. In: Vilas-Boas JP,
Machado L, Kim W, Veloso AP, Alves F, Fernandes
RJ, Conceicao F (eds) 29 International Conference on
Biomechanics in Sports. International Society of
Biomechanics in Sports, Porto, Portugal

Ericson MO, Nisell R (1988) Efficiency of pedal forces
during ergometer cycling. International Journal of
Sports Medicine 9: 118-122

Ericson MO, Nisell R, Arborelius UP, Ekholm J (1985)
Muscular  activity during ergometer  cycling.
Scandinavian Journal of Rehabilitation Medicine 17:
53-61

Ericson MO, Nisell R, Ekholm J (1984) Varus and
valgus loads on the knee joint during ergometer
cycling. Scandinavian Journal of Sports Sciences 6: 39-
45

Fernandez-Pena E, Lucertini F, Ditroilo M (2009)
Training with independent cranks alters muscle
coordination pattern in cyclists. Journal of Strength and
Conditioning Research 23: 1764-1772

Guye M (1896) Analyse dynamometrique de la
locomotive a bicyclette. La Nature 1212: 177

Harman E, Knuttgen HG, Frykman P (1987)
Automated data collection and processing for a cycle
ergometer. Journal of Applied Physiology 62: 831-836
Hasson CJ, Caldwell GE, van Emmerik REA (2008)
Changes in muscle and joint coordination in learning to
direct forces. Human Movement Science 27: 590-609
Henke T (1998) Real-time feedback of pedal forces for
the optimization of pedaling technique in competitive
cycling. In: Riehle HJ, Vieten MM (eds) 16
International Symposium on Biomechanics in Sports.
International Society of Biomechanics in Sports,
Konstanz - Germany, pp. 174-177

Hoes MJAJM, Binkhorst RA, Smeekes-Kuyl AEMC,
Vissers ACA (1968) Measurement of forces exerted on
pedal and crank during work on a bicycle ergometer at
different loads. European Journal of Applied
Physiology and Occupational Physiology 26: 33-42
Holderbaum G, Bini RR, Nabinger E, Guimaraes ACS
(2005) Methodological approach for learning pedaling
technique based on augmented visual feedback. In:
Alencar JF (ed) XI Brazilian Conference of
Biomechanics. Brazilian Society of Biomechanics, Jodo
Pessoa, Brazil

Holderbaum GG, Guimardes ACS, Petersen RDS
(2007) Analysis of the recovering phase after the
cycling practice using augmented visual feedback. In:
Menzel H-J, Chagas MH (eds) 25 International
Symposium on Biomechanics in Sports. International
Society of Biomechanics in Sports, Ouro Preto, Brazil,
pp. 541-544

Hug F, Drouet JM, Champoux Y, Couturier A, Dorel S
(2008) Interindividual variability of electromyographic
patterns and pedal force profiles in trained cyclists.
European Journal of Applied Physiology 104: 667-678
Hull ML, Davis RR (1981) Measurement of pedal
loading in bicycling: 1. Instrumentation. Journal of
Biomechanics 14: 843-856

Hunt MA, Sanderson DJ, Moffet H, Inglis JT (2003)
Biomechanical changes elicited by an anterior cruciate

Page 23

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

ligament deficiency during steady rate cycling. Clinical
Biomechanics 18: 393-400

Jorge M, Hull ML (1986) Analysis of EMG
measurements during bicycle pedaling. Journal of
Biomechanics 19: 683-694

Kautz S, Feltner ME, Coyle EF, Bailey MP (1991) The
pedaling technique of elite endurance cyclists: changes
with increasing workload at constant cadence.
International Journal of Sports Biomechanics 7: 29-53
Kautz SA, Hull ML (1993) A theoretical basis for
interpreting the force applied to the pedal in cycling.
Journal of Biomechanics 26: 155-165

Korff T, Romer LM, Mayhew I, Martin JC (2007)
Effect of pedaling technique on mechanical
effectiveness and efficiency in cyclists. Medicine and
Science in Sports and Exercise 39: 991-995

LaFortune MA, Cavanagh PR (1983) Effectiveness and
efficiency during bicycle riding. International Series on
Biomechanics, pp. 928-936

Leirdal S, Ettema G (2011a) Pedaling technique and
energy cost in cycling. Medicine and Science in Sports
and Exercise 43: 701-705

Leirdal S, Ettema G (2011b) The relationship between
cadence, pedaling technique and gross efficiency in
cycling. European Journal of Applied Physiology 111:
2885-2893

Loras H, Ettema G, Leirdal S (2009) The muscle force
component in pedaling retains constant direction across
pedaling rates. Journal of Applied Biomechanics 25:
85-92

Lucia A, San Juan AF, Montilla M, Canete S, Santalla
A, Earnest C, Perez M (2004) In professional road
cyclists, low pedaling cadences are less efficient.
Medicine and Science in Sports and Exercise 36: 1048-
1054

Luttrell MD, Potteiger JA (2003) Effects of Short-Term
Training Using Powercranks on Cardiovascular Fitness
and Cycling Efficiency. Journal of Strength and
Conditioning Research 17: 785-791

Macintosh BR, Neptune RR, Horton JF (2000)
Cadence, power, and muscle activation in cycle
ergometry. Medicine and Science in Sports and
Exercise 32: 1281-1287

Marsh AP, Martin PE, Sanderson DJ (2000) Is a joint
moment-based cost function associated with preferred
cycling cadence? Journal of Biomechanics 33: 173-180
Martin JC, Brown NAT (2009) Joint-specific power
production and fatigue during maximal cycling. Journal
of Biomechanics 42: 474-479

Mimmi G, Pennacchi P, Frosini L (2004)
Biomechanical analysis of pedaling for rehabilitation
purposes: Experimental results on two pathological
subjects and comparison with non-pathological
findings. Computer Methods in Biomechanics and
Biomedical Engineering 7: 339-345

Minetti AE (2011) Bioenergetics and biomechanics of
cycling: The role of ‘internal work'. European Journal of
Applied Physiology 111: 323-329

Mornieux G, Gollhofer A, Stapelfeldt B (2010) Muscle
coordination while pulling up during cycling.
International Journal of Sports Medicine 31: 843-846
Mornieux G, Stapelfeldt B (2012) Modification of the
pedaling technique after a training based on the pedal
forces feedback. Science et Motricité 76: 59-65
Mornieux G, Stapelfeldt B, Collhofer A, Belli A (2008)
Effects of pedal type and pull-up action during cycling.
International Journal of Sports Medicine 29: 817-822



J Sci Cycling. Vol. 1(2), 11-24

Bini et al.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

Mornieux G, Zameziati K, Mutter E, Bonnefoy R, Belli
A (2006) A cycle ergometer mounted on a standard
force platform for three-dimensional pedal forces
measurement during cycling. Journal of Biomechanics
39: 1296-1303

Nabinger E, lturrioz 1, Zaro MA (2002) Development
of a triaxial force platform for the measurement of force
at a bicycle pedal. International Symposium of
Biomechanics in Sports, Caceres - Extremadura -
Spain, pp. 290-293

Neptune RR, Herzog W (1999) The association
between negative muscle work and pedaling rate.
Journal of Biomechanics 32: 1021-1026

Newmiller J, Hull ML, Zajac FE (1988) A
mechanically decoupled two force component bicycle
pedal dynamometer. Journal of Biomechanics 21: 375-
386

Nishiyama T, Sato T (2005) The modification of
pedaling skill with real-time representation of pedaling
force in non-cyclists. In: Kuo A, Davis B, van den
Bogert T (eds) 29th Annual Meeting of the American
Society of Biomechanics. American Society of
Biomechanics, Cleveland, OH, p. 552

Nordeen-Snyder KS (1977) The effect of bicycle seat
height variation upon oxygen consumption and lower
limb kinematics. Medicine and Science in Sports and
Exercise 9: 113-117

Patterson RP, Moreno MI (1990) Bicycle pedaling
forces as a function of pedaling rate and power output.
Medicine and Science in Sports and Exercise 22: 512-
516

Price D, Donne B (1997) Effect of variation in seat tube
angle at different seat heights on submaximal cycling
performance in man. Journal of Sports Sciences 15:
395-402

Reiser li RF, Peterson ML, Broker JP (2003)
Instrumented bicycle pedals for dynamic measurement
of propulsive cycling loads. Sports Engineering 6: 41-
48

Ricard MD, Hills-Meyer P, Miller MG, Michael TJ
(2006) The effects of bicycle frame geometry on
muscle activation and power during a Wingate
anaerobic test. Journal of Sports Science and Medicine
5:25-32

Rossato M, Bini RR, Carpes FP, Diefenthaeler F, Moro
ARP (2008) Cadence and workload effects on pedaling
technique of well-trained cyclists. International Journal
of Sports Medicine 29: 746-752

Rowe T, Hull ML, Wang EL (1998) A pedal
dynamometer for off-road bicycling. Journal of
Biomechanical Engineering 120: 160-164

Ruby P, Hull ML, Hawkins D (1992) Three-
dimensional knee joint loading during seated cycling.
Journal of Biomechanics 25: 41-53

Sanderson DJ (1991) The influence of cadence and
power output on the biomechanics of force application
during steady-rate cycling in competitive and
recreational cyclists. Journal of Sports Sciences 9: 191-
203

Sanderson DJ, Amoroso AT (2009) The influence of
seat height on the mechanical function of the triceps
surae muscles during steady-rate cycling. Journal of
Electromyography and Kinesiology 19: e465-e471
Sanderson DJ, Black A (2003) The effect of prolonged
cycling on pedal forces. Journal of Sports Sciences 21:
191-199

Sanderson DJ, Cavanagh PR (1990) Use of augmented
feedback for the modification of the pedaling

Journal of Science and Cych'ng

86.

87.

88.
89.

90.

91.

92.

93.

94.

95.

96.

97.

mechanics of cycling. Canadian Journal of Sports
Sciences 15: 38-42

Sargeant AJ, Davies CTM (1977) Forces applied to
cranks of a bicycle ergometer during one- and two leg
cycling. Journal of Applied Physiology: Respiratory,
Environmental and Exercise Physiology 42: 514-518
Sharp A (1896) Bicycles and Tricycles. MIT Press
(reprinted

1977). London

Shennum PL, DeVries HA (1976) The effect of saddle
height on oxygen consumption during bicycle
ergometer work. Medicine and Science in Sports and
Exercise 8: 119-121

Smak W, Neptune RR, Hull ML (1999) The influence
of pedaling rate on bilateral asymmetry in cycling.
Journal of Biomechanics 32: 899-906

Stapelfeldt B, Mornieux G, Oberheim R, Belli A,
Gollhofer A (2007) Development and evaluation of a
new bicycle instrument for measurements of pedal
forces and power output in cycling. International
Journal of Sports Medicine 28: 326-332

Takaishi T, Yamamoto T, Ono T, Ito T, Moritani T
(1998) Neuromuscular, metabolic, and kinetic
adaptations for skilled pedaling performance in cyclists.
Medicine and Science in Sports and Exercise 30: 442-
449

Theurel J, Crepin M, Foissac M, Temprado JJ (2012)
Effects of different pedaling techniques on muscle
fatigue and mechanical efficiency during prolonged
cycling. Scandinavian Journal of Medicine and Science
in Sports 22: 714-721

Ting LH, Raasch CC, Brown DA, Kautz SA, Zajac FE
(1998) Sensorimotor state of the contralateral leg
affects ipsilateral muscle coordination of pedaling.
Journal of Neurophysiology 80: 1341-1351

Valencia JSO, Cardona SG, Mejia SR (2007) Disefio y
construccion de un pedal de bicicleta basado en
sensores piezorresistivos para determinar la fuerza
resultante. Revista Ingenieria Biomédica 1: 55-60
Williams AD, Raj IS, Stucas KL, Fell JW, Dickenson
D, Gregory JR (2009) Cycling efficiency and
performance following short-term training using
uncoupled cranks. International Journal of Sports
Physiology and Performance 4: 18-28

Zameziati K, Mornieux G, Rouffet D, Belli A (2006)
Relationship between the increase of effectiveness
indexes and the increase of muscular efficiency with
cycling power. European Journal of Applied
Physiology 96: 274-281

Page 24



	Pedal force effectiveness in cycling: A review of constraints and training effects
	tmp.1418010493.pdf.p4Z_3

