Edith Cowan University
Research Online

Theses: Doctorates and Masters Theses

1-1-1995

A proposal for a development platform for microcontroller-based
devices

Michael L. Wetton
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses

b Part of the Software Engineering Commons

Recommended Citation
Wetton, M. L. (1995). A proposal for a development platform for microcontroller-based devices.
https://ro.ecu.edu.au/theses/1170

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses/1170

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses?utm_source=ro.ecu.edu.au%2Ftheses%2F1170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ro.ecu.edu.au%2Ftheses%2F1170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses/1170

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose
of your own research or study.

The University does not authorize you to copy, communicate or
otherwise make available electronically to any other person any
copyright material contained on this site.

You are reminded of the following:

e Copyright owners are entitled to take legal action against persons
who infringe their copyright.

e A reproduction of material that is protected by copyright may be a
copyright infringement. Where the reproduction of such material is
done without attribution of authorship, with false attribution of
authorship or the authorship is treated in a derogatory manner,
this may be a breach of the author’s moral rights contained in Part
IX of the Copyright Act 1968 (Cth).

e Courts have the power to impose a wide range of civil and criminal
sanctions for infringement of copyright, infringement of moral
rights and other offences under the Copyright Act 1968 (Cth).
Higher penalties may apply, and higher damages may be awarded,
for offences and infringements involving the conversion of material
into digital or electronic form.

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

.

A PROPOSAL FOR A DEVELOPMENT PLATFORM
FOR MICROCONTROLLER-BASED DEVICES

By

Michael Leon Wetton BSc.

A Thesis Submitted in Partial Fulfilment

of the Requirement for the Award of

Master of Science

at the School of Mathematics. Information Technology and
Engineering.

Perth
Western Australia.

Date of Submission: 11th June, 1995

ii

ABSTRACT

This thesis is concerned with designing, implementing and testing
a miniaturised temperature data logging device. Investigations
demonstrated that a microcontroller could provide a low-cost
single-chip solution to this problem and afler a detailed review of
8-bit microcontrollers, the MC68HC11 was chosen for this task.
This document also includes discussion on an environment that
was developed for creating and testing MC68HCI11 software and
the use of Motorola's evaluation boards. To ensure that the device
was designed to software engineering standards an investigation
into software engineering analysis techniques took place. This
resulted in the Jackson Structured Programming (JSP)
methodology being adapted to produce a proposed development
platform suitable for microcontroller-based design.

iv

DECLARATION

I certify that this theses does not incorporate, without
acknowledgment, any material previously submitted
for a degree or diploma in any institution of higher
education and that, to the best of my knowledge and
belief, it does not contain any material previously
published or written by another person except where
due reference is made in the text.

Michael Leon Wetton

11th June, 1995

ACKNOWLEDGMENTS

I thank Edith Cowan University for providing the
means to complete this study and for providing
several Higher Education Contribution Scheme
Exemption Scholarships.

I thank Dr Paul Maj and Dr Thomas O'Neill, my
supervisors, for their advice, guidance and support
during the years of my study.

[thank Mrs Jennifer Renner and other members of
the library stafl who provided assistance during my
library searches.

I also thank Wendy, my wife, for the moral support
during the years of my study.

Description

Copyright Act

Title

Abstract

Declaration
Acknowledgments

Table of contents
Contents {volume 1)
Contents (volume 2)
List of Figures

List of Tables

List of references

vi

Table of Contents

page

ii

v

vi

vii

viii

ix

vii

Volume 1
Chapter Page
1 INTRODUCTION 1
2 BACKGROUND MATERIAL 6
Circadian Rhythms in Humans 7
Measurement of Human Body Temperature 13
Choosing a Temperature Sensor 22
Choosing a Microcontroller 24
The Microcontroller System Design Environment 30
The Search for Microcontroller-based Design Methodologies
33
3 HARDWARE DESIGN 36
Overview of the Temperature Monitoring System (TMS) 37
Designing the Temperature Sensor Circuit 39
Designing the Temperature Monitoring Device (TMD) 51
Designing the Data Transfer Device (DTD) 56
Designing the Data Processing System (DPS) 58
4 SOFTWARE DESIGN 60
The Software Requirement Document 60
Introduction 62
Hardware Specifications 77
The System Model 79
Functional Requirements Specifications 80
Data Types Requirement 89
Non-Functional Requirements 100
Structured Analysis 11
Jackson Structured Diagram 117
Choice of Programming Language 120
Maintenance and Testing Information 129
5 CONCLUSIONS 167
Discussion 168
System Design 169
System Testing 173

Suggestions for Further Consideration 174

viii

VYolume 2

APPENDICES

TMD structure diagrams and program listing

DTD structure diagrams and program listing

DPS structure diagrams and program listing

The Software Development Environment Details

The Hardware Development Environment Details

Al

B1

Cl1

Dl

El

ix

List of Figures

Number Title Page

1 Circadian Rhythms 180
2 Thermistor 180
3 Temperature Sensor Circuit Diagrams 181 - 182
4 MC68HCI1 Block Diagram 183
5 MC68HCI11 Memory Map 184
6 MC68HC! 1 Environment 185
7 The Temperature Monitoring System Block Diagram 186
8 The TMD Block Diagram 187
9 The DTD Block Diagram 187
10 The DPS Block Diagram 188
11 The System Model Diagram 189
12 The TMD Circuit Diagram 190
13 The DTD Circuit Diagram 191

List of Tables

Number Title Page

1.1 Microcontroller Comparisons 28

1.2 Microcontroller Comparisons 29

REFERENCES

page

Sited references Xi

Electronic data sheets and manuals xvii

Xi

REFERENCES

Alvey (1986) The Derivation of Standards for progranmming Practices and the
Tools to enforce them, UK Alvey Programme, Project Reference SE/058,

London.

Aschoff J (1982) Circadian Rhythms in Man, "Biological Timekeeping", Society
For Experimental Biology, Seminar Series, Cambridge University Press,

Cambridge.

Bell D, I. Morley and J. Pugh (1987) Sofnware Engineering: A Programming

Approach, Englewood Cliffs, N. J., Prentice/Hall, London.

Booch G (1986) Object-Oriented Development, IEEE Trans. Software

Engineering . voi SE-12, no. 2.

Brady J (1982) Biological Timekeeping, Cambridge University Press,

Cambridge.

Brown, Christmas and Ford (1992) N-Z-Med-J

Briggs A (1991) Circadian Rhythms: Temperature and Cognitive Functioning of

the Institutionalized Elderly, Degree: MS, California State University, Fresno.

Cameron J (1983) The Jackson approach to Software Development, IEEE

Computer Society Press, Washington.

xii

Coad P, E. yourdon (1990) Object-Oriented Analysis, Prentice/Hall, London

Cooling J (1991) Software Design for Real-Time Systems,

Davies C (1987) An Investigation into Computer Assisted Program and System

Design, The British Library Document Supply Centre, West Yorkshire, UK.

DeMarco T (1979) Structured Analysis and System Specifications, Prentice/Hall,

ILondon.

Edwards H (1990) Interfacing and Programming Methods, The British Library
Document Supply Centre, West Yorkshire. UK.

Floyd T (1984) Electronic Devices (second edition), Merrill Publishing

Company, London.

Fraden and Lackey (1991) Clin-Pediatr-Phila

Geitner M (1991) An Investigation into the Relarionship Between Circadian
Rhythm Perceptions and Lifelong Learning, Degree: EDD, Northern Illinois

University.

Hall A (1990) Seven Myths of Formal Methods, IEEE Software (Septermber).

Hashimoto and Okamoto (1990) A Set and Mapping-based Detection and
Solution Method for Structure Clash between Program Input Output Data, ATR

Communication Research Laboritories, Kyoto 619-02, Japan.

xiii
Hoare C (1985) Communicating Sequential Processes, Prentice/Hall
International, London.
Horowitz P and W. Hill (1980) The Art of Electronics, Cambridge University

Press, Cambridge.

Hu D.(1990) Object-Oriented Environment in C++, Advanced Computer Books,
MIS Press, Delran, N. J.

Jackson M (1975) Principles of Program Design, Academic Press,

Jackson M (1983) System Development, Prentice/Hall, Englewood Cliffs, N. J.

Jacob J (1989) Industrial Control Electronics applications and design,

Prentice/Hall of Australia Ltd. Sydney.

Littlewood B (1987) Software Reliabilitv: Achievement and Assessment

Blackwell Scientific Publications, Oxford

Mano M (1988) Computer Engineering Hardware Design, Prentice/Hal]

International Editions Inc, London.

Meyer B (1988) Object-Oriented Software Construction, Prentice/Hall, London.

Milewski, Ferguson and Turndrup (1991) Clin-Pediatr-Phila

Mohri and Kikuno (1991) Fault Analysis Based on Fault Reporting in JSP

Software Development, System Education Human Resources Development

Department, Nihon Unisys Ltd, Kanagawa, Japan.

Xiv

Morley, Hewson,Thornlton and Cole (1992) Arch-Dis-Child

Naylor E (1985) Tidal and lunar rhythms in animals and plants, Biological

Timekeeping, Society For Experimental Biology, Seminar Series, Cambridge

University Press, Cambridge.

Newson T (1991) Sick Leave Patterns of Nurses on Permanent and Rotating

Shifts, Texas Woman's University.

Ncble J (1992) Pediatr-Emerg-Care

Orr K (1977) Structured Svstems Development, Yourdon Press, New York.

Ostesen M (1991) Ugeskr-Laeger

Pressman R (1992) Software Engineering: A Practitioner's Approach (third

edition, McGraw-Hill, New York.

Ringer C (1972) Medical Thesis

Ritter D (1988) And We Were Tired: Fatigue and Aircrew Errors, NASA Ames

Research Centre.

Robertson. Bradkey and Fullen (1991) Clin-Pediatr-Phila

Roper R (1988) The Derivation of a Methodology with Supporting Software Aids

for Testing Structired Data Processing Programs, The British Library

Document Supply Centre, West Yorkshire, UK.

Xv

Roper R and Smith (19897) A formal Program Methodology For Use In The
Development Of Software"
Rozman (19897) Software Engineering: How to Approach it to the Electrical

Engineer, University of Naribor, Naribor, Yugoslavia.

Saunder D (1986) Computers Today (second edition) McGraw-Hill Book

Company, Ney York

Shenep, Adair,Hughes,Flynn

Shlaer S and S. Melior (1988) Objeci-Oriented Systems Analysis, Yourdon Press,

London.

Sommerville I (1987) Software Engineering,

Stevens W G. Meyer and L. Constantine (1974) Striectred Design, IBM

Systems Journal. vol 13, no. 2.

Still H (1972) ,0f Times, Tides,and Inner Clocks. Stackpole Books,Harrisburg.

Tocci R and L. Laskowski (1986) Microprocessors and Microcomputers

(M6800), Prentice/Hall, Englewood Cliffs, New Jersey.

Thompkins W and J. Webster (1988) Interfacing Sensors to the IBM PC,

Prentice/Hall, Englewood Cliffs, New Jersey.

Warnier J (1981) Logical Construction of Systems, Van Nostrand Reinhold.

xvi

Wiener R and Sincovei (1984) Software Engineering with Modular 2 and Ada,
Wiley.

Wing J (1990) A Specifier's Introduction to Formal Methods, IEEE Computer,

vol 23, no. 9, September.

Wobschall D (1987) Circuit Design for Electronic Instrumentation,

Woodcock J (1989) Calculating Properties of Z Specifications, ACM Software

Engineering Notes, vol 14, no. 5.

Yang S (1990) Compurer Modelling and Analvsis of Biological Rhythms

Yourdon E and L. Constantine (1979) Structured Design, Fundamentals of a

Dicipline of @ Computer Program and System Design,

Yourdon E (1989) Modern Svstems Analvsis, Prentice/Hall.

Xvii

Electronic Data Sheets and Micrprocessor Manuals

stk ok ko ok sk ok ok ok ok 3k sfe sk e ok sk sk sk o o o ok sk sk sk ok oK ok ok s e sk sk ok ok ok ok ok ek sk st sk sk sk sk sk ok sk ok ek ckok sk kol ok sk ok

Texas Instruments (1989) Data Book volume 1 (TTL)

Texas Instruments (1989) Data Book volume 2 (TTL)

RS data sheet 3992 (1983) Semiconductor temperature sensor (RS590)

RS data sheet 1867 (1983) Thermistors

RS data sheet 8307 (1987) Temperature sensor {C (LM35)

RS data sheet 3374 (1983) 16-key encoder

RS data sheet 5314 (1984) Trimmable voltage reference IC (ZNREF040)

RS data sheet 9811 (1989) Alphanumeric Dot matrix LCD with backlighting

RS data sheet 6569 (1986) Alphanumeric dot matrix LCD

Seiko Instruments Inc (1988) LCD moduilc L4042 user manual (an.no.L4042-

840E

Motorola (1989) M68HC1IEVB evaluation board (BR278/D)

Motorola (1989) M68HC 1 1EVM evaluation board (BR266/D)

Motorola (1988) HCMOS Single-Chip Microcontroller

Xviii

Motorola (1991) HC11 M68HCI1 1 reference manual

Motorola (1988) Real-Time Clock plus RAM (RTC) MC146818

Motorola (1988) RTC plus RAM with serial interface MC68HC68TI

Motorola (1990) Universal Evaluation Board user's manual EVBU

Motorola (1986) Evaluation Board User's Manual EVB

Motorola (1989) Evaluation Module User's Manual EVM

Motorola (1986) 8-bit HCMOS Microcomputer MC68HC811A2

Motorola (1991) 8-bit Microcontroller MC68HC711]6

Motorola (1991) 8-bit Microcontroller MC68HCI11L6

Motorola (1990) 8-bit Microcontrolier Unit MC68HC71 1K4

Motorola (1991) 8-bit Microcontroller MC68HC11D3 /D0

Motorola (1991) 16-bit Modular Microcontroller MC68HC16Z1

Motorola (1991) 8-bit Microcontroller Unit MC68HC705H2

Motorola (1988) MC68HC1 1 EEPROM Programming from a PC

Xix

National Semiconductor (1989) The 8-Bit COP800 Family

National Semiconductor (1989) The 8-Bit COP888CL Single-Chip

Microcontroller

NEC (1992) Single-Chip Solution with 4/8/16-bit Microcontrollers

Intel (1988) 8-Bit Microcontroller 8051

Intel (1988) 16-Bit Microcontroller 8098

CHAPTER ONE

1. INTRODUCTION

The overall aim of this thesis is to propose a development platform that can be
used to design microcontroller-based devices. The steps taken to design the
hardware of a small monitoring device, and its support system are described in
detail. Then the selected Jackson Structured Programming methodology
describes how software, used to control a small monitoring device and support

system, can be designed, implemented and tested.

The device is required to measure, and store, a person's body temperature at
regular intervals over a lengthy period of time (typically, four weeks).
Furthermore, its size is to be small enough so that it may be worn by a personina
manner not likely to cause discomfort or inconvenience. At the same time, the
device's support system used for data processing is fashioned to be practical,

simple and easy to use.

It is common knowledge that the human body is affected by such criteria as:

« along flight on a jet aircraft over several time zones,
which causes jet lag, or
» shift work, which produces listlessness due to a change in

environmental conditions.

In such cases, the human body undergoes a time "warp' giving rise to a problem in
which the body's active and passive daily phases have been significantly
influenced. Alternatively, the body's circadian rhythms, which are daily biological

processes dependent upon internal clocks, suffer a severe phase shift.

According to Aschoff (1982) these internal clocks affect alertness, speed of
reaction and speed of computation; and, he states that there is a correlation
between these three effects and body temperature. Consequently, a body
temperature monitoring device should prove invaluable to people conducting

research into circadian rhythms and their effects on body functions.

During the late 1980's and early 1990's several multi function processing devices
(such as microcontrollers) were produced by corporations like Motorola, Intel,
NEC and National Semiconductor. A study of these microcontrollers is included
as they enable a single-chip solution to the problem of miniaturising data logging
devices. Considerable emphasis has been placed on the use of software
engineering in the design, implementation, validation and documentation of such
systems. Such practices lead to an increased confidence in the reliability of a
design and helps to ensure a device that achieves a solution to the problem at
hand. Furthermore, an outline is given of the development platform used for
designing systems that utilise microcontrollers. The temperature monitoring
system developed is an example of a single-chip solution to the problem of

miniaturisation.

Chapter two contains a review of background material needed for device, and
system, design in the field of miniaturising data logging systems for measurement
of human body temperature. More specifically, we discuss at length the
following topics:

e human circadian rhythms and their influence on human body functions

« measurement of human body temperature via intrusive and non-

intrusive methods
« identification of criteria to aid the selection process of an appropriate

body temperature sensor

o comparisons of various microcontrollers and their features to enable
selection of the most suitable one for our system's needs
o creation of a platform to facilitate the development, implementation
and testing of software and microcontroller support circuitry
The discussion shows that there is a need for miniaturised data logging devices,
as a cost effective means of corporal data acquisition.
Chapter three describes a hardware design of a system that measures, records,

and shows graphically, human body temperatures.

Firstly, the design of two temperature sensor circuits are described in detail. One
scheme incorporates a LM35 integrated circuit sensor, the other uses a YS44002
thermistor as a sensor. Both circuits are powered by a +5 volt supply and
include a voltage reference zener diode to enable temperatures to be monitored
with a +/- 0.1 degree Celsius accuracy. Then, the functions required to

implement :

e atemperature monitoring device,
« a data transfer device, and

e a data processing system

are listed and analysed. Finally, the results of the hardware design are given in

diagrammatic form in figures 7 through to 13.

Chapter four describes the temperature monitoring system from a Software
Engineer's point of view. It contains a description of the System Model in which

the relationship between the hardware and the user is discussed.

The software requirements documentation has items such as:

hardware specifications, which describe the requirements from a users
point of view,

functional requirement specifications, that include: all the inputs,
outputs, expected error situations, solutions to the expected errors
and the processes required to be performed,

data type requirements, include: microcontroller I/O registers,
program parameters, variables, memory buffers and initial values used
when the system is reset,

non functional requirements, which specify how well a function should
be performed, how the system connects to its environment, the limits
placed on the design and any other constraints given to the system,
and

maintenance and testing information, in particular, details of a test
plan which incorporates: functional testing, module testing, system

testing and acceptance testing of the overall system.

The design of software employs a Jackson Structured Programming (JSP)

methodology, which includes:

a structured analysis technique to create data flow diagrams,
transform analysis techniques to convert data flow diagrams into
Jackson structure diagrams and

Jackson Structure Diagrams, which categorises the logic into three

types of processes: namely, sequence, choice and iteration.

A diagrammatic methodology was chosen in order to show the flow of a

program's structure in an easy to follow manner.

Chapter five is reserved for concluding remarks. It provides a statement of the
original contributions of this thesis and some thought towards future

developments and research.

Finally, the appendices, contains three sets of: data flow diagrams, Jackson

structure diagrams and the associated program listing for:

« the temperature monitoring device,

o the data transfer device, and

» the data processing system.

CHAPTER TWO

2 BACKGROUND MATERIAL

2.1. Circadian Rhythms in Humans

2.1.1. Introduction

2.1.2, Man and the circadian rhythms

2.1.3. Analysing circadian rhythms by means of temperature
2.1.4. Desynchronisation of circadian rhythms

2.1.5. Research relating to circadian rhythms

2.1.6. The medical aspects

2.1.7. Conclusions

2.2. Measurement of Human Body Temperature

2.2.1. Introduction

2.2.2. The body temperature measurement sites

2.2.3. Differencences in body temperature measurements
2.2.4. The effects of a person's age

2.2.5. The duration of temperature measurements

2.2.6. Instruments which measure body temperature
2.2.7. Human/instrument interface

2.3. Choeosing a Temperature Sensor
2.3.1. Sensor Selection Criteria
2.3.2. Interface to logging system
2.4. Choosing a Microcontroller

2.4.1 Single-chip Microcomputers
2.4.2 Single-chip Microcontroliers

2.5. The Microcontroller System Design Environment

2.5.1 Introduction
2.5.2. The software design environment
2.5.3. The hardware design environment

2.6. The Search for Microcontroller-based Design Methodologies

2.1, CIRCADIAN RHYTHMS IN HUMANS

2.1.1. INTRODUCTION
This section of the notes is written to illustrate the importance of measuring body
temperature, in the field of medicine. It is especially important when studying the

effects of stress in relationship to humans' circadian rhythms.

The Collins dictionary definition for circadian is, "an adjective which describes
the biological processes that occur regularly at 24 hour intervals". The Latin

meaning for circadian is, "about a day".

It is common knowledge that both animals and plants behave differently
depending upon whether it is day or night. They both have internal clocks which,
under normal conditions, synchronise with the light-dark cycle. The internal
clocks may adapt to other criteria; for example, the seasons, temperature cycles
and even social issues. Naylor(1982) states that "animals have various types of
internal clocks. some are affected by internal conditions, for example, one of
them, the heart, beats on demand". The other set of clocks are affected by
external conditions; they have environmentally related rhythms as follows:

the 24 hour day,

the 12.4 hour high tide,

the 14.8 day spring tides,

the 29.5 day lunar month, and

the 365 day year.

Circadian rhythms generate patterns of locomotor activity alternating with rest or
sleep. Some people believe that the reason for sleep is to enforce inactivity in
animals to reduce the risk from predators. A more traditional view is, that sleep

restores body reserves.

2.1.2. MAN AND THE CIRCADIAN RHYTHMS

Man adjusts to the environment; his 24 hour internal clock prepares him for
efficient activity during the day and rest at night. Many of man's structures and
functions undergo regular 24-hour changes. The human circadian system consists
of multiple biological oscillators which are normally coupled to each other giving

rise to a stable internal clock.

The effects of the internal clock can be seen by anaiysing the variety of thythms
that can easily be measured under experimental conditions. They are:
sleep-wakefulness,
alertness,
speed of reaction,
speed of computation, and

body temperature.

2.1.3. ANALYSING CIRCADIAN RHYTHMS BY MEANS OF
TEMPERATURE

It should be noted at this point, that most of the rhythms that can be
demonstrated in man, have a similar wave shape. Under normal conditions, they
all have their peak during the daytime, and their low during the night. (see
Figure 1)

It could be said that, when measuring the body temperature of a person, the result
gives a fair indication of the potential useful activity in the other areas of interest.
For example there is a correlation between body temperature and sleep. There is
also a correlation between body temperature and speed of reaction, speed of

computation and alertness.

The variation of temperature ranges from approximately 37.5 degrees Centigrade
at the daytime peak, to approximately 36.0 degrees Centigrade as a low at night.
Thus, any experiment that is designed to monitor circadian rhythms with respect
to temperature, would need a temperature measuring device capable of measuring
a range from 30 degree Centigrade to 40 degrees Centigrade, with a steps of 0.1
degrees (+/- 0.1 *C error). Note, relative temperature changes of a body are
more important than the actual temperate values themselves. As a matter of
interest, the maximum temperature is normally detected in the late afternoon and,
the minimum temperature would normally be detected during the second half of

a sleep pattern.

From an engineering point of view, measurement of the required temperatures
could be achieved with an Integrated Circuit (I.C.) temperature sensor, an

Analog to Digital Converter (A.D.C.) and a means of storing the results.

2.1.4. DESYNCHRONISATION OF CIRCADIAN RHYTEMS

There are two main sets of oscillators associated with the human body: one set
controls wakefulness and sleep (this is highly variable in frequency), and the
other set controls the temperature rhythm which is relatively stable. In abnormal
situations , such as sleeplessness, the temperature and activity no longer correlate

closely.

Jet Lag
Aschoff{1982) states that "modern air travel gives everyone the opportunity to
see how the circadian system can be upset". A long flight across several time

zones has the following effect:

10

@ At first the circadian rhythm is unaffected, but out of synchronisation
with the local time.

(ii) It takes several days to regain a normal phase relationship with the new
environment.

(iii) People make errors of judgment during the first three days afier the time
zone change.

(iv) It takes five days to have a clear rhythm again.

(v) It takes eight days to have a normal rhythm in synchronism with the new

environment.

Shift Work

Aschoff (1982) also states that a strong contrast to jet lag is the situation in
which the shift worker has to suffer. Shift workers have a confusing
environment. They have to react to an artificial light-dark cycie on one hand,
whereas, the other environmental time signal, like family activity, are phase
shifted. The low temperature readings during sleep may shift from early to late
sleep, over a period of about 20 days. The high temperature reading also
gradually moves from early in the work period to a later time, over a period of

about 20 days.

2.1.5. RESEARCH RELATING TO CIRCADIAN RHYTHMS

Research is still being carried out in order to relate the effects of circadian
rhythms to people's learning capacity and work performance. This section of the
thesis shows that there is still a real need to monitor people's temperature and

corresponding activities.

11

A description correlational study was conducted to explore the relationship
between body temperature and the process of acquiring knowledge by
institutionalised elderly people. Briggs (1991).

An investigation was conducted into the relationship between circadian rhythm
perceptions and learning as determined by academic achievement.

Geitner (1991).

Yang (1990) states that "biological rhythms are an important phenomenon and
feature of physiological systems. Indirect means have to be employed for their
description and exploration due to the unclear internal nature of the systems.
Research was carried out on the frequency correlation between two different

circadian rhythms: temperature and activity".

A retrospective study was conducted by Newson (1990) to determine if there was

a difference in use of sick leave by nurses working:

(a) permanent night shifts,
(b) permanent evening shifts and

(c) rotating shifts.

Ritter (1988) research was aimed at demonstrating that the majority of errors
made by aircrew members are cognitive errors, not control errors, and that a
major contributing factor was fatigue. He argued that fatigue is increased by

sleep deprivation, circadian desynchronosis, and poor scheduling practices.

12

2.1.6. THE MEDICAL ASPECTS

The importance of the circadian system to the medical field is due to the

following:

(a) ahigh degree of temporal order relates to a healthy body,

(b) the response time of a body to react to a stimulus (drugs) depends upon

the circadian phase, and

(©) there are drastic changes from hour to hour that occur in many of the

circadian variables that are measured for diagnostic purposes.

2.1.7. CONCLUSION

It seems obvious that any means of measuring low resolution temperatures (0.1
degrees Celsius) without any stress or uncomfortable feeling to a patient, or any
person taking part in an experiment, is a desirable tool to the medical profession.
The smaller and lighter the device the better the tool would be as it needs to be

worn continually for extensive periods.

13
2.2. MEASUREMENT OF HUMAN BODY TEMPERATURE
2.2.1. INTRODUCTION

Normally an adult's body temperature remains constant for a particular time of
the day. There is a circadian rhythm of body temperature, in which the body
temperature reaches a peak during the wakeful day and a low during sleep or
restful night. The difference between the normal circadian maximum and

minimum body temperatures is approximately 1.5 degrees Celsius.

Any variation from the normal body temperature indicates that there is possibly

something wrong with the functions of the body.

The average normal body temperature is said to be 37 degrees Celsius. If the
body temperature rises significantly above 37 degrees Celsius , then the person is

said to have a fever; an abnormally high body temperature.

The following pages are designed to show that it is important to know when,
where and how to measure body temperature.

2.2.2. THE BODY TEMPERATURE MEASUREMENT SITES
Doctors, nurses and surgeons are interested in a patients core temperature to

establish the state of their health. The core temperature is defined as the

temperature of the blood passing through the pulmonary artery.

14

Traditionally, doctors and nurses use temperatures taken from the following three
body sites: oral, axillary and rectum. Temperatures from these main body sites

kave been used to predict the human body's core temperature.

Howeuver, in recent years (1991 and 1992) several researchers including:
Noble(Feb 92),
Fraden and Lackey(April 91),
Shenep, Adair, Hughes, Robertson, Flynn, Bradkey and Fullen (April 91)
Milewski, Ferguson and Turndrup (April 91)
have published articles recommending the use of a new method of measuring
body temperature from a fourth body site (the ear). The new method uses an
infrared ear thermometer (also called the tympanic membrane thermometer). This
device measures temperatures from within a person's ear canal. It gives a reliable,

non invasive, quick method of measuring body temperature.

Hence, there are now four body sites that may be used to easily measure body

temperatures:
e oral,
o axillary,
e rectum,
s ear

2.2.3. DIFFERENCES IN TEMPERATURE MEASUREMENT

Firstly, it is important to know that the body temperature of a normal healthy
person has a circadian rhythm. Although the figure of 37 degrees Celsius is said
to be the temperature of a normal healthy adult body, it can easily be shown that
the body temperature of humans may reach a peak of 37.5 degrees Celsius during
the wakefulness of day and be at a low of 36.0 degrees Celsius during a restful, or
a sleep filled night. (see Figure 1)

15

Secondly, the temperature taken from the four main body sites: oral, axillary,
rectum and the ear, varies from the required core temperature:

o oral gives the most accurate reading,

 axillary gives a reading that is 0.5 degrees Celsius lower than the core

temperature,

» rectum gives a temperature that is 0.5 degrees Celsius higher than the

core temperature.

o the reading from the ear with a tympanic membrane thermometer
depends upon the ambient temperature, which means that a small

calculation is required to accurately predict the core temperature.

If the variants are taken into account, then all four methods are acceptable ways

for predicting the core temperature of the human body.

2.2.4. THE EFFECT OF A PERSONS AGE

Empirical data shows that infants under the age of 12 months, and aged people
over the age of 80 years, have greater variations in body temperatures than
adolescent and adult people.‘ For example, studies by Brown, Christmas and
Ford (1992) have shown that, "The current clinical practice in assessing infant
body temperature by using axillary temperatures does not reflect rectal
temperatures in a reliable constant fashion".

Hence, infants and aged people need to be considered as special cases when

designing instruments for measuring body temperature.

16

2.2,5. THE DURATION OF TEMPERATURE MEASUREMENTS

Over the years many studies have looked into the amount of time that a
thermometer has to be present at the body site, to ensure that they have fully
acquired the body temperature.

Usually nurses wait at least one and a half minutes before removing a mercury

thermometer from a patients body site.

Ostesen (1991) conducted a study that investigated, "Whether the rectal
Craftemp measurement of temperature could be used as an alternative to the
measurements with a mercury thermometer”, and came up with the following
discovery. That the one minute time of measurement recommended by the
manufacturer of the electronic temperature measuring device (called Craftemp)
was insufficient. It should have been 2 minutes.

Note, the time measurement problem does not arise with sensors attached
permanently to a body site. Thus, a small comfortable temperature measuring
device that is permanently attached to the body, and is continually monitoring

body temperature would not suffer from the time measurement problem.

Noble (1992) informs us in a journal article that the latest infra-red (IR) ear
thermometer which allows users to take a quick and non invasive measurement of

body temperature is also desirable device.

17

2.2.6. THE INSTRUMENTS WHICH MEASURE BODY
TEMPERATURE:

There are various ways of measuring body temperature. This section subdivides

temperature ricasuring devices into 4 categories:

@) glass - mercury thermometers,
(ii) electronic instruments,
(a) thermistors
(b) LC. temperature sensors
(iii) infrared ear thermometers
(iv) other means of measuring body temperature,
(i) magnetic resonance
(i) thermadot disposable
The following sections describe the sensors from the first two sections shown
above. The glass-mercury thermometer is described because it has been the
medical professions standard temperature measuring instrument. The thermistors
and IC devices because they offer a smali and convenient way of measuring body

temperature of an active person under test.

(i) The glass - mercury clinical thermometer,

The clinical thermometer that is made from glass and mercury is specially
designed for measuring body temperatures of humans. It has graduation marks
that show a range of temperatures between 35.0 degrees Celsius and 43.0 degrees
Celsius in 0.1 degree steps.

This instrument requires at least 2 minutes to ensure that it fully acquires the body

temperature.

18

Glass mercury thermometers consist of an envelope of glass that houses a large
bulb which contains all the mercury at room temperature. Attached to the bulb is
a small capillary tube that allows the mercury, that is expanded by the body heat,
to flow. The mercury in the capillary tube cannot return to the bulb of mercury
easily because of a restriction in the capillary tube close to the bulb of mercury.
Thus, when the thermometer is removed from a patient the mercury remains in
the capillary tube and the measurement can be recorded with with reduced error.
The instrument has to be allowed to cool, and then shaken to force the mercury in
the capillary tube back into the bulb.

The advantages of measuring human body temperatures with a glass thermometer
are: it has become the accepted standard temperature measuring device and the
device can easily be sterilised. The disadvantage is that it cannot be used for

automated recording of temperatures.

(ii) electronic instruments:

Nearly every electronic property of a material varies as a function of temperature,

and could in principle be employed as a temperature sensor. It is only the

requirements of : high sensitivity, reproduciblity, and linearity that limit the

possibilities, especially if cost, size, and ease of readout are also considered.

Thermistors and Integrated Circuit (IC) sensors are considered to be the most

suitable electronic components for measuring body temperature.

(a) thermistors

19

Basically a thermistor is a resistor with a high temperature coefficient. Itisa
semiconductor that is found in various geometrical configurations, to which leads
are attached. In fact they are found in a wide variety of shapes and sizes; down
to microscopic sizes. They have a negative temperature coefficient; their
resistance decreases with increasing temperature. (see Figure 2)

The bad points associated with thermistors are:

The resistance-temperature variation is non linear; over most of its range
the resistance decreases exponentially with increasing temperature.
Thermistors are affected by internal heating (power dissipation) caused
by the voltage applied to the thermistor from the readout or converter

unit.

The good points associated with thermistors are:

Although thermistors are not highly precise sensors, they are popular for

their low cost, high sensitivity, ease of readout and small size.

A convenient configuration can also be found to suit a particular
application; for example, a bead for measuring internal body temperatures,

a thin disc form for measuring skin temperatures.

(b) IC temperature sensors

The IC temperature sensors are based on the diode voltage being temperature

dependant. One version (the AD590) has a current output proportional to

absolute temperature.

20

The sensor is insensitive to the voltage across it and can be used even with long
lead wires. Another version (the LM335) has an output voltage proportional to

temperature.

The good points associated with IC temperature sensors are:
their output is linearly proportional to temperature,
their time constant is reasonable; 60 seconds in still air, 1.4 second with
a heat sink.
maximum error is less than, plus or minus, 0.05 degrees Celsius
The bad points associated with IC temperature sensors are:
Their shape is usually in the form of a transistor package (bulky).
Their output requires amplification
(AD590 = 1 micro amp/degree Kelvin) or
(LM335 = 10 milli volts/degree Kelvin)

21

2,2,7. HUMAN/INSTRUMENT INTERFACE

The most obvious site for measuring human body temperature, when taking
readings from a permanently fixed sensor over a long period of time, is the
axillary site. The temperature readings from this site are said to be correlated to
the core temperature of a human body, and there should be no inconvenience to

the person under test, as long as the sensor is small.

The duration of the temperature measurements should not cause a problem as the

sensor would be permanently fixed to the person under test.

DATA STORAGE
Readings would be taken, by the temperature monitoring device, every ten

minutes. This would give:

6*24 = 144 readings a day
7* 144 = 1008 readings a week
4 * 1008 = 4032 readings during a 4 week test period

Therefore, the measuring device needs to be able to store at least 4032
temperature readings when used over a four week period. Given that
conventional devices measure temperature between a range of 35.0 through to
43.0 degrees Celsius in 0.1 degree steps. This means that about 80 relative
temperature values are possible for each reading. Note, that each reading can be
stored in one byte of memory if an electronic measuring device is used. One byte
has 8 bits of information (2 to the power of 8 different codes) which allows 256
possible values per reading)

Consequently, a 4K byte memory chip (RAM or EEPROM) can be used to store

four weeks worth of data.

22

23. CHOOSING A TEMPERATURE SENSOR

2.3.1. SENSOR SELECTION CRITERIA
Choosing a temperature sensor to measure human body temperature requires a

set of criteria to be considered.

Firstly, various selection criteria, mentioned in books and manufacturer’s data
sheets, were listed and then analysed. The criteria selected for consideration
included: accuracy, stability, linearity, temperature coefficient, response time,
power dissipation constant, ruggedness or fragility, ease of readout, cost of
manufacture, resistance to chemical attack, requirement of a reference
temperature, self-power character, sensitive to interference, suitability for remote
sensing, the required temperature range, self-heating effects, and the choice of
shapes and sizes. The significance of each criterion, relating to measurement of

human body temperature, had to be realisea.

Secondly, various types of temperature sensors were considered. Matching the
criteria, important to this project, with the commerially available sensors helped
to reduce the selection down to three types of sensors, namely: thermistors (YSI
44000 series), IC current sensors (AD590) and precision IC sensors that produce

a voltage output (LM 34 and LM 35).

The third stage of the task was to evaluate circuit designs for the three chosen
types of sensors. This involved circuits being designed, built and tested. This
enabled preliminary results to be analysed and the complexity of the circuits to be

considered.

23

The design of the sensor support circuitry involved the following:
selecting a suitable precision voltage reference zener diode,
calculating resistor values to minimise the currents flowing through the
circuit, and
calculating resistor values that enable a suitable range of voltages to be

input into a microcontroller system.

The overall result was that the IC current sensor was eliminated, from the three
chosen sensors, because of the size and complexity of the support cicuitry. For
example, the circuit required an operational amplifier and more importantly an

additional + and - power supply.

Note, the most important criterion of the temperature monitoring system was that
the device had to be as small as possible. Hence, the LM 34 IC voltage sensor
and the YSI 44002 thermistor, used as a temperature sensor, were the only two
devices left for further analysis. Both devices can be shown to produce an
accurate voltage output, proportional to temperature changes of their

environment, with only a small support circuit and a +5 volt power supply.

2.3.2. INTERFACE TO LOGGING DEVICE

The output voltage (Vo) and two reference (Vrl and Vrh) can be sent from the
sensor circuit into a microcontroller ADC subsystem. The microcontroller can
then be programmed to digitise and record temperature readings at regular

intervals of time.

When the temperature monitoring system has bezan fabricated, then the two
sensor subsystems can be fully evaluated and comparisons made with each other.

24 CHOOSING A SUITABLE MICROCONTROLLER CHIP

The following two sections of this chapter describe the differences between a
single-chip microcomputer system and a single-chip microcontroller system. The
descriptions should also show the suitability of a microcontroller for the two most
important parts of the overall temperature monitoring system design: namely, the

monitoring device and the data transfer

3.2.2. Single-chip

These are complete microcomputer systems on a single chip. They do not require
any additional components other than a system clock signal to provide a single-
chip solution to many of today's processing problems. Cooling (1991) states (
page 20, ‘Software Design for Real-time Systems') that "Using a single-chip

solution reduces the: package count, size and the cost of a system".

A microcomputer chip contains a CPU, memory (RAM and EPROM), timers,
interrupt controllers, serial communication interface, parallel /O ports and an
external bus system. They are designed mainly as a processing device and can
only handle serial, and parallel, I/O. Furthermore, they lack an analog
subsystems; sample and hold and ADC,

They are not really designed, as data logging devices or control units, for real-

time

3.2.3. Single-chip

Microcontrollers are derivatives of microcomputers; they are designed to provide
all computing functions on a single chip. Cooling (1991) also states that "The
interfacing hardware, internal register structure and the instruction set al"c

optimised for real-time systems".

25

An initial task, at the time of commencing this Master's project, was a study of
the most popular microcontrollers. Motorola, Intel and National Semiconductor
were the names that were chosen as the manufacturers of the most popular
microcontroller devices in the early 1990s. The data sheets and the

manufacturer's support literature were studied in depth.

A comparative study of six series of microcontrollers was made, noting all their
common features and their areas of specialisation. Two tables were made listing

the most important features from the following six 8-bit microcontroller chips:

Motorola M6801
MC68HC11
Intel 8051
8098

National Semiconductor COP 800
COP 888

(See tables 1.1 and 1.2)
This project revolves around the measurement and storage of temperature
readings within the range of 35 to 40 degrees Celsius with a resolution of 0.1
degrees C. That means that there are 150 different possible values (note, 256
different values can be coded into 8-bits). Hence, an 8-bit analog to digital
converter (ADC) can be used to input temp values and 8-bit memory locations
can be used to store them. The total storage required for a complete 4 week test
(28 days * 24 hours * 6 readings per hour) works out to be approximately
4Kbytes. Consequently, the author considered the available 8-bit
microcontrollers; as it was believed that there was no need to look at the more

powerful 16 and 32-bit devices.

26

A comparative analysis of the microcontrollers was made and a preliminary

assessment of the requirements for a Temperature Monitoring Device (TMD) and

a Data Transfer Device (DTD) were also made. This resulted in the following list

of microcontroller requirements:

A small portion of RAM (64 bytes) is required to hold the variables that are
necessary for the control program.

An 8K or 16K byte ROM, EPROM or EEPROM is required to permanently
store the control program.

A small portion of EEPROM is required to hold the program's parameters:
namely, the device identification, a lookup table for the sensor readings, and
the date and time of the start of the current test.

A 4K or 8K byte RAM, or EEPROM, for the ongoing storage of data from
the test.

An 8-bit ADC to convert the analog data input from the sensor circuit into an
8-bit digital form

A serial communication sub-system, ideally asynchronous, to upload the data
to the data transfer device, or to the processing system (the PC system).

An interface is required that can detect edges of pulses derived from the push
buttons. These edges are necessary to activate the various functions of the
data monitoring device.

A timer sub-system is essential to enable precise increments in time to be
measured. This allows data to be read at regular intervals of time, say every
10 minutes.

A low power consumption is necessary for the data monitoring device.
Ideally the microcontroller should also have pins available for parallel
communication between the data transfer device and a hexadecimal keypad,
and a liquid crystal display.

8-bit internal data paths and an 8-bit CPU are required to process, store and
transfer the data.

27

It can be seen from the tables 1.1 and 1.2 that the Motorola microcontroller
MC68HC11 is the most suitable chip, as it meets all the selection criteria for both
the data monitoring device and the data transfer device

In the final analysis it could be said that the Motorola MC68HC11
microcontrollers appear to be the most versatile single-chip devices on the market
to date. They have 4 main modes of operation and, in addition, they have low
power dissipation modes of operation. Although other makes of microcontrollers
could possibly have been used for this project the MC68HC11 has all interfaces
required including an ADC sub-system. The onboard EEPROM and supporting
onboard boot loader ROM programs enable these microcontrollers to have their

EEPROMs to be programmed in situ.

Another reason for choosing the MC68HC11 microcontroller is that Motorola, in
Perth, provide excellent hardware evaluation equipment and excellent software

support for this series of products.

23

TABLE 1.1 MICROCONTROLLER COMPARISONS
Manufacturer Motorola Motorola National
Semiconductor
MC68HC11

Part Number

Internal Memory

Address Bus size
Registers
CPU size

Serial VO

Parallel /O

Timers

Analog Interface

Interrupts
Watchdog
Operating Modes
Clock-rate

Power

RAM 192-256 bytes
ROM 2-4K bytes
EPROM 24K bytes

(16-bit) 64K bytes
6

8-bit

Asynchronous (FD)

13 - 29 bits

16-bit registers
one I/P capture
one O/p compare

none¢

IRQ and Ni\‘ll
no

1

1-4 MHz

1W

RAM 192-768 bytes
ROM 4K-24K bytes
EEPROM 512-2K

(16-bit) 64K bytes

7 + 64 /O registers

8-bit

Asynch (FD)
Synch (high speed)

4=0/P, 4=1/P
8-bit O/P
8-bit VO
8-bit 1/0
8-bit I/P

moO®p

16-bit registers

1 counter

3-4 1/P capture
3-5 O/P compare

8-bit ADC
8 channels (S&H)

17 sources
yes

4

DCto8 M Hz

50 mW

RAM 64-128 bytes
ROM 4K

(15-bit) 32K bytes
6*8-bit + PC

8-bit
Synchronous

2 VO B8-bits
1 /P 4-bits
1 O/P 4-bits

16-bit registers
mode 1 PWM
mode 2 counter
mode 3 timer

8-bit
8 channels

3 sources
yes

3

1M Hz

1 OuW,10 mW,50 mW

TABLE 1.2 MICROCONTROLLER COMPARISONS
Manufacturer Intel Intel National
Semiconductors
Part Number 8051 8098 COP388
Internal Memory
RAM 128 bytes RAM 232 bytes (reg) | RAM 128 bytes
ROM 2 -4K bytes ROM/EPROM 8K STACK (RAM)
EPROM 4K bytes ROM 4K bytes

Address Bus size
Registers
CPU size

Serial /O

Parallel VO

Timers

Analog Interface

Interrupts
Watchdog
Operating Modes
Clock-rate

Power

(16-bit + 16-bit)
64K prog + 64K data
48 * 8-bit registers

8-bit ALU

Asynchronous (FD)

4 * 8-bit IO ports

2 ® 16-bit registers
4 operating modes:

I/P capture, event
pulse width, mark
space

none

6 sources, 5 vectors
no

3

1-10MHz

1L.OW

(16-bit) 64K bytes
232 registers
16-bit ALU
Asynchronous (FD)

high speed sync

2 * 8-bit ports
2 * 4-bit ports

16-bit registers
4 timers

2 counters
PWM

10-bit resolution
Sample and Hold
8 channel (MUX)

21 sources, 9 vectors

6-12MH2

1LOW

(15-bit) 32K bytes
6 * 8-bit + 15-bit PC
8-bit ALU

Synchronous
(Microwire)

L 8-bit /O
G 50,1 /P,3 O/P
I 8-bit P (Hi-Z)
D 8-bit O/P

3 = 16-bit timers
2 timers support:
PWM,

Event counter,
I/P capture.

8-bit resolution
8 channels

10

yes

3

DC to 20 M Hz

50 mW

30

2.5. THE MICROCONTROLLER SYSTEM DESIGN ENVIRONMENT

2.5.1, INTRODUCTION

When designing data logging or control systems that make use of a
microcontroller one needs to consider the type of platform necessary to develop
the software and to test the interfaces to the user's hardware. The
microcontroller system design environment can be considered to be in two parts,

namely: the software design environment, and the hardware design environment.

2,52 THE SOFTWARE DESIGN ENVIRONMENT

The approach used for this project was to produce a software developement
environment arround the suite of MC68HC11 support programs provided by
Motorola. These programs are designed to run on an IBM PC or any compatable
machine with an MS-DOS operating system. The Motorola suite of programs
enables :
« assembly language source programs to be assembled,
o the assembler to create a program listing showing the source code, the
equivalent macine code values and any syntax errors,
o the syntax free machine code to be linked to memory locations, and
» Motorola S-records to be created. Thus, enabling the machine code
to be transferred, from an IBM PC to the memory of a MC68HC11

microcontroller, via the BUFFALO monitor program.

K)|

Programs are also required to edit the source program and for the
serial communication between the PC and the Motorola evaluation
board. The programs needed for the PC are;

e Microsoft's full-screen editor,
e Motorola's portable asembler,
e Ubuilds program to create S-records and

« aserial communications program.

In addition, a microcontroller debugger is required:

o the Buffaio monitor program in the MC68HC11 to accept S-

records and commands to debug a user program.

The four PC programs used for software development were packaged into an
efficient environment by calling them from within an MS-DOS batch file (written
by the author). The batch file invokes two macinecode programs. One that
clears the screen and selects forground and background colours for text. The
other allows the user to select menu choices from within a batch file. A

TYPE command inside the batch file creates a menu on the screen (see appendix

D and the diagram below). The PC screen showed the following menu:

Type '1' for EDITING

Type 2' for ASSEMBLING

Type '3' fora LISTING

Type ‘4 for S-RECORDS

Type '5' for COMMUNICATIONS
Type '6¢' for MS-DOS

K)|

Programs are also required to edit the source program and for the
serial communication between the PC and the Motorola evaluation
board. The programs needed for the PC are;

e Microsoft's full-screen editor,
e Motorola's portable asembler,
e Ubuilds program to create S-records and

« aserial communications program.

In addition, a microcontroller debugger is required:

o the Buffaio monitor program in the MC68HC11 to accept S-

records and commands to debug a user program.

The four PC programs used for software development were packaged into an
efficient environment by calling them from within an MS-DOS batch file (written
by the author). The batch file invokes two macinecode programs. One that
clears the screen and selects forground and background colours for text. The
other allows the user to select menu choices from within a batch file. A

TYPE command inside the batch file creates a menu on the screen (see appendix

D and the diagram below). The PC screen showed the following menu:

Type '1' for EDITING

Type 2' for ASSEMBLING

Type '3' fora LISTING

Type ‘4 for S-RECORDS

Type '5' for COMMUNICATIONS
Type '6¢' for MS-DOS

32

2,53 THE HARDWARE DESIGN ENVIRONMENT

The hardware support supplied by Motorola consists of three types of evaluation
boards, namely: the EVBU, EVB and the EVM (see Figure 6). Each one of
these evaluation boards contains a microcontroller system with an embedded
monitor program. The monitor program allows communication, via one or two
serial ports, with an IBM PC development system. The IBM PC is used to
develop the software that is to be downloaded into the microcontroller system
memory. Then the PC system is used to communicate with the evaluation board

during the debugging stages of the software and hardware.

A detailed description of the uses for these Motorola evaluation boards is given in

Appendix E.

Each evaluation board contains:
« a microcontroller chip,
« components and chips to support the microcontroller, and

e amonitor program to assist with the debugging procedure.

The EVB and the EVM evaluation boards also have external memory, and buffers
to protect the ports of the MC68HC11 when interfacing to the user's target

circuitry.

Note, an EVBU evaluation board was used to develop the TMD and to test the
control program. Whereas, an EVU evaluation board was used to develop the

DTD and to test its control program.

33

MICROCONTROLLER DESIGN METHODOLOGIES

Several library searches were made, at Edith Cowan University, on the following
four databases:

1. INSPEC,

IEEE PUBLICATIONS,

SCIENCE and TECHNOLOGY CD-ROM NETWORK,
ENGINEERING and APPLIED SCIENCE.

EalE o

1. INSPEC
A search for the number of articles, with abstracts containing the following

terms were made:

Methodology AND Software 743
Methodology AND System Design 99
Methodology AND Computer Systems 29
Methodology AND Microcontrollers 7
Microcontroller(s) 519
Microcontrollers AND JSP 0

2. IEEE PUBLICATIONS
A search for the number of articles, with abstracts containing the following

terms were made:

Methodology AND Software 908
Methodology AND System Design 172
Methodology AND Computer Systems 59
Methodology AND Microcontrollers 4

Microcontroller(s) 294

Microcontrollers AND JSP 0

34

3. SCIENCE and TECHNOLOGY CD-ROM NETWORK,

COMPUTER SELECT (77,816 Articles from Computer Periodicals)
A search for the number of articles, with abstracts containing the following

terms were made:
Software AND Methodology 723
Microcontroller(s) 346
Microcontroller(s) AND Methodology 15
Microcontrollers AND JSP 0

DISSERTATION ABSTRACTS ONDISK (1988 - 1995)

A search for the number of abstracts containing the following terms were

made:
Methodology AND Software 602
Methodology AND System Design 111
Methodology AND Computer Systems 54
Methodology AND Microcontrollers 4
Microcontroller(s) 49
Microcontrollers AND JSP 0

4. ENGINEERING and APPLIED SCIENCE
(Australian Engineering Database)

A search for the number of articles, with abstracts containing the following terms

were made:
Methodology AND Software 23
Methodology AND System Design 73
Methodology AND Computer Systems 30
Methodology AND Microcontrollers 0
Microcontroller(s) 5

Microcontrollers AND JSP 0

35

The conclusions drawn from all the aforementioned results were as follows:;

o There was a great interest, during 1988 to 1995, in Software Design
Methodologies.

o There was less, and still is less, of an interest in describing design
methodologies in computer system design articles.

o Hardly any articles, that described microcontroller applications, gave
information on their design methodologies (7 out of 519, 4 out of 294
and 15 out of 346). Note, 4 out of 49 abstracts from dissertations
mentioned their design methodologies.

« Finally, and most importantly to this thesis, no articles or dissertations
describe how a JSP methodology could successfully be used to help

design a microcontroller-based system.

Note, that the few microcontroller design methodologies that were discussed fell

into two categories:

methods describing the internal design of custom-made microcontrollers

were given or

the methods of designing systems using standard microcontroller chips

and the associated software were detailed.

36

CHAPTER THREE

HARDWARE DESIGN

3.0.

3.1.

3.2.

3.3.

3.4.

Overview of the Temperature Monitoring System

Designing the Temperature Sensor Circuit

3.1.1. The LM 35 Temperature Sensor

3.1.2. The LM 35 Temperature Sensor Circuit
3.1.3. TheLM 35/LM334 Sensor Circuit Results
3.1.4. The Voltage Reference Circuit Calculations

3.1.5. The YSI 44002 Precision Thermistor
3.1.6. The YSI 44002 Calibration Table

3.1.7. The YSI 44002 Sensor Circuit
3.1.8. The YSI 44002 Circuit Diagram Calculations

Designing the Temperature Monitoring Device (TMD)

3.2.1 The Functions Required From The TMD
3.2.2 The Motorola MC68HC11 Series of Microcontrollers

Designing the Data Transfer Device (DTD)

3.3.1. The Functions Required From The DTD

Designing the Data Processing System (DPS)

3.4.1 The Functions Required From The DPS

37

3.0. OVERVIEW OF THE TEMPERATURE MONITORING SYSTEM

The temperature monitoring system (TMS) comprises of seven main parts:

a person under test,

a temperature sensor,

a Temperature Monitoring Device (TMD),
a Data Transfer Device (DTD),

a Data Processing System (DPS),

an output device and

a researcher, (see figures 7 and 11)

A brief description of each part of the system is given below and a more

comprehensive description of the whole system is given in chapter 4.

The person under test provides a source of temperature between the

range of 35 through to 43 degrees Celsius.

The temperature sensor is expected to monitor the person's
temperature with a resolution (and relative accuracy) of 0.1 degrees

Celsius.

The temperature monitoring device is a miniature data logging system
that: receives input from the sensor, is capable of storing four
thousand temperature readings and is able to download the data at the
end of a test, to a DTD or DPS.

38

o The main functions of the data transfer device are: to keep the correct
time and date, to be able to download time date and a start signal, to
the TMD, in order to begin a test session. Then later, upload the
information from a test in order to pass it on to the DPS. Note, this
small device enables the remote use of the TMD; away from an office

environment.

o The data processing system is used by the researcher to: upload
information from a test, check the information on a VDU screen and
store data from a test on a file. Then later, the researcher can process
the data in order to produce graphical information.

o The output device enables hard copies of results to be made.

o The researcher is responsible for organising tests and any programs

that process the results.

See figure 11 for a graphical representation of the data flow within the system.

The following four major sections of this chapter describe the steps taken during

the hardware design of the temperature sensor, the TMD, the DTD and the DPS.

39

3.1.1. THE LM 35 TEMPERATURE SENSOR

IC Temperature Sensor

The IC temperature sensors are based on the diode voltage being
temperature dependant. One version (the AD590) has a current output
proportional to absolute temperature. The sensor is insensitive to the
voltage applied across it and can be used even with long lead wires.
Another version (the LM 35) has an output voltage proportional to
temperature.

LM 35 IC Sensor

The LM 35 series of integrated circuits are precision temperature
sensors, whose output voltage is linearly proportional to Celsius
temperature. The user is not required to subtract a large constant voltage
from its output in order to obtain a convenient degree Fahrenheit scaling.
[RS Components data sheet 8307]

The LM 35's low output impedance, linear output and precise inherent
calibration make interfacing to readout or control circuitry especially easy.
The IC draws only 70 uA from its supply, it has very low self heating, less
than 0. 2' Cin still air. No trimming is required to gain an accuracy of +
or - 0.1'C at room temperature. The LM 35Z chip is rated to operate
over a -40 to +110 "C temperature range.

Features

e wide temperature range -40'Cto +110'C (CZ version)

e accurate 0.25' C at room temperature
o linear output +/-0. 1' C typical

o low self heating 0.08' C typical

o output impedance 0.1 ohm at 1 mA

o output voltage 10mA per degree Celsius

o supply voltage +35 to -1.0 volts

40

3.1.2. THE LM 35/LM 334 TEMPERATURE SENSOR CIRCUIT

T + 5V

LM334

Vout = 10mV/'C

>
LM35

R1

Selecting the value for resistor R1

A test of the circuit was performed in order to select the value of resistor R1.
R1 determines the nominal output voltage at room temperature

R1 (ohms) Vout (volts)
56 2.20
68 2.22

180 232

270 2.40

330 2.45

560 4.25

680 427

A

Selecting the value for resistor R2

The LM 334 is a constant current source IC. The magnetude of the constant current is
determined by the size of the resistance ot the external resistor R2. The resistance for
R3 was chosen to be 47K ohms as this approximately represents the resistance of the
temperature sensor LM35. The test circuit shown below was constructed in order to
select a suitable value for the constant current.

+5V
LM
334
R2
T >~ Vout
Ic % R3
Results
R2 R3 Vout Ic (Vout/R3)
39K 47K 0.080V 0.001uA
22K " 0.150 0.003
10K " 0.318 0.007
5.5K " 0.587 0.013
2.2K " 1.540 0.046
K " 3.41 0.072
S6 K 4,26 0.090
33K " 4.29 0.091

42

3.13. THE LM 35/LM 334 SENSOR CIRCUIT RESULTS

LM334

1K

Yout = 10mV/'C 3

LM35

68 JU

Results Output voltage versus Temperature

In the test circuit shown above, the 1K ohm resistor was chosen so that only a small
constant current (nominally 70uA) flows through the temperature sensor circuit. This
reduces the drain on the supply which is an important criterion for this project. The 68
ohm resistor was chosen so that the nominal output voltage at room temperature was
around 0.2 volts .

Temp ('C) Output (mV) Temp ('C) Output (mV)
4 2 334 288
12 82 40.0 355
14.6 109 425 376
5.8 112 46.0 408
16.0 122 48.0 452
18.0 145 51.5 464
21.0 180 530 480
23.0 186 56.0 511
27.3 212 57.0 520
30.0 254 70.0 660
320 280

%3

3.14. THE VOLTAGE REFERENCE CICUIT CALCULATIONS

It was decided that the voltage referece circuit shown below was to be used to provide
the voltages Vrh and Vrl for the microcontroller ADC subsystem.

/N
L

R7

R4 Vrh
YA RS

R6 Vrl
GND

To Calculate the Resistor Values for the Voltage Reference Circuit (R6, RS & R4)

given
Vref = 4.00 volts
Vth = 0.46volts
vil = 0.25 volts
calculate

Voltage across R6
Voltage across RS
Voltage across R4

Vz = 4

(nominal output for 50' C)

(nominal output for 30' C)

Vrl = 0.25 volts
Vrh- Vil = 0.46-0.25
4 -Vrh e 4.00-0.46

025 + 0.21 + 3.54

0.21 volts

3.54 volts

Hence;

44

Since the same amount of current flows through R6, RS and R4 then the
resistor values will be in the same ratio as the voltages: 0.25 : 0.21 : 3.54
Choosing resistor values with a 1% resistor tolerance and a temperature
coefficient of 100ppm in the ratio (2500 : 2200 : 3600) will output the
following reference values:

Vih = (R6+RS5)*4/R6+R5+R4 =4700 * 4 /40700 =
0.462 volts
viil = (R6*4)/R6+RS +R4 =2500 * 4/ 40700 = 0.246
volts

R1 = 68 ohms

R2 = 22K ohms

R3 = 2.7k ohms

R4 = 36K ohms

RS = 2.2K ohms

Ré6 = 2.5K ohms

R7 = 560 ohms (toprovidea 1.7 mA

current)

Z} = ZN REF 040

45

3.1.5. THE YSI PRECISION THERMISTOR

Thermistors

Darold Wobschall (1987) states that basically a thermistor is a resistor
with a high temperature coefficient. It is a semiconductor that is found in
various geometrical configurations to which leads are attached. In fact
they are found in a wide variety of shapes and sizes (down to microscopic
sizes) are possible.

They have a negative temperature coefficient; their resistance decreases
with increasing temperature. The resistance-temperature variation is non-
linear; over most of its range the resistance decreases exponentially with

temperature.

Tompkins and Webster (1988) state that although thermistors are not
highly precision sensors, they are used because they have a low cost, high
sensitivity, ease of readout and small size. A convenient configuration can
also be found to suit a particular application. For example, bead, disc,

screw-in, diode and thin film versions can be bought.

Thermistors are affected by internal heating (power dissipation) caused by

the voltage applied to the thermistor from the readout or converter unit.

The YSI 44002 Precision Thermistor

The YSI 44002 Precision Thermistor has the following specifications:

e resistance 300 ohms at 25 degrees Celsius.

¢ time constant 10 seconds in air, 1 second in stirred oil.

(time to reach 63% of a new reading)

e power dissipation constant 1 mW in air, 8 mW in oil
(power required to raise the temperature

1 degree above the ambient temperature)

» Stability The manufacturers state that these devices
have a proven long term stability if

operated around 25' Celsius.

For long term use at higher temperatures
the manufacturers recommend a 3000 ohm

version of this device.

&7

3.1.6. THE YSI 44002 CALIBRATION TABLE

TABLE 2 THERMISTOR CALIBRATION TABLE
TEMPERATURE RESISTANCE TEMPERATURE RESISTANCE

30 2524 40 181.2
31 2440 41 175.5
32 2359 42 170.0
33 228.1 43 164.7
34 220.6 44 159.6
35 213.4 45 154.6
36 206.5 46 149.9
37 199.8 47 145.3
38 193.4 48 140.9
39 1872 49 136.6

The calibration table values that are shown above came with the YSI 44002 thermistor.

These calibration values were used to calculate the expected output voltage range when
the YSI 44002 thermistor is subjected to a temperature change from 30 to 50 degrees C.

3.1.7. THE YSI 44002 SENSOR CIRCUIT

+5V

olP

== GNOD

48

3.1.8. THE YSI 44002 CIRCUIT DIAGRAM CALCULATIONS

To Calculate the Change in Resistance of the Thermistor
The temperature sensor was designed to measure temperatures within the
approximate range of 20' C to 50' C. The change in resistance of the YSI 44002
thermistor was calculated by inserting the resistance values for 20' C and 49' C
into the following formula:

Rmax (20' C) - Rmin (49'C) = 252.4-1366 = 117.8 ohms

Therefore R2max = 252.4 ochms, R2min = 136.6 chms

To Calculate the Value for Resistor R1

Given
Supply voltage = 5 volts
Reference voltage for Z1 = 4 volts
Current required for Z1 = 0.3 mA
Thermistor resistance R2min = 136.6 ohms
Consider resistor R3 = 2.7 K ohms
Calculate
It = VIR =4/(R2+R3) = 4/(136.6 + 2700)
= 4/2836.6 = 1.4 mA
Current through R3 Itot = Iz + It
Itot = 03mA+14mA = 1.7mA
Voltage across Rl = 5-4 = 1 volt
Value for R1 = (R=V/I)= 1/1.7 =560 ohms

Therefore = R1 = 560 ohms

49

High Output Voltage Calculation

Consider the case (YSI Sensor Circuit) where R3 = 2.7 K ohms

Vout = R3*Vz/R2+R3

Vout = (R3 * 4)/ (R2min +R3) =(2700 * 4) / (136.6 +
2700)

Vout = 3.81 volts

Low Output Voltage Calculation

Consider the case (YSI Sensor Circuit) where R3 = 2.7 K ohms

Yout = R3*Vz/R2+R3

Vout = (R3 * 4)/ (R2max + R3) =(2700 * 4) /] (252.4 +
2700)

Vout = 3.65 volts

To Calculate the Resistor Values for the Voltage Reference Circuit (R6, RS & R4)

given
Vref = 4.00 volts
Vrh = 3.81 volts
vil = 3.65 volts

calculate
Voltage acrossR6 = Vil = 3.65 volts
Voltage acrossR5 = Vrh - V1l = 381-365 =
0.16 volts
Voltage acrossR4 = 4 -Vrh = 400-381 =
0.19 volts

vz = 4 = 3.65 + 0.16 + 0.19

50

Since the same amount of current flows through R6, RS and R4 then the
resistor values will be in the same ratio as the voltages: 3.65: 0.16 : 0.19
Choosing resistor values with a 1% resistor tolerance and a temperature
coefficient of 100ppm in the ratic (36000 : 1600 : 1800) will output the

following reference values:
Vih = (R6+R5)*4/R6+R5+R4 = 37600 * 4 / 39400
= 3.82 volts
Vil = (R6 * 4) /R6 + R5 + R4=36000 * 4 / 39400 = 3.65 volts
Hence:
Rl = 560 ohms
R = YSI 44002
R3 = 2.7K ohms
R4 = 1.8K ohms
R5 = 1.6K ohms
R6 = 36K ohms
Z] = ZN REF 040
Conclusions

Prototypes of both circuits wer= constructed and tested in laboratoty conditions.
The results indicated that either circuit could be suitable for monitoring human
body temperature.

51

3.2. DESIGNING THE TEMPERATURE MONITORING DEVICE

3.2.1. THE FUNCTIONS REQUIRED FROM THE TMD

The first stage of the design involved the use of a top-down design approach to
the whole system. The system was subdivided into five main parts, as shown
below:

@ the temperature sensor,

(ii) the temperature monitoring device (TMD),

(iii) the data transfer device (DTD),

@iv) the data processing system (DPS), ard

W) the output device (printer/plotter). (see Figure

7)

The second stage of the design was to analyse each part of the system , in turn.

The Temperature Sensor

The temperature sensor must be capable of measuring temperature from a
suitable body site. The temperature must be used to indicate the core
temperature of the body in question. The temperature sensor must be able to
respond to changes in temperature within the range: 35.0 degrees Celsius to 43.0

degrees Celsius, with steps of 0.1 degrees.

52

The Temperature Monitoring Device

The functions of the temperature monitoring device were listed as follows:

to receive the signals from the sensors.

to condition the signals from the sensors so that they are in a form
suitable for an ADC. The signals have to be within an expected
range of values, with reference to two fixed voltages (voltage
reference high (Vrh) and voltage reference low (Vrl)).

to save the temperature measurements in a digitised form at regular
intervals in time (say, every ten minutes). A semiconductor read/write
memory capable of storing 4000 readings would be required to store a
months supply of data.

to respond to push-button commands that call up service routines.

to upload the start of test time and date from a DTD and hence, start
logging data..

to download an identification label and time related data to a "transfer
device' or to a personal computer system:

A top-down approach to the design of the temperature monitoring device
revealed that the following parts were necessary.

(1)

(it)

(iii)

@iv)

v)
(vi)

a signal conditioning unit for the sensor readings,

an analog to digital converter (ADC) to digitise the sensor
readings,

a storage device for an ident label, time and temperature readings.

a real-time clock system, or a means of entering the start of test
time.

a serial communications unit,

a means of setting the time of day in the real-time clock system,

(vii) a means of knowing that the monitoring device is functioning

correctly,

(viil) a unit to control the seven units mentioned above,

53

(ix) apower supply unit.
The first five parts of the temperature monitoring system and the eighth part are
complete sub-systems. Integrated circuits are available for each of these separate

subsytems. For example:

e An operational amplifier for the signal conditioning unit.

o An 8-bit ADC chip to digitise the sensor signals.

e A real-time clock chip so that the temperature readings could be
aligned to the time of day.

e A random access memory to store an identification label, time and
temperature data.

e A serial communications chip, possibly 2 Universal Asynchronous
Receive/Transmit (UART) chip.

o The sub-system that controls the other sub systems could also be a

special purpose chip.

Whilst considering the features of the proposed design, the overriding
characteristic of the system had to be remembered. The temperature monitoring
device has to be as small as possible. So a multi-chip design, although feasible,
would be rather large, and not meet the small device criteria and would also make

the power supply module too large.

However, further reduction in size, power and weight are possible by using
programmable multi-function devices on the market that are designed for real-
time applications. A single chip microcomputer system: and, in particular, a

microcontroller chip would fit our application's functional needs. (sec Figures 4, 5 and 8)

From the hardware point of view, a microcontroller's internal computing

equipment includes various input/output interfaces. Microcontrollers may have:

e 8-channel analog multiplexing,

o a sample and hold module for analog signals,
o an analog to digital converter sub-system,

e a pulse width modulation unit

¢ anindependent timer sub-system,

» a fast synchronous serial sub-system, and

e an output compare sub-system.

Microcontrollers also differ from microcomputers in other ways: They may have
» four mecdes of operation:
» aspecial test mode,
» a special bootstrap mode,
» asingle chip mode, and

o an expanded multiplexed mode of operation.

Taking into account the features mentioned above, at the time of designing the
TMS, the MC68HC11 microcontroller was considered to be the most suitable
device to use as the control centre of the TMD. In particular, the MC68HC11
was the only microcontroller (known to the author) that had an internal ADC

subsystem. (see section 2.4. and tables 1.1. and 1.2))

55

3.24. THE MOTOROLA MC68HC11 SERIES OF MICROCONTROLLERS

The MC68HC11 series of single chip microcontrollers are available in either a 52
pin plastic leaded chip carrier (PLCC) package or a 48 pin dual-in-line package
(DIP).

The MC68HC11 series contains the sub systems that are essential to the design of

the temperature monitoring device (see Figure 4 and 5). They contain:

e memory (RAM, ROM and EEPROM),
o an 8-bit ADC sub-system,

« a serial communication interface,

o a serial peripheral interface,

o atimer/counter subsystem

o hardware interrupt logic, and

o the MC68HCI11 CPU.

The only function not supplied is the sensor’s signal conditioning and a real-time

_ clock.

The real-time clock chip can be maintained by the data transfer device. The data
transfer devicz could download the correct date and time to the monitoring
device just prior to a data logging session. Hence, the temperature monitoring
device need only read data at precise fixed time intervals (say, every 10 minutes),

prompted by software monitoring the timer sub-system counters.

Another feature to note is that the MC68HC11 family of 8-bit microcontrollers
have an address space of 64K bytes, which is large enough to store control

programs and all the required data from a monitoring session (see Figure 5).

Although the data path of the microcontroller is 8-bits, but the chip is capable of
16-bit arithmetic. Hence, it was decided that the MC68HC11 microcontroller was
an ideal device to use as the central component of out TMD design. (see Figure
12). Push buttons, resistors, LEDs and a +5 volt power supply were included

into the TMD system to complete the design.

The push buttons enable the user control the data logging system. The device can

be: started, stopped and show it's status.

3.3 DESIGNING THE DATA TRANSFER DEVICE (DTD)

The reason for designing a small, portable, data transfer device (DTD) are as
follows:
e A device is required to download the date and time and a signal to a
TMD in order to start a test.
» To enable the remote use of a TMD away from an office environment.
o To house a 4K byte EEPROM chip in a low-insertion socket. The
DTD can then be used to upload information from a TMD, at the end
of a test (into its EEPROM). The EEPROM can then be taken out
from the socket and posted from a remote site. Later, the EEPROM
can be inserted into another DTD (by a researcher) in order to
download the data into a DPS.
» Note, The DTD could be produced at a much lower cost than a laptop
computer system. It would be much smaller in size and therefore be

more portable.

57

The data transfer device has to perform the following functions:

to be able to store at least 4K bytes of data.

to upload the data from the temperature monitoring device.

to download the date and time to the temperature monitoring device.
to download the data to the data processing system.

to maintain the correct date and time.

to be able to change the date and time.

to be able to respond to key-strokes from a hexadecimal keypad.

to be able to display the data, date, time and a command menu.

Whilst considering the design of the data transfer device, an investigation took

place in order to gain knowledge into interfacing to a: liquid crystal display

(LCD) module, hexadecimal keypad and serial communication channel. It was

found that the MC68HC 11 could interface to a LCD module and a hexadecimal

keypad quite easily. Hence, the MC68HC11 could also be used for the control

centre of the DTD. Although other microcontrollers could have been used, the

MC68HC11 was chosen in order to be able to use the same hardware

development environment and be able to use the same software development

tools.

So, with the MC68HC11 microcontroller in mind, and using a top-down

design approach, the data transfer device was seen to have consisted of the

following modules:

A hexadecimal keypad to input changes to the date and time, and to input
commands to drive the device.

A liquid crystal display (LCD) module with a a 4-line 20-character screen.
A real-time clock chip or a means of entering and viewing the date and
time.

A read/write memory chip consisting of at least 4K bytes of storage.

A serial communications port for uploading and downloading information.

58

o A MC68HCI11 microcontroller that contains a serial communications
interface, parallel I/O ports and a means of controlling the system
components.

o A power supply unit (batteries).

(see Figures 9 and 13)

3.4. DESIGNING THE DATA PROCESSING SYSTEM
3.4.1. The Functional Requirements

The data processing system has to perform the following functions:
« to upload the identification label, the date and time, and the data, from
either the data transfer device or the temperature monitoring device itself.
» to store the data on a secondary storage file.
« to process the data and produce a time-temperature graph.
» to be able to display the results of the data processing on a visual display
unit (VDU) and also on a printer capable of plotting graphics. The output

must be in a text and a graphical form.
The functional descriptions mentioned above could all be performed on almost
any personal computer system that has a serial communications port and a
graphics adaptor card for the VDU.

So the hardware requirements for the data processing system are as follows:

A personal computer containing the following parts:

59

 a graphics adaptor,
o aserial port,
e a printer port, and

e asecondary storage device

The software required to perform the tasks mentioned previously are as follows:

e A communications package that enables uploading to a secondary storage

file

» Any commercial spreadsheet, or a user designed applications package

written in a high-level language.

The Qutput Device

Any make of printer that is capable of producing graphics with a resolution of
180 dots-per-inch, or greater, and is able to interface with the data processing
system mentioned above.

(see Figure 10)

CHAPTER FOUR

SOFTWARE DESIGN

4.1.

4.2.

4.3.

4.4.

4.5.

(The Software Requirements Document)

Introduction

Structured Programming Methodologies

Hardware Specifications
4.2.1, The Temperature Monitoring Device
4.2.2. The Data Transfer Device

4.2.3. The data processing System

The System Model

Functional Requirements Specifications
4.4.1. The Temperature Monitoring Device
442, The Data Transfer Device

443, The data processing System

Data Types Requirement
4.5.1. Temperature Monitoring Device
4.5.2. Data Transfer Device

4.5.3. Data Processing System

4.6.

4.7.

4.8

4.9.

4.10.

4.11.

61

Non-Functional Requirements

4.6.1. The Temperature Monitoring Device

4.6.1.1. Performance
46.1.2. Interfaces

46.13. Design Constraints
4.6.14. Other Constraints

4.,6.2. The Data Transfer Device

4.6.2.1. Performance
46.2.2. Interfaces

4.6.2.3. Design Constraints
4.6.2.4. Other Constraints

4.6.3. The Data Processing System

4.6.3.1. Performance

4,632 Interfaces

4.6.3.3. Design Constraints

4.6.3.4. Other Constraints
Structured Analysis

Jackson Structured Diagram

Choice of Programming Language

Maintenance and Testing Information

4.10.1. Test Plan Description

4.10.2.1. Testing the Temperature Monitoring Device

4.10.2.2. Testing the Data Transfer Device
4.10.2.3. Testing the data processing System

Program Testing

62

41. INTRODUCTION

This chapter describes the temperature monitoring system (TMS) from a
Software Engineer’s point of view. The information in this section describes the
functions of the system, and how a programmer may write, debug and test each
module of the programs. Sections 4.2. and 4.3. describe the functions of the
hardware and the flow of data and commands between the three main parts of the
TMS, namely:

The Temperature Monitoring Device (TMD)
The Data Transfer Device (DTD)
The Data Processing System (DPS)

Sections 4.4. to 4.10. describe the three main parts of the system in the following

ways:

their functional requirements,

o the names of the data types to be used,

e the non - ﬁmctiona] requirements,

o how structured analysis is used to create data flow diagrams (DFD),

o how transform analysis is used to transform DFDs into Jackson

Structured Diagrams (JSD),
o how JSDs are used to develop programs and

» informaticn that will enable maintenance and testing of the software.

63

Software Engineering practices were employed during the design of this project.
A variety of methods of program design were considered, which lead to a
Jackson Structured Programming (JSP) methodology being investigated and used
as it appeared, to the author, to be the most appropriate method for real-time
applications. A JSP methodology is an approved approach to many real-time
applications as it ensures that the final product is a well engineered solution that

meets the principles of software engineering.

Products designed using sound software engineering principles have:

« maintainability (perfective, adaptive and corrective),

e language independent design,

o modularised testing (black-box, white-box) and

¢ verification and validation.

STRUCTURED PROGRAMMING METHODOLOGIES

The Need For Analysis Techniques

There are several analysis techniques used throughout the world today. They

support:

» a hierarchical representation of a system,
» each carefully considers external and internal interfaces and
» each provides a foundation for design, implementation and testing

steps.

The need for a systemised method for developing software is best described by
Alvey (1986). He found that whilst programming standards are considered to be
a good thing, in general they are ignored and that one way to prevent this would

be to enforce them automatically by means of a software tool.

Pressman (1992, p. 267) states that any requirements analysis method combines a
set of distinct heuristics and a unique notation to analyse information, functions
and behaviour of a computer-based system. Through the application of the
fundamental analysis principles each method creates a model of the problem and a

required solution.

Analysis Techniques
A range of analysis techniques exist. This section describes the following three

main areas of design:

65

Structured analysis is a model building activity which illustrates, the flow of data
and control. It depicts the essence of what must be built. DeMarco (1979, p. 15)
establishes the primary goals of an analysis method as:

» the product of an analysis process must be maintainable,

o graphics must be used wherever possible,

o there is a need to differentiate between logical and physical
considerations,

o and there is a need to keep track of and evaluate interfaces.

Structured analysis is an information and content modelling technique where
circles, squares, arrows and sets of parallel lines represent: transforms, external

entities, inputs and outputs, and storage components of a system.

The advantages of using structured analysis design are as follows: Itis a
systematic method, it is very graphical, it is easy to follow information transforms
throughout the various stages of the design process and in this research work, it

is ideal for real-time system design.

The main disadvantages of structured analysis design could be that: it is an
iterative process, and that structure clashes cause problems when converting data

structures into a program structure.

The main contributors to the development of structured analysis techniques are:

Jackson, Hoare, Orr,Warnier and Yourdon.

Object-oriented analysis (OOA) is making slow but steady progress as a
requirements analysis method in its own right and as a complement to other

analysis methods. Pressman (1992, p. 239).

Object-oriented analysis is based upon objects and attributes and classes and
members, rather than data flow and structured analysis. Object-oriented
techniques allow designers, programmers and users to view concepts as a variety
of units or objects that fit into a hierarchy of different components or structure.
By using object-oriented techniques designers can represent neatly the
relationship between: components, objects, tasks to be performed and conditions
to be met.

The code can be reused and easily changed by subsequent designers. The three

main elements of object-oriented techniques are:

o data encapsulation,
o inheritance and attr.butes and

o polymorphism (overloading of operator names).

The main advantage of object-oriented design is that it enables designers to build
a system based upon: abstraction, information hiding and modularity; without

complexity or compromises.

The main disadvantages of object-oriented design are: that it is not really
language independent and that object-oriented compilors (such as Ada or C++)

are not always available for microcontroller development systems.

The main contributors to the development of object-oriented design processes

are: Booch, Coad et al, Meyer, Shiaer et al and Wiener et al.

67

Formal specification techniques are also being examined today. Formal methods
enable a software engineer to specify, develop and verify a computer-based
system by applying a vigorous mathematical notation. Pressman (1992, p. 288)

Formal specification languages employ three primary components:

e syntax,

e semantics and

e aset of relations.
The syntax includes variables such as x, y and z and logic symbols such as
which represent: all, there exists, not, and, and or.
The semantics indicates how the language represents system requirements.
The relations define rules that indicate which objects properly satisfy the

specification.

Pressman (1992, p. 287) informs us that the use of a formal specification
language provides a means of specifying a system so that consistency,

completeness and correctness can be assessed in a systematic fashion.

The advantages of a formal approach to system design are: that it is easy to create
design tools and tools for testing a design. Hence, the consistency, completeness
and correctness of a system can easily be assessed in a systematic fashion.

The disadvantages could be that it is not easy to get people interested in formal
approaches to design because: it is difficult to learn/teach, it appears to be

complex, it is not very visual and it uses unfamiliar notation.

The main contributors to the development of formal specification languages are:

Hall, Wing and Woodcock.

68

THE JSP METHOD OF DEVELOPING SOFTWARE
Why Choose JSP

The programming methodology adopted in this dissertation is Jackson Structured
Programming (JSP). Reasons for adopting a JSP methodology include:

JSP is not a programming language; it is a method for developing programs. In

fact it is language independent Cameron (1989, p. 15).

Cameron (1989, p. 19) states that "commercial programmers are often surprised,
when they first translate a Jackson Structure Diagram (with functions allocated)

into actual programming code, how close to the finished program they were".

Cameron (1989, p. 5) informs us that JSP in particular is very good , as it allows
the same notation and techniques to be used at different times throughout a
design procedure. For example, structure diagrams using the same notation can

be used to describe:
» the ordering of events,
» the ordering of data components and

o the program itself.

This makes life easier during testing and maintenance of programs.

69

Formulating a JSP Methodology

Before deciding a JSP methodology for this Masters Thesis several JSP

methodologies were examined. For example:

Cameron (1989, p. 11) describes a JSP process as having four major

steps:

1. Draw structure diagrams to describe each of the data streams:
input to or output from a program.

2. Merge these data structure diagrams into a single structure
diagram, a program structure diagram.

3. Make a suitable list of executable operations from the
programming language to be used. Allocate the operations,
one by one, into the program structure diagram.

4. Convert the program from the diagrammatic representation
into a textural form and add conditions to iteration and

selection components.

Bell et al (1987) states that "Jackson's data structured design method is
dramatically different from other approaches to programming design. It is the
most systematic method in existence. The basic idea behind JSP is that the
structure of a program should match the structure of the data types it is going to
act upon and the /O mechanism used. The methodology by Bell, Morley and
Pugh (1987) [page 52, is summarised in a similar way to Cameron's.

70

Mohri and Kikuno (1991) formulated thirteen steps (S1 through to S13) which
they adopted as a JSP development process. The details are specified as follows:

step S1 (Understanding program specifications)

step S2 (Formulating diagrams for input and output data structures)

step S3 (Formulating program structure diagram)

step S4 (Enumerating variables)

step S5 (Enumerating operations)

step S6 (Allocating operations to program structure)

step S7 (Optimising the program structure)

step S8 (Design review)

step S9 (Coding)

step S10 (Code review)

step S11 (Preparing test data)

step S12 (Unit test)

step S13 (Integration test)

n

The following JSP development process was adopted as it appeared to the author to
be the most suitable method of designing small real-time microcontroller systems.

10.

11.

. The functional requirements, of each part of the system, were listed.

The names of the data types to be used were listed, for each part of the
system.

The non functional requirements, of each part of the system, were described
fully.

A structure analysis technique was used to produce data flow diagrams DFDs
of various levels of the system.

A transform analysis technique was used to convert the DFDs into program
structure diagrams.

A list of elementary functions and subroutine calls was made. Each function
of subroutine call was given a unique number that is associated to the current
program structure diagram.

The numbers representing the elementary functions or subroutine calls were
inserted into the applicable program structure.

A list of conditions relating to iterative processes or selections were made, for
each part of the program. Each condition was given a label (a unique number
preceded by the letter 'C'.

The labels representing conditions were inserted into the appropriate place in
the program structure diagram.

The program, for each part of the system, was converted from the
diagrammatic representation into a textural form. The program code
included: elementary functions, subroutine calls and conditions to iterative
and selection components.

Finally, for each part of the system, maintenance and testing information were
described.

72
Structure Clashes

Hashimoto and Okamoto (1990) described a structure clash as: one of the main
concerns in JSP. The clashes occur between the processing of input data and the
processing of output data. This happens when the two or more data structures
involved in a problem cannot be mapped onto a single program structure. This is
due to a fundamental incompatibility between input data structure and output

data structure.

The solution to structure clashes is quite simple; two programs need to be
designed instead of one. The first program organises the input data into a form

used by the data being output by the second program.
Testability And Maintinability Of JSP
Cameron (1991, p. 27) stated the following :

The structure of a program should be based on the structure of the underlying
problem. ience, the component of a problem should recognisably map directly
onto the components of a program. Any important object of a problem must
have a corresponding program component. Therefore, naming the intermediate
components of a data structure becomes important. Correct program structure is
essential in order to make the subsequent testing and maintenance easier. The
JSP idea of correctness is achieved by having correct procedures and also a

structure to match the problem.

Roper and Smith (1988) state that: "the problem with testing programs is that it
often involves more work than designing and writing the program in the first

place. Whereas, there is an inherent testability with a JSP desngn process".

73

COMPARISONS WITH OTHER METHODS OF DESIGN

Cameron (1991, p. 7) informs us that it would be natural to expect a concise,
coherent comparison of JSP with other software development methods and to be
able to describe those unique features worthy of attention. Unfortunately, the
field of method comparison is somewhat problematic. There have been a number

of valiant attempts, but none seem entirely successful.

For example, Rozman (1989) set up an experiment using a small number of post
graduate electrical engineers. Two methodologies were compared: System
Analysis - System Design and Jackson System Development. Their conclusions
stressed that it was not the intention of their research work to compare the two
methodologies and suggest a valid choice. However, their study did highlight the
receptability of a methodology by electrical engineers who had previously poor
knowledge of software engineering practices. They also emphasised that testing

of other profiles of specialists may lead to absolutely different conclusions.

OTHER WORKS ON THE JSP METHODOLOGY

Roper (1988) identified the need for a more formal approach to software testing,
and produced a methodology for testing programs constructed using Jackson
structured programming techniques. Algebrate expressions were generated, from
information contained in a JSP structure chart, and used in a novel structured

testing method.

74

Roper and Smith (1988) stated that "they have developed a novel testing
methodology which exploits the inherent testability of the JSP design process.
which also integrates fully with that process”.

Thompson (1990) research has produced a tool which can be used to check
source code, which has been implemented from JSP designs. John Barrie
Thompson concluded, that a Quality Assurance Tool must be a worthwhile

exercise as this does ensure that implementation standards cannot be ignored.

Edwards (1990) describes how her research focused upon the development and
assessment of a systematic and formalised interface between Structured Systems
Analysis And Design (SSADM) and JSP. Her methods encompass the entire

software life cycle.

Davies (1987) informs us how a series of computer assisted tools including a
program structure generator were integrated to form a computer aided program
design system at UMIST. A method was developed by which two Jackson data
structures may be merged to produce a Jackson program structure. C. G. Davies
research also included an investigation into program maintenance with respect to
the development of process structure and established rules to govern possible

designs.

75

CONCLUSIONS

A JSP methcedology was chosen for this thesis because it provided a highly
systematic approach to software design. It is a methodology that is loosely
defined, which enables it to have extensions that make it useable in a variety of

situations. For example, JSP can be used for designing:

o data processing systems,

o large real-time systems and

o in this case, small microcontroller systems.

The initial stages of design are language independent, it is only when you come
to the stage for allocating elementary functions that you may need to consider

the language that will be used to implement the design.

A JSP methodology creates a very graphical hierarchical solution to a

problem. The control and decision making structures are created at the top

of the tree structure; the functions that input information, process

information and output information are seen at the lower extremities of the tree

structure.

76

JSP provides a high degree of modularity into a solution of a problem. A design

consists of system modules that are:

¢ as independent of each other as possible (low coupling),
o small in size so that there is no difficulty in understanding the logic and
¢ there is a high degree of component interaction within a module ¢high

cohesion).

Consequently, an individual module can be designed, coded, tested and amended

without too much reference to other modules of a design.

Because the overall design methodology includes identify and assessing hazards
(expected error situations and solutions to expected error situations), the fact
that there is high cohesion in modules, low coupling between modules and
principals of information hiding (where data is encapsulated) ensures that a
program can be employed in safety critical situations. For errors can be easily
discovered, during the testing stages, and modifications to the offending parts of

a design can easily be made without affecting the whole structure of a design.

Hence, a designer and user can have confidence in the resultant solution when a

JSP methodology is used.

77

42. HARDWARE SPECIFICATIONS

4.2.1 The Temperature Monitoring Device (TMD)
The hardware of the temperature monitoring device must:
« be small and light enough to be fixed to a persons body and yet be
comfortable .
« use very little power
» be able to have its batteries changed without losing its functions or data.
o be able to receive temperature sensor readings.

o be able to detect 0.1 degrees Celsius changes in temperature.

» be able to signal condition the temperature sensor readings so that they
are in a range suitable for the ADC subsystem.

¢ be able to measure temperatures in the range 35.0 to 43.0 degrees
Celsius.

¢ be able to convert the analog temperature readings into 8-bit digital
values.

o be able to store 4K bytes worth of data (8-bit temperature readings).

« be able to receive push button signals that invoke the functions of the
device.

o be able to receive serially date, time and start logging information, at a
fixed baud rate.

o be able to transmit serially the data from a test, at a fixed baud rate.

« be able to illuminate individual light emitting diodes, on demand, that
show the device's status.

4.2.2

78

The Data Transfer Device (DTD)

The hardware of the data transfer device must:

4.2.3

be portable.
be able to be powered by batteries

be able to maintain the date and time of day, even when the device is
switched off

be able to display menu choices using alpha-numeric characters (on a 4 -
line by 20 - character liquid crystal display).

be able to input commands (to select menu choices) and input a new date
time values from a hexadecimal keyboard.

be able to receive 4K bytes of data serially, at a fixed baud rate.
be able to store 4K bytes worth of data.
be able to retransmit the 4K bytes of data serially, at a fixed baud rate.

be able to reset the data transfer device via a push button.

The data Processing System (DPS)

The data processing system must have an IBM PC system with:
a copy of MS-DOS version 3.2 or greater as the operating system.

a hard disk unit or a floppy disk unit to hold the files of data and the
program.

a serial communications port.

a parallel printer port.

an EGA/VGA graphics adaptor.
an EGA/VGA colour monitor.

a dot matrix printer capable of producing a hard copy output with a
resolution of 360 dots per inch or greater.

79

43. THE SYSTEM MODEL

Sommerville (1987) states that, "once an initial analysis of the user's needs has
been carried out, the next step is to produce a conceptual model of the software
system. The conceptual model is a very high-level view of the system in which

the major user services are identified , and their relationships documented".

The functions of the temperature monitoring system are shared between the
hardware sub-systems and the software routines. Figure 11 shows the five main
hardware components of the system, the two human participants, the data flow,

and the oniginator of the commands which activate the software.

The system model diagram shows the following logical connections: (sce Figure 11)

o the flow of data between the TMD, DTD and DPS,
o the origin for the input of commands, and

s the recipient of the results from the data processing system.

A high-level description of the coniplete temperature monitoring system is
described below.

(1) The relationship between a person under test and three main parts of the

hardware of the system is as follows:

The sensor is attached to a person's body for a period of up to 4 weeks (24 hours
a day). The sensor sends a continuous temperature sensitive signal to the
temperature monitoring system. At the start of a test the person under test
connects the data transfer device to the temperature monitoring device. The data
transfer device is commanded to download the date, time and a start signal to the

temperature monitoring device. Immediately after the two devices are

80

disconnected, the temperature monitoring device measures and stores
temperatures at the rate of one reading every ten minutes. At any instance,
before or during a test, the status of the device can be viewed. Also during a
logging session significant times of events can be recorded by the TMD by
pressing the appropriate push button. At the end of a test the two devices are
reattached and the temperature monitoring device is commanded to download its
stock of temperature measurements to either: the data transfer device or the data

processing system. The two devices are then disconnected.

(ii) The relationship between a researcher and three main parts of the

hardware of the system is as follows:

The researcher connects the data transfer device (or in some cases the
temperature ronitoring device) to the data processing system. The data
processing device is commanded to upload the data from the test and store it in
the PC's memory. The PC program processes the data and displays graphically

the results from the test, on the VDU and as a hard copy on printer paper.

4.4. FUNCTIONAL REQUIREMENTS SPECIFICATIONS

Cooling (1991, p. 75) stated that

the functional requirements specifications relates to system behaviour. They
describe: what the system does, when it does it and how it responds to deviations
to the normal behaviour. They describe it's processes, the inputs to each process,
the outputs, expected error situations and the solutions to these errors. Note, the
requirement specifications should not define how these requirements are to be

satisfied.

81

4.4.1. The Temperature Monitoring Device

The temperature monitoring device must perform the following tasks:

4.4.1.1. PROCESSES:

The processes are as follows:

- The device must have a signal conditioning unit that will convert the sensor
signal into an analog voltage suitable for the range of values expected by the
analog to digital converter (ADC). It also must output signals to the ADC
interface, two reference voltages (voltage reference high (Vrh) and voltage
reference low (Vrl)). These two reference voltages set the limits for the

expected range of values to the ADC.

- A reset situation must initialise all the following device interfaces:

o initialise the ADC sub-system
o initialise the SCI sub-system.
o initialise the parallel ports.

o initialise the counter/timer sub-system.

-A reset situation must also perform all of the following;

o initialise the control program variables.

e clear the data buffer.

o wait for a command in the "ready' program mode.

82

- A command input from push buttons must invoke one of the following:

e adevice reset routine.

o the receipt of the date, time and a start monitoring signal from the serial
port.

o the hardware to show the device's status.

e the uploading of: the date and time, and a start signal from the data
transfer device.

o the downloading of the data via the serial port to the data transfer device

or to the data processing system.

4.4.1.2. INPUTS:

The inputs to the temperature monitoring device are as follows:

Command signals from the push buttons.

Serial information (date, time and a start command) at a fixed baud rate from the
data transfer device.

An analog signal from the sensor that represents temperatures in the range; 35.0

to 43.0 degrees Celsius.

4.4.1.3. OUTPUTS:

The outputs from the temperature monitoring device are as follows:

Serial information consisting of. the data gathered from a test, the date
and time of the start of the test, and the monitor device's identification
label, to the data transfer device or to the data processing system (at a
fixed baudrate)

83

The status of the temperature monitoring device on demand. The status

must indicate:

o the condition of the battery.

» if the data memory is full/not full.
« if the device is in a ready state.

o if'the device is monitoring data.

o if the device is transferring data.

4.4.1.4. EXPECTED ERROR SITUATIONS:
The expected error conditions caused by user mistakes and missing data are as

follows:

More than one push-button pressed.

No start of block marker detected, date or time values in the wrong
format, or no end of block marker detected; within 60 seconds of a

upload command.

4.4.1.5. SOLUTIONS TO EXPECTED ERRORS:

The solutions to the aforementioned expected errors are as follows:

Acknowledge only the highest priority push-button input; clear the rest.

Reset the system and wait for a new command.

NB. The device must be able to read the data from the ADC, store the data,

at the rate of one reading every 10 minutes for up to a period of 4 weeks. Then,

when commanded, output the device's identification, date and time of the start of
the test, and the data recorded during the current test.

NB. A data monitoring session is ended by either:

the data memory being full.

the data transfer command being detected from a push-button.

4.4.2. The Data Transfer Device

The data transfer device must perform the following tasks:

4.4.2.1. PROCESSES:

The data transfer device must perform the following processes:

The device must have a means of resetting itself, when commanded from a push

button signal, and hence, perform the following tasks:

o initialise the SCI sub-system.

» initialise the parallel ports.

« initialise the hexadecimal keypad interface.
 initialise the control program variables.

e clear the data buffer.

o display the menu of commands.

o wait for a command from the hexadecimal keypad.

85

The data transfer device must be capable of displaying the system commands and

allowing an input to invoke one of the following:

« force the device to reset the system and initialise the device.

o to display the current date and time of day (allow changes if required).

¢ to allow the down leading of : the date and time, and a start data logging
signal to the temperature monitoring device.

 to allow the uploading of data from the data monitoring device.

« to allow the down loading of the data to the data processing device.

o to display the status of the device including the amount of data stored in
memory.

o to display the data stored in memory.

o to the clearing of the previous data from the data buffer.

NB. The device must be able to store 4K bytes of data in a semi-permanent

memory.

4.4.2.2. INPUTS:

The inputs to the data transfer device are as follows:

Commands from the hexadecimal keypad.
o The current date and time, from the hexadecimal keypad, to update
the real-time clock chip.
e The temperature monitor device's identification, start of a test time
and the data recorded during the test, from the serial communications

port.

4.4’2‘3. OUTPIJTS:

The outputs from the data transfer device are as follows:

Menu commands on a display.

A device's identification, date and time of a test, and the data from the test
onto a display.

The status of the device on a display.

The serial information consisting of: the current date and time, and a start
data logging signal are sent to the temperature monitoring device (at a
fixed baud rate).

The serial information consisting of:: the data gathered from a test, the
recorded event times, the date and time of the start of the test, and the
temperature monitoring device's identification label, are sent to the data
processing system (at a fixed baud rate).

Error messages to the display.

4.4.2.4. EXPECTED ERROR SITUATIONS:

The expected user errors and errors due to loss of data are as follows:

A non-system command entered via the hexadecimal keypad.

The date or time information input from the hexadecimal keypad is in the
wrong format.

No start of block marker detected, or no end of block marker detected;
within 180 seconds of an upload command.

Any other noticeable error.

4.4.2.5. SOLUTIONS TO EXPECTED ERRORS:

The solutions to the aforementioned expected errors are as follows:

Ignore non-system commands from the hexadecimal keypad.

Output an error message and display the expected format for the date and
time.

Output an error message after reading 4K bytes of data or after the time-
out period.

Reset the system via a command, or if a continuing error situation occurs
press the reset push-button,

87

4.4.3. The Data Processing System.

The software for the processing system is designed to run on an IBM PC with the
specifications described previously, The svstem must support the following

functions:

4.4.3.1. PROCESSES:

The software is designed to run the following processes:

The PC system must: initialise the serial communications port and the parallel
printer port and display on the monitor a menu of commands that are available to
the data processing system. Then allow command choices to be entered via the

PC keyboard to invoke:

» the viewing of a directory of files from a specified drive.

« the input of the data from the data transfer device, or from the
temperature monitoring device, via a serial communication port (at a fixed
baud rate).

o the saving of the current data in memory into a specified new data file,
and store it in the secondary storage.

» the viewing of the raw data from either: the current test or from a file
containing data from a previous test.

» the plotting of the results of the current test; on the VDU screen, and

produce a hard copy, in graphical form, on the printer paper.

88

4.4.3.2, INPUTS:
The data processing system requires the following inputs:

e The commands from the PC keyboard.
o The data from a test via the serial communications port (at a fixed baud
rate), originates from either:
the data transfer device, or
from the temperature monitoring device.

4.4.3.3. OUTPUTS:
The data processing system will produce the following outputs:

The menu of commands on the VDU screen.

®
o A directory of files from a specified disk directory.
¢ The raw data from the current test or from a previous test.
o The processed data in the form of a graph; temperature versus time.
¢ A hard copy of the processed data in the form of a graph; temperature
versus time.
4.4.3.4. EXPECTED ERROR SITUATIONS:

The data processing must be designed to cope with the following expected error
situations:

e A non-system command is detected.

o No start of block marker detected, or no end of block marker detected;
within 180 seconds of an upload command.

¢ A printer not ready error is detected.
e A directory or file not found error is detected.
4.4.3.5. SOLUTIONS TO EXPECTED ERRCRS:

The data processing system will have the following solutions to the
aforementioned expected error situations:

o Ignore non-expected commands from the PC keyboard.

o Display an error message if no start of block marker is detected within 180
seconds of receiving an uploading command or after reading 4K bytes of
data.

« Display a printer not ready error message.

» Display a file not found error message.

89

4.5. DATA TYPES REQUIREMENT

This section of the *Software Requirement Document' defines the following data

types:

@ microcontroller I/O registers,

(ii) program parameters (constant values for the program),

(ili) variables used by the various routines of each program,

(iv) memory buffers required to store dzta or lookup tables,

(v) initial values used when the devices or processing system are

reset.

4.5.1. Temperature Monitoring Device

4.5.1.1, microcontroller I/O registers.

These are Motorola defined names and addresses found in the M68HC11
Reference manual (M68HC11RM/AD).

TIMER SUB SYSTEM:

TMSK2 EQU

TFLG2 EQU
TCNT EQU
ADC SUB SYSTEM:

OPTION EQU

ADCTL EQU
ADRI EQU

ADR2 EQU

$1024 ;=300 for no timer interrupts or no timer
scaling,

$1025 ; =$80 (-ve) when a TOF occurs.

$100E ; 16-bit free-running counter. HB=100E
LB=100F

$1039 ; The OPTION register is used to initialise
the ADC.
; AND with #3BF for CSEL =0
; OR with #380 for ADPU= 1
$1030 ;=$10 multi channel channel ADR1 to
ADR3.
$1031 ; = digital value (current temperature
reading).
$1032 ; = digital value (current battery condition)

INPUT COMMANDS PINS AND OUTPUT STATUS PINS:

PACTL EQU

$1026 ; DDRA3 =0 to make PA3 an input,
; I14/0C5 =1 to enable the IC4 pin,
; DDRA7 =1 to make PA7 an output.

PORTA

TCTL1 EQU

TMSK1

TFLGI1 EQU

SCI SUB SYSTEM:

BAUD

SCRO

I

SCCR1EQU

SCCR2EQU

SCSR

SCDR

EQU $1000
; PAO i/p IC3 start uploading command
; PA1 i/pIC2 start down loading command
; PA2 i/p IC1 note an event command
; PA3 ifp IC4 display device's status
command
; PA4 o/p OC4 monitoring data indicator
; PAS o/p OC3 memory full indicator
; PA6 of/p OC2 battery condition low
indicator
; PA7 o/p OCI transferring serial data
indicator
$1020 ;=300 to avoid output compare actions taking place

EQU $1022 ;=$00 to disable i/p capture & o/p comp.
interrupts.

$1023 ; OCIF OC2F OC3F OC4F ICAF ICIF IC2F IC3F
; 1ead to detect flags being set, write a 1 to clear flag.

EQU $102B ; set the baud rate
; TCLR 0 SCPI SCP2 RCKB SCR2 SCR1

;0 0 1 1 0 0 1
; 1200 BAUD = #3833
$102C ; set M = 0 for 8 data bits

$102D ; AND with #$0F to disable SCI interrupts
;OR with #$08 to enable the transmitter
;OR with #304 to enable the receiver

EQU $102E ; the SCI status register.
;ifTDRE =1 data transmitted,
; (write to SCDR to clear TDRE flag).
;ifRDRF =1 data received,
; (read from SCDR to clear RDRF flag).

EQU §$102F ; the data register for serial receive/transmit
data.

91

PARALLEL PORTS:

PORTA equ $1000 ; an 8-bit I/O port,(for the commands and
indicators)

PORTB EQU $1004 ; an 8-bit output port, (expanded mode
memory)

PORTC EQU $1003 ; an 8-bit /O port, (expanded mode
memory)

PORTD EQU $1008 ;a 6-bit /O port, (SCI sub system)
DDRD EQU 31009 ;=$00 for inputs, note, SCI overrides i/ps

PORTE EQU $100A ; 8-bit input port, (ADC sub system)

4.5.1.2. Parameters, Variables, Buffers and Initial Values. (user defined)

INITIALISATION:

IDENT 2 bytes ; 16-bit temperature monitoring device identification value

DATEBUF 14 bytes ; ASCII buffer for date,time and end of block
character
DATEMAX 1 byte ; end of date and time (ASCII) buffer
DAY I byte ; start of test date (BCD)
MONTH 1 byte ; (BCD)
YEAR 1 byte ; (BCD)
HOUR 1 byte ;start of test time (BCD)
MINUTE 1 byte ; (BCD)
SECOND I byte ; (BCD)
BUFFER 4K bytes ; temperature readings data area
BUFFPTR 2 bytes ; pointer into the 4K byte BUFFER
BUFFMAX 2 bytes ; end of buffer limit
LOOKUP 256 bytes = ; temperature lookup table

EVENTB 256 bytes ; 128 possible events can be recorded, each 16-
bit
; value = the current AMOUNT
EVENTPTR 2 bytes ; initially = #30000 (inc by 2 each event)

92

TIMER SUB SYSTEM:
TENMIN 2 bytes ; initially = $0000 incremened for each TOF
TILIMIT 2 bytes ; =#84785 no. of TOFs in 10 mins
ONCMIN 2 bytes ; initially = $0000 incremented for each TOF
TIMEOUT 2 bytes ;= #$0207 no. of TOFs in 1 minute
ADC SUB SYSTEM:
ADCDELAY 1byte ; 100 uSec delay constant for powerup of ADC
TEMP11 byte ; digitised temperature reading
TEMP21 byte ; temp value from LOOKUP table
; 4-bits represent values 34 to 43
; 4 bits represent values .0 to .9
TEMP31 byte ; spare byte
AMOUNT 2 bytes ; no. of temperature readings recorded
BATLOW 1 byte ; battery condition; low level value
INPUT CAPTURE:
UPLOAD 1 byte ;if'1' an upload in progress
DNLOAD 1 byte ; if'1' adown load in progress
EVENT 1 byte ;if 1" an event noted
DISPSTAT 1 byte ;if '1' a display status in progress
OUTPUT STATUS:
MONITOR 1 byte ; set to #3FF if monitoring data
MEMFULL | byte ; set to #8FF if memory is full (end of test)
BATTERY 1 bvte ; set to #3FF if battery condition is low
TRANSFER 1 byte ; set to #$FF if a upload/ download in progress
EVENTFUL 1 byte . set to #8FF if event buffer full
READFLAG | byte ; set to #3FF for every 10 minute timeout
SCI SUB SYSTEM:
PTR2BUF 2 bytes ; = BUFFER initially (inc. for every data uploaded)
PTRTMAX 2 bytes ; = BUFFPTR + AMOUNT (when uploading)
PTREVENT 2 bytes ; =EVENTB (inc. for every event uploaded)
PTREMAX 2bytes ;= EVENTB + EVENTNO (when uploading)
BEGCODE 1byte ;=#$2A start of serial block marker (*)
ENDCODE 1byte ;=#8$23 end of serial block marker (#)

93

4.5.2. Data Transfer Device

4.5.2.1.microcontroller I/O registers.

These are Motorola defined names and addresses found in the M68HC11 Reference

manual (M68HCI1 IRM/AD).
TIMER SUB SYSTEM:
TMSK2
scaling.
TFLG2
TCNT
LB=100F
HEXADECIMAL KEYPAD
PORTA EQU $1000
; PAO i/p
PORTEEQU $100A
.PE7 ifp
; PE6 i/p
- PE5 ip
: PE4 ip
LIQUID CRYSTAL DISPLAY
PORTA EQU $1000
:PAY ofp
; PAS ofp
; PAS olp
REAL-TIME CLOCK CHIP
PORTD EQU $1008
PD2 i/p
; PD3 i/p
; PD4 i/p
; PDS ifp
DDRD EQU $1009
D4

;D7 D6 D5

EQU $1024 ;=300 for no timer interrupts or no timer

EQU $1025 ;=380 (-ve) whena TOF occurs.

EQU $100E ; 16-bit free-running counter. HB=100E

A-0 keypad strobe

E-7 keypad data (bit-3)
E-6 keypad data (bit-2)
E-5 keypad data (bit-1)
E-4 keypad data (bit-0)

A-4 LCD control signal (RS)
A-5 LCD control signal (R/W)
A-6 LCD control signal (E)

D-2 MISC receive data
D-3 MOSI transmit data
D4 SCK clock signal
D5 SS slave select

D3 D2 D1 DO
1 0 1 0

94

SPCR EQU §1028

; DO clock rates (divide by 32)

;D2 clock phase

;D3 clock normally low when not transmitting
;D4 master mode

;DS normal CMOS outputs

; D6 SPI sub system 'ON'

;D7 disable SPI interrupts

SPSR EQU $1029
;D7 SPIF transfer complete flag
;D6 WCOL write collision error
;D4 MODF mode error

SPDR EQU §102A

; the serial peripheral data register

SCI SUB SYSTEM:
BAUD EQU $102B ; sct the baud rate
; TCLR 0 SCP] SCP2 RCKB SCR2 SCR1
SCRO

.0 0 1 1 0 o0 1
- 1200 BAUD = #$33

SCCRIEQU $102C ; set M =0 for 8 data bits

SCCR2EQU $102D ; AND with #$0F to disable SCI interrupts
:OR with #$08 to enable the transmitter
;OR with #%$04 to enable the receiver

SCSR EQU $102E ; the SCI status register.
;if TDRE =1 data transmitted,
, (write to SCDR to clear TDRE flag).
;if RDRF =1 data received,
; (read from SCDR to clear RDRF flag).

SCDR EQU S$102F ;the data register for serial rec/trans data.

95

PARALLEL PORTS:
PORTA EQU $1000 ; an 8-bit /O port, (for the keypad and LCD)
PORTB EQU $1004 ; an 8-bit output port, (expanded mode
memory)
PORTC EQU $1003 ; an 8-bit I/O port, (expanded mode
memory)
PORTD EQU $1008 ;a 6-bit /O port, (SCI, SPI and LCD)
DDRD EQU $1009 ;=$DA, (for the SCI, SPl and
LCD)

PORTEEQU $100A ; 8-bit input port, (hexadecimal keypad data)

4.5.2,2, Parameters, Variables, Buffers and Initial Values. (user defined)

INITIALISATION:
IDENT 2 bytes ; 16-bit TMD identification value
DAY I byte ; start of test date (BCD)
MONTH I byte ; (BCD)
YEAR 1 byte ; (BCD)
HOUR 1 byte ;start of test time (BCD)
MINUTE 1 byte ; (BCD)
SECOND 1 byte ; (BCD)
BUFFER 4K bytes ; temperature readings data area
BUFFPTR 2 bytes ; pointer into the 4K byte BUFFER
BUFFMAX 2 bytes ; end of buffer limit

EVENTB 256 bytes ; 128 possible events can be recorded, each 16-
bit
; value = the current AMOUNT

EVENTNO 2 bytes ; initially = #80000 (increnented by each event)

PTREVENT 2 bytes ;=EVENTB (inc. for every event uploaded)
PTREMAX 2 bytes ; = EVENTB + EVENTNO (when uploading)
BEGCODE 1 byte :=H#82A start of serial block marker (*)

ENDCODE 1 byte ;= #823 end of serial block marker (#)

96

TIMER SUB SYSTEM:
ONEMIN 2 bytes ; initially = $0000 incremened by a TOF
TILIMIT 2 bytes ; =#80727 no. of TOFs in 1 minute

HEXADECIMAL KEYPAD:

KEYBUF
KEYNUM

LCD MODULE:

TEMP

TIMES 8§ bytes

INSTRUCT

MSG1
MSG2
MSG3
MSG4

10 bytes ; initially = $00 00 00 00 00 00 00 00 00 00
1 byte ; number of keypad entries
4 bytes ; tens

; units

; decimal point

; tenths

; delay times during initialisation
;$301001 0101103001

8 bytes ; instructions used to initialise the LCD module
;$30303020200801 OF

20 bytes

20 bytes

20 bytes

20 bytes

REAL-TIME CLOCK CHiP

DAY
MONTH
YEAR
HOUR
MINUTE
SECOND

1 byte ; start of test date (BCD)
1 byte ; (BCD)
1 byte G (BCD)
1 byte ;start of test time (BCD)
1 byte (BCD)

(BCD)

v o

I byte

97

4.5.3. Data Processing System

4.5.3.1 Program control variables (user defined)
ERRCODE DB 0 ; type of error
HANDLE DW 0 ; a handle to an opened file
PATH DB 64 DUP (00h) ; file specification
DTA DB 64 DUP (00h) ; Data Transfer Area
IDENTV DB S5Ah, 0a5h : TMD identification

; date and time values

DATEBUF DB 31h, 33h, 30h, 37h, 39h, 33h, 30h, 39h, 34h, 35h, 30h,

30h

ROW DB 1 ; TOW On screen

COL DB 1 ; column on screen
4.5.3.2. Buffer Space for Data and Events (user defined)

BUFFER DB 4096 DUP (00h) ;buffer area 4K bytes of
data

EVENTB DB 256 DUP (00h) ; buffer area for 128 words
; event times

4.5.3.3. VDU screen error messages (user defined)

MSG1 DB "Serial port not initialised.”
MSG2 DB "Printer port not initialised."
MSG3 DB "Type "C' to return to the main MENU screen."

MSG4 DB " **** LOADING FILE CONTENTS ERROR ****!

98

4.5.34. VDU screen menu messages (user defined)

MSGMENU
Type 'E' to EXIT program; back to DOS.

Type 'I' toupload data from the serial port.
Type ‘D' to view a directory of files.

Type 'R' to view the raw date from memory.
Type ‘L' toload the raw data from a file.
Type °S' tosavetheraw datato afile.
Type 'P' to view the processed data.

MSGINPUT
UPLOADING RAW DATA FROM TMD or DTD

s ot ook ok ook o ok o ok o e ook o ok o o e T e ok ke ok e ke s i o o ok Kok Ak oK R

IDENTIFICATION OF THE TMD =

1l

STARTING DATE OF TEST

MSGRAW

DISPLAYING RAW DATA FROM MEMORY"

s o 4 ok o R ok 8 ok o ok e ok sk ok ok o R ol 3 e e ok ok o ok ot ok ok o ok e e ke ke ok skl ok

IDENTIFICATION OF THE TMD =

STARTING DATE OF TEST =

MSGDIR

DISPLAYING A DIRECTORY OF FILES

Ak dook Aok ke ook e ek ke ook ok ok ek ok Rk ook k ok ko

Input the complete path of the directory.
For example, A:test*.dat
or C**

99

MSGLOAD
LOADING DATA FROM A SPECIFIED FILE
T T T P P

Input the complete path and filename.

For example, A:\test\test.dat
or C:trial.dat

MSGSAVE

SAVING DATA TO A SPECIFIED FILE

a3k ok o 2 o ok e ok ok ok ok ok ok ok ok ok ok ok i sk okok e ek e ok ke e dkok k

Input the complete path and filename.

For example, A:\test\test3.dat
or C:trial56.dat

100

4.6. NON-FUNCTIONAL REQUIREMENTS

Cooling (1991, p. 76) states that "the non-functional system requirements
specifications should define":

¢ How well a function should be performed (PERFORMANCE).

» How the system connects to its environment (INTERFACES).

» What limitations are placed on the design (DESIGN CONSTRAINTS).

« Anything that does not fit into the other groups (OTHER CONSTRAINTS).

Hence, the three main parts of the temperature monitoring system, wh: h require
software, are described as follows:
4.6.1. The Temperature Monitoring Device

4.6.1.1. PERFORMANCE:

Computational time:

The main task of the temperature monitoring device is to record temperature
measurements. This is required at the rate of one reading every 10 minutes.

The next most important tasks are to down load and upload serial data;, this is to
be done at a 1200 baud rate during the testing of the prototype (but could be at
any suitable baud rate).

The displaying of status information is to be activated as long as the push-button
is pressed. This function should not interrupt the actual reading of a temperature
measurement, but can interrupt the down loading or uploading of serial data.

Storage capacity:
The device requires the following memory space:

512 bytes of RAM for program stack and variables,

8K bytes of ROM for the control program,

4K bytes of EEPROM for all the temperature readings,

512 bytes of EEPROM for the program parameters: identification
of device, date and time.

101

4.6.1.2. INTERFACES;
() Analog input signals:

There is one analog input signal; the temperature signal from the signal
conditioning unit. This signal is accompanied by two reference voltages (Vrl) and
(Vrh) which define the upper and lower limits of the temperature signal. The
three signals are input into the ADC sub system.

The 8-bit ADC has a total error of + or - 1 LSB. Each conversion is
accomplished in 32 microcontroller unit (MCU) E clock cycles. Note, the MCU
operates at

8 M Hz, therefore (E = 0.125 micro Seconds). Hence, each conversion takes

4 micro Seconds.

The ADC sub system, for one analog input, uses the following I/O registers:

$1030 ADCTL A/D Control Register
$1031 ADR1 A/D Result 1

(b) Serial communication signals:

The uploading ard down loading takes place via the system's Serial
Communications Interface (SCI) sub system, at a 1200 baud rate.

The SCl is a full-duplex asynchronous interface with a standard NRZ format (one
start bit, 8 data bits, and one stop bit) with a variety of programmable baud rates.

The SCI sub system uses the following I/O registers:

$1008 PORT D I/O port D data register
$102B BAUD SCI baud rate register
$102C SCCR1 SCI control register 1
$102D SCCR2 SCI control register 2
$102E SCSR SCI status register
$102F SCDR SCI data register

(¢) Timer/Counter register values:

The timing of events in the temperature monitoring system is achieved using the
microcontroller's 16-bit free-running counter, and the timer/counter interrupt flag
registers 1 and 2.

Note, when the count changes from $FFFF to $0000, the timer overflow flag
(TOF) bit is set in the timer interrupt flag register 2 (TFLG2).

102

The free-running counter is driven by the MCU E clock. Hence, each count is
incremented every 0.500 micro seconds; each TOF bit is set every 32.77 milli
seconds.

The Timer sub system is also used to detect push-button presses (input capture)
and for diplaying the status of the device (output compare).

The register that are required for this device, from the Timer sub system, are as
follows :

$100E TCNT Timer counter register high byte
$100F " " " low byte
$1020 TCL1 Timer control register 1

$1021 TCL2 Timer control register 2

$1022 TMSK1 Timer interrupt mask register 1
$1023 TFLGI1 Timer interrupt flag register 1
$1024 TMSK2 Timer interrupt mask register 2
$1025 TFLG2 Timer interrupt flag register 2

(d) Parallel ports
Although there are no parallel data transfers between the system components, the
following microcontroller ports are utilised as follows:

PORT A: This port has to be configured for: 4 input capture pins, and 4
output compare pins. Port A is to be used as follows:

pin no. direction name description

PAO p IC3 start uploading

PAl p IC2 start down loading

PA2 /p IC1 note an event

PA3 ip IC4 display the device status

PA4 o/p 0C4 monitoring data

PAS o/p 0C3 (memory full) / (memory not full)
PA6 o/p 0C2 battery voltage is alright

PA7 o/p 0OC1 transferring data

Note, pin PA7 is configured as an output by setting bit-7 ='1' (DDRA7) of the
pulse accurulator control register (PACTL).

Press push-buttons and show device status functions use the following /O
registers:

$1000 PORTA I/O port A
$1026 PACTL Pulse accumulator control register

103

PORT B: This port is used during the external mode of operation for the
upper 8 bits of an external memory address.

PORT C: This port is used during the external mode of operation for the 8
bidirectional data lines and the low byte of an external memory address.

PORT D: This port does not need to be configured via the I/O registers to
make pins PDO act as an input (RxD) and PD1 act as an output (TxD). The SCI
subsystem takes control of this port when it is required for a serial data transfer.

pin no. direction name description
PDO ilp RxD receive data
PD1 o/p TxD transmit data

The ADC function uses the following I/0 register to transfer the serial data.
$1008 PORTD 1/0 port D

PORT E: This port is always configured as an input port by the
microcontroller itself. For this device only pin PEO is used as an input port for
the analog signal (the temperature signal).

$100A PORTE input port E
4.6.1.3. DESIGN CONSTRAINTS:

Programming language:

M6800 family assembly language for the Portable Cross Assembler (PASM) must
be used.

Processor type:

MC68HC11 microcontroller.

Maximum memory capacity:

64K bytes of primary memory space.

4.6.1.4, OTHER CONSTRAINTS:

Maximum physical size:

6cmx5cm x3cm

Maximum weight:

120 grams

Temperature operating range:

- 10 degrees Celsius to + 45 degrees Celsius

Safety and Comfort:

This device has to be attached to a patient under test so it must be comfortable
against the patient's body. It must not have any sharp edges. It could be
designed to be worn on the upper arm of a patient and therefore have a strap
attached to it.

The device must be designed to operate from low voltage batteries; hence safe
from electrical shocks.

104

Shock resistant:
The device must be able to absorb the shock from being dropped from a small
height; say, 6 feet.

4.6.2. The Data Transfer Device

4.6.2.1. PERFORMANCE:
Computational time:
The four main tasks of the data transfer device are as follows:

O To maintain the time of day; this is done by communicating with a real-
time clock chip (the MC68HC86T1). The date and time have to be read just
prior to down-loading the date and time to the temperature monitoring device.
Note, there are also commands that enable the user of the device, to read and
change the date and time from the real-time clock chip, in order to maintain the
correct date and time.

(ii) The date, time and a start test signal is down-loaded to the temperature
monitoring device at the beginning of a monitoring session.

(i) At the end of a temperature monitoring session the data is uploaded from
the temperature monitoring device, and stored in memory waiting to be
transferred to the data processing system.

(iv) Some time later the data is down-loaded to the data processing system.

NB, all the aforementioned uploading and down-loading is done serially at a
1200 baud rate

The secondary tasks performed by the data transfer device are as follows:

When any of the four main tasks are not being performed, a command menu
should be displayed. The command menu, apart from showing the four main
tasks, should display commands to allow the following tasks:

(v) The device to be initialised; this should only be necessary when
unexpected, unsolvable, problems arise.

(vi) The status of the device to be displayed.

(vii) The data stored in the 4K byte buffer to be displayed.

(viii) The data buffer to cleared prior to an upload of more data from a
temperature monitoring session.

Storage capacity:

105

The device requires the following memory space:

512 bytes of RAM

8K bytes of ROM

4K bytes of EEPROM
512 bytes of EEPROM

4.6.2.2. INTERFACES:

(&) Analog input signals:

for program stack and variables,

for the control program,

for all the temperature readings,

for the program parame:ers: identification
of device, date and time.

There are no analog signals associated with the data transfer device.

(b) Serial communication signals:

The uploading and down loading takes place via the system's Serial
Communications Interface (SCI) sub system, at a 1200 baud rate.

The SCl is a full-duplex asynchronous interface with a standard NRZ format (one
start bit, 8 data bits, and one stop bit) with a variety of programmable baud rates.

The SCI sub system uses the following I/O registers:

$1008 PORTD I/O port D data register
$102B BAUD SCI baud rate register
$102C SCCR1 SCI control register 1
$102D SCCR2 SCI control register 2
$102E SCSR SCI status register
$102F SCDR SCI data register

(¢) Timer/Counter register values:

The timouts used for detecting expected errors during the transfer of data
between the three main parts of the system are acheived using the
microcontroller's 16-bit imer/counter sub system.

The free-running counter is driven by the MCU E clock. Hence, each count is
incremented every 0.500 micro seconds; each TOF bit is set every 32.77 milli

seconds.

106

The register that are available to this device, from the Timer sub system, are as
follows:

$100E TCNT Timer counter registerhigh byte
$100F " " " low byte
$1020 TCL1 Timer control register 1

$1021 TCL2 Timer control register 2

$1022 TMSK1 Timer interrupt mask register 1
$1023 TFLG1 Timer interrupt flag registerl
$1024 TMSK2 Timer interrupt mask register 2
$1025 TFLG2 Timer interrupt flag register 2

(d) Parallel ports

PORT A: This port has to be configured for: 4 input pins, and 3 output pins.
Port A is to be used as follows:

pin no. direction name description

PAO i/p IC3 a hexadecimal keypad strobe
PAl i/p 1C2 not used

PA2 i/p IC1 not used

PA3 i/p IC4 not used

PA4 o/p 0C4 LCD control signal (RS)
PAS o/p 0C3 LCD control signal (R/W)
PA6 o/p 0cCz LCD control signal (E)
PA7 ? OC1 not used

$1000 PORTA /O port A

$1026 PACTL Pulse accumulator control register

PORT B: This port is used during the external mode of operation; for the
upper 8 bits of an external memory address.

PORT C: This port is used during the external mode of operation; for the 8
bidirectional data lines, and the low byte of an external memory address.

PORT D: This port does not need to be configured via the I/O registers to
make pins PDO act as an input (RxD) and PD1 act as an output (TxD). The SCI
subsystem takes control of this port when it is required for a serial data transfer.

107

Port D also acts as an interface for the real-time clock chip (M68HC68T1).
Hence, this port needs to be configured via the DDRD I/O register to make pins
PD2 to PD5 act for the SPI sub system as follows:

pin no. direction name description

PDO ip ~ RiD receive data

PD1 o/p - TxD transmit data

PD2 ifp MISO RxD receive data
PD3 o/p MOSI TxD transmit data
PD4 o/p SCK serial clock signal
PD5 i/p SS slave select

The SCI sub system uses the following /O register to transfer the serial data.
$1008 PORTD I/O port D
PORT E: This port is always configured as an input port by the

microcontroller itself. For this device pins PE4 through to PE7 are used as an
input port for the hexadecimal keypad data (a value representing the key pressed)

pin no. direction name description

PE7 /p E-7 keystroke data (bit-3).
PE6 i/p E-6 keystroke data (bit-2).
PES i/p E-5 keystroke data (bit-1).
PE4 i/p E-4 keystroke data (bit-0).
$100A PORTE input port E

4.6.2.3. DESIGN CONSTRAINTS:

Programming language:

M6800 family assembly language for the Portable Cross Assembler (PASM) must
be used.

Processor type:
MC68HC11 microcontroller.

Maximum memory capacity:
64K bytes of primary memory space.

108

4.6.2.4. OTHER CONSTRAINTS:

Maximum physical size:
210cm x 180 x cm x 6 cm

Maximum weight
750 grams

Temperature operating range:
- 10 degrees Celsius to + 45 degrees Celsius

Shock resistant:

The device must be able to absorb the shock from being dropped from a small
height; say, 6 feet.

4.6.3. The Data Processing System

4.6.3.1. PERFORMANCE:

Computational time:

The two main tasks for the data processing system are as follows:

@) Data is to be input via the serial communication port at the rate of 1200
baud.

(i) The incoming data from a test must be processed to produce a "Time
versus Temperature' plot, on the VDU screen, and onto a printer that is
capable of plotting dot matrix graphics.

The secondary tasks for the data processing system are:

(i) To save the raw data in a secondary storage file.

(iv) To view either the current raw data or raw data from a file.

(v) To view a MS-DOS directory of files.

NB. All five choices of tasks are from a menu of commands that are shown
on the VDU screen.

Storage capacity:

At least 500K bytes of RAM are required for the program, the data and for the
operating system's use. Including 4K bytes of RAM for the storage of the raw
data.

109

4.6.3.2. INTERFACES:

(a) Analog input signals:

none

(b) Serial communication signals:

The serial port has a standard RS232C interface. It has a full-duplex
asynchronous interface with a variety of programmable baud rates.

The data received will have: one start bit, 8 data bits and one stop bit. The data
will be transmitted at a 1200 baud rate.
(©) Parallel ports:

The standard IBM PC has a printer port with a parallel interface. The parallel
interface consists of:

8 data lines o/p
4 control lines ofp
5 status lines i/p

If direct control of the interface is required, then the following I/O addresses are
needed:

output data 03BCh or 0378h
output control 03BEh 037Ah
input status 03BDh 037%h

(d) Graphics interface:
The IBM PC is expected to have an EGA/VGA graphics adaptor with the

following video mode:

Mode Type Resolution Colours Adaptor
16 graphics 640 x 350 16 EGA

110

(¢) Software interfaces:

The application software will be designed to interface with MS-DOS and in
particular with the BIOS routines when necessary.

The chosen high level language will interface with the BIOS routines that control
the serial port and the paralle! printer port.

If the operating system BIOS routines are required to produce the VDU graphics,
then the following BIOS services are available:

set video mode AH= 00
set the background colour 0B
set the colour palette 0B
set the palette registers 10
write a pixel dot 0C
read a pixel dot oD
write a character and attribute 0E
4.6.3.3. DESIGN CONSTRAINTS:
Operating System:

MS-DOS version 3.2 or later.

Programming language:

A MASM assembly language including BIOS services and DOS functions is all
that is necessary to write a simple menu driven program support program The
BIOS services and DOS functions are used when dealing with all the /O
interfaces, otherwise the assembly language can easily cope with handling the
bytes of data.

Processor type:

The Intel 80X86 family of microprocessors.

Maximum memory capacity:

1 mega byte of primary memory.

500 K bytes of RAM.

4.6.3.4. OTHER CONSTRAINTS:
none

111

4.7. STRUCTURED ANALYSIS

Introduction

Creating data flow diagrams (DFD) is one of the main stages of the JSP design
methodology used in this thesis. The designer examines the specification from
the software requirements specifications in order to produce a multi-level
graphical representation of the system. The process of creating DFD and then
transforming DFDs into Jackson structure diagrams is all part of structured
analysis.

Pressman (1992) [page 207, "Software Engineering: A Practitioner's Approach"]
states that structured analysis is a model building activity. The models depict
information (data and control) flow and content. They depict the essence of what
must be built.

Tom DeMarco (1979) [page 15, "Structured Analysis and System
Specifications"] establishes the primary goals of an analysis method as follows:

o The products of analysis must be maintainable.

» Graphics have to be used whenever possible.

o There s a need to differentiate between logical and physical
considerations.

o There is a need to keep track of and evaluate interfaces.

The basic notation of data flow diagrams DFDs

Pressman (1992) [page 208, "Software Engineering: A Practitioner's Approach"]
informs us that information is transformed as it flows through a computer-based
system. The system accepts input in a variety of forms, applies hardware,
software and human elements to transform input into output, and then produces
output in a variety of forms.

112

Structured analysis is an information flow and content modelling technique
where:
One or more inputs are shown as arrows.

A single information transform is noted by a bubble.

Data that is to be stored for use by one or more processes
are represented by two thick straight lines.

External entities are represented by boxes.

One or more outputs are shown as arrows.

It should be noted that the model may be applied to the entire system (level 0) or
to the software elements only (levels 1, 2, 3, 4 etc.). The key is to represent
information fed into and produced by a transform.

113

Data Flow-Oriented Design

Data Flow-Oriented Design can be described as a multi-step process in which
representation of data structure, program structure and procedure are synthesised
from information requirements. The design process is information driven.

A data flow-oriented method of design provides a systematic approach for the
derivation of program structure. Beginning with a fundamental system model,
information may be represented as a continuous flow that undergoes a series
transformations as it evolves from input to output.

Modularity

Bell et al (1987) [page 27, "Software Engineering: A Programming Approach"]
state that the essence of good modularity is to have components of a system as
independent of each other as possible.

In programming, a module is any current or future mechanism for dividing
software into manageable portions. A module should occupy no more than a
page of information as it is difficult to understand logic that spills over from one
page to another. Modules should also be made to be as clear as possible.

Modules should have the following characteristics:

optimised size (one page or less),
maximum cohesion,

minimum ccupling and
information hiding.

Information Hiding

The principle of information hiding means that, at the end of a design process,
any data is accessed only via certain, well defined, specific procedures or
subprogrammes. It is a method of structuring a program in such a way that a
piece of encapsulated data cannot be accessed directly.

Note, structured analysis should be performed in such a way that:

o Changes to design should be confined to as few modules as
possible(preferably one).

o The software interfaces between modules should be as simple as
possible and only be a means of calling subprograms rather than a
means of accessing shared data.

e For the purpose of testing and maintenance of a program, it should be
possible to understand individual modules independently of each
other. The aim is to have clearer separation between modules .

114

Coupling and Cohesion

Coupling and cohesion are terminology and classification schemes for describing
interactions between modules Bell et al (1987, p 34).

Software engineers are aiming at producing software modules with a minimum of
interaction between them (low coupling) and conversely, a high degree of
interaction within a module (high cohesion). Only then, an individual module can
be designed, coded, tested and amended without referring to other modules.

The aim of software design is to have: weak coupling and strong cohesion within
a program structure.

Coupling design criteria include:

(-]

Modules should have only one entry point and only one exit point.

As few parameters as possible should be passed between modules in a
procedure call.

Undesirable to have shared or global data.

Accessing or modifying data within another module is undesirable.

The various types of cohesion that exist include:

Coincidental cohesion, in which components are in a module by
coincidence is undesirable.

logical cohesion, in which a module performs a set of independent but
logically similar functions should be avoided.

Temporal cohesion, in which functions are related in time.

Sequential cohesion, in which operations in a module collaborate to
modify a piece of data are encouraged in a module.

Functional cohesion, is employed in a module where operations
contribute towards performing a well-defined task.

115

Transform Analysis

Pressman (1992) [page 208, "Software Engineering: A Practitioner's Approach"]
states that transform analysis is a set of design steps that allows a DFD to be
mapped into a template for program structure. The design steps are defined as
follows:

step 1 Review the system model, the system requirements and the software
requirements specifications in order to produce a level 0 and all level 1
data flow diagrams (DFD).

step 2 Review and refine data flow diagrams for the software. Information from
the software requirements specifications is examined to produce DFDs

that show greater detail (level 2, 3, 4 etc.). Lower level DFDs are produced
until each module contains transforms with a high degree of cohesion.
That is, each transform performs a single discrete function.

step3 Isolate the transform centre by specifying incoming and outgoing flow
boundaries. Incoming flow is described as a path in which information is
converted from external to internal form. QOutgoing flow is when
information is converted to external form. Then dotted lines may be
drawn on DFDs to illustrate the input and output boundaries.

step 4 Perform first level factoring. This establishes graphically a program
structure in which the top-levels show the overall control and decision
making modules, the mid-levels modules perform some control and a
moderate amount of work, whereas, the low-level modules perform most
input, computational and output work.

step 5 Second level factoring. This involves mapping, on a one to one basis, the
DFD processing components onto a Jackson program structure diagram.
The individual transforms (bubbles) of a DFD are mapped onto a

structure diagram, starting from the centre boundary and moving outwards.

For example, a data flow diagram may be mapped onto a structure diagram
that exhibits a main controller and three other components: input,
processing and output.

step 6 Refine program structure (using design heuristic's) for improved software
quality. A first-cut program structure can always be refined to have a
structure that employs modules with good cohesion and low coupling.
Hence, the program can be implemented without difficulty. The program
can be tested without confusion and maintained without grief.

116

Design Heuristic's

Improvements to program structure can be made by applying the following

guidelines:

aim for modular independence,
attempt to avoid situations with a high fan-out,
make sure that all modules affected by decisions are at a lower level,

evaluate module interfaces to reduce complexity,
strive for single entry single exit modules and

package software based on design constraints and portability
requirements.

117

4.8. JACKSON STRUCTURED DIAGRAMS

Jackson structured diagrams have been used throughout the Temperature Monitoring
System software documentation. Cooling (1991, p. 171) states that “Jackson structure
diagrams can be used to show the structure of a program. They can also be used for
language independant design. Jackson structured diagrams have three basic constructs
which make them ideal for designing and documenting high level, medium level and
assembly language programs”. The constructs are:

. SEQUENCE,
. SELECTION and
. ITERATION.

Consider a program routine called *"TEST', which consists of 4 small modules (a, b, ¢
and d). Each module could be either: labeled in-line-code, or a subroutine.

SEQUENCE TEST

The structure diagram shown above implies that the module TEST passes control
sequentially to a, b, ¢ then d. Control is then passed back to TEST.

SELECTION

TEST

Ci 2 c3 C4

The diagram shown above implies that only one of the modules (a,b,c or d) will be
executed. The small circles at the top right hand comner of each box indicates that the
module needs to be selected before the functions relating to that module are executed.
The symbols C1, C2, C3 and C4 are symbols representing the conditions that have to
be met for the selection of that module. Control is always given back to TEST after a
module’s functions have been accessed.

118

For example, the conditions could be:

Cl ‘'a' isselected whenkey 1 is pressed,

C2 'V isselected when key 2 is pressed,

C3 ‘¢ isselected when key 3 is pressed,

C4 'd' is selected when key 4 is pressed.
ITERATION The diagram shown below implies that the functions relating to the
modules a throughto d will be executed 'n' times. The number of iterations will

depend upon the condition set by C5. The asterisk (*) indicates that the components of
a module will be executed in an iterative manner.

TEST

Cs

CONDITIONS

Modules associated with iteration or selection have their conditions listed in a table.
For example,

Cl repeat 7 times
C2. selected when key ‘1° pressed
C3. selected when key ‘2’ pressed

In the example shown above, the condition could be:

C5 the modules a,b,c and d will be sequentially executed 10 times.

119

FUNCTION NUMBERS

In Jackson structured design, each function that is defined within a program is
allocated a function number. When a module is defined, the module is given a name,
say X, and the function numbers are listed below the terminal module's icon, as shown
below.

1,23
functions:
1. Move cursor to a specified position.
2. Input a character from the hexadecimal keypad.
3. Display the character on the LCD screen.

A function is defined once but can be called and used many ¢éimes throughout a
program. The function is referenced by its function number.

A module is defined once but can be called and used many times throughout a
program. The module is referenced by its function number, which is specified in the
list of functions. Note, the source code assembler has a restriction of up to eight
unique characters for lables, variables and procedure names. Hence, the desired
meaningful names cannot always be used, but the descriptions of the functions to be
carried out by a module can easily be looked up from the lists of functions that are
recorded in numerical order.

A Jackson structure diagram may consist of a hierarchy of constructs. Note, the rules
are: a group of modules at any level of a diagram must be of the same type
(no mixture of sibling types is not permitted). Also there can be no iteration siblings.

Modules connected together at the same level must be either:
. executed one after the other, from left to right or
. only one selected module is executed .

Functions within a terminal module must be defined in their order of execution; the
function numbers will be displayed from left to right, in the order they will be executed.
The definitions will be listed from top to bottom; as they would appear in a program
listing.

Iterations are also from modules, shown left to right, and from functions within a
module, defined from top to bottom.

Note that, the terminal modules shown in & hie: .chy of a Jackson structure diagram
may have their functions and conditions defined in the form of a list.

120

49 CHOICE OF PROGRAMMING LANGUAGE

Introduction

Programming can be defined as a process of converting system specification into
useable machine code instructions to produce a desired result. Programming a

computer to solve a problem involves two chores:

e The problem must be broken down into a sequence of operations that
the computer can perform.
o Then, instructions telling the computer how to perform the operations

must be encoded. Sanders (1986, p 540)

Programming languages are vehicles for communication between humans and
computers. Coding is when an assembler/compiler accepts source code as an

input and produce object code that is machine dependent.

The problems associated with the coding step of the design step are:

o Style can profoundly affect software quality and maintainability.

o A programming language can limit design to available data structures
(data types)

o Technical characteristics of a language can influence the quality of a
design.

¢ Programming language complexity or restrictions can cause problems;

source code that is difficult to test or maintain.

121

Safe Software

Computers are increasingly being used to monitor and control critical functions in
such systems as advanced aircraft control, space flights or road traffic control.
Most safety-critical activities of complex sysizms are caused by software
controlling mechanical devices. Procedures have to be devised to ensure the
safety of human life. The term safety-critical may describe situations where an
execution-time failure can result in death, injury, loss of equipment or property,

or environmental harm.

The research to provide safe software falls into three main areas:
o software hazard analysis
o verification, validation and assessment

o software design and run-time environments. Littlewood (1987, p 15)

Types of Pregramming Tasks

Tasks for computer systems will vary in size and type; whether the program you
are developing is small or large may be an important factor when choosing a
program language.
Most tasks for computers systems fall into one of the following categories:

data logging

data processing

commercial applications

batch processing

scientific and engineering

operating system programming

real-time processing

122

system control
industrial control

robotics

games programs

The choice of programming language may depend upon the task that the
computer has to perform. For example, by tradition, the following languages are
preferred (if available):

COBOL data processing

FORTRAN scientist and engineers

C systems programmers

ADA real-time or embedded computer systems Bell (1987, P85)
Classification of Programming Languages
Computer programming languages may be classified in the following five ways:

FIRST GENERATION LANGUAGES

Machine-level coding (where binary, octal or hexadecimal values are directly
inserted into the computer's memory) is still used today to program a computer
system. Though, its more likely to be coded using assembly language

mnemonics.

SECOND-GENERATION LANGUAGES

Languages that have withstood 30 years of criticism:

123

COBOL is still used for business, commercial and data processing
applications.

FORTRAN remains the premier programming language for
scientists and engineers.

BASIC is the most used language on personal computers.

THIRD GENERATION LANGUAGES

Structured programming languages characterised by: strong procedural, data
structuring capabilities.
These can be divided into:

general purpose, C, Pascal and Ada

object-oriented C++, small talk, Eiffel

FOURTH GENERATION LANGUAGES

Languages with higher levels of abstraction and distinct syntax for control and

data structure representation.

Query Languages:
4GL used in conjunction with data bases.
Program Generators:
Third generation-language programs created from using a small set of

higher level, more abstract, statements.

Business Information systems applications generate programs in COBOL.
Spreadsheets, Database systems, Mackintosh Hypercard allow macros or

program statements

124

Criteria Used to Select a Programming Language

Choosing the most appropriate programming language for a problem is not an
easy task. The following list of descriptions may have a greater influence on the
choice of language rather that the true criteria for choosing a programming

language.

o Organisations have a substantial investment in a particular language.
Their programming staff have built up considerable expertise with a
particular language.

o Software developers may be contracted to implement a design using a
specified programming language.

o Availability of software tools such as language-sensitive editors,
debugging systems and project management tools may favour one
programming language over another.

¢ The environment that supports the software may influence your choice of
language: For example UNIX has 'C' and MS DOS has BIOS services
and DOS functions wiiich provide assembly language programmers with
easy access to higher level routines.

o The size of the program may be an important factor.

o A language ihat is sméll and simple and can be understood in its entirety
enables programmers to become truly proficient and confident, hence,

influencing the choice of language.

The true art of choosing a language is to start with the problem, decide
what its requirements are and their relative importance. Then match the

requirements with the criteria listed below:

125

Algorithmic and computational complexity

Performance consideration (computer efficiency)

Data structure complexity

Environment in which the software will be executed

Availability of a good computer/assembler or cross compiler/assembler
Debugging tools to protect the user from the details of the hardware
Source code portability

General applications area Pressman (1992)

126

Conclusions

After the main functions of each part of the system were listed, data flow
diagrams drawn and data types decided upon, then the next major task was to

choose the most appropriate programming language for the control programs.

The temperature monitoring device (TMD) and the data transfer device (DTD)
control programs have to: input four kilobytes of data, store the data, transfer
the data via a serial port, respond to push-button inputs and simply display

the status of the device. Note, very little processing of data is done and

all the data items and control registers are in byte form. In fact, both control

programs will have the following features:

they must directly control the hardware,

o they will be relatively small in size,

o they will use byte and word data types,

« portability of source code was not required,

o anIBM PC and Motorola evaluation boards provided the
programming environment and

o there will be no algorithmic and computational complexity involved.

At the time of creating the JSP diagrams the only available programming
languages, to program MC68HC11 devices, were assembly language and "C'.
Hence, the author had to choose between them. The author was conversant in
programming using both languages on the IBM PC system. After considering the
MC68HC11 control program features the author chose a Motorola portable
assembler (PASM) as the preferred programming language. The hardware had
already been designed and months had been spent on learning the capabilities of
the MC68HC11 internal architecture. Hence, being down at the bits and bytes

127

level of design meant that creating the source code using assembly language was
the most natural choice at the time. There was no need to shield the programmer
from the hardware, there were no complicated data structures used and no

complex processing tasks involved. Hence, there was no need to use a high-level

language program.

Consequently, the JSP diagrams were created with assembly language
programming in mind. Then an efficient programming and debugging

environment was created on the IBM PC.

The choice of programming language for the data processing system (DPS)

meant that the whole selection process had to performed once again, as follows.

The DPS required a control program to check and store information from the

TMS and the DTD. The overall aim of the DPS program was to:

s input a block of information from a serial port,
o the information had to be stored in a file,
o the user had an option of viewing file names in a directory,

» the raw data could be viewed on a VDU or from a hard copy printout.

Hence, a check that the data was safe and ready for data processing could

be made by the researcher. Note, that no complicatec. processing was required
from the author, no data types other than: strings for file pointers, 16-bit positive
integers for pointers and 8-bit positive integers for data and control register

values were required.

128

Once again, assembly language was chosen for the DPS control program. The

following reasons were used to make such a decision:

The author was very familiar with the MS DOS operating system, the
CPU architecture, the system architecture and programming the IBM
PC at assembly language level (as well as programming in 'C' and
4GL spreadsheets).

The author was well aware that MS DOS provides BIOS services that
make controlling the hardware a simple task.

MS DOS provides DOS functions that make file handling easy for the
assembly language programmer.

MASM and TASM assemblers provide a programming and debugging
environment comparable to those available to a high-level language
programmer.

User defined labels and macros can make assembly language produce
very reaidable and easy to follow source code. Therefore, debugging
is easy a. there is a one to one relationship between program labels

and JSP labels.

The most pleasing result of this exercise was that there were no problems

encountered whilst coding the three control programs. The JSP methodology

including assembly language can be recommended to any microcontroller system

designer.

It should also be noted that, although there is no portability of source code, the

rest of the JSP methodology is portable.

Finally, the coding part of a well designed system is a small mechanical task. In

fact, in recent years, research is being done to relieve this task from the designer

by making it a software development tool.

129

4.10. MAINTENANCE AND TESTING INFORMATION

4.10.1. TEST PLAN

Testing involves exercising the program using data similar to the real data that the
program is designed to work with in order to observe the program's output and to
infer the existence of : errors, inadequacies and anomalies. The plan involves

carrying out program testing during implementation and when the implementation

is complete.

Although the Temperature Monitoring System was designed using a top-down-
approach, the validation of the system uses a bottom-up strategy (as the
subsystems of the microcontroller need to be initialised before data transfers can
take place). The strategy used for the testing process comes from the book
"Software Engineering:" by 1. Sommerville. It incorporates five distinct stages ir

the testing process:

@) functional testing,
(ii) module testing,
(i) sub-system testing,
(iv) system testing and
W) acceptance testing.

(i) FUNCTIONAL TESTING

The software functions are the small units of code that are independent from each
other and have their own set of specifications. Each function can be tested as a
stand-alone entity. The plan is to define the actions of each device function then

describe how it is to be validated.

The testing of the functions for each sub-system of the TMS are described in the

following sections of the test plan.

130
(i) MODULE TESTING

The modules of each sub-system are also stand-alone units of code. The modules
combine the functions in a way that they co-operate with each other to form a
task. Each module of a sub-system can be tested on its own. The plan is to
define the functions for each module and then describe how the module is to be
validated.

The testing of the modules for each sub-system of the TMS are described in the

following sections of the test plan.

(tii) SUB-SYSTEM TESTING

The program modules of a sub-system can be put together and tested as a whole
unit. Thus, the module interfaces are tested with the assumption that the modules

themselves are correct.

In the Temperature Monitoring System the sub-systems include: the TMD, the

DTD and the DPS.

(iv) SYSTEM TESTING

This involves the testing of the entire system which comprises of the linking
together of the three sub-systems. This testing process is concerned with finding
errors in design as well as validating the overall system. It makes sure that the
dynamic characteristics of the system match those of the Functional Requirements

Specifications.

Testing requires the linking together of:

the person under test with the temperature monitoring device,

the temperature monitoring device with the data transfer device,
the temperature monitoring device with the data processing system,
and the data transfer device with the data processing system.

131

() ACCEPTANCE TESTING

Acceptance testing is the process of testing the system with real data.
Acceptance testing is designed to detect errors in the *Software Requirements
Document'. The requirements may not reflect the actual facilities and

performance that is required by the user.

DESIGNING TEST CASES

Sommerville (1990), p. 178), states that “planning the testing of each program
involves formulating a set of test cases, which are akin to the real data". Test

cases should consist of:
o input specifications,

o description of the system functions, and
e astatement of the expected output.

According to Pressmar. (1987, p. 470) Any engineering product (and most other
things) can be tested in one of two ways:

() black box testing and

(i) white box testing.

132

() BLACK BOX TESTING

Black box testing is used when the specified functions that a product is designed
to perform are known, and tests can be conducted to demonstrate that each
function is fully operational.

Black box testing is conducted at the software interface; test cases demonstrate
that software functions are operational, that input is properly accepted, output is
correctly produced and the integrity of the system is maintained.

A black box test examines some aspect of the fundamental system model with
little regard for the internal logical structure of the software. Black box testing

attempts to find:

incorrect or missing functions,
interface errors,

errors in data structure,
performance errors and
initialisation or termination errors.

Black box testing was used on the modules of each sub-system, on each sub-
system in turn, and the overall system when completed.

(i) WHITE BOX TESTING

White box testing is used when the internal workings of the product are known,
and tests can be conducted to assume that its internal workings perform
according to the specifications. White box testing of software is the close
examination of procedural details and the testing of the logical paths through the
software. It provides test casés to exercise specific sets of conditions and loops
of code. The status of the program may be examined at various points to
determine if the expected or asserted status corresponds to the actual status of

the device. White box testing can:
o guarantee that all independent paths within a module have been
exercised at least once,
o exercise all logical decisions (on their true and false side),
e exercise all loops at their boundaries and
o exercise all internal data structures to assure their validity.

133

4.10.2.1. TESTING THE TEMPERATURE MONITORING DEVICE
(T™MD)

The TMD uses three areas of storage: a data buffer area, an area to store the
fixed parameters of the device, and an area to house the variables used by the
control program.

1/ The buffer area which stores all the information gathered during a run of
the program includes:

DATEBUF which stores information relating to the start of the test.

BUFFER which stores the temperature readings taken during the
test.

EVENTB which records the relative time, with respect to the start of
a test, for each event that requires noting during a test.

2/ The fixed parameters, which should be stored in EEPROM, include:

IDENT the identification of the TMD,

DATA the start address of the buffer area,
EVENTS the start address of the events buffer,
DATE the start address of the date/time buffer.

The other fixed data items are: end of buffer values, start of block
marker, end of block marker, timeout values and values for the ADC
system.

3/ An area of read/write memory is used to store all the variables that are
necessary to run the TMD program. These variables include:

pointers to buffer areas,
timer/counter values,
command flags,

status flags and
temporary storage areas.

134

The Temperature Monitoring Device Program

The TMD program consists of two main control routines, that control the device
behaviour, and eight functional routines that control the actions of the device.

The two control routines are:

The RESET module and the PROCESSR module.

The Reset Module

This routine resets the system so that it is in a state of readyness; ready to start
logging data from a new test. The major functions of the RESET module are:

O to initialise the sub-systems of the microcontroller chip.

(ii) to clear the status and command flags and to clear the data buffer areas
of memory.

(iii) to show the status of the device when requested.

(iv) to be ready to ready to accept an upload (start of test) command and
respond to it by calling the PROCESSR routine.

The reset module (RESET) makes use of the following functional
routines:

INIT1, INIT2 and STATUSR.
The Processing Module
This routine firstly receives the date, time and a start logging command from the
data transfer device (or the data processing system). Then secondly cycles round
calling a function that detects the need for one of the following four major
functions:
) to read the next piece of analog data.
(i) to record the time of an event.
(iii) to show the status of an event.
(iv) to end the test, output the data and to return to the RESET routine.
The processing module (PROCESSR) makes use of the following functional

routines:
SYNCR, INPUTR, STATUSR, ANALOGR, EVENTR, OUTPTR. and INIT2

135

TESTING THE EIGHT FUNCTIONAL ROUTINES
1/ INIT1 Initialise sub-systems routine
input specifications:

The inputs to the sub-systems are initiated by machine code instructions to the
I/O registers. The instructions load the following hexadecimal values into the

specified registers:
INPUT CAPTURE / OUTPUT STATUS

80
55

PACTL
TCTL2

ANALOG TO DIGIAL CONVERTER

DDRD = 00
COPTION = A0

SERIAL COMMUNICATIONS INTERFACE

4000 = FF
BAUD = 30
SCCRI1 = 00
SCCR2 = 03

TIMER COUNTER SUB-SYSTEM

TMSK1 = 00
TFLGI1 = FF
description:

This routine has the task of initialising four of the microcontroller sub-systems.
This routine cannot be validated on its own, but it can be validated by the correct
operation of the following routines:

136

expected output:

® OUTPUTR may prove that the SCI sub-system has been initialised
correctly.

(ii) STATUSR, EVENTR, RESET and PROCESSR routines operating
correctly will prove that the input capture and the ouput signals are
operating from PORTA correctly.

(i) PROCESSR and ANALOGR routines operating correctly proves that the
TIMER/COUNTER sub-system has been initialised correctly.

(iv) ANALOGR routine converting the analog signals to digital values
proves that the ADC sub-system has been initialised correctly.

2/ INIT2 Initialise variables routine

input specifications:

data buffer address = DATA

events buffer address = EVENTS

date/time buffer address = DATE

variables start address = CLEAR
description:

This routine clears all the buffers, command flags and status flags. It also sets the
buffer pointers with their initial values.

expected outputs:

DATA to BUFFMAX = 00
EVENTS to PTREMAX = 00
DATE to DATEMAX = 00
CLEAR to VARYMAX = 00

137

3/ STATUSR Display status routine
input specifications:
Icz2 = T pressing the STATUS push button makes IC2 i/p
= +5V
MONITOR = FF or 00 monitoring data flag
MEMFULL = FF or 00 memory full flag
BATTERY = FF or 00 battery low voltage flag
TRANSFER = FF or 00 transferring data flag
description:

This routine is normally initiated by pressing the STATUS push button. The
logic of the code tests four status flag bits in turn. If a flag bit is set the
appropriate LED will be illuminated. If the flag bit is zero the appropriate flag bit
is switched off. The output to the 4 LEDs is sent to PORTA for a period of 3

seconds, then cleared to save power.

The STATUSR routine is called from both of the two main modules.

expected output:
This routine outputs a logic level of " 1' to illuminate the following LEDs:

MONITOR
MEMFULL
BATTERY
TRANSFER

Note, if all the status flags are set to $FF at the same time (which cannot occur in
the normal correct execution of the program), this situation indicates that there

was an error when transferring data.

Note, if all the status flags are reset to zero (all the LEDs are switched off) this
indicates that the device is in the ready mode.

138

4/ SYNCR Upload date, time and start command routine

input specifications:
IC3 = 'I' pressing the UPLOAD push button makes IC3 i/p
= +5V
SCI = **¥*ddmmyyhhmmss#' a block of ASCIHI characters
** start of block marker
dd 2 digit ASCII hexadecimal value for the day
mm month
yy year
hh hour
mm minute
sS second
end of block marker (start monitoring command)
description:

This routine organises the correct transfer of a block of ASCII characters from,
either the DTD or the DPS, to the DMD. The data transfer is initiated by the
pressing of the UPLOAD push button on the DMD and a down land command
from either the DTD or the DPS.

This routine checks the start and end of block markers (* and #) and checks that
the number of data bits does not exceed 12. There is also a one minute timeout
between pressing the UPLOAD push button and detecting the start of block
marker, and a timeout between each character. If an erroneous transfer occurs
then all the device status flag bits are set to FF.

When a successful transfer is completed the date 2nd time values are stored in the
DATEBUF memory area the input capture flag register and the data transfer
status flag are cleared.

expected output:

DATEBUF = dd mm yy hh mm ss (date and time information)
TRANSFER = 00
or
DATEBUF = 00 00 00 00 00 00 (no date and time information)
MONITOR = FF
MEMFULL = FF
BATTERY = FF
TRANSFER = FF

139

S/ INPUTR Checks for push button commands and 10 min. timeout

input specifications:
TENMIN = TILIMIT or a value between 0 and TILIMIT
IC1 = 1 or ‘0’
IC2 = T or 0’
IC3 = T or o'
description:

This routine is called from the PROCESSR routine thousands of times per
second. It is used to detect immediately one of the following occurrences:

@ a 10 minute timeout; if not increment TENMIN value.

(i) anevent needing to be recorded; if yes set EVENT flag = FF else = 00.
(iii) a display status request; if yes set DISPSTAT flag = FF else = 00.
(iv) adown load request; if yes set DNLOAD flag = FF else = 00.

expected output:

TENMIN = TILIMIT or a value between 0001 and TILIMIT
EVENT = FF or 00
DISPSTAT = FF or 00
DNLOAD = FF or 00

6/ ANALOG Routine to read the next piece of data from the ADC
sub-system

input specifications:

READFLAG = FF read ADC command flag

ADR1 = digitised temperature reading

ADR2 = digitised battery voltage
description:

The main aim of this routine is to read the current temperature value and the
current state of the battery voltage from the ADC. To do this the ADC is
programmed for a multi-channel single scan mode of operation. Then channels 0
and 1 are read and the following tasks are performed:

140

@ The temperature reading is stored in the data buffer. Then a test for the
buffer being full is made. When the data buffer is full the MEMFULL
status flag is set to FF.

(i) The battery condition reading is checked against a minimum value
(BATLOW). When the battery condition is found to be low the
BATTERY flag is set to FF.

(i) The number of temperature readings value (AMOUNT) and the buffer
pointer (BUFFPTR) are incremented if the MEMFULL flag is not set.

expected output:

BUFFER has a new temperature reading added to it.
TEMP2 has the current battery voltage value.
TEMP3 a coded value for the current temperature reading.

BUFFPTR is incremented
AMOUNT is incremented

MEMFULL s set to FF if BUFFPRT = BUFFMAX value, else = 00.

BATTERY is set to FF if battery voltage is below the BATLOW
value, else 00.

READFLAG is cleared.

7/ EVENTR Routine to record the time of an event
input specifications:

EVENT = FF event command flag
description:

This routine is called from the PROCESSR routine to record the elapsed time
from the start of a test (the AMOUNT value) when an event command is issued.
The 16-bit value is stored in the events buffer (EVENTB). A test for the events
buffer being full is also made. If the buffer is full the EVENTFUL flag bit is set
to FF.

The event buffer pointer is incremented by 2 and the event command flag is reset
to zero.

expected output:
EVENTB has a new 16-bit value added to it
EVENTFUL =FF ifEVENTPTR =PTREMAX, else =00

EVENTPTR is incremented by 2
EVENT is cleared

141

8/ OUTPUTR Routine to down load results to the serial port

input specifications:

I

DNLOAD FF end of test; down load data to serial port

description:

Firstly, the transmitter part of the SCI sub-system is enabled. Then the following
information is sent to the serial port (Data Transfer Device or the Data
Processing System):

a start of block marker **',

the device identification,

the date and time that was originally uploaded,
the block of temperature readings,

the block of event times,

the end of block marker '#'.

Then the input capture flag register and the TRANSFER flag are cleared.
expected output:

The following information is sent to the serial port at the 9600 baud rate:

*

IDENT
dd mm yy hh mm ss
a block of temperature readings

a block of event times
#

TFLGI the Timer input capture flag register is cleared
TRANSFER the transfer status flag is cleared

142

9/ RESET Initialisation Module

input specifications:
IC2 = T to detect a request to show the status of the device
IC3 = '1' to detect the request to start logging data
description:

This module is used to reset the temperature monitoring device system so that it
is in a state of readiness. So that it is ready to log data for a new test. The
RESET module calls up functional routines to perform the following tasks:

) to initialise the sub-systems of the microcontroller.

(ii) to clear the three main buffer areas of memory,
to clear the status and command flag bits ready for use, and
to initialise all the program variables.

(iii) to allow the status of the device to be shown at any time.

(iv) to be ready to accept an UPLOAD command (a start of test command)
from the UPLOAD push button, and respond by calling the PROCESSR
module.

expected output:

calling the STATUSR routine in response to IC2 = "1' (+5V)
all the status flag bits should be reset to zero
the input capture flag register should be cleared

calling the PROCESSR routine in response to IC3 ="1' (+5V)
the MONITOR flag bit should be set to FF
the input capture flag register should be cleared

143

10/ PROCESSR The Data Logging Module
input specifications:

INPUTR routine detects the following inputs:

@® TOF *1' to detect a timer overflow and increment TENMIN value.
(ii) TENMIN=TILIMIT to detect a read a new temperature value.

i) IC1 = "1' to detect a request to record the time of an event,

vy IC2 = "' to detect a request to show the status of the device,

vy IC3 = T to detect the request to end logging, and output
results.

description:

This module receives the date, time and start logging command, from the serial
port, via the SYNCR routine, then cycles round calling 5 routines which enable
the following 4 main tasks to be performed:

to read the next temperature value,

to record the time of an event,

to show the status of the device, and

to end the test and output the results to the serial port.

expected output:
calling the ANALOG routine in response to READFLAG =FF
calling the STATUSR routine in response to DISPSTAT = FF
calling the EVENTR routine in response to EVENT = FF
calling the OUTPUTR routine in response to DNLOAD = FF

call INIT2 routine
return back to the RESET routine

144

4.10.2.2. TESTING THE DATA TRANSFER DEVICE (DTD)

The DTD uses three areas of storage: a data buffer area, an area to store the fixed
parameters of the device, and an area to house the variables used by the control

program.

1/ The buffer area which stores all the information gathered during a run of
the program includes:

DATEBUF which stores information relating to the start of the test.

BUFFER which stores the temperature readings taken during the
test.

EVENTB which records the relative time, with respect to the start of
a test, for each event that requires noting during a test.

IDENT the identification of the TMD,

2/ The fixed parameters, which should be stored in EEPROM, include:

DATA the start address of the buffer area,
EVENTS the start address of the events buffer,
DATE the start address of the date/time buffer.

BUFFMAX the end of the data BUFFER value,
PTREMAX The end of the EVENTB value,
DATEMAX the end of the date and time buffer (DATE).

BEGCODE the other fixed data items are: end of buffer values, start
of block marker,

ENDCODE end of block marker, timeout values and values for the
ADC system.

TILIMIT the tirneout value, used to check the maximum no. of
TOFs before a bad serial transfer is declared.

3/ An area of read/write memory is used to store all the variables that are
necessary to run the TMD program. These variables include:

messages for the LCD screen,
pointers to buffer areas,
timer/counter values,
command flags,

status flags and

temporary storage areas.

e @ o0 © @& o

145

The Data Transfer Device (DTD) Program.
The DTD program consists of 5 main control routines, that control the functions
of the system that the user can select. The DTD program, at a lower level,
consists of 9 major functions that can be selected by the user, 2 minor functions
that input information from the user, and 19 basic functions that control the
actions of this device.
The S main control routines (modules) are:

MAIN, COMMANDR, MENUI1R, MENU2R and MENU3R.
The 9 major functions can be sorted into 3 categories:

To display information:

TIMER, STATUSR and DATER.
To transfer information:

STARTR, UPLOADR and DNLOADR.
To change information:

RESETR, DATER and CLEARR.
The 2 minor functions are:

KBDTIME and KBDDATE.
The basic functions can be sorted into 3 categories:
The system initialisation routines:

INITIR, INIT2R, INIT3R and INIT4R.
The keyboard control and data conversion routines:

INPUTR and CONVERT.
The 19 basic functions are:

OUTPUT, OUTPUT2, SCREEN, DELAY,

SHOW, BLANK, DISPLAYR, TLC, CURSOR,
WRITE, WRITEHEX, DUMP, AND VIEWLINE.

146

The MAIN module:

This routine initialises the LCD module and the microcontroller sub systems that
are used by the DTD. It also clears all the data buffers and variables that are used
by the DTD. The major functions of the MAIN routine are :

O] to initialise the SCI sub system,

(ii) to initialise the LCD module,

(iil) to initialise the input capture sub system, and

(iv) to clear all the data buffers and variables used by the system.

The MAIN module makes use of the following functional routines:

INIT1R, INIT2R, INIT3R and INIT4R.

The COMMANDR module:

The COMMANDR module is 2 high level control routine that displays, and
enables the user to select, the 3 main functional areas of this device; the display,
the transfer of the changing of information within the device.

This module inputs information from a hexadecimal keypad which enables it to
give control over to one of the lower level control modules: MENUIR,
MENU2R or MENU3R.
This module makes use of the following modules:

MENUIR, MENU2R and MENU3R.
This module also makes use of the INPUTR functional routine to input from the KBD.
The MENU1IR module:

This module shows a screen with 3 sorts of information that the user can choose
to display on the LCD. The user can either view:

« the status of the device and uploaded information,
o the “start of test' date and time prior to a start of a new test, or
« the data that has been uploaded from a TMD.

This module inputs the user's choice, then gives control over to the appropriate
routine, making use of the following functional routines:
TLC, DISPLAYR, INPUTR, STATUSR, TIMERR and DATERR.

147

The MENU2R module:

This module shows a screen on the LCD that displays the 3 choices of serial data
transfers that the DTD has been designed to perform:

o to enable the TMD to start a new test,
o to upload information from the TMD, or
o to down load data, gathered from a test, to the data processing system

(DPS).

This routine also enables the user to input, via the hexadecimal keypad, their
choice of transfer. This module then calls up the appropriate major function to
perform the task.

This module makes use of the following functional routines:
TLC, DISPLAYR, INPUTR, STATUSR, TIMERR and DATERR.
The MENU3R module:

This module shows a screen with 3 sorts of information that the user can choose
to change:

¢ the “start of test' date and time,
e the clearing of all the data buffers and variables, or
o the complete reseting of the DTD system.

This routine also enables the user to input, via the hexadecimal keypad, their
choice of change. This module then calls up the appropriate major function to
perform the task.

This module makes use of the following functional routines:

TLC, DISPLAYR, INPUTR, STATUSR, TIMERR and DATERR.

148

4.10.2.3. TESTING THE DATA PROCESSING SYSTEM (DPS).

The DPS uses three areas of storage: a data buffer area, an area to store the
messages for the VDU screen, and an area to house the variables used by the

control program.

1/ The buffer area which stores all the information gathered during a run of

the program includes:

IDENTV the identification of the TMD that gatered the data.

DATEBUF which stores information relating to the start of the test.

BUFFER which stores the temperature readings taken during the

EVENTB which records the relative time, with respect to the start of

a test, for each event that requires noting during a test.

2/ The names of the messages used by the dps program are:

MSG1 serial port error message

MSG2 printer port error message

MSG3 return to DOS message

MSG4 file transfer error message

MSGMENU main menu screen

MSGINPUT uploading serial data screen

MSGRAW displaying raw data screen

MSGDIR displaying a directory of filenames

MSGLOAD loading a data file screen

MSGSAVE saving a data file screen

MSGPLOT plotting the results screen

MSGEXIT exit to DOS screen

3/ An area of read/write memory is used to store all the variables that are
necessary to run the TMD program. These variables include:

pointers to buffer areas,
timer/counter values,
command flags,

status flags and
temporary storage areas.

149

The Data Processing System Program

The DPS program consists of two main control routines. One that initiates the
input/output interfaces and the data area of memory, the other allows the user to
choose one of 6 major functions that they can ask the system to perform.

The two control routines are:
the MAIN module, and the COMMANDR module.
The MAIN module description.
This module is responsible for resetting the system interfaces and initialising the
data area of memory. The program is then in a state of readyness, so that users
can select the tasks which they want the system has to perform.
The major functions of the MAIN routine are:
)] to initialise the serial port.
(i) to initialise the printer port.
(i) to initialise the screen and display the main menu.

(iv) to initialise the counters, pointers, variables and buffers that will be used
by the DPS routines.

(v) to hand control over to the COMMANDR module.

The MAIN module makes use of the following functional routines:

INITIR, INIT2R, INIT3R and INIT4R, then gives control to COMMANDR.

150

The COMMANDR meodule description.

This module waits for a KBD input in response to the main menu choices, which
are displayed on the VDU screen. The major functions that can be selected by
the user perform the following tasks:

@) Upload information from the TMD or the DTD via the serial port.
(ii) Display the filenames from a specified secondary storage directory.

(i) View parts of the information that has been loaded into the primary
memory.

(iv) Load the raw data (from a TMD test) from a specified secondary storage
file.

) Save the TMD test information from memory to a specified secondary
storage file.

(vi) Plot the resuits from a TMD test, onto a printout or onto the VDU
screen.

(vii) Exit from the program.

The processing module COMMANDR makes use of the following functional
routines:

INPUT, DIR, RAW, SAVE, PLOT, OLD, and EXIT.

151

TESTING THE 11 MAJOR FUNCTIONAL ROUTINES

1/ INITIR Initialising the serial port.

With assembly language programming on the IBM PC, the inputs, in many cases,
are the parameters that are passed to the Basic Input/Output Subprograms
(BIOS) service routines, and to the Disk Operating System (DOS) functions.
These parameters are passed through the CPU 16-registers: AX, BX, CX, DX,
SI AND DI, and the CPU 8-bit registers: AH, AL, BH, BL, CH, CL, DH and
DL.

input specifications:

AH = 00 service number, to initialise the serial port

AL = E3h 9600 baud, 8-bits, 1 stop bit, no parity

DX = 0000 serial port number also

AH = 01 send one character service

AH = 02 receive one character service

AH = 03 get serial port status service
description:

This routine has the task of initialising the serial port (COM1) of the system by
the use of a BIOS service routine. The status of the serial port is then checked

using a different BIOS service.
expected output:

The status of the serial port is passed to the program via the CPU register AH.

AH bit0 = (i/p) data ready
1 = overrun error
2 = parity error
3 0= framming error
4 = break detected
5 (o/p) transfer register empty
6 = shift register empty
7 = timeout error

152

2/ INIT2R Initialise the printer port.

input specifications:
AH = 01 initialise the printer
DX = 0000 LPT1
also
AH = 00 get printer status
AH = 02 send one character
description:

This routine has the task of initialising the printer (LPT1) of the system. The
printer status can then be checked for error conditions and to check whether it is
ready or not.

expected output:

The response to checking the printer status is via register AH:

AH bit 3 I/0 error
4 selected
5 out of paper
6 acknowledge
7 ready

3/ INIT3R Initialise the program variables.
input specifications:

The start address of the following data buffers are put into the CPU index register
SI: one at a time, in turn, and used to clear the appropriate data buffer.

IDENTV

DATEBUF

BUFFER

EVENTB
The size of the data buffer is put into the CPU count register CX.
The value 00h is put into the 8-bit accumulator AL

description:

Four similar routines are used to store the value zero into each buffer area. This
is done to clear out any previous information that may be stored there.

153

expected output:
IDENTV
DATEBUF

BUFFER
EVENTB

4/ INIT4R Initialise the VDU screen.
input specifications:

The following parameters are passed to the BIOS service routine (INT 10h).

AH 00 service to set the screen mode
AL = 03 text mode 3, 80 character, 25 lines

The address of the message to be displayed at the end of this initialisation
function is loaded into the SI register and passed to the DISPLAY routine.

SI = address of MSGMENU

description:

There are two tasks for this routine. The first is to ask BIOS to clear the screen,
the second is to call the DISPLAY routine to display a menu on the VDU screen.
The menu shows the options open to the user, and describes what the user has to
do to choose one of the options.

expected output:

The screen is cleared of previous information, then the message MSGMENU
appears on the VDU screen

154

5/ INPUT Upload TMD information from the serial port.
input specifications:
SI = address of MSGINPUT
A stream of serial data is input from the serial port (COM1) using a BIOS service

routine. The BIOS service requires the following parameters to be passed to it
for the reciept of each character:

AH = 02 service number, for the reciept of one
character
DX = 0000 serial port nuber for COM1

Also, to prevent the system locking up (in the case of bad data, or no data) the
user can input any character via the keyboard. Hence, BIOS also requires (for its
INT 16H service routine):

AH = 01 service to detect a KBD keystroke.

ROW and COL variables are also used to input the positions on the screen for the
resultant messages.

description:

This routine is designed to input, from either the TMD or the DTD, a block of
serial data that has been sent in a particular format. The data is not validated on
receipt but certain control characters are checked:

the start of block marker
the end of data marker
the end of block marker

@
#

The user can input a KBD keystroke to end the search for serial input, if they
believe that something has gone wrong.

A successful transfer results in messages on the screen, showing the identification
of the TMD that gathered the information and the starting date of the test.

expected output:

IDENTV = identification of the TMD
DATEBUF the starting date and time of the test
BUFFER the items of data

EVENTB = the recorded event times

155

6/ DIR Display a directory of files on the VDU screen
input specifications:
SI = address of MSGDIR

The BIOS routines (INT 10h) uses the following parameters that are passed to
them:

AH = 02h service to move the cursor

AH = OEh service to write one character to the screen
DH = ROW position on the VDU screen

DL = COoL " "

BX = 0000 display page

The DOS functions (INT 21h) require the following parameters to be passed to
them:

AH = 1Ah function to establish a data transfer area (DTA)
4Eh function to find the first matching filename

= 4Fh function to find the next matching filename
DTA a data transfer area (DTA)

= PATH the specified drive, path and filename

DX

description:
This routine asks the user to input, via the keyboard: a drive, path and filename.
Then 3 DOS functions are used to find all the matching filenames in the specified
directory. Each file in turn is placed into the DTA. A routine copies each
filename, in turn, and displays it on the VDU screen for viewing purposes.
expected output:
The VDU screen will display either:

() an error message
or

(i) atable of filenames on the VDU screen.
Note, no information is stored in the computers data area of memory except:

PATH = drive, directory path and a filename

Note, DOS allows the ? and * wild-cards.

7/ RAW
input specifications:
SI

ROW
COL

IDENTV
DATEBUF
BUFFER
EVENTB

description:

156

Routine to display the raw data from a TMD test

address of MSGRAW

position on the screen

identification of the TMD

the starting date and time of the test
the items of data

the recorded event times

This routine allows the user to validate the information received from a TMD test
by viewing the data on the VDU screen. The TMD identification, the starting
date of the test and the first240 bytes of the data from the test are displayed on
the screen. Then a message describing how to make the program return to the
main control routine is displayed on the screen.

expected output:

IDENTV
DATEBUF
BUFFER

8/ SAVE
input specifications:

S1
DX
DI

AH

IDENTV
DATEBUF
BUFFER
EVENTB

identification of the TMD,

the starting date and time of the test,

the first 240 items of data, in hexadecimal format,
15 rows of 16 data items.

Routine to save the TMD information.

]

address of MSGSAVE
address of the DTA
address of the PATH

1Ah DOS function for establishing a DTA
3Ch DOS function for creating a new file
40H DOS function for writing characters to a file

identification of the TMD

the starting date and time of the test
the items of data

the recorded event times

157

description:

This routine allows the user to save the information received from a TMD test
into a file on a secondary storage device. It does this by clearing the VDU screen
and displaying MSGSAVE. Then asks the user to input a complete file
specification, including the name of the file where the test information is to be
stored. The TMD test information is then transferred from the primary memory,
into the specified file in a secondary storage.

In case of a file transfer error, a message will be displayed on the VDU screen.
expected output:

The VDU screen is cleared, then the message MSGSAVE appears on it.

A new file will be created if the file specification is new.

The TMD test information is then transferred from the primary memory, into the
specified file.

In case of a file transfer error, a message will be displayed on the VDU screen.
9/ OLD Routine to load TMD test information from a specified file.

input specifications:

SI = address of MSGOLD

AL = access rights, read only

BX = handle of opened file

CX = number of bytes to read from a file
DX = address of PATH

AH = 3Dh DOS function to OPEN a file

3Eh DOS function to CLOSE 2 file
= 3Fh DOS function to READ from a file

ROW position on the VDU screen
COL " L1 "
DX = address of = IDENDTV
" DATEBUF
" BUFFER

" EVENTB

158

description:

This routine allows the user to load old TMD test information, from a fileina
secondary storage device, to the appropriate buffers that are accessable to the
DPS program. The program does this by creating a new screen with instructions
for the user. The user is asked to input a file specification, via the KBD into the
variable PATH.
This routine calls other routines:

o to get the TMD identification,

» to get the starting date of the text,

e to get the many items of data, and

o to get the times of the recorded events.
The TMD identification and starting time are displayed on the VDU screen to
inform the user of a successful load. MSG3 is then displayed on the VDU screen
to inform the user how they can return to the main control routine
COMMANDR.

If an unsuccessful loading has been detected, then an error message is displayed.
expected output:

The VDU screen is cleared then MSGLOAD is displayed

Then either:

The data area buffers: IDENTV, DATEBUF, BUFFER and EVENTB are loaded
with information from the specified file.

The contents of IDENTV and DATEBUF are displayed on the VDU screen.

or

In the case of a file transfer error, MSG4 is displayed on the VDU screen.

also

A message informing the user how they can return to the main control routine
COMMANDR will be displayed on the VDU screen.

159

10/ PLOT Routine to create a hardcopy/softcopy of the results
from a test.
input specifications:
SI = address of MSGPLOT
= " MSGVDU
" MSGPRN
IDENTV = identification of the TMD
DATEBUF = the starting date and time of the test
BUFFER = the items of data
EVENTB = the recorded event times
description:

This routine allows the user the option of selecting either: a softcopy or a
hardcopy of the results from a TMD test. This routine firstly creates a new
screen MSGPLOT which informs the user of their options. The routine waits for
a keyboard response. Then the raw data from the memory buffers (BUFFER and
EVENTB) are displayed graphically on the VDU screen or onto a paper printout.
expected output:

This routine either:

(i) A graphical plot (one screenfull at a time) of the data from a TMD test.
or

(ii) A complete hardcopy printout of a plot (temperature versus time).

also

A message informing the user how they can return to the main control routine
COMMANDR will be displayed on the VDU screen.

160

11/ EXIT Routine enabling a return to DOS,
input specifications:
SI = address of MSGEXIT
AH = 00 BIOS service number, for KBD software interrupt 16h

description:

This routine displays the message: “Do you really want to EXIT the program”.
"Typein 'y’ or 'n' "

In response to the question the program control is either: returned to the

program, or returned to the operating system (DOS).

expected output:
Either:

1 a return to DOS,
or

(i) a return to the COMMANDR module.

161
411 PROGRAM TESTING

Each part of the temperature monitoring system was tested separately, then the
complete system was tested as a whole. The order in which the sub-system's

programs were tested is as follows:
1. the temperature monitoring device (TMD),
2. the data transfer device (DTD) and

3. the data processing system (DPS).

4.11.1 TESTING THE TMD SUB-SYSTEM

A circuit board had to be designed and constructed before the TMD program

could be tested. This circuit board contained the following:
¢ a+5V and OV power supply,

o two 10K ohm potentiometers which represented the two analog
signals to be monitored (body temperature and battery voltage),

o three push button switches labelled: up/dn, st and ev
(upload/download, status and event),

= four LED circuits designed to snow the status of the device
(see figure 12) and

= a 60-way cable and connector enabling the circuit board to be
attached tc the TMD evaluation board.

The TMD program was tested from top to bottom. The testing processes began
by examining the data flow diagrams, Jackson Structure Diagrams and the

maintenance and test information.

Firstly, the initialisation routines were tested to ensure that: all the data buffers
were available for use, all the program variables were initialised and all the

appropriate microcontroller subsystems were ready to be used.

162

Secondly, the higher-level control mechanisms of the TMD program were tested.
This enables control of the program to be transferred from the READY module
to either the SHOW or START module. Hence, the system was ready to either
display the status of the TMD or start logging data. This control was activated
when either the status (st) or the upload (up/dn) pushbutton was pressed.

The mid-level control of the TMD was tested next. This also required the testing
of bush buttons and the display of status information. But most importantly, a
thorough testing of the ten-minute timeout, analog input and data storage

processes was completed.

Finally, the downloading of a set of results was tested. This was achieved by
reading the data from the IDENTS, DATA and EVENTS buffers and ensuring
the information was output to the serial port of the microcontroller. An IBM PC
running a serial communications program was used to receive and display the

information.

The technique for testing the correct execution of the program modules and
routines was to press pushbuttons, ensure responces to timeouts and to stop
program execution at the inserted breakpoints. Then the appropriate flag bits,

status values and items of data were checked.

The complete TMD program controlling the hardware was then tested
thoroughly. The analog values going into the system were recorded on paper and
checked against the results sent out to the IBM PC system. The testing process
include implementing each of the predefined test cases and then checking for the

expected outputs.

163

4.11.2 TESTING THE DTD SUB-SYSTEM

Before testing of the DTD program could take place the following devices

had to be connected to the evaluation board:
o a four line by 20 character LCD module,
o ahexadecimal keypad circuit and

o an IBM PC with a serial communications program. (see figure 13)

Firstly, the initialisation programs had to be tested to ensure that the
microcontroller subsystems and the LCD module were programmed correctly and
that the buffers and variables were initialised. Note, the MAIN module of the

DTD program makes sure that the microcontroller is ready for action.

The second stage of the 1esting checked that the high-level transfer of control
mechanism linked the COMMANDR module to the MENU1, MENU2 and
MENU3 modules. This involved the pressing of keys on the hexadecimal keypad
and tracing the paths to the appropriate program module. Execution started from
the entry point of COMMANDR and was ended by one of the breakpoints which

were inserted at each entry point of the lower-level subroutines.

The third and most time consuming task was to write all the lowest-level
subroutines that performed most of the computational and output work. These
routines are called by all the mid-level modules that control the input and output

of information.

The next stage was to test the nine mid-level modules individually. This involved
making sure that all the correct messages were displayed on the LCD module's

screen and that the correct information was input, stored, displayed and output.

164

Finally, the complete DTD sub-system was validated to ensure that al the
functions of the device worked as they were designed to do. This involved:

o time values being input and stored,

o the start of test information being downloaded to an awaiting IBM PC
system,

e ablock of data being received (uploaded) from the IBM PC,
o data being viewed (a screen-full at a time) and

e ablock of data being retransmitted (downnloaded) to another IBM
PC system.

When all the functions of the DTD had been tested thoroughly the sub-system

was deemed to be validated. Consequently, blocks of data, of a particular

format, could be input, viewed and output as the design of the DTD specified.

4.11.3 TESTING THE DPS SUB-SYSTEM

The data processing system (DPS) required a TMD, DTD and an IBM PC to be
connected by their senal ports before testing could begin. (see figure 11)
Note, a second IBM PC could just as easily act as a TMD or DTD for the

purpose of testing the DPS. Note, the following tests took place:

The first task was to check all four DPS initialisation routines called by the MAIN
routine. Thus, the data buffers were cleared, variables initialised, the screen
mode set, a message displayed and the serial port parameters programmed into

the system.

165

The second stage of testing was to check the transfer of control mechanism in the
COMMANDR module. This involved the pressing of keys on the keyboard,
decisions being made and execution stopping where breakpoints had been placed

at the entry points of the mid-level modules.

Note, as MS DOS provides all input/output subroutine (BIOS) services and disk
operating system (DOS) functions, no general purpose low-level routines needed

to be written.

Then each mid-level module was tested separately in order to:

o input a block of data,

o view the raw data,

o look at a directory of files,

o save the raw data on a file,

o retrieve raw data (old results) from a file and

o plot the results graphically, either on a VDU screen or

on a hardcopy printout.

Finally, the complete DPS program was tested thoroughly and was found to work
as expected.

166

4.11.4 TESTING THE TEMPERATURE MONITORING SYSTEM

The TMD, DTD and the DPS were all connected together, by their serial ports, in
order to input data and to check that the correct transfers of data took place. The
following checks were made to confirm that the system would perform as

expected.

The time and date of starting the testing of the TMS was entered into the DTD.

Then the TMD program was given a start signal from the DTD.

Temperature values and event times were recorded by the TMD and manually on
paper. During the recording session the status of the TMD was displayed when

requested.

After a known amount of time, the TMD recording session was ended and the

stored information was transferred from the TMD to the DTD.

The data transfer device was made to display the raw data and event times to
check the performance of the trial. As expected the results on paper matched the

results shown on the DTD's liquid crystal display screen.

The next step was to transfer the stored information from the DTD to the DPS.

Finally, the raw data from the recording session was displayed on the DPS screen.
The data values and event times matched those that were recorded on paper.

Consequently, the testing session was deemed to be successful.

167

CHAPTER FIVE

5 CONCLUSIONS

5.1

5.2.

3.3.

5.4

Discussion

the problem

the need

the feasibility

the cost effectiveness

System Design

system description

temperature monitoring device

data transfer device

data processing system

analysis techniques

findings from library search

a JSP methodology

the software development environment

System Testing

inherent testability and maintainability
types of testing
sequence of testing

Suggestions for Further Considerations

introduction

fabricating miniature devices
power supply and battery use
similar devices

convenient body sites

need for networking devices
need for 32-bit devices

168

5 CONCLUSIONS

5.1. DISCUSSION

There was, and still is, a need for monitoring the effects of circadian rhythms in
humans. Lack of sleep, or sleep at the wrong time, affects work performance or even
causes absenteeism. Body temperature is known to be a method of determining when
the performance of our body is at a peak and when it is informing us that it is time to
sleep. A small portable temperature data logging device would be invaluable in this
field of research. This thesis is concerned with designing, implementing and testing
such a device. At the commencement of this Master's work, investigations indicated

that there was no suitable device commercially available.

The author found that a circuit can be designed around an integrated circuit
temperature sensor (LM 35) and a precision thermistor (Y SI 44002) to provide
temperature readings within a resolution of 0.1 degrees Celsius. Either of these
circuits could provide a suitable analog input for a microcontroller-based device.
The axillary site was considered to be the best non-intrusive body site for measuring

body temperature.

Investigations demonstrated that microcontrollers provide a low-cost single-chip
solution to this problem. All the complexity of the hardware and hardware interfaces
are encapsulated within a single chip. Which means that a temperature data logger
can be made small enough to be worn without interfering with normal body

movements.

169

Further investigations indicated that an 8-bit microcontroller would provide the
necessary resources for the data logger. So, an in-depth study of 8-bit
microcontrollers was made. Comparison of several 8-bit microcontroller devices
resulted in a report and the enclosed tables of specifications (table 1.1 and 1.2).
Analysis of the list of specifications (from six devices) shows the similarities and
differences that exist within 8-bit microcontrollers. As a consequence, the Motorola
MC68HCI1 series of microcontroller was found to be the most suitable device for
controlling the input of analog signals, storage of readings over a four week period
and serial output of the temperature values. It should be noted that Motorola
supports its microcontrollers with an environment, in the form of evaluation boards

and software, which is necessary to develop the device's control programs.

5.2. SYSTEM DESIGN

The temperature monitoring system (TMS) is a system that is designed to monitor a
person's body temperature, enable the recordings to be stored in the monitoring
device's memory, allow the recorded data to be transferred to a data processing
system and then allow the data to be processed and filed away permanently. The

TMS comprises of three, independently controlled, main parts; namely:

o atemperature monitoring device (TMD) worn by the person under test,
o a data transfer device (DTD) and

e adata processing system (DPS).

The TMD which needs a start signal and time of test information (from a DTD or a
DPS) was designed to record temperature readings, every ten minutes, for a period of
up to 4 weeks. This device is small enough to be worn throughout the period of time

the person is taking part in a test. That is, up to a period of four weeks.

170

If test conditions required a remote site then the small and inexpensive DTD could be
used to start the test and later upload the recorded information from the TMD. The
DTD itself, or a memory module containing the information, would be posted to the
researcher who would enter the data into a DPS.

The DPS enables the researcher to, first of all, check the raw data and then store it in
a permanent file. The researcher can analyse the results later with whatever software

he/she requires.

An important part of this work was to produce a system that was designed to
software engineering standards. Hence, a search for a suitable design methodology

was conducted.

Investigations revealed that there were three main streams of analysis techniques in

software engineering:

o structured analysis,
» object-oriented analysis and

o formal specification techniques.

Structured analysis, and in particular, a JSP methodology was found to be the most
suitable design methodology for microcontroller-based systems. It provided a highly
systematic approach to software design as, it requires a problem to be well defined, it
can be used for real-time systems, it is language independent and it creates a very

graphical hierarchical solution to a problem.

Designers need to be made aware that system usefulness only lasts while it satisfies
requirements and that user requirements rarely remain static. Hence, a system design
must have software that is portable, reusable, have maintainability and have

extendability. The design should allow for hardware or software to be taken apart,

171

modified and then reassembled. A JSP methodology can be used to produce
software with such properties and it also tries to ensure that untouched modules stay

in tact.

An extensive library search was made in order to find out which methodologies have
been used for microcontroller designs. The findings from the search informed us

that:

» there was a lot of material on software design methodologies,
o there was a growing interest in microcontroller-based designs, but
o the majority of articles describing microcontroller designs gave very little

emphasis to a design methodology.

In fact no articles, or dissertations on CD-ROM, had any information relating to
"microcontrollers and Jackson structured programming (JSP) methodologies". The
author therefore adapted the JSP methodology to small system designs incorporating
microcontrollers and proposes this method as a suitable development platform for

microcontroller-based system design.

The JSP design methodology required detailed hardware specifications to be made.
Hence, the TMS which was defined to consist of three main components; namely, the
TMD, the DTD and the DPS, had to be analysed further. Each main part of the TMS
had its functions listed so that the required hardware components could be assessed.
The Motorola MC68HC11 microcontroller, that was selected because its internal
hardware could perform the necessary expected functions of each device, required a
thorough knowledge of its sub-systems down to the register level. The registers
being used by the control program software.

An IBM PC and peripherals was the only hardware necessary for the DPS,

172

A top-down approach was taken to produce the control programs. Firstly, the
control programs were described as a hierarchy of data flow diagrams (DFDs).

Then, in turn, each DFD was translated into a Jackson structure diagram (JSD). The
JSDs included the conditions that were required to move control from one module of
the program to another module and a list of functions that were needed to be
executed in order to perform tasks. Finally, the JSDs were transformed into assembly

language instructions.

The actual coding process included the same names, for subroutines and labels, as
those used by the DFDs and JSDs. This made sure that the software would be easy

to test and maintain.

An efficient software development environment was created so that programs could
be developed and debugged via an IBM PC system. The environment consisted of an
editor, assembler, linker, ubuilds and communication programs. The aforementioned
development software tools were called from a MS DOS batch file program which

was stored in the IBM PC's secondary storage.

173

53. SYSTEM TESTING
The JSP methodology used for this research project made sure that software would
have testability and maintainability inherent in the design. The steps of design
included:

¢ the functional requirements of each part of the system to be listed,

o the performance requirements of each part of the system to be listed,

o detailed descriptions of interfaces,

o data types to be defined and

e test cases showing data to be input and expected results.
The functional requirements and performance requirements enabled black box testing
of the major components of the system and software design. The detailed description
of interfaces and data types enabled white box iesting of individual processes to be
tested thoroughly.
Each major component of the TMS; namely, the TMD, the DTD and the DPS were

tested separately. Then the appropriate serial connections, between the major

components, were made and the system was tested as a whole.

174

S.4. SUGGESTIONS FOR FURTHER CONSIDERATIONS

The temperature monitoring system was designed and tested in order to meet the
original project proposal. It has been proved that a miniature data logging device
could be manufactured and a support system could be implemented to a commercial

standard. Future considerations include;

A future project could be to research into fabrication techniques that would enable a
miniature logging system to be manufactured at a low cost. This would involve more
time being spent on analysing the power requirements for such a device and how

often the batteries would need to be replaced.

It is obvious that there are many similar devices that could use parts of this design so
that other physiological parameters can be monitored, such as: blood pressure, heart

beat rates and e.c.g. values.

Once a device has been fabricated, then the medical profession would have to
research into the most suitable body sites where a device can be worn without

rausing any discomfort or inconvenience to the wearer.

It should be noted, that the author's responsibility was to provide the raw data. The
medical profession would have to decide how the logged data can best be presented
on a VDU screen and how information from a logging session should be arranged in

order to produce a hard copy of the resuits.

175

Whilst gaining valuable experience with 8-bit microcontroller devices I realised the
importance of these devices for future single-chip solutions to many of today's and
future problems. There is a need to know how these microcontroller devices can be

used in parallel, to form a bus system of devices or even a network of devices.

There s also an immediate need for engineers to be familiar with the latest 32-bit
microcontroller devices, as they have the power to process the logged data and

present it, in graphical form, to high resolution flat screen displays.

Finally, I believe that this project has solved the problem at hand but, in doing so, it
has opened up a whole new exciting area of design. I hope to continue in the
microcontroller applications design field and, in particular, research into the

networking of microcontroller devices.

Figures Used Throughout This Document

Number Title Page
1 Circadian Rhythms 180
2 Thermistor 180
3 Temperature Sensor Circuit Diagrams 181 - 182
4 MC68HC11 Block Diagram 183
5 MC68HC11 Memory Map 184
6 MC68HC11 Environment 185
7 The Temperature Monitoring System Block Diagram 186
8 The TMD Block Diagram 187
9 The DTD Block Diagram 187
10 The DPS Block Diagram 188
11 The System Model Diagram 189
12 The TMD Circuit Diagram 190

13 The DTD Circuit Diagram 191

|80

FIGURE 1, CIRCADIAN RHYTHMS DIAGRAM
375
TEMPERATURE
(°C)
36
ao !} 2 '2.. lf

TIME
(hours)

FIGURE 2. THERMISTOR'S THERMAL RESPONSE CHARACTERISTIC

RESISTANCE
(ke)

TEMPERATURE
(degrees Celcius)

FIGURE 3.1. TEMPERATURE SENSOR CIRCUIT DIAGRAM

(Thermistor Sensor Circuits)

+5V +5V
Rl
R4 Vrh
Ré Vrl
Sensor Output Voltage ' Referencz Voltage Qutput
FIGURE 3.2. TEMPERATURE SENSOR CIRCUIT DIAGRAM

(IC Temperature Sensor Circuit)

—— +5Y

LM 34 O/p

499 e,
50K JL 499 SN

&ND

|2
FIGURE 3.3. TEMPERATURE SENSOR CIRCUIT DIAGRAM

(Thermistor Sensor Circuits)

+5VY

+5V

560 S

1.8K L Vrh

Y

QSIZN 1.6K JL
REF

oLo

| ; 36K JU vri

GND

Sensor Output Voltage Reference Voltage Outputs

XTAL <}
£XTAL —pd Oscillator A V_jy__ﬁ Da1a Crreclion

é 4-____(—— (Pon 8 oy

FIGURE 4 THE MC68HC11 BLOCK DIAGRAM
Puiss Accumulais [— PAl bt M- PA7
ROM - 8K Byles g o >
ocit peme——ppt < P
TIMER | ocs —>{5 >
1 -] p—
Perodic inte x2
EEPROM - 512 Bytes S ic3 P
s5* |t POs
RAM - 256 Byles SPi usc?xSJ :-:2 i3>
uso fat-p ct; ik
&8
PEr — b sCI 1o > 5
3 i fiD] jt—> POO
—p
——2d s
—>18 > a0
—l
bEo] Me811 CPU
Ve__ o
L ——"Y J
RESET <31 [m“mju - i J
AT —3 Interrupts ”", T 4 Yy
an:‘i,—b L Handshake 10 P
AARAL 23
@ @ 3 §§
C Z5

T,
o

o ol]| " (L g b i widdvid
— 8

(LIHY) MODE ? ? §

Pa?

SIRB
sTAA |}

of
°

MO8 —3 Select

Yo
5
Aty
At
AD?
ADo || Pco

Voray !

]

AS

RW

FIGURE &

MEMORY MAP OF THE MC6811 SYSTEM

Co00 Y7ITIITITITITIIT
TR

EXT

Y000 /i Iy,

\
B&OQ YHIHIHTHTITIHITITINGT

T

EXT

*
DO Vi,
iy
ST T TN
gt

FFCO-FFFF AIIIIIIHITIINIIG

INTERNAL RAM (512 bytes)

/O REGISTERS (64 bytes)

INTERNAL EEPROM (512 bytes)

INTERNAL ROM
EPROM
OTPROM

INTERRUPT VECTORS

| 85

FIGURE 6 MC68HC11 DESIGN AND TEST ENVIRONMENT

PC SOFTWARE DEVELOPMENT

TOOLS
PASM
LINK
UBUILDS
MSKERMIT
IBM PC
SYSTEM
MC68HC11
INTERFACE
SERIAL LINK PORTS
‘ /
MC68HC11 / USER
EVALUATION TARGET
BOARD BOARD
Ja p
MC68HC11 DEBUG DEVELOPER’S
SOFTWARE ELECTRONIC
CIRCUITS
BUFFALO
MONITOR

PROGRAM

FIGURE 7. TEMPERATURE MONITORING SYSTEM
(Block Diagram)

TEMPERATURE SENSOR

raw data ——-——-‘l

TEMPERATURE
MONITORING
DEVICE

data— — start logging command

DATA
TRANSFER
DEVICE

data related to time

DATA
PROCESSING
SYSTEM

resu!ts-—-!
!

PRINTER/PLOTTER

187

FIGULRE 8 THE TEMPERATURE MIONITORING DEVICE
(Rlock Diagram)
LIGHT EMITTING DIODES LITHIUM
BATTERIES
PUSH SIGNAL TEMPERATURE
BUTTONS |=™>% CONTROLLER CONDITIONING SENSOR
UNIT
K
A4
SERIAL STORAGE
INTERFACE FOR
DATA
FIGURE 9 DATA TRANSFER DEVICE

1
|
i
|
|
I
+

SERIAL
INTERFACE

(Block Diagram)

LITHIUM
BATTERIES

.

HEXADECIMAL
KEYPAD

CONTROLLER

!

3

LIQUID CRYSTAL DISPLAY

i 1

STORAGE
FOR THE
DATA

5 4

REAL-TIME
CLOCK
CHIP

|88

FIGURE 10. THE DATA PROCESSING SYSTEM
(Block Diagram)

TxD RxD

SERIAL PORT

HARD DISK

[
v

YDU <
IBM PC UNIT

Y

DOT-MATRIX

PRINTER

FIGURE 11. THE SYSTEM MODEL DIAGRAM

RESEARCHER

PERSON
UNDER
TEST

——— INFORMATION

_- COMMANDS N (RESULTS)

COMMANDS
\ SENSOR

COMMANDS ———

h

TEMPERATURE DATA DATA] A
MONITORING DATE TRANSFER PROCESSING DOT-MATRIX
DEVICE DEVICE SYSTEM PRINTER

DATA/

FIGURE /2, TEMPERATURE MONITORING DEVICE

+5Y
TEMPERATURE
+5V. SENSOR
STATUS
EVENT
l____i.__ P v
DN LORO 0 ™
) WV YV $ o SIGNAL
PLOAD —_ : R % CONDITIONING
TL.ZVV\ANW_J 'L____j__._ A T UNIT
E
MC68HC1 —
p
0
R
T
D RESET
RxD TxD RESET __
CIRCUIT

FIGURE /3, DATA TRANSFER DEVICE

6 PORT A @
5 <
A
P l&—————f HEXADECIMAL
4——-——4— (o J§ W
LiQuip ? KEYBOARD
h DY
CRYSTAL 1C68HCI1 E
DISPLAY P 7
pm—c :
< o B EXTERNAL
3. 1r STRE 3!
Tyl T MEMORY
< P | . STRA
D 2 7
L, RESET T
y
&
TXD RXD
RESET -
TMD or DPS 3

CIRCUIT -L

Volume 2

APPENDICES

TMD structure diagrams and program listing

DTD structure diagrams and program listing

DPS structure diagrams and program listing

The Sofiware Development Environment Details

The Hardware Development Environment Details

Al

B1

C]

D1

El

APPENDIX A

The Temperature Monitor Device

This section contains data fiow diagrams, Jackson
structure diagrams and program listing for the
temperature monitoring device.

AL data flow diagrams,
A2, Jackson structure diagrains and

A.3. program listing,

A.1.

The Temperature Monitor Device

data flow diagrams

DFD LEVEL 0

SENSORS

™D
PROGRAM

PUSH
BUTTONS

LEDs

DFD LEVEL 1

fosH BLTTON
ACtiom

PRIMARY MEMORY

MICRO-
-CONTROLLER
INTERFACES

MUWCRO CONTROLLER 1m
A STAND BY STATE

DFD LEVEL 2

TIMER
SUBSYSTEM

SERIAL

PORT

ADC
SUBSYSTEM

PORT

DFD LEVEL 2

VIJI0g 3wl ¢ 3LoQ

o3

BUFFERS, FLAGS and VARIABLES

DFD LEVEL 2

PUSH
BUTTONS

PUSH BUTToN COMMANTS

CLFARP

LEDs

PROCESSR

DFD LEVEL 3

STATUSR

LEDs

Sov1d Quiy a

FLAGS

DFD LEVEL 3

PROCESSR

SERIAL PUSH
PORT BUTTONS
A
<
P“)v €
T
CO -(ﬂ-aw
T
INPUTR
@oc%
N Ko
S\= R
‘ \oL 25,9%
& Q'O
STATUSR
DLOAD
ADC DATA & EVENT BUFFERS OUTPUTR
SUBSYSTEM
A 4
LEDs SERIAL

PORT

DFD LEVEL 4

PUSH
BUTTONS

&
=
=)
R
&

FLAGS & TIMER COUNTER

Jqulﬂu_w ——

TIMER
SUBSYSTEM

DFD LEVEL 4

TIMER
SUBSYSTEM

\NCREMENTS
o TiME

INITF ENSCi fHece

Fol TIMEO

DFD LEVEL S

ADC
SUBSYSTEM

ANALOG

NOTFUL

g Ev h-w

EVENTR

€ Pac ssem)

NOROOM

PUSH
BUTTONS

DFD LEVEL 5§

o
2]
=
ot
<
[
w

LEDs

S92 Quly

FLAGS

DFD LEVEL 5

OUTPUTR

ENABLE

SCI

SERIAL

PORTY

FLAGS

A.2,

The Temperature Monitor Device

Jackson structure diagrams

TMD PROGRAM STRUCTURE

RESET
ROUTINE
INITI INIT2 READY
[ci | ¢z
sgow © START ©
STATUSR CLEARF
1.2
SECDELAY FCLEAR PROCESSR RETURN

4,5

CONDITIONS:

ClL Selected when the "status’ pushbutton has been pressed.
C2. Selected when the "upload/download' pushbutton has been pressed.
FUNCTIONS:
1. Clear the input capture flag bits.
2. Get back to ready state.
3. Clear the input capture flags.
4, Clear the input capture flags.
5. Branch to READY for another command.
INIT1
1-12

FUNCTIONS:
1. Arrange PORTA for 4 i/ps and for 4 o/ps.
2. Inttialise the input capture system so that it detects positive edge pulses.
3. Arrange PORTD for 8 i/ps.
4. Initialise the ADC Sub system.
5. Delay (100 uSec) to allow the ADC to imtialise itself.
6. Set the latch, on the EVB board, to enable Receiver data (RxD) to appear at

PDQO.
7. Set the SCI Sub system baud rate to 9600.
8. Set the SCI for 8 data bits.
9. Disable the SCI transmitter/ receiver circuits. Disable the 8CI hardware

interrupts.
10. Disable TIMER interrupts to avoid output compare action.
11. Clear all the input capture flags.
12. Return to the RESET routine.

INIT2

ROUTINE
|
GGGG HHHH I RAAR) SETPTRS
cl ca c3 cy 56,7
* # A< x<
1 2 3 4

CONDITIONS:
C1. Clear locations between DATA and BUFFERMAX.
C2. Clear locations between EVENTS and PTREMAX
C3. Clear locations between DATE and DATEMAX.
C4. Clear locations between CLEAR and VARYMAX
FUNCTIONS:
I. Clear the data buffer.
2. Clear the events buffer.
3. Clear the date and time buffer.
4. Clear all the variables and flags that are used by the TMD program.
S. Initialise the data buffer pointer to the start of the buffer.
6. Initialise the events buffer pointer to the start of the buffer.

7. Retumn to the RESET routine.

STATUSR

SECDELAY
1 - 6 7 81 9
FUNCTIONS:
1. Clear all the LED output signals.

S

Test the MONITOR status flag.
IF set, the appropriate LED output bit of the signal has to be set.

3. Test the MEMFULL status flag.
IF set, the appropriate LED output bit of the signal has to be set.
4 Test the BATTERY condition status flag.

IF set, the appropnate LED output bit of the signal has to be set.

5. Test the TRANSFER of serial data status flag.
6. Output the system status to PORTA
7. SECDELAY routine
(Wait for 3 seconds to allow LED system status information to be viewed).
8 Clear all the LED output signals to save power
9. Return to the calling routine.
SECDELAY
c)
&K
1

CONDITIONS:
ClL Loop around redundant code for a 3 second period.
FUNCTION:

1. Cause a 3 second delay.

THE MAIN PROCESSING

PROCESSR
ROUTINE
LOOP 1,2
INPUTR 3
| | | |
READ CCCC DDDD EEEE
4 5.6 7.8 9
ci C2Z c3 C 4
o o [o] O
ANALOGR EVENTR STATUSR FFFF
l
OUTPUTR INIT2
CONDITIONS:
Cl Loop aroundcode untii the DNLOAD command has been detected.

C2. Selected because the READFLAG has been set.

C3. Selected hecause the EVENT flag has been set.

C4. Selected because the DISPSTAT flag has been set

Cs. Selected because the DNLOAD fag has been set.

FUNCTIONS:

1. Set the MONITOR status flag to indicate that the system is logging data.
2. SYNC routine (Input start of test information from the serial port).

3 INPUTR routine Check the input capture flags for push button commands.
4, Check READFLAG. If set, call the STATUSR routine.

5. Check the EVENT flag. If set, call the EVENTR routine.

6. Clear the EVENT flag.

7. Check the DISPSTAT flag. If set, call the STATUSR routine.

8. Clear the DISPSTAT flag.

9. Check the DNLOAD flag. If set, clear the MONITOR flag,

call {he OUTPUT pufovie

GETCHAR
ROUTINE
1,2,3
ct
warr ¥
4
I
I | | I
HASH BADLO BADHI GOOD

5 6 7 812
CONDITIONS:
Cl. Characters are accepted from the SCI untill an "end of block marker' is

found (#).
C2. Selected when "end of block marker' is found.
C3. Selected when the data mput from the SCI has a value less than 30h (not

BCD).
C4. Selected when the data input from the SCI has a value greater than 3%h

(not BCD).
Cs. Selected when BCD value are found.
FUNCTIONS:
I Fetch the next character from the SCT data register.
2. If the character is an "asterisk’ then reset the ONEMIN counter.
3. Load the index register with the address of the date and time buffer.
4. Wait for a SCI input.
5. Clear the TRANSFER flag.
6. Return to WAIT for another character.
7. Return to WAIT for another character.
8. Store character in DATEBUF.
9. Increment the date buffer pointer.
10. If this character does not fill the data buffer, then return to WAIT.
11 If the data buffer was full and the character is not an "#' then, set all the

status flags.
12. Retumn to the SYNC routine.

INPUTR

ROUTINE
l I T il
FTO FEVENT FSTATUS FDLOAD
1 2-6 7,8 9,10, 11

FUNCTIONS:

1. Check for a single TOF. If set, increment the TENMIN counter,
Is TENMIN counter = ten minute value. If yes, then set the READFLAG to
inform the system that the next temperature reading is due.
Then reset the TENMIN counter register.

Store the cleared TENMIN count value

Clear the TOF flag register.

Test for an EVENT command

[f an event 1s asked for then wait {ur the push button's anti-bounce to finmsh.
Set the EVENT flag,

<RV NN

~

Test fora STATUS command

8. If a view of the system status is asked for, then set DISPSTAT flag to inform the

system.

9 Test fora DNLOAD command.

10. Set the DNLOAD flag to inform the system that it has to down load 1ts recorded

data to the DTD.
11. Retumn to the calling program (PROCESSR).

ANALOG

ROUTINE
1-4
ci ca
o [}
BUFFULL NOTFULL
5-9 10-16

CONDITIONS:
Cl. Selected if the data buffer is full.
C2. Selected if the data buffer is not full.
FUNCTIONS:
I Set the ADC Sub system for a multi-channel single-scan operation.
2. Load the digitised temperature reading. Store it in TEMP1.
3. Load the digitised battery reading. Store it in TEMP2.
4 Check for a BUFFER full condition.

5. Set the MEMFULL flag to inform the system that the data BUFFER 1s full.
6. Check the battery voltage (TEMP2) for a low condition.

7. If low, set the BATTERY status flag.

8. Clear the READFLAG status flag.

9. Return to the PROCESSR routine.

10. Store data in BUFFER and TEMP3

1. Increment BUFPTR.

12, Increment the number of temperature readings counter (AMOUNT).
13. Check the battery voltage (TEMP2) for a low condition.

14. If low, set the BATTERY status flag.

15. Clear the READFLAG status flag.

16. Return to the PROCESSR routine.

ROUTINE
1.2
cl c2
o o
NOROOM ROOM
3,4 5-14
CONDITIONS:
Cl. Selected if EVENTB is full.
C2. Selected if EVENTB is not full.
FUNCTIONS:
1. Load the index register with EVENTPTR.
2. Check EVENTPTR for its maximum value
3. delay for the anti-bounce of the pushbutton
4 Return to the PROCESSR routine
5. Record the timc the event happened (with respect to the start of the test
6. Check to see if the events buffer is full,
7. increment EVENTPTR
8 If not full, store the EVENTPTR value.
9. Delay for the anti-bounce of the pushbutton.
10. Return to the PROCESSR routine.
11 Else (EVENTB full) set the EVENTFUL flag.
12. Store the EVENTPTR value.
13. Delay for the anti-bounce of the pushbutton.
14. Return to the PROCESSR routine.

EVENTR

STATUSR

SECDELAY

1-6 7 8,9
FUNCTIONS:
1. Clear all the LED output signals.
2. Test the MONITOR status flag.

[F set, the appropriate LED autput bit of the signal has to be set.
3. Test the MEMFULL status flag.

[F set, the appropriate LED output bit of the signal has to be set.
4, Test the BATTERY condition status flag.

IF set, the appropnate LED output bit of the signal has 1o be set.

Test the TRANSFER of serial data status flag.

Output the system status to PORTA

7. SECDELAY routine

(Wait for 3 seconds to allow LED system status information to be viewed).
Clear all the LED output signals to save power.

9. Retumn to the calling routine

> v

@

SECDELAY

c
i

CONDITIONS:
Cl. Loop around redundant code for a 3 second period.
FUNCTION:

I. Cause a 3 second delay.

SYNC
ROUTINE

1-12

FUNCTIONS:

1. Set the TRANSFER status flag.

2. Reset the ONEMIN timcout counter

3. Clear the TOF flag register

4. Enable the SCI recerver circunt

5. Check for a serial input

6. If the SCl status register 1s set call GEFTCHAR routine

7. If the SCT status register 15 not set Check TOF flag

8 [f TOF flag 1s set. (1r Clear TOF flag from the TFlg2 register,

9 (1) Increment the ONEMIN counter,

10. (i) 1s ONEMIN - timeout value?

11 If a ONEMIN timeout has ocurred then, set all the status flags to wam the
system
that a bad senal transfer has taken place

12. Return to the calling program.

OUTPUTR

ROUTINE
1-11

FUNCTIONS:
1. Set the data TRANSFER flag,
2. Fnable the SCT transmitter.
3. Clear the input capture flags.
4, Output the “start of block marker' (*)
5 Output the device identification (HB)
6. Output the device identification (LB
7. Output the date and time values
3 Output the data
9 Output the "end of data marker' (@)
10. QOutput the time of events values.

1. Return to the PROCESSR routine.

A.3.

The Temperature Monitor Device

program listing

27

BTEXT
TMD.ASM (24-4-93)
The Temperature Monitoring Device (TMD) control program.

ETEXT

ORG $C000 J¥*¥*¥% STORAGE BUFFERS *#**
DATEBUF RMB 14 ; ASCII date, ime and end character
BUFFER RMB 16 :DATA buffer
EVENTB RMB 16 ; EVENTS buffer; 16-bit elapsed times
BRCDBUF RMB 6 . day, month, year, hour, minutes and seconds

ORG $0000 F* POINTERS, VARIABLES & FLAGS **
BUFFPTR FDB BUFFER . pointer used to store data
EVENTPTR FDB EVENTB . pointer used to store time of events
TENMIN FDB $0000 . 10 minute counter value
ONEMIN FDB $0000 . | minute counter value
TEMPI1 FCB S00 . temporary storage for ADC purposes
TEMP2 FCB So00
AMOUNT FDI3 S0000 . number of data items stored
UPLOAD FCB $00 . command flags
DNLOAD FCB S00
EVENT FCB S00
DISPSTAT FCB $00
MONITOR FCB $00 . status flags
MEMFULL FCB %00
BATTERY FCB $00
TRANSFER FCB $00
EVENTFUL FCB %00
READFLAG FCB 300 . flag set every 10 minutes; read data
TEMP3 FCB %00 ;coded temperature value

TEMP4 FCB 500 : spare byte

ORG $C600
IDENT FDB
DATA FDB
EVENTS FDB
DATE FDB
CLEAR FDB

BUFFMAX FDB
PTREMAX FDB
DATEMAX FDB
VARYMAX FDB

BEGCODE FCB
ENDCODE FCB

TILIMIT FDB
TIMEOUT FDB

ADCDELAY FCB

BATLOW FCB

ORG 3C700

28

Jieek FIXED PARAMETERS ##ok*

$5A5A

BUFFER
EVENTB
DATEBUF
TENMIN

BUFFER+16
EVENTB+16
DATEBUF-13
TENMIN+20

S2A
823

S0100
S0401:

STF

SEO

LOOKUP RMB 256

; device identification

. Start addresses of buffers used by
; the TMD control program.

. start address of variables and flags

L area
. end of buffer values

. start and end of block markers

. timeout values. number of TOFs

. time for ADC subsystem to warm
.up

. fow voltage warming value(S.0.T))

TMSK2
TFLG2
TCNT

OPTION
ADCTL
ADRI
ADR2

EQU
EQU
EQU

EQU
EQU
EQU
EQU

29

* *++ THE TIMER SUB SYSTEM REGISTERS ***

$1024
$1025
$100E

* *#* THE ADC SUB SYSTEM REGISTERS ***

$1039
$1030
$1031
$1032

¥ *** THE INPUT COMMAND / OUTPUT STATUS REGISTERS ***

PACTL
TCTLI
TCTL2
TMSKI1
TFLGI

BAUD
SCCR1
SCCR2
SCSR
SCDR

PORTA
PORTB
PORTC
PORTD
PORTE

DDRD

EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU

EQU

31026
$1020
$1021
$1022
$1023

*REECTHE SCHSUB SYSTEM REGISTERS ***

$102B
3102C
102D
S102E
$102F

* *xx* THE PARRALEL PORT REGISTERS ***

$1000
$1004
$1003
$1008
$100A

$1009

ORG $C200

RESET NOP
JSR INITI
NOP
JSR INIT2
NOP

READY LDAB TFLG!
BITB #5302
BEQ AAAA
NOP

SHOW JSR STATUSR
NOP

CLEARF LDAA #SFF
STAA TFLGI
NOP
BRA READY
NOP

AAAA LDAB TFLGI
BITB #5301
BEQ BBBB
NOP

START JSR SECDLAY
NOP

FCLEAR LDAA sSFF
STAA TFLGI
NOP
JSR PROCESSR
NOP

RETURN LDAA #SFF
STAA TFLGI
NOP

BBBB BRA READY

30

, ¥*%% START OF TMD PROGARM ****

; cold starting place of program
; initialise microcontroller sub systems

. initialise pointers and variables

; check for show_status command

. show_status of system routine

. clear input capture flags

. check for upload date/time command

. push button anti-bounce solution

. clear input capture flags

. data logging routine

. clear input capture flags

INIT1

DLAY

31

##¥xx INITIALISE MICROCONTROLLER SUB SYSTEMS ***¥x

NOP
LDAB
STAB
NOP
LDAB
STAB
NOP
LDAB
STAB
NOP
LDAB
ANDB
ORAB
STAB
NOP
CLRA
INCA
CMPA
BNE
NOP
LDAB
STAB
NOP
LDARB
STAB
NOP
LDAB
STAB
NOP
LDAB
ANDB
STAB
NOP

#380
PACTL

#3855
TCTL2

#3500
DDRD

OPTION
HSBF
#3580

OPT.ON

ADCDELAY
DLAY

4SFF
$4000

#3530
BAUD

#3500
SCCRI1

SCCR2
#3503
SCCR2

CLR TMSKI
CLR TCTLI

LDAB
STAB
NOP
RTS

#3FF
TFLGI

; arrange PORTA for 4 i/ps, 4 o/ps

; initialise input capture for +ve edges

. arrange PORTD for 8 i/ps

. imtialise the ADC sub system

. 100 uSec delay

=878

. set Jatch to enable RxD to PDO

- 9600 baud rate

. set SCI for 8 data bits

. disable SCI transmitter, receiver
. and interrupts

; disable TIMER interrupts

.10 avoid OUTPUT COMPARE action

; clear INPUT CAPTURE flag bits

INIT2

GGGG

HHHH

1

JJI

32

xkx INITIALISE SYSTEM POINTERS AND VARIABLES *****

NOP
LDX
CLR
INX

CPX
BLS

NOP
LDX
CLR
INX

CPX
BLS

NOP
LDX
CLR
INX

CPX
BLS

NOP
LDX
CLR
INX

CPX
BLS

NOP
LDX
STX
LDX
STX
NOP
RTS

DATA
00,X

BUFFMAX
GGGG

EVENTS
00.X

PTREMAX
HHHH

DATE
00,X

DATEMAX
M1l

CLEAR
00.X

VARYMAX
3

#BUFFER
BUFFPTR
#EVENTB
EVENTPTR

; clear data buffer

. clear events buffer

. clear date and time bufter

. clear all the vanables and Nags

. tntialise pointers o butters

33

xxex SHOW STATUS OF SYSTEM ROUTINE ##+*

STATUSR NOP

CLRA
TST MONITOR ; test and set monitor status
BPL KKKK
ORAA #5310
KKKK NOP
TST MEMrULL ; test and set buffer memory status
BPL LLLL
ORAA #3520
LLLL NOP
TST BATTERY . test and set battery condition status
BPL MMMM
ORAA #3540
MMMM NOP
TST TRANSFER . test and set serial transfer status
BPL NNNN
ORAA #3580
NNNN NOP
STAA PORTA output the system status to PORTA
NOP
ISR SECDLAY . output status for 3 seconds
NOP
CLRA
STAA PORTA . tlear status output bits at PORTA
NOP
RTS

J¥kxE 3 SECOND DELAY ROUTINE *x*x*

SECDLAY NOP
LDAA #510
OUTLOOP 1.DX #SFFTTF
INLOOP DEX
BNE INLOOP
DECA
BNE OUTLOOP
NOP
RTS -

34

¥¥xx DATA LOGGING ROUTINE ##****

PROCESSR NOP

LOOP

READ

ccccC

DDDD

ELEL

FFFF

JSR SYNCR
NOP
LDAA #3FF

STAA MONITOR
NOP

JSR INPUTR

NOP

LDAB READFLAG
BPL CCCC

NOP

JSR ANALOGR
NOP

LDAB EVENT
BPL DDDD
NOP

JSR EVENTR
NOP

LDAA #3500
STAA EVENT
NOP

LDAB DISPSTAT
BPL EEEE
NOP

JSR STATUSR
NOP

LDAA =500
STAA DISPSTAT
NOP

LDAB DNLOAD

BMI FFFF
NOP

BRA LOOP
NOP

LDAA #$00

STAA MONITOR
NOP

JSR OUTPUTR
NOP
JSRINIT2
NOP

RTS

; upload date and time routine

. set monitoring data flag

. check for commands and 10 min timeout

. ready to read a new piece of data?

. has an event been signalled?

. clear event marker tlag

. has a show staus command been 1ssued?

. clear display status flag

. has a down load command been 1ssued?

. clear monitoring data flag

35

##%3+ UPLOAD DATE, TIME AND START INFORMATION ***#*

SYNCR NOP
INITF LDAA #3FF , set transferring date/time flag
STAA TRANSFER
NOP
LDX #%$0000 . reset 1 minute timeout counter
STX ONEMIN
LDAA #5FF . clear TOF flag register
STAA TFLG2
NOP
ENSCI LDAB #%04 . enable SCI receiver
STAB SCCR2
NOP
HHH LDAB SCSR . wait for a scrial input
ANDRB #%20
BNE GETCHAR
TST TFLG2 . has a TOF occurred
BPL HHH
[LDAA #SFF
STAA TFLG2 - clear TOF from TIMER flag register
LDY ONEMIN L ncrement timeout counter
INY
STY ONEMIN
CPY TIMEOUT . has a timeout occurred
BLS HHH
SETFLAGS [LDAA #SFF Csetall OUTPLET COMPARE flag bits

STAA MONITOR
STAA MEMFULL
STAA BATTERY
STAA TRANSFER
NOP

RTS

GETCHAR NOP

LDAB SCDR . receive first character

CMPB #%2A . 1s it the start of block marker "*
BNE HHH

NOP

LDY #$0000 . reset 1 minute timeout counter

STY ONEMIN

LDX #DATEBUF . address of date and time buffer

NOP

WAIT

HASH

BADLO

BADHI

GOOD

BACK

LDAB SCSR
ANDB #$20
BEQ WAIT
NOP
LDAA SCDR
CMPA #$23
BEQ BACK
CMPA #330
BLT WAIT
CMPA #$39
BHI WAIT
NOP
STAA 00,X
INX
CPX DATEMAX
BLT WAIT
NOP

JMP SETFLAGS
NOP

LDAA #800
STAA TRANSFER
NQOP

RTS

36

: end of block marker "#'
; ASCIT BCD - racter '0'

: ASC1I1 BCD character "1’

. no end of block marker

“clear transferring date/time flag

37

*##%x CHECK P.B. COMMANDS AND 10 MINUTE TIMEQUT *¥**

INPUTR NOP

FTO TST TFLG2
BPL NOTIME
LDX TENMIN
INX
CPX TILIMIT
BLT FEVENT
LDAA #SFF
STAA READFLAG
LDX #3%0000

FEVENT STX TENMIN
LDAB #$80
STAB TFLG2

NOTIME NOP

LDAB TFLGI
BITB #304

BEQ FSTATUS
NOP

JSR SECDLAY
NOP

LDAA #SFF
STAA EVENT
STAA TFLG!

FSTATUS NOP

LDAB TrLGI
BITB =302

BEQ FDLOAD
LLDAA #$FF
STAA DISPSTAT
STAA TFLGI

rDLOAD NOP

LDAB TFLGI
BITB 4301
BEQ WWWW
LDAA HSFF
STAA DNLOAD
STAA TFLGI

WWWW NOP

RTS

; check for a timer overflow (TOF)

. set time to read a temperature flag
. reset 10 minute counter

. clear TOF flag

. test {or an event command

. push button anti-bounce solution

. set the appropnate flag

. test for a status commuand

. set the appropnate flag

. test for an down load command

. set the appropriate flag

38

»exxx READ NEXT PIECE OF DATA FROM THE ADC *#**#

ANALOGR NOP

LDAA #4810
STAA ADCTL
NOP

0000 TST ADCTL
BPL 0000
LDAA ADRI
LDAB ADR2
STAB TEMP2
LDY #LOOKUP
STAA TEMP]
BTEXT

PPPP BEQ QQQO
INY
DECA
BRA PPPP
NOP

QOQQ LDAA 00
ETEXT
LDX BUFFPIR
CPX BUFFMAX
BNEE NOTFULL

BUFFULL. LDAA =SEF
STAA MEMFULL
BRA MISSOUT

NOTFUIL STAA 00.X
STAA TEMP3
INX
STX BUFFPTR
NOP
LDX AMOUNT
INX
STX AMOUNT
NOP

MISSOUT CMPB BATLOW
BHI BATOK
LDAA HSFF
STAA BATTERY
NOP

BATOK CLR READFLAG
NOP

RTS

; select multi-channel single scan
; ADR1 - ADR4

. digitised temperaiure reading
. digitised battery voltage
. current battery voltage reading

. current temperature reading

IX register 1s used as a pointer
Jinto the LOOKUP able

~the appropriate coded Celsius value

C1s hattor tuld

set butfer tull flag (MEMEUTL

Cstore coded vatue i daia bufier
. store coded value in TEMP3

. pointer to next buffer location

. number of temperature readings counter

. is battery voltage alright

. set battery status low flag

. job done

39

*4xxx RECORD TIME OF EVENT **#¥*

EVENTR NOP
LDX EVENTPTR ; pointer used to record event times
CPX PTREMAX
BHS NOROOM . 1s events buffer full
NOP
ROOM LDAA AMOUNT ; high byte
LDAB AMOUNT+I . low byte
STAA 00X
INX
STAB 00X
INX
CPX PTREMAX . 18 events bufter full
BNE SSSS
NOP
LDAA #SFF . set events buffer full flag (EVENTFUL)
STAA EVENTFUL
SSSS NOP

STX EVENTPTR
NOROOM NOP
JSR SECDLAY . push buiton anti-bounce solution
NOP
RTS

40

*rkkkx DOWN LOAD DATA TO SERIAL PORT *%%x*

OUTPUTR NOP
LDAA #8FF ; set transferring data flag
STAA TRANSFER
NOP
LDAB #%08 , enable transmitter
STAB SCCR2
NOP
LDAA #3FF ; clear INPUT CAPTURE flag register
STAA TFLGI
NOP
AAA LDAB SCSR . ready to output
ANDB #$%80
BEQ AAA
LDAA #$2A . output start of block marker
STAA SCDR
NOP
BBB LDAB SCSR . ready to output
ANDB #5380
BEQ BBB
LDAA IDENT - output device identification; high bvte
STAA SCDR
NOP
cCcC LDAB SCSR . ready to output
ANDB 4580
BEQ CCC
LDAA IDENT-I . output device identification: high bvte
STAA SCDR
NOP
LDX #DATEBUF . output date and time
DDD LLDAB SCSR . ready to output
ANDB #380
BEQ DDD
LDAA 00X . next byte
STAA SCDR
INX
CPX DATEMAX
BLS DDD . last byte?
NOP
I.DX #BUFFER . output data

EEE

FFF

GGG

END

LDAB SCSR
ANDB #3$80
BEQ EEE
LDAA 00X
STAA SCDR
INX

CPX BUFFMAX
BLS EEE

NOP

LDX #EVENTB
LDAB SCSR
ANDB #%80
BEQ FFF

LDAA 00X
STAA SCDR
INX

CPX PTREMAX

BLS FFF
NOP

LDAB SCSR
ANDB #§80
BEQ GGG
LDAA #3523
STAA SCDR
NOP

LDAA #S00
STAA
NOP
RTS

TRANSFLER

4]

; ready to output

; next byte

; last byte?

; output events buffer contents

. ready to output

. next byte

. last byte?

.end of block marker

. clear transterring data tlag

APPENDIX B

The Data Transfer Device

This section contains data flow diagrams, Jackson
structure diagrams and program listing for the data
transfer device.

B.i. data fiow diagrams,

B.2. Jackson structure diagrams and

B.3. program listing.

B.1.

The Data Transfer Device

data flow diagrams

DFD LEVEL 0

SERIAL PORT

LCD MODULE

TIMER
SUBSYSTEM

PROGRAM

Store |RETRIEVE

ReguiTs

PRIMARY
MEMORY

HEX KEYPAD

DFD LEVEL 1

\

@ COMMANDR

INIT1 INIT2
£
& d 5
g ' ‘ :
) , T g
o e
3 > 3
g) 3
H a \? fZﬂ
v 9 Q\%"
v A 7 U <
o w % 2 A
vi v A X
J Jd 5 o
< g ST = .
= + 0 &
2 2 N\ o\
Q A
Y K o\0 i
B
v
SERIAL LCD TIMER o\ HEX
PORT MODULE SUBSYSTEM h%, KEYPAD
COUNTERS
BUFFERS

VARIABLES

DFD LEVEL 2

COMMANDR

1IPUT HEX
—~craoee=] KEYPAD

MENL2R

LCD
MODULE

DFD LEVEL 3

COUNTERS
BUFFERS
VARIABLES

HEX

KEYPAD

i PUT
W

STROKES

DLAY2 oun2

LERe Timen.
FLac

¢C

TIMER
SUBSYSTEM

DFD LEVEL 3

MOoOUE CURSoRQR To -Tuwe

TLC
DISPLAY o LCD
DISPLAYR)re=——=%1 MODULE
HEX 18Py
KEYPAD [Gevoro—y
.-
0‘0@
c/«“
EXIT1
o Disteay | swros 3 |
v ofF DATA ?. f
‘91,0‘% L4
8
A al3
@Q& 4 0
[c
e LCD %

MODULE

DFD LEVEL 3

MENU2R

TLC

MOUE CURScR To T

l

DISPLAYR }— 'gp LCD
CUoiecs MODULE
HEX , |
KEYPAD [pol g
EYSTQQK
\ e/
G J
O, Q,
1D &
UPLOADR DNLOADR EXIT2
5 - £ ‘?0 S g 2‘
al s % ?|x
o512 * AR
- % 34
. 315
TEMPERATURE %
MONITORING v

DEVICE

DFD LEVEL 3

MOVE (LRSoOR To TLC

TLC
A 4
DISPLAYR 2ftys,. LCD
CHoiceelS MODULE
HEX Inp
KEYPAD > v
EVSTQO“ES
\
K>/ Y
1*) Ry
e L}0
DATER EXIT3
) —~
v} | q mg ﬂ o) » Ix
B < 33 2|
XN) A3, . \ 3
TIME DATA 210
DTD HCl11 2
SYSTIEM DATE BUFFER
BUFFER V

DFD LEVEL 4

LCD
MODULE

3 ¢
X

current TIME and DATE

TIMERR 9
R
A
T R
G
/e Ne
7 X
']
&/ 2 Ve
19
DISPDATA
LWimnT Fo
- Y-8 1 PUT

INPUTR
EXITT

3

3

3

1

VA

C

<

DFD LEVEL 4

STATUSR

DISPM12

-ﬁme “To VIEW
| status of TEST
7 TETAWLS

MODULE

IDENTS

A]

IDENT, TIME & DATE
no. of DATA, no. of EVENTS

DFD LEVEL 4

DATERR
R
O
G-)
o“'?o >
(5
K7 by v@ Jé/ 00/ .
2/ ”QV < J & S,
> <, @"9 /o N3
fa v

TLC
LCD
MODULE
> Z 4
\ & ¢
(32 (/é 0\ Q
AL ov“’\ 5 Ul'
EXITD FORWARD BACKWARD BEGIN

/|

i i L5
° ’ ° o

DFD LEVEL 4

LCD
MODULE

TMD HC11
SYSTEM

STARTR

DisoAY MESSAGE

DISPM21

SERIAL
PORT

DFD LEVEL 4

UPLOADR
C
Xi
v, 09
/\\I < d
R
" %\a
iy a \
V]
/ v >\ -
o/ v 2\L,
& 3 d S
uJ X 2,
Y, :j 9{ :
03 b \
< A
LCD
MODULE
TMD HC11 SERIAL
SYSTEM PORT

DFD LEVEL 4

DNLOADR

MESSAGE

DiIsSPLAay

DISPM23

LCD
MODULE

IBM PC < SERIAL
SYSTEM PGRT

DFD LEVEL 4

LCD CHOICE

MODULE

| svstem

DTD HC11

SYSTEM MENU3R

DFD LEVEL 4

Q

0 47‘(\{? o,“ KEYPAD
3 RN §%) -
v 9\ c 9
7 476‘ 1’66 Qﬂ_ g_‘z
d s ﬁ

, s, |
?‘(\ ¥ <
INPUTR

LCD
MODULE

KBDTIME KBDDATE

TIME and DATE buffer

DFD LEVEL 4

Q
&
g 4, S,
\? NS >
N RN
g-' SN\ N
Q, VQ Q;< 6\,9
&) NG

LCD
MODULE

q | Sy

DATA buffer

INPUTR

rReETLUAN To
merso

B.2.

The Data Transfer Device

Jackson structure diagrams

DTD PROGRAM STRUCTURE

MAIN
ROUTINE
INITIR INIT2R INIT3R INIT4R DISPLAYR COMMANDR
(MENU)
INITIR
1,2,3. 4
FUNCTIONS:
1. Enable receive data signal (RxD) to be latched to pin PDO.
2 Set baud rate of SCI subsystem to 9600.
3. Set SCI subsystem for & data bits.
4. Disable SCI transmitter and SCI receiver
INIT3R
1,2
FUNCTIONS:
1. Clear all input capture flags.

2. Program input capture interface to detect positive edges.

INIT2R

DELAY LOOP BACK
i c c3
3 # <
1 2,3,4,1 6,7,8 1
FUNCTIONS:
1. Loop around redundant code 36 times to causc a 40 uSec. delay.
2. Fetch next 8-bit command
3. Fetch time value for delay routine.
4. OUTPUT subroutine (Output an 8-bit LCD command)
5. Delay to allow L.LCD module to process the command.
6. Fetch next 4-bit command.
7. Fetch time value for delay routine.
8. OUTPUT?2 subrouting (Output a 4-bit LCD command).
9. Delay to altow LCD module to process tiie command.
CONDITIONS:
Cl. Loop untill parameter passed to DELAY routine, to cause a 16 mSec
delay, 1s decremented to zero.

C2. Repeat untill four 8-bit commands sent to LCD module.
C3. Repeat untill four 4-bit commands sent to LCD module.

INIT4R

ct ca c3
cL1 ¥ cLz ¥ cL3 ¥
1 2 3
FUNCTIONS:
1. Clear counter values.
2. Store space characters in HEXBUF.
3 Clear date, data and events buffers
CONDITIONS:
Cl. Locations cleared untill (HEXBUF - DATA) cleared .
2 Store space characters untill 4 locations filled.

C3. Locations cleared untill (TIME - DATEBUF) cleared.

INPUTR

CFLAGS WAIT DLAY2
]
1 ¥ 3,4
2
FUNCTIONS:
l. Clear input capture flags
2. receive an input caputre signal
3. Read KBD input value.
4, Store KBD input value at DATA
5. Clear input capture flag.
CONDITIONS:
Cl. Loop untill the input capture flag (IC|) has been set: by a key press.

ouT2

CONVERT

1,2,3,4,5
FUNCTIONS:
1. Fetch KBD character from DATA.
2. Distinguish between characters 0 - 9 and A - F.
3. Add the value 7 to the KBD character if A - F.
4, Convert KBD character to an ASCH character.
5. Store ASCII character in HEXBUF.

TLC
6,7.8
FUNCTIONS:
6. Load the screen address for the top lett hand comer.
7. OUTPUT?2 subroutine (Output a new screen address command).
8. Delay to allow L.LCD module to process command
CURSOR
9,10, 11
FUNCTIONS:
9. Parameter for new screen address passed via accA, and stored in
TEMPI.
10. OUTPUT?2 subroutine (Output a new cursor position command).

11 Delay to allow LCD module to process command.

DISPLAYR

C
e

1,2,3

FUNCTIONS:
I. Fetch the next ASCI! character
2. SCREEN subroutine (Send character to LCD screen),
3 Delay (40 uSec) for L.CD module to process character
CONDITIONS:
Cl1 Loop untill last character ($1 detected

SHOW

4.5.6.7,.8.9

FUNCTIONS:
4. Load the fixed screen address into a LCD command
s

QOutput new screen address command to the LCD module.
Delay (40 uSec.) for LCD module to “rocess character
Fetch the last character input from KBD.

Send the character to the LCD screen.

Delay (40 uSec.) for L.CD module to process character.

0 20 O

WRITE
ROUTINE

1,2,3

FUNCTIONS:

2

W

Character to be displayed passed as a parameter via accA, and stored in
TEMPL1.

Send character to LCD screen.

Delay to allow LCD module to process character.

WRITEHEX

12,3456

FUNCTIONS:

‘l\.)

o W

Value to be displayed passed via accA, and stored in TEMP2.
Convert upper 4-bits of value to be displaved to an 33
ASClicharacter

Write character to screen.

Extract lower 4-bits of parameter

Convert to an ASCII character.

Write character to screen.

COMMANDR

ROUTINE
INPUTR CHOICE
1
Cl CL C3 cC Y4
MENUIR © MENU2R © MENU3R © EXIT ©
2

FUNCTIONS:

1. INPUTR subroutine (Input the menu choice).

2. The exit to main routine detected. (NB, for test purposes only)

CONDITIONS:

ClL Key number
C2. Key number
Cs. Key number
C4. Key number °

1" pressed on the hexadecimal kevpad.
2" pressed on the hexadecimal keypad.
'3' pressed on the hexadecimal keypad.

E' pressed on the hexadecimal keypad.

MENUIR

ROUTINE
TLC DISPLAYR INPUTR CHOICE!
1 2 3
cl cZ C3 X
TIMERR © STATUSR ° DATERR® EXTT1 ©

4,5,6
FUNCTIONS:

TLC subroutine (Move cursor to TLC of screen).

DISPLAYR subroutine (Display MEMU1 on LCD screen).

INPUTR subroutine (Input choice of information to be displaved, or choose
to exit).

S =

4. TLC subroutine (Move cursor to TLC of screen).
DISPLAYR subroutine (Display MEMU on L.CD screen)
6. Return to COMMANDR routine.

hdl

CONDITIONS:

Cl. Key number "1' pressed on the hexadecimal keypad.
C2. Key number "2' pressed on the hexadecimal keypad.
C3. Key number '3' pressed on the hexadecimal keypad.

C4. Key number 'E' pressed on the hexadecimal keypad.

MENU2R

ROUTINE
TLC DISPLAYR INPUTR CHOICE2
1 2 3
cl cz c3 C 4
STARTR © UPLOADR DNLOADR® —

FUNCTIONS:

TLC subroutine (Move cursor to TLC of screen).

DISPLAYR subroutine (Display MEMUT on L.CD) screen)

INPUTR subroutine (Input choice of information tu be displayed. or choose
to exit).

LI l\)—-‘

4. TLC subroutine (Move cursor to TLC of screen)
DISPLAYR subroutine (Display MEMU on LCD screen).
6. Returmn to COMMANDR routine.

hd

CONDITIONS:

Cl. Key number "1' pressed on the hexadecimal keypad.
C2. Key number "2 pressed on the hexadecimal keypad.
C3. Key number "3' pressed on the hexadecimal keypad.

C4. Key number 'E' pressed on the hexadecimal keypad.

MENU3R

ROUTINE
TLC DISPLAYR INPUTR CHOICE3
1 2 3
Ccl CZ C3 cy
o o (o))
RESETR DATER CLEARR EXIT3

FUNCTIONS:

TLC subroutine (Move cursor to TLC of screen)

1.

2. DISPLAYR subroutine (Display MEMU1 on L.CD screen).

3. INPUTR subroutine (Input choice of information to be displayed, or choose
to exit).

4. TLC subroutine (Move cursor to TLC o1 screen).

5. DISPLAYR subroutine (Display MEMU on LCD screen).

6. Return to COMMANDR routine.

CONDITIONS:

Cl. Key number "1' pressed on the hexadecimal keypad.

C2. Key number "2' pressed on the hexadecimal keypad.

C3. Key number "3° pressed on the hexadecimal keypad.

C4. Key number 'E' pressed on the hexadecimal keypad.

TIMERR

TLC DISPLAYR CURSOR SEEALLI1
1 2 3
TIMES DATES EXITT
4,5.6.7, 8 9,10,11,12,13 14, 15,16
FUNCTIONS:
1. TLC subroutine (Move cursor to the TLC of the screen).
2. DISPLAYR subroutine (Display MSG1 1 on LCD screen).
3 CURSOR subroutine (Move cursor to a new position).
4. Display day.
5. space.
6. Display month.
7. space.
8 Display vear.
9. Display hours.
10. space.
11 Display minutes.
12. space.
13. Display seconds.
14. Input character from KBD.
15. Check for exit key.
16. Return to MENU L.

STATUSR

ROUTINE
TLC DISPLAYR SEEALL2
1 2
IDENTS WHEN NODS NOES DLAY4
3,4,5,6,7 8,9, 10 11,12,13 14, 15, 16 17
FUNCTIONS:
1. TLC subroutine (Move cursor to TLC of screen)
2. DISPLAYR subroutine (Display MSG1-2 on [.CD screen)
3. CURSOR subroutine (Move cursor to a new position)
4. Get first byte of IDENT
5. WRITE subroutine (Display byte).
6. Getsecond byte of IDENT.
7. WRITE subroutine (Display byte).
8. CURSOR subroutine (Move cursor to a new position)
9. Get date information.
10. WRITE subroutine (Display date).
11. CURSOR subroutine (Move cursor to a new position).
[2. Get the number of data items
13. WRITE subroutine (Display the number of data items).
14. Move cursor to a new position.
15. Get the number of events recorded.
16. WRITE subroutine (Display the number of events recorded).
17. Delay time to view status information.

DUMP

l

|

l |

CURSOR VIEWLINE CURSOR VIEWLINE
1 2 3 4
FUNCTIONS:
1. CURSOR subroutine (Move cursor 10 a new position).
2. VIEWLINE subroutine (Viewline of data).
3. CURSOR subroutine (Move cursor to 2 new position.
4, VIEWLINE subroutine (Viewline of data).
VIEWLINE
C1
1,2,3
CONDITIONS:
Cl. Display 5 bytes of data per line.
FUNCTIONS:
1. Fetch next byte of data.
2. WRITEHEX subroutine (Write two hexadecimal characters).
3. WRITE subroutine (Write a space character).

STARTR

CURSOR DISPLAYR

(T(_C)

1 2 3,4,5,6,7,8
FUNCTIONS:
I. CURSOR subroutine (Move cursor to the TLC of the screen).
2. DISPLAYR subroutine (Iisplay MSG2 1 on the LCD screen).
3. Enable SCI transmutter.
4. Output a start of block marker (*).
5. Output a start of of test date and time
6. Output the end of block marker (#).
7 Delay to indicate routine has been entered.
8. Return to MENU2 routine.

UPLOAD

TLC DISPLAYR
1 2 3-18

FUNCTIONS:
1. Move cursorto TLC of the LCD screen.
2. Display MSG2 2 on the [.CD screen
3. Clear counter values ready for usc
4. Enable SCI recerver.
5. Wait and detect start of block marker (*)
6. Position cursor.
7. Input IDENT from senal port.
8. Write IDENT to LCD screen.
9. Input IDENT+1 from senal port.
10. Write IDENT+1 to LCD screen.
11 Position cursor.
12. Input date from senal port.
13. Write date to LCD screen.
14, Input and store data
15. Detect end of data marker (@)
16. Input and store events.
17. Detect end of block marker (#).
18. Delay for testing program.
19. Return to MENU?2 routine.

DNLOAD

TLC DISPLAYR
1 2 3-19
FUNCTIONS:

i. TLC subroutine (Move cursor to the TLC of the screen).

(RS

DISPLAYR subroutine (Display MSG2 3 on the 1.CD screen).

Enable the SCI transmutter.

Output a start of block marker (*)

Move the cursor to a new position

Output IDENT to the serial port.

Write IDENT to the LCD screen.

Move the cursor to a new position.

Output IDENT+1 to the serial port.

Write IDENT+1 to the LCD screen.

Move the cursor to a new position.

Output the date and time to the serial port.
Write the date and time to the LCD screen.
Output the stored data to the senal port.
Qutput an end of data marker (@).

Output the recorded event times.

Output an end of block marker (#).

Delay to indicate that this routine has been entered.
Return to the MENU?2 routine.

NN N

— —
—_—

J

!

AR

BLANK

ROUTINE
TLC DISPLAYR
1 2 3-
FUNCTIONS:

o

(Y

TLC subroutine (Move cursor to the TLC of the LCD screen),
DISPLAYR routine (Display a blank screen (BLANK))

Delay used to acknowledge a response to a kev press

RESETR

TLC DISPLAYR INPUTR
1 2 3
c C 2.

vES] © ~oi ©
4,5,6 -

CONDITIONS:

Cl The number 1 key must be pressed

C2 fhe number 270 kev must be pressed

FUNCTIONS:

1 TL.C subroutine (Move the cursor to the TLC of the LCD screen).
2 DISPLAYR routine (Display MSG3 1 on the L.CD screen).

3 INPUTR subroutine (Input a response to the "yes'/ 'no’ message).
4 Blank the LLCD screen for a couple of seconds.

5 [.oad the SP with the original "top of the stack’ value.

6. Jump to the MAIN routine to reset the DTD system.

7. Return to the MENU?2 routine.

DATER

TLC DISPLAYR CUR SOR
1 2
ci c 2
KBDTIME © KBDDATE
Cl 2

NEXTCHAR NEXTCH

3-9 10-17
CONDITIONS:

C1. 6 decimal digits need to be entered

FUNCTIONS:

2 6 decimal digits need to be entered.

] Move the cursor to the TL.C of the 1.CID screen.

2. Display MSG3 2 on the L.CD screen.
3. Input next character. 10.
4. Accept only BCD values. H.
5. Convert to ASCII character. 12.
6. Store character at TEMP1. 13.
7. Write to LCD screen. 14.
8. Check for second character. 15.
If yes write a space to LCD.
9. Check for fourth character. 16.
If yes write a space to LCD.
17.

Input next character.
Accept only BCD values.
Convert to ASCII character.
Store character at TEMPI.
Write to LCD screen.
Check for second character.
If yes write a space to LCD.
Check for fourth character.
If yes write a space to LCD.
Wait foran 'E' key-press.

CLEARR

TLC DISPLAYR INPUTR
1 2 3
cl C2
o No2 ©
YES2
CONDITIONS:
ClL Key number 1" needs to be pressed
C2. Key number "2 needs to be pressed
FUNCTIONS:
1 TLC subroutine (Move the cursor to the TLC of the LCD screen)
2. DISPLAYR routine {Display MSG3 2 on the LCD screen)
3. INPUTR subroutine (Input next character).
4, Clear the L.CD screen.
5. Clear all buffers and counters.
6. Return to MENU3R routine.

7. Return to MENU3R routine.

The Data Transfer Device

program iisting

40

BTEXT
DTDPROG.ASM (20-6-1993)

The LCD interface uses bits 4, 5 & 6 of port
"A' for control purposes and bits 2,3, 4 & 5
of port "D'for the transfer of data.

Note, Port "A' bits 4, 5 & 6 used
for LCD controls 'R/W' RS & 'E".
Port ‘D' bits 2, 3, 4 & 5 are used
for the four LCD data bits.

The hex keypad interface is initialised, the
input capture flags are cleared ready to accept
a data available signal from the kevboard.

Note, Port "A'bit 3 (1C1) 15 used
as the KBD data available input.
Port "E'bits 4, 5, 6 and 7 are
for the KBD data input lines
ETEXT
rkx STORAGE OF TMD INFORMATION wix*

ORG SC000

DATEBUF FCC " " ASCH date and ume buffer

BCDBUF RMB 6 . DATE BCD bufter

BUFFER RMB 1000 - DATA bufter

EVENTB RMB 256 . EVENTS buffer: ume elapsed values
IDENT DB S0000 . storage for TMD identitication

% PARAMETERS USED TO INITIALISE LCD MODULE

TIME FCB $30 . delay times used during
FCB $10 ; imitiahisation
FCB $01
FCB 301
FCB 501
FCB 510
FCB $30
FCB 3501

41

INSTRUCT
FCB 330 ; instructions used to
FCB $30 ; initialise the LCD
FCB $30
FCB $28 , function set
FCB $28 ; function set (4-bit)
FCB $08 ; display off
FCB $01 . display clear
FCB $OF ; display on: cursor & blink

¥* MESSAGES FOR LCD DISPLAY MODULE **

MENU
FCC
FCC
FCC
FCC

MENUI
FCC
FCC
FCC
FCC

MENU2
FCC
FCC
FCC
FCC

MENU3
FCC
FCC
FCC
FCC

MSGI 1
FCC
FCC
FCC
FCC

MSG1_2
FCC
FCC
FCC
FCC

"Press 1,2 o0r3
" TRANSFER (2) "
" DISPLAY (1) *
" CHANGEF (3) "

"DISPLAY

" status (2} "
time (1) "
" data (3) §"

"

"TRANSFER

" upload data (2) "
" date & ume (1) "
" dnload data (3) S"

"CHANGE
"time & date(2) "
" reset ststem (1)

“clear data(3) §"

" TIME "
"DATE "
" hh:mm:ss
dd-mm-yy $"

"

11

“identification =
"“items of data =
“test date= dd-mm-yy "
"no. of events= §"

1"

42

MSG!1 3
FCC "DATA b,f,1,9 & ¢"
FCC " 0000 00 00 00 "
FCC * "
FCC “ 0000 00 0000 $"

MSG2 1
FCC "START TEST "
FCC " date = !
FCC " baud = "
FCC " time = s
MSG2 2
FCC "UPLOADING "
FCC "ident = "
FCC " ’
FCC "date = S
MSG2 3

FCC "DOWNLOADING
FCC "ident - "
FCC "

FCC " date s

MSG3 |
FCC " RESET THE SYSTEM "
FCC "areyousure(l) Y "
FCC ™ !
FCcc " {2)=NS"

MSG3 2
FCC "TIME "
FCC "DATE "
FCC " Enter hh:mm:ss "
FCC " Enter dd-mm-yy $"

MSG3 3
FCC "CLEAR LAST RESULTS? "
FCC " are you sure (1)=Y "
FCC " "
FCC " (2)=N§"

43

ERRORI1
FCC 115 3¢ 3 e ofe o ERROR] a3 o s e e 10
FCC " transmission error "
FCC (1] 11}
FCC " 3

ERROR2
FCC 1k ok ok ok ok ok ERROR2 ok o ok sk ok 1t
FCC "keyboard input error”
FCC 1] t
FCC " Sh

BLANK
FCC " !
FCC !
FCC !
FCC " s"

¥k COUNTLERS. POINTERS AND VARIABLES ****
xexx USED BY THIS PROGRAM **x*

ORG $0000

DATA FCB $00 - raw data in binary form
COUNT FCB §$00 . count of kevboard characters
AMOUNTD FDB $0000 . amount of data items
AMOUNTE FDB $0000 . amount of event items
DPTRMAX FDB $0000 . end of BUFFER pointer
EPTRMAX FDB %0000 . end of EVENTB pointer
HEXBUF FCB $20 . a 4 character ASCIlI buffer

FCB $20

FCB $20

FCB $20

BUFFPTR FDB BUFFER ; pointer used to store data
EVENTPTR FDB EVENTB ; pointer used to store time of events

ONEMIN FDB $0000 : 1 minute timeout counter

TEMPI FCB $00 ; temporary storage for creation of upper bits

44

¢* FIXED PARAMETERS MEANT FOR EEPROM **

ORG $CC00

DATAA FDB BUFFER
EVENTS FDB EVENTB
DATE FDB DATEBUF

BUFFMAX FDB BUFFER + 1000
PTREMAX FDB EVENTB + 256
DATEMAX FDB DATEBUF + 13

BEGCODE FCB $2A . start of block marker " *'
ENDCQOCDE FCB $23 end of block marker #'
TILIMIT FDB $0100 - timeout value: number of TOFs

*¥*xk THE TIMER SUB SYSTEM REGISTERS ##**

TCTL2 EQU 5102}
TFLGI EQU $1023
TMSK2 EQU §1024
TFLG2 EQU 81025
TCNT EQU S100E

FREE THE SCISUB SYSTEM REGISTERS *##*

BAUD EQU $102B
SCCRI LQU $102C
SCCR2 EQU 51020
SCSR EQU S$I02E
SCDR EQU $102F

ik THE PARALLEL PORT REGISTERS *%%*

PORTA EQU $1000
PORTB EQU §$1004
PORTC EQU 351003
PORTD EQU $1008
PORTE EQU $100A

#kxx THE DATA DIRECTION REGISTERS ****

DDRD EQU $1009
PACTL EQU $1026

45

ik MAIN ROUTINE FOR DTD PROGRAM #***

ORG 3D000
MAIN
NOP
JSR INITIR . imtialise the sub systems
NOP
JSR INIT2R ; initialise [.CD 4-bit interface
NOP
JSR INIT3R ; initialise the keypad interface
NOP
JSR INIT4R . clear all bufters, counters, pointers etc.
nop
LDX #MENU . Ist screen menu
JSR DISPLAYR . output menu messages
NOP
AGEN
JSR COMMANDR - input commands from KBD routine
NOP
WAI
NOP
NOP
NOP
FRRECINITIALISATION ROUTINES rorwx
INITIR
NOP . miiahise microcontrotler SCI sub svstem
LDAB #4SFF . set lateh to enable RxID to PDO
STAB $4000
NOP
LDAB #$30 . set 9600 baud rate
STAB BAUD
NOP
LDAB #3500 . set SCi for 8 data bits
STAB SCCRIi
NOP
LDAB SCCR2 , disable SCI transmitter, receiver
ANDB #503 , and interrupts
STAB SCCR2
NOP

RTS

46

INIT2R
NOP ;i 8 BIT LCD INTERFACE ****
LDAB #$A0 : wait 16 milliseconds
JSR DELAY
NOP
LDX #TIME
LOOP CPX #TIME+4 . fourth instruction been output?
BEQ BACK
NOP
LDAA 08 X ; fetch next instruction
JSR OUTPUT
NOP
LDAB 00,X . fetch next time value
JSR DELAY
NOP
INX
BRA LOOP
BACK NOP JFER 4 RTT LCD INTEREFFACH ¥¥d*
CPX #iIME-8 - last instrucuion been output?
BEQ BACK?2
NOP
LDAA 08,X . feteh next instruction
STAA TEMPI
JSR OUTPUT2 O Prop 4 bats
NOP
LDAB 00X teteh next nme value
JSR DELAY
NOP
INX
BRA BACK
NOP
BACK2 RTS

INIT3R
LDAA TFLGI .clear all input capture flag bits
ORAA #SFF
STAA TFLGI
NOP
LDAA #510 .program interface to detect +ve cdges
STAA TCTL2
NOP
RTS

INIT4R

NOP

LDAA #00

LDX #DATA
STAA 00,X

INX

CPX #HEXBUF
BLO CLI

NOP

LDAA #820

LDX #HEXBUF
STAA 00,X

INX

CPX HHEXBUF-4
BLO CL2

NOP

LDAA #00

LDX #DATEBUF
STAA 00.X

INX
CPX
BLO
NOP
RTS

CLI1

CL2

CL3

2 TIML
CL3

i CHOICE OF THE THREER

COMMANDR
CLR DATA
ISR INPUTR
LDAA DATA
NOP

CHOICE CMPA
BNE AAAA
NOP
JSR
NOP
BRA COMMANDR
NOP

AAAA CMPA #3520
BNE BBBB
NOP
JSR MENU2R
NOP
BRA COMMANDR
NOP

BB3B CMPA #$30
BNE CCCC
NOP

NOP

=510

MENUIR

47

: clear all data buffers and DTD variables

. clear counters

. store space characters

. clear date. data and events buffers

MENUS ROUITINL #oxr*
Cselect conymand from KBD routine

S pfrom KBD

. displav menu chaee ?

. transter menu choice ?

; change menu choice ?

JSR MENU3R
NOP
BRA COMMANDR
CCCC NOP
CMPA #3E0
BNE COMMANDR
NOP
EXIT RTS

*xxx INPUT CHARACTER FROM

INPUTR
NOP

CFLAGS LDAA TFLGI
ORAA #3FF
STAA TFLGI
NOP

WAIT LDAA TFLGI
ANDA 4504
BEQ WAIT
NOP
LDAB PORTE
STAR DATA
NOP
LDY =302

DLAY2 BEQ OUT?2
LDAB #SFF
JSR DELAY
NOP
DEY
BRA DILAY2
NOP

OUT2 LDAA TFLGI
ORAA #35FF
STAA TFLGH
NOP
RTS

48

, exit program choice ?

KBD ROUTINE *#*x*

.clear IC1 flag

await for a data avarlable signal

detect ICT flag set

- read KBD iput from port 1

store data

Sdelay for anti-bounce purposces

clear ICT Hag

*rix KBD CHARACTER TO ASCH CONVERSION

CONVERT
NOP
LDAA DATA
LSRA
LSRA
LSRA
LSRA
CMPA #$0A
BLT DECIMAL

:convert hex character to ASCH

.distinguish between 0-9 AND A-F

ADDA

DECIMAL ADDA

STAA
NOP
RTS

#507

HEXBUF

#3530

49

;A-F characters only

*#x% DISPLAY KBD CHARACTER ROUTINE ****

SHOW
PSHA
NOP
LDAA
ORAA
STAA
JSR
NOP
[.DAB
JSR
NOP
LDX
LDAA
STAA
JSR
NOP
L.LDAB
JSR
NQOP
PULA
RTS

#$80

#3811
TEMPI
OuUTPUT2

#3801
DELAY

sHEXBLUF

00.X
TEMPI
SCREEN

#50
DELAY

. jump to a new screen address
o new line

display next hey pad chatacrer

debay o allow soreen provessing e

wERE OQUTPUT COMMAND « 8-BI INTEREACE + ROUTINE

OUTPUT
LLDAB #S$31:

STAB DDRD

NOP
LLSRA
LSRA

STAA PORTD

NOP

LDAA #500
STAA PORTA
LDAA #$40
STAA PORTA
LDAA #%00

STAA POR
NOP

TA

LDAB #$02
STAB DDRD

RTS

Sset PORTH 1ror) P

. PORTD output instruction

RS=0.R'WW=0,E~0
. PORTA output to control LCD
RS=0,R/W=0,E=1
: PORTA output to control LCD
,RS=0,RIW=10,E =0
; PORTA output to control LCD

. set PORTD for I/P

R

OUTPUT2

LDAB #3$3E
STAB DDRD
NOP

LSLA

LSLA

PSHA

NOP

LDAA TEMPI
LSRA

LSRA

STAA PORTD
NOP

LDAA #3500
STAA PORTA
LDAA 5340
STAA PORTA
LDAA £500
STAA PORTA
NOP

PULA

STAA PORTD
NOP

[LDAA =540
STAA PORTA
LDAA =500
STAA PORTA
NOP

L.DAB =802
STAB DDRD
RTS

SCREEN LDAB #S3k

STAB DDRD
NOP

[.SLA

LSLA

PSHA

NOP

LDAA TEMP1
LSRA

LSRA

STAA PORTD

50

*xxx QUTPUT COMMAND (4-BIT INTERFACE) ROUTINE ****

. set PORTD for O/P

. fetch next instruction

. PORTD output mstruction {top bits)

RS O.RW obF o
. PORTA output to contiol L.CD
RS WRW 0k
. PORTA output to conurol 1D
RS OORW a0

PORTA output 1o vontrol | OD

COHCTD satputimstrucion dlower bitsy

RS o W !
PORT A output o contral 1D
RS 0 RW ot
PORTA output o controi | CD

SSLPOR D tor 1 P

Frx QUTPUT ASCH CHARACTER TO LCD MODULLE ROUTINE #*=*

cset PORTD torO P

. fetch the same instruction

; PORTD output data (top bits)

51

NOP

LDAA #3520 ;RS=1,RIW=0,E=0

STAA PORTA : PORTA output to control LCD
LDAA #5360 ;RS=1,RIW=0,E=1

STAA PORTA ; PORTA output to control LCD
LDAA #3520 ;RS=1,R’IW=0,E =0

STAA PORTA , PORTA output to control LCD
NOP

PULA

STAA PORTD . PORTD output data (lower bits)
NOP

LDAA #3%60 :RS=1,RIWW=0E=1

STAA PORTA - PORTA output to control LCD
LDAA #320 RS=1.RIW=0,E=0

STAA PORTA . PORTA output to control LCD
NOP

LDAB #3502 . set PORTD for 1P

STAB DDRD

NOP

RTS

rek PROCESSING ASCH CHARACTER DELAY *#xx

DELAY
LDAA #3500 varable delay ronune
XX INCA
CMPA #20 100 mucro second perloop
BNE XX
DECB
BNLE DELAY
NOP
RTS

R OUTPUT A SCREEN MESSAGE TO THE FCD MODULE ROUTINE***#

DISPLAYR
NOP . display full screen message routine
[.LDAA 00.X . tetch next character
STAA TEMPI
CMPA #3524 Y
BEQ LAST
JSR SCREEN . O/P top 4 bits
NOP

LDAB #S501 . 40 microsecond time value
JSR DELAY
NOP
INX
BRA DISPLAYR
NOP

LAST RTS

ke CONTROL ROUTINE FOR DISPLAY CHOICE ****

52

MENUIR
NOP
JSR TLC
NOP
LDX #MENUI
JSR DISPLAYR
NOP
CLR DATA
JSR INPUTR
LDAA DATA
CLR DATA
NOP
CHOICE1 CMPA #310
BNE EEEE
NOP
JSR TIMERR
NOP
BRA MENUIR
NOP
EEEE CMPA #820
BNE FFFF
NOP
JSR STATUSR
NOP
BRA MENUIR
NOP
FFFF CMPA #330
BNE GGGG
NOP
JSR DATERR
NOP
BRA MENUIR
GGGG NOP
CMPA #SEO
BNE MENUIR
NOP
EXIT1IJSR TLC
NOP
LDX #MENU
JSR DISPLAYR
NOP
RTS

53

*kdk CONTROL ROUTINE FOR TRANSFER CHOICE ****

MENU2R
NOP
JSR TLC
NOP
LDX #MENU2
JSR DISPLAYR
NOP
CLR DATA
JSR INPUTR
LDAA DATA
CLR DATA
NOP
CHOICE2 CMPA #S$10
BNE HHHH
NOP
JSR STARTR
NOP
BRA MENU2R
NOP
HHHH CMPA #§20
BNE il
NOP
JSR UPLOADR
NOP
BRA MENU2ZR
NOP
I CMPA #5330
BNE JJJJ
NOP
JSR DNLOADR
NOP
BRA MENU2R
JJJJ - NOP
CMPA 4SE0
BNE MENU2R
NOP
EXIT2JSR TLC
NOP
LDX #MENU
JSR DISPLAYR
NOP
RTS

54

*¥4x CONTROL ROUTINE FOR CHANGE CHOICE ****

MENU3R
NOP
JSR TLC
NOP
LDX #MENU3
JSR DISPLAYR
NOP
CLR DATA
JSR INPUTR
LDAA DATA
CLR DATA
NOP
CHOICE3 CMPA {iS10
BNE KKKK
NOP
JSR RESETR
NOP
BRA MENU3R
NOP
KKKK CMPA #3$20
BNE LLLL
NOP
JSR DATER
NOP
BRA MENUGR
NOP
LLLL CMPA %530
BNE MMMM
NOP
JSR CLLCARR
NOP
BRA MENU3R
MMMM NOP
CMPA #SEO
BNE MENUS3R
NOP
EXIT3JSR TLC
NOP
LDX #MENU
JSR DISPLAYR
NOP
RTS

55

*#¥*x LCD MODULE OUTPUT ROUTINES ****

TLC
NOP
LDAA #3580 ; jump to a new screen address
STAA TEMPI
JSR OUTPUT2
NOP
LDAB #301
JSR DELAY
NOP
RTS

CURSOR
NOP . jump to a new screen address
STAA TEMPI
JSR OUTPUT2
NOP
LDAB #S01
JSR DELAY
NOP
RTS

WRITE
NOP . output a character to the 1L.CD
STAA TEMPI
JSR SCREEN
NOP
LDAB #5%01
JSR DELAY
NOP
RTS

WRITEHEX
NOP ; &-bit HEXADECIMAL to ASCII conversion
STAA TEMP2
STAA DATA
JSR CONVERT . high bits
LDAA HEXBUF
JSR WRITE . write character to LCD
NOP
LLDAA TEMP2
ANDA #$0F . lower 4-bits
ORAA #3530
CMPA #$39
BLS BCD

BCD

ADDA #8307

56

JSR WRITE ; write character to LCD

NOP
RTS

¥*%* DISPLAY DATE AND TIME FROME DATE BUFFER ****

TIMERR

NOP

JSR TLC
NOP

LDX #MSGI_1
JSR DISPLAYR
NOP

LDAA #$8A
JSR CURSOR

SEEALL1 NOP
TIMES LDAA DATEBUF

JSR WRITE
LDAA DATEBUF+1
ISR WRITE
LDAA #§20

JSR WRITE
LDAA DATEBUF-2
JSR WRITE
LDAA DATEBUF+3
JSR WRITE
LDAA #8320

JSR WRITE
LDAA DATEBUF - 4
JSR WRITE
LDAA DATEBUF~3
JSR WRITE
NOP

DATES LDAA #3591

JSR CURSOR
NOP

LDAA DATEBUF+6
JSR WRITE
LDAA DATEBUF+7
ISR WRITE
LDAA #$20

JSR WRITE
LDAA DATEBUF+8
JSR WRITE
LDAA DATEBUF+9
JSR WRITE
LDAA #$20

JSR WRITE
LDAA DATEBUF+10

. position cursor on LCD

. write stored time to LCD

. position cursor on L.CD

_write stored date to LCD

57

JSR WRITE
LDAA DATEBUF+11
JSR WRITE
NOP

EXITTCLR DATA ; accept the "E' characters only
JSR INPUTR
LDAA DATA
CMPA #3EQ
BNE EXITT
NOP

OUT3 RTS

¥k DISPLAY STATUS INFORMATION RECEIVED FROM TMD *#**

STATUSR
NOP
JSR TLC
NOP
LDX #MSGI 2
JSR DISPLAYR
SEEALL2 NOP
IDENTS LDAA #891 _display IDENT
JSR CURSOR
NOP
LDAA IDENT
JSR WRITE
LDAA IDENT- 1
JSR WRITE
NOP
WHEN LDAA #SCB display DATE
JSR CURSOR
NOP
LDX #DATLEBUF:6
DISPDATE NOP
LDAA 00.X
JSR WRITE
INX
CPX #DATEBUF+I11
BLS DISPDATE
NOP
LDAA #820 . write 2 spaces
JSR WRITE
LDAA #$20
JSR WRITE
NOP
NODS LDAA #5A2 ; display number of DATA items
JSR CURSOR
NOP
LDAA AMOUNTD ; high byte

JSR WRITEHEX
LDAA AMOUNTD+1
JSR WRITEHEX
NOP
NOES LDAA #3E4
JSR CURSOR
NOP
LDAA AMOUNTE+1
LSRA
JSR WRITEHEX
NOP
LDY H#SES8
DLAY4 BEQ OUT4
LDAB #3FF
JSR DELAY
NOP
DEY
BRA DLAY4
NOP
OUT4 RTS

*Hrx DISPLAY THE I

DATERR
NOP
JSR TLC
NOP
LDX #MSGI 3
JSR DISPLAYR
NOP
LDX #BUFFER
JSR DUMP
NOP
TOBACK CLR DATA
JSR INPUTR
LDAA DATA
SEEALL3 NOP
EXITDD CMPA #SEO
BEQ EXITD
NOP
CMPA #$F0
BNE MISSF
FORWARD DEX
DEX
DEX
DEX
DEX
JSR DUMP
BRA TOBACK

58

; low byte

; display number of EVENTS

. delay tor TEST purposes

JATA RECEIVED FROM THE TMD *¥**

. dump 2 lines of data. at a time. to the LCD

cexat”?

. move forward into data buffer

MISSF NOP

CMPA #3B0

BNE

BACKWARD LDY #30000

MINUS
INY
CPY
BLS
JSR
BRA

MISSBNOP

MISSB

DEX

#3000E
MINUS
DUMP
TOBACK

CMPA #3510

BNE
BEGIN LDX

JSR

BRA

TOBACK
#BUFFER
DUMP
TOBACK

59

: move backward into data buffer

. move to start of data buffer

EXITD NOP
RTS

DUMP

NOP . display data on LCD
LDAA #$97

JSR CURSOR
NOP

ISR VIEWLINE
NOP

LLDAA 48D7

ISR CURSOR
NOP

JSR VIEWLINE
NOP

RTS

. first line position

. second hine position

VIEWLINE

NOP . display one line of data on [.CD

LDY #S0000
SEEDATA NOP

L.LDAA 00,X

JSR WRITEHEX
characters

INX

LDAA #3520

JSR WRITE

INY

CPY #30004

BLS SEEDATA

NOP

RTS

. view 2 ASCII-HEXADECIMAL

. space character

*+kt DOWNLOAD THE START OF TEST INFORMATION **»*

STARTR

AAA

BBB

CcCC

DDD

DLAY6

NOP

JSR TLC

NOP

LDX #MSG2_1
JSR DIJSPLAYR
NOP

LDAB #3$08

STAB SCCR2
NOP

LDAB SCSR
ANDB #$80

BEQ AAA
LDAA #$2A
STAA SCDR
NOP

LDAB SCSR
ANDB #3%80

BEQ BBB
LDAA #32A
STAA SCDR
NOP

LDX E#DATEBUF
LDAB SCSR
ANDB #5%80

BEQ CCC
LDAA 00X

STAA SCDR

INX
CPX
BLS
NQOP
LDAB SCSR
ANDB #%80

BEQ DDD

LDAA #$23

STAA SCDR

NOP

LDY #%40

BEQ OUTé
LDAB #5FF

JSR DELAY

NOP
DEY
BRA
NOP

EDATEBUF+11
cccC

DLAY6

OUT6 RTS

60

: enable SCI transmitter

. output an " * character

coutpul an *' character

-output o SCI the date and time

. output an “#' character

. delay for TEST purposes

61

dxx UPLOAD THE TMD INFORMATION #okk

UPLOADR

EEE

FFF

GGG

HHH

NOP

JSR TLC
NOP

LDX #MSG2 2
JSR DISPLAYR
NOP

CLR AMOUNTD

CLR AMOUNTD+I

CLR AMOUNTE

CLR AMOUNTE+1

NOP

LDAB #3%04
STAB SCCR2
NOP

LDAB SCSR
ANDB #5320
BEQ EEL
LDAA SCDR
CMPA #82A
BNE EEE
NOP

LDAA #$9E
JSR CURSOR
NOP

L.LDAB SCSR
ANDB #3520
BEQ FFE
LDAA SCDR
STAA IDENT
JSR WRITE
NOP

LDAB SCSR
ANDRB #3520
BEQ GGG
LDAA SCDR
STAA IDENT+I
JSR WRITE
NOP

LDX #DATEBUF
NOP

LDAA #3DE
JSR CURSOR
NOP

LDAB SCSR
ANDB #3520
BEQ HHH

, upload test data from TMD

. clear data counter

. clear event counter

. enable SCI receiver

. wait for a character

Sinput ¥

. posttton cursor for LCD

Cwait tor a character

mnput IDENT
cwrite to LCD

- wait for a characier

cinput IDENT + 1
. write to LCD
. input DATE AND TIME

; position cursor for LCD

: wait for a character

PASS

1

NOC

11

DLAY7

LDAA SCDR

STAA 00,X

CPX #DATEBUF+5
BLS PASS

ISR WRITE

INX

CPX #DATEBUF+11
BLS HHH

NOP

LDX #BUFFER
LDAB SCSR

ANDB #3%20

BEQ 1II

LDAA SCDR

STAA 00.X

INC AMOUNTD+1
BCC NOC

INC AMOUNTD
INX

CMPA #540

BNE 11l

STX DPTRMAX
NOP

LDX &#EVENTR
LDAB SCSR

ANDB %520

BEQ JJ

I.LDAA SCDR

STAA 00.X

INC AMOUNTE - |
INX

CMPA #823

BNE JlJ

STX EPTRMAX
NOP
LDY #5%40

BEQ 0OUT7
LDAB #S$FF

JSR DELAY
NQOP
DEY
BRA
NOP

DLAY?7

OUT7 RTS

62

; input DATE

- write to LCD

, input DATA
. wait for a character

cinput DATA
. no. of data items

- high byte of data count

ot

. "((1"

mput EVENTS
wait for a character

Smput FVENTS

. number of events

. delay for TEST purposes

**x* DOWNLOAD THE TMD INFORMATION *¥x*

DNLOADR

KKK

LLL

NOP
JSR TLC
NOP

LDX #MSG2 3
JSR DISPLAYR
NOP

LDAB #508
STAB SCCR2
NOP

LDAB SCSR
ANDB #3880
BEQ KKK
LDAA #$2A
STAA SCDR
NOP

LDAA #$9E
JSR CURSOR
NOP

LDAB SCSR
ANDB #580
BEQ LLL
LDAA IDENT
STAA SCDR
JSR WRITE
NOP

MMM LDAB SCSR

NNN

ANDB #8580

BEQ MMM
LDAA IDENT- |
STAA SCDR

JSR WRITE
NOP

LDAA #3DE

JSR CURSOR
NOP

LDX #DATEBUF
LDAB SCSR
ANDB #$80

BEQ NNN
LDAA 00,X

STAA SCDR

CPX #DATEBUF+5
BLS PASS2

JSR WRITE

PASS2 INX

CPX #DATEBUF+11

63

; enable SCI transmitter

. ready for output?

. start of block marker #

. ready for output?

Sdentification (high byte)

. ready for output”?

. identitication (low byte)

. ready for output?

. output time then date

64

BLS NNN
MOP
LDX #BUFFER
OO0 LDAB SCSR . ready for output?
ANDB #380
BEQ 00O
LDAA 00,X . output block of data
STAA SCDR
INX
CMPA £3%40 L
BNE OOO
NOP
LDX #EVENTB
PPP LDAB SCSR . ready for output”?
ANDB #%80
BEQ PPP
LDAA 00X . output block of event times
STAA SCDR
INX
CMPA #3823
BNE PPP
Nup
IL.DY =S40
DILAYS BEQ OUTS
LDAB #3FrI delay for THST purposes
ISR DELAY
NOP
DEY
BRA DI AYS
NOP
OUTS8 RTS

65

**++ RESET ROUTINE (REINITIALISE THE SYSTEM) **¥*

RESETR
NOP
JSR
NOP
LDX
JSR
NOP

XXXXCLR
JSR

TLC

¥MSG3_|
DISPLAYR

DATA
INPUTR

LDAA DATA

CLR
NOP

DATA

CMPA 4510

BNE
YESI NOP
JSR
NOP
2777 1.DS
IMP

YYYY

BLANKR

#S004A
MAIN

YYYY CMPA =820

BNE
NOI NOP
NOP
RTS

XXXX

. output message to LCD screen

. Input response to ‘are you sure' message

. ves

. NB top of stack for the VB

)

ek CLEAR THE LCD MODULE SCREFN *%%*

BLLANKR
NOP
ISR TLC
NOP
LDX #BLANK
JSR DISPLAYR
NOP
LDY #$40
DLAY A BEQ OUTA
LLDAB #SFF
JSR DELAY
NOP
DEY
BRA DLAYA
NOP

OUTA RTS

. delay for TEST purposes

66

ix INPUT START OF TEST DATE AND TIME VALUE *¥

DATER
NOP
JSR TLC
NQOP
LDX #MSG3 2
JSR DISPLAYR
NOP
LDAA #$8A
JSR CURSOR . position LCD cursor
NOP
JSR KBDTIME . input and store time of test
NOP
LDAA #3$9E
JSR CURSOR . position LCD cursor
NOP
JSR KBDDATE - input and store datc of test
NOP
OUTY RTS

*x%x [NPUT START TIME OF TEST ***+

KBDTIME
NOP
LDX #DATEBUF
NOP
NEXTCHAR CLR DATA
JSR INPUTR
NOP
LDAA DATA caceept BID characters only
CMPA #3590
BHI NEXTCHAR
NOP
JSR CONVERT - BCD 1o ASCII convertion
CLR DATA . clear last data input
LDAA HEXBUF
STAA TEMPI
STAA 00,X
JSR SCREEN . store character on the 1.CD
NOP
INX
CPX #DATEBUF+2
BNE CONTI
LDAA #3520
JSR WRITE , space character
BRA NEXTCHAR
NOP

67

CONTI1 CPX #DATEBUF+4
BNE CONT2
LDAA #3%20
JSR WRITE , space character
BRA NEXTCHAR
NOP

CONT2 CPX #DATEBUF+6
BEQ LASTONE
NOP
BRA NEXTCHAR
NOP

LASTONE RTS

hEX INPUT DATE OF TEST *¥**

KBDDATE
NOP
LDX #DATEBUF+6
NOP
NEXTCH CLR DATA
JSR INPUTR
NOP
LBAA DATA - accept BCD characters only
CMPA #590
BHI NEXTCH
NOP
JSR CONVERT - BCD to ASCH convertion
CLR DATA . clear last data input
LDAA HEXBUF
STAA TEMPI
STAA 00X
JSR SCREEN . store character on the 1.CD
NOP
INX
CPX #DATEBUF+8
BNE CONT3
LDAA #3520
JSR WRITE . space character
BRA WNEXTCH
NOP
CONT3 CPX H#DATEBUF+10
BNE CONT4
LDAA #3520
JSR WRITE . Space character
BRA NEXTCH
NOP
CONT4 CPX H#DATEBUF+12
BEQ LASTI11
NOP

68

BRA NEXTCH
NOP
LASTI1 CLR DATA ; accept the "E' characters only

JSR INPUTR

LDAA DATA

CMPA #3EO

BNE LASTII

NOP

RTS

*kx CLEAR ALL COUNTERS, BUFFERS AND VARIABLES ****

CLEARR
NOP
JSR TLC
NOP
LDX #MSG3 3
JSR DISPLAYR . output "are you sure’ message to LCD
NOP
UUUUIJSR INPUTR . nput response trom KBD
LDAA DATA
CLR DATA
NOP
CMPA 4510 .ves'
BNE VVVV
YES2 NOP
JSR BLANKR
NOP
WWWW JSR INIT4R . clear al} bufters. counters etc
NOP
BRA EXITC
NOP
VVVV CMPA #8520 .o’
BNE UUUU
NO2 NOP
E.JITC RTS

END

APPENDIX C

The Data Processing System

This section contains data flow diagrams, Jackson
structure diagrams and program listing for the data
processing system.

C.1. data flow diagrams,
C.2. Jackson structure diagrams and

C.3. program listing.

C.1.

The Data Processing System

aGata flow diagrams

DFD LEVEL 0

VISUAL
KEYBOARD DISPLAY
UNIT

PROGRAM

PRINTER
or
PLOTTER

SERIAL
PORT

DFD LEVEL 1

MAIN
o\
g . N
Q g W A\ ‘DQ
o7 y o 2 NN
o ' £ W\
B Q 7 e S\ N
” u \3&
Q/ %/ Q)' -, ’)
,? J uid 6\
: Q.', T 9 6," 6'/ p
. Iy E 9 % ’1.6
'\? 3 v} p 1/
INIT1 INIT2 INIT3 INIT4
Y Y Y Y
SERIAL MESSAGES
VDU VARIABLES
PORT PRINTER

& BUFFERS

COMMANDR

KEYBOARD

DFD LEVEL 2,

SERIAL
PORT

DATA BUFFER

COMMANDR
NPUT
- JKEYBOARD
ommAnDy
‘947 o‘\)
N R
CHOOSE
n
! Q
Y
% &
lg \j O\ N
Ly - L \9
A & ‘r@ N
»
7 5) O
9) N ¢
<) %
3 . ’PJé A
A > A\
\3) 0
W I D
> ‘é' 066\
¥ o\
v)) S
)

DATA FILES

DFD LEVEL 3

VDU

TSAaATA

1y PoT

SERIAL
PORT

DATA & STATUS
BUFFERS

'‘Qed

Sacea N2 I

DFD LEVEL 4

UPLOAD

SERIAL PORT

DFD LEVEL 3

139

55012
3

=) .N.)dnUblUw«_ J

. 3

3

/ b
:

3

) [N [

. T H
ERIER:
' 3

SOTAYTYEREGLREDY

DATA FILES

MW ©1L MYy

VDU

KEYBOARD

DFD LEVEL 3

TSN Wwwo

QVARW NioW) oYy

DATA
BUFFERS

KEYBOARD

VDU

DFD LEVEL 3

P WWe) QN3EW VI @) YD UYY

BUFFERS

FILES

KEYBOARD

VDU

DFD LEVEL 3

DATA BUFFERS

KEYBOARD

VDU

C.2.

The Data Processing System

Jackson structure diagrams

DPS PROGRAM STRUCTURE

MAIN
ROUTINE

INITIR INIT2R INIT3R INIT4R COMMANDR

INITIR
ROUTINE

1,2,3,4

FUNCTIONS:

. Initialise the serial port with parameters: 9600 baud rate, 8 data bits,
| stop bit, and no parity checking.

o

Check the status of the serial port.
3. [f the status of senal port is bad, then print an error message.

4, Retumn to the MAIN routine.

INIT2R

ROUTINE
,2,3,4
FUNCTIONS:
1. Initialise the printer port.
2. Check the status of the printer port.
3. If the status of printer port is bad, then print an error message.
4, Return to the MAIN routine.
INIT3R
ROUTINE
5,6,7
FUNCTIONS:
5. Set the screen mode to text mode 3.
6. DISPLAY routine (Print the MSGMENU to the VDU screen).

7. Return to the calling program.

INIT4R

ROUTINE

,2,3
FUNCTIONS:
1. Initialise all the counters, pointers and variables.
2. Clear the data buffers.
3. Return to the MAIN routine.

DISPLAY

ROUTINE

1

FUNCTIONS:
I Print out the string of characters from, the address passed as a parameter

upto the '$' character.

COMMANDR

ROUTINE
KBDI/P CHOICE
1
Cl c2 c3 C 4 c5 cé c?
(o) o o = (o) o) (o]
INPUT DIR RAW SAVE PLOT OLD EXIT

CONDITIONS:

Cl. Selected if 'I' Kkev s pressed on the keyboard.

C2. Selected if 'ID' key 1s pressed on the keyboard.

Cs. Selected if 'R' kev is pressed on the keyboard.

C4. Selected if 'S" kev is pressed on the keyboard.

Cs. Selected if 'P' key is pressed on the keyboard.

Ce. Selected 1f "O" key 1s pressed on the keyboard.

C7. Selected if 'L’ key is pressed on the keyboard.

FUNCTIONS:

1.

Input a keystroke from the keyboard.

INPUT

ROUTINE
CREATE UPLOAD SHOW
1,2 3,4,5,6,7,8
FUNCTIONS:
1. Set the VDU screen mode to text mode 3.
2. DISPLAY routine (Display MSGINPUT on the VDU screen).
3. Display the TMD identification value
4 Display the "start of test date’
S. Display the number of data items received.
6. Display the number of events recorded.
7. Display "Type 'C' to continue’ on the VDU screen.

8. Return to the COMMANDR routine.

UPLOAD

ROUTINE
ASTERISK IDENT DATE DATA EVENTS
ct 1-8 ce c3 c4
X >3 S ¥
1-7 16 - 21 22-27 28-34
CONDITIONS:
Cl. Repeat functions 23 - 29 unul erther.
an astensk {*) 1s received, or
a KBD kevstroke 1s detected
C2. Receive until 12 serial port characters accepted.
Cs. Input and store data until an "(@' character 1s received.
C4. Input and store event times unti an "#' character is received.

FUNCTIONS:

NounhLo -~

10.
11.
12.
13.
14.
15.

28.
29.
30.
31
32.
33
34.

Receive one character from the serial port.

Test for a KBD character (escape mechanism).

If a keypress detected, then return to the INPUT routine with an error code.
Test the status of the serial port.

If the status is bad, then repeat functions 1 - 7.

Check the serial port character for an asterisk (*).

If no asterisk is detected, then repeat functions 1 - 7.

Receive one character from the serial port.

Test the status of the serial port.

If the status is bad, then repeat functions 8 - 10.
Store character in [IDENTV.

Receive one character from the serial port.

Test the status of the serial port.

If the status is bad, then repeat functions 12 - 15,
Store character in [IDENTV+1.

Set index register with address of DATEBUF

Receive one character from the serial port.

Test the status of the serial port.

If the status is bad, then repeat functions 17 - 19,

Store character tn DATEBUF, increment index register.

Is the index register == DATEBUF + 12. No, repeat functions 17 - 21.

Set index register with address of BUFFER

Receive one character from the senal port.

Test the status of the serial port.

If the status is bad, then repeat functions 23 - 25.

Store character in DATEBUF, increment index register.

Is the character an '@’ character. No, repeat functions 23 - 27.

Set index register with address of EVENTB

Receive one character from the serial port.

Test the status of the serial port.

If the status is bad, then repeat functions 29 - 31.

Store character in DATEBUF, increment index register.

Is the character an "#' character. No, repeat functions 29 - 33.
Retumn to the main menu control routine

DIR

VIEWDIR FIRST MORE WAITD
1 7-9 13- 17
C1
CREATE GETPATH *
2,3 4-6 10-12
CONDITIONS:
C1. Find and display matching filenames unull the last file 1s detected.
FUNCTIONS:

Move the pointer for MSGdir in the index register.

1

2. Set the VDU screen mode to text mode 3.

3. DISPLAY routine (Display MSGDDR

4, Insert 64 (the size) into the PATH buffer.

5. Input from, the KBD, the path and file specification into PATH.
6. Insert an ASCIIZ character, into PATH, at the end of the file specification.
7. Setup a DTA.

8. Find the first matching directory entry.

9. Display the filename.

10. Move the cursor to a new screen position.

R Fetch the next matching filename.

12. Display the filename.

13, Move the cursor to a new screen position.

14. Display MSG3, the return to the main menu routine.

15. Wait for a KBD keypress.

16. Call INIT4R to display MSGMENU.

17. Return to the main menu control routine

MODE3 DISPLAY
l
CREATE GETSTAT GETDATA LAST1 WAITD
3-6 7, 8
C | c2
¢ /o)
FIRST RAWEND
9-16 17,18
CONDITIONS:
Cl. Bytes of data read trom the file untill an ‘@’ character detected.
C2. Selected if an "{@’ character is detected before a full screen of data has been read.
FUNCTIONS:
1. Set screen mode. move the pownter for MSGRAW into the index register.
2. DISPLAY utine (Create a new screen)
3. Move cursor.
4. Display TMD identification [DENT.
5. Move cursor.
6. Display the "start of test’ date DATE.
7. Move pointer for the start of BUFFER 1nto an index register.
8. Move 106 into the loop counter register CX. (number of bytes of data per line).9
9. Move cursor.
10. Display 1 byte of data.
il. Increment the data buffer pointer.
12. Is this the last byte of data in the file? If 'yes'. goto function 14.
13. Repeat functions 9 to 113.
14. Increment the row pointer ROW,
15. Is this the last row of the screen? If “yes' exit loop.
16. Repeat functions 9to 116.
17. Pop value from the CPU stack, correction because of exiting a loop mid-stream.
18. Return to the main control routine COMMANDR.

OLD

VIEWPATH GETID GETDATE GETDATA GETEVENT WAITD
1 4-11 12-14 27
4 C2
¥ ¥
CREATE GETPATH
15-20 21-26
2 3
CONDITIONS:
Cl. Read bytes of data unull an "@' character 1s detected.
C2. Read bytes of data untill an “#' character 1s detected.
FUNCTIONS:
1. Mov the pointer value for MSGLOAD into the index register
2. Create a new screen.
3. Input the filename and directory path. Store in PATH.
4. Open the specified file.
5. Jump to function 81 if a loading error Is detected.
6. Read 1 byte from the opened file.
7. Jump to function 81 if a loading error is detected.
8. Display the character
9, Load the TMD identification (2 bytes) and store in IDENT.
10. Return to the OLD routine.
1. Display "FILE LOADING ERROR", then return to OLD routine.

FUNCTIONS: continued

12.
13.
14.

15.
16.
17.
18.
19.
20.

21
22.
23.
24,
25.
26.

27.

Load next 12 bytes into DATEBUF.
Jump to function 81 if a loading error is detected.
Return to OLD routine.

Read 1 byte from opened file.

Jump to function 81 if a loading error is detected.
check for an '@’ character.

Repeat functions 85 to 88 if the '@’ is not detected.
Display the "@' character.

Return to OLD routine.

Read 1 byte from opened file.

Jump to function 81 if a loading error is detected.
check for an "# character.

Repeat functions 85 to 88 if the "#' is not detected.
Display the "#' character.

Return to OLD routine.

Call the WAITD routine to display the main menu MSGMENU

and then return to the main control routine COMMANDR.

EXIT

FUNCTIONS:

1. write one character 'E’ to the screen

2. exit back to MSDOS

SDATA

1-6

FUNCTIONS:

1.

Establish how many bytes of data are in BUFFER.

2 Check for an "@' character.
3. If 4094 bytes are counted before the "@' character is detected goto function 122.
4. Write bytes of data to the opened file.
5. If a file transfer error is detected goto function 122.
6. Return to the SAVE routine.
SEVENT
-6
FUNCTIONS:
1. Establish how many bytes of data are in EVENTB.
2. Check for an "#' character.
3. If 254 bytes are counted before the '#' character is detected goto function 122.
4. Write bytes of data to the opened file.
5. If a file transfer error is detected goto function 122.
6. Return to the SAVE routine.

1-9

FUNCTIONS:
1. Set upa DTA.
2. Create a new file using PATH.
3. Store handle in HANDLE.
4. Move an '* into the DTA
5. Move the contents of IDENTYV into the DTA.
6. Write 3 bytes into the opened file.
7. Return to the SAVE routine.
8. In the case of a file transfer error display MSG4
9. Return to the SAVE routine.

SDATE

1-4

FUNCTIONS:
l. Move the contents of DATEBUF into the DTA.
2. Write 12 bytes to the opened file.
3. If a file transfer error is detected execute functions: 122 and 123.
4. Return to the SAVE routine.

SID

SAVE

VIEWS

SIb

SDATE

SDATA

SEVENT WAITD

CREATE

GETPATH

CONDITIONS:

Cl.

C2.

Save bytes of data from BUFFER unull an 7@ character is detected.

Save words of event times from EVENTB untill a # character is detected.

FUNCTIONS:

1.

)

Move the pointer for MSGSA VE nto the index register.

Create a new screen.

Input a new file specification into the PATH vanable.

C.3.

The Data Processing System

program iisting

26

Rl e g i g s s R S

HiHH DPSPROG.ASM HittH
HHH By
HHHH 9-07-1993 HHHH
R HithH
R:3:300 Mike Wetton it
HHHH HiH

HHEHHHHBHB BB H B SRR H AR R B R R B H R HE R H R BB HBR R HE

_TEXT SEGMENT

ASSUME CS: TEXT,DS: TEXT,SS: TEXT
ORG 100h

START: JMP MAIN

e s e s ok e o i 3 o e oo s sk o ook o ok o i ok o o e ae ok ok o ke o 3 o e e e o ke o e ok o ok o ok ok ok ok ok skl o ok ok e o ok ok o o ok o ok ke ok

PROGRAM'S DATA AREA OF MEMORY FOR ITS VARIABLES

3k 4 sk o 35 a4c e 246 ok ok e ok ofc Jfe e ok sbe e e ke ok ki ok e ok st e e Akl e sfe ke e e e e e e e e sl ok ke e s ol sfe e ok ke ke ke e ok 3k obe afc sk ode ok ok ok ke dke ke

ERRCODE DB 0

HANDLE DW 0 . a handle to an opened file
PATH DB 64 DUP 0hy . file specification

DTA DB 64 DUP (00h) . Data Transfer Area
IDENTV DB 5Ah . 0aSh . T™MD 1dentification

DATEBUF DB 31h. 33h. 30h. 37h. 39h. 33h, 30h. 39h. 34h. 35h, 30h, 30h
- date and ume values

ROW DB I L TOW OR screen
COL. DB 1 . column on screen

27

ks R R R Ak o o iR ok o o ok oo o Rl A ko ok ok ok ok e ok ok ok Ak ko ok

PROGRAM DATA AREA OF MEMORY FOR VDU SCREEN

MESSAGES

ko o s s s e e 6 ok e oo o o e ok g ok o o s ok ek 0k ok s ook ok ok o o ok ok e ok ook ok o sk o o ook e o ko ok e ok ook ok

MSG! DB
MSG2 DB
MSG3 DB

MSG4 DB
ODh,0Ah , "$"

MSGMENU
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

"Serial port not initialised.” , 0ODh , 0Ah , "$"

"Printer port not initialised.” , 0Dh , 0Ah , "$"

"Type 'C' to return to the main MENU screen.","$"

*owkkk LOADING FILE CONTENTS ERROR **¥¥%

Tvpe
" Tvpe
" Type
" Type
" Type
"o Tvpe

" Type

".0dh,0ah
",0dh,0ah
" 0dh,0ah
",0dh,0ah
*,0dh,0ah
to EXIT program: back to DOS. ".0dh,0ah
",0dh,0ah
to upload data from the serial port.”.0dh.0ah
".0dh,0ah
to view a directory of files. ".0dh.0ah
" 0dh.0ah
to view the raw date from memorv. " 0dh Oah
".0dh.Oah
to load the raw data from a file. ".0dh.Oah
".0dh.Oah
to save the raw datato a file ".0dh.Oah
".0dh,0ah
to view the processed data. “ 0dh.Oah
".0dh,0ah
".0dh.Oah

28

MSGINPUT

DB " “,0dh,0ah

DB " *,0dh,0ah

DB “ ",0dh,0ah

DB " UPLOADING RAW DATA FROM THE TMD or the DTD
“,0dh,0ah

DB S e o 3 ke ok ok ol ok 3k ok ok ok ok ksl sk ok sk 2k ke 3 ok ok sk ake ok sk 3 ke e 2k e ek ok ok ok ok ok ok ok sk ok
*,0dh,0ah

DB " ",0dh,0ah

DB " ",0dh,0ah

DB " IDENTIFICATION OF THETMD = ".0dh,0ah

DB " ",0dh,0ah

DB " STARTING DATE OF TEST = ".0dh,0ah

DB " ",0dh,0ah

DB "§"
MSGRAW

DB " 0dh.0ah

DB " DISPLAYING THE RAW DATA FROM THIE
MEMORY".0dh.0ah

DB T oo o R ok e ol ok sk 3K O 9% ok o i ok e ke ke ok sk ok K 3k Ok ok ok sk e oi ok s ok sk ok o ok ok o ok ok
".0dh.0ah

DB " 0dh,0ah

DB " ADENTIFICATION OF THE ™MD -~ ".0dh.0ah

pB " " 0dh.Oah

DB " STARTING DAL OF TEST * Odh.Oah

DB " * 0dh 0ah

pB 8"
MSGDIR

pB *.0dh,0ah

DB " *.0dh,0ah

DB " " 0dh,0ah

pB " DISPLAYING A DIRECTORY OF FILES
“.0dh,0ah

D‘B " EREEFRRBELR LR RFREIRRIREETRERELE ",Odh,Oah

DB " ",0dh,0ah

DB " ",0dh,0ah

DB " Input the complete path of the directory. ",0dh,0ah

DB " *,0dh,0ah

DB " Forexample, Altest*.dat " 0dh,0ah

DB " or Cix* *,0dh,0ah

DB " ",0dh,0ah

DB |l$ll

MSGLOAD
DB
DB
DB
DB

“ 0dh,0ah
DB

" 0dh,0ah
DB
DB
DB
DB
DB
DB
DB
DB

MSGSAVE
DB
DB
DB
DB

".0dh,0ah
DB

",0dh,0ah
DB
DB
DB
DB
DB
DB
DB
DB

29

" ",0dh.0ah
! ",0dh,0ah
" ",0dh,0ah
" LOADING DATA FROM A SPECIFIED FILE

" ok 3k o 6 e e o e e o o ke o sk kg o o o o sk ok ook ok o sk sk ok ok sk ok ok sk ok

! ",0dh,0ah
‘ “.0dh,0ah
" Input the complete path and filename. ",0dh,0ah
! ",0dh,0ah
" Forexample, A:\test\test.dat *,0dh,0ah
" or C:trial.dat " 0dh,0ah
" ",0dh,0ah
ngu
" ",0dh,0ah
" ".0dh,0ah
" *.0dh,0ah
! SAVING DATA TO A SPECIFIED FILE
EEEER SR EREE S SRS SRR EEE SRR AL EEE L]
" 0dh.0ah
".0dh.0Oah
Input the complete path and filename ".0dh.0ah
" 0dh.Oah
" Forexample. A testitests dat " 0dh.Oah
or CnalSe6.dat " 0Odh.bah
" Odh Oah
HSI!

ke sk ok 3 ek ok ok ke ok o ok ok o ok o 9 o e sk o K ok i 8 9k o o o 8 sk ke o e ok ofe ke ok ek o o o i ok 3¢ o6 ke K ok sk e oK o K ke ok ke ok sk K

PROGRAM'S DATA AREA OF MEMORY FOR DATA AND EVENTS

3k o 3 ok 2k o ok o ok ok ke ok ok 3k ok ok 3 ok 3 ok ok ok 2k K 3k sk 3k 36k ok 3k 3K 3 3k ok sk K ok ok 3k kK ok ok ok 3k ok K K sk sk ok 3k ok o8 ok ok ok ok ok ok 3k K 3k koK ok

BUFFER

EVENTB

DB 4096 DUP (00h)

DB 256 DUP (00h)

30

e abe e o 2 she e e s s e 250 5 o s s e o o o abs e e a2 b e e e 5 2 o afn e ke a2k abe e e o e s afn e e o o e s e afe 3 o 2 afe e o o afe o ok o e oo

THE MAIN CONTROL MODULE

ke ke o e o o af o af o a3 e o ok o e koo o e o e o e o oo o o o s e ke o ok ol e o ke ot e o s o e 3 oo o af o o o ot ok ol o o o ook ol e o

MAIN:MOV AX,CS
MOV DS, AX
MOV ES ., AX
NOP
CALL INITIR ; initialise senal port
NOP
CALL INIT2R . initialise printer
NOP
CALL INIT3R . Initialise the VDU screen
NOP
CALL COMMANDR . control routine
NOP
MOV AH,0
INT 16h
NOP
INT 3 Lexitto DEBUG
NOP
MOV AH ., 4Ch . DOS exit function
MOV AL .00
INT 2th

MESSAGE PROC NLAR

MQV AH , 02h MOV CUrsor

MOV BH . 00h

INT 10h

NOP

MOV AH 0%h . Wrile message 1o screen
MOV DX .Sl

INT 21h

NOP

RET

MESSAGE ENDP

INITIR

MOV
MOV
MOV
MOV
INT
NOP
MOV
INT
NOP
MOV

MOV
MOV
MOV
INT
NOP
RET

31

PROC NEAR

AH,0 ; ititialise serial port

DX, 0

BX,0

AL ,0E3h ;9600 baud,8-data bits,1 stop bit & no parity
14h

AH 03 , get serial port status
14h

AH , 01} . send one character to the serial

DX, 0

BX,0

AL , 0Dh ; character to be sent
14h

INITIR ENDP

INIT2R

MOV
MOV
INT
NOP
MOV
MOV
INT
NOP
MOV
MOV
MOV
INT
NOP
RET

INIT2R

PROC

All 01} . imhahise printer
DX .0 L0 LPTI
17h

AH 02 . get ponter status
DX .0 S0P
17h

AH 0O . send a character to the printer
DX.0 L0 LPT

AL, 0Dh . character to be prirted

17h

ENDP

32

INIT3R PROC NEAR

MOV All, 00h

MOV AL ,03h

INT 10h

NOP

MOV SI, offset MSGMENU
CALL DISPLAY

NOP

RET

INIT4R ENDP

. set screen mode

e ok ok 3 ok e ok 3K ok ok o o 3K ok koK oK 3K o o 3k 3 ok o o 3¢ ok o oK ok ok Sk 3k oK 3K ok 3K ok o 3k ok S ok o 3k o ok e o 3k o ok ok e ok ok sk 3K ok ok ok ok K

COMMANDR CONTROLLING MENU FUNCTIONS MODULE

s o ook ok o ok o e ok o o o oo ook e ok ok ok o ok ok o O ook sk o R SKOR oK sk oK 3ok ol ok ok ook kR ok Kok Rk R Kk Rk K

COMMANDR PROC NEAR

KBDI\P: MOV AH . 00h
INT 16h
NOP
CHOICE: CMP AL . 49h
JE INPUTR
CMP AL .6%h
JNE DIRC
INPUTR: CALL INPUIT
JMP NEXT
NOP
DIRC: CMP Al ., 44h
J DIRR
CMP AL, 64h
JNE RAWC
DIRR: CALL DIR
files
JMP NEXT
NOP
RAWC: CMP Al . 52h
JE RAWR
CMP AL, 72h
JNE SAVEC
RAWR: CALL RAW
JMP NEXT
NOP

. input form keyboard

. call senial data imput routine

. call routine to view a directory of

. call routine to view raw data

SAVEC:
JE
CMP
JNE
SAVER:
JMP
NOP
PLOTC:
JE
CMP
JNE
PLOTR:
JMP
NQP
OLDC:CMP
JE
CMP
INE
OLDR:CALL
a file
JMP
NOP
EXITC:
JE
CMP
JNE
EXITR:
to DOS
IMp
NOP
RET

COMMANDR

DISPLAY PROC

MOV
MOV
INT
RET

DISPLAY

CMP AL, 53h
SAVER

AL, 73h
PLOTC

CALL SAVE
NEXT

CMP AL, 50h
PLOTR

AL , 70h
OLDC

CALL PLOT
NEXT

AL, 4Ch
OLDR
AL, 6Ch
EXITC
OLD

NEXT

CMP #:. . 45h
EXITR

AL ., 65h

NEXT

CALL EXIT

NEXT

ENDP

NEAR

AH , 0%h

DX, SI
21h

ENDP

33

. call routine to save the raw data

. call routine TO print/plot results

- call routine to load raw data from

call routine to enable an exit back

. display A string of characters

2 20 2 e e e e o o afe e e o o 2 afe e ae o af o e ae o ae o st ae o a3 o o 36 o o o st ke afe o o ok 2 aje ke 2 ae o o e ke a3 3 o o o e ae s o o o ok

UPLOAD TMD INFORMATION VIA THE SERIAL PORT

b oo oo g o s o e ook e ae o o it o o0 oo ok o ok o o o o sl g e o o e ok o R ok ok o ok sl s e sk o o e o sk ok o o o ek oe

INPUT PROC NEAR

MOV SI, offset MSGINPUT

NOP

CALL CREATE
NOP

CALL UPLOAD
NOP

CALL SHOwW

the TMD
NOP
RET

INPUT ENDP

CREATE PROC NEAR

MOV AH . 00h
MOV AL | 03h
INT 10h

NOP

CALL DISPLAY
NOP

RET

CREATE ENDP
UPLOAD PROC NEAR

MOV ERRCODLE . 00
ASTERISK: NOP
MOV AH.
MOV DX .
MOV BX,
INT 14h
NOP
MOV CX,6 AX
NOP
MOV AH .01
INT 16h
JE EEEE
JIMP BACKER
NOP

2

c o

. routine to create a new screen

, routine to upload the serial data

; routine to show the identification of

. sel screen mode

. MOVEe CUrsor

. detect a KBD keystroke

EEEE:TEST

JNE
NOP
CMP
IJNE
IMP
NOP

IDENT:

AAAA:

DATE:

BBBB:

MOV
MOV
INT
NOP
MOV
NOP
TEST
JNE
NOP
MOV
NOP

MOV
MOV
INT
NOP
MOV
NOP
TEST
INE
NOP
MOV
NOP
MOV
NOP
MOV
MOV
MOV
INT
NOP
MOV
NOP
TEST
INE
NOP
MOV
INC
CMP
JNE
NOP

35

CH , 80h
ASTERISK

CL, 2Ah ; start of block marker
ASTERISK
IDENT

MOV AH,02 . MOVve cursr
DX.,0

BX,0

14h

CX, AX

CH, 80h
ASTERISK

IDENTV [CL

MOV AH .02 L MONVE CUrsor
DX .0

BX .0

14h

CX . AX

CH , 80h
AAAA

IDENTV-1 UL
D1 . offset DATERUF Cdate and vme bufter

All .02 _MOVE CUrsor
PDX.0

BX.0

14h

CX ., AX

CH . 80h
BBBB

D1}, CL

Dl

DI, offset DATEBUF+12
BBBB

DATA.:
NOP
CCCC:MOV
MOV
MOV
INT
NOP
MOV
NOP
TEST
JNE
NOP
MOV
INC
CMP
JNE
NQP
EVENT:
NOP
DDDD:
MOV
MOV
INT
NQP
MOV
NOP
TEST
INE
NOP
MOV
INC
CMP
INE
NOP
RET

36

MOV DI, offset BUFFER

AH, 02
DX, 0
BX.,0
14h

CX.AX

CH , 80h
cccc

[DI], CL
DI
CL . 40h
ccce

MOV DI, offset EVENTB

MOV AH .02
DX .0

BX .0

14h

CX.AX

CH . 8h
DDDD

(DI Cl
DI

Cl.. 24h
DDDD

BACKER: MOV ERRCODE | OFFh

NOP
RET

UPLOAD

ENDP

. data buffer

, Move cursor

. end of data marker

. event umes buffer

. Mose CUrsor

. end of block marker

SHOWPROC NEAR

MOV
MOV
CALL
MOV
CALL
CALL
INC
CALL
CALL
NOP
MOV
MOV
CALL
MOV
MOV
FFFF. PUSH
MOV
INC
MOV
INC
CALL
NOP
MOV
MOV
CALL
NOP
POP
LOOP
NOP
MOV
MOV
CALL
MOV
CALL
NOP
MOV
INT
NOP
CALL
RET

SHOWENDP

ROW, 07h
COL, 26h
CURSOR

SI, offset IDENTV

CONVERT
SEECHAR
SI
CONVERT
SEECHAR

ROW , 0%h
COL, 26h
CURSOR

S1, offset DATEBUF

CX.3

CX

DH , [SI]
SI

DL . [Si]
S
SEECHAR

DH . 20h
DL , 20h
SEECHAR

CX
FFFF

ROW . 12h
COL. ., 01h
CURSOR

SI . offset MSG3
DISPLAY

AH, 0
16h

INIT4R

37

; display the TMD identification

. display the TMD "start of test’ date

. display return to menu message

-wait for a KBD kevpress

KE]

Al e ok o o s o 3 o o o o b e ke b 28 2 o o e o o o s e e o o o o s 2 ke b 56 0 o 3 e e o oR ok e e ok o o o o e ol o ofe e e e ofe e e ook

GENERAL ROUTINES USED BY ANY MAJOR FUNCTIONAL
OUTINES

ek s 3 o e s o ok s o oo 3 oo o ook o o o o s sk oo Sk b o s ok oo o ol ok oo o ok ok 3 o o ok o ook O ok o o ok ok ok e kK

CURSOR PROC NEAR

MOV AH 02 , move the cursor to a specified
position

MOV BX,0

MOV DH, ROW

MOV DL, COL

INT 10h

RET

CURSOR ENDP

CONVERT PROC NEAR

MOV DH , (S]] . convert top 4 bits to ASCH
MOV CL . 4
SHR DH,CL
AND DH , 0Fh
OR DH, 30h
CMP DH , 39h
JBE MISSH
ADD DH . 07h
NOP
MISST MOV DL {5t . convert bottom 4 bits to ASCH
AND DL, OFh
OR DI, 30h
CMP DI..3%h
JBE MISS2
ADD DL .07h
NOP
MISS2: RET

CONVERT ENDP

SEECHAR PROC NEAR

MOV AH, OEh
(high bits)

MOV BX,0

MOV AL, DH

INT 10h

MOV AH,OEh
(low bits)

MOV BX,0

MOV AL .DL

INT 10h

NOP

RET

SEECHAR ENDP

39

;. write 1 character to the screen

- write 1 character to the screen

e e ok o A A o ok 3 ke e e e e e o o ok obe o K ook e o A e K K e K K ok ok ok o ok ok A o ok K oK o e ¢ ke ke e e o o e oo o o ke e e o ok 3 g

DISPLAY THE CONTENTS OF A SPECIFIED DIRECTORY

s o s 0 oK 3 oK o oK S oK o oK oK ek sk e o o ok o ok o 3 sk o ok ok a3 s ok oK K KOK o ok S ROR e ok o 8 e A e e ok o ok ok ok ok ok ke ok ok

DIR PROC NEAR

CALL VIEWDIR
NOP

CALL FIRST
NOP

CALL MORE
NOP

CALL WAITD
NOP

RET

DIR ENDP

VIEWDIR PROC NEAR

MOV SI, offset MSGDIR

NOP

CALL CREATE
NQP

CALL GETPATH
NOP

RET

VIEWDIR ENDP

. Toutine to create a screen and impuat a path
- routine to display the first directory entry
- routine to display directory entries

display return o main MENU routine

. display MSGDIR

. input path and files pecification

GETPATHPROC NEAR

MOV
MOV
MOV
MOV
INT
NOP
MOV
MOV
MOV
ADD
ADD
MOV
NOP
RET

S, offset PATH
BYTE PTR[SI], 64
AH , OAh

DX , offset PATH
21h

DI, offset PATH
BH, 0

BL , PATH+1
BL,2

DI, BX

BYTE PTR[DI} .0

GETPATH ENDP

FIRST PROC

MOV
MOV
INT
NOP
MOV
MOV
MOV
INT 21
NOP
MOV
ADD
MOV
MOV
CALL
NOP
NEXTC:
CMP
JE
NOP
NOP
MOV
MOV
INT
NOP
INC
JMP
EXITFN: RET
FIRST ENDP

NEAR

AHM ., tAh
DX . offset DTA
21h

AH . 4Eh
CX.0

DX | offset PATH -2

h

S, oftset DTA
St.1Fh

ROW _OLh
COL ,0Ch
CURSOR

MOV AL . [SI]
AL .0
EXITFN

AH , OEh
BX .0
10h

SI
NEXTC

40

; insert the size of PATH buffer

. input ASCI! string (path)

. insert an ASCIIZ character

.setup the DTA

. find first matching directory entry

display file name

. display character

FIRST ENDP

MOREPROC

NEXTO:
INC
CMP
JB
MOV
ADD
NOP

MISSADD: CALL

NOP
MOV
ADD
NOP
MOV
INT
IB
NOP
NEXTI:
CcMP
JE
NOP
NOP
MOV
MOV
INT
NOP
INC
IMP
BACK2.
NOP

NEAR

NOP

ROW
ROW , 18h
MISSADD
ROW , OEh
COL, 12h

SI, offset DTA
SI, 1Eh

AH , 4Fh
21h
EXITMN

MOV AL . |S1)
AL . Q
BACK?

AH . Okh
BX.0
10h

Si
NEXTI
JMP NEXTO

EXTTMN RET

MORLEENDP

WAITD

MOV
MOV
CALL
MOV
CALL
NOP
MQV
INT
NOP
CALL
NOP
RET

PROC NEAR

ROW . 18h
COL ., 14h
CURSOR

SI . offset MSG3
DISPLAY

AH .0
16h

INIT4R

CURSOR

41

- new line

. address of new filename

. fetch next matching filename

display character

. display return to menu message

. wait for a KBD keypress

WAITD

ENDP

ke o o b o o e o o o e o o e s s e oo o o o o s ok o oo o ole s o o o o ok 0ol o o oo b o e o sk o ok s s sk ol oo kol ook e

LOAD TMD TEST DATA FROM A SPECIFIED FILE

e o o oo b ot o e s ol o e o s e o e e o o o e e o e sl o ol ok o O sl kol i b o e oo ok o ok e ok o ok ok ok o o e ok ok ok

RAW PROC NEAR

MOV

NOP

CALL

NOP

GETSTART:
MOV
CALL
MOV
CALL
CALL

INC

CALL
CALL

NOP

MOV
MOV
CALL
MOV
MOV

GETDATA:

MOV

INC

MOV

INC

CALL

NOP

MOV
MOV
CALL

NOP
POP

LOOP

NOP

Hi: - MOV
MOV
MOV
MOV
JJJ: PUSH

NOP

CALL
LAST1: MOV

SI, offset MSGRAW

CREATE

MOV ROW, 04h

COL, 26h
CURSOR

SI, offset IDENTV

CONVERT
SEECHAR
SI
CONVERT
SEECHAR

ROW , 06h
COL . 26h
CURSOR

SI, offset DATEBUF

CX.3
PUSH CX
DH . [S1}
Si

DL . [S]
SI
SEECHAR

DH . 20h
DL, 20h
SELECHAR

CX
HHHH

ROW . 0%9h
COL , 00h

S, offset BUFFER

CX, 16
CX

CURSOR

AL, [S1]

CMP AL, 40h

. display the TMD identification

. display the TMD start of test' date

. display the TMD data

JE

43

RAWEND

CALL CONVERT
CALL SEECHAR

INC
ADD
NOP
POP

SI
COL, 04

CX

LOOP JJJJ

MOV
MOV
INC
CMP
JNE
NOP
BACKR:

NOP
RET

CX,16
COL,0
ROW
ROW , 24
JJJJ

CALL WAITD

RAWEND: POP CX

JIMP

RAW ENDP

BACKR

o o e ok 3k o o ok 3k o o ok ok ok o o ke o 3K oK fe o ¢ sk s R o ok ok ok ok ok ok i e i ko o O R R R Rl o fe o R0 3 ok 3 3R o ok ok ok o R OK O

SAVE TMD TEST DATA TO A SPECIFIED FILE

>4 3 24 ke o1 e ok ke le afe o Sl R e Al e R e He 33 O R K KO O K S sk e ke 3Ok g s sk ok iR s s e sie ok sk ot sk oje e e s 3k ale ROk Ok ke sk

SAVE PROC NEAR

CALL

NOP

VIEWS - display mstructions, get file spectfications

CALL SID

NOP

CALL

NOP

SDATI:

CALL SDATA

NOP

CALL SEVENT

NOP

CALL WAITD

NOP
RET

SAVE ENDP

. save the TMD identification

. save the date and time values
. save the TMD data

. save the recorded event times

. wait for a user keypress before

returning to COMMANDR

VIEWS

VIEWS

SID

SAVE_

44

PROC NEAR

MOV SI, offset MSGSAVE
NOP

CALL CREATE

NOP

CALL GETPATH

NOP

RET

ENDP

PROC NEAR

MOV
MOV
INT
NOP
JB
NOP
MOV
MOV
MOV
INT
NOP
IB
MOV
NOP
MOV
MOV
NOP
MOV
MOV
NOP
MOV
MOV
NOP
MOV
MOV
MOV
MOV
INT
B
NOP
RET
ERR: MOV S, offset MSG4
CALL CREATE

NOP

RET

AH, 1Ah
DX, offset DTA
21h

SAVE_ERR

Al | 3Ch

DX ., offset PATH- 2
CX.0

21h

SAVE ERR
HANDLLE | AX

DI . offset DTA
BYTE PTR[DI] . 2Ah

Al IDENTV
(DI - 1]. AL

AL , IDENTV-1
[DI=2]. AL

AH . 40h
BX , HANDLE
CX,3
DX, DI

21h
SAVE_ERR

, create a new screen

. get the file specification

.setupa DTA

. create a new file

. write 3 bvies to file

. display an error message

SID ENDP

SDATE

MOV
MOV
MOV
REP
NOP
MOV
MOV
MOV
MOV
INT
NOP
JB
NOP
RET
SDATE

SDATA

MOV
MOV

NEXTBY: MOV

INC
INC
CMP
JE
CMP
INE
NOP
MOV
MOV
MOV
INT
NOP
IB
NOP
RET

SDATA

PROC NEAR

SI, offset DATEBUF
DI, offset DTA
CX,12

MOVSB

AH , 40h

BX , HANDLE
CX, 12

DX, offset DTA
2th

SAVE_ERR

ENDP
PROC NEAR

SI . offset BUIFFER
CX.0

Al IS1)

Si

CX

CX . 4095

SAVE ERR

Al , 40h

NEXTBY

AH | 40h

BX . HANDLL

DX . offset BUFFER
21h

SAVE ERR

ENDP

. write 12 bytes to file

cwrite CN bvtes to file

SEVENT PROC NEAR

MOV SI, offset EVENTB
MOV CX,0
NEXTBZ: MOV AL, [S]]
INC SI
INC CX
CMP CX, 254
JE SAVE_ERR
CMP AL, 23h
JNE NEXTBZ
NOP
MOV AH . 40h - write CX bytes to file
MOV BX,HANDLE
MOV DX, offset EVENTB
INT 21h
NOP
JB SAVE ERR
NOP
MOV AH , 3Eh . close file
MOV BX .HANDLL
INT 21h
NOP
RET

SEVENT ENDP

2k 3 sje 3 ke 3 ofe ke 3k e 3 ok e i ok ol sk ok o 3 ok ok ok st ke s i s R % ok ke R KOk Kk % K ook ok ok ok o ok e 0K ok 3Kk Sk 3k ok KOk R ek

PLOT THE TMID RESULTS ONA VDU SCREEN OR ON
A PRINTOUT

EREE LS EEE LR E LIRS EEEEEE RS ESEERSEEEEE SR EESE L ESEEEEEEEE LS R

PLOT PROC NEAR

MOV All, OEh . write one character for testing
program

MOV Al , 50h

MOV BX,0

INT 10h

NOP

RET

PLOT ENDP

OLD PROC NEAR

CALL VIEWPATH
NOP

CALL GETID
NOP

CALL GETDATE
NOP

CALL GETDATA
NOP

CALL GETEVENT
NOP

CALL WAITD
NOP

RET

OLD ENDP

VIEWPATH PROC NEAR

MOV S§I, offset MSGLOAD

NOP

CALL CREATL
NOP

CALL GETPATH
NOP

RET

VIEWPATH ENDP

GETIDPROC NEAR

MOV AH . 3Dh
MOV AL,O

MOV DX, offset PATH -2

INT 2th

NOP

B LOADERR
MOV BX, AX

MOV HANDLE , AX
NOP

MOV AH . 3Fh
MOV CX .1

MOV DX, offset DTA
INT 2t1h

NOP

; get file specification

; get TMD identification

, get date and time values

; get the TMD data

. get the times of recorded events

- wait for a user KBD keypress

. create 4 new sereen routine

- nput a filename and path

. open the specified file
. read only

. to detect a file error
. transfer the file handle

. read | byte of file

MOV ROW, 18
MOV COL, 0

CALL CURSOR
NOP

MOV AH, OEh
MOV AL ,DTA
MOV BX,0

INT 10h

NOP

JB LOADERR
NOP

MOV AH, 3Fh
MOV BX, HANDLE
MOV CX .2

MOV DX, offset IDENTV
INT 21h

NOP

JB LOADERR
NOP

RET

LOADERR:
MOV SI .| offsct MSGH4
CALL CREATE
NOP
RET

GETIDENDP

GETDATE PROC NEAR

MOV AH 3Fh
MOV CX .12

MOV DX, offset DATEBUF

INT 21h

NOP

B LOADERR
NOP

RET

GETDATE ENDP

GETDATA PROC NEAR

MOV DX, offset BUFFER
LOOPD: MOV AH, 3Fh
MOV BX, HANDLE

48

. display character

. read 2 bytes of file

displav an crror message

cread 12 byvtes of file

. read | byte of file

MOV
INT
NOP
JB
NOP
MOV
INC
MOV
CMP
JNE
NOP
MOV
MOV
INT
NOP
RET

49

CX,1
21h

LOADERR

SI, DX
DX

AL, S]]
AL , 40h
LOOPD

AH | OEh
BX,0
10h

GETDATA ENDP

GETEVENT PROC

MOV
ELOQP:
MOV
MOV
INT
NOP
IR
NOP
MOV
INC
MOV
CMP
INE
NOP
MOV
MOV
INT
NOP
MOV
MOV
INT
NOP
IB
NOP
RET

NEAR

DX . offset FVENTEH
MOV AN 3Fh

BX . HANDILI

CX .1

21h

FOADERR

SE.DX
DX

Al [S1)
AL . 23h
ELOOP

AH . OEh
BX.0
10h

AH [3Ch
BX , HANDLLE:
2th

LOADERR

GETEVENT ENDP

. display character

read 1 bvie of file

~display character

. close the file

APPENDIX D

The Sofiware Development Environment Detaiis

T s section contains:

L. Y | Py i o oo e) WP 2

£). ¢, LRVITOMNNICHT escripiion,

™ * - ‘l vz

15.2. A menu dDaten e,

£2.3. An assembly language choice program and

o
b
s
b~
&
i
7
o
=l
&
‘e
oy
=
T
g.;
bl
(44}
=
@
wn
@
a
w0
&
<
o
ZT_S!
&
=

D.1.

Environment Description

Environment Description

Programs are required to edit the source program and for the serial
communication between the PC and the Motorola evaluation board. The names
of the main programs used for this project are as follows:

M Microsoft's full-screen editor,

PASM Motorola's portable asembler,

UBUILDS to create S-records,

MSKERMIT (.- serial communications, and

BUFFALO toaccept S-records and commands

to debug a user program.

The four PC programs used for sottware development were packaged into an
cfficient environment by calling them from within an MS-DOS batch file
{written by Mike Wetton). The batch file invokes two macine code programs.
One that clears the screen and selects forground and background colours for text.
The other allows the user to sclect menu choices from within a batch file. A
TYPE command inside the batch file creates a menu on the screen (see diagram
below). The PC screen would show the following menu:

Type 1" for EDITING

Type 2 for PASM

Type '3 fora LISTING

Type 4 for S-RECORDS

Type °S' for MSKERMIT

Type °6' for MS-DOS

D.2.

A menu batch file

MC68HC11 ASSEMBLY LANGUAGE PROGRAMMING ENVIRONMENT

(author Mike Wetton, file MENU.BAT)

ECHO OFF
BREAK ON
COLOUR

:START

CLS

TYPE MESSAGE.TXT

:INKEY

ERROR

IF ERRORLEVEL 6 GOTO DOS

IF ERRORLEVEL 5 GOTO COMMUNICATE
IF ERRORLEVEL 4 GOTO UBUILDS
IF ERRORLEVEL 3 GOTO LIST

IF ERRORLEVEL 2 GOTO PASM

IF ERRORLEVEL 1 GOTO EDIT
GOTO INKEY

‘EDIT

CD EDIT

M AMPROGS NEW ASM
CD.

GOTO START

‘PASM

CD PASM

PASMHCI1 -dxs -] APROGS NEW LST A PROGS NEW ASM
Ch.

ECHO Type 1'to continue

ERROR

GOTO START

:LIST

TYPE A:\PROGS\NEW.LST
ECHO Type '1'to continue
ERROR

GOTO START

‘UBUILDS

CD PASM

UBUILDS NEW.O

COPY NEW.MX A:\PROGS\NEW MX
ECHO Type 'I'to continue

ERROR

CD..

GOTO START

:COMMUNICATE

CD KERMIT

MSKERMIT

ECHO Type "L'to download SRECORDS
ECHO Type "I'1o continue

ERROR

CD..

GOTO START

‘END

START
:DOS

D.3.

An assembly language choice
program

THE MENU CHOICE PROGRAM (author Mike Wetton, file COLOUR.COM)

The assembly language program COLOUR.COM is invoked from the menu
batch file (MENU.BAT). The instructions of the COLOUR.COM program
select the foreground and background colours for the screen menu.

START: MOV AH, 00 : select text screen mode
MOV AL, 03
INT 10h
NOP
MOV AX, 0B800h . CGA screen memory
MOV ES, AX
MOV DI, 0000 . start of screen memory
MOV C¥X,07D0h . 2000 bytes of screen memory
MOV AL, 20h . space character
MOV AH, IFh - attribute:- white on blue
REP STOSW - write 2000 blue spaces
NOP
MOV AH . 4Ch . return to DOS function
MOV AL, 00
INT 21h
INPUT MENU CHOICE PROGRAM {author Mike Wetton. file
ERROR.COM)

The assembly language program ERROR COM is invoked from the menu batch
file

(MENU.COM) n order to select a cheice of menu options ASCH codes 31h to
36h are input from the KBD then converted to 3CD valves | 10 6 and returned to
DOS as an error code.

START: MOV AH .00 . wait for a KBD input
INT 16h
NOP
CMP AL, 31h clessthan 1'7?
JB START
CMP AL, 36 . greater than 67
JB START
NOP
MOV AH ., 4Ch . return to DOS function
SUB AL, 30h . error cade for DOS use

INT 21h

APPENDIX E

The Hardware Development Environment Details

This section contains:

THE MC6SHCIIEVBU EVALUATION BOARD
THE MC68HCIIEVB EVALUATION BOARD

THE MCO6SHCHIEVM EVALUATION BOARD

THE MC6S8HCI1EVBU EVALUATION BOARD

This board is designed to test and debug systems that use the MC68HC1 1 in it's
single-chip mode. The MC68HC11E9 microcontroller has on-chip RAM,
EEPROM and a ROM containing a monitor program called BUFFALO.

The EVBU contains two support chips; a real-time clock/calendar chip with 32
bytes of static RAM, and a serial interface chip used to communicate with the
terminal 1/O port.

The terminal I/O baud rate defaults to 9600 baud and communcation is via the
microcontroller SCI subsystem,

The EVBU requires a, user-supplied. +3 volt dc power supply and a RS232C
compatible terminal for operation.

THE MC68HCI1EVB EVALUATION BOARD

This EVB evaluation board was designed to demonstrate the capabilities of the
MC68HC 11 microcontroller unit. It operates in either the debugging mode or
the evaluation mode.

The debugging mode altows the user to debug user code under the control of the
BUFFALO monitor program. The user code can be assembled on the host
computer (the IBM PC) and downloaded as S-records into the EVB RAM. or
assembled one-line at a time by the EVB assembleridisassembler

This board is designed to expand the memony ot the microcontroller and provide
protected interfaces to the user's target crreuitry.

The EVB and EVM have two serial inks to a development system, namely. the
host port and the ferminal port. The host port is used for downloading user
programs. whereas, the terminal port is used to monitor program execution.

RS232C line drivers and receivers are used as a serial interface between the
EVB and the host computer and terminal.

The EVB has a fixed 9600 baud rate provided for the host port, and a hardware
selectable (300 - 9600) baud ratc for the terminal port.

The EVBU requires a, user-supplied, +5 V, +12V, -12V and GND dc power
supply and a RS232C compatible terminal for operation.

THE MC68HC11EVM EVALUATION BOARD

This board was designed to allow the user to program the MC68HC11 series of
microcontrollers in the single-chip or the expanded multiplexed mode of
operation. The Motorola literature states that it is a tool for designing,
debugging and evaluating the MC68HC11 microcontroller based target system
equipment.

The EVM is the most sophisticated of all the aforementioned evaluation boards,
as it contais pseudo ROM and EEPROM memory

The user has the choice of intertacing directly to the MC68HC11 ports, or to the
ports via buffered /O gates.

The EVM also requires a, user-supplicd, =3 V, + 12V -12V and GND dc power
supply and a RS232C compatibie terminal for cperation.

	A proposal for a development platform for microcontroller-based devices
	Recommended Citation

	wetton
	wetton_2

