Edith Cowan University

Research Online

ECU Publications 2013

1-1-2013

Markers of circulating tumour cells in the peripheral blood of patients with melanoma correlate with disease recurrence and progression

Anna L. Reid Edith Cowan University

M Millward

Robert Pearce Edith Cowan University

M Lee

M Frank

See next page for additional authors

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks2013

Part of the Hematology Commons

10.1111/bjd.12057

This is the pre-peer reviewed version of the following article: Reid, A. L., Millward, M., Pearce, R., Lee, M., Frank, M., Ireland, A., Monshizadeh, L., Rai, T., Heenan, P., Medic, S., Kumarasinghe, P., & Ziman, M. R. (2013). Markers of circulating tumour cells in the peripheral blood of patients with melanoma correlate with disease recurrence and progression. British Journal of Dermatology, 168(1), 85-92., which has been published in final form at https://doi.org/10.1111/bjd.12057. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

This Journal Article is posted at Research Online.

https://ro.ecu.edu.au/ecuworks2013/477

Authors Anna L. Reid, M Millward, Robert Pearce, M Lee, M Frank, A Ireland, L Monshizadeh, Tapan Rai, P Heenan Sandra Medic, P Kumarasinghe, and Melanie R. Ziman					

TITLE: Markers of circulating tumour cells in the peripheral blood of melanoma patients correlates with disease recurrence and progression.

A.L. Reid*, M. Millward†, R. Pearce*, M. Lee†, M.H. Frank‡, A. Ireland†, L. Monshizadeh†, T. Rai*, M. Ziman*

* School of Medical Sciences, Edith Cowan University, Perth, WA, Australia, †Department of Medicine, University of Western Australia, Crawley, Australia, ‡Transplantation Research Center, Children's Hospital Boston and Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. [†]School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Australia

Correspondence

Associate Professor Melanie Ziman

Director ECU Melanoma Research Foundation

Edith Cowan University (ECU)

270 Joondalup Drive, Joondalup, Perth, WA 6027

Ph: +61 - 8 – 63043640

Fax: +61 -8- 63042626

Mob: +61 (0) 419929851

E-mail: m.ziman@ecu.edu.au

Funding sources- Ziman, NHMRC Application number 1013349; Cancer and Palliative Care Research and Evaluation Unit WAPCN Small Grants 2010/11; and Cancer Council of WA Research Grant.

Frank, Grant support MHF: National Institutes of Health (USA) grant numbers 5R01CA113796, 1R01CA138231 and 2P50CA093683.

Conflict of interest

None declared

Manuscript word count - Questions: 73 & 80 words, Abstract: 239 words, Body: 3,387

Manuscript table count –5 tables, 1 figure, 1 figure legend and 3 supplementary tables

Questions

What is already known about this topic?

Considerable effort has been devoted to developing an effective non-invasive method
of monitoring disease progression and outcome among cancer patients. One method is
multimarker qRT-PCR used to detect circulating tumour cells in patient blood. In
breast, colorectal and prostate cancer circulating tumour cells correlate with both
disease progression and poor treatment outcome. Circulating cell analysis in
melanoma has had varied success; despite the capacity to detect cells the appropriate
markers remain undefined.

What does this study add?

• This is the first application of ABCB5 as a marker of circulating melanoma cells, incorporated into a multi marker qRT-PCR test of melanoma patient blood. Expressed by a subset of melanoma cells with a stem cell phenotype, its detection in this study, along with MLANA a melanocyte marker, correlated with disease recurrence, suggesting both stem and non-stem cell phenotypes are present in patient peripheral blood. MCAM expression is shown for the first time to correlate with negative treatment outcomes.

ABSTRACT

Background: Multimarker quantitative real-time PCR (qRT-PCR) represents an effective method for detecting circulating tumour cells in the peripheral blood of melanoma patients.

Objectives: The aim of this study was to investigate whether the phenotype of circulating melanoma cells represents a useful indicator of disease stage, recurrence and treatment efficacy.

Methods: Peripheral blood was collected from melanoma patients (n=230) and healthy controls (n=152) over a period of three years and nine months. Clinical data and blood samples were collected from patients with primary melanoma (early stages 0-II (n=154)) and metastatic melanoma (late stages III-IV (n=76)). Each specimen was examined by qRT-PCR analysis for the expression of five markers: MLANA, ABCB5, TGFβ2, PAX3d and MCAM.

Results: Two hundred and twelve melanoma patients (92%) expressed markers in their peripheral blood. Two markers, MLANA and ABCB5, had the greatest prognostic value, and were identified as statistically significant among patients who experienced disease recurrence within our study period, being expressed in 45% (MLANA) and 49% (ABCB5) of patients with recurrence (p=0.001 & p=0.031). For patients administered non-surgical treatments, MCAM expression correlated with poor treatment outcome.

Conclusion:

Circulating tumour cells were detectable at all stages of disease and long after surgical treatment even when patients were considered disease free. Specifically, expression of ABCB5 and MLANA had significant prognostic value in inferring disease recurrence while MCAM expression was associated with poor patient outcome after treatment, confirming multimarker qRT-PCR as a potential technique for monitoring disease status.

Introduction

Cutaneous melanoma is a tumour originating from normal skin melanocytes. Global incidence of melanoma is increasing¹, with an estimated 70,230 new cases annually in the USA ². Melanoma has a high metastatic potential ³ and metastatic melanoma is difficult to treat . It is important therefore to find methods of detecting melanoma spread at early stages for more accurate treatment and prediction of prognosis.

A staging system was devised by the American Joint Committee on Cancer (AJCC) based on histological features of the primary lesion, and the presence of nodal and/or systemic metastases in advanced disease ³. Due to increased awareness, most patients present with thin, localised melanoma which is usually curable by surgical resection. However, approximately 5% of patients with lesions <1 mm thick, 25-40% with 2 to 4 mm lesions and 50-75% with lesions > 4 mm develop metastatic disease and die within ten years ³. Patients diagnosed with regional and distant metastases have 10 year survival rates of 64% and 16% respectively ⁴.

Patients may suffer relapse following disease free periods of ten years or more ^{5,6}. Evidently then, diagnosing patients as clinically disease free after surgical removal of early stage melanomas, may be inaccurate, since tumour cells dispersed into the bloodstream may remain dormant, prior to formation of distant metastases ⁷.

Considerable research into the detection of circulating tumour cells in the blood of patients with breast, colorectal and prostate cancer has shown that the presence of these cells correlates with both disease progression and poor outcome⁸⁻¹⁶. For melanoma, circulating cell analysis has not been successfully utilised clinically. Although several articles have indicated their usefulness¹⁷⁻²², markers and methodology remain controversial. Moreover, it is unclear

whether circulating melanoma stem cells are prognostic ²³ or whether all circulating melanoma cells have metastatic potential ²⁴.

Here we used multimarker qRT-PCR to investigate the phenotype of circulating cells in melanoma patients. Given qRT-PCR sensitivity, it is suitable for assessment of rare circulating melanoma cells 25 and multiple markers are essential given the heterogeneous nature of melanoma cells 18,26 . Our markers included melanocyte (PAX3d 27 and MLANA 28), tumour (TGF β 2 29 and MCAM 30) and stem cell (ABCB5 31) markers. PAX3 regulates melanocytic development $^{32-34}$, and the PAX3d isoform is highly expressed in melanoma 35 . ABCB5 a stem cell marker, marks a subset of rare, chemoresistent melanoma stem cells 24,31,36 , while MCAM is a marker of melanoma tumour progression 34 .

We show that circulating tumour cells are detectable at all stages of disease and persist long after treatment. Certain circulating cells, specifically those marked by MCAM expression, correlated with a poor treatment outcome, while ABCB5 and MLANA, correlated with disease progression and could aid in monitoring disease status.

Material and Methods

Patient cohort

Patient (230) and healthy control (152) participants provided written consent. Patients were recruited from the Medical Oncology Department of Sir Charles Gairdner Hospital and the Perth Melanoma Clinic at Hollywood Hospital (Perth, Western Australia) and consisted of 81 females and 149 males aged 24 – 96 (mean 69 years) while the aged matched, healthy cohort, recruited from the general population, contained 86 females and 66 males aged 18-99 (mean 51 years). The Human Research Ethics Committees of Edith Cowan University (No. 2932) and Sir Charles Gairdner Hospital (No. 2007-123) approved the study.

The study included 154 patients with primary cutaneous melanoma and 76 with metastatic melanoma. AJCC Clinical staging categorised 16.5% of our patients as stage 0, 33.5% as stage I, 17% as stage II, 13% as stage III and 20% as stage IV (Table 2). Patients were sampled only once and clinical history recorded, however a subset of patients (n=140) were sampled serially throughout the 3.9 year study. Tumour burden was calculated from pathology reports for a subset of 32 patients, by calculating the sum of maximal tumour diameters for all tumours within the patient, at the time of sampling.

Melanoma cell lines

Human melanoma cell line A2058 cells (EACC: 91100402), were grown in DMEM media containing 10% heat inactivated foetal bovine serum (Invitrogen) in a T75-cm² flask (Greiner) until cells were $\sim 70\%$ confluent.

Blood Collection, RNA Isolation and Amplification Protocols

At venipuncture, the first 4 mL of blood was discarded to avoid epithelial contamination ³⁷.

2.5mL of whole blood was then collected into a PAXgene Blood RNA Tube (PreAnalytiX), containing RNA stabilisers ³⁸.

Total RNA was isolated using the PAXgene Blood RNA kit (Qiagen) and DNase treated (DNA-free Kit, Ambion). RNA was quantified and the integrity was qualified (Agilent 2100 Bioanalyser, Agilent Technologies). Samples with insufficient RNA levels (RIN <8) were excluded.

Total RNA (250ng) was converted to cDNA (Omniscript Reverse Transcriptase Qiagen). Each reaction (20 μ L), contained, 2μ L of RT Buffer (1x), 2μ L of dNTPs (5mM), 2μ L of oligo (dT) primer (0.4 ug/ul), 1μ L of RNase inhibitor (10U/ μ L) (Invitrogen) and 1μ L of omniscript reverse transcriptase (4U/ μ L). Incubation was 37 °C for 1 hour; then 5 mins at 95 °C and included a no template control (NTC). Quantitative RT-PCR assays assessed the number of mRNA transcripts (level of expression) for six genes, MLANA, ABCB5, TGF β 2, PAX3d, MCAM and GAPDH. Each 15 μ L reaction contained 1μ L of cDNA template, 1x SYBR GreenER qPCR SuperMix (Invitrogen) and 200nM of primer (Supplementary Table 1). Using an iCycler iQ5 Real-Time Thermocycler (BIO-RAD) incubation was as per the manufacturer's instructions.

To prevent contamination all PCR reactions contained Uracil-N-glycosylase to prevent reamplification of carryover PCR products ³⁹ and different steps were performed in separate UV treatable areas. Tm determination and gel electrophoresis confirmed the expected size and identity of PCR products.

GAPDH, our internal reference for RT efficiency, is not up regulated in melanoma tissues or cultured cells relative to normal samples ⁴⁰; samples with insufficient levels were excluded. Every assay included a standard curve, negative controls (NTC and reverse transcription control), positive control (A2058 cell line) and cDNA from a single healthy control.

Standard Curve

A standard curve to quantify mRNA copy number, was constructed using larger PCR products that included the target sequence used in qRT-PCR assays. For each standard, an end point PCR primer set was designed (Supplementary Table 2). A2058 cDNA, synthesized from 250ng of RNA, was used as a template. Using a *Taq* DNA polymerase kit (Qiagen), each 20μL reaction consisted of 1x Coral Load buffer, 0.2mM of each dNTP, 2.5U of *Taq* DNA polymerase, 1μL cDNA and 200nM of primer. Incubation involved: 94°C for 5 minutes, then 45 cycles of 94°C for 30 seconds, then 55°C for 30 seconds and 72°C for 1 minute. PCR products were purified after agarose gel electrophoresis using the freeze-squeeze method ⁴¹. Resulting stock template solutions were quantified by spectrophotometric analysis (Nanodrop, Thermo Scientific) and diluted into eight tenfold serial dilutions (10¹ - 10⁸ copies/μL) from which a standard curve for each target was generated on the iCycler iQ5 Real-Time Thermocycler. Amplification efficiency of our target genes were between 96.4 and 100%. Samples were analysed in duplicate with averaged cT values used for relative quantification. Relative mRNA copies for each transcript were calculated by dividing absolute mRNA copies of the target by that of GAPDH.

Statistical Analysis

Pearson chi-square test and Fishers exact test were used to examine statistical significance of marker expression between patient groups and controls. The Cochrane-Armitage trend test

examined correlation between clinical stage, Clark level and/or expression level. Positive and negative predictive values were calculated to examine the sensitivity of our test.

The relationship between level of marker expression and stage or presence of disease, was investigated by Mann-Whitney U test and Kruskal-Wallis H test. Generalised linear modelling was used to examine marker consistency. SPSS was used for analysis and differences of p<0.05 were considered statistically significant.

Results

Multimarker RT-PCR analysis was used to estimate the phenotype and quantity of circulating cells in patient blood. Marker positivity and level of expression were analysed for correlation with disease presence, stage, recurrence and treatment outcome.

Marker Expression in Patient Blood Relative to Controls:

Melanoma patients (92%, n=212) were significantly more likely to express a melanoma cell marker in blood than were controls (59%, n=89) (p= 0.000, Odds ratio = 4.206, 95% CI 2.305-7.676). The number of markers expressed by participants was important, with 83% (n=126) of healthy controls expressing either no marker or just one marker, in contrast to melanoma patients, who were highly likely to express two or more markers (72%, n=165)(p=0.012)(Table 1). The positive and negative predictive value of expressing a marker, was 70% and 78% respectively. Expression of two or more melanoma markers improved the positive predictive value to 86%, with a negative predictive value of 66%.

To identify the most informative markers, we analysed expression incidence of each marker in patients. MLANA, ABCB5, MCAM, PAX3d, and TGFβ2 were detected in 30% (n=68), 40% (n=90), 47% (n=108), 40% (n=91), and 66% (n=152) of melanoma patients, respectively.

Marker Expression in Patients Relative to Clinical Stage:

To assess marker utility, we analysed marker expression relative to clinical stage. MLANA and ABCB5 were significantly more likely to be expressed in late stage patients (Stages III-IV) (42% and 51%) than in early stage patients (0-II) (23% and 33%) (p=0.003 and p=0.006). No other markers appeared to be stage related (Table 2).

Clinical factors including primary location, Clark level, Breslow thickness and ulceration did not correlate with marker expression (Table 3).

Pearson chi-square test was used to analyse whether the incidence of marker expression in patient blood samples taken within one month of clinical diagnosis differ from samples taken at times greater than one month following diagnosis. For most markers, expression did not differ between samples taken at times less than and greater than one month following diagnosis. TGFβ2 however, was expressed slightly more frequently in samples obtained more than a month following diagnosis (47%, n=187) relative to samples collected within in the first month following diagnosis (32%, n=50) (p=0.001). Samples taken at times greater than one month after diagnosis were as likely to express a marker (79%, n=311), than samples taken within the first month following diagnosis (71%, n=110).

Marker Expression Correlates to Disease Recurrence:

To investigate the prognostic value of our markers, the relationship between marker expression and disease recurrence was analysed. Seventy three patients (32%) experienced recurrence during our study and in these patients, both MLANA and ABCB5 were expressed significantly more frequently (45%, n=33 and 49%, n=36) than in patients without recurrence (23%, n=35, 34%, n=54) (p=0.001 and p=0.031) (Table 4). Patients with recurrence expressed 5 markers more commonly (8%, n=6) than patients who experienced no recurrence during our study (1%, n=2) (p=0.013). Patients with recurrence during our study were more likely to express both ABCB5 and MLANA (26%, n=19) than patients without recurrence during the study period (10%, n=15) (p=0.002). Co-expression of MLANA and ABCB5 produced a positive predictive value of 56% and a negative predictive value of 72%.

When divided into stages, 48% of stage III-IV patients with recurrence (n=29) expressed MLANA compared to only 19% of stage III-IV patients without recurrence (n=3) (p=0.033). There was no correlation between MLANA expression and recurrence in early stage (0-II) patients. Analysing the presence and level of markers relative to time since diagnosis in patients who developed recurrence during our study, revealed markers were present in patient blood at all stages, many years after diagnosis or surgical removal of the primary tumour, even when there were no clinical signs of disease (Table 4).

Marker Expression in relation to Tumour Burden:

To examine if marker expression correlated with tumour burden, stage III-IV patients were divided into those with one metastasis (n=16) (mean of tumour diameter: 19.8mm±13.2mm (mean±SD)) or multiple metastases (mean of sum of tumour diameter: 76.5mm±36.06mm) at the time of sampling (n=16). Only MCAM expression was significantly related to tumour burden, with the level of expression greater among stage III-IV patients with multiple metastases (1.23±1.66, n=4) than in those with only a single metastasis (0.67±0.49 (mean±SD), n=8,) (p=0.027).

Among stage III-IV patients, the surgical removal of a clinically measureable metastatic tumour also influenced marker expression. MLANA and Pax3d were expressed less frequently in patients following the surgical removal of a clinically measureable metastatic tumour (18%, n=29; 19%, n=30), compared to patients with an existing tumour burden (48%, n=16; 42%, n=14) (p=0.000 & p=0.003, respectively). A significant reduction in the level of ABCB5 expression was observed in stage III-IV samples corresponding to the removal of a clinically measureable metastasis (0.19 \pm 0.79), compared to samples with an existing tumour burden (0.22 \pm 0.42)(p=0.011).

Marker Expression in Relation to Clinical Treatment:

To analyse the effect of non-surgical treatment on circulating tumour cell phenotypes, marker expression was investigated in 34 patients (15%) who received non-surgical treatment.

Treatments included: radiotherapy (n=29), interferon alfa 2b (n=5), limb infusion (n=1), vaccine (n=4), chemotherapy (n=9) and radio frequency ablation (RFA) (n=1).

Three patients were sampled both before and after their non-surgical treatment, whereas the majority of non-surgically treated patients were sampled during or following treatment. The condition of two patients deteriorated post treatment, while the third remained stable (Figure 1). Patient 1 was sampled at diagnosis of a stage III melanoma, two months prior to radiotherapy treatment of the left inguinal node, and expressed only ABCB5. Seventeen months later, with their left axilla node identified as positive, the patient gained MLANA and MCAM expression and the level of ABCB5 expression was maintained. No markers were detected in patient 2, three months prior to RFA treatment for a lung metastasis. Sampled three months after treatment, MLANA, ABCB5 and Pax3d were detected; the patient died three months later. Patient 3 had positive lymph nodes and expressed no markers the day before interferon alfa 2b treatment. Serial blood collections were then made at six, twelve, twenty-one, and twenty-six months post treatment. TGFβ2 was detected at six, and twelve months and TGFβ2, MCAM and ABCB5 were detected by twenty-six months with a 5 fold decrease in MCAM between the last two serial samples.

The majority of the non-surgically treated stage IV samples were collected after non-surgical treatment (n=26). To examine whether the phenotype of circulating melanoma cells reflects the effectiveness of treatment, samples were divided into those from patients who had a negative treatment outcome (n=40) (progression and/or death) and those with a positive outcome (n=22) (disease remained stable or tumour size reduced). The expression of MCAM

was significantly more common in patients with a negative treatment outcome with 43% expressing MCAM (n=17), while only 9% of samples from patients with a positive outcome, expressed this marker (n=2) (p=0.006)(Table 5). The positive predictive value for MCAM expression as a marker of poor clinical outcome in patients with stage IV melanoma is 89.5%, while the negative predictive value is 46.5%.

Marker Consistency and Serial Blood Collection

21.7% of all acquired blood samples had a technical repeat (second PAXgene Blood RNA tube) taken on the same day. Expression in these samples was highly consistent, with 70% of duplicate samples having identical marker expression (n=273).

Generalised linear modelling was employed to examine serially collected samples (n=140), acquired for each patient at intervals of six months over a period of two years. For the majority of our markers, time was not a significant variable, with marker expression remaining consistent, regardless of sampling time and regardless of stage (Supplementary Table 3). For ABCB5 however, expression incidence significantly reduced over time (Wald-Chi = 16.209, p=0.000) in stage IV patients (Odds ratio: 0.2518, p=0.000, 95% CI 0.131, 0.483), which may represent the effect of non-surgical treatment on ABCB5 expression in stage IV patients.

Discussion:

This study showed that a multi marker qRT-PCR test for melanoma circulating cells correlated with melanoma diagnosis. Very few melanoma patients expressed no markers at all, only 7%. A significant number of healthy controls, however also expressed one marker. Therefore, patients and controls are best differentiated by the number of markers expressed i.e. by a multi marker test.

Multiple markers were detected at all disease stages, even in early stage patients, however the incidence was lower in these patients than in later stage patients. In contrast to previous papers 18,42 , the levels and number of markers were not stage related, possibly related to the use of ABCB5 and TGF β 2, both previously unused markers of circulating tumour cells. TGF β 2 was the most common marker in controls, so cannot be recommended as a single marker for patient analysis.

By contrast, ABCB5, described by Frank and colleagues in 2003 was a highly informative marker ^{23,24,31,36}. ABCB5 reportedly represents a subset of melanoma cells with a stem cell phenotype and is thought here to represent a subset of heterogeneous circulating melanoma cells present at all disease stages. In this study it was identified as a potential predictor of active recurrence/progression events with its expression in blood correlating with disease recurrence and progression in patients, a finding that warrants further testing of this marker. This marker was detected amongst patients regardless of whether or not they were considered clinically disease free, indicating that these stem - like circulating cells remain for long periods in the blood. A role for ABCB5 cells in disease spread has been demonstrated in mouse -to-mouse transplantation experiments, where circulating ABCB5 expressing tumour cells were shown to be capable of initiating metastatic disease after transplantation into donor mice ²³.

Besides ABCB5, MLANA expression was also a potential predictor of recurrence events in our patient cohort. Since ABCB5 positive cells do not co-express MLANA²⁴, circulating cells must therefore include both stem and non-stem cell phenotypes during recurrence. This may reflect a change in stem cell to a non-stem cell phenotype during formation of the metastatic tumour⁴³. Previous studies described MLANA expression as correlating with disease stage²⁵, and in this study both MLANA and ABCB5 expression correlated with disease stage, with expression more common in advanced (stage III-IV) than in early stage (stage 0-II) patients. In fact, removal of a clinically measurable metastasis significantly reduced the expression of Pax3d, ABCB5 and MLANA in stage III-IV patients, signifying the importance of metastases in maintaining the hematogenous spread of tumour cells ^{44,7}.

Utilising these markers, circulating tumour cells were detected at all disease stages long after surgical treatment, even when a patient was considered clinically disease free. Thus, as found in previous studies of circulating tumour cells ^{42,45}, the mere presence of circulating tumour cells does not always correlate with disease stage or metastatic recurrence, and additional markers are required to stratify those early stage patients likely to have disease progression.

In our study MCAM expression correlated with increased tumour burden, a result consistent with recent *in vivo* studies with nude mice that revealed a significant correlation between MCAM expression and the formation of metastases ⁴⁶. MCAM was also the most suitable marker for monitoring response to therapy and indicates, presumably, ineffective eradication of circulating melanoma cells, evidenced here by an increase in the incidence of MCAM expression in patients with a negative treatment outcome. MCAM expression could therefore be used to monitor treatment resistance or risk of relapse. Given MCAM expression is thought to play a role in cell-cell and cell-matrix interactions during formation of metastases, the expression of MCAM in circulating cells may aid in the spread of malignant melanoma

cells throughout the body ^{7,44}. A previous study found MCAM to be a predictor of poor patient survival and disease prognosis ⁴³. Overall, 68% of non-surgically treated patients had a negative treatment outcome, highlighting the poor response rate of patients to non-surgical treatments and reflected here by 64% of these patients expressing MCAM. Essentially, MCAM expression may aid in identifying a subset of patients with metastatic disease who respond poorly to conventional systemic treatments and may benefit from an alternative treatment regime.

Some p-values were achieved by considering several different predictors. However, corrections were not made for multiple comparisons because the markers were considered to be independent. Moreover, even when we applied Bonferroni corrections to secondary hypotheses for 5 comparisons, the majority of hypotheses remained significant (p<0.01); for example, comparisons between early versus late disease stage (MLANA p = 0.003 and ABCB5 p=.006), disease recurrence (MLANA p=0.001) and negative treatment outcome (MCAM p=0.006) remain significant. Only the correlation of MCAM expression and tumour burden (MCAM p = 0.027), and ABCB5 expression in relation to recurrence (ABCB5 p=0.031) and the surgical removal of a clinically measurable lesion (ABCB5 p=0.011) are no longer significant. Despite this, MCAM and ABCB5 remain valuable markers of clinical outcome and disease recurrence, especially ABCB5 expression in combination with MLANA.

It is clear that circulating tumour cells are detectable at all stages of disease and the specific detection of ABCB5, MLANA and MCAM expressing tumour cells in blood may be of prognostic value. Importantly, we demonstrated that a qRT-PCR multi-marker blood test provides a suitable method from which to develop further a reliable test for monitoring disease status without the need for specific isolation of circulating tumour cells.

Acknowledgements

The authors thank Liz Watson, Jenny Fairweather and Katrina Burton for their assistance with this study.

References

- Tucker MA. Melanoma Epidemiology. *Hematology/Oncology Clinics of North America* 2009; **23**: pp. 383-95.
- Siegel R, Ward E, Brawley O *et al.* Caner statistics, 2011: The impact of eliminating socioeconomic and racial disparities on premature cancer deaths. *CA Cancer journal for clinicians* 2011; **61**: pp. 212-36.
- Balch CM, Buzaid AC, Soong SJ *et al.* Final version of the American Joint Committee on cancer staging system for cutaneous melanoma. *Journal of Clinical Oncology* 2001; **19**: 3635-48.
- 4 Pollack AL, Li J, Berkowitz Z *et al.* Melanoma survival in the United States, 1992 to 2005. *Journal of the American Academy of Dermatology* 2011; **65**: pp. 78-86.
- Tsao H, Cosimi AB, Arthur JS. Ultra-Late recurrence (15 years or longer) of cutaneous melanoma. *Cancer* 1997; **79**: pp. 2361-70.
- Shen P, Guenther JM, Leslie AW *et al.* Can elective lymph node dissection decrease the frequency and mortality rate of late melanoma recurrences? *Annals of Surgical Oncology* 2000; **7**: pp. 114-9.
- Stoecklein N, Hosch S, Bezler M *et al.* Direct genetic analysis of single disseminated cancer cells for prediction of outcome and therapy selection in esophageal cancer. *Cancer Cell* 2008; **13**: PP. 441-53.
- Sastre J, Maestro ML, Puente J *et al.* Circulating tumor cells in colorectal cancer: correlation with clinical and pathological variables. *Annals of Oncology* 2008; **19**: pp. 935-8.
- 9 Gaforio JJ, Serrano MJ, Sanchez-Rovira P *et al.* Detection of breast cancer cells in the peripheral blood is positively correlated with estrogen-receptor status and predicts for poor prognosis. *International Journal of Cancer* 2003; **107**: pp. 984-90.
- Shariat SF, Kattan MW, Song W *et al.* Early postoperative peripheral blood reverse transcription PCR assay for prostate-specific antigen is associated with prostate cancer progression in patients undergoing radical prostatectomy. *Cancer Research* 2003; **63**: pp. 5874-8.
- Müller V, Stahmann N, Riethdorf S *et al.* Circulating tumor cells in breast cancer: correlation to bone marrow micrometastases, heterogeneous response to systemic therapy and low proliferative activity. *Clinical Cancer Research* 2005; **11**: pp. 3678-85.
- Benoy IH, Elst H, Philips M *et al.* Real-time RT-PCR detection of disseminated tumour cells in bone marrow has superior prognostic significance in comparison with circulating tumour cells in patients with breast cancer. *British Journal of Cancer* 2006; **94**: pp. 672-80.
- Lembessis P, Msaouel P, Halapas A *et al.* Combined androgen blockade therapy can convert RT-PCR detection of prostate-specific antigen (PSA) and prostate-specific membrane antigen (PSMA) transcripts from positive to negative in the peripheral blood of patients with clinically localized prostate cancer and increase biochemical failure-free survival after curative therapy. *Clinical Chemistry and Laboratory Medicine* 2007; **45**: pp. 1488-94.
- Pfitzenmaier J, Ellis WJ, Hawley S *et al.* The detection and isolation of viable prostate-specific antigen positive epithelial cells by enrichment: a comparison to standard prostate-specific antigen reverse transcriptase polymerase chain reaction and its clinical relevance in prostate cancer. *Urologic Oncology* 2007; **25**: pp. 214-20.
- 15 Wong SC, Chan CM, Ma BB *et al.* Clinical significance of cytokeratin 20-positive circulating tumor cells detected by a refined immunomagnetic enrichment assay in colorectal cancer patients. *Clinical Cancer Research* 2009; **15**: pp. 1005-12.
- Allen JE, El-Deiry WS. Circulating Tumor Cells and Colorectal Cancer. *Current Cororectal Cancer Reports* 2010; **6**: pp. 212-20.

- Smith B, Selby P, Southgate J *et al.* Detection of melanoma cells in peripheral blood by means of reverse transcriptase and polymerase chain reaction. *Lancet* 1991; **338**: pp. 1227-9.
- Hoon DS, Wang Y, Dale PS *et al.* Detection of occult melanoma cells in blood with a multiple-marker polymerase chain reaction assay. *Journal of Clinical Oncology* 1995; **13**: pp. 2109-16.
- Brownbridge GG, Gold J, Edward M *et al.* Evaluation of the use of tyrosinase-specific and melanA/MART-1-specific reverse transcriptase-coupled--polymerase chain reaction to detect melanoma cells in peripheral blood samples from 299 patients with malignant melanoma. *The British Journal of Dematology* 2001; **144**: pp. 279-87.
- Reynolds SR, Albrecht J, Shapiro RL *et al.* Changes in the presence of multiple markers of circulating melanoma cells correlate with clinical outcome in patients with melanoma. *Clinical Cancer Research* 2003; **9**: pp. 1497-502.
- Gkalpakiotis S, Arenberger P, Kremen J *et al.* Quantitative detection of melanoma-associated antigens by multimarker real-time RT-PCR for molecular staging: results of a 5 years study. *Experimental Dermatology* 2010; **19**: pp. 994-9.
- Rao C, Bui T, Connelly M *et al.* Circulating melanoma cells and survival in metastatic melanoma. *International Journal of Oncology* 2011; **38**: pp. 755-60.
- 23 Ma J, Frank MH. Tumor initiation in human malignant melanoma and potential cancer therapies. *Anti-cancer Agents in Medicinal Chemistry* 2010; **10**: pp. 131-6.
- Schatton T, Frank MH. Antitumor immunity and cancer stem cells. *Annals of the New York Academy of Science* 2009; **76**: pp. 154-69.
- Koyanagi K, Kuo C, Nakagawa T *et al.* Multimarker quantitative real-time PCR detection of circulating melanoma cells in peripheral blood: relation to disease stage in melanoma patients. *Clinical Chemistry* 2005; **51**: pp. 981-8.
- Parker KA, Glaysher S, Polak M *et al.* The molecular basis of the chemosensitivity of metastatic cutaneous melanoma to chemotherapy. *Journal of Clinical Pathology* 2010; **63**: pp. 1012-20.
- Vachtenheim J, Novotná H. Expression of genes for microphthalmia isoforms, Pax3 and MSG1, in human melanomas. *Cellular and molecular biology* 1999; **45**: pp. 1075-82.
- Coulie PG, Brichard V, Van Pel A *et al.* A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. *The journal of experimental medicine* 1994; **180**: pp. 35-42.
- Kokkinakis DM, Liu X, Chada S *et al.* Modulation of gene expression in human central nervous system tumors under methionine deprivation-induced stress. *Cancer Research* 2004; **64**: pp. 7513-25.
- Bardin N, Francès V, Lesaule G *et al.* Identification of the S-Endo 1 endothelial-associated antigen. *Biochemical and Biophysical Research Communications* 1996; **218**: pp. 210-6.
- Frank NY, Pendse SS, Lapchak PH *et al.* Regulation of progenitor cell fusion by ABCB5 P-glycoprotein, a novel human ATP-binding cassette transporter. *The Journal of Biological Chemistry* 2003; **278**: pp. 47156-65.
- Medic S, Rizos H, Ziman M. Differential PAX3 functions in normal skin melanocytes and melanoma cells. *Biochemical and Biophysical Research Communications* 2011; **411**: pp. 832-7
- Medic S, Ziman M. PAX3 across the spectrum: from melanoblast to melanoma. *Critical Reviews in Biochemistry and Molecular Biology* 2009; **44**: pp. 85-97.
- Medic S, Ziman M. PAX3 expression in normal skin melanocytes and melanocytic lesions (naevi and melanomas). *PLoS One* 2010; **5**: pp. e9977.
- Matsuzaki Y, Hashimoto S, Fujita T *et al.* Systematic identification of human melanoma antigens using serial analysis of gene expression (SAGE). *Journal of Immunotherapy* 2005; **28**: pp. 10-9.

- Reya T, Morrison SJ, Clarke MF *et al.* Stem cells, cancer, and cancer stem cells. *Nature* 2001; **414**: pp.105-11.
- Koyanagi K, O'Day SJ, Boasberg P *et al.* Serial monitoring of circulating tumor cells predicts outcome of induction biochemotherapy plus maintenance biotherapy for metastatic melanoma. *Clinical Cancer Research* 2010; **16**: pp. 2402-8.
- Rainen L, Oelmueller U, Jurgensen S *et al.* Stabilization of mRNA expression in whole blood samples. *Clinical Chemistry* 2002; **48**: pp. 1883-90.
- Longo MC, Berninger MS, Hartley JL. Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. *Gene* 1990; **93**: pp. 125-8.
- Giricz O, Lauer-Fields JL, Fields GB. The normalization of gene expression data in melanoma: investigating the use of glyceraldehyde 3-phosphate dehydrogenase and 18S ribosomal RNA as internal reference genes for quantitative real-time PCR. *Analytical Biochemistry* 2008; **380**: pp. 137-9.
- Tautz D, Renz M. An optimized freeze-squeeze method for the recovery of DNA fragments from agarose gels. *Analytical Biochemistry* 1983; **132**: pp. 14-9.
- Curry BJ, Myers K, Hersey P. Polymerase chain reaction detection of melanoma cells in the circulation: Relation to Clinical stage, Surgical treatment, and recurrence from melanoma. *Journal of Clinical Oncology* 1998; **16**: pp. 1760-9.
- Hoek K, Eichhoff O, Schlegel N *et al.* In vivo switching of human melanoma cells between proliferative and invasive states. *Cancer Research* 2008; **68**: pp. 650-6.
- Husemann Y, Geigl JB, Schubert F *et al.* Systemic Spread Is an Early Step in Breast Cancer. *Cancer Cell* 2008; **13**: pp. 58-68.
- Aubin F, Chtourou M, Teyssier JR *et al.* The detection of tyrosinase mRNA in the peripheral blood of stage I melanoma patients is not of clinical relevance in predicting metastasis risk and survival. *Melanoma Research* 2000; **10**: pp. 113-8.
- Luca M, Hunt B, Bucana CD *et al.* Direct correlation between MUC18 expression and metastatic potential of human melanoma cells. *Melanoma Research* 1993; **3**: pp. 35-41.

Tables

Table 1 – Number of markers detected in the peripheral blood of patients and healthy controls.

Number of markers	0	1	2	3	4	5	n
% (n)							
CMM Patients	8 (18)	20 (47)	34 (79)	23 (54)	10 (24)	3 (8)	230
Healthy controls	41 (63)	41 (63)	11 (17)	4 (6)	2 (3)	0	152

Table 2 - qRT-PCR Marker detection in the peripheral blood of healthy controls and in melanoma patients categorised by AJCC stage.

	AJCC staged melanoma patients % (n)						
Markers	0	I	II	III	IV	Healthy Controls	
MLANA	26 (10)	25 (19)	18 (7)	40 (12)	43 (20)	13 (19)	
ABCB5	45 (17)	27 (21)	33 (13)	50 (15)	52 (24)	22 (33)	
Pax3d	47 (18)	30 (23)	36 (14)	50 (15)	46 (21)	14 (21)	
MCAM	42 (16)	49 (38)	46 (18)	53 (16)	43 (20)	14 (21)	
TGFβ2	63 (24)	64 (49)	74 (29)	77 (23)	59 (27)	22 (33)	
N	38	77	39	30	46	152	

Table 3 - Melanoma patient characteristics

Prognostic factor	Number of patients	
Gender	Males	81
	Females	149
AJCC Stage	0	38
	I	77
	п	39
	ш	30
	IV	46
Primary Site	Face	36
	Torso	78
	Arms	31
	Legs	37
	Scalp	14
	No primary lesion or unknown	34
Breslow thickness (primary) mm	<1mm	103
	1-4mm	82
	>4mm	20
	Unknown	25
Clark level	I	43
	п	30
	ш	20
	IV	81
	V	15
	Unknown	41
Ulceration	No	178
	Yes	34
	Unknown	18

Table 4 - qRT-PCR Marker detection in the peripheral blood of melanoma patients categorised by recurrence and time since diagnosis.

	Patients with recurrer	Time since diagnosis in relation to sampling in patients with recurrence % (n)				
Markers	recurrence	no recurrence	< 1 month	< 1 year	< 5 years	> 5 years
MLANA	*45 (33)	23 (35)	33 (2)	18 (7)	26 (32)	22 (18)
ABCB5	*49 (36)	34 (54)	0	18 (7)	22 (27)	32 (26)
Pax3d	41 (30)	39 (61)	33 (2)	21 (8)	22 (27)	15 (12)
MCAM	49 (36)	46 (72)	0	21 (8)	21 (26)	25 (25)
TGFβ2	63 (46)	68 (106)	50 (3)	29 (11)	34 (42)	34 (34)
N	73	157	6	38	124	81

P-value* - Pearson chi-square test, p<0.01

Table 5-MCAM expression in the peripheral blood of stage IV melanoma patients in relation to clinical outcome.

	MCAM expre		
Clinical Outcome	+	-	N
Negative (disease progression and/or death)	43 (17)	58 (23)	40
Positive (disease remained stable or tumour size reduced)	9 (2)	91 (20)	22