
Edith Cowan University Edith Cowan University

Research Online Research Online

Theses: Doctorates and Masters Theses

1-1-1995

A proposal for a development platform for microcontroller-based A proposal for a development platform for microcontroller-based

devices devices

Michael L. Wetton
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Wetton, M. L. (1995). A proposal for a development platform for microcontroller-based devices.
https://ro.ecu.edu.au/theses/1170

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses/1170

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses?utm_source=ro.ecu.edu.au%2Ftheses%2F1170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ro.ecu.edu.au%2Ftheses%2F1170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses/1170

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons
who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement. Where the reproduction of such material is

done without attribution of authorship, with false attribution of

authorship or the authorship is treated in a derogatory manner,

this may be a breach of the author’s moral rights contained in Part

IX of the Copyright Act 1968 (Cth).

 Courts have the power to impose a wide range of civil and criminal

sanctions for infringement of copyright, infringement of moral

rights and other offences under the Copyright Act 1968 (Cth).

Higher penalties may apply, and higher damages may be awarded,

for offences and infringements involving the conversion of material

into digital or electronic form.

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

ii

A PROPOSAL FOR A DEVELOPMENT PLATFORM
FOR MICROCONTROLLER-BASED DEVICES

By

Michael Leon Wetton BSc.

A Thesis Submitted in Partial Fulfihnent
of the Requirement for the Award of

Master of Science

at the School of Mathematics. Information Technology and
Engineering.

Perth
Western Australia.

Date of Submission: 11 th June, 1995

iii

ABSTRACT

This thesis is concerned with designing, implementing and testing
a miniaturised temperature data logging device. Investigations
demonstrated that a microcontroller could provide a low-cost
single-chip solution to this problem and after a detailed review of
8-bit microcontrollers, the l\tIC68HC 11 was chosen for this task.
Th;s document also include~ discussion on an environment that
was developed for creating and testing MC68HC 11 software and
the use of Motorola's evaluation boards. To ensure that the device
was designed to software engineering standards an investigation
into software engineering analysis techniques took place. This
resulted in the Jackson Structured Programming (JSP)
methodology being adapted to produce a proposed development
platform suitable for microcontroller-based design.

iv

DECLARATION

I certify that this theses does not incorporate, without
acknowledg1nent, any material previously submitted
for a degree or diploma in any institution of higher
education and that, to the best of my knowledge and
belief, it does not contain any material previously
published or written by another person except where
due reference is made in the text.

Michael Leon W etton

11 th June, 1995

V

ACKNOWLEDGMENTS

I thank Edith Cowan University for providing the
means to complete this study and tor providing
several Higher Education Contribution Scheme
Exemption Scholarships.

I thank Dr Paul Maj and Dr Tho1nas O'Neill, 1ny
supervisors, for their advice, guidance and support
during the years of my study.

I thank Mrs Jennifer Renner and other members of
the library staff who provided assistance during my
library searches.

I also thank Wendy, my wife, for the moral support
during the years of my study.

vi

Table of Contents

Description page

Copyright Act

Title II

Abstract Ill

Declaration IV

Acknowledgments V

Table of contents vi

Contents (volume I) vii

Contents (volume 2) viii

List of Figures lX

List of Tables ix

List of references X

Chapter

1

2

3

4

5

vii

Volume 1

INTRODUCTION

BACKGROUND MATERIAL

Page

1

6

Circadian Rhythms in Humans 7
Measurement of Human B0dy Temperature 13
Choosing a Temperature Sensor 22
Choosing a Microcontro1Ier 24
The Microcontroller System Design Environment 30
The Search for Microcontroller-based Design Methodologies

33

HARDWARE DESIGN 36

Overview of the Temperature Monitoring System (TMS) 37
Designing the Temperature Sensor Circuit 39
Designing the Temperature Monitoring Device (TMD) 51
Designing the Data Transfer Device (DTD) 56
Designing the Data Processing System (DPS) 58

SOFTWARE DESIGN 60

The Software Requirement Document 60
Introduction 62
Hardware Specifications 77
The System Model 79
Functional Requirements Specifications 80
Data Types Requirement 89
Non-Functional Requirements 100
Structured Analysis 111
Jackson Structured Diagram 117
Choice of Programming Language 120
Maintenance and Testing Information 129

CONCLUSIONS 167

Discussion 168
System Design 169
System Testing 173
Suggestions for Further Consideration 174

viii

Volume 2

APPENDICES

A TMD structure diagrams and program listing Al

B DTD structure diagrams and program listing B1

C DPS structure diagrams and program listing Cl

D The Software Development Environment Details DI

E The Hardware Development Environment Details El

Number

2

3

4

5

6

7

8

9

JO

11

12

13

Number

I. I

1.2

ix

List of Figures

Title Page

Circadian Rhythms

Thermistor

Temperature Sensor Circuit Diagrams 181 -

MC68HC 11 Block Diagram

MC68HCI I Memory Map

MC68HC 11 Environment

The Temperature Monitoring System Block Diagram

The TMD Block Diagram

The DTD Block Diagram

The OPS Block Diagram

The System Model Diagram

The TMD Circuit Diagram

The DTD Circuit Diagram

List of Tables

Title

M icrocontroller Comparisons

Microcontroller Comparisons

Page

28

29

180

180

182

183

184

185

186

187

187

188

189

190

191

X

REFERENCES

page

Sited references xi

Electronic data sheets and manuals xvii

xi

REFERENCES

Alvey (1986) The Derivation of Standards for programming Practices and the

Tools to enforce them, UK Alvey Programme, Project Reference SE/058,

London.

Aschoff J (1982) Circadian Rhythms in Man, "Biological Timekeeping", Society

For Experimental Biology, Seminar Series, Cambridge University Press,

Cambridge.

Bell D, I. Morley and J. Pugh (1987) Sojhrare Engineering: A Programming

Approach, Englewood Cliffs, N. J., Prentice/Hall, London.

Booch G (1986) Object-Oriented Development, IEEE Trans. Software

Engineering . vol SE-12. no. 2.

Brady J (1982) Biological Timekeeping, Cambridge University Press.

Cambridge.

Brown, Christmas and Ford (1992) N-Z-Med-J

Briggs A (1991) Circadian Rhythms: Temperature and Cognitive Functioning of

the Institutionalized Elderly, Degree: MS, California State University, Fresno.

Cameron J (1983) The Jackson approach to Software Development, IEEE

Computer Society Press, Washington.

xii

Coad P, E. yourdon (1990) Object-Oriented Analysis, Prentice/Hall, London

Cooling J (1991) Software Designfor Real-Time Systems,

Davies C (1987) An Investigation into Computer Assisted Program and System

Design, The British Library Document Supply Centre, West Yorkshire, UK.

DeMarco T (1979) Structured Analysis and System Specifications, Prentice/Hall,

London.

Edwards H (1990) lntflfacing and Programndng Methods, The British Library
Document Supply Centre, West Yorkshire. UK.

Floyd T (1984) Electronic Devices (second edirion). Merrill Publishing

Company, London.

Fraden and Lackey (1991) Clin-Pediatr-Phi la

Geitner M (1991) An Jnvesrigatio11 imo the Relarionship Between Circadimz

Rhythm Perceptions and Lifelong Leaming, Degree: EDD, Northern Illinois

University.

Hall A (1990) Seven Myths of Formal Methods, IEEE Software (Septermber).

Hashimoto and Okamoto (1990) A Set and Mapping-based Detection and

Solution Metlzodfor Structure Clash between Program Input Output Data, ATR

Communication Research Laboritories, Kyoto 619-02, Japan.

xiii

Hoare C (1985) Communicating Sequential Processes, Prentice/Hall

International, London.

Horowitz P and W. Hill (1980) The Art of Electronics, Cambridge University

Press, Cambridge.

Hu D.(1990) Object-Oriented Environment in C++, Advanced Computer Books,

MIS Press, Delran, N. J.

Jackson M (1975) Principles of Program Design, Academic Press,

Jackson M (1983) System Development. Prentice/Hall, Englewood Cliffs, N. J.

Jacob J (1989) Industrial Co11trol Electronics applications and design,

Prentice/Hall of Australia Ltd. Sydney.

Littlewood B (1987) Sojhvare Reliability: Achievemellf and Assessment

Blackwell Scientific Publications, Oxford

Mano M (1988) Compltfer Engineering Hardware Design, Prentice/Hall

International Editions Inc. London.

Meyer B (1988) Object-Oriented Software Construction, Prentice/Hall, London.

Milewski, Ferguson and Turndrup (1991) Clin-Pediatr-Phila

Mohri and Kikuno (1991) Fault Analysis Based on Fault Reporting in ISP

Software Development, System Education Human Resources Development

Department, Nihon Unisys Ltd, Kanagawa, Japan.

xiv

Morley, Hewson,Thornlton and Cole (1992) Arch-Dis-Child

Naylor E (1985) Tidal and lunar rhythms in animals and plants, Biological

Timekeeping, Society For Experimental Biology, Seminar Series, Cambridge

University Press, Cambridge.

Newson T (1991) Sick Leave Patterns of Nurses on Pennanent and Rotating

Shifts, Texas Woman's University.

Noble J (1992) Pediatr-Emerg-Care

Orr K (1977) Structured Systems Developmem, Yourdon Press, New York.

Ostescn M (1991) Ugeskr-Laegcr

Pressman R (1992) S<ftware E11gi11eeri11g: A Practitioner's Approach (third

edition, McGraw-Hill. New York.

Ringer C (1972) Medical Thesis

Ritter D (1988) And We Were Tired: Fatigue and Aircrew Errors, NASA Ames

Research Centre.

Robertson. Bradkey and Fullen (1991) Clin-Pediatr-Phila

Roper R (1988) The Derivation of a Methodology with Supporting Software Aid~

for Testing Strucll.red Data Processing Programs, The British Library

Document Supply Centre, West Yorkshire, UK.

xv

Roper R and Smith (1989?) A formal Program Methodology For Use In The

Development Of Software"

Rozman (1989?) Software Engineering: How to Approach it to the Electrical

Engineer, University of Naribor, Naribor, Yugoslavia.

Saunder D (1986) Computers Today (second edition) McGraw-Hill Book

Company, Ney York

Shenep, Adair,Hughes,Flynn

Shlaer Sand S. Mellor (1988) Objec1-0riented Systems Analysis, Yourdon Press,

London.

Sommerville I (1987) Software Enuineering,

Stevens W G. Meyer and L. Constantine (1974) Srrucwrecl Design, IBM

Systems Journal. vol 13. no. 2.

Still H (1972) , Of Times, Tides.and Inner Clocks. Stackpole Books.Harrisburg.

Tocci Rand L. Laskowski (1986) Microprocessors and Microcomputers

(M6800), Prentice/Hall, Englewood Cliffs, New Jersey.

Thompkins Wand J. Webster (1988) J11te1facing Sensors to the IBM PC,

Prentice/Hall, Englewood Cliffs, New Jersey.

Wamier J (1981) Logical Construction of Systems, Van Nostrand Reinhold.

xvi

Wiener R and Sincovei (1984) Software Engineering with Modular 2 and Ada,

Wiley.

Wing J (1990) A Specifier's Introduction to Fonnal Methods, IEEE Computer,

vol 23, no. 9, September.

Wobschall D (1987) Circuit Design for Electronic Instrumentation,

Woodcock J (1989) Calculating Properties of Z Specifications, ACM Software

Engineering Notes, vol 14, no. 5.

Yang S (1990) Computer Modelli11g a11d Analysis of Biological Rhythms

Yourdon E and L. Constantine (1979) Structured Design, Fundamentals of a

Dicipline r~f a Computer Program and System Design.

Yourdon E (1989) Modern Svstems A,w!rsis. Prentice/Hall.

xvii

Electronic Data Sheets and Micrprocessor Manuals

Texas Instruments (1989) Data Book volume 1 (TTL)

Texas Instruments (1989) Data Book volume 2 (TTL)

RS data sheet 3992 (1983) Semiconductor temperature sensor (RS590)

RS data sheet 1867 (1983) Thermistors

RS data sheet 8307 (1987) Temperature sensor IC (LM35)

RS data sheet 3374 (1983) 16-key encoder

RS data sheet 5314 (1984) Trimmable voltage reference IC (ZNREF040)

RS data sheet 9811 (1989) Alphanumeric Out matrix LCD with backlighting

RS data sheet 6569 (1986) Alphanumeric dot matrix LCD

Seiko Instruments Inc (1988) LCD module L4042 user manual (an.no.L4042-

840E

Motorola (1989) M68HCI IEVB evaluation board (BR278/D)

Motorola { 1989) M68HC 11 EVM evaluation board (BR266/D)

Motorola (1988) HCMOS Single-Chip Microcontroller

xviii

Motorola (1991) HC 11 M68HC 11 reference manual

Motorola (1988) Real-Time Clock plus RAM (RTC) MC 146818

Motorola (1988) RTC plus RAM with serial interface MC68HC68TI

Motorola (1990) Universal Evaluation Board user's manual EVBU

Motorola (1986) Evaluation Board User's Manual EVB

Motorola (1989) Evaluation Module User's Manual EVM

Motorola (1986) 8-bit HCMOS Microcomputer MC68HC8 I l A2

Motorola (1991) 8-bit Microcontroller MC68HC7 l I J6

Motorola (1991) 8-bit Microcontroller MC68HC 11 L6

Motorola (1990) 8-bit Microcontroller Unit MC68HC7 I I K4

Motorola (1991) 8-bit Microcontroller MC68HC I I 03 / DO

Motorola (1991) 16-bit Modular Microcontroller MC68HC l 6Z I

Motorola (1991) 8-bit Microcontroller Unit MC68HC705H2

Motorola (1988) MC68HC1 I EEPROM Programming from a PC

xix

National Semiconductor (1989) The 8-Bit COP800 Family

National Semiconductor (1989) The 8-Bit COP888CL Single-Chip

Microcontroller

NEC (1992) Single-Chip Solution with 4/8/16-bit Microcontrollers

Intel (1988) 8-Bit Microcontroller 8051

Intel (1988) 16-Bit Microcontroller 8098

CBAPTERONE

1. INTRODUCTION

The overall aim of this thesis is to propose a development platfonn that can be

used to design microcontroller-based devices. The steps taken to design the

hardware of a small monitoring device, and its support system are described in

detail. Then the selected Jackson Structured Programming methodology

describes how software, used to control a small monitoring device and support

system, can be designed, implemented and tested.

The device is required to measure, and store, a person's body temperature at

regular intervals over a lengthy period of time (typically, four weeks).

Furthermore, its size is to be small enough so that it may be worn by a person in a

manner not likely to cause discomfort or inconvenience. At the same time, the

device's support system used for data processing is fashioned to be practical,

simple and easy to use.

It is common knowledge that the human body is affected by such criteria as:

• a long flight on a jet aircraft over several time zones,

which causes jet lag, or

• shift work, which produces listlessness due to a change in

environmental conditions.

In such cases, the human body undergoes a time 'warp' giving rise to a problem in

which the body's active and passive daily phases have been significantly

influenced. Alternatively, the body's circadian rhythms, which are daily biological

processes dependent upon internal clocks, suffer a severe phase shift.

2

According to Aschoff (1982) these internal clocks affect alertness, speed of

reaction and speed of computation; and, he states that there is a correlation

between these three effects and body temperature. Consequently, a body

temperature monitoring device should prove invaluable to people conducting

research into circadian rhythms and their effects on body functions.

During the late l 980's and early l 990's several multi function processing devices

(such as microcontrollers) were produced by corporations like Motorola, Intel,

NEC and Natiorud Semiconductor. A study of these microcontrollers is included

as they enable a sL'lgle-chip solution to the problem of miniaturising data logging

devices. Considerable emphasis has been placed on the use of software

engineering in the design, implementation, validation and documentation of such

systems. Such practices lead to nn increased confidence in the reliability of a

design and helps to ensure a device that achieves a solution to the problem at

hand. Furthermore, an outline is given of the development platform used for

designing systems that utilise microcontrollers. The temperature monitoring

system developed is an example of a single-chip solution to the problem of

miniaturisation.

Chapter two contains a review of background material needed for device, and

system, design in the field of miniaturising data logging systems for measurement

of human body temperature. More specifically, we discuss at length the

following topics:

• human circadian rhythms and their influence on human body functions

• measurement of human body temperature via intrusive and non­

intrusive methods

• identification of criteria to aid the selection process of an appropriate

body temperature sensor

3

• comparisons of various microcontrollers and their features to enable

selection of the most suitable one for our system's needs

o creation of a platform to facilitate the development, implementation

and testing of software and microcontroller support circuitry

The discussion shows that there is a need for miniaturised data logging devices,

as a cost effective means of corporal data acquisition.

Chapter three describes a hardware design of a system that measures, records,

and shows graphically, human body temperatures.

Firstly, the design of two temperature sensor circuits are described in detail. One

scheme incorporates a LM35 integrated circuit sensor, the other uses a YS44002

thermistor as a sensor. Both circuits are powered by a +5 volt supply and

include a voltage reference zener diode to enable temperatures to be monitored

with a+/- 0.1 degree Celsius accuracy. Then, the functions required to

implement:

• a temperature monitoring device,

• a data transfer device, and

• a data processing system

are listed and analysed. Finally, the results of the hardware design are given in

diagrammatic form in figures 7 through to 13.

Chapter four describes the temperature monitoring system from a Software

Engineer's point of view. It contains a description of the System Model in which

the relationship between the hardware and the user is discussed.

4

The software requirements documentation has items such as:

• hardware specifications, which describe the requirements :from a users

point of view,

• functional requirement specifications, that include: all the inputs,

outputs, expected error situations, solutions to the expected errors

and the processes required to be performed,

• data type requirements, include: microcontroller J/0 registers,

program parameters, variables, memory buffers and initial values used

when the system is reset,

• non functional requirements, which specify how well a function should

be performed, how the system connects to its environment, the limits

placed on the design and any other constraints given to the system,

and

• maintenance and testing information, in particular, details of a test

plan which incorporates: functional testing, module testing, system

testing and acceptance testing of the overall system.

The design of software employs a Jackson Structured Programming (JSP)

methodology, which includes:

• a structured analysis technique to create data flow diagrams,

• transform analysis techniques to convert data flow diagrams into

Jackson structure diagrams and

• Jackson Structure Diagrams, which categorises the logic into three

types of processes: namely, sequence, choice and iteration.

A diagrammatic methodology was chosen in order to show the flow of a

program's structure in an easy to follow manner.

•

5

Chapter five is reserved for concluding remarks. It provides a statement of the

original contributions of this thesis and some thought towards future

developments and research.

Finally, the appendices, contains three sets of: data flow diagrams, Jackson

structure diagrams and the associated program listing for:

• the temperature monitoring device,

• the data transfer device, and

• the data processing system.

6

CHAPTER TWO

2 BACKGROUND MATERIAL

2.1. Circadian Rhythms in Humans

2.1.1. Introduction
2.1.2. Man and the circadian rhythms
2.1.3. Analysing circadian rhythms by means of temperature
2.1.4. Desynchronisation of circadian rhythms
2.1.5. Research relating to circadian rhythms
2.1.6. The medical aspects
2.1. 7. Conclusions

2.2. Measurement of Human Body Temperature

2.2. 1. Introduction
2.2.2. The body temperature measurement sites
2.2.3. Differencences in body temperature measurements
2.2.4. The effects of a person's age
2.2.5. The duration of temperature measurements
2.2.6. Instruments which measure body temperature
2.2.7. Human/instrument interface

2.3. Choosing a Temperature Sensor

2.3.1. Sensor Selection Criteria
2.3.2. Interface to logging system

2.4. Choosing a Microcontroller

2.4.1 Single-chip Microcomputers
2.4.2 Single-chip Microcontrollers

2.5. The Microcontroller System Design Environment

2.5.1 Introduction
2.5.2. The software design environment
2.5.3. The hardware design environment

2.6. The Search for Microcontroller-based Design Methodologies

7

2.1. CIRCADIAN RHYTHMS IN HUMANS

2.1.1. INTRODUCTION

This section of the notes is written to illustrate the importance of measuring body

temperature, in the field of medicine. It is especially important when studying the

effects of stress in relationship to humans' circadian rhythms.

The Collins dictionary definition for circadian is, "an adjective which describes

the biological processes that occur regularly at 24 hour intervals". The Latin

meaning for circadian is, "about a day".

It is common knowledge that both animals and plants behave differently

depending upon whether it is day or night. They both have internal clocks which,

under normal conditions, synchronise with the light-dark cycle. The internal

clocks may adapt to other criteria; for example, the seasons, temperature cycles

and even social issues. Naylor(1982) states that "animals have various types of

internal clocks. some are affected by internal conditions, for example, one of

them, the heart, beats on demand". The other set of clocks are affected by

external conditions; they have environmentally related rhythms as follows:

the 24 hour day,

the 12.4 hour high tide,

the I 4.8 day spring tides,

the 29.5 day lunar month, and

the 365 day year.

Circadian rhythms generate patterns of locomotor activity alternating with rest or

sleep. Some people believe that the reason for sleep is to enforce inactivity in

animals to reduce the risk from predators. A more traditional view is, that sleep

restores body reserves.

8

2.1.2. MAN AND THE CIRCADIAN RHYTHMS

Man adjusts to the environment; his 24 hour internal clock prepares him for

efficient activity during the day and rest at night. Many of man's structures and

functions undergo regular 24-hour changes. The human circadian system consists

of multiple biological oscillators which are nonnally coupled to each other giving

rise to a stable internal clock.

The effects of the internal clock can be seen by analysing the variety of rhythms

that can easily be measured under experimental conditions. They are:

sleep-wakefulness,

alertness,

speed of reaction,

speed of computation, and

body temperature.

2.1.3. ANALYSING CIRCADIAN RHYTHMS BY NlEANS OF

TEMPERATURE

It should be noted at this point, that most of the rhythms that can be

demonstrated in man, have a similar wave shape. Under nonnal conditions, they

all have their peak during the daytime, and their low during the night. (see

Figure 1)

It could be said that, when measuring the body temperature of a person, the result

gives a fair indication of the potential useful activity in the other areas of interest.

For example there is a correlation between body temperature and sleep. There is

also a correlation between body temperature and speed of reaction, speed of

computation and alertness.

9

The variation of temperature ranges from approximately 37.S degrees Centigrade

at the daytime peak, to approximately 36. 0 degrees Centigrade as a low at night.

Thus, any experiment that is designed to monitor circadian rhythms with respect

to temperature, would need a temperature measuring device capable of measuring

a range from 30 degree Centigrade to 40 degrees Centigrade, with a steps of 0.1

degrees(+/- 0.1 'C error). Note, relative temperature changes ofa body are

more important than the actual temperate values themselves. As a matter of

interest, the maximum temperature is normally detected in the late afternoon and,

the minimum temperature would normally be detected during the second half of

a sleep pattern.

From an engineering point of view, measurement of the required temperatures

could be achieved with an Integrated Circuit (J.C.) temperature sensor, an

Analog to Digital Converter (A.D.C.) and a means of storing the results.

2.1.4. DESYNCHRONISA TION OF CIRCADIAN RHYTHMS

There are two main sets of oscillators associated with the human body: one set

controls wakefulness and sleep (this is highly variable in frequency), and the

other set controls the temperature rhythm which is relatively stable. In abnormal

situations , such as sleeplessness, the temperature and activity no longer correlate

closely.

Jet Lag

Aschoff(l 982) states that "modem air travel gives everyone the opportunity to

see how the circadian system can be upset". A long flight across several time

zones has the following effect: .
'

10

(i) At first the circadian rhythm is unaffected, but out of synchronisation

with the local time.

(ii) It takes several days to regain a nonnal phase relationship with the new

environment.

(iii) People make errors of judgment during the first three days after the time

zone change.

(iv) It takes five days to have a clear rhythm again.

(v) It takes eight days to have a nonnal rhythm in synchronism with the new

environment.

Shift Work

Aschoff (1982) also states that a strong contrast to jet lag is the situation in

which the shift worker has to suffer. Shift workers have a confusing

environment. They have to react to an artificial light-dark cyr:e on one hand,

whereas, the other environmental time signal, like family activity, are phase

shifted. The low temperature readings during sleep may shift from early to late

sleep, over a period of about 20 days. The high temperature reading also

gradually moves from enrly in the work period to a later time, over a period of

about 20 days.

2.1.5. RESEARCH RELATING TO cmCADIAN RHYTHMS

Research is still being carried out in order to relate the effects of circadian

rhythms to people's learning capacity and work perfonnance. This section of the

thesis shows that there is still a real need to monitor people's temperature and

corresponding activities.

11

A description correlational study was conducted to explore the relationship

between body temperature and the process of acquiring knowledge by

institutionalised elderly people. Briggs (1991).

An investigation was conducted into the relationship between circadian rhythm

perceptions and learning as determined by academic achievement.

Geitner (1991).

Yang (1990) states that "biological rhythms are an important phenomenon and

feature of physiological systems. Indirect means have to be employed for their

description and exploration due to the unclear internal nature of the systems.

Research was carried out on the frequency correlation between two different

circadian rhythms: temperature and activity".

A retrospective study was conducted by Newson (1990) to determine if there was

a difference in use of sick leave by nurses working:

(a) permanent night shifts,

(b) permanent evening shifts and

(c) rotating shifts.

Ritter (1988) research was aimed at demonstrating that the majority of errors

made by aircrew members are cognitive errors, not control errors, and that a

major contributing factor was fatigue. He argued that fatigue is increased by

sleep deprivation, circadian desynchronosis, and poor scheduling practices.

12

2.1.6. THE MEDICAL ASPECTS

The importance of the circadian system to the medical field is due to the

following:

(a) a high degree of temporal order relates to a healthy body,

(b) the response time of a body to react to a stimulus (drugs) depends upon

the circadian phase, and

(c) there are drastic changes from hour to hour that occur in many of the

circadian variables that are measured for diagnostic purposes.

2.1.7. CONCLUSION

It seems obvious that any means of measuring low resolution temperatures (0.1

degrees Celsius) without any stress or uncomfortable feeling to a patient, or any

person taking part in an experiment, is a desirable tool to the medical profession.

The smaller and lighter the device the better the tool would be as it needs to be

worn continually for extensive periods.

13

2.2. MEASUREMENT OF BUMAN BODY TEMPERATURE

2.2.1. INTRODUCTION

Nonnally an adult's body temperature remains constant for a particular time of

the day. There is a circadian rhythm of body temperature, in which the body

temperature reaches a peak during the wakeful day and a low during sleep or

restful night. The difference between the normal circadian maximum and

minimum body temperatures is approximately 1.5 degrees Celsius.

Any variation from the normal body temperature indicates that there is possibly

something wrong with the functions of the body.

The average normal body temperature is said to be 3 7 degrees Celsius. If the

body temperature rises significantly above 3 7 degrees Celsius , then the person is

said to have a fever; an abnormally high body temperature.

The following pages are designed to show that it is important to know when,

where and how to measure body temperature.

2.2.2. THE BODY TEMPERATURE MEASUREMENT SITES

Doctors, nurses and surgeons are interested in a patients core temperature to

establish the state of their health. The core temperature is defined as the

temperature of the blood passing through the pulmonary artery.

14

Traditionally, doctors and nurses use temperatures taken from the following three

body sites: oral, uillary and rectum. Temperatures from these main body sites

hll.ve been used to predict the human body's core temperature.

However, in recent years (1991 and 1992) several researchers including:

Noble(Feb 92),

Fraden and Lackey(April 91),

Shenep, Adair, Hughes, Robertson, Flynn, Bradkey and Fullen (April 91)

Milewski, Ferguson and Tumdrup (April 91)

have published articles recommending the use of a new method of measuring

body temperature from a fourth body site (the ear). The new method uses an

infrared ear thermometer (also called the tympanic membrane thermometer). This

device measures temperatures from within a person's ear canal. It gives a reliable,

non invasive, quick method of measuring body temperature.

Hence, there are now four body sites that may be used to easily measure body

temperatures:

• oral,

• axillary,

• rectum,

• ear.

2.2.3. DIFFERENCES IN TEMPERATURE MEASUREMENT

Firstly, it is important to know that the body temperature of a normal healthy

person has a circadian rhythm. Although the figure of37 degrees Celsius is said

to be the temperature of a normal healthy adult body, it can easily be shown that

the body temperature of humans may reach a peak of37.5 degrees Celsius during

the wakefulness of day and be at a low of 36.0 degrees Celsius during a restful, or

a sleep filled night. (see Figure 1)

lS

Secondly, the temperature taken from the four main body sites: oral, axillary,

rectum and the ear, varies from the required core temperature:

• oral gives the most accurate reading,

• axillary gives a reading that is 0.5 degrees Celsius lower than the core

temperature,

• rectum gives a temperature that is 0.5 degrees Celsius higher than the

core temperature.

• the reading from the ear with a tympanic membrane thermometer

depends upon the ambient temperature, which means that a small

calculation is required to accurately predict the core temperature.

If the variants are taken into account, then all four methods are acceptable ways

for predicting the core temperature of the human body.

2.2.4. THE EFFECT OF A PERSONS AGE

Empirical data shows that infants under the age of 12 months, and aged people

over the age of 80 years, have greater variations in body temperatures than

adolescent and adult people. For example, studies by Brown, Christmas and

Ford (1992) have shown that, "The current clinical practice in assessing infant

body temperature by using axillary temperatures does not reflect rectal

temperatures in a reliable constant fashion".

Hence, infants and aged people need to be considered as special cases when

designing instruments for measuring body temperature.

16

2.2.5. THE DURATION OF TEMPERATURE MEASUREMENTS

Over the years many studies have looked into the amount of time that a

thermometer has to be present at the body site, to ensure that they have fully

acquired the body temperature.

Usually nurses wait at least one and a half minutes before removing a mercury

thermometer from a patients body site.

Ostesen (1991) conducted a study that investigated, "Whether the rectal

Craftemp measurement of temperature could be used as an alternative to the

measurements with a mercury thermometer", and came up with the following

discovery. That the one minute time of measurement recommended by the

manufacturer of the electronic temperature measuring device (called Craftemp)

was insufficient. It should have been 2 minutes.

Note, the time measurement problem does not arise with sensors attached

permanently to a body site. Thus, a small comfortable temperature measuring

device that is permanently attached to the body, and is continually monitoring

body temperature would not suffer from the time measurement problem.

Noble (1992) informs us in a journal article that the latest infra-red (IR) ear

thermometer which allows users to take a quick and non invasive measurement of

body temperature is also desirable device.

17

2.2.6. THE INSTRUMENTS WIDCH MEASURE BODY

TEMPERATURE:

There are various ways of measuring body temperature. This section subdivides

temperature m~wing devices into 4 categories:

(i) glass - mercury thermometers,

(ii) electronic instruments,

(a) thermistors

(b) LC. temperature sensors

(iii) infrared ear thermometers

(iv) other means of measuring body temperature,

(i) magnetic resonance

(ii) thermadot disposable

The following sections describe the sensors from the first two sections shown

above. The glass-mercury thermometer is described because it has been the

medical professions standard temperature measuring instrument. The thermistors

and IC devices because they offer a small and convenient way of measuring body

temperature of an active person under test.

(i) The glass - mercury clinical thermometer,

The clinical thermometer that is made from glass and mercury is specially

designed for measuring body temperatures of humans. It has graduation marks

that show a range of temperatures between 35.0 degrees Celsius and 43.0 degrees

Celsius in 0.1 degree steps.

This instrument requires at least 2 minutes to ensure that it fully acquires the body

temperature.

18

Glass mercury thermometers consist of an envelope of glass that houses a large

bulb which contains all the mercury at room temperature. Attached to the bulb is

a small capillary tube that allows the mercury, that is expanded by the body heat,

to flow. The mercury in the capillary tube cannot return to the bulb of mercury

easily because ofa restriction in the capillary tube close to the bulb ofmercwy.

Thus, when the thermometer is removed from a patient the mercwy remains in

the capillary tube and the measurement can be recorded with with reduced error.

The instrument has to be allowed to cool, and then shaken to force the mercury in

the capillary tube back into the bulb.

The advantages of measuring human body temperatures with a glass thermometer

are: it has become the accepted standard temperature measuring device and the

device can easily be sterilised. The disadvantage is that it cannot be used for

automated recording of temperatures.

(ii) electronic instruments:

Nearly every electronic property of a material varies as a function of temperature,

and could in principle be employed as a temperature sensor. It is only the

requirements of: high sensitivity, reproduciblity, and linearity that limit the

possibilities, especially if cost, size, and ease of readout are also considered.

Thermistors and Integrated Circuit (IC) sensors are considered to be the most

suitable electronic components for measuring body temperature.

(a) thermistors

19

Basically a thermistor is a resistor with a high temperature coefficient. It is a

semiconductor that is found in various geometrical configurations, to which leads

are attached. In fact they are found in a wide variety of shapes and sizes; down

to microscopic sizes. They have a negative temperature coefficient; their

resistance decreases with increasing temperature. (see Figure 2)

The bad points associated with thermistors are:

The resistance-temperature variation is non linear; over most of its range

the resistance decreases exponentially with increasing temperature.

Thermistors are affected by internal heating (power dissipation) caused

by the voltage applied to the thermistor from the readout or converter

unit.

The good points associated with thermistors are:

Although thermistors are not highly precise sensors, they are popular for

their low cost, high sensitivity, ease of readout and small size.

A convenient configuration can also be found to suit a particular

application; for example, a bead for measuring internal body temperatures,

a thin disc form for measuring skin temperatures.

(b) IC temperature sensors

The IC temperature sensors are based on the diode voltage being temperature

dependant. One version (the AD590) has a current output proportional to

absolute temperature.

20

The sensor is insensitive to the voltage across it and can be used even with long

lead wires. Another version (the LM335) has an output voltage proportional to

temperature.

The good points associated with IC temperature sensors are:

their output is linearly proportional to temperature,

their time constant is reasonable; 60 seconds in still air, 1.4 second with

a heat sink.

maximum error is less than, plus or minus, 0.05 degrees Celsius

The bad points associated with IC temperature sensors are:

Their shape is usually in the form of a transistor package (bulky).

Their output requires amplification

(AD590 = I micro amp/degree Kelvin) or

(LM335 = 10 millivolts/degree Kelvin)

21

2.2.7. HUMAN/INSTRUMENT INTERFACE

The most obvious site for measuring human body temperature, when taking

readings from a pennanently fixed sensor over a long period of time, is the

axillary site. The temperature readings from this site are said to be correlated to

the core temperature of a human body, and there should be no inconvenience to

the person under test, as long as the sensor is small.

The duration of the temperature measurements should not cause a problem as the

sensor would be permanently fixed to the person under test.

DATA STORAGE

Readings would be taken, by the temperature monitoring device, every ten

minutes. This would give:

6 * 24

7 * 144

4 * 1008

=

=

144 readings a day

1008 readings a week

4032 readings during a 4 week test period

Therefore, the measuring device needs to be able to store at least 4032

temperature readings when used over a four week period. Given that

conventional devices measure temperature between a range of 35.0 through to

43.0 degrees Celsius in 0. I degree steps. This means that about 80 relative

temperature values are possible for each reading. Note, that each reading can be

stored in one byte of memory if an electronic measuring device is used. One byte

has 8 bits of information (2 to the power of8 different codes) which allows 256

possible values per reading)

Consequently, a 4K byte memory chip (RAM or EEPROM) can be used to store

four weeks worth of data.

22

2.3. CHOOSING A TEMPERATURE SENSOR

2.3.1. SENSOR SELECTION CRITERIA

Choosing a temperature sensor to measure human body temperature requires a

set of criteria to be considered.

Firstly, various selection criteria, mentioned in books and manufacturers data

sheets, were listed and then analysed. The criteria selected for consideration

included: accuracy, stability, linearity, temperature coefficient, response time,

power dissipation constant, ruggedness or fragility, ease of readout, cost of

manufacture, resistance to chemical attack, requirement of a reference

temperature, self-power character, sensitive to interference, suitability for remote

sensing, the required temperature range, self-heating effects, and the choice of

shapes and sizes. The significance of each criterion, relating to measurement of

human body temperature, had to be realtsea.

Secondly, various types of temperature sensors were considered. Matching the

criteria, important to this project, with the commerially available sensors helped

to reduce the selection down to three types of sensors, namely: thermistors (YSI

44000 series), IC current sensors (AD590) and precision IC sensors that produce

a voltage output (LM 34 and LM 35).

The third stage of the task was to evaluate circuit designs for the three chosen

types of sensors. This involved circuits being designed, built and tested. This

enabled preliminary results to be analysed and the complexity of the circuits to be

considered.

23

The design of the sensor support circuitry involved the following:

selecting a suitable precision voltage reference zener diode,

calculating resistor values to minimise the currents flowing through the

circuit, and

calculating resistor values that enable a suitable range of voltages to be

input into a microcontroller system.

The overall result was that the IC current sensor was eliminated, from the three

chosen sensors, because of the size and complexity of the support cicuitry. For

example, the circuit required an operational amplifier and more importantly an

additional + and - power supply.

Note, the most important criterion of the temperature monitoring system was that

the device had to be as small as possible. Hence, the LM 34 IC voltage sensor

and the YSI 44002 thermistor, used as a temperature sensor, were the only two

devices left for further analysis. Both devices can be shown to produce an

accurate voltage output, proportional to temperature changes of their

environment, with only a small support circuit and a +5 volt power supply.

2.3.2. INTERFACE TO LOGGING DEVICE

The output voltage (Vo) and two reference (Vrl and Vrh) can be sent from the

sensor circuit into a microcontroller ADC subsystem. The microcontroller can

then be programmed to digitise and record temperature readings at regular

intervals of time.

When the temperature monitoring system has been fabricated, then the two

sensor subsystems can be fully evaluated and comparisons made with each other.

2.4 CHOOSING A SUITABLE MICROCONTROLLER CHIP

24

The following two sections of this chapter describe the differences between a

single-chip microcomputer system and a single-chip microcontroller system. The

descriptions should also show the suitability of a microcontroller for the two most

important parts of the overall temperature monitoring system design: namely, the

monitoring device and the data transfer

3.2.2. Single-chip

These are complete microcomputer systems on a single chip. They do not require

any additional components other than a system clock signal to provide a single­

chip solution to many of today's processing problems. Cooling (1991) states (

page 20, 'Software Design for Real-time Systems') that "Using a single-chip

solution reduces the: package count, size and the cost of a system".

A microcomputer chip contains a CPU, memory (RAM and EPROM), timers,

intenupt controllers, serial communication interface, parallel I/O ports and an

external bus system. They are designed mainly as a processing device and can

only handle serial, and parallel, I/0. Furthermore, they lack an analog

subsystems; sample and hold and ADC,

They are not really designed, as data logging devices or control units, for real­

time

3.2.3. Single-chip

Microcontrollers are derivatives of microcomputers; they are designed to provide

all computing functions on a single chip. Cooling (1991) also states that "The

interfacing hardware, internal register structure and the instruction set arc

optimised for real-time systems".

2S

An initial task, at the time of commencing this Master's project. was a study of

the most popular microcontrollers. Motorola, Intel and National Semiconductor

were the names that were chosen as the manufacturers of the most popular

microcontroller devices in the early 1990s. The data sheets and the

manufacturer's support literature were studied in depth.

A comparative study of six series of microcontrollers was made, noting all their

common features and their areas of specialisation. Two tables were made listing

the most important features from the following six 8-bit microcontroller chips:

Motorola M680 I

MC68HCI1

Intel

National Semiconductor

(See tables 1.1 and 1.2)

8051

8098

COP 800

COP 888

This project revolves around the measurement and storage of temperature

readings within the range of 35 to 40 degrees Celsius with a resolution of0.1

degrees C. That means that there are 150 different possible values (note, 256

different values can be coded into 8-bits). Hence, an 8-bit analog to digital

converter (ADC) can be used to input temp values and 8-bit memory locations

can be used to store them. The total storage required for a complete 4 week test

(28 days * 24 hours * 6 readings per hour) works out to be approximately

4Kbytes. Consequently, the author considered the available 8-bit

microcontrollers; as it was believed that there was no need to look at the more

powerful 16 and 32-bit devices.

26

A comparative analysis of the microcontrollers was made and a preliminary

assessment of the requirements for a Temperature Monitoring Device (TMD) and

a Data Transfer Device (DTD) were also made. This resulted in the following list

of microcontroller requirements:

• A small portion of RAM (64 bytes) is required to hold the variables that are

necessary for the control program.

• An 8K or 16K byte ROM. EPROM or EEPROM is required to permanently

store the control program.

• A small portion of EEPROM is required to hold the program's parameters:

namely, the device identification, a lookup table for the sensor readings, and

the date and time of the start of the current test.

• A 4K or 8K byte RAM, or EEPR.OM, for the ongoing storage of data from

the test.

• An 8-bit ADC to convert the analog data input from the sensor circuit into an

8-bit digital form

• A serial communication sub-system, ideally asynchronous, to upload the data

to the data transfer device, or to the processing system (the PC system).

• An interface is required that can detect edges of pulses derived from the push

buttons. These edges are necessary to activate the various functions of the

data monitoring device.

• A timer sub-system is essential to enable precise increments in time to be

measured. This allows data to be read at regular intervals of time, say every

10 minutes.

• A low power consumption is necessary for the data monitoring device.

Ideally the microcontroller should also have pins available for parallel

communication between the data transfer device and a hexadecimal keypad,

and a liquid crystal display.

• 8-bit internal data paths and an 8-bit CPU are required to process, store and

transfer the data.

27

It can be seen from the tables 1.1 and 1.2 that the Motorola microcontroller

MC68HC 11 is the most suitable chip, as it meets all the selection criteria for both

the data monitoring device and the data transfer device

In the final analysis it could be said that the Motorola MC68HC 11

microcontrollers appear to be the most versatile single-chip devices on the market

to date. They have 4 main modes of operation and, in addition, they have low

power dissipation modes of operation. Although other makes of microcontrollers

could possibly have been used for this project the MC68HC11 has all interfaces

required including an ADC sub-system. The onboard EEPROM and supporting

onboard boot loader ROM programs enable these microcontrollers to have their

EEPROMs to be programmed in situ.

Another reason for choosing the MC68HC11 microcontroller is that Motorola, in

Perth, provide excellent hardware evaluation equipment and excellent software

support for this series of products.

TABLE I.I

~anufacturer

Part Number

Internal Memory

Address Bus size

Registers

CPU size

Serial 1/0

Parallel 1/0

Timers

Analog Interface

Interrupts

Watchdog

Operating Modes

Clock-rate

Power

21

MICROCOSTROLLER CO~PARISONS

Motorola

M6801

RAM 192-256 bytes
ROM 2 - 4K bytes
EPROM 2-4K bytes

Motorola

MC68HC11

RAM 192-768 bytes
ROM 4K-24K bytes
EEPROM 512-2K

National
Semiconductor

COP800

RAM 64-128 bytes
ROM 4K

(16-bit) 64K bytes (16-bit) 64K bytes (15-bit) 32K bytes

6

8-bit

Asynchronous (FD)

13 - 29 bits

16-bit registers
one 1/P capture
one 0/p compare

none

IRQ and l'-'11

no

1 - 4 '1 Hz

lW

7 + 64 1/0 registers

8-bit

6*8-bit + PC

8-bit

Asynch (FD) Synchronous
Synch (high speed)

A 4 = 0/P, 4 = 1/P
B 8-bit 0/P
C 8-bit 1/0
D 8-bit 1/0
E 8-bit 1/P

16-bit registers
1 wunter
3-4 1/P capture
3-5 0/P compare

8-bit ADC
8 channels (s&H)

17 sources

yes

4

DC to8 MHz

50mW

2 1/0 8-bits
1 1/P 4-bits
1 0/P 4-bits

16-bit registers
mode I PWM
mode 2 counter
mode3 timer

8-bit
8 channels

3 sources

yes

3

1 MHz

1 OuW,10mW,50mW

TABLE 1.2

~ fanuf acturer

Part Number

Internal Memory

Address Bus size

Registers

CPU size

Serial 1/0

Parallel 1/0

Timers

Analog Interface

Interrupts

Watchdog

Operating l\1odes

Clock-rate

Power

MICROCONTROLLER COMPARISONS

Intel

80Sl

RAM 128 bytes
ROM 2 - 4K bytes
EPROM 4K bytes

(16-bit + 16-bit)
64K prog + 64K data
48 • 8-bit registers

8-bit ALU

Asynchronous (FD)

4 • 8-bit I/O ports

2 • 16-bit registers
4 operating modes:
1/P capture, event

pulse "'idth, mark
space

none

6 sources. 5 vectors

no

3

1 - 10 MHz

l.OW

Intel

8098

RAM 232 bytes (reg)
ROI\f/EPROM 8K

(16-bit) 64K bytes

232 registers

16-bit ALU

Asynchronous (FD)
high speed sync

2 • 8-bit ports
2 • 4-bit ports

16-blt registen
4 timers
2 counters
PWM

10-bit resolution
Sample and Hold
8 channel (l\fUX)

21 sources, 9 vectors

yes

2

6-J2MHz

1.0 W

National
Semiconductors
COP888

RAM 128 bytes
STACK (RAM)
ROM 4K b)1es

(15-bit) 32K bytes

6 • 8-bit + 15-bit PC

8-bit ALU

Synchronous
(Microwire)

L 8-bit 1/0
G S 1/0, 1 1/P ,3 0/P
I 8-bit 1/P (Hi-Z)
D 8-blt 0/P

J • 16-bit timers
2 timers support:
PWM,
Event counter,

1/P capture.

8-bit resolution
8 channels

10

yes

3

DC to 20.MHz

SOmW

·.

30

2.5. THE MICROCONTROLLER SYSTEM DESIGN ENVIRONMENT

2.5.1. INTRODUCTION

When designing data logging or control systems that make use of a

microcontroller one needs to consider the type of platfonn necessary to develop

the software and to test the interfaces to the user's hardware. The

microcontroller system design environment can be considered to be in two parts,

namely: the software design environment, and the hardware design environment.

2.5.2 THE SOFfW ARE DESIGN ENVIRONMENT

The approach used for this project was to produce a software developement

environment arround the suite of MC68HC 11 support programs provided by

Motorola. These programs are designed to run on an IBM PC or any compatable

machine with an MS-DOS operating system. The Motorola suite of programs

enables:

• assembly language source programs to be assembled,

• the assembler to create a program listing showing the source code, the

equivalent macine code values and any syntax errors,

• the syntax free machine code to be linked to .~~mory locations, and

• Motorola S-records to be created. Thus, enabling the machine code

to be transferred, from an IBM PC to the memory of a MC68HCI I

microcontroller, via the BUFF ALO monitor program.

31

Programs are also required to edit the source program and for the

serial communication between the PC and the Motorola evaluation

board. The programs needed for the PC are:

• Microsoft's full-screen editor,

• Motorola's portable asembler,

• Ubuilds program to create S-records and

• a serial communications program.

In addition, a microcontroller debugger is required:

• the Buffalo monitor program in the MC68HC11 to accept S­

records and commands to debug a user program.

The four PC programs used for software development were packaged into an

efficient environment by calling them from within an MS-DOS batch file (written

by the author). The batch file invokes two macinecode programs. One that

clears the screen and selects forground and background colours for text. The

other allows the user to select menu choices from within a batch file. A

TYPE command inside the batch file creates a menu on the screen (see appendix

D and the diagram below). The PC screen showed the following menu:

Type 'l' for EDITING

Type '2' for ASSEMBLING

Type '3' fora LISTING

Type '4' for S-RECORDS

Type '5' for COMMUNICATIONS

Type '6' for MS-DOS

31

Programs are also required to edit the source program and for the

serial communication between the PC and the Motorola evaluation

board. The programs needed for the PC are:

• Microsoft's full-screen editor,

• Motorola's portable asembler,

• Ubuilds program to create S-records and

• a serial communications program.

In addition, a microcontroller debugger is required:

• the Buffalo monitor program in the MC68HC11 to accept S­

records and commands to debug a user program.

The four PC programs used for software development were packaged into an

efficient environment by calling them from within an MS-DOS batch file (written

by the author). The batch file invokes two macinecode programs. One that

clears the screen and selects forground and background colours for text. The

other allows the user to select menu choices from within a batch file. A

TYPE command inside the batch file creates a menu on the screen (see appendix

D and the diagram below). The PC screen showed the following menu:

Type 'l' for EDITING

Type '2' for ASSEMBLING

Type '3' fora LISTING

Type '4' for S-RECORDS

Type '5' for COMMUNICATIONS

Type '6' for MS-DOS

32

2.5.3 THE HARDWARE DESIGN ENVIRONMENT

The hardware support supplied by Motorola consists of three types of evaluation

boards, namely: the EVBU, EVB and the EVM (see Figure 6). Each one of

these evaluation boards contains a microcontroller system with an embedded

monitor program. The monitor program allows communication, via one or two

serial ports, with an IBM PC development system. The IBM PC is used to

develop the software that is to be downloaded into the microcontroller system

memory. Then the PC system is used to communicate with the evaluation board

during the debugging stages of the software and hardware.

A detailed description of the uses for these Motorola evaluation boards is given in

Appendix E.

Each evaluation board contains:

• a microcontroller chip,

• components and chips to support the microcontroller, and

• a monitor program to assist with the debugging procedure.

The EVB and the EVM evaluation boards also have external memory, and buffers

to protect the ports of the MC68HC 11 when interfacing to the user's target

circuitry.

Note, an EVBU evaluation board was used to develop the TMD and to test the

control program. Whereas, an EVU evaluation board was used to develop tb.e

DTD and to test its control program.

33

MICROCONTROLLER DESIGN METHODOLOGIES

Several library searches were made, at Edith Cowan University, on the following

four databases:

1. INSPEC,

2. IEEE PUBLICATIONS,

3. SCIENCE and TECHNOLOGY CD-ROM NETWORK,

4. ENGINEERING and APPLIED SCIENCE.

1. INSPEC

A search for the number of articles, with abstracts containing the following

terms were made:

Methodology

Methodology

Methodology

Methodology

Microcontroller(s)

Microcontrollers

2. IEEE PUBLICATIONS

AND Software

AND System Design

AND Computer Systems

AND Microcontrollers

AND JSP

743

99

29

7

519

0

A search for the number of articles, with abstracts containing the following

terms were made:

Methodology AND Software 908

Methodology AND System Design 172

Methodology AND Computer Systems 59

Methodology AND Microcontrollers 4

Microcontroller(s) 294

Microcontrollers AND JSP 0

34

3. SCIENCE and TECHNOLOGY CD-ROM NETWORK,

COMPUTER SELECT (77,816 Articles from Computer Periodicals)

A search for the number of articles, with abstracts containing the following

terms were made:

Software

Microcontroller(s)

Microcontroller(s)

Microcontrollers

AND Methodology

AND Methodology

AND JSP

DISSERTATION ABSTRACTS ONDISK (1988 - 1995)

723

346

15

0

A search for the number of abstracts containing the following terms were

made:

Methodology

Methodology

Methodology

Methodology

Microcontroller(s)

Microcontrollers

AND Software

AND System Design

AND Computer Systems

AND Microcontrollers

AND JSP

4. ENGINEERING and APPLIED SCIENCE

(Australian Engineering Database)

602

111

54

4

49

0

A search for the number of articles, with abstracts containing the following terms

were made:

Methodology AND Software 23

Methodology AND System Design 73

Methodology AND Computer Systems 30

Methodology AND Microcontrollers 0

Microcontroller(s) 5

Microcontrollers AND JSP 0

3S

The conclusions drawn from all the aforementioned results were as follows:

• There was a great interest, during 1988 to 1995, in Software Design

Methodologies.

• There was less, and still is less, of an interest in describing design

methodologies in computer system design articles.

• Hardly any articles, that described microcontroller applications, gave

infonnation on their design methodologies (7 out of 519, 4 out of294

and 15 out of 346). Note, 4 out of 49 abstracts from dissertations

mentioned their design methodologies.

• Finally, and most importantly to this thesis, no articles or dissertations

describe how a JSP methodology could successfully be used to help

design a microcontroller-based system.

Note, that the few microcontroller design methodologies that were discussed fell

into two categories:

methods describing the internal design of custom-made microcontrollers

were given or

the methods of designing systems using standard microcontroller chips

and the associated software were detailed.

36

CHAPTER THREE

3 HARDWARE DESIGN

3.0. Overview of the Temperature Monitoring System

3.1. Designing the Temperature Sensor Circuit

3.1.1. The LM 35 Temperature Sensor
3.1.2. The LM 35 Temperature Sensor Circuit
3.1.3. The LM 35 / LM334 Sensor Circuit Results
3.1.4. The Voltage Reference Circuit Calculations

3. 1. 5. The YSI 44002 Precision Thermistor
3.1.6. The YSI 44002 Calibration Table
3.1.7. The YSI 44002 Sensor Circuit
3. !.8. The YSI 44002 Circuit Diagram Calculations

3.2. Designing the Temperature Monitoring Device (TMD)

3 .2. 1 The Functions Required From The TMD
3.2.2 The Motorola MC68HC11 Series ofMicrocontrollers

3,3, Designing the Data Tran sf er Device (DTD)

3 .3 .1. The Functions Required From The DTD

3.4. Designing the Data Processing System (DPS)

3.4.1 The Functions Required From The DPS

37

3.0. OVERVIEW OF THE TEMPERATURE MONITORING SYSTEM

The temperature monitoring system (TMS) comprises of seven main parts:

• a person under test,

• a temperature sensor,

• a Temperature Monitoring Device (TMD),

• a Data Transfer Device (DTD),

• a Data Processing System (DPS),

• an output device and

• a researcher. (see figures 7 and 11)

A brief description of each part of the system is given below and a more

comprehensive description of the whole system is given in chapter 4.

• The person under test provides a source of temperature between the

range of35 through to 43 degrees Celsius.

• The temperature sensor is expected to monitor the person's

temperature with a resolution (and relative accuracy) of 0.1 degrees

Celsius.

• The temperature monitoring device is a mirjature data logging syrtem

that: receives input from the sensor, is capable of storing four

thousand temperature readings and is able to download the data at the

end of a test, to a DTD or DPS.

38

• The main functions of the data transfer device are: to keep the correct

time and date, to be able to download time date and a start signal, to

the TMD, in order to begin a test session. Then later, upload the

infonnation from a test in order to pass it on to the DPS. Note, this

small device enables the remote use of the TMD; away from an office

environment.

• The data processing system is used by the researcher to: upload

infonnation from a test, check the infonnation on a VDU screen and

store data from a test on a file. Then later, the researcher can process

the data in order to produce graphical infom1ation.

• The output device enables hard copies of results to be made.

• The researcher is responsible for organising tests and any programs

that process the results.

See figure 11 for a graphical representation of the data flow within the system.

The following four major sections of this chapter describe the steps taken during

the hardware design of the temperature sensor, the TMD, the DTD and the DPS.

39

3.1.l. THE LM 35 TEMPERATURE SENSOR

IC Temperature Sensor

The IC temperature sensors are based on the diode voltage being
temperature dependant. One version (the AD590) has a current output
proportional to absolute temperature. The sensor is insensitive to the
voltage applied across it and can be used even with long lead wires.
Another version (the LM 35) has an output voltage proportional to
temperature.

LM 35 IC Sensor

The LM 35 series ofintegrated circuits are precision temperature
sensors, whose output voltage is linearly proportional to Celsius
temperature. The user is not required to subtract a large constant voltage
from its output in order to obtain a convenient degree Fahrenheit scaling.
[RS Components data sheet 8307]

The LM 35's low output impedance, linear output and precise inherent
calibration make interfacing to readout or control circuitry especially easy.
The IC draws only 70 uA from its supply, it has very low self heating, less
than O . 2' C in still air. No trimming is required to gain an accuracy of+
or - 0 . l' C at room temperature. The LM 3 5Z chip is rated to operate
over a -40 to + 1 I O • C temperature range.

Features

• wide temperature range -40' C to + 11 O' C (CZ version)

• accurate

• linear output

• low self heating

• output impedance

• output voltage

• supply voltage

0.25' Cat room temperature

+/- O. l' C typical

0.08' C typical

0.1 ohm at 1 mA

1 OmA per degree Celsius

+35 to -1.0 volts

3.1.2. THE LM 3~ / LM 334 TEMPERATURE SENSOR CIRCUIT

+SV

LM334

R2

Vout = 10 mV /' C

LM35

Rl

Selecting the value for resistor Rt

A test of the circuit was performed in order to select the value of resistor R I.
R 1 determines the nominal output voltage at room temperature

Rl (ohms) Vout (volts)

56 2.20

68 2.22

180 2.32

270 2.40

330 2.45

560 4.25

680 4.27

41

Selecting the value for resistor R2

The LM 334 is a constant current source IC. The magnetude of the constant current is
detennined by the size of the resistance of the external resistor R2. The resistance for
R3 was chosen to be 47K ohms as this approx.~mately represents the resistance of the
temperature sensor LM35. The test circuit shown below was constructed in order to
select a suitable value for the constant current.

Results

R2

39K
22K
IOK

5.5K
2.2K

lK
.56 K
33 K

le

+5V

LM
334

R3

47K
"
"
"
"
11

II

"

R2

Vout

R3

Vout le (Vout/ R3)

0.080V O.OOluA
0.150 0.003
0.318 0.007
0.587 0.013
1.540 0.046
3.41 0.072
4.26 0.090
4.29 0.091

3.1.3. THE L~ JS/ LM 334 SE'.'ISOR CIRCt:IT RESULTS

LM334

IK ell.

Vout = 10 mV /' C

LM35

68 c./l.,

Results Output voltage versus Temperature

ln the test circuit shown above, the I K ohm resistor was chosen so that only a small
constant current (nominally 70uA) flows through the temperature sensor circuit. This
reduces the drain on the supply which is an important criterion for this project. The 68
ohm resistor was chosen so that the nominal output voltage at room temperature was
around 0.2 volts .

Temp (' C) Output (mV) Temp ('C) Output (mV)

4 2 33.4 288
12 82 40.0 355
14.6 109 42.5 376
15.8 112 46.0 408
16.0 122 48.0 452
18.0 145 51.5 464
21.0 180 53.0 480
23.0 186 56.0 511
27.3 212 57.0 520
30.0 254 70.0 660
32.0 280

3.1.4. THE VOLTAGE REFERENCE CICUIT CALCULATIONS

It was decided that the voltage referece circuit shown below was to be used to provide
the voltages Vrh and Vrl for the microcontroller ADC subsystem.

+5V

R7

R4 Vrh

Zl R5

R6 Vrl

GND

To Calculate the Resistor Values for the Voltage Reference Circuit (R6, RS & R4)

given

Vref

Vrh

Vrl

-

--

=

4.00 volts

0.46volts

0.25 volts

calculate

Voltage across R6 =

Voltage across R5 ·-

Voltage across R4 --

Vz = 4 =

(nominal output for 50' C)

(nominal output for 30' C)

Vrl = 0.25 volts

Vrh- Vrl = 0.46 - 0.25

4- Vrh .:: 4.00 - 0.46

0.25 + 0.21 + 3.54

= 0.21 volts

= 3.54 volts

Bence:

44

Since the same amount of cwrent flows through R6, RS and R4 then the
resistor values will be in the same ratio as the voltages: 0.25 : 0.21 : 3.54
Choosing resistor values with a 1 % resistor tolerance and a temperature
coefficient of lOOppm in the ratio (2500: 2200: 3600) will output the
following reference values:

Vrh = (R6+RS) * 4/R6+R5 +R4 =4700 * 4/ 40700=
0.462 volts

Vrl = (R6 * 4) / R6 + R5 + R4 =2500 * 4 / 40700 = 0.246
volts

Rl = 68 ohms

R2 = 22K ohms

R3 = 2.7K ohms

R4 = 36K ohms

RS = 2.2K ohms

R6 = 2.SK ohms

R7 = 560 ohms (to provide a 1.7 mA
current)

Zl = ZNREF040

45

3.1.5. THE YSI PRECISION THERMISTOR

Thermiston

Darold Wobschall (1987) states that basically a thermistor is a resistor

with a high temperature coefficient. It is a semiconductor that is found in

various geometrical configurations to which leads are attached. In fact

they are found in a wide variety of shapes and sizes (down to microscopic

sizes) are possible.

They have a negative temperature coefficient; their resistance decreases

with increasing temperature. The resistance-temperature variation is non­

linear; over most of its range the resistance decreases exponentially with

temperature.

Tompkins and Webster (1988) state that although thennistors are not

highly precision sensors, they are used because they have a low cost, high

sensitivity, ease of readout and small size. A convenient configuration can

also be found to suit a particular application. For example, bead, disc,

screw-in, diode and thin film versions can be bought.

Thennistors are affected by internal heating (power dissipation) caused by

the voltage applied to the thermistor from the readout or converter unit.

46

TIie YSI 44002 Precision Thermistor

The YSI 44002 Precision Thennistor has the following specifications:

• resistance

• time constant

300 ohms at 25 degrees Celsius.

I O seconds in air, I second in stirred oil.

(time to reach 63% of a new reading)

• power dissipation constant 1 mW in air, 8 mW in oil

• Stability

(power required to raise the temperature

1 degree above the ambient temperature)

The manufacturers state that these devices

have a proven long term stability if

operated around 25' Celsius.

For long term use at higher temperatures

the manufacturers recommend a 3000 ohm

version of this device.

3.1.6. THE YSI 44002 CALIBRATION TABLE

TABLE 2 THERMISTOR CALIBRATION TABLE

TEMPERATURE RESISTANCE TEMPERATURE RESISTANCE

30 252.4 40 181.2
31 244.0 41 175.5
32 235.9 42 170.0
33 228.1 43 164.7
34 220.6 44 159.6
35 213.4 45 154.6
36 206.5 46 149.9
37 199.8 47 145.3
38 193.4 48 140.9
39 187.2 49 136.6

The calibration table values that are shown above came with the YSI 44002 thermistor.

These calibration values were used to calculate the expected output voltage range when
the YSI 44002 thermistor is subjected to a temperature change from 30 to 50 degrees C.

3.1.7. THE YSI 44002 SENSOR CIRCUIT

+5V

1M l RI

Ii. n=
ZI

I1; 01P

R3

-· '"•. - :".'~.
c,NO

48

3.1.8. THE YSI 44002 CIRCUIT DIAGRAM CALCULATIONS

To Calculate the Change in Resistance of the Thermistor

The temperature sensor was designed to measure temperatures within the
approximate range of 20' C to 50' C. The change in resistance of the YSI 44002
thermistor was calculated by inserting the resistance values for 20' C and 49' C
into the following fonnula:

Rmax (20' C) - Rmin (49' C) = 252.4 - 136.6 = 117.8 ohms

Therefore R2max = 252.4 ohms, R2min = 136.6 ohms

To Calculate the Value for Resistor Rt

Given

Supply voltage

Reference voltage for Z 1

Current required for Z 1

Thermistor resistance R2min

Consider resistor R3

Calculate

It =

=

V/R =4 / (R2 + R3)

4 / 2836.6

Current through R3 Itot

5 volts

=

=

=

=

=

=

Itot = 0.3 mA + 1.4 mA

Voltage across Rl = 5-4

ValueforRl = (R=V /I)=

Therefore = Rl

4 volts

0.3 mA

136.6 ohms

2.7 K ohms

4 / (136.6 + 2700)

1.4mA

Iz + It

= 1.7 mA

= 1 volt

l / 1.7 = 560 ohms

= 560ohms

49

High Output Voltage Calculation

Consider the case (YSI Sensor Circuit) where R3 = 2. 7 K ohms

R3 * Vz/R2+R3 Vout =

Vout =
2700)

(R3 * 4)/ (R2min + R3) =(2700 * 4) / (136.6 +

Vout = 3.81 volts

Low Output Voltage Calculation

Consider the case (YSI Sensor Circuit) where R3 = 2.7 K ohms

R3 * Vz/R2+R3 Vout =

Vout =
2700)

(R3 * 4)/ (R2max + R3) =(2700 * 4) / (252.4 +

Vout = 3.65 volts

To Calculate the Resistor Values for the Voltage Reference Circuit (R6, R5 & R4)

given

Vref =

Vrh =

Vrl =

calculate

4.00 volts

3.81 volts

3.65 volts

Voltage across R6 =

Voltage across RS =

0.16 volts

Voltage across R4 =
0.19 volts

Vz = 4 =

Vrl = 3.65 volts

Vrh- Vrl = 3.81 - 3.65 =

4-Vrh = 4.00 - 3.81 =

3.65 + 0.16 + 0.19

Hence:

so

Since the same amount of current flows through R6, R5 and R4 then the
resistor values will be in the same ratio as the voltages: 3.65: 0.16: 0.19
Choosing resistor values with a 1 % resistor tolerance and a temperature
coefficient of lOOppm in the ratio (36000: 1600: 1800) will output the
following reference values:

Vrh = (R6 + RS) * 4 / R6 + R5 + R4 = 37600 * 4 / 39400
= 3.82 volts

Vrl = (R6 * 4) I R6 + R5 + R4=36000 * 4 I 39400 = 3.65 volts

Rl = 560 ohms

R2 = YSI 44002

R3 = 2.7K ohms

R4 = 1.8K ohms

R5 = 1.6K ohms

R6 = 36K ohms

Zl = ZNREF040

Conclusions

Prototypes of both circuits wer~ constructed and tested in laboratoty conditions.
The results indicated that either circuit could be suitable for monitoring human
body temperature.

Sl

3.2. DESIGNING THE TEMPERATURE MONITORING DEVICE

3.2.1. THE FUNCTIONS REQUIRED FROM THE TMD

The first stage of the design involved the use ofa top-down design approach to
the whole system. The system was subdivided into five main parts, as shown
below:

(i) the temperature sensor,

(ii) the temperature monitoring device (TMD),

(iii) the data transfer device (DTD),

(iv) the data processing system (DPS), and

(v) the output device (printer/plotter). (see Figure
7)

The second stage of the design was to analyse each part of the system, in turn.

The Temperature Sensor

The temperature sensor must be capable of measuring temperature from a

suitable body site. The temperature must be used to indicate the core

temperature of the body in question. The temperature sensor must be able to

respond to changes in temperature within the range: 35.0 degrees Celsius to 43.0

degrees Celsius, with steps of0.1 degrees.

S2

The Temperature Monitoring Device

The functions of the temperature monitoring device were listed as follows:

• to receive the signals from the sensors.

• to condition the signals from the sensors so that they are in a form
suitable for an ADC. The signals have to be within an expected
range of values, with reference to two fixed voltages (voltage
reference high (Vrh) and voltage reference low (Vrl)).

• to save the temperature measurements in a digitised form at regular
intervals in time (say, every ten minutes). A semiconductor read/write
memory capable of storing 4000 readings would be required to store a
months supply of data.

• to respond to push-button commands that call up service routines.

• to upload the start of test time and date from a DTD and hence, start
logging data ..

• to download an identification label and time related data to a 'transfer
device' or to a personal computer system:

A top-down approach to the design of the temperature monitoring device
revealed that the following parts were necessary.

(i) a signal conditioning unit for the sensor readings,

(ii) an analog to digital converter (ADC) to digitise the sensor
readings,

(iii) a storage device for an ident label, time and temperature readings.

(iv) a real-time clock system, or a means of entering the start of test
time.

(v) a serial communications unit,

(vi) a means of setting the time of day in the real-time clock system,

(vii) a means of knowing that the monitoring device is functioning
correctly,

(viii) a unit to control the seven units mentioned above,

53

(ix) a power supply unit.

The first five parts of the temperature monitoring system and the eighth part are

complete sulrsystems. Integrated circuits are available for each of these separate

subsytems. For example:

• An operational amplifier for the signal conditioning unit.

• An 8-bit ADC chip to digitise the sensor signals.

• A real-time clock chip so that the temperature readings could be

aligned to the time of day.

• A random access memory to store an identification label, time and

temperature data.

• A serial communications chip, possibly a Universal Asynchronous

Receiveffransmit (UART) chip.

• The sub-system that controls the other sub systems could also be a

special purpose chip.

Whilst considering the features of the proposed design, the overriding

characteristic of the system had to be remembered. The temperature monitoring

device has to be as small as possible. So a multi-chip design, although feasible,

would be rather large, and not meet the small device criteria and would also make

the power supply module too large.

However, further reduction in size, power and weight are possible by using

programmable multi-function devices on the market that are designed for real­

time applications. A single chip microcomputer system: and, in particular, a

micro controller chip would fit our application's functional needs. (sec Figures 4, sand 8)

S4

From the hardware point of view, a microcontroller's internal computing

equipment includes various input/output interfaces. Microcontrollen may have:

• 8-channel analog multiplexing,

• a sample and hold module for analog signals,

• an analog to digital converter sub-system,

• a pulse width modulation unit

• an independent timer sub-system,

• a fast synchronous serial sub-system, and

• an output compare sub-system.

Microcontrollers also differ from microcomputers in other ways: They may have

• four modes of operation:

• a special test mode,

• a special bootstrap mode,

• a single chip mode, and

• an expanded multiplexed mode of operation.

Taking into account the features mentioned above, at the time of designing the

TMS, the MC68HC I I microcontroller was considered to be the most suitable

device to use as the control centre of the TMD. In particular, the MC68HCI I

was the only microcontroller (known to the author) that had an internal ADC

subsystem. (see section 2.4. and tables 1.1. and 1.2.)

SS

3.2.4. THE MOTOROLA MC68HCU SERIES OF MICROCONTROLLERS

The MC68HC11 series of single chip microcontrollers are available in either a 52

pin plastic leaded chip carrier (PLCC) package or a 48 pin dual-in-line package

(DIP).

The MC68HC11 series contains the sub systems that are essential to the design of

the temperature monitoring device (see Figure 4 and 5). They contain:

• memory (RAM, ROM and EEPROM},

• an 8-bit ADC sub-system,

• a serial communication interface,

• a serial peripheral interface,

• a timer/counter subsystem

• hardware interrupt logic, and

• the MC68HC 11 CPU.

The only function not supplied is the sensor's signal conditioning and a real-time

. clock.

The real-time clock chip can be maintained by the data transfer device. The data

transfer devic~ could download the correct date and time to the monitoring

device just prior to a data logging session. Hence, the temperature monitoring

device need only read data at precise fixed time intervals (say, every 10 minutes),

prompted by software monitoring the timer sub-system counters.

Another feature to note is that the MC68HC11 family of 8-bit microcontrollers

have an address space of 64K bytes, which is large enough to store control

programs and all the required data from a monitoring session (see Figure S).

S6

Although the data path of the microcontroller is 8-bits, but the chip is capable of

16-bit arithmetic. Hence, it was decided that the MC68HC 11 microcontroller was

an ideal device to use as the central component of out TMD design. (see Figure

12). Push buttons, resistors, LEDs and a +5 volt power supply were included

into the TMD system to complete the design.

The push buttons enable the user control the data logging system. The device can

be: started, stopped and show it's status.

3.3 DESIGNING THE DATA TRANSFER DEVICE (DTD)

The reason for designing a small, portable, data transfer device (DTD) are as

follows:

• A device is required to download the date and time and a signal to a

TMD in order to start a test.

• To enable the remote use of a TMD away from an office environment.

• To house a 4K byte EEPROM chip in a low-insertion socket. The

DTD can then be used to upload information from a TMD, at the end

ofa test (into its EEPROM). The EEPROM can then be taken out

from the socket and posted from a remote site. Later, the EEPROM

can be inserted into another DTD (by a researcher) in order to

download the data into a DPS.

• Note, The DTD could be produced at a much lower cost than a laptop

computer system. It would be much smaller in size and therefore be

more portable.

57

The data transfer device has to perfonn the following functions:

• to be able to store at least 4K bytes of data.

• to upload the data from the temperature monitoring device.

• to download the date and time to the temperature monitoring device.

• to download the data to the data processing system.

• to maintain the correct date and time.

• to be able to change the date and time.

• to be able to respond to key-strokes from a hexadecimal keypad.

• to be able to display the data, date, time and a command menu.

Whilst considering the design of the data transfer device, an investigation took

place in order to gain knowledge into interfacing to a: liquid crystal display

(LCD) module, hexadecimal keypad and serial communication channel. It was

found that the MC68HC 11 could interface to a LCD module and a hexadecimal

keypad quite easily. Hence, the MC68HC I I could also be used for the control

centre of the DTD. Although other microcontrollers could have been used, the

MC68HC 11 was chosen in order to be able to use the same hardware

development environment and be able to use the same software development

tools. So, with the MC68HC 11 microcontroller in mind, and using a top-down

design approach, the data transfer device was seen to have consisted of the

following modules:

• A hexadecimal keypad to input changes to the date and time, and to input

commands to drive the device.

• A liquid crystal display (LCD) module with a a 4-Iine 20-character screen.

• A real-time clock chip or a means of entering and viewing the date and

time.

• A read/write memory chip consisting of at least 4K bytes of storage.

• A serial communications port for uploading and downloading infonnation.

S8

• A MC68HC11 microcontroller that contains a serial communications

interface, parallel 1/0 ports and a means of controlling the system

components.

• A power supply unit (batteries).

(see Figures 9 and 13)

3.4. DESIGNING THE DATA PROCESSING SYSTEM

3.4.1. The Functional Requirements

The data processing system has to perform the following functions:

• to upload the identification label, the date and time, and the data, from

either the data transfer device or the temperature monitoring device itself

• to store the data on a secondary storage file.

• to process the data and produce a time-temperature graph.

• to be able to display the results of the data processing on a visual display

unit (VDU) and also on a printer capable of plotting graphics. The output

must be in a text and a graphical form.

The functional descriptions mentioned above could all be performed on almost

any personal computer system that has a serial communications port and a

graphics adaptor card for the VDU.

So the hardware requirements for the data processing system are as follows:

A personal computer containing the following parts:

S9

• a graphics adaptor,

• a serial port,

• a printer port, and

• a secondary storage device

The software required to perform the tasks mentioned previously are as follows:

• A communications package that enables uploading to a secondary storage

file

• Any commercial spreadsheet, or a user designed applications package

written in a high-level language.

The Output Device

Any make of printer that is capable of producing graphics with a resolution of

180 dots-per-inch, or greater, and is able to interface with the data processing

system mentioned above.

(see Figure 10)

60

CHAPTER FOUR

4. SOFfWARE DESIGN

(The Software Requirements Document)

4.1. Introduction

Structured Programming Methodologies

4.2. Hardware Specifications

4.2.1. The Temperature Monitoring Device

4.2.2. The Data Transfer Device

4.2.3. The data processing System

4.3. The System Model

4.4. Functional Requirements Specifications

4.4.1. The Temperature Monitoring Device

4 .4 .2. The Data Transfer Device

4.4.3. The data processing System

4.5. Data Types Requirement

4.5.1. Temperature Monitoring Device

4.5.2. Data Transfer Device

4.5.3. Data Processing System

61

4.6. Non-Functional Requirements

4.6.1. The Temperature Monitoring Device

4.6.1.1.

4.6.1.2.

4.6.1.3.

4.6.1.4.

Performance

Interfaces

Design Constraints

Other Constraints

4.6.2. The Data Transfer Device

4.6.2.1.

4.6.2.2.

4.6.2.3.

4.6.2.4.

Performance

Interfaces

Design Constraints

Other Constraints

4.6.3. The Data Processing System

4.6.3.1.

4.6.3.2.

4.6.3.3.

4.6.3.4.

Performance

Interfaces

Design Constraints

Other Constraints

4. 7. Structured Analysis

4.8 Jackson Structured Diagram

4.9. Choice of Programming Language

4.10. Maintenance and Testing Information

4.10.1.
4.10.2.1.
4.10.2.2.
4.10.2.3.

Test Plan Description
Testing the Temperature Monitoring Device
Testing the Data Transfer Device
Testing the data processing System

4.11. Program Testing

62

4.1. INTRODUCTION

This chapter describes the temperature monitoring system (TMS) from a

Software Engineer's point of view. The infonnation in this section describes the

functions of the system, and how a programmer may write, debug and test each

module of the programs. Sections 4.2. and 4.3. describe the functions of the

hardware and the flow of data and commands between the three main parts of the

TMS, namely:

The Temperature Monitoring Device (TMD)

The Data Transfer Device (DTD)

The Data Processing System (DPS)

Sections 4.4. to 4.10. describe the three main parts of the system in the following

ways:

• their functional requirements,

• the names of the data types to be used,

• the non - functional requirements,

• how ~tructured analysis is used to create data flow diagrams (DFD),

o how transform analysis is used to transform DFDs into Jackson

Structured Diagrams (JSD),

• how JSDs are used to develop programs and

• information that will enable maintenance and testing of the software.

63

Software Engineering practices were employed during the design of this project.

A variety of methods of program design were considered, which lead to a

Jackson Structured Programming (JSP) methodology being investigated and used

as it appeared, to the author, to be the most appropriate method for real-time

applications. A JSP methodology is an approved approach to many real-time

applications as it ensures that the final product is a well engineered solution that

meets the principles of software engineering.

Products designed using sound software engineering principles have:

• maintainability (perfective, adaptive and corrective),

• language independent design,

• modularised testing (black-box, white-box) and

• verification and validation.

64

STRUCTURED PROGRAMMING METHODOLOGIES

The Need For Analysis Techniques

There are several analysis techniques used throughout the world today. They

support:

• a hierarchical representation of a system,

• each carefully considers external and internal interfaces and

• each provides a foundation for design, implementation and testing

steps.

The need for a systemised method for developing software is best described by

Alvey (1986). He found that whilst programming standards are considered to be

a good thing, in general they are ignored and that one way to prevent this would

be to enforce them automatically by means of a software tool.

Pressman (1992, p. 267) states that any requirements analysis method combines a

set of distinct heuristics and a unique notation to analyse information, functions

and behaviour of a computer-based system. Through the application of the

fundamental analysis principles each method creates a model of the problem and a

required solution.

Analysis Techniques

A range of analysis techniques exist. This section describes the following three

main areas of design:

6S

Structured analysis is a model building activity which illustrates, the flow of data

and control. It depicts the essence of what must be 1:-•illt. DeMarco (1979, p. 15)

establishes the primary goals of an analysis method as:

• the product of an analysis process must be maintainable,

• graphics must be used wherever possible,

• there is a need to differentiate between logical and physical

considerations,

• and there is a need to keep track of and evaluate interfaces.

Structured analysis is an information and content modelling technique where

circles, squares, arrows and sets of parallel lines represent: transforms, external

entities, inputs and outputs, and storage components of a system.

The advantages of using structured analysis design are as follows: It is a

systematic method, it is very graphical, it is easy to follow information transforms

throughout the various stages of the design process and in this research work, it

is ideal for real-time system design.

The main disadvantages of structured analysis design could be that: it is an

iterative process, and that structure clashes cause problems when converting data

structures into a program structure.

The main contributors to the development of structured analysis techniques are:

Jackson, Hoare, Orr,Warnier and Yourdon.

66

Object-oriented analysis (OOA) is making slow but steady progress as a

requirements analysis method in its own right and as a complement to other

analysis methods. Pressman (1992, p. 239).

Object-oriented analysis is based upon objects and attributes and classes and

members, rather than data flow and structured analysis. Object-oriented

techniques allow designers, programmers and users to view concepts as a variety

of units or objects that fit into a hierarchy of different components or structure.

By using object-oriented techniques designers can represent neatly the

relationship between: components, objects, tasks to be performed and conditions

to be met.

The code can be reused and easily changed by subsequent designers. The three

main elements of object-oriented techniques are:

o data encapsulation,

o inheritance and attr ,butes and

o polymorphism (overloading of operator names).

The main advantage of object-oriented des,gn is that it enables designers to build

a system based upon: abstraction, information hiding and modularity; without

complexity or compromises.

The main disadvantages of object-oriented design are: that it is not really

language independent and that object-oriented compilors (such as Ada or C++)

are not always available for microcontroller development systems.

The main contributors to the development of object-oriented design processes

are: Booch, Coad et al, Meyer, Shlaer et al and Wiener et al.

67

Fonnal s.pecification techniques are also being examined today. Formal methods

enable a software engineer to specify, develop and verify a computer-based

system by applying a vigorous mathematical notation. Pressman (1992, p. 288)

Formal specification languages employ three primary components:

• syntax,

• semantics and

• a set of relations.

The syntax includes variables such as x, y and z and logic symbols such as

which represent: all, there exists, not, and, and or.

The semantics indicates how the language represents system requirements.

The relations define rules that indicate which objects properly satisfy the

specification.

Pressman (1992, p. 287) informs us that the use of a formal specification

language provides a means of specifying a system so that consistency,

completeness and correctness can be assessed in a systematic fashion.

The advantages of a formal approach to system design are: that it is easy to create

design tools and tools for testing a design. Hence, the consistency, completeness

and correctness of a system can easily be assessed in a systematic fashion.

The disadvantages could be that it is not easy to get people interested in formal

approaches to design because: it is difficult to learn/teach, it appears to be

complex, it is not very visual and it uses unfamiliar notation.

The main contributors to the development of formal specification languages are:

Hall, Wing and Woodcock.

68

THE JSP METHOD OF DEVELOPING SOFIW ARE

Why Choose JSP

The programming methodology adopted in this dissertation is Jackson Structured

Programming (JSP). Reasons for adopting a JSP methodology include:

JSP is not a programming language; it is a method for developing programs. In

fact it is language independent Cameron (1989, p. 15).

Cameron (1989, p. 19) states that 11commercial programmers are often surprised,

when they first translate a Jackson Structure Diagram (with functions allocated)

into actual programming code, how close to the finished program they were".

Cameron (1989, p. 5) informs us that JSP in particular is very good , as it allows

the same notation and techniques to be used at different times throughout a

design procedure. For example, structure diagrams using the same notation can

be used to describe:

• the ordering of events,

• the ordering of data components and

• the program itself

This makes life easier during testing and maintenance of programs.

69

Formulating a JSP Methodology

Before deciding a JSP methodology for this Masters Thesis several JSP

methodologies were examined. For example:

Cameron (1989, p. 11) describes a JSP process as having four major

steps:

1. Draw structure diagrams to describe each of the data streams:

input to or output from a program.

2. Merge these data structure diagrams into a single structure

diagram, a program structure diagram.

3. Make a suitable list of executable operations from the

programming language to be used. Allocate the operations,

one by one, into the program structure diagram.

4. Convert the program from the diagrammatic representation

into a textural form and add conditions to iteration and

selection components.

Bell et al (1987) states that 11Jackson1s data structured design method is

dramatically different from other approaches to programming design. It is the

most systematic method in existence. The basic idea behind JSP is that the

structure of a program should match the structure of the data types it is going to

act upon and the I/O mechanism used. The methodology by Bell, Morley and

Pugh (1987) [page 52, is summarised in a similar way to Cameron's.

70

Mohri and Kikuno (1991) formulated thirteen steps (SI through to S13) which

they adopted as a JSP development process. The details are specified as follows:

step S 1 (Understanding program specifications)

step S2 (Fonnulating diagrams for input and output data structures)

step S3 (Formulating program structure diagram)

step $4 (Enumerating variables)

step SS (Enumerating operations)

step $6 (Allocating operations to program structure)

step S7 (Optimising the program structure)

step S8 (Design review)

step S9 (Coding)

step SlO (Code review)

step S 11 (Preparing test data)

step S12 (Unit test)

step S13 (Integration test)

71

The following JSP development process was adopted as it appeared to the author to

be the most suitable method of designing small real-time microcontroller systems.

I. The functional requirements, of each part of the system, were listed.

2. The names of the data types to be used were listed, for each part of the

system.

3. The non functional requirements, of each part of the system, were described

fully.

4. A structure analysis technique was used to produce data flow diagrams DFDs

of various levels of the system.

5. A transform analysis technique was used to convert the DFDs into program
structure diagrams.

6. A list of elementary functions and subroutine calls was made. Each function

of subroutine call was given a unique number that is associated to the current

program structure diagram.

7. The numbers representing the elementary functions or subroutine calls were

inserted into the applicable program structure.

8. A list of conditions relating to iterative processes or selections were made, for

each part of the program. Each condition was given a label (a unique number

preceded by the letter 'C'.

9. The labels representing conditions were inserted into the appropriate place in

the program structure diagram.

10. The program, for each part of the system, was converted from the

diagrammatic representation into a textural form. The program code

included: elementary functions, subroutine caJls and conditions to iterative

and selection components.

11. Finally, for each part of the system, maintenance and testing information were

described.

72

Structure Clashes

Hashimoto and Okamoto (1990) described a structure clash as: one of the main

concerns in JSP. The clashes occur between the processing of input data and the

processing of output data. This happens when the two or more data structures

involved in a problem cannot be mapped onto a single program structure. This is

due to a fundamental incompatibility between input data structure and output

data structure.

The solution to structure clashes is quite simple; two programs need to be

designed instead of one. The first program organises the input data into a form

used by the data being output by the second program.

Testability And Maintinability Of JSP

Cameron (1991, p. 27) stated the following:

The structure of a program should he based on the structure of the underlying

problem. Hence, the component of a problem should recognisably map directly

onto the components of a program. Any important object of a problem must

have a corresponding program component. Therefore, naming the intermediate

components of a data structure becomes important. Correct program structure is

essential in order to make the subsequent testing and maintenance easier. The

JSP idea of correctness is achieved by having correct procedures and also a

structure to match the problem.

Roper and Smith (1988) state that: "the problem with testing programs is that it

often involves more work than designing and writing the program in the first

place. Whereas, there is an inherent testability with a JSP design process".

73

COMPARISONS WITH OTHER METHODS OF DESIGN

Cameron (1991, p. 7) infonns us that it would be natural to expect a concise,

coherent comparison of JSP with other software development methods and to be

able to describe those unique features worthy of attention. Unfortunately, the

field of method comparison is somewhat problematic. There have been a number

of valiant attempts, but none seem entirely successful.

For example, Rozman (1989) set up an experiment using a small number of post

graduate electrical engineers. Two methodologies were compared: System

Analysis - System Design and Jackson System Development. Their conclusions

stressed that it was not the intention of their research work to compare the two

methodologies and suggest a valid choice. However, their study did highlight the

receptability of a methodology by electrical engineers who had previously poor

knowledge of software engineering practices. They also emphasised that testing

of other profiles of specialists may lead to absolutely different conclusions.

OTHER WORKS ON THE JSP METHODOLOGY

Roper (1988) identified the need for a more formal approach to software testing,

and produced a methodology for testing programs constructed using Jackson

structured programming techniques. Algebrate expressions were generated, from

information contained in a JSP structure chart, and used in a novel structured

testing method.

74

Roper and Smith (1988) stated that "they have developed a novel testing

methodology which exploits the inherent testability of the JSP design process.

which also integrates fully with that process".

Thompson (1990) research has produced a tool which can be used to check

source code, which has been implemented from JSP designs. John Barrie

Thompson concluded, that a Quality Assurance Tool must be a worthwhile

exercise as this does ensure that implementation standards cannot be ignored.

Edwards (1990) describes how her research focused upon the development and

assessment of a systematic and formalised interface between Structured Systems

Analysis And Design (SSADM) and JSP. Her methods encompass the entire

software life cycle.

Davies (1987) informs us how a series of computer assisted tools including a

program structure generator were integrated to form a computer aided program

design system at UMIST. A method was developed by which two Jackson data

structures may be merged to produce a Jackson program structure. C. G. Davies

research also included an investigation into program maintenance with respect to

the development of process structure and established rules to govern possible

designs.

1S

CONCLUSIONS

A JSP methodology was chosen for this thesis because it provided a highly

systematic approach to software design. It is a methodology that is loosely

defined, which enables it to have extensions that make it useable in a variety of

situations. For example, JSP can be used for designing:

• data processing systems,

• large real-time systems and

• in this case, small microcontroller systems.

The initial stages of design are language independent, it is only when you come

to the stage for allocating elementary functions that you may need to consider

the language that will be used to implement the design.

A JSP methodology creates a very graphical hierarchical solution to a

problem. The control and decision making structures are created at the top

of the tree structure; the functions that input information, process

information and output information are seen at the lower extremities of the tree

structure.

76

JSP provides a high degree of modularity into a solution of a problem. A design

consists of system modules that are:

• as independent of each other as possible (low coupling),

• small in size so that there is no difficulty in understanding the logic and

• there is a high degree of component interaction within a module (high

cohesion).

Consequently, an individual module can be designed, coded, tested and amended

without too much reference to other modules of a design.

Because the overall design methodology includes identify and assessing hazards

(expected error situations and solutions to expected error situations), the fact

that there is high cohesion in modules, low coupling between modules and

principals of information hiding (where data is encapsulated) ensures that a

program can be employed in safety critical situations. For errors can be easily

discovered, during the testing stages, and modifications to the offending parts of

a design can easily be made without affecting the whole structure of a desi~.

Hence, a designer and user can have confidence in the resultant solution when a

JSP methodology is used.

77

4.2. HARDWARE SPECIFICATIONS

4.2.1 The Temperature Monitoring Device (TMD)

The hardware of the temperature monitoring device must:

• be small and light enough to be fixed to a persons body and yet be
comfortable .

• use very little power

• be able to have its batteries changed without losing its functions or data.

• be able to receive temperature sensor readings.

• be able to detect O. I degrees Celsius changes in temperature.

• be able to signal condition the temperature sensor readings so that they
are in a range suitable for the ADC subsystem.

• be able to measure temperatures in the range 35.0 to 43.0 degrees
Celsius.

• be able to convert the analog temperature readings into 8-bit digital
values.

• be able to store 4K bytes worth of data (8-bit temperature readings).

• be able to receive push button signals that invoke the functions of the
device.

• be able to receive serially date, time and start logging information, at a
fixed baud rate.

• be able to transmit serially the data from a test, at a fixed baud rate.

• be able to illuminate individual light emitting diodes, on demand, that
show the device's status.

78

4.2.2 The Data Transfer Device (DTD)

The hardware of the data transfer device must:

• be portable.

• be able to be powered by batteries

• be able to maintain the date and time of day, even when the device is
switched off

• be able to display menu choices using alpha-numeric characters (on a 4 -
line by 20 - character liquid crystal display).

• be able to input commands (to select menu choices) and input a new date
time values from a hexadecimal keyboard.

• be able to receive 4K bytes of data serially, at a fixed baud rate.

• be able to store 4K bytes worth of data.

• be able to retransmit the 4K bytes of data serially, at a fixed baud rate.

• be able to reset the data transfer device via a push button.

4.2.3 The data Processing System (DPS)

• The data processing system must have an IBM PC system with:

• a copy of MS-DOS version 3.2 or greater as the operating system.

• a hard disk unit or a floppy disk unit to hold the files of data and the
program.

• a serial communications port.

• a parallel printer port.

• an EGA/VGA graphics adaptor.

• an EGA/VGA colour monitor.

• a dot matrix printer capable of producing a hard copy output with a
resolution of360 dots per inch or greater.

79

4.3. THE SYSTEM MODEL

Sommerville (1987) states that. "once an initial analysis of the user's needs has

been carried out, the next step is to produce a conceptual model of the software

system. The conceptual model is a very high-level view of the system in which

the major user services are identified , and their relationships documented".

The functions of the temperature monitoring system are shared between the

hardware sub-systems and the software routines. Figure 11 shows the five main

hardware components of the system, the two human participants, the data flow,

and the originator of the commands which activate the software.

The system model diagram shows the following logical connections: {!>ee Figure 11)

• the flow of data between the TMD, DTD and DPS,

• the origin for the input of commands, and

e the recipient of the results from the data processing system.

A high-level description of the con,plete temperature monitoring system is
described below.

(i) The relationship between a person under test and three main parts of the

hardware of the system is as follows:

The sensor is attached to a person's body for a period ofup to 4 weeks (24 hours

a day). The sensor sends a continuous temperature sensitive signal to the

temperature monitoring system. At the start of a test the person under test

connects the data transfer device to the temperature monitoring device. The data

transfer device is commanded to download the date, time and a start signal to the

temperature monitoring device. Immediately after the two devices are

80

disconnected, the temperature monitoring device measures and stores

temperatures at the rate of one reading every ten minutes. At any instance,

before or during a test, the status of the device can be viewed. Also during a

logging session significant times of events can be recorded by the TMD by

pressing the appropriate push button. At the end of a test the two devices are

reattached and the temperature monitoring device is commanded to download its

stock of temperature measurements to either: the data transfer device or the data

processing system. The two devices are then disconnected.

(ii) The relationship between a researcher and three main parts of the

hardware of the system is as follows:

The researcher connects the data transfer device (or in some cases the

temperature monitoring device) to the data processing system. The data

processing device is commanded to upload the data from the test and store it in

the PC's memory. The PC program processes the data and displays graphically

the results from the test, on the VDU and as a hard copy on printer paper.

4.4. FUNCTIONAL REQUIREMENTS SPECIFICATIONS

Cooling (1991, p. 75) stated that

the functional requirements specifications relates to system behaviour. They

describe: what the system does, when it does it and how it responds to deviations

to the normal behaviour. They describe it's processes, the inputs to each process,

the outputs, expected error situations and the solutions to these errors. Note, the

requirement specifications should not define how these requirements are to be

satisfied.

81

4.4.1. The Temperature Monitoring Device

The temperature monitoring device must perfonn the following tasks:

4.4.1.1. PROCESSES:

The processes are as follows:

- The device must have a signal conditioning unit that will convert the sensor

signal into an analog voltage suitable for the range of values expected by the

analog to digital converter (ADC). It also must output signals to the ADC

interface, two reference voltages (voltage reference high (Vrh) and voltage

reference low (Vrl)). These two reference voltages set the limits for the

expected range of values to the ADC.

- A reset situation must initialise all the following device interfaces:

• initialise the ADC sub-system

• initialise the SCI sub-system.

• initialise the parallel ports.

• initialise the counter/timer sub-system.

-A reset situation must also perform all of the following:

• initialise the control program variables.

• clear the data buffer.

• wait for a command in the 'ready' program mode.

82

- A command input from push buttons must invoke one of the following:

• a device reset routine.

• the receipt of the date, time and a start monitoring signal from the serial

port.

• the hardware to show the device's status.

• the uploading of: the date and time, and a start signal from the data

transfer device.

• the downloading of the data via the serial port to the data transfer device

or to the data processing system.

4.4.1.2. INPUTS:

The inputs to the temperature monitoring device are as follows:

Command signals from the push buttons.

Serial information (date, time and a start command) at a fixed baud rate from the

data transfer device.

An analog signal from the sensor that represents temperatures in the range: 35.0

to 43. 0 degrees Celsius.

4.4.1.3. OUTPUTS:

The outputs from the temperature monitoring device are as follows:

Serial information consisting of: the data gathered from a test, the date

and time of the start of the test, and the monitor device's identification

label, to the data transfer device or to the data processing system (at a

fixed baudrate)

4.4.1.4.

83

The status of the temperature monitoring device on demand. The status

must indicate:

• the condition of the battery.

• if the data memory is full/not full.

• if the device is in a ready state.

• if the device is monitoring data.

• if the device is transferring data.

EXPECTED ERROR SITUATIONS:

The expected error conditions caused by user mistakes and missing data are as

follows:

More than one push-button pressed.

No start of block marker detected, date or time values in the wrong

format, or no end of block marker detected; within 60 seconds of a

upload command.

4.4.1.5. SOLUTIONS TO EXPECTED ERRORS:

The solutions to the aforementioned expected errors are as follows:

Acknowledge only the highest priority push-button input; clear the rest.

Reset the system and wait for a new command.

NB. The device must be able to read the data from the ADC, store the data,

at the rate of one reading every I O minutes for up to a period of 4 weeks. Then,

84

when commanded, output the device's identification, date and time of the start of

the test, and the data recorded during the current test.

NB. A data monitoring session is ended by either:

the data memory being full.

the data transfer command being detected from a push-button.

4.4.2. The Data Transfer Device

The data transfer device must perforni the following tasks:

4.4.2.1. PROCESSES:

The data transfer device must perform the following processes:

The device must have a means of resetting itself, when commanded from a push

button signal, and hence, perforni the following tasks:

o initialise the SCI sub-system.

• initialise the parallel ports.

• initialise the hexadecimal keypad interface.

• initialise the control program variables.

• clear the data buffer.

• display the menu of commands.

• wait for a command from the hexadecimal keypad.

85

The data transfer device must be capable of displaying the system commands and

allowing an input to invoke one of the following:

• force the device to reset the system and initialise the device.

• to display the current date and time of day (allow changes if required}.

• to allow the down leading of: the date and time, and a start data logging

signal to the temperature monitoring device.

• to allow the uploading of data from the data monitoring device.

• to allow the down loading of the data to the data processing device.

• to display the status of the device including the amount of data stored in

memory.

• to display the data stored in memory.

• to the clearing of the previous data from the data buffer.

NB. The device must be able to store 4K bytes of data in a semi-pennanent

memory.

4.4.2.2. INPUTS:

The inputs to the data transfer device are as follows:

Commands from the hexadecimal keypad.

o The current date and time, from the hexadecimal keypad, to update

the real-time clock chip.

• The temperature monitor device's identification, start of a test time

and the data recorded during the test, from the serial communications

port.

86

4.4.2.3. OUTPUTS:

The outputs from the data transfer device are as follows:

Menu commands on a display.

• A device's identification, date and time of a test, and the data from the test

onto a display.

• The status of the device on a display.

• The serial infonnation consisting of: the current date and time, and a start

data logging signal are sent to the temperature monitoring device (at a

fixed baud rate).

• The serial infonnation consisting of:: the data gathered from a test, the

recorded event times, the date and time of the start of the test, and the

temperature monitoring device's identification label, are sent to the data

processing system (at a fixed baud rate).

• Error messages to the display.

4.4.2.4. EXPECTED ERROR SITUATIONS:

The expected user errors and errors due to loss of data are as follows:
• A non-system command entered via the hexadecimal keypad.
• The date or time infonnation input from the hexadecimal keypad is in the

wrong fonnat.
• No start of block marker detected, or no end of block marker detected~

within 180 seconds of an upload command.
• Any other noticeable error.

4.4.2.5. SOLUTIONS TO EXPECTED ERRORS:

The solutions to the aforementioned expected errors are as follows:
• Ignore non-system commands from the hexadecimal keypad.
• Output an error message and display the expected fonnat for the date and

time.
• Output an error message after reading 4K bytes of data or after the time­

out period.
• Reset the system via a command, or if a continuing error situation occurs

pre3s the reset push-button.

87

4.4.3. The Data Processing System.

The software for the processing system is designed to run on an mM PC with the

specifications described previously. The system must support the following

functions:

4.4.3.1. PROCESSES:

The software is designed to run the following processes:

The PC system must: initialise the serial communications port and the parallel

printer port and display on the monitor a menu of commands that are available to

the data processing system. Then allow command choices to be entered via the

PC keyboard to invoke:

• the viewing of a directory of files from a specified drive.

• the input of the data from the data transfer device, or from the

temperature monitoring device, via a serial communication port (at a fixed

baud rate).

• the saving of the current data in memory into a specified new data file,

and store it in the secondary storage.

• the viewing of the raw data from either: the current test or from a file

containing data from a previous test.

• the plotting of the results of the current test; on the VDU screen, and

produce a hard copy, in graphical form, on the printer paper.

88

4.4.3.2. INPUTS:
The data processing system requires the following inputs:

• The commands from the PC keyboard.
• The data from a test via the serial communications port (at a fixed baud

rate), originates from either:
the data transfer device, or
:from the temperature monitoring device.

4.4.3.3. OUTPUTS:
The data processing system will produce the following outputs:

• The menu of commands on the VDU screen.
• A directory of files from a specified disk directory.
• The raw data from the current test or from a previous test.
• The processed data in the form of a graph; temperature versus time.
• A hard copy of the processed data in the fonn of a graph; temperature

versus time.

4.4.3.4. EXPECTED ERROR SITUATIONS:

The data processing must be designed to cope with the following expected error
situations:

• A non-system command is detected.

• No start of block marker detected, or no end of block marker detected;
within 180 seconds of an upload command.

• A printer not ready error is detected.

• A directory or file not found error is detected.

4.4.3.5. SOLUTIONS TO EXPECTED ERRORS:

The data processing system will have the following solutions to the
aforementioned expected error situations:

• Ignore non-expected commands from the PC keyboard.

• Display an error message ifno start of block marker is detected within 180
seconds of receiving an uploading command or after reading 4K bytes of
data.

• Display a printer not ready error message.

• Display a file not found error message.

89

4.5. DATA TYPES REQUIREMENT

This section of the 'Software Requirement Document' defines the following data
types:

(i) microcontroller I/O registers,
(ii) program parameters (constant values for the program),
(iii) variables used by the various routines of each program,
(iv) memory buffers required to store data or lookup tables,
(v) initial values used when the devices or processing system are

reset.

4.5.1. Temperature Monitoring Device

4.5.1.1. microcontroller 1/0 registers.

These are Motorola defined names and addresses found in the M68HCI I
Reference manual (M68HCI IRM/AD).

TIMER SUB SYSTEM:

TMSK2

TFLG2

TCNT

EQU $1024 ; = $00 for no timer interrupts or no timer
scaling.

EQU $1025 ; = $80 (-ve) when a TOF occurs.

EQU $100E ; I6-bit free-running counter. HB=IOOE
LB=IOOF

ADC SUB SYSTEM:

OPTION

ADCTL

ADRI

ADR2

EQU $1039 ; The OPTION register is used to initialise
the ADC.

; AND with #$BF for CSEL = 0
; OR with #$80 for ADPU = I

EQU $1030 ; = $10 multi channel channel ADRI to
ADR3.

EQU $1031 ; = digital value (current temperature
reading).

EQU $1032 ; = digital value (current battery condition)

INPUT COMMANDS PINS AND OUTPUT STATUS PINS:

PACTL EQU $1026 ; DDRA3 = 0 to make PA3 an input,
; I4/0C5 = I to enable the IC4 pin,
; DDRA7 = I to make PA7 an output.

PORTA EQU $1000

90

; PAO i/p IC3 start uploading command
; PAI i/p IC2 start down loading command
; P A2 i/p IC I note an event command
; P A3 i/p IC4 display device's status

command
; PA4 o/p OC4 monitoring data indicator
; P A5 o/p OC3 memory full indicator
; PA6 o/p OC2 battery condition low

indicator
; PA7 o/p OCI transferring serial data

indicator
TCTLI EQU $1020 ; = $00 to avoid output compare actions taking place

TMSKI EQU $1022 ; =$00 to disable i/p capture & o/p comp.
interrupts.

TFLGI EQU $1023 ; OCIF OC2F OC3F OC4F IC4F ICIF IC2F IC3F
; 1 ead to dew::t flags being set, write a 1 to clear flag.

SCI SUB SYSTEM:

BAUD EQU $102B ; set the baud rate
; TCLR O SCP I SCP2 RCKB SCR2 SCR1

SCRO
0 0

; 1200 BAUD= #$33

SCCRI EQU $102C ; set M = 0 for 8 data bits

0 0

SCCR2 EQU $ I 02D ; AND with
; OR with
; OR with

#$OF to disable SCI interrupts
#$08 to enable the transmitter
#$04 to enable the receiver

SCSR EQU $102E ; the SCI status register.
; if TDRE = 1 data transmitted,
; (write to SCDR to clear TDRE flag).
; if RDRF = 1 data received,
; (read from SCOR to clear RDRF flag).

SCDR EQU $I02F ; the data register for serial receive/transmit
data.

91

PARALLEL PORTS:

PORTA

PORTB

PORTC

PORTD

DDRD

PORTE

equ $1000 ; an 8-bit I/O port,(for the commands and
indicators)

EQU $1004 ; an 8-bit output port, (expanded mode
memory)

EQU $1003 ; an 8-bit I/O port, (expanded mode
memory)

EQU $1008 ; a 6-bit I/O port, (SCI sub system)

EQU $1009 ; =$00 for inputs., note, SCI overrides i/ps

EQU $100A; 8-bit input port, (ADC sub system)

4.5.1.2. Parsmeters, Variables, Buffers and Initial Values. (user defined)

INITIALISATION:

IDENT 2 bytes ; 16-bit temperature monitoring device identification value

DATEBUF 14 bytes ; ASCII buffer for date,time and end of block
character

DATEMAX 1 byte ; end of date and time {ASCil) buffer

DAY I byte ; start of test date (BCD)
MONTH l byte {BCD)
YEAR l byte

'
{BCD)

HOUR 1 byte ;start of test time (BCD)
MINUTE l byte (BCD)
SECOND l byte (BCD)

BUFFER 4K bytes ; temperature readings data area
BUFFPTR 2 bytes ; pointer into the 4K byte BUFFER
BUFFMAX 2 bytes ; end of buffer limit

LOOKUP 256 bytes ; temperature lookup table

EVENTB 256 bytes ; 128 possible events can be recorded, each 16-
bit
; value = the current AMOUNT

EVENTPTR 2 bytes ; initially = #$0000 {inc by 2 each event)

92

TIMER SUB SYSTEM:

TENMIN
TllJMlT
ONEMIN
TIMEOUT

ADC SUB SYSTEM:

2 bytes
2 bytes
2 bytes
2 bytes

; initially = $0000 incremened for each TOF
; = #$4785 no. of TOFs in 10 mins
; initially = $0000 incremented for each TOF
; = #$0207 no. of TOFs in 1 minute

ADCDELAY 1 byte
TEMPll byte
TEMP21 byte

; 100 uSec delay constant for powerup of ADC
; digitised temperature reading
; temp value from LOOKUP table
; 4-bits represent values 34 to 43

TEMP31 byte
AMOUNT

BATLOW

INPUT CAPTURE:

UPLOAD
DNLOAD
EVENT
DISPSTAT

OUTPUT STATUS:

MONITOR
MEMFULL
BATIERY
TRANSFER

EVENTFUL
READFLAG

SCI SUB SYSTEM:

PTR2BUF
PTRTMAX
PTREVENT
PTREMAX

BEGCODE
ENDCODE

; 4 bits represent values .0 to .9
; spare byte

2 bytes ; no. of temperature readings recorded

1 byte ; battery condition; low level value

1 byte
1 byte
l bj1e
1 byte

I byte
1 byte
I bvte
I byte

1 byte
I byte

; if· 1' an upload in progress
; if' l' a down load in progress
; if · 1' an event noted
; if· 1' a display status in progress

; set to #$FF if monitoring data
; set to #$FF if memory is full (end of test)
; set to #$FF if battery condition is low
; set to #$FF if a upload/ download in progress

; set to #$FF if event buffer full
; set to #$FF for every I O minute timeout

2 bytes ; = BUFFER initially (inc. for every data uploaded)
2 bytes ; = BUFFPTR + AMOUNT (when uploading)
2 bytes ; = EVENTB (inc. for every event uploaded)
2 bytes ; = EVENTB + EVENTNO (when uploading)

I byte ; = #$2A
1 byte ; = #$23

start of serial block marker (*)
end of serial block marker (#)

4.S.2. Data Transfer Device

4.S.2.1.microcontroller VO registers.

93

These are Motorola defined names and addresses found in the M68HC11 Reference
manual (M68HCI lRM/AD).

TIMER SUB SYSTEM:

TMSK2

TFLG2

TCNT

EQU $1024 ; = $00 for no timer interrupts or no timer
scaling.

EQU $1025 ; = $80 (-ve) when a TOF occurs.

EQU $100E ; 16-bit free-running counter. HB=lOOE
LB:::lOOF

HEXADECIMAL KEYPAD

PORTA EQU $1000

PORTEEQU $100A

LIQUID CRYSTAL DISPLAY

PORTA EQU $1000

REAL-TIME CLOCK CHIP

PORTO EQU $1008

DDRD EQU $1009

; D7 D6
; 1 1

; PAO i/p

: PE7 i/p
; PE6 i/p
·, PE5 i/p
; PE4 i/p

; PA4 o/p
; PAS o/p
; PA6 o/p

; PD2 i/p
; PD3 i/p
; PD4 i/p
; PD5 i/p

D5 D4
0 1

A-0 keypad strobe

E-7 keypad data {bit-3)
E-6 keypad data (bit-2)
E-5 keypad data (bit-1)
E-4 keypad data {bit-0)

A-4 LCD control signal (RS)
A-5 LCD control signal (R/W)
A-6 LCD control signal (E)

D-2 MISO receive data
D-3 MOSI transmit data
D-4 SCK clock signal
D-5 SS slave select

D3 D2 DI DO
1 0 1 0

94

SPCR EQU $1028

;D7 D6 D5 D4 D3 D2 DI DO
; 0 1 0 1 0 0

; DO clock rates (divide by 32)
; DI
; D2 clock phase
; D3 clock nonnally low when not transmitting
; D4 master mode
; DS nonnal CMOS outputs
;D6 SPI sub system 'ON'
;07 disable SPI interrupts

SPSR EQU $1029

; D7 SPIF
;06 WCOL
;D4 MODF

SPDR EQU $102A

transfer complete flag
write collision error
mode error

; the serial peripheral data register

SCI SUB SYSTEM:

BAUD EQU $102B ; set the baud rate

1 I

; TCLR O SCPl SCP2 RCKB SCR2 SCRl
SCRO

; 0 0 1 1 0 0
; 1200 BAUD:;;;; #$33

SCCRl EQU $102C ; set M = 0 for 8 data bits

SCCR2 EQU $1020 ; AND with
; OR with
; OR with

#$OF to disable SCI interrupts
#$08 to enable the transmitter
#$04 to enable the receiver

SCSR EQU $102E ; the SCI status register.
; if TORE= 1 data transmitted,
; (write to SCOR to clear TORE flag).
; ifRDRF = 1 data received,
; (read from SCOR to clear RDRF flag).

SCOR EQU $102F ;the data register for serial rec/trans data.

PARALLEL PORTS:

PORTA

PORTB
memory)

PORTC
memory}

PORTO

DDRD
LCD)

95

EQU $1000 ; an 8-bit 1/0 port, (for the keypad and LCD)

EQU $1004 ; an 8-bit output port, (expanded mode

EQU $1003 ; an 8-bit 1/0 port, (expanded mode

EQU $1008 ; a 6-bit YO port, (SCI, SPI and LCD)

EQU $1009 ; =$DA, (for the SCI, SPI and

PORTEEQU $100A ; 8-bit input port, (hexadecimal k<:ypad data)

4.5.2.2. Parameters, Variables, Buffers and Initial Values. (user defined)

1NIT1ALISATION:

IDENT 2 bytes

DAY l byte
MONTH l byte
YEAR l byte
HOUR 1 byte
MINUTE 1 byte
SECOND I byte

BUFFER 4K bytes
BUFFPTR 2 bytes
BUFFMAX 2 bytes

EVENTB 256 bytes

EVENTNO 2 bytes

PTREVENT 2 bytes
PTREMAX 2 bytes

BEGCODE 1 byte
ENDCODE 1 byte

; 16-bit TMD identification value

; start of test date

'
;start of test time

(BCD)
(BCD)
(BCD)
(BCD)
(BCD)
(BCD)

; temperature readings data area
; pointer into the 4K byte BUFFER
; end of buffer limit

; 128 possible events can be recorded, each 16-
bit
; value = the current AMOUNT

; initially = #$0000 (increnented by each event)

; = EVENTB (inc. for every event uploaded)
; = EVENTB + EVENTNO (when uploading)

; =#$2A
; =#$23

start of serial block marker (*)
end of serial block marker (#)

TIMER SUB SYSTEM:

ONEMIN
TllJMIT

2 bytes
2 bytes

HEXADECIMAL KEYPAD:

K.EYBUF
KEYNUM

LCD MODULE:

TEMP

TIMES 8 bytes

10 bytes
1 byte

4 bytes

INSTRUCT 8 bytes

MSG 1 20 bytes
MSG2 20 bytes
MSG3 20 bytes
MSG4 20 bytes

REAL-TIME CLOCK CI-tiP

DAY
MONTH
YEAR
HOUR
MINUTE
SECOND

1 byte
1 byte
1 byte
1 byte
1 byte
1 byte

96

; initially = $0000 incremened by a TOF
; = #$0727 no. of TOFs in 1 minute

; initially = $00 00 00 00 00 00 00 00 00 00
; number of keypad entries

; tens
; units
; decimal point
; tenths

; delay times during initialisation
;$3010010101103001

; instructions used to initialise the LCD module
; $ 30 30 30 20 20 08 01 OF

; start of test date

'
;start of test time

(BCD)
(BCD)
(BCD)
(BCD)
(BCD)
(BCD)

4.5.3.

4.5.3.1

97

Data Processing System

Program control variables (user defined)

ERRCODE DB 0 ; type of error

HANDLE DW 0 ; a handle to an opened file

PATH DB 64 DUP (OOh) ; file specification

DTA DB 64 DUP (OOh) ; Data Transfer Area

IDENTV DB SAh, Oa5h ; TMD identification

; date and time values

DATEBUF DB 3 lh, 33h, 30h, 37h, 39h, 33h, 30h, 39h, 34h, 35h, 30h,
30h

ROW
COL

DB 1
DB I

; row on screen
; column on screen

4.5.3.2. Buffer Space for Data and Events (user defined)

BUFFER
data

EVENTB

DB 4096 DUP (OOh) ; buffer area 4K bytes of

DB 256 DUP (OOh) ; buffer area for 128 words
; event times

4.5.3.3. VDU screen error messages (user defined)

MSGI DB 11Serial port not initialised. 11

MSG2 DB "Printer port not initialised. 11

MSG3 DB "Type · C' to return to the main MENU screen."

MSG4 DB " **** LOADING FILE CONTENTS ERROR ****"

98

4.5.3.4. VDU screen menu messages (user defined)

MSGMENU
Type 'E' to EXIT program; back to DOS.

Type 'I' to upload data from the serial port.

Type 'D' to view a directory of files.

Type 'R' to view the raw date from memory.

Type 'L' to load the raw data from a file.

Type ·s• to save the raw data to a file.

Type 'P' to view the processed data.

MSGINPUT

MSGRAW

MSGDIR

UPLOADING RAW DATA FROM TMDorDTD

**

IDENTIFICATION OF THE TMD =

STARTING DATE OF TEST =

DISPLAYING RAW DATA FROM MEMORY"
**

IDENTIFICATION OF THE TMD =

STARTING DATE OF TEST =

DISPLAYING A DIRECTORY OF FILES

Input the complete path of the directory.
For example, A:\test* .dat

or C:*.*

99

MSGLOAD

LOADING DATA FROM A SPECIFIED FILE
**
Input the complete path and filename.

For example, A:\test\test.dat

MSGSAVE

or C:trial.dat

SAVING DATA TO A SPECIFIED FILE

Input the complete path and filename.

For example, A:\test\test3.dat
or C:trial56.dat

100

4.6. NON-FUNCTIONAL REQUIREMENTS

Cooling (1991, p. 76) states that "the non-functional system requirements
specifications should define":

• How well a function should be performed (PERFORMANCE).
• How the system connects to its environment (INTERFACES).
• What limitations are placed on the design (DESIGN CONSTRAINTS).
• Anything that does not fit into the other groups (OTHER CONSTRAINTS).

Hence, the three main parts of the temperature monitoring system, wlh · li require
software, are descnoed as follows:

4.6.1. The Temperature Monitoring Device

4.6.1.1. PERFORMANCE:

Computational time:

The main task of the temperature monitoring device is to record temperature
measurements. This is required at the rate of one reading every 10 minutes.

The next most important tasks are to down load and upload serial data~ this is to
be done at a 1200 baud rate during the testing of the prototype (but could be at
any suitable baud rate).

The displaying of status information is to be activated as long as the push-button
is pressed. This function should not interrupt the actual reading of a temperature
measurement, but can interrupt the down loading or uploading of serial data.

Storage capacity:

The device requires the following memory space:

512 bytes of RAM
SK bytes of ROM
4K bytes ofEEPROM
512 bytes ofEEPROM

for program stack and variables,
for the control program,
for all the temperature readings,
for the program parameters: identification
of device, date and time.

101

4.6.1.2. INTERFACES~

(a) Analog input signals:

There is one analog input signal; the temperature signal from the signal
conditioning unit. This signal is accompanied by two reference voltages (Vrl) and
(Vrh) which define the upper and lower limits of the temperature signal. The
three signals are input into the ADC sub system.

The 8-bit ADC has a total error of + or - I LSB. Each conversion is
accomplished in 32 microcontroller unit (MCU) E clock cycles. Note, the MCU
operates at
8 MHz, therefore (E = 0.125 micro Seconds). Hence, each conversion takes
4 micro Seconds.

The ADC sub system, for one analog input, uses the following I/O registers:

$1030
$1031

ADCTL
ADRI

AID Control Regist~r
AID Result 1

(b) Serial communication signals:

The uploading and down loading takes place via the system's Serial
Communications Interface (SCI) sub system, at a 1200 baud rate.

The SCI is a full-duplex asynchronous interface with a standard NRZ format (one
start bit, 8 data bits, and one stop bit) with a variety of programmable baud rates.

The SCI sub system uses the following I/O registers:

$1008

$102B
$I02C
$1020
$I02E
$I02F

PORTO

BAUD
SCCRI
SCCR2
SCSR
SCOR

I/O port D data register

SCI baud rate register
SCI control register 1
SCI control register 2
SCI status register
SCI data register

(c) Timer/Counter register values:

The timing of events in the temperature monitoring system is achieved using the
microcontrollers 16-bit free-running counter, and the timer/counter interrupt flag
registers I and 2.

Note, when the count changes from $FFFF to $0000, the timer overflow flag
(TOF) bit is set in the timer interrupt flag register 2 (TFLG2).

102

The free-running counter is driven by the MCU E clock. Hence, each count is
incremented every 0.500 micro seconds; each TOF bit is set every 32. 77 milli
seconds.

The Timer sub system is also used to detect push-button presses (input capture)
and for diplaying the status of the device (output compare).

The register that are required for this device, from the Timer sub system, are as
follows:

$100E TCNT Timer counter register high byte
$I00F II II II low byte

$1020 TCLI Timer control register 1
$1021 TCL2 Timer control register 2
$1022 TMSKI Timer interrupt mask register I
$1023 TFLGI Timer interrupt flag register 1
$1024 TMSK2 Timer interrupt mask register 2
$1025 TFLG2 Timer interrupt flag register 2

(d) Parallel ports
Although there are no parallel data transfers between the system components, the
following rnicrocontroller ports are utilised as follows:

PORT A: This port has to be configured for: 4 input capture pins, and 4
output compare pins. Port A is to be used as follows:

pin no.

PAO
PAI
PA2
PA3
PA4
PA5
PA6
PA7

direction

i/p
i/p
i/p
i/p
o/p
o/p
o/p
o/p

name

IC3
IC2
ICl
IC4
OC4
OC3
OC2
OCI

description

start uploading
start down loading
note an event
display the device status
monitoring data
(memory full)/ (memory not full)
battery voltage is alright
transferring data

Note, pin PA7 is configured as an output by setting bit-7 =' I' (DDRA7) of the
pulse accumulator control register (PACTL).

Press push-buttons and show device status functions use the following I/O
registers:

$1000
$1026

PORTA
PACTL

I/O port A
Pulse accumulator control register

103

PORT B: This port is used during the external mode of operation for the
upper 8 bits of an external memory address.

PORT C: This port is used during the external mode of operation for the 8
bidirectional data lines and the low byte of an external memory address.

PORT D: This port does not need to be configured via the J/0 registers to
make pins PDO act as an input (RxD) and PD1 act as an output (TxD). The SCI
subsystem takes control of this port when it is required for a serial data transfer.

pin no.
PDO
PD1

direction
i/p
o/p

name
RxD
TxD

description
receive data
transmit data

The ADC function uses the following J/0 register to transfer the serial data.

$1008 PORTO 1/0 port D

PORT E: This port is always configured as an input port by the
microcontroller itself For this device only pin PEO is used as an input port for
the analog signal (the temperature signal).

PORTE input port E $100A

4.6.1.3. DESIGN CONSTRAINTS:

Programming language:
M6800 fa.-nily assembly language for the Portable Cross Assembler (PASM) must
be used.
Processor type:
MC68HCI I microcontroller.
Maximum memory capacity:
64K bytes of primary memory space.

4.6.1.4. OTHER CONSTRAINTS:

Maximum physical size:
6 cm x 5 cm x 3 cm
Maximum weight:
120 grams
Temperature operating range:
- 10 degrees Celsius to+ 45 degrees Celsius
Safety and Comfort:
This device has to be attached to a patient under test so it must be comfortable
against the patient's body. It must not have any sharp edges. It could be
designed to be worn on the upper arm of a patient and therefore have a strap
attached to it.
The device must be designed to operate from low voltage batteries; hence safe
from electrical shocks.

104

Shock resistant:
The device must be able to absorb the shock from being dropped from a small
height; say, 6 feet.

4.6.2. The Data Transfer Device

4.6.2.1. PERFORMANCE:

Computational time:

The four main tasks of the data transfer device are as follows:

(i) To maintain the time of day; this is done by communicating with a real-
time clock chip (the MC68HC86Tl). The date and time have to be read just
prior to down-loading the date and time to the temperature monitoring device.
Note, there are also commands that enable the user of the device, to read and
change the date and time from the real-time clock chip, in order to maintain the
correct date and time.

(ii) The date, time and a start test signal is down-loaded to the temperature
monitoring device at the beginning of a monitoring session.

(iii) At the end of a temperature monitoring session the data is uploaded from
the temperature monitoring device, and stored in memory waiting to be
transferred to the data processing system.

(iv) Some time later the data is down-loaded to the data processing system.

NB, all the aforementioned uploading and down-loading is done serially at a
1200 baud rate

The secondary tasks performed by the data transfer device are as follows:

When any of the four main tasks are not being performed, a command menu
should be displayed. The command menu, apart from showing the four main
tasks, should display commands to allow the following tasks:

(v) The device to be initialised; this should only be necessary when
unexpected, unsolvable, problems arise.

(vi) The status of the device to be displayed.
(vii) The data stored in the 4K byte buffer to be displayed.
(viii) The data buffer to cleared prior to an upload of more data from a

temperature monitoring session.

105

Storage capacity:

The device requires the following memory space:

4.6.2.2.

512 bytes ofRAM
SK bytes ofROM
4K bytes ofEEPROM
512 bytes ofEEPROM

INTERFACES:

for program stack and variables,
for the control program,
for all the temperature readings,
for the program parame;:ers: identification
of device, date and time.

(a) Analog input signals:

There are no analog signals associated with the data transfer device.

(b) Serial communication signals:

The uploading and down loading takes place via the system's Serial
Communications Interface (SCI) sub system, at a 1200 baud rate.

The SCI is a full-duplex asynchronous interface with a standard NRZ format (one
start bit, 8 data bits, and one stop bit) with a variety of programmable baud rates.

The SCI sub system uses the following 1/0 registers:

$1008

$102B
$I02C
$1020
$102E
$102F

PORTO

BAUD
SCCRl
SCCR2
SCSR
SCOR

I/O port O data register

SCI baud rate register
SCI control register 1
SCI control register 2
SCI status register
SCI data register

(c) Timer/Counter register values:

The timouts used for detecting expected errors during the transfer of data
between the three main parts of the system are acheived using the
microcontroller's 16-bit imer/counter sub system.

The free-running counter is driven by the MCU E clock. Hence, each count is
incremented every 0.500 micro seconds; each TOF bit is set every 32. 77 milli
seconds.

106

The register that are available to this device, from the Timer sub system, are as
follows:

$100E TCNT Timer counter registerhigh byte
$100F II II If low byte

$1020 TCLl Timer control register 1
$1021 TCL2 Timer control register 2
$1022 TMSKl Timer interrupt mask register I
$1023 TFLGI Timer interrupt flag register 1
$1024 TMSK2 Timer interrupt mask register 2
$1025 TFLG2 Timer interrupt flag register 2

(d) ParnUel ports

PORT A: This port has to be configured for: 4 input pins, and 3 output pins.
Port A is to be used as follows:

pmno. direction name description

PAO i/p IC3 a hexadecimal keypad strobe
PAI i/p IC2 not used
PA2 i/p ICl not used
PA3 i/p IC4 not used
PA4 o/p OC4 LCD control signal (RS)
PA5 o/p OC3 LCD control signal (R/W)
PA6 o/p OC2 LCD control signal (E)
PA7 ? OCl not used

$1000 PORTA I/O port A
$1026 PACTL Pulse accumulator control register

PORT B: This port is used during the external mode of operation; for the
upper 8 bits of an external memory address.

PORT C: This port is used during the external mode of operation; for the 8
bidirectional data lines, and the low byte of an external memory address.

PORT D: This port does not need to be configured via the I/O registers to
make pins PDO act as an input (RxD) and PDI act as an output (TxD). The SCI
subsystem takes control of this port when it is required for a serial data transfer.

107

Port D also acts as an interface for the real-time clock chip (M68HC68Tl).
Hence, this port needs to be configured via the DDRD I/O register to make pins
PD2 to PD5 act for the SPI sub system as follows:

pin no. direction name description

PDO i/p RxD receive data
PD1 o/p Tx.D transmit data
PD2 i/p MISO RxD receive data
PD3 o/p MOSI TxD transmit data
PD4 o/p SCK serial clock signal
PD5 i/p SS slave select

The SCI sub system uses the following UO register to transfer the serial data.

$1008 PORTO I/O port D

PORT E: This port is always configured as an input port by the
microcontroller itself For this device pins PE4 through to PE7 are used as an
input port for the hexadecimal keypad data (a value representing the key pressed)

pin no. direction name description

PE7 i/p E-7 keystroke data (bit-3).
PE6 i/p E-6 keystroke data (bit-2).
PE5 i/p E-5 keystroke data (bit-I).
PE4 i/p E-4 keystroke data (bit-0).

$100A PORTE input port E

4.6.2.3. DESIGN CONSTRAINTS:

Programming language:
M6800 family assembly language for the Portable Cross Assembler (P ASM) must
be used.

Processor type:
MC68HC1 I microcontroller.

Maximum memory capacity:
64K bytes of primary memory space.

108

4.6.2.4. OTHER CONSTRAINTS:

Maximum physical size:
210 cm x 180 x cm x 6 cm

Maximum weight
750grams

Temperature operating range:
- 10 degrees Celsius to + 45 degrees Celsius

Shock resistant:

The device must be able to absorb the shock from being dropped from a small
height; say, 6 feet.

4.6.3. The Data Processing System

4.6.3.1. PERFORMANCE:

Computational time:

The two main tasks for the data processing system are as follows:

(i) Data is to be input via the serial communication port at the rate of 1200
baud.

(ii) The incoming data from a test must be processed to produce a 'Time
versus Temperature' plot, on the VDU screen, and onto a printer that is
capable of plotting dot matrix graphics.

The secondary tasks for the data processing system are:

(iii) To save the raw data in a secondary storage file.

(iv) To view either the current raw data or raw data from a file.

(v) To view a MS-DOS directory of files.

NB. All five choices of tasks are from a menu of commands that are shown
on the VDU screen.

Storage capacity:

At least SOOK bytes of RAM are required for the program, the data and for the
operating system's use. Including 4K bytes of RAM for the storage of the raw
data.

109

4.6.3.2. INTERFACES:

(a) Analog input signals:

none

(b) Serial communication signals:

The serial port has a standard RS232C interface. It has a full-duplex
asynchronous interface with a variety of programmable baud rates.

The data received will have: one start bit, 8 data bits and one stop bit. The data
will be transmitted at a 1200 baud rate.

(c) Parallel ports:

The standard IBM PC has a printer port with a parallel interface. The parallel
interface consists of:

8 data lines o/p

4 control lines o/p

5 status lines i/p

If direct control of the interface is required, then the following I/O addresses are
needed:

output data
output control
input status

03BCh
03BEh
03BDh

(d) Graphics interface:

or 0378h
037Ah
0379h

The IBM PC is expected to have an EGA/VGA graphics adaptor with the
following video mode:

Mode Type
16 graphics

Resolution
640 X 350

Colours
16

Adaptor
EGA

110

(e) Software interfaces:

The application software will be designed to interface with MS-DOS and in
particular with the BIOS routines when necessary.

The chosen high level language will interface with the BIOS routines that control
the serial port and the parallel printer port.

If the operating system BIOS routines are required to produce the VDU graphics,
then the following BIOS services are available:

set video mode
set the background colour
set the colour palette
set the palette registers
write a pixel dot
read a pixel dot
write a character and attribute

4.6.3.3. DESIGN CONSTRAINTS:

Operating System:

MS-DOS version 3 .2 or later.

Programming language:

AH= 00
OB
OB
10
oc
OD
OE

A MASM assembly language including BIOS services and DOS functions is all
that is necessary to write a simple menu driven program support program The
BIOS services and DOS functions are used when dealing with all the I/O
interfaces, otherwise the assembly language can easily cope with handling the
bytes of data.

Processor type:

The Intel 80X86 family of microprocessors.

Maximum memory capacity:

1 mega byte of primary memory.

500 K bytes of RAM.

4.6.3.4.
none

OTHER CONSTRAINTS:

111

4.7. STRUCTURED ANALYSIS

Introduction

Creating data flow diagrams (DFD) is one of the main stages of the JSP design
methodology used in this thesis. The designer examines the specification from
the software requirements specifications in order to produce a multi-level
graphical representation of the system. The process of creating DFD and then
transforming DFDs into Jackson structure diagrams is all part of structured
analysis.

Pressman (1992) [page 207, "Software Engineering: A Practitioner's Approach"]
states that structured analysis is a model building activity. The models depict
information (data and control) flow and content. They depict the essence of what
must be built.

Tom DeMarco (1979) [page 15, "Structured Analysis and System
Specifications"] establishes the primary goals of an analysis method as follows:

• The products of analysis must be maintainable.
• Graphics have to be used whenever possible.
• There is a need to differentiate between logical and physical

considerations.
• There is a need to keep track of and evaluate interfaces.

The basic notation of data flow diagrams DFDs

Pressman (1992) [page 208, 11 Software Engineering: A Practitioner's Approach"]
informs us that information is transformed as it flows through a computer-based
system. The system accepts input in a variety of forms, applies hardware,
software and human elements to transform input into output, and then produces
output in a variety of forms.

112

Structured analysis !S an infonnation flow and content modelling technique
where:

One or more inputs are shown as arrows.

A single infonnation transform is noted by a bubble.

Data that is to be stored for use by one or more processes
are represented by two thick straight lines.

External entities are represented by boxes.

One or more outputs are shown as arrows.

It should be noted that the model may be applied to the entire system (level 0) or
to the software elements only (levels 1, 2, 3, 4 etc.). The key is to represent
information fed into and produced by a transform.

113

Data Flow-Oriented Design

Data Flow-Oriented Design can be described as a multi-step process in which
representation of data structure, program structure and procedure are synthesised
from information requirements. The design process is information driven.

A data flow-oriented method of design provides a systematic approach for the
derivation of program structure. Beginning with a fundamental system modei
information may be represented as a continuous flow that undergoes a series
transformations as it evolves from input to output.

Modularity

Bell et al (1987) [page 27, "Software Engineering: A Programming Approach"]
state that the essence of good modularity is to have components of a system as
independent of each other as possible.

In programming, a module is any current or future mechanism for dividing
software into manageable portions. A module should occupy no more than a
page of information as it is difficult to understand logic that spills over from one
page to another. Modules should also be made to be as clear as possible.

Modules should have the following characteristics:

• optimised size (one page or less),
• maximum cohesion,
• minimum coupling and
• information hiding.

Information Hiding

The principle of information hiding means that, at the end of a design process,
any data is accessed only via certain, well defined, specific procedures or
subprogrammes. It is a method of structuring a program in such a way that a
piece of encapsulated data cannot be accessed directly.

Note, structured analysis should be performed in such a way that:

• Changes to design should be confined to as few modules as
possible(preferably one).

o The software interfaces between modules should be as simple as
possible and only be a means of calling subprograms rather than a
means of accessing shared data.

• For the purpose of testing and maintenance of a program, it should be
possible to understand individual modules independently of each
other. The aim is to have clearer separation between modules .

114

Coupling and Cohesion

Coupling and cohesion are terminology and classification schemes for descnl>ing
interactions between modules Bell et al (1987, p 34).

Software engineers are aiming at producing software modules with a minimum of
interaction between them (low coupling) and conversely, a high degree of
interaction within a module (high cohesion). Only then, an individual module can
be designed, coded, tested and amended without referring to other modules.

The aim of software design is to have: weak coupling and strong cohesion within
a program structure.

Coupling design criteria include:

• Modules should have only one entry point and only one exit point.
• As few parameters as possible should be passed between modules in a

procedure call.
• Undesirable to have shared or global data.
o Accessing or modifying data within another module is undesirable.

The various types of cohesion that exist include:

• Coincidental cohesion, in which components are in a module by
coincidence is undesirable.

• logical cohesion, in which a module perfonns a set of independent but
logically similar functions should be avoided.

• Temporal cohesion, in which functions are related in time.
• Sequential cohesion, in which operations in a module collaborate to

modify a piece of data are encouraged in a module.
• Functional cohesion, is employed in a module where operations

contribute towards perfonning a well-defined task.

115

Transform Analysis

Pressman (1992) [page 208, "Software Engineering: A Practitioner's Approach"]
states that transform analysis is a set of design steps that allows a DFD to be
mapped into a template for program structure. The design steps are defined as
follows:

step I Review the system model, the system requirements and the software
requirements specifications in order to produce a level O and all level 1
data flow diagrams (DFD).

step 2 Review and refine data flow diagrams for the software. Information from
the software requirements specifications is examined to produce DFDs

that show greater detail (level 2, 3, 4 etc.). Lower level DFDs are produced
until each module contains transforms with a high degree of cohesion.
That is, each transform performs a single discrete function.

step3 Isolate the transform centre by specifying incoming and outgoing flow
boundaries. Incoming flow is described as a path in which information is
converted from external to internal form. Outgoing flow is when
information is converted to external form. Then dotted lines may be
drawn on DFDs to illustrate the input and output boundaries.

step 4 Perform first level factoring. This establishes graphically a program
structure in which the top-levels show the overall control and decision
making modules, the mid-levels modules perform some control and a
moderate amount of work, whereas, the low-level modules perform most
input, computational and output work.

step 5 Second level factoring. This involves mapping, on a one to one basis, the
DFD processing components onto a Jackson program structure diagram.
The individual transforms (bubbles) of a DFD are mapped onto a

structure diagram, starting from the centre boundary and moving outwards.
For example, a data flow diagram may be mapped onto a structure diagram

that exhibits a main controller and three other components: input,
processing and output.

step 6 Refine program structure (using design heuristic's) for improved software
quality. A first-cut program structure can always be refined to have a
structure that employs modules with good cohesion and low coupling.
Hence, the program can be implemented without difficulty. The program
can be tested without confusion and maintained without grief.

116

Design Heuristic's

Improvements to program structure can be made by applying the following
guidelines:

• aim for modular independence,

• attempt to avoid situations with a high fan-out,

• make sure that all modules affected by decisions are at a lower leve~

• evaluate module interfaces to reduce complexity,
• strive for single entry single exit modules and

" package software based on design constraints and portability
requirements.

117

4.8. JACKSON STRUCTURED DIAGRAMS

Jackson structured diagrams have been used throughout the Temperature Monitoring
System software documentation. Cooling (1991, p. 171) states that "Jackson structure
diagrams can be used to show the structure of a program. They can also be used for
language independant design. Jackson structured diagrams have three basic constructs
which make them ideal for designing and documenting high levei medium level and
assembly language programs". The constructs are:

• SEQUENCE,
• SELECTION and
. ITERATION.

Consider a program routine called 'TEST', which consists of 4 small modules (a, b, c
and d). Each module could be either: labeled in-line-code, or a subroutine.

SEQUENCE I TEST I

a b C d

The structure diagram shown above implies that the module TEST passes control
sequentially to a, b, c then d. Control is then passed back to TEST.

SELECTION
TEST

I
I C1 I C2 C3 C4

0
b

0 0
d

0
a C

The diagram shown above implies that only one of the modules (a,b,c or d) will be
executed. The small circles at the top right hand comer of each box indicates that the
module needs to be selected before the functions relating to that module are executed.
The symbols Cl, C2, C3 and C4 are symbols representing the conditions that have to
be met for the selection of that module. Control is always given back to TEST after a
module's functions have been accessed.

118

For example, the conditions could be:

Cl 'a' is selected when key 1 is pressed,

C2 'b' is selected when key 2 is pressed,

C3 'c' is selected when key 3 is pressed,

C4 'd' is selected when key 4 is pressed.

ITERATION The diagram shown below implies that the functions relating to the
modules a through to d will be executed 'n' times. The number of iterations will
depend upon the condition set by CS. The asterisk(*) indicates that the components of
a module will be executed in an iterative manner.

TEST I
CS

*

I
a b C d

CONDIDONS

Modules associated with iteration or selection have their conditions listed in a table.
For example,

C I. repeat 7 times
C2. selected when key ' I' pressed
C3. selected when key '2' pressed

In the example shown above, the condition could be:

CS the modules a,b,c and d will be sequentially executed I O times.

119

FUNCTION NUMBERS

In Jackson structured design, each function that is defined within a program is
allocated a function number. When a module is defined, the module is given a name,
say x, and the function numbers are listed below the tenninal module's icon, as shown
below.

X

1, 2,3
functions:

1. Move cursor to a specified position.
2. Input a character from the hexadecimal keypad.
3. Display the character on the LCD screen.

A function is defined once but can be called and used many times throughout a
program. The function is referenced by its function number.

A module is defined once but can be called and used many times throughout a
program. The module is referenced by its function number, which is specified in the
list of functions. Note, the source code assembler has a restriction ofup to eight
unique characters for lables, variables and procedure names. Hence, the desired
meaningful names cannot always be used, but the descriptions of the functions to be
carried out by a module can easily be looked up from the lists of functions that are
recorded in numerical order.

A Jackson structure diagram may consist of a hierarchy of constructs. Note, the rules
are: a group of modules at any level of a diagram must be of the same type
(no mixture of sibling types is not permitted). Also there can be no iteration siblings.

Modules connected together at the same level must be either:

. executed one after the other, from left to right or

• only one selected module is executed .

Functions within a terminal module must be defined in their order of execution; the
function numbers will be displayed from left to right, in the order they will be executed.
The definitions will be listed from top to bottom; as they would appear in a program
listing.
Iterations are also from modules, shown left to right, and from functions within a
module, defined from top to bottom.
Note that, the terminal modules shown in a hie: _..chy of a Jackson structure diagram
may have their functions and conditions defined in the form of a list.

120

4.9 CHOICE OF PROGRAMMING LANGUAGE

Introduction

Programming can be defined as a process of converting system specification into

useable machine code instructions to produce a desired result. Programming a

computer to solve a problem involves two chores:

• The problem must be broken down into a sequence of operations that

the computer can perform.

• Then, instructions telling the computer how to perform the operations

must be encoded. Sanders (1986, p 540)

Programming languages are vehicles for communication between humans and

computers. Coding is when an assembler/compiler accepts source code as an

input and produce object code that is machine dependent.

The problems associated with the coding step of the design step are:

• Style can profoundly affect software quality and maintainability.

• A programming language can limit design to available data structures

(data types)

• Technical characteristics of a language can influence the quality of a

design.

• Programming language complexity or restrictions can cause problems;

source code that is difficult to test or maintain.

121

Safe Software

Computers are increasingly being used to monitor and control critical functions in

such systems as advanced aircraft contro~ space flights or road traffic control.

Most safety-critical activities of complex sys,ems are caused by software

controlling mechanical devices. Procedures have to be devised to ensure the

safety of human life. The tenn safety-critical may describe situations wh.;re an

execution-time failure can result in death, injury, loss of equipment or property,

or environmental harm.

The research to provide safe software falls into three main areas:

• software hazard analysis

• verification, validation and assessment

• software design and run-time environments. Littlewood (1987, p 15)

Types of Programming Tasks

Tasks for computer systems will vary in size and type; whether the program you

are developing is small or large may be an important factor when choosing a

program language.

Most tasks for computers systems fall into one of the following categories:

data logging

data processing

commercial applications

batch processing

scientific and engineering

operating system programming

real-time processing

system control

industrial control

robotics

games programs

122

The choice of programming language may depend upon the task that the

computer has to perform. For example, by tradition, the following languages are

preferred (if available):

COBOL data processing

FORTRAN scientist and engineers

C systems programmers

ADA real-time or embedded computer systems Bell (1987, P85)

Classification of Programming Languages

Computer programming languages may be classified in the following five ways:

FIRST GENERATION LANGUAGES

Machine-level coding (where binary, octal or hexadecimal values are directly

inserted into the computer's memory) is still used today to program a computer

system. Though, its more likely to be coded using assembly language

mnemonics.

SECOND-GENERATION LANGUAGES

Languages that have withstood 30 years of criticism:

123

COBOL is still used for business, commercial and data processing

applications.

FORTRAN remains the premier programming language for

scientists and engineers.

BASIC is the most used language on personal computers.

TillRD GENERATION LANGUAGES

Structured programming languages characterised by: strong procedural, data

structuring capabilities.

These can be divided into:

general purpose,

object-oriented

C, Pascal and Ada

C++, small talk, Eiffel

FOURTH GENERATION LANGUAGES

Languages with higher levels of abstraction and distinct syntax for control and

data structure representation.

Query Languages:

4GL used in conjunction with data bases.

Program Generators:

Third generation-language programs created from using a small set of

higher level, more abstract, statements.

Business Information systems applications generate programs in COBOL.

Spreadsheets, Database systems, Mackintosh Hypercard allow macros or

program.statements

124

Criteria Used to Select a Programming Language

Choosing the most appropriate programming language for a problem is not an

easy task. The following list of descriptions may have a greater influence on the

choice oflanguage rather that the true criteria for choosing a programming

language.

• Organisations have a substantial investment in a particular language.

Their programming staff have built up considerable expertise with a

particular language.

• Software developers may be contracted to implement a design using a

specified programming language.

o Availability of software tools such as language-sensitive editors,

debugging systems and project management tools may favour one

programming language over another.

• The environment that supports the software may influence your choice of

language: For example UNIX has 'C' and MS DOS has BIOS services

and DOS functions which provide assembly language programmers with

easy access to higher level rnutines.

• The size of the program may be an important factor.

• A language that is small and simple and can be understood in its entirety

enables programmers to become truly proficient and confident, hence,

influencing the choice oflanguage.

The true art of choosing a language is to start with the problem, decide

what its requirements are and their relative importance. Then match the

requirements with the criteria listed below:

12S

Algorithmic and computational complexity

Perfonnance consideration (computer efficiency)

Data structure complexity

Environment in which the software will be executed

Availability of a good computer/assembler or cross compiler/assembler

Debugging tools to protect the user from the details of the hardware

Source code portability

General applications area Pressman (1992)

126

Conclusions

After the main functions of each part of the system were listed, data flow

diagrams drawn and data types decided upon, then the next major task was to

choose the most appropriate programming language for the control programs.

The temperature monitoring device (TMD) and the data transfer device (DTD)

control programs have to: input four kilobytes of data, store the data, transfer

the data via a serial port, respond to push-button inputs and simply display

the status of the device. Note, very little processing of data is done and

all the data items and control registers are in byte form. In fact, both control

programs will have the following features:

• they must directly control the hardware,

• they will be relatively small in size,

• they will use byte and word data types,

• portability of source code was not required,

• an IBM PC and Motorola evaluation boards provided the

programming environment and

• there will be no algorithmic and computational complexity involved.

At the time of creating the JSP diagrams the only available programming

languages, to program MC68HC11 devices, were assembly language and 'C'.

Hence, the author had to choose between them. The author was conversant in

programming using both languages on the IBM PC system. After considering the

MC68HC11 control program features the author chose a Motorola portable

assembler (P ASM) as the preferred programming language. The hardware had

already been designed and months had been spent on learning the capabilities of

the MC68HC11 internal architecture. Hence, being down at the bits and bytes

127

level of design meant that creating the source code using assembly language was

the most natural choice at the time. There was no need to shield the programmer

from the hardware, there were no complicated data structures used and no

complex processing tasks involved. Hence, there was no need to use a high-level

language program.

Consequently, the JSP diagrams were created with assembly language

programming in mind. Then an efficient programming and debugging

environment was created on the IBM PC.

The choice of programming language for the data processing system (DPS)

meant that the whole selection process had to performed once again, as follows.

The DPS required a control program to check and store information from the

TMS and the DTD. The overall aim of the DPS program was to:

o input a block of information from a serial port,

• the information had to be stored in a file,

• the user had an option of viewing file names in a directory,

• the raw data could be viewed on a VDU or from a hard copy printout.

Hence, a check that the data was safe and ready for data processing could

be made by the researcher. Note, that no complicater. processing was required

from the author, no data types other than: strings for file pointers, 16-bit positive

integers for pointers and 8-bit positive integers for data and control register

values were required.

128

Once again, assembly language was chosen (or the OPS control program. The

following reasons were used to make such a decision:

• The author was very familiar with the MS DOS operating system, the

CPU architecture, the system architecture and programming the IBM

PC at assembly language level (as well as programming in 'C' and

4GL spreadsheets).

• The author was well aware that MS DOS provides BIOS services that

make controlling the hardware a simple task.

• MS DOS provides DOS functions that make file handling easy for the

assembly language programmer.

• MASM and TASM assemblers provide a programming and debugging

environment comparable to those available to a high-level language

programmer.

• User defined labels and macros can make assembly language produce

very readable and easy to follow source code. Therefore, debugging

is easy a· there is a one to one relationship between program labels

and JSP labels.

The most pleasing result of this exercise was that there were no problems

encountered whilst coding the three control programs. The JSP methodology

including assembly language can be recommended to any microcontroller system

designer.

It should also be noted that, although there is no portability of source code, the

rest of the JSP methodology is portable.

Finally, the coding part of a well designed system is a small mechanical task. In

fact, in recent years, research is being done to relieve this task from the designer

by making it a software development tool.

129

4.10. MAINTENANCE AND TESTING INFORMATION

4.10.1. TEST PLAN

Testing involves exercising the program using data similar to the real data that the

program is designed to work with in order to observe the program's output and to

infer the existence of: errors, inadequacies and anomalies. The plan involves

canying out program testing during implementation and when the implementation

is complete.

Although the Temperature Monitoring System was designed using a top-down­

approach, the validation of the system uses a bottom-up strategy (as the

subsystems of the micro controller need to be initialised before data transfers can

take place). The strategy used for the testing process comes from the book

"Software Engineering:" by I. Sommerville. It incorporates five distinct stages in

the testing process:

(i) functional testing,
(ii) module testing,
(iii) sub-system testing,
(iv) system testing and
(v) acceptance testing.

(i) FUNCTIONAL TESTING

The software functions are the small units of code that are independent from each

other and have their own set of specifications. Each function can be tested as a

stand-alone entity. The plan is to define the actions of each device function then

describe how it is to be validated.

The testing of the functions for each sub-system of the TMS are described in the

following sections of the test plan.

130

(ii) MODULE TESTING

The modules of each sub-system are also stand-alone units of code. The modules

combine the functions in a way that they co-operate with each other to form a

task. Each module of a sub-system can be tested on its own. The plan is to

define the functions for each module and then describe how the module is to be

validated.

The testing of the modules for each sub-system of the TMS are described in the

following sections of the test plan.

(iii) SUB-SYSTEM TESTING

The program modules of a sub-system can be put together and tested as a whole

unit. Thus, the module interfaces are tested with the assumption that the modules

themselves are correct.

In the Temperature Monitoring System the sub-systems include: the TMD, the

DTD and the DPS.

(iv) SYSTEM TESTING

This involves the testing of the entire system which comprises of the linking

together of the three sub-systems. This testing process is concerned with finding

errors in design as well as validating the overall system. It makes sure that the

dynamic characteristics of the system match those of the Functional Requirements

Specifications.

Testing requires the linking together of:
• the person under test with the temperature monitoring device,
• the temperature monitoring device with the data transfer device,
• the temperature monitoring device with the data processing system,
• and the data transfer device with the data processing system.

131

(v) ACCEPTANCE TESTING

Acceptance testing is the process of testing the system with real data.

Acceptance testing is designed to detect errors in the 'Software Requirements

Document'. The requirements may not reflect the actual facilities and

performance that is required by the user.

DESIGNING TEST CASES

Sommerville (1990), p. 178), states that "planning the testing of each program

involves formulating a set of test cases, which are akin to the real data0
• Test

cases should consist of:

• input specifications,
• description of the system functions, and
• a statement of the expected output.

According to Pressmar. (1987, p. 470) Any engineering product (and most other
things) can be tested in one of two ways:

(i) black box testing and

(ii) white box testing.

132

(i) BLACK BOX TESTING

Black box testing is used when the specified functions that a product is designed

to perfonn are known, and tests can be conducted to demonstrate that each

function is fully operational.

Black box testing is coriducted at the software interface; test cases demonstrate

that software functions are operational, that input is properly accepted, output is

correctly produced and the integrity of the system is maintained.

A black box test examines some aspect of the fundamental system model with

little regard for the internal logical structure of the software. Black box testing

attempts to find:

• incorrect or missing functions,
• interface errors,
• errors in data structure,
• performance errors and
• initialisation or termination errors.

Black box testing was used on the modules of each sub-system, on each sub­
system in turn, and the overall system when completed.

(ii) WHITE BOX TESTING

White box testing is used when the internal workings of the product are known,

and tests can be conducted to assume that its internal workings perform

according to the specifications. White box testing of software is the close

examination of procedural details and the testing of the logical paths through the

software. It provides test cases to exercise specific sets of conditions and loops

of code. The status of the program may be examined at various points to

determine if the expected or asserted status corresponds to the actual status of

the device. White box testing can:
• guarantee that all independent paths within a module have been

exercised at least once,
• exercise all logical decisions (on their true and false side),
• exercise all loops at their boundaries and
• exercise all internal data structures to assure their validity.

133

4.10.2.1. TESTING THE TEMPERATURE MONITORING DEVICE
(TMD)

The TMD uses three areas of storage: a data buffer ar~ an area to store the
fixed parameters of the device, and an area to house the variables used by the
control program.

1/ The buffer area which stores all the infonnation gathered during a run of
the program includes:

DATEBUF which stores information relating to the start of the test.

BUFFER which stores the temperature readings taken during the
test.

EVENTB which records the relative time, with respect to the start of
a test, for each event that requires noting during a test.

2/ The fixed parameters, which should be stored in EEPROM, include:

IDENT

DATA
EVENTS
DATE

the identification of the TMD,

the start address of the buffer area,
the start address of the events buffer,
the start address of the date/time buffer.

The other fixed data items are: end of buffer values, start of block
marker, end of block marker, timeout values and values for the ADC
system.

3/ An area of read/write memory is used to store all the variables that are
necessary to run the TMD program. These variables include:

• pointers to buffer areas,
• timer/counter values,
• command flags,
• status flags and
• temporary storage areas.

134

The Temperature Monitoring Device Program

The TMD program consists of two main control routines, that control the device
behaviour, and eight functional routines that control the actions of the device.

The two control routines are:

The RESET module and the PROCESSR module.

The Reset ModuJe

This routine resets the system so that it is in a state of readyness; ready to start
logging data from a new test. The major functions of the RESET module are:

(i) to initialise the sub-systems of the microcontroller chip.

(ii) to clear the status and command flags and to clear the data buffer areas
of memory.

(iii) to show the status of the device when requested.

(iv) to be ready to ready to accept an upload (start of test) command and
respond to it by calling the PROCESSR routine.

The reset module (RESET) makes use of the following functional
routines:

INIT I, INIT2 and ST ATUSR.

The Processing Module

This routine firstly receives the date, time and a start logging command from the
data transfer device (or the data processing system). Then secondly cycles round
calling a function that detects the need for one of the following four major
functions:

(i) to read the next piece of analog data.

(ii) to record the time of an event.

(iii) to show the status of an event.

(iv) to end the test, output the data and to return to the RESET routine.

The processing module (PROCESSR) makes use of the following functional
routines:
SYNCR, INPUTR, STATUSR, ANALOGR, EVENTR, OUTPTR. and INIT2

135

TESTING THE EIGHT FUNCTIONAL ROUTINES

1/ INITl Initialise sub-systems routine

input specifications:

The inputs to the sub-systems are initiated by machine code instructions to the
1/0 registers. The instructions load the following hexadecimal values into the
specified registers:

INPUT CAPTURE/ OUTPUT STATUS

PACTL
TCTL2

=
=

80
55

ANALOG TO DIGIAL CONVERTER

DDRD
OPTION

=
=

00
AO

SERIAL COMMUNICATIONS INTERFACE

4000
BAUD
SCCRl
SCCR2

=
=
=
=

FF
30
00
03

TIMER COUNTER SUB-SYSTEM

TMSKl
TFLGI

description:

=
00
FF

This routine has the task of initialising four of the microcontroller sub-systems.
This routine cannot be validated on its own; but it can be validated by the correct
operation of the following routines:

136

expected output:

(i) OUTPUTR may prove that the SCI sub-system has been initialised
correctly.

(Ii) STATUSR, EVENTR, RESET and PROCESSR routines operating
correctly will prove that the input capture and the ouput signals are
operating from PORTA correctly.

(iii) PROCESSR and ANALOGR routines operating correctly proves that the
TIMER/COUNTER sub-system has been initialised correctly.

(iv) ANALOGR routine converting the analog signals to digital values
proves that the ADC sub-system has been initialised correctly.

2/ INIT2 Initialise variables routine

input specifications:

data buffer address
events buffer address
date/time buffer address
variables start address

description:

=
=
=
=

DATA
EVENTS
DATE
CLEAR

This routine clears all the buffers, command flags and status flags. It also sets the
buffer pointers with their initial values.

expected outputs:

DATA

EVENTS

DATE

CLEAR

to

to

to

to

BUFFMAX =

PTREMAX =

DATEMAX =

VARYMAX =

00

00

00

00

137

3/ STATUSR Display status routine

input specifications:

IC2 = 'I' pressing the STATUS push button makes IC2 i/p
= +SV

MONITOR = FF or 00 monitoring data flag
l\1EMFULL = FF or 00 memory full flag
BATTERY = FF or 00 battery low voltage flag
TRANSFER = FF or 00 transferring data flag

description:

This routine is normally initiated by pressing the STATUS push button. The

logic of the code tests four status flag bits in tum. If a flag bit is set the

appropriate LED will be illuminated. If the flag bit is zero the appropriate flag bit

is switched off. The output to the 4 LEDs is sent to PORT A for a period of 3

seconds, then cleared to save power.

The STATUSR routine is called from both of the two main modules.

expected output:

This routine outputs a logic level of' l I to illuminate the following LEDs:

MONITOR
MEMFULL
BATTERY
TRANSFER

Note, if all the status flags are set to $FF at the same time (which cannot occur in

the normal correct execution of the program), this situation indicates that there

was an error when transferring data.

Note, if all the status flags are reset to zero (all the LEDs are switched off) this
indicates that the device is in the ready mode.

138

4/ SYNCR Upload date, time and start command routine

input specifications:

IC3 = \ 1' pressing the UPLOAD push button makes IC3 i/p
= +SV

SCI = \ **ddmmyyhhmmss#' a block of ASCII characters

** start of block marker
dd 2 digit ASCil hexadecimal value for the day
mm month
YY year
hh hour
mm minute
ss second
end of block marker (start monitoring command)

description:

This routine organises the correct transfer of a block of ASCII characters from,
either the DTD or the DPS, to the DMD. The data transfer is initiated by the
pressing of the UPLOAD push button on the DMD and a down land command
from either the DTD or the DPS.
This routine checks the start and end of block markers(* and#) and checks that
the number of data bits does not exceed 12. There is also a one minute timeout
between pressing the UPLOAD push button and detecting the start of block
marker, and a timeout between each character. If an erroneous transfer occurs
then all the device status flag bits are set to FF.
When a successful transfer is completed the date llnd time values are stored in the
DATEBUF memory area the input capture flag register and the data transfer
status flag are cleared.

expected output:

DATEBUF

TRANSFER

or

DATEBUF

MONITOR
MEMFULL
BATTERY
TRANSFER

=

=

=

=
=

=
=

dd mm yy hh mm ss (date and time information)

00

00 00 00 00 00 00 (no date and time information)

FF
FF
FF
FF

139

5/ INPUTR Checks for push button commands and 10 min. timeout

input specifications:

TENMIN

!Cl
IC2
IC3

description:

=

=
=
=

Til..IMIT

'1'
\ l'
'1'

or a value between O and TILIMIT

or
or
or

'O'
·o•
·o•

This routine is called from the PROCESSR routine thousands of times per
second. It is used to detect immediately one of the following occurrences:

(i) a 10 minute timeout; if not increment TENMIN value.
(ii) an event needing to be recorded; if yes set EVENT flag = FF else= 00.
(iii) a display status request; if yes set DISPSTAT flag= FF else= 00.
(iv) a down load request; if yes set DNLOAD flag = FF else= 00.

expected output:

TENMIN =
EVENT =
DISPSTAT =
DNLOAD =

TILIMIT or a value between OOO l and TILIMIT
FF or 00
FF or 00
FF or 00

6/ ANALOG Routine to read the next piece vf data from the ADC
sub-system

input specifications:

READFLAG =

ADRI
ADR2

description:

=
=

FF read ADC command flag

digitised temperature reading
digitised battery voltage

The main aim of this routine is to read the current temperature value and the
current state of the battery voltage from the ADC. To do this the ADC is
programmed for a multi-channel single scan mode of operation. Then channels 0
and I are read and the following tasks are performed:

140

(i) The temperature reading is stored in the data buffer. Then a test for the
buffer being full is made. When the data buffer is full the MEMFULL
status flag is set to FF.

(u) The battery condition reading is checked against a minimum value
(BATLOW). When the battery condition is found to be low the
BATIERY flag is set to FF.

(iii) The number of temperature readings value (AMOUNT) and the buffer
pointer (BUFFPTR) are incremented if the MEMFULL flag is not set.

expected output:

7/

BUFFER
TEMP2
TEMP3

BUFFPTR
AMOUNT

ME:tv1FULL
BATTERY

READFLAG

EVENTR

input specifications:

EVENT

description:

has a new temperature reading added to it.
has the current battery voltage value.
a coded value for the current temperature reading.

is incremented
is incremented

is set to FF if BUFFPRT = BUFFMAX value, else= 00.
is set to FF if battery voltage is below the BATLOW
value, else 00.
is cleared.

Routine to record the time of an event

= FF event command flag

This routine is called from the PROCESSR routine to record the elapsed time
from the start of a test (the AMOUNT value) when an event command is issued.
The 16-bit value is stored in the events buffer (EVENTB). A test for the events
buffer being full is also made. If the buffer is full the EVENTFUL flag bit is set
to FF.
The event buffer pointer is incremented by 2 and the event command flag is reset
to zero.

expected output:

EVENTB has a new 16-bit value added to it

EVENTFUL = FF ifEVENTPTR = PTREMAX,
EVENTPTR is incremented by 2
EVENT is cleared

else= 00

141

8/ OUTPUTR Routine to down load results to the serial port

input specifications:

DNLOAD = FF end of test; down load data to serial port

description:

Firstly, the transmitter part of the SCI sub-system is enabled. Then the following
information is sent to the serial port (Data Transfer Device or the Data
Processing System):

• a start of block marker · *',
• the device identification,
• the date and time that was originally uploaded,
• the block of temperature readings,
• the block of event times,
• the end of block marker'#'.

Then the input capture flag register and the TRANSFER flag are cleared.

expected output:

The following information is sent to the serial port at the 9600 baud rate:

*
!DENT
dd mm yy hh mm ss
a block of temperature readings
a block of event times

TFLG 1 the Timer input capture flag register is cleared
TRANSFER the transfer status flag is cleared

142

9/ RESET Initialisation Module

input specifications:

IC2 =
IC3 =

description:

, I'
'I'

to detect a request to show the status of the device
to detect the request to start logging data

This module is used to reset the temperature monitoring device system so that it
is in a state of readiness. So that it is ready to log data for a new test. The
RESET module calls up functional routines to perform the following tasks:

(i) to initialise the sub-systems of the microcontroller.

(ii) to clear the three main buffer areas of memory,
to clear the status and command flag bits ready for use, and
to initialise all the program variables.

(iii) to allow the status of the device to be shown at any time.

(iv) to be ready to accept an UPLOAD command (a start of test command)
from the UPLOAD push button, and respond by calling the PROCESSR
module.

expected output:

calling the ST ATUSR routine in response to IC2 = ' I' (+5V)
all the status flag bits should be reset to zero
the input capture flag register should be cleared

calling the PROCESSR routine in response to IC3 = ' l' (+SV)
the MONITOR flag bit should be set to FF
the input capture flag register should be cleared

143

10/ PROCESSR The Data Logging Module

input specifications:

INPUTR routine detects the following inputs:

(i) TOF = 'I' to detect a timer overflow and increment TENMIN value.
(ti) TENMIN=TILIMIT to detect a read a new temperature value.

(iii) ICI =
(iv) IC2 =
(v) IC3 =

description:

, I'
'1'
, I'

to detect a request to record the time of an event,
to detect a request to show the status of the device,
to detect the request to end logging, and output
results.

This module receives the date, time and start logging command, from the serial
port, via the SYNCR routine, then cycles round calling 5 routines which enable
the following 4 main tasks to be performed:

• to read the next temperature value,
• to record the time of an event,
• to show the status of the device, and
• to end the test and output the results to the serial port.

expected output:

calling the ANALOG routine in response to READFLAG = FF

calling the ST A TUSR routine in response to DISPST AT = FF

calling the EVENTR routine in response to EVENT = FF

calling the OUTPUTR routine in response to DNLOAD = FF
call INIT2 routine
return back to the RESET routine

144

4.10.2.2. TESTING THE DATA TRANSFER DEVICE (DTD)

The DTD uses three areas of storage: a data buffer area, an area to store the fixed
parameters of the device, and an area to house the variables used by the control
program.

1/ The buffer area which stores all the infonnation gathered during a run of
the program includes:

DATEBUF which stores infonnation relating to the start of the test.

BUFFER which stores the temperature readings taken during the
test.

EVENTB which records the relative time, with respect to the start of
a test, for each event that requires noting during a test.

IDENT the identification of the TMD,

2/ The fixed parameters, which should be stored in EEPROM, include:

DATA
EVENTS
DATE

the start address of the buffer area,
the start address of the events buffer,
the start address of the date/time buffer.

BUFFMAX the end of the data BUFFER value,
PTREMAX The end of the EVENTB value,
DATEMAX the end of the date and time buffer (DATE).

BEGCODE the other fixed data items are: end of buffer values, start
of block marker,

ENDCODE end of block marker, timeout values and values for the
ADC system.

TILIMIT the timeout value, used to check the maximum no. of
TOFs before a bad serial transfer is declared.

3/ An area of read/write memory is used to store all the variables that are
necessary to run the TMD program. These variables include:

• messages for the LCD screen,
• pointers to buffer areas,
• timer/counter values,
• command flags,
• status flags and
• temporary storage areas.

14S

The Data Transfer Device (DTD) Program.

The DTD program consists of 5 main control routines, that control the functions
of the system that the user can select. The DTD program, at a lower leve~
consists of 9 major functions that can be selected by the user, 2 minor functions
that input information from the user, and 19 basic functions that control the
actions of this device.

The 5 main control routines (modules) are:

MAIN, CO:MMANDR, MENUIR, 1\IBNU2R and MENU3R.

The 9 major functions can be sorted into 3 categories:

To display infonnation:

TIMER, STATUSR and DATER

To transfer infonnation:

STARTR, UPLOADR and DNLOADR.

To change infonnation:

RESETR, DATER and CLEARR.

The 2 minor functions are:

KBDTIME and KBDDATE.

The basic functions can be sorted into 3 categories:

The system initialisation routines:

INITIR, INIT2R, INITJR and INIT4R.

The keyboard control and data conversion routines:

INPUTR and CONVERT.

The 19 basic functions are:

OUTPUT, OUTPUT2, SCREEN, DELAY,
SHOW, BLANK, DISPLA YR, TLC, CURSOR,
WRITE, WRITEHEX, DUMP, AND VIEWLINE.

146

The MAIN module:

This routine initialises the LCD module and the microcontroller sub systems that
are used by the DTD. It also clears all the data buffers and variables that are used
by the DTD. The major functions of the MAIN routine are :

(i) to initialise the SCI sub system,

(ii) to initialise the LCD module,

(iii) to initialise the input capture sub system, and

(iv) to clear all the data buffers and variables used by the system.

The MAIN module makes use of the following functional routines:

INITIR, INIT2R, INIT3R and INIT4R.

The COMMANDR module:

The COMMANDR module is a high level control routine that displays, and
enables the user to select, the 3 main functional areas of this device; the display,
the transfer of the changing of information within the device.

This module inputs information from a hexadecimal keypad which enables it to
give control over to one of the lower level control modules: MENUIR,
MENU2R or MENU3R.

This module makes use of the following modules:

MENUIR, MENU2R and MENU3R.

This module also makes use of the INPUTR functional routine to input from the KBD.

The MENUlR module:

This module shows a screen with 3 sorts of information that the user can choose
to display on the LCD. The user can either view:

• the status of the device and uploaded information,
• the 'start of test' date and time prior to a start of a new test, or
• the data that has been uploaded from a TMD.

This module inputs the user's choice, then gives control over to the appropriate
routine, making use of the following functional routines:

TLC, DISPLAYR, INPUTR, STATUSR, TIMERR and DATERR.

147

The MENU2R module:

This module shows a screen on the LCD that displays the 3 choices of serial data
transfers that the DTD has been designed to perform:

• to enable the TMD to start a new test,
• to upload information from the TMD, or
• to down load data, gathered from a test, to the data processing system

(OPS).

This routine also enables the user to input, via the hexadecimal keypad, their
choice of transfer. This module then calls up the appropriate major function to
perform the task.

This module makes use of the following functional routines:

TLC, DISPLAYR, INPUTR, STATUSR, TIMERR and DATERR.

The MENU3R module:

This module shows a screen with 3 sorts of information that the user can choose
to change:

• the 'start of test' date and time,
• the clearing of all the data buffers and variables, or
• the complete reseting of the DTD system.

This routine also enables the user to input, via the hexadecimal keypad, their
choice of change. This module then calls up the appropriate major function to
perform the task.

This module makes use of the following functional routines:

TLC, DISPLAYR, INPUTR, STATUSR, TIMERR and DATERR.

148

4.10.2.3. TESTING THE DATA PROCESSING SYSTEM (DPS).

The DPS uses three areas of storage: a data buffer area, an area to store the
messages for the VDU screen, and an area to house the variables used by the
control program.

1/ The buffer area which stores all the information gathered during a run of
the program includes:

IDENTV the identification of the TMD that gatered the data.

DATEBUF which stores information relating to the start of the test.

BUFFER which stores the temperature readings taken during the
test.

EVENTB which records the relative time, with respect to the start of
a test, for each event that requires noting during a test.

2/ The names of the messages used by the dps program are:

MSGI
MSG2
MSG3
MSG4

MSGMENU
MSGINPUT
MSGRAW
MSGDIR
MSGLOAD
MSGSAVE
MSGPLOT
MSGEXIT

serial port error message
printer port error message
return to DOS message
file transfer error message

main menu screen
uploading serial data screen
displaying raw data screen
displaying a directory of filenames
loading a data file screen
saving a data file screen
plotting the results screen
exit to DOS screen

3/ An area of read/write memory is used to store all the variables that are
necessary to run the TMD program. These variables include:

• pointers to buffer areas,
• timer/counter values,
• command flags,
• status flags and
• temporary storage areas.

149

The Data Processing System Program

The DPS program consists of two main control routines. One that initiates the

input/output interfaces and the data area of memory, the other allows the user to

choose one of 6 major functions that they can ask the system to perfonn.

The two control routines are:

the MAIN module, and the COMMANDR module.

The MAIN module description.

This module is responsible for resetting the system interfaces and initialising the
data area of memory. The program is then in a state ofreadyness. so that users
can select the tasks which they want the system has to perfonn.

The major functions of the MAIN routine are:

(i) to initialise the serial port.

(ii) to initialise the printer port.

(iii) to initialise the screen and display the main menu.

(iv) to initialise the counters, pointers, variables and buffers that will be used
by the DPS routines.

(v) to hand control over to the COMMANDR module.

The MAIN module makes use of the following functional routines:

INITIR, INIT2R, INIT3R and fNIT4R, then gives control to COMMANDR.

150

The COMMANDR module description.

This module waits for a KBD input in response to the main menu choices, which

are displayed on the VDU screen. The major functions that can be selected by

the user perform the following tasks:

(i) Upload information from the TMD or the DTD via the serial port.

(ii) Display the filenames from a specified secondary storage directory.

(iii) View parts of the information that has been loaded into the primary
memory.

(iv) Load the raw data (from a TMD test) from a specified secondary storage
file.

(v) Save the TMD test information from memory to a specified secondary
storage file.

(vi) Plot the results from a TMD test, onto a printout or onto the VDU
screen.

(vii) Exit from the program.

The processing module COMMANDR makes use of the following functional
routines:

INPUT, Dill, RAW, SAVE, PLOT, OLD. and EXIT.

151

TESTING THE 11 MAJOR FUNCTIONAL ROUTINES

1/ INITlR Initialising the serial port.

With assembly language programming on the IBM PC, the inputs, in many cases,

are the parameters that are passed to the Basic Input/Output Subprograms

(BIOS) service routines, and to the Disk Operating System (DOS) functions.

These parameters are passed through the CPU 16-registers: AX, BX, CX, DX,

SI AND DL and the CPU 8-bit registers: AH, AL, BH, BL, CH, CL, DH and

DL.

input specifications:

AH =
AL =
DX =
AH =
AH =
AH =

description:

00
E3h
0000
01
02
03

service number, to initialise the serial port
9600 baud, 8-bits, 1 stop bit, no parity
serial port number also

send one character service
receive one character service
get serial port status service

This routine has the task of initialising the serial port (COMl) of the system by

the use of a BIOS service routine. The status of the serial port is then checked

using a different BIOS service.

expected output:

The status of the serial port is passed to the program via the CPU register AH.

AH bit 0 = (i/p) data ready
1 = overrun error
2 = parity error
3 = framming error
4 = break detected
5 = (o/p) transfer register empty
6 = shift register empty
7 = timeout error

2/ INIT2R

input specifications:

also

AH =
DX =

AH =
AH =

description:

152

Initialise the printer port.

01
0000

00
02

initialise the printer
LPTI

get printer status
send one character

This routine has the task ofinitialising the printer {LPTI) of the system. The
printer status can then be checked for error conditions and to check whether it is
ready or not.

expected output:

The response to checking the printer status is via register AH:

AH bit 3 I/O error
4 selected
5 out of paper
6 acknowledge
7 ready

3/ INIT3R Initialise the program variables.

input specifications:

The start address of the following data buffers are put into the CPU index register
SI: one at a time, in turn, and used to clear the appropriate data buffer.

IDENTV
DATEBUF
BUFFER
EVENTB

The size of the data buffer is put into the CPU count register CX.
The value OOh is put into the 8-bit accumulator AL

description:

Four similar routines are used to store the value zero into each buffer area. This
is done to clear out any previous information that may be stored there.

expected output:

4/

IDENTV
DATEBUF
BUFFER
EVENTB

INIT4R

input specifications:

153

Initialise the VDU screen.

The following parameters are passed to the BIOS service routine (INT 1 Oh).

AH =
AL =

00
03

service to set the screen mode
text mode 3, 80 character, 25 lines

The address of the message to be displayed at the end of this initialisation
function is loaded into the SI register and passed to the DISPLAY routine.

SI = address of MSGMENU

description:

There are two tasks for this routine. The first is to ask BIOS to clear the screen,
the second is to call the DISPLAY routine to display a menu on the VDU screen.
The menu shows the options open to the user, and describes what the user has to
do to choose one of the options.

expected output:

The screen is cleared of previous information, then the message MSGMENU
appears on the VDU screen

154

5/ INPUT Upload TMD information from the serial port.

input specifications:

SI = address ofMSGINPUT

A stream of serial data is input from the serial port (COMI) using a BIOS service
routine. The BIOS service requires the following parameters to be passed to it
for the reciept of each character:

AH =

DX =

02

0000

service number, for the reciept of one
character
serial port nuber for COMI

Also, to prevent the system locking up (in the case of bad data, or no data) the
user can input any character via the keyboard. Hence, BIOS also requires (for its
INT 16H service routine):

AH = 01 service to detect a KBD keystroke.

ROW and COL variables are also used to input the positions on the screen for the
resultant messages.

description:

This routine is designed to input, from either the TMD or the DTD, a block of
serial data that has been sent in a particular format. The data is not validated on
receipt but certain control characters are checked:

*
@

=
=
=

the start of block marker
the end of data marker
the end of block marker

The user can input a KBD keystroke to end the search for serial input, if they
believe that something has gone wrong.

A successful transfer results in messages on the screen, showing the identification
of the TMD that gathered the information and the starting date of the test.

expected output:

IDENTV =
DATEBUF =
BUFFER =
EVENTB =

identification of the TMD
the starting date and time of the test
the items of data
the recorded event times

155

6/ DIR. Display a directory of fdes on the VDU screen

input specifications:

SI = address of MSGDIR

The BIOS routines (INT I Oh) uses the following parameters that are passed to
them:

AH = 02h service to move the cursor
AH = OEh service to write one character to the screen
DH = ROW position on the VDU screen
DL = COL II II

BX = 0000 display page

The DOS functions (INT 21h) require the following parameters to be passed to
them:

AH =
=
=

DX =
=

description:

I Ah function to establish a data transfer area (OTA)
4Eh function to find the first matching filename
4Fh function to find the next matching filename
OT A a data transfer area (OT A)
PATH the specified drive, path and filename

This routine asks the user to input, via the keyboard: a drive, path and filename.
Then 3 DOS functions are used to find all the matching filenames in the specified
directory. Each file in tum is placed into the OT A. A routine copies each
filename, in tum, and displays it on the VDU screen for viewing purposes.

expected output:

The VDU screen will display either:

(i) an error message
or

(ii) a table of filenames on the VDU screen.

Note, no information is stored in the computers data area of memory except:

PATH = drive, directory path and a filename

Note, DOS allows the ? and * wild-cards.

156

7/ RAW Routine to display the raw data from a TMD test

input specifications:

SI =

ROW =
COL =

IDENTV =
DATEBUF =
BUFFER =
EVENTB =

description:

address ofMSGRA W

position on the screen
II II

identification of the TMD
the starting date and time of the test
the items of data
the recorded event times

This routine allows the user to validate the information received from a TMD test
by viewing the data on the VDU screen. The T.MD identification, the starting
date of the test and the first240 bytes of the data from the test are displayed on
the screen. Then a message describing how to make the program return to the
main control routine is displayed on the screen.

expected output:

IDENTV =
DATEBUF =
BUFFER =

identification of the TMD,
the starting date and time of the test,
the first 240 items of data, in hexadecimal format,
15 rows of 16 data items.

8/ SAVE Routine to save the TMD information.

input specifications:

SI
DX
DI

AH

IDENTV
DATEBUF
BUFFER
EVENTB

=
=
=

=
=
=

=
=
=
=

address of MS GSA VE
address of the DT A
address of the PATH

I Ah DOS function for establishing a DT A
3Ch DOS function for creating a new file
40H DOS function for writing characters to a file

identification of the TMD
the starting date and time of the test
the items of data
the recorded event times

157

description:

This routine allows the user to save the information received from a TMD test
into a file on a secondmy storage device. It does this by clearing the VDU screen
and displaying MSGSA VE. Then asks the user to input a complete file
specification, including the name of the file where the test information is to be
stored. The TMD teot information is then transferred from the primary memory,
into the specified file in a secondary storage.

In case of a file transfer error, a message will be displayed on the VDU screen.

expected output:

The VDU screen is cleared, then the message MSGSA VE appears on it.

A new file will be created if the file specification is new.

The TMD test information is then transferred from the primary memory, into the
specified file.

In case of a file transfer error, a message will be displayed on the VDU screen.

9/ OLD Routine to load TMD test information from a specified file.

input specifications:

SI =

AL =
BX =
ex =
DX =

AH =
=
=

ROW
COL

DX =

address of MSGOLD

access rights, read only
handle of opened file
number of bytes to read from a file
address of PATH

3Dh DOS function to OPEN a file
3Eh DOS function to CLOSE a file
3Fh DOS function to READ from a file

position on the VDU screen
II

address of
II

II

II

II II

IDENDTV
DATEBUF
BUFFER
EVENTB

158

description:

This routine allows the user to load old TMD test information, from a file in a
secondary storage device, to the appropriate buffers that are accessable to the
DPS program. The program does this by creating a new screen with instructions
for the user. The user is asked to input a file specification, via the KBD into the
variable PATH.
This routine calls other routines:

• to get the TMD identification,
• to get the starting date of the text,
• to get the many items of data, and
• to get the times of the recorded events.

The TMD identification and starting time are displayed on the VDU screen to
infonn the user of a successful load. MSG3 is then displayed on the VDU screen
to inform the user how they can return to the main control routine
COMMANDR.

If an unsuccessful loading has been detected, then an error message is displayed.

expected output:

The VDU screen is cleared then MSGLOAD is displayed

Then either:
The data area buffers: IDENTV, DATEBUF, BUFFER and EVENTB are loaded
with information from the specified file.

The contents ofIDENTV and DATEBUF are displayed on the VDU screen.

or

In the case of a file transfer error, MSG4 is displayed on the VDU screen.

also

A message informing the user how they can return to the main control routine
COMMANDR will be displayed on the VDU screen.

159

10/ PLOT Routine to create a hardcopy/softcopy of the results
from a test.

input specifications:

SI =
=
=

IDENTV =
DATEBUF =
BUFFER =
EVENTB =

description:

address of
II

II

MSGPLOT
MSGVDU
MSGPRN

identification of the TMD
the starting date and time of the test
the items of data
the recorded event times

This routine allows the user the option of selecting either: a softcopy or a
hardcopy of the results from a TMD test. This routine firstly creates a new
screen MS GP LOT which informs the user of their options. The routine waits for
a keyboard response. Then the raw data from the memory buffers (BUFFER and
EVENTB) are displayed graphically on the VDU screen or onto a paper printout.

expected output:

This routine either:

(i) A graphical plot (one screenfull at a time) of the data from a TMD test.

or

(ii) A complete hardcopy printout of a plot (temperature versus time).

also

A message informing the user how they can return to the main control routine
COMMANDR will be displayed on the VDU screen.

11/ EXIT

input specifications:

SI =

AH =

description:

160

Routine enabling a return to DOS.

address of MSGEXIT

00 BIOS service number, for KBD software interrupt 16h

This routine displays the message: 11Do you really want to EXIT the program".
"Type in 'y' or 'n' "

In response to the question the program control is either: returned to the
program, or returned to the operating system (DOS).

expected output:

Either:

(i) a return to DOS,

or

(ii) a return to the COMMANDR module.

161

4.11 PROGRAM TESTING

Each part of the temperature monitoring system was tested separately, then the

complete system was tested as a whole. The order in which the sub-system's

programs were tested is as follows:

I. the temperature monitoring device (TMD),

2. the data transfer device (DTD) and

3. the data processing system (DPS).

4.11.1 TESTING THE TMD SUB-SYSTEM

A circuit board had to be designed and constructed before the TMD program

could be tested. This circuit board contained the following:

• a +SY and OV power supply,

• two l OK ohm potentiometers which represented the two analog
signals to be monitored (body temperature and battery voltage),

• three push button switches labelled: upldn, st and e1•
(upload/download, status and event),

• four LED circuits designed to sn.:-w the status of the device
(see figure 12) and

• a 60-way cable and connector enabling the circuit board to be
attached to the TMD evaluation board.

The TMD program was tested from top to bottom. The testing processes began

by examining the data flow diagrams, Jackson Structure Diagrams and the

maintenance and test information.

Firstly, the initialisation routines were tested to ensure that: all the data buffers

were available for use, all the program variables were initialised and all the

appropriate microcontroller subsystems were ready to be used.

162

Secondly, the higher-level control mechanisms of the TMD program were tested.

This enables control of the program to be transferred from the READY module

to either the SHOW or ST ART module. Hence, the system was ready to either

display the status of the TMD or start logging data. This control was activated

when either the status (st) or the upload (up/dn) pushbutton was pressed.

The mid-level control of the TMD was tested next. This also required the testing

of bush buttons and the display of status information. But most importantly, a

thorough testing of the ten-minute timeout, analog input and data storage

processes was completed.

Finally, the downloading of a set of results was tested. This was achieved by

reading the data from the IDENTS, DAT A and EVENTS buffers and ensuring

the information was output to the serial port of the microcontroller. An IBM PC

running a serial communications program was used to receive and display the

information.

The technique for testing the correct execution of the program modules and

routines was to press pushbuttons, ensure responces to timeouts and to stop

program execution at the inserted breakpoints. Then the appropriate flag bits,

status values and items of data were checked.

The complete TMD program controlling the hardware was then tested

thoroughly. The analog values going into the system were recorded on paper and

checked against the results sent out to the IBM PC system. The testing process

include implementing each of the predefined test cases and then checking for the

expected outputs.

163

4.11.2 TESTING THE DTD SUB-SYSTEM

Before testing of the DTD program could take place the following devices

had to be connected to the evaluation board:

• a four line by 20 character LCD module,

• a hexadecimal keypad circuit and

• an IBM PC with a serial communications program. (see figure 13)

Firstly, the initialisation programs had to be tested to ensure that the

microcontroller subsystems and the LCD module were programmed correctly and

that the buffers and variables were initialised. Note, the MAIN module of the

DTD program makes sure that i.he microcontroller is ready for action.

The second stage of the testmg checked that the high-level transfer of control

mechanism linked the COMMANDR module to the MENU I, MENU2 and

MENU3 modules. This involved the pressing of keys on the hexadecimal keypad

and tracing the paths to the appropriate program module. Execution struted from

the entry point of COMMANDR and was ended by one of the breakpoints which

were inserted at each entry point of the lower-level subroutines.

The third and most time consuming task was to write all the lowest-level

subroutines that performed most of the computational and output work. These

routines are called by all the mid-level modules that control the input and output

of information.

The next stage wa'> to test the nine mid-level modules individually. This involved

making sure that all the correct messages were displayed on the LCD module's

screen and that the correct information was input, stored, displayed and output.

164

Finally, the complete DTD sub-system was validated to ensure that al the

functions of the device worked as they were designed to do. This involved:

• time values being input and stored,

• the start of test information being downloaded to an awaiting IBM PC
system,

• a block of data being received (uploaded) from the IBM PC,

• data being viewed (a screen-full at a time) and

• a block of data being retransmitted (downnloaded) to another IBM
PC system.

When all the functions of the DTD had been tested thoroughly the sub-system

was deemed to be validated. Consequently, blocks of data, of a particular

format, could be input, viewed and output as the design of the DTD specified.

4.11.3 TESTING THE DPS SUB-SYSTEM

The data processing system (DPS) required a TMD, DTD and an IBM PC to be

connected by their serial ports before testing could begin. (see figure 11)

Note, a second IBM PC could just as easily act as a TMD or DTD for the

purpose of testing the DPS. N(Jte, the following tests took place:

The first task was to check all four OPS initialisation routines called by the MAIN

routine. Thus, the data buffers were cleared, variables initialised, the screen

mode set, a message displayed and the serial port parameters programmed into

the system.

165

The second stage of testing was to check the transfer of control mechanism in the

COMMANDR module. This involved the pressing of keys on the keyboard,

decisions being made and execution stopping where breakpoints had been placed

at the entry points of the mid-level modules.

Note, as MS DOS provides all input/output subroutine (BIOS) services and disk

operating system (DOS) functions, no general purpose low-level routines needed

to be written.

Then each mid-level module was tested separately in order to:

• input a block of data,

• view the raw data,

• look at a directory of files,

• save the raw data on a file,

• retrieve raw data (old results) from a file and

• plot the results graphically, either on a VDU screen or
on a hardcopy printout.

Finally, the complete DPS program was tested thoroughly and was found to work
as expected.

166

4.11.4 TESTING THE TEMPERATURE MONITORING SYSTEM

The TMD, DTD and the DPS were all connected together, by their serial ports, in

order to input data and to check that the correct transfers of data took place. The

following checks were made to confirm that the system would perform as

expected.

The time and date of starting the testing of the TMS was entered into the DTD.

Then the TMD program was given a start signal from the DTD.

Temperature values and event times were recorded by the TMD and manually on

paper. During the recording session the status of the TMD was displayed when

requested.

After a known amount of time, the TMD recording session was ended and the

stored information was transferred from the TMD to the DTD.

The data transfer device was made to display the raw data and event times to

check the performance of the trial. As expected the results on paper matched the

results shown on the DTD's liquid crystal display screen.

The next step was to transfer the stored information from the DTD to the DPS.

Finally, the raw data from the recording session was displayed on the DPS screen.

The data values and event times matched those that were recorded on paper.

Consequently, the testing session was deemed to be successful.

167

CHAPTER FIVE

5 CONCLUSIONS

5.1 Discussion

the problem
the need
the feasibility
the cost effectiveness

5.2. System Design

system description
temperature monitoring device
data transfer device
data processing system
analysis techniques
findings from library search
a JSP methodology
the software development environment

5.3. System Testing

inherent testability and maintainability
types of testing
sequence of testing

5.4 Suggestions for Further Considerations

introduction
fabricating miniature devices
power supply and battery use
similar devices
convenient body sites
need for networking devices
need for 32-bit devices

168

5 CONCLUSIONS

5.1. DISCUSSION

There was, and still is, a need for monitoring the effects of circadian rhythms in

humans. Lack of sleep, or sleep at the wrong time, affects work performance or even

causes absenteeism. Body temperature is known to be a method of determining when

the performance of our body is at a peak and when it is informing us that it is time to

sleep. A small portable temperature data logging device would be invaluable in this

field of research. This thesis is concerned with designing, implementing and testing

such a device. At the commencement of this Master's work, investigations indicated

that there was no suitable device commercially available.

The author found that a circuit can be designed around an integrated circuit

temperature sensor (LM 35) and a precision thermistor (YSI 44002) to provide

temperature readings within a resolution of 0.1 degrees Celsius. Either of these

circuits could provide a suitable analog input for a microcontroller-based device.

The axillary site was considered to be the best non-intrusive body site for measuring

body temperature.

Investigations demonstrated that microcontrollers provide a low-cost single-chip

solution to this problem. All the complexity of the hardware and hardware interfaces

are encapsulated within a single chip. Which means that a temperature data logger

can be made small enougl1 to be worn without interfering with normal body

movements.

169

Further investigations indicated that an 8-bit microcontroller would provide the

necessary resources for the data logger. So, an in-depth study of 8-bit

microcontrollers was made. Comparison of several 8-bit microcontroller devices

resulted in a report and the enclosed tables of specifications (table 1.1 and 1.2).

Analysis of the list of specifications (from six devices) shows the similarities and

differences that exist within 8-bit microcontrollers. As a consequence, the Motorola

MC68HC11 series ofmicrocontroller was found to be the most suitable device for

controlling the input of analog signals, storage of readings over a four week period

and serial output of the temperature values. It should be noted that Motorola

supports its microcontrollers with an environment, in the form of evaluation boards

and software, which is necessary to develop the device's control programs.

5.2. SYSTEM DESIGN

The temperature monitoring system {TMS) is a system that is designed to monitor a

person's body temperature, enable the recordings to be stored in the monitoring

device's memory, allow the recorded data to be transferred to a data processing

system and then allow the data to be processed and filed away permanently. The

TMS comprises of three, independently controlled, main parts; namely:

• a temperature monitoring device {TMD) worn by the person under test,

• a data transfer device

• a data processing system

(DTD) and

(DPS).

The TMD which needs a start signal and time of test information (from a DTD or a

DPS) was designed to record temperature readings, every ten minutes, for a period of

up to 4 weeks. This device is small enough to be worn throughout the period of time

the person is taking part in a test. That is, up to a period of four weeks.

170

If test conditions required a remote site then the small and inexpensive DTD could be

used to start the test and later upload the recorded information from the TM]). The

DTD itself, or a memory module containing the information, would be posted to the

researcher who would enter the data into a DPS.

The DPS enables the researcher to, first of aIL check the raw data and then store it in

a pennanent file. The researcher can analyse the results later with whatever software

he/she requires.

An important part of this work was to produce a system that was designed to

software engineering standards. Hence, a search for a suitable design methodology

was conducted.

Investigations revealed that there were three main streams of analysis techniques in

software engineering:

• structured analysis,

• object-oriented analysis and

• formal specification techniques.

Structured analysis, and in particular, a JSP methodology was found to be the most

suitable design methodology for microcontroller-based systems. It provided a highly

systematic approach to software design as, it requires a problem to be well defined, it

can be used for real-time systems, it is language independent and it creates a very

graphical hierarchical solution to a problem.

Designers need to be made aware that system usefulness only lasts while it satisfies

requirements and that user requirements rarely remain static. Hence, a system design

must have software that is portable, reusable, have maintainability and have

extendability. The design should allow for hardware or software to be taken ap~

171

modified and then reassembled. A JSP methodology can be used to produce

software with such properties and it also tries to ensure that untouched modules stay

in tact.

An extensive library search was made in order to find out which methodologies have

been used for microcontroller designs. The findings from the search infonned us

that:

• there was a lot of material on software design methodologies,

• there was a growing interest in microcontroller-based designs, but

• the majority of articles describing microcontroller designs gave very little

emphasis to a design methodology.

In fact no articles, or dissertations on CD-ROM, had any information relating to

"microcontrollers and Jackson structured programming (JSP) methodologies". The

author therefore adapted the JSP methodology to small system designs incorporating

microcontrollers and proposes this method as a suitable development platform for

microcontroller-based system design.

The JSP design methodology required detailed hardware specifications to be made.

Hence, the TMS which was defined to consist of three main components; namely, the

TMD, the DTD and the DPS, had to be analysed further. Each main part of the TMS

had its functions listed so that the required hardware components could be assessed.

The Motorola MC68HCI 1 microcontroller, that was selected because its internal

hardware could perform the necessary expected functions of each device, required a

thorough knowledge of its sub-systems down to the register level. The registers

being used by the control program software.

An IBM PC and peripherals was the only hardware necessary for the DPS.

172

A top-down approach was taken to produce the control programs. Firstly, the

control programs were described as a hierarchy of data flow diagrams (DFDs).

Then, in tum, each DFD was translated into a Jackson structure diagram (JSD). The

JSDs included the conditions that were required to move control from one module of

the program to another module and a list of functions that were needed to be

executed in order to perform tasks. Finally, the JSDs were transformed into assembly

language instructions.

The actual coding process included the same names, for subroutines and labels, as

those used by the DFDs and JSDs. This made sure that the software would be easy

to test and maintain.

An efficient software development environment was created so that programs could

be developed and debugged via an IBM PC system. The environment consisted of an

editor, assembler, linker, ubuilds and communication programs. The aforementioned

development software tools were called from a MS DOS batch file program which

was stored in the IBM PC's secondary storage.

173

5.3. SYSTEM TESTING

The JSP methodology used for this research project made sure that software would

have testability and maintainability inherent in the design. The steps of design

included:

• the functional requirements of each part of the system to be listed,

• the perform~~e cequirements of each part of the system to be listed,

• detailed descriptions of interfaces,

• data types to be defined and

• test cases showing data to be input and expected results.

The functional requirements and perfonnance requirements enabled black box testing

of the major components of the system and software design. The detailed description

of interfaces and data types enabled white box te~ting of individual processes to be

tested thoroughly.

Each major component of the TMS; namely, the TMD, the DTD and the DPS were

tested separately. Then the appropriate serial connections, between the major

components, were made and the system was tested as a whole.

174

5.4. SUGGESTIONS FOR FURTHER CONSIDERATIONS

The temperature monitoring system was designed and tested in order to meet the

original project proposal. It has been proved that a miniature data logging device

could be manufactured and a support system could be implemented to a commercial

standard. Future considerations include:

A future project could be to research into fabrication techniques that would enable a

miniature logging system to be manufactured at a low cost. This would involve more

time being spent on analysing the power requirements for such a device and how

often the batteries would need to be replaced.

It is obvious that there are many similar devices that could use parts of this design so

that other physiological parameters can be monitored, such as: blood pressure, heart

beat rates and e.c.g. values.

Once a device has been fabricated, then the medical profession would have to

research into the most suitable body sites where a device can be worn without

r.ausing any discomfort or inconvenience to the wearer.

It should be noted, that the author's responsibility was to provide the raw data. The

medical profession would have to decide how the logged data can best be presented

on a VDU screen and how information from a logging session should be arranged in

order to produce a hard copy of the results.

175

Whilst gaining valuable experience with 8-bit microcontroller devices I realised the

importance of these devices for future single-chip solutions to many of today's and

future problems. There is a need to know how these microcontroller devices can be

used in parallel, to form a bus system of devices or even a network of devices.

There ;s also an immediate need for engineers to be familiar with the latest 32-bit

microcontroller devices, as they have the power to process the logged data and

present it, in graphical form, to high resolution flat screen displays.

Finally, I believe that this project has solved the problem at hand but, in doing so, it

has opened up a whole new exciting area of design. I hope to continue in the

microcontroller applications design field and, in particular, research into the

networking of microcontroller devices.

Figures Used Throughout This Document

Number Title Page

1 Circadian Rhythms 180

2 Thennistor 180

3 Temperature Sensor Circuit Diagrams 181 - 182

4 MC68HC 11 Block Diagram 183

5 MC68HC1 I Memory Map 184

6 MC68HC 11 Environment 185

7 The Temperature Monitoring System Block Diagram 186

8 The TMD Block Diagram 187

9 The DTD Block Diagram 187

10 The DPS Block Diagram 188

11 The System Model Diagram 189

12 The TMD Circuit Diagram 190

13 The DTD Circuit Diagram 191

180

FIGURE 1. CIRCAD1A!li1 RHYTHMS DIAGRAM

3 7-5

TEMPERATURE
(OC)

36

• 0
•, ;,_

TIME
(hours)

FIGURE 2. THERMISTOR'S THERMAL Rf.SPONSE CHARACTERISTIC

RESISTANCE
(kJl)

R

TEMPERATURE
(degrees Cckius)

T

FIGURE 3.1. TEMPERATURE SENSOR CIRCUIT DIAGRAM

(Thermistor Sensor Circuits)

+SV +SV

Rt
RI

R4 Vrh R2
0/P

ZI Zl
R3

R5

R6 Vrl

GND

GND

Sensor Output Voltage Reference Voltage Output

FIGURE 3.2.

LM34

TEMPERATURE SENSOR CIRCUIT DIAGRAM
(IC Temperature Sensor Circuit)

+5V

SOKc/L 499 «A,

- G-ND
~-

0/P

FIGURE 3.3. TEMPERATURE SENSOR CIRCUIT DIAGRAM

(Thermistor Sensor Circuits)

+SV +SV

J. 7~,9

1 560 dL.
560 tA..

r-! YSI Vrh
44002 0/P 1.8K cA.

>-
ZN ZN
REF 1.6K cA.... 2.7KJL R l:-F 040

040 _t-!36K~ Vrl

GND

GND

Sensor Output Voltage Reference Voltage Outputs

FIGL"RE 4 THE '.\1C68HCI I BLOCK DIAGRAM

I I
Pulse ,t,cWll\jla,or I PAI

0:2
ROM • BK Bytes - CX:l

8 oc•
TIMER Locs

ICI

[I
Pe11ooc lnlerrupl lC2

EEPROM • 512 By1es ICl COP W~lc:hj()g

I RAM • 256 By1es

I
SPI sex

PET SCI

AID

PEO M6811 CPU

VAH

V FI.

RESE1

xiiio Interrupts
u:io

(Vppb.AJ .2 .,
l! "'

!i XIAl Oscillator
UJ :I fXTAt

~ ~, LIOOA

g? ~ (UH'J MODE - ...
"'"' Select I

upwod J
1.1000

>g p I -' ., 0 8 i~ "' ... IYsraY I
"' <

FIGURE .S

MEMORY MAP OF THE MC6811 SYSTEM

EXT

8600

DOOO I// I I
IIIIIIIIIIIIIIIIIII/IIIIIII
IIIIII//IIIIIIIIII/IIIIII/I
U Ill /I II /I II II II 111111/ Ill

FFCO-FFFF \\\\\\\\\\\\\\\\\\\\\\\\\\\

INTERNAL RAM (512 bytes)

1/0 REGISTERS (64 bytes)

INTERNAL E:E.PROM (512 byte:,)

I.NTERNAL ROM
EPROM
OTPROM

INTERRUPT VEC'fORS

I 85

FIGURE 6 MC68HC1 I DESIGN AND TEST ENVIRONMENT

SERIAL LINK

IBM PC

SYSTEM

MC68HC11
EVALUATION

BOARD

MC68BCJ 1 DEBUG
S0F1WARE

BUFFALO
MON1TOR
PROGRAM

PC SOFIW ARE DEVELOPMENT
TOOLS

PASM
LINK
UBUILDS
MSKERMIT

MC68HC1 l
fNTERFACE
PORTS

USER
TARGET
BOARD

DEVELOPER'S
ELECTRONIC
CIRCUITS

FIGURE 7. TEMPERATURE MONITORING SYSTEM
(Block Diagram)

1.
TEMPERATURE SENSOR

raw data -i
2.

TEMPERATURE
MONITORING

DEVICE

. "'
data- - start I ogging command

' ,
3.

DATA
TRANSFER

DEVICE

,_ data related to time

,,
4.

DATA
PROCESSING

SYSTEM

results-

'~
s.

PRINTER/PLOTTER

187

FIGl'RE 8 THE TE\1PERA T(RE \iONITORL~G DEVICE
(Block Diagram)

LIGHT EMITTING DIODES LITHIUM

PUSH
BUTIONS i~

FIGURE 9

BATIERIES

... I
-l, ',

SIGNAL
CONTROLLER ~ CONDITIONING ~

~

UNIT

"' t
'"

. ,
SERIAL STORAGE

INTERFACE FOR
DATA

I

DATA TRANSFER DEV1CE
(Block Diagram)

SERIAL
INTERFACE

...
LITHIUM

BATTERIES

I

TEMPERATURE
SENSOR

HEXADECIMAL ~
KEYPAD l-~ ... 1,;r4

CONTROLLER ,. UQUID CRYSTAL DISPLAY

.. I\ . ,
STORAGE
FOR THE

DATA

REAL-TIME
CLOCK

CHIP

IB8

FIGURE 10. THE DATA PROCESSING SYSTEM
(Block Diagram)

l ' TxD RxD

I SERIAL PORT I
VDU - -

IBM PC

~

DOT-MATRIX

PRINTER

I

HARD DISK

UNIT

FIGURE 11. THE SYSTEM MODEL DIAGRAM

TEMPERATURE
MONITORING

DEVICE

DATA

\
DATE

,.,- COMMANDS"'

DATA
TRANSFER

DEVICE

COMMANDS-

DATA

\
DATA

PROCESSING
SYSTEM

DATA

INFORMATION
(RESULTS)

A
DOT-MATRIX

PRINTER

FIGl"RE /J... TE\1PER.\ Tl"RE '10~1TORl~G DE•/JCE

-..sv. __

R.tD

,\

p

TEMPERA TUR[
SENSOR

O SIGNAL
R loG'lr----t CONDITIONING
T UNIT
E

\1C68HCI l

p

0
R
T
D

TxD

RESET

RESET

CIRCUIT J_

FIGl.RE 13. DATA TR.\~SFER DEVICE

.J
6 PORTA .,d

'
.I 5 ,-- -

p .,,
HEXADECIMAL ~

if 0 i .. .
' R KEYBOARD LIQUID .I - T -

MC68HC1 I
.,

E ~

CRYSTAL

p 7 ' DISPLAY - 0)
.I 5. p R. t/> (- <+< T
.I 0 B t~7RP. • EXTERNAL .

:1 = R -.I

' 't.~ T - MEMORY ~ ~

~SiM . r p

0 - ., 7 D R _'lo.

I. RESET T K)
C I~ I

J/' ., .
T1D RxD

~ "
RESET -

~ l

~
TMD or DPS -

CIRCUIT

-

Volume 2

APPENDICES

A TMD structure diagrams and program listing Al

B DTD structure diagrams and program listing 81

C OPS structure diagrams and program listing CJ

D The Software Development Environment Details DJ

E The 1-lardw·are Development Environment Details El

APP-END IX A

The Temperature Monitor Device

This section contains data flo,v diagrams, Jackson
structure diagrams and progran1 listing for the
temperature monitowing device.

A. I. data flo,v diagran1s,

A.2. Jackson structure diagra1ns and

A.3. program listing.

The Temperature Monitor Device

data flow diagrams

DFD LEVEL 0

SENSORS

TMD
PROGR.\M

LEDs

PUSH STORE
BUTIONS

PW '4 i8 %@

DFD LEVEL l

t
,J

.J

v 0
"' ,_<I

.J l
rr o

. 1-' \I
... cf

? \I --------~------, ~

MICRO­
-CONTROLLER

INTERFACES

f'

GW# §#§§MW SIM

PRIMARY MEMORY

(Y\1cRoCOr.J-fR..Ot-'-e:'2. IN

A ~"TA,-!"D ,e..,, S"iA..,-E..

DFD LEVEL 2

PORT
A

ADC
SUBSYSTEM

SERIAL
PORT

TIMER
SUBSYSTEM

DFD LEVEL 2

cl
w
tL
u.
')

<O

w
t -r
')

w
I"'
et:
~

Cl
fJ.
\LJ
..J

HHHH cJ

BUFFERS, FLAGS and VARIABLES

Ff ¥ HW+w&i %8W&W §§&?&WW ii

DFD LEVEL 2

LEDs

PUSH
BUITONS

FLAGS

¥¥¥&& &&I& Rh/WM

DFD LEVEL 3

FLAGS LEDs

Ck 4&% & i4¥&¥k §4

DFD LEVEL 3

SERIAL
PORT

ADC
SUBSYSTEM

PROCESSR

INPVTR

DAT A & EVENT BUFFRRS

LEDs

PUSH
BUTTONS

SERIAL
PORT

DFD LEVEL 4

TIMER
SUBSYSTEM

FLAGS & TIMER COllNTER

&i@ » t&& &Ii &@a

PUSH
BUTTONS

DFD LEVEL 4

INITF

SERIAL
PORT

BADUI

TIMER
SUBSYSTEM

BUFFERS, FLAGS and VARIABLES

DFD LEVEL 5

#MM@

l.!l
<l
j

\L

t .u
v')

RCA}::. :bA-TA ADC
~~--------1SUBSYSTEM
J ~Arre-eY V.

0
(.,,

TI -I
0

tJ
1;)
(t1

1>
-I
l> -

-\
(I)

3

FLAGS & DATA BlJFFER

DFD LEVEL 5

(A

Ii,) ~
~ -
\- A TJ

\+l
r

~ ~ D
7. 0 6'
\Jl r
"> I,)

Ul

FLAGS & E\'E~T Bl'FFf.R

PUSH
BUTTONS

DFD LEVEL 5

U\ ..,
<t
J

4

FLAGS

BM#§SW i ¥ &HMM!

LEDs

DFD LEVEL 5

tit
('
H

FLAGS

SERlAL
PORT

A.2.

The Temperature Monitor Device

Jackson structure diagrams

TMD PROGRAM STRUCTURE

INIT1

RESET
ROUTINE

INIT2

I
READY

Cl CZ
_S_H_O_'\,_;\'_o""I START O

I I
STATUSR CLEARF

1.2

I I
SECDELAY FCLEAR PROCESSR

3

I
RETURN

4, 5

CONDITIONS:

Cl.

C2.

FUNCTIONS:

1.
2.

3.

4.
5.

FUNCTIONS:

Selected when the · status' pushbutton has been pressed.

Selected when the · upload/download' push button has been pressed.

Clear the input capture flag bits.
Get back to ready state.

Clear the input capture flags.

Clear the input capture flags.
Branch to READY for another command.

INITl

I - 12

I. Arrange PORT A for 4 i/ps and for 4 o/ps
2. Initialise the input capture system so that it detects positive edge pulses.
3. Arrange PORTO for 8 i/ps.
4. Initialise the ADC Sub system.
5. Delay (100 uSec) to allow the ADC to initialise itself.

6. Set the latch, on the EVB board, to enable Receiver data (RxD) to appear at
PDO.

7. Set the SCI Sub system baud rate to 9600.
8. Set the SCI for 8 data bits.
9. Disable the SCI transmitter/ receiver circuits. Disable the SCI hardware

interrupts.
10. Disable TIMER interrupts to avoid output compare action.
11. Clear all the input capture flags.
12. Return to the RESET routine.

INIT2
ROUTINE

I

GGGG HHHH IID JJJJ SETPTRS

<: I Cl.. C3 Cl.f s~ 6, 1

~ *" ~ *
2 3 4

CONDITIONS:

Cl. Clear locations between DATA and BUFFERMAX.
C2. Clear locations between EVENTS and PTREMAX.
C3. Clear locations between DATE and DATEMAX.
C4. Clear locations between CLEAR and VARYMAX

FUNCTIONS:

I. Clear the data buffer

2. Clear the events buff er

3. Clear the date and time buffer.

4. Clear a11 the variables and flags that are used by the TMD program.

5. Initialise the data buffer pointer to the start of the buffer.

6. Initialise the events buffer pointer to the start of the buffer.

7. Return to the RESET routine.

STATUSR

SECDELAY

..

1-6 7 8,9

FUNCTIONS:

1. Clear all the LED output signals.
2. Test the MONITOR status flag.

IF set, the appropriate LED output bit of the signal has to be set.
3. Test the MEMFULL status flag.

IF set, the appropriate LED output bit of the signal has to be set.
4 Test the BATTERY condition status flag.

IF set, the appropriate LED output bit of the signal has to be set.
5. Test the TRANSFER of serial data status flag.
6. Output the system status to PORTA
7. SECDELA Y routine

(Wait for 3 seconds to allow LED system status infonnation to be viewed).
8. Clear all the LED output si!,rnals to save power
9. Return to the calling routine.

CONDITIONS:

I SECDELAY I
c,

C 1. Loop around redundant code for a 3 second period.

FUNCTION:

t. Cause a 3 second delay.

THE MAIN PROCESSING

I
READ

PROCESSR
ROUTINE

LOOP

INPUTR

cccc

4 5, 6

Cl
0

ANALOGR

CONDITIONS:

EVENTR

c~
0

1, 2

3

DDDD

7,8

0

STATliSR

OUTPtlTR

I
EEEE

9

FFFF

INIT2

Cl Loop aroundcode until the DNLOAD command has been detected.
C2. Selected because the READFLAG has been set.
C3. Selected hecause the EVENT flag has heen set.
C4. Selected because the DISPSTAT flag has been set.
C5. Selected because the DNLOAD ~ag has been set.

FUNCTIONS:

C £+
0

I. Set the MONITOR status flag to indicate that the system is logging data.
2. SYNC routine (Input start of test information from the serial port).

3. INPUTR routine Check the input capture flags for push button commands.

4. Check READFLAG. ff set, call the STATUSR routine.
5. Check the EVENT flag. If set, call the EVENTR routine.
6. Clear the EVENT flag.
7. Check the DISPST AT flag. If set, call the ST A TUSR routine.
8. Clear the DISPSTA T flag.
9. Check the DNLOAD flag. If set, clear the MONITOR flag,

call t~OUTPVT~

GETCHAR
ROUTINE

1, 2, 3

WAIT *- ea

4

I I I I
0 l2. 0 C3 0 c~ 0 C.5

HASH BADLO BADHI GOOD
~ ...

5

CONDITIONS:

6 7 8 - ,2.

Cl. Characters are accepted from the SCI untill an 'end of block marker' is
found(#).

C2. Selected when · end of block marker' is found.
C3. Selected when the data input from the SCI has a value less than 30h (not

BCD).
C4. Selected when the data input from the SCI has a value greater than 39h

(not BCD).
C5. Selected when BCD value: are found.

FUNCTIONS:

I. Fetch the next character from the SCI data register.
2. If the character is an ·asterisk' then reset the ONEMIN counter.
3. Load the index register with the address of the date and time buffer.

4. Wait for a SCI input.

5. Clear the TRANSFER flag.

6. Return to WAIT for another character.

7. Return to WAIT for another character.

8. Store character in DA TEBUF.
9. Increment the date buffer pointer.
10. If this character does not fill the data buffer, then return to WAIT.
11. If the data buff er was ful I and the character is not an · #' then, set al I the

status flags.
12. Return to the SYNC routine.

INPUTR
ROUTINE

I I I I
FTO FEVENT FSTATUS FDLOAD

l 2-6 7, 8 9, 10, 11

FUNCTIONS:

I. Check for a single TOF. If set, increment the TENMIN counter,
Is TENMIN counter"" ten minute value. If yes, then set the READ FLAG to

infonn the system that the next temperature reading is due.
Then reset the TENMJN counter register

2. Store the cleared TENMIN count valu~
3. Clear the TOF flag register
4. Test for an EVENT command
5 If an event is asked for then. wait Lr the push button\ ant1-bounn; to finnish.
6. Set the EVENT flag.

7. Test for a STATUS command
8. If a view of the system status is askeJ for, then set DISPSTAT flag to inform the

system.

9. Test for a DNLOAD command.
10. Set the DNLOAD flag to inform the system that it has to down load its recorded

data to the DTD.
11. Return to the calling program (PROCESSR).

ANALOG
ROUTINE

1-4

I C: I I C 2..
0 0

BUFFULL NOTFULL

5-9 10-16

CO'NDITIONS:

Cl. Selected if the data buffer is full.

C2. Selected if the data buffer is not full.

FUNCTIONS:

l. Set the ADC Sub system for a multi-channel single-scan operation.
1 Load the digitised temperature reading. Store it in TEMP I.
3. Load the digitised battery reading. Store it in Tl~MP2.
4 Check for a BUFFER full condition

5. Set the MEMFULL flag to inform the system that the data RUFFER 1s full
6. Check the battery voltage (TEMP2) for a low condition.
7. If low, set the BATTERY status flag
8. Clear the READFLAG status flag.
9. Return to the PROCESSR routine.

10. Store data in BUFFER and TEMP3
11. Increment BUFPTR.
12. Increment the number of temperature readings counter (AMOUNT).
13. Check the battery voltage (TEMP2) for a low condition.
14. If low, set the BA TIER Y status flag.
15. Clear the READFLAG status flag.
16. Return to the PROCESSR routine.

EVENTR
ROUTINE

1.2

I Cl I C 2..
0 0

NOROOM ROOM

3, 4 5-14

CONDITIONS:

Cl. Selected if EVENTB is full.
C2. Selected if EVENTS is not full.

FUNCTIONS:

I. Load the index register with EVENTPTR.
2. Check EVENTPTR for its maximum value

3. delay for the anti-hounce of the pushbutton.
4. Return to the PROCESSR routine:

5. Record the time the event happened (with respect to the start of the test
6. Check to see if the events buffer is full.
7. increment EVENTPTR
8. If not full. store the EVENTPTR value.
9. Delay for the anti-bounce of the pushbutton.
10. Return to the PROCESSR routine.

1 1. Else (EVENTB full) set the EVENTFUL flag.
12. Store the EVENtPtR value.
13. Delay for the anti-bounce of the pushbutton.
I 4. Return to the PROCESSR routine.

STATUSR

SECDELAY

1-6 7 ·. 8, 9

FUNCTIONS:

1. Clear all the LED output signals.
2. Test the MON lTOR status flag.

fF set, the appropriate LED ".>utput bit of the signal has to be set.
3. Test the MEMFULL status flag.

fF set, the appropriate LED output bit of the signal has to be set
4. Test the BATTERY condition status flag.

IF set, the appropriate LED output bit of the si!:,rnal has to be set.
5. Test the TRANSFER of serial data status flag
6. Output the system status to PORTA
7. SECDELA Y routine

(Wait for 3 seconds to allow LED system status rnformat1on to be viewed)
8. Clear all the LED output signals to save pov,;er
9. Return to the calling routine

SECDELA'\'

C. I

I
1

CONDITIONS:

C 1. Loop around redundant code for a 3 second period.

FUNCTION:

1. Cause a 3 second delay.

FUNCTIONS:

SYNC
ROUTINE

1 - 12

I. Set the TRANSFER status flag.

2. Reset the ONEMIN timeout counter

3. Clear the TOF flag register

4. Enable the SCI rcce1wr cm.:u11

5. Check for a serial input

6. If the SCI status reg1ster 1s set call G!·TCHAR routine

7. If the SCI status register is not set Check TOF flag

8

9.

10.

If TOF flag 1s set (1 t Clear I 01· tlag from the TFlg2 register.

(11) Increment the ONl·MIN counter.

! 11) ls ONEMIN · t1meout value·>

11. If a ONEMIN trmeout has ocurred then. set all the status flags to wam the
system
that a bad serial transfer has taken place

12. Return to the calling program.

OUTPUTR
ROUTINE

1 - 11

FUNCTIONS:

I. Set the data TRANSFER flag.

2. Enable the SCI transmitter.

3. Clear the input capture flags.

4. Output the · start of block marker' (*)

5 Output the device 1dent1ficat1on fHBl

6. Output the device 1dentificat1on (LBl

7. Output the date and time values

8. Output the data

9 Output the · end of data marker' (·p:)

10. Output the time of events values

11. Return to the PROCESSR routine.

A.3.

The Temperature Monitor Device

program listing

27

BTEXT
TMD.ASM (24 - 4 - 93)
The Temperature Monitoring Device (TMD) control program.

ETEXT

ORG $COOO

DATEBUF
BUFFER
EVENTS
BCDBUF

ORG $0000

RMB 14
RMB 16
RMB 16
RMB 6

: **** STORAGE BUFFERS ****

: ASCII date, time and end character
: DAT A buffer
; EVENTS buff er: 16-bit elapsed times
: day, month, year, hour, minutes and seconds

·** POINTERS, VARIABLES & FLAGS **

BUFFPTR FDB BUFFER : pointer used to store data
EVENTPTR FOB EVENTB . pointer used to store time of events

TEN!\1.IN FDB $0000 . I O minute counter value
ONEMIN FOB soooo 1 minute counter value

TEMPI FCB S<IO . tcmporarv storage for ADC purposes
TEMP2 FCB SOO
AMOUNT FDB soooo . number of data items stored

UPLOAD FCB SOO . command flags
DNLOAD FCB SOO
EVENT FCB SOO
DISPSTAT FCB SOO
MONITOR FCB $00 : status nags
MEMFULL FCB $00
BATTERY FCB SOO
TRANSFER FCB $00
EVENTFUL FCB $00
READFLAG FCB $00 : flag set every I O minutes: read data
TEMP3 FCB $00 ; coded temperature value
TEMP4 FCB $00 : spare byte

28

ORG $C600 ;**** FIXED PARAMETERS ****

IDENT

DATA
EVENTS
DATE
CLEAR

BUFFMAX
PTREMAX
DATEMAX
VARYMAX

BEGCODE
ENDCODE

TILIMIT
TIMEOUT

FDB $5A5A

FDB BUFFER
FDB EVENTB
FDB DATEBUF
FDB TENMIN

FDB BUFFER+16
FDB EVENTB+16
FOB DATEBUF"' 13
FOB TENMIN+20

FCB S2A
FCB S23

FDB SOIOO
FDB S0401:

ADCDELA Y FCB S7F

BATLOW FCB SEO

ORG $C700

LOOKUP RMB 256

~ device identification

; Start addresses of buffers used by
; the TMD control program.

: start address of variables and flags

: area
; end of buffer values

: start and end of block markers

. timcout \'alues. number of TOFs

. time f<.Jr ADC subsystem to \Varn,

. up

, lo\\ voltage \\'ammg value(S.O.T)

TMSK2
TFLG2
TCNT

OPTION
ADCTL
ADRJ
ADR2

29

* *** THE TIMER SUB SYSTEM REGISTERS ***

EQU $1024
EQU $1025
EQU $100E

* *** THE ADC SUB SYSTEM REGISTERS ***

EQU $1039
EQU $1030
EQU $1031
EQU $1032

* *** THE INPUT COMMAND/ OUTPUT STATUS REGISTERS ***

PACTL
TCTLI
TCTL2
TMSKI
TFLGI

BAUD
SCCRI
SCCR2
SCSR
SCOR

PORTA
PORTS
PORTC
PORTO
PORTE

DDRD

EQU SI026
EQU $1020
EQU $1021
EQU $1022
EQU $1023

* *** TI !E SCI SUB SYSTEM REGISTERS ***

EQU $1028
EQU SI02C
EQU $102D
EQU $102E
EQU $102F

* *** THE PARRr·\LEL PORT REGISTERS ***

EQU $1000
EQU $)004
EQU $1003
EQU $1008
EQU $100A

EQU $1009

ORG $C200

RESET NOP
JSR INITI
NOP
JSR IN1T2
NOP

READY LDAB TFLGI
BITB #$02
BEQ AAAA
NOP

SHOW JSR STA TUSR
NOP

CLEARF LDAA #$FF
STAA TFLGI
NOP
BRA READY
NOP

AAAA LDAB
BITB
BEQ
NOP

TFLGI
#SOI
BBBB

START JSR SECDLAY
NOP

FCLEAR LDAA trSFF
STAA TFLGI
NOP
JSR PROCESSR
NOP

RETURN LDAA #SFF
STAA TFI.Gl
NOP

8888 BRA READY

30

; **"'* ST ART OF TMD PROGARM ****

; cold starting place of program
; initialise microcontroller sub systems

: initialise pointers and variables

; check for show_ status command

: show_status of system routine

: clear input capture flags

: check for upload datc!time command

. push button anti-bounce solution

. ckar input captun.: nags

. data logging routine

. clear input capture flags

31

*0 ** INITIALISE MICROCONTROLLER SUB SYSTEMS *****

INITI NOP
LDAB #$80 ~ arrange PORTA for 4 i/ps, 4 o/ps
STAB PACTL
NOP
LDAB #$55 ; initialise input capture for +ve edges
STAB TCTL2
NOP
LDAB #$00 ; arrange PORTO for 8 i/ps
STAB DDRD
NOP
LDAB OPTION : initialise the ADC sub system
ANDB #$BF
ORAB #$80
STAB OPT.ON
NOP
CLRA . I 00 uSec delay

OLAY INCA
CMPA ADCDEL\ Y : ;:$71·
BNE OLAY
NOP
LDAB #SFF : set latch to enable RxD to PDO
STAB $4000
NOP
LDAB #$30 . 9600 baud rate
~ffAB BAUD
NOP
LDAB #$00
STAB SCCRl : set SCI for 8 data bits
NOP
LDAB SCCR2 : disable SCI transmitter. receiver
ANDB #$03 : and interrupts
STAB SCCR2
NOP
CLR TMSKl ; disable TIMER interrupts
CLR TCTLI ; to avoid OUTPUT COMP ARE action
LDAB #$FF
STAB TFLGI ; clear INPUT CAPTURE flag bits
NOP
RTS

32

***** INITIALISE SYSTEM POINTERS AND VARIABLES *****

INIT2 NOP
LDX DATA ; clear data buffer

GGGG CLR 00,X
INX
CPX BUFFMAX
BLS GGGG
NOP
LDX EVENTS : clear events buff er

HHHH CLR oo.x
INX
CPX PTREMAX
BLS HHHH
NOP
LOX DATE ; clear date and time buffer

1111 CLR 00,X
INX
CPX DATEMAX
BLS Ill!
NOP
LOX CLEAR . clear all the variables and llags

JJJJ CLR 00,X
INX
CPX VARYMAX
BLS .l.l.lJ
NOP
LOX #BUFFER . in1ualise po111tcrs to buffers
STX BUFFPTR
LOX #EVENTB
STX EVENTPTR
NOP
RTS

33

***** SHOW STATUS OF SYSTEM ROUTINE *****

STATUSR NOP
CLRA
TST MONITOR
BPL KKKK
ORAA #$10

KKKK NOP
TST MEMrULL
BPL LLLL
ORAA #$20

LLLL NOP
TST BATTERY
BPL MMMM
ORAA #$40

MMMM NOP
TST TRANSFER
BPL NNNN
ORAA #$80

NNNN NOP
STAA PORTA
NOP
JSR SECDLAY
NOP
CLRJ\
STAI\ PORTA
NOP
RTS

; test and set monitor status

; test and set buffer memory status

: test and set battery condition status

: test and set serial transfer status

. output the system status to PORT A

. output status for 3 seconds

. Llear status output bits at PORTA

: **** 3 SECOND DELAY ROUTINE ****

SECDLAY NOP
LDAA #$10

OUTLOOP LOX #$FFfF
INLOOP DEX

BNE INLOOP
DECA
BNE OUTLOOP
NOP
RTS

34

***** DATA LOGGING ROUTINE *****

PROCESSR NOP
JSR SYNCR
NOP
LDAA #$FF
ST AA MONITOR
NOP

LOOP JSR INPUTR
NOP

READ LDAB READFLAG
BPL CCCC
NOP
JSR ANALOGR
NOP

CCCC LDAB EVENT
BPL DODD
NOP
JSR EVENTR
NOP
LDAA #$00
STAA EVENT
NOP

DODD LDAB DISPSTAT
BPL EEEE
NOP
JSR STATUSR
NOP
LDAA ::SOO
STAA DISPSTAT
NOP

EEEE LDAB DNLOAD
BMI FFFF
NOP
BRA LOOP
NOP

FFFF LDAA #$00
STAA MONITOR
NOP
JSR OUTPUTR
NOP
JSR INIT2
NOP
RTS

~ upload date and time routine

: set monitoring data flag

: check for commands and 10 min timeout

: ready to read a new piece of data?

. has an e\'ent been signalled'?

. clear e, cnt marker flag

. has a shcm staus command been issued·>

. clear d1spla~ status Ila!!

. has a do\\ n load command been issued')

: clear monitoring data flag

35

***** UPLOAD DATE. TIME AND START INFORMATION *****

SYNCR
INITF

ENSCI

HHH

NOP
LDAA #$FF
ST AA TRANSFER
NOP
LDX #$0000
STX ONEMIN
LDAA #$FF
STAA TFLG2
NOP
LDAB #$04
STAB SCCR2
NOP
LDAB SCSR
ANDB #$20
BNE GETCI-IAR
TST TFLG2
BPL HHH
LDAJ\ #$FF
STAA TFLG2
LOY ONEMIN
INY
STY ONEMIN
CPY TIMEOUT
BLS lfl-lH

SETFLAGS LOJ\A t:SFF
STAA MONITC)R
STAA MEMFULI.
STAA BATTERY
STAA TRANSFER
NOP
RTS

GETCHAR NOP
LDAB SCOR
CMPB #$2A
BNE HHH
NOP
LDY
STY
LDX
NOP

#$0000
ONEMIN
#DATEBUF

; set transferring date/time flag

: reset I minute timeout counter

; clear TOF flag register

: enable SCI receiver

: wait for a serial input

_ has a TOF occurred

_ clear TOF from TIMER flag register
. increment timcout counter

. lu~ a timcout occurred

. :-cl all OU IPlJ"I COMPARL llag bits

: receive first character
: is it the start of block marker · *'

; reset I minute timeout counter

: address of date and time buffer

WAIT LDAB SCSR
ANDB #$20
BEQ WAIT
NOP
LDAA SCOR
CMPA #$23

HASH BEQ BACK
CMPA #$30

BADLO BL T WAIT
CMPA #$39

BADHI BHI WAIT
NOP

GOOD ST AA 00,X
TNX
CPX DATEMAX
BLT WAfT
NOP
JMP SETFLAGS

BACK NOP
LDAA fi$00
STAA TRANSFER
NOP
RTS

36

; end of block marker · #'

; ASCII BCD .;racter . O'

; ASC J I BCD character . l'

: no end of bk)ck marker

· clear transferring dateitime flag

37

~**** CHECK P.B. COMMANDS AND l () MINUTE TIMEOUT *****

INPUTR NOP
FTO TST

BPL
LOX
INX

TFLG2
NOTIME
TENMIN

CPX TILIMIT
BLT FEVENT
LDAA #$FF
ST AA READFLAG
LOX #$0000

FEVENT STX TENMIN
LDAB #$80
STAB TFLG2

NOTIME NOP
LDAB
81TB
BEQ
NOP

TFLGI
#$04
FSTATUS

JSR SECDLA Y
NOP
LDAA 1:SFF
STAA EVENT
STAA TFLGI

FSTATUS NOP
LDAB
BITB
BEQ
LDAA
STAI\

TFLCil
:;S02
FfJLOAD
#$FF
DISPSTAT

STAA TFLGI
FDI.OAD NOP

LDAB TFLGI
BITB #$01
BEQ WWWW
LDAA #$FF
STAA DNLOAD
STAA TFLGJ

WWWW NOP
RTS

~ check for a timer overflow (TOF)

: set time to read a temperature flag

: reset I O minute counter

: clear TOF flag

. test for an event command

. push hutton ant 1 ~bounce solution

. ~et the appropriate flag

. test for a stall!~ command

. sd the appropriate flag

. test for an down load command

. set the appropriate flag

38

***** READ NEXT PIECE OF DAT A FROM THE ADC *****

ANALOGR NOP
LDAA #$10
STAA ADCTL
NOP

0000 TST ADCTL
BPL 0000
LDAA ADRI
LDAB ADR2
STAB TEMP2

pppp

LDY #LOOKUP
STAA TEMP!

BTEXT

BEQ QQ()Q
INY
DECA
BRA PPPP
NOP

QQQQ LDAA 00.Y

FTEXT

LDX
CPX
BNE

BUFFP I R
BUFFM/\X
NOTFL:11.

BUFFUU. LDAA ::SI· F
STAA MErvtFl :1.1.
BRA tv11SSOlJT

NOTFUI .I.. STAA 00.X
STAA TEMP3
fNX
STX BUFFPTR
NOP
LOX AMOUNT
INX
STX AMOUNT
NOP

MISSOUT CMPB BA TLOW
SHI BATOK
LDAA #$FF
ST AA BATTERY
NOP

BA TOK CLR READFLAG
NOP
RTS

~ select multi-channel single scan
; ADR1 -ADR4

; digitised temperaiure reading
; digitised battery voltage
; current battery voltage reading

. current temperature reading

. IX rl.!g1stcr 1s used as a po111tcr

. into the I.OOK U l' tahle

. I', hutfcr lull

,et buffer full tla~ ! i\tl·MH ff .I J

. store coded \alue in data buffer

. store coded \aluc in TLMP3

. pointer to next buffer location

. number of temperature readings counter

; is battery voltage alright

; set battery status low flag

;job done

39

***** RECORD TIME OF EVENT *****

EVENTR
LDX
CPX
BHS
NOP

NOP
EVENTPTR
PTREMAX
NOROOM

ROOM LDAA A.MOUNT
AMOUNT+!
00,X

ssss

LDAB
STAA
INX
STAB 00,X
INX
CPX PTREMAX
BNE SSSS
NOP
LDAA #$FF
STAA EVENTFUL
NOP
STX EYENTPTR

NO ROOM NOP
JSR SECDLJ\ Y
NOP
RTS

; pointer used to record event times

; is events buffer full

; high byte
; low byte

: is events buffer full

: set events buffer full flag (EVENTFUL)

. push bullon anti-bounce solution

40

***** DOWN LOAD DATA TO SERIAL PORT *****

OUTPUTR NOP
LDAA #$FF
STAA TRANSFER
NOP
LDAB #$08
STAB SCCR2
NOP
LDAA #$FF
STAA TFLGl
NOP

AAA LDAB SCSR
ANDB #$80
BEQ AAA
LDAA #$2A
STAA SCOR
NOP

BBB LDAB SCSR
ANDB #$80
BEQ BBB
LDAA !DENT
STAA SCDR
NOP

CCC

ODO

LDAB SCSR
ANDB :tS80
BEQ CCC
LDAA IDFNT · I
STAA SCDR
NOP
LDX t±DATEBUF
LDAB SCSR
ANDB #$80
BEQ ODD
LDAA 00,X
STAA SCOR
INX
CPX DATEMAX
BLS DOD
NOP
I .OX #BUFFER

; set transferring data flag

; enable transmitter

; clear INPUT CAPTURE flag register

: ready to output

: output start of block marker

, ready to output

. output de\·tce 1<kntificat1on: high hytc

. output device 1dent1ficat1on: high hyte

. output date and time

. ready to output

: next byte

: last byte')

: output data

EEE

FFF

GGG

END

LDAB SCSR
ANDB #$80
BEQ EEE
LDAA 00,X
STAA SCOR
INX
CPX BUFFMAX
BLS EEE
NOP
LOX #EVENTB
LOAB SCSR
ANOS #$80
BEQ FFF
LOAA 00,X
STAA SCOR
INX
CPX PTREMAX

41

; tl?-ady to output

~ next byte

; last byte?

; output events buff er contents
; ready to output

: next byte

BLS FFF
NOP

: last byte')

LDAB SCSR
ANDB #S80
BEQ GGG
LDAA #$23
STAA SCDR
NOP
LDAA #SOO
STAA TRANSFER
NOP
RTS

, end of hlock marker

. clear transfi.!mng data flag

APPENDIX B

The Data Transfer Device

This section contains data flow diagrams, Jackson
structure diagrams and program listing for the data
transfer device.

B. I. data flow diagrams,

B.2. Jackson structure diagran1s and

B.3. program listing.

B.l.

The Data Transfer Device

data flow diagrams

DFD LEVEL 0

SERIAL PORT LCD MODULE TIMER
SUBSYSTEM

PRIMARY
MEMORY

HEX KEYPAD

DFD LEVEL 1

H
v
tl}

ll.J
Ill
J
<t
~ -2 -

SERIAL
PORT

lu
Ill
J
(!

t" -
' -

LCD
MODULE

TlMER
SUBSYSTEM

COUNTERS
BUFFERS

VARIABLES

-2.
i)

4
~

~
(

0
J.
0 - .
fl
L'

HEX
KEYPAD

DFD LEVEL 1

LCD
MODULE

HEX
KEYPAD

DFD LEVEL3

COUNTERS
BUFFERS

VARIABLES

HEX
KEYPAD

TIMER
SUBSYSTEM

DFD LEVEL 3

HEX
KEYPAD

LCD
MODULE

C.HO\CE=>

LCD
MODULE

3 4 2 0
C

DFD LEVEL 3

HEX
KEYPAD

TEMPERATURE
MONITORING

DEVICE

SERIAL
PORT

l:> 1SP1...A LCD
MODULE

DFD LEVEL 3

HEX
KEYPAD

Iii
r
~

~ ~ <:t tJ)

DTD HCll
SYSTf\11

'l ') \'-1
'2 w.~ (
r ! \-'

TIME
DATE

BUFFER

((\ OU E l..O R. S o,:2.. To -n ... C..

cl. ~
~

:.J
:::i

~ u

DATA
BUFFER

LCD
MODULE

3 it}
:s>](

l_ =i
3
~ ~
C

DFD LEVEL 4

LCD
MODULE

current TIME and DATE

WA,-,- FoQ..

\,'C. ~a \ NP,.,,.

DFD LEVEL 4

LCD
MODULE

IDENT, TIME & DATE
no. of DAT A, no. of EVENTS

• 4 * ••' -~*. r

DFD LEVEL 4

LCD
MODULE DATA BUFFER

DFD LEVEL 4

LCD
MODULE

TMD HCll
SYSTEM

STARTR

DISPM21

SERIAL
PORT

DFD LEVEL 4

LCD
MODULE

TMD HCtl
SYSTEM

UPLOADR

D1SPM22

SERIAL
PORT

DATAIN

DFD LEVEL 4

TLC

LCD
MODULE

IBM PC
SYSTEM

D1SPM23

SERIAL
P<;RT

DATAOllT

DFD LEVEL 4

DTD HC11
SYSTEM

RESETR

LCD
MODllLE

RESET

DISPM31

HEX
KEYPAD

INPUTR

CHOICE

MENUiR

DFD LEVEL 4

DATER

LCD
MODULE

KBDTIME

D1SPM32

TIME and DATE buffer

BEX
KEYPAD

INPUTR

DFD LEVEL 4

CLEARK

LCD
MODULE

DISPMJJ

DATA buffer

HEX
KEYPAD

INPUTR

CHOICE

MENU3R

B.2.

The Data Transfer Device

Jackson structure diagrams

DTD PROGRAM STRUCTURE

MAIN
ROUTINE

I
I

lNITlR lNIT2R INIT3R INIT4R DISPLAYR COMMANDR
(MENU)

INITlR

I. 2. 3. 4

FUNCTIONS:

I. Enable receive data signal (RxD) to bi.! latched to pm PDO.
2. Set baud rate of SCI subsvstem to 9600
3. Set SCI subsystem for 8 data bits.
4. Disable SCI transmitter and SCI receiver

INIT3R

1, 2

FUNCTIONS:

I. Clear all input capture flags.
2. Program input capture interface to detect positive edges.

IN1T2R

I I
DELAY LOOP BACK

I Cl c. 2... I c. 3
-#= *" "*

2, 3, 4, 1 6, 7, 8, I

FUNCTIONS:

1. Loop around redundant code 36 times to cause a 40 uScc. delay.

2. Fetch next 8-bit command
3. Fetch time value for delay routme.
4. OUTPUT subroutine (Output an 8-bit LCD command)
5. Delay to allow LCD module to process the command.

6. Fetch next 4-bit command
7. Fetch time value for delay routine.
8. OUTPUT2 subroutine (Output a 4-bit LCD command).
9. Delay lo allow LCD module lo process t'.1e command.

CONDITIONS:

C I. Loop untill parameter passed to DELAY routine, to cause a 16 mSec
delay, is decremented to zero.

C2. Repeat untill four 8-bit commands sent to LCD module.

C3. Repeat untill four 4-bit commands sent to LCD module.

INIT4R

I {. L l~ I (.. 3
CLI * CL2 * CL3 *

1 2 3

FUNCTIONS:

1. Clear counter values.

2. Store space characters m HEXBUF

3. Clear date, data and events buffers

CONDITIONS:

C 1. Locations cleared unllll (HEXBUF - DATA I cleared

C2 Store space characters until! 4 locat1ons filled

C3. Locations cleared untill (TIME - DATEBUF) cleared

INPUTR

I I I
CFLAGS WAIT DLAY2 OUT2

C I
1 "* 3, 4 5

2

FUNCTIONS:

I. Clear input capture flags

2. receive an input caputre s1gnat

3. Read KBD input value
4. Store KBD input value at DATA

5. Clear input capture flag.

CONDITIONS:

C 1. Loop unti 11 the input capture flag (IC I) has been sec by a key press.

CONVERT

1, 2, 3, 4, 5

FUNCTIONS:

I. Fetch KBD character from DAT A.
2. Distinguish between characters O - 9 and A - F.
3. Add the value 7 to the KBD character if A - F.
4. Convert KBD character to an ASCII ch:.racter.
5. Store ASCII character in HEXBUF.

TLC

6, 7, 8

FUNCTIONS:

6. Load the screen address for the top left hand comer.
7. OUTPUT2 subroutine (Output a ne\v screen address command).
8. Delay to allow LCD module to process command

CURSOR

9, 10, 11

FUNCTIONS:

9. Parameter for new screen address passed via accA, and stored in
TEMPI.

I 0. OUTPUT2 subroutine (Output a new cursor position command).
11. Delay to allow LCD module to process command.

DISPLAYR

1, 2, 3

FUNCTIONS:

1. Fetch the next ASCII character
2. SCREEN subroutine (Send character to LCD screen).
3. Delay (40 uSec) for LCD module to process character

CONDITIONS:

C I Loop unt11\ last charactt'r (SI di.:tt:ctcd

SHO\\"

4. 5, 6. 7, 8, 9

FUNCTIONS:

4. Load the fixed screen address mll1 a LCD command
5. Output new screen address command to the LCD module.
6. Delay (40 uSec.) for LCD module to 1rocess character
7 Fetch the last character input from KBD.
8 Send the character to the LCD screen
9 Delay (40 uScc.) for LCD module to process character.

FUNCTIONS:

WRITE
ROUTINE

1, 2, 3

1. Character to be displayed passed as a parameter via accA, and stored in
TEMPI.

2. Send character to LCD screen.
3. Delay to allow LCD module to process character.

FUNCTIONS:

I.
1

3.
4.
5.
6.

\VRITEHEX

I. 2. 3, 4. 5, 6

Value to be displayed passed via ace!\, and stored m TEMP2.
Convert upper 4-bits of value to be displayed to an
ASCIIcharacter
Write character to screen.
Extract lower 4-bits of parameter
Convert to an ASCII character
Write character to screen.

-,-,

-'-'

INPUTR

1

I c.. l

MENUIR
0

FUNCTIONS:

COMMANDR
ROUTINE

(_l_

MENU2R o

CHOICE

I (. 3
MENU3R o

I. INPUTR subroutine I Input the menu choice)

I
EXIT

2

2. The exit to mam routine detected (NB. for test purposes only)

CONDITIONS:

C I. Key number · I' pressed on the hexadecimal keypad.

C2. Key number · 2' pressed on the hexadecimal keypad.

C3. Key number · 3' pressed on the hexadecimal keypad.

C4. Key number · E' pressed on the hexadecimal keypad.

C..4
C

I

MENUlR
ROUTINE

I I I I
TLC I I DISPLAYR I I INPUTR I CHOICEl

1 2 3

Cl C 2- c. 3 c.
TIMERR O STATUSR o DATERRo EXITl 0

4, 5, 6

FUNCTIONS:

I. TLC subroutine (Move cursor to TLC of screen)
2. DISPLA YR subroutine (Display MEMU I on LCD screen)
3. TNPUTR subroutine (Input choice of information to be displayed, or choose

to exit)

4. TLC subroutine (Move cursor to TLC of screen).
5. DISPLA YR subroutine (Display MEMlJ on LCD screen)
6. Return to COMMANDR routine.

CONDITIONS:

C 1. Key number · 1' pressed on the hexadecimal keypad.

C2. Key number · 2' pressed on the hexadecimal keypad.

C3. Key number · 3' pressed on the hexadecimal keypad.

C4. Key number · E' pressed on the hexadecimal keypad.

I

MENU2R
ROUTINE

I I I I
TLC I I DISPLAYR I I INPUTR I CH0ICE2

1 2 3

Cl C 2- C3 G

UPLOADR
0

STARTR 0 DNLOADRo 0 EXIT2

4, 5, 6

FUNCTIONS:

I. TLC subroutine (Move cursor to TLC of screen).
2. DISPLA YR subroutine (Display MFMU 1 on LCD screen)
3. INPUTR subroutine (Input choice of mformat1on h.1 be displayed. or choose

to exit).

4. TLC subroutine (Move cursor to TLC of screen)
5. DISPLAYR subroutine (Display MEMll on LCD screen)
6. Return to COMMANDR routine

CONDITIONS:

C I. Key number · I' pressed on the hexadecimal keypad.

C2. Key number · 2' pressed on the hexadecimal keypad.

C3. Key number · 3' pressed on the hexadecimal keypad.

C4. Key number · E' pressed on the hexadecimal keypad.

I

MENU3R
ROUTINE

I I I I
TLC I I DISPLAYR I I INPUTR I CB0ICE3

1 2 3

Cl C2.. C3 C '+
0 RESETR o DATER 0 0 CLEARK EXITJ

4. 5, 6

FUNCTIONS:

l. TLC subroutine (Move cursor to TLC of screen)
' DISPLA YR subroutine (Display MEMU I on I.CD screen)
3. INPUTR subroutine (Input choice of information to be displayed, or choose

to exit).

4. TLC subroutine (Move cursor to TLC 01 screen)
5. DISPLA YR subroutine (Display MEMU on LCD screen)
6 Return to COMMANDR routine.

CONDITIONS:

C 1. Key number · I' pressed on the hexadecimal keypad.

C2. Key number · 2' pressed on the hexadecimal keypad.

C3. Key number · 3' pressed on the hexadecimal keypad.

C4. Key number · E' pressed on the hexadecimal keypad.

I
TLC I

1

FUNCTIONS:

I.
2.
-. ., '

4.
5.
6.
7.
8

9.
10.
I 1.
12.
13.

14.
15.
16.

TIMERR

I I I
I DISPLAYR I I CURSOR I SEEALLl

2 3

TIMES DATES EXITT

4. s. 6. 7, 8 9.I0.11,12.13 14. 15, 16

TLC subroutine (Move cursor to the TLC of the screen).
DISPLA YR. subroutine (Display MSG I_ I on LCD screen).
CURSOR subroutine (Move cursor to a nev,: position).

Display day.
space.
Display month.
space.
Display year

Display hours.
space.
Display minutes.
space.
Display seconds.

Input character from KBD.
Check for exit key.
Return to MENU 1.

STATUSR
ROUTINE

I
I I

TLC DISPLAYR SEEALL2

1 2

I
IDENTS WHEN NODS NOES DL [::]

3, 4, 5, 6, 7 8, 9, 10 1 1, 12, 13 14, 15, 16 17

FUNCTIONS:

I. TLC subroutine (Move cursor to TLC of screen)
' DISPLA YR subroutine (Display MSG 1-2 on LCD screen)

3. CURSOR subroutine (Move cursor lo a ne\v position)
-l. Get first byte of !DENT
5. WRITE subroutine (Display byte)
6. Get second byte of !DENT
7. WRITE subroutine (Display b~1e).

8. CURSOR subroutine (Move cursor to a nc\\' position)
9. Get date infonnation.
I 0. WRITE subroutine (Display date).

I 1. CURSOR subroutine (Move cursor to a new position).
12. Get the number of data items
13. WRITE subroutine (Display the number of data items).

14. Move cursor to a new position.
15. Get the number of events recorded.
16. WRITE subroutine (Display the number of events recorded).

17. Delay time to view status infonnation.

I

CURSOR

1

FUNCTIONS:

I
VIEWLINE

2

DUMP

I
CURSOR

3

I. CURSOR subroutine (Move cursor to a new position).
2. VIEWLINE subroutine (Viewline of data).
3. CURSOR subroutine (Move cursor to a new position.
4. VIEWLINE subroutine (Yiewline of data).

VIE\VLINE

Cl

1. 2, 3

CONDITIONS:

C I. Display 5 bytes of data per line.

FUNCTIONS:

I. Fetch next byte of data.

I
VIEWLINE

4

2. WRITEHEX subroutine (Write two hexadecimal characters).
3. WRITE subroutine (Write a space character).

STARTR

I
CURSOR DISPLAYR

C T '- c.)

1 2 3, 4, 5, 6, 7, 8

FUNCTIONS:

I. CURSOR subroutine \ Move cursor to the TLC of the screen).

2. DISPLA YR subroutine (Display MSG2 I on the LCD screen).

3. Enable SCI transmitter.
4. Output a start of block marker(*).
5. Output a start of of test date and time
6. Output the end of block marker(#).
7 Delay to indicate routine has been entered.
8. Return to MENU2 routine.

UPLOAD

I I
TLC DISPLAYR

1 2 3- 18

FUNCTIONS:

I. Move cursor to TLC of the LCD screen
2. Display MSG2_2 on the LCD screen

3. Clear counter values ready for us1:
4. Enable SCI receiver.
5. Wait and detect start of block marker (*)

6. Position cursor.
7. Input IDENT from serial port.
8. Write !DENT to LCD screen.
9. Input IDENT.-1 from serial port.
I O Write lDENT+ I to LCD screen.
I 1. Position cursor.
12. Input date from serial port.
13. Write date to LCD screen.
14. lnput and store data
15. Detect end of data marker(@)
16. Input and store events.
17. Detect end of block marker (#)
18. Delay for testing program.
19. Return to MENU2 routine.

DNLOAD

I I
TLC DISPLAYR

1 2 3- 19

FUNCTIONS:

I. TLC subroutine (Move cursor to the TLC of the screen)

2. DISPLA YR subroutine (Display MS(12 3 on the LCD screen)

3. Enable the SCI transrrntter.
4. Output a start of block marker (*)

5. Move the cursor to a new position
6. Output IDENT to the serial port
7 Write lDENT to the LCD screen.
8. Move the cursor to a new position.
9. Output I DENT+ I to the serial port.
I 0. Write IDENT + 1 to the LCD screen.
11. Move the cursor to a new position.
12. Output the date and time to the serial port.
13. Write the date and time to the LCD screen.
14. Output the stored data to the serial port.
15. Output an end of data marker(@).
16. Output the recorded event times.
17. Output an end of block marker(#).
18. Delay to indicate that this routine has been entered.
19. Return to the MENU2 routine.

BLANK
ROUTINE

TLC I DISPLAYR I
1 2 3-

FUNCTIONS:

l. TLC subroutine (Move cursor to the TLC of the LCD screen)

2 DISPLA YR rout me l Display a blank ~;.;recn (HI .ANK))

3 Delay used to ackno\vledg~ a respt1ns~ to a ke~· prcs~

RESETR

TLC DISPLAYR INPUTR

1 2 3

C: l (" ~

YESJ 0 'W)l 0

4,5,6

CONDITIONS:

Cl

C2

1-TNCTIONS:

rhc number h..:\ mu.;t he pn:~s.:d

l"ht~ numhl'r ' ~ ... , mw,t he pressed

TLC subroutine (Move the cursor to the TLC of the LCD screen).

1 DISPLA YR routmc (Display MSG3 I on the LCD screen).

3 INPUTR subroutine (Input a response to the ·yes' 1 ·no' message).

4 Blank the LCD screen for a couple of seconds.
5 Load the SP with the original · top of the stack' value.
6. Jump to the MAIN routine to reset the DTD system.

7. Return to the MENU2 routine.

I TLC

1

Cl

KBDTIMEO

Cl

NEXTCHAR

3 -9

CO~DITIONS:

DATER

DISPLAYR

2

C 1. 6 decimal digits nt:ed to be cntt:rcd

FUNCTIONS:

I CUfHoR I

C 2... -------KBDDATE o

('2

~EXTCH

10- 17

C~ 6 decimal digits need to be entered.

Move the cursor to the TLC of the LCD screen.
2. Display MSG3 _ 2 on the LCD screen.

J Input next character. 10. Input next character.
4. Accept only BCD values 11. Accept only BCD values.
5. Convert to ASCII character. 12. Convert to ASCII character.
6. Store character at TEMP I. 13. Store character at TEMP 1.
7. Write to LCD screen. 14. Write to LCD screen.
8. Check for second character. 15. Check for second character.

If yes write a space to LCD. If yes write a space to LCD.
9. Check for fourth character. 16. Check for fourth character.

If yes write a space to LCD. If yes write a space to LCD.
17. Wait for an 'E' key-press.

CLEARR

TLC DISPLAYR INPUTR

l 2 3

I C. I I C

0 N02 0

YES2

CONDITIONS:

C I. Key number 1' needs Lo be rrcsscd

C2. Kcv number · ')' needs Lo be pressed

FUNCTIONS:

I.
'j

..,

.) .

TLC subroutine (Move the rnrsor to the TLC of the LCD screen)
DISPL/\ YR routine (Display MSG3 ~ on the LCD screen)
INPUTR subroutine (Input next character) .

4.
5.
6.

7.

Clear the LCD screen.
Clear all buffers and counters.
Return to MENU3R routine.

Return to MENU3R routine.

B.3.

The Data Transfer Device

program listing

40

BTEXT

DTDPROG.ASM (20 - 6 - 1993)

The LCD interface uses bits 4, 5 & 6 of port
'A' for control purposes and bits 2, 3, 4 & 5
of port · D'for the transfer of data.

Note, Port · A' bits 4, 5 & 6 used
for LCD controls . R/W', RS & . E'.
Port 'D' bits 2, 3, 4 & 5 are used
for the four LCD data bits.

The hex keypad interface is initialised, the
input capture flags are cleared ready to accept
a data available signal from the keyboard.

Note, Port · A' bit 3 (IC I) is used
as the KBD data available input
Port · E' bits 4, 5. 6 and 7 are
for the KBD data input lines

ETEXT

**** STORAGE OF TMD INH)RMATI< >N ***

ORG scono

DATEBUF
BCDBUf
BUFFER
EVENTB

!DENT

FCC
RMB
RMB
RMB

FOB

6

1000

256

$0000

" . :\SCI I date and tune buffer
. DATF aCD buffer
. DATA buffer
. FVFNTS buffer ume dapsed values

. storage for TMD identification

*** PARAMETERS USED TO INITIALISE LCD MODUI .E ****

TIME FCB $30
FCB $10
FCB $01
FCB $01
FCB SOI
FCB $10
FCB $30
FCB $01

; delay times used during
; initialisation

41

INSTRUCT
FCB $30
FCB $30
FCB $30
FCB $28
FCB $28
FCB $08
FCB $01
FCB $OF

; instructions used to
; initialise the LCD

; function set
; function set (4-bit)
; display off
; display clear
; display on: cursor & blink

**** MESSAGES FOR LCD DISPLAY MODULE ****

MENU
FCC "Press I , 2 or 3 "
FCC " TRANSFER (2) "
FCC " DISPLAY (I) "
FCC " CHANGF (3) S"

MENU!
FCC "DISPLAY
FCC " status (2) "
FCC " time (I) "

FCC " data {3) S"

MENU2
FCC "TRANSFER
FCC " upload data , 2 J ·•

FCC "date & time (I J "

FCC "dnload data (3 \ S"

MENU3
FCC "CHANGE
FCC ·· time & date (2) "

FCC " reset ststem (I) "

FCC " clear data (3) S"

MSGI I
FCC II TIME
FCC II DATE

"
"

FCC"
FCC"

hh:mm:ss 11

dd-mm-yy $"

MSG1 2
FCC "identification = "
FCC "items of data = "
FCC "test date= dd.;.mm-yy 11

FCC "rio; of events= $"

MSGl 3
FCC "DATA b, f, I, 9 & e"
FCC 11 00 00 00 00 00 "
FCC" II

FCC " 00 00 00 00 00 $"

MSG2 1 -
FCC "START TEST
FCC" date = "
FCC" baud= "
FCC" time = S"

MSG2 2
FCC "UPLOADING
FCC "ident =
FCC"
FCC "date 0

MSG2 3

,,

s··

FCC "DOWNLOADINCi
FCC "ident ,
FCC"
FCC "date S"

MSG3 I

"

42

FCC " RESET THE S YSTE1v1 ')"
FCC " are you sure (I) Y ''
FCC" II

FCC " (2)-c.:NS"

MSG3 2
FCC "TIME
FCC "DATE "
FCC " Enter hh:mm:ss "
FCC " Enter dd-mm-yy 5"

MSG3 3
FCC "CLEAR LAST RESULTS? "
FCC "are you sure (I)=Y"
FCC II "

FCC " (2)=N$"

43

ERRORJ
FCC "***"'** ERROR 1 ****** 11

FCC " transmission error 11

FCC II "

FCC II $"

ERROR2
FCC "****** ERROR2 ******"
FCC "keyboard input error"
FCC" II

FCC" $"

BLANK
FCC"
FCC II

FCC"
FCC"

"

"

**** COUNTERS. POINTERS AND VARIABLES ****
**** USED BY THIS PROGRAM ****

ORG $0000

DATA

COUNT

AMOUNTD

AMOUNTE

DPTRMAX

EPTRMAX

HEXBUF

BUFFPTR
EVENTPTR

ONEMIN

TEMPI
TEMP2

FCB SOO

FCB SOO

rDB SOOOO

FOB $0000

FOB SOOOO

FDB $0000

FCB $20
FCB $20
FCB $20
FCB $20

FOB BUFFER
FDB EVENTS

. nm data rn htnary form

. count or kcyhoard characters

. amount of data items

. amount of event items

: end of BUFFER pointer

: end of EVENTB pointer

: a 4 character ASCII buffer

; pointer used to store data
; pointer used to store time of events

; 1 minute timeout counter FOB $0000

FCB.$00
·fCB $00

; temporary storage for creation of upper bits

44

**** FIXED PARAMETERS MEANT FOR EEPROM ****

ORG $CCOO

DAT AA FDB BUFFER
EVENTS FDB EVENTB
DATE FOB DA TEBUF

BUFFMAXFDB
PTREMAXFDB
DATEMAXFDB

BUFFER + I OOO
EVENTS + 256
DATEBUF + 13

BEGCODEFCB
ENDCODEFCB

TILIMJT FDB $0 I 00

$2A
$23

: start of block marker · *'
; end of block marker · W

. timcout value: number of TOFs

**** THE TIMER SUR SYSTFiv1 RF.GISTFRS ****

TCTL2 EQU $1011
TFLGJ EQU S1023
TMSK2 EQU S1024
TFLG2 EQU SI025
TCNT L:QU SIOOF

**** THF SCI SUB S'{STLM Rl·(i!STLRS ****

BAUD
SCCRI
SCCR2
SCSR
SCOR

EQU $1028
EQU SI02C
EQU SI02D

EQU SI02E
EQU SI02F

**** THE PARALLEL PORT REGISTERS ****

PORTA
PORTB
PORTC
PORTO
PORTE

EQU $1000
EQU $1004
EQU $1003
EQU $1008
EQU $100:\

**** THE DATA DIRECTION REGISTERS ****

DDRD
PACTL

EQU $1009
EQU $1026

45

**** MAIN ROUTINE FOR DTD PROGRAM

ORG $D000

MAIN
NOP
JSR INITIR
NOP
JSR INIT2R
NOP
JSR INIT3R
NOP
JSR INIT4R
nop
LOX #MENU
JSR DISPLA YR
NOP

AGEN
JSR COMMANDR
NOP
WAI

NOP
NOP
NOP

; initialise the sub systems

; initialise LCD 4-bit interface

; initialise the keypad interface

: clear all buffers, counters, pointers etc.

: I st screen menu
: output menu messages

. input commands from KBD routine

**** INITIALISATION ROl fTJNFS *"'**

INITIR
NOP
LDAB !!SFF
STAB $4000
NOP
LDAB #$30
STAB BAUD
NOP
LDAB #$00
STAB SCCRI
NOP
LDAB SCCR2
ANDB#$03
STAB SCCR2
NOP
RTS

. m1tial!se 1111crocontroller SCI sub S\'stem

. set latch to enable RxD to PDQ

. set 9600 baud rate

: set SC: for 8 data bits

; disable SCI transmitter, receiver
; and interrupts

INIT2R
NOP
LDAB #$AO
JSR DELAY
NOP
LDX #TIME

LOOP CPX #TIME+4
BEQ BACK
NOP
LDAA 08,X
JSR OUTPUT
NOP
LDABOO,X
JSR DELAY
NOP
INX
BRA LOOP

BACK NOP
CPX fft"IME---8
BEQ BACK2
NOP
LDAA 08,X
STAA TEMPI
JSR OUTPUT~
NOP
LDAB 00,X
JSR DELAY
NOP
INX
BRA BACK
NOP

BACK2 RTS

INITJR
LDAA TFLGI
OR.AA #$FF
STAA TFLGI
NOP
LDAA #$10
STAA TCTL2
NOP
RTS

46

: **** 8-BIT LCD INTERFACE ****
; wait 16 milliseconds

; fourth instruction been output?

; fetch next instruction

; fetch next time value

: **** 4-BIT LCD INTFRFACr ****
. last mstruction been output')

. fdch m.:,t 1nstruct1on

. () P top -l bit:'-

. !t:tch nc,t t1r111:, :iluc

.clear all input capture flag bits

;prob'Tam interface to detect vc edges

INIT4R
NOP
LDAA #00
LDX #DATA

CL I ST AA 00,X
INX
CPX #HEXBUF
BLO CL!
NOP
LDAA #$20
LOX #HEXBUF

CL2 ST AA 00,X
INX
CPX #HEXBUF·4
BLO CL2
NOP
LOAA #00
LOX #DATEBUF

CL3 ST AA 00,X
INX
CPX ;:TIML
BLO CL3
NOP
RTS

47

; clear all data buffers and DTO variables

; clear counters

; store space characters

, <.:kar date, data and tvcnts buff~rs

**** CIIOICL ()!-· TIIL l"IIRLI· rv!l.:\llS l{()li I !NL ****

COMMANDR NOP
CLR DATA
JSR INPlJTR
l.DAA DATA
NOP

CHOICE CMPA ;:S JO
BNE AAAA
NOP
JSR MENUIR
NOP
BRA COMMANOR
NOP

AAAA CMPA #$20
BNE BBBB
NOP
JSR MENU2R
NOP
BRA COMMANDR
NOP

BBBB CMPA #$30
BNE CCCC
NOP

,i.:kct 1,:ommand frorn !(Bf) routine

. , p fwm KBD

. d1~pla:,..· menu choice ·1

; transfer menu choice ':,

; change menu choice ?

JSR MENU3R
NOP
BRA COMMANDR

CCCC NOP
CMPA#$EO
BNE COMMANDR
NOP

EXIT RTS

48

~ exit program choice ?

**** INPUT CHARACTER FROM KBD ROUTINE ****

TNPUTR
NOP

CFLAGS LDAA
ORAA #$FF
STAA TFLGI
NOP

WAIT LDAA TFLG I
ANDA #$04
BEQ WAIT
NOP

TFLGI

LDAB P<>RTE
<;TAR DATA
NOP
LDY ::S02

DLA Y2 BEQ OUT}
LDA13 t!SFF
JSR DFI ./\ Y
NOP
DEY
BRA DLA Y.?
NOP

OUT2 LDAA TFLG I
ORAA /;$FF
STAA TFLGI
NOP
RTS

:clear IC I flag

.\\aJt for a data a\·adable signal

.detect IC I llag set

. read KBD 111pu1 from port 1:·

.-.tore data

. ckla\ fur a11t1-bounu: purpo'.--l''-

.clear IC I tlag

**** KBD CHARACTER TO ASCII CONVERSION

CONVERT
NOP
LDAA DATA
LSRA
LSRA
LSRA
LSRA
CMPA#$0A
BLT DECIMAL

;convert hex character to ASCII

;distinguish between 0-9 AND A-F

ADDA#$07
DECIMAL ADDA #$30

STAA HEXBUF
NOP
RTS

49

;A-F characters only

**** DISPLAY KBD CHARACTER ROUTINE ****

SHOW
PSHA
NOP
LDAA #$80
ORAA #SI I
STAA TEMPI
JSR OUTPUT2
NOP
LDAB #SOI
JSR DELAY
NOP
LOX t:1-IEXBl f·
LDAA 00.X
STAA TE\·IPI
JSR SCRIT\.
\!OP
LDAB ::SO I
JSR DEi .\ Y
'.\OP
PU.A
RTS

: jump to a new screen address
; new line

d1spla:- ne,t he~ pad duua.:1c1

**** OlJTPl;T COi\i1;v1,;\'\[) 1 S-BlI

OUTPliT
LDAB ;;S1E
STAB DDRD
NOP
LSRA
LSRA
STAA PORTO
NOP
LDAA #$00
STAA PORTA
LDAA #$40
STAA PORTA
LDAA #$00
STAA PORTA
NOP
LDAB #$02
STAB DDRD
RTS

. ..;c t P() R I'!) r'n r () P

. PORTD output instruction

; RS ~, 0. R/W ·:-: 0, E ·-" O
; PORT A output to control LCD
; RS 0= 0, R/W ::,: 0, E = i
; PORTA output to control LCD
. RS = 0, R/W = 0, E =O
; PORT A output to control LCD

; set PORTO for 1/P

so

**** OUTPUT COMMAND (4-BIT INTERFACE) ROUTINE ****

OUTPUT2
LDAB #$3E
STAB DDRD
NOP
LSLA
LSLA
PSHA
NOP
LDAA TEMPI
LSRA
LSRA
STAA PORTD
NOP
LDAA t:$00
STAA PORTA
LDAA :;$40
STAA PORTA
LDAA ::$00
STAA PORI ,\
NOP

PUl.A
ST AA PUR I D
NOP
IDA;\ ::5-41 I

s·1 AA P()R I .. \
I J)1\A ::SOO
S rAA PORT,\
NOP
I .DAB ::S02
STAB DDRD
RTS

: set PORTO for 0/P

. fetch next mstruclll'n

.PORTD nutpul instruction (top bits)

RS 0. R \,\' 0. I I)

. P(llfli\ output to crnH1 ol LCD

. RS o. R \-\' 0. I· I

. P()R l 1\ output to control l.l T)

RS u.R.\\ H.1 0

fli IR I .\ output 10 vPntrol l l 'I)

t<'. ', (I\ \ \ . I i
1'< IR I \ <1ulpu1 t11 u1ntr11l I("[)

I, ", (I l{ \ \ I l I I '

l'< >I{ ! \ , 1utpu1 tn t'tlntrPl I (·l)

".:t f '< lf<. I I) fot I P

**** OUTPUT ASCII CIIAR1\CI! R TO LCD tv10DlJLL ROUTINF ****

SCREEN LDAB ::SJl:
STAB DDRD
NOP
LSLA
LSLA
PSHA
NOP
LDAATEMP1
LSRA
LSRA
STAAPORTD

: set PORTD for O P

: fetch the same instruction

;PORTO output data (top bits)

NOP
LDAA #$20
STAAPORTA
LDAA #$60
STAAPORTA
LDAA#$20
STAAPORTA
NOP
PULA
STAA PORTO
NOP
LDAA #$60
STAA PORTA
LDAA #$20
STAA PORTA
NOP
LDAB #$02
STAB DORO
NOP
RTS

SI

;RS= l,R/W=O,E=O
; PORT A output to control LCD
; RS = 1, R/W = 0, E = 1
; PORTA output to control LCD
; RS = I, R/W = 0, E =O
; PORT A output to control LCD

: PORTO output data (lower bits)

; RS = I, RJW = 0. E = 1
: PORTA output to control LCD
: RS = I. R/W = 0, E :c:Q

: PORT A output to control LCD

. set PORTD for liP

**** PROCFSSINC .,\SCI I C'l l;\RACITR DIJ.A '{ ****

DELAY
LDAA ii$00

XX INCA
CvlPA /:20
BNE XX
DECB

NOP
RTS

\ ;mabk dda\ 10ut111c

. l lHl 1111..:10 "c..:ond pcrloop

**** OL .. TPl'T A SCREE\; \IFSS.\GI TO THE IC[) \IODLI.F ROL.Tl:\F****

DISPLAYR
NOP

LDAA 00.X
STAA TEMPI
CMPA #$24
BF.Q LAST
JSR SCREEN

NOP
LDAB #SOI
JSR DELAY
NOP
INX
BRA DISPLA YR
NOP

LAST RTS

: display foll _screen mcssag1: routine
. fetch next character

: "S'

: 0/P top 4 bits

; 40 microsecond time value

**** CONTROL ROUTINE FOR DISPLAY CHOICE ****

52

MENUIR
NOP
JSR TLC
NOP
LOX #MENU I
JSR DISPLAYR
NOP
CLR DATA
JSR INPUTR
LDAA DATA
CLR DATA
NOP

CHOICE l CMPA #$10
BNE EEEE
NOP
JSR TIMERR
NOP
BRA MENUIR
NOP

EEEE CMPA #$20
BNE FFFF
NOP
JSR STATUSR
NOP
BRA MENUIR
NOP

£·FFF CMPA ::S30
BNE GGGG
NOP
JSR DJ\TERR
NOP
BRA MENlJIR

GGGGNOP
CMPA #SEO
BNE MENUIR
NOP

EXIT1 JSR TLC
NOP
LOX #MENU
JSR DISPLAYR
NOP
RTS

53

**** CONTROL ROUTINE FOR TRANSFER CHOICE ****

MENU2R
NOP
JSR TLC
NOP
LOX #MENU2
JSR DISPLA YR
NOP
CLR DATA
JSR INPUTR
LDAA DATA
CLR DATA
NOP

CH0ICE2 CMPA t/$10
BNE HHHH
NOP
JSR STARTR
NOP
BRA MENU2R
NOP

1-11--IHH CMPA #$20
BNE !III
NOP
JSR UPLOADR
NOP
BRA MENU2R
NOP

1111 CMPA :1$30
BNE JJJJ
NOP
JSR DNLOADR
NOP
BRA MENU2R

JJJJ NOP
CMPA #SEO
BNE MENU2R
NOP

EXIT2 JSR TLC
NOP
LOX #MENU
JSR DJSPLA YR
NOP
RTS

54

**** CONTROL ROUTINE FOR CHANGE CHOICE ****

MENU3R
NOP
JSR TLC
NOP
LOX #MENU3
JSR DISPLA YR
NOP
CLR DATA
JSR INPUTR
LDAA DATA
CLR DATA
NOP

CH0ICE3 CMPA /1$10
BNE KKKK
NOP
JSR RESETR
NOP
BRA MENU3R
NOP

KKKK CMPA #$20
BNE LLLL
NOP
JSR DATER
NOP
GR/\. MFNU3R
NOP

LLLL CMPA #$30
BNE MMMM
NOP
JSR CL[ARR
NOP
BRA MENU3R

MMMM NOP
CMPA#$EO
BNE MENUJR
NOP

EXIT3 JSR TLC
NOP
LOX #MENU
JSR DISPLA YR
NOP
RTS

55

**** LCD MODULE OUTPUT ROUTINES ****

TLC
NOP
LDAA #$80
STAA TEMPI
JSR OUTPUT2
NOP
LDAB #$01
JSR DELAY
NOP
RTS

CURSOR
NOP
STAA TEMPI
JSR OUTPUT2
NOP
LDAB #$01
JSR DELAY
NOP
RTS

WRITE
NOP
STAA TEMPl
JSR SCREEN
NOP
LDAB #$01
JSR DELAY
NOP
RTS

WRITEHEX

~ jump to a new screen address

. jump to a nev·.: screen addn:'.SS

. output a character to the I .CD

NOP : 8-bit HEXADECIMAL to ASCII conversion
STAA TEMP2
STAA DATA
JSR CONVERT : high bits
LDAA HEXBUF
JSR WRITE : write character to LCD
NOP
LDAA TEMP2
ANDA #$OF : lower 4-bits
ORAA #$30
CMPA #$39
BLS BCD

56

ADDA #$07
BCD JSR WRITE ; write character to LCD

NOP
RTS

**** DISPLAY DATE AND TIME FROME DATE BUFFER ****

TIMERR
NOP
JSR TLC
NOP
LOX #MSGl 1
JSR DISPLA YR
NOP
LDAA #$8A : position cursor on LCD
JSR CURSOR

SEEALLl NOP
TIMES LDAA DA TEBUF : ,nite stored time to LCD

JSR WRITE
LDAA DA TEBUF + 1
JSR WRITE
LDAA #$20
JSR WRITE
LDAA DA TEBUF·· 2
JSR WRITE
LDAI\ DATEBUF~ 3
JSR WRITE
LDAA #$20
JSR WRITE
LDAA DATE8UF · 4
JSR WRITE
LDAA DATEBUF 4 5
JSR WRITE
NOP

DATES LDAA #$9E : position cursor on I .CD
JSR CURSOR
NOP
LDAA DATEBUF+6 : write stored date to LCD
JSR WRITE
LDAA DA TEBUF+ 7
JSR WRITE
LDAA #$20
JSR WRITE
LDAA DATEBUF+8
JSR WRITE
LDAA DA TEBUF+9
JSR WRITE
LDAA #$20
JSR WRITE
LDAA DATEBUF+ 10

JSR WRITE
LDAA DATEBUF+l l
JSR WRITE
NOP

EX ITT CLR DAT A
JSR INPUTR
LDAA DATA
CMPA#$EO
BNE EXITT
NOP

OUT3 RTS

57

; accept the · E' characters only

**** DTSPLA Y STATUS !NFORMA TION RECEIVED FROM TMD ****

STATUSR
NOP
JSR TLC
NOP
LOX #MSGJ 2
JSR DISPLA YR

SEEALL2 NOP
!DENTS LDAA #$91

JSR CURSOR
NOP
LDAAIDENT
JSR WRITE
LDAA IDENT- l
JSR WRITE
NOP

WHEN LDAA #SCB
JSR CURSOR
NOP
LOX #DATEBUF • 6

DISPDA TE NOP
LDAA 00,X
JSR WRITE
INX
CPX #DATEBUF+ 11
BLS DISPDATE
NOP
LDAA #$20
JSR WRITE
LDAA #$20
JSR WRITE
NOP

NODS LDAA #$A2
JSR CURSOR
NOP
LDAA AMOUNTD

. display IDENT

: write 2 spaces

; display number of DATA items

; high byte

JSR WRITEHEX
LDAA AMOUNTD+ 1
JSR WRITEHEX
NOP

NOES LDAA #$E4
JSR CURSOR
NOP
LDAA AMOUNTE+I
LSRA
JSR WRITEHEX
NOP
LDY #$ES

DLA Y4 BEQ OUT4
LDAB #$FF
JSR DELAY
NOP
DEY
BRA DLAY4
NOP

OUT4 RTS

58

low byte

; display number of EVENTS

: delay for TEST purpost:s

**** DISPLAY TI IF DATA RECLJVED FROM THE TMD ****

DATERR
NOP
JSR TLC
NOP
LOX #\1SG I :-;
JSR DISPLA YR
NOP
LOX #BUFFER
JSR DL\'1P
NOP

TOBACK CLR DATA
JSR INPUTR
LDAA DATA

SEEALL3 NOP
EXITDD CMPA #$EO

BEQ EXITD
NOP
CMPA #$FO
BNE MISSF

FORWARD DEX
DEX
DEX
DEX
DEX
JSR DUMP
BRA TOBACK

. dump ~ Imes of data. at a time. to the l. CD

; exit.,

; move forward into data bu!Ter

MISSFNOP
CMPA#$BO
BNE MISSB

BACKWARD LOY #$0000
MINUS DEX

INY
CPY
BLS
JSR
BRA

#$000E
MINUS
DUMP
TOBACK

MISSBNOP
CMPA#$10
BNE TOBACK

BEGIN LDX #BUFFER
JSR DUMP
BRA TOBACK

EXITD NOP
RTS

DUMP
NOP
LDAA #$97
JSR CURSOR
NOP
JSR VIEWUNE
NOP
LDAA #$D7
JSR CURSOR
NOP
JSR VIEWLINF
NOP
RTS

VIEWLINE
NOP
LOY #$0000

SEEDATA NOP
LDAA 00,X
JSR WRITEHEX

characters
INX
LDAA #$20
JSR WRITE
INY
CPY #$0004
BLS SEEDATA
NOP
RTS

59

; move backward into data buffer

; move to start of data buffer

. display data on LCD

. first lint.? position

: second line posillon

: display one lme of data on LCD

: view 2 ASCII-HEXADECIMAL

; space character

60

**** DOWNLOAD THE START OF TEST INFORMATION **~>*

STARTR
NOP
JSR TLC
NOP
LOX #MSG2 I
JSR DJSPLA YR
~!OP
LDAB #$08
STAB SCCR2
NOP

AAA LDAB SCSR
ANDB #$80
BEQ AAA
LDAA #$2A
STAA SCDR
NOP

BBB LDAB SCSR
ANDB #$80
BEQ BBB
LDAA #$2A
STAA SCDR
NOP
LOX #DATEBUF

CCC LDAB SCSR
ANDB :tS80
BEQ CCC
LDAA 00,X
STAA SCOR
INX
CPX #DATEBUF-' 11
BLS CCC
NOP

ODD LDAB SCSR
ANDB #$80
BEQ ODD
LDAA #$23
STAA SCDR
NOP
LOY #$40

DLA Y6 BEQ OUT6
LOAB #$FF
JSR DELAY
NOP
DEY
BRA OLAY6
NOP

OUT6 RTS

: enable SCI transmitter

: output an · *' character

. output an ·*'character

. output hl SCI the date and time

: output an · :;' character

: delay for TEST purposes

61

**** UPLOAD THE TMD INFORMATION ****

UPLOADR
NOP

JSR TLC
NOP
LOX #MSG2 2
JSR DISPLA YR
NOP
CLR AMOUNTD
CLR AMOUNTD+ I
CLR AMOUNTE
CLR AMOUNTE+I
NOP
LDAB #$04
STAB SCCR2
NOP

EEE LOAB SCSR
ANDB #$20
BEQ EEE
LDAA SCOR
CMPA#$2A
BNE EEE
NOP
LDAA :tS9E
JSR CURSOR
NOP

FFF I .DAB SCSR
ANDB #$20
BEQ FFF
LDAA SCOR
STAA !DENT
JSR WRITE
NOP

GGG LDAB SCSR
ANDB #$20
BEQ GGG
LDAA SCOR
ST AA IDENT + I
JSR WRITE
NOP
LOX #DATEBUF
NOP
LDAA #$DE
JSR CURSOR
NOP

HHH LDAB SCSR
ANDB#$20
BEQ HHH

; upload test data from TMD

: clear data counter

: clear event counter

: enable SCI receiver

. wait for a character

_ input *'

. ros1t1on cur~or for LCD

. \\.ll t 1<.1r a character

. mpul IDENT

, write to LCD

: wait for a character

: input !DENT + I

: write to LCD

: input DATE AND TIME

; position cursor for LCD

; wait for a character

LDAA SCOR
STAA 00,X
CPX #DATEBUF+5
BLS PASS
JSR WRITE

PASS INX
CPX #DATEBUF+ 11
BLS HHH
NOP
LOX #BUFFER

III LDAB SCSR
ANDB#$20
BEQ III
LDAA SCOR
STAA 00,X
TNC AMOUNTD+ I
BCC NOC
INC AMOUNTD

NOC INX
CMPA #$40
BNE lll
STX DPTRMAX
NOP
LOX #EVENTB

JJJ LDAB SCSR
ANDB :,S20
BEQ JJJ
LDAA SCDR
STAA 00.X
INC AMOUNTL · I
INX
C'MPA #SD
BNE JJJ
STX EPTRMAX
NOP
LOY #$40

DLA Y7 BEQ OUT7
LDAB #$FF
JSR DELAY
NOP
DEY
BRA DLAY7
NOP

OUT7 RTS

62

~ input DATE

; write to LCD

: input DATA
: wait for a character

: input DATA

: no. of data items

: high byte of data count

.. 'ir'

. input !-:VENTS

. \,a1t for a character

. input 1:VLN rs

. number of cn::nts

. delay for TEST purposes

63

**** DOWNLOAD THE TMD INFORMATION ****

DNLOADR
NOP
JSR TLC
NOP
LOX #MSG2 3
JSR DISPLA YR
NOP
LDAB #$08
STAB SCCR2
NOP

KKK LDAB SCSR
ANDB #$80
BEQ KKK
LDAA #$2A
STAA SCOR
NOP
LDAA #$9E
JSR CURSOR
NOP

LLL LDAB SCSR
ANDB #$80
BEQ LLL
LDAAIDENT
STAA SCOR
JSR WRITE
NOP

MMM LDAB SCSR
ANDB #$80
BEQ MMM
LDAA !DENT- I
STAA SCOR
JSR WRITE
NOP
LDAA #$DE
JSR CURSOR
NOP
LOX #DATEBLlF

NNN LDAB SCSR
AND8#$80
BEQ NNN
LDAA 00,X
STAA SCOR
CPX #DATEBUF+5
BLS PASS2
JSR WRITE

PASS2fNX
CPX #DATEBUF+ 1 l

; enable SCI transminer

; ready for output?

; start of block marker · *'

. n.:ad~ for output'>

. 1dcnt1fica11on (high bylt.!)

. rt.:ad~ for output'1

. 1dcnt1 ticatton (low byte)

; ready for output?

; output time then date

BLS NNN
NOP
LDX #BUFFER

OOO LDAB SCSR
ANDB#$80
BEQ OOO
LOAA 00,X
STAA SCOR
INX
CMPA#$40
BNE OOO
NOP
LOX #EVENTS

PPP LDAB SCSR
ANDB #$80
BEQ PPP
LDAA 00,X
STAA SCOR
INX
CMPA #$23
BNI:.: PPP
NuP
LOY ::s..io

DLA Y8 BE() Ol lTX
LDAB ;;SFF
JSR DELAY
NOP
DEY
BRA DI .Ar· 8

NOP
OUTS RTS

64

: ready for output?

: output block of data

: ·11·

: ready for output''

. output block of 1:\'ent times

65

**** RESET ROUTINE (REINITIALISE THE SYSTEM) ****

RESETR
NOP
J3R TLC
NOP
LDX #MSG3 I
JSR DISPLA YR
NOP

XXXX CLR DAT A
JSR INPUTR
LDAA DATA
CLR DATA
NOP
CMPA#$10
BNE YYYY

YESI NOP
JSR BLANKR
NOP

ZZZZ I.DS ,tS004!\
JMP MAIN

YYYY CMPA ::S~O
BNE XXXX

NOi NOP
NOP
RTS

: output message to LCD screen

: input response to 'are you sure' message

ves'

. NB top of stack for the FVB

110'

**** CLEAR TIIF I.CD MODl :U· SCRFl·r\ ****

BI.ANKR
\lOP
JSR TLC
\10P
LDX :t£3L:\\lK
JSR DISPL:\ YR
NOP
LDY #$40

DLA Y :\ BEQ OLTA
LDAB #SFF
JSR DELAY
NOP
DEY
BRA DLAYA
NOP

OUTA RTS

: delay frir TEST purposes

66

**** INPUT ST ART OF TEST DATE AND TIME VALUE ****

DATER
NOP
JSR TLC
NOP
LOX #MSG3 2
JSR DISPLA YR
NOP
LDAA #$8A
JSR CURSOR
NOP
JSR KBDTIME
NOP
LDAA #$9E
JSR CURSOR
NOP
JSR KBDDATE
NOP

OUT9 RTS

: position LCD ct!rsor

: input and store time of test

: position LCD cursor

: input and store date of test

**** INPUT START TIME OF TEST ****

KBDTIME
NOP
LOX #OATEBUF
NOP

NEXTCHAR CLR DAT.i\
JSR INPUTR
NOP
LDAA DATA
CMPA#$90
BHI NEXTCHAR
NOP
JSR CONVERT
CLR DATA
LDAA HEXBUF
STAA TEMPI
STAA 00,X
JSR SCREEN
NOP
INX
CPX #DATEBUF+2
BNE CONTI
LDAA #$20
JSR WRITE
BRA NEXTCHAR
NOP

. accept c::·n characters only

: BCD to ASCII convcrtion
; clear last data input

: ston.' character on the I .CD

; space character

67

CONTI CPX #DATEBUF+4
BNE CONT2
LDAA #$20
JSR WRITE ~ space character
BRA NEXTCHAR
NOP

CONT2 CPX #DA TEBUF+6
BEQ LASTONE
NOP
BRA NEXTCHAR
NOP

LASTONE RTS

**** INPUT DATE OF TEST ****

KBDDATE
NOP
LDX #DATEBUF-""6
NOP

NEXTCH CLR DAT A
JSR INPUTR
NOP
LDAA DATA
CMPA #$90
BHI NEXTCH
NOP

: accept BCD characters only

JSR CO~VERT : BCD to ASCII convertion
CLR DATA . clear last data input
LDAA HEXBUF
STAA TEMPI
STAA 00,X
JSR SCREEN . store character on the LCD
NOP
INX
CPX #DATEBUF+8
BNE CONT3
LDAA #$20
JSR WRITE : space character
BRA NEXTCH
NOP

CONT3 CPX #OA TEBUF+ I 0
BNE CONT4
LDAA #$20
JSR WRITE ; space character
BRA NEXTCH
NOP

CONT4 CPX #DATEBUF+l2
BEQ LASTl 1
NOP

BRA NEXTCH
NOP

LASTI1 CLR DATA
JSR INPUTR
LDAA DATA
CMPA#$EO
BNE LASTI I
NOP
RTS

68

; accept the · E' characters only

**** CLEAR ALL COUNTERS, BUFFERS AND VARIABLES ****

CLEARR
NOP
JSR TLC
NOP
LDX #MSG3 3
JSR DISPLA YR
NOP

UUUU JSR fNPUTR
LDAA DATA
CLR DATA
NOP
CMPA #$10
BNE VVVV

YES2 NOP
JSR BLANKR
NOP

\VWWW JSR l:-:IT4R
NOP
BRA EXITC
NOP

VVVV C'MPA #$20
BNE UUUL'

N02 NOP
E.·'.ITC RTS

END

: output · arc you sure' message to LCD

: input response from KBD

. clear all buffers. counters etc

no·

APPENDIX C

The Data Processing System

This section contains data flow diagrams, Jackson
structure diagra1ns and prograr.1 listing for the data
processing system.

C. I. data flow diagrams,

C.2. Jackson structure diagrams and

C.3. progran1 listing.

C.1.

The Data Processing System

data flow diagrams

DFD LEVEL 0

KEYBOARD

SERIAL
PORT

OPS
PROGRAM

VISUAL
DiSPLAY

UNIT

PRINTER
or

PLOTTER

DFD LEVEL l

SERIAL
PORT PRINTER VDU

MESSAGES
VARIABLES
& BUFFERS

KEYBOARD

DFD LEVEL 1

SERIAL
PORT

DATA BUFFER DATA FILES VDU PRINTER

DFD LEVEL 3

VDU

et:
I"
d:
A

r
:>
~

7. -

SERIAL
PORT

(/1

·F A
0 <r
;;:> £
\t\ CJ

0

'(]
IJ.
2

1) ·-
A
) ~

I-

~
~

DATA & STATUS
BUFFERS

i@l f.,g k±H '#%&%¥¥&

-(/1
~

r
D
,(

0
j)

--------,Jjj._--.1.1......_......J... _____ J!

DFD LEVEL 4

SERIAL PORT

DFD LEVEL 3

~
0

KEYBOARD

U)

ul f
. J I!
G: 2

DATA FILES

; d 5 %

VDU

JI
w w
J t
- (1
IJ. '2

DFD LEVEL 3

VDU

NA

DATA
FILES

s e &:&e@

KEYBOARD

DATA
BUFFERS -

IIEMQl\lll3&¥Bli/9!Bl5Wmllbt::lllili1 :ll:IZ!lllli'!il!lmiii&iiCli'IPffl <f
~

0
I-

~
tQ

DFD LEVEL 3

A
2
q:
~
~
0
\.)

"]

2
w
€

2
<I

1T @%ii £
0
I-'

~
er
dl

VDU KEYBOARD

DFD LEVEL 3

DATA BUFFERS

148§§4 9 rdht Ml

VDU KEYBOARD

C.2.

The Data Processing System

Jackson structure diagrams

OPS PROGRAM STRUCTURE

INIT1R INIT2R

FUNCTIONS:

MAIN
ROUTINE

INIT3R

INITlR
ROUTINE

l, 2, 3, 4

IN1T4R COMMANDR

I. Initialise the serial port with parameters 9600 baud rate, 8 data bits,
I stop bit, and no parity checking.

2. Check the status of the serial port.

3. If the status of senal port is bad, then print an error message.

4. Return to the MAIN routine.

FUNCTIONS:

IN1T2R
ROUTINE

1,2,3,4

I. Initialise the printer port.

2. Check the status of the printer port.

3. If the status of printer port is bad, then print an error message.

4. Return to the MAIN routine.

FUNCTIONS:

INIT3R
ROUTINE

5, 6, 7

5. Set the screen mode to text mode 3.

6. DISPLAY routine (Print the MSGMENU to the VDU screen).

7. Return to the calling program.

FUNCTIONS:

IN1T4R
ROUTINE

l, 2, 3

1. Initialise all the counters, pointers and variables.

2. Clear the data buffers.

3. Return to the fvf.AJN routine.

FUNCTIONS:

D1Sr>LAY
ROUTINE

1. Print out the string of characters from. the address passed as a parameter
upto the '$' character.

COMMANDR
ROUTINE

I
I

KBDI/P CHOICE

t

C. I c. 2.. C3 c. Lt C5 C 6 le .,
0 0 0 0 0 0 0

INPUT DIR RAW SAVE PLOT OLD EXIT

CONDITIONS:

Cl. Selected if 'I' key 1s pressed on the keyboard

C2. Selected if · D' key 1s pressed on the keyboard.

C3. Selected if R' key is pressed on the keyboard.

C4. Selected if · S' key is pressed on the keyboard

CS. Selected if · P' key is pressed on the keyboard

C6. Selected if ·o• key 1s pressed on the keyboard.

C7. Selected if · E' key is pressed on the keyboard.

FUNCTIONS:

1. Input a keystroke from the keyboard.

INPUT
ROUTINE

CREATE UPLOAD SHOW

1, 2 3, 4, 5, 6, 7, 8

FUNCTIONS:

1. Set the VDU screen mode to text mode 3.

2. DISPLAY routine (Display MSGINPUT on the VDU screen).

3. Display the TMD identification value

4. Display the · start of test date'

5. Display the number of data items received.

6. Display the number of events recorded.

7. Display 'Type T' to continue' on the VDU screen.

8. Return to the COMMANDR routine.

UPLOAD
ROUTINE

I
ASTERISK IDENT DATE DATA EVENTS

Cl 1-8 C 2. CJ C

* .# ~ *
1-7 16 - 21 22- 27 28-34

CONDITIONS:

C I. Repeat functions 23 - 29 until either.
an asterisk(*) 1s received, or
a KBD keystroke is detected

C2. Receive until 12 serial port characters accepted

C3. Input and store data until an ·@· character is received.

C4. Input and store event times until an ·#'character is received.

FUNCTIONS:

I . Receive one character from the serial port.
2. Test for a KBD character (escape mechanism).
3. If a keypress detected, then return to the INPUT routine with an error code.
4. Test the status of the serial port.
5. If the status is bad, then repeat functions I - 7.
6. Check the serial port character for an asterisk(*).
7. If no asterisk is detected, then repeat functions I - 7.

8. Receive one character from the serial port.
9. Test the status of the serial port.
I O. If the status is bad, then repeat functions 8 - 1 0.
11. Store character in IDENTV.
12. Receive one character from the serial port.
13. Test the status of the serial port.
14. If the status is bad, then repeat functions 12 - 15.
15. Store character in IDENTV +I.

16. Set index register with address of DA TEBUF
17. Receive one character from the serial pon.
18. Test the status of the serial port.
19. If the status is bad, then repeat functions 17 - 19.
20. Store character in DA TEBUF, increment index register.
21. rs the index register"" DA TEBUF + I 2. No, repeat functions 17 - 21.

22. Set index register with address or BUFFER
23. Receive one character from the serial port.
24. Test the status of the serial port.
25. If the status is bad, then repeat functions 23 - 25.
26. Store character in DA TEBUF, increment index register.
27. Is the character an '@' character. No, repeat functions 23 - 27.

28. Set index register with address of EVENTB
29. Receive one character from the serial port.
30. Test the status of the serial port.
31. If the status is bad, then repeat functions 29 - 31.
32. Store character in DATEBUF, increment index register.
33. Is the character an'#' character. No, repeat functions 29 - 33.
34. Return to the main menu control routine

DIR

VIEWDIR FIRST MORE WAITD

1 7-9 13- 17

Cl

CREATE GETPATH "*'

2,3 4-6 10 - 12

CONDITIONS:

Cl. Find and display matching filenames unull the last file 1s detected.

FUNCTIONS:

I. Move the pointer for MSGdir in the index register
2. Set the VDU screen mode to text mode 3.
3. DISPLAY routine (Display MSGDl)R
4. Insert 64 (the size) into the PATH buffer.
5. Input from, the KBD, the path and file specification mto PA TH.
6. Insert an ASCrIZ character. into PA TH, at the end of the file specification.

7. Set up a OTA.
8. Find the first matching directory entry.
9. Display the filename.

10. Move the cursor to a new screen position.
11. Fetch the next matching filename.
12. Display the fitename.

13. Move the cursor to a new screen position.
14. Display MSG3, the return to the main menu routine.
15. Wait for a KBD keypress.
16. Call lNIT4R to display MSGMENU.
17. Return to the main menu control routine

RAW

I
I

M0DE3

I

CREATE GETSTAT

2 3-6

I
DISPLAY

I

GETDATA

7, 8

Cl

LASTt

I

WAITD

c.~
0

FIRST RAWEND

9 - 16 17, 18
('ONDITIONS:

Cl. Bytes of data read from the file unull an '?r character detected.
C2. Selected if an ·@· character is detected before a full screen of data has been read.

FUNCTIONS:

I. Set screen mode. move the pouuer for tv1SGRA \\' into the mdex register.
2. DISPLAY 1utine (Create a new screen)

3. Move cursor.
4. Display TMD identification !DENT.
5. Move cursor.
6. Display the ·start of test' date DATE.

7. Move pointer for the start of BUFFER mto an index register.
8. Move 16 into the loop coW1tcr register CX. (number of bytes of data per line).9

9. Move cursor.
I O. Display 1 byte of data.
11. Increment the data buff er pointer.
12. Is this the last byte of data in the file? If' yes'. goto function 14.
13. Repeat functions 9 to l 13.

14. Increment the row pointer ROW.
15. ls this the last row of the screen? If ·yes' exit loop.
16. Repeat functions 9 to 116.
17. Pop value from the CPU stack, correction because of exiting a loop mid-stream.
18. Return to the main control routine COMMANDR.

OLD

VIEWPATII GETID GETDATE GETDAfA GETEVENT WAITD

1 4-11 12 - 14 27
C. I C.l.

4f "* CREATE GETPATH

15- 20 21 - 26

2 3

CONDITIONS:

C I. Read bvtes of data unt111 an · (i'i" character is detected.
·._/

C2. Read bytes of data until! an · ii' character 1s detected.

FUNCTIONS:

I. Mov the pointer value for MSGLOAD into the index register
2. Create a new screen.
3. Input the fiknamc and directory path. Store in PATH

4. Open the specified file.
5. Jump to function 81 if a loading error is detected.
6. Read 1 byte from the opened file.
7. Jump to funl!tion 81 if a loading error is detected.
8. Display the character
9. Load the TMD identification (2 bytes) and store in IDENT.
10. Return to the OLD routine.
11. Display "FILE LOADING ERROR", then return to OLD routine.

FUNCTIONS: continued

12. Load next 12 bytes into DATEBUF.
13. Jump to function 81 if a loading error is detected.
14. Return to OLD routine.

15. Read l byte from opened file.
16. Jump to function 81 if a loading error is detected.
17. check for an '@' character.
18. Repeat functions 85 to 88 if the '@' is not detected.
19. Display the '@' character.
20. Return to OLD routine.

21. Read 1 byte from opened file.
22. Jump to function 81 if a loading error is detected.
23. check for an ·#'character.
24. Repeat functions 85 to 88 if the·#' is not detected.
25. Display the · #' character.
26. Return to OLD routine

27. Call the WAITD routine to display the mam menu MSGMENU
and then return to the main control routine COMMANDR.

EXIT

1, 2
FUNCTIONS:

I. write one character 'E' to the screen

2. exit back to MSDOS

SDATA

1-6

FUNCTIONS:

I. Establish how many bytes of data are in BUFFER.

2. Check for an '@' character.

3. If 4094 bytes are counted before the ·@· character is detected goto function 122.

4. Write bytes of data to the opened file.

5. If a file transfer error is detected goto function 122.

6. Return to the SA VE routine

SEVE;',T

1 - 6

FUNCTI01'S:

1. Establish how many bytes of data arc in EVENTB

2. Check for an ·#'character.

3. If 254 bytes are counted before the · #' character is detected goto function 122.

4. Write bytes of data to the opened file.

5. If a file transfer error is detected goto function 122.

6. Return to the SA VE routine.

SID

1-9

FUNCTIONS:

1. Set up a OT A.
2. Create a new file using PA TH.
3. Store handle in HANDLE.
4. Move an'*' into the OTA
5. Move the contents of IDENTV into the OT A.
6. Write 3 bytes into the opened file.
7. Return to the SAVE routine.

8. In the case of a file transfer error display MSG4
9. Return to the SAVE routine.

SDATE

1 - 4

FUNCTIONS:

I. Move the contents or DATEBUF into the DTA.

2. Write 12 bytes to the opened file.

3. If a file transfer error is detected execute functions: 122 and 123.

4. Return to the SA VE routine.

SAVE

I

VIEWS SID SDATE SDATA SEVENT WAITD

1

C l ci..
CREATE GETPATH * *

2 3

CONDITIONS:

Cl. Save bytes of data from RUFFER until I an @,. character is detected.

C2. Save words of event times from L VENTH untill a Ii' character is detected.

FUNCTIONS:

I. Move the pointer for MSGSA VE into the index register.

2. Create a new screen.

3. Input a new file specification into the PATH variable.

C.3.

The Data Processing System

program listing

26

;##
;#### DPSPROG.ASM ####
~### ####
;#### 9 - 07 - 1993 ####
;#### ####
;#### Mike Wetton ####
;#### ####
;##

TEXT SEGMENT

ASSUME
ORG

CS:_ TEXT, DS:_TEXT, SS: __ TEXT
100h

START: JMP MAIN

PROGRAM'S DATA AREA OF MEMORY FOR ITS VARIABLES

ERRCODE Df3 ()

HANDLE ow 0 a handle to an opened fill:

PATH DB 64 Dl lP (OOh l . file specification

OTA DB 64 DUP (OOht . Data Transfer Arca

!DENTY DB 5Ah, Oa5h . TMD 1dcnt1ficat1on

DATEBUF DB 31 h, 33h. 30h. 37h. 39h. 33h. 30h. 39h. 34h. 35h. 30h, 30h

ROW
COL

DB
DB

. date and time values

: row on screen
: column on screen

27

PROGRAM DATA AREA OF MEMORY FOR VDU SCREEN

MESSAGES

MSG I DB 11Serial port not initialised." , ODh , OAh , "$"

MSG2 DB "Printer port not initialised." , ODh , OAh , "$"

MSG3 DB "Type 'C' to return to the main MENU screen.","$"

MSG4 DB " **** LOADING FILE CONTENTS ERROR ****"
ODh,OAh , "$"

MSGMENU
DB " 11,0dh,Oah
DB II ",Odh,Oah
DB ",Odh,Oah
DB II ",Odh,Oah
DB ",Odh,Oah
DB II Type ·1:· to EXIT program: back to DOS. ",Odh,Oah
DB " ",Odh,Oah
DB " Type I' to upload data from the serial port ''.Odh.Oah
DB ".Odh,Oah
DB " Type [)' to , IC\\ a director, of files. ".Odh.Oah
DB ".Odh.Oah
DB " Type R' to ,·1c\\ the nm· dale from mcmon·. ".Odh,Oah
DB ".Odh.Oah
DB .. ·1\pc 1: to load the ra\\ data from a file ".Odh.Oah
DB ".Odh.()ah
DB " Type s· to sa,c the raw data to a lilt: ''.Odh.Oah
DB ".()dh,Oah
DB

,,
Type P' to \ ic\\ the processed data ".OdhJ)ah

DB ".Odh,Oah
DB ,,

".Odh.Oah
DB "S"

MSGINPUT
DB
DB
DB
DB

11 ,0dh,Oah
DB

",Odh,Oah
DB
DB
DB
DB
DB
DB
DB

MSGRAW

28

" ",Odh,Oah
11 11 ,0dh,Oah
11 ",Odh,Oah
11 UPLOADING RAW DAT A FROM THE TMD or the OTO

II **

" ",Odh,Oah
11 "~Odh,Oah
" IDENTIFICATION OF THE TMD =
" ",Odh,Oah
" STARTING DATE OF TEST ~
11 ",Odh,Oah

",Odh,Oah

",Odh,Oah

DB ".Odh.Oah
DB " DISPLJ\ YING THF RA \V DATA FROM THE

MEMORY".Odh.Oah
DB " *************** ******** ***** "'****************

".Odh.Oah
DB
DB

"Jldh,Oah
" IDENTIFICATION OF TIIF !"MD ~

DB ".Odh.Oah
".OdhJ)ah

".Odh.Oah DB " STAR f'ING DAI 1-. Ot- 11-.S I
DB ".Odh.Oah
DB "$"

MSGDJR
DB
DB
DB
DB

",Odh,Oah
DB
DB
DB
DB
DB
DB
DB
DB
DB

"
,.

,,

"

"
"
"
"$"

",Odh,Oah
",Odh,Oah
",Odh,Oah

DISPLAYING A DIRECTORY OF FILES

*********************************** ",Odh,Oah
",Odh,Oah
",Odh,Oah

Input the complete path of the directory. ",Odh,Oah

For exampl1;;, A:\test*.dat
or C:*.*

",Odh,Oah
",Odh,Oah

",Odh,Oah
",Odh,Oah

MSGLOAD
DB
DB
DB
DB

",Odh,Oah
DB

",Odh,Oah
DB
DB
DB
DB
DB
DB
DB
DB

MSGSAVE
DB
DB
DB
DB

".Odh,Oah
DB

",Odh,Oah
DB
DB
DB
DB
DB
DB
DB
DB

"
II

II

II

II

II

II

II

II

II

II

II

"$"

II

''S''

29

11 ,0dh,Oah
11,0dh,Oah
11 ,0dh.Oah

LOADING DAT A FROM A SPECIFIED FILE

",Odh,Oah
",Odh,Oah

Input the complete path and filename. ",Odh,Oah
",Odh,Oah

For example, A:\test\test.dat 11 ,0dh,Oah
or C:trial.dat ",Odh,Oah

",Odh,Oah

",Odh,Oah
".Odh.Oah
".Odh,Oah

SA YING DATA TO A SPECIFIED FILE

"J)dh.Oah
".Odh.Oah

Input the compkt~ path and lilcnamc
".OdhJlah

For example. /\ test test3 dat

".Odh.Oah

".()dhJ)ah

or C tnal56.dat ".Odh.Oah
".Odh.Oah

PROGRAM'S DATA AREA OF MEMORY FOR DATA AND EVENTS

BUFFER

EVENTB

DB 4096 DUP (00h)

DB 256 DUP (00h)

30

THE MAIN CONTROL MODULE
~****************

MAIN: MOV AX , CS
MOV OS.AX
MOV ES,AX
NOP
CALL INITtR
NOP
CALL INIT2R
NOP
CALL INIT3R
NOP
CALL COMMANDR
NOP
MOV AH,O
INT 16h
NOP
INT 3
NOP
MOV AH .4Ch
MOY AL .00
INT 21h

MESSAGE PROC NLAR

MOY AH, 02h
MOY BI I. OOh
INT JOh
NOP
MOY AH, 09h
MOY DX. SI
!NT 21h
NOP
RET

MESSAGE ENDP

~ initialise serial port

: initialise printer

: initialise the VDU screen

: control routine

. exit to DEBUG

. DOS exit function

mm~ cursor

. \\Tltc message to screen

INITlR PROC NEAR

port

MOV AH,O
MOY DX,O
MOV BX,O
MOV AL,OE3h
INT 14h
NOP
MOY AH,03
INT 14h
NOP
MOY AH,01

MOY
MOY
MOY
INT
NOP
RET

DX,O
BX,O
AL, 0Dh
14h

INITIR ENDP

INIT2R PROC

MOY All. 01
MOY DX.O
!NT 17h
NOP
MOY AH ,02
MOY DX.O
!NT 17h
NOP
MOY AII.O
MOY DX.O
MOY AL, ODh
!NT 17h
NOP
RET

fNIT2R ENDP

31

; ititialise serial port

~ 9600 baud,8-data bits, I stop bit & no parity

; get serial port status

; send one character to the serial

; character to be sent

. 1nitialtse printer
() LPTI

. get rnntcr status

. () IP 11

. send a character to the printer

. 0 - l.PTI

. character to be prirtcd

IN1T3R PROC NEAR

MOV AIi, OOh
MOV AL,03h
INT JOh
NOP
MOV SI. offset MSGMENU
CALL DISPLAY
NOP
RET

INIT4R ENDP

32

~ set screen mode

COMMANDR CONTROLLING MENU FUNCTIONS MODULE

COMMANDR PROC NEAR

KBDI\P: MOY AH . OOh
INT 16h
NOP

CHOICE: CMP AL . 49h
JE INPUTR
CMP AL. 69h
JNE DIRC

INPUTR: CALI. INPUT
JMP NEXT
NOP

DIRC: CMP AL. 44h
JE DIRR
CMP AL, 64h
.JNE RAWC

DIRR: CALL DIR
tiles

JMP
NOP

RAWC:
JE
CMP
JNE

RAWR:
JMP
NOP

NEXT

CMP Al.. 52h
RAWR
AL. 72h
SAVEC
CALL RAW
NEXT

: input form keyboard

. call serial data rnput routine

. call routine to\ 1cw a directory of

: call routine to view raw data

SAVEC: CMP AL,53h
SAVER JE

CMP
JNE

AL, 73h
PLOTC

SAVER: CALL SAVE
NEXT JMP

NOP
PLOTC: CMP AL, 50h

PLOTR JE
CMP
JNE

AL, 70h
OLDC

PLOTR: CALL PLOT
NEXT JMP

NOP
OLDC: CMP AL , 4Ch

JE OLDR
CMP AL, 6Ch
JNE EXITC

OLDR:CALL OLD
a file

JMP NEXT
NOP

EXITC: CMP !'i .. 45h
JE EXITR
CMP AL, 65h
JNE NEXT

EXITR: CALL EXIT
to DOS

.IMP NEXT
NOP
REr

COMMANDR FNDP

DfSPLA Y PROC NFAR

MOY
MOY
INT
RET

AH, 09h
DX,SI
21h

DISPLAY ENDP

33

; call routine to save the raw data

; call routine TO print/plot results

: call routine to load ra\v data from

. call roulmc to enable an exit back

: display A string of characters

34

UPLOAD TMD INFORMATION VIA THE SERIAL PORT

INPUT PROC NEAR

MOY SI , offset MSGINPUT
NOP
CALL CREATE
NOP
CALL UPLOAD
NOP
CALL SHOW

the TMD
NOP
RET

INPUT ENDP

CREATE PROC NEAR

MOY AH. OOh
MOY AL, 03h
JNT IOh
NOP
CALL DISPLAY
NOP
RET

CREATE ENDP

UPLOAD PROC NF!\R

MOY ERRCODE . 00
ASTERISK: NOP

MOY AH .02
MOY DX .0
MOY BX.O
INT 14h
NOP
MOY ex ,AX
NOP
MOY
JNT
.TE
JMP
NOP

AH ,01
16h

EEEE
BACKER

: routine to create a new screen

: routine to upload the serial data

: routine to show the identification of

. set screen mode

. mon: cursor

: detect a KBD keystroke

EEEE:TEST CH , 80h
JNE ASTERISK
NOP
CMP
JNE
JMP
NOP

IDENT:
MOV
MOV
INT
NOP

CL,2Ah
ASTERISK
IDENT

MOV AH,02
DX,O
BX,O
14h

MOV CX,AX
NOP
TEST CH, 80h
JNE ASTERISK
NOP
MOV IDENTV , CL
NOP

AAAA: MOV All . 02
MOV DX.O
MOV BX.O
INT 14h
NOP
MOY CX.AX
NOP
TEST CH. 80h
JNF AAAA
NOP
MOY IDENTV · l . CL
NOP

DATF.·MOV DI . offset DATFBl JF
NOP

BBBB:MOV All. 02
MOV DX ,0
MOV BX,O
!NT 14h
NOP
MOV CX,AX
NOP
TEST CH, 80h
JNE BBBB
NOP
MOV fDIJ ,CL
INC DI

35

CMP DI, offset DATEBUF+ 12
JNE BBBB
NOP

; start of block marker

; move cursr

. rno\c cursor

. dalL' and Prnl' buffer

. mm:: cur~or

36

DATA: MOV DI • offset BUFFER ; data buffer
NOP

CCCC:MOV
MOV
MOV
INT
NOP

AH ,02
DX,O
BX ,0
14h

MOV ex .AX
NOP
TEST CH. 80h
JNE CCCC
NOP
MOV
INC
CMP
JNE
NOP

[DI], CL
DI
CL. 40h
cccc

; move cursor

. end or data marker

EVENT: MOY DI , offset FVl:NTB . event times buffer
NOP

DODD: MOY 1\H. 02
MOY DX.O
MOY BX. O
fNT 14h
NOP
MOV ex. A>-:
NOP
TEST Cll . 8'lh
JNE DDDD
NOP
MOV !DIJ. U
INC DI
CMP Cl. . ~-lh
JNE l)[)f)[)

NOP
RET

BACKER MOV
NOP
RET

ERRCODE. OFFh

UPLOAD ENDP

. lllO\ e cursor

. l'nJ of blod markl'r

37

SHOWPROC NEAR

MOY ROW , 07h ~ display the TMD identification
MOY COL,26h
CALL CURSOR
MOY SI , offset IDENTV
CALL CONVERT
CALL SEECHAR
INC SI
CALL CONVERT
CALL SEECHAR
NOP
MOY ROW , 09h ; display the TMD · start of test' date
MOY COL, 26h
CALL CURSOR
MOY SI , offset DA TEBUF
MOY CX,3

FFFF: PUSH ex
MOY DH, [Sil
INC SI
MOY DL, ISJJ
INC SI
CALL SEECHAR
NOP
MOY DH. 20h
MOY DL, 20h
CALL SEECHAR
NOP
POP ex
LOOP FFFF
NOP
MOY ROW . 12h
MOY COL, Olh
CALL CURSOR
MOY SI . offset MSG3
CALL DISPLAY
NOP
MOV AH ,0
INT 16h
NOP
CALL INJT4R
RET

SI-IOWENDP

. display return to menu message

. wait for a KBD keypress

38

GENERAL ROUTINES USED BY ANY MAJOR FUNCTIONAL
OUTINES

CURSOR PROC NEAR

MOV AH ,02
position

MOY
MOY
MOY
INT
RET

CURSOR

BX ,0
DH, ROW
DL,COL
!Oh

ENDP

CONVERT PROC NEAR

MOV OH, [SI]
MOV CL,4
SHR OH.CL
AND OH, OFh
OR OH, 30h
CMP OH, 39h
JBE MISS!
ADD Oil. 07h
NOP

MISS!· MOV DL. IS!]
AND DL. OFh
OR DL. 30h
CMP DL. 39h
JBE MISS2
ADD DL. 07h
NOP

MISS2: RET

CONVERT ENDP

; move the cursor to a specified

. convert top 4 bits to ASCII

. con\\:rt bottom 4 bits to ASCII

SEECHAR PROC NEAR

MOV AH,OEh
(high bits)

MOV
MOV
INT
MOV

(low bits)
MOV
MOV
INT
NOP
RET

BX,O
AL,DH
IOh
AH, OEh

BX,O
AL.DL
10h

SEECHAR ENDP

39

; write I character to the screen

: write I character to the screen

DISPLAY THE CONTENTS OF A SPECIFIED DIRECTORY

DIR PROC NEAR

CALL VIEWDIR
NOP
CALL FIRST
NOP
CALL MORF
NOP
CALL WAITD
NOP
RET

DIR ENDP

VIEWDIR PROC NEAR

MOY SI, offset MSGDIR
NOP

. rouunc to create a screen and inp:.it a path

. routine to display the first directory entry

. routine to displa~ dirc;:ctory entries

. display return to mam MFNI i routmc

CALL CREATE : display MSGDIR
NOP
CALL GE'I PATH : input path and files peciftcation
NOP
RET

VIEWDIR ENDP

GETPATH PROC NEAR

MOV
MOV
MOV
MOV
INT
NOP
MOV
MOV
MOV
ADD
ADD
MOV
NOP
RET

SI , offset PA TH
BYTE PTR[SI] , 64
AH ,OAh
DX , offset PA TH
2th

DI , offset PATH
BH,O
BL, PATH+ 1
BL,2
DI, BX
BYTE PTR[DI], 0

GETPATH ENDP

FIRST PROC NEAR

MOY All, !Ah
MOY DX. offset !HA
fNT 2 lh
NOP
MOY All. 4Eh
MOY ex, 0
MOY DX. offset P,\TI I· 2
!NT 21h
NOP
MOY SI . off-;ct Dli\
ADD SI. !Eh
MOY ROW. OEh
MOY COL, OCh
CALL CURSOR
NOP

NEXTC:
CMP
JE
NOP
NOP
MOY
MOV
INT
NOP

MOV AL, ISII
AL,O
EXITFN

AH, OEh
BX,O
!Oh

INC SI
JMP NEXTC

EXITFN: RET
FIRST ENDP

40

; insert the size of PA TH buffer

: input ASCII string (path)

; insert an ASCIIZ character

. set up the DTA

. find first matching directory entry

. d1spla~ file naml.'

: display character

FIRST ENDP

MOREPROC NEAR

NEXTO:
INC
CMP
JB
MOY
ADD
NOP

NOP
ROW
ROW, 18h
tvfISSADD
ROW ,OEh
COL, 12h

MISSADD: CALL
NOP

CURSOR

MOY SI , offset OTA
ADD SI, I Eh
NOP
MOY
INT
JB
NOP

AH, 4Fh
21h
EXITMN

NEXT!: MOY AL. !Sil
CMP AL. 0
JE BACK~
NOP
NOP
MOV AH. OLh
MOV BX .0
INT !Oh
NOP
INC SI
JMP NL)(! I

BACK2. .lfv1P N1.x·1 < l
NOP

EXITMN RLT

MOREENDP

WAITD PROC NEAR

MOV RO\\/ . 18h
MOV COL. 14h
CALL CURSOR
MOV SI . offset MSG3
CALL DISPLAY
NOP
MOV AH .0
!NT 16h
NOP
CALL INIT4R
NOP
RET

41

; new line

: address of new filcname

: fetch next matching filename

d1spl,n drnraclt:r

. displa) return to menu message

. wait for a KBD keypress

42

WAITD ENDP
·································**********************************

LOAD TMD TEST DAT A FROM A SPECIFIED FILE

RAW PROC NEAR

MOY SI , offset MSGRA W
NOP
CALL CREATE
NOP

GETSTART: MOY ROW , 04h
MOY COL, 26h
CALL CURSOR
MOY SI , offset fDENTV
CALL CONVERT
CALL SEECHAR
INC SI
CALL CONVERT
CALL SEECHAR
NOP
MOY ROW ,06h
MOY COL. 26h
CALL CURSOR
MOY SI , offset DAlTBl JI·
MOY ex, 3

GETDATA: PUSH ex
MOY DH, [SIJ
INC SI
MOY DL. [Sil
INC SI
CALL SF.ECH1\R
NOP
MOY DH, 20h
MOY DL ,20h
CALL SEECI-1AR
NOP
POP ex
LOOP Hl-tHH
NOP

III!: MOY ROW, 09h
MOY COL,OOh
MOY SI , offset BUFFER
MOY ex, 16

JJJJ: PUSH ex
NOP
CALL CURSOR

LAST1: MOV AL , [SI]
CMP AL ,40h

: display the TMD identification

. displa~' the TMD start of test' date

: display the TMD data

JE RAWEND
CALL CONVERT
CALL SEECHAR
INC SI
ADD COL,04
NOP
POP ex
LOOP JJJJ
MOY ex, 16
MOY COL,O
INC ROW
CMP ROW ,24
JNE JJJJ
NOP

BACKR: CALL W AITD
NOP
RET

RA WEND: POP ex
JMP BACKR

RAW ENDP

43

SA VE TMD TEST DA IA TC) A SPECIFIED FILE

SAVE PROC NEAR

CALL VIFWS
NOP
CALL SID
NOP
CALI. SDATI:
NOP
CALL SDATA
NOP
CALL SEVENT
NOP
CALL WAITD

NOP
RET

SAVE ENDP

. d1spla~ 111struct1011s. get tile specifications

. sa,e the TMD identification

. save the date and time values

. save the TMD data

: save the recorded event times

: wait for a user keypress before
returning to COMMANDR

VIEWS PROC NEAR

MOV SI , offset MSGSA VE
NOP
CALL CREATE
NOP
CALL GETPA TH
NOP
RET

VIEWS ENDP

SID PROC NEAR

MOY
MOV
!NT
NOP
JB
NOP
MOY
MOV
MOY
INT
NOP
JB
MOV
NOP

AH, !Ah
DX , offset OTA
21h

SAVE ERR

AH, 3Ch
DX , offset PA TI-I · 2
cx.o
21h

SAVE ERR
HANDI.L. J\X

MOY DI , offset OT/\
MOV BYTE PTRIDI]. 2Ah
NOP
MOV Al.. IDFNTV
MOV I DI · I J . Al.
NOP
MOV AL, IDI:NTV· I
MOY [DI *2 J, Al.
NOP
MOV AH. 40h
MOV BX , HANDLE
MOV
MOY
!NT
JB
NOP
RET

ex ,3
DX, DI
21h
SAVE ERR

44

SA VE __ ERR: MOY SI , offset MSG4
CALL CREATE
NOP
RET

; create a new screen

: get the file specification

: set up a OTA

. create a new file

. \\TI tc J bytes to Ii le

: display an error message

SID ENDP

SDATE PROC NEAR

MOY SI , offset DA TEBUF
MOY DI , offset OT A
MOY ex, 12
REP MOYSB
NOP
MOY AH, 40h
MOY BX, HANDLE
MOV CX, 12
MOY DX , offset DTA
INT 21h
NOP
JB SAVE ERR
NOP
RET

SDATE ENDP

SDATA PROC NEAR

MOY SI , offset Hl ii-FER
MOY ex ,0

NEXTBY: MOV Al., !SI]
INC SI
INC ex
CMP ex, 4095
JE SAVE ERR
CMP AL, 40h
JNE NEXTBY
NOP
MOY
MOV
MOV
INT
NOP

AH. 40h
BX. HANDLL
DX . offset BUFFER
21h

JB SAVE ERR
NOP
RET

SDATA ENDP

: write 12 bytes to file

. \\Tile CX bytes to tile

SEVENT PROC NEAR

MOV SI , offset EVENTS
MOV CX,O

NEXTBZ: MOV AL , [SI]
INC SI
INC ex
CMP ex, 254
JE SAVE ERR
CMP AL, 23h
JNE NEXTBZ
NOP
MOV AH ,40h
MOV BX , HANDLE
MOV DX , offset EVENTS
INT 21 h
NOP
JB SAVE ERR
NOP
MOY AH, 3Eh
MOY BX. HANDLE
INT 21h
NOP
RET

SEVENT ENDP

: write ex bytes to file

, close file

PLOT THF TMD RESULTS UN /\ VDU SCREEN OR ON

,\ PRINTOUT

PLOT PROC NEAR

MOY AH, OEh
program

MOY
MOY
!NT
NOP
RET

PLOT ENDP

AL, 50h
BX,O
IOh

: wntc one character for testing

OLD PROC NEAR

CALL VIEWPATH
NOP
CALL GETID
NOP
CALL GETDA TE
NOP
CALL GETDA TA
NOP
CALL GETEVENT
NOP
CALL WAITD
NOP
RET

OLD ENDP

VIEWPA TH PROC NEAR

MOY SI, offset MSGLOAD
NOP
CALL CREATE
NOP
CALL GETPATH
NOP
RET

VIEWPATH ENDP

GETIDPROC NEAR

MOY
MOY
MOY
!NT
NOP
JB
MOY
MOY
NOP
MOY
MOY
MOY
INT
NOP

AH. 3Dh
AL,O
DX . offset PATH · 2
21h

LOADERR
BX,AX
HANDLE.AX

AH. 3Fh
CX. I
DX , offset OT A
2th

; get file specification

; get TMD identification

; get date and time values

~ get the TMD data

: get the times of recorded events

: wait for a user KBD keypress

. create a ne\\ srreen routine

. 1nrut a filenamc and path

. open the spec1f1cd tile
: read only

: to detect a file error
: transfer the file handle

: read I byte of file

MOV ROW, 18
MOY COL,O
CALL CURSOR
NOP
MOY
MOY
MOY
INT
NOP
JB
NOP
MOY
MOY
MOY
MOY
INT
NOP
JB
NOP
RET

LOADERR:

AH, OEh
AL,DTA
BX ,0
10h

LOADERR

AH, 3Fh
BX, HANDLE
ex, 2
DX, offset !DENTY
21h

LOADERR

MOY SI , offset MSG-4
CALL CREATF
NOP
RET

GETIDENDP

GETDATE PROC NL:\R

MOY
MOY
MOY
!NT
NOP
JB
NOP
RET

AH, 3Fh
ex. 12
DX, offset DATFBLJF
21h

LOADERR

GETDATE ENDP

GETDATAPROC NEAR

MOY DX , offset BUFFER
LOOPD: MOY AH , 3Fh

MOV BX , HANDLE

48

; display character

; read 2 bytes of file

. display an error message

. ri:aJ I.:' h\tC'.'> of fi k

; read I byte of file

MOV
INT
NOP
JB
NOP
MOV
INC
MOV
CMP
JNE
NOP
MOV
MOV
INT
NOP
RET

CX, I
2th

LOADERR

SI, DX
DX
AL, [SI]
AL, 40h
LOOPD

AH, OEh
BX,O
!Oh

GETDATA ENDP

GETEVENT PROC Nl-:AR

MOY DX. offs~t l·VI-~ It)
ELOOP: MOV ;\11 3fl1

MOY BX.IIANl)I.I
MOY ex. I
INT 21h
NOP
JB I < '.\DI Ri<
N<>P
tv10V SI . I):\
INC D:\
tvtOV Al . !Sil
CMP AL. 23h
JNE ELOOP
NOP
MOY
MOY
!NT
NOP

AH. OEh
BX.O
!Oh

MOY AH. 3Eh
MOY BX, HANDLE
INT 21h
NOP
JB LOADERR
NOP
RET

GETEVENT ENDP

49

; display character

. clo:-e the file

APPENDIX D

The Software Development Environment Details

This section contains:

D.!. Environnient Description"

D.2. A menu batch fiie.,

D.4. An asseaubly langua~e ,nessage prograni.

Environment Description

2

Environment D~scription

Programs are required to edit the source program and for the serial

communication between the PC and the Motorola evaluation board. The names

of the main programs used for this project are as follows:

M Microsoft's full-screen editor,

PA.SM Motorola's portable asembler,

UBUILDS to create S-records,

:\ISKERi\HT k' serial communications. and

Bl' FF:\LO to accept S-rccords and commands

to debug a user program.

The four PC programs used for <.,oft\\are de\clopment were packaged into an

efficient em·ironmcnt by calling them from within an MS-DOS batch lilc

(written by Mike Welton) The batch lik 111,·okes two macinc code programs

One that clears the screen and selects forground and background colours for text.

The other allows the user to select menu choices from within a batch file. A

TYPE command i nsidc the batch file creates a m..:nu on thl! screen (sec diagram

belmv). The PC screen would show the following menu:

Type · 1 f for EDITING

Type '2' for PA.SM

Type '3' for a LISTING

Type ·41 for S-RECORDS

Type •51 for MSKERMIT

Type '6' for MS-DOS

D.2.

A menu batch file

3

MC68HC11 ASSEMBLY LANGUAGE PROGRAMMING ENVIRONMENT

(author Mike Wctton, file MENU.BAT)

ECHO OFF
BREAK ON
COLOUR

:START

CLS
TYPE MESSAGE.TXT
:INKEY
ERROR
IF ERRORLEVEL 6 GOTO DOS
IF ERRORLEVEL 5 GOTO COMMUN I CA TE
IF ERRORLEVEL 4 GOTO UBUILDS
IF ERRORLEVEL 3 GOTO LIST
IF ERRORLEVEL 2 GOTO PASM
IF ERRORLEVEL I GOTO EDIT
GOTOINKEY

·FDIT

CD EDIT
M A'J>ROGS' NEW ASM
CD ..
GOTO START

:PASM

CD PASi'vl
PASMHCJ I -dxs -1 A:\PROGS NEW !SI/\ .f>RO(iS NLW 1\SM
CD ..
ECHO Type· I' to continue
ERROR
GOTO START

:LIST

TYPE A:\PROGS\NEW.LST
ECHO Type · 1' to continue
ERROR
GOTO START

:UBUILDS

CD PASM
UBUILDS NEW.O

4

COPY NEW.MX A:\PROGS\NEW.MX
ECHO Type · I' to continue
ERROR
CD ..
GOTO START

:COMMUNICATE

CD KERMIT
MSKERMIT
ECHO Type . L' to dov,nload SRECORDS
ECHO Type· I' to continue
ERROR
CD ..
GOTO START

:END

START
:DOS

D.3.

An assembly language choice
program

THE MENU CHOICE PROGRAM (author Mike Wetton, file COLOUR.COM)

The assembly language program COLOUR.COM is invoked from the menu
batch file (MENU.BAT). The instructions of the COLOUR.COM program
select the foreground and background colours for the screen menu.

START: MOY AH,00
MOY AL,03
INT 10h
NOP
MOY AX, OB800h
MOY ES.AX
MOY DI, 0000
MOY ex. 0100h
MOY AL, 20h
MOY AH, IFh
REP STOSW
NOP
MOY AH, 4Ch
MOY AL, 00
!NT 21h

INPFr MENl1 CHOICE PROGRA'.\1
ERROR.COi\1)

; select text screen mode

; CGA screen memory

: start of screen memory
; 2000 bytes of screen memory
: space character
: attribute:- white on blue
: write ::moo blue spaces

. return to DOS function

(author \like \\'etton. file

The assembly language program ERROR COM 1s invoked from the mt.!nu batch
file
(MENU.COM) tn order to select a chrnce of menu options ASCII codes 31h to
36h are input from the KI3D then comcned to ~~CD, alues I to 6 and returned to
IJOS as an error code.

START MOV
!NT
NOP
CMP
JB
CMP
JB
NOP
MOY
SUB
!NT

Al 1. 00
16h

AL. 31h
START
AL, 36
START

AH, 4Ch
AL, 30h
2lh

. \\a1t for a KBD input

. less than· I'·)

: greater than · 6' '.'

: return to DOS function
; error code for DOS use

APPENDIX E

The Hardware Development Environment Details

This section contains:

THE MC68HCI 1 EVBl; E\'ALliATION BOARD

THE MC68HCI 1 EVB E\'ALl'ATION BOARD

THE \IC68HCI I EV\J E\"ALL\TION BOARD

7

THE MC68HC11EVBU EVALUATION BOARD

This board is designed to test and debug systems that use the MC68HC 1 I in it's
single-chip mode. The MC68HC 11 E9 microcontroller has on-chip RAM,
EEPROM and a ROM containing a monitor program called BUFFALO.

The EVBU contains two support chips~ a real-time clock/calendar chip with 32
bytes of static RAM, and a serial interface chip used to communicate with the
terminal 1/0 port.

The terminal 1/0 baud rate defaults to 9600 baud and communcation is via the
microcontroller SCI subsystem.

The EVBU requires a, user-supplied . ..-5 volt de pO\ver supply and a RS232C
compatible tenninal for operation.

THE MC68HC11EVB EVALl::\TION BOARD

This EVB evaluation board was designed to demonstrate the capabilities of the
MC68HC 11 microcontrolkr unit It operate~ 1n either the debugging mode or
the evaluation mode.

The debugging mode allows the user to debug user code under the control of the
BUFFALO monitor program. The user code can be assembled on the host
computer (the IBM PC) and do\vnloadcd as S-rccords into the EVI3 RAM. or
assembled onc-linc at a tune ln the FVB assembleridisasscmblcr

This hoard is designed to expand the memory of the microcontrollcr and provide
protected interfaces to the user's targd circu1t1).

The EVB and EVM have t\VO serial links to a dcvdopmcnt system. namely. the
host port and the terminal port. The host port is used for downloading user
programs. whereas, the terminal port is used to monitor program execution.

RS232C line drivers and receivers are used as a serial interface between the
EVB and the host computer and terminal.

The EVB has a fixed 9600 baud rate provided for the host port, and a hardware
selectable (300 - 9600) baud rate for the terminal port.

The EVBU requires a, user-supplied, +5 V, + 12V, - I 2V and GND de power
supply and a RS232C compatible terminal for operation.

8

THE MC68HC11EVM EVALUATION BOARD

This board was designed to allow the user to program the MC68HC 11 series of
microcontrollers in the single-chip or the expanded multiplexed mode of
operation. The Motorola literature states that it is a tool for designing,
debugging and evaluating the MC68HCI I microcontroller based target system
equipment.

The EVM is the most sophisticated of all the aforementioned evaluation boards,
as it contais pseudo ROM and EEPROM memory

The user has the choice of mterfacing directly to the MC68HC 11 ports, or to the
ports via buffered 1/0 gates.

The EVM also requires a, user-supplied. • 5 V, • J 2V. - l 2\1 and GND de power
supply and a RS232C compatible terminal for operation.

	A proposal for a development platform for microcontroller-based devices
	Recommended Citation

	wetton
	wetton_2

