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Abstract 

Simulated annealing (Kirkpatrick et al., 1983) is used to estimate the parameters of a 
mathematical model that predicts the water yield from a catchment. The calibration 
problem involves finding the global minimum of a multivariate function that has many 
extraneous local minima, a situation in which conventional optimisation methods are 
ineffective. The objective function which quantifies discrepancies between the computed 
and observed streamflows must be carefully selected to satisfy the least squares 
assumptions. 

Several published simulated annealing algorithms have been implemented, tested and 
evaluated using standard test functions. Appropriate cooling schedules are found for 
each algorithm and test function investigated. The number of function evaluations 
required to find the minimum is compared to published results for the test functions using 
either simulated annealing and other global optimisation methods. A new simulated 
annealing algorithm based on the Hooke and Jeeves ( 1961) pattern search method is 
developed and compared with existing algorithms from the literature. 

Simulated annealing is used to calibrate a conceptual rainfall-runoff model ( a modification 
of Boughton's SFB model) by fitting modelled monthly runoff to historical data. The 
model estimates runoff from daily rainfall data and potential evapotranspiration estimates 
for a catchment. The 25 catchments used for the study cover a wide range of climatic 
types including humid tropical, humid subtropical, arid, semiarid, Mediterranean and 
marine west-coast. A parsimonious approach was adopted where only the sensitive 
model parameters for a catchment were fitted. The objective function was transformed to 
satisfy the least squares assumptions. A parameter covariance matrix and standard errors 
were calculated to help identify redundant parameters. 
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1. Introduction 

A conceptual rainfall-runoff model (CRRM) was required to produce streamflow 
estimates for benchmark catchments as part of a study on the impacts of climate change 
on Australia's water resources. Once calibrated, the model would be used to generate 
streamflow estimates using rainfall and potential evapotranspiration data from a general 
circulation model and a stochastic weather generator. The SFB model (Boughton, 1984) 
needed to be separately calibrated for each catchment. 

The application of a CRRM to a watershed requires identification of the values for 
parameters representing model processes by fitting modelled streamflow to historical 
records. The calibration problem involves finding the global minimum of a multivariate 
function that has many extraneous local minima, a situation in which conventional local 
optimisation methods are ineffective (Duan et al., 1992). The existence of large numbers 
of local optima on the response surface causes local optimisation procedures to terminate 
prematurely at a local rather than global minimum. 

The global optimisation problem is to find the minimum f(x*) of a function of p 

parameters x = (x1,x2, .. ,,xp), The function may be constrained by setting boundaries 
for parameter values. The point x* is a local minimum of f(x) for x e RP, if a small 
positive number 6 exists such thatf(x*) '5..f(x) for all x E RP satisfying llx* - xii< 6 
(Bunday and Garside, 1987; Kalivas, 1992). The point x* is a global minimum of .f(x) 
if .f(x*) '5.f(x) for all x E RP or given domain. Functionf(x) may be either continuous 
or discrete. Since maximising.f(x) is equivalent to minimising -.f(x) only minimisation 
problems need be considered. 

The problem of finding the global optimum of a multivariate function with many 
extraneous local minima is one of considerable complexity. Many similar discrete global 
optimisation problems such as the traveling salesman problem or knapsack problems are 
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in a class of Non-Polynomial (NP) complete problems for which no polynomial time 
algorithms are known. The difficulty of obtaining an accurate numerical solution grows 
exponentially with the number of variables. The computational complexity of 
multivariate integration, surface reconstruction, partial differential equations, integral 
equations and nonlinear optimisation is of the order of 

(1 I el'' (1) 

where all partial derivatives of the function up to order r are bounded, dis the number of 
dimensions and Eis the error threshold (Traub and Wozniakowski, 1994). Although the 
hydrologic model calibration problem can be formulated as a nonlinear optimisation 
problem, there is more than one local minimum from which the global minimum or a 
close approximation to it must be found. 

Global optimisation problems occur in many disciplines including engineering, computer 
science, operations research, physics, image processing and biology. Efficient methods 
of solving these problems are required. Recent attempts at solving global optimisation 
problems have focused on stochastic methods which offer a close to optimal solution. 
Although computationally intensive these methods are more efficient than random 
sampling or unimodal direct search methods which stop at the first minimum encountered 
and cannot be readily used for finding the global minimum. Simulated Annealing (SA) 
(Kirkpatrick et al., 1983) is a stochastic method made feasible by the speed of modem 
computers. Many of the problems tackled using SA are of great scientific and industrial 
importance such as the design of integrated circuits, image restoration, optical design, 
and parameter estimation. 

The parameters of a CRRM can be estimated by minimising an objective function which 
quantifies discrepancies between the computed and observed streamflows. The objective 
function must be carefully selected to avoid bias in the parameter estimates. The residuals 

. 
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must be normally and independently distributed with zero mean and constant variance. 
Bates ( 1994) used SA and found it to be a reliable method of parameter estimation for the 
SFB model on the Scott Creek at Scotts Bottom catchment in South Australia. Bates also 
found that SA was more efficient and more likely to find the global minimum than 
multistart methods (the repetitive application of a local search method from different 
starting locations). 

Using SA a modified version of Boughton's model was calibrated on 25 unregulated 
catchments (Chiew and McMahon, 1993; Chiew and McMahon, 1994). These 
catchments were identified as benchmark catchments by the Australian Bureau of 
Meteorology ( 1991) and represent a range of climatic and physical characteristics for 
Australia. The calibration identifies the important model processes for these catchments 
by assigning values to well determined or sensitive parameters. 
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2. Literature Review of Simulated Annealing 

As its name suggests SA is analogous to the process of annealing in thermodynamics 
where metals or glass can be toughened by heating followed by slow cooling. At high 
temperatures the material is in a liquid state with the atoms flowing freely. Slow cooling 
gives the atoms time to align themselves achieving a minimal energy state for the system 
as the material gradually changes from a liquid to a regular crystal. SA applies this 
natural behaviour to the solution of both combinatorial and continuous optimisation 
problems. 

Metropolis et al. (1953) introduced an algorithm to simulate the behavior of atoms in 
equilibrium at a given temperature. In this algorithm an atom is randomly displaced and 
the resulting change in the energy of the system till is computed. If the energy of the 
system is lower (till::;; 0) the displacement is accepted and this state becomes the new 
starting point for the next step. When the energy of the system increases (till> 0) the 
probability of accepting the new configuration is computed from the Boltzmann 
probability factor 

(2) 

in which k
8 

is Boltzmann's constant and T is temperature. This allows the system to 
make an uphill move that may enable it to bypass a local energy minimum in the search 
for a more global minimum. At a high temperature a random displacement increasing the 
energy level of the system has a higher probability of being accepted than at a lower 
temperature. In general terms the algorithm normally takes a downhill step although it 
will sometimes take an uphill step by means of a stochastic acceptance criterion. The 
probability of accepting uphill moves slowly decreases as the temperature approaches 
zero although transitions out of a local optimum are always possible at a non zero 
temperature. 
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In its basic form SA can be described as follows: 

Algorithm 1. 
if J(xk) -f(xk+fl.x) � 0 then 

else 

xk+ 1 = xk+ ll.x with probability exp{ [ttxk)-J(xk+fl.x)]lkBTk } 
else 

xk+l = xk 

end if 

where ll.x is a random perturbation of the parameter vector x; Tk, k=0,1, ... ,m is a 
sequence of positive numbers (cooling schedule) which tend to zero and 
exp{[f(xk) -f(xk+fl.x)]/k8Tk } is the Metropolis criterion from Eqn (2) where 
-ll.E = [f(xk) -f(xk+fl.x)]. In fact xk is a discrete time Markov process with time 
dependent one step transition probabilities. At each step xk = i is the current state and 
xk+l = j is a neighbour selected at random to be a candidate for becoming the next state 
with probability 

where 

{1 if f (j) � f(i) 

si,j 
= exp([f (i)-f (j)] I k8

Tk
) if f (j) > f(i) 

(3) 

(4) 

and qij is the transition probability from state i to state j. If the candidate is accepted a 
transition to the new state is made; otherwise the next state is the same as the old state. 

{ t+i . I k "} p X = J X = l = qiliJ 
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2.1 Application of Simulated Annealing to Functions of Continuous 

Variables 

SA was originally developed for combinatorial optimisation problems although it has 
been shown to be suitable for continuous optimisation problems as well (Vanderbilt and 
Louie, 1984; Bohachevsky et al., 1986; Corana et al., 1987; Brooks and Verdini, 1988 
Press and Teukolsky, 1991; Gunel and Yazgan, 1992; Kalivas, 1992 and others). When 
applied to continuous functions SA behaves like a random walk with a bias in a down hill 
direction. The application of SA to functions of continuous variables is more challenging 
than for discrete problems. The random selection of a new solution point is more 
involved since both a direction and step size must be chosen before a transition can be 
evaluated (see section 2.5). Both global and local continuous optimisation methods often 
stagnate on flat surfaces or in long narrow valleys which are common in highly 
dimensional control spaces. Only continuous optimisation problems will be considered 
in this thesis. 

SA methods are attractive because the optimum found does not depend on where the 
search begins, the method can bypass a local minimum in the search for a more global 
one and most SA algorithms do not require the computation of function derivatives. 

2.2 Phases of Simulated Annealing 

The SA process may pass through 1, 2 or 3 phases each designed to perform a specific 
task: 

1) Presampling 
Initial estimates of optimal step size and temperature may be obtained by presampling the 
function. A random starting point may be chosen or the SA algorithm may be started 
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from several random or remote points and a small number of independent random search 
paths run from each starting location. 

There are several strategies for setting the initial temperature. Kirkpatrick et al. ( 1982) 
suggest using the observed acceptance rate <I> defined as the number of accepted moves 
divided by the total number of moves evaluated. The procedure described by Kirkpatrick 
et al. (1982) entails executing a number of preliminary moves and adjusting the control 
variable c = knT. If <I> is less than a specified acceptance ratio <l>o = 0.8 then the initial 
value co is doubled. This process is repeated until <I> > <l>o, If <I> » <l>o SA approaches a 
random walk, otherwise if <I> « <l>o the method is likely to converge to a local minimum. 
Kirkpatrick et al. ( 1982) were concerned with discrete problems and their findings may 
not apply to continuous optimisation problems. Johnson et al. (198 7) propose 
determining the initial value co by solving Eqn (5) where llE is the mean change in the 
energy of the system. 

</J0 = exp( -/lE I c0 ) (5) 

Kalivas ( 1992) proposes generating samples using different temperatures until <I> is within 
the desired range 0.5 <<I>< 0.9. 

2) Global search 
This phase uses a heuristic algorithm, analogous to the annealing process, to find the 
valley containing the global minimum rather than the global minimum itself. Once the 
algorithm is within the region of attraction for the global minimum it may be easily 
located by a local search method. (A region of attraction is the region surrounding a local 
minimum from which application of a descent algorithm will yield the minimum.) This 
phase is the most expensive in terms of the number of function evaluations required. 
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3) Local search 

The problem is now one of local rather than global optimisation and it is more efficient to 

use a local search technique. Provided the SA method has stopped in the neighbourhood 

of the global minimum a local search technique such as Nelder and Mead ( 1965), Hooke 

and Jeeves (1961) or a gradient method may be used to find the global extremum. For 

example, the SA method of Press and Teukolsky (1991) reduces to the Nelder and Mead 

( 1965) downhill simplex method as T � 0. If the SA method used does not have a 

distinct local search phase the step size should be adjusted for convergence to the required 

precision. This is the approach used by Corana et al ( 1987). 

2.3 Existing Simulated Annealing Algorithms 

Algorithm 1 is conceptual rather than functional since it does not contain essential 

information describing how the step size, starting temperature or cooling schedule are 

chosen. Optimum values for these variables and the optimum cooling schedule are not 

known. These are function dependent and a judicious choice is important since they 

determine the efficiency of the algorithm and probability of finding the global minimum. 

The step size should be selected so that the probability of exiting a local extremum is not 

too small causing the algorithm to slow exploration of the surface or become stuck in a 

local minimum. The step size should not be excessively large so that nearly all trial 

function evaluations are rejected or cause the algorithm not to settle in any valley 

including the one containing the global minimum when the cooling schedule is nearly 

complete. Kalivas (1992) proposes using the step size &c as follows 

. I . LU. U. x•.+ = x'. + 1 1 
1 1 (uf + u;+ . . .  + u;)°-5 j = 1,2, ... ,p (6) 

where u1, u2, .. ,,up are random deviates from N[O, 1] (i.e. normal density function with 

zero mean and unit variance). If the next transition is chosen in this manner there is no 



-16-
need to choose a separate direction. Since the direction is chosen randomly, new 
function evaluations are likely to be uphill of the current point. A downhill bias is 
desirable and can be achieved by evaluating function derivatives as used by gradient 
methods or by using a direct search method such as Hooke and Jeeves (1961) or Nelder 
and Mead (1965). 

When the temperature is too low the probability of accepting detrimental points is small 
and the algorithm becomes entrapped in local extrema. If the temperature is too high the 
result is a random walk. Brooks and Verdini (1988) suggest setting the temperature of 
the system so that about <I> = 0.6 of moves are accepted. 

2.3.1 Generalised Simulated Annealing 

Generalised Simulated Annealing (GSA) (Bohachevsky et al., 1986; Brooks & Verdini, 
1988 ; Kalivas, 1992) was developed for optimising continuous multivariate functions 
and alleviates many of the problems in determining the cooling schedule for a particular 
optimisation problem. In GSA the Metropolis criterion given by Eqn (2) is changed to 

p( �) = exp(--1- �[E( x)-E( x*W) kBT (7) 

where g is an arbitrary negative number and E( x) the energy level at x. If g = -1 and 
E( x*) = 0, then Eqn (7) becomes 

P( �) = exp(--1- � I E( x)) kBT (8) 

As the global minimum is not normally known a conservative estimate for E( x*) is used. 
If E( x) -E( x*) becomes negative a new estimate for E( x*) is found. 
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By using Eqn (7) with g = -1 say, GSA removes the cooling schedule and allows the 
probability of an uphill move to tend towards O as the global minimum is approached. 
The control parameter kBTis fixed to an appropriate value which could be determined by 
presampling the function (see section 2.2). The step size L\x must also be carefully 
selected (see section 2.5). 

2.3.2 Variable Step Size Generalised Simulated Annealing 

GSA is inadequate when the exact global optimum is required. Only near global 
solutions can be obtained unless step size reductions were made as the global optimum is 
approached (Sutter and Kalivas, 1991). Variable Step Size Generalised Simulated 
Annealing (VSGSA) updates L\x according to the acceptance rate <I>- Kalivas (1992) 
proposes maintaining <I> such that 0.2::;; <I>::;; 0.9. When <I> �  0.9 the current point is 
presumed to reside away from the global optimum and the step sizes are increased. 
Otherwise if <I> ::;; 0.2 then the current point is presumed to be close to the global optimum 
and the step size is reduced. Sutter and Kalivas ( 1992) suggest that about 20 moves are 
required to estimate <I>- Initially the control parameter kBT is fixed to an appropriate value. 
The interdependency of the control parameter and the step size necessitates adjusting the 
control parameter when L\x is updated. Here 

(9) 

where !lll represents the mean difference in the response function for the uphill moves 
attempted with k8Ti and Mi+l represents the difference for the first uphill move with the 
new step size. The user is required to specify the factor by which the step sizes are 
incremented or decremented. 

kBTi+I = 
kB T

i Mi+I 

Mi 
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2.3.3 Method of Vanderbilt and Louie (1984) 

The algorithm by Vanderbilt and Louie is similar to algorithm 1 in section 2. It proceeds 
iteratively, starting from a given point xO, it generates a succession of points 

O 1 i d' h 1 b 1 . . N . d d h x ,x , ... ,x , ... ten mg to t e g o  a rmmmum. ew pomts are generate aroun t e 
current point x1 using random moves. New candidate points are accepted or rejected 
according to the Metropolis criterion. The step size vector is recalculated from the step 
size distribution after a specified number of steps at a given temperature using 

Lix=Q•u (10) 

where u1, u2, ... ,un are uniform random deviates from the interval [-"3, "3] (i.e., with 
mean zero and unit variance) and Q controls the step size distribution and is obtained 
from the covariance matrix of step size distributions s by solving 

S = Q • QT (11) 

where Q can be obtained via Choleski decomposition. The covariance matrix 
automatically adapts itself to the local topography of the function and the resulting step 
size vector enables the method to take longer steps in the most profitable direction down 
the axis of long narrow valleys. The step size is calculated prior to a temperature 
reduction. When s is too small all the first steps are small and almost all are accepted and 
the size of the walk grows. When a large number of steps are rejected s begins to reflect 
the shape of the function. As T is reduced the walk is constrained and s is automatically 
maintained at an appropriate size. The user is required to provide the initial temperature, 
cooling schedule, xO and an initial guess for s. Vanderbilt and Louie applied the method 
to a set of seven test functions for global optimisation algorithms and a functional fitting 
problem. 
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2.3.4 Method of Corana et al. (1987) 

A complete SA algorithm is given by Corana et al.. The algorithm is similar to 
algorithm 1 in section 2. It proceeds iteratively, starting from a given point xO, it 
generates a succession of points xO,x l , ... ,xi, .. . tending to the global minimum. New 
points are generated around the current point xi using random moves. If the point falls 
outside the function domain a new point is randomly generated until a point within the 
function domain is found. New candidate points are accepted or rejected according to the 
Metropolis criterion. The algorithm includes automatic step size adjustments and the 
ability to set the number of function evaluations at each temperature. The step vector is 
periodically adjusted to try and maintain an acceptance rate of <I> = 0.5. A low rate means 
that too many moves are rejected wasting computational effort. A higher rate means that 
the trial configurations are too close to the starting ones and the energy of the system is 
not being significantly reduced. Productive configurations evolve too slowly and again 
computational effort is wasted. A step vector is used to record the maximum increments 
possible along each direction. Corana et al. recommend adjusting the step vector after 
every 20 moves. Corana et al. applied the method to two unimodal and three multimodal 
test functions. 

2.3.5 Method of Press and Teukolsky (1991) 

The method of Press and Teukolsky (or see Press et al., 1992) is a subtle modification of 
the direct search downhill simplex method of Nelder and Mead ( 1965). A direct search 
method is one that uses function values only. Press and Teukolsky's method replaces the 
single point x by a set of p + 1 points in p dimensional space called a simplex; thus in 2 
dimensions the simplex is a triangle, in 3 dimensions it is a tetrahedron and so on. The 
values of the response function at the p + 1 vertices of the simplex are used to locate a 
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better point which then replaces the highest point in the simplex. This has the effect of 
moving the simplex in a downhill direction towards a local minimum. The simplex is 
moved by four basic operations: a reflection away from the highest point; an expansion 
away from the highest point ; a one dimensional contraction towards the low point; or a 
multiple contraction towards the low point. The simplex method offers an efficient 
means for finding the downhill direction and tuning the step size based on data collected 
during the search. The Metropolis procedure is implemented by adding a positive 
logarithmically distributed random variable proportional to the notional annealing 
temperature T to the function value associated with every vertex of the simplex. A similar 
random variable is subtracted from the function value of every new candidate point being 
considered for entry into the simplex. This causes the algorithm to take an occasional 
uphill step while maintaining a downhill bias. 

The SA algorithm by Press and Teukolsky uses a two -phase approach. The first ( or 
global) phase consists of pure SA at a high temperature. The second (or local) phase 
occurs as T--? 0 and the algorithm reduces to the Nelder and Mead downhill simplex 
method. When T = 0, no uphill moves are accepted and the method converges to a local 
minimum. The user is required to set the starting temperature, annealing schedule and 
termination criteria. No examples demonstrating the use of this method were given by 
the authors. 

2.3.6 Method of Gunel and Yazgan (1992) 

The method of Gunel and Yazgan is based on the direct search method of Hooke and 
Jeeves (1961). The Hooke and Jeeves method consists of a series of exploration steps 
about the current point, and if successful, followed by an additional move in the downhill 
direction called a pattern move. The algorithm by Gunel and Y azgan proceeds iteratively, 
starting from a given point xO, it generates a succession of points xO, x l , . .. , xi , ... 
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tending to the global minimum. A new point is generated around the current point xi 

using exploration steps with a random step size. If the point falls outside the function 

domain a new point is randomly generated until a point within the function domain is 

found. A successful series of exploration step is followed by a pattern move. New 

candidate points are accepted or rejected according to the Metropolis criterion. Gunel and 

Yazgan's method uses the direct search method to find the downhill direction and 

maintain a downhill bias. The user is required to set the starting temperature, annealing 

schedule and termination criteria. 

The algorithm provided by Gunel and Y azgan has many shortcomings. The algorithm 

terminates if the best function value cannot be improved upon at the current temperature 

which usually happens well before SA is complete and before the global minimum has 

been found. Although the algorithm is based on a local search method it surprisingly 

doesn't use a local search phase to locate the bottom of the valley containing the minimum 

function value once SA is complete. As a result even when the valley containing the 

global minimum is located the algorithm cannot find the global minimum itself. The 

algorithm also does not have a means of adjusting the step size which prevents it from 

efficiently approaching the global minimum and as a result, at best, a near global solution 

is found. The algorithm seldom found the global minimum and was not considered 

further. The results given by Gunel and Yazgan using three test functions could not be 

reproduced. The authors reported that the algorithm found the global minimum of the 

Penalised Shubert function in about 140 function evaluations. The results obtained using 

other algorithms indicate that considerably more function evaluations are required to find 

the global minimum of this function with a reasonable probability of success (see 

section 4.4). 
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2.4 Cooling Schedule 

There is little information in the literature on the choice of cooling schedule. An estimate 
of the best starting temperature 'JO and cooling rate for a function is required. Success or 
failure of SA is largely determined by the choice of initial temperature and cooling 
schedule. There is a delicate balance, temperatures that are too high waste computational 
effort while a temperature that is too low does not adequately sample the function and 
may lead to local entrapment. The following cooling schedule has been used by a 
number of workers (Kirkpatrick, 1983; Vanderbilt and Louie, 1984; Corana et al, 1987; 
Press and Teukolsky, 1991; Gunel and Y azgan, 1992) 

k = 0,1, . . .  ,m (12) 

where JO is the initial temperature, 0 <r < 1 the temperature reduction factor and m the 
maximum number of temperature reductions. Eglese (1990) notes that different 
equations for the cooling schedule produce similar results provided that their parameters 
are well chosen. It is extremely difficult to find an appropriate initial temperature and 
cooling schedule for a SA algorithm and given global optimisation problem. Usually the 
cooling schedule is determined by past experience with similar problems or based on trial 
and error. It should be noted that the initial temperature and cooling schedule giving the 
highest reliability (probability of successfully finding the global minimum) may not 
necessarily be the most efficient due to the number of function evaluations required. A 
robust SA algorithm will produce good results for a wide range of initial temperatures 
and cooling schedules. 
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2.5 Step Size Adjustments 

The difference between the optimisation of discrete and continuous functions using SA is 
that the choice of random step becomes more subtle. The optimal size and direction of 
the step vectors are not known. Steps which are too large will invariably be rejected and 
may be outside the function's domain. Steps which are too small will be inefficient 
causing slow exploration of the function. In a valley, steps perpendicular to the valley 
floor are wasted and a means of determining the direction of the valley is required. As 
the algorithm approaches the global minimum the step size should be reduced to allow 
convergence. Only near global solutions can be obtained unless the algorithm is able to 
reduce the step size. This is the major shortcoming of the algorithm by Gunel and 
Yazgan (1992). 

To make matters worse there is interdependency between the step size and the 
temperature since they both affect the probability of accepting a move. If the step size is 
changed it may be necessary to determine a new temperature. The variable step size 
generalised simulated annealing method by Kalivas (1992) computes a new value for the 
control parameter (temperature) each time the step size is adjusted. A simpler approach is 
to adjust either the step size or temperature according to the number of moves accepted 
and rejected. It is better to adjust the step size and let the temperature cool at a 
predetermined rate since increasing the temperature to obtain a specific acceptance rate can 
prevent cooling and leave the algorithm in an infinite loop. 

The approach taken by Corana et al. ( 1987) is to adjust the step size so that a ratio of 1: 1 
between accepted and rejected configurations is maintained. This feature enables the 
algorithm to converge to the global minimum as the temperature is reduced. Press and 
Teukolsky (1991) use step size adjustments based on the expansion and contraction 
operations of the Nelder and Mead ( 1965) simplex method. The new algorithm 
developed in section 3 uses the same step size adjustments as the Hook and Jeeves 
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( 1961) pattern search method to converge to the bottom of the valley containing the best 
function evaluation once the SA phase is complete. 

2.6 Constrained Optimisation 

Constrained global optimisation problems are very common. All the test functions used 
in section 4 are constrained optimisation problems as is the rainfall-runoff model 
calibration problem in section 6. The SA algorithm must be constrained to finding a 
solution within the specified domain for the function. One approach is to give the 
objective function a large value when the constraints are violated using a penalty step 
function. In this way the search is directed back into the feasible region. This idea has 
obvious intuitive appeal and is easy to program. However function evaluations requested 
for points outside the domain do not contribute information regarding the solution and 
must be handled by the function itself. 

A better approach is for the SA algorithm to monitor the current location of the solution 
and not request function evaluations outside the domain of the function. When the 
current step size leads to the constraints being violated this can be achieved by 
temporarily reducing the step size by a factor of two, say, until a new trial point within 
the domain is found. 
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3. A New Simulated Annealing Algorithm 

Combining SA with a local optimisation method can result in a SA algorithm with two 
desirable properties. Firstly, the local optimisation method can maintain a downhill bias 
during SA. Secondly, the local optimisation method can efficiently locate the minimum 
of the valley containing the best function evaluation when the cooling schedule is 
complete. Given that the local search phase is important for the efficiency of SA 
algorithms, it makes good sense to base a SA algorithm on a proven local search method. 
The nature of the response surface influences the choice of local search method to use. 
Given that the response surface for the catchment rainfall-runoff model contains 
discontinuities (Johnston and Pilgrim, 1976; Duan et al. , 1992) it makes sense to use a 
direct search method such as that of Hooke and Jeeves (1961) or Nelder and Mead 
( 1965) rather than a derivative based method. The SA method by Press and Teukolsky is 
based on the method of Nelder and Mead and has these desirable features. Although the 
algorithm by Gunel and Y azgan is loosely based on the method of Hooke and Jeeves it 
does not use a separate local search phase which is a deficiency in this algorithm. The 
method of Gunel and Y azgan also does not have a mechanism to reduce the step length as 
the algorithm approached the global minimum. 

A new SA algorithm was developed based on experience with existing SA algorithms. 
The algorithm uses the pattern search method of Hooke and Jeeves ( 1961) to maintain a 
strong downhill bias and to locate the bottom of the valley containing the best function 
evaluation during the local search phase. The exploration steps and pattern moves are 
carried out as described by Hooke and Jeeves, the Metropolis criterion acts on the pattern 
moves to make the algorithm accept an occasional uphill move. The simplified algorithm 
is as follows (see Appendix B for program listing): 
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Algorithm 2. Step 0. Initialisation. Given initial base point b1, number of cycles per temperature c, initial step length h, minimum step length hmin, initial temperature TO and number of temperature reduction steps m. /1 =f(b1) /opt =ftb1) 

i = 1 
k = O  search = global 

Step 1. Explore function surrounding base point b1. Perform exploration to obtain new base point b2, with value h 

Step 2. Try pattern move to reduce function value. 
if /1 -h � 0 then Perform pattern move to obtain base point hp, and/p 
else if search = global then 

goto Step 4 
else if h < hmin then solved 
else 

h = h / 10 
end if 

Step 3. Accept downhill move or when uphill make Metropolis move. 
if h -/p � 0 then b1 = hp 

/1 =/p 
if /opt -Jp 

� 0 then hopt = hp /opt =Jp 
endif 

else if search = global then b1 = hp } /1 = Jp } with probability exp{ [f1-/p]/'.fk} 
else if searcli = local then b1 = b2 

/1 =h 
end if 

Step 4. If i < c then goto step 1; else it is time to reduce the temperature. 
if i < c then 

i = i + 1 
goto Step 1 

else if search = global then b 1  = hopt /1 =/opt 
if k < m then 

else 

end if 
endif 
goto Step 1 

i = 0  
k = k + l '['k = r '['k 
search = local 
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The exploratory steps examine each variable in tum by adding the step length. Thus we 
evaluate f(b 1  + zh1e 1) where for global minimisation z is a uniform random deviate 
from the interval [O, 1] and for local minimisation z = 1 ;  e 1 is a unit vector in the 
direction of the x1-axis. If the function is reduced replace b1  by b 1  + zh1e1 otherwise 
evaluate f(b 1 -zh 1 e 1 )  and likewise replace b 1 by b 1 -zh 1 e 1 if the function is 
reduced. If neither step results in a reduction leave b 1  unchanged and consider changes 
in x2 and so on until all n directions have been considered and we have a new base point 
b2. 

Pattern moves attempt to accomplish further function minimisation using the information 
acquired by exploration with an additional move in the downhill direction. The pattern 
move attempts to move from the base point b2 in the direction b2 -b 1  to bp as given by 

(13) 

The algorithm has the following features: 

1) When SA is complete the Hooke and Jeeves (1961) local search method incorporating 
step size reductions is used to efficiently approach the global minimum. 
2) The algorithm will not terminate until the cooling schedule is complete. This ensures 
that the function has been sampled sufficiently. 
3) The Hooke and Jeeves exploratory steps enable the algorithm to efficiently travel down 
long narrow valleys by determining the downhill direction. 
4) The algorithm reverts to the method of Hooke and Jeeves as T � 0. This is desirable 
since the down hill bias increases as the temperature is reduced. 
5) The algorithm terminates during the local search phase when the step length has been 
reduced below the specified minimum step length. This provides a very simple and 
effective test for convergence. 
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6) When called with 'JO =  0 the Hooke and Jeeves pattern search method is performed. 
7) The algorithm is automatically constrained to stay within the function domain and will 
not request function evaluations outside this domain as do most other methods. This 
problem is overcome by temporarily halving the step size until a point within the 
functions domain is found. This also enables the algorithm to converge on a boundary of 
the domain. 
8) The best function evaluation is always retained. The base point is replaced by the 
point corresponding to the best function value every time the temperature is reduced. 
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4. Evaluation of Simulated Annealing Algorithms 

4.1 Test Functions 

Three functions previously used to test global optimisation algorithms were chosen. The 

functions offer different challenges and are shown in Appendix A. The three dimensional 

(p = 3) Hartman function has several long flat valleys designed to thwart optimisation 

algorithms. The global minimum was incorrectly reported by Dixon and Szego (1978) as 

approximately (.038, .574, .883), andf(x*) = -3.2. The global minimum was correctly 

reported by Brooks and Verdini (1988) and Butler and Slaminka (1992); as 

approximately (.1 1 ,  .555, .855), and f(x*) = -3.86278. The function is difficult for 

optimisation algorithms because it is almost flat in one direction at the global minimum. 

Hartman's family: 
4 -I,ay (xrby )2 

f(x) = -lcie j
=

I O :5 xi :5 1, i = 1, .. . ,p. 
i=I 

See function plot in Appendix A for values of aij, bij and Ci . 

(14) 

The Rastrigan function (Polovinkin, 1981; Benke and Skinner, 1991) is smooth and 

continuous with 50 local minima in a lattice arrangement. The function has a global 

minimum of.f{x*) = -2 at (0, 0). Polovinkin reported that a Monte Carlo search required 

5 ,917 function evaluations and multistart gradient methods 556 function evaluations to 

find the global minimum. Unfortunately the probability of success using these methods 

was not reported. 

Rastrigin function 

f (x) = x/ + x/ - cos(18x
1 
) - cos(18x

2
) -1 :5 xi :5 1, i = 1,2. (15) 
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The Penalised Shubert function (Gunel and Y azgan, 1992) is a very challenging function 
for global optimisation algorithms because the local minima are deep, highly isolated, and 
their depths are not apparent except in a small volume near the core of each minimum. In 
the given domain the function has 760 minima. The function has a unique global 
minimum of f(x*) = -186. 731  at (- 1.425 1, -0.8003) and a close to optimal solution of 
f (x)= -186.34 1 at (- 0.8000, -1.425 1). 

Penalised Shubert function (b = 0.5): 
f(x) = {ticos[(l + l)x, + i]} { ticos[(i + l)x, + i]} 

4.2 Method of Press and Teukolsky (1991) with Restarts 

(16) 

i = 1, 2 

Press and Teukolsky ( 199 1) suggest that an occasional restart where a vertex in the 
simplex is discarded in favour of the best point encountered may be beneficial increasing 
the efficiency of their algorithm. They recommended using a restart every time the 
temperature has been reduced by a factor of three. However, a restart must not be 
performed when the best point is currently in the simplex otherwise the simplex will 
degenerate. The authors reported that a restart was highly beneficial on some problems 
although on other problems there was no positive or a somewhat negative effect. Bates 
(1994) reported that the algorithm by Press and Teukolsky (199 1) sometimes discarded 
the best solution in the simplex for a new solution with a higher function value. This can 
lead to the situation where the final solution in the simplex is worse than the best solution 
found during the SA run. Bates ( 1994) found that performing a restart when the solution 
is not currently in the simplex and T has been reduced by a factor of two or three 
overcame this deficiency in the algorithm. No quantitative comparison of the algorithms 
was made. 
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The restart feature was investigated by comparing the algorithm with and without restarts 

using the three test functions in section 4.1. A range of initial temperatures 

(0 ::; To ::; 40) and cooling schedules (0.6 ::; r ::;  1 .0 ;  1 ::; m ::; 51) in Eqn (12) 

were used for both the original and modified algorithms. 

The results obtained for the Hartman function are shown as Figure 1. The columns of 

points in both Figures 1 a and 1 b correspond to different numbers of steps in the cooling 

schedule (m) with the exception of the first column. The first column of points ('JO = 0) 

corresponds to the Nelder Mead simplex method with a higher probability of success than 

SA with a poor choice of cooling schedule (the second column of points where m = 1). 

Each column includes a full range of reduction factors (r). The cluster of points in 

Figure la corresponds to cooling schedules (0.6 ::; r ::;  0.88; 21 ::; m ::;  51) where SA 

is working effectively and the Nelder Mead local search method is being used to find the 

bottom of the valley containing the global minimum. The points where the probability of 

success is greater than or equal to 0.98 in Figure lb corresponds to cooling schedules 

(0.6 ::; r ::;  0.9; 16 ::; m ::;  51) where SA is working effectively and the Nelder Mead 

local search method is being used to find the bottom of the valley containing the global 

minimum. As can be seen by comparing Figures 1 a and 1 b the restart feature increased 

the probability of finding the global minimum of the Hartman function when a reasonable 

cooling schedule was used. The restart feature also increased the probability of success 

for cooling schedules with a small number of temperature reduction steps (m). 

The results obtained for the Rastrigin function are shown as Figure 2. The restart feature 

greatly increased the probability of finding the global minimum of the Rastrigin function 

provided a reasonable cooling schedule was used. The clusters of points in Figures 2a 

and 2b correspond to cooling schedules where the Nelder Mead local search method is 

being used to find the bottom of the valley containing the global minimum. 
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The results obtained for the Penalised Shubert function are shown as Figure 3. The 
restart feature slightly increased the probability of finding the global minimum of the 
Penalised Shubert function provided a reasonable cooling schedule was used. 

In conclusion, the modified Press and Teukolsky (1991) algorithm with restarts gave a 
higher probability of finding the global minimum on all three test functions. The increase 
in reliability gained by using the restart feature depended upon the test function used. 
The modified algorithm with restarts was used for all further comparisons with other 
algorithms. 
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Fig. 1. Probability of successfully finding the global minimum of the Hartman function usmg the method of a) Press & Teukolsky, b) Press & Teukolsky with restarts. 
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Fig. 2 .  Probability of successfully finding the global minimum of the Rastrigin function using the method of a) Press & Teukolsky, b) Press & Teukolsky with restarts. 
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4.3. Investigation of Initial Temperature and Cooling Schedules 

This section investigates the sensitivity of four SA algorithms to the initial temperature 
and cooling schedule using the three test functions from section 4.1. The results are 
compared with recommended procedures from the literature for setting the initial 
temperature. Guidelines for the choice of initial temperature and cooling schedule are 
given where possible. The reliability and efficiency of the SA algorithms is investigated 
in section 4.4. 

The reliability and efficiency of different cooling schedules was investigate by 
systematically trying different values for JO, r and m in Eqn (12). For each initial 
temperature and cooling schedule 100 SA runs were initially attempted. This proved to 
be too great a burden on the computer system used and the sample size was later reduced 
to 50. The algorithms by Corana et al. ( 1987), Vanderbilt and Louie ( 1984 ), Press and 
Teukolsky (1991) with restarts and the new algorithm described in section 3 were 
investigated using the test functions described in section 4.1. The SA programs were 
considered to have found the global minimum if the following absolute convergence 
criteria was satisfied 

IJ(x*) - f(x)I < tol (17) 

where f{x*) is the known global minimum, f{x) is the estimate of the global minimum 
found by the program and tol = 0.0001. The maximum number of function evaluations 
for all four SA algorithms was set to 30,000. 
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4.3.1 Hartman Function 

Algorithm by Corana et al. ( 1987) 

The results for the algorithm by Corana et al. are shown in Figure 4. The probability of 
success is sensitive to yO and yO > 0.13 (the yO value where a plateau is reached or the 
lowest y0 where probability of one is obtained) is required to avoid entrapment in local 
minima. For this function the algorithm does not appear to be sensitive to the temperature 
reduction factor (r). When r = 1 the algorithm reverts to a Monte Carlo search which also 
has a reasonable probability of finding the global minimum of this function provided a 
suitable value for yO is used, although a large number of function evaluations are 
required. The user is not able to control the number of temperature reduction steps for 
this algorithm since the cooling schedule proceeds until convergence is obtained. The 
cluster of points at m .::: 2000 corresponds to r = 1 and was caused by the maximum 
number of function evaluations exceeding the limit of 30,000 without satisfying the 
convergence criteria used by the algorithm. The increase in variance with yO is due to the 
higher final temperatures (Ti) resulting for some cooling schedules. The final 
temperature should be close to zero for SA. High final temperatures correspond to Monte 
Carlo searches when r is approaching one. 

Algorithm by Vanderbilt and Louie ( 1984) 

The results for the algorithm by Vanderbilt and Louie are shown in Figure 5. The 
probability of success is sensitive to yO and y0 > 0.5 (the yO value where a plateau is 
reached or the lowest y0 where probability of one is obtained) is required to avoid 
entrapment in local minima. The algorithm is sensitive to the temperature reduction factor 
(r) and 0.75 < r < 1 gives the best results. Vanderbilt and Louie used 'rD = 1.0 and 
r = 0.6 when applying their method to the Hartman function; a higher value for r would 
have given better results. The user is not able to control the number of temperature 
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reduction steps for this algorithm since the cooling schedule proceeds until convergence 
is obtained. The cluster of points at m :=: 680 corresponds to r = 1 and were caused by 
the maximum number of function evaluations exceeding the limit of 30,000 without 
satisfying the convergence criteria used by the algorithm. The final temperature should 
be close to zero. 

Algorithm by Press and Teukolsky ( 1991) with restarts 

The results for the algorithm by Press and Teukolsky(1991) are shown in Figure 6. 
Entrapment in local minima is not a problem and the probability of success is not 
sensitive to ]O provided ]O � 0.4. ]O = 0 (the first column of points) corresponds to the 
Nelder Mead simplex method which performed reasonably well on this function with a 
mean probability of success of 0. 74 (probabilities between 0.56 and 0.88 occurred for 
different series of runs using this method). The algorithm is sensitive to the temperature 
reduction factor and r < 0.90 appears to give the best results. When r = 1 the algorithm 
reverts to a Monte Carlo search with a lower probability of finding the global minimum of 
this function. A large number of temperature reduction steps increases the probability of 
finding the global minimum with m :=: 15 (the m value where a plateau is reached or the 
lowest m where probability of one is obtained) being the most efficient. The algorithm is 
very sensitive to the final temperature which must be close to zero. 

New Algorithm 

The results for the new algorithm are shown in Figure 7. The probability of success is 
sensitive to ]O and ]O > 4 helps to avoid entrapment in local minima. ]O = 0 (the first 
column of points) corresponds to the Hooke and Jeeves pattern search method with a 
mean probability of 0.56. Hooke and Jeeves does not perform as well as Nelder and 
Mead for this function because it only uses one starting point rather than four required by 
Nelder and Mead to form the simplex on this function. The Nelder Mead method drags 
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all four points across the response surface as the simplex expands and contracts. The SA 
algorithm is insensitive to the temperature reduction factor and number of reduction steps. 
The algorithm is not very sensitive to the final temperature although Tf = 0 appears to be 
desirable. The points corresponding to Tf = 0 on Figure 7 d with a low probability of 
success are due to the Hooke and Jeeves method. This SA algorithm is less sensitive to 
JO, r, m and Tf than the other algorithms considered. 

4.3.2 Rastrigin Function 

Algorithm by Corana et al. ( 1987) 

The results for the algorithm by Corana et al. are shown in Figure 8. The probability of 
success is sensitive to JO and JO > 1.8 is required to avoid entrapment in local minima. 
Surprisingly the points with the highest probability were obtained from a Monte Carlo 
search (r = 1) and approximately 30,000 function evaluations. This extensive sampling 
required considerable computational effort to obtain a higher probability of finding the 
global minimum than the SA algorithm. For this function the SA algorithm is sensitive to 
the temperature reduction factor, r > 0.95 giving the best results. The cluster of points in 
Figure Sc corresponding to m = 2000 with r = 1 were caused by the maximum number 
of function evaluations exceeding the limit of 30,000. The final temperature should be 
close to zero for SA. The high final temperatures correspond to Monte Carlo searches 
where r was approaching one. 

Algorithm by Vanderbilt and Louie ( 1984) 

The results for the algorithm by Vanderbilt and Louie are shown in Figure 9. The 
probability of success is sensitive to JO and JO > 4 is required to avoid entrapment in 
local minima. The algorithm is sensitive to the temperature reduction factor (r) and 
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r = 0.99 gives the best results. The cluster of points at m = 850 corresponds to a slow 

cooling schedule with r = 0.99. The final temperature should be close to zero. 

Algorithm by Press and Teukolsky (1991) with restarts 

The results for the algorithm by Press and Teukolsky are shown in Figure 1 0. 

Entrapment in local minima is not a problem and the probability of success is not 

sensitive to 'JO provided 'JO �  2. 'JO =  0 (the first column of points) corresponds to the 

Nelder Mead simplex method with a mean probability of 0.09 which is considerably 

lower than that obtained by SA. The algorithm is sensitive to the temperature reduction 

factor and 0.82 s; r s; 0.94 appears to give the best results. A large number of 

temperature reduction steps increases the probability of finding the global minimum with 

m = 35 being the most efficient. The algorithm is very sensitive to the final temperature 

which must be close to zero. 

New Algorithm 

The results for the new algorithm are shown in Figure 1 1 .  'JO = 0 (the first column of 

points) corresponds to the Hooke and Jeeves pattern search method with a mean 

probability of 0. 1 1  which is considerably lower than that obtained by SA. The 

performance of Hooke and Jeeves is slightly better than that obtained using Nelder and 

Mead for this function. The bands on the plots are due to the distinctive behavior of the 

algorithm under different conditions. The band with a probability of about 0.5 

corresponds to a poor choice of annealing schedule with m = 1 .  The band with a 

probability close to one corresponds to reasonable cooling schedules where SA is 

working properly (m > 1 ) .  The probability of success is not sensitive to the initial 

temperature provided TO � 0.5. The algorithm is insensitive to the temperature 

reduction factor and number of reduction steps. The algorithm is not very sensitive to the 

final temperature although Tf = 0 appears to be desirable. Since it has a higher 
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probability of success and is less sensitive to JO, r, m and 1f this algorithm appears to be 
more reliable and robust than the other algorithms considered. 

4.3.3 Penalised Shubert Function 

Algorithm by Corana et al. ( 1987) 

The results for the algorithm by Corana et al. are shown in Figure 12. The probability of 
success increases as JO is increased due to the more extensive sampling performed 
before the algorithm converges to a minimum. Monte Carlo sampling would also give a 
similar increase in probability of success as the number of function evaluations is 
increased. It is difficult to choose an initial temperature for this algorithm because of the 
relationship between JO and the number of function evaluations required. For this 
function the algorithm is sensitive to the temperature reduction factor and 
0.75 < r < 0.95 gives the best results. The final temperature should be close to zero. 

Algorithm by Vanderbilt and Louie ( 1984) 

The results for the algorithm by Vanderbilt and Louie are shown in Figure 13. The 
probability of success is sensitive to the initial temperature and a high value for JO gives a 
slightly higher probability of success. The algorithm is sensitive to the temperature 
reduction factor and r ""'  0.99 gives the best results. The final temperature should be close 
to zero. 

Algorithm by Press and Teukolsky ( 1991) with restarts 

The results for the algorithm by Press and Teukolsky are shown in Figure 14. The 
probability of success does not appear to be sensitive to JO. JO =  0 (the first column of 
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points) corresponds to the Nelder Mead simplex method with a mean probability of 

success of 0.0002 which is considerably lower than that obtained by SA. The algorithm 

is sensitive to the temperature reduction factor and r < 0.85 gives the best results for this 

function. Greater than 30 temperature reduction steps should be used to improve the 

probability of finding the global minimum. The algorithm is very sensitive to the final 

temperature which must be close to zero. 

New Algorithm 

The results for the new algorithm are shown in Figure 15. The probability of success is 

not sensitive to ro. y0 = 0 (the first column of points) corresponds to the Hooke and 

Jeeves pattern search method with a mean probability of success of 0.02 which is 

considerably lower than that obtained by SA. The performance of Hooke and Jeeves is 

considerably better than that obtained using Nelder and Mead for this function. The 

algorithm is insensitive to the temperature reduction factor and number of reduction steps. 

The algorithm is not very sensitive to the final temperature although Tf = 0 appears to be 

desirable. The points corresponding to Tf = 0 on Figure 15d with a low probability of 

success are due to the Hooke and Jeeves method. Since it is less sensitive to ro, r, m 

and Tf this algorithm appears to be more robust than the other algorithms considered. 

4.3.4 Discussion 

The algorithms all performed reasonably on the Hartman function with flat valleys. The 

algorithm by Vanderblit and Louie ( 1984) performed poorly compared to the others on 

the Rastrigin function with 50 local minima in a lattice arrangement. All four algorithms 

performed poorly on the Penalised Shubert function where the local minima are deep, 

highly isolated, and their depths are not apparent except in a small volume near the core 

of each minimum. 

··� 
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The findings using four different SA algorithms and three different test functions appears 
to offer some hope for practitioners working on real world problems. The choice of 
initial temperature and cooling schedule has been shown to determine the probability of 
success for the algorithms. The most appropriate initial temperature and cooling schedule 
is specific to both the problem and the SA algorithm used. It would be impossible to 
systematically attempt different initial temperatures and cooling schedules on a real world 
problem (the approach used was expensive in terms of computer time using simple test 
functions) and practitioners must rely on past experience or trial and error. 

Based on these results it is possible to give the following general guidelines: 

Initial Temperature 

The choice of initial temperature is algorithm specific. The temperature must be 
sufficiently high to allow the algorithm to sample the function without becoming trapped 
in a local minimum. An initial temperature that is too high will waste computational 
effort. 

Corana et al. suggest using a initial temperature the same order of magnitude as the 
standard deviation of the cost function. Corana et al. admit that this suggestion is based 
on experience with combinatorial SA problems and is likely to lead to temperatures that 
are too high wasting computational effort. For the Hartman function a sample of 200 
function evaluations gave a standard deviation of 0.809. This initial temperature is higher 
than necessary for the algorithm by Corana et al. and would cause an excessively long 
cooling schedule wasting considerable computational effort. This initial temperature 
would be more suitable for the other three SA algorithms used for this study. The 
standard deviation of the cost function for the Rastrigin function is 0.849. This value is 
also higher than necessary for the algorithm by Corana et al. although the other three 

\ 
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algorithms considered would benefit from a initial temperature higher than the standard 
deviation. The standard deviation of the cost function for the Penalised Shubert function 
is 62. An initial temperature of 60 was found to give good results for this function using 
the method of Corana et al. This is also a reasonable choice for the algorithms by 
Vanderbilt and Louie and Press and Teukolsky although it is excessively high for the new 
method. 

Dekkers and Aarts ( 1991) maintain that the initial temperature should be sufficiently 
large, such that approximately all transitions are accepted at this value. They suggest 
generating a number of trials mo, and requiring that the initial acceptance ratio xo defined 
as the ratio between the number of accepted transitions and the number of proposed 
transitions is close to 1. The initial value for yO is then obtained from the following 
expression 

T0 = tJ.r In llli ( J
-1 

llliXo + (1 - Xo)lni 
( 1 8) 

where m 1 and m 2 denote the number of trials (m 1 + m 2 = m o )  with 
( f(xk) -f(xk+Ax)) ;::: 0 and (fixk) -f(xk+Ax)) < 0 respectively and Af + the average 
value of those Af values for which Af > 0 (Af = J(xk+Ax) -J(xk)). 

Table 1. Calculated values for yO for the al�orithm bl Corana et al. 
Test function m1 m2 xo 4r

+ yO 
Hartman 55 245 0.323 1.59 2.14 
Rastrigin 36 164 0.350 1.21 1.70 
Penalised Shubert 8 192 0.045 136.92 55 .49 

Initial guesses for yO of 0.15, 0.4 and 0.5 were used for the Hartman, Rastrigin and 
Penalised Shubert functions respectively. The values shown in Table 1 were obtained 

\ 
\ 
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using the algorithm by Corana et al. The step size vector was set to [ l , 1 ,  1 ]  and the 

automatic step size adjustments were disabled so they would not change while the 

function was sampled. The calculation was then repeated using the new calculated values 

of 'JO shown in Table 1 as the initial guess. If the method was working correctly similar 

values for 'JO would be expected. The new estimates for 'JO were 22.8, 10.7 and 526.5 

for the Hartman, Rastrigin and Penalised Shubert functions respectively. The estimates 

clearly depend on the initial guess used for 'JO. The results obtained using the three test 

functions show that the method of Dekkers and Aarts is sensitive to the initial guess used 

for 'JO and may not give a reasonable estimate for 'JO. 

Temperature Reduction Factor 

The algorithms by Corana et al. ,  Vanderbilt and Louie and Press and Teukolsky were 

sensitive to the reduction factor and the appropriate value depended on the algorithm and 

test function being investigated. The new algorithm was not sensitive to the temperature 

reduction factor on the test functions used. 

Final Temperature 

The final temperature should be sufficiently low to allow the algorithm to settle in a valley 

containing hopefully the global minimum or at least a close to optimal solution. A final 

temperature close to zero was required for all four SA algorithms using the test functions. 

The performance of the algorithm by Press and Teukolsky deteriorated rapidly as the final 

temperature increased. This was also noted by Bates ( 1994). 

Number of Temperature Reduction Steps 

The number of temperature reduction steps used determines the number of function 

evaluations made. Increasing the number of temperature reductions increases the 

\ 
\ 
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probability of finding the global minimum until the point of diminishing returns is 
reached where increasing the number of temperature reduction steps (and function 
evaluations) does not significantly increase the probability of finding the global 
minimum. It was only possible to control the number of temperature reductions on the 
algorithm by Press and Teukolsky and the new algorithm. 

Since the new algorithm is less sensitive to the initial temperature and choice of cooling 
schedule it appears to be more robust than the other algorithms considered. 

4.4 Comparison of Simulated Annealing Algorithms 

This section investigates the reliability and efficiency of four SA algorithms using the 
three test functions from section 4.1. The suitability of the SA algorithms for finding the 
global minimum of the test functions is discussed. 

In order to have confidence in the results of an optimisation procedure we require that it 
has a small probability of failure PJ ( out of 100 independent tests we expect that 100 x PJ 
of them will fail). If we then re-run the procedure q times from q independent random 
locations the overall probability of failure will be 

(19) 

and tend to zero as q becomes large. Taking natural logarithms gives 

lnp/q) = q ln p/1) (20) 
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This simple strategy of repeating the search can increase the probability of finding the 
global minimum and is the basis for multistart methods. The number of restarts required 
to achieve an overall failure probability of PJ (q) as given by (Duan et al., 1992) is 

(21) 

For low single start failure probabilities it does not take many restarts to rapidly decrease 
the overall failure probability. However, if the single start failure probability is high the 
number or restarts required rapidly increases. 

The comparison of algorithms by computer simulation is a complicated task. A set of test 
problems must be selected which relate to the type of problems that are likely to be 
encountered in the real world. A metric that quantifies the algorithms must be decided 
on. The most suitable measures are the mean number of function evaluations required to 
find the global optimum within a specified precision, or the number of function 
evaluations required to find the global optimum with a given probability of success (see 
Box, 1965). 

Comparisons of global optimisation methods in the literature have not been rigorous 
because of the effort involved. In most cases the authors have compared SA methods 
with other SA or optimisation methods without any attempt to find an appropriate initial 
temperature and cooling schedule. Interesting results on the sensitivity of different SA 
methods to the starting temperature, cooling schedule or step size have often been 
overlooked. Most authors (Vanderbilt and Louie, 1984; Brooks and Verdini, 1988; 
Benke and Skinner 1991; Deckers and Arts 1991; Butler and Slaminka, 1992) have given 
the number of function evaluations required by a SA algorithm to find the global 
minimum as well as the probability of finding the global minimum. Other authors 
(Corana, 1987; Mockus, 1989; Ratschek and Voller, 1990; Gunel and Yazgan, 1992) 
have only given the number of function evaluations and comparisons of their results with 

Inp
t
Cq) 

q = InptCl) 
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those of others is generally not possible since the reliability of the method is not known. 
Often the test for convergence (stopping criteria) and tolerance used is not given. 

The methods of Corana et al. (1987), Vanderbilt and Louie (1984), Press and Teukolsky 
( 1991) and the new method described in section 3 were compared using the three 
standard test functions from section 4.1. The SA methods use different approaches and 
have different levels of sophistication. The maximum number of function evaluations for 
all four SA algorithms was set to 30,000. 

4.4.1 Hartman Function 

Algorithm by Corana et al. ( 1987) 

The results for the algorithm by Corana et al. are shown in Figure 16a. The probability 
of success increases until about 10,000 function evaluations is reached; continuing 
beyond this point wastes computational effort since additional function evaluations do not 
improve the results. Here a probability close to one can be achieved providing the 
annealing schedule is well chosen. 

The number of function evaluations required to achieve PJ� 0.01 is shown in Table 2 
where fevals is the number of function evaluations required for pf) ). For a real number 
z, [ z] (read "ceiling of z") is the smallest integer � z. Since the number of SA runs must 
be an integer value the number of function evaluations required for PJ � 0.01 is 
[ q] • fevals ·  

\ 
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Table 2. Number of function evaluations required for Pt� 0.01 

/evals PtO) q [q] • fevals 

1,000 0.15 2.43 3,000 
2,000 0.12 2.17 6,000 
3,000 0.10 2.00 6,000 
4,000 0.07 1.73 8,000 
5,000 0.04 1.43 10,000 
6,000 0.02 1.18 12,000 
7,000 0.01 1.00 7,000 
8,431 0.00 

As can be seen from Table 2 most efficient way to achieve PJ � 0.01 is to use three SA 
runs of 1,000 function evaluations. 

Algorithm by Vanderbilt and Louie ( 1984) 

The results for the algorithm by Vanderbilt and Louie are shown in Figure 16b. A 
probability of success of one was achieved with about 2000 function evaluations 
provided a reasonable cooling schedule was chosen. Vanderbilt and Louie reported that 
their algorithm required 1224 function evaluations to find the global minimum of the 
Hartman function with PJ = 0.00 although the tolerance they used was much coarser than 
that used for this study. This result can be compared to a probability of PJ = 0.20 
obtained with 1250 function evaluations. The different tolerance used could explain the 
different results obtained. The number of function evaluations required to achieve 
PJ � 0.01 for this method is given in Table 3. 
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Table 3. Number of function evaluations required for P(� 0.01 

/evals pf(J) q [q] • fevals 

1000 0.55 7.70 8000 
1250 0.20 2.86 3750 
1500 0.10 2.00 3000 
1750 0.02 1.18 3500 
2000 0.00 

Algorithm by Press and Teukolsky (1991) with restarts 

The results for the algorithm by Press and Teukolsky are shown in Figure 16c. The 
probability of success increases until about 8,000 function evaluations is reached; 
continuing beyond this point wastes computational effort since additional function 
evaluations do not improve the results. Here a probability close to one can be achieved 
providing the annealing schedule is well chosen. The columns of points correspond to 
different numbers of steps in the cooling schedule (m). Each column includes a full 
range of reduction factors (r) . The cluster of points with probability close to one 
correspond to cooling schedules (r < 0.84; m > 21) where SA is working effectively 
and the Nelder Mead local search method is being used to find the bottom of the valley 
containing the global minimum. The number of function evaluations required to achieve 
PJ � 0.01 for this method is given in Table 4. 

Table 4. Number of function evaluations required for Pt� 0.01 
/evals pf(,1) q [q] • fevals 

588 0.16 2.51 1,764 
3,088 0.06 1.64 6,176 
5,735 0.04 1.43 11,470 
8,088 0.00 

\ 
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New Algorithm 

The results for the new algorithm are shown in Figure 16d (note the different scale used 
on the x-axis for this method). The columns of points correspond to different numbers 
of steps in the cooling schedule (m). Each column includes a full range of reduction 
factors (r) .  The first column of points (y(} = 0) corresponds to the Hooke and Jeeves 
simplex method with a lower probability of success than SA. A probability of success of 
0.85 can be achieved with about 200 function evaluations provided a reasonable initial 
temperature and cooling schedule is chosen. The probability of success does not appear 
to increase as more function evaluations are made. This indicates a better strategy for 
increasing the probability of finding the global minimum is to use several runs of about 
200 function evaluations. The number of function evaluations required to achieve 
PJ� 0.01 for this method is given in Table 5. 

Discussion 

Table 5. Number of function evaluations required for Pt� 0.01 
[evals pt( 1) q [ q] • fevals 

200 0.15 2.43 600 

The new algorithm is more efficient than the other algorithms investigated and is able to 
find the global minimum of the Hartman function with pt� 0.01 using only 600 function 
evaluations if three separate SA runs are used. Brooks and Verdini (1988) found the 
global minimum in 455 (310 global evaluations plus 145 local evaluations) function 
evaluations with a probability of 0.78 using a generalised SA method. Using Eqn (21) it 
would take (q = 3.04) four runs of 455 function evaluations or 1820 function 
evaluations to achieve PJ� 0.01. The SA algorithm of Vanderbilt and Louie (1984) 
required 1224 function evaluations to find the global minimum with Pt= 0.00 although 
the convergence criteria they used was much coarser than that used for this study. Butler 
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and Slaminka (1992) used the Sniffer global optimisation algorithm by Rogers and 
Donnelly (1989) and reported that it required 534 function evaluations to find the global 
minimum with pt= 0.01. Mockus (1989) reported a one-step Bayesian method took 513 
function evaluations to find the global minimum although the probability was not given. 
The new algorithm compares favourably with these results. 

4.4.2 Rastrigin Function 

Algorithm by Corana et al. ( 1987) 

The results for the algorithm by Corana et al. are shown in Figure 17a. The probability 
of success increases until about 25,000 function evaluations is reached; continuing 
beyond this point wastes computational effort since additional function evaluations do not 
improve the results. Here a probability of success of about 0. 72 can be achieved 
providing the annealing schedule is well chosen. The points corresponding to about 
30,000 function evaluations with a probability of greater than 0.7 were obtained from a 
Monte Carlo search (JO > 0.18; r = 1). Although the global minimum was found the 
SA algorithm could not converge because the temperature was too high. The results 
show that a Monte Carlo search can find the global minimum with a high probability of 
success in 30,000 function evaluations and possibly less although this was not 
investigated. The number of function evaluations required to achieve PJ� 0.01 is shown 
in Table 6. 
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Table 6. Number of function evaluations required for Pt-5: 0.01 

/evals 210) q [q] • fevals 

2,500 0.65 19.69 50,000 
5,000 0.58 8.45 45,000 

10,000 0.46 5.93 60,000 
15,000 0.38 4.76 75,000 
20,000 0.32 4.04 100,000 
25,000 0.28 3.62 100,000 
30,000 0.26 3.42 120,000 

Algorithm by Vanderbilt and Louie ( 1984) 

The results for the algorithm by Vanderbilt and Louie are shown in Figure 17b. A 
probability of success of over 0.5 could be achieved provided a reasonable cooling 
schedule was chosen. The cluster of points on the right of the plot correspond to 
r = 0.99 with the highest probability of success although a large number of function 
evaluations are required The number of function evaluations required to achieve 
PJ-5: 0.01 for this method is given in Table 7. 

Table 7. Number of function evaluations required for pf-5: 0.01 
fevals PtO) q [q] • fevals 

5,000 0.86 30.53 155,000 
7,500 0.76 16.78 127,500 

10,000 0.66 11.08 120,000 
20,000 0.52 7.04 160,000 
30,000 0.44 5.61 210,000 
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Algorithm by Press and Teukolsky (1991) with restarts 

The results for the algorithm by Press and Teukolsky are shown in Figure l 7c. The 
probability of success increases as more function evaluations are used although about 
11,000 function evaluations appears to be the point of diminishing returns. The columns 
of points correspond to different numbers of steps in the cooling schedule (m). Each 
column includes a full range of reduction factors (r). JO =  0 (the first column of points) 
corresponds to the Nelder Mead simplex method. The cluster of points corresponds to 
cooling schedules (r < 0.84; m > 21) where SA is working effectively and the Nelder 
Mead local search method is being used to locate the bottom of the valley containing the 
global minimum. The number of function evaluations required to achieve Pt!!: 0.01 for 
this method is given in Table 8. 

Table 8. Number of function evaluations required for Pt!!: 0.01 
[evals E�l) '1 [q] • fevals 

588 0.82 23.21 14,112 
3,088 0.34 4.27 15,440 
5,735 0.22 3.04 22,940 
8,088 0.20 2.86 24,264 

10,735 0.12 2.17 32,205 

New Algorithm 

The results for the new algorithm are shown in Figure l 7d. The columns of points 
correspond to different numbers of steps in the cooling schedule (m). Each column 
includes a full range of reduction factors (r) . The first column of points (TO = 0) 
corresponds to the Hooke and Jeeves pattern search method with a lower probability of 
success than SA. A probability of success of close to one can be achieved with about 
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329 function evaluations regardless of the choice of cooling schedule. The number of 
function evaluations required to achieve PJ� 0.01 for this method is given in Table 9. 

Discussion 

Table 9. Number of function evaluations required for Pf� 0.01 
/evals Pf0) q [q] • fevals 

138 0.36 4. 70 690 
329 0.00 

The new algorithm is more efficient than the other algorithms investigated and is able to 
find the global minimum of the Rastrigin function with PJ � 0.01 using only 329 function 
evaluations in one run of the SA program. This compares favourably with the centroid 
algorithm used by Benke and Skinner (1991) which took advantage of the symmetry of 
the function to find the global minimum in about 380 function evaluations. Polovinkin 
(1981) reported that a Monte Carlo search required 5 ,917 function evaluations and 
multistart gradient methods 556 function evaluations to find the global minimum. 
Unfortunately probability of finding the global minimum for these results was not 
reported. 

4.4.3 Penalised Shubert Function 

Algorithm by Corana et al. ( 1987) 

The results for the algorithm by Corana et al. are shown in Figure l 8a. The probability 
of success increases until about 15,000 function evaluations is reached; continuing 
beyond this point wastes computational effort since additional function evaluations do not 
improve the results. The points corresponding to about 30,000 function evaluations with 
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a probability of greater than 0.43 were obtained from a cooling schedule where the 
algorithm was approaching a Monte Carlo search (TO > 50; 0.82 :S r  :S 0.98). 
Although the global minimum was found the SA algorithm could not converge because 
the temperature was too high. The number of function evaluations required to achieve 
PJ :S 0.01 is shown in Table 10. 

Table 10. Number of function evaluations required for Pt:S 0.01 
[evals .e�l) q_ [q] • fevals 

2,500 0.78 18.53 47,500 
5,000 0.72 14.02 75,000 

10,000 0.70 12.91 130,000 
15,000 0.64 10.32 165,000 
20,000 0.62 9.63 200,000 
25,000 0.64 10.32 275,000 
30,000 0.58 8.45 270,000 

Algorithm by Vanderbilt and Louie ( 1984) 

The results for the algorithm by Vanderbilt and Louie are shown in Figure 18b. This 
algorithm was not suited to this function. The strategy used to set the step size vector to 
enable the method to take longer steps in the most profitable direction down the axis of 
long narrow valleys was not appropriate for this function where the minima are deep, 
highly isolated, with their depths are not apparent except in a small volume near the core 
of each minimum. The cluster of points on the right of the plot correspond to 
0.99 :S r :S 1.00 with the highest probability of success although a large number of 
function evaluations were required The number of function evaluations required to 
achieve PJ:S 0.01 for this method is given in Table 11. 
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Table 11. Number of function evaluations required for P(5. 0.01 

/evals p�l) q [q] • fevals 

5,000 0.98 227.95 1,140,000 
10,000 0.96 112.81 1,130,000 
20,000 0.92 55.23 1,120,000 
30,000 0.88 36.02 1,110,000 

Algorithm by Press and Teukolsky (1991) with restarts 

The results for the algorithm by Press and Teukolsky are shown in Figure l 8c. The 
probability of success increases as more function evaluations are used although about 
11,000 function evaluations appears to be the point of diminishing returns. The number 
of function evaluations required to achieve PJ 5. 0.01 for this method is given in 
Table 12. 

Table 12. Number of function evaluations required for Pt:::;; 0.01 
/evals p�l) q [q] • fevals 

2,500 0.98 227.95 557,500 
5,000 0.98 227.95 1,140,000 
7,500 0.84 26.41 202,500 

10,000 0.82 23.21 240,000 
15,000 0.80 20.64 315,000 

New Algorithm 

The results for the new algorithm are shown in Figure 18d. The columns of points 
correspond to different numbers of steps in the cooling schedule (m). Each column 
includes a full range of reduction factors (r) . The first column of points (y{) = 0) 
corresponds to the Hooke and Jeeves pattern search method with a lower probability of 
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success than SA. A probability of success of about 0.3 can be achieved with about 363 
function evaluations with a good choice of initial temperature and cooling schedule. The 
number of function evaluations required to achieve PJ-5: 0.01 for this method is given in 
Table 13. 

Table 13. Number of function evaluations required for Pf. -5: 0.01 
,[evals E�l) q_ [q] • fevals 

163 0. 74 15.29 2,608 
363 0.69 12.4 1 4, 7 19 
563 0. 70 12.9 1 7,3 19 
763 0. 72 14.02 1 1,445 
963 0.68 1 1.94 1 1,556 

Discussion 

The new algorithm is more efficient than the other algorithms investigated and is able to 
find the global minimum of the Penalised Shubert function with PJ -5: 0.01  using only 
2,608 function evaluations in sixteen runs of the SA program. The methods of Corana et 
al. and Press and Teukolsky require 4 7,500 and 202,500 function evaluations to obtain 
PJ -5: 0.01 respectively. The method by Vanderbilt and Louie is not suited to this 
function. Gunel and Yazgan (1992) report that their SA algorithm could find the global 
minimum of this function in 140 function evaluations although the probability was not 
given and the result could not be repeated despite many attempts. 

4.5 Summary 

The addition of a restart feature improved the performance of the SA algorithm by Press 
and Teukolsky on all of the three test functions used. Further use of this algorithm 
should include the restart feature. 
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The choice of initial temperature and cooling schedule has been shown to determine the 
efficiency and probability of success for the four different SA algorithms. The most 
appropriate initial temperature and cooling schedule is specific to both the SA algorithm 
and function used. Guidelines for the choice of initial temperature and cooling schedule 
have been given. 

The choice of SA algorithm should depend on the nature of the function being 
investigated. The method by Corana et al. was able to find the global minimum of all 
three test functions with a reasonable probability of success although it was expensive in 
terms of the number of function evaluations required. The method of Vanderbilt and 
Louie performed well on the Hartman function with long flat valleys although it was not 
suited to Rastrigin function or the Penalised Shubert function with highly isolated 
minima. The method of Press and Teukolsky with restarts performed reasonably well on 
the Hartman and Rastrigin function, although was not well suited to the Penalised 
Shubert function. The method by Press and Teukolsky and the new method used a local 
search phase to find the bottom of the valley containing the global minimum. This feature 
improved the efficiency of these algorithms. 

The reliability and efficiency of the new SA algorithm compares favourably with the three 
SA algorithms investigated and other global optimisation methods from the literature 
using three test functions that offer different challenges. The new algorithm is also 
extremely robust and not sensitive to the choice of initial temperature or cooling schedule. 
The exploration steps used by the new method effectively maintained a downhill bias. 
The new algorithm was able to both investigate the valley containing the base point using 
exploration steps and investigate distant points using pattern moves. The Metropolis 
criterion only acted on the pattern moves capable of moving the current base point from 
one valley to another. The local search phase incorporating step size reductions also 
contributed to the efficiency of this algorithm. 
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SA methods are superior to local search methods such as Nelder and Mead and Hooke 
and Jeeves which are not suited to global optimisation problems. The results show that it 
is more efficient to use several smaller runs of a SA program than one large one. The 
results also demonstrate the need to use multiple runs of a SA program since there is no 
guarantee that the global minimum will be found. 

Due to deadlines imposed by the CSIRO Division of Water Resources with respect to the 
Climate Change Research Program the model calibration work described in chapter 6 
was completed prior to the development of the new SA algorithm in chapter 3 and 
evaluation of current SA algorithms in chapter 4. For this reason the existing SA 
algorithm by Press and Teukolsky ( 199 1) with restarts was used on the CRRM 
calibration problem rather than the new algorithm which is shown to be more reliable and 
efficient on the three test functions. 
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5. SFB Model 

Boughton's ( 1984) SFB model (see also Nathan and McMahon, 1990; Chiew et al., 
1993; Bates et al. , 1994) estimates monthly streamflow using daily rainfall and 
potential evapotranspiration data as input. The model (Figure 19), named after the first 
three parameters, has a physical foundation, and Boughton provides recommended 
parameter values based on his experience applying the model to catchments on the east 
coast of Australia. The first three parameters are the surface storage capacity in 
millimeters (S), the daily infiltration capacity in millimeters per day (F) controlling the 
movement of water from the surface store to the lower store and the baseflow factor 
(0 :5: B :5: 1) which determines the proportion of the daily depletion of water in the lower 
store that appears as baseflow. Recommended values for S, F and B are related to 
physical catchment characteristics. The other parameters and their default values are as 
follows: the fraction of the surface storage capacity that does not drain to the lower 
store (NDC = 0. 5); the maximum limiting rate of evapotranspiration 
(Emax = 8.9 mm d-1 ); the lower store depletion factor (DPF = 0.005); and a baseflow 
threshold for the lower store (SDRmax = 25  mm) defining the depth of water in the 
lower store at which baseflow will cease. Nathan and McMahon reported that fitting 
the NDC and DPF parameters in addition to the original three parameters only gave a 
slight improvement in model fit on 33 catchments in the south east of Australia and that 
the model should be used as proposed by Boughton. I included all parameters in the 
fitting process to determine which processes were significant and to see if the fitted 
values differed from their default values. 

The model operates on a daily time step. Incident rainfall begins to fill the surface store 
which is emptied by evapotranspiration at the potential rate (Epot) when the non
drainage component is full. Otherwise, the actual evapotranspiration rate is given by 

Ea = min{ Emax . s I (NDC . S); Epot } (22) 
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where s � 0 is the depth of water in the non -drainage component of the surface store. 
Any water in excess of the non-drainage component of that store is subject to an 
infiltration rate of F mm d-1 until the drainage component of the store empties. Surface 
runoff (Qs) occurs when the surface store is full and is calculated as 

Qs = P - Ftanh(P I F) (23) 

in which P is the rainfall excess remaining after the surface store is filled. The lower 
store is depleted by deep percolation (Dp) and baseflow (Qb) which are defined by 

D
P 

= (1 - B) · DPF · SS (24) 

Qb = B · DPF · (SS-SD�ax ) (25) 

where SS � 0 is the depth of water in the lower store. 

Since water is effectively lost from the catchment following deep percolation, the 
model, as proposed by Boughton does not always provide a closed water balance. The 
use of groundwater for evapotranspiration was considered to be an important process 
for some catchments particularly in the south west of Western Australia, where the 
regional groundwater supplies downslope and riparian vegetation during dry periods. 
The model was modified to enable this water to contribute towards evapotranspiration 
by adding a ground water store to the model and allowing a return from this store to the 
surf ace storage ( GWR � 0) where 

GWR = C · GW · (l- s ) 
NDC · S  

(26) 

and GW � 0 is the depth of water in the groundwater store. The process is regulated by 
the drainage coefficient and reverts to the original model when C = 0. Thus C > 0 when 
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B ::/:- 1 has the desirable effect of closing the modelled water balance so no water is lost 
from the system. The modification assumes that GWR occurs only during dry periods 
when s < NDC•S to avoid groundwater recycling to the lower storage via infiltration. 
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6. Calibration of the SFB Model using Simulated Annealing 

Using SA I calibrated the modified version of Boughton's model on 25  unregulated 
catchments (Chiew and McMahon, 1993 ; Chiew and McMahon, 1994) .  These 
catchments were identified as benchmark catchments by the Australian Bureau of 
Meteorology ( 1991) and represent a range of climatic and physical characteristics for 
Australia. The calibration identifies the important model processes for these 
catchments by assigning values to well determined or sensitive parameters. 

6.1 Parameter Estimation 

6.1.1 Data 

Historical streamflow, rainfall, and potential evapotranspiration records for Australian 
catchments provided as a supplement to Chiew and McMahon (1993) were used. The 
catchments are listed in Table 14. Potential evapotranspiration in the Chiew and 
McMahon data set was estimated by the method of Morton (1983). The model was, 
however, to be associated with stochastically generated data for climate change 
simulation, where the potential evaporation was to be estimated by the method of 
Priestley and Taylor (19 72). Additional climate data were obtained from the Australian 
Bureau of Meteorology (1988) and used to estimate daily Priestley and Taylor potential 
evapotranspiration for model calibration. At least 8 years of record were available for 
each catchment. 



Table 14 Rainfall and Streamflow Data 

Catchment Period Catchment Mean Rainfall Streamflow Mean Global A.1 AR(l) Number of R E 

of record 
2 

area(km ) Annual scale data Annual optimum parameter parameters 
Rainfall (mm) Streamflow (mm) adopted used fitted 

QUEENSLAND 
111105 Babinda Creek at The Boulders 1974 -1989 39 5400 1.0 incomplete 4700 y 0.5 n 6 0.916 0.902 
113004 Cochable Creek at Powerline 1974 -1986 93 2400 1.2 complete 2100 y 0.5 y 6 0.828 0.811 
1 I 8106 Alligator Creek at Allendale 1975 - 1989 69 1100 1.0 complete 480 y 0.4 y 7 0.764 0.746 
120204 Broken River at Crediton 1965 -1979 41 2100 1.0 complete 1000 y 0.5 y 6 0.951 0.950 
145103 Cainbable Creek at Good Dam Site 1975 -1987 41 900 - complete 100 
915001 Mitchell Grass at Richmond 1976 -1988 3 450 1.0 complete 15 y 0.5 n 6 0.895 0.892 
927001 Jardine River at Telegraph Line 1974 -1989 2500 1700 1.0 incomplete 900 y 0.5 n 4 0.712 0.642 

NEW SOUTH WALES 
206001 Styx River at Jeogla 1979 - 1986 163 1300 1.0 complete 450 y 0.5 n 7 0.945 0.939 
210022 Allyn River at Halton 1977 - 1984 205 1200 1.2 incomplete 350 y 1.0 n 7 0.953 0.951 
215004 Corang River at Hockeys 1980 -1989 166 800 1.25 incomplete 330 y 0.5 n 7 0.692 0.495 
401554 Tooma River above Tooma Reservior 1971 - 1979 114 1700 - complete 1400 
412093 Naradhan Creek at Naradhan 1978 -1988 44 450 1.0 incomplete 2 y 0.8 n 6 0.925 0.888 
420003 Belar Creek at Warkton 1973 -1984 133 1100 0.8 incomplete 110 y 0.5 n 7 0.785 0.747 

VICTORIA 
222213 Suggan Buggan River at Suggan Buggan 1972 -1985 357 800 complete 150 
227219 Bass River at Loch 1974 -1985 52 1100 1.0 complete 330 y 0.5 n 7 0.927 0.925 
238208 Jimmy Creek at Jimmy Creek 1970 -1989 23 650 1.0 complete 160 n 2.0 n 7 0.608 0.593 
401212 Nariel Creek at Upper Nariel 1977 -1987 252 1200 1.15 complete 480 y 1.0 n 6 0.856 0.856 
403218 Dandongadale River at Matong North 1974-1984 182 1300 1.0 complete •. 380 y 0.5 y 6 0.893 0.891 

TASMANIA 

307001 Davey River D/S Crossing River 1974 -1990 686 2100 1.3 incomplete 2000 y 0.5 n 6 0.918 0.902 
315006 Forth River UIS Lemonthyme 1974 -1985 311 2000 1.0 complete 1500 y 0.5 y 6 0.922 0.919 

SOUTH AUSTRALIA 
503502 Scott Creek at Scotts Bottom 1970 - 1985 27 950 1.0 complete 130 n 0.5 y 6 0.692 0.686 
505517 North Para River at Penrice 1978 -1989 118 550 1.0 incomplete 50 y 0.6 n 5 0.880 0.875 
509503 Kanyaka Creek at Old Kanyaka 1978 - 1989 180 300 - complete 2 

WESTERN AUSTRALIA 
612005 Stones Brook at Mast View 1974 -1984 15 1000 1.0 complete 120 y 0.4 n 6 0.841 0.804 
616065 Canning River at Glen Eagle 1977-1987 544 800 1.0 incomplete 20 y 0.5 n 7 0.782 0.774 
701003 Nokanena Brook at Woottachooka 1977 - 1986 229 400 1.0 incomplete 20 n 0.7 n 6 0.809 0.807 
708009 Kanjenjie Creek tributory at Fish Pool 1974 -1986 41 400 - complete 100 
809312 Fletcher Creek at Frog Hollow 1970 -1980 30 650 - incomplete 20 
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6.1.2 Optimisation Procedure 

Optimal model parameter estimates were found by fitting modelled monthly stream.flow 
to observed streamflow using an objective function. A residual sum of squares error 
model was used when residuals were assumed to be independent 

n 

S(O)  = rnin L(q; - q; )
2 

8 i=l 
(27) 

A 

[ 

A A ]T where (} = (}i , . . .  , (}P is a vector containing the p parameters to be estimated and n is 
the number of monthly streamflow observations in the calibration period. A two 

A parameter transformation (Box and Cox, 1964) of observed (Q) and modelled ( Q) 

runoff was used to stabilise the variance 

i = 1, 2, . . .  , n  (28) 

i = 1, 2, .. . ,n  (29) 

where At and A2 are the Box -Cox transformation constants. An autoregressive error 
model was used when the residuals were assumed to follow an AR(l) scheme 

S(O) = �n I((q; - ,1;) -p(qi-1 - CJ.;-1 ))
2 

i=2 
(30) 

where the lag 1 autocorrelation coefficient (p ) is 
n 

Ii (qi - qJ(qi-1 - qi-1 )  p = i=2 
n (31) 

Iicqi - qf 
i=2 

qi= (Q +A2y
t1 -1 

A1 
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Assuming the transformed observations satisfy the normal theory assumptions (i.e. are 

independently distributed with constant variance) for some unknown At ,  the likelihood 

in relation to the original observations (Q) is given by the product of the probability 

density for the normal distribution and the Jacobian of the transformation 

-1
-n exp{--S(_(J;} 1(A1 ; Q) 

(2n:a2 )2 2a 

where cr2 is the variance and l(A1 ;  Q) the Jacobian of the transformation 

(32) 

(33) 

Since the value of At that will maximise Equation (32) will also maximise the natural 

logarithm of the function Equation (33) may be written as follows where the parameter 

values and variance must be estimated 

(34) 

Removing constant terms, substituting Equation (33), including "-2 and re-arranging 

gives the maximum likelihood function Lmax (At , "-2, (})  with respect to At ,  "-2 and the 

model parameters 

(35) 

An initialisation period of three months was used to remove any effects of the initial 

store contents on the parameter estimates. 
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6.1.3 Simulated Annealing 

The SA algorithm by Press and Teukolsky ( 1991 )  (or see Press et al. ,  1992) was used. 

The SA algorithm could bypass a local minimum in the search for a more global one by 

always accepting steps corresponding to a decrease in S((J) and occasionally accepting 
A 

a step corresponding to an increase in S( 8) by means of a stochastic acceptance 
A 

criterion. The probability of accepting moves that increase S(8) slowly decreases to 

zero as the method progresses. 

The algorithm was constrained to remain in the prespecified parameter domain of 

plausible parameter values using a penalty step function that returned a large value to 

the annealing program when a model evaluation with parameter values outside the 

domain was requested. A restart when the temperature (T) has been reduced by a factor 

of three was found to be highly beneficial . The restart replaced a vertex of the simplex 

with the best point encountered when that point was not currently in the simplex. 

Without this modification the program tended to converge to a local rather than the 

global minimum. 

The search terminates when the best function evaluation found is a vertex of the 

simplex and both the following criteria are satisfied 

l8t - 8fl 
max(lef I , eJ) 

< Ve j = 1, . . .  , p; k = 1, . . .  , p + 1 

(36) 

(37) 

where the superscripts H and L denote the vertices of the simplex with the highest and 

lowest function values, eJ is the initial estimate for the jth parameter, ey> is the jth 

2ls< et - S( etl 
ls<e)L l+ls<e)H I < -le 
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parameter for the kth vertex and c is machine epsilon (the smallest positive number such 
that 1 + c > 1). 

Cooling Schedule 

The cooling schedule given as Equation (12) was used. A pragmatic approach was 
taken. For reasonably rapid cooling m = 70 with r = 0.95 were used, the slowest 
cooling schedule used m = 500 with r = 0.994. Beyond this, additional function 
evaluations (SFB model runs) did not appear to increase the probability of finding the 
global minimum. At each temperature 100 function evaluations were made. 

The initial temperature was set to give acceptable perturbations while still maintaining a 
downhill bias. The SA algorithm used was not sensitive to the initial temperature and a 
change by a factor of two in the initial temperature made little difference to the 
probability of finding the global optimum. 

6.1.4 Computation of Standard Errors and Correlation Matrix 

Parameter standard errors were used to determine the significance of model parameter 
estimates and the precision to which they have been estimated. The correlation matrix 
provided a useful indicator of model parsimony and high correlation between two or 
more model parameters produce elongated valleys on the response surface where a 
change in the value of one parameter may be compensated by changes in one or more 
other parameters. It is difficult for optimisation methods to make any progress in these 
valleys which are likely to be the cause of convergence problems (Johnston and 
Pilgrim, 19 76; Kuczera, 1988). 
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The construction of exact confidence regions and intervals for nonlinear least squares is 
much more difficult than for linear least squares problems. Approximate techniques are 
generally used. Linearization methods (Donaldson and Schnabel, 198 7) assume that 
the nonlinear function can be approximated by a linear function at the solution. The 
linear theory covariance matrix is estimated as 

A A 

(38) 

where J( 0) is the n x p Jacobian matrix of the n fitted values evaluated at O with p 

fitted parameters: 

J . .  (0) = cJ qi '·1 ao . J 

The estimated residual variance cr2 is computed as 
2 (q - q)7 n-1 (q - q) 

(]' = -�--�-� 
n - p 

(39) 

(40) 

The covariance matrix of the errors 0. is computed using the lag 1 autocorrelation 
coefficient from Equation (31) 

1 p p2 pn-1 
p 1 p pn-2 

(]'2 
p2 p 1 pn-3 

0. = - - (41) 
l - p2 

1 

The 100( 1-a)% linear theory confidence region for 8 is the set of values which satisfy 
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,... T A -] ,... 
(8 - 8) V (8 - 8) 5: pFp ,n-p,a  (42) 

where Fp,n-p,a denotes the upper a quartile for the F distribution with p and n-p degrees 
of freedom. Similarly, the 100(1-a)% linear approximation for 0j (j=l ,  ... ,p) consists of 
those values 0j that satisfy 

(43) 

where tn-p,a/2 denotes the upper a/2 quartile for the t distribution with n-p degrees of 
freedom. 

These confidence regions and intervals are readily evaluated. However, linearization 
A methods assume that both the intrinsic curvature and parameter effects curvature at 8 

are small compared to the critical value (Fp, n-p, .osr 1 12 (Bates and Watts, 1980). The 
similarity to the true confidence regions and intervals depends on how closely this 
assumption is attained. Donaldson and Schnabel ( 1987) discuss other methods of 
constructing confidence regions and intervals. They also note that the linear theory 
covariance matrix in Equation (38) is simpler, less expensive and more numerically 

A stable than other methods of calculating V based on the Hessian matrix with second -
order terms. 

6.1.5 Statistical Assumptions 

Quantile plots were used to check the assumption of normality in the residuals. 
Autocorrelation and partial autocorrelation plots were used to detect violation of the 
assumption of independence. A first order autoregressive error model (Equation (30)) 
was used to satisfy this assumption where required. 
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If the assumptions that the residuals are normally and independently distributed with 
zero mean and constant variance are satisfied, the least squares and maximum 
likelihood parameter estimates would be the same. Often it was not possible to fully 
satisfy these assumptions. I found that setting Al to maximise the maximum likelihood 
function in Equation (35) often did not provide a good fit to the data. The maximum 
likelihood fit placed more emphasis on the low-flow values with a smaller variance at 
the expense of the larger flows. A more acceptable fit was obtained by setting At so 
that modelled runoff matched observed runoff as closely as possible, and the residual 
variance was as constant as could be achieved. 

Large departures from a constant error variance may lead to parameter estimates that 
are statistically inefficient and physically unrealistic. The assumption of constant 
residual variance proved to be the most difficult to satisfy. This is possibly because a 
larger error variance is associated with the higher flows, which is a characteristic of 
most rating curves used to convert depth observations to discharge (see Sorooshian and 
Dracup, 1 980). 

The residual variance was investigated using robust locally weighted regression 
(Cleveland, 1979). Fitted values were obtained using a local polynomial fit to the 
absolute value of the residuals IQ; - Q; I using weighted least squares where the weight 
is large for points close to the current point and small or zero otherwise. The robust 
fitting procedure prevents outlying points from distorting the smoothed points. The 
technique smoothes the residuals and provides a useful diagnostic for identifying trends 
in the data. I found that for some catchments the residual variance showed both 
increasing and decreasing tendencies, a problem which could not be resolved using the 
transformations in Equations (28) and (29). 
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6.1.6 Parameter Estimation Procedure 

Starting with the conventional 3-parameter model, estimates for parameters S, F and B 

were obtained. The remaining model parameters were initially set to values 
recommended by Boughton (1984) and the drainage coefficient set to zero. These 
parameters were then fitted one at a time in the order NDC, DPF, SDRmax, Emax, and C. 

A parameter was included in the current and subsequent fitting processes if it reduced 
the residual variance ( cr2). If the inclusion of a parameter did not reduce the residual 
variance the value used by Boughton was retained. This enabled a parsimonious 
representation of the hydrological processes occurring on a catchment to be found since 
only the sensitive parameters were fitted. Al was initially set to 0.5 and A.2 was set to 
machine epsilon. 

The estimate of the global minimum was accepted when at least four SA runs 
converged to the same minimum point in the parameter space. A useful but not 
conclusive check that the fitting process terminated at a global rather than local 
minimum was to ensure that the value of the objective function was reduced as more 
parameters were included. 

6.2. Calibration Results 

6.2.1 Catchment Selection 

From the initial 28 catchments available in the Chiew and McMahon (1994) data set the 
Tooma River and Suggan Buggan catchments were not considered because of 
significant snow pack causing delayed runoff that Boughton's model was not capable of 
modelling. Cainbable Creek had an excellent streamflow record although unfortunately 
there were no rain gauges in the catchment or even in the same valley. The principle 
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rain gauge was two ridges to the east and major streamflow events occurred without 
corresponding rainfall events and major rainfall events occurred without matching 
hydrograph peaks. Simple scaling of the rainfall did not help, so model fitting was 
abandoned. Some of the arid-zone catchments had relatively few flow events and no 
base flow although the model was calibrated. Calibration was attempted on twenty-five 
catchments as shown in Table 15. 

The model fit was unacceptable on the Kanyaka Creek, Kanjenjie Creek and Fletcher 
Creek catchments where the streamflow is ephemeral. There were not sufficient 
streamflow events on the Kanjenjie Creek, and Fletcher Creek catchments (14 and 13 
respectively) to substantiate model calibration. Surprisingly, an acceptable fit was 
obtained for Naradhan Creek, which is also ephemeral with only 6 streamflow events. 
The rainfall data appeared to be inadequate for Fletcher Creek and Kanyaka Creek. 
Large flows occurred on Kanyaka Creek without corresponding rainfall events. The 
runoff at the gauging station for these catchments was 3 and 1 percent of rainfall, 
respectively. These results support the claim by Sorooshian et al. (1983) that it is not 
the length of data that is important but rather the information that the data contain and 
the quality of the data. Two measures of model adequacy are given in Table 14, the 
coefficient of determination (R2) and the coefficient of efficiency (E) (Chiew and 
McMahon, 1994) defined as 

,f A A 2 
")Qi - Y;) 

R2 = l - -=-i= ...... 1 ___ _ 
n -

LC(?; - Q )2 

i=l 

,f A 2 
4. /Qi - Q; ) 

E = 1--=-i= ...... 1 ___ _ 

lCQ - Q )2 

i=l 

(44) 

(45) 

where Yi is obtained from the regression line relating modelled flows to observed flows 
- A and Q and Q are the mean observed and modelled flow respectively. The coefficient 

of determination represents the proportion of the variation in the observed flows that is 

11 



Table 1 5  Parameter estimates for Boughton's model with standard errors in parenthesis 

Catchment s F B Emax SDRmax NDC DPF c 

QUEENSLAND 
1 1 1 105 Babinda Creek at The Boulders 1 12( 14) 20.0 1 .0 8.9 0 0.56(0.08) 0.024(0.002) 0.0 
1 1 3004 Cochable Creek at Powerline 44(10) 20.0 1 .0 8.9 0 0.53(0. 1 5) 0.021(0.003) 0.0 
1 1 8 106 Alligator Creek at Allendale 64(10) 12.6(3.8) 0.88(0. 1 8) 7.9(4.5) 0 0.59(0. 10) 0.020(0.003) 0.0 
120204 Broken River at Crediton 102(8) 16.9( 1 .5) 0.56(0.03) 8.9 0 0.5 0.024(0.002) 1 .55(2.5 1 )  
915001 Mitchell Grass at Richmond 241 (34) 1 7.2( 12.3) 0.3 1 (0.06) 8.9 0 0.69(0. 1 0) 0.465(0. 168) 0.0 
927001 Jardine River at Telegraph Line 82(12) 20.0 0.96(0.03) 8.9 25 0.5 0.012(0.001) 0.0 

NEW SOUTH WALES 
206001 Styx River at Jeogla 94(8) 8.4( 1 .4) 0.56(0.03) 8.9 0 0.28(0.04) 0.044(0.005) 0.41 (0.65) 
210022 Allyn River at Halton 208(8) 8.9 0.38(0.02) 8.9 0 0.2 0.363(0. 1 37) 1 .63(3.70) 
215004 Corang River at Hockeys 85(8) 1 .9(0.7) 1 .0 1 1 .0(5.2) 0 0.83(0.05) 0.007(0.002) 0.0 
412093 Naradhan Creek at Naradhan 65(1 )  5. 1 (0. 1 )  0.0 8.9 0 0.5 0. 1 4 1( 1 . 109) 0.01 (0.01 )  
420003 Belar Creek at W arkton 1 14(4) 6. 7( 1 .2) 0. 1 5(0.02) 8.9 0 0.54(0.03) 0.059(0.01 3) 0.37(0.30) 

VICTORIA 
2272 19 Bass River at Loch 122(5) 1 .8(0. 1 )  0.89(0.06) 8.9 88(3) 0.62(0.02) 0.064(0.015) 1 .58( 1 1 .22) 
238208 Jimmy Creek at Jimmy Creek 98( 1 1 )  4.0(0.6) 0.66(0.05) 8.9 0 0.63(0.07) 0.03 1 (0.008) 1 .79(3.67) 
401212 Nariel Creek at Upper Nariel 259( 16) 8.9(0.6) 0.65(0.03) 8.9 0 0.5 0.022(0.002) 0.08(0.09) 
4032 18 Dandongadale River at Matong North 253( 10) 3.6(0. 1) 0.44(0.03) 8.9 0 0. 5 0.024(0.003) 0.05(0.02) 

TASMANIA 
307001 Davey River D/S Crossing River 26(8) 19.9(4.8) 0.85(0.01 )  8.9 0 0.5 0.3 15(0.048) 2.65(0.27) 
3 15006 Forth River U/S Lemonthyme 23(3) 2.7(0.4) 1 .0 8.9 0 0.56(0. 12) 0.018(0.004) 0.0 

SOUTH AUSTRALIA 
503502 Scott Creek at Scotts Bottom 90(7) 6.2(0.6) 0.22(0.02) 8.9 5(2) 0.5 0.080(0.016) 1 .00(0.87) 
5055 17  North Para River at Penrice 164(4) 0.9(0. 1 )  0.4 1 (0.03) 8.9 0 0.5 0. 120(0.025) 0.0 

WESTERN AUSTRALIA 
6 12005 Stones Brook at Mast View 222(7) 4.3(0. 1 )  0.24(0.02) 8.9 38(7) 0.5 0.028(0.002) 0.80( 1 .22) 
616065 Canning River at Glen Eagle 345(8) 3.8(0. 1 )  0.06(0.004) 8 .9 0 0.54(0.01 )  0.082(0.01 3) 0.84(0.39) 
701003 Nokanena Brook at Woottachooka 1 10(7) 6.8(1 .7) 0.22(0.01 )  8.9 25 0.26(0.04) 0.037(0.003) 0.53(0.80) 
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accounted for by the line of best fit. The coefficient of efficiency expresses the 

proportion of the variation in the observed flow that can be accounted for directly by 

the model. 

6.2.2 Calibration 

Simulated Annealing Algorithm 

The SA algorithm found the same estimate of the global minimum using the maximum 

number of parameters calibrated for a catchment on 77 percent of SA runs. The SA 

algorithm required more function evaluations ( about 7 ,OOO for most catchments) than 

that of the Shuffled Complex Evolution (SCE-UA) method of Duan et al. (1992) to 

calibrate the 6-parameter model SIXPAR. However, this is not a reasonable 

comparison since the model, data sets, termination criteria and time step used in the 

objective function differ. The results of Bates (1994) and Duan et al. (1992) indicate 

that both SA and SCE-UA achieve about three times the probability of finding the 

global minimum than a multistart method using the same number of function 

evaluations. The SA method is simple to apply and would benefit from the application 

of several runs using a smaller number of function evaluations. The results also 

demonstrate the need to use multiple SA runs during the estimation process. 

Exchangeable optima with similar objective function values were found for the 

Canning River, Kanyaka Creek and Allyn River catchments. For these catchments the 

SA algorithm had difficulty choosing between optima that were very similar. The 

catchments required a cautious approach since a slight change in the objective function 

such as changing A1 in Equations (28) and (29) or the introduction of an AR( l) model 

are likely to change the global optimum from one local minimum to another (see case 

study in section 6.3.2). 
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Model Parameters 

A preliminary assessment of rainfall and runoff accumulations revealed a number of 
catchments where evaporation was negligible or excessive, pointing to errors in rainfall 
data in particular. These catchments often had strong rainfall gradients and so a scaling 
factor was introduced into six catchments as indicated in Table 14. All catchments with 
high rainfall and high runoff except the Forth River in Tasmania show high values for 
the infiltration parameter F and B equal or close to 1.0 in Table 15. Here, the model 
acts as a simple linear reservoir between net rainfall and streamflow, as it also does on 
the Forth River. The special case of the Mitchell Grass catchment in Western 
Queensland has high values for S, NDC and F. This is consistent with the deep 
cracking clays which only provide runoff after a succession of very large daily rainfalls. 
Surface runoff is rarely achieved and groundwater never emerges. 

A closed water balance was obtained for all catchments except Alligator Creek, 
Mitchell Grass, Jardine River, and North Para River where the groundwater 
recirculation modification did not improve the model fit. The closed water balance 
allows the modelled groundwater levels in the catchment to carry over between seasons 
and years. Open water balances discharge all of the deep groundwater outside the 
catchment. 

Boughton (1984) gives recommended values for three parameters of the model S, F and 
B based on catchment characteristics. The SA estimates for these parameters at the 
global minimum were not consistent with the catchment characteristics for five 
catchments. The original estimate of S for Scott Creek (S = 166mm) was considered 
excessively high for a catchment where the vegetation is predominantly grass. For 
Jimmy Creek the original estimate of S (S = 51mm) was considered low for a eucalypt 
woodland and the estimate of F (F = 8.2mm) excessively high for thick sandy surface 
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soils with highly impermeable clay subsoils. The infiltration rate for Nokanena Brook 

(F = 13 .Smm) was considered excessively high for the duplex soils on this catchment. 

For these catchments the model did not appear to be behaving as intended and a near

to-optimal solution consistent with physical characteristics was found. The estimates of 

S for the two Tasmanian catchments (Davey River and Forth River) were not consistent 

with the physical characteristics of the catchments. Larger values for S were expected 

given the predominant tussocky grasses and graminoids on the Davey River catchment 

and forest vegetation on the Forth River catchment. The model fit for both catchments 

at the global minimum was excellent and these parameters were adopted since no local 

minimum that was consistent with catchment characteristics could be found. Since the 

conceptual and physical basis of the model does not apply to these catchments the 

parameter estimates should be used with caution. For all other catchments the model 

global minimum was consistent with the physical catchment characteristics. 

6.3 Case Studies 

Two catchments are considered in more detail. The calibration was simple for 

catchments such as Bass River at Lock, where the statistical assumptions were readily 

satisfied, and parameter estimates consistent with the catchment characteristics were 

obtained. Allyn River at Halton was problematic and is used to highlight some of the 

difficulties satisfying the statistical assumptions in section 6. 1 .5 and other problems that 

may be encountered. 

6.3.1 Bass River at Loch 

Bass River at Loch is located in South Gippsland Victoria and is typical of the 

catchments in the temperate regions of Australia. The catchment has an area of 52 kffi2 . 

The mean annual runoff in the catchment is 1 7300 ML (333mm) and the mean annual 
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rainfall is 1100 mm and has monthly means uniformly distributed over the year. The 
mean annual potential evapotranspiration is 886mm. The average daily maximum 
summer temperature is 25°C and the average daily maximum winter temperature is 
13°C. The catchment is covered predominantly by grass and has duplex soils (Chiew 
and McMahon, 1993). 

Seven parameters were fitted as shown in Table 15 . The default value of 8.9 was used 
for Emax since the residual variance could not be reduced by fitting this parameter. The 
ground water replenishment modification reduced the residual variance although the 
standard error of 11.2 for parameter C indicates that it is not well determined. 

Figure 20 shows plots of the monthly observed and modelled runoff for the period used 
to calibrate the model. There is good agreement between the modelled and observed 
run off. 
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for Bass River at Loch. 

Figure 2 1  shows a plot of modelled runoff against observed runoff. The plot closely 
follows the one on one line indicating a reasonable fit to both the peaks and periods of 
low flow when fitted with Al = 0.5. The good appearance of the fit is supported by an 
R2 value of 0.92 7 and coefficient of efficiency (E) of 0.925. 
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Figure 2 1. Plot of modelled ( Q) versus observed (Q) runoff values for Bass River at Loch. 

Figure 22 shows a plot of the absolute value of the residuals against q (note since 
A 1 ::/:. 1 in Equations (28) and (29) the transformed modelled run off ( q) was fitted to the 
transformed observed runoff (q)) with a line fitted using robust locally weighted 
regression (Cleveland, 19 79). The fitted line shows initially, a slight increase, followed 
by a gradual decrease in the residual variance. However, there is not sufficient 
evidence to indicate departure from a constant residual variance and it was assumed that 
the residuals are homoskedastic. 
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Figure 22. Plot of residuals versus transformed modelled run off ( q) with 
line fitted using robust locally weighted regression for Bass River at Loch. 

A quantile plot of the residuals (Figure 23) for this catchment showed that the points 

lay very nearly along a straight line. I could not reject the assumption that the residuals 

are normally distributed. 

10 

• 
5 

•• • • 
.... 
! 
·ri 
Ill 

0 

• • 
-5 

-3 -2 -1 0 1 2 3 

Standard normal quantiles 

-: • 
> . • I 
1 · ... 

0 ·-
• � ¥ 



-98 -
Figure 23. Quantile plot of residuals for Bass River at Loch. 

Autocorrelation and partial autocorrelation plots (Figures 24 and 25) indicated that the 
assumption of independence could not be rejected. 
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Figure 24. Autocorrelation plot of residuals for Bass River at Loch 
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Figure 25. Partial autocorrelation plot of residuals for Bass River at Loch 

6.3.2 Allyn River at Halton 

Allyn River in New South Wales is a western bank tributary of the Lower Hunter River 
and enters above Newcastle after joining the Patterson River. The catchment above 
Halton has an area of 205km2, a mean annual runoff of 7 1000ML (350mm) from a 
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mean annual rainfall of 1200 to 1400mm. Priestley-Taylor potential evaporation is 
about 1200mm. The upper 40 percent of the catchment is in State Forest and National 
Park and is heavily timbered with nothofagus rainforest and wet sclerophyll eucalypt 
forest. The balance is open forest, cleared grazing and some arable land close to the 
river. The soils are loams of varying depth. Elevation ranges from 250m to 1500m and 
there is a strong rainfall gradient. The average daily maximum temperature is 29°C in 
summer and 16°C in winter with occasional snow falls on the peaks of the Barrington 
Tops. As indicated in Table 14 catchment rainfall was scaled by a factor of 1.2 times 
the data of Chiew and McMahon (1993) to allow for the position of the raingauge and 
rainfall gradients. This provided more reasonable values of actual evapotranspiration. 

The final parameter estimates required significant intervention to arrive at a set of 
meaningful values. The default value of 8.9 was used for Emax since the residual 
variance could not be reduced by fitting this parameter. SDRmax was set to zero, i.e. the 
lower bound for this parameter which minimised S( (}) . NDC was set to 0.2 since I did 
not believe that the estimates of less than 0.2 found by global optimisation were 
consistent with the physical basis of the model. The transformation parameter A-1 was 
then set to the successive values in Table 16, artd estimates for S, F, B, DPF and C were 
obtained. Four SA runs were used for each value of A.I , The run with the lowest value 
for S( 0) is shown. A 
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Table 16. Estimate of global minimum for Allyn River at Halton 

Al F B DPF c S( (J )  Lmax 
0.1 98 6.5 0.22 0.051 2.14 71.4 -175.6 
0.2 90 6.7 0.22 0.045 2.12 92.5 -166.8 
0.3 83 9.6 0.22 0.059 1.45 137.7 -164.4 
0.4 91 8.9 0.25 0.068 1.18 227.1 -166.8 
0.5 94 9.1 0.26 0.078 1.18 417.7 -174.2 
0.5 180 13.9 0.32 0.159 1.67 423.9 -174.9 
0.6 177 13.7 0.33 0.166 0.82 747.0 -181.4 
0.7 179 13.8 0.35 0.170 1.36 1403.7 -188.8 
0.8 178 13.8 0.36 0.182 1.04 2764.3 -199.5 
0.9 179 13.8 0.37 0.179 1.08 5697.6 -212.2 
1.0 181 13.8 0.37 0.173 1.20 12160.9 -226.6 

Table 16 contains at least two local minima with different parameter values (note that 
the estimates of S, F, B and DPF consistently change at Al = 0.5). When Al � 0.5 the 
first local minimum is the best estimate of the global minimum and when Al > 0.5 the 
second minimum is the best estimate of the global minimum. At Al  = 0.5 the two 
minima have similar values for S(O) as shown in Table 16 and the optimisation 
program could not differentiate between them giving each minimum as the estimate of 
the global minimum on two occasions. For Al ::;:. 0.5 the correct minimum was found on 
every occasion. 

The minimum at S :::: 90 and F ::::  9 was consistent with the physical catchment 
characteristics as described by Boughton (1984) while the values of S and F for the 
second minimum were not. Setting Al = 0.3 to maximise the maximum likelihood 
function in Equation (35) placed more emphasis on the low flow values with a smaller 
variance at the expense of the larger flows as shown in Figure 26. 

s 
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Figure 26. Plot of modelled ( Q) versus observed (Q) runoff values 
with Al = 0.3 and Lmax = -164.4 for Allyn River at Halton. 

Increasing Al to 0.4 or 0.5 gave a better fit, however Al could not be increased beyond 
0.5 without the program locating the other minimum. Knowledge of the catchment 
suggested setting the upper limit of F to 8.9 to force convergence to the first minimum, 
so higher values for Al could be investigated. Al = 1.0 was found to give the best fit and 
the parameter estimates are shown in Table 1 5. Starting at the first minimum with 
Al = 1 .0 fitting S, F, B, DPF and C, the Nelder and Mead simplex method moved 
towards the second minimum converging to other local minima with unacceptable 
parameter values. This behaviour indicated the existence of a valley containing the two 
extrema and other local minima. Nathan and McMahon ( 1990) were not able to find 
the global minimum fitting 5 parameters of the SFB model to this catchment using the 
method of Nelder and Mead. The better fit is demonstrated in Figures 27 and 28 and is 
supported by an R2 value of 0.953 and a coefficient of efficiency (E) of 0.95 1 .  
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Figure 2 7. Plot of modelled ( Q) and observed (Q) monthly flows for Allyn River at Halton. 
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Figure 28. Plot of modelled (Q) versus observed (Q) runoff values 
with At = 1.0 and Lmax = -230.2 for Allyn River at Halton. 
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The model offers a closed water balance and a significant amount of deep drainage 
contributing towards sustaining evaporation from the lower part of the soil store. This 
behavior is consistent with that expected of the upper wetter forested part of the 
catchment. Figure 29 shows a plot of the absolute value of the residuals against Q

 

(note since Al = 1 in Equations (28) and (29) the modelled runoff ( Q
) was fitted to the 

observed runoff (Q
)) with a line fitted using robust locally weighted regression 

(Cleveland, 1979). The fitted line shows initially, increasing, and then decreasing 
residual variance. This situation cannot be corrected using the transformations in 
Equations (28) and (29). 
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Figure 29. Plot of residuals versus modelled runoff ( Q
) with line fitted 

using robust locally weighted regression for Allyn River at Halton. 
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A quantile plot of the residuals (Figure 30) for this catchment showed a noticeable 
deviation from normality in the upper tail that could not be corrected without 
sacrificing the fit. 
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Figure 30. Quantile plot of residuals for Allyn River at Halton. 

Autocorrelation and partial autocorrelation plots (Figures 31  and 32) show that the 
assumption of independence was not satisfied because of the presence of, an AR( l) 
process. An autoregressive error model (Equation 30) could not be used since the 
streamflow data for this catchment was incomplete. 
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Figure 31. Autocorrelation plot of residuals for Allyn River at Halton 
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Figure 32. Partial autocorrelation plot of residuals for Allyn River at Halton 

6.4. Summary 

SA provides an efficient solution to the CCRM calibration problem. However, the 
complexity of obtaining an accurate numerical solution grows exponentially with the 
number of parameters to be determined. As a result high dimensional problems require 
long slow cooling schedules with considerable computational effort. The inclusion of 
insensitive or poorly determined parameters in the fitting process often caused 
premature convergence before the global minimum was found. These parameters were 
identified by their inability to reduce the residual variance when included, large 
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standard errors, and they may have a high correlation with one or more other 

parameters. 

The modified 8-parameter Boughton's model used for this study gave a much better fit 

than the original 3-parameter model. The values for DP F, S D Rmox, and ND C 

recommended by Boughton( l984) and used by Nathan and McMahon( l990) and Chiew 

et al. (1993) were not appropriate for all catchments. Much of the improvement in 

model fit was due to finding an optimal value for the DPF parameter, which relates to 

the baseflow and deep percolation. The results support the suggestion by Irish (1991) 

that a higher value for this parameter should be used. The optimal values for this 

parameter shown in Table 15 are very different from the value of 0.005 recommended 

by Boughton . The optimal value for SDRmox 
was zero in 17 catchments which suggests 

that the recommended value of 25mm is not always appropriate. Fitting NDC reduced 

the residual variance for 13 catchments and the estimate was more than 2 standard 

deviations from Boughton's recommended value of 0.5 for 5 catchments. The value 

recommended by Boughton for Emox of 8.9mm d- 1 is reasonable since fitting Emox 

reduced the residual variance in only 3 catchments all of which were within a standard 

deviation of the recommended value. 

There are a number of instances of large values of the standard error relative to the 

value of the parameter. This seems to indicate that the modelled process is irrelevant or 

could be better expressed. Naradhan Creek catchment is a case in point. The 

hydrograph shows little interflow and no baseflow and the estimation process correctly 

sets B to zero so all drainage proceeds to the groundwater store for recirculation to the 

non-draining evaporation store. DPF is set an order of magnitude higher than most 

other catchments but is very poorly determined. This is not surprising since there is no 

baseflow for this catchment. It could be set to one or the baseflow process bypassed. 

Parameter C is likewise poorly determined since it does not directly influence any 
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streamflow mechanism but does succeed in reducing the residual variance and thus 
providing a better fit. 

The standard errors for parameter C for all catchments are poorly estimated due to 
nonlinearity in this parameter ; the model is considerably more sensitive to a reduction 
in the value of this parameter than an increase of the same size. The standard errors for 
C are larger than the parameter estimates for eight catchments although inclusion of this 
parameter reduces the residual variance thus providing a better fit. 
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7. Conclusions 

I have presented a new method for global minimisation of functions of continuous 
variables based on simulated annealing (SA). The new method is able to find the global 
minimum of test functions with an extremely high number of local minima. The 
reliability and efficiency of the new SA algorithm presented compares favourably with 
three SA algorithms investigated and other global optimisation methods from the 
literature using three test functions that offer different challenges. The new method is 
also extremely robust giving good results for a wide range of initial temperatures and 
cooling schedules. The new method uses exploration steps from the direct search 
method of Hooke and Jeeves(l961) to effectively maintained a downhill bias. The 
algorithm was able to investigate both the current valley using exploration steps and 
more distant points using pattern moves. 

The starting temperature and cooling schedule for SA must be carefully selected. 
Temperatures that are too high waste computational effort while a temperature that is 
too low does not adequately sample the function and may lead to local entrapment. The 
most appropriate initial temperature and cooling schedule is specific to both the SA 
algorithm used and problem to be solved. The choice of SA algorithm should depend 
on the nature of the test function being investigated. SA algorithms such as Press and 
Teukolsky ( 1991) and the new method that use a local search phase to find the bottom 
of the valley containing the global minimum are more efficient. It may also be more 
efficient to use several smaller runs of a SA program than one large one. Since there is 
no guarantee that the global minimum will be found multiple runs of a SA program 
should be used. 

Because of the global nature of hydrologic model calibration problems, SA is a useful 
tool for parameter estimation. Using the maximum number of parameters that could be 
calibrated for all catchments, SA was able to find the same optimal point in 7 7  percent 
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of calibration attempts. The technique has been shown to calibrate Boughton's model 
with up to 7 parameters using data of good length and quality. However, considerable 
care must be taken to obtain a parsimonious set of parameter estimates for a catchment 
and to ensure that the least squares assumptions are satisfied. The number of 
parameters able to be calibrated using SA is far superior to previous calibration 
attempts of Boughton's model by myself and others using local optimisation methods. 
Because the method does not require the calculation of derivatives it works on models 
containing discontinuities on the response surface. The SA algorithm by Press and 
Teukolsky (1991) with the addition of the restart feature performed well when applied 
to the model calibration problem although more efficient SA algorithms may be 
available. 

There is an inherent danger in using automatic optimisation methods because the 
parameter estimates obtained may not be consistent with the physical characteristics of 
the catchment. Global optimisation methods do not solve this problem because: 

(i) the parameter estimates at the global minimum of the residual sum of squares 
response surface may provide a good fit although the hydrological processes 
are not being modelled correctly, 

(ii) the global minimum may not have been found, 
(iii) an inappropriate objective function may have been used, or 
(iv) proper transformation of output to give normalised residuals has not been 

achieved. 

Boughton's model appears best suited to the temperate regions of Australia. Its 
performance in arid areas is poor, although much of the problem is due to low and 
sporadic rainfall and even more sporadic streamflow events on which to substantiate 
model calibration. There is evidence that the values for the model parameters DPF, 
SDRmax and ND C recommended by Boughton( 1984) and used by Nathan and 
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McMahon (1990) and Chiew et al. (1993) may not be suitable for many Australian 
catchments. The results obtained in this study (including 4 catchments in the same 
basins used by Nathan and McMahon) indicate that a better fit is obtained by fitting 
additional parameters, although the parameters that contribute to an improvement in 
model fit are specific to the catchment concerned. 
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Appendix A 
Test Functions 



Test Function for Global Optimisation Methods 
Hartman's Family 

Dixon & Szego (1 978); Vanderbilt & Louie (1 984); Brooks & Verdini ( 1 988); Butler & Slaminka (1 992} 

m :: 4 p : = 3 
i ::  1 . .  m j :: 1 . .  p 

3 10  30 
. 1  10 35 

a := 

3 10 30 
. 1  10  35 

c ::  ( 1 1 .2 3 3.2 ) 
T 

f( x )  :: - "1 c. · exp[ - "1 a . . · ( x . - b . .  )2
] L...J 1 L...J 1 , J  J 1 , J  

i j 
Function domain 

O <= xi <= 1 ,  i=1 ,2,3 
k := 1 . . 101 

I ::  1 . . 101 
Mk ,  l :: f( (x lk x 21 x 2k) T) 

k - 1 x 1 :=--

k 100 

I - 1 x 2 :=--

1 100 

.36890 . 1 1 70 .2673 

.46990 .4387 .7470 b ·-.-

. 1 0910 .8732 .5547 

.0381 5  .5743 .8828 

Global minimum 
r(c 0. 1 1462 o.55565 o.85255 ) T) = -3.86278 



Test Function for Global Optimisation Methods 
Rastrigin Function 

Polovinkin(1 981 ); Benke and Skinner(1 991 ) 

f( x 1 , x 2 ) : =  x 1
2 + x 2 

2 - cos( 1 8· x 1 ) - cos( 1 8· x 2 )

Function domain 
-2 <= x1 <= 2
-2 <= x2 <= 2
i :=  1 . .  8 1

j := 1 . . 8 1  

M . .  :: f(x l . , x 2.\ I ,  J I JI

i - 41x \ := �

Global minimum 
f( 0, 0 )  = -2 



i : = 1 . . 5  b : = 0.5 

Test Function for Global Optimisation Methods 
Penalised Shubert 

Gunel and Yazgan (1 992) 

f(x 1 , x 2) := [�)·cos[( i  + 1 ) ·x 1 + i ] l[�)·cos[ ( i  + 1 ) ·x 2 + i] J + b · [  (x 1 + 1 .425 1 )  2 + (x 2 + 0.8003)2
] 

Function domain 
-1 0 <= x 1  <= 1 0  
- 10  <= x2 <= 1 0  i : =  1 . . 20 1  
j : =  1 . . 20 1  
M . .  : = f(x 1 . , x 2.) 1 ,J 1 J 

i - 10 1  
x l i  : =-10-

,_j - 10 1  
x 2

j 
, - -10- Global minimum 

f(- 1 .425 1 , - 0.8003 ) = -1 86.7309 1 
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Appendix B 

Program Listings 

SIMULATED ANNEALING PROGRAMS 
C Simulated annealing program to find the global optimum of a 
C continuous function . 

C PROGRAMMER : Neil  R .  Sumner 

INTEGER n , iseed , maxits , solved, status 
C Set number of dimensions for function 

PARAMETER (n = 3 )  
REAL TO , x (n ) , lowl im ( n ) , uplim ( n ) , fopt 
REAL hartman , ranl 
EXTERNAL hartman , ranl 

DATE : 2 8 / 2 / 9 5  

C Initial temperature , step size & maximum number o f  function 
C evaluations 

DATA TO , maxits I 1 . 0 ,  1 0 0 0 0  I 

C Constraints ( lower and upper limits  for xl , x2 , . . .  ) 
DATA lowlim I 0 . 0 , 0 . 0 , 0 . 0  I 
DATA uplim I 1 . 0 , 1 . 0 , 1 . 0  I 

DATA solved I O I  

C Seed for random number generator 

WRITE ( * , '  ( /A) ' )  ' Simulated Annealing Optimisation ' 
WRITE ( * , '  ( /A$ ) ' )  ' Enter seed for random number generator : ' 
READ ( * , * ) iseed 
IF ( iseed . ge .  0 )  iseed = -1 * iseed 

CALL startpt ( lowlim, uplim, x , n , i seed ) 

CALL vander (hartman , x , lowlim , uplim, TO , n , iseed , maxits , fopt , 
& status ) 

IF ( status . eq .  solved)  THEN 
WRITE ( * , 10 )  fopt , x 

1 0  FORMAT ( / / ' Optimisation Complete ' / '  Estimate of global optimum ' 
& ' = '  , Fl2 . 6 ,  I '  at x = '  , 9Fl 0 . 4 ,  / )  

WRITE ( * , '  (A , I 6 )  ' )  ' Number o f  function evaluations = ' , maxits  
ELSE 

WRITE ( * , 2 0 )  fopt , x 
2 0  FORMAT ( / / ' Method has NOT converged ' / '  Current function value ' 

& ' = ' , Fl2 . 6 , / '  at x = ' , 9Fl 0 . 4 , / )  
WRITE ( * , '  (A , I6 ) ' )  ' Number of function evaluations = ' , maxits  

END IF 

END 

SUBROUTINE vander ( f , xi , lowlim, uplim, Tk , n , iseed , maxits , fopt , 
& status ) 

C Simulated annealing program based on the algorithm by Vanderbi l t ,  D . , 
C and Louie , S . G .  ( 19 8 4 )  A Monte Carlo Simulated Annealing Approach 
C to Optimisation over Continuous Variables . J .  Comp . Phys . 5 6 ,  
C pp2 5 9-271 . 



c 
c PROGRAMMER : Nei l  R .  Sumner 

c Variables f 
c xi 
c uplim, lowlim 
c Tk 
c n 
c iseed 
c maxits 
c fopt 
c status 

c xopt 
c r 
c count 
c M 
c cov 
c deltax 
c E 
c fi 
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function to be minimised 
initial guess , returns xopt 
upper and lower constraints 
temperature 

DATE : 2 8 / 2 / 9 5  

number of  variables i n  function f 
seed for random number generator 
maximum number of i terations 
best function evaluation found 
returns O i f  convergence occurs 

x-vector corresponding to fopt 
reduction factor for step length changes 
function evaluation counter 
number of steps in random walk 
sample covariance matrix 
step vector 
average temperature for accepted moves 
current function value 

C Parameters : 
INTEGER n , iseed , maxits , status 
REAL f , xi (n ) , lowlim (n ) , uplim (n ) , Tk , fopt 

C Internal variables : 
INTEGER nmax , M  
PARAMETER (nmax = 3 ,  M = 15 *nmax) 
INTEGER count , solved , l imi t , i , j , k , accept 
REAL ranl , r , epsilon , fi , fnew, E , p , pprime , Xs , Beta , deltax ( nmax ) , 

& xopt ( nmax ) , x ( nmax, M) , u ( nmax) , xnew ( nmax ) , Q ( nmax , nmax ) , 
& sum (nmax) , A (M) , S ( nmax , nmax ) , const , cov ( nmax , nmax ) , qroot 

EXTERNAL f , ranl 

DATA solved , limit I 0 ,  1 I 
DATA r ,  epsilon I 0 . 9 , 0 . 00002  I 
DATA qroot , Beta , Xs I 1 . 7 3 2 0 50 80 8 ,  0 . 11 ,  3 . 0  I 

C Check array sizes 

IF ( n  . gt .  nmax) STOP ' ERROR : Increase size of  nmax in Vander ' 

C Step 0 .  Initialisation 

fi  = f (xi , n ) 
CALL vcopy (xi , xopt , n ) 
fopt = fi  
count = 1 

C Initial covariance matrix 
CALL rdent ( cov , nmax , n )  

C I terate unti l convergence criteria satisfied 

1 0  CONTINUE 

C Compute step distribution matrix Q Eqn ( 7 )  

CALL choleski ( cov, n , nmax , Q )  

C Initialise vector to store sum o f  step sizes 

DO 15  i=l , n 



1 5  sum ( i )  

E = 0 . 0  
accept = 0 . 0  
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0 . 0  

C Sample parameter space at temperature T 

DO 6 0  k=l , M 

C Step 1 .  Compute step vector deltax = Q * u Eqn ( 5 )  

C Iterate through all n dimensions of parameter space 
DO 2 0  i=l , n 

2 0  u ( i )  = qroot * 2 . 0  * ( ranl ( iseed) - 0 . 5 ) 
C deltax = Q * u Eqn ( 5 )  

CALL matmul ( Q , nrnax, n , nrnax , n ,  u , nrnax , n , l , l , deltax , - 1 )  
CALL matadd (xi , nrnax, n , l , l , deltax , xnew) 

C Step 2 .  Check that coordinate l ies inside function domain 

c 

c 

3 0  
& 

DO 4 0  i=l , n 
IF ( ( xnew ( i )  . gt . uplim ( i ) ) . or .  

(xnew ( i )  . lt . lowlim ( i ) ) )  THEN 
xnew ( i )  = xnew ( i )  I 2 
GOTO 3 0  

END IF 
4 0  CONTINUE 

Save step size information 

DO 5 0  i = l ,  n 
x ( i , k ) xnew ( i )  

5 0  sum ( i )  = sum ( i )  + xnew ( i )  

Step 3 .  Evaluate function 

fnew = f (xnew , n )  
I F  ( fnew . lt .  fi ) THEN 

C accept the new point 
CALL vcopy (xnew , xi , n ) 
fi = fnew 

c 

c 

ELSE 

E = E + fi 
accept = accept + 1 
IF ( fnew . lt .  fopt ) THEN 

CALL vcopy (xnew, xopt , n ) 
fopt = fnew 

END IF 

Metropolis  move Eqn ( 2 )  
p = exp ( ( fi - fnew) I Tk) 
pprime = ranl ( iseed) 
IF (pprime . lt .  p) THEN 

accept Metropolis  move 
CALL vcopy (xnew, xi , n ) 
fi = fnew 
E = E + fi 
accept = accept + 1 

END IF 
END IF 

60 CONTINUE 

C Compute first (mean ) & second (variance )  moments Eqns ( 1 0 )  & ( 11 )  



DO 6 5  i=l , n 
6 5  A ( i )  = sum ( i )  I M  

DO 8 0  i=l , n 
DO 8 0  j =l ,  n 

S ( i , j )  = 0 . 0  
IF ( i  . le .  j )  THEN 

DO 7 0  k=l , M 
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7 0  S ( i , j )  = S ( i , j )  + (x ( i , k ) -A ( i ) ) * ( x ( j , k ) -A ( j ) )  I M  
ELSE 

S ( i , j )  
END IF 

8 0  CONTINUE 

S ( j , i ) 

C Compute covariance matrix Eqn ( 13 )  

const = Xs I ( Beta * M)  
CALL scalar ( S , const , nmax , n , nmax, n , cov) 

C Step 6 .  Reduce the temperature 

Tk = r * Tk 
count = count + M 

C Step 7 .  Test for convergence 

IF ( accept . gt .  0 )  THEN 
E E I  accept 

ELSE 
E 1 . 0  I epsilon 

END IF 
IF ( abs ( ( E - fopt ) I E) . lt .  epsilon) THEN 

status = solved 
GOTO 9 9  

END I F  

CALL vcopy (xopt , xi , n ) 
fi = fopt 
IF ( count . lt .  maxits ) GOTO 1 0  

C Maxits reached without convergence 

status = l imit 

C Return to calling program 

9 9  maxits = count 
CALL vcopy (xopt , xi , n ) 

END 
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PROGRAM sa 
C Simulated annealing program to find the global optimum of a 
C continuous function . 

C PROGRAMMER : Nei l  R .  Sumner DATE : 1 / 9 / 9 4  

INTEGER n , iseed, maxits , solved , status 
C Set number o f  dimensions for function 

PARAMETER ( n  = 2 )  
REAL TO , deltax (n ) , x (n ) , lowlim ( n ) , uplim ( n ) , fopt 
REAL rastrig , ranl 
EXTERNAL rastrig , ranl 

C Initial temperature , step size & maximum number of function 
C evaluations 

DATA TO , maxits I 1 . 0 ,  5 0 0 0  I 
DATA deltax I 2 . 0 ,  2 . 0  I 

C Constraints ( lower and upper limits for xl , x2 , . . .  ) 
DATA lowlim I -2 . 0 , -2 . 0  I 
DATA uplim I 2 . 0 ,  2 . 0  I 

DATA solved I O I  

C Seed for random number generator 

WRITE ( * , '  ( /A ) ' )  ' Simulated Annealing Optimisation ' 
WRITE ( * , '  ( /A$ ) ' )  ' Enter seed for random number generator : 
READ ( * , * ) iseed 
IF ( iseed . ge .  0 )  iseed = -1  * iseed 

CALL startpt ( lowlim, uplim, x , n , iseed ) 

CALL corana ( rastrig , x , lowlim, uplim, TO , deltax , n , iseed , maxits , fopt , 
& status ) 

IF ( status . eq .  solved )  THEN 
WRITE ( * , 10 )  fopt , x 

1 0  FORMAT ( / / ' Optimisation Complete ' / '  Estimate of global optimum ' 
& ' = ' , F12 . 6 ,  I '  at x = '  , 9Fl0 . 4 ,  I ) 

WRITE ( * , '  (A , I 6 )  ' )  ' Number of function evaluations = ' , maxits 
ELSE 

WRITE ( * , 2 0 )  fopt , x 
2 0  FORMAT ( / / ' Method has NOT converged ' / '  Current function value ' 

c 
c 
c 
c 
c 
c 

& ' = ' , F12 . 6 , / '  at x = ' , 9F10 . 4 , / )  
WRITE ( * , '  (A , I 6 )  ' )  ' Number of function evaluations = ' , maxits 

END IF 

END 

SUBROUTINE corana ( f , xi , lowlim, uplim, Tk , v , n , iseed , maxits , fopt , 
& status ) 

Simulated annealing program based on the algorithm by Corana , A . , 
Marchesi , M . , Martini , C .  and Ridel la , S .  ( 19 87 ) Minimizing 
multimodal functions of continuous variables with the " simulated 
annealing " algorithm . ACM Trans . Math Software , 13 ( 3 ) , pp2 6 2 -2 8 0 . 

PROGRAMMER : Neil  R .  Sumner DATE : 1 / 9 / 9 4  

C Variables f function to be minimised 
initial guess ,  returns xopt c xi 



c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
c 

uplim, lowlim 
Tk 
n 
iseed 
maxits  
fopt 
status 

xopt 
rt 
count 
v 
fi  
xstep 
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upper and lower constraints 
temperature 
number of variables in function f 
seed for random number generator 
maximum number of iterations 
best  function evaluation found 
returns O i f  convergence occurs 

x-vector corresponding to fopt 
reduction factor for step length changes 
function evaluation counter 
step size vector 
current function value 
current step size 

C Parameters : 
INTEGER n , iseed , rnaxits , status 
REAL f , v ( n ) , xi ( n ) , lowlim (n ) , uplim (n ) , Tk , fopt 

C Internal variables : 
INTEGER nrnax 
PARAMETER ( nrnax = 2 )  
INTEGER Nt , Ns , nurn ( nrnax ) , count , solved , limit , m, j , h , u  
REAL ranl , rt , epsilon , fi , fprime , fk , fkstar , p , pprime , xstep , r ,  

& xopt ( nrnax) , xprime ( nrnax ) , c ( nrnax )  
EXTERNAL f , ranl 

DATA 
DATA 
DATA 
Nt 

solved , limit I 0 ,  1 I 
Ns , rt , epsilon I 2 0 , 0 . 8 5 ,  0 . 0001  I 
c I 2 . 0 ,  2 . 0  I 
max ( lO O ,  5 *n )  

C Check array sizes 

IF (n . gt .  nrnax) STOP ' ERROR : Increase s ize of nrnax in Corana ' 

C Step 0 .  Initialisation 

fi = f ( xi , n ) 
CALL vcopy ( xi , xopt , n )  
fopt = fi 
count = 1 

C Iterate unti l  convergence criteria satisfied 

10  CONTINUE 

C Iterate Nt times before reducing temperature 
DO 4 0  m=l , Nt 

C Iterate Ns times before changing the step size 
DO 30  j =l ,  Ns 

C Step 1 .  Generate a random point along the direction h 

c 

2 0  

Iterate through a l l  n dimensions o f  parameter space 
DO 30 h=l , n 

CALL vcopy ( xi , xprime , n ) 
r = 2 . 0  * ranl ( iseed ) - 1 . 0  

xstep = r * v ( h )  
xprime ( h )  = xi ( h )  + xstep 
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C Step 2 .  I f  coordinate lies outside function domain go to step 1 

& 

IF ( (xprime (h )  . gt . uplim (h ) ) . or .  
(xprime (h )  . lt . lowlim (h ) ) )  GOTO 2 0  

C Step 3 .  Evaluate function 

c 

c 

c 

fprime = f (xprime , n ) 
IF ( fprime . lt .  fi ) THEN 

accept the new point 
CALL vcopy (xprime , xi , n ) 
fi  = fprime 

ELSE 

num (h )  = num ( h )  + 1 
IF ( fprime . lt .  fopt ) THEN 

CALL vcopy (xprime , xopt , n ) 
fopt = fprime 

END IF 

Metropolis move 
p = exp ( ( fi - fprime ) I Tk) 
pprime = ranl ( iseed ) 
IF (pprime . lt .  p )  THEN 

accept Metropolis move 
CALL vcopy (xprime , xi , n ) 
fi  = fprime 
num (h )  = num (h )  + 1 

END IF 
END IF 

C Step 4 .  I f  h < =  n goto step 1 

3 0  CONTINUE 

C Step 5 .  Update the step vector v 

DO 4 0  u=l , n 
IF ( real (num ( u ) ) . gt .  0 . 6 *Ns ) THEN 

v (u )  = v (u )  * ( 1 .  0 + c ( u )  * ( real ( num ( u ) ) /Ns - 0 . 6 )  
ELSE IF ( real ( num ( u ) ) . lt .  0 . 4*Ns ) THEN 

v (u )  = v ( u )  I ( 1 .  0 + c ( u )  * ( 0 . 4-real ( num (u ) ) /  
END IF 
v ( u )  = aminl ( v ( u ) , (uplim (u )  - lowlim ( u ) ) I 2 . 0 ) 
num (u )  = 0 

4 0  CONTINUE 

C Step 6 .  Reduce the temperature 

Tk = rt * Tk 
fkstar = fk 
fk = fi  
count = count + Nt * Ns * n 

Ns ) 

I 

I 

C Step 7 .  Test for convergence (di fferent to that used by Corana ) 

0 . 4 ) 

0 . 4 ) 

IF ( ( abs ( fk- fkstar ) . le . epsi lon ) . and . (abs ( fk- fopt ) . le . epsilon ) ) THEN 
status = solved 
GOTO 99  

END IF 

CALL vcopy (xopt , xi , n )  
f i  = fopt 
IF ( count . lt .  maxit s )  GOTO 1 0  
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C Maxits reached without convergence 

status = limit 

C Return to call ing program 

9 9  maxits = count 
CALL vcopy ( xopt , xi , n )  

END 
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SUBROUTINE press ( hartman , lowlim, uplim, ternptr , redn , n ,  

& ncycles , iseed , count , fopt , status ) 
C Simulated annealing program to find the global optimum of a 
C continuous function . 

C PROGRAMMER : Neil  R .  Sumner DATE : 2 1 / 12 / 9 4  

INTEGER ndim, npl , iseed , ncycles , maxits , iter , count , f fail , pfail , i , j ,  
& k , solved , limit , n , status 

C Set number of dimensions for function 
PARAMETER (ndim = 3 ,  npl = ndim+ l )  
REAL temptr , redn , p ( npl , ndim) , y ( npl ) , pb (ndim) , yb , x (ndim) , 

& lowlim ( n ) , uplim (n ) , ftol , ptol , test , reldi f 
REAL hartman, ranl 
EXTERNAL hartman , ranl 
INTEGER rstart 

DATA solved, limit I 0 ,  1 I 

C Fractional convergence tolerance & Parameter convergence tolerance 
c DATA ftol , ptol I 0 . 0 0 0 1 ,  0 . 0 0 1  I 

DATA ftol , ptol I 0 . 0 0 0 0 1 ,  0 . 1  I 

C Maximum number of iterations per cycle & maximum number of cycles 
c DATA rnaxits , ncycles I 5 0 0 , 2 0  I 

DATA maxits I 5 0 0  I 
DATA temprn I 3 . DO I 

IF ( n  . ne .  ndim) STOP ' Error : Dimension incorrectly set in press ' 

C Compute number of cycles required to reduce temperature by a factor 
C of temprn 

eps = 0 . 0 0 01 
rstart = ifix ( -log ( temprn) I log ( redn-eps ) )  + 1 

DO 2 0  i=l , npl 
CALL guess ( lowlim, uplim , p , i , ndim, iseed ) 
DO 10  j =l ,  ndim 

1 0  x ( j ) = p ( i , j )  
2 0  y ( i )  = hartman ( x , ndim) 

count = npl 

C Put best  parameter values in pb & best y-values in yb . 

yb = 1 0 0  0 00 . 0  
DO 4 0  i=l , npl 

IF ( y ( i )  . lt .  yb ) THEN 
DO 3 0  j =l ,  ndim 

pb ( j ) = p ( i , j )  
3 0  CONTINUE 

yb = y ( i )  
END IF 

40 CONTINUE 

C Start optimisation using annealing ( round 1 ) . 

c WRITE ( * , '  ( / /A ) ' )  ' - - - Commencing Annealing 
DO 8 0  i=l , ncycles 

iter = maxits 
c WRITE ( * , '  ( /A , F7 . 2 )  ' )  ' Annealing Temperature = ' , temptr 

CALL amebsa ( p , y , npl , ndim, ndim , pb , yb , ftol , hartman, iter , temptr ) 
count = count + maxits - iter 
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C Perform restart placing yb in simplex i f  required 
itest = mod ( i , rstart ) 
IF ( ( i test . eq .  0 )  . and . (yb . lt .  y ( l ) ) )  THEN 

C Insert best  parameter estimates into simplex 
high = yb 
DO 444 j =l ,  npl 

IF (y ( j )  . gt .  high ) THEN 
ihigh = j 
high = y ( j )  

END IF 
4 4 4  CONTINUE 

DO 4 6 6  j =l ,  ndim 
4 6 6  p ( ihigh , j )  = pb ( j )  

y ( ihigh ) = yb 
END IF  

c WRITE ( * , '  ( / , 1X , A , 4X , A ) ' )  ' Contents of simplex ' ,  ' RSS ' 
c DO 60  k=l , npl 
c 6 0  WRITE ( * , 7 0 )  (p ( k , j ) , j =l , ndim) , y ( k )  
c 7 0  FORMAT ( lX , l O Fl 0 . 3 )  

IF ( iter . gt .  0 )  GOTO 9 0  
temptr = temptr * redn 

8 0  CONTINUE 

C Continue optimisation with simplex method ( round 2 ) . 

c WRITE ( * I I ( / /A )  I )  
c & ' Annealing complete - continuing with simplex method ' 

9 0  f fail = 0 
pfail = 0 
temptr = 0 . 0  

c DO 110  i=l , ncycles 
iter = maxits 

c WRITE ( * , '  ( /A , I3 ) ' )  ' Simplex method Cyc le ' , i 
call arnebsa ( p , y , npl , ndim, ndim, pb , yb , ftol , hartman , iter , temptr )  

C Count number of function evaluations 

count = count + maxits - iter 

C Check iter and parameters for convergence . 

c IF ( iter . gt .  0 . or .  f fail . eq .  1 )  THEN 
c WRITE ( * , * ) ' Fractional tolerance convergence test passed ' 
c ftol = 0 . 0 0 0 0 0 0 1  
c f fail = 1 
c ELSE 
c 

c 

WRITE ( * , * ) ' Fractional tolerance convergence test fai led ' 
END IF  

c test = 0 . 0  
c DO 1 0 0  j =l ,  ndim 
c DO 100  k=l , npl 
c reldi f = abs (pb ( j ) - p ( k , j ) ) I pb ( j ) 
c test = arnaxl ( test , reldi f )  
c l O O  CONTINUE 
c IF  ( test . le .  ptol . or .  pfai l . eq .  1 )  THEN 
c WRITE ( * , * ) ' Parameter convergence test passed ' 
c pfai l = 1 
c ELSE 
c 

c 

WRITE ( * , * ) ' Parameter convergence test fai led ' 
END IF 



-131-

c IF ( ffail . eq .  1 . and . pfail . eq .  1 )  GOTO 120 

110  CONTINUE 

c status = limit 
c WRITE ( * , 11 5 )  yb , pb 
cl15  FORMAT ( / / ' Method has NOT converged ' / '  Current function value ' 
c & ' = ' , FlO . 6 ,  I '  at x = ' , 9F10 . 4 ,  I )  
c WRITE ( * , '  (A , I 6 )  ' )  ' Number of function evaluations = ' , count 
c fopt = yb 
c RETURN 

c120  status = solved 
c120  WRITE ( * , 12 5 )  yb , pb 
c125  FORMAT ( / / ' Optimisation Complete ' / '  Estimate o f  global optimum ' 
c & • = ' , Fl2 . 6 , / '  at x = ' , 9Fl0 . 4 , / )  
c WRITE ( * , '  (A , I 6 )  ' )  ' Number o f  function evaluations = ' , count 

fopt = yb 

END 

C ( C )  Copr . 1986 -92 Numerical Recipes Software #p2 1E6W) l . l& l u2 j 3152 . 
FUNCTION amotsa (p , y, psum, mp , np , ndim, pb , yb , funk , ihi , yhi , fac ) 

C Modi fied by Neil Sumner to call test functions 2 3 / 8 / 9 4  
INTEGER ihi , mp , ndim, np , NMAX 
REAL amotsa , fac , yb , yhi , p (mp , np ) , pb (np ) , psum (np ) , y (mp ) , funk 
PARAMETER (NMAX=2 0 0 )  
EXTERNAL funk 

CU USES funk , ranl 
INTEGER idum, j 
REAL facl , fac2 , tt , yflu , ytry, ptry (NMAX ) , ranl 
COMMON /ambsa /  tt , idum 
facl= ( l . - fac ) /ndim 
fac2= facl - fac 
do 11 j =l , ndim 

ptry ( j ) =psum ( j ) * facl-p ( ihi , j ) * fac2 
11 continue 

ytry=funk (ptry, np )  
i f  (ytry . le . yb )  then 

do 12 j =l , ndim 
pb ( j ) =ptry ( j ) 

12 continue 
yb=ytry 

endi f 
yflu=ytry-tt* log ( ranl ( idum) ) 
i f  (yflu . lt . yhi ) then 

y ( ihi ) =ytry 
yhi=yflu 
do 13 j =l , ndim 

psum ( j ) =psum ( j ) -p ( ihi , j ) +ptry ( j )  
p ( ihi , j ) =ptry ( j ) 

13 continue 
endi f 
amotsa=yflu 
return 
END 

C ( C )  Copr . 1986 -92  Numerical Recipes Software #p2 1E6W) l . l& l u2 j 3 1 52 . 
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C ( C )  Copr . 198 6-92  Numerical Recipes Software #p2 1E6W) l . l& l u2 j 3 152 . 
SUBROUTINE amebsa (p , y , rnp , np , ndirn, pb , yb , ftol , funk , iter, ternptr ) 

C Modi fied by Neil Sumner to call test functions 2 4 / 8 / 94 
INTEGER iter , rnp , ndirn, np , NMAX 
REAL ftol , ternptr , yb , p (rnp , np ) , pb (np ) , y (rnp) , funk 
PARAMETER (NMAX=2 0 0 )  
EXTERNAL funk 

CU USES amotsa , funk , ranl 
INTEGER i , idum, ihi , ilo , inhi , j , rn , n  
REAL rtol , sum, swap , tt , yhi , ylo , ynhi , ysave , yt , ytry , psum(NMAX ) , 

*amotsa, ranl 
COMMON /arnbsa/ tt , idum 
tt=-ternptr 

1 do 12 n=l , ndirn 
sum=O . 
do 11 rn=l , ndirn+l 

sum=sum+p (rn , n )  
11 continue 

psum ( n) =sum 
12 continue 
2 ilo=l 

inhi=l 
ihi=2 
ylo=y ( l ) +tt *log ( ranl ( idum) ) 
ynhi=ylo 
yhi=y ( 2 ) +tt *log (ranl ( idum) ) 
i f  (ylo . gt . yhi ) then 

ihi=l 
inhi=2 
ilo=2 
ynhi=yhi 
yhi=ylo 
ylo=ynhi 

endi f 
do 13  i=3 , ndirn+l 

yt=y ( i ) +tt* log ( ranl ( idum) ) 
if (yt . le . ylo )  then 

ilo=i 
ylo=yt 

endi f 
i f ( yt . gt . yhi ) then 

inhi=ihi 
ynhi=yhi 
ihi=i 
yhi=yt 

else i f (yt . gt . ynhi ) then 
inhi=i 
ynhi=yt 

endi f 
1 3  continue 

rtol=2 . *abs (yhi-ylo ) / ( abs (yhi ) +abs (ylo ) )  
i f  ( rtol . lt . ftol . or . iter . lt . O )  then 

swap=y ( l )  
y ( l ) =y ( ilo )  
y ( ilo ) =swap 
do 14 n=l , ndirn 

swap=p ( l , n) 
p ( l , n) =p ( ilo , n ) 
p ( ilo , n ) =swap 

14 continue 
return 

endif 
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iter=iter-2 
ytry=amotsa (p , y, psum , rnp , np , ndirn, pb , yb , funk , ihi , yhi , -1 . 0 )  
i f  (ytry . le . ylo )  then 

ytry=arnotsa ( p , y, psum, rnp , np , ndirn, pb , yb , funk , ihi , yhi , 2 . 0 ) 
else i f  (ytry . ge . ynhi ) then 

ysave=yhi 
ytry=arnotsa ( p , y, psum , rnp , np , ndirn, pb , yb , funk , ihi , yhi , 0 . 5 ) 
i f  (ytry . ge . ysave ) then 

do 16 i=l , ndirn+l 
i f ( i . ne . ilo ) then 

do 15 j = l , ndirn 
psum ( j ) =0 . 5* ( p ( i , j ) +p ( ilo , j ) ) 
p ( i ,  j )  =psum ( j ) 

1 5  continue 
y ( i ) =funk (psum, np )  

endi f 
1 6  continue 

iter=iter-ndirn 
goto 1 

endi f 
else 

iter=iter+l 
endi f 
goto 2 
END 

C ( C )  Copr . 198 6-92 Numerical Recipes Software #p2 1E6W) l . l& l u2 j 3 1 52 . 
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PROGRAM sa 
C Simulated annealing program to find the global optimum of a 
C continuous function . 

C PROGRAMMER : Neil R .  Sumner 

INTEGER n , m, iseed, maxits , solved, status 
C Set number of dimensions for function 

PARAMETER (n = 3 )  
REAL TO , redn , h , hrnin , x (n ) , lowlim ( n ) , uplim ( n ) , fopt 
REAL hartman , ranl 
EXTERNAL hartman, ranl 

DATE : 1 0 / 11 / 9 4  

C Initial temperature , step size & maximum number of function 
C evaluations 

DATA TO , m, redn , h , hrnin , maxits / 1 0 0 0 0 . 0 , 1 0 ,  0 . 9 , 1 . 0 ,  1 . E-7 , 9 0 0 0 /  

C Constraints ( lower and upper l imits for xl , x2 , . . .  ) 
DATA lowlim I 0 . 0 , 0 . 0 , 0 . 0  I 
DATA upl im I 1 . 0 ,  1 . 0 ,  1 . 0  I 

DATA solved I O I  

C Seed for random number generator 

WRITE ( * , ' ( /A) ' )  ' Simulated Annealing Optimisation ' 
WRITE ( * , '  ( /A$ ) ' )  ' Enter seed for random number generator : ' 
READ ( * , * ) iseed 
IF ( iseed . ge .  0 )  iseed = -1 * iseed 

CALL startpt ( lowlim, uplim , x , n , iseed) 

CALL sa_opt ( hartrnan , x , lowlim , uplim, TO , redn , h , hrnin , n , m, iseed, 
& maxits , fopt , status ) 

IF ( status . eq .  solved) THEN 
WRITE ( * , 1 0 )  fopt , x 

1 0  FORMAT ( / / ' Optimisation Complete ' / '  Estimate o f  global optimum ' 
& ' = ' , F12 . 6 , / '  at x = ' , 9F1 0 . 4 , / )  

WRITE ( * , '  (A , I 6 )  ' )  ' Number of function evaluations = ' , maxits 
ELSE 

WRITE ( * , 2 0 )  fopt , x 
2 0  FORMAT ( / / ' Method has NOT converged ' / '  Current function value ' 

& ' = ' , F12 . 6 ,  I '  at x = '  , 9F10 . 4 ,  I ) 
WRITE ( * , '  (A, I 6 )  ' )  ' Number o f  function evaluations = ' , maxits 

END IF 

END 

SUBROUTINE sa_opt ( f , bl , lowlim, upl im, TO , redn , h , hrnin , n, m , iseed, 
& maxits , fopt , status ) 

C Simulated Anneal ing program that reverts to the pattern search method 
C o f  Hooke and Jeeves as the temperature approaches 0 .  

C PROGRAMMER : Neil R .  Sumner 

C Variables  b1 , b2 , b3 
c p 

C f1 , f2 , f3 , fp 
C xopt , fopt 

DATE : 1 0 / 11 / 94 

base points , xopt returned as bl 
pattern point 
function values 
best function evaluation found 



c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

upl im,  lowlim 
TO 

h 
hmin 
redn 
count 
n 
m 
iseed 
eps 
f (x )  
maxits 
fopt 
xopt 
status 
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upper and lower constraints 
initial temperature , set to O for local 
optimisation using Hooke and Jeeves 
step length for base change calculations 
minimum step length 
reduction factor for step length changes 
function evaluation counter 
number of variables in function f 
number o f  temperature steps k=l . .  m 
seed for random number generator 
machine eps i lon 
function to be minimised 
maximum number o f  iterations 
best function evaluation found 
x-vector corresponding to fopt 
returns O i f  convergence occurs 

C Parameters : 
INTEGER n , iseed , maxits , status 
REAL f , h , bl (n ) , lowlim ( n ) , uplim ( n ) , TO , redn , fopt 

C Internal variables : 
INTEGER ncycles , count , nmax , solved, limit , m, i , k , accept , rej ect  
PARAMETER (nmax = 1 0 ) 
LOGICAL global 
REAL ranl , eps , fl , f2 , fp , p , pprime , Tk , phi , 

& b2 (nmax ) , xopt (nmax ) , xp (nmax) , improv, c , hredn 
EXTERNAL f , ranl 

DATA solved, limit I 0 ,  1 I 
DATA ncycles , hredn, c ,  eps I 1 0 ,  0 . 1 ,  1 0 0 0 . 0 , 1 . 0E-5  I 

C Check array sizes 

IF (n . gt .  nmax) STOP ' ERROR : Increase size of nmax in global ' 

C Set type o f  run required : local (Hooke and Jeeves ) or global ( SA )  

IF  (TO  . gt .  eps )  THEN 
global . true . 

ELSE 
global 

END IF 
. false . 

C Step 0 .  Initialise 

count = 1 
k = 0 
i = 1 
Tk = TO 
fl = f (bl , n ) 
CALL vcopy (bl , xopt , n ) 
fopt = f1  
accept = 0 
rej ect = 0 
WRITE ( * , ' ( 2 f1 0 . 4 , A, 9 f8 . 4 ) ' )  h ,  fl , 

C Step 1 .  Carry out exploration steps 

Starting values ' ,  bl 

1 0  CALL explor ( f , bl , b2 , xopt , fl , f2 , fopt , h , uplim, lowlim, 
& n , iseed , count , global ) 

improv = f1 - f2 

= 
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C Step 2 .  Try a pattern move 

c 

IF ( improv . gt .  eps )  THEN 
CALL patmov ( f , bl , b2 , xp , fp , lowlim, upl im , n , count ) 

ELSE IF (GLOBAL ) THEN 
rej ect = rej ect + 1 
GOTO 2 0  

ELSE I F  ( h  . lt .  hrnin ) THEN 
Termination criteria satis fied 
status = solved 

ELSE 
GOTO 99  

h = h * hredn 
GOTO 1 0  

END IF 

C Step 3 .  Accept the new point , otherwise make a Metropolis  move 

c 

c 

c 

c 

IF ( fp . lt .  f2 ) THEN 
CALL vcopy (xp , bl , n ) 
f1 = fp 
IF ( fp . lt .  fopt ) THEN 

CALL vcopy ( xp , xopt , n ) 
fopt = fp 

END IF 
accept = accept + 1 

ELSE IF ( global ) THEN 

Accept or rej ect the move with acceptance probabi l ity p 

p = exp ( c  * ( f2 - fp ) I Tk) 
pprime = ranl ( iseed ) 
IF (pprime . lt .  p )  THEN 

Accept the point 
CALL vcopy (xp , bl , n ) 
f1 = fp 
accept = accept + 1 

ELSE 
Rej ect the point ( global case ) 
CALL vcopy (b2 , bl , n )  
f 1  = f2 
WRITE ( * , '  ( 2 f10 . 4 , A, 9 f8 . 4 )  ' )  h ,  fl , ' Base Change 
rej ect = rej ect + 1 

ENDIF 

ELSE 

END IF 

Rej ect the point ( local case ) 
CALL vcopy (b2 , bl , n )  
f 1  = f2 
WRITE ( * , '  ( 2 fl 0 . 4 , A , 9 f 8 . 4 ) ' )  h ,  fl , ' Base Change 

bl 

bl 

C Step 4 .  I f  i < ncycles then goto step l ;  else it is time to reduce Tk 

2 0  I F  ( i  . lt .  ncycles ) THEN 
i = i + 1 
GOTO 1 0  

END I F  

IF ( global ) THEN 
CALL vcopy (xopt , bl , n ) 
f1 = fopt 



c 

& 

c 
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IF (k  . lt .  m) THEN 

Calculate observed acceptance ratio 
phi = real ( accept ) I ( real (accept + rej ect ) ) 
accept = 0 
rej ect = 0 
WRITE ( * , ' (A , f10 . l , A , f6 . 3 )  ' )  ' Temperature = '  , Tk ,  

Acceptance ratio = ' , phi 

Cooling schedule 
Tk = redn * Tk 
k k + 1 

i = 1 

GOTO 1 0  
END IF 

END IF 

C Use method of Hooke and Jeeves to find local minimum 

global = . false . 
IF ( count . lt .  maxit s )  GOTO 1 0  

C Maxits reached without convergence 

status = l imit 

C Return to calling program 

9 9  maxits = count 
CALL vcopy ( xopt , bl , n ) 

END 

SUBROUTINE explor ( f , xold, xnew, xopt , fold, fnew, fopt , h , uplim, lowlim, 
& n , iseed , count , global ) 

C Carry out exploration steps about xold,  put new base point in xnew 

c Variables 
c 
c 
c 
c 
c 
c 
c 
c 

C Parameters : 

xold, xnew 
fold, fnew 
xopt , fopt 
uplim,  lowlim 
h 
iseed 
count 
n 
global 

LOGICAL global 
INTEGER n , iseed , count 

base points 
function values 
best function evaluation found 
upper and lower constraints 
step length for base change calculations 
seed for random number generator 
function evaluation counter 
number of variables in function f 
flag for global I local optimisation 

REAL f , xold ( n ) , xnew ( n ) , fold, fnew , h , xopt ( n ) , fopt , uplim ( n )  , lowl im ( n )  
EXTERNAL f 

C Internal variables : 

INTEGER j 
REAL ranl , r , xstep , rdiv2 , fval 

C Step 1 .  Explore surface in each of n directions 

= 



r = 1 .  0 

CALL vcopy (xold, xnew, n )  
fnew = fold 
IF ( global ) r = ranl ( iseed) 
xstep = r * h 

C Consider component x ( j )  in Rn 

DO 3 0  j = l ,  n 

C Compute next random step 
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IF (xold ( j ) . ge .  uplim ( j ) ) GOTO 15 
xnew ( j ) = xold ( j )  + xstep 
IF (xnew ( j ) . gt .  uplim ( j ) )  THEN 

rdiv2 = r 
1 0  rdiv2 = rdiv2 I 2 

xnew ( j )  = xold ( j ) + rdiv2 * h 
IF (xnew ( j ) . gt .  uplim ( j ) ) GOTO 10  

END IF 

C Compute next function evaluation 

count = count + 1 
fval = f (xnew, n )  
I F  ( fval . lt .  fnew) THEN 

fnew = fval 
IF ( fval . lt .  fopt ) THEN 

CALL vcopy (xnew, xopt , n ) 
fopt = fval 

END IF 
GOTO 3 0  

END IF 

C If fnew > fi  try a step in the opposite direction 

15  IF (xold ( j ) . le .  lowlim ( j ) ) THEN 
xnew ( j ) = xold ( j ) 
GOTO 3 0  

END IF 
xnew ( j ) = xold ( j ) - xstep 
IF (xnew ( j ) . lt .  lowlim ( j ) )  THEN 

rdiv2 = r 
2 0  rdiv2 = rdiv2 I 2 

xnew ( j )  = xold ( j ) - rdiv2 * h 
IF ( xnew ( j ) . lt .  lowlim ( j ) )  GOTO 2 0  

END IF 

C Evaluate function again 

count = count + 1 
fval = f (xnew, n)  
IF ( fval . lt .  fnew) THEN 

fnew = fval 
IF ( fval . lt .  fopt ) THEN 

CALL vcopy (xnew, xopt , n ) 
fopt = fval 

END IF 
ELSE 

xnew ( j ) 
END IF 

3 0  CONTINUE 

xold ( j )  = 
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WRITE ( * , '  ( 2 f10 . 4 , A , 9 f 8 . 4 ) ' )  h ,  fnew, 
END 

Exploration 

SUBROUTINE patmov ( f , b1 , b2 , xp , fp , lowlim, uplim, n , count ) 

, xnew 

C Pattern move from bl in the direction of b2 , p is  the new point 

C Variable 
c 

b1 , b2 
xp 

base points 
pattern point 
function values c 

c 

c 

c 

fp 
uplim, lowlim 
n 
count 

INTEGER n , count , i 

upper and lower constraints 
number of variables in function f 
function evaluation counter 

REAL f ,  bl ( n ) , b2 ( n ) , xp ( n ) , fp , lowlim ( n ) , uplim ( n )  
EXTERNAL f 

DO 10  i=l , n 
xp ( i )  = 2 . 0  * b2 ( i )  - bl ( i )  

C Constrain pattern move to stay inside function domain 
xp ( i )  aminl (xp ( i ) , uplim ( i ) ) 
xp ( i )  = amaxl (xp ( i ) , lowlim ( i ) ) 

10  CONTINUE 
fp = f (xp , n ) 
count = count + 1 
WRITE ( * , '  ( f2 0 . 4 , A, 9 f 8 . 4 ) ' )  fp , 
END 

Pattern Move ' xp 

:::: 
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TEST FUNCTIONS 
REAL FUNCTION hartman (x , n )  

C Hartman ' s  Family of test functions ( F4 )  Butler , R . A . R .  and Slaminka , 
C E . E .  ( 1992 ) An Evaluation o f  the sni f fer global optimization 
C algotithm using standard test functions . J .  Comp . Physics 9 9 ,  
C pp2 8 -32 . 
c 

INTEGER n , i , j  
REAL x (n ) , a ( 4 , 3 ) , c ( 4 ) , p ( 4 , 3 ) , temp , sum, large 
DATA a I 3 . 0 , 0 . l , 3 . 0 , 0 . l , 10 . 0 , 10 . 0 , l0 . 0 , l0 . 0 , 3 0 . 0 , 3 5 . 0 , 3 0 . 0 , 3 5 . 0  I 
DATA c I 1 . 0 , 1 . 2 ,  3 . 0 ,  3 . 2  I 
DATA p I 0 . 3 6 8 90 , 0 . 46 9 90 , 0 . 10910 , 0 . 0 3 8 1 5 , 

& 0 . 117 0 , 0 . 43 87 , 0 . 87 32 , 0 . 5743 , 
& 0 . 2 67 3 , 0 . 7 47 0 , 0 . 55 47 , 0 . 8 8 2 8  I 
DATA large I 9 9 9 . 9  I 

C Constraints 

DO 5 i=l , 3 
IF ( (x ( i )  . lt .  0 . 0 ) . or .  ( x ( i )  . gt .  1 . 0 ) ) THEN 

hartman = large 
RETURN 

END IF 
5 CONTINUE 

sum = 0 . 0  
DO 2 0  i =l , 4 

temp = 0 . 0  
DO 1 0  j =l ,  3 

1 0  temp = temp + a ( i , j )  * (x ( j ) - p ( i , j ) )  * *  2 
2 0  sum = sum + c ( i )  * exp ( -temp ) 

hartman - sum 

END 

REAL FUNCTION rastrig (x , n )  
C Rastrigin test function from Benke and Skinner ( 19 9 1 )  A direct 
C search algorithm for global optimisation o f  multivariate functions . 
C Aust . Comp . J .  2 3 ( 2 )  pp7 3 -8 5 .  
c 

INTEGER n 
REAL x ( n ) , large 
DATA large I 9 99 . 9  I 

DO 5 i=l , 2 
IF ( (x ( i )  . lt .  -2 . 0 ) . or .  (x ( i )  . gt .  2 . 0 ) ) THEN 

rastrig = large 
RETURN 

ENDIF 
5 CONTINUE 

rastrig 
END 

x ( 1 ) * * 2 + x ( 2 ) * * 2 - cos ( 1 8 *x ( l ) ) - cos ( 1 8 *x ( 2 ) ) 
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REAL FUNCTION shubert (x , n )  
C Penalized Shubert function from Gunell , T .  & C Yazgan, B .  ( 1992 ) 
C A new global optimization method based on simulated anneal ing 
C algorithm .  Proc . Eng . Des . & Anal . ,  47 ( 4 ) , 199-202 . 
c 

INTEGER n , i 
REAL x (n ) , b , templ , temp2 , large 
DATA b I 0 . 5  I 
DATA large I 9 99 . 9  I 

C Constraints 

DO 5 i=l , 2 
IF ( ( x ( i ) . 1 t . -10  ) . or . ( x ( i ) . gt . 1 0  . 0 ) ) THEN 

shubert = large 
RETURN 

END IF  
5 CONTINUE 

templ = 0 . 0  
temp2 = 0 . 0  
DO 1 0  i=l , 5 

templ = templ + i * cos ( ( i + 1 )  * x ( l )  + i )  
1 0  temp2 = temp2 + i * cos ( ( i + 1 )  * x ( 2 )  + i )  

shubert = templ * temp2 + b* ( ( x ( l ) +l . 42 5 1 ) * *2 + ( x ( 2 ) +0 . 8 0 0 3 ) * *2 )  
END 
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SUPPORT SUBROUTINES 
SUBROUTINE vcopy ( a , b , n )  

C Copy contents o f  vector a to vector b 

INTEGER n , i 
REAL a ( n )  , b ( n )  

DO 1 0  i=l , n 
1 0  b ( i )  = a ( i )  

END 

SUBROUTINE startpt ( lowlim, uplim, x , n , iseed ) 
C Generate a random starting point in n dimensional space 

INTEGER iseed , n ,  j 
REAL lowlim ( n ) , uplim ( n ) , x (n ) , ranl 

DO 1 0  j =l ,  n 
1 0  x ( j ) = ranl ( iseed) * (uplim ( j ) - lowlim ( j ) ) + lowlim ( j ) 

END 

SUBROUTINE choleski ( a , n , np , l )  
C Choleski ' s  algorithm . Burden , R . L .  and Faires , J . D .  ( 19 8 9 ) 
C Numerical Analysis . PWS-KENT 

INTEGER n , np 
REAL a (np , np ) , l ( np , np )  
INTEGER i , j , k  
REAL sum 

C Step 1 .  

1 ( 1 , 1 ) sqrt ( a ( 1 , 1 ) ) 

C Step 2 .  

DO 1 0  j =2 ,  n 
1 0  l ( j , l ) = a ( j , l ) I 1 ( 1 , 1 ) 

C Step 3 .  

DO 5 0  i=2 , n-1 

C Step 4 .  

sum = 0 . 0  
DO 2 0  k=l , i-1  

20  sum sum + l ( i , k ) * * 2  
l ( i , i ) = sqrt ( a ( i , i )  - sum) 

C Step 5 .  

3 0  

DO 4 0  j =i+l , n 
sum = 0 . 0  
DO 3 0  k=l , i-1  

sum = sum + l ( j , k ) * l ( i , k ) 

= 



4 0  
5 0  

l ( j , i ) 
CONTINUE 
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( 1 . 0  I l ( i , i ) ) * ( a ( j , i ) - sum) 

C Step 6 .  

sum = 0 . 0  
DO 6 0  k=l ,  n-1 

6 0  sum sum + l (n , k ) * *2 
l (n , n )  = sqrt ( a (n , n )  - sum) 
END 

SUBROUTINE guess ( lowlim, uplim, p , i , n , iseed ) 
C Generate random starting points in n dimensional space . 

c 

INTEGER iseed , n ,  i ,  j 
REAL lowlim (n ) , uplim ( n ) , p (n+ l , n ) , ranl 

DO 10 j =l ,  n 
10  p ( i , j )  = ranl ( iseed ) * ( uplim ( j ) - lowlim ( j ) )  + lowlim ( j )  

END 

SUBROUTINE MATMUL ( Sl , NRl , NRLl , NCl , NCLl , S2 , NR2 , NRL2 , NC2 , NCL2 , S3 ,  
# ITY )  

c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
c * PURPOSE : - MULTI PLY TWO 
c * PARAMETERS : - Sl 
c * NRl , NCl 
c * NRLl , NCLl 
c * S2 
c * NR2 , NC2 
c * NRL2 , NCL2 
c * S3 
c * ITY 
c * 

MATRICES 
INPUT MATRIX ONE 
NUMBER OF ROWS AND COLUMNS IN Sl 
NUMBER OF R AND C USED IN L . H .  MATRIX 
INPUT MATRIX TWO 
NUMBER OF ROWS AND COLUMNS IN S2 

NUMBER OF R AND C USED IN R . H .  MATRIX 
RESULTING MATRIX 
TYPE DESIGNATOR . IF = 1 THEN S3 IS  
=Sl . IF ITY = 2 THEN ANSWER RETURNED IN S2  

c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
c 

DIMENSION Sl (NRl , NCl ) , S2 (NR2 , NC2 ) , S3 (NRl , NC2 ) 
c 
C CHECK MULTIPICATION IS POSSIBLE 

DOUBLE PRECISION SUM 
c 

c 
IF (NC1 . NE . NR2 ) GOTO 100  

DO 30  J 1 , NRLl 
DO 25 K = 1 , NCL2 

SUM O .  ODO 
DO 20 L = 1 ,  NRL2 

SUM = Sl ( J , L )  * S2 ( L , K )  + SUM 
2 0  CONTINUE 

S3 ( J , K )  = SUM 
2 5  CONTINUE 
3 0  CONTINUE 

IF ( ITY . LT . O ) GOTO 45 
DO 35  J = 1 , NRLl 

DO 4 0  K = 1 , NCL2 
IF ( ITY . EQ . l ) Sl ( J , K ) =S3 ( J , K )  
IF ( ITY . EQ . 2 ) S2 (J , K ) =S3 ( J , K ) 

4 0  S3 ( J , K ) =O . 

= 



c 

3 5  CONTINUE 
4 5  RETURN 
1 0 0  WRITE ( 2 , 110 ) NC1 , NR2 
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1 1 0  FORMAT ( '  COLUMN NUMBER OF MATRIX 1 . NE .  ROW NUMBER ' , /  
1 , ' OF MATRIX 2 : - ' , 2I 6 )  

RETURN 
END 

SUBROUTINE MATADD ( Sl , NR , NRL , NC , NCL , S2 , S3 )  

c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

C * PURPOSE : - ADDING MATRICES 
C * PARAMETERS : - Sl INPUT MATRIX ONE 
C * NR, NC NUMBER OF ROWS AND COLUMNS 
C * NRL , NCL NUMBER OF ROWS AND COLUMNS ACTUALLY 
OPERATED ON 
c * S2 

S3 
INPUT MATRIX TWO 
RESULT MATRIX c * 

c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

c 

c 

c 

c 

DIMENSION Sl (NR , NC ) , S2 (NR , NC ) , S3 (NR, NC )  

DOUBLE PRECISION SUM 

DO 10 J = 1 ,  NCL 
DO 15 I =  1 ,  NRL 
SUM = Sl ( I , J ) + S2 ( I , J ) 

15 S3 ( I , J ) = SUM 
10  CONTINUE 

RETURN 
END 

SUBROUTINE SCALAR ( Sl , VAL , NR, NRL , NC , NCL , S2 )  

c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

C * PURPOSE : - MULTIPLE MATRIX BY A SCALAR (CONSTANT ) 
C * PARAMETERS : - Sl INPUT MATRIX 
c * 
c * 
c * 
C * SPECIAL NOTE : -

VAL SCALAR 
NR, NC NUMBER OF ROWS AND COLUMNS 

NRL , NCL NUMBER OF R AND C ACTUALLY USED 
THE RESULT IS RETURNED IN THE ORGINAL MATRIX Sl 

c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

c 

c 
DIMENSION Sl (NR, NC ) , S2 (NR , NC )  

DO 1 0  J = 1 , NCL 
DO 1 5  I 1 , NRL 

15  S2 ( I , J ) Sl ( I , J ) * VAL 
10  CONTINUE 

RETURN 
END 

SUBROUTINE RDENT (A, N, NL )  
c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

C * PURPOSE 
C * ARGUMENTS 
c * 

CREATE AN IDENTITY MATRIX OF A GIVEN SIZE 
A N , N ARRAY 
N DIMENSION OF ARRAY 

= 
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c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
DIMENSION A ( N , N )  
DO 1 0  I =  l , NL 
DO 2 0  J = l , NL 
A ( I , J ) = 0 .  

2 0  CONTINUE 
A ( I , I )  = 1 

1 0  CONTINUE 
RETURN 
END 

C ( C l  Copr . 1 9 8 6-92 Numerical Recipes Software #p2 1E6W ) l . l& l u2 j 3 152 . 
FUNCTION ranl ( idum) 
INTEGER idum, IA , IM , IQ , IR, NTAB , NDIV 
REAL ranl , AM , EPS , RNMX 
PARAMETER ( IA=1 6 8 07 , IM=2 147483 647 , AM=l . / IM , IQ=l2 7 7 7 3 , IR=2 8 3 6 ,  

*NTAB=3 2 , NDIV=l+ ( IM-1 ) /NTAB , EPS=l . 2e-7 , RNMX=l . -EPS ) 
INTEGER j , k, iv (NTAB ) , iy 
SAVE iv , iy 
DATA iv /NTAB* O / ,  iy / 0 /  
i f  ( idum . le . 0 . or . iy . eq . O )  then 

idum=max ( - idum, 1 )  
do 1 1  j =NTAB+ 8 , l , -l 

k=idum/IQ 
idum=IA* ( idum-k* IQ ) - IR*k 
i f  ( idum . lt . 0 )  idum=idum+IM 
i f  ( j . le . NTAB ) iv ( j ) =idum 

11 continue 
iy=iv ( l )  

endi f 
k=idum/IQ 
idum=IA* ( idum-k* IQ ) - IR*k 
i f  ( idum . lt . 0 )  idum=idum+IM 
j =l+iy/NDIV 
iy=iv ( j ) 
iv ( j ) =idum 
ranl=min (AM* iy, RNMX) 
return 
END 

C ( C l  Copr . 1 9 8 6-92  Numerical Recipes Software #p2 1E6W) l . l& l u2 j 3 152 . 
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