Cognitive apprenticeship in a building design office

Craig A. Baird
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses
Part of the Education Commons

Recommended Citation

Baird, C. A. (2001). Cognitive apprenticeship in a building design office. https://ro.ecu.edu.au/theses/ 1065

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study.

The University does not authorize you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site.

You are reminded of the following:

- Copyright owners are entitled to take legal action against persons who infringe their copyright.
- A reproduction of material that is protected by copyright may be a copyright infringement. Where the reproduction of such material is done without attribution of authorship, with false attribution of authorship or the authorship is treated in a derogatory manner, this may be a breach of the author's moral rights contained in Part IX of the Copyright Act 1968 (Cth).
- Courts have the power to impose a wide range of civil and criminal sanctions for infringement of copyright, infringement of moral rights and other offences under the Copyright Act 1968 (Cth). Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Cognitive Apprenticeship in a Building Design Office

Craig A. Baird
Grad Dlp Art Ed, Grad Dip Comp Ed, M Ed

This Thesis is presented for the degree of Doctor of Philosophy at

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

DECLARATION

I certify that this thesis does not, to the best of my knowledge and belief:
(i) incorporate without acknowledgment any material submitted for a degree or diploma in any institution of higher education;
(ii) contain any material previously published or written by another person except where due reference is made in the text; or
(iii) contain any defamatory material.

Signed
Date?.9.0.

Abstract

This thesis presents a research study that investigated student learning in a mentor supported design office situation, using a cognitive apprenticeship learning approach that utilised authentic design project tasks. In this study, 29 linal year Technical And Further Education (TAFE) building design students undertook authentic building design projects with expert building designers, who acted as mentors, in commercial design office situations.

The mentors guided student learning by using a cogntive apprenticeship approach to learning, implemented with authentic design projects designed to replicate the everyday culture of practice activities typical of commercial design office operations. This study follows the progress of these students as they worked in coliaboration with their mentors in the design and presentation of design solutions developed for the projects. Data about the students' learning experiences in this setting were collected and analysed to determine their learning outcomes, the kinds of knowledge acquired and the means through which knowledge was transfersed in the study situation.

A holistic interpretivistic approach was used to collect data, in three phases. The first of these was a pilot-study with the other two phases providing the majn data gathering parts of the study. Much of the focus of the third phase of this study was on verifying findings emergent from analysis of data collected in the first two phases, as well as secking greater understanding of the study phenomena. Throughout each of the three phases, data were collected from multiple sources, which included interviews, direct observations, personal journals and drawings.

Analysis of the data showed that using cognitive apprenticeship learning methods organised around mentor supported aulhentic projects implemented in authentic commercial design office situations provided successfil] transfer of declarative, tacit and procedural knowledge from the mentor to the students. This thesis concludes with recommendations for the classroom application of cognitive apprenticeship learning methods, as used by the expert building designers who participated in this research.

ACKNOWLEDGMENTS

I am deeply indebted to Edith Cowan University for the full time scholarship that made it possible for me to undertake this study.

I offier my special thanks to my Principal Supervisor Dr Tony Fetherston for his patient guidance and support.

I would also like to thank all of the students and building designers who gave generously of their time on so many occasions to share their knowledge and contribute to this study.

Special thanks also to Mr David Plowright and Ms Maxine Massey who made it possible for me to work closely with all of like students who participated in this study. I am especially thankfill to Kerty Pedigo whose encouragement, understanding and enthusiasm helped me greally.

TABLE OF CONTENTS

Page
^BSTR^CT IV
^CKNOWLEDGMENTS V
TABLE OF CONTENTS VI
LIST OF FIGURES XIII
LIST OF TABLES XV
CHAPTER ONE I
INTRODUCTION
Background To The Study 2
Learning building design in Western Australia 4
New building design courses to address computer technelogy 5
Λ change in thinking 6
The study environment 7
Significance of the study 8
PURPOSE OF THE STUDY 8
Research Questions. 8
Conlext 9
Cognitive apprenticeship in this study situation 10
Delinitions Used In This Study 11
Six Teaching Strategics Of Cognitive ^pprenticeship 11
Culture of practice. 14
The "oflice set" 14
Work Session 15
Conclusion to this Chapter 15
CHへPTER TWO 16
LITERATURE REVIEW 16
Introduction 16
Learning in context 16
Knowledge as tools 16
The learning culture 17
The expert Mentor - Modelling 17
Social constutction of knowledge 18
Metacognitive strategics 19
Reflection and multiple points of view. 19
Reciprocal teaching 20
Procedural Facilitatiun 20
へuthentic lenming experiences 21
Expert practice in the leamingenvironment 2I
^ Cognitive ^pprenticeship learning approach 22
Culture of expert practice: Mentor/Student Collaboration 22
Leaming in context 23
Simulations and authentic activities in the learning situation 23
Situated Leaming. 24
Using authentic situations to develop Cognitive Understanding 25
Other studies using Cogniitive ^pprenticeship methods. 26
Tacit knowledge and Rellection in Cognitive Apprenticeship leaming 27
Self-directedness 28
Summary 28
Cognitive Λ pprenticeship in this study situation. 29
The Theoretical Framework 29
Conclusion to this Chapter 32
CHへPTER TIIREE 33
METHIODOLOGY 33
Introduction 33
Methodology 33
Planning and preparation for this study. 34
The study structure 35
Phase One - The Pilot Study 35
Phase Two - Data collection using mostly interviews 36
Phase Threc - Data collection using mostly obscrvations 37
Entry into the field of this study 38
The Rescarcher in this study 39
Investigator predilections 39
The study sample 40
The Mentors in this study 41
The Students in (his study 42
Trustworthiness of the Study 42
Validity 42
Reliability 44
Met hods used to enhance Reliability of the stitdy data 45
Extemal Reliability in this study 48
Researcher status position 48
Informant selection 48
Social situations and conditions 49
Analytic constructs and premises 49
Detail of methods of data collection and analysis 49
Internal Reliability 50
Data Triangulation And Credibility. 51
Situational Uniqueness 53
IMPLEMENTATION OF THIS STUDY 54
Conclusion To This Chapter 54
CHAPTER FOUR 55
METHODS USED FOR DAT^ COLLECTION 55
Introduction 55
Data Collection Phases In This Study 55
Data collection Phase One - Pilot Study 55
Data collection Phase Two - Main research study 57
Dala collection Phase Three - Main research study 58
Data collection using infiomal interviews and discussions 60
Data collection using fonnal Interviews. 62
Formal interviews in Phase Two 65
Interview use in data collection Phase Three 67
Data collection using telephone discussions 68
Data collection using obsetvation of work sessions 69
Data collection using sketches and drawiogs 70
Scale models. 73
Data collection using jnumals 73
Conclusion To This Chapter 74
CHAPTER FIVE 76
^NALYSIS OFTIIE STUDY DATA 76
Introduction 76
Coding 76
How index tree structures evolved during data analysis 80
Detail of analys is of Phase One data 83
Analysis of Phase Two data 86
Analys is of Phase Three data 95
Conclusion To This Chapter 100
CHAPTER SIX 102
RESULTS 102
Introduction 102
Organisation of this Chapter 103
Theme One: Communication 103
Category I.I Discussion 104
Calegory 1.2 Articulation 112
Calegory 1.2.1 Explanation building. 113
Category 1.2.2 Questioning and Defending of ideas, 115
Category 1.2.3 Identify'ing Design Criteria. 116
Category I.2.4 Multiple Solutions. 117
Category 1.3 Sketching 121
Sketching as a communicalion tool. 122
Category 1.4 Entry to the culture of practice 126
^dapling to the design offlce situation. 126
Other design office social inter action skills. 132
Social Contact 133
Theme Two: ^ttitudes 135
Category 2.1 Confidence. 135
Category 2.2 Team-Based Learning 140
Category 2.3 Office Expectations 147
Student expectations. 147
Mentor Expectations 148
Theme Three: 153
Mentor suppoited design office practices afliecting learning 153
Category 3.1 Common Design Ofliec Practices 153
Category 3.1.I Preparation lor design. 154
Category 3.1.2 Questioning and articulation of ideas 160
Calegory 3.1.3 Selection and use of resources 162
Use Of Resources - Dilferent mentors' methods 163
Category 3.1.4 Learning using "office set" methods 166
Category 3.1.5 Sketching: $\boldsymbol{\Lambda}$ design office practice. 169
Categoty 3.1.6 CAD overlay sketching. 175
Calegory 3.1.7 Explanatoty notes and drawing annotations. 177
Category 3.1.8 Multiple perspectives fiom consultants and others. 182
Participation in site visits. 186
Summaty Of FindingsFor Category 3.1 188
Learning methods using Modelling, Coaching and Scalfolding 188
Category 3.2 Leaming methodsusing Modelling 189
Calegoty 3.3 Leaming methods using Coaching 199
Mentor Coaching in design office work sessions. 203
Categoty 3.4 Leaming methods using Scalfolding 206
3.4.I Mentor sketching, over sketching of CAD drawings. 207
3.4.2 Resource materials used to Scaffold learning 217
3.4.3 Scaf folding using exemplar "office set"and CND drawings. 222
3.4.4 Consultants and others with special skills. 230
Theme 4: Design office experience and learning 233
Category 4.l Developing a creative, innovative approach to design 234
Categoty 4.2 Reify'ing knowledge in design office leaming 244
Category 4.3 Visualisation, Exploration, Rellection and Design Style 249
Per sonal Design Style. 257
Summary of findings. 263
Confir mation of student learning outcomes - judging of designs 269
Judging of the students' designs 269
Judging Criteria 270
Comments fiom the judges. 271
Conclusion To This Chapler 273
CHAPTER SEVEN 276
^NSWERING THE RESEARCH QUESTIONS AND DISCUSSION 276
Introduction 276
Research Question I 276
Research Question 2 278
Declarative knowledge transferred 278
Procedural knowledge transferred 279
Rescarch Question 3 280
Research Question 4 281
Research Question 5 282
Design office culture of pract ice factors. 282
Design office facilities and resources. 283
Work activities and practices 283
Summary Of Answers To The Research Questions 284
DISCUSSION OF THE ST UDY FINDINGS 286
What has emerged from this research? 288
Modelling. 289
Coaching. 293
Scalfolding and Fading 296
Articulation. 300
Reflection. 301
Exploration. 304
Phases of learning activities observed in this study. 305
Implemeniation Of Cognitive Apprenticeship Methods In $\boldsymbol{\Lambda}$ Classroom 308
I. The mentor. 309
2. The learning environment. 310
3. The learning activities. 311
4. The learning tasks 313
Using cognitive apprenticeship for learning building design 313
Conclusion to this Chapter 313
CHAPTEREGGT 315
CONCLUSION TO THE STUDY 315
Application of the study findings 316
Limitations Or The Study 317
FURTHER RESEARCH 317
REFERENCES 319
^PPENDIX \wedge : FIRST ROUND MENTOR INTERVIEW GUIDE 325
APPENDIX B: INTER VIEW GUIDE QUESTIONS FOR ROUND ONE STUDENTT INTERVIEWS 327
^PPENDIX C: INTER VIEW GUIDE SUPPLEMENT FOR ROUND TWO INTER VIE WS WITH MENTORS ^ND STUDENTS 329
APPENDIX D: INDEX TREE ONE 331
^PPENDIX E: INDEX TREETWO USED FOR CODING PHASE TWO FIRST ROUNDINTERVIEW DAT^ 332
^PPENDIX F: INDEX TREE THREE USED FOR CODING PH ASE TWO SECOND ROUND INTERVIEW DAT^ 333
^PPENDIX G: INDEX TREE FOUR USED FOR CODING OVERALL PHASE TWO DATA 334
APPENDIX H; CHECKLIST FOR JUDGING STUDENT DESIGN PROJECTS 335
APPENDIX I: RECOMMENDED STRUCTURE FOR IMPLEMENTING COGNITIVE APPRENTICESIIIP TEACHING METHODS FOR TEACHING BUILDING DESIGN 338

LIST OF FIGURES

Figure I. Theoretical Framework lior This Study 30
Figure 2. Example of Student/Mentor development sketch 71
Figure 3. Pholograph of a scale model 73
Figure 4. Quick sketch for exploring design concepts. 123
Figure S : Concept design sketch showing exploration of ideus 125
Figure 6. Time schedule fór design project 129
Figure 7. Sketch showing introduction of ideas by mentor 142
Figure 8. Notes used to initiate the design process. 155
Figure 9. Student sk etch detailing design ideas. 157
Figure 10. Notes used to represent client brief and organise design process 159
Figure 1 I. Typical quick sketch showing exploration of three roof forms 172
Figure 12 Freehand sketching over a CAD based drawing 173
Figure 13. Overlay sketchingof CAD drawing showing exploration of ideas 176
Figure 14. Final presentation drawing showing block notes 179
Figure I5. Notes from d~: $\boldsymbol{\square}$ by Student 22 (see Figure 14) 180
Figure 16 Sketch showing construction details 193
Figure 17 Cycle of modelling, coaching, demonstrating und explanation building 197
Figure 18. Sketch used during Conching about sloping site conditions. 200
Figure 19. Student design sketch without room relationships 208
Figure 20. Design sketch showing defined room areas over bubble concepl forms. 209
Figure 21. Sketch used for scaffiolding Student 23 210
Figure 22, Over-sketching of \wedge D drawing showing focus lines. 211
Figure 23. Student design using over-sketching of bubble diagram. 213
Figure 24. Notes used to Scafliold student learning 214
Figure 25. CAD Drawing over-sketched by Mentor 6 and Student 24. 215
Figure 26. Sketch showing proposed presentation with model 220
Figure 27. Design presentation model. 221
Figure 28. CAD drawing showing sketched development ofline details. 227
Figure 29. Over-sketched CAD drawing. 228
Figure 30. CAD drawing showing roof form development 229
Figure 31. Sketch and noles lormat as used in exemplar office drawings 232
Figure 32. Design concept sketch. 236
Figure 33. Concept sk etch for triangulated plan forms 236
Figure 34. Presentation drawing showing tiangulated forms 237
Figure 35. Elevat ion developed by Student 24 from Mentor inspired concept 238
Figure 36. Design roots sketch 254
Figure 37. Area relationships in design. 255
Figure 38. Plan based on student/mentor ideas, 255
Figure 39، Loose concept forms exploring shape in design 256
Figure 40 . Sketch showing initial formalisation of plan 259
Figure 4 I. Finnl layout plan for student 22. 260
Figure 42. Sketch showing alternative roof and section design forms. 261
Figure 43. Elevation treatment for final design. 262
Figure 44: K nowledge trans fer using Modelling, Coaching and Scaffolding. 299
Figure 45. Leaming Phases in this study 307
LIST OF TABLIES
Table 1 Data Collection Phases and Participant Numbers 38
Table 2 Data Collection Time-line 54
Table 3 Data Collection Phase Two 58
Table 4 Data Collection In Phase Threc 60
Table 5 lndex Tree Onc Coding of Phase One data 84
Table 6 Index Tree Two - Phase Two First Round Interview Data Coding Categorics 88
Table 7 Index Tree Three - Categories used lor coding Phase Two data 91
Table 8 Index Tree Four - Used for final coding of Phase Two data 94
Table 9 Phase Three video recorded work sessions data 96
Table IO New Phase Three coding categories. 99
Table 11 Index Tree four categories used for presentation of findings 103
Table 12 Sample pait of student design project schedule 216

CIIAPTER ONE

INTRODUCTION

This thesis documents u study that investigated learning outcomes und knowledge transticr for students working in collaboration with mentors on authentic projects, in commercial building design oflices. In this Chapter, the organisation of this thesis is presented first, followed by a discussion of the background to the study. Then the purpose, signilicance and aim of the study are presented, with the research questions. The Chapter concludes by presenting the context in which the rescarch was conducted, along with definitions used for interpretation of the rescarch data.

Chapter Two presents a review of the related literature and research pertinent to the study. The literature review begins with an overview of cognitive apprenticeship methods and the role of expert practice in the learning environment. Specific research studies in which cognitive apprenticeship teaching strategies are explored then discussed with reference to the learning situation studied in this research.

Chapter Three begins with an overview ofthe research methodology and structure developed over three phases of data collection and analysis used here. The study sample is also described. This is followed by a discussion of how the trustworthiness of the study, including validity and reliability issues, were addressed using data triangulation and other methods. Chapler Three concludes with a discussion of the siluational uniqueness in this research.

Chapter Four details the data collection methods used for each ofthe three phases of this research. The manner in which data from multiple sources, including inter views, direct observation, video recordings and drawings, were gathered is also discussed.

The methods used for coding and analysis of the study data are detailed in Chapter Five, along with the processes used to refine and extend the analysis procedures in response to emergent themes and findings. This Chapter also details the development of coding categories and index tree structures used to organise and analyse datu collected during each of the three phases of this research.

Chapter Six presents findings that emerged fir om analysis of data by coding in calegories developed as detailed in Chapter Five. Findings from analy sis of data coded about four main emergent themes are presented using coding categories developed to represent multiple aspects of each theme. Each calegory used for the linal coding of the research duta is included in this Chapter, along with examples of datu fi om which
findings were developed during analysis. Λ summary of linclings is presented at the end of the Chapter. Assertions about learning outcomes are also presented with reference to the research questions.

Chapler Seven begins by presenling answers to the rescurch questions of this study. Then, the overall study findings are discussed in terms of the six key leaching strategics of a cognitive apprenticeship (Collins, Brown, Newman, 1989) lcarning approach as used in the theorelical framew ork that underpins this research. The Chapter concludes with a discussion of ways fire implementing the study findings in classrooms nnd authentic settingsorganised using cognitive apprenticeship methods.

Chapter Eight concludes this thesis with a discussion of the limitations of the study, as well as making recommendations lor further research based on the study findings.

Background To The Study

Until the introduction of formul courses by the Department of Technical And Further Education (TAFE) in 1964, training for building designers in Western ^ustralia took place using Iraditional apprenticeship methods in architectural design office siluations. Graduates from the fir'st fornal building design training courses were regarded as architectural drafters, a role that mostly saw them operating as assistants to architects. In response to changes in industry practice, which saw the demand for more highly trained, design-competent archilectural drafters, TAFE courses were developed to provide students with more of a design focus, while maintaining dralling skills. Further development of TAFE training courses for building designers became necessary when in 1985 Computer ^ided Design (CAD) methods were introduced to commercial design office practices in Perth Westem Australia (Baird, 1996).

The introduction of CAD based design practices 10 TAFE building design courses changed the focus of teaching methods fromusing mostly traditional hand-skiltbased design and drawing documentation methods, to using computer-hased methods for building projects. This change brought urith it new ways for problem solving and developing design solutions t!ıough the use of computer assisted drawing methods and three dimensional visualisation tools. It also shifted the focus from mostly learning physical skills for drawing production, to learning cognitive ways for resolving design problems. Building design students were now also required to incorporate aspects of other associated constuuction disciplines that also use computer technology, into their CAD based drawings. This necessitated new elements being introduced into training courses for building designers to address aspects of their work that changed because of
the blurring of (raditional boundaries between ussociatad disciplines, brought about by their use of computer methods.

New learning approaches for teaching building design in Westem Australia being trialed at the time of this study being commenced have CAD technology and practical experience as key components. This study examines learning, outcomes for students undertaking authentic design projects under the direction of expell building designers acting as mentors, as part of those new learning approaches. The projects used for this study used real (authentic) client generated building design briefs for housing projects. They were conducted in commercial design olfice settings, with the mentors using leaching elements based on a cognitive apprenliceship (Brown, Collins, Duguid, 1989; Collins, et al., 1989) approach to learning, but not explicitly modelled on this theory.

The authentic designprojects undertaken by the students under the direction of expert building designers acting as mentors provided oppottunities for a highly detailed studyof student/metx or ind eraction in the design office settings used for this research study. The authentic situations embedded in the design projects used were planned to replicate problems typically faced by building designers in their evelyday cullure of practice activities. The use of authentic leaming experiences (Knufman, 1996; Pieters and de Blui!in 1992) developed through real life type situations in which strategies for solving problems are embedded in the context of the task, are considered hy many to be the cornerstone of cognitive apprenticeship learning (Duncan, 1996; Choi, \& I lannafin, 1996; Jarvela, 199 5; Hennessy, 1993; Berryman, 1991; Brown, et ol., 1989; Collins, et al., 1989).

This research was conducted in three phases. It began with a pilot study, referred to as Phase One, results from which were used to reline data collection and analysis methods used in Phase Two and Phase Three, which together formed the principal patt of the study. Phase Two mostly used open ended interviews to collect data about what the study paticipants said took place during their collaborative design olfice activities. Phase Three mostly involved data collection by direct observation and video recording of student mentor collaborative work sessions.

All three phases of this study centred on the events and outcomes experienced by students when working on real work design projects with the suppoit of expett building designeıs acting as mentors. Each student was assigned to a mentor by a lottely ballot with numbers picked fiom a hat by one of the cooldinating T^FE lecturers. Three different authentic design projects were used to provide the students with learning
experiences in the context and culture of professional design office practices.
The design projects were implemented by the mentors using cognitive apprenticeship teaching stralegics including modelling, conching, scalfolding, utticulation, reflection and exploration, us presented in the learning model proprosed by Collins, Brown, Newman (1989).

This approach diffiered from the usual hypothetical exercises traditionally used in TAFE building design classroom based learning situations. The design projects used provided students with authentic, task locussed, problem solving situations in which they applied theoretical knuwledge acquired through their TNIFE studies, with the support of industry mentors using their ever yday culture of practice methods. This format, using industry experts as mentors, is similar to that reported by Ilennessy (1993) who contended that such an approach provided students with oppottunities to aoquire multiple problem-s olving methods as used by the mentors in the resolution of real projects.

The main lo cus of this study was to investigat e the learning out comes for students in authentic cognitive apprenticeship styled learning situations. The study also sought to understand how the st udents acquired knowledge and skills used by experts to solve complex problems. Building designers, through years of practice, develop the ir knowledge, skills and abilities beyond the scope of the ir original formal training. This special knowledge is sometimes refeıted to as ta cit knowledge (Collins, et al, 1989). The manner in which this knowledge is communicated to learners also formed the basis of one of the research questions.

Learning building design in Western Australia

The development and delivery of the first formal building design courses in Western Australia in 1964 was undeıtaken by building design/drafters who had formerly been involved in on-the-job appr enticeship type training of building designers (then called architectuml dralters).

Training exercises in those courses were designed to resemble tasks faced by practicing building designers, however it was soon to und that the rich experiences of actual real life projects could not readily be repliceted in classroom a ctivities. Consequently, new courses were introduced in 1968 incorporating a requirement for students to also undettake work experience on real projects in a building design office over a twoyear perivd, following their initial two-year full-time classroom based unining course.

When the structure of the filll time building design courses was changed Io include additional theory based subjects in 1982, the requirement for workplise experience wis dropped from the courses. This happencal it atime when the building design industry was undergoing changes to respond to the introduction of CAD methods for the production of drawings imd other documentation fire design commissions.

Findings firom a study of the building design industry (Baird, 1996) indicated a need for building designgraduates to have experience in authentic projects and CAD methods to make their training relevant to industry requirements. Competency in using computer technology emerged as an essential patt oftraining courses for building design students. In response to industry demands for building design graduates to have anthentie experience in design and CAD use, TAFE introduced mentor supported authentic design projects us part of their aw ard courses. Prior to this study, no research or e valuation had been conducted to detennine student learning outcomes fiom using mentor supported outhentic building design projects. The authentic projects used here also incorporated CAD based building design nod documentation methods and this provided oppottunities to study knowledge transfer in technology based learning situations as explored by Jarvela, (1995). For this reason, amongst others, this study was regarded with interest by the TAFE stnff and building designers who acted as mentors. Findings about how CND based methods used by the study participants led to knowledge transfer are regarded as important to this research because most commercial building design olfice practices in Western Australia are organised using C^D for the design end documentation of building projects(Baird, 1996).

New building design courses to yddress compuler technolegy

The role of the building designer in the period from 1960 to 1979 was principally concemed with the documentation of designs created by architects. From carly 1980 building designers expanded their roles into areas once seen as the domain of Architects only. In response to these changes in the role of the building designer, new T^FE courses were developed to reflect the demand for a greater and more diverse range of subjects locussed more on design than drafling. These courses included the use of personal computer based (CND) packages for drawing presentation as part of learning advanced design and construction theory. This led to course formats that made less use of traditional hand skill methods and increased use of computer lechnology for design/construcllon practices.

The use of C $\wedge \mathrm{D}$ technology by building designers and other related disciplines led to overlapping of roles and responsibilities for building designers, enginecrs, surveyors and nuiny other consultant practices within the construction industry domain. This in tum led to the need for training ofbuilding designers to include aspects of consultant disciplines that in the past would have not been part of their usual culture of practice activitics. Problem solving methods and heuristic design strategies used by building designers to resolve problems in their everyday practices now incorporate additional elements thal require advanced cognitive skills. Training courses developed för building designers in 1996 as part of a National curriculum addressed many of these issues and have computer technologies incorporated into almost every subject area.

Traditional building design and drafting methods that use hand skills to document design ideos are being replaced with C^D methods (Baird, I996). CAD has changed the nalure of design and drawing by replacing paper-ba sed exploration and representation of ideas with manipulation of a database of information from which complex forms can be explored i \quad :mergent problems resolved. With little manipulation, the C^D drawing database can be replicated, modified and presented in a multilude of dilfierent forms to suit various discipline applications such as electrical services, structural details and bills of quantities. The content and delivery strategies of TAFE building design training courses have evolved to reflect this shift in building design practices.

A change In thinking

The line hand movements and tactile feedback ofdrawing board-based methods is not present in computer based drafting. CAD requires the user to construct a model by interpreting mental concepts into computer operations and digitiser input. The emphasis in drawing production has shifed from mostly hand skills to more cognitive ways for resolving solutions by using computer technologies across multiple associated disciplines. Building designers now use a database of design inlormation and elements to develop design solutions and drawings.

CAD use in this way allows designers to cross traditional discipline boundaries. It has given building designers control over structural documentation (previously the domain of the engineer), quantities and estimates (previously the domain of the quantity surveyor), artistic presentations with walk through three-dimensional capabilitics and civil survey documents. Using CAD methods means that the drawing is now a database
consisting of vector coordinates fire line construction, aad other data about dimensions, notes and textures. $\boldsymbol{\Lambda}$ model is no longer a miniature sructure made from cardboard and plastic, but a computer representation of a threc-dimensiousl shape that represents the virtual structure of u design.

The incthentic design oflice situation unkl real projects experienced by the students provided many experiences llaut embraced different uspects of design practice that the students may not have otheiwise encountered in their classroom-based learning. Here, the design oflice situation is considered to embrace the physical environment and the organisation of building des igner working relationships with associated professions. Design office practices are concemed with the ways in which building design problems are resolved using difierent strategies und procedures that typily the culture of practice.

For the mentors, working across disciptine boundaries is part of their everyday design office practice, but lor the students this was another as pect of their involvement ia an authentic design pro ject that extended their learning experiences. The manner in which the mentors shared their knowledge with students through design activities that included other disciplines associated with their usual practices was a key part of this research. CAD based design practices provided the means for integrating multiple discipline activities into the authentic design tasks undertaken by building designers in their everyday practices (Baird, 1996). For this reason findings about the use of CAD methods for knowledge transfer in the study situation used in this research are regarded as being importaat.

The study environment

This study investigated the leaming outcomes for building design students working uader the direction of expert building designers acting as mentors in commercial design oflice situalions. For many students this was their first experience working in a design office siluation, being treated in ways similar to that used for the design office staff. They also experienced some of the working pressures and expectations typical of the design oflice environment. The design project collaboration was constructed to provide experiences typical of a design office leam-based approach to problem solving so that the students could expeifence first hand the development of a design lor an authentic project. In elficet, the students worked in the industiy lor which they are training but in a monitored environment with the support of a mentor who was expert in the field of building design.

Signifleance of the study

This is the lirst study to be repooted in which cognitive apprenticeship methods have been implemented using uuthentic building design projects in commercial design
 effectivenessof a cognilive apprenticeship based uuthentic work program for students of building design. Some studies have been conducted elsewhere in which a cognitive apprenticeship learning approach bus been used in classroom siluations (Jarvela, 1995; Hennessy, 1993) nnd workshop situations (Cash, Behrmann, Stadt, \& Daniels, 1997), but not in authentic design office settings as used here.

Findings from this research study may have relevance to training courses offiered by TAFE. Particular emphasis has been given here to detennining how students acquire the kinds of tacit knowledge that the mentors develop over years of professional practice, as well as heuristic design stıalegics and procedures used by them to resolve design problems. Application of such information to formal courses may potentially assist in the development of richer, more effiective learning approaches for firture students.

Outcomes from this study may also have implications for other similar industry/institution based colluborative projects working with a cognilive apprenticeship styled learning environment. Many University and TAFE courses have practical components. Disciplines such as engineering, architecture, multimedia, surveying, medicine, dentistiy and the atts require students to under lake one-on-one practical experience components to achieve graduation. Findings from this study contribute knowledge about learning in authentic situations that may be applicable across many disciplines.

PURPOSE OF THESTUDY

The aim of this study was to investigate how students leam in a cognitive apprenliceship learning situation, implemented in a building design office. This study sought broadly lu investigate " the content laught, the pedagogical methods employed, the sequencing of the leaming activities and the sociology of the learning" (Collins, Brown, Newman, 1989, p. 454).

Research Questions

The study focussed on:

1. What kind of declaralive knowledge and procedural knowledge is acguired by sludents in the building design profession in a cognilive apprenticeship learning situation?;
2. Whas kinds uf procedurul und declurative kmowledge are transiferred in this learning sifuulion?:
3. How is tacis knowledge acguired in o cosnifive apprentleship learning siluation?:
4. If prohlem solving, heurisfic .strategies are iaved, haware they picked up by the studenti; and
5. What features of this learning sltuallon promoled sfudent learning?

Context

This research sludy focussed on the events and experiences of students working in collaboration viith expert building designers acting as mentors using authentic design projects, in commercial design oilice situations. Data were collected from 29 students. 19 mentors and 3 TAFE lecturers.

Some activities needed for briefing the study participants and to initiate design work were conducted in classroom setlings. These activities were however more focussed on the administration of the student/mentor collaborative situations and were used mostly to organise and infonn students, rather thnn present leaming activities. During these classroom sessions, TAFE lecturers provided the students with:

- initial briefmgs about the authentic design project they were to undertake with a mentor;
- information and advice with regard to contacting each student's allocated mentor;
- information aboul codes of behaviour and protocols when in a design olfice situalion;and
- guidelines concerning the role of the mentor and what the students may experience when working in a design office under the direction of a mentor using practic.s that include cognilive apprenticeship teaching methods.

During the introductoty classroom sessions, the students paticipated in discussions with me involving the entire class group, small focus group sessions and individual problem solving and project development learning activities. As part of these sessions, I briefed the students on:

- the aims of this research project;
- confidentiality saleguards and the use of pseudonyms for all participants;
- voluntary participation and freedom to withdıaw from the study at any time; and
- interviews and observation methods I would use for dala gathering.
^s part of the se brieling sessions, written perinission was also obtained fromeach of the parlicipating students for audio and video recording of interviews and working sessions with the mentors. Their pennission was also uhtained for me to use all dota collected fur writing this thesis and any other contsequent publications.

Cognitive opprenticeship in shls study situafion.

The learming environment used here was regarted as being structured around the leaming content, method, sequence and sociology, in uccordance with the firamework which Collins, et al., (1989) suggest provides the "characteristics of ideal learning environments" (Collins, et al., 1989, 456).

The reasons for this contention are:

- the students worked on authentic projects, in a building design offices with exper building designers acting as mentors, assisted by other people for whom this situation was their everyday working environment and culture (Brown, et al., 1989);
- the students had the opportunity to explore lirst hand working practices and problem solving activities used by the mentors to lacilitate the resolution of a building desiga, in the context and culture (Hennessy, 1993) of an actual design practice;
- the students were guided and supported by the mentors who were expert in the building design profession and able to model the techniques and skills required to resolve problems emergent fiom the tasks embedded in the authentic design projects; and
- the students were exposed to mentor articulation of their problem solving approaches when presenting ways of dealing with building design problems.

In this study situation, the mentors provided the students with knowledge of their usual design practices and the tacit knowledge developed by them over years of experience and expert practice (Hennessy, 1993; Pieters and de Braijin, 1992).

Throughout each of the authentic design projects all of the students had the support of a mentor. As will be demonstrated, the students were encouraged to develop and apply metacognitive problem solving approaches when extending their learning beyond the boundaries of the tasks used in the study and in their exploration and development ofadvanced design solutions. Although the mentors may not have been fitlly aware of cognitive apprenticeship constructs, for the reasons demonstrated above their methods when working with the students were regarded by me to fit well with the
theory and contain many of its elements. Results presented luter in the study confirm this.

Definitions Used In This Study

Cognitive apprenticeship is considered to be a process in which students acquire knowledge nnd learn the processes that experts use to handle complex tasks, situated in the context of their use. It involves learning through guided experience on "cognitive and metucognitive levels not just physical skills and processes", but seeks the externalisation of processes in bringing tacit knowledge into the open for students to learn with help (Collins, et al., 1989, p. 457).

The Collins et al. (1989) cognitive apprenticeship approach used here has six teaching strategies. Each of these is presented next, as defined by Collins, et al. (1989), along with the manner in which their use here has been interpreted.

Six Teaching Strategies Of Cognitive Apprenticeship

i. Modelling

Modelling is defined as follows:
Involves an expert's carying out of a task so that students can observe and build a conceptual model of the processes that are required to accomplish the task. In cognitive donains, this requires the extemalisation of usually internal (cognitive) processes and activities; specifically, the heuristics and control processes by which experts ntake use of basic conceptual and procedural knowledge. (Collins, et al., 1989, p.481)

In this study modelling also included activities used to support learning through personal demonstration of processes or procedures used to create building designs and to resolve problems emerging from the exploration, development and assessment of possible solutions. Of particular interest was the manner in which building designers, when working one-on-one with a student, conveyed their knowledge and skills by modelling theis approach to the identification and solving of design problems emergent from the authentic tasks of the design project. Modelling also included the demonstration of design strategies that affiected personal style in building design.

2. Coaching

Collins, et al., (1989, p. 481) defined coaching as:
Consists of observing students while they cariy out a task and offiering hints, scaflolding, feedback, modelling, reminders and new tasks aimed
at bringing their performance closer to expert perfiomumec. Couching may serve to diruet students' attention to a previously unnoticed aspect of the lusk or simply to remind the student of some wifeet of the tusk that is known but has been temporarily overlooked. Coaching focusses on the enactment and integration of skills in the service of a well understood goal through highly interactive and highly situated fiecdback and suggestions; that is, the content of the coaching interaction is immediately reluted to specilic events or problems that arise as the student attempts to carry out the target task.

Carver, (1995, p. 206) contends that coaching occurs when "the teacher observes and facilitates while students perform a task". Coaching also involved activities or situations where a mentor assisted students by working collaboratively with them to resolve design problems. The use of coaching is considered here to include mentors guiding students in the use of heuristic design strategies and problem solving methods by articulating the reasons behind design decisions, procedures and individual style elements that are typical of their usual design ollice culture of practice methods.

3. Scaffiotding

Scalfiolding is defined os follows:
Refers to the supports the teadier provides to help the student cariy out a lask. (Collins, et al., 1989, p. 482)

Another feature of using scaffiolding to assis learning in a cognitive appreaticeship approach is the gradual withdrawal or "lading" of the help provided by scaffölding. Collins, et al., (1989, p. 482) def me fading as:

Fading consists of the gradual removal of supports until students are on their own.

In this study, scalfolding is regarded as including tips and tricks such as heuristic designs strategies, problem solving methodsand resource materials provided by the mentor to assist student learning or problem resolution activities in design. It also included techniques, explanations or partial solutions that enabled students to progress beyord points of difficulty.

4. Articulation

Articulation is defmed as follows:
Includes any method of getting students to articulate their knowledge, reasoning, or problem-solving processes in a domain. (Collins, et al., 1989, p. 482)

In this study, articulation has been regarded as more than just talking or having discussions with others; here it is thought of as verbalising:

- personal thoughts and opinions when thinking about design ideas;
- rcasons for using particular heur istic design stratcgies;
- ways lor using problemsolving strategies basad on personal experience of similar problem situations;
- explaining personal interpretations of design problem situations, the underlying rensons lör using particular design strategies and possible solutions or decisions; and
- sketching to show personal ideas, design strategies and problems solving methods.

5. Reflection

Rellectinn is defined by Collins, et al., (1989, p. 482) as follows:
... enables students to compare the ir own problemsolving processes with those of an expert, another student and ultimately, an intemal cognitive model of expertise. Reflection is entanced by the use of various techniques for reproducing or "replaying" the performances of both expert and novice for comparisnn.

In this thesis, rellection means re-examination of ideas, concepts and design solutions at a metacognitive level when exploring the pathways taken in the development of building designs for the purpose of branching into other lines of exploration or to evaluale design solutions or elements for inclusion in final design presentations.

6. Exploration

Exploration is defined by Collins, a al., (1989, p. 483) as follows:
Involves pushing students into a mode of problem solving on their own. Forcing them to do exploration is critical, if they are to learn how to frame questions or problems that are interesting and that they can solve. Exploration is the natural culmination of the fading of supports. It involves not only fading in problem solving but fading in problem setting as well.
Exploration as a method of teaching sets general goals for students and then encourages them to focus on particular sub-goals of interest to them or even to revise the general goals as they come upon something more interesting to pursue.

In this thesis, the tenn "exploration" is also used to describe student and mentor activities in which design variations and multiple design solutions were developed using metacognitive design methods. It also applies to using sketching of design forms to determine relationships with other design elements or their suitability to include in linal
design solutions, as well as for discovering new aspects or elements of the design sit uation that affect the emerging design solutions.

Culture of practice.

In this thesis, the culture of practice refers to the physical and intellectual environment in which the expert bililding desigicers, acting as mentors, conduct their evcr j'day practices in the context of the building design discipline.

Studerts studied here undertook authentic projects under the direction of expert building designers working in their usual design office culture. For this reason, the students were rot simply undertaking tasks in a convenient setting, but were operating within an expet designer's culture of piactice, with one-on-one mentor suppot to assist them ial interpreting the tasks at hand in the context and culture of expert practice. Conductiag this research study in authentic design oflice settings, with expert building designers acting us mentors, provided ways io investigate student learning in circumstaaces in which they were actively engaged in the "ithe practice of solving problems and carr ying out tasks in a domain" (Collins, et al., 1989, p. 459). Brown et al., (1989, p. 40) argue that:

People enteririg the cullure (leaming) need to observe how practitioners at various levels behave and talk to get a sense of how expertise is manifest in conversation and other activities.

By using authentic design office situations, the students studied here undertoak their learning in a culture of practice based on the cognitive domain of expert building designers, ittjlementing their usual ways of solving problems and carrying out tasks.

The "office ser"

The "olfice set" is a bound volume of sketches, drawings, notes aud other materials such astrade literature, photographs and the like that together represent the progressive developinent of a design project. It dociinevits all of the design elements explored by having every sketch and drawiag produced during the design process affixed in their order of prodiction with riotes and references liaking cortcepts or possible solutions. The "office set" provides ways for reflecting on the progress of a design task and an audit trail of design variations explor ed during the creation and refining of emerging solutions. The tenn "office set" is a design industry recognised description of not just a body of drawings and the like, but also describes a manner of working usised by most building designers to coordinate infor mationand design concepts logether irla single working lool. For this reason, the term "olfice set" has been adopted
for use in this thesis when describing building design melthods as npplied in many dillerent contexts regnrded by me to be part of the design olfice culture of practice used lor this rescarch situation.

Work Sesulon.

The most common design oflice activity reterred to in this thesis is the "work session". The term "work session" is used here to describe interactive exchanges between students and mentors as they work collaboratively to resolve a real work design problem in the context of the everyday culture of practice for that design mentor.

Conclusion to this Chapier

This Chapter began with a brief description of the content of each of the Chapters. Following this the study background was presented along with a discussion of the study puspose and the research questions upon which it was constructed. After discussion of the study aims, the context in which data were collected was described, with some impostant terms used throughout this thesis also being defined.

In the next Chapter a review of the related literature and eesearch pertinent to this study are presented.

CIIAPTER TWO

LITERATURE REVIE W

Introductlon

This Chapter presents a re view of the related literature ond research pertinent to this study. It begins by discussing nspects of the context and culture of the learning situation regarded by Brown, Collins, Duguid (1989) as impottant to knowledge transler. The role of concepts and knowledge as cognitive tools in the cognitive apprenticeship approach to learning suggested by Collins, et al., (1989) is also discussed with relerence lo the commencial design offices learning situations and authentic lasks undertaken by the study participants. Following this, se veral studies based on o cognitive apprenticeship approach to leaming arc presented along with lindings pertinent to this research. The Chapter concludes with the theoretical framework underpinning t his research.

Learring in context

Brown, Collins, Duguid (1989) contend thal traditional teaching methods tend to pronrote the acquisition of / nerl knowledge not linked to the conlext of its application. They also suggest that such knowledge is not readily transferred or applied by students in other contexts and support instead a learning approach that embeds learning in activities that make deliberate use of the social and physical context in which the knowledge and skills apply. This they say supports the situated nature of knowledge (Brown, et. al, 1989). It is from this perspective that this study is structured and lor these reasons that commercial design offices and expert building designers were used to construct the learning siluation.

Knowledge as tools

In a situated learning environment many researchers (Cash, Behrmann, Stadt, Daaiels, 1997; Brown, et al., 1989) contend that concepts and knowledge should be seen as cognitive lools for fitriher learning. Brown et al. (1989) contended that students raake best use of those tools when they are applied in a learning situation that replicates the ordinayy practices of the culture through authentic activities realistically presented as in the culture of application. Student use of cognitive tools is regarded by Brown et al. (1989) to be within the context of a culture and leads to learning values and contextual leatures linked to the original purpose, rather than assimilating knowledge
nnd skills in isolation as inert knowledge. Such n process, is described by
Brown et al. (1989), as one of enculturation, where activity, context and culture are interdependent. The use of learning tools in this way is snid to allow students to build an "increasingly rich understanding of the world in which they use the tools and of the tools themselves" (Brown, ct al., 1989, p. 33).
^uthentic activities in learning are those, that replicate the lypes of problems likely to be encountered in real life experiences. The use of authentic experiences in realistic learning situations supported by expert practitioners facilitates a cognitive apprenticeship styled learning approach.

Cognitive appranticeship leaming situations seek to involve students actively in the exploration and problem solving stralegies of real life, authentic, siluations in which they are required to develop solutions based on the needs of the problems faced (Jarvela, 1995; Brandt, Farmer \& Buckmaster, 1993).

The learning cullure

In this study, students worked with expert building designers as mentors in commercial building design offices that were for the mentors their usual culture of practice settings, which were adopted by the students. Having such a setting provided a working culture for cooperative interaction between mentor and student, using mutual problem solving activilies based on authentic experiences. The collaborative mature of working in this way emulates the manner in which traditionally a master (expert) worked with an apprentice in a coaching, supportive fashion, providing tips of the trade or tacit knowledge through verbal articulation of thoughts in the development of solutions (Jarvela, 1995; Hennessy, 1993).

The expert Mentor-Modelling

In a cognitive apprenticeship learning situation students are supported in their learning by a model, or expert mentor, who coaches them in the application of problem solving stralegies. The mentor also assists the students to overcome problems that present as barriers to their pıogress by providing limely scaflolding in the forin of advice, hints, tips, learning materials and the like. In a study by Cash et al. (1997), involving automotive students working in a cognitive apprenticeship situation, findings reported indicated that working collaboratively with mentors and other students, led learners into a culture of practice in which the y developed confidence and articulated their learning into individualised pursuits. In a diffierent study, Brandt et al., (1993, p. 75) contended that mentor modelling of problem solving methods form powerfisl
instructional tools that can be used in ways that allow: "knowledgenble proficient people to show learners how to do something by stating aloud what they are thinking while doing the activity". Tircy also suggested that mentor guided learning in n cognitive apprenticeship situation is effiective when autlentic tashe are presented in a realistic context and the mentor models the "what how and why" of the methods used to resolve problems emergent from those authentic tasks (Brandt el al., 1993, p. 77).

Working in a mentor suppotted cognitive apprenticeship situation provides students with oppottunities to acquire learning skills, using them as tools in other applications outside of the culture and context in which they were lisst experienced (Jarvela, 1995; Brandt et al., 1993; Hennessy, 1993). The task locussed, mentor supported real work projects used here are appropriate lor use in a cognitive apprenticeship approach because they provided students with authentic learning experiences. They also provide ways for mentors to model methods, typical of their usual culture of practice activities, lor resolving problems laced by students when developing solutions lor des ignproble ms that emer ged from the projects untaken by the study participants.

Social construction of kaowledge

Brown, et al. (1989) contend that cognitive apprenticcship attempts to promote learning within the nexus of activity, tools and culture. Similarly, Vygotsky (1978) contended that learning takes place in situations through collaborative social interaction and the social construction of knowledge.

As a social activity, learning is seen to be very much a group centred activity. $\boldsymbol{\Lambda}$ cooperative society of learning drawers upon the knowledge, skills and collaborative value of people working logether to achieve their goals (Brown, et al., 1989). The emphas is on social interaction (Schoenlèld, 1987) and a collaborative approach to learning is fundamental to the implementation of a cognitive apprenticeship learning approach.

Application of knowledge developed in isolation from its contextuat meaning may result in students being unable to make the connections between knowledge and its use in other situations other than its leamed example (^bbolt, 1998; Berryman, 1991). This study placed the student ina learning situation where the context and ctilure of practice was part of the everyday working conditions of those surrounding $l l,: m$ (Collins et al., 1989).

Metacognitive stratcgies

The development of cognitive and metacognitive strategics and processes is considered by Collins, et al. (1989, p. 455), to be more important than "low level subskills or factuul knowledge". Brandt el al., (1993, p. 70) contended that the use of a cognitive apprenticeship approach "builds on existing know ledge and problem solving strategies, avoids reinventing the wheel, expandsawareness, highlights otheıwise overlooked aspects". They also contended that in a learning environment organised using cognitive apprenticeship methods, students learn to resolve problems emergent from authentic tasks and problematic situations by making use of lacit knowledge constructed from real world experiences. They also contend that students, having experienced conceptual models developed by mentors are able to apply such models as an advance organiser, or as an intelpretive structure for making sense of hints during interactivecoaching sessions and to act as an intemalised guide for successive approximation and reflection. Using reflection, students compare their own perfonnance against that of a mentor and apply standards modelled by mentors in the development of their oun metacognitive practices (Berryman, 1991; Collins, et al., 1989).

Rellection and mulliple points of vlew

Collins, et al. (1989) regard student use of reflective practices provides them with ways to compare their ow operfonnance with that of the expert mentors guiding them. Wheo, as in the case of this study, several mentors are available to the student, then multiple points of view can be explored as reported by Jarvela, (1995) leading to other possible problem solving stralegies, enhanced perfonnance, outcomes or solutions (Hennessy, 1993).

As students develop their expeitise they can take over the teachers role during sessions of collaborative problem solving. In so doing, they participate in a culture of expeit practice both as a recipient, and as a practitioner, having meaningfinl benchmarks and incentives as modelled by their mentors (Hennessy, 1993; Collins et al., 1989).

In a cognitive apprenticeship learning approach, the teacher or mentor attempts to articulate as completely as possible the abstract principles underlying the application of knowledge and skills into diverse situations or contexts. In so doing students may successfillly transfer knowledge, skills and principles across discipline or task boundaries. The building designprofession demands of its exponents, highly developed communication skills centred on verbal and visual articulation of abslract concepts and the visualisation of three dimensional forms involving diverse situations and
problematic forms. Mentor nrticulation and the transfer of their tacit knowledge, heuristic design strategics and problem-solving procedures is fundam:ntal to student learning in this context.

In support of their argument for cognitive apprenticeship, Collins et al. (!.,89) examined three tcaching models using the principles of cognitive apprenticeship. They nre, Reciprocal Teaching, Pıocedural Facilitation and Authentic Learming Experiences.

Reclprocial teaching

The discussion of the Reciprocal Teachingin-Leaming model proposed by Collins, et al. (1989) is based on studies by Palinscar \& Brown (1984) which centre on modelling and coaching students in lbur strategic skills and make use of role reversal where students and leachers take turns at being the teacher.

Initially the teacher provides scaffolding to assist and encourage the student to achieve the learning goals. As the students develop their knowledge and skills, the scaffolding is slowly withdrawn or laded, leaving the student to extend their knowledge and develop their own resources from the base they have been assisted to build. Critical to the success of such activities is the modelling by the teacher of "cxpert strategies in a problem context shared directly and immediately with the students" (Collins, et al., 1989, p. 463).

Procedural Facilltation

The second learning approach considered by Brown et al. (1989) in the development of their cognitive apprenticeship learning model, was Procedural Facilitation (Scardamalia, \& Bereiter, 1985; Scardamalia, Bereiter, \& Steinbach, 1984). This approach provides explicit procedural supports in the form of prompts to assist students in developing expeıt writing strategies. Once again what is sought here is a leading and supportive role by the teacher or mentor. Their role is to provide expert, explicit modelling (Hennessy, 1993) of the problem solving strategics needed tor the given tasks and to assist the development of metacognitive skills through scaf fiolding that provides the tools to elevate student performance (Dinmore, 1997). Building design, with its creative/arlistic elementsrequires high level thinking and problem solving and with its technical elements demands precise use of information and procedures that can be defined through scalfiolding and modelling.

Authentlc learning experlences

The third learning approach consider:d by Collins et al. (1989) was that of Schoenfeld (1987) who conducted a stixdy of small groupproblem solving sessions in a cognitive apprenticeship learning environment with authentic learning experiences. Schoenfield (1987) sought to identify what the students were doing, why were they doing it, alld how would success in what they are doing help them lind a solution to the problem (Collins, ct al., 1989).

The aim was for students to rellect upon thelr activities and thus self-monitor their progress towards solutions and diagnose their skills by aticulating the reasons for decisions taken in the same fashion that experts express aloud their thoughtsduring modelling sessions in problem solving lo the learning environment. Collias, et al., (1989) contended when working in this way students develop control over reflective and met acognitive processes in their problem solving.

Expert practice in the fearning en vironment

Collins et al. (1989) developed a four patt learning framework based on content, method, sequence and sociology. Of particular interest to Collins et al. (1989, p. 477) was strategic knowledge, being pat of the tacit knowledge that underlies an expert's ability to "make use of concepts facts and procedures as necessary to solve problems and to carry out tasks". Collins et al. (1989) also contended that strategic knowledge involves problem solving strategies and heuristics. Choi, \& Hanralin, (1996) contended that expertsin various disciplines or lields of study use such knowledge as a vehicle for learning how to learn and to acquire new knowledge. This is recognised as a foundation stone in the learning framework used adopted for the rescarcy (Λ bbott, 1998; Collins, et al., 1989).

In seeking to differentiate between factual and procedural knowledge, Collins et al. (1989, p.477) used theterm strategicknowledge to refier to tacil knowledge that "underlies an expert's ability to nake use of concepts, facts and procedures as necessaty to solve problems and caizy out lasks". Fiadings reported by Choi \& Hannafir, (1996) and by Jarvela, (1995) suggest that by grounding the learning in authentic tasks, conceptual, factual and procedural knowledge was less likely to become inert, and thus applied inappropriately by students in situatioas removed from the contextual domain of learning

The study situation used for this research is in keeping with the cognitive apprenticeship leaming environment suggested by Λ bbott, (1998, p. 18) who contends
that "The process of learning has passed from simple selforganisation to n collaborative, social, problem solving activity much dependent on talk, practical involvement and experimentation". A collaborative leaning environment is considered by Abbolt (1998) to be one in which people work together in solving problems using a team approach in sharing knowledge and skills to achieve commonly supported goals. Mezirow (1996, p. II9) similarly supports the view that learning takes place in collaborative learning environments in which students' need to become "critically rellective and to participate in critical discuuse. From this perspective, Mezirow (1996, p. 119) contends that "learning is a process of using a prior interpretation of the meaning of one's experience to guide future action". This approach to learning also involves the use of rellection, a process in which the learner reviews their own perlormance in problem solving and then compares this to the perfiormance of the mentor, with a view to making modifications to etulance fiture actions (Dinmare, 1997).

A Cognillve Apprenticeshlp learning approach

In proposing their cognitive apprenticeship learning approach, Collins et al. (1989, pp. 481-483) listed the lollowing teaching strategics: modelling, coaching, scalFolding, articulation, rellection and exploration. Many other theorists have explored this stuucture and added their nwn interpretations and sub categories (Duncan \& Rohorer, 1996; Choi, \& Honnofin, 1996; Jarvela, 1995; Cnrver, 1995; Hennessy, 1993; Berryman, 1991; Brown, et al., 1989),

Implementing sucha learning approach can effectively take place by developing a learning sequence for tasks and context environments, progressively increasing in complexity to promote higher learning (lave, 1988, 1990). This may begin with a conceptual map or cognitive model of the overall task or situation which may provide students with a more diverse range of tools lor problem solving than if they learn only lask specific skills (Mumford, 1993; The cognition and technology group at Vanderbilt, 1990; Collins et ol., 1989). In this study, group discussions outlining the project leaming sequences were used as an advance organiser for students, their mentor and TAFE staff managing the project.

Culture of expert practice: Mentor/Student Collaboration

Having mentor/student collaborative activities situated in a culture of expert practice provides opportunities for students to develop a sense of ownership of the learning and become intrinsically motivated to continue, far more so than in a traditional
classroom using didnctic methods (Collins, ct nl., 1989). Collaburation between all parties to the learning is thought to "「oster the situated articulation of processes and concepts" (Collins, et al., 1989, p.490). Such collaborutions arc thought to help students to develop cognitive and metacognitive processes over which they have control and make conscious use of in problem solving in other contexts or domains.

Learning In context

The importance of learning in context and the value of authentic learning environments to the acquisition of tacit knowiedge, that is knowledge and skills developed through life experiences and professional practice, was noted by Duncan (1996). In a study focused on mathematics, language and problem solving, Duncan (1996) found that students benefited from a cognitive apprenticeship classroom culture and improved their understanding and work on application type ןroblems.

Instructors who used modelling lound "increased student attention and enthusiasm during modelling based lessons" (Duncan, 1996, p. 76). It was also noted that students quickly recovered from errors in this style of learning and were able to transfer knowledge well.

Stmulatlons and authentle actlvitles In the lenru Ing situation

Computer technology has become an important learning tool. Jarvela, (1995) explored the use of a cognitive apprentleeship approach with students who investigated and modelled the control technology principles of anautomatic washing muchine using LegoLogo (Papert, 1980). Data were analysed in terms of scalfolding, modelling and rellection, using video recordings of four pairs of students working for nine hours. In her lindings, Jarvela, (1995, p. 243) contended that "situation-specilic modelling" has the potential to promote spontancous, nore advanced exploratory activilies among students. The use of simulated leaming experiences in this way provides interactive task focused act ivities that replicate authentic real world tasks, problems and scenarios students are likely to lace in the workplace. This approach can permit students to test a variety of elfective problem solving methods in a varicty of situations designed to eahance learning (Brandt et al., 1993). Communication between students and expert mentors is now theoretically possible fiom any place on the globe with computer access and this opens the way for social interaction between individual or large numbers of people who may lean from each other in a vast multi-cullural setting.

This study used authentic design office situations, with authenlic projects to create realistic experiences for the students. Dewey (1938) spoke of learning through
experience, while Knowles (1980) saw meaningfinl learning as associated with everyday problems in the social world, as did Vygotsky (1978) and Schön (1983). Rogoff'\& Gardner (1984) contend that thinking is intricately inter-woven with the context of the problem to be solved and explored a learning paradigm based on the cognitive practices of humnns, located in authentic activity. Resnick, (1987) suggested that authentic activity has to involve situatiols where the actual cognitive processes are required rather that simulated, as sometimes done in schools. The use of thinking aloud by experts when articulating their tips nod tricks as they work through situated tasks with students is a cancept well supported in the literature about situated cognition and cognitive apprenticeship learning.

Work by researchers in the cognitive apprenticeship field has often been focussed on the organisation and manipulation of the leaming environment (Lave \& Wegner, 1991; Rogoff 1984). Brown et al. (1989) regarded learning and development to be a dynamic process that results fi om the active parlicipation of individuals in culturally organised activities. Jarvela, (1995) contends that the learning envir onment should provide opportunities for social interaction lor exchanging of ideas and knowledge in ways that support reciprocal understanding between the students and the mentors. Collaborative interaction between the mentors and the students assists individualstudentsto negotiate meaning in their learning experiences and to developa frame of reference for work ing with the mentors with enhanced reciprocity in their interaction(Voight, 1987; Nystrand, 1986).

Situated Learning

Lave (1990) argues that learning is a fimetion of the context of an activity and culture in which it occurs and can thus be seen as situated. This follows on from an carlier social learning theory proposed by Bandura (1977) who suggested a form of learning which integrates behaviourist ideas about reinforcement with cognitive processes of understanding the behaviour of others and identifying with it. This theory has the key elements of experience and expectations. From experience we learn the consequences ofour respanses and expectations derive from the anticipated consequences of our respanses. From this, there derives a major role for reflection in learning, a characteristic seen in later learning approaches using situated learning and cognitive apprenticeship.

Sitaling learning is considered to take place when using aut lent ic activities that develop understanding through social interaction and collaboration, in the culture of
authentic domain activity with modelling, scafliolding and reflection. Its practice is based on observation, guided and supported practice and on feedback for the development of cognitive and metacognitive skills (Collins et al., 1989).

In a study by Jarvelu (1995), these principles were used in the cvaluation of studenU/eacher interaction in a technologically rich learning environment. In that study it was shown that in scafliolding sessions some students interacted well with the teacher and in so doing, received reciprocal and self directed social interaction. Some students saw the teacher as inteirupting their work just as they were getting to a solution, thus taking a more individual heuristic approach (Jarvela, 1995).

One possible downfall of this type of learning according to Jarvcla (1995) occurs when learners become overly dependent on the mentor for seaffolding in the tasks at hand and does not then take responsibility for their own learning. It is fundamental to the success of the student becoming self supporting in the leaming that scaffolding support is gradually laded out by the expett or mentor as the student develops skills and conlidence.

Using authentic situations to develop Cognitive Understanding

The application of a cognitive apprenticeship approach to this study situation has some similarities to a study by Casey (1996) who used multimedia technology in the construction of authentic learning lasks. In his study, Casey (1996) sought to incorporate a framework for analysing and sequencing content and to develop appropriate strategies for learning in a distributed and diverse environment. Using a cognitive apprenticeship approach to training weather forecasters, Ciasey (1996) sought to provide a mechanism for incorporating communities of practice in multimedia solutions that would provide a method for building and reinforcing cognitive understanding. In fonnulating his multimedia approach, Casey (1996, p. 76) reported "Cognitive flexibility develops transfier of skills by iocorporating a mulliperspective approach to expertise that enables the learner to traverse or criss-cross the knowledge in numerous ways. This viewpoint is of special importance here because the traditional role of the building designer has changed with the introduction of computer lechnology to encompass a range of professional disciplines that fonnerly were the domain of separate but related professional practitioners.

Casey (1996) placed special emphasis on auditory coaching from experts, making it more thorough by addressing complex issues surrounding the case presented in the learning. Through articulation, students were encouraged to demonstrate their
master y of new tools and knowledge and to participute in open discussion forums with collengues. By grounding the learning in an authentic environment or real world situation, students may belter understand why and what they are learning and learn through doing more than through listening. In so doing students explore what strategies work for given situations and what strategies do not work in a real world context. The aim is to learn to problem solve in multiple contexts (Casey, 1996).

Working with n mentor provides learners with the opportunity to observe their problem solving strategies and application of expert knowledge and exper ience. Hear ing an expett articulate thoughts as they problem-solve or demonstrate work practices and procedures is regarded by many researchers to assist in selting standards of practice. It also allows students to test their expertise against others in n forum where mentor suppott is gradually withdrawn ns student skills improve. Modelling aod coaching work well with multimedia but are most eflective when used in co-operative learning environments or communities of practice in which there is interaction between nll patties to the learning. These teaching strategies also require well developed verbal communication exchanges throughout the learning processes (Casey, 1996; Collins, et al., 1989).

Other studies using Cognitive Apprenticeship methods

Cash et al, (1997) studied the elfectiveness of cognitive apprenticeship instructional methods in college automotive lechnology classr ooms. They used traditional classroom teaching methods with one group of students and a cognitive apprenticeship approach with a diffierent group leaming automotive technology. The cognilive apprenticeship grouphad an emphasis on modelling, coaching, fading and verbalisation of thoughts by ex pert mentors.

In reflective debrieling sessions, students were encouraged to use problem solving to assist in the development of their diagnostic skills, with the instructor lading support as their skills emerged. This patticular hand-skills/cognitive skill study makes an inter esting comparison with the multimed ia format Casey (1996) study because the same fundamental learning model is applied through very diferent learning contexts.

Findings from the Cash et al. (1997) study indicate that the cognitive apprenticeship model proved to be more effiective than traditional methods of instruction in the development and acquisition of information, knowledge of traubleshooting procedures. It also ptoved to be an effèctive method for students to learn to apply diagnostic skills in the contextof teaching air-conditioning in
automobiles. Nithough the long-term effiectsof this wereconsidered to be inconclusive, the writers saw the emphasis on instructional constructivist practices of signilicant value in a cognilive apprenticeship model. In particular, the sequencing aspect of cognitive apprentic eship in conjunction with the use of a starting approach that uses a broad understianding of systems as $\boldsymbol{\pi}$ base for exploring and learning was seen as preficrable to the traditional approach eentred on factuai knowledge of components theory.

Tacil knowledge and Reflectlon in Cognitive ^pprenticeshlp learnlng

Explicil knowledge and problem solving methods developed through practical experience tonn the basis of expert practitioners' lacit knowledge of their domnin of professional practice (Collins, et al, 1989). The use of modelling, articulation and reflective practices by mentors inthis study, to reify for sludents their lacit knowledge, is discussed later with reference to lindings from studies by other researchers as presented in this section. Mentorandstudent use of rellective practices (Λ bbott, 1998; Mezirow, 1996) to make visible tacit knowledge was also studied. This use of this approach was based on the ideas of Schön (1983), who explored the concept of the rellective practitioner. An important aspect of a cognitive apprenticeship approach to learning, is the key feature of rellection by students and leachers in the learning process. Schön (1983) suppots the notion ofreflection in action, which is viewed as the exercise of interactive, interpretativeskills, in the analysis and solution of complex and ambiguous problems (Calderhead, 1989). The rellective processes of an individual may be considered as an internal evaluative dialogue and self focussed (Butler, 1992), or external and used as a research forn in evaluating how learning may take place (Schratz, 1992). In a cognitive apprenticeship appr oach to learning, all of the participants in the learning situation should employ reflective practices to understand and evaluate their learning events, then apply what they may learn from it to their future actions. This may be considered as a form ofknowledge that Schön (I 983, p. 54) described as "knowing in action" which is "Ihe characteristic mode of ordinary knowledge". Schön (1983) also contended that this is lacit knowledge, in the sense that we are usually unable to describe the knowing that our action reveals. He also suggested that reflective practices in learning are only stimulated by certain puzzling situations. In a cognitive apprenticeship learning situation, it may become the role of the expert mentor or teacher to st iraulate the learner to reflect upon events and process es that affiect their learning and promote its application in developing their tacit knowledge.

In a study of the use of relicetion-in-nction by adull educntors, Ferry \& Ross-Gordon (I 998, p. 98) found that "refleeting educators whether novice or experienced, use reflecting-in-action, or reflecting-on-action as a means to develop expertise". They nlso noted that rellecting practitioncrs use nconstructivist decision making perspective, an approach supporting Schün's (1983) theory.

The manner in which students nequired explicit or factual information about how experts tackle problem tlat emerge from design situations and why they used particilkir inethods for different situations, was closely studied as part of this research.

Self-dincetcdncss

Where Abbott (1998) takes the view that leamers need to become self starters who can problem solve in cooperative, collaborative, diverse situations, Mezirow (1996) looks to learning strategies tlat explore intentions, purposes, feclings, values and moral decisiotss. It is ability to think for oneself and to negotiate one's own purposes, values and meanings that he sees as communicative competence and a possible definition of self-directedness in learning. The learning tasks crealed for this research were based on work centred purposef ul authentic projects that required decision making involving peoples lifiestyles and therefore involved purposes feclings and values, as suggested by Mezirow (1996). In this regard, the students were considered to be selfdirected.

Summary
Throighout the literature there appears to be a widely held view that it is important to bridge the leaming activities of the classroom, with the expectations that the application of that learning may bring in the work environment for which the students are training. Litiking the practical as pects of problem solving in real life situations presented as learning experiences, directed and supported by a teacher or mentor is the comerstone of the cognitive apprenticeship (B'rown, ct al., 1989) approach to leaming. The cognitive apprenticeship approach seeks to embed the learning in activities that make deliberate use of the social and physical context in which the knowledge and skills apply. It is suggested that coicepts and knowledge be seen as tools for firther learning (Brown et al., 1989) and that they are best applied in a learning situation that replicates the ordinary practices of the culture through authentic activitics realistically presented in the culture of application.

Cognitive Apprenticeship in this study siluatinn

The sludents in this study under took authentic design projects in commercial design ollice situations alongside other stalfoperating in a range of disciplines necessary for the successfill practice of building design. The study situation and mentor suppotted authentic projects undertaken are in keeping with the principles of cognitive apprenticeship ns explored throughout this chapter. The study situation from the beginning incorporated all of the vital elements of o cognitive apprenticeship styled approach to lenming and included:

- use of real lifi: outhentic learning tasks situated in the culture and the context of their usual application;
- mentor use of modelling, coaching, scalłolding, articulation, exploration and reflection to assist students to acquire knowledge and skills necessary to successfully resolve building design problems in the context and domain of professional culture of practice activities;
- support of mentors, expert in building design, who atticulate their problem solving strategies as they are implemented in the development of a building design solution for an authentic project;
- modelling of heuristic strategies, design strategies and presentation (drawing) lechniques by mentors, to afliect transler of procedural, declarative and tacit knowledge developed by the mentors over years of experience;
- articulation of problem solving approaches and metacognitive learning strategies used by expetts when developing solutions to complex problems in the building design domain of practice, including multiple other disciplines required for resolving authentic design lasks; and
- collaboration with other experts, in the design office setting, who provide multiple perspectives, design ideas and heuristic design strategies that assist student learning.

The Tbeorelcal Framework

Figure I (p, 30) shows diagrammatically the theoretical framework used by me to investigate student leaming in a design ollice situation organised around authentic projects under the direction of mentors using cognitive apprenticeship leaching methods.

Figure 1. Theoretical Framework For This Study

I norder to investignte how knowledge nnd skills ore acquired by building design students when working under the direction of a mentor in a cognitive apprenticeship learning situation, it is important to lirst understand the nature of the building design discipline. Therenre three aspects of building design practice that each present diflierent denumds for student learning. These are shown in Figure I ns three boxes that together represent the domain of practice.

The first aspect of the domain of pmetice in building design requires students to develop technical knowledge and skills necessary for resolving nnd documenting design solutions al n procedural level, a role position regarded in the design industry as technician or draf:ing assistant (Baird, 1996). The second aspect of building design practice requires students to acquire knowledge and skills in using creative, innovative practices to develop new design concepts. The development of creative design skills is regarded by some researchers to occur only when designers can visualise and refine ideas in metocognitive ways and to then be able to communicate these by using verbal articulation of personal thoughts supported by graphical images to convey complex three dimensional forms.

The third aspect of the building design domain of practice involves the development of lenowledge and skills necessary for incorporating associnted discipline elements into design solutions. Building designers must integrate information and structural content from other disciplines such as engineering, electrical, hydraulics and many others into every design. Strulent learning in the broad practice of the building design domain must include elenıents from these associated other disciplines in order to replicate authentic practices.

The theoretical framework developed lorthis study linkseach of these three elements of the building design domain of practice to an authentic situation (see Figure 1, p. 30). The three elements shown in "The Study Situation" box of Figure I are designed to represent the usual practices of expert building designers in an authentic leaming situation based on a cognitive apprenticeship (Collins, et al., 1989) approach io learning, using authentic lasks with discipline experts acting as mentors.

In order to study how knowledge transfier takes place and how students acquire skills needed to resolve complex problems in the manner used by experts, the study situation and the tasks undertaken must replicate the mentors' usual culture of practice activities and be implemented in the context of their every day practice.

This study was conducted in commercial design office settings, with expert building designersas mentors and studems undetaking authentic building design projects. These conditions are based on what the titcrulure reviewed for this study suggest is appropriate authentic conditions in which to apply methods diat situate learning in the context of real experience. The cognitive apprenticeship approach to learning that underpins this study has six teaching strategics thot con be readily opplied in the study situation usec' here. They are, Modelling, Coaching, Scuffolding (and Fading), Articulation, Exp'oratlan and Re:/lection. Throughout this study, the manner in which each of these was used to assist student lcurning was closely studied, along with many other aspects of mentor practice aril sir. .ional laclors that emerged. Findings about all aspects of student learning that $;$, ner ; ed from analysis of the study data are presented later in Chapter Six of this tbesir

The theoretical ${ }^{\prime}$ a:nework 110 . in in Figure I (p .30) was developed to address each of the factors regarded by ne to constitute the building design domain of practice and the elements of a cognitive apprenticeship approach to learning.

Conclusion to this Chapler

This chapler had theee parts. The lirst part presented a review of the related litemture and research pertinent to the study. The literature review began with an overview ofmany dilferent espects of a cognitive apprenticeship approach to learning including such things as learning in context, social construction of knowledge, reflective learning practices and authentic experiences. Some nspects of the zole of tacit knowledge used by experts in the icaming environment were also explored.

In the second part of this Chapter, some specific research studies in which cognilive apprenticeship leaching strategies are explored, were discussed with reference to the leaming situation studied in this research. In the final part of this Chapler, the theoretical frame work upon which this study is based was presented dingrammatically in Figure I, along with a hrief discussion of how each of the elements in that fiamework were used in conducting this research.

CHAPTER THREE

METHODOLOGY

Intioduction

This Chapler begins with an overview of the research methodology. The methods used to ensure rigour in all three phases of data collection are then described. This is followed by a discussion of issues to do with entry to the lield of research and the study sample. In the latter lualf of this Chapter, issues of trustworthiness are addressed with reference to the data collection and analysis methods used. More detailed information about the data collection methods and data analysis methods used here is provided in Chapler Four and Chapter Five of this thesis.

This Chapter concludes by addressing aspects of situational uniqueness in this study.

Methodology

This is essentially an interpretivistic study based on qualitative data that sought to provide "detailed, thick description; direct quotations capturing people's personal pers pectives and experiences" (Patton, 1990, p. 40). The study used a suturalistic inquiry approach structured to have design flexibility in that it was:

Open to adapting the inquiry as understaading deepens and/or situations change; avoids getting locked into rigid designs that eliminate responsiveness; pursues new paths of discovery as they emerge. (Patton, 1990,p.41)

An intelpretivistic approach has been chosen because it perinits greal llexibility in following new pathways revealed in the data as it presents through fieldwork inquiry (Patton, 1990). Patton (1990) also contends that using this approach allows the researcher to work close to the subjects and to explore in depth and detail the study siluation, while remaining open and Ilexible when interpreting the study phenomena.

This study was condueted in three phases, with emergent lindings from the lirst two phases being used to develop and refine subsequent phases. This approach also allowed rellection on early lindings when new data and findings led to different aspects of student learning emerging through analysis. Reflection on earlier lindings and retracing ofthemes during analysis helped to add rigour to the study methods and provided ways for exploring in greater detail aspects of student learning thus revealed. Methods used to gather data in this research are listed below as part of the description of
the three phases of this study. Each of these is discussed in detail in the next Chapter of this thesis.

Development of the study structure was undertaken in ways to ensure the reliability and validity of the research through an analytically rigorous, replicable, systenuatic approach with cross checking of dala to entertain rival alternative explanations for encountered phenomenon (Eisenhardt, 1989). These aspects are explored in n later section of this Chapter dealing with the trustworthiness of this study.

I have sought to ensure that data were systematically recorded and studied, by having multiple data collectionandanalysis methods. Infornation collected included interview data, observational data about student/mentor interactive experiences, inipressions and statenents envergent from informal discussions with the study participants, student diary joumals, sketches and drawings. Using these methods made it possible to study in detail the real world situations encountered by students undertaking authentic tasks in commercial design office practices. Data gathering sought to be conducted in a "non-manipulative, non-controlling way with openness to whatever emerged and having no predetermined constraints on outcomes" (Patton, 1990, p. 40).

Planning and preparation for this study

Prior to each phase of dala collection, individual interviews were conducled with the study participants to ensure that:

- each wasa willing participant;
- each would accept my preseace as an observer during work sessions;
- each was filly infonned of the ethical provisions I had nade, parlicularly to ensure the anonymity of the their participation; and
- I oblained written approval from each of the participantsto use data collected during this study for writing ofthis thesis and any subsequent publications.

During discussions with each of the study participants, I made brief notes about any aspects of the study that they identified as of special importance, or of concem, to them. Information oblained in this manner was recorded in my personal journal as part of the study audit trail and was used to formulate and refme the study structure.

Also, during such discussions, I sought the students' cooperation in keeping a personaljournal of their design office experiences, thoughts and observations throughout their design project. Their written approval for my use of these journals as part of the overall data collected for this study was obtained at that time.

The study structure

This research study had the following three phases of data collection:
Phase One - Pilol study;
Phase Two - Datu gathcring using mostly inter views', and
Phase Three - Data gathering using mostly direct observation of work sessions.

Data were collected over a 14-month period. During this time, three diffierent groups of students were studied as they worked with expert building designers (mentors) on three different authentic building design projects that formed the core of the three phases of this research study. Two of the mentors, who had parlicipated in the pilot study project, also participated in the project undettaken for (main data collection) in Phase Two. All five mentors, who paticipated in the project used for Phase Three of the main data collection, had participated earlier in Phase Two of the main data gathering. This facilitatel comparison of data conceming similar events, fiom two main phases of data collection, each using different methods of data collection.

In all three phases of this research I was the principal instrument of data collection (Pation, 1990) and as such became engaged with the study situation and patticipants as a participant obser ver and inquiry agent. As each new data were collected, I transcribed and coded them using an index tice structure developed with the aid of NUD•IST (Non-numer ical Unstructured Data Indexing Searching \& Theorising) (1998) soflware. The index tree structure wus progressively ref ined as new data were collected and analysed, with emergent findings being used to create additional coding categories in response to developing themes (Richards \& Richards, 1995). This aspect of data collection and analysis is discussed in detail in Chapter Four and Chapter Five of this thesis.

Phase One - The Pliot Study

Phase One of this study wasa pilot study designed to trial the suitability of the study situation, authentic projects and data collection methods. It was planned to determine the broad picture ofstudent learning experiences when working with a mentor on an authentic project and to confirm that cognitive apprenticeship principles did indeed apply.

Planning of Phase One began with informal discussions with three TAFE building design lecturers and two of the live mentors who worked with the $\mathbf{2 2}$ students who participated in thisphase. All those involved in these discussions had previous
experience of working with students on authentic projects and in design office situalions. Having this bnekground experience curbled the discussion group to comment from $n n$ informed position on:

- the kinds of projects that were suited to student/mentor collaborative learning;
- the time frame neciled for applying typical design office procedures to a simple project while allowing time for the students to acquire the necessary knowledge and processes typically used in the mentors' everyday culture of practice activities; and
- appropiate ways for collecting information from the participants and timing of that collection to get the most informative data, with the least disruption to the mentors' olfice practices and the students' work/study schedules.

Findings from Phase One were used to refine the proposed main data gathering parts of this study "with respect to both the content of the data and the procedures to be followed" (Yin, 1994, p. 74).

Phase One of this study examined the learning experiences of a group of 22 students working under the direction of live mentors, on the design and presentation of an authentic project in a real workplace situation.

Data were collected using the following methods:

- interviews;

- observation of classroom brieling/discussion sessions;
- student diary journals;
- design presentation dmwings; and
- personal journal notes of student design critique and assessment sessions.

At the completion of Phase One, data collected using these methods, along with my own journal which sought to take a holistic view of the project phenomenon (Patton, 1990), were then analysed. Findings, emergent from analysis of Phase One data were used to develop the main study structure and to fornulate inquir y methods and interview guide questions used for data collection during Phase Two and Phase Three of this research.

Phase Two - Data collectlon using mostly interviews

The main data gathering method used in Phase Two of this study was face-toface interviews. Interviews were conducted with 10 students and 11 mentors who
worked in 10 different professional designoflices. Other data were also collected during Phase Two using the following methods:

- discussions with TAFE lecturcrs;
- obser vation of classroom brieling sessions;
- obser vation of classroom design planning sessions;
- sketches and drawings;
- informal discussions with students; and
- telephone conversations.

Each of thesc data collection methods is discussed in detail in Chapter 4 of this thesis.

Phase Three - Data collection using mostly observations
Phose Three of this study was conducted In order to further investigate and confirm Phase One and Phase Two findings, as well as to explore other aspects of student learning by direct observation of student/mentor collaborative work sessions.

The main data collection method used in Phase Three of this study was obser vation of student/mentor collaborative work sessions in the design offices of each of the mentors. Each of these work sessions wasalso video recorded for later analysis. Although most of the Phase Three data were collected using video recordings, other data regarded by me to provide important insights into the overall learning situation, were also collected during this phase of the study using the following methods.

- interviews,
- informal discussions;
- telephone discussions;
- sketches and drawings; and
- student diary joumals.

Each of these data collection methods is discussed in detail in Chapter Four of this thesis.

Table 1
Dala Collection Phases and Participant Numbers

Participant	Phase One	Phase Two	Phase Three
Students	22 (7 of whom also parlicipated in Phase Two)	10	4
Mentors	5 (all go on to participate in Plase Two)	11 (5 of whom also participated in Phase Three)	5
Lecturers	3	3	3
Data collected	inter views; obsenvation of classroom briefing/discussion sessions; student diary journals; design presentation drawings; and personal joumal notes of studentdesign critique and assessment sessions	discussions with TAFE leelurers; observation of classroom briefing sessions; observation of classroom design planning sessions; sketches and draw ings; informaldiscussions with students; and telephone conversations.	video recording of observed design olfice work sessions: inter views; inlórmal discussions; telephone discussions; sketches and drawings; and student diaty journals.
Situation for students	Study at a country camp location with work undertaken in multiple design olfices and workshops	Ten dilferent commercial design oflice situations with each student onc-on-one with a mentor or multiple mentors	Four different commercial design oflice situations with each student one-on-one with a mentor or multiple mentors

Entıy Into the field of this study

Patton (1990), when discussing research methods involving fieldwork, suggested two necessary parts for entry into the field for research. The first, negotiation with the intended paticipants of the reseasch assists the resear cher in deter mining appropriate behaviours and activities of the researcher in the lield selting. This may ensure that the presence of the researcher minimises a negative influence on the course of events for patticipants. From my work as a T \wedge FE lecturer and professional designer, I was well known to the participants. My presence in the various design olfice settings look take place lollowing negotiations with each of the study participants and with their
written approval having first been secured prior to conducting any data collection procedures.

The second aspect of ficldwork noted by Putton (1990, p. 251) is that of the "octual physical entry to the field selting to colleet data". I undertaking this research I had many roles involving data collection including informal and semi-structured interviews withparticipants, telephone conversations and observation of student/mentor collaborative work sessions, My experience as a building designer, TAFE building design lecturer, C^D trainer and univer sity lecturer ensured my nppropriatencss as the instrument of data gather ing in the building design domain of practice used for this research.

The Rescarcher in this study

I have thirly years experience working as a building designer including 23 us a lecturer in building design intraining colleges and with industry based training providers. I have considerable depth of experience in the building design industry and an awareness of the content and delivery methods employed in building design courses available in ^ustralia. In two earlier research studies (Baird, 1997. 1996) I examined other aspects of the building design industry linked to training for building design students. Findings fi om these have been well received by the building design profession, including those building designers who participated here as mentors, and this assisted me in making entry to the field of this research study.

Throughout this study, I remained conscious of any bias that my experience in the building design profession might bring to data collection and analy sis and addressed any skewing effiect that this may have had by using replicable structured methods for collecting, recording and analysing data. During analysis of the study data, I discussed preliminary emergent findings in member check interviews with other building designers, buildifig design trainers and students in order to conlirm my inter pretation of the study phenomena.

Investigator predilectlons

In recognition of the possibility that my closeness to the study participants might have skewed my perception of events in recording data, I have taken great care in the design of questions used in interview guides used when conducting inter views and observations to avoid bias my lindings. $\boldsymbol{\Lambda}$ key character istic of qualitative research is the involvement of the researcher in the study (Patton, 1990), working close to the events and often participating in the study experiences alongside the other players. I
took a reflexive approach by documenting an audit trail to cusure where possible the confirmability of data, free from investigator bias (Guba, 1981).

The study sample

Data in this rescarch study were collected in totul from 29 students, 19 expert building designers (acting as mentors) and three TAFE staff; all of who voluntecred to participate in the design projects and all three phases of this research study. The students were volunteers from four class groups completing their finul-ycar Diploma in Building Design TAFE courses. All of the mentors were practicing commercial building designers who volunteered their services. $\boldsymbol{\Lambda}$ team of three TAFE leclurers collaborated with live (of the 19) building designers (mentors) in the development and execution of the authentic design projects used in this research study. All three TAF E lecturers also contributed data and participated in member check interviews involving preliminary findings, as the study progressed and following the final data analysis.

At the commencement of the research study, each of the study participants was assigned a numbered pseudonym so as to ensure anonymity and conlidentiality of data collected. In this thesis, students are identilied by Student \#, mentors as Mentor\# and TNFE lecturing staff are shown as Lecturer\#, where "\#" represents the participant's assigned pse udon ym number. Numbers were assigned to each participant at the time of interview. Λ single numerical sequence has been used for the overall group of participants, but with status being delined by the title of "Student", "Mentor", or "Lecturer". Where quolations from interview data have included various persons' names, these ha ve been replaced with other pseudonyms.

Of the $\mathbf{2 2}$ students who participated in the Phase One (the pilot study) of this research study, nine went on to participate in Phase Two of the study, each working one-on-one with a mentor, All five mentors, who paticipaled in Phase Three of this study had participated earlier in Phase Two also. By collecting data from some students and mentors who participated in both Phase Two and Phase Three of the study, it was possible to obtain information using dilferent collection met hods, about learning events in those two Phases, as viewed by the same paticipants with their individual perspectives. This added to the trusitworthiness of data collected.

In Phase Three of this study, I observed 12 work sessions in which collaborative interactions of five mentors in four diffierent design oflices who worked with four students, were closely studied. Each of these work sessions was video-recorded for later analysis.

Mentor selection for Phnse Three was based on preliminary findings: from Phase Two, thot suggested their work practices and mentoring methods were representative of the overall group of mentors and was most likely to be able to confirm or deny emerging findings.

Data for this research study were collected over a 14-month period, encompassing three TAFE semesters.

The Mentors in this study

All nineteen of the mentors who participated in this study were practicing expert building designers. They each participated in this research on a voluntary basis. Many of the mentors had at some time been students in the building design courses being undertaken by the students in this study. Many had also worked as part time teaching staffin those same building design courses and had personal experience of the teaching approaches currently used ia TAFE. Having had first hand experience of the TAFE buildiag design courses provided the mentors with opportunities to develop awareness of the sorts oflearaing situations and the type of training that the students were accustomed to al TAFE.

Prior to the commencement of the student/mentor collaborative work sessions used for data collection, the mentors were briefed by the TAFE lecturers who coordinated the building design projects used in this study to ensure a uniform approach to dealing with the students and the design brieff, I also interviewed each of the mentors at the start of the study to confirm broadly that they did indeed use a cognitive apprenticeship approach when working with the students in the design office situation.

The building design profession has two main discipline aspects in its domain of practice. The first, an artistic discipliae, demands of the designer creative, innovative interpretation of elient needs. The second disciplinary aspect involves the implementation of techaical knowledge and procedures for developing consturction solutions. Different building designers working from the same brief will almost certainly develop individualised designs, using design processes developed to sux their philosophy or preferences. For these reasons, it was anticipated that the exper building designers, who worked as mentors, would operate difierently with each of ihe students. It was also thought likely that the designs produced by each student/mentor collaboration would present individualised building design solutions. The final form of the design solutions thus developed was therefore not considered as part of the data used
for this study, us they were relatively unimportnnt to the research questions, although aspects of how the design solutions were developed were of prime importance.

The Students In this study

All of the student participants were in their tinal year of o two-yeur full time Diploma in Building Design course at TAFE. Student participation was on n voluntcer basis with informed cotisent. The students were made aware that they could withdraw at uny lime without penalty. The study total of 29 students who participated in this research were drawn (in lottery style using name tags picked from a hat) from a pool of 60 students ivho voluntecred from four diflicrent class groups. The authentic projects undertaken by participants represented for the students a major part of their final training becalise the design solutions they developed were used by their TAFE lecturers to evaluate the ir performance in several subject arcas. In addition to design and drafting skills, aspects of professional practice, knowledge of codes of practice, business ethics and design office protocols were included as elements of the building design project undertaken. These elements, when viewed collectively, represent the core activities requir ed of building design students in the broad scope of their field of study and formed the basis of the student/mentor collaborative work sessions used in this research study.

Trustworthiness of the Study

Validity

Patton (1990, p. II) comments that "the validity and reliability of qualitative data depetid to a greal extent on the methodological skill, sensitivity and integrity of the researcher". As the instriment of data collection in this study I made use of rigorous, replicable data collection and analys is methods to ensure the validity of the study finidings. This manner of working also draws upon an approach recommended by Goetz \& LeCompte, (1984) who contend that the researcher must demonstrate the credibility of the ir fitdings in order to confirm the reliability and validity of the ir research.

All of the participants who contributed data became in some way co-researchers by presenting persorial views of their experiences throughout the course of the project. By adopting this approach, the reliability and validity of this study were addressed throughoilt the design of the study structure, data collection and data analys is. The metliods used for the collection, coding and analysis of data in this study were consistently applied in a manner that was replicable in the context of their application to
similar situations and the culture of design practice present in the situation of this research study. These methods are described in the next chapter,

Findings that emerged from analysis of data collected ut different times throughout the prolonged engagement data collection period were presented by me to the study participunts in order to conlirm interpretations. This provided opportunities to confirm the internal validity of data by comparing what I recorded, with what the participants considered as the ir experiences. In this way, the validity of data about the condilions affiectingleaming events present in the study situation were examined al the level of the participants' first hand experiences (LcComptc \& Goetz, 1982). Over the duration of the study, this approadl assisted in minimising the observer efficet (McMillan \& Schumacher, 1989) in which the researcher may have some impact on the study participants' knowledge in the study situation. To avoid possible negative influences that might be seen as a threat to internal validity as brought about the presence of the researcher in the designoffice situations of this study, multiple data collection methods including interviews and observatioo sessions were used.

Using multiple data collection methods provided opportunities to compare data from different sources about the study phenomena. Having a lengthy data collection period provided me with opportunities to be refective in my continual data coding and analysis. Italso assisted me to refineand implement ways of confinning or corroborating constructs used when developing other coding categories for the study data. Overall, this Ied to the development of a replicable structure lor recording and interpreting the study data and provided the means to add rigour to the study methods.

Having multiple data sources enabled me to construct my knowledge of the study phenomenon by keeping detailed records of every event observed and interview conducted which collectively formed a "chain of evidence" (Yin, 1994, p. 33) of my investigatiois. Following analysis of data recorded in this way, I presented preliminary lindings to students and mentors in member check post obser vation session interviews to obtain their views on my interpretation of the study events. By comparing my understanding of the study events with that of the participants, I was able to constantly reline and implement replicable procedures for data collection in a bid to ensure the overall validity of the study. During Phase Three, when seeking to examine the intemal validity of lindings emergent from analysis of the study data, I engaged in informal interviews with the study participants during which I presented my preliminary emergent fmdings, along with:

- samples of sketches and drawings produced in studen/mentor collaborative work sessions;
- video vignettes of student/mentor collabomtive work sessions; and - samples of frequently occurring quotes from the study participants.

Information oblained from inlormal interviews of this kind helped to reveal aspects of the study situation where activities or interactions involving causal relationships that needed to.te explored cautiously, or distinguished firom spurious relationships. This assisted me in examining the intermal validity of the study by providing information that explained the study participants' learning experiences and progressively built upon my understanding of the overall study phenomenon.

Face validity of the study data was established through discussions with the coordinating TAFE lecturers and other study participants, during which preliminaty emergent findings were presented for the ir consideration and evaluation (House, 1977). Critical evaluation of emergent findings by the study patticipants provided insights into their personal and situational interpretation of the study phenomena when examining the authenticity (Lincoln \& Guba, 1985) of the study. Feedback provided by the study participants assisted me in constructing my knowledge of the students' learning experiences and the factors that supported their acquisition of knowledge and procedures typically used in the design office culture of practice. Using data triangulation based on multiple data sources including interviews, direct observation in the design office and student outcomes as shown in actual sketches and drawings assisted me in validating emergent findings.

Reliability

LeCompte \& Goetz (1982, p. 211) contend that "reliability refers to the extent to which studies can be replicated". This study utilised aspects of an ethnograph ic approach to research in that it involved "participant observation and intensive fieldwork" for data collection, while interpreting and applying its findings from the "cultural perspective" of the building design profession (Patton, 1990, p. 68). Interpretation of data collected using multiple methods, detailed in the next chapter took place as a naturalistic inquiry in that it used "real world situations as they unfold naturally" (Patton, 1990, p. 40). For this reason, many aspects of the research settings used in conducting this research cannot be precisely replicated because of the dynamic nature of each mentor's working methods and the changing circumstances of the design office environment as detennined by everyday events. The circumstances of this
research involved real-world situations that emerged from authentic design activities undertaken by students with the guidance of expert building designers acting as mentors. The student/mentor collabomtive exchanges that took place throughout the study provided numerous opportunities fior collecting data about the events activitics experienced by the study parlicipants. The validity of data collected concerning these events was supported through the use of a variety of data collection methods, overtile 14 month dala collection period (LcComplc \& Goct7., 1982). All of the data collection methods thal I tulve used for this research are discussed in the next chapter of this thesis.

Patton (1990, p. 40) contends that a naturalistic inquiry is characterised by methods that are "non-manipulative, unobtrusive and non-controlling; with an openness to whatever emerges and a lack of pre-detennined constraints on outcomes". In order to as much as possible make lindings from this study replicable and to ensure the reliability of data collected, rigorous and replicable methods lor data collection, data recording and data analys is were consistently applied throughout this study. This approach was guided by methods suggested by McMillan \& Schumacher (1989) uto contend that reliability in qualitative research is linked to the researcher's interactive style, the data recording and data analysis processes, as well as the interpretation of the participant meaning in the data.

As the researcher and the principal instrument of data collection (Patton, 1990), I maintained control over every aspect of data collection, coding and analysis by recording, transeribing, coding and analysing the study data. To avoid possible skewing of the data or biased interpretation, I used member check interviews during Phase Two and Phase Three to conlirm my understanding of the study events by presenting to students and mentors emergent lindings for comment. Feedback oblained in this way throughout the study and when using methods that facilitated close involvement with every aspect ofdata colleciion, coding and analysis, assisted me in obtaining consistency in the description of the paticipants experiences and the events studied in this research. This approach also guided my interpretation of meaning of the study phenomena as expressed by the participants. Such an approach McMillan \& Schumacher, (1989) contend supports the individualistic and personalistic nature of qualitative research methods,

Methods used to enhance Rellabllity of the study data

McMillan \& Schumacher (1989) contend that reliability in qualitative rescarch is linked to the consistency shown by the researcher when interacting with the study
purticipants ond in the data recording and analysis processes used. Throughout this research I have maintained a highly interactive role with ull of the participants by conducting face-to-f ace interviews during Phase Two of this study and by being a participant observer in student/mentor colluborative work sessions conducted during Phase Thiee of this study. Working in the field, close to the study events with the patticipants, provided me with opportunilies to study and observe first hand the relationships and working practices, experienced by them, in the culture of the mentors' usual design olfice practices. Consistency of data collection, coding and analysis was enhanced by using the same open ended interview guide questions for all of the inter views and by video recording the student mentor work sessions for later analysis with the aid of coding categories emergent from preliminary data analys is. $\boldsymbol{\Lambda}$ description of my interactive style of working with the study participants, the data collection methods used, the development and application of the study data coding and indexing structure and the analysis methods used, is presented in the next two Chapters of this thesis.

Three types of problems, that could threaten the reliability of data collected using naluralistic inquiry methods, were identified by Guba (1978) as boundary problems, focussiag problems and authenticity problems. Boundary problems are said to occur (Guba, 1978) when there exists an absence of clear selection criteria for the study sample. In this study, bouadary problems were avoided by having the entire sample drawn from four undergraduate level class groups of building design students, each of similar academic level and all clearly defined, hence bounded, volunteers. Having an all-volunteer sample also avoided fucussing problems that occur when the researcher is not confident that all of the participants are willingly taking patt in the study events. Nll of the participal ing mentors here were volunteers who had actively sought to work with the students and had made available the resources of their commercial design practices for the perpose of thisstudy. Throughout the study, all of the participants were reminded at each new phase of data collection that they could withdraw their participation at any lime. The reminders were provided verbally and using forms with which the participants gave their written permission for the recording and publication of information they provided. Since none of the participants chose to withdraw from the study at any time, it is reasonable to assume that they were all willing contributors and therefore it was unlikely that focussing problems affected data collection. Some of the students participated in both Phase One and Phase Two because of their continuation in the building design course over two semesters in the one year. The four students who
participated in Phase Three did so during their finnl semester in the building design course.

The third potential problem noted by Gubo (1978) that may be encountered in a natumlistic inquiry is that of the reliability or the authenticity of the sources of inlormation. It is difficult to determine if all sources of informution in a naturalistic study are authentic and therelore worthy of trust. In this study, all of the mentors were practicing commercial building designers, qualified and registered with the Building Designers ^ssociation of Westem ^ustralia. Work practices und ethical standnrds, used by the building design mentors in this research, were governed by the industty standards and constitution of their professional body. All of the mentors are known to me through my professional design practice and through contact I have had with them as part-lime lecturers in TAFE. For these reasons, i consider that data collected from them is likely to be authentic.

The students all chose to participate in the mentor supported authentic design projects and in the research study. Throughout the study they showed a great willingne ss to contribute inlormation and copies of their design works, giving their perınission lor publication of all such materials. The enthusiasm and openness demonstrated by the students suggested that they were confident with their contributions being open to scrutiny by others. From this, I consider it likely that data collected from the students was a reasoabble record of their experiences in the events of this study.

To ensure that as much as possible the data collected represented the study phenomena, I have detailed in the following chapters the processes that I used for the examination and synthesis of the overall data collected.

Goctz \& LeCompte (1984, p. 210) argue that reliability in ethnographic research is "dependent on the resolution of both extemal and internal design problems". This applies here also because this study has some ethoographic aspects due to the prolonged and intense datacollection. They contend that extemal reliability addresses the issue of whether independent researchers would "discover the same phenomena or generate the same constructs in the same or similar settings" and that internal reliability refers the "degree that other researchers, given a set of previously generated constructs, would match them in the same way as did the original researcher" (Goetz \& LeCompte 1984, p. 210).

External Reliability in this study

Goetz \& LeCompte (1984, p. 213) argue that "no interpretivistic study attains perfect external reliability" in the traditional positivistic sense, however the external reliability of a study may be enhanced by the researcher addressing live aspects of the design of the study as follows:

- researcher status position:
- infornuant choices,
- social situations and conditions;
- unalytic constructs and premises; and
- methods of data collection and analysis.

How each of these was addressed in this research is now discussed.

Researcher status position

The status, and role played by the researcher within the study group, must be clearly identifiedas part of the description of the study phenomena (Goetz \& LeCompte, 1984). My role and status in conducting this research tas been described earlier in this Chapter. As the researcher in this study, I also have a long history of working ns a building designer and as a teacher of huilding design, with close links to all of the participants. My personal insights into the practice of building design and learning building design is grounded in personal experience of working both as a designer and leacher of design. Having this background assisted me in exploring the learning situation of this study from an informed perspective from both the students' point of view and that of the mentors' role when guiding the students through outhentic designtasks. By conducting all of the interviews, observation sessions, transcription and intecpretation of data personally, I was able to remain filly informed of every aspect of this studyat all limes and receptive to findings emergent fiom analysis of those data. In this way; 1 was able to maintain a global view of the study and to reline my researeh methods in response to emergent findings.

Informant selection

Goctz \& LeCompte (1984, p. 215) argue that "no single informant can provide universal information". They contend that in a naturalistic study, each participant has anique and idiosyncratic information that cannot be readily replicated by others in a similar study To address this issue, Goetz \& LeComple (1984) recommend care fill description ofthe study participants and the process used for their selection. Earlier in
this Chapter the study participants and the circumstances of their voluntary involvement with this rescarch, have been described. The study group was made up of students from a very specilic discipline area and the mentors from a professional body govemed by notional standards of professional practice.

Social situations and conditlons

In order lo reduce the itreat to the extemal vaiidity of data in a study such as this, Goetz \& LeCompte (1984) arguc that the researcher should provide descriptions that include function, stuucture and specificationof features pertinent to the context of data collection. Such factors arc subject to change over time, or from one study to another. The design office settings and the social settings developed through interaction between the researcher and the study participants, are described as part of the data collection procedures and data analysis in the next two chapters of this thesis.

Analytic constructs and premises
Replication of the study informant group, the relationships and social contexts of their interactions is said to be difficult if not impossible if the constructs, delinitions, or uoits of analysis that informed the original research are "idiosyncratic or poorly delineated" Goetz \& LeCompte (1984, p. 215). This study has been structured using constructs founded on a cognitive apprenticeship (Collins, et al., 1989) approach to learning. Calegories used for coding data throughout this study, have been derived from key elements of a cognitive apprenticeship (Collins, el al., 1989) approach and refined as findings emer gent from analysis of each new data collected. In this way the categories used for the indexing structure developed for the final coding and analysis of the overall study data, were thought to reliably represent the constructs upon which the study is based and consistent with findings emergent from analysis methods applied to all data collected.

Detail of methods of data collection and analysis
The replicability of any research sludy is influenced by the level of detail given by a resear cher to the documentation used for data collectionand analysis. Goetz \& Goetz \& LeComptc, (1984, p. 217) contend that a study description must identify and detail:

[^0]The data collection strategics used in this study are deseribed in detail in Chapter Four. Aıslysis of the study data is described in Chapter five. Throughout this study, the strategics used for data collection and data analysis were applied consistently and informed by field notes that describe the circumstances of the interviews and obser vations used to record events and information about the situations under sludy. Threats to the extemal reliability of data due to incomplete ilcscription of the dlato collection aod analysis strategies huve been addressed in Chapler 4 and Chapter 5 of this study, where de tailed description of the collection, coding and analysis of datn is documented.

Internal Reliability

When considering the internal reliability of a qualitative study, the researcher must determine to what degree other researchers, given a set of previously generated constructs, might arrive at similar conclusions. In studies where multiple research sites or multiple researchers are involved in data collection, it is necessary to have uniformity in the "description or composition of events, rather than the frequency of events (Goetz \& LeCompte, 1984, p. 218). Being the only researcher allowed me to collect, code and analyse all data by using the same methods throughout. This included the use of low inlerence descriptors in verbatim accounts of conversations, interviews and observations, with personal impressions and situational factors being recorded in field notes being used to guide analysis and synthesis of mulliple factors in the study events. Information recorded using data collection methods detailed in the next chapier of this thesis, was transcribed by me into text files for coding and analysis. Throughout this process, I presented my verbatim transeription o finter views and video laped records of observed student/mentor work sessions to the study participants for their scrutiny. In addition, I presented to the sludy participants my interpretation of the events and meaning of the study data to obtain their views and to confitm preliminary emergent lindings.

Information oblained in this manner assisted in structural corroboration of data collected throughout the study and enhanced its credibility through plausible findings as confiurned by rescarcher observations (Guba, 1981). Recorded observations of design office events throughout the course of the study were reviewed with member checks at the time of data collection and later, tluough data triangulation. This also enhanced the study credibility and reduced the likelihood of non-interpretability efficets due to factor
patteming (Guba, 1981). Documentation recorded from interviews and joumals contributed to the establishment and maintenance of an audit trail for this rescarch. An audit trail may per mit later researchers to revisit events similar to those encountered as part of this research, and to implement uctivitics thal us near as possible replicate those used here, with the potential to gencrate similar lindings.

Data Triangulation And Credibility

The credibility of this research was underpinned by the use of data triangulation. I have extensive experience as a lecturer in building design and as a practicing building designerand as such bring specialist knowledge and perspectives to under gird the study (Patton, 1990; Lincoln \& Guba, 1985).

Multiple sources of data have been used here to ensure the reliability and validity of the research by establishing converging lines of inquiry, corroborating the same fact or phenomenon. Yin (1994, P. 92) contends that this may allow rescarchers to address a "brooder range of historical, attitudinal and behavioural issues".

Data triangulation involves comparing and cross checking the consistency of information derived at diffierent times by diffierent means within qualitative methods. Polton (1990, p. 244) contends that:

Multiple sources of information are sought and used because no single source of infonnation can be trusted to provide a comprehensive perspective. By using a combination of observations, interviewing and docurnent analysis, the fieldworker is able to use different sources of data to validate and cross check lindings.

In this study, data triangulation was achieved by comparing:

- data about particular learning events obtained from the palticipants when interviewed;
- data petaining to the same events as recorded in student journals;
- data derived from analysis ofsketches and drawings created during work sessions; and
- data obtained from observation of student/mentor collaborative work sessions and analy sis of video recording of those events.

This approach facilitated compar ison of multiple data obtained using various collection methods, all concerning the same or similar events as deternined to be frequenlly occurring or common activities in the study domain. Mulliple interviews with some of the study participants pernitted:

- comparison of the consistency of comments made by study parlicipants in the early stages of the study, with their comments at the end of the study concerning the same issues and events; and
- comparing the perspective's of people over points of view fiom both within and fiom outside of the study program (1'ation, 1990).

Data triangulation was cnhanced by comparing information oblained through interviews, with entries made by students in their joumals when recording their thoughts about design office experiences and by examining sketches and drawings produced by the participants in the work sessions. How dala of these kinds was corroborated by other data derived from student and mentor drawings is described in Chapter Six, with emergent findings being discussed and reported in Chapter Seven of this thesis.

In this research, multiple data sources were used to study how students acquired design strategics and problem solving methods used by expert building designers when resolving design solutions. Data collceted also locussed on procedures that emerged as learning elements for the students. Analysis of the study data documented in Chapter Five of this thesis includes procedures used to examine these data lor consistency in overall patterns of occurrence in the dif lierent information or divergent data sources. Having data from multiple sources about the same events and learning experiences assisted me in developing a holistic view (Patton, 1990) of the study situation and an awareness of specific aspects of studen/mentor collaborative practices that facilitated learning.

To minimise errors and biases in collecting and recording the study data, procedures for data collcetion were consistently applied using a pre-detennined structure, which was further retined in response to emergent findings. The structure developed for this purpose was based on broad categories derived from a cognitive apprenticeship (Collins, et al., 1989) approach to leaming and findings emergent from Phase One (the pilot study) and Phase Two of this research. Chapler Five of this thesis details the coding and analysis of the study data and explains how categories used to constuct the indexing structure lor coding the study data, were relined, added to and collapsed as the study progressed and new data were collected. This indexing and coding structure developed over the duration of this study was designed to ensure as complete as possible a true and correct record of events. The coding and indexing sof ware NUJDIST (1998) was used lor this purpose.

The use of a study structure shaped by the key elements of a cognitive apprenticeship (Collins, ct al., 1989) approach to learming and a staged data collection
strategy involving multiple methods assisted in masking us many steps as possible in this research operational. This provided opportunitics for many as pects of the study methods to be: repentnble in by another researcher all a later time. Data obtained in this way were appropriate to the goals of this study in that they provided depth and detail and were "sufficienily descriptive that the reader enn understems what nnd how it occurred" (Pallon, 1990, p. 26).

Situational Uniqueness

Another aspect considered in the naturalistic treatment of trustworthiness of the study data as suggested by Guba (198i) is that of siluational uniqueness, which may produce non-comparability of data. There are many aspects of this study that are ur:

Training in building design and drafting is provided in Westem ^ustralia at just one suburban TAFE college. Many of the mentors involved in this study were initially trained at that centre. To avoid possible skewing of data due to this situational uniqueness, I ensured the collection ofthick de scriptive data by using multiple data collection methods and extensive field notes in support of my observations. I did this with a view to de veloping lindings that were context relevant to the study. Where possible, I corroborated interview and student journal based data by comparison of these with other data oblained by observation of the events under study and from the students' drawings produced as part of the collaborative work sessions that were the main subject of the study interviews.

IMPLEMENTATION OF TIIIS STUDY

Table 2, below, shows the ovemll time line used for datacollection during the three phases of the study, along with the data collection methods used in each phase.

Conclusion To This Chapter

This Chapter described the overnll researchstudy structure, the study sample and role of the researcher. Although described in detail in the next Chapter of this thesis, mention was also made in this Chapter of the data collection methods used in order to assist in the discussion ofthe reliability and validity of the techniques used to collect and analyse the sludy data. The framework for the research descrihed is based on a naturalistic approach.

CHAPTER FOUR

METHODS USED IFOR DATA COLIECTION

In troduction

This study sought to lind answers to live research questions as shown earlier on page 8 of this thesis, In this Chap ter, the methods used to colle et data over the three phases of this research are detailed. Phase One was a pilot study and Phnse Two nnd Phase Three logether formed the main data gathering parts of this study.

Data were collected by investigating in detail many aspects of the interaction between students and mentors working together in collaborative design teams on authentic design projects in 10 diflierent building design offices. In each design office, activities undertaken by the student/mentor collaborative design teams were organised to refleet the mentors' usual working practices, as implemented in the context and culture of a professional commercial situation.

This Chapter begins by describing the methods used in each of the three phases of data collection. It then goes on to detail each of those data collection methods with reference to the kinds of data obtained and the manner of recording them IVor analysis. The purpose of presenting the study data collection methods in this manner is to provide a clear pieture of the replicable structure applied during each phase of data collection and analysis.

The Chapter concludes with comments about how the data collection and recording methods helped to ensure trustworthiness and rigour in the analysis of the study data.

Data Collection Phases In This Study

Data collection Phase Onc - Pilot Study

Phase One of this research involved 22 students working under the direction of seven mentors and three TAFE staflion an authentic design project. This first phase of the research was conducted as a pilot study in order to begin to address the overarching research questions, to provide the researeher with entry to the field of study and to trial proposed data collection methods, interview guide questions and ways for coding and analysing data.

Phase One was not intended to be an in-depth study, but sought just to explore the kinds of learning situations and outcomes likely to be experienced by students undertaking authentic design tasks under the direction of ex pert building designers in a
cognitive apprenticeship learning situution. This section documents un overview of the methods used to collect, record nod inalalyse Phase One dnta for use in developiiig the study structure and main data gathering methods used in Phase Two nnel Phase Three of the study.

Dntn were collected during Phusc One using the fillowing methods:

- iritervicws;
- obscrvation of classroom brieling/discussion sessions;
- student diary jourıals;
- sketches and drawings, and
- researcher journal riotes fiom observation of work sessions and critique or assessment séssions.

Data collection during Phase One began with inlonnal discussions between the three TAFE stafiwho had organised the design project, two of the seven participating mentors and myself. During these discussions I made journal notes conceming the participants views, on how the organisation and implementation of Phase One might best be structured to address the overarching research questions. Data recorded during these sessions were lnter transcrihed for analysis.

Prior to the commencement of the design project used for Phase One, the students were briefed by me about using their daily journals to record events and experiences they regarded as having ässisted their learning about design when working with a mentoron an autheitic design projeci. The following aspects of their experiences were suggested as possible broad categories with which the studcrits could organise their diary journal eitries:

- mentor supported desigu activities they had undertaken each day;
- how the experience of working with a mentor changed their approach to design;
- what they felt were their learning outcomes that emerged firom the experience of working with à mentor; and
- whrt application did they see for the knowledge and skills acquired through working with the mentor.

Data collected in Phase Ore were initially coded using thesc broad categories and others that emerged during data transcription and amalysis. Further development of the coding structure that restilted fiom analysis of Phusc One dnta is described in detail in Chapter 5 of this thesis.

Data collection Phase Two - Main rescarch sludy

The second plase of data collection made use of several data collection methods, as set out below in Table 3 (see page 58). In this phase of the research study, 11 expert building designers operating in 10 separate design oflices acted us mentors to 10 students for the design and presentatiols of an authentic building design project. In nine of the design offices, the students worked one-on-one with their mentor and in one office, one student worked with a two-mcolor team. Other stalfalso assisted students in most of the design offices. In addition to lace-to-lace interviews conducted with the students and the mentors who participated in Phase Two, data were also collected using the following methods:

- observation of classroom briefing sessions;
- obsetvation of classroom design planning sessions;
- infornal interviews and discussions with TAFE lecturers; and
- infonnal discussions with students.

Each student/mentor collaborative team worked to create a building design based on an authentic project brief. When the collaborative work sessions began, three observation sessions were conducted with one of the student/mentor teams. Data were collected during these obser vation sessions using joumal notes and audio-tape recordings, which were later transcribed verbatim for analysis.

At the completion of the authentic building design project, face to-face interviews were conducted with each of the 11 mentors and nine of the 10 students. One student of the original group of 10 was unavailable for interview due to a countıy posting. The face-to-face interviews provided the main body of data collected in this phase of the study. The inter views were conducted in two stages during Semester one of 1999. A two week break between the groups of interviews was used hy me to detennine trends emergent from analysis of the first round interview data that could be used to refine the study structure and the interview guide questions for the second round of interviews.

All of the data collecting methods used for this research are described in detail later in this Chapter as they apply to Phase Two and Phase Three, of this study. Table 3 (P.58) sets out the various data collection methods used, the number ofinstances in which they were employed, the situations of their use and the manner in which data were recorded.

Table 3.
Data Collection Phnse Two

Data Collection Method	Number	Context In Which Conductud	How Recorded

Data collectlon Phase Three - Main research study

The third phase of data collection took place over several months during which four students work ed with five mentors in loiar different design oflice situations to design and document an authentic building project. Data collection in thisphase was mainly based on my observation and videotape recording of twelve student/mentor collaborative work sessions. The work sessions varied in length from 15 minutes to three hours duration, with most being about one hour.

For this phase of data collection, I chose 5 mentors from the group of 11 who had participated in Phase Two. Selection of these five mentors was based on three factors. The mentors werechosen for Phase Two on the basis of "reputational case selection" (McMillan \& Schumacher, 1989, p. 184) which uses n strategy involving a knowledgable person to make recommendations to the researcher. In this case, the infornauts making the recommendations were the TAFE lecturers who were familiar
with the working practices of the overall group of mentors, having seen them working with students over a long period of time as sessioull lecturers or on other authentic projects. Importancly, analysis of datu gathered during Phase Two indicated that the 5 mentors selecte:d used four diffierent design/mentoring styles, which collectively were thiught by me to be representative of the overall group of mentors. The two-mentor team in one of the design oflices was chosen because those mentors used design and mentoring methods regarded by me as being typical of the overall group of mentors, but with a teani-based approach. The decision to use the two-person mentor team was in response to emergent lindings that indicated team-based methods in a design oflice setting enhanced learning.

Preliminary lindings, emergent fiom analysis of Phase One and Phase Two data were discussed with the mentors after the obseivation sessions. These discussions provided member checks on the study data. Feedback from the mentors during these discussions confir med many aspects of my interpretation of data already gathered. This allowed the study focus to be firther relined for data gathering using observation sessions that were the mairi data gathering method for Phase Three of the research study.

Oher data gathering methods used during Phase Three are detailed in Table 4 (see page 60). Each of the data collecting methods used is then discussed in detail following Table 4.

Table 4.
Data Collection In Phase Threc

Data Collection Method	Number of contacts or items	Context In Which Conducted	Jow data Recorded
Informal	19	Prior to design project	Notes
interviews and	18	During the design project	Notes/skctehcs
discussions	12	Following the design project	Notes/skctches
Interviews	4	With mentors With st udents With TAFE lecturers	Audio-tape, notes and sketches
	4		
	2		

Telephone discussions	18	Arrang ing interviews and lollow up with T^FE stalfystudents	Joumal notes
\ddots	\ddots	\ddots	

Data collection using informal interviews and discusslons

Data collection using informal discussions between myself, students, TAFE staff and the mentors, took place at various times throughout the entire study. Often, these informal interviews and discussions lyvolved students and mentors immediately following their collaborative work sessions and provided highly detailed accounts of how the participants lielt about their interactions. Immediate ficedback about the events and experiences obtained in this way I recorded as journal notes which were later transcribed verbalim for inelusion with other data. Comments made by study participants, during informal discussions about aspects of their design olfice experiences, assisted in developing my understanding of the diverse range of learming events and methods used by the mentors when working with the students. Student
comments nlso provided insights into what took place in the design oflice situation and how that allected their learning. Data of these kinls assisted me in exploring dilferent aspects of the study situntion by targeting activities or working methods said by the paticipants to be importilnt to learning and contributed to the development of intervicw guide questions used Inter during formal interviews to extend my investigalion.

Informal discussions that took place between myself and each of the students nnd mentors somelimes revenled personal views about the working relationships that developed between the participants in the design office situation.

In most of my informal discussions with the study participants, they expressed personal views, described learning experiences, their progress with the work and in some instnnees mentioned their concerns about particular aspects of the situation. Concerns mostly were focussed on whether or not the students would finish the set work within lime. There were no instances of student/mentor conllict and thus information obtained during informal discussions did not precipitate changes in other data collection methods to accommodate expressed difficulties. Mention is only made here of this aspect of the study because of the possible impuct that conlidential revelations of a negative kind, had there been any, might have had on the study structure given my role as the main instrument of data collection.

Some of fihe time during Phase Two and Phase Three of this study, casual discussions and informal interviews took place in design of licesettings with both the student and the mentor present. On other occasions I conducted individual interviews in the design olfice, orin informal locations. $\Lambda \mathrm{t}$ all times the participants were aware that data were being recorded and that confidentiality of nill information collected was assured. Data collected during informal interviews and discussions I recorded in note form using a joumal which I later transcribed vesbatim for analysis.

Other informal discussions look place when I returned drawings and sketches borowed for copying purposes from the study participants at the conclusion of Phase Two and Phase Three. During such discussions, I encouraged the participants to explain various aspects of their drawings in tenus of the learning situations they had experienced in producing them in the design olfice student/mentor collnborative work sessions. Data thus gathered were recorded in detailed notes linking what the participants said about their work, with what could be seen in the sketches themselves. Such discussions also provided opportunities for me to discuss with the students the design processes used and the content of the drawings, with ref erence to the mentors'
use of cognitive npprenticcship teaching strategics. Also discussed during these sessions were some of the relevant emergent findings as well as my interpretation of how events in the design of fice student/mentor collaborrative work sessions affiected student learning. Such discussions provided member checks on the preliminary findings which were used by me to shape further data colle ction questions used in subs equent interviews and discussions. Notes recorded by me during these interviews were used also as member checks to confinn ideas and themes emerging from data gathered using other methods. This is explored in detail in Chapter Five of this thesis.

Data collection using formal Intervlews

Fonnalinterviews were conducted with the study participants during all three phases of data collection. In Phase Two, they were used as the main means for data collection. The interview guide approach adopted gave focus to the investigation of the mentors use of eognitive apprenticeshipteaching strategics, while keeping questions open ended so as to allow investigation of new avenues that emerged from the participants answers.

Face-to-face interviews conducted were structured using an interview guide approach (Patton, 1990)that began witheach of the respondents lirst being informed of the issues being explored, followed by questions about topies relevant to the research. The use of this approach is said by Patton (1990, p. 280) to allow the interviewer to "adapt both the wording and the sequence of questions to specific respondents in the context of the actual interview". By working in this way, questions designed to address various topics and subject areas relevant to the research questions were used to explore and probe in ways that "elucidate the subject area" (Patton, 1990, p. 283).

Interview guide questions for data collection were de veloped using information based on:

- discussions conducted with three T^FE lecturers, live building designers (mentors) and a group of 15 students during Phase One; and
- analysis of student journals-based Phase One (pilot study) data.

Two rounds of inter views were conducted during Phase Two of this study. Findings, emergent fiom analysis of data collected in the first round of Phase Two interviews, were used to refine the interview guide questions used in the second round of Phase Two interviews. The use of an interview guide approach in this manner facilitated "interviewing across a number of diflierent people more systematic and
comprehensive by delimiting in advance the issucs to be explored" (Pulton, 1990, p. 283).
^ppendix Λ shows interview guide questions used for the first round of thase: Two interviews with the study mentors. Appendix ' B ' shows interview guide questions used for the first rounsl of interviews with students. Findings that emerged fiom analysis of data collected in the firsit round of interviews were used to reline and extend the interview guide questions lor use in a second round of interviews. This led to the development of the supplementary interview guide shown in $\Lambda p p e n d i x$ ' C ', which was used along with the other two interview guides lor the st:cond round of Phase Two interviews with students und mentors.

In all interviews, open-ended questions were used initially, then more probing questions were introduced to explort: specilic aspects of the study situation that emerged from the participants' responses. Examples of some of those questions are shown here to explain how data gathering methods were relined as the sludy progressed. Mosit of the questions used during each round of interviews evolved during the interviews as I responded to the interviewee answers and followed new lines of inquiry with questions to explore emergent themes.

The lollowing questions are typical of those developed during the second round of Phase Two interviews.

On entry skills or competencies of the start of mentor supported projects: When asked:

What do you look for first of all when students come to wark with you in the design of fice?

In response to this, some of the mentors said they sought particular skills such as CAD drafting or construction detailing, while others said that they just wanted the students to be able to think. To lollow up each of these diverse answers with questions that teased out the details of how the mentors determined student skills then shaped their activitics lo address these, lasked questions as lollows:

What kinds of activities did you use to establish the level at which the students were working in design and documentation (drawing, detailing and specilication writing)?

Questions like this provided oppotunities for the mentors to disatss their ways lor evaluating student skills, or for establishing how they engaged the students in activities that demonstmted their approach to design using cognitive tools (Brownet al.,
1989) ra ther thonjust applying replicable proce sse s to crcutc solutions.

Questions of this lype also allowed me to explore in detail interaction between the mentors and the students, while remaining open to change according to how the mentors answered.

On the mentors' approach to teaching:

In the lirst round of interviews the students were asked:
Can you tell me about how your mentor helped you to develop your project design?

Sone of the students responded to this question by describing how their mentor had detailed processes he used to analyse a design brief and then implement defined procedures to resolve each design element lo progr essively de velop a linal solution. Other studerts indicated that their mentor had simply produced design ideas by using sketching and talking. In order to de:ennine what actually took place during design development sessions that led stıdents to acquire design knowledge and skills, other questions were developed as follows:

Can you describe for me how sou and your mentor worked together to develop a design solution?
In what ways did your mentor assist you in getting started with the design?
Would you describe for me whal you and your mentor did in the work sessions to resolve problems that emerged during the development of the design?
In what way did your mentor assist you to come up with new ideas when you had become bogged down and to incorporate them into your design?

These questions and other similar ones helped me to explore the collaborative exchanges that look place in which the mentors introduced their design methods, applied heuristic design strategics and used scas/folding to assist student learning.

Each of the face-to-face interviews was arranged by telephone beforehrmd with the participants. Some interviews were arranged following observation sessions in the design office situations where the student/mentor collaborations took place as the study progressed. Written permission, for lape recording of interviews and work sessions, was obtained from each of the study participants, prior to each such event. All interviews were tape-recorded then transcribed verbatim for open coding in NUD•IST (1998). Inter iew guide questions were refined to reflect trends emerging firom preliminary anal ysis of data.

When interviewed, most of the study participants made comments about their thoughts and feelings when describing their experiences in the studen/mentor collaborative work sessions. These data I regarded as important because they provided personal insights into how they saw aspececs of their leaming take place in the study siturtion. Information obtained in this way I recorded in journal notes which I later transcribed verbatim for analysis with other data. Findings that emerged from analysis of thesc data were used to refine interview guide questions and to explore further other data regarded by me to provide multiple perspectives of the study phenomenon. ^nalysis of these data is discussed in Chapter Five of this thesis.

Formal Intervlews In Phase Two

Two rounds of formal interviews were conducted during Phase Two of this study. Having two rounds of inter views enabled me to test lor data saturation (Charmaz, 1990) and so that findings, emergent from preliminary coding and analy sis of data fiom the lirst Iound of interviews, could be used to identify aspects of the study situation that warunted specific attention or firther sludy. Findings fiomanalysis of found one interview data also provided information that assisted me to refine interview guide questions lor the second round of interviews.

For example, in the lirst round of intervicws the following question was used to initiate mentor discussion of their use of sketching as a communication tool when working with students:

In what ways did you use sketching when teaching students to communicate design ideas?

Findings from analysis of data collected in the first round interviews led me to contend that the mentors made extensive use of sketching, but the students were not as adept in using it as the mentors would have liked. For this reason, 1 relined the question to deternine how the mentors used sketching when working with students and to determine their views on how the students used it. The question was extended to cover several aspects of mentor and student use of sketching as follow s:

In what ways do you use hand sketching when working with students? In what ways do they use it effectively to communicale their ideas and construction detailing?

Can you tell me about how students respond when you use drawings to communicate your thoughts and ideas?

In the first round of interviews conducted in l'hase Two of this study, four students, five mentors and three TAFE stnff; were interviewed. Alt of the interviews were tnpisd then transcribed verbatim fi)r nnalysis. During ench of the interviews I made journal notes nbout nspects of the study situation said by the participants to have been important learning experiences, as well as other aspeets of their intemaction. These notes included descriptions of the students' work practices, the wuy they dressed ond the manner in which they spoke. The reason for recording personal inforinntion of this kind was in response to comments mide by some of the students about changes they had made as a result of their design office experiences and when seeking to be accepted by others in the design office. Notes made when collecting these data were transeribed verbatim nad included as memo-notes in the NUD-IST (1998) index tree developed for coding Phase Two data. One example of dntn collected during the first round of interviews used for developing new interview guide questions for exploring student dress and language use as part of their entty to the design office culture of practice is as follows:

When I first went to his office I felt a bit embarrassed because I had gone there straight from TAFE and was in my old jeans and a t-shirt. The first thing I noticed was that all of the design office stafl were really well dressed and some were even in suits. When Ian introduced me to some of the stall it was quite formal. Everyone was polite and a bit formal, not like at "tech" where anything goes. The next time I went there I put my best gear on and watched my p's-and-q's. (Student 20)

In response to data of this kind, questions like the following were developed for use in the second round of interviews:

Can you tell me about the kinds of things that you did to fit in with the mentor and others in the design olfice?
Can you tell me about any changes that you made to your way of speaking or presenting yourself as a result of working in the design olfice setting?
In what ways did making such changes help you to work there?

At the completion of the first round of Phase Two interviews, data collected were transcribed verbatim for analysis to determine emerging themes. Analysis methods used with these data and emergent findings are reported in the next three chapters of this thesis.

During analysis of data collected in this first round of interviews, additional coding eategories were created as new themes emerged fiom the data. Since new aspects of the study continued to emerge as data were transcribed and coded, I
concluded that data suturation (Charmaz, 1990) had not yet been achieved anxl that further data collection was needed to explore other aspects of the study situation. Questions like those shown in the previous example were used in the interview guides for the remaining Plase Two formal intervicws and were relined to rellect lrends seen emerging from analysis of Phase One data. This brought about several small but impotant changes in the study structure by moving the focus more towards design exploration and creativity aspeects of the stident/mentor collaboration, rather than being centred on student acquisition of knowledge and skills as lirst structured. For example, the lollowing questions were used to collect data about how the mentors assisted students lo learn heuristic design strategics:

Can you describe lor me any special approaches you have developed that make use of techniques or prototype solutions to address particular design problems or building types, that can be used by others or adapted to other design problems?

How might you teach others to use these, perhaps over a range of allenaal ive applications?

The second round of lormal interviews that took place during Phase Two of this study were conducted with live students and live mentors. During these interviews, in addition to the interview guide questions used torthe first round of interviews, additional questions like those in the previous example and others designed to explore ways used by the mentors to encourage the students to develop creative and innovative design practices, were used. All of the interviews were recorded, then later transcribed verbatim lor analysis, Coding of Phase Two data was regarded by me to reach "saturation" when all new data introduced through verbatim transcription of the second round of inlervicws were readily coded using existing categories and no new aspects of the study situation were emerging (Charmaz, 1990, p. 520).

Interview use in data collection Phase Threc
Dalacollection during Phase Three of this study was mostly achieved using observalion of student/mentor work sessions, but some interviews were conducted lollowing completion of the student design praject used in Phase Three. Interviews were conducted with the 5 mentors and the 4 students who had participatad in the Phase Three data collecting observation sessions. During these interviews many aspects of the student/mentor collaborative: work team interactions were discussed in terms of the events and procedures undertaken by the participants. Some of the participants also commented on how their design office learning experiences had changed their outlook
on design and how this had led to their development of a persnnal design style. Mention is made of this here because I recorded comments such us these in my journal, a long with sketches to show student use of particular design elements. These were useful later when intelpreting other data.

All interviews were tape recorded and later trunscribed verbatim lor analysis. During some interviews 1 used sketches to record aspects of the learning situation described by the participants when discussing their use of heuristic design strategics and other elements of design used during the student/mentor collaborative work sessions. Data collected in this manner assisted me when transcribing my journal notes and when inteppreting student information including sketches that most of the students made available to me for duplication and inclusion as part of the overall study data.

Data collection using telephone discussions

Throughout this research study, telephone discussions with almost all of the study participants were used as part of the data collection process. Information obtained by meduring telephone conversations with the participants was recorled in the form of joumal notes which were later transcribed verbatim for analysis. Data recorded in this manner were also used a part of the research audit trail to maintain rigour in the study. Initially I used telephone conversations to gain entry to the field of investigation by making contact with the participants and to arange meeting times for interviews and observalion sessions. As the study progressed, I made notes during telephone conversations with the study participants which I later used to confinn trends emerging fromanalysis of data collected during interviews, and observation sessions. This served as member checks.

In some instances, telephone interviews were conducted when the study participants were not readily available firr face-to-face talks. Where it was not possible for me attend work sessions (due to simultancous sessions in multiple offices), I conducted telephone conversations with the student and the mentor involved following each session. This was usually followed up with face-lo-fiace informal interviews to conlinn infornation and expand on points noted carlicr. Data collected during these interviews were recorded in note forin and then transcribed verbatim for later amlysis.

Although the overall body of data obtained fromtelephone discussions was small when compared to that obtained using other data collection methods, it was usefil when organising other data collection and when confirming other data.

Data collectlon using obscrvation of work sessions

Observation and video recording of st udent/mentor collahorative work sessions took place in Phase Three ofthis study in order to condirm emergent tindings and to explore other aspects of the study situation nad events that were thought to have influenced student learning. The direct observation sessions conducted in Phase Three involved four students working under the guidance of five different mentors providel most of the data colle eted in Phase Three of this study. Two of the students worked with mentors who each held work sessions of up to 3 hours duration. These mentors also made themselves uvailnble on as as-needed basis for consultation in the design office by the st udents. One student worked with a mentor who began with a 90 minute work sessioo, then a week later held a 45 minute session, followed by a 15 minute session a week aft erthat. This mentor also made himself available during office ho urs. He also provided the student with his own office space alongside other designers in the design olfice. The fourth st udent in the Phase Three study sample worked with the two-person design leam. In this situation, the mentors conducted six one-hour work sessions with the student.

In Phase Tlree, I collected data as a participant observer in 12 student/mentor collaborative work sessions. It was not possible to attend every work session be cause some ran simultaneously with others. Where this occurred, I conduct ed informal interviews with the students and the mentors involved aft erwards so that I had an understanding of what had taken place before I attended the next observation session with them. Every work session that I attended was video-recorded for later analysis.

Video recordings of the work sessions were nnalysed minute-by-minute using a che cklist based on key elements of a cognitive apprenti ceship approach and from findings that had emerged from analysis of Phase Two data. Table 9 (Chapter 5, p. 95) shows data codes used for the analysis of the video data. It shows the frequency of events observed to take place during each minute of the taped work sessions. Analysis of these data is dealt with inde tail in the next Chapter of this thesis.

In addition to video recording of the student/mentor work sessions I also recorded jo umal notes about other la ctors though 1 to have influenced the learning sit uation being developed in the design of fice, lor in clusion in the overall data gathered in Phase lhre c of this st udy. These notes also in cluded st udent comments abo u their overall work load and difficulties they faced in managing working in the design ollice at the same time as completing ot her studies. Data recorded in jourtal notes were
transeribed verbatim for analysis along with other dalacollected in Jluase Two nnd Phase Three of this study.

Data collection asing sketches and drawings
Sketches and drawings provided by the st udents and the mentors were collected as part of the overall study data because they provided evidelice of student learning outcomes in design and showed the progressive use of heuristic design strategies and problem solvirig procedures by students and mentors: Ir:lerences were drawn about student learning outcomes by examining the development of the emerging student designs. Partic ular attention wns paid to the students' use of sketching multiple alternate design solutions (indicating exploration of, and retlection on various ideas) and evidence ofheuristic design strategies modelled by the mentors, such as CND overlay elements and personal style characteristics. Sketches and drawings were used by all of the participants as communication tools in the stident/mentor collaborative work sessions: In some instances they represented the rough workings of the mentors, created diring work sessions. In other instances they showed the development of ideas by the students which were then introduced into the collaborative work sessions as their designs progrcssed. All of tie participants used sketehing to express ideas, develop explanations, to explore conce pts in design and for refiection on learning outcomes as sought by the research questions of this study. For these reasons, I collected copies of sketches and drawings produced by mentors and students as part of the overall data throughout this study. The sketches and drawings showed in graphical form the processes arid procedurcs followed by the participants in developing design solutions for the problems emerging from the authentic work projects.

Copies of student and mentor sketches and drawings were collected throughout all three phases of this study'. Figure 2 (p .71) shows one such sketcli. Sketches like this were used to confirm student learning outcomes as seen by what they produced as compared to what they said to have taken place in the work sessions. By comparing data froin inde views, observation sessions and drawings, I was able to lollow the students' design development and develop an understanding of how that was influenced by their interaction with the mentors in the work sessions. Using this information, 1 was able to examine emerging trends in what the participants sitid or demonstrated as their approach to the work, with a view to under standing leaming in the design olfice situation.

In Phase One, more than 60 sketches and drawings were collected und examined. Analysis of student sketches nssisted in the interpretation of other data about
student/mentor collaborative work sessions by providing visual evidence of design development and the use of heuristic design strategies and problem solving methods. An example of one such sketch is shown in Figure 2 (p. 71) to demonstrate the kinds of data about student/mentor design activities that were used to confirm what the students said had taken place in their collaborative work sessions.

Figure 2. Example of Student/Mentor development sketch.

This sketch is typical of others used to explore ideas in work sessions. It shows how focus lines have been used to create the broad design concept, as well as outline detail of how spaces within that design might be organised using furniture (see bottom centre of sketch) or rooms to be created using partitions (see top centre of sketch). The methods used in this type of sketching I observed to be rapid and minimalist, allowing the designer to present and explore many different ideas quickly without being bounded to any particular solutions. The object of this form of sketching was said by the mentors to create forms open to reflection and exploration of multiple solutions that follow a central theme for the design as determined by the client brief. The design is developed using minimal description and sketching to communicate ideas explored by the designer in metacognitive ways.

From the outset of this study I was aware both from my own experience as a designer and from findings that emerged during transcription and analysis of student journals and interview data that sketches and drawings were important communication
tools for the study participants. For these reasons, I have nusde extensive use of sketches and drawings collected from the students and the mentors to assist in my analysis of other data collected.

Having the students' and the mentors' sketches and drawings available during the interviews provided oppottunities to discuss the methods used by them to resolve design problems as shown in the development sketches and in the more retined design presentation drawings. The 52 sketches and drawings collected during Phase Two provided a visual means for confirming some student learning outcomes. They also provided conlirming evidence of the students' application of hcuristic design strategics introduced by the mentors as part of their usual design olfice practices. When used as the basis of discussions in Phase Two and as part of observed work sessions in Phase Three, the sketches and drawings provided a means by which the participants could explain and demonstrate their design and mentoring methods and show physical evidence of learning outcomes. The sketches and drawings also facilitated the collection of other data when used as a basis for discussion sessions and intervicw questions fonmulated to explore particular aspects of the learning situation. In particular they were usefill forinitiating discussions in which the participants were asked to explain the processes and procedures they had used when developing the solutions depicted. During these diseussions, in addition to the audio-toped record of events, I also made notes linking the sketches to partieipant comments regarding how and why they did particular things in the designs, as depicted in those sketches. I did this in order to record parts of their explanations that they presented using minimal line sketches that were that were in themselves insulficiently complete or too abstrad to warrant inclision as separate data. I obser ved the use of rough sketchiog as part of the usual language of communication used by all of the stidy participants for explanation building and for visualisation ar d reflection or desigri ideas, during work sessions. For thisreason, I specifically recorded aspects of its use in my journal notes during interviews, and observation sessions.

Dato about student learning desigı methods were collected by coinpariig sketches they produced at the beginning of the nuthentic work poo ject with those they produced firther into the student/mentor collaboration. Using these sketches enabled me to develop multiple perspectives of the learning situation by compar ing verbal descriptio ns of what took place with the graphical record seeil in the progressive sketches. This aspect of using sketches is explored in detail as part of data analysis in Chapler Five.

Scale models

Scale models of building designs or parts of buildings were used by most of the mentors to assist student learning. Photographs of student models were collected to confirm aspects of student learning outcomes based on their successful application of design knowledge and methods. This was also done because some mentors and students used scale models of buildings or building elements to explore concepts and to develop design ideas in a three-dimensional format. In Phase Three of this study, all of the student/mentor collaborative teams made use of models of existing design projects to demonstrate and explore design ideas. Two of the student/mentor teams produced models of the students' final designs. The students and the mentors used these models during work sessions as tools for exploring new ideas, design strategies, problem solving methods and for reflecting on pathways followed in the design process. The use of scale models to assist visualisation of design concepts and to assist students and mentors to communicate design ideas emerged as an important aspect of student learning in a design office. A photograph of one such model is shown here in Figure 3 (p. 73).

Figure 3. Photograph of a scale model.

Data collection using journals

Prior to the commencement of each phase of this study, I discussed with the student participants their use of journals to record events, circumstances and personal views relating to their design office/mentor experiences. The students were fully informed of the intended use of these journals as part of the overall study data and all
gave their written approval for the use of any information recorded in those journals to be used in this thesis and uay subsequent publications.

By the end of Phase Three, a total of 32 journals were collected and transeribed for use as part of the overall study dota. In Phase One, 22 students and one lecturer provided joumals, in Phase Two live students did likewise and in Phase Three ull four participating students provided me with their journals. From these journals I obtained usefill data about what the students said were important learning events and outcomes from their work with the mentors. These datawere transcribed verbatim for analysis.

Nthough the studeats' journals collected in Phase Two and Phase Three were small in number and not comprehensive, they provided the studeats' perspective on the study situation and other information about what the students said were important learning experiences. These data assisted my understanding of the study phenomena and helped me to develop answers to the overarching research questions.
Conclusion To This Chapter
The use of a diverse range of data gathering methods in this research study provided dataabout many diffierent aspects of the overall study phenomena. Having multiple data sour ces for individual events allowed for triangulation of data. Member checks were conducted using informal interviews following work sessions and at the coaclusion of each of the three phases of the study.

Indepih investigation of many features of the leaming situation that emerged as part of findings fiom analysis of the study data was made possible through the various sources of data available at different stages of the study. As aew data were collected using various methods, it was possible to de velop diflerent perspectives on the situations under examination. This facilitated the iategration of different data collection methods and oflen led to coafirmation fiadings that emerged fiomanalysis of data collected carlier in the study.

The diver sity of data collection methods and the prolonged data collection period produced an extensive body of dato. In many instances similar or overlapping data, conceming various events in the study phenomean, were collected from diflierent sources and at difficerent times throughout the study period. Ia my role as researcher and being the data collection iastrument in this study, helped me to respoad to trends emergent fiom those data. This led me to modify collection methods and develop new óacs to refine and enhànce data gathering, as the study progressed. Using this approach led to more in formed research methods, which enhanced the overall richness and rele vance of the infor mation gathered over the duration of the study.

This Chapter begnn by describing the data collection methods used for each of the three phases of this study. Each ofthese data collectionmethods was then discussed in detail with relerence to the kinds of data collected and the relevance of that material to the rescarch questions. Examples of typical data collected have been used to explain how the study structure and data collection methods were relined in response to themes that emerged as data transcription and proceeded as part of eachnew phase of the study.

Finally, the relative importance of some data collected, using methods such as telephone conversations and student joumals, that were small in number but regarded by me to be important to understanding how st udent learning took place in the study situation, were discussed.

In the next Chapter, the methods used for analysis of each diffierent data collected for this research are discussed.

CIIAPTER FIVE

ANALYSIS OF TIIE STUDY DATA

Introduction

In this chapter, methods used to anal yse the study data are described. As analysis is inextijcably ent wined with results, relevant emergent lindings and resultsare also presented. The approach to analysis of the study data used here is based on inductive analysis methods us described by Patton (1990, p. 40) who contends that inductive analysis is characterised by "immersion in the details and specilics of the data to discover important categories, dimensions and interrelationships".

Analysis of the study data commenced with the first data collection and continued with each new set of data collected throughout the study. This Chapter begins with a discussion of the how the data were analysed and the reasons for using the methods chosen. The primary method of data reduction was coding, with summaries and tables also being used to organise and refine the analysis. Phase One data consisted mostly of student journal entries. Phase Two data were mostly interviewbased alt hough other data fiom informal discussions, telephone conversations and sketches were also coded. Phase Three data were mostly collected using direct observation and video recording of student/mentor work sessions. Other data were also collected during Phase Three using interviews and sketches created by students and mentors as part of their design development nud as key communication lools in collaborative work sessions.

This Chapter details the creation und development of coding calegories used for analysis of data collected in each of the three phases of this research study. How emergent findings influenced the subsequent development of other data coding calegories to represent common trends thought to affiect student learning is also discussed. Λ reflexive approach was laken to dala interpretation and the progressive development of index tree structures by merging coding categories in response to emergent findings. The Chapter concludes with discussion of the analysis metheds used for interpreting Phase Three observation-based data and ways for using this to confirm findings that emerged froin analysis of data from the first two phases of data collection.

Coding

The overall process of data analysis was one of coding from raw data to eventually generate themes. The process of analysis began with coding, which involved creating categories by assigning words or phrases to transcribed text units. For the purposes of data analysis, the lext unit used was the sentence. Using fill sentences for
coding helped to maintnin context and meaning in themes that emerged when subsequently examining data for the frequency of oceurrence, similarities, differences and assnciations abo ut linked events and activities.

へnalysis began by first printing text files in which every text unit, reterred to hercafter as a data unit, was numbered. Each numbered data unit was then coded using both manual and computer based methods, utilising categories established during data tr anscription, as well as others that emerged during analysis. Data coded, using categories developed throughout this process, were then compared and summarised to establish common themes eventually lending to findings about learning in the study situation.

The use of categorics for coding data in this manner was based on methods suggested by Richards \& Richards (1995), who contend that a category may be cons idered simply as part of a hierarchical system for organising or coding data. Coding categories were arranged using index tree structures which provided a labelling, retrieval and organising device for exploring the study data (Holsti, 1969). NUD•IST (1998) sofiware was used to arrange coding categories and other code names developed "in-vivo" from words or phrases used by the participants when describing their learning experiences (Strauss \& Corbin, 1990, p. 69; Richards \& Richards, 1995). Burns (1995, p. 288) arg ucs that this approach is "part of the analytic induction method where the general statement about the topic is constantly refined, expanded and modified as further data is obtained". Analysis of data using coding methods in this way is based on the view that "coding is analysis" (Miles \& Huberman, 1994, p. 56).

Data were analysed using categories based on:

- event codes forspecilic activities undertaken by the participants, such as studen!/mentor work sessions. For example, Index Tree Four category 1.f: Entry To The Culture Of Practice;
- situation codes, that is how the students and the mentors in this study define settings in which their .ollaboration operates. For example, Index Tree Four category 2.2 Team Based Learning;
- process codes, being the stages of the building design process in which mentoring activities take place. For example Index Tree Four category.3 I: Common Design Office Practices;
- strategic codes, relating to how the study participants caity out their tasks and roles. For example Index Trec Four calegory 32: Learning Methodr Using Coaching: and
- subject perspective codes, documenting how participants think about their situation in this study (Bums. 1995, p. 290). For example Index Tree Four Calegory

2.1 Confidence.

During transeription of student jountals and interview recordings, I made use of codes and memos to describe fiequently occurring data about events, learning situations, learning strategics and personal perspectives regarded by me to represent important aspects of the study situation. I then used these codes and memos, nlong with the research questions and the key elements of a cognitive apprenticeship learning approach to develop additional coding categories.

Coding was an ongoing process in which each unit of data was classified using categories to represent emerging themes. In all, four index tree coding structures were developed for analysis of the study data. Index Tree One (see Table 5 and Λ ppendix D) was used for Phase One (the pilot study) data. The other three index tree structures evolved during analysis of the main study data as new categories were created or merged with others in response to emergent themes, from which findings were developed. Index Tree Two (see Table 6 and ^ppendix E) was used for coding data from Phase Two, first round interviews. Index Tree Three (sec Tuble 7 and ^ppendix F) was used for coding data from Phase Two, round two interviews, as well as re-coding of round one interview data. Index Tree Four (see Table 8, p. 94 and Appendix G) was used for the final analysis and reduction of all Phase Two data, as well as for the exploration of themes and emergent findings through comparison of Phase Two data with Phase Three data.

Following transcription of data fr om journals, notes and interv iew tapes, into computer text filcs, each file was introduced into NUD•IST (1998) software for the initial purpose of generating reports having numbered text units for coding. Manual methods were first used to code data into calegories. Manual coding took place by assigning colours to each of the coding categories, then using coloured pens to highlight numbered data units judged by me to lit into each category. This method provided a means for seeing at a glance the fiequency and distribution of data units coded in particular categories. Using these coloured text files, I was able to compare similar datn from different sources about the same or similar events, as well as to examine trends and emergent findings. This approach to analysis of the study data was nlso guided by the principles of content nnalysis which Patton (1990, p. 381) nrgues is"... the process of identifying, coding and categorising the primary patterns in the data".

Having established preliminary coding categories based on themes that emerged during manual coding of the data, the computer based coding tools in NUD•IST (1998) soflware were then used to code the data in categories organised according to Index Tree One (sec 「able 5 and Λ ppendix D). Furt her analysis of the data then look place using "key-words-in-context" (KWIC) methods (Ryun \& Bernaril, 2000, p. 775) to determine the frequency of occurrence, similarities, or associations in datn about particular events in the learning situation. This led to the emergence of "themes" that described the study phenomena (Ryan \& Bernard, 2000, p. 780). The KWIC analysis of the study data were used in conjunction with manual coding of the data. This approach was used be cause using KWIC searches alone was thought to be inappropriate due to their generating many returns that did not fully provide the context and rich description of events present in data units or groups of data units. Manual searching of category reports allowed me to embrace whole categories of data while examining the context that individual data units have within the coding categories of the index tree structure . Findings that emerged from analysis of Phase One dhta were used to develop a more comprehensive I ndex Tree structure for coding Plase Two dat a so that KWIC searches could be more ellee etively conducted.

During analysis of the st udy data, themes were developed by grouping frequently occursing data regarded by me to be similar in content and about learning in the st udy situntion. Using this approach, four main themes that together repre sented the overall learning situation were developed, along with ot hers based on eategories created to code dhta about multiple aspects of st udent learning that emerged during analysis. For example, KWIC searches showed that sketching and talking occurred together in data units 64% of the time and individually a total of 35% of the time. Forthis reason sketching was included in a theme about communication, along with discussion and articulation resulting in I ndex Tree Four eategories I.I, /.2 and / 3. Other dhta about the use of sketching indicated its use as a design exploration tool, regarded as a usual office practice and as a method used by mentors during coaching sessions lor reflecting on ideas or pathways lollowed in design development. In response to findings that emerged about the multiple applications to which sketching methods are applied, data about these were coded in categories such as 3.1 Common design office practices and 42 Reifying knowledge in design office learning, which represent themes ilhat emerged during coding.

Gro uping of eategories having similar or related data to develop themes that represent diffierent aspects of student learning allowed me to refine each of the four
index tree structures used to code data. Analys is of data in this way nllowed comparison of interview-based data about what the st ud ents and mentors said took place, with my observation of a ct ual student/mentor work sessions.

Throughout the data analysis process, new entegor ies were defined as other data were collecterl or emerged during analysis (Ilolsti, 1969). With the development of Index Tree Four, I was confident that categor ies structured around the fisur main themes that emerged during analysis, were capable of accommodating all data colle eted in ways that "represented the purposes of the research, were exhaustive and mutually exclusive" (Holsti, 1969, p. 95).

Findings that emerged fiom analysis of each new data set collected were used to guide the development of new structures for coding subsequent data. This approach gave flexibility to the coding structure when respond ing to emergent themes and findings. It nlso ensured that the coding structures I developed were appropr iate to the overall study phenomena. The processes used to develop and refine each of the four index-tree coding structures used for analysis of the study data is discussed next, in the context of each of the three data collection phases.

How index tree structures evolved during data amalysis

There were four index tree structures used for the tinal coding of the study data. These evolved by refining and merging index tree structures and categories developed during earl ier analysis of dato. In this sedion, the methods used to develop categories are discussed, along with examples of data fiom which some of the categorics and index tree struct ures were created.

Data collected during Phase One consisted mostly of verbatim trans cription of student joural entries and resear cher journol notes created during discussions the mentors and lecturers. Analysis of these data took place by coding nnd compar ing data fromeach of the participants. Where codes were seen to be fiequently occurring, the eategories used to code them were grouped into themes representative of events or activities regarded by me to affiect student learning.

For example, a theme that emerged from analysis of Phase One data suggested that the lecturers mostly focussed on the kinds of activities that the st udents undertook and what potential learning outcomes they promoted. The following comment made by one of the T NFE lecturers is typical of many similar comments made by mentors nnt other TAFE staff:

The thing you really need to look at here is what nre they actually doing for themselves and what will they do as \boldsymbol{n} teane. You know, are they
working on reul projects like you have to in an office, not just going for the ride. They need to be doing things all the time or they get bored and let others do the work, (Lecturer 2, Planning discussion)

From this and other similar data, the theme Activitics (sec Table 5) was established with categorics for coding data about the kinds of activities that the participants said took place during their design project experiences. Much of the data collected from student journals in Phase One ofthe research described a diverse range of activities they had experienced. Some activities described by students in the ir journals as important learning experiences took place in the design office setting, while others occurred on the building site or during social contact with other st udents and mentors. The following extract fiomone student joumal includes references to design activities in the social setting, the building site and the design office.

We had a really top day today. Our design group spent some time with Wally (mentor) and the client just having lunch and talking a bit about the design, but we didn't do any real work. Later we went up to the site and that was really inspiring, just secing the view and having the client tell us what he wanted in the design. When we went back to Wally's design office we did some rough sketches of our ideas and each had a chance to shoot all the others' ideas down. We also had a few beers and that really helped get the whole thing going. (Student 18, personal diary journal entry)

KWIC search methods were used when analysing these data to identify emergent themes. New categories were created for fiequently occurring codes about different aspects of student experiences regarded by me to influence learning. Working in this way allowed me to retain the meaning and context of the data units identified in the KWIC searches, by coding with these other dataunits that supported or diflerentiated those data. For example, for the Aclivilies theme discussed here, I created sub.categorics that enabled coding of new data according to Group Activities, Design Activilies and Sile Visits, as shown in Table 5 (p. 84).
Λ second theme to be developed during transcription and initial coding of frequently occurring data units found in Phase One data focussed on stimulation in the study situation. Findings that emerged from preliminary analys is of data coded in categories developed to represent this theme suggested that the mentors were mostly concerned with how the experience of working on authentic projects nffected student learning and how students might apply their knowledge nad skills to other design projects. The following comments made by Mentor Ia aretypical of other similar ones made by mentors throughout the entire study.

I think that what is really important here is what alleet docs cloing a renl design project, in n real design office setting have on them (the students)"? What I am looking to see is whether or not they get fired up and enthusiastic. Are they pumped up by being creative, or just going through the motions of knocking out n design using the same tired old methods that we all know will give a design of some sort. I want them to be free thinking and innovative; anyone who comes to my oflice won't survive if they can't think for themselves. (Mentor la)

Comments such as these led to the development of Index Tree One categories,
2.1 Stimulation and 2.2 Freedom In Design for coding data about how the role of stimulation in student learning using mentor supported authentic design projects. These and other categories, established in a similar manner, were combined to form Index Tree One (shown in Table 5), which was used for coding Phase One data.

Student joumal based data about learning events that took place in Phase One were compared with other data about the same events, obtained from informal discussions and post design project interviews with the students, mentors and T \wedge FE staff. Examination of data thus coded included comparing the fiequency of occurnence of data in individual categories with the overall data to deternine common trends or themes in partic ipant responses regarding learring experiences. In addition, the intensity or passion (Strauss \& Corbin, 1990) with which some participants expressed their views was recorded in my field notes which were included as part of the overall data amalysed. The intensity of responses was considered to be of importance because of the attistic disposition of the design disc ipline and the often highly charged presentation of points of view observed being used by the participants throughout this study.

Phase One, data analysis took place using progressively refined coding structures that provided ways for comparing data initially coded in broad categories, with data coded in other categories created to address specific elements thought to effiect learning. Findings from this process were then used to furt her refine coding categories to represent emergent themes for analysing the study phenomena. Constunt comparison of data during coding made it possible fo gain new perspectives on the materialand to differentiate between learning influences. This also enabled me to keep the meaning and context of data intact so asto stay attuned to the respondents' views of the ir realities by developing inductiv ely my interpre:ation of the ov erall study events (Stra uss \& Corbin, 1990).

As other data were collected throughout each of the three phnses of this study, they were transcribed and coded using categories developed as described above.
Sketches collected as part of the study data were used to compare what the participants
said they had used in their design solutions, with what was evident in the rough workings and refined presentations shown in their actual drawings.

Generally, data were analysed by:

- coding the frequency of occurrence of data units or participant responses and expressing this as a percentage of the overall data units coded;
- comparing and contrasting data through KWIC searches to determine relationships between events and experiences thought to affect student learning; and
- the intensity of responses.

Detail of analysis of Phase One data

Data collected using student diary journals in Phase One were coded in categories developed to represent the following four themes:

1 Activities:

Mentor supported design activities experienced by the students.

2 Affect:

The affect of design experiences with a mentor on student learning.

3 Learning:

Learning outcomes that emerged from student/mentor collaborative experiences; and

4 Application:

Students' perceptions of how newly acquired knowledge and skills could be applied.

Phase One data were coded using categories to represent these themes, as structured in Index Tree 1, (Appendix D) shown here in Table 5 along with examples of typical data units coded in each category. Comments about how these were used to refine data collection in Phase Two and Phase Three of this study are also shown. Each of the four coding categories shown in Table 5 has the total number of data units coded (for that category) shown adjacent. Also shown is the average percentage distribution of data units for each sub-category.

Table 5.
Index Tree One Coding of Phase One data

Catcgorics Used For Coding Phase One Datu	Data units coded	I:xample of ty picul data units coded in this catcgory	How these data were used to develop Phase Two and Phase Three of this study
1. Activitics	290		
1.1 Group activitics	47\%	Everything we did today we did as a team, we helped each other all the way (data unit 136)	Developed inter view questions to explore team activilies. Selected a two designer team for six Phase Thr ec office observation sessions
1.2 Design exercises	13\%	We weren't restricted in any way; it was really great that we could design anything we liked (data unit 171)	Focussed part of cach Phase Two inter view on individual expression in the design projects used. Selected Mentor 5 (open creative approach) for study in Phase Threc, based Phase Two interview and information from TAFE stall:
1.3 Site visits	40\%	Visiting the site of Wally's house and having him talk about it made me think that onything is possible if you arc inspired nad dedicated (data unit 435)	Developed interview guide questions for Phase Two to explore the use and value of site visits
2. Aficet	251		
2.l Stimulation	65\%	The experience that I guined from Blulf Knoll gave me the will power to push myself to do something that I thought wasn' I possible; thensecing the dome house made me sec that nnything possible can be built even if it looks impossible (data unit 452)	Developed inter view questions aimed at exploring how mentors sought to stimulate students and how students considered the (mentor) experience stimulated them. Post obser vation session inter views Phase Three addresses this closely
2.2 Freedom in design	35\%	Becuuse we were given such a fice hand with the design, I am now more conlident to do abstract designs and to express my ideas openly (data unit 476)	Collect ed design sketches and drawings to examine the diversity of ideas explored by each student/mentor team

Table 5 continued own next page

Cutcgorics Used For Coding Phase One Data	Data units coded	Example of typical datan unit coded in this category	How these dutu were used to develop Phase Two and Phase Threc of this study
3. Leaming	240		
3.1 Situational factors	26\%	Being in that setting showed me how important it wnsto get the orientation right. Karri Mins individual housing had it wrong and was really uncomfortable to be in. (dhta unit 520)	Compared interview dnta and student drawings from 10 dilfer ent design ollices to determine any major difficences in design practice outcomes
3.2 Mentor influence	42\%	Working with Wally inspired me, the experien ces add up to the philosophy that youonly design what you have seen, heard, fell (data unit 694)	Developed interview questions to target the nature and degre e of mentor influence over the student designs.
3.3 Input by others	32\%	Talking to Cameron about my design was fantastic becuuse he gave me more of an insight into his views and design ideas like adva ntages and disadvantages and things to change to get it to work (data unit 342)	During Phase Two interview questions were used to explore the iole of others in the design office team. In Phase Three the two designer team in one office was observed working with a student in 6 work sessions
4. Application	222		
4.I Evaluating ideas	79\%	Doing this gave me a new way of thinking about materials and lorm. I now tave a greater insight on mud brick construction and solar design and how to best use windows and doors to create space (data unit 666)	Questioning of students on their use of self evaluation a nd reflection on design methods acquired during the mentor suppoited project
4.2 Self development	21\%	I lerracd that ifl put my mind to whatever challenge I have I can accomplish it. Working with the mentor opened up my mind to a complet ely diff erent way of designing (data unit 426)	Questioning of the students about their views on how the experience had changed their design practices and what they saw as the next stage of development and appli mation of thcir recently acquired skills

This coding structure was relined as new data emerged from discussions between myself, TAFI: lecturers, mentors und the students. Trends that emerged fromanulysis of the Phase One datu nssisted me to identify the kirnds of netivitics that students said had helped them to lenrm. This led to the developinent of other possible lines of inquiry to be explored in Phuse liwo und Phase Three of this study. These datn provided the stem fire interview guide questions developed for datn collection in Phase l'wo and were used to refine the research study structure und data collection strategics.

Member check interviews which I conlucted asdiscussions with three 'TAFE, lecturersand ithre mentors following the completion of Phuse One assisted me in confinning emergent findings, as well us identifying other aspects of the study situation that needed to be explored in subsequent phuses of the study.

Analysis of Phase Two data

In this section, the methods used to analyse Phase Two data are discussed. Firstly, the development of the index tree structures and coding eategories used tor analysis of Phase Tiwo data are discussed in general. Then, a detailed explanation is given for the development of two Phase Two coding categories in order to make clear the processes used for interpreting data. The manner in which findings that emerged from analysis of Phase One were used to explore to develop and refine categories used for coding of Phase Two data is also discussed.

In Phase Two analysis began with coding data collected in the lirst of two rounds of interviews. Categories used for analysis of Phase Two data were developed from the rescarch questions, Phase One categories, as well as from preliminary lindings emergent from analysis of Phase One data. Data collected during the lirst round of Phase Two interviews were analysed using Index Tree Two entegories, shown in Table 6 (sec p. 88, and Appendix E). Following each Phase Two interview, data were transeribed verbatim, then coded. This approach allowed me to continuously analyse each new data for frequently occurring responses and emergent trends that guided the exploration of other aspects of the study phenomena. Introducing new eategorics and relining coding using existing ones allowed analysis of the overall study phenomena in categories that together represented the purposes of ihe research and provided a framework for coding all Phase Two data. Table 6 shows Index Tree Two, developed using this approach and used for analysis of the first round Phase Two irkerviews. Included in Table 6 are comments (in the fiar right column) that indicate the derivation
of Index Tree Two coding categories, most of which have the ir roots in Index Tree One, as shown in Table 5 (p. 84).

Data colle eted in the second round of Phase Two intervie ws were coded using cate gories developed from Index Tree Two, but organise:d into a new structure, Inclex Tree Three (Λ ppend ix F). The development of new categories used in Index True Three were guided by information obtained in member check interviews conslucted with students and mentors fillowing each round of Phase Two interviews, during Phase Three observation sessions. Some categories used in Index Tree Three were then merged with others regaried to have similar data and other new eategories were developed to form Index Tree Four (Λ ppendix G), which wus used for the final coding of Phase Two data.

Table 6.
Index Tree Two - Phase Two First Round Interview Data Coding Categories

1 Personal views \& experiences	I.I Muthentic experience	I.1.1 Dcsign stylc(6.7\%) 1.1.2 Design application (4.1\%) 1.1.3 Design concepts (6.1\%) I.1.4 Design strutcgics (4.5\%) 1.1.5 Innovation (5.4) 1.1.6 ^ cccssibility (1.1\%) I.1.7 Location/sitc (1.6\%) 1.1.8 Expcriences (3.7\%) 1.1.9 O17ice practices (3.6\%) 1.1.10 Resources (1\%)	This group of categories were developed from the Index Tree One "^ctivities" coding categories

1.2 Collaboration
1.2.2 Progress issues(2\%)
1.2.3 Negotiation (3.8\%)

This group is
developed
1.2.4 Confidence (3.4\%) from Index
1.2.5 Confidence (1.7\%) 'Trec One
1.2.1 Insecurity(2.2\%) categorics:
3.2, 3.3. 4.2
1.3 Metacognition
1.3.1 New ideas (3.5\%)
1.3.2 Shared knowledge (3.8\%)

This group was devaloped
1.3.3 Problem solving (6.5\%) from Index
1.3.4 Tacit knowledge (2.7\%) Tree One
1.3.5 Thinking (2\%)

2 Design office and mentor practices	2.1 Cognitive apprenticeship elements	2.1.1 Modclling (3.5\%) 2.1.2 Coaching (3\%) 2.1.3 Reflection (1\%) 2.1.4 Scafliolding (3\%) 2.1.5 Articulation (4.8\%) 2.1.6 Exploring ideas (2.5\%)	This group of categories is based onkey elements of a cognitive apprenticeship approach
	2.2 Communication 2.3 Culture (3\%)	2.2.1 Discussion (3.8\%) 2.2.2 Sketching (6.1\%)	These categories were developed in response to frequently occurring data

[^1]At the conclusion of the first round of Phase Two interviews, all data collected up to thnt time were annlysed. Analysis took place as described carlier for Phase One data by using both manual coding and KWIC text string searches of category reports genemted using NUD•IST (1998) sollware. Coling of Phuse 'Two, round two, interview data was conducted in the snme way as that used earlier, but also guided by findings that emerged from unalys is of these cartier dnta, as well as the overarching researeh questions of this study.

For exampte, analysis of first ıound interview data showed a higher response late, when compared to the average 4.54%, for the overall data coded by participants for data coded in Index Tree Two categorics l. I. I Design ssyle (67\%), I. 1.3 Devign concepts (61\%), 21.5 Articulation (4.8\%) and 222 Sketching (6 1\%) (sec Table 6, p. 88). When interpreting these results, I considered that learning in the study situation was iniluenced by the patticular design style of the mentor and the manner in which design concepts were visualised and communicnted using atticulation and sketching. To investigate this futther in the second round interviews, I prepared new interview guide questions constructed to probe more deeply the use of these elements. Analysis of data collected in the second ro und interviews took place using coding eategories developed from Index Tree Two, as well ns many new Index Tree Three categories ns showf in Table 7 (p.91). Using the example just described, the following new categor ies were created for Index Tree Threc:

- Categoty 2,I.5 Mentor style - Derived from Index Tree Tivo categoty I. I.I Design style, but also incot porating data collected in second round interviews that focussed on aspects of how mentors design and the ir approach to working with n student in the design office.

Merging existing entegorics with new categories allowed the scope ofanalysis for partic ular aspects of the study situation to be redefined through rellective procedures, thus facilitating more exhmustive study of the phenomena. For Example:

- Category 2.3.6 Conceptualisation, was developed for Index Tree Three by merging some data previously coded in Index Tree Two categoty I. I. 3 Design concepts, with new data collected in round two intervie ws using questions intended to explore in greater detail the role of design concepts in student learning.

This process of using new data to refine and extend the inquiry continued throughout the second round of interviews. Following each interview, data were transeribed verbatim fiom the inicrview tapes. These dato wer e coded using Intex Tree Three. Data collected in the second round of interviews embraced new aspects of the study siluntion. Coding of Plasc Two dhtı wns thought by me to reach "saturation" when all new data introduced through verbatim Imnscr iption of the second round of interviews were readily coded using existing categorics (Charmurn 1990), p. 520).

Table 7 (p. 91) shows Inclex Tree Threc, used for the initial analysis of Phase Two data. Index Tree Three was developed using coding categories from Phase One Index Tree One, Phase Two Index Tree Two and fiem findings that emerged fiom anal ysis of those data. Categories shown with an asterisk (") are those from which new categories wer ecreated for the fourth and final, index tree developed for analysis of Phase Two data. In this way Index Tree Four was developed by redefining, merging and collapsing categories, then re-coding data to focus emergent findings to explore aspects of the data thought to be signif icant to the overarching research questions.

Table 6 and Table 7 show the Index Tree structures used for the in itial coding of Phase Two data. Percentage figures shown alongside the coding categories of Index Trees Two and Three indicate the level of data coded in each category as measured as a pereentage of the overall units of data coded. These figures provide an indication of the distribution of the overall data in each index tree. Included also in each Table is a list of the categ orics from which each index tree was developed, as well as some eategories that were collapsed or merged in order to create new ones. Data coded in eliminated categories were re-coded into new ones, or merged with other similar ones. Analysis of data using some categories provided insights into the learning sit uation, but were not very significant to the overall understanding of the st udy as a whole. Categorics identified as contributing little to the overall study were merged with others, or deleted if thought to be of little value. Mostly, categories showing less than I\% coding of the overall data units were merged with others, or deleted. How this changed the coding structures used tor analysis of the study data is shown below in Table 7 (p. 91).

Table 7.
Index Tree Tlıree - Calegories usel for coding Phase Two dala

	Main Categories	Sub entegories - Indicates categories used lor final Index Tree. Sec Table 7, Index Tree Four	\% of overall data units	Derived from Index Tree Two Calenory
1 Pcople (Derived from 1.0 in Index Tree Two)	I. 1 Communication (Derived from 2.2 in Index Tree Two)	*1.1.1 Articulution	1.38\%	2.1.5
		1.1.2 Others	1.15\%	I.I. 7
		1.1.3 TAFE	0.38\%	
		* I.1.4 Discussion	3.10\%	2.2.1
		-1.1.5 Sketching	4.02\%	2.2.2
		1.1.6 Transiér	1.11\%	
		-1.1.7 Networking	0.19\%	
	1.2 Altitudes (Derived fiom I.1/I. 2 in Index Tree Two)	*1.2.1 Expectations	1.26\%	1.2.2
		1.2.2 Student Expectations	0.88\%	
		1.2.3 Mentor Expectations	0.99\%	
		1.2.4 Confirmation	0.31\%	1.2.4
		*12.5 Confidence	1.91\%	1.2.J
		-1.2.6 Mindset	1.72\%	
		1.2.7 Bonding	0.15\%	
		* 1.2.8 Satisfaction	1.07\%	
		1.2.9 Excitement	0.80\%	
	1.3 Collaboration (Derived from 1.2 in Index Tree Two)	- 1.3.1 Negotiation	3.10\%	1.2.3
		1.3.2 ^ccessibility	0.69\%	1.1. 6
		1.3.3 Balance	1.15\%	
		13.4 Respect	0.80\%	
		13.5 Entiy Skills	1.15\%	
	1. 4 Leaming (Derived from 2.1 in Index Tree Two)	*1.4.1 Learning with mentor	1.99\%	
		1.4.2 Experience	4.55\%	1.1.8
		* 1.4.3 Modelling	2.26\%	2.1.1
		*1.4.4 Coaching	4.63\%	2.1. 2
		* 1.4.5 Scaffolding	3.10\%	2.1.4
		1.4.6 Skills	1.68\%	
		* 1.4.7 Preparation	1.42\%	
	1.5 Enculturation (Derived fiom 1. . in Index Tree Two	1.5.1 Entry to culture	0.65\%	
		1.5.2 Social Contact	0.96\%	
		1.5.3 Bonding	0.57\%	
		1.5.4 Behaviour	0.31\%	
		* 1.5.5 Office Expectations	1.87\%	
Table 7 continued on the next page				

	Main Conccptuil Categories	Sub calcgorics - Indicates categories used for final Index Tree. Sec Table 8	\% of overall dala units	Derived from Index Trese Two Calcgory
2 Design	2.1 ^pproach	-2.I.1 Office Practices	5.62\%	1.1 .2
Oflice and		2.1.2 Brief	1.15\%	
Mentor		2.1.3 Resources	2.49\%	I.l. 10
Practices		*2.1.4 Imovation	2.45\%	1.1.5
		2.1.5 Mentor style	394\%	I.I.I
		-2.I.6 Idcas Justilication	1.91\%	
		2. 1. 7 Creativity	1.84\%	
		2.1.8 Aspiratic.ss	0.38\%	
		${ }^{\bullet} 2.1 .9$ Support	0.99\%	
		2.1.I 0 Global	0.50\%	
	2.2 Experience	*2.2.1 Standards	0.77\%	
		2.2.2 Tacit knowledge	3.02\%	1.3.4
		*2.2.3 Strategies	5.70\%	1.1.4
	2.3 Mctacognition	*2.3.1 Ideas	2.14\%	1.3.1
		2.3.2 Shared Knowledge	2.41\%	1.3.2
		-23.3 Reflection	1.34\%	2.1.3
		2.3.4 Problem Solving	3.21%	1.3.3
		*23.5 Explor e apply	3.56\%	2.1.6
		*2.3.6 Conceptualisation	2.03\%	1.1.3
		2.3.7Thinking	1.64\%	1.3.5
		*2.3.8 Visualisation	1.61\%	

Data transcribed from the second round of Phase Two interviews were coded along with all of the previously coded Phase Two data, using calegor ies developed for Index Tree Four. This process involved re-coding earlier data, mer ging and differentiating categories from Index Tree 3 regarded by me to hold similar data and this led to the development of hypotheses und preliminary findings that were explored further during Phase Three. The manner in which new categories were developed from Phase Two data is now discussed with reference to the following example interview excerpt in which Student 18 talks of his design office en periences:

As the design got going a bit we spent a lot more time at her office working together relining things. She would give me some ideas about where things should go then I would sketch it out and ofien she would want me to change it again - there were lots of changes and design ideas that we tried out but ended up not using for one reason or another. While we were working she was always talking about why she did things in
particular ways and she was always sketching and sort of thinking out aloud as she went through the reason.s fire things not working or whether to include them or not in the design. 'That really helped me to understand how to design like she did. (Student 18)

Se veral aspects of student learning using cognitive apprenticeship methods as deline:d in this thesis are evident in this example. lhe lirst is the collaborative nature of the working relationship that developed between student und mentor; "we spent a for more fime at her office urorking together refining things". Data about student/mentor collabomtion were coded in Index 4 categories /.A, 22, 3.2 and 4.2. Another clement in this example, ".oketching and sort of thinking om aloud" was observed to be a proclice common to all of the participating mentors. For this reason the use of sketching logether with articulation of the reasons for working in particular ways when problem solving in design was thought to be a significant construct when coding data and was represented in multiple categories. In Index Tree Four these included I.2, I.3, 3.I, 4 I and 42. Coding data in this manner assisted me in understanding relationships between the various activities used by the mentors to make visible to the students their tacit knowledge, usual design procedures and problem solving methods.

Data, about how students developed problem solving skills and how the y used heuristic design strategics modelled by the mentors, were collected fiom examples like the one used here; "she went through the reasons for things not working or whether to include fhem or not in the design". Dat a such as this were coded in Index Tree Four calegories including I.2, 3.1, 3.2, J.3, 3.f and .f 3. Again, data of this type were usefill in understanding how the mentors made visible their tacit knowledge and how they applied decision making procedures in design in the context of their everyday culture of practice activities.

Table 8 (p. 94) shows Index Trec Four which was developed using new categories devised to code data units representative of emergent constructs, along with other categories developed in each of the earlier index trees, or fiom merging multiple categories in order analyse groups of data. Index Tree Four was used to focus analysis of all data collected up to the end of Phase Two, in ways thought suitable to provide the most detailed representation of the overall study phenomena. In particular, categories were developed to explore dala about the events and to explore relationships between mentor design olfīe procedures and mentoring methods thought to lacilitate student acquisition of knowledge and skills in design.

Table 8.

Coding Catcgories Used To Represent Themes	Sub-categories fòr coding data	\% of overall dala unils	Derived from Index Tres 'Threst cate pory	Mcrged with Index Tree Threec cutcegry
1	1.1 Discussion	3.10\%	1.1.4	
Communication	1.2 Articulation	5.38\%	1.1.1	
	1.3 Sketching	4.02\%	1.1.5	
	1.4 Entry To The Culture OfPractice	9.33\%	1.1.7	1.1.2
				1.3.4
				1.5.1-4

2	2.1 Confidence	6.39\%	1.2.6	2.1.8
Attitudes			1.2.5	1.2.4
	2.2 Team-based Learning	2.10\%	NEW	1.2.7
				1.2.9
				1.3.3
	2.3 Office expectations	5.38\%	1.1.2	1.1.1-3
				1.5.5
3 :	3.1 Common Design Office Practices	12.6\%	2.1.1	2.1.2
Mentor			2.1.9	2.1.10
Supported			1.4.7	1.2.1-3
Design Office			2.2.1	1.4.6
Practices				
Alfecting	3.2 Leaming Methods Using Modelling	10.8\%	2.2.3	1.3.3
Learning			1.4.3	2.1.5

	3.3 Leaming Methods Using Coaching	10.2%	1.4 .4	2.3 .2
	3.4 Learning Methods Using		2.3 .1	2.1 .6
	Scaffolding	9.6%	1.4 .5	1.3 .2
				2.1 .3
4				
Collaborative	4.1 Developing A Creative, Innovative	6.29%	2.1 .4	1.3 .5
Design Office	Approach To Design		2.1 .7	
Experience	4.2 Reifying knowledge In	9.22%	NEW	1.1 .6
And Learning	Design Office Learning		1.4 .1	2.2 .2
			1.2 .3	
	4.3 Visualisation, Exploration,	8.15%	2.3 .3	1.3 .5
	Reflection and Design Style		2.3 .5	
			2.3 .8	

Analysls of Phase Threc data

Folluwing analysis of data collected during Phase Two of this research study, data collection began in Phnsc Three using direct obscrvution and video recording of student/mentor work sessions. Direct observation of students interucting with mentors in the design oflice wns conducted in order to:

- conlinn preliminury lindings emergent from analysis of Phase 'T'wo data which was mostly based on what the menlors and the students said they did; and
- explore the learning siluation in other ways with a view to linding new aspects of student learning.

Data gathering in this part of the research centred on direct observation and video recording of design office based work sessions involving four students and live mentors working in four diflierent design oflices. The live mentors studied in this part of the research were selected because their working practices n nd approach to mentoring was considered by me to be representalive of those of the general group of mentors who participated in Phase Two of this study.

Coding of Phase Three video data was based on a minute-by-minute analysis of the video recordings of 12 work sessions, using categories derived fiom Index Tree Four, shown in Table 8 (p. 94). Additional coding categories were introduced where it was thought that activities or events in the obscrved work sessions needed to be analysed in greater detail. The complete list of categories used for coding Phase Three data is shown in Table 9 (p. 96). Data were analysed using methods based on content analysis (Holsti, 1969) by coding the fiequency of occurrence of activities and events observed during analysis of the video data recorded for each calegory, expressed as a percentage of the overall work sessions times.
^dditional calegories were introduced to the coding structure in response to new aspects of the leaming situation that emerged during analysis. This approach was used in order to maintain cons istency in analysing data to ensure construct validity when recording observed behaviours and skills modelled by the study participants in the learning situation (Gonczi, Hager, \& Anthanasou, 1994). It also assisted me to examine in detail aspects of the study situation that emerged during analysis and regarded by me to inlluence learning. In Table 9 (p.96) the frequency of occurrence of events and activities observed for each oft he four student/mentor tearns is shown as a percentage of the overall dala units coded in each calegory. Since multiple activities were observed to occur within each minute of the video record of the work sessions, the percentage figures quoted in Table 9 (p. 96) and throughout this thesis represent the occurrence of
each activity within each minute and therclore the sum of these is greater them 100%. The percentage ligures provide a guide to the frequency of occurrenec of activitics or events in the overall dutu for each work session. These data were conipared to the mostly interview based Phase Two dutn, with u view to confirming common themes in learning events and mentoring practict:s.
Table 9.
Phase Threc video recorited work sessions data

Coding Categories	Mentor number					
	Stem Tree 4 code	$\begin{aligned} & \text { M4 } \\ & \text { \% or } \\ & \text { Tine } \end{aligned}$	$\begin{aligned} & \text { M6 } \\ & \text { \%or } \end{aligned}$Tine	M3\%or Time	$\begin{aligned} & \text { MI, } 1 \mathrm{la} \\ & \text { \%oof } \\ & \text { Timne } \end{aligned}$	Average
Culture of practice						
Student/mentor bonding	1.4	7\%	14\%	89\%	100\%	53\%
Contact with others	1.4	10\%	70\%	13\%	87\%	25\%
Access	3.2	0\%	38\%	18\%	56\%	28\%
mentor/facilitics/others						
Office archives/resources		0\%	5\%	15\%	5\%	6\%
Interaction	1.4	10\%	41\%	89\%	100\%	60\%
Evaluntion (skills)	3.1	10\%	0\%	22\%	12\%	11\%
Preparation	3.1					
Student - sketches	1.3	30\%	28\%	21\%	82\%	40\%
Mentor/sketches	1.3	1\%	0\%	21\%	1\%	6\%
Mentor/examples	1.3	10\%	11\%	26\%	15\%	16\%
Mentor/own works	1.3	9\%	11\%	31\%	9\%	15\%
Student materials		2\%	0\%	15\%	62\%	20\%
Planning/Job planning		27\%	3\%	30\%	46\%	27\%
Knowledge transfer	4.2					
Declarative	3.1	31\%	27\%	59\%	41\%	40\%
Procedural	3.2	29\%	51\%	48\%	62\%	48\%
Tacit	3.1	28\%	35\%	79\%	57\%	50\%
Office practices	3.13 .2	21\%	43\%	35\%	28\%	32\%
Design	4.1	40\%	59\%	24\%	21\%	36\%
\wedge ssociated/discipline related		7\%	3\%	13\%	0\%	6\%
Heuristic strategies	3.13 .2	50\%	46\%	30\%	26\%	38\%
Problem solving	3.13 .2	28\%	51\%	39\%	37\%	39\%
Style Development	4.1	15\%	19\%	I1\%	24\%	17\%
Student pr esenting ideas	3.1	8\%	24\%	23\%	26\%	20\%
Mentor ^nalysis/ideas	3.2	27\%	22\%	50\%	43\%	36\%
Studen Analysis/ideas	3.2	10\%	16\%	23\%	25\%	19\%
Discipline Content/facts	3.1	0\%	41\%	77\%	32\%	38\%
How is learning taking place	4.2					
Modelting	3.3	29\%	24\%	14\%	23\%	23\%
Coacting	3.4	42\%	57\%	83\%	60\%	61\%
Scaffolding	3.5	22\%	22\%	32\%	21\%	24\%
Articulation	1.2	65\%	46\%	65\%	73\%	62\%
Discussion	1.1	35\%	70\%	83\%	59\%	62\%
Sketching	1.3	65\%	43\%	47\%	57\%	53\%
Conlinued onnexl page						

Coding Calegories	Mentor number					
	Slem Trec 4 code	M4 \%of lime	M6 \% of Time	M3 \% of Time	MJ, Ja \%of Time	Avcrage
Explanation Building	4.2	42\%	57\%	60\%	55\%	54\%
Notes		3\%	14\%	19\%	2\%	10\%
Sketches - existing	1.3	11\%	27\%	23\%	3\%	16\%
Site visits	3.1	0\%	5\%	2\%	1\%	2\%
Questioning/Delending	3.13 .2	26\%	41\%	40\%	27\%	34\%
Pattern matching	3.13 .2	2\%	8\%	22\%	9\%	10\%
Multiple solutions	3.13 .2	33\%	32\%	49\%	41\%	39\%
Reflection	4.6	13\%	11\%	22\%	32\%	20\%
Exploration	4.6	52\%	27\%	38\%	34\%	38\%
Testing	4.6	10\%	8\%	20\%	23\%	15\%
Justify	4.6	6\%	14\%	10\%	20\%	13\%
Accepl/Reject	4.6	9\%	16\%	9\%	29\%	16\%
Time management	3.1	10\%	11\%	12\%	10\%	11\%
Office set	3.1	21\%	54\%	68\%	18\%	40\%
Tips and techniques	4.2	49\%	8\%	40\%	61\%	40\%
Mentor reviewing work	3.1	18\%	16\%	34\%	49\%	29\%
Identifying Design Keys (Brief)	3.2	18\%	14\%	28\%	10\%	18\%
Inspiring new thought	4.1	44\%	38\%	33\%	54\%	42\%
Visualising Conceptualising	4.3	61\%	32\%	30\%	51%	44\%
Comfidence	2.1					
Mentor	2.2	14\%	11\%	99\%	100\%	56\%
Student	2.2	19\%	11\%	85\%	100\%	54\%
Student participant	2.3	37\%	24\%	70\%	91\%	56\%
Student as observer	2.3	68\%	3\%	35\%	15\%	30\%
Apprentice designer role	2.3	86\%	38\%	98\%	100\%	81\%
Student designer role	2.3	14\%	0\%	0\%	0\%	4\%

Analysis of each minute of the work sessions showed that at any one time many different activities and events were taking place, with overlapping conversations and sketching as each participant contributed to the design collaboration. This type of activity required a broad y eldetailed recording structure in order to portray relationships between participants and individual contributions made by each that were regarded by me to influence learning. For these reasons, the coding structure used for Phase Three data is more detailed than that used for Phase Two and is mostly derived from Index Tree Four and findings emergent from analys is of data coded with that structure. In order to portray the occurr ence of events and activities observed throughout the work sessio: $;$, the frequency of these has been shown as a percentage of the overall video recorded work sessions duration. Data amalysed in this way showed the time given to each event or activity as a measure of the overall observed study phenomena. This
allowed comparisons with Phase Two data abou what the purticipants :aid they did or what they said took place in other similar situations.

For example, every participant said that articulation was one ofthe most impostant aspects of learning in the design oflice situation. Phase Two data coded in Index-Trec Four category 1.2 Articulation indicated that 5.38% of the overall data units coded in Phase Two were about the participants' use ofarticulation. This level of coding is above the average for Phase Two categorics, which was 4.54%. When comparing this to Phase Three dhtu, it can be seen that data abou the purticipunts use of articulation was observed to occur during 65\% of the work session time. In this way, data coded in each of Index Tree Four categorics were compared to Phase Three data codedin Table 8 (p. 94). This allowed conlirmation of tindings, emergent from Phase Two data and also assisted exploration of other aspects of the study situation leading to new emergent lindings.

For example, Mentor I made the lillowing comment:
... we are very much a talk and on the boned oflice, talk and sketch. We find that from their point of view and from our point of view it is a lot casier to explain things when you have a pencil in your hand and you just talk and sketch as the ideas uniold.

From this and other similar data I developed the Phase 「wo categorics $/ .1$ Sketching 1.2 Discussion and /.3 Sketching. Phase Two data coded in each of these categories were close to the average (4.54%) when considering all categories used for Phase Two data. In Phase Three additional coding categories were developed to explore in greater detail how the study participants used discussion, articulation and sketching were used by. The categories used and the fiequency of data units coded using them, expressed as a percentage of the overall work session times nre show in Table 10 (p. 99).

Table 10.
New Phase Three coding categories

Phase Two Dola Category	\% Of Overall Data Units	Phase Thrce Data Category	Phase Three Data Sub-category	Average \% Of Overall Time Uscd
1.1 Discussion	3.10\%	Discussion		62\%
			Questioning/Defending	34\%
			Inspiring new thought	42\%
			Mentor reviewing work	29\%
1.2 Articulation	5.38\%	Articulation		62\%
			Explanation Building	54\%
			Multiple solutions	39\%
1.3 Sketching	4.02\%	Sketching		53\%
			Student sketching	40\%
			Mentor sketching	6\%
			Using existing sketches	16\%

Analysis of Phase Three data in this way allowed exploration of elements within each coding cate goty and this assisted me in understanding the overall st udy phenomena. Using the example shown in Table 10, data coded in the categoty Discussion, identilied in Phase Two as an impotant patt of the student/mentor collaborative work sessions, were explored in greater detail using three new Phase Three sub-categories. The first of these, Questioning and Defending, was observed to occur during 34% of the duration of the work sessions. Aspects of student/mestor discussions observed to be about inspiring new thought were coded in the second subcategory, Inspiring new thought, which showed 42\% of the duration of the work sessions. The third subeategory of Discussion used for coding Phase Three data was Mentor reviewing work. Data coded in this cate goly occurred during 29\% of the overall time for the work sessions. I concluded that these three aspects of disc ussion were important elements of st udent/mentor collatmration in the work sessions. In partic ular, the relatively high level of coding in the category Jnspiring new thought contirmed what most of the mentors said during \mathbf{P} hase Two was of vital importance to their working practices. For example, Mentor 4 when commenting on his approach said:
...when a st udent comes in here I try to first of all inspire them and give then a structure to work with that may take them on that journey of discovery and lead them almost anywhere they want to go, you know, leave the destination open.

Analysis of the video recordings of the observed work sessions commenced immediately following the lirst observations. As the analysis continued and fillowing every new obscrvution session, I discussed preliminary findings from the:ic data and fiom analysis of earlier work session dutn, with the study participants. The immediate ficedback provided by the stuxly participants in the se discussioter facilitated me mber checks on my interpretation of the study situation and guided the focus of further investigation of the study phenomena.

This assisted me in maintaining rigour in the study methods and contributed to the validity of the findings when used in cross checks utilising information I had recorded in my research joumal during video recording of the work sessions and during informal discussions throughout the study. Member checks, to confir m my interpretation of the parlicipants' comments concerning leaming events they had experienced, were also conducted during informal discussions with all of the Phase Three participants. The immediate feedback provided by the study participants assisted me to refine the inquiry techniques and to explore new or emerging themes noted as important lo the learning situation. Video recordings of the work sessions were viewed multiple times in order to re-analyse and to conlinn ideas, activities and themes emerging as important to the overall understanding of the dynamics of the student/mentor collaborative interactions.

Findings that emerged from analysis of Phase Three data were used to reline Index Tree Four as used for the final coding of Phase Two data. Taking a reflexive upproach when dealing with Phase Three data allowed me to conlirm lindings emergent from analysis of Phase Two data and to then go back and re-examine data coded in Index Tree Three categories fi omdifferent perspectives. Using this process, I collapsed or merged some Index Tree Three categories, as indicated in Table 6 (p.88) and Tabic 7 (p. 91), to develop the Index Tree Four coding structure shown in Table 8 (p. 94), as used for the final coding of Phase Two data. In the next Chapter, each Index Tree Four category is discussed along withexamples of data and findings that emerged fiom analysis.

Conclusion To This Chapler

This Chapter began by presenting the methods used for the organisation and analysis of data in categories developed to reflect themes that emerged during data collection and transcription. Development of the Index Tree coding structures used for analysing the study data was also discussed. With each new phase of this study, the

Index Tree codiag structures criated using broisd coding cutcgorics were progressively refino. ${ }^{\text {d }}$ to parmit analysis of data in coustructs that emerged from the exploration ofnew asp:ets of the study situntion. This led to four different Index Tree coding structures being leveloped using concepxual coding categorites derived frons the overarching research questions and shaped hy cognitive apprenticeship (Collins, ct al., 1989) leasning methods. The influence of preliminatry interpretution of the study data during transcription and initial coding was also described in relation to the development of conecptual coding eategories based on emergent themes and the evolution of new categories in response to emergent findings.

The interpretation and analysis of data recorded during observation of design office student/mentor work sessions and the role that this played in the development of findings was also discussed.

In the next Chapter, findings have been presented along with examples of data units coded for each of the categories developed for Index Tree Four (see Table 8, p. 94), along with a discussion of how those data were interpreted and synthesised with other data. Interpretation of events and activities, observed in the study situation, led to the development of hypotheses about howlearning occurs in a design office where a cognitive apprenticeship approach to learning was applied.

CIIAIPII:IR SIX

RESUITS

Introiluction

This Chapter presents findings that emerged from inductive analysis of the study data when secking to understand the "multiple interrelationships among dimensions thal emerge firom the data" through "uetivitics und out comes" from experiences in the study setting (Patton, 1990, p. 44). Coding eategories arranged according to Index Tree Four have been used here as headings to present themes that emerged and to present emergent findings. The presentation offindings is supported with examples oftypical data coded for each eategory, along with explanations of how data were interpreted using inductive amalysis methods to determine student leaming cutcomes. At the end of each category, a summary of findings that emerged from analysis of data coded therein is presented.

Findings presented in this Chapter are grounded in direct experience of the study situation. They have been used to develop answers to the research questions, as detailed in the next Chapler of this thesis. At times, attempts to quantify propositions about the study events and learning outcomes lor students are made with the use of the words some or most. The former refers to lindings emergent from the exhibited behaviour of less than $\mathbf{2 5 \%}$ of the sample and the latter to those that emerged fiom more than $\mathbf{7 5 \%}$ of the sample.

Findings from analysis of Phase Three data, when used, are shown here as percentage times that represent the frequency of oceurrence of various activities over the duration of the work sessions. Since multiple activities simultancously took place during each minute of the work sessions, the percentage times quoted oflen indicate levels of occurrence, for several diflierent aclivities throughout each work session, that collectively present as greater than 100\%. This approach has been adopted to show the relative balance of events or activities observed to occur.

Findings presented here emerged from analysis of the study data by coding in categories developed to represent four main themes about the study situation. Final coding took place when the coding eategories had been relined to a level regarded by me to be capable of accomrnodating all data collected in ways that " represented the puiposes of the research, were exin:ustive and mutually exclusive" (Holsti, 1969, p. 95).

Organisation of tbls Chnpter

This Chapter is set out using each of the coding categorics of Index Treee Four iss he adings under which emergent lindings are discussed ulong with typical examples of data coded in ench category. Table 11 shows the arrangement of coding categories in Index Tree Four

Table 11.
Index Tree four entegories used for presentation of lindings
Coding Categorics Used Sub-categories for coding datn
To Represent Themes

1 Communication	1.1 Discussion 1.2 Articulation 1.3 Sketching 1.4 Entiy To The Culture Of Practice
2 ^ttitudes	2.1 Conlidence 2.2 Teambased Learning 2.3 Office expectations
3 Mentor Supported Design Office Practices Affect ing Learning	3.1 Common Design Olfice Practices 3.2 Leaming Methods Using Modelling 3.3 Learning Methods Using Coaching 3.4 Learaing Methods Using Scaffolding
4 Collaborative Design Office Experience And Learning	4.1 Development Of \wedge Creative Innovative ^pproach To Design 4.2 Reifying knowledge In Design Olfice Learning 4.3 Visualisation, Exploration, Reflection and Design Style

The categories used to represent the four main themes are:
I. Communication;
2. Nititudes;
3. Mentor supported design ollice practices aflecting learning; and
4. Collaborative design olfice experience and leaming.

Findings from analysis of data coded for all phases using this structure are now discussed.

Theme One: Communication

The four sub-categories established under this theme were:

1.1 Discussion;

1.2 Articulation:
1.3 Sketching;and

1.4 Enty to the culture of practice.

Analysis of the study duta suggested thist discussion, articulation und sketching, were used by the study participants ns uset of integrated communicution tools. In this setting, tesol meuns a cognitive tool used by exper ts in the discipline of their domain of practice (Brownet nl, 1989). Findings thut emerged uhout the role of discussion, nrticulation and sketching os communication tools for learning in u building design ollice nad how student ent y to the design office culture of practice contributed to student lcarning is now discussed.

Catcgory I.I Discussion

In this thesis, discussion is regarded to include any verbal exchange between the study participants intended to assist knowledge acquisition, to explore opinions or points of view, or to learn processes and procedures necessary to the design process.

Analysis of the video recordings of Phase Three work sessions showed that during $\mathbf{6 2 \%}$ of the time, the mentors and the students were engaged in discussions in which technical ternnsand descriptive language were used to communicate design ideas and methods typical of the mentors' usual culture of pactice. Analysis of Phase Two dat a showed that most mentors used highly descriptive and jargon.rich langunge when discussing design office work practices and when providing explicit information about design situations, or interpretations based on their tacil knowledge. This led me to contend that discussion was used as a key learning tool in the design office situation. It appeared to be used in deliberate ways by mentors to assist students to acquire design procedures and declarative knowledge necessar y to develop design solutions and to communicate them to others in ways typical of those of a protessional designer.

へnalysis of data like those presented in the following example suggested that much of what took place during student/mentor work sessions centred on the use of discussion tor the pur pose of introducing new information and design procedures for exploring emerging design concepts. The following comments made by Student $\mathbf{8}$ are typical of those made by most of the students when discussing changes they had made in their speech and behaviour as a result of working with a mentor.

Having them (the mentors) just talk to you as though you are one of the statf helps you to learn all the right words to present yourself. You learn to put your ideas across and how to communicate with people like they do in the design olfice, like a real designer.

Student 16 described how she developed her technical vocabulary as follows:
When I first went in there I got a good idea of what their work
involved by watching and talking to Barty and some of the others as they worked on a project that they were liying to get finished. They were really good at explaining to me design and construction lerms that I hadn't hearel be fore, or had heard of but didn't understand. Tinat helped me get into their wny of doing things because it was like learning a new language, onee I understood what they were suying I could get right into their way of doing things.

Mantor 3 described this aspect of st udent larning as being:
...part of the working culture, just being in the office and learning to spenk and behave like a designer by talking to the people working there and the clients or consultants who come in. That's how they pick up design langunge.

In Phase Two most of the mentors said that they us ed discussion methods to introduce newideasnnd heuristic design strategies for resolving problems. Mentor use of discussion in this manner, as shown in the following comments made by Student 16, emerged as an important aspect of student acquisition of declarative knowledge. It appeared to assist leaming by providing the information with which students developed declarative knowledge of design situations and lacit knowledge developed through application of procedures modelled by the mentors when applying their design strategies to the student project. Analysis of Phase Three data showed that discussions about new design ideas and methods for refining an emerging design took plate between students and mentors during $\mathbf{3 8 \%}$ of the work session times. When commenting on the mentor's use of discussion, Student 16 snid:
...they kept talking to me about the design and usually suggested little changes or adding in things like verandah's and so on. They always gave me reasons for doing things in certain ways and little tricks for working out problems like trallic flow or design details that cropped up. They would get me to talk them through what I had done and then they would say have you thought about this or that and that usually meant working through some new stuff.

From comments such as these and other similar data, I determined that putposefiul discussion was used by the students and the mentors to progressively introduce new ideas and to explore ot her aspects of the design in progress. Mentor 6 described his approach to working with Student 16 as follows:
...there were no great thunderbolts, it was mainly little clicks and penny drops along the way, you know, a process of building up one idea on top of another. We just try to introduce small new tasks for them to tuy whenever they look like they are ready to move up a level with the de.sign. or to bring in some advanced elements that make it that bit special. You know, take it upa peg by talking il through first.

Working in this way, maxt of the mentors sequenced lenraing activities using tasks of increasing dil ficully that addressed new asperets of the emerging des ign solutions. This was evident in the sketches produced during the work se.sions by the students and the mentors as they workied through problems, emergent from the design project. During work session discussions, sketching was also used to assist explnnntion building. Activities iṇ volving discussion and sketching firr the purpose of explanation building took place during 54\% of the work session times. Discussions aimed at identify ing key design elements or influencing factors occurred during $\mathbf{1 8 \%}$ of the work session times. When describing how Mentor 27 used discussion and sketching to introduce and explain design ideas, Student 14 said:

The whole time we just sketched and talked about the three sections and talked about what the relationships of each area would be to the overall design and what the room sizes should be. That's how I learn to design from him.

Mcotor 15 used a similar approach. He said:
Garry (the student) was very good at explaining his ideas, but needed a lot of help to implement them in o design. He was also a good listener and that made our working together easy because all the way through we used discussion and skecching to work through the design of each of tise rooms and how they should fit together in the final solution. I could talk him through by saying what was needed and why and he was then able to put it all together in rough form, which we would then refine.

Coraments, such as these about the use of discussion aod sketching, were made by most of the study participants during Phase Two inter views. From this I developed the view that discussion used together with sketching was the principal means of communication for the transfer of declarative knowle dge about design situations and about the procedures used to resolve design problems. For example, Mentor 3 spent 83\% of his work session times using discussion to provide explicit infor mation about design and construction raethods iacluding inteppretation of codes and regulations, planning guidelines set by local council and common industry practices for dealing with particular design details or siluations.

Discussion and sketching were also used together during 62% of the work time to exchange information about design practices built on the mentor's lacit knowledge of building design facts and regulations and in the application of heuristic design strategies to resolve emergent problems. Here, tacit knowledge is regarded as the kinds of knowledge built from experience of mulliple design siluations in which problem solving
stralegics and explicit or declarative knowledge have been used to resolve emergent problems. For exumple, Mentor la explained his usie of discusssion und sketching for this purpose und as un integrated tool for communicuting design ideas or working methods in his collaboration with Studunt 20 by so ying:

Talking und sketching are the communication tools of the trade here, people cannot talk and communicatc if their hands arc lied. Some individuals just can't seem to link it all together. We lind that by sitting down und talking through the: building sketching details as we go is the best way to get them up and going. We talked about every aspect of the design and sketched out ideus with him when we wanted something done in a purticular way.

When Student 20 was asked about how Mentor la used discussion and sketching during their collaboration on the design project, he said:

I think that talking and sketching and writing down the notes of things that he was emphasising delinitely helped the most, Then coming home to do the sketches nnd then taking it back and talking about it in front of him. Also doing little sketches to explain ideas on top of the sketches, he did that a lot and that gave me something to take away and think on, you know, you could see it there on the sketch where we discussed it.

In this excerpt, Student 20 has mentioned that talking, sketching and writing down notes assisted his leaming. He also commented he used notes and sketches for independent development of the design, then later lor rellection and exploration of other ideas with the mentor through sketching over the top when explanation building. This is an example of student use of declarative knowledge, acquired during discussions, along with mentor modelled procedures lor design development, to establish his own tacit knowledge based on application of the procedures learned.

Analysis of video recorded during Phase Three work sessions showed that sketching took place during 53% of the overall work time and note laklng occurred during $\mathbf{1 0 \%}$ of the work time. \wedge detailed explanation of the role of sketching in the learning situation is provided Jater in this Chapter because it is so important, but it is mentioned here because of its relevance to the use of discussion.

The combination of discussion and sketching emerged as the piincipal means by which informalion was exchanged and how working practices lor dealing with complex design problems were rcified by the mentors. Student acquisiaion of explicit information about design methods and situations added to their declarative knowledge needed for applying heuristic design strategics modelled by mentors. Some mentors used discussion, suppoted by sketching, to inspire students to visualise and communicate
how they imagined a design to (levclop. For example, during work session two in Phase Three, Mentor 4 discusssed the setting for the design with Student 23 in the following way:

Just inugine yourself waking up in the morning in this valley with the mist rolling in around the house and sun breaking through. What is it that you want from that room you are in'l Do you want the room to be invisible so that you can reach out to the day without being bourxled by walls? How about an overhanging balcony so that the house just touches the ground lightly like a Frank Lloyd Wright design. Try to visualise being there and imagine what you might feel when you experience that light and the smell of the moming in countiy air, away from all the shit that's in the city.

Responding to this later when interviewed, Student 23 said that he now had a new approach to thinking about design that was inspired by the visualisation method modelled by Mentor 4. This is regarded by me to signify the student's development of procedural knowledge based on methods modelled by the mentor. Commenting on this, Student 23 said:

He (Mentor 4) just looked at the drawings that I had already done and said have you thought about what the client might experience living in this house? Then we put my drawings aside and just talked lor ages about what it might be like being in that valley and the sort of lifestyle that people who want to build there might be after. That really made me think about things diflierently and to imagine a much more homely place to design.

Discussion used in this manner for visualisation of ideas and design development was observed to occur during 44\% of the work session times. Mentor 6 described his use ofdiscussion when visualising design ideas as a "verbal scribble" stage of the design process, essential to his practice. Describing this as his usual approach, he said:

We just walk our way into the design using this quick approach which gives us a verbal scribble stage between sessions on the computer. Jack (partner) and I sit down with these sketches and talk it through as we draw, this is the way anyone coming to this office would have to do in here. In this way we talk about the themes and where we want the design logo.

Student acquisition of ways for applying methods such as those described in the previous quote by Mentor 61 regard as patt of their development of tacit knowledge based on application of replieable procedures shown by mentors to be usual design office practices. Student application ofdesign methods such as the "verbal scribble stage" deseribed by Mentor 6 assisted them to work in autonomous ways when
visual ising and relining design solutions. This, I regard as in part the development of their procedural knowledge, as well as development of inctacognitive ways lör resolving emergent design problems.

Data such us those shown in the previous quotes suggest that mentors and students used discussion methods to express ideas that they had visualised and refined before committing to firmul design drawings. Analysis of Phase Three dat a showed that during student/mentor work sessions the mentors' use of discussion for explanation building occurred during 54\% of the work times. This usually took place in conjunction with questioning and defending of ideas or design procedures, which were observed to occur during 34% of the work times. Student le arning through these kinds of experiences I regard as forming the basis of their tacit knowledge of design methods and procedures that utilise heuristic design strategics and declarative knowledge modelled by mentors. The main learning outcome for stıdents working in this way was their acquisition of ways for applying design knowledge and practices in the context and cult ure of the mentors' every day met hods.

Most of the participants when interviewed during Phase Two said that discussion and sketching were used together at all stages of a design development. In the lirst of the student/mentor work sessions, the mentors used discussion during $\mathbf{3 6 \%}$ of the work session times for design activities, while the students similarly used 19% of the tlme. Inthe last oft he work sessions, the balance had shifted such that the st udents were observed to be using disc ussion and sketching 55% of the time and the mentors 17% of the time. Working in this way, the mentors were regarded by me to befading their use of scaffolding to assist student leaming as the st udents developed the ir knowledge and skills. As this occurred, the students appeared to be using their tacit knowledge, acquired through experience of using design inlörmation and strategies modelled by the mentors, in more autonomous ways to create innovative solutions to emergent design problerns. Learning outcomes such as these were confinned by comparing Phase Three data with Phase Two data such as those shown below in the comments made by Student I6, which show how she developed design skills by working in ways modelled by her mentors.

When I went there I didn't leel conlident to talk about my ideas and wasn't sure about how they did things there. That changed pretty quickly because although they took the time to explain a lot to me about their design methods, they also made me talk about mine and got me to explain every part of my design as it developed. That really helped me to be more relaxed about talking to them and by the end I think I was doing most of the tilking and they just helped when I needed it.

Analysis of Phnse Three work sessions showed that Mentor 3 kept Student 22 actively in volved and contribuling to the discussion of each aspect of the design at hand and the design processes introduced for resolving it. Mentor 3 used 14\% nfthe work session time to discuss design processes und procedures fior re solving problems emergent from the design process, with Student 22 similarly discussing methods he proposed to use, taking place during $\mathbf{1 7 \%}$ of the work session time.

Commenting on what he considered were valuable aspects of working with Mentor 3, Student 22 said:

It was just great the way that he talked through everything. I le made me explain my ideas for doing something, then would come up with a couple of more ways of doing it. That really blew me away because I always then had choices for solving things. His explanations were really good because he talked about all sorts of design jobs of his own that were similar to mine. I leamt heaps just by talking with him about problems and ways of sorting them out.

From comments such as these, I concluded that the students acquired declarative and procedural knowledge by having mentors discuss and model their design practices.

Mentor 6 used a similar approach when working with Student 24. I-le began by demonstrating his way of narrowing doun the design options available to only those applicable to the situation at hand. This he did by first listing, then discussing, regulatory or physical lactors affecting the design situation. Then, using discussion and sketching together, he identified what he described as the main problem aspects of the design situation that needed to be resolved. Following this, he compared those problem designelements to other projects of his own that involved difficullies similar to those in the student project and discussed how he had resolved them in his own works. In addition to discussing the strategics and solutions that were appropriate to the student's design situation, Mentor 6 also explained the reasons why he thought the strategies would be suitable lor decisions made throughout that process. Throughout the work sessions, Mentor 6 used questioning to keep Student 24 actively in volved in the design process and to ensure his understanding of what wns being presented. In this way, Student 24 acquired declarative knowledge of many diffierent aspects of the design situalion and procedural knowledge of ways to explore and resolve emergent design problems in the culture and context of the mentor's usual practices.

Durling 22\% of the work session times, Mentor 6 established links between problems that emerged from the real work design project at hand, to his usual practices lor dealing with similar situations. For example, he showed Student 24 drawings and
photographs of his current design commis sions, while explaining in detuil his reasons lor using particular construction methods or architectural features when detailing his solutions. This approach revealed the mentor's tacit knowlerlge of many complex aspects of the design situation in his own commission, as compared to the student project, as well as procedures he considered to be appropriate for resolving various parts of each of those projects. Working in this woy, Mentor 6 reified his tacit knowledge of successful design procedures by matching problems that emerged from the student design project to those he had encountered and resolved in his own commissions.

In those same work sessions, Student 24 spent 70% of the time discussing his inter pretation of the design problems and pnssible strategies that he might use in resolving them, thus articulating his tacit knowledge as well as the heuristic design strategies or procedures he regarded as appropriate fortheir application. The Ifocus of such discussions was dir ected by Mentor 6 to understanding the many influencing factors found in any design problem and on exploring manydilf erent potential solutions before accepting any particular one for detailed development. In this way Mentor 6 introduced multiple ways for resolving the design situation. He also guided Student 24 through the exploration of multiple solutions to parts of the design pro ject at hand by matching some elements of those designs to similar design office commissions that Mentor 6 had presented in his discussion of usual design methods. Forexample, Mentor 6 used pre-drawn CAD elements such as bathrooms and kitchen layouts to quickly demonstrate altemative solutions that could be used by Student 24 in his own design solutions.

Mentor coaching of students, in the use of problemsolving approaches in this way, was regarded by me to be an effective means by which the students acquired tacit knowledge of design situations and procedural knowledge of ways to deal with problems that emerge during design development.
^ summary of findings that emerged fiom analysis of data coded using Category

I. 1 Discussion is as follows:

- work session discussions hel ped students to acquire a technical vocabulary and ways of speaking used in the design office culture of practice;
- discussions between students and mentors facilitatedtransler ofdeclarative knowledge aioout design situations, codes, regulations and practices;
- work session discussions lacilitated student acquisition of ways for explaining design ideas and usingprocesses, procedures and heuristic design strategics used by building designers to resolve complex problems;
- work session discussions exposed students to the mentnrs' methods of questioning, evaluating and defending ideas; and
- work session discussions assisted students to acquire ways of reflecting on design methods and creative idess leading to exploration of multiple concept forms nod design solutions.

Categoty 1,2 Articulation

The second category used for analysis of the study data, Arilculation, is based on the Collins, et al. (1989) teaching strategy of that name in which the "teacher encourages students to verbalise their knowledge and thinking" (Carver, 1995, p. 206). Data coded in this calegory also included mentor use of articulation to explain ideas and to express personal thoughts about design methods or reasons lor using particular strategies. In this study, arslculation is considered to be more than just talking or having discussions with others; here it includes students and mentors verbalising:

- personal thoughts and opinions when thinking aboul design ideas;
- reasons for using particular heuristic designstrategics;
- ways for using problem solving strategies based on per sonal exper ience of similar problems or situations; and
- explanations or interpretations of design problem situations, the underlying reasons for using particular design strategies and possible solutions or decisions taken.

Most of the students and mentors when interviewed during Phase Two said that in building design it was impostant to express aloud personal points of view and reasons for using particular strategies when dealing with design problems. One reason for doing this was said to be so that others might readily understand why a design was being developed in a given way. Many other aspects of student and mentor use of articulation during work sessions arose during analysis of Phase Two data and these were coded in four sub-categories os follows:

- explanation building;
- questioning and defending of ideas;
- identifying design criteria; and
- development ofmultiple design solutions - this includes comparing emergent design concepts to commonly occurring situations and strategics typically uscd to resolve them.

Findings that emerged fiom analysis of data coded using these categories are now discussed.

Category 1.2.1 Explamation building.

During Phase Three work sessions, all of the mentors used articulation to develop detailed explanations of design methods based on the mentors' authentic design experiences. This kind of exploratory knowledge expressed by mentors when explaining their working methods is regarded here to be tacit knowledge. Such knowledge is regurdel as having been built fiom personal experience in numy dificrent building design situations. Most mentors used articulation to link their tacil knowledge of design situations and problem solving methods, to problems that emerged from the authentic projects undertaken by the students. Working in this way, the mentors reilicd their tspical design work practiees in ways that helped students to understand how and why they tackled design problems in the ways they did.

Mentor use of this process included their articulation of the reasons for using particular working practices and thinking aloud when working with students on design problems. For example, some mentors modelled their ways for developing solutions to parts of a design by "sketching and talking through" (Mentor la) eachstage of a design just ns they would for any project of their own. For each design element explored, or method for resolving emergent problems applied, the mentors verbalised their thoughts about why they were using the methods modelled and how that impacted or afliected ot her aspects of the design under development. This process usually also included anecdoles of successes and failures they had encountered. Working in this way, the mentors reificd their thought processes and the reasons for applying heuristic design strategies in the context of their usual practice. Having modelled this approach to design, most of the mentors then encouraged the students to apply similar methods to their own design practices.

Throughout Phase Three work sessions, most of the students were observed verbalising their thoughts as they worked ithrough design problems. Analysis of Phase Three data showed that atticulation was used in this manner during 54\% of the work session times. The following comment made by Student 14 is ty'pical of ot her data coded in this category that indicated the use of atticulation for explanation building by mentors and by students.
... he was good at picking up on ideas that I presented and talking them through with me. He would point out all the good and bad points that I perhaps hadn't seen and compare these to jobs he had done. He always explained to me the reasons for doing things in diffierent ways by telling me about and how it had worked for him. That really helped me to explore new ideas a lot more than ifl had done it alone. (Student 14)

In this example, the mentor is using his lacit knowledge to identify problem aspects of the student's design. By urticulating reasons for resolving emergent design problems in particular ways, the mentors were thought to reify their tacit knowledge and to support it with authentic examples of successes and failures upon which they have built knowledge and procedures for addressing commonly occurring design situations. The manner in which this assisted student learning can be seen in the following comments mude by Student 13 who said:

The best thing with Barry was he knew exactly what to do and just got on with it. I was really lucky because he just talked very directly and clearly, he used his experience to explain heaps of things that you just don't normally see.

Another example of how some mentors used articulation for explanation building when working with students comes from comments made by Mentor 1. He described his approach as being based on providing detailed explanations of how something was done, along with personal reasons that detailed why it was done in a particular manner. Commenting on this, Mentor I said:

I think what happens is you talk as you draw more, really explain yourself and your thoughts as you are drawing. When you are doing it for a student you need to talk it through so they know the reasons for what you are doing. Not just show them how to do it, but explain why for every step of the way using your experience of actual jobs to give real situations with real solutions.

When commenting on how his mentor described the reasons for adopting particular solutions to design problems encountered in his own design commissions in order to present ways for dealing with similar problems in the student project, Student 9 said:

I had problems getling the roof to work so I suggested we use a valley gulter. He (the mentor) said that was a bit "iffy" because of leakage over the flashing. Then he pulled out the drawings of one of his designs to show me a detail that had worked for him. He talked me through all the reason why it worked a nd how in some situations il would nol work, like where another valley gutter runs in at an angle and so on. I was then able to come up with a detail that avoided using a valley gutter and still looked OK on the elevation. It was not the same as his, but it had some of his ideas in it and it worked just as well. Listening to him talk about how he had sorted out similar problems in his own jobs helped me to learn his approach to design detailing and to then work it out for myself:

Data such as these led me to conclude that student and mentor use of atticulation of personal design practices and the reasons for working in particular ways assisted in
the transfer of tacit knowledge based on real design experiences. Examples such as the one shownubove (Student 9) suggested that using articulation in this manner assisted students to acquire knowledge of procedures used by experts when applying heuristic design strategics in the context of the building design domain culture of praclice.

Category 1.2.2 Questioning and De fending of ideas.

Analysis of Phase Three data showed that during 34\% of the work session times. students verbalised their thoughts when expressing their reasons lor using particular design strategies and to defend design decisions they has taken to reline solutions to problems that emerged throughout the design process. Fur example, mosit of the mentors used questioning early in each work session to encourage students to articulate the processes they had used to develop design solutions for the projects at hand and to verbalise how they had thought through emer gent problems or applied strategies to resolve them. Student 13 said that he and his mentor made extensive use of questioning when exploring design ideas and when defending design strategies or solutions in this manner. Commenting on this, he said:
... he was great because he let me put up all sorts of ideas and we worked through them. He made me discuss and justify everything that I suggested, just as he did the same by always saying why he did things the way he did. We just kept asking each other why we each wanted to do things and then talked it through giving our reasons. (Student 13)

From data such as these, I concluded that student learning was enhanced when the mentors encouraged the students to articulate their thoughts about design and methods they employ in the development of solutions to problems that emerge from authentic tasks in design olfice situations.

Some mentors also encouraged the students to articulate their design processes in order to structure and sequence further learning activities. This approach supports the sequencing of leaming activities as part of the design principles for a cognitive apprenticeship learning en vironment described by Catver (1995, p. 206). Mentor 4 said that he used questioning to encourage students to articulate their views as a means of identifying their level of understanding of design in ordert o set tasks with achievable goals for them to advance their learning. Describing how he used this approach, Mentor 4 said:

I start by showing them some ideas and talking about my reasons for designing in the way that I do. Then I ask them what do you think? I make them get involved make them tell me their ideas. I get them to
explain why they want to do it in a particular way. I look to sec where they are in the big picture and if they are baving difliculty in telling me how they got there. If their skills aren't there in place yet and their knowledge and experience is not necessarily there, then I get them going with little tasks thut they can achieve and make them talk through every decision with me us they go.

This approach was obscrvell being used during 34\% of the work session times by all five Phase Three mentors when working with students. I concluded that the useof articulation by students and mentors as patt of design exploration and during questioning and detending of design solutions, provided a means lor the transter of tacit knowledge and design procedurcs. Atticulation used in ways described above by Mentor 4 to encourage students to "...make them tell me their ideas. I get them to explain why they want to do it in a particular way" assisted students to conceptualise and defend ideas and in so doing helped them to develop metacognitive ways lor using design procedures for refming and expressing design solutions.

Category 1.2,3 Identijyling Design Criteria.

Most ofthe students said that the first tasks set for them by their mentors was to identify key design criteria by interpreting the elient design briefin terms of the finnetional requirements lor the building. Analysis of Phase Three data showed that mentors and students logether spent $\mathbf{1 8 \%}$ of the work session times verbalising their views about key design elements and style. The lollowing Phase Two interview except is typical of comments made by most of the students when discussing how articulation was used for identify ing design keys and style elements that led to their development of design ideas and working practices.
... whetl we got going logether the ideas llowed. He talked about the client brief the kind of stulf that he saw as his personal design style. I also came up with some ideas that we worked through together. We looked at other things along the way and I thought maybe I could do that and that's how I came up with the design for my latest assignment using the same techniques that I used with the mentor. (Student 9)

This approach of using articulation to express how and why a design was being developed in particular ways was observed to occur throughout all of the Phase Three work sessions. Its use is regarded by me to be one means through which the students developed procedural knowledge in design, based on methods modelled by the mentors and reinforeed by student application to their authentic design project. The following comments were made by Student I5 when discussing how his mentor provided information and procedures that helped him to develop design solutions:
... I had some ideas and took in some notes und sketches to that first meeting and we so we were able to talk ubout the brict: Ile was really insistent that we follow the brief exactly and incorporate it in our own designs so that the client can benefit from it, but it had to follow the brief all the way. He had a particular approach to doing the work that was very organised and structured. His method was to break the brief down into client needs, site requirements, regulations and orientation issues. It was all mapped out before we began to sketch-out any design ideas. That worked well for me because it gave me a plan to work to, where I could sort it out one-step-at a time. Each time that we got together he would help me to map out what I ncerled to do in preparation lor the next session.

By working in this manner the students acquired ways for organising and applying client-brief focussed design procedures typical of the mentor's usual practices. Mentor sequencing of design tasks by using a structured approach as described by Student 13 (above) assisted student learning by providing order to the design process, withtasks organised around readily achie vable stages.

Category 1.2.4 Multiple Solutions.

Most of the students interviewed during Phase Two and all of the students who participated in Phase Three, said that they explored multiple design solutions as a result of having mentors articulate and model ways of de veloping variations on basic design concepts. When commenting on how his mentor had introduced multiple design ideas and solutions during work sessions, Student 13 said:

He had a lot of diffierent ideas and different ways of putting it across. That was the great thing about it, he has had such a lot of experience he is able to say look I've tried it this way or that way and he gave me examples of where it worked or failed. I learnt heaps fiom trying out diffierent ways of designing, for each part of the project.

The manner in which most of the mentors introduced multiple design methods or solutions was through rapid sketching of ideas, supported by articulation of the reasons for using or reijecting the ideas being explored. This manner of working also included explanation of the methods or proceduresnecessary to refine design ideas and to resolve emergent problems. When commenting on how his mentor he lped him through the design process by modelling different tachniques and supporting his ideas, Student 8 said:

Having the mentor show you a few different design techniques they use and then support your ideas is really good because it confirms that you are on the right track, they are out there doing it for a living and they know what works.

Observation of Phase Three work sessions showed that the stuilents and the mentors worked logether in this way to exchange ideas, transfer knowledge about the situations being explored, the procedures for addressing emergent prohlems and the suitability of possible solutions presented. Information exchanged in this way was mosily tacil knowledgc, which included design methods and regulatory requirements, as well as procedural knowledge about how to apply heuristic design strategies and problem solving processes. Analysis of Phase Three datashowed that students and mentors logether used 39\% of the work session times exploring multiple designsolutions by applying typical design office procedures which were supported by mentor tacit knowledge of other successful authentic design commissions.

As an example, Student 8 said that he and his mentor worked in this manner at first, then they independenlly developed ideas based on what each of them had expressed when articulating their individual design preferences. Studen 8 commented:
...after we had each said what we thought should be in the design and put some ideas down together, we decided to work independently on sketches or ideas then we compared what we had done and put it together and decided what we could build from it, we did it together and the end design ended up being a mix of his and my likes.

Working in this way supports a cognitive apprenticeship approach to leaming in that the mentor extended to the student the status of apprentice designer by working in collaboration with him on the design. He then provided sufficient guidance to initiate student independent application of design skills, before reflecting on the work produced and working collaboratively to refine solutions. This he did by articulating his views and encouraged the student to do the same, while applying multiple design strategies to the problems that emerged during exploration of the authentic tasks of the design project.

Observation of Mentor 3 working with Student 22 showed that together they used 65% of the work session time articulating their views about design, problem solving strategies and the reasons for working in particular ways. During these sessions, Mentor 3 focussed on providing personal insights into his ways for interpreting design problems and the strategies needed to resolve them. For example, at the commencement of each work session, Mentor 3 spent between 10 and 15 minutes describing in detail the progress of a current design office project, verbalising why he had used particular methods to resolve emergeni problems. He also sketched for Student 22 numerous variations of proposed design solutions, explaining as he sketched his thoughts about the suitability of each, while pondering aloud other possible problems or solutions that
emerged through that process. Working in this way he rcilied his tacit knowledge of urany different design situations and working methods, us well as procedural know ledge of methods he employed to resolve problems emergent from nuthentic projects. When commenting on how Mentor 3 assisted him to acquire design knowledge and procedures, Student 13 said:

What is really good also is that !am now working with Mario (an ex studentemployec of the mentor in this collaboration) and I can sec myself using many of the working habits and design ideas that ! learnt from working with Barty (the mentor) and that makes it casy for me because Mario works in much the same way now. Yeah Barrys office is very similar in the way it docs design work to Marios. They both use similar work procedures with their designs and they organise their time on a job just the same.

When Interviewed during Phase Two, Mentor 3 said that he always tried to talk students through design examples by verbalising the thought processes that he used to create and resolve designs. He also applied this approach to working with students on their owndesign problems. This he did by expressing aloud his thoughts when modelling ways for resolving emergent problems and when coaching students in their use of heuristic design strategies. Student 13 confirmed this aspect of working with Mentor 3, saying:

He was great because he let me put up all sotts of ideas and we worked thirough them He made me discuss and justify everything thtu I suggested, just as he did the same by always saying why he did things the way he did. He was really open about saying what he thought, even if sometimes the things he tried hadn't worked.

Coding of numerous data such as these indicated that most of the mentors used discussion and articulation to explain and defend design ideas or solutions. Most of the mentors also verbalised their reasons for adopting decisions in their own authentic design commissions when assisting students to explore multiple design solutions to address problems emergent from their design project. Some mentors also showed and explained examples of design failures by articulating the reasons for design decisions taken and the reasons why the design failed. In this way, the mentors reifled their tacit knowledge of mulliple design situations, as well as the procedures used to create and evaluate solutions for them. By using these methods, the mentors provid 'ways for the students to acquire declarative knowledge of many different design situntions, design strategies and óesign solutions, as well as procedural k nowledge of ways for resolving similar situatious that they were likely to encounter in their own projects.
nrticulating his reasons for using problem solving strulcgics und design solutions in his owndesign olfice commissions. The se he linked to similar problems that he and Student 13 bud identified in the outhentic design project on which they worked together. An example of how Mentor 3 reificd his incil knowledge of different design situations, methods and solutions for Student 13 is evident in the following interview excerpl:

I strited out by questioning him about how transportable houses arc put togetler. I did this to find out what he knew, but also so that I coald fill in the gaps so that we could both be taking the same language when we started to design it. I asked him things like: How do they fix the walls? How do they drop them on site? How do they do the stumping when do you use a slab base to build on or when to use steel girders ete? Then I talked about the structural problems and how they jack them up and so on, you know, the sort of things that you just pick up with experience of doing these jobs. The process we used in getting him going on the project was to first-of-all discuss generally the problems of transportables. Then I explained in detail how they are dealt with by industry and the reasons for doing things in particular ways. I also talked about industiy standards and my own interpectation of good practice methods. Then I asked him to reflect on those and don't let it stop (the design process). He tuned into that pretty quickly and was soon asking me more questions than I was asking him.

In the example shown above, Mentor 3 began by using questioning to deternine whal the student knew about the design situation at hand, as well as to inform and encourage him to visualise the design situation problems by providing declarative knowledge abjut a number of key elements such as the fixing and placing of the building panels. He then went on to explain other aspects of the situation using lac it knowledge that he had developed fiom experience of similar authentic projects. Finally he discussed common industiy practices and standards, (Then I explained in detail how they are dealt with by industry) llagging these for the student to reflect upon throughout the design process. This I regard as revealing his procedural knowledge of effective design methods typical of his usual practices.

During Phase Three, Mentor 3 was observed using this approach in two work sessions with Student 22. For 40\% of the work session times Mentor 3 used articulation, discussion and sketching to provide tips and techniques (as evident in the example above) to support student learning. He also used similar methods to encourage Student 22 to rellect on design ideas and to express his thoughts aloud.

In the four diflerent design office situations studied in Phase 'Tluee, activities in which students were encouraged to rellect on their work and articulate their reasons for design decisions they had made occurred during 20% of the work session times. From
this and other Phase Two data, I concluded that articulation was used by the students and the mentors to exchange explicit infonnation including declarative knowledge about design situations and working methods. Articulation was also used by students and mentors to express their tacit knowledge of successful design pructices and procedural knowledge required for uppliention of those pmetices to problems thut emerged from authentic tasks. Fior exumple, Student 13 made the following comments:

There are heaps of things that I leamt there with Barry that I now use. Perhaps not everyday, but usually you come across a little problem similar to things I did there and I lind myself thinking of what IBarry has said worked firs that situation and then I try it out for the problem that's there and it usually works, or I can adapt it to suit the situation. I now use things that I learnt from his explanation of his design experiences in my work all the time.

Findings fiom analysis of data about articulation suggested that the students and the mentors used atticulation to:

- explain aspectsoftacil knowledge;
- express declarative knowledge about multiple design situations
- explain procedural knowledge necessary of application of design processes
- explain the use of heuristic design strategies and to provide reasons their application;
- provide insights into decision making methods employed for problem solving and the exploration of multiple design ideas or solutions; and
- reflect on and de fend designdecisions.

Category 1,3 Sketching

Analysis of Phase Two data suggested that sketching was regarded by most of the participants to be equal in importance to that of discussion and articulation ns a tool lor communication of design concepts, design strategics and solutions. Three as pects of the use of sketching presented frequently throughout the overall data analysis askey elements that support learning in the design office situation. They are:

- sketching userl as a communication tool;
- sketching used in design office practices aflecting learning; and
- sketching as used to seaflold student learning.

In this section, findings about the use of sketching as a tool for communication are presented. The use of sketching indesign office practices affecting learning is discussed later in this Chapter in section 3.1.5 and as part of Scaffolding section 3.4.1. This approach was adopled in order to filliy display the extensive role played by sketching in the stud y situation and to demonstrate the diffierent ways in which sketching was used by the study paricipants in many difficent contexts.

Sketchlong as a communication tool.

Sketching was used by all of the study participunts to explore, explain, refine and present design ideas. All of the mentiors said that il was cssesential furstudents to be able to visualise design concepts and to be able to communicate their ideas using sketching and discussion. Commenting on this, Mentor I said:

We are always drawing while talking with them (the students) and they need to be able to read your rough sketches. Unless they can fillow sketched ideas, you need to spell it all out for them and that just doesn't achieve anything.

Most of the students when interviewed said that the mentors used drawings and sketches as an integral part of their work sessions. The following comment made by Student 14 is typical of many others found throughout the data:
> ... listening to his ideas, having him sketch and explain things, that was the most valuable part of communicating with him, that's how we gradually refined the design and worked through ail the problems that came out of the briel.

Student 16 reported similar experiences when working with Mentor 6. She said:

He sketched and talked all the time, in fact he sketched everything rather than describing what he meant. That's where I got a lot of my ideas; then I incolporated them into my design.

From these comments and other similar data I determined that sketching was used for the transfer of tacit knowledge and procedures used to create and develop designsolutions by providing fast visual representations of concept forms and potential solutions. For example, Figure 4 (p. 123) shows how a plan form has been developed using quick sketching methods to show room positions, possible views from a balcony and a main entıy foyer.

Figure 4. Quick sketch for exploring design concepts
At the bottom of the sketch, two different plan configurations have been explored with simple line sketches. At the top of the sketch, the plan forms are more developed with possible room layout being suggested. This use of sketching provided students with procedural knowledge of design methods used by the mentors when exploring multiple solutions. Sketching of this type was used by most of the study participants to explore design variations for the development of multiple solutions and construction details. Sketches produced for these purposes were also used extensively to show the development pathways followed in the design process and design ideas that had been accepted or rejected as part of refining final solutions. The following comments made by Mentor 1 during Phase Two interviews are typical of many others coded about the use of sketching as a communication and design development tool.

It is a lot easier to explain things when you have a pencil in your hand and you just talk and sketch as the ideas unfold. Sketches are far better than just telling someone because they can be very specific and immediate.

Mentor 4 used sketching similarly, using it as a communication tool to encourage the students to participate in making sketches with him from the outset of their working collaboration. In this way he brought them into his culture of practice and design methods through talking and sketching. Of this approach, Mentor 4 said:

When I get a student to work with I take the wad of detail paper and sny to them: OK this is how we are going to go with this, big broad global approach with quick loose sketches to get the big picture. I show them some ideas using sketches, then ask them what do you think. Make them get involved make them tell you their ideas, get them sketching with you so they can express their ideas.

Mentor use of sketching in this manner provided ways fire them to reify their lacit knowledge of diffierent design situations as well as procedural knowledge used in methods for dealing with them.

Ment or 5 said that he encouraged students to sketch and describe their ideas throughout the entire design process. This he said assisted them to develop design strategies "in their head" before committing to hard line drawings. Fast sketching used in this way provided a means for expressing complex design lorms in simple thrcedimensional sketches, rather than time consuming formal drawings. It also demonstrated an andit trail of the students' thinking throughout their exploration of multiple design ideas, which was then used by the mentors nod the students for reflecting on their design processes and solutions, leading to metacognitive ways lor refining them. Mentor 5 described his use of this approach with Student 30 as follows:

Niter we talked and sketched our way through the briel; she went away, did some sketching up of ideas, then come back with them. We went through them with her, sketching and talking about the reasons lor using strategics lor resolving each part.
When she had developed the ideas further, she came back with an end result that she backed that up with sketches where she was able to say look I've tried this and tried that but it didn't work so I have come to this result.

Findings from Phase 'Thrce data showed that the mentors and students toget her used sketching during 53\% of the work session times. Most of that time sketching was used for the exploration and development of design ideas using quickly executed concept style sketches, similar to that shown above in Figure 4 (p. 123), that provided only the minimal information necessary to communicate the ideas being considered. This process involved deelaralive knowledge and procedural knowledge of design situations and problem solving methods. Working in this way, the students and the mentors used sketching, backed up with discussion and articulation to communicate personal design experiences and interpretation of other similar design situations that they had used to develop, explore and refine solutions to emergent design problems. Working in this way assisted social construction ofknowledge by the students through their interaction with expertsusing verbal and visual communication methods.

For example, in the design concept sketch shown below in Figure 5, the freehand sketching of ideas can be seen in all parts of the drawing, as well as oversketching of ideas as new aspects of the design were discussed and explored by the student and his mentor.

Figure 5. Concept design sketch showing exploration of ideas
Some key aspects of student/mentor sketching methods can be seen in Figure 5 (above). Two different roof forms have been explored, one a simple angled flat form shown in the bottom left, the other a curved form shown in the top left and bottom right of the sketch. This over-sketching of ideas is regarded as a common building design practice and was observed in use by all of the students and the mentors during Phase Three. It is noted here because the use of over-sketching was said by most of the mentors to be a successful way for quickly exploring ideas with students in a manner that communicated the three dimensional form of a building with few words of explanation needed. In this way, the mentors reified their knowledge of many different design solutions and communication their tacit knowledge of other successful applications of the design forms being explored with the students.

Findings about how sketching was used by the mentors and the students as a communication tool in the study situation are listed below.
Sketching was used as a communication tool for:

- visual communication of concepts, ideas, problem solving methods and solutions;
- exploration of multiple design forms and refining variations;
- showing a visunl audit truil of design thinking and processes or procedures used in developing solutions;
- providing immediate feedback on concepts or ideas that emerge during design; und
- visual representation of three dimensional complex planer relationships.

Categary 1.4 Entıy to the culture of practice

This Index Tree Four categoty was developed by merging dhta dirst coded using seven IIdex Tree Three calegories, which individually held small numbers of data units judged to be related. These data documented comments made by the st udents and the mentors when discussing how they considered various aspects of the design office culture of practice had affected learning.

Adapting to the design office situation.

Most of the students reported that they hod made changes in their manner 6 speaking, behaviour and dress standards when they began working with a mentor in the design office situation. These changes, some students said, were necessary because they diseovered that the design office setting required diffierent standards of them to those of a TAFE classroom. Most students commented that they needed to develop "professional ways of talking and behaving" to feel accepted by others in the design office setting and this part of their learning. Commenting on howhe adapted to the design office culture, Student 8 soid:

Just gettiig your neat clothes ori and developing your communication, the way you put yourself across. You know, TAFE language is a bit fuck this and fitck that but when you are working in a design office you have to get into work mode and show them what you are made of. It helps you to learn to present yourself, you put your ideas across, you know, learn how to communicate with people.

Most of the mentors guided the students under their dir ection towards appropriate behaviour by involving them directly in work activities that embraced all aspects of their olfice culture. The most common approach to emerge from the study data was mentor modelling of speech and behaviour through interaction with other designers or consultants in the design oflice when the students were there with them. This often happened in student/mentor work sessions conducted in the open work areas of the designoflice where other designers could be observed and heard going about their usual activities. In situations such as this, students were able to see and hear others
acting in ways typical of the ollice culture, as well as witnessing lirst hand interaction between the mentors and others who sought their attentinn during the work scssions.

Some of the mentors used more deliberate ways to involve the students in the office culture of practice. Four stuklents in Phase 'Two and two students in Phase 'Threc participated in authentic commissions being undertaken in the design office situations where they worked with a mentor. This provided them with real experience of working inn design team on an authentic project, as well as working with their mentor on their own authentic project. This type of experience was described by the students as being of greal value to them in that it made them fect like a "real designer" working in real teambased ol fice conditions. For some students who did not participate in the design oflice working commission projects, the mentors included them in other design office activities that provided them with insights into the broad practices of the oflice situation. For example, Mentor la said that he involved students under his direction in all office activities "just like any other employee or apprentice" so as to introduce them to all aspects of the office culture. Commenting on his approach in relation to working with Student 20, Mentor la said:

He had to learn the whole oflice culture warts and all. This gave him heaps of indirect feedback about what we do and how we do it. We did not just sit him down and say this is how it is. He worked as pat of our team, not just as a visitor to a project.

Most of the students who participated in design office activities other than their own project said that it had helped them to feel accepted into the mentor's culture of practice and assisted their learning by providing knowledge of oflice practices and made communication with others there easier. When commenting on how his experience in the design office had been made easier by working with others in the design team there, Student 8 said:

I was a bit nervous at first going into the mentor's design studio but they made me fiect accepted and that really helped me get into working with them, not like I was just a student but as a designer like others on their staff:

Mentor modelling of the use of technical language and team-based collaborative working practices during work sessions was reflected in student behaviour observed during some Phase 3 work sessions. Activities, such as these, in which students interacted with others in the design oflice, took place during $\mathbf{2 5 \%}$ of the work session limes. As an example, when interviewed during Phase Two, Student 14 said that he had
carefilly observed how his mentor tnlked to him and others in the design
office. He commented futther that he used his observntions to modify his own behaviour and longuage when interacting with his mentor nml the other design oflice stalf.

Commenting on how this helped his learning, Student 14 suid:
The guys in the design office don't trik and net like you sec in a TAFE classroom. If you want to get taken seriously in the ollice, you have to be professional in your behaviour and how you talk. When I did that all of the people there accepted me as an equal and didn't talk down to me like you sometimes get when people think you are just a student. I was accepled us a designer and that was great, it helped me to communicate with the people there and I didn't feel like an outcast. I was able to talk to them about my design work and get loads of help or ideas when I got stuck. I didn't tiy to pretend that I knew it all and that was good because I was allowed to make some mistakes without getting bagged. They don't expect you to be an expert on the first day.

Analysis of Phase Three data showed that during 81% of the work session times the mentors extended to the students the status of apprentice designer by involving them in decision making and having them assume ownership of the desigo problems and solutions. Patt of this acceptance into the design oflice culture of practice involved the students in developing a protessional approach to time management and making commitments to getting work done to industry standards by nominated deadlines. Tbis emerged as an impotant aspect of developing appropriate behaviour standards for the students. Student 8 made the following comments on this aspect of his desig nofliee experiences:

The experience changed my presentation of myself. Communications with other people and also time management and being aware that when someone asks for a design, doing it within the time available. In TAFE there is no punishment for not getting it done on time but when a real designer is involved you want to make a good impression, you know you are looking for work and you want to make the best impression that you can. You always want to hand it in on time.

Analysis of Phase Three data showed that during $\mathbf{I I} \%$ of the work session times, the mentors encouraged the students to develop and apply time management schedules as used 1 n commercial design practices. Mentor 3, at the stat of his first work session with Student 22, used the time schedule he was following for a current design offiee commission as an exem plar lor the student to lollow in setting target dates for stages in their collaborative project. In another design office, Mentor I provided a copy of the standard time management sheet created for one of his current projects for Student 25 to use as a basis for the management of her project. In some design offices, the time
management schedules were created using the same quick sketching methods used for developing design ideas. An example of this type of schedule produced by a student is shown here in Figure 6.

Figure 6. Time schedule for design project.

Learning to use the methods and processes typical of the design office culture of practice was said by most students to be an essential part of their assimilation into the design office setting. This they often said was necessary in order to make the best use of the facilities and resources offered there and to allow them to work in the same manner as their mentor by using the technical language modelled by him for communication. Mentor 1 said of his office practices:

> We talked ubout why our olfice docs it this way, its the practicalities of such things that can shape the way we present our designs and how he had to present his.

When I observed Student 24 working with Mentor 6 and others in that mentor's design office, it was clear that he was treated as a fellow designer and was given respect for his contributions to his own student project, as well as other in-house projects about which his views were sough. Thls, Student 24 s_id in I most observation session inter view, boosted his confidence "enormously" anish lped him to feel empowered to express ideas openly even if they were his "mos" tdifal wacky" ones. He said that in so doing his work become more ad enturous, casetive and innovative. When discussing how being acce pted by his mentor assister his tearning, Student 24 said:

What was really great about working with him (the mentor) was that he treated me like a designer, not like I was just a student there on prac'. When I put ideas, even if they were a bit off the planet, he would get excited by it and throw in some of his own that were just as wacky. That made me feel like I could try just about anything and so 1 then came up with some pretty ianc satitive ideas. We didn't use too many of them, but he still encouraged me to keep pushing the edges out.

Data such as these led me to conclude that working on authentic tasks, using practices modelled by mentors gave the students confldence to explore new and innovative ideassimilar to those they had seen be ing successfilly implemented by the mentors in their authentic design commissions. This assisted the students to develop their problem solving ability when dealing with problems that emerged from their own authentic pro ject solutions and when using methods they had seen modelled by the mentors.

Analy sis of Phase Three data showed that most of the mentors involved the students in activities similar to their own design problems during 54% of the overall work session times. This they did by basing all design problems used on authentic situations drawn from their own design office commissions and the students' authentic design project. Most of the students interviewed during Phase Two said that working with a professional building designer on authentic projects gave them more of a passion to succeed because of their pereeived accountability to the mentor and to the profession. Mentor 2 said that he sought to lift student interest in their design work to the highest level so as to "get the most out of them". He described his approach as follows:

What I was hoping to get back from him was for him to be wanting to get involved more and getting into it not just as a task but more as an obsession.

Mentor 10 also commented on his office practices approach to leaming. Il e said:
The key to success in building design is to enjoy what you are doing, to have a real desire to do it.

My obser vation of this aspect of students working and learning with a mentor in the design office led me to conclude that most of the mentors motivated the students to develop a passion to succeed in design and to be accountable to their mentor and other team members. Analy'sis of Phase Three data coded about this aspect of stixderd learning showed that during 54% of the Phase Three work sessiontimes, students were engaged in activities in which they showed excitement and confidence in what they were doing. This supported what some students and mentors said had occurred during Phase Two.

For example, Mentor 4 described how he deliber ately sought to motivate students in order to engage them in the design project. Mentor 4 said:
... within the first few minutes if they haven't been excited I make sure that they are. The excitement is very much about the self and self motivating, how you feel about yourself and this industry, for me its about what it gives me and has done over the years of being a designer.

When discussing how he used the authentic design project to develop student enthusiasmhe also said:

The project for the student becomes a story in itself and they usually get a bazz out it, they enjoy it and that's what needs to happen, they need to teel a part oft he process not just doing it.
When a student comes in here I try to first of all inspire them and give then a stiucture to work with that may take them on that journey of discovery and lead them almost anywhere they want to go, you know, leave the destination open.

Mentor 4 went on to say that he sought to develop team spirit as follows:
...we now have them on board, they are part of a team and they want to win. The enthusiasm is really important I dont want them to be a ipeetator. OK, then they can go beyond what they are expected to do! That student was doing things he had never done before based on what I had shown him. The environment, the whole approach he loosened up, he was so excited, that was my approach.

Although not all of the mentors sought to motivate the students in this way. Findings here have suggested that all of the mentors made conscious effiot sto motivate and encourage the students by demonstrating their own preparedness and enthusiasm to work with them. The level ofdedication and enthusiasm shown by the mentors for tack ling the student design project surprised some students and inspired them to give
their best ellort to the lasks. For example, the following comments by
Studenl 9 are typical of muny similar duta coded about how mentor attitudes and enthusiasm led to student leaming.

I was really pleased to see that a designer of his standing hud taken out his precious time to work on something tor me so Ifill really special thut he had done that.
As soon as we met each time we both got straight to the point und didn't waste any time. I just wanted to put in that bit extra to make the most of what I had learnt with him. Had I just done this project by myself I think I would have just bashed out the first idea of a design and sketched it up without really working it through and knowing that it was the best solution for that brief This was a great working experience and I learnt heaps in a short time about design and how the industry goes about getting projects done in an oflice. He inspired me to have a go and it wasn't all just me sponging on him, in the end I lelt that I was able to come up with ideas and solutions using what I had learnt.

This led me to conclude that student confidence was boosted and they felt enthusiastic about working at their best level when mentors demonstrated their willingness to accepl their ideas and were keen to work collaboratively in developing design solutions with them.

Other design office social interaction skills.

Most of the mentors indicated that they considered successful design practice required more than just problem solving skills and innovative ideas. Some mentors said that being able to work in the everyday culture of practice of the design office also required skills in communicating verbally and visually with others. They also commented on the need for building design students to develop what they described as people skills in order to work successfully with a mentor or a client. The following comment made by Mentor la is typical of others made by most of the mentors inter viewed during Phase Two of this study:

They (the students) really must develop people skills because this industty is all about selling your ideas to people who often cannot read technical type drawings. If you can't communicate successfilly one-onone with a client then you might as well forget it, you won't make it in this industry.

Being accepted as a designer by a mentor and others in the design office emerged as an important aspect of student learning. It assisted students in developing working relationships with design oflice personnel who provided a constant source of information and support for them throughout their design office project experiences. This social construction of knowledge emerged as a key element of student learning in
the design office setling. Student learning was assisted by their observation of mentor interaction with clients and other professional consulkants. Activitics like these provided n model for students to learn what some mentors described as essential "people skills" as used in design ot lice practice and promoted student enthusi:sm for working with others in the design selling.

Social Contact,

Most of the mentors involved also on the importance of the studens' leurning from the outset to relate socially, as well as fioma work based perspective, with all those with whom they have contact through the design office. Even casual contact in the office, on site, or over the telephone with clients, consultants or other design staff, demanded good communication skills. This wasmade clear to many students starting out to work with their mentor and was presented to them as a necessary part of thcir learning to be a building designer. Mentor 10 made the following comments:

In aay business you are selling your services and you need to have an edge to survive and part of that is building up a relationship with the people you work with and that working environment and culture is what you build your business on and communicate through. Business sort of melts into the social thing and most of the clients come back again when they get to know you and the way that I work. Social interaction is very important in making those links in the network that business relics on to survive.

Student 14 when discussing how Mentor 10 included him in the social activities of his design office and how collaboration with others and contacts he made in that setting helped him in his work said:

I tend to work independently but it was really good to work in a team approach and sec how others do il, you get a lot more ideas and sec how other people solve things. Being with Jack gave me a good idea of what it is like to be under a boss and to have others arouncl you who you have to be a bit carefill of how you talk to them and what might be OK in the office. They had social breakfasts and lunches there and that was good to be able to meet and talk to some of the people who you would sec around the office but not know what they did. It was a good way of tinding out who to ask when you got stuck or just puting a face to a name that had come up when I was working with Jack (the mentor) and he mentional someone i should latk to.

Some of the mentors in larger design practices noted that social interaction between colleagues helped to break down barriers created by the management hierarchy and this opened the way for a great deal of inciklental learning or case in communication in the work place. Findings from analysis of Phase Two data have suggested that student
learning was enhanced when they worked in design ollice situations in which they could interaet with other designers und observe them in netion. In some situations this led to others in the workpluce providing advice nnd support to the students, or as in some instrmees, merely being able to observe other designers in action provided models upon which they could constract knowledge. Commenting on the importance of having a wide contact group to assist st udent lesming, Mentor 4 said:

You need the interaction with others to bounce ideas around und sometimes it is better that students go into a large work environment where they enn get ideas from many people rather than just one.

Student 13 supported this aspect of learning from others in the design office. He said:

Just talking to some of the others there and getting their ideas on things and a lew hints was great.

In some offices the interaction between staff is more structured than in others.

Mentor 5 said:

Where I used to work everyone would stay back at the end of the day and have a lew drinks and you would get to know everyone a lot better. That made it a lot more comfortable working with them because you telt you were able to talk easily with them abo ut work stull: Quite a lot of design problems got sorted out during those times because it was relaxed and informal and you could get together with people that during the workday limes might otherwise be out on jobs.

Some of the students said that by participating in informal or casual exchanges with others in the design olfice, they had learnt much about the design and problem solving methods used by them. In the fo ur design office situations used for the observation of student/mentor work sessions in Phase Three, all the mentors included the st udents in activities with others in the work setting. These activities included participation in conversations with consultants from other disciplines like engineering, design sessions with other designers in the olfice, social interaction with elients and others during which work matters were discussed. Through their involvement in activities such ns these, students were exposed to many dilficrent aspects of the design office culture of practice and were able to experience lirst hand the manner in which other participants interacted. Having personal experience ofthe broad spectrum of design olfice activities assisted st udent entry to the culture of practice and provided learning opportunitics based on authentic situations with all Ihedynamics ofdesign foc ussed people.

Student entry to the culture of practice and development of the ir social construction of knowledge took place by:

- students adopting a professional munner of spenking including not swearing and the use of a lechnical vocabulary; dress standards based on smart casunl wear as typical of the design office;
- sludents participating in the broad scope of des ign office activities;
- observation of others in the design office:
- using job umnagernent schedules as modelled by the mentors;
- being accepted by the mentor and others in the design office us a designer; and
- development of a passion fordesign and a desire to achieve professional status is modelled by the mentors and others.

Theme Two: Attitudes

The manner in which knowledge transfer and learning were influenced by the study participants' attitudes lowards different aspects of the learning situation and events is reported here. Data were coded in the following three Index Tree Four categories:

2.1 Comffdence;

22 Team-based Learning; and

2.3 Ofice expectations.

Category 2.1 Confidence

Most of the students indicated that before starting work with their mentors, they were concemed that they did not have the skills to design at the levels expected of them. This, along with other concerns they had about working with an expert in a commercial design office setting, caused some of the students to feel a lack of confidence and anxiety at the possibility of be ing embarassed or ridiculed for their lack of skills. Establishing conlident attitudes towardst he mentor, themselves and the design office learning situation emerged as on important step for most of the students and the mentors when commencing the design project working collaborations.

Most students reported that their early lack of confidenee in their own abilities was quickly dispelled when they found that the mentors treated them as fellow designers and were preparal to accept their design ideas. For example, Student 16 commented that Mentor 6 had encouraged her to speak out in work sessions to present her design thoughts and this had given her the confidence to interact with the des ign office staff. She said:

I was a bit nervous al lirst going into the mentor's design studio but they made me feel ancepted and that really helped me get into working with them, not like I wus just a student but is u designer like others on their statf:

Throughout the data other comments similar to these were made by most of tice students. From these I detennined that mentor acceptance of students as fellow designers boosted student self confidence and helped to develop positive attiludes that patentially assisted their learning. Most of the students reported that they were inspired by working with a mentor and that the duties and respansibilitics required of them in the design office setting had led them to taking a more positive outlook towards their studies in general. When commenting on how working with Mentor 6 had boosted his confidence, Student 24 soid:

We worked together on the design all the way through. He was great at giving me support and tips on how to make it all work, but he did not tiy to make it his design, or to make me change anything so long as I could defend it. I felt more confident with it as I worked it througl because he kept an eye on things and just chipped in when it was needed. In the end I felt satislied that this was my work and that I had done it as well as any of the guys in that design ollice might have done.

Comments such as these led me to conclude that student learning was assisted by baving the mentor take a guiding role with the design project while also encouraging the students to have a sense of ownership of the design. This assisted the students to explore different ideas sale in the knowledge that the mentor twas keeping a watchfill eye on them to avoid serious error being made. I concluded also that mentor practices that assisted student confidence led students to become more adventurous and innovative with their design ideas.

The following comments by Student 13 suggest that having his mentor show conlidence in his ability to complete the design project assisted him to learn more about design by having the confidence to tackle the tasks with enthusiasm. Of this Student 13 said:

Because he (the mentor) was so confident about doing the design with me, I just wanted to put in that bit extra to make the most of what I had learnt with him. I tried out all sorts of different ideas because he encouraged me to take a risk with design rather than just go with easy solutions. If had I just done this project by myself I think I would have just bashed out the first idea of a design and sketched it up without really working it through and knowing that it was the best solution lor that brief,'

Comments such as these were mack by most of the students when discussing their design office experiences. From dnta such us these 1 concludet that most mentors motlelled self-conlidence and confidence in the students' ability to achieve their design goals. This approach I regard helped to fuster in the students positive attitudes and enthusiasm to achieve well. When comparing Phase Two data :tbout what the students suid they had learned about design from the mentor s, with the design solutions shown in their drawings, it was evident that they had developed innovative design solutions that were accepted by the mentors to be of industry standards. From this, I concluded that a key student learning outcome to emerge fiom mentor practices aimed at fostering enthusiasm and confidence was student innovation and striving lor excellence in their design solutions. This aspect of student learning was explored further in the analysis of Phase Three data.

Aflording students the role of designer was a common practice amongst the mentor s and this led to the students developing self-confidence and positive attitudes towards giving their best efliort to the work at hand. During 85\% of the Phase Three work session times, Mentor 4 gave Student 23 the leading design role in activities they undertook together. This approach facilitated an atmosphere in which the student and the mentor were observed to be interacting freely in a relaxed manner, exchanging ideas and each contributing to the discussion and exploration of design concepts. When discussing how he encouraged Student 23 to be confident throughout their collaborative design activities, Mentor 4 said:

> The project for the student becomes a story in itself and they usually get a buzz out it, they enjoy it and that's what needs to happen, they need to feel a part of the process not just doing it. If they are not excited by it when they first come in, then I make sure that they get excited pretty quickly, I get them feeling confident in me and in themselves to get the job done.

Student $\mathbf{2 3}$ commented that the enthusiastic approach taken by Mentor $\mathbf{4}$ in their work sessions gave him confidence in the mentor's ability to resolve problems that emerged during the development ofhis design project. Mentor 4 described his approach to encouraging confidence and enthusiasm as follows:

[^2]In each work session, Mentor 4 gave non- judgemental feedback and posilive reinforcement to Student 23 firr the ideas he presented. For example, when Student 23 showed Mentor 4 sketches of design ideas he had developed independently between their work sessions, Mentor 4 immediately praised his efforts. lle did this by singling out parts of each of the design ideas presented for special comment, then linked these to the design project at hand by over-sketching to demonstrate how they might be: applied. Ideas preserented in this way by the student were examined and used either in parl or in liull depending on their suitability and on other fisetors such as practiculity fur constraction, aesthetics, cost and lise like as discussed by the mentor during their evaluation. Using this opproach assisted Student 23 to learn how und why Mentor 4 used his tacit knowledge and procedures to refine design solutions as applied to the student's own design project.

Working with students in this manner I regard as in keeping with the principles of cognit ive opprenticeship by providing ways for the mentors to use their tacit knowledge to evaluate student works while using articulation to explain their reasons for accepting or rejecting design elements or solutions. This approach also assisted learning through coaching in ways similar to that repotted by Carver, (1995, p. 207) who contends that it involves the "teacher keeping tabs on the students as they work independently so that guidance, redirection and correction can be provided as necessary".

Mentor 4 said that he used praise and positive reinforeement to "bring out the best in the students" and to eneourage them to explore creative ideas without fear of embarrassment. Commenting, at the end of Phase Threc, on this aspect of working with Mentor 4, Student 23 said:

What really helped me washaving him treat me like I was a real designer and let me put up all sorts of ideas that were sometimes a bit off the planet. We would go through them together and he'd say what might work and what might be a bit hard to build, but always giving me reasons for his ideas. He never put me down or laughed at my stun!. I felt like I could have a go at all sorts of things and rely on him to keep it practical "cause he had been there before me.

Analysis of Phase Three data revealed that during $\mathbf{8 1 \%}$ of the work session limes, students participated in activities in which they took the role of apprentice designer and showed conlidence in their vertal exchanges with the mentors when presenting, discussing and exploring design ideas. Feedback from the students to the mentors also emerged as an important aspect of developing conlidence in their
collaboration. Commenting on this in relation to working with Student 13. Mentor 3 said:

Burry was very good at giving me feedback on what he was thinking and that really made it (the team collaboration) work and that was great.

In Phase Three, on avcruge, the mentors spent $\mathbf{3 6 \%}$ of the work session times analysing student works to provide feedback, while spending 42\% of the time to inspire new thought based on what was emerging from the design collaboration. For 34% of the work session times, the mentors used questioniag to encourage students to explain their reasons for using particular design procedures or solutions and another $\mathbf{2 0 \%}$ of the work session times to have the students preseat their design solutions.

The experience of working with a design mentor was said by most of the students to give them confidence to explore ideas otyside of the ways they were used to in their TAFE courses. Student 9 said that he had a great sense of satisfaction at having worked successfully with a professional desigaer and haviag been treated as a designer. He expressed the view that by gaining confidence ia his ability to design, he had learned to be more creative and adventurous with ideas and had been inspired to achieve excellence in his work geacrally. Findings from the studydata suggested that student leaming in a design office situation is assisted when mentors encourage positive, confident attitudes towards working collaboratively with students and provide reinforeement for creative, innovative ideas even when they may have limited application to the tasks at hand. Sttident enthusiasm for design was enhaaced when their own design ideas become part of solutions that are supported by mentors and regarded by them to be of design olfice or industry standards.

Feeliag a sense of achievement and satisfaction at having successfully completed a design project with a mentor was said by most of the students to have given them confidence and a desire to apply what they had learned to new design challenges. This emerged as an important leaming outcome. Producing a design that was almost entirely their own work and having that accepted by a practicing building designer led to student satisfaction and validated their learning. Many commented that in so doing they fett conlident and empowered to take on other design challenges. Student 8 said:

After working with a mentor you get the satislaction of knowing that you have completed a real project and done it well because it has been assessed by a real designer.

Student 9, when commentiag on how he had developed confidence and a positive attitude lowards his work as a result of working with his mentor. said:

I feel more conlident nnd positive nbout what I am doing. Befi)re that I would do my designs and I d think I would wonder if this will work und I'd think no that's just a shil idea, but now he has broadened my horizons a bit and now I think hang on maybe that might work and I'll try it out.

From comments like these and other similar duta, I conclueled that students developed conlidence in their use of crealive design methods ant autonomous ways of applying heuristic design strategies und problem solving met hods modelled by mentors in their collaborative work sessions. Student development of sclf. conlidence emerged as an important nspect of their Icurning because it assisted their progr ess towands independent or autonomous use of design knowledge and procedures.

Findings that emerged from analy sis of the study data suggested that student learning was assisted by them having cosfidence in their mentor and in their own abilities. The lollowing aspect of working with a mentor in the design olfice situation emerged as assisting learning by developing student conlidence:

- being accepted by the mentor as a lellow building designer;
- having a mentor model confidence in the student's ability to resolve complex design problems;
- mentor use of non-judgemental, positive reinlorcement, in feedback when assessing, coaching, or scalfolding the student's work;
- mentor support for student presentation of original ideas and design strategies;
- mentor encouragement of reflective practices when self assessing design ideas;
- mentor support for student delence of ideas; and
- autonomous use of design strategies and procedures by students as modelied by the mentor.

Category 2.2 Tcam-Based Learning

Analysis of Phase Two data indicated that most of the mentors used a teambased approach to design, in their everyday practice and when working with students. When commenting on how he encouraged students to participate in a teant based approach to design Mentor 4 said:
... they have to be part of the team and it doesn't matter what port they plny at first but you have to drag them into the gane and give them a go
... if you can get them to feel OK about working with others and baring tlieir soul, then they can learn from their mistakes and from others by being part of the process, not just a spectator.

Some students said that although they had worked in small groups on design projects at TAFE, they mostly worked individually on design developments, with didactic instruction from lecturers shnping their design solutions. Student 8 expressed
the view that such an approach lostered an attitude of "waiting fior answers" rather than working it out with other group members. Student 8 said:
... with n leacher relationship you are too spmon-fed ideas, whereets you put your ideas across to a mentor you are making yourself open to criticism and really testing your ideas. It makes you work a lot hutricr lor a good solution when you know that you have to deliend it to others in the design office.

These comments are lypical of many others that emerged from data collected from inter views with students during Phase Two. Most of the students said that they changed their approach to design from the individual-oriented instractional methods used in TAFE classrooms to using the team-based methods modelled by the mentors. Data aboul this change were coded along with other data about how students used their interaction with design team members to test ideas and to learn new ways for refining them. This was done in order to determine student learning outcomes when using tenmbased design methods.

Findings that emerged from data coded in this way suggested that student participation in team-based activities with professional building designers working on authentic commissions, as well as the student projects, helped students to construct their knowledge of design and to autonomously implement design procedures modelled by the menlors. For example, Student 14 said that before working in collaboration with his mentor, he had always laken an individualistic approach to his design work and lad not experienced the team-based approach of exploring and refining design ideas, as modelled by his mentor and others in the design office. Commenting on how he now preferred a teambases approach to design, as a result of working with his mentor, Student 14 said:

I lend to work independently but it was really good to work in a leam approach and see how others do it, you get a lot more ideas and sec how other people solve things.

An example of how a design was changed from a simple rectangular form to having angled wings is shown in Figure 7 (\mathbf{p}. 142). This sketch shows a student design over which a mentor had sketched rooms at an angle to make use of views ond to create a coustyard space to provide weather protection for windows on the side of the building subject to the prevailing winds. The angled section drawn in heavier, darker lines show the mentor's oversketching. This is how most of the mentors introduced new ideas to the students and at the same lime kept the basic form of their original design concepts.

This illustrates also the team-based methods used to develop the student's design solution.

Figure 7. Sketch showing introduction of ideas by mentor

Most of the students suggested that they felt a greater sense of accountability when working with a mentor and that the team-based nature of the working collaboration encouraged them to give their best effort to the tasks. Some said that they did not want to "let the mentor down" or to appear to be superficial in their approach to the work. Most of the students said that they sought to make the most of their collaboration with the mentors and to achieve excellence in design. When discussing how her mentor had inspired her to be confident and creative with design, Student 16 said:

Right from the first time that I went there he made it clear that we were going to work together as a team and that he was keen to see my ideas going into the design. I was not confident at first to say what I really wanted because he was the expert and I was a bit shy and thought that he might laugh at my ideas. What was great though was he encouraged me to throw in all sorts of ideas just as he did and we would sort them out together and sometimes have a bit of fun with some of the crazy ones that we each came up with. After while I felt confident to try just about anything and that's how I came to develop my final design. Because he encouraged me, I felt really keen to come up with something special. In the end we were both a bit surprised with the result. It was tops.

From datasuchus these I concluded that student leaming was
enhanced when mentors applied teambased design practices to working with them on authentic projects and demonstrated their commitment to excellence with un expectution for the student to do the sume. Other designers and associated discipline consultants in some of the design olfice situations studied here also contributed to student leaming by offiering assistance and adv ice when needed. The community of practice found in most of the tenm-based des ign office situations in which this study took place provided a culture of practice in which students were able to observe nod participate in activities in which design knowledge and methods were applied in the context of the domsin.

The following comments made by Student 8 arc typical ofothers made by most of the students who worked in team-based design office situations.

I went in there with my idecas already sketched out but he ssid it was better lior us to work logether and work out the design using my ideas and his ideas. I was used to just doing it all myself, but when I worked with him (the mentor) and some of the others in the olfice I got a lot of ideas from them and also I learnt new ways of sorting out design problems.

Student comments such as these were supported by other similar data collected during Phase Two interviews with mentors, most of who said that the building design indusiry is run on teambased methods. The following comments made by Mentor 11 are typical of other data provided by most of the mentors when commenting on the tearn-based nature of their working practices and student nentoring approach:

Inthis office we do everything as a team. Every time we do a job we are going through a design process and when students come here they become patt of the team and they learn the oflice practices and ti:e way we do things. Right from day one they become a part of the team in the office and they stat doing parts of the jobs io hand straight away and their own design project is just one part of that. That's how they learn to design, real hands on experience as part of a team; that's how the industiy works, they need to know that to survive.

Most of the mentors similarly commented when discussing the role of teambased design methods in student learning. Other data showed that even in design off ice situations where there is just one designer working, team met hods still apply because building design requires input from many other consultant disciplines. This means that a building designer working "alone" is still part of a wider community of practice that may include engineers, electrical consultants, plumbing consultants and a host of others. Stıdelxs working in office situations where they had contact with other designers or consultants were able to discuss with them design strategies and acquire knowledge
necessary for the application of them to emergent problem situations.
Commenting on this aspect ofintroducing leamwork methods to Student 29, Mentor 12 said:

My design olfice is a one-man show, but I rely on up to 10 or more other consultants on every job to deal with stmetural problems and a host of other specialist areas of the design. When Kerry came here to do her design project she got quite a surprise at finding that I did not have all the answers, but they were there if she got on the phone or walked into Ron's office next door. She discovered what it means to be part of a design team each time she needed specialist advice or another opinion.

During the video recorded Phase Three work sessions, the mentors in three of the foar design office situations assigned other members of their staff to become part of the design team to assist with mentoring students under their direction. In the fourth office, the mentor did not have other office stalf; but instead on two occasions ineluded consultant experts in the work sessions to provide altemative points of view or expert adviee about particular aspect of the design being developed by his student. By having these arrangements in place, all of the students in Phase Three were supported in their design developmenl by a wider community of experts operating using a team-based approach organised by the mentors.

Having mulliple points of view and team-based methods for resolving de sign solutions as provided by the mentor and other experts assisted students to learn design methods in the culture and context of everyday building design practice. Being part of the design leam and sharing ownership of the emerging design with others also led to students feeling a sense of ownership of the design outcomes and enhanced their desire to contribute in the work sessions. Commenting on this aspect of working in a teambase manner with her mentor and others, Student 25 said:

All the way through I fell really well supported because there were always at least four of us in the team working together on the design. Sometimes the leam make-up changed when one or other of the guys were off on other jobs and someone from the office would stand in for them. That was really good too because they would usually have difficerent ideas or little ways that they liked using for design and I pieked upon them and used some ofit in my linal project. When I worked in the office with the others, I often saw and heard them working through similar problems that I had in my design. They did it just like in the sessions I had with my mentors; they all helped each other and were constantly debating how different things needed to be done and what you needed to know about building methods to do it. There were some pretty hot discussions also and I learnt a lot about how the office works fiom that too.

Team-based design office experiences like those described ubove by
Student 25, assisted student learning by helping them to acquire declarative knowledge such as regulatory requirements, as well as explicit infirmation about building methods and materials. Other design information about situational fictors wus ulso learned from others when they expressed their tacit knowledge of successfitl design practices und procedural knowledge about the opplication of design methods or processes used for resolving problems in design.

In Phase Three, activities in which students worked with the mentors as uteam were observed to take place during 53% of the time and with others in the design office during $\mathbf{2 5 \%}$ of the work session times. Learning to become a team player in the design office situation was noted by some students to be a valuable part of the overall experience for them. Commenting on how working with Mentor 10 had helped him to learn about leam-based design methods, Student 14 said:

Being with Jack gave me a good idea of what it is like to be under a boss and to have others around you. Everything that I did there happened as part of a tean, either with Jack or one or more of the others in the olfice. Although I did work alone some of the time, there were always others working near me who I could ask advice ol. Sometimes just listening to them talking together about problems in their own design jobs helped me a lot also. I could see from what they were talking about how they sorted out problems like the one's I had in my design project. That helped me a lot.

Being part of the design team and being part of the community of practice in the design office provided Student 14 with insights into many different aspects of design practice the wider context of the construction industry. This is mentioned here because he commented firther that having a positive attitude lowards sharing design ideas with others helped him to acquire knowledge about their design experiences and problem solving strategies which he then used in his own works. Much of what took place during the work sessions involved the mentor or others modelling their design practices, then coaching the students in ways to apply what they had demonstrated and explained along with examples of outhentic situations they had resolved using the methods being presented.

The tollowing comments by Mentor 7 when discussing how a student under his direction was introduced to his leam-based design office methods are lypical of many others coded in this category. They sum up several aspects of team-based design office experience that assisted student learning.

When they are working with the mentor they will pick up design ideas but mosi'y they pick up techniques lor doing things, particularly different
ways of presenting things as we do here in the practice. She was right there in the office working alongside the guys as they produced the jobs. I sat down with her and some of my other design stafl and got her to go through the drawers and have a good look at how we do it here.
She saw it happening (the design process) fiom a three-sheet project to a twenty-five-sheet project.
We were mostly trying to get her to understand the basics of working through a design brief as we would do it here. We showed her the stages of a project fiom the fr echand concept drawings and sketches, then to the CND sketch, then to the working drawing and specilication. We also ran through how we develop the perspective drawings fiom the CAD wireframe model. (Mentor 7)

In this quotation, Mentor 7 has made note of several aspects of team-based design office learning. First, he comments on how students "pick up design ideas" and presentation methods fiom others in the design office. This I regar das leaming lacit knowledge and procedural knowledge. Then, he mentions the use of "the drawers", meaning the file drawers holding copies of "office set" drawings used to document the development and presentation of authentic olfice commissions. Information contained in those "ollice set" drawings when explained by others in the design office team, I regard as providing man y difficrent learning oppottunities. These include: declarative knowledge of design situations, tacit knowledge based on the assisting mentors' experiences with those projects and procedural knowledge presented through explanations of the methods used to develop design solutions, as well as the reasons for using those methods and accepting the design outcomes.

Findings aboul how the use of team-based methods in the design olfice situation assisted student learning are as follows:

- providing students with opportunities to work in design olfice situations where they can witness and participate in all aspects of usual design olfice practices including exchanges with expert consultants in disciplines associated with building designer and construction;
- making available design office personnel to ensure continuity of support in work sessions when the principal mentor was not available provided students with a community of practice having multiple sources of knowledg; and expertise to assist learning; and
- including students in teams working on outhentic design office commissions in ways that allow them to make a contribution to design solutions and to the processes used to develop them.

Categoty2.3 Office Expectations

Amilysis of duta, from student joumals and Phase Two interviews, indicated that most of the students and the inentors entered into the authentic design project having expeclations about their own and each other's performance and responsibilitics. Most of the mentors expressed intentionality in their approach to how they would use the collaborative work situation to assist students to learn how to create a successfinl design solution. Similarly, most of the students said that they had set out to make the most of the learring opportunities they expected tolind when working with a mentorin the design office situation. Findings that emerged from coding data about how participant attiludes affected student learning in the design office situation are discussed here using the categories Student Expectations and Mentor Expectations.

Student expectations.

Most of the students entered into their work with a mentor with a very positive outlook and were rewarded to find that the mentor viewed their collaboration similarly. The following comments made by Student 13 reflect similar views to that expressed by all of the students who paticipated in Phase Three of the study.

When I first went there (design office) he (the mentor) told me straight out that his main aim was for the students to get the most out of it. He was not very concemed with winning any prizes, his main concern was for the student to get benefit out of it and any real work experience is good experience. That's my outlook as well so we had the same goals in mind.
^nalysis of the study data suggested that the students unticipated that the mentor woald be focussed assisting them to learn to design. This had encouraged them to enter iuto the collaboration with a learning focussed attitude. Student 13 commented:

> I knew before I even met him that it was going to be good experience and a lot of work, but having such a chance to work with a real designer in a real office environment was just what I wanted. Having him to set the eguidelines was what I had hoped for becouse it ollowed me to get the design done, but without having to work on a whole lot of stuff that was pertaps not necessary.

Most of the students made comments, in their journals and when inteviewed, that showed that they had very positive expectations about working with a mentor and this assisted their learming. Student 14 said:

This was a great working experience and I learnt heaps in u short time about design and how the industry goes about gelling projects done in an office.

Student 16 also commented that allhough ner vous about working with al mentor at the start, her attitude changed and she became more conlident in her own abilities as their working relationship developed and she saw that the mentor had a positive view of her skills. Of this aspect of her learning Student 16 said:

He really put me at case by accepting my ideas and helping me to develop them. I felk like a real designer then and it was really good to know that I had some knowledge and skills that others out there did not have and they sought my views, that me feel more conlident in my own ability to do the work. I went there anticipating that something special would come out of working in that office and it did.

Findings from analysis of data coded in this category indicated that most of the students went into the student/mentor collaborative project having a positive outlook and a preparedness to dedicate themselves to the work. This led me to conclude that having a positive allitude to working with a mentor in the design office situation assisted student learning.

Mentor Expectations

When interviewed during Phase Two, most of the mentors said that they expected the students to be enthusiastic about working in a design oflice setting and that the students would make an effiort to capilalise on the learning opportunities available there. In recognising this, most of the mentors set otd to show their willingness to provide a valuable learning situation for the students by preparing resource materials and clearly defmed procedures lor developing their design skills and knowledge. For example, Mentor 3 said of his approach:

I knew that the student coming to the office was working as well as doing his TAFE course, so he was pretty hard pushed. I took the opportunity to operate prole ssionally and do my homework. First of all I made myself lamiliar with the brief so that when he came to see me lor the lirst time he could see that I was prepared for him and I could immediately begin guiding him through the design process. I expected to get the show on the road straight away and I wanted him to know that he was expected to perforn right fiom the outset also. If he saw that 1 expected that of myself; then he might also expect it of himself. That's pretty much what happened. He got straight into it as I had hoped.

The approach described above by Mentor 3 was similar to that used by most of the mentors when trying to establish work-locussed expectations with the students. One
view expressed by most of the mentors suggested that mentor modelling of positive att itudes towardst he wurk led students to adopt similar attitudes when replicating the mentors' work practices. For exumple, the following cummenis made by Mentor 10 are regarded by me to typify the upprouch taken by most of the mentors:

> I knew that this wus a voluntary project und I didn't want to put the student under too much pressure because he had other assignments to do also. I did expect though that during the times we worked togelher that he would be lotally focussed on the project und follow through on the advice I was giving. I found that by showing him I was centhusiustic about the project und by making clear my expectations of coming up with a good solution, he responded well by selling his own goals to mateh mine. As the projea progressed, he set himself even higher expectations and came back with a lot more than I first thought he could achieve.

Analysis of data such as these led me to conclude that when the mentors expressed to the students the ir expectations about their responsibilities or performance in the design collaboration. the students responded by aspiring to meet them. $\Lambda \mathbf{s}$ suggested above by Mentor 10, this encouraged students to aspire towards achieving higher levels of performance ir: the work session collaborations. Some mentors began with high expectations of student performance and this resulted in the ir using work session practices that pressured the students to extend themselves. For example, Mentor 7 said:

We put a bit more pressure on them (the students) to be creative. We assume that they have leamt a certain amount of design skills at TAFI: and have got the basic where-withall to put together some sort of plan. So we get straight down to design so ns to get several quick solutions together lo choose from.

Even though Mentor 7 was keen to pressure the students in order to get them quickly into using his design strategics, he said that he did this knowing that the y also needed to be well supported in their efforts. This was necessary in order to "not stifle their creativity" and needed to be done in ways that built their self-confidence. Of this approach he said:

Most of the time the ide as are there but they (the students) are too shy to say, "this is what I think". They have this expectation that you will do it all lor them. Some of them will express their ideas, but others are not confident to speak out. You have to first-of-all get them to the point where the yare conlident enough to speak out and to back up the ir design solutions with reasons why they think it is good or will work. I build that into my teaching strategy with them. I know that at first they will be a bit quiet and I'll have to create that expectation of involvement in them.

Most of the mentors said they expected the students to be at leust an equal contributor to their collaborutive work sessions and design solutions. When anticipating that the students may not at first be prepared to take an equal role in the design development, some mentors planned their activities to ensure the students engaged with the tusks from the outscl. 'This approach, which was common to nost of the mentors, was centred on creating for the students the expectation that they had to come up with most of the answers in the work sessions. The lollowing comments by Mentor 10 are lypical of what most of the mentors said about this aspect oftheir work with the students in the design oflice situations:

> I decided that I was not going to just give him answers on how to do it all, I wanted him to do the work for himself. I said to him what do you think that they (the clienl brief) are asking here, what do they want? I tell them that you should always reflect on the work that you do and look to how you might do it better next time, you should never give up on try ing to improve anything particularly in the design business.

Data such as these led me lo contend ibat most of the mentors made a conscious effiort to influence student expectations and to loster positive attitudes towards design practice in order to assist learning, Analysis of data collected from student interviews support this view. For example Student 13 said:

Oh yes be told me straight out that his main aim was for the students to get the most out of it. He was not vely concerned with winning any prizes, his main concern was for the student to get benelit out of it and any real work experience is good experience and that's my oullook as well so we had the same goals in mind. He said he would support me all the way, but I hau' to come up with goods, not just let him have all the answers.

This view is one that is well supposted in data from the mentors who mostly saw their role with the students as one lor providing authentic design experiences with comprehensive support to explain tbe effective application of their design methods. The following comments made by Student 14 are typical of those expressed by most of the students and also in keeping with what most of the mentors said was their npproach when working with the students:

I went in there feeling really enthusiastic about working with a mentor because I thought that it would be a good chance to sec how the industiy works from the inside without actually being in a job situation where you don't get the chanee at first to do design. Working on this project was great because I was treated as a designer right from the stat and you don't get that as a student and you don't get that in your first job, asually you get stuck doing some part of a project and that's all. I went in there
with the attitude that this was a big chance for me to get some real experience and to prove myself to a real designer.

Although there were some differences in the working methods used by various mentors, generally most of them engnged with the students by extending to them the status of apprentice designer and structured the work sessions to replicate their usual prnclices when working with other stall: This they achieved by introducing new concepts or designs lasks with small increases in the levels of difficulty in al sequence that mirrored the development of the students design project and problems that emerged as each new element was addressed. For example, Mentor 6 said that he stiuctured learning tasks for students under his mentorship as follows:

> I tind the best thing is lo get them here in the office working on some of the projects that we have under way so that they lirst of all find out where everything is and how we go about creating and relining design solutions. We get them to actually do little design and detailing tasks like laying out bathroom areas or cupboards, then sketching up construction details base on our "oflice set" drawings so that they build knowledge of our ways in small steps. I try to pick things out ofour projects that give them elements they can use in their project. That way I can sec when they are ready to move to the next level. Eventually they work through all the basis steps that we use to build up a design and with that they do their own.

The level of difliculty of the tasks introduced in this way by the mentors was influenced by their expectation of what the students might achieve as their skills developed and they adapted to the design office culture of practice. For example, the approach taken by the design team of Mentor I and Mentor la sought to keep the students busy and focussed, but not to overburden them and stife learning. Ofhis use of this approach, Mentor 1 said:

You have got to make them (students) do the work, but it is vital to keep it light and enjoyable otherwise they leam nothing. You need to have them feel enthusiastic about what they are doing; they need to feel ownership of the design and have you there as a source of information and back-up for when small problems become mountains to climb.

Mentor 4 said that he introduced students to design by first building their enthusiasm and excitement for the work. He expressed the view that by having students feel pait of a leam, the ydeveloped ownershipof the design problems and solutions and in so doing developed greater enthusiasm to resolve them nnd pride in the end result. This, he said led to their becoming filly involved in the work which helped them to
acquire tacil knowledge of design methods by applying fle infirmation ond procedures that he introduced during work sessions.

Most of the mentors engaged with the students by expressing to them their enthusiasm for design. They also developed with the students un expectation tlult their collaboration would be lounded on self-development through involvement in the design tasks of their collaborative project.

Analysis of the video record of Phase Threc work sessions showed that when the mentors modelled an enthusiastic approach to introducing and exploring innovative design ideas, the students reacted similarly and expressed their creativity in an enthusiastic manner. During my observation of six Phase Three work sessions, in which Mentor 1 and Mentor Ia worked with Student 25, I noted that both of the mentors and the student equally contributed to the "brainstorining" of design ideas. Throughout all of those work sessions, the mentors also provided information, design strategies and positive feedback to Student 25 by using small design tasks to address various aspects of her emerging design solution. Each of these tasks introduced new challenges, information or problem solving techniques necessary for resolving problems that emerged fromthe main design project being developed. When interviewed ear lier they said that they expected of the students under their direction the same level of enthusinsm and involvement that they modelled during the work sessions. This approach was clearly evident in Phase Three data, which showed that activities in which the student engaged with the mentors took place during 100% of the work session times. They said their main expectation was to have the student think about their work rather than wait for solutions to be provided. This was a part oftheir overall strategy to give ownership of the problems emerging from the project to the student and to have them in tum take responsibility and ownership for thinking through and developing the solutions. On this point Mentor losaid:

We want them to be able to think, we don't want to have to hand feed them and the big problem is getting someone in here who keeps saying what do 1 do now? We want someone who goes away and thinks well maybe if I do this, we don't care if they make mistakes, but at least it show that they are thinking about the problems. It is easier to work with someone who will explore ideas rather than wait for you to give them to them.

The following aspects of how student and mentor expectations affiected learning emerged as findings from analy sis of the study data:

- student anxicty about having inadequate skills and mentor domination of the design process were dispelled by mentor confidenee in students and their willingness to give studen is apprentice designer status;
- mentor use of a sequen ced approach to design remove:I student anxie ty over work loads and knowledge/skills development;
- constructive fieedback by mentors und acceptant:c of student ideas built student confidence to be innovative and to explore new design ideas;
- mentor expectations about student performance were met by affording students apprentice designer sta tus by having them undertake small casily achieved design tnsks to build knowledge nad skills needed to address problems emergent from their main design project. This encoumged student ownership ofemerging design solutions; and
- mentor modelling of enthusiastic attitudes towards design led to st udent development of similar attitudes and willingness to contribute.

Theme Threc:

Mentor supported design office practices affecting learning

Findings from analysis of data coded in themes represented by Index Tree Four categorics 3.5 Common design affice practices and 3.2 Learning methods using modelling are now dscussed, along with supporting Phase Two and Phase Three data.

Category 3.1 Common Design Office Practices

Analysis of data coded in this category took place using eight sub categories. Data coded in each of these sub- categories focussed on mentor practices that assisted students to acquire declarative knowled ge abo ut mentor processes, design situations and regulations, as well as pro cedural knowledge required lor implementing design methods and strategics used by experts to resolve emergent problems in authentic projects. The sub categories used arc:

3.1.1 Preparationfor design - the brief and other faetors;

3.1.2 Questioning and arliculation of ideas;
3.1.3 Selection and use of resources;
3.1.4 Learning Using "Ofice Set" Methods;
3.1.5 Sketching as a design affice proctice affecting learning:
3.1.6 CADoverlay sketching;

3.1.7 Explanatory notes and drowing annotations;

3.1.8 Multiple perspectives from consulfants and others;

Findings that emerged from analysis of data coded using these categories are now dis cussed, along with supporting datia from Phase Two and Phase Three.

Category 3.1.1 Preparation for design.

Analysis of Phase Two data suggested thut most of the mentors modelled a methodienl npproach to preparing fior a design project. Most of the mentors interviewed during Phase Two said that they stnited by showing students how to break down a client design briefinto simple structured processes unl procedures to address each problem or design criteria. $\Lambda \mathrm{s}$ the students demonstrated that they couldresolve the problems being presented, the mentors introduced other aspects of the design brief that incorporated new design tasks of increased difficulty for the students to apply the problem solving methods they had been using. Working in this way, the students developed their tacit knowledge and acquired decinrative knowledge about the design situation and procedural knowledge of ways for dealing with problems embedded in the authentic tasks detennined by the project brief.

Mentor use of sequenced tasks structured around design office procedures used to resol. ć design problems of incr easing difficulty emer ged as a key clement in student learriing in design office situations. The lollowing comments made by Mentor 3 when discussing his approach to working with Student 13 are typical of others made by most of the mentors when interviewed during Phase Two that led me to conclude that introducing students to design using this approach was a common practice.

> I did my homework with the brief befiore he came to sec me. I wrote down all the key points from the brief to outline what it was that we were setling out to do. I had it planned oix in small easy stages that gradually covered the more difficult aspects of the design that I khew would emerge as we got fiarther into refining a solution. During our first meeting I showed him how we would do it by using these notes that I had prepared (sec notes in Figure 8, p ISS) for him so that he had a clear idea of what we were doing and in what order. These notes were on the table and I said we stat by looking at a three bedroom one-bathroom design with a courtyard, just a quick analysis of what the design brief requited:

The notes referred to by Mentor 3 are shown below in Figure 8 (p. 155). They provide declarative knowledge about the design situation which was used by Mentor 3 as the basis for discussion and modelling ofdesign procedures he said that he typically used for resolving problems usually encountered in design sitiations like the ones found in the authentic student project. Working in this manner, the mentor reified his tacit knowledge of design procedures and provided declarative knowledge for students to use as advance organiser for dealing with their project.

Figure 8. Notes used to initiate the design process.
Student 13, when asked about how he and Mentor 3 began the design project confirmed what Mentor 3 had said of his approach. The student also added that he immediately felt confident in the mentor because the mentor had already prepared a "plan of attack" for the design and gave him a clear process to follow in developing it. Of this approach Student 13 said:

I had some ideas and took in some notes and sketches to that first meeting and so we were able to talk about the brief. He had already been through the project requirements and was really insistent that we follow the brief exactly and incorporate our own designs so that the client can benefit from it, but it had to follow the brief. Then he worked through some ideas with me using notes that he had already made from the brief and suggested how to find information about each part to sort out any problems. It really helped just having a path to follow and knowing that if I got stuck he seemed to have all the answers.

A similar approach was used by Mentor 7 who also started by breaking down the client brief for students while engaging them in the design process by encouraging their contribution of ideas when building the structure to follow in the development of a design solution. The following comments made by Mentor 7 show his way of guiding student learning by first providing declarative knowledge of the design situation, then clarifying this using tacit knowledge to explain various elements before implementing
procedures to initianc creative, innovative use of the in fornuation gathered.
Mentor 7 sa id:
We'll start out with a concepl by lirst starting out with the brief, break down the bricf into mnnagcable increments so that they understnnd every part iand hnve a handle on it other wise you can't do unything. Once I nm comfortable that they are at that posint, then we sturt to gyt some ideus down and I nm bouncing some ideas off them and getting them to think.

Annlysis of Phase 'rhree data showed that all of the Phase Threc mentors used n similar approach. They each began by encouraging the st udents to disc uss and sketch their ideas. Then they introduced their own sketclics and notes to extend the invest igation of the project brief by combining the two sources of information and thereby created a team-based work ing sit uation. Mentor and st udent sketches and notes used for this purpose were kept to succ inct statements sufficient only to guide design development (sec Figure I0, p. 159). In later stages of the design process, sketches and notes became more detailed to rellect the increased demand for explic it information necessaly for use in defènding design methods used and solutions presented. Analysis of st udent sketches collected Inter in the design process suggested that the st udents had acquired from the mentors design knowledge and procedures needed to create rmd resolve solutions to the complex design problems that emerged from the authentic tasks embedded in the design project. An example of such a sketch is shown in Figure 9 (p. 157).

Figure 9. Student sketch detaiiing design ideas
In Figure 9 several aspects of the design development can be seen. Λ complex plan form has been developed in the centre of the sketch and around this dilferent elevation and roof forins have been explored along with construction details for a curved roof as well as a butterlly styled flat roof: This sketch demonstrates how the students applied the design methods modelled by the mentors. livident in this sketch also is mentor scaffiolding as seen by the upside-down butterlly roof fom at the top of the sketch. That drawing element is upside-down because the mentor, who was sitting across the table from the student, sketched directly on to the student's drawing. This occurred as the student was explaining and sketching his ideas when presenting and defending them to the mentor.

In each of the Phase Three design ollice situations, the mentors spent between 20-30 minutes of their lirst work session developing the information and design process for the students to follow. This mostly took the forin of discussion and sketching of ideas with notes annotating design factors and reasons for using particular strategies to resolve problems that emerged during analysis of the brief. Data from interviews with the mentors and the students indicated that they regarded the sketches and notes as
important resources for Jater reference os the design is developed. Of her experience ofthis npproach, Student 16 suid:
lie talked about all his design idetes and explained why he did things the way he did ard why it worked firr the areas llat we were designing for. He then made me write up u brief kind of thing selting out all the diflierent polnts that we had to consider in the design. Ile said that this would give us a list ofevery little thing thrilt needed to be worked through like the tropical conditions and cyclones and all that sort of lling.

Most ofthe mentors used n structured, client brief; focussed approach when introducing students to their design office practices. They did this by breaking down the client brief to establish design criteria and explicit information about the design siltation. From this, students acquired declarative knowledge about key aspects of the design as well as procedures recommended by the mentor for addressing each aspect of the design process. Figure 10 (p. 159) shows a typical breakdown of the elient brief with notes and sketches representing the seeds of design ideas to explore.

Figure 10. Notes used to represent client briefnnd organise design process

Working inthisway, students acquired declarative knowledge specifically about the design situation and learned new methods appropriate for resolving problems emergent fromthe tasks presented by the briel: Mentor application of their usual design methods led to student acquisition of procedural knowledge necessary for their use of mentor defined design practices. The sketched exploration of design ideas shown in Figure 9 is representative of the design methods modelled by most of the mentors and shows how Student 18 applied those methods.

Category 3.1.2 Questloning and arriculation of ideas.
Questioning (and articulntion) ofthoughts abiout design ideas, design stratcgics, problem solving methods and possible solutions, emerged as n key pirt of ever y student/mentor exchange. Analysis of Phase Tlurec data showed that activities involving questioning and delénsiling of ideas bucked by nrticulation of personal views and supporting argument occurred during 34\% of the work session times. In most of the design offices, the mentors began by encouraging the students to nrticufate their thoughts on various nspects of design and to sketch their ideas. Generally the mentors initiated design discussions, then encouraged the students to take the dominant role using questioning to explore problems that emerged from the authentic design tasks. Findings from analysis of dnta about this aspect of meix or praetices suggested that student learning was enhanced by mentor questioning methods that encouraged the students to reflect on their work and to defend their design methods and decisions. Commenting on how he used questioning and sketching to explore, develop and defend design solutions, Studen: 13 said:

Towards the end I was doing a lot more of the talking to put my poirk across and justifying why I wanted to do things and he would discuss it and question me about why 1 wanted to do it that way.

Questioning emerged as a key cognitive tool that enhanced student learning when used by mentors and students during exploration and defending of design ideas. All ef the mentors used questioning to encourage student articulation of their thoughts about design ideas, problem solving strategics and solutions. For example, Student 18 said:

She (the mentor) asked me questions all the time wanting me to explain why I thought things should be done in a particular way. I worked out pretty quickly that ifl was going to put something into that design, 1 had to have a reason for doing it because 1 knew that she would want to know why. That was great, I leamed heaps about design that way because if I couldn't work it out or deficnd it, then she would step in and saggest a few diffierent ways and then make me justify which one to use.

The use of questioning to determine understanding of the design situation or methods used was also said by Mentor 2 to be an important way of detennining completion in a design. Mentor 2 escribed his approach to using questioning to evaluate student works as follows:

I say to the students, you know you have the solution when every question you ask yourself has the answer sitting right there on the paper

Mentor 3 said that he used questioning to monitor sludent
understaading of design situations and methods encountered during the ir colluboration. He also encouraged students to question every nspect of their own work and to question others in order to acquire knawladge and skills necadel to rex.lve problems in their own design project. Commenting on one of the students under his direction Mentor 3 said:

> He was good because he was prepared to listen und ask the right questions, he got involved in the discussion and didn't just sit there, he was n participator and that was brillinnt, it was a three way discussion. I could sec him learning new design methods every time we worked together. In the end he was able to tell me how he had gone about each part of the design and why he had used the solutions presented.

Analysis of Phase Three data showed that the students and mentors used questioning along with sketching and discussion during 82% of the work sessions times to explore and defend design methods and solutions. During these sessions, students were required by the mentors to sketch their design ideas while responding to the mentors' questions about how they might be applicd to the design task at hant. When commenting on his use of this approach, Mentor la said:

Fromm y point of view I like to look at what they are capable of drawing, I like to see the standard of work they can turn out, that gives me more insight than anything else. They also must be able to explain why they want to use particular ideas and how they are going to make them work. You know, the y have to say it out aloud, tell me how to build it.

The manner in which Mentor la used questioning with Student 25 at the commeneement ofthe design project used in Phase Three was conlirmed through analysis of the video record of the first work session. In that session, Mentor Ia questioned Student 25 about her interpretation of the design bricf nnd encouraged her to use quick sketches to communicate her ideas. This approach assisted st udents to visualise their design ideas and to learn ways for communicating and defending them to others using tacit knowledge they have acquired through their deve lopment of those designs. When discussing how this had helped her to prepare for the design project, Student 25 said:

Having Neil make me talk about my understanding of the brief and to show them the lirst design ideas I thought of really helped me to get started on the design and to show them what I was cnpable of. Once I started sketching out ideas they just joined in with idens of their own. That was great, I immediately felt like I was accepled as a designer and that got me fired up to give it my best shot. They got me to explain and defend every idea I suggested before it was aceepted as part of the linal solution.

Used in this manncr questioning assisted student learning by having them take responsibility for learning through the defince of their ideus when presenting them to the mentor in the work sessions. Throughout each of the I'luse Three work sessions, I observed ull of the mentors nuaking frequent use of questioning to encourage the sturdents to analyse problems that emerged from the design. The mentors al.so used questioning to encournge the students to articulate their thoughts when explaining und sketching their reasons for resolving design problems in the manncr that they did. This manner of using questioning and sketching was applied as a usual procedure when ideas were presented, or when problems emerged from the design process as typical of everyday practice. Such procedurcs were applied at every stage of the design process to encourage students to discuss and to delend their design ideas. It was also a key method used by all of the Phase Three mentors to generate new ideas and to encourage student exploration of variations or multiple solutions in design. Working in this way assisted students to acquire new design skills based on their tacit knowledge of many dilferent situations and methods explored throughout the work sessions.

As the students developed conlidence in their working collaboration, I observed them making greater use of questioning of their mentor, rather that taking the more passive listen and answer approach seen in some design office situations at the beginning of the design project. From this I concluded that as the students gained conlidence and took a more active role in the design process, the balance shiliced fiom a mentor-locussed use of questioning to initiate and explore design ideas, to the students taking a leading role.

Category 3.1.3 Selection and use of resources

Another design office practice to emerge as an important clement for learning design was the use a diverse range of resouree materials by mentors to stimulate exploration of ideas, to introduce new concepts and to scafliold students through difficult problems that emerged from the design project. The use of resources to scafliold student learning is discussed later in section 3.4.

The kinds of malerials used as design resources included such things as:

- travel brochures for colour and settings;
- design and architcetural journals;
- photographs and drawings used in advertising;
- codes and regulations;
- excmplar drawings; und
- consintetion detail stardurds.
-The manner in which these kinds of resources were used by each of the mentors varied, but mostly they were used to stimulate new thought and to inform design decisions.

Use Of Resources - Diffierent mentors' methods.

Anulysis of the video recordings of Ihase Three work sessions showed that Mentor 4 used photographs and drawings of his own projects to introduce his design style and working practices to Student 23. For 21% of the work session times, Mentor 4 used such resources to model what he described as his usual design ollice practices. Mentor 3 used an approach focussed on detailed construction drawings and work files, called the "office set", showed his usual design procedures. He used these and other materials to explain his problem solving strategies during 43\% of the work session times.

In contrast, Mentor 6 made very little use of completed projects to demonstrate design ideas, but irstead used parts of other designs in "office set" documents to demonstrate and explain how he applied diffierent strategies for resolving problems the emerged during development of those designs. Mentor 6 used this approach during 11% of the work session times. The use of resource materials in this manner assisted student learning in several ways. First, it provided declarative knowledge of various design situations, secondly it revealed the mentors' tacit knowledge of how heuristic design strategies were applied during the design process; and finally, it made available procedural knowledge of the methods the mentor had used to resolve emergent design problems. In addition to using design elements to demonstrate design procedures and to explain the reasons for using them, Mentor 6 also used pre-drawn CAD based design elements and CAD component libraries to rapidly produce multiple design variations. When discussing how Mentor 6 made available resources that she said had assisted her learning, Student 16 said:

They had a big libraty of books and pamphlets and drawing sets that I could use for ideas and details or partial solutions; there was heaps of stuff to use. They had a full CAD library of details and coniplete kitchens and bathrooms that I could slot into my design. That was great because I could try out a lot of ideas quickly with them and build up the design in easy stages.

Student 31 said that Mentor 17 had used "office set" exemplar drawings to show and explain how and why he dealt with a range of problem design situations that were
simulnr to those he faced in his uuthentic project. Mentor 17 used these materinls to reify his tncit knowledge of many problem sit uations, in his own design commissions along with the methods lie had used to resolve them. In addition, the mentor detniled procedural knowledge of how he upplied heuristic design strategics und probkem solving methods when developing the design solutions shown in the "oflice set" exemplar drawings. The use ofthis approach by Mentor 17 assisted Student 31 to acquire declumtive knowledge of multiple design problem situations, as well as procedural knowledge about ways to resolve them. When analysed, the design drawings produced by Student 31 conlirmed that he lud applied knowledge and procedures modelled by Mentor 17 and had learned ways for resolving problems that emerged during the design process. Student 31 said that he had based his design practices on the methods he had leamed from Mentor 17 as explained by him using auhentic commission drawings as exemplars. Or this approach St udent 31 said:
... he gave me some drawiogs of house designs for country areas like the ones we were looking at. Then he went through how he had made each of them suit the local conditions. I used quite a few of the ideas that we talked about in them to build my own design. I also used his way of linking each part in so that the traflic flow worked and the orientation was righ.

Most ofthe mentors used a diverse array of non-context specific resources to stimulate ideas, introduce concepts and to scalfokd student learning in the resolution of a design. For example, Mentor 4 used travel brochur es to demonstrate the colours and landscape of the areas for which the student project was be:ing designed. Mentor 6 used photographs of spider webs to demonstrate symmetry in design a nd focus lines. Mentor 3 used a gardening catalogue to suggest colours and text ures for the st udent to use in presenation drawings lorthe project. Ile also used a thail-order fashion catalogue to cut out illustrations of people to use in the presentation drawings to set the scale of the buildings.

Commenting on how he used various resources to assist St udent 29, Mentor 7 soid

This phee is lull of examples they can pull out of the drawers and use to develop their own ideas. I gave Carol a lot of CAD tiles of entourage and presentation stuff that we use so she could just plug those into her presentation and I said to her you will lind this in ilmoss any CAD based oflice like ours, it's a resource that the indusiry uses.

When Student 29 was interviewed hater, she swid that she had made extensive use of the (\wedge l) elements provided to produce five difli:rent design concepts from which she developed one tinal solution. She contended that the value of this process to her learning lay in the speed with which she was nhle to explore design variations nnd the llexibility that ($\mathbf{N l}$) methods olliered for manipulating the design and viewing it fromnnydirection. This she said assisted her in visualising the threedimensional design firm and this helped her to understand the spatial relationships and trallic flow.

The main use made by mentors of materials such as those mentioned above was to stimulate student thinking about design and to provide simple ways firr them to quickly explore and present their design ideas. Although some differenecs were evident in the manner that each mentor used resource materials such as exemplar drawings, the common theme to emerge was that they all used similar materials. It is clear also that they all used the "oflice set" as the main means for exploring ideas and for implementing procedures for problem solving in design. Most of the students said "ollice set" drawings provided by the mentors were an important souree of information for the de velopment of their own designs. In addition, they not only showed ways for resolving design problem situations, but they also showed the development pathways followed by the designer and ihereby gave them insights into the processes used to explore multiple design ideas as the final design form was relined. When commenting on how she created and used her own "office set" drawings in this manner, Student 16 said:

> ... I worked through layers of sketches to develop my design using the same methods they did in what they called their "oflice set". In that way I could see the design progressing and also sec where we had tricel things out and then gone another way. I had all the infonnation in that one set of drawings and could go back over it at any time to tuy out little things that had come up earlier but not been fully worked through.

Many similar comments were evident in other data coded in this category and from these I determined that the use of "olliee set" drawings was a practice common to all of the design oflice situations studied and was a key tool for knowledge transfer and assisted students to learn new design procedures. For example. Mentor 6 said:

The "office set" hns it all. Everything that you want to know about how we developed a design, what the elient wanted. what the council said we could do, every idea we tried out, how we resolved all the problerns. it's all there. When anyone comes into our office to work, the first thing we do is sit down with them and go through the "office set" of any current commission. From that we can explain every aspect of our working
practices, the standnrds that we work to and expect of them ind the design style for which this office is known. It's the sume when stuelents come here. We teach them from the "office sel". That's where they get information, thut's where they sec our methods upplicd. OK we ulso need to explnin it nll for them at first, but it's u steep learning curve before theynre using the methods we use in our e:veryduy pructice.

Findings that emerged from analysis of dutu uboul the use of diflicerent resource materinls by mentors suggested it assistad student learning hy ficilitating their acquisition of declarative knowledge ubout many difficrent design situations and led to the transfer of tacit knowledge about design procedures for resolving emergent design problems. The use of u diverse range of resource materials by mentors emerged as ukey element in student learning when applying design practices in ways typical of the design office culture of practice experienced by the students during their collaboration with the mentors.

Category 3,I.4 Learning using "office sef" methods.

The "office sel" is a bound volume of sketches, drawings, notes and other materials such as trade literature, photographs and the like created by building designers for each new design commission and used lor the development of design solutions. It documents all of the elements explored throughout the design process, along with notes and references linking concepts or possible solutions. Drawings. developed by progressive overlaying of translucent sketches used to explore design variations form the core of each "office set" and these are used by mentors and students to retlect on the progress of a design task and to review ideas in order to refine emerging solutions. The "of fice set" was seen in use in every work session during Phase Three of this study. It was a tool used by mentors to provide students with declarative knowledge about many diffierent design situations and procedural knowledge of ways for using design methods typical of their usual practices. It was also used by mentors to coach students in the application of design office heuristic design strategies and problem solving methods. This occurred by mentors demonstrating and articulating how and why they used design elements documented in the "office set" for resolving emergent design problems. For these reasons the "olfice set" was a key tool used by students to acquire tacit knuwledge about design and to learn design methods used by experts to resolve problems.

Most of the mentors and the students said that they commenced their designs by tirst producing rough sketches that deffned the basic geometry of the design concept conceived by them to adgress the criteria defined by the project bricf. In using this
nppronch, the students made use of declnrative knowledge und design
procedur es nequirad during work sessions with the mentors. By overlnyilig ench sketch with layers of translueent "butter paper", they then developed variations and refinements to the design with the aid of the underlying forms. For this part of the design process, the students used tacit knowledge built from their use of informution nnd methods mode lled by mentors who used exemplar drawings and simple design tasks to demonstrate and explain their usual design procedures. When disc ussing his use of"olfice set" overlaid sketching methods lor tc uching st ude nts to design, Mentor 6 said:

When you use overlays on CAD drawings in the "olfice set" you can sec the suble shifting of areas as the design gets sorted, you can sec the geometry evolving as the design is refined from one layer of sketching to the next.

This view is also well supported in data collected from most of the other mentors. In addition, most of the mentors also said that they used quick sketching methods to create overlay "butter paper" sketches on "office set" drawings for nll phases of design development and when teaching students to explore and progressively reline design jácas.

To confirm this, analysis of Phase Three data showed sketching was used during 53\% of the work session times and this took plnee simultaneously with mentor and student articulation of the reasons för each design decision takeı. Other factors, such as regulations, consiruction practices, situutionnl requirement saixl siyle preferences, that influenced design decisions were also discussed, sketched, or placed as notntions on the "office set" dawings during those times. lıformntion recorded in the "of fice set" int this manner added to the declarative knowledge nvnilable for students using those drawings and provided the basis tor mentors to explain their use in usual design practices, thereby reifying their tacit knowledge for students to use. 'The "office set" approach to progesesively build on and refine design solutions was used by most of the mentors and students. Initially it is us ed to simply document ideas nnd informntion, but as students visualised their design ideas, it was used more as a design tool nad vehicle for the expression and exploration of creative forms.

Analysis of Phase Two dnta show that the "office set" sketching approach to design used by Mentor 6 and Mentor 6a, who together mentored Student 16 and St udent 24, was representntive of the methods used by the over all group of mentors st udied. For this reason, the following interview ex ecrpt in which they disc uss their use of this
tecitaique has been included here as an example. Much of what is revcilled in this interview exeerpt shows how these mentors intr oduced the ir work pract ices und reified the ir tacit knowledge and he uristic design strutegies when working with the students. The approach used by Mentor 6 turd Mentor 6 a is representutive of that used by most of the mentors. $\boldsymbol{\Lambda}$ key aspect of this npproach is the use of mentor articulation of the reasons for using particular design methods or for aceepting diffierent design solutions. This assisted st udents to develop facit knowledge about which practices ure appropriate to their own design project tusks and why they are used in particular ways.

Mentor 6a: We would sturt with a global picture of the design and progressively resolve it through talk and sketch to iron out all of the details. That's where the "office set" comes in. Each sketeh or note that goes in there is part of the overall design process. Having it there to see at any time means that students can go back and reflect on what they have already explored and perhaps use parts of it to tiy another pathway in design, or resolve part of some parts of their design that have become barriers. It's all about having control of the process, we have a tried and true methodology that progressively builds up the design using layers of draw ings one over the other. You need to remain tuve to the geometty of the design and that is where Steve alld I work well together, I can pick up his work at any time and see where he is coming from. We just set small steps or stages of the design to resolve one at a time so that the whole thing builds progressively. That works well with students because they are then not overwhelmed with all of the problems at onee.

Rescarcher: How do you communicate this to a student who is tyying to learn how to design?

Mentor 6: I think that you have to separate it out and say what are you doing; nre you drawing or are you designing? You tirst have to identily what the student is doing are tiicy drawing or are they designing, if you are just drawing then you have no chance of learning to design, that s just a mechanical sk ill, design is different.
If they are not designing then go away and look at some trees, change the pattern of thinking. You see with drafting you are taught to look really closely at sorr :thing, design is taking a view form a satellite and then coming back iu progressively to lookat the detais.

Researcher: In what ways did you guide students towards using your design methods?

Mentor 6a: We make each part of the design one sninll casy step at a time so that they can readily achieve it. You just get them to תy lower and lower to examine the design in progressively greater detail. When they do this the detail starts appearing more and more. That's what the "office set" is best firr, building up layers to explore new ideas und to resolve them, that's how we get the students to learn to design.
(Mentor 6 and Mentor 6a).

In Phase Three the mentors used "otlice set" mnterials to provide the students with declnrntive knowledge about diflerent design situations, tacit knowledge about their own experiences indesign and procedurul knowledge of how various design methods could be applial for resolving problems that emerged during the design process. This took plnce during 32% of the work session times. When commenting on how Mentor 3 used "office set" drawings to assist his learning, Student 22 said:

Barry was great in the way he always seemad to hnve some drawings there that showed me three or four different ways of surting out the problems that came up in my design. I think he must hnve done it all before because his drawings had all the answers and you could sec how he got to them because he still had all the rough sketches there nad he would talk me through how and why cuch one came about.

Analysis of data such as these fed me to conclude that mentor use of"olfice set" drawings lacilitated student learning. In particular it assistad the students to acquire procedural kno wl edge necessary for implementing heuristic desijiy strategies when retlecting on design problems. This led to st udent development of design solutions. Mentor use of "office set" drawings also provided ways for them to reify their knowledge of many different design situations, heuristic design strategies nad solutions they had used. This assisted transfer of tacit knowledge and helped students to acquire deelarative knowledge and design procedures which they then used to resolve problems that emerged fiom the development of solutions to their authentic design project. This was elearly evidenced in the resulting design solutions presented by the students for assessment by a panel of expertjudges. Findings fiom this process nre presented later in this thesis.

Category 3.1.5 Sketching: A design office practice.

Earlier in this Chapter the extensive role that sterching played in building design practice was disc ussed in relation to its use as n communication tool. In this section, lindings fromanalysis of data about the use of sketching affecting learning are presented along with examples of supporting data. In another part of this Chapter, findings about the use of sketching as a tool for scaffiolding icarning arc presented. This three part analysis and presentation of lindings about the various applications of sketching in learning building design has been taken in order to address all aspects of its use in answering the research questions.

The use of sketehing as a design tool was said by most of the study participants to be an essential part oflearning in a design oflice, because it provided immediate
visual representation of id cas or con cepts as they emerged during design development. ^nalysis of Phase: Two data indicated that sketching was initially used to make visible declarative knowledge about design situations, in duding regulatory requirements, physienl features of the design setting, style elements, construction details and elements of the client bricf. When design development commen ces, sketehing is used to create, explore and refine design solutions. Throughout the entire design process, allof the mentors studied used sketching to demonstrate and to explain their use of heuristic design strategics and problem solving methods to stıdents. The mentors used sketches to facilitate student acquisition of procedural knowledge for use with design practices modelled by them. Sketching was used when coa ching students to ensure the clarity of explanations when applying design methods to the development of their own design solutions. This facilitated transfer of a cit knowledge based on the mentors' design experien ces and procedural knowledge necessary for implementing their usual design pra clices. For example, Student 14 said that he had acquired ways to resolve design problems by having his mentor sketch and explain strategics for dealing with emergent problems as follows:
... listening to his ideas, having him sket ch and explain things, that was the most valuable part of conununicating with him, thats how we gradually refined the design and worked through all the problems that eame out of the brief. I used the methods that he has shown me, to work out problems in my design. I sketched out ideas like he did so that I could keep overlaying new ideas or details that made it all work.

The immediacy of the visual feedback provided by quick sket ching methods used by the mentors made visible to the students the mentors' design ideas and problem solving methods. Analysis of Phase Three data showed that tce .tudents used sket ching as an integral part of discussion and articulation during 40\% of the work session times when communicating ideas they had visualised and refined during the design process. Like the mentors, the students used sketching to present their ideas and problem solving strategies and in so doing demonstrated their learning outcomes in a form that was readily understood by the mentors. Sketching used in this way provided the students with a means to demonstrate how they liad resolved problems that emerged during the design development and to arliculate their reasons lor decisions taken throughout that process. This aspe ct of using sketching provided important insights into how knowledge was transferred in this learning situation as sought by the research questions. In Phase Three work sessions, the mentors used sket ching 38% of the time to communleute namy of the ir heuristic design strategics and problem solving methods.

Frechankl sketching emerged us being the principal method used by building designers to communiente ideus or conecpts und to explore and retine these in metocognitive ways. in respect of using sketching when menloring students, Mentor I said:

I think what happens is you talk as you draw more, wherens if you were drawing for someone else you might just sketch it out. When you are doing it for n student you need to talk it through so they know the reasons for what you ore doing, not just how to do it.

During six different Phase Three work sessions I observed Mentor I working in this manner. Mentor 1 used sketching together with detailed description to present information, heuristic design strategics and problem solving procedures during 65% of the overall work session times. When working with Mentor I during these sessions, Student 25 used sketching during 30\% of the time to explore, reline and communicate design ideas, based on the information and design methods presented by Mentor I. From this and other similar exchanges I ohserved during Phase Three work sessions, I concluded that sketching was used by mentors and students for the iransler of declarative, tacit and procedural knowledge about design situations and the application of heuristic design strategies for resolving emergent problems. For example, Student 16 said that she acquired most of her design ideas and design stralegics for applying them fiom her mentors who used sketching and articulation to show and explain how and why parlicular aspects of the design could be resolved using various methods. Student 16 said:

He sketched and talked all the time, in fact he sketched everything rather than describing what he meant, that's where I got a lot of my ideas fiom that I incorporated into my design. They kept taiking to me about the design and usually suggested little changes or adding in things like verandahs and so on. They would sketch over the top of my drawings and say have you tried out this or thought of doing this another way and then sketch little ideas all around the sides of my drawings.

Working in this way tacilitated knowledge transfer between mentors and students. The mentors reificd their tacit knowledge and design methods by introducing new design elements and procedures firr resolving problems thnt emerged throughout the design development, as shown earlier in Figure 9 (p. 157).

During work sessions, the mentors and the students used fist freehand sketches on translucent "butter paper" (n low cost translucent paper) to develop and explore ideas or design concepls. Most of the students nnd mentors when sketching also used discussions to involve others in the ideas being developed and nrticulntion to express
personal points of view or tacit knowledge based on experience of similar situntions to that being explored. This combination of sketching and urliculution usually led to multiple layers of drawings being combined into one design concept from which many variations were then explored as the designs were progressively refined. Mentor 4 encouraged students to use very "loose" frechand sketches to explore variations for each of their design ideas to detenninc their suitability for inclusion in the final solution. An exnmple of one such sketch that shows how itree dificrent roof fomis were explored in the one simple sketch is shown below in Figure 11 .

Figure 11. Typical quick sketch showing exploration of three roof forms.

In contrnst to this very open sketching approach used by Mentor 4, Mentor 3 used sketching, backed up with discussion and articulation, in a more structured and deliberate fashion. Using this approach fitcilitated rapid exploration of design forms that were then progressively refined us part of multiple solutions or design variations. Mentor 6 used a similar approach when working with Student 24 by opplying frechand sketching over hard lined drawings created using CND techniques (see ligure 12, p. 173). Mentor 6 sketched with Student 24 over the top of his simple CAD drnwings that were progressively relined as ideas were explored, then tested nad accepted or rejected for inclusion in the finul design. Working in n similar manner, hut with a more traditional hand drawing approach, Mentor I and Mentor la sketched over Student 25’s

CAD drnwings to develop design ideas. An example of frechand sketching over n CAD base drawing is shown below in Figure 12 which shows room layout and elevation concepts hand sketched over a CAD print.

Figure 12 Frechand sketching over a CAD based drawing
In each of the design office situations :tudied in Phase Three, the mentors encouraged the students to sketch ideas while articulnting theirthoughts on how the spaces they were drawing might be used and detailed for construction. The mentors said that using this approach encouraged visualisation of the buikding form on a threcdimensional level. I regard the use of this approach assisted students to develop metacognitive tools for resolving and communicating design concepts. For example, Student 18 lound that Mentor 26 could readily use his roughly sketched ideas to visualise design concepts he had developed, then analyse and comment on their suitability. By then analysing and evaluating the design decisioos he had made in order to reline the design solutions, Student 18 demonstrated his development of metacognitive ways lor resolving design solutions. By lollowing his mentor's lead, Student 18 was then able to explore further his and the mentor's ideas using the same methods for evaluating what he had seen modelled by the mentur. Commenting on how this approach helped him to learn new design strategies and problem solving procedures, Student 18 said:
...I came up with quite a few ideas that she was uble to look at nnd say this will work and that won'l. She was able to tell me why, so that helped me to understand why sorne ofmy ideas were not going to be practical in
the situation. She nlso gave me heaps of other ideas to consider and atternative ways of sorting out the design problems. Mosily she just talked me through by geting me to imagine dificienal situations and all the time she was sketching little part of the building and making me do the same with ideas that I chipped in with. She kept nsking me to decide what wus going to be the best way to solve problems that came out of my design. I had to think it throughon the spot and come up with solutions.

When interpreting these comments. I concluded that the mentor had expressed her tacit knowledge of different design situations while articulating reasons for accepting or rejecting the student's ideas. At the same time she had also encouraged and supported the student's creative thinking by stimulating his imagination with sketches and verbal pictures. In this way, the mentor facilitated student learning about design in ways that encouraged visualisation of ideas and multiple solutions. By encouraging the student to visualise and to evaluate his own ideas, the mentor supported the student in his development of metacognitive ways for refining design solutions.

Most of the mentors defined their design and drawing standards by using "office set" exemplar drawings and sketches of their own designs to show and discuss the methods they use. These "office set" drawings were also used by the mentors to establish fier the students benchmark standards used by the wider community of design practice for the documentation of authentic projects. Most of the mentors indicated that they used sketches and drawings from multiple design projects to scatTold student learning. Mentor 3 said that he used this approach so as to lead by example. He said:

I talked about every aspect of the design and sketched out ideas with him when we wanted something done in a particular way.

By sequencing design tasks to progressively introduce information and strategies necessary to resolve a design, the mentors assisted students to trnnsfer learning about one situation or aspect of design, to a different one. For example, Mentor 3 said titat he used sketching to do this as follows:

We used little sketches to make sure that he got the basie stuff right like the orientation and the entry etc. When we got all of that sketched out riglt for the Bridgetown one, we then used the same plan and strategics as a basis for designing the one for the Kimberley.

The sketch used for this purpose (as well as for commencing the next step in the design process using overlaid bubble fonns for room positions) hy Mentor 3 is shown Figure 20 (p. 209). Analysis of datn coded in this category led me to conclude that mentors and students used sketching along with discussion nnd nrticulation to develop, reline and present design ideas and solutions. As \boldsymbol{n} learning tool in the design office
situnt ion, sketching provided a means firr last representation of design concepts and idens, as well as demonstrating methods used by expert building des igners to resolve problems that emerge during development of design solutions.

As the students developed the ir skills to visualise and communicate design concepts, they also de veloped cognitive skills like the evaluition of diffierent possible solutions lor exploring and relining designs, which developed the ir problem solving ability.

Category 3,1.6 C-4D overlay sketching,

In all but one of the design olyice situations studied, C \wedge D based design and dra wing methods were used as part of the mentor's' everyday practices. In Phase Three, Mentor 3 used sketching together with art iculat ion during 21% of the work session times to model his approach to design and to coach St udent 22 in the use of his methods. Then, the fiechard sketcies produced during the work sessions were interpreted by Student 22 into CAD drawing files that were printed oll in preparation for the next work session. In the next work session, "butter paper" was placed over the CAD drawings and lurther frechand sketching took place as design ideas were explored and relined. An essential part of the sketched over laydrawings was the use of notes made on the sketches by the student and the mentor to explain design decisions. These provided reasons tor part icular elements being included or excluded lollowing exploration and evaluation and were used for reference later when construction drawings were produced. Commenting on how Mentor 3 enco uraged him to use sketching as part of the exploration and development of mult iple design solutions he had visual ised dur ing work sessions, St udent 13 said:

I did heaps of sketching to develop the designs. When we worked together we mostly talked about the sketched ideas and worked over the top of them trying 01 ; new solutions. We made a lot of notes while we talked and sketched and I used these later to sketch out other ideas that we discussed.

Anexample of the type of sketches producod by the st udents and the neentors in these work sessions is shown below in Figure 13 (\mathbf{p}. I76). This sketch has n CND base that consists mostly of circles with radiat ing lines used to deline zones. Most of what can be seen though is heavy pencil overiay sketching which shows mulliple ideas being explored by the st udent and the mentor as they developed various parts of the design.

Figure 13. Overlay sketching of CAD drawing showing exploration of ideas

Working with CAD based design and drawing methods provided the students with tools to explore greater numbers of design variations based on their own works. CAD methods assisted the students to incorporate design elements or even whole plan forms in electronic format from the mentors' exemplars into their own design solutions.

Analysis of Phase Two data indicated that this approach was said by the mentors and the students to enhance their creative development by making it easier to quickly explore ideas that might include complex shapes and technical detailing. In Phase Three, Mentor 3 used CAD based "office set" drawings in this way during 54% of the work session times and Mentor 6 did likewise during 68% of the work session times.

Commenting on his use of CAD based design and sketching methods for brainstorming ideas and rapidly producing drawings, Mentor 6 said:

We work on a print and scribble system, just throw the ideas down, doesn't matter if it's wrong just throw it down, print it out then hack it up with a pen, manipulate it a bit then print it out again. We chew through a lot of paper but that is how we do it. We don't actually take something away and sketch it, we resolve it on the machine and by the time we get to print it out for sketching on we already have the guts of the job.

Mentor use of this approach provided ways for transfer of procedural knowledge about design methods, as well as transfer of their tacit knowledge of successful design practices and failures. Student 8 was encouraged by his mentor to use this technique to
explore every aspect of ideas he had sketched, to det ennine their suitability for inelusion in the linal design. Of this approuch Student 8 said:

He (the mentor) would say to me "1nke a big bundle (of butter pilper) I use heaps (the mentor) why don't you?' Then he told me to just get into it and sketch ideas as tast as I could think of them without worry ing about the details, you know, if they are proctical or not. The idea of this was to get some concepts happening, then sott out the problems Inter.

The use ofCAD based "office set" drawings and quick ficehand sketching techniques emerged as key elements which embled students to leam ways for exploring design ideas, problem solving methods and for developing design solutions. The use of over-sketching on drawings was common to most of the study design office situations. It provided a means for progressively building up a design solution, while having a visual record of the ideas explored available to rellect upon when branching to the design process to investigate other ideas or potential new design solutions.

Findings fi om analysis of data coded in this eategory led me to conclude that the st udents acquired skills in the use of sketching and with CND based drawings by replicating methods modelled by mentors during work sessions. When apply ing sketching and C \wedge D drawing to the development of design solutions, students also utilised discussion and articulation to explain the reasons behind their design decisions and in so doing defended their design ideas and communicated their solutions. As the students aequired ways tor creating and documenting designideas as modelled by the mentors, they made greater use of cognitive tools to explore, evaluate and refine design ideas. Student development of ways to visualise complex design problems situations and possible solutions was assisted by their use of CAD and hand sketching methods for rapidly exploring multiple solutions. Reflection on possible solutions and evaluation of these led to student use of metacognitive design practices in ways similar to that modelled by the mentors during work session with the students.

Category 3.1.7 Explanatory notes and drawing anthotations:

Most of the mentors required the students to use report styled informntion sheets and notes on drawings as a menns for describing design features or construction detnils when defending their design solutions. Student use of notes and ammotations is in this way I reganted is part of their arliculntion of the reasons lor using design methods nnd reas:ons for having taken pnrticular design decisions. Mentor 10 snid thut he mude extensive use of reports and notes in his own works ns at ustal ollice prnclice and had
ins isted that Student 14 employ the same methods for the authentic design
project on which they collabomted. On this point Mentor 10 said
Afier we had worked through the design ideas I got him to sit down and write n report expluining what the design was all about and why certain decisions had been made. It was prelly much a summary of the whole design process and how it related to the brief and the practicalities of transporting and building ii.
On each sheet of his tinal drawings he had a summary of what he had done and why. This made him think about how he had got to that point andencouraged him to keep thiaking back to the original assignment, the bricf, to keep him locussed.

The use of this approach by Mentor 10 to encourage Student 14 to reflect on how he had arrived at his design decisions and to evaluate them as part of the emerging design solutions I regarded as a teaching practice that helped to faciliate the development of metacognitive design practices. St udent use of notes and drawing annotations assisted learning by providing a struct ure for re!lecting on the processes and decisions that they made throughout the design process. This made visible their tacit knowledge of the design sit uation as well as demonsirating their procedural knowledge and the methods that they had used to create, refine and defend their design solutions. Reflection used in this way assisted student learning.

Student 13 confirmed that his mentor encouraged him to use notes to record design decisions and strategies suggested or explored during work sessions. These, he later used when reflecting on the pathways followed through the design process as part of refining the design solutions. Commenting on this, St udent 13 said:

He (the mentor) also made me take a lot of notes of what we discussed beca use he said that he found notes to be a usefilt to look back on after a meeting or work session where a lot had taken place and you might not remember it all, or how it all tilled into the design later Ile suggested that I keep notes about how I had developed anch part of the design and why I had done it that way. This was really useful when it eame to presenting the design to him beca use I was able to defend my ideas by showing him what I had tried and why I kept the bits that I did.

Most of the st udents imd the mentors made comments similar to these during Phase Two. Amalysis of Phase Three data indiented that notes were used during 10% of the work session times to record ideas explored, strategies employed to resolve emergent problems and ways for dealing with the presentution of solutions being developed. I coneluded that the use of notes by students and mentors in work sessions and in "office set" or presentation drawings assisted st ulent learning by providing a means of reflect ion that assisted metucognition. It also provided reference informalion
that was used for reflecting on design procedures applied in developing design solutions.

Evidence of this can be seen in the presentation drawings submitted for evaluation at the end of the project by all of the students. Most of the drawings contained detailed information aimed at clarifying the reasons for many aspects of the design that may otherwise have been unclear. For example, Figure 14 (p. 179) shows the final design presentation drawing produced by Student 22 in which he has included a block of explanatory notes in the bottom right side.

Figure 14. Final presentation drawing showing block notes
The drawing shown in Figure 14 has been reduced from A1 size and therefore the notes are not clear to read. For this reason, the notes have been transcribed as shown in Figure 15 (p. 180) below.

The main emphasis on the design of this house was to create the fi:cling of casual living in a lamily lifistyle kind of way. My pereeption of living in the new millennimn is one of easy living und so the design of the house wns aimed at creating that feeling. The fimmily cun enjoy the mngnificent kecling of living in an outloor setting but with all the protection of a climate oriented house. The wixle verandah invites the lamily to sit and enjoy the views down the valley and to feelitt peace with the water moving across the rocks below. Having the kitchen and family room fitcing into the valley view presents the best outlook and takes advantage of the prevailing breczes for cooling in the summer. The bedrooms luve been placed on the cast-side to allow moming sunshine to greet the family when they wake. The large open areas for firmily living have movable screens that assist in restricting heat tu smaller more personal nrcasduring winter.

Figure 15. Notes from drawing by Student 22 (sec Figure 14)

The use of notes and annotations on design development sketelics nnd drawings emerged as a common practice used by all of the student/mentor working teams. It provided students with a means for defending design decisions and assisted in showing an audit trail that demonstrated the procedures and fiactors that shaped the linal design presentation. Student 14 said that his mentor used notes to explain the reasons for design decisions he had made so that when the drawings were viewed by the elient they understood why the design had been developed in particular ways. Of this approach, St udent 14 said:

He always went through why things needed to be done a ceriain way and he made me put notes on the sketches to explain why the design was how it was.

Mentor modelling of the use of notes on drawings led students to acquire similar methods for creating their own design works and for defending them by relierring to the design audit trail documented by those notes. This process led students to retlect on their design methods and decisions and in so doing develop metucognitive ways tor evaluating and relinizg their potential design solutions. Student 16 said that she used notes in the same manner she had seen her mentor using. She said:

I would go back on to the compuler and draw their ideas up with mine unilalso put in a iot uf notes to explain why t thought it should be done that wuy. They alwnys sketched it out lirst and then put it mat the computer; they used netes nll the time on the drawings to explain how they got th that design and why it was going to le usel. So I did the sume and thut made it easy lor us to work through my designs together. Using the notes us reminders I was nhle to think bnck over whnt I had done and why I had done it that way. This made it easy to try other ideas in my head belore spending time drawing them out.

Data such us these led me to conclude that student learning about design strategics used by mentors and the reusons lor design decisions they made was assisted by their use of notes to record and review design activities and outcomes. Mentor 6 modelled his use of notes for Student 16 and coached her in ways lor applying his techniques to her own design project. Working in this way, the mentor made use of a common design olfice practice, notes on drawings, as a coaching tool that could then be used as a post organiser when reflecting on pathways lollowed during the development of design solutions. In Phase 'lhree, I observed Student I 6 using design methods that I had observed earlier being modeiled tor her by Mentor 6 . Her approach to design reflected the methods used by Mentor6. She used notes on drawings, as part of her application of heur istic design strategics and cognitive design tools, to refilect on each of her design decisions in order to evahate thembetore theia acceptance as part of the emerging design solution. Student 9 tollowed much the same pathwny when working with his mentor, who also advocated the use of notes as tools fir the review, development and delence of design solutions. When commenting on his use of this approach Student 9 said:

I wrote down notes on his sketches and the drawings we worked on together, you know just little things thnt he came up with that I wouldn't remember but needed to use later on.

In my own field notesjournal in which I recorded my observations of work sessions involving Mentor 26 and Student 18, I made note of the emphasis that the mentor put on the use of notes as a learning tool. In purticulnr, the mentor encouraged the student to keep detailed notes supporting all design decisions and to include these on drawings lor submission to the client and to council so thut any discussion of thuse drawings could be linked to the influencing lactors stated. From this I conchucled that the use of notes on sketches and drawings wis nn important aspect of student learning because it provided tools lor mentors to model their usunl priclices and the reasons tor working in the manner thut they do. In addition, notes nnd sketches were used by
students to reflect on the pathwnys followed in the ir decision manking processes in design and to present in written firmn recort of their rear:ons for using the solutions they had nrrived at when defi:nding their work to the mentors.

Cotegory 3.1.8 Multiple perspectives from consultonts and onthers.

In most of the design ollice situntions st udied in l'hase Two med all of thic design of lices in Phnse Three, the st udents had contact with other design stnlf working in those offices. Findings from data coded about student interaction with others in the design olliee situatiotis suggested that these contacts helped students to acquire mult iple points of view abo ut design, as well as alterna tive design methods. I regard this to have ass isted students to learn metacognitive ways lor dealing with design. Most of the ment ors encouraged the st uden is to learn from o thers in the design office situntion so as to benefit from their experience a nd to gain multiple perspectives of design practice. This approach supported st udent social construction of knowledgc through lormal and informal work sessions. In some of the design oflice setiings, the students were encouraged by the mentors to participate in discussions with other design stalf engoged in authent ic commissions. In some instances the st udents were encouraged to contribute to the design and documentation of current projects. This provided the st udents with authentic design experiences and nss isted them to acquire tacit knowledge about real building design meth ods applied in the context and culture of the mentor's usual practice.

St udent learning through interaction with others in the design office was encouraged by the ment ors. Most of the mentors highlighted the importance of exploring multiple solut ions to design problemswith the help of others who often provided opinions, advice or assistance of value to the st udents to ass ist them with the development of the final design solutions. In some instances that assistance came from individuals with expert knowledge on some aspect of the work at hand as commented on by St udent 16, who sa id:

There was a guy there who worked lor them who helped me a lot with the computer work and he was more skilled than they were in usint? the compuler. I talked to a couple of the guys who were doing all the design woik and they gave me some pointers on what to do with transportables and they asked me quite a lot about using computers which I am pretty good at. So we helped each other.

All of the students in Phase Three said that they lear ned new design methods and problem solving strategies by working with a mentor and other design office personnel or consultimts. Most of the students said thut they leamed much fiom others in the design oflice when they discussed und sketched ditf crent aspects of current design office commissions as \mathbf{n} means of providing examples of wuys to resolve the students' design project. In this way the students acquired infirmaxion, design processes and problem solving procedures modelled by others. Similarly, the mentors provided inlormation and procedures based on their expertiencec-bused tacit knowledge for the students to use in resolving emergent problems in their design works.

For example, whencommenting on his mentor's approach Student 13 said:
He had some good scle matic design ideas and we sort of combined his ideas and mine in the final design. He had a lot of different ideus and difficerent ways of putting it across. That was the great thing abrout it, he has had such a lot of experience he is able to say look l've tried it this way or that way and he gave me examples of where it worked or failed. That really put me at ease because Ifelt it wis no shame to have something not hork. I realised that jou just had to try it out to know That made me explore more ideaseven if they were a bit offithe planet.

Most of the students who had contact with other design office sta|Tor consultants in the study settings said that their experiences hud provided them with altemative points of view, multiple design stralegics and multiple design solutions to explore. From this type of interaetion with others, the students developed tacit knowledge ofdesign melisods and procedural knowledge of ways to implement heuristic design strategics including the reasons for applying particular methods to commonly occurring design situations. For example, Mentor 4 explained his reasons for encouraging students to seek out the views of others in the design office in order to assist learning by commenting:

You need the interaction with others to bounce ideas arourd and sometimes it is better that students go into a large work environment where they can get ideas from many people rather than just one. That apprenticeship style of learning needs to be in a sharing environment.

Some mentors arraged for students to have contact with an extended network of design expets and consultants. The mentors who worked in this manner contended that contact with other prof essionals created opportunities lor students to expand their design pers;pectives and provided models for multiple design methods as shaped by the strategics used by others to resolve problems in discipline ar eas that support building design.

As well ns working on their authentic design project with a mentor, six of the stuilents also participaled in other projects that were the mentors' current design office commissions. This provided the students with authentic experience of design development and problem solving in the context and culture of the mentor's everyday design office work practiccs, outside of tlve student project they had undertaken. In lour such situations, the students worked with more than one mentor, opening the way lor mulliple viewpoints or perspectives to be explored. This approach was said by the me ntors to encourage the students to develop their own ideas from multiple viewpoints, with the possibility of the students coming up with something special that was still essentially theirs, but having well proved design elements from recognised experts at its loundations.

Some mentors said that contact with multiple designers, other design olTice staff, or cons ultants from ot her disciplines, provided opportunities to enhance student learning by introducing them to the broad spectrum of their everyday culture of practice activities. Student 13 said that he was greatly assisted in his learning by having a "back up" mentor assigned to him by Mentor 3 so that there was always someone available to him, or another opinion or point of view to consider. Of this, Student 13 said:

Bury brought in a nother designer (Jack) from the office to sit in on meetings so that ifI needed help when Barry was not around Jack would be up to speed on the design and be able to help out and that was really good because he gave me a lew pointers on how things were done there and where I get could information on some parts of the work.

In another office setting, Student 23 worked one-on-one with Mentor 4. but with no other in-officestaff. In order to introduce the student to experts fiom other discipliaes that were to be part of the design project at hand, Mentor 4 involved Student 23 in discussions with consultaat engineers and builders visiting his olfice as part of his own current commiss ions. In Phase Three, Student 23 was included in activities involving Mentor 4 and three other design experts during 11% of the work session limes. This contact with other experts assisted student learning by contributing allernative perspectives as well as information and solutions that were later explored and applied by Student 23 and Mentor 4 as they worked through the project.

Commenting on this following one work session, Student 23 said:
It really helped me seeing him (Mentor 4) having to explain to the engineer what he wanted out of the roof form and hearing the reasons that he gave for insisting on not having a box gutter and highlight window. I iad a similar problem in my design and that got sorted out just by my being there at the right time to see how he did it in his owil job.

As noted earlier for Student 13, Mentor 3 also arranged fir a hack-up mentor to be avnilable throughout the project to provide alternative points of view, problem solving strateyies and logistical assistance to Student 22 nt times when he was munailable. Mentor 6 also used his other in-house stalfto supporl Student 24 throughout the design project, but did so by arranging lor the student to have his own C^D work station in the design ollice. This approash nllowed Student 24 to work alongside other designers where he could sec and hear their everyday practices in action, as well as call on them for assistance when needed. Working as he did in the design office of his mentor gave Student 24 first hand experience of the authentic design office culture of pmetice and facilitated his use of the office services and resourees in ways typical of the culture of practice there.

Working in this situation also meant that interaction tetween Student 24 and Mentor 6 took place fiequently and on an as-needed basis, reducing the need for extended work sessions. Mentor 6 said that he arranged fur student 24 to be located in the open office space used by the mentor and all of the other of lice stalfto ensure that he experienced the same working situation as any other designer there. Being located in the general work area meant that Student 24 could hear and sec all that took place in the design office and was able to participate in exchanges between stalfmembers or seek their assistance whenever needed. In this way, Student 24 experienced the authentic culture of practice and worked with his mentor in the context of the commercial operations of the discipline domain. He was able to exchange ideas with others and in so doing acquired new ways of designing and developed multiple perspectives of design practice which he applied to the authentic projects he was undertaking with his mentor.

Mentor I and Mentor la arranged for one of their design office stalfto sit in on all work sessions with Student 25 soas to provide alternative viewpoints and back-up services. The person they chose for this task had recent experience as a mentec and as a TAFE student. Having this background, plus experience of working for a year in the mentors' culture of practice situated them well to advise Student 25 on many aspects of working with a mentor and of design office practices. On 15 oceasions throughout the Phase Three work sessions, Student 25 was given support or input to her design effiort by staflor coasultants operating in the design olfice of Mentor I. Assistance provided by others in this way included their tacit knowledge about various design situations that had similarities or relevance to the problems that emerged during development of her project and procedural knowledge of ways they had used to resolve problems in their
own commiss ions. Although these activities took place in just 12% of the work session times, they are design office practices that assisted leaming firr Student 25 by providing expert knowledge at those times when it was most needed.

Commenting on this in n post work session intcrvicw, Mentor la said that having others particij,alc in activitics involving students in the design was a common practice that stemmed from usual office teamwork methods. Ile said that such contar:ts with consultar!t stnlfassisted student learning by providing in formation about office practiccs, problem solving methods, resources, expertise and altemative points of view.

Student 25 said that her contact with others in the design office had helped her to develop a broad view of the design industry and to better understand the relationships that existed with associated disciplines. This, she said had led to her having alternative perspectives on envirominental and structural problems in her own work and that these had shaped aspects of her final design solutions.

Findings from data coded in this category led me to conclude that student learning was enhanced by having multiple views of problems. Contuct with others in the design office setting u lso provided opportunities for students to acquire tacil knowledge of design fiom various experts experienced in many difierent aspects of building design praclice.

Participation in site visifs.

Some of the mentors arranged for students to accompany tlem on visits to building projects under construction where they were uble to show outcomes from their owndesign decisions with commercial design commissions. When showing students design and construction details on site, the mentors also articulaterl their reasons for resolving design problems in the manner that they did and demonstrated with sketches the processes they had used to explore and refine their final solutions. When working in this way, the mentors were regarded by me to use their tacil knowledge to provide students witha detailed picture of the design process from sketch to censtruction. In so doing the mentors also demonstrated links between their design procedures and design outcomes. Working in this way, the mentors provided students with procedural knowledge of their usual design methods, in the context of authentic practice as demonstrated by the solutions under construction. Student 18 said, when commented on this aspect of his learning with Mentor 26:

The first day that I was there working with her she had some uppointments on site soI went along with her to some of the jobs that she had designed. She explained to me a lot of thiags about the way she
designs and showed me them in those houses. She olso kept asking me questions about whal I thought or how I would have designed some of the details.

Interaction with others on building sites or when discussing aspects of a design with consultnats or industry experts was said by some of the pattic ipants to be of great value in helping them to unkerstand the links between design office practices and actual construction techniques. This aspect oflearning design was noled by live students in the i project journals as important for understanding the reasons behind the mentor's designdec isionsand in understanding construction details that were otherw ise difficult to explain. I have concluded that mentor use of articulation to explain their reasons for using particular design elements or construction details during site visits faciliated transfer of their tacit knowledge about design to students. This assisted the students to link procedural knowledge necessary for using heurist ic design strategics to problem solving methods appropriate to the tasks that emerged from their authentic design project. When interviewed at the end of Phase Two, Studen 18 maxle the lollowing comment aboul this aspect of his participation in site visits with his mentor:

I learnt heaps from seeing her (the mentor) projects as they were being beilt and having her talk about why she designed the way that she did.

Other data tr anscribed from the joumal kept by Student 18 conlirmed these comments as follows:

Went on site today with Susanne to check out a couple of her jobs. She talked all the time about why she had put in the features that she said made it work and showed me how the details were worked to brick course heights and plastering panel sizes. I asked heaps of questions; she liked it when I got into it a bit and she kept questioning me about what I thought and how or why I might have done it differently. Got some good ideas from this. (Student 18, personal joumal entry)

Analysis of data such as these led me to conclude that student learning about design was assisted by their participation in visits to construction sites where mentors showed actual examples of their design work anl verbalised their reasons lor developing the designs in the manner they did. Working in this way provided opportunities for students to acquire tacit knowledge of the mentor's usual design practices, declarative knowledge of site constraction lechniques necessary :'or detailing design elements and procedural knowledge necessary lor implementing design methods modelled by the mentors. Site visits with mentors provided students with important
learning opportunities in which the connections between design theory and practice was readily established.

Summary Of Findings For Catcgory 3,1

The following practices emerged as elfeclive means for transfer of declarative and tacit knowledge in the application of design proccsses and procedures modelled by mentors as typical of thcir usual design ollice practice methods:

- examination of the design hrief nixl ull inlluencing factors in preparation for a design development;
- extensive use of questioning and thinking aloud to:
- introduce, explore and defénd design idcas;
- explain the processes used to develop design solutions; and
- for evaluation and testing of design elements.
- the use of extensive and diverse non-context specific resource materials;
- extensive use of rellection on past and current design projects as design resources;
- matching of proved design and construction practices to design concepts being explored in the student/mentor collaboration;
- use of the "ofifice set" approach to provile visual representation of ideas explored, information researched, variations on design concepts ur details, brunching of lines of inquiry, cvaluation of design elements and influcncing factors;
- extensive usc of visualisation to explore multiple perspectives and solutions;
- the use of CAD design and drawing methods to quickly explore new ideas or concepls;
- mentor availability and the extended support offiered by contact with others in the work place or associated discipline consultants; and
- student participation site visits and current olfice projects in which the mentors link actual practices with theoty or concepts.

Learaing methods using Modelling, Coaching and Scaffolding
This section reports findings that emerged from analysis of data about how student learning was assisted by mentor use of the specilic cognitive apprenticeship teaching strategics of modelling, coaching and scalfolding. Many of the elements discussed here have already been mentioned as occuning in other activities or practices regarded as affiecting student learningin the study situation. Here, they have been specilically addressed because of their particular relevance to these thr ee key cognitive apprenticeship teaching strategies. Findings that emerged from data coded in categories used to represent the modelling, coaching and scaffolding teaching strategics are reported here, along with data from Phase T'wo interviews and the video record of Phase 'lhree work sessious.

Earlier in this thesis, it was reported that mentor use of modelling and coaching was characterised by a constank shilling between the two during student work sessions.

Similarly, mentor use of various materials to scaffiold student leurning has already been mentioned in the context of couching students in the upplication of heuristic design strategies and problem solving methods typical of the design office culture of practice. During analysis of data coded using entegorics based on these teaching strotegies, one hypothesis to emerge suggested that the ${ }^{2} \mathrm{e}$ three teaching strategies logether form the core practices used by mentors to communicate their tucit knowledge and design methods to students. This hypothesis is now expanded.

Calcgory 3.2 Learning methods using Medelling

In this study, modelling is thought to include activities used to supjort learning through personal demonstration of processes or procedures used to create building designs and to resolve problems emerging from the exploration, development and assessment of possible solutions. Of particular interest was the manner in which building designers, when working one-on-one with a student, conveyed their knowledge and skills by modelling their approach to identifying and solving design problems. Here, modelling also included the demonstration of design strategics that affiected persoral style in building design. Personal style in design is regarded as the use of design chameteristics or elements in ways that typify that design as having been created by a particular individual designer or in the manner of a recognised genre.

Findings from analysis of data coded in this category indicated that the mentors reified their knowledge and design processes by modelling their ways of using design strategies and problem solving procedures. They mostly did this by working one-on-one with students using sketching and discussion to link their interpretotion of the design brief to design and problem-solving strategies typically used in their practice. As part of this process, the mentors used procedures typical of what they said were their usual practices to schedule tasks as an advance organiser for addressing the students’ design project. The main tool used for this purpose took the form of a set of overlaid drawings, known as the "office set" (sec Category 3.J.4, p. 166) that provided job planning schedules, as well as an audit trail of problems faced, solutions explored and ideas reviewed over the life of the project. The use of this approach emerged as a practice common to most of the mentors in the study and was observed to occur during 23% of the Phase Three work session times.

Most of the mentors used examples of their own design commissions to model their approach to design and problem solving. Five of the mentors made extensive use of their own works as a modelling tool when articulating their personal views on design
and constructiondetailing. 'Throughout the work sessions, the mentors
shilled between modedling and coaching as they moved from a leading role to an ussisting, consultant role when working with the students on their design project. Aunlysis of Phase Three data imlicated that activities in which the mentors were modelling their ways for using heuristic design strategics and problem solving methods and conching students in the application of those met hods, took place on average during 38% of the work session times.

Analysis of data about how the students used methods modelled by the mentors to develop the ir own design eppronch suggested that the studeats adopted the mentor s' design practices. When commenting on how he initiated what he described as his structured approach to teaching design to stadents, Mentur 7 said:

If you don't give someone a start point, as u young person or an inexperienced person they'll sit there for three hours and say "what the hell am I going to do?" They will think "I don't know where to start, do I start in the kitchen, do I start from here or there", you know, they're lost.

One way in which Mentor 7 and some of the other mentors modelled their design methods was to introduce st udents to their design practices by including them in the day-to-day events taking place in the design otlice. In some instances, this involved the mentors allocating the students simple tasks that formed pan of the authentic commissions being undertaken in the design office. The mentors then modelled ways for resolving those tasks by working with the student and others in the design office as per their usual work practices. The following comments made by Student 16 confirmed how this approach helped her to acquire tacit knowledge of common design oll ice work practices and procedural knowledge needed in order to apply the mentor's design methods.

When I first went in tiere I got a good idea of what their work in volved by watching and talking to Steve and some of the others as they worked on a project that they were tyying to get linished. That helped me get into their way of doing things. What was really great was they let me work on some of the drawings with them and showed me some new design and rendering tricks.

Data such as these led me to conclude that through these processes stadents acquired declarative knowledge about the kinds of activities undertnken in the design oflice setting using these processes. The students also aequired procedural knowledge necessary for implementing the design methods used by the mentors and others in the design office. Student learning in the design office situation was assisted by their
observation of mentors and of others undertaking their everydny design netivitics nnd during work sessions in which the mentors modelled design methods.

Some students also repoited tlat they had lenrned much by observing the mentors denling with problems emerging from their own design commissions and office practices, like problems with computer technology. Commenting on this, Student JG said:
... sometimes ! snw l)oug nad Steve (the mentors) getling frustrated and swearing at the computer be:cnuse they could not get it to do what they wanted and I thought that was good becausc they were not perfeet cither and it made me feel OK when I had similar troubles.

Most of the mentors took \mathbf{n} structured npproach to modelling their design methods for students and in so doing erented nad controlled learning opportunities rather than leaving them to chance. Most of the me ntors sequenced design activities by introducing new design concepts or procedures using tasks that increased in complexity as needed to address problems that emerged fiom the student's authentic design project. Tbe following comments made by Mentor I about his use of this approach as regarded by me to typify the approach taken by most of the mentors when working with students:
... we work with the students mostly by showing them the way at first. We work through small design tasks with them to show them how we resolve the sorts of problems that always come up in design work. From there we break the job down into easy stages nnd then let them have a go at it themselves and have time to think it over before we get back to working through their idens with them.

In some eases the mentors engaged others in the design office to model for students aspects of their design oflice practices. Mentor In, when commenting on how in his oflice a staff ${ }^{\prime}$ member with recent TAFE experience was assigned to assist Student 31, said:
... we were lucky in that in the initial contact with Dennis we were able to show him our way of doing things, but we also had Brian here who is an ex TAFE student and already knows the ropes in this office. Brian did a lot of the spade-work in helping Dennis to settle in with the other designers in the oflice and to get stated. He showed him our set-up and the general approach that we take with all of our design and documentation.

Comments such as these confirmed the importance of the suppott offered by having multiple mentors in design office learning situations and in providing mulfiple models of design practice with which the students developed their own methods. Findings fiom analysis of the study datn suggested that most of the mentors used a
similar nppronch when modelling the ir de sign practices. Typically, they begnn by stetching common design situations and the methods they used to resolve problems duat emerged from them, while also articulating their reasons for using heuristic design strategies or for decisions tuken when dealing with them. Commenting on how he used this method to provide Studeni 13 with the information needed to commenee the nuthentic design project used in Phase Two, Mentor 3 said:

I did these (sketehes) in front of him while we were talking to get him to think through the bisic construction inlormation nnd key elements that he needed to know.

One of the sketches referred to here by Mentor 3 is shown below in Figure 16 (\mathbf{p}. 193). Simple freehand sketching of this type was used by most of the mentors to deraonstnite to students how to resolve design elements by having a structured approach to design based on replicable procedures including sketching, schedules, lists and notes. Mentor mode lling ofmethods such as these demonstrated for the students the mentors' design tools, delined directions and set time lines for completion of tasks as per the usual practices of the design office culture of practice.

Findings from data coded about mentor nrodelling of their design practices suggested that they used discussion and sketching as tools to int roduce their ways for developing design solutions, while also articulating the reasoas behind design practices and decisions to conflrm their working practices. The sketch shown below in Figure 16 (p. 193) was produced by Mentor 3 inn work session attended by me and videorecorded for analysis along with other data colleded. As Mentor 3 sketched the construction details shown, he articulated reasons why the pitching height of the verandah had to be at 2100 mm and why the minimum pitch of the roof was set to 5 degrees. To reinforee the need for setting these figures, he described in detail several instances in which he had experienced difficultices with similar situations with elients and builders who sought to detail the design dilferently. Work ing in this atanner, the mentor provided tacit knowledge of his design experiences, as well declarative knowledge of diffie rent design situations the involve simulnr detailing and procedural knowledge of ways used by him to resolve the problems identified using the sketched example.

Figure 16 Sketch showing const ruction details
The following comments made by Student 13 indicate how Mentor 3 began by modelling his design approach using sketching and discussion then transferred ownership of the design development to the student when the basic infirmation and design approach had been established. Student 13 said:

He sketched and explained things all the time. When I first went there he already had a few schematics drawn, but he wanted me to tulk about it before he pulled them out. He went though some sketehes that we did together before the end of the meeting and basically said to me OK go home with this information and build on it with your own ideas.

This method of showing an approach to design, backed up with infornation for students to initiate the ir use of the methods modelled, was typical of that used by most of the mentors. Student 9 described as follows how he and Ment or 2 similarly worked by building up byer of translucent "butter paper" drawings to progressively develop a design solution:

We sketched all over my drawings together and he worked in pencil usingtracing paper over the top so that he could use byer over layer of drawings as he built up different ideas. We could flick back over what we had done and sec how the design had developed.

Mentor modelling oftheir work pructices in this manner provided a means for transfer to the students their tacit knowledge, guined from experience of many difierent design situations, when dealing with the specific problems that emerged from the authentic design projects undertaken by the students. Most of the mentors modelled their design methods by demonstrating ways for exploring multiple design solutions or variations of an iden by using overlaid sketches on translucent "butter paper" so that the onderlying sketches were visible os part of the new geometry being developed. When commenting on how Mentor la had demonstrated design procedures using this method, Student 8 said:

Just watching him doing the butter paper sketches was great, seeing him do dilferent bathroom configurations that I had never seen before like the one he did with the 45 degree walls. Each new sketch was on a difierent layer of paper so that you could see the design changing und by overlaying them in different \cdots vs he showed me how to test different layouts or variations on the :., 'esign.

The mentors encouraged the students to use heuristic design strategies and oflice practices they had found to be successful in their own commissions. They mostly did this by demonstrating and explaining their application using "office set" drawings, sketching and the students own project drawings. Working in this way the mentors were able to sketch typical problem situations and the solutions they had used to resolve them, while articulating the reasons for decisions made and methods applied throughout that process.

Having begun by modelling their usual design approach, the mentors then shifted their approach to focus on coaching students in the application of heurist ic design strategies based on their everyday practices. Some mentors saw modelling of their approach to design as the key to motivating students to achieve beyond their previous best performance. Data collected in member check interviews at the end of Phase Three confirmed that the following comments by Student 14 typify what most of the students said about their experiences when working with a mentor in a design ollice.
... this was a great working experience and I learnt heaps in a shoit time about design and how the industiy goes about getting projects done in an office. Just having him show me how to use his methods to sotl out my design problems helped me to understand more about design and how to come up with the best design I've ever done.

Comments such as these and other similar data suggested that mentor modelling of how their usual design practices could be used to resolve problems in the tasks faced
by students in their design project help ed the students to nequire new design knowledge and skills. The mentors also provided the students with insights into the wider community of practice by introducing design elements that involved contributions trom other associnted consultnnt discipline experts. For exumple, Mentor 6 suid thut he demonstrated the overitll design process for stutents so ns to give them the "big pieture" of how what they produced relnted to other ussocinted disciplines. Of this uppronch Mentor 6 suid:

It's really importinn for u student to sec the process by which a design is brought up. Not just in plan form but through nll of the related drawings so that at any one time the overall coneept is evident tor the engineer to sec, or the estimntor or uny other consultunt who might be a part of the design process nlong the way.

Using this approach to modelling design working practices was said by some mentors to "keep the energy going" for students by presenting a globnl view of design development while working on individual elements of a design using small tasks that collectively produc ed a final design solution. Mentor 2 said that he regarded this to be an important element in his modelling of design methods because it stopped students fromgeting "bogged down" with details when larger issues needed to be addressed first. Mentor 2 said he motivated students to explore design variations before resolving the line details of a design by giving them a quick demonstration of how the design might be viewed differently by reworking earlier sketched ideas. Mentor 2 said of his use of this technique:

In the last time (working session) I saw him I grabbed a piece of paper and I actually went shush shush shush (demonstrated rapid sketching technique). I just had to get at it and throw lines everywhere. Just to say to him get some energy into it. He had some good ideas there but he needed to work them over to explore other possible solutions.

This approach was pick ed up and used by Student 9 who work ed with Mentor 2. When discussing what he had learnt from working with Mentor 2, Student 9 said: He just sort of came up with heaps of ideas. I don't know how he did it, but it was all fast sketching. He just created more ideas each time on top of the other ideas using sketches. He kept sketching everything. Ile gave me some basic ideas of how things were going to go using sketches nod then I look that home and worked on it and fixed it up b: $/$ drawing outlines to rooms and getting distances correct and made it work. That's how I got started with the design.

Mentor modelling of processes, procedures nod design strategies was never simply a demonstration of their practices. It also mostly included elements of conching
andusually ulso scaffolding using resource materials to lxossit students pist barriers to their progress. I laving mentors apply and articulate their usual practices made visible to students the menlor's tacit knowledge, like how to deal with verandah roof del nils as mentioned curlier uni many other design situations, as well as the procedures they used to deal with them.

As their designs developed, the students usually took a more act ive role in the ir collaborative work sessions and the mentors moved more to coaching than modelling, while also taking less of a leading role in decision making in the design. Eividenec of this shift can be seen in comments reported errlier by Student 16 who said:

When I went there I diln't feel confident to talk about my ideas and wasn't sure about how they did things there. That changed pretty quickly because although they took the time to explatin a lot to me about their design methods, they also made me talk about mine and got me to explain every part of my design as it developed. That relly helped me to be more relaxed about talking to thern and by the end I think I was doing most of the talking and the y just helped when I needed it.

During Phase Three work sessions, act ivities in which the mentors were considered to be coaching students took place during 61% of the work session time. The fluid mature of the balanee between modelling and coaching in mentor supported design office act ivities involving Mentor 6 and Student 24 is regarded by me to be typical of what took place in most of the student/mentor collaborative work sessions. For that reason, n descript ion of how Mentor 6 worked with Student 24 is provided here .

When inter viewed prior to the lirst work session, Mentor 6 said that when mentoring students he always used examples of realdesign situations and solutions to model his usual approach to design. This he said provided vistol evidence of design ideas and concepts that he had applied in his own commissions and about which he could articulate detail ed informed description of the reasors underly ing decisions taken and alternatives explored in resolving the design problems. I obs erved that during the first work session with Student 24, Mentor 6 spent 13\% of the work sessiontime modelling his approach by sketching forms that evolved from the design decisions taken leading up to the completion of an exemplar project being discussed. The exemplar project used was presented by Mentor 6 as an "office set" of draw ings generated as part of his usual design ollice practice.

Analysis of Phase Two data suggested that the use of the "oll ice set" approach was a key clement in modelling design ideas and strategies for dealing with problems that emerge during the design process. Findings that ennerged fiom analysis of Phase

Three data showed that the mentors used "office set" drawings when modelling their design approach, during 40\% of the work session times.

During analysis of the vidleo recordings of the l'hase Three work sessions, I observed that the balance between modelling and coaching constantly shilled in a cycle of detailed explanation building and demonstration in ficilitate the student's use of the design precedures being applied. Figure 17 represents that cycle of modelling, demonstration, coaching and explanation building.

Figure 17 Cycle of modelling, coaching, demonstrating and explanation building
Mentor 6 used a multi-faceted approach to progressively build a verbaland a visual picture of the design problems and their possible solutions using the "office set" design tool, sketching and discussion. In this way he reilled his tacit knowie:dge and procedures tor dealing with problems emerging during the design process. Findings that emerged from analysis of data about other student/mentor design office collaborations showed that mentor modelling of their design methods helped the students to acquire declarative knowledge including regulations and standards that govern construction practices and information about how these inlluence design and structural detailing. It also lacilitated student acquisition of procedures used by expets to deal with problems that emerged from tasks embedded in the authentic design projects on which they worked. This was evident in the work produced by Student 24 (who worked with Mentor 6) when his design drawings were assessed liy a panel of building design experts (sec judging of student designs on page 269). N(though this assessment did not form part of the main data gathering methods, it was regarded as providing data r:bout student learning oud comes that were conlir med in member check interviews with TAFE lecturers at the end of the design project. Findings from analysis of these data conlinned other tindings that emerged from this study and supported my contention that new leaming had occurred.

When discussing how encli of the students hnd perfismed according
to the nssessment of their final design commissions, Lecturer I said:
They all did really well in the projeet nad I can see a grent dilference in the stnnelard of their work when I compare it to what they usually produce in classroom based design exercises that we do with them. Colin (Student 24) came through with the best design. The panel (group of building design experts who usscss."d tle student designs) thought that his work was of a protessional standard nad that he had really made the best of working with Mentor 6 .

In addition to the structured work sessions in which the mentors modelled their working meth ods for the st udents, ot her unstructured activities took place in the design office from which the students acquired knowledge by observing and sometimes participating in exchanges with others. Most of the st udents reported that hearing and seeing others working with elients and consultants on real design projects had enhanced their learning experiences in the design ollice. When commenting on how this nspect of working in a desig n office had assisted his learning, Student 13 said:

I learnt heaps just by being in the oflice and listening to all the conversations going on around me. Sometimes they got pretty heated and that was great because they had to defend their ideas if they wanted to get them through.

Working with a ment or in a design oflice and being witness to all that takes place was sa id by many st ude nts to add new dimensions to their learning. Student 16 sa id:

It gave me a different point of view about looking at design, you know, you are not so limited to whit you can use. l've got a much broader view of design now and know abou altemative ways of doing things that you just don't get to see at TAFE.

Findings that emerged fr om analysis of data about practices used by the ment ors to model their design methods and problem solving strategies suggested that modelling was used by the mentorsto:

- demonstrate their usual design met hods, pr.ajem solving strategics a nd a structured approach to design through the use of authentic "office set" drawings, sketching, over-sketching of C^D drawings, schedules, lists a nd notes;
- demonstrate to the students design tools, he uristic design strategies, defined directions and set time lines for completion of Insks;
- provide de clarative knowledge of desigu sit uations, regulations, codes and sta ndards as well as procedural knowledge for applying design methods; a nd
- structure design activitics to r eplicate the sequencing of design production in authentic practices.

Category 3.3 Learning methods using Coushing

Carver. (1995, p. 206) contends that coaching oceurs when "the teacher ohscrves and facilitates while students perfinnn a task". Thiss study supports that view with coaching also inc luding act ivities or situations where a mentor assisted students by work ing collaboratively with them to resolve design problems. The use of coaching is considered here to include mertors guiding st ude nts in the ir use ofhe uristic design strategies and problem solving methods by articulating the reaso ns behind design decisions, procedures and individual st yle elements regarded by them as being typical of the ir usual design off ice culture of practice methods.
^nal ysis of the video recordings of student/mentor work sessions showed that all of the Phase Three mentors moved constantly between conching and modelling as they worked with the students on the real work design project. Activities in which the mentors were considered to be modelling took place during 23% of the work session times and activities in which the mentors were considered to be coaching took place during 61% of the work session times. These figures being taken only as a guide to the balance of activities given the overlap of modelling with coaching that was almost always present.

Mentor use of deta iled explanations and sketching when cosaching st ude nts in the use of heuristic design strategics and prob!em solving methods was common to all of the P hase Three design office situations. Much of what the mentors presented consisted of guidance and explanations for nddressing problems emerging from the authentic tasks embedded in the sfudent project using artic ulation and sketching. For example, Mentor 6 created the sketch shown below in Figure $18(p .200)$ to assist with his explanation of how to design on a hillside site with clay soils, when coaching Student 24. The following excerpt has been transcribed fr om the work session in which Ment or 6 conched St udent 24 in dealing with problems about the building site:

Mentor 6:
This design situation is like one I dxl recently on a stecply sloping site with wet clay soil nad large ironstone rocks. I went for a framed design similar to what you have suggested in your proposal. This is a good way to denl with a site like this be cause it's best to avoid cutting int o the site and risking mud slippage.
St udent 24:
I thought that I could also use a flat slab and retaining wall to get a level area at the bottom for the cars.
Ment or 6:

Let's have a look at that. If we cut a section through your design this is how it might look. (quick sketch as shown below). If you cut into the site you will get slippage and water run-off through the footings and that might cause movement for any mass walls. Also, you will need to form drains behind any retailing wall or they will act like a dam and eventually crack and fail. Have you thought about using a fully framed construction to avoid the use of retaining walls?
Student 24:
Not really, I thought that I needed to have brickwork for some of it for thermal insulation reasons.
Mentor 6:
There are many other ways, for instance we can use multi-layer insulation, roof overhangs and verandahs for shade like this (see verandahs in Figure 18) and get the orientation working for us to let the sun in during winter through highlight windows like this (see arrow to window in top of Figure 18).

Mentor 6 went on further to discuss reasons for refining different parts the design that Student 24 had presented. Working in this way, Mentor 6 coached Student 24 through several aspects of the design by discussing reasons for using different design details and by sketching multiple solutions that he called on the student to develop as they worked together in refining the overall design form.

Figure 18. Sketch used during Coaching about sloping site conditions.

Coaching used in this way by the mentors facilitated transfer of tacit knowledge of different design situations or methods to students. Typically the mentors also gave detailed reasons for decisions they had taken when resolving particular design problems
in authentic commissious used by them us exemplars on which sludents could b. ase their ouvn design practices.

Most of the nent ors caid thnt when coaching students they expressed their thoughts aloud while sketching design idens or solutions. This, they staid, provided immediate feedback to the stulents ubuut how and why they resolved design problems in the manner tlut they did. During Phase Two, Mentor I said that he sketched and talkell nbout his decision-making processes when conching studen sin the use of his design methods. Of this approach Mentor I said:

We sketch in firont of them and we think out loud nnd say look you do this and don't do that nnd we rub bits out and develop it on the tly with them.

Student 18 similarly described the approach used by Mentor 26 to conch him by using sketching and articulation. Student I8 said:

She sketched straight on top of my drawings and sketches are well as doing her own butter paper sketches and overlays. She talked about why she liked doing things her own way in design and all the time explainin! why some things worked and other didn't.

In all of the Phase Three work sessions, mencor use of coaching by the oversketching of drawings was observed to occur in conjunction with detailed descriptions of why and how particular procedures might be used to resolve emergent problems in the design. This aspect of the use of sketching is described in more detail Inter as part of Category 34 Learning Methods U.sing Soaffolding (p.206) but is mentioned here because it also emerged as an important clement in conching. Some mentors sketched over the top of drawings when coaching them in the use of design procedures. The purpose of working in this way was said by some mentors to provide immediate feedback to the student on the efle et that ideas being explorad might have on the design form and to show a record of the design variations considered throughout the work session. Commenting on how his mentor used this approach Student 9 said:

We sketched all over my drawings together. He worked in pencil using tracing paper over the top so that he could ase layer over layer of drawings as he built up diflierent ideas and we could llick back over what we has done and see how the design had developed.

Most of the students made comments similar to this when discussing how the ment ors oversketched their drawings to guixte them through the design project. From these data I concluded that over-sketching of drawings was an important tool used by ment ors when coaching students. Its use was slightly dillerent fiom frechand sketching
to present new idens or for explanntion purposts in that it utilised axx I huilt upon existing geometty' and thereby presenked an evolving form upon which students could reflect nnd explore new pathways. Drawings produced in this manner during work sessions were aldal to the staxlents' own "office sti" documents that formed the baesis for further development of their disign solutions. They were also used in coaching sessions to explore multiple design solutions. In addition to these "office set" drawings, the mentors used tleir own "ollice set" documents of authentic commissions as ex emplars when conching students in the application of heuristic design strategies and problem solving methods. When using these "office set" drawings lor coaching purposes, the mentors were able to provide examples of completed design solutions that addressed similar design situntions to those of the students' authentic project. Using these, the mentors then demonstrated their design methods and conveyed their tacit knowledge of various sit un tions and design solutions lor students to adh pe to their own works.

Student 16 said that her mextors encouraged herto develop an "office set" using the overlaid drawings they had developed together whencoaching her through the use of their design procedures. The "office set" dawings she created were also used in hater work sessions with the mentors to explore and refine other design solutions. Of this approach, Student 16 said:
... it meant that I had hyers of sketches in what they called their "office set" and from that I could see the design progressing and also see where we had tried things cult and tien gone another way.

During Phase Two, Mentor I said that his approach to working with students was based on "sketch and talk" so that every aspect of the design process and every design idea explored was documented using sketches and notes that lonned the "office set" drawings for the design project. These drawings were then used during work sessions to firther explore and refine design solutions. Other "office set" drawings created for authentic commissions were used during coaching sessions along with the st udent's drawings to introduce design strategies and for explaining how problems similar to those that emerged from the st udent's projects had been resolved in other projects. Findings for this categoty suggested that most of the mentors used "office set" drawings a's tools to assist their coaching of st udents in the application of their us ual design practices. Thelollowing comments made by Mentor 17 are typical of many similar data coded about coaching using drawing sets to show different aspects of design practice:
... I stress to the students that it is vital to the confident that you have explored every asperet of a design before tiying to create formal drawings that the elient might neeepl and therefore close off on development that may still be needed. 'That's why I get students to develop their own "office set" drawings, so that they san see the grisdual development of their idens and to explore every one of them before committing to a design. The whole time I nm working with them I also get them to use my own "office set" drawings as a so urce of inform mation. By using them, they can sec and I can explain how and why certain design situations are best resolved. It's a great way to guide someone else by having real examples that have leen built and being able to tell them about the successes and failures that came out of them.

I have concluded that students acquired ways for developing design solutions thro ugh mentors coaching them in the application of their design strategies and in ways for resolving problems that emerged during the design process. $\boldsymbol{\wedge}$ key part of st udents learning to apply their mentor's design methods involved the mentors explaining the reasons tor their design decisions by using exemplar works documented in "office set" drawings of their authentic commissions. I regard coaching assisted student entry to the designofice culture of practice because it revealed how and why mentors use particular strategics to address design problerns in the context and culture of their usual practice. Coaching using these methods also showed how the mentors applied the heuristic design strategics and procedures they advocated to their own commissions and thereby demonstrated the success or lailure of those methods along with the reasons why.

The manner in which Mentor I and Mentor In used coaching methods was repiesentative of the way most of the mentors used coaching. For this reason, the following description o fhow Mentor I and Mentor Ia worked with Student 25 during Phase Three is included here to illustrate the how coaching was used in the design office work sessions by the mentors to assist student learning in building design.

Menfor Cioaching in design office work sessions.

I observed Mentor I and Mentor In coaching Stıxdent 25 in the use of design strategies they described at the time as their everyday practices. Mentor I and Mentor la stated out in a similar lashion to that used by inost of the other mentors studied, by taking a very open view of the design at hand so as to "leave it open to multiple ide as" for the student to explore. During 51\% of the work sessiontimes the mentors encouraged Stude!t 25 to visualise as many altemative design concepts as possible by placing herse If mentally on site, experiencing the location. D uring 30\% of the work session time, each of these ideas or concepts was then explored by sketching and discussing them to the point where they could be evaluated, then accepted or rejeeted
fiyr further development. Conching netivilies in which the mentors soughe to inspire new thought by reviewing the student's work look place during 32% of the work session time. With each new design explored by St udent 25 , the mentors introduced new approaches for resolving the problems emerging from the sithation. These activitics occured during 41% of the work scssion time. Much of wlut the mentors provided during these sessions involuad the introduction of multiple perspx:ctives of the design project being discussed, nlong with tips and Icclaniqucs for resolving the dif ficulties that they ident ified as likely to emerge from the situation presentel. For 61% of the work session time, the mentors explained their use of infimmation based on their tacit knowledge of similar situations they had faced in their everyday activities and the procedures that they had employed to resolve them.

As the design being developed by Student 25 began to emerge from the many forms she had explored, the mentors coached her along a pathway nimed at refining her preferred design solution. Following the third work session, Student 25 commented that she had urrived at the basic form of what was to tecome her final design hy applying the "process of elimination" that Mentor I had introduced during the first work session. She explained that she had considered several other possible plan-forms for her design, but had rejected them after exploring their attributes nad finding them unsuit able. Throughout the six observed work sessions involving Student 25 some aspects of this early process of exploring multiple perspectives on global scale in the design tork place with the mentors. Much of it also occurred for Student 25 nt home where, according to her, she used the mentors' advice to make the evaluations by herself by developing and exploring their value wit hint he framework oft he procedures in which she had been coached by the mentors during the work sessions.

The most intense work sessions involving Student 25 and her mentors took place when she had established a plan-form that was accepted by the mentors as suitable to be refmed for a linal solution. At this time, the mentors used sketching and discussion to introduce and explore possible variations to the design at a detailed level within the context of:he overall plan layout and elevational treatments. Student 25 said that this stage of development was most enlightening for her because she felt that she had achieved fiecedom in designt hrough using an open-minded approach to visualising the final form. This she said had led to her creation of multiple design solutions for evaluation and integration into the final design concept.

When Student 25 presented what she regarded as her linal design, Mentor I and Mentor la encouraged herto evaluate its suitability by disc ussing at length with her
numerous variations for the details of that plan that could be used to reline it.
Throughout this process they coache:d her in ways to explore und to detnil the ideas presented in the final designhy using multiple hayers of trunslucent "bulter paper" io over-sketch new ideas on the existing design genmatry. 'They nlso us ed examples from their owil "onice set" draw ings of commissions I lut hud similar design situations hut different solutions to those being Iteveloped by Student 25.

During 31\% of the work session time, the mentors modelled design variations and alternative approaches that were bas ed on excmplars taken from their own works in progress. Each design clement or proc edure introduc ad in tinis manner provided strategics for conceptualising new ideas nod resolving eme:rgent problems in the design being developed by Student 25. This, I contend, encouraged Student 25 to use metacognitive ways to explore and to reline her design ideas. When disc ussing this approach with Mentor la during Phase Two, he said:

If you just keep telling them what to do they never develop their own ideas, if they go it alone they might make mistakes but they also come up with the goods occasionally and when that happens it's pretty easy to sce.
I give then a starting point wih some sketches and then let them experiment with the ideas, when they come back with something too outragcous I just slowly pull them back by getling them to show me how they might actually build in. Youmight say to them what a great iden but get back to the real wor id.

Some mentorssaid that they encouraged st udents to "run off at a tangent" in design because it of en resulted in creative, innovative ideas being explorad. Other mentors were more focussed on monitoring st udent exploration of "radical ideas" and used coaching methods to guide exploration and discovery by setting parameters that were based on the requirements of the client brief. For example, St udent 13 described how Mentor 3 coachad him thr ough the design process, say ing:

He gave me the advantages and disadvantages of things like room sizes or positions. Then he let me decide on how I might use things. He la me do the design but he guided me when I got bogged down or startad doing things that he saw as running off line.

Student 16 exp erienced a similar approach in her collabor ation with Mentor 6 and Mentor 6a. Shesaid:

Most of the time I did it on my own but with them helping out when I got stuck or just look ing over my shoulder and mak ing comments when they saw things that they thought could be done differently. I had to keep myself working at it, but they were always there on the sidelines keeping an eyc on me and going through my skeches asking me to explain why I
wns doing things in that way. They kept talking to me about the design and usually suggested little changes or adding in things like veranda hs and so on.

Most of the mentors usced coa ching to assist student learning by reifying their ta cil knowledge and design procedures when demonstrating und expla ining the ir npplicntion to problems the emerged from the students' authentic design project. Through this conching process, the stutents acquired the knowledge and sk ills needed to resolve design problems. Analysis of the study data suggested that coa ching occurred by:

- guiding students' application of design, he uristic design strategies for resolving emergent design problens and for refining design solutions;
- explamation building to detail the reasons underly ing design pro cesses and decisions, based on personal experiences;
- over-sket ching of students drawings to provide inunediate feedback on ideas explored or solutions accepted; and
- assisting exploration of new design ideas that stemmed from carlier concepts, as documented in the "ollice set".

Category 3.4 Learning methods using Scaffolding

Carver (1995, p.206) contends that scaffolding occurs when the "iea cher provides support to help the student perform a task". This study supports thnt view as well as regarding scaffolding to include lips and tricks or resource materials provided by the mentors to assist student learning or problem resolution a clivities in design. This included techniques, explamations or partial solutions that enable students to progress beyond points of dilliculty.

Findings that emerged from analysis of the study data suggested that the mentors used scaffolding to assist studentsover barriers to their progress by providing tim cly information and pro cedur es, based on authentic experiene cs, to resolve problerns emerging from the design process.

All of the mentors used a range of difierent methods in cluding the use of the following mater ials to saffold student progress with design:

- exemplar drawings;
- architect ural journals and catalogues;
- codes and regulations;
- advertising mater ials like magazines and travel bro chures; and
- hnnd and CAD drawn sket ches.

Scaliolding often also included assist:mec by consultants and other design olfice staff who provided specialist knowledge or alternative procedures for solving problems that were preventing student progress. All of these elements have been mentioned already in the discussion of design office practices, madelling and coaching. Their use as scaffolding elements is further discussed here beecause scultolding is universally recognised as importnnl to student learning in the design olfice situations of this study.

Student development of autonomous ways for using information and design methods modelled by mentors took place during their collaboration with the mentors and as part of their independent design activities. The use of scalfolding materials and methods as listed above is discussed in this section with reference to its timely application by mentors and others in situations where students experie need difliculty in progressing because of problems that emerged from the authentic tasks of their design pro ject. Scaffolding used in this way difiered from the use of these same materials during explanstion building or coaching where new ideas or concepts were introduced along with ways for dealing with them. The essential feature of scaffolding was its timely application to overcome barriers to student progress. Another key aspect of using scaffolding was its gradual withdrawal as students acquired knowledge and skills needed to complete their tusks. The gradual withdrawal of scaf Tolding, relerred to as frading, was examined using the video recordings of Phase Three work sessions.

Four as pects of mentor use of scaffolding that assisted student learning emerged from this study. Each of these, observed in use by mentors during Phase Three work sessions, is now discussed along with emergent findings and examples draun fiom the study data. The categories are:
3.1 1 Mentor sketching, over-sketching of CAD drawings and notes;
3.4.2 Resource materials including codes and regulations;
3.4.3 Scaffolding using exemplar "office set" and CAD dransings; and
3.4.4 Consultants and orhers with special skills

3.4.1 M entor sketching, over-sketching of CAD drawings.

Throughout this study, the mentors used fiechand sketches and over-sketching of CAD drawings to introduce ideas and to explain designsituations or methods. Sketching was also used extensively hy mentors to provide timely tips and techniques to assist students to overcome design problems. What made the mentors' use of such sketches different from their usual application as tools to assist coaching, was that they
were specilically ereated and used in respon.se to student requests for help, or when the mentors saw that the students had come to a barrier to their progress. The other aspect of sketching used in this way was that as with other aspects of scaflolding it was used only as needed and progressively withdrawn (fitding) us the students developed knowledge and skills to resolve emergent problems that had bee:en largeted hy mentor scaflolding using sketching.

Jor example, some mentors made use of sketches to lorm links for students between room relationship bubble diagrams and concept design layouts. Mentor 3 said that working in thisway was lypical of his usual design procedures, but was not used by the students he mentored until he introduced it to them after having seen them struggle to move on from basis plan forms. The manner in which Mentor 3 used an overlay sketch to scaflold learning can be seen by comparing Figure 19 (p. 208) which shows a simple plan fonn (created by Student 22) with no room relationship links, with Figure 20 (p. 209), which shows a plan developed over a bubble diagram, de veloped by Mentor 3 with the student. Mentor 6 prepared the bubble diagrampart of that sketch after examining the student's first design effiorts (see Figure 19). The bubble diagram was then developed by Mentor 3 and Student 22 into a plan form. This coaching process utilised sketching as a scalfiolding element in that it provided timely information and the basis for a design procedure that overcame a barrier to design development for the student. For this reason, I regarded this use of sketching to be a valuable scalfiolding element for student leaming.

Figure 19. Student design sketch without room relationships.

The sketch used by Mentor 3 to scaffold Student 22 is shown below
in Figure 20 (p. 209). In this sketch Mentor 3 has overlaid defined room shapes on a bubble form layout used to initiate the design by first establishing zone relationships in the building.

Figure 20. Design sketch showing defined room areas over bubble concept forms.
Such sketches were said by most students and mentors to be valuable tools for overcoming barriers to student progress during the development of design projects. Mostly, these sketches were quickly executed using soft pencil on butter-paper, concept drawings, or roughed out details ready for the student to resolve into their design.

During Phase Three, the mentors used sketches to illustrate, develop and explain concepts and design ideas or details, as part of their modelling and coaching efforts with students during 53% of work session times. An example of this form of sketching as used by Mentor 4 with Student 23, to scaffold learning is shown below in Figure 21 (p. 210).

Figure 21. Sketch used for scaffolding Student 23.
Hand sketching over the top of CAD drawings was similarly used to scaffold student learning. For example, Mentor 6 helped Student 24 to position his design by showing him how to create focus lines, using over-sketching. The sketch produced by Mentor 6 for this purpose is shown here in Figure 22 (p. 211). The focus lines drawn by Mentor 6 run from the two left side corners to meet with a line from the centre of the right side site boundary. Secondary focus lines are shown as broken lines that were added when Mentor 6 coached Student 24 in his ways for developing alternative building positioning axes.

Figure 22. Over-sketching of CAD drawing showing focus lines.
Throughout this study, I observed that most of the mentors scaffolded learning by using sketching and over-sketching of CAD drawings which sometimes included elements taken from their current works or office archives that were similar to the students' designs. Used in this manner, sketches enhanced and scaffolded learning by providing sources of exemplar materials that incorporated similar situations (and the solutions used by the mentors to resolve them) to those faced by the students in their own works. Sketching used in this manner also provided transfer of the mentor's tacit knowledge of different design situations and the information needed to address them in order to meet regulatory requirements and industry standards for drawing documentation and construction. Having such materials as the basis for work session discussions allowed the mentors to use over-sketching of exemplar drawings or the student's own drawings, along with articulation, to assist students to resolve problems in their own works. Sketches produced in this way were also used to explain how other design strategies might be applied to problems that emerge from the student's designs. Student learning outcomes from mentor use of sketching to scaffold learning included:

- acquisition of declarative knowledge about multiple design situations as seen in exemplar "office set" drawings of authentic commissions;
- acquisition of tacit knowledge based on experience of using design methods reified by the mentors through use of sketching of similar problem design situations and the methods they had used to develop solutions for them;
- procedural knowledge of ways to apply alternative des ign practices as shown by the mentors in their use of overlay sketching of exemplar drawings to refy their methods for apply ing des ign procedures with reference to the student's own ploject; and
- design methods and multiple solutions to prohlcms typically addressed in everyday design situations that emerged fiom authentic projects as demonstrated by the mentors when sketching design elements fiom thcir own works to illustrate potential ways for resolving problems that emerged from the student's design project.

When commenting on how Mentor 28 used lthis technique. Student 8 said:
It was only when we stated getting stuck for ideas or close to the deadline, he would come back to me with an idea sketched out and say here is something I have thought about and we would discuss and sketch that ilfough. When I got stuck, I kepl going back to those sketches, becouse I kept them in my own "office set" drawings and I would use them to solt the problems.

Ment or 2 said that some students were unable to proceed with design because they did not have the necessary knowledge of building codes and regulations, or industry standards for construction detailing and the like. To assist them to overcome such bautiers to their progress, he sketched for them key elements fiom exemplar works to specifically address problem parts of their designs. This use of sketching to scaffiold learning helped students to acquire declarative knowledge of difierent design situations and to develop lacit knowledge of ways others had dealt with problems similar to those encountered in their project. It also facilitated their use of proced.aral knowledge necessary to apply design methods, acquired from the mentor, to resolve their own design problem situations.

Mentor use of sketching to scaffold student learning helped students to acquire tacil knowledge about design and drawing standards, as defined by the mentors, through their use of exemplars, drawings and sketches, from which the students could develop their own designs. Using solutions from other works to scaffold the students' designs facilitated the introduction of industry and design office standards to those designs. Mentor 3 said that he used this approach so as to lead by example. He said:

I talked about every aspect of the design and sketched out ideas with him when we wanted something done in a particular way, or if it had to conforn to particular codes or regulations.

I determined that student learning was enhanced by mentor use of sketching to denronstrate and explain their design methods and by the use of sketches by students to
present nidl defend their ilesign methods and solutions. For example, the student design shown in Figure 23 (p.213) was developed using the method provided by Mentor 3 (see Figure 20, p. 209) which shows the bubble diogrum and oversketching approach introduced by Mentor 3. Although the layout in Figure 23 is different from the mentor's example, Student 22 hass clearly applicd the method leamed from Mentor 3.

Figure 23. Student deslgn using over-sketching of bubble diagram.

Additional information, in the form ofnotes, was often provided on sketches used for scaffölding learning. Mentor 3 made extensive use of notes and sketches as scalfiolding tools when work ing with Student 13. On this point Student 13 said:

I did heaps of sketching to develop the designs and when we worked logether we mostly talked and sketched ideas and worked over the top of them ttying out new solutions. We made a lot of notes while we talked and sketched and I used these later to sketch out other ideas that we discussed.

An example of the notes produced by Mentor 3 to scafliold Student 13 is shown here in Figure 24 (p. 214).

Figure 24. Notes used to Scaffold student learning.
Notes used on sketches in this way assisted student learning by providing an advance organiser for each new stage of the design development. Their use was also important for student reflection on the design process and also important when defending design decisions to the mentor or others.

Where C^D technology was used in design and drawing production, most of the mentors used a print-out of the semi-completed strident design to sketch over the drawing to scaffold students' progress by exploring new ideas or to assist in developing existing ones. An example of how Mentor 6 used over-sketching of CAD drawings to scaffold Student 24 through pats of his design is shown here as Figure 25(p. 216). In this drawing, Feechand over-sketching can be seen in almost every part of the CND base drawing. This demonstrates how CAD drawings were used as a means of formalising the emerging design geometry, which was then explored and developed using freehand sketching methods. The use of over-sketching of CAD drawings to scaffioldstudent development of design elements often occurred as part of coaching, but with the locus being on overcoming design problems that had presented barriers to the student's progress.

Figure 25. CAD Drawing over-sketched by Mentor 6 and Student 24.
During 28% of the work session times, Mentor 6 encouraged Student 24 to oversketch his own CAD drawings in the manner modelled by the mentor. This, he said, assisted learning by providing a scaled (and therefore realistic) base upon which to explore other ideas or variations on the design. The visual record of all ideas explored using true to scale over-sketching gave the student an audit trail that showed the branching of ideas and explanatory elements concerning why certain parts of the design had been accepted or rejected as part of the final solution. Analysis of Phase Three data about over-sketching and notes on drawings suggested that they were used by the students as reminders of why particular decisions had been made, and this assisted them to make other design decisions, as informed by their earlier explorations, when not assisted by the mentor. The key element was the record of the design decisions explored, as seen through the sketched ideas and notes made by the students during the work session. Notes on sketches used by mentors to scaffold student learning helped the students to reflect on the purpose of those sketches when revising their designs and to utilise the information shown when implementing design methods acquired from the mentor.

Another aspect of using progressive over-sketching of design ideas to scaffold learning was that of scheduling the sketches, drawings and models produced to give order and structure to the design process. Schedules were also used by many of the
mentors when assisting students to plan the time line fir completion of each part of their design project and presentation documents. Mentor 3 noted that this was a patt of his usualdesign office practice and wastherefore an important asped of what students needed to learn for protessional practice. Of his use of schedules to scaffiold learning, Mentor 3 said:

What I do when we are actually doing projects here is work out what we are going to do, how many sheets of drawings we are likely to produce and that's part of the process of quoting linancially. Students get stuck because they don't know what to do acxt. When that happens I get them to pioduce a schedule to work to. That's how we do it in the olfice and that's what works with students.

The mentors encouraged the students to use schedules as a framework for design procedures that were broken down into incremental, readily achieved stages. For example, part of a time schedule typical of that used by most of the students in this study is shown in Table 12 below.

Table 12
Sample pait of student desigo praject schedule

Day	Design Element	Drawings required	Resources	Time taken	Time allocatedTime letl	
Thus5**	Brief breakdown	Schedule of criteria	Example of client brief from Brian	4 hours	I day 28 days	
Friday $6^{\text {² }}$	Site requirements	$\begin{array}{\|l} \hline \text { CAD layout } \\ \text { with levels } \\ \text { and licatures } \end{array}$	Drawings of Winthrop job, council rcgulations	7 hours	I day 27 days	
Saturday ${ }^{\text {™ }}$	Contour lines on site, geological survey drawing	; Plan ofsite \|plus	sections through n/s and c / w	DOP LA plans (get on NET) Client b:ief title dmwings	$\begin{aligned} & 4 \text { hours } \\ & \text { (incomplete } \\ & \text { at this lime) } \end{aligned}$	0.5 days 26 days
Sunday $8^{\text {bu }}$	Design zone relatioriships	\|Sketch layouts (keep il simple)	\| Example drawings, Building Code	Allow3 days	0.5 days 25 days	
Monday ${ }^{\text {ma }}$	Start bubble diaormens	Butter paper sketches	Criter ia from brief	Allow I day	$\begin{array}{\|l\|} \hline 2 \text { days } \\ 24 \text { days } \\ \hline \end{array}$	

Most of the mentors used schedules similar to this to assist students to organise their time to complete various tasks. They were used by all of the mentors in Phase Three to keep track of the studeats' progress in the same way in which they monitored
real work projects in their normal office practices. This helped the mentors to identify problem aspects of student completion of design tasks within the overall time ovailable for the outhentic project and helped them to provide additional assistance quickly when barriers to piogress were encountered by the students. For this reason 1 regarded mentor use of schedules to support student learning to be another aspect of scaffolding.

I have concluded that student use of design project sclieduling in the manner modelled by mentors assisted learning by providing an advance organiser lor tasks leading to design solutions. Its use by students was also important as a tool for reflection on pathways lollowed during the design process and also important when exploring new perspectives or alternative design elements.

3.4.2 Resource materials used to Scalfold learning.

Scaflòlding resoarces used by the mentors to assist students included books, joumals, magazines and photographs covering a great range of topics, not all of which were necessarily architectural design focussed. Anything that included stimulating imagery such as design or fashion elements like those found in magazines, travel brochures and the like was used by some of the mentors to inspire ideas in building design. All of the building design offices situations used here had extensive libraries of diverse and non-context specilic materials available for the students to use. In most cases these things were provided injormally as colfiee table items used for casual reading ia the social culture of the office. All of the design offices also made extensive use of "ollice set" drawing documents of authentic design commissions and CAD based diawings and component libraries as resources for scafiolding student learning. Most of the mentors said that they encouraged the students under their direction to use these materials to stimulate and inspire new and imaginative ways of dealing with design problems. When commenting on his use of such materials, Mentor 1 said:

We have a really good collection of magazines and books which we all use in the olfice to get ideas and keep up with what's going on in the big picture overseas and in Mustralia.

Most of the students said that they had used a diverse fange of materials supplied by their mentors as a source of inlomation and inspiration when looking to overcome barriers to the progress of their designs. Mentor 2 used books and other mi. . -ials to introduce new ideas and to stimulate Student 9 to visualise a design approach for a countıy setting. Of his use of such nuterials with students Mentor2 said:

I said to him go and read some books and look at some pictures, go to a travel agent und pick up some brochures of the places you are designing for. Try to get the images in your mind beeause some of this couritry that these houses are going to is beautiful.

When Student 9 was asked about how Mentor 2 helped him progress beyond the initial design sketches he created from the crileria set by the client brief, he said:

He brought out a couple of books, just lundscape and the BCA (Building Code of Australia), as well as some trade litera, that showed timber and metal work building products. We pulled ideas out of them on balustrades and details for transportables We also looked at photos and stuff on the climatic zones in a book called "Living With Climate" thut was really useful for working out roof overhangs as well as window sizes and positions. He sketched out three or four dilreent ways of using roof shapes to get sun protection for the walls. We also used a cardboard model he had of one of his jobs to talk about how wide the verandah needed to be on the west-side to keep the sun olf the kitchen wiadows in summer. Once I had all that slutfl was able to get on with the design.

This statement shows that Mentor 2 used a number of dilTerent resource materials to scaffiod Student 9 over the barrier that had put a halt to his progress. They included books lor laadscape and site development, the Building C'ode of Australia tor construction details and safety standards, trade literature for technical information about building materials, a text boak on designing for different climate conditions, photographs för inspiring design style and a model for exploring design form.

Bring ing resources such as these together was a key part of scaffilding student learning in the design office situation as it facilitated the pragress of the student's design work with the immediacy of having the mentor at hand to direct its use. Many comments similar to those made by Student 9 were included in data coded about the use of resources used by mentors to scafliold student learniag. For example Mentor 3 used commonly available magazines to assist Student 13 when he was "stuck for idens". Commenting on this Student 13 said:
... he brought along some pamphlets and magazines that had pictures and articles in them shawing portable houses and that was really handy because I got ideas from them to get my design under way.

Student 14 said that when he was "stuck" his mentor used his own drawings as exemplars, as well as sketctes to scafliold him through difficulties. Of this approach Student 14 said:
... he didn't have any similar projects to this one but he showed me a lot of presentation drawings and some details that he had used. He was good like that because when I was stuck he would not try to block out
my ideas and use his own he would just guide me through and give me little hints and sketches of things to allow me to work it out.

Student 16 snid that Mentor 6 and Mentor 6 a used a combination of scverul diffierentmaterials us senlfiolding to assist her in resolving problems that presented barriers to her progress in design. They also lacilitated her access to other experts in the design office who provided specialist advice when needed. Ofthis approach Student 16 said:

> ... When I got stuck they were good at giving me just enough to get on with it. They bad a big library of buoks and pamphlets and drawing sets tluat I could use for ideas and details or partial solutions; there was heaps of stulf to use. There was also a guy there who worked for them who helped me a lot with the computer work and he was more skilled than they were in using the computer. When I gol stuck he helped me out by showing me how to use the computer to experiment with different design combinations using their CAD design components library.

Mentor 26 nade use of her oum past design commissions to demonstrate design strategies and solutions. She then coached Student 18 in ways to apply those methods to the problem situations that were pre venting his progress with his design project.
Commenting on this Student 18 said:
... she showed me some other designs where she had used the same lechnique and it had worked well there, it was a practical way of getting it logether. She showed me several sets of drawings of other projects that she had done and I got ideas from those on how to set things out and detail them. That got me over the lirst big hurdle.

Analysis of Phase Threce work sessions involving Mentor I, Mentor la and Student 25 showed that they used a broad range of scallolding materials including exemplar drawings, industry joumals, codes and regulations, magazines, photographs and models. Resources such as these were used daring 15% of the Phase 7liree work session limes to introduce ne w conce pls or ideas, new design/buil ding nuaterials. diflierent presentation techniques and design elements such as construction torois in steel. During the early part of the design process, the mentors used geneml materials such as books and photographsto talk about image and fonn. As the design developed, they made greater use of more specific examples as seen in their own design works in progress to demonstrate and coach Uk : student on the application of the elements provided.

Mentor 1 made extensive use of simple nodels to scafliold learning when dealing with the visualisation of conce pts or three-dimensional design forms. This, he
said, was part of their everyday culture of practice when dealing with clients who were not always able to read drawings as building forms. Student 25 adopted the mentor's use of scaled models by making a model of her own project (see Figure 27, p. 221) to communicate and develop her design ideas. Of her use of concept models, Student 25 said:

The model just helped me to bridge the gap between what I could conceptualise and what I could sketch. We used it quite a lot during the work sessions to discuss the structure and the aesthetics of the building because it gave a real sense of the scale and proportions of the design.

Figure 26 shows a sketch used by Mentor 1 to introduce the idea of a model when discussing the layout proposed for the presentation of the design. The five rectangles at the top of Figure 26 represent the five drawings needed for the presentation and the idea for using a model is shown in the bottom-centre of the sketch. Student 25 picked up on the mentor's suggestion of using a model and implemented it in her final presentation as seen in Figure 27 (p.221), which shows a photograph of the model that she built.

Figure 26. Sketch showing proposed presentation with model.

Figure 27. Design presentation model.

This model was used by Mentor 1 and Mentor la to scaffold learning for Student 25 when she was having difficultly in resolving the roof forms where the central horizontal section of the building meets the two square sections located at the sides. It was also used to assist Student 25 in her understanding of how building regulations about access to public areas was calculated.

Most of the building design offices had comprehensive sets of codes and regulations, as well as technical documents, both of which were necessary for students to ensure they met legal and regulatory soundness of their designs. Many of the students noted that access to these codes and regulations helped them to resolve problems that emerged during the development of their design project and assisted them to acquire declarative knowledge about building practices. This, they said, greatly enhanced their learning and assisted them in resolving aspects of their designs that they may have ignored or simply guessed at when doing a fictitious classroom based project. This aspect of using resources in this manner was seen by most of the students as the first time that they felt totally accountable for their design decisions. Some students commented that they had been mindful to adhere to regulatory requirements because their mentor had demonstrated the use of regulations in relation to their work and therefore they felt accountable to the mentor in their use of these materials.

Throughout the work scssions, just as there was a eyclicul overlapping use of modelling and coaciting, therc also :xisted an overlapping of mentor use of the materials discussed here for coaching and scalfolding. Al limes, mentor use of these matcrials could be clearly definal as them couching the stidents. At other times, the mentors used these materials in ways that I regarled as scalfolding because their use focussed on the provision of assistimee to deal with acute design problems, rather than teaching everyday design practices or procedures.

Aralysis of the study duta suggested that when the students had access to extensive resourees, they were more inclin ed to adopt a meticulous upproach to their design by following through many detailed aspects of the work. Mentor use of scaffolding led to students acquiring declarative knowledge of design situatiolts, which helped them to build their tacil knowledge of ways for implementing procedures they had acquired from mentor modelling of their methods and coaching in ways to apply them. Some students said thet they did not use this thorough approach when undertaking a classroom based design project where resources were limited. The extensive use of codes and regulations was evident in the notes and sketches produced by most of the students in the drawings presented at the end of the design project.

Findings from analysis of these data led me to conclude that mentor use of a diverse range of resource materials to scaffold student learning helped students to acquire declaralive knowledge of many aspects of design practice, as well as knowledge of procedures used by expert building designers to create and develop design solutions. The findings also suggested that limely use of scaftiolding led to student development of skills to visualise design problems and ways for them to resolve emergent problems using metacognitive design methods.

3,4.3 Scaffolding wsing excmplar "office set" and CAD deawings.

The importance of "office set" drawings in design office learning was discussed in Category 3.1.f on page 166. This section deals with data coded about the use of "office set" drawings as a lool for scaffolding learning. Specilic examples of how differ ent mentors used the "office set" for the purpose of scaffolding student leaming are discussed here, along with supporting Phase Two and Phase Three data.

Most of the mentors used sets of drawings from their own design commissions as exemplars to guide and scaffold student learning. The use of these drawing sets occuired during $\mathbf{1 6 \%}$ of the Phase Three work session times. Most of mentors made use of CAD technology and geared the ir design practices around the use of pre-drawn
design elements and re.use of entire C \wedge D based drawings. Ilund drnwn sketches and CAD based drawing elements in "office set" commission documents were extensively used to scalfiolding students us they reached various stages in the ir designs. This form of seatfolding was used by mentors to provide students with pre-drawn partial salutions for a variety of diflerent design concepts and construction details, each showing ele arly defined industry standards of documentation that students applied to their own work.

Findings suggested that students were guided by mentors to regard use of CAD based "office set" drawings as resources for developing the ir own design solutions and to overcome bariers to their progress. The use of "olfice set" drawings in the full range of design practice mostly took place as part of coaching by mentors, but was also used by them to address specilic problems that formed barriers to the students' progress when dealing with the authentic design projects undertaken.

The use of these materials alsa formed part of a process through which students were required to defend and justify' their design development. When discussing how he used exe mplar drawings to scaffold Student 30 thaugh difficult parts of her design. Mentor 6 said:

We would get her going by showing her these simple ones (exemplar drawings) with just plans and elevations and say to her you can do that in your own projed and she would apply the lechniques herself.

Mentor 2 similarly supported Student 9 when he was having difficulty progressing with his design. Whe n discussing how the drawingsused by Mentor 2 had helped him through, Studenl 9 said:

He gave me lots of examples of other drawings and other house plans that he had used in those two arcas (geographic locations) and used them to explain how he had come up with designs in other similar areas.

Most of the mentors encouraged the students to utilise existing drawings for their developmental works, as these had already been proved by the mentors through authentic commission applications. As a scaffolding element, such drawings facilitated student melding of many different design ideas and provided opportunitics for individual approaches to be developed out of existlng materials. Authentic commission "olfice set" documents (drawings and other materials) were use d by the mentors as exemplars to explain to students the problem solving strategies they had used to create the design solutions shown. The use of "office set" documents in this way assisted knowledge transer becaase it provided a means for the mentors to reify their tacit
knowledge and this helped students to acquire ways for resolving their own design solutions. Application by students of design methods acquired in this manner led to students developing their own "office set" documents that show the progress of the project frem concept form to construction documentation. Sturients then used these drawings to reflect on design ideas they had explored nnd to refine elements deemed suitable for inclusion in their final design solution. Using this approach provided the students with a visual record of the entire design process and strategics used to resolve each element of the linal solution.

When discussing his use of "offiec set" documents as scaffolding tools for student use Mentor 7 said:

This place is fill of examples they can pull out of the drawers and use them to develop their own ideas. That's how we do it in here in all of our commissions.

The use of "office set" drawings also provided students with industry accepted berichmarks against which they could evaluate their own woik. This was seen my most of the mentors as a key patt of student learning using authentic projects because the "office set" documents provided examples of design and drawings that defined standards of professional practice necessary for the students to achieve in their own works. Mentor I noted that he used exemplar drawings to set stardards for student perfornance. When discussing how he did this with Student 20, Mentor I commented:

We gave him saunple drawings and said this is what we expect yours to look like when it is finished.

Mentor 1 said that he used "office set" drawiags to assist students over barriers to their progress with all aspects of design office practice. This he said included student use of design drawings, detail drawings and presientation drawings from a variety of sourees such as hand drawn sketches, CAD drawings and other materials produced by consultants outside of the office environment. All of these materials were based on industry standards and provided students with models upon which to base their own works. As scaffolding elements, they assisted students to overcome design problems that formed barriers to their progress, as well as setting standards of excellence that encourage higher levels of achievement in design thinking and drawing production. Making note of this aspect of their use, Mentor 3 said:

We have these here (showed interviewer presentation drawings of diflerent projects) which we use as a basis for much of our presentation. This is what the student sees. It gets them over the design hurdles and sets the standard that we expect of them.

When commenting on how she wus helped through design problems by Mentor 2 who used "olfice set" drow ings as the basis for much of his usual design practice, Student 29 said:

> I had a lot of ideas but just couldn't secm to get started with the design at first because I had never designed anything for a tropical climate belore and wasn't sure how to begin. He pulled out three difierent sets of drawings of jobs that his office had done up Nooth and used them to stow me how they dealt with the air low through the buildings and the termites, as well as some ideas on cyclone protection without makking the place look like "Fort Knox". Once I had those drawings to work from. he just let me looseand I got into it. Ie was really plecesed becouse I came back with o couple of design layouts which we worked on together to make the final one.

In some of the design oflices, whole CAD drawing libraries covering all aspects of design docunentation were made available to the students. The students were encouraged to extract fiom these ideas or component parts lor their own designs, just as professional building designers do. Mentor 7 encouraged Student 29 to make use of the office CAD resources to develop her design. The use of materials in this way sometimes blurred the edges between scaflolding and coaching. Commenting on how he had used such materials to scaflold learning for Student 29, Mentor 7 said:

I gave Karen a lot of CND files of entourage and presentation stufit that we use so she could just plug those into her presentation. I said to her, you will find this in almost any CAD based office like ours, it's a resource that the industityuses.

In another designollice situation, Mentor 3 assisted Student 22 with the glaphical presentation of his ideas for the development of the building site by providing the student with "ollice set" drawings as well as an electronic copy of a full library of CAD details. This allowed Student 22 to rapidly present ideas and explore new ones without havlng to spend time creating the geometty himself. By having such resources to lacilitate drawing production, Student 22 was free to focus his design creativity on a conceptual level, rather than being lied to the restrictions that may have otherwise been presented in the documentation processes of drawing production.

Most of the mentors indicated that ns a usual practice they used pre-drawn design elements and CND based drawings including construction details and commonly used layouts for design elements such as bathroom or kitchen areas, to assist students in their development of design solutions. This approach I regarded as a key aspect of scaffolding that was extensively used by mentors to assist student learning. Most of the
mentors used CAD design elements and "office sel" drawings to scalföld student learning and to acquire declaralive knowledge about:

- comnonly used solutions for room layouts in kitchens, bathrooms, bedrooms and technical areas like medical or industrial settings;
- relalionships belween rooms for traffic flow in various sellings;
- regulations and codes as applied to specilic design situations;
- construction details such as footings, roof structures, tuss and beam lixings and the like;
- colour and texture of surilace finishes; and
- the selection of materials and differ ent construction methods as determined by specific design problems or siluations.

The following example of how "office sel" drawings were used in various ways to scaffioldstudent learning is based on my observation of Mentor 6 working with Student 24 during Phase Three work sessions. I have chosen this particular student/mentor situation because the methods used by them were representalive of most of the design office situalions studied.

From the oulset of their collaboration, the principal tool used by Mentor 6 to scaffold Student 24 through many barriers that emerged during development of his design was the various "office sets" of drawings created with each new project. Using these as a basis for overcoming problems in his own work, Sludent 24 was able to follow the progress ofthe exemplar designs by reading through the mentor's notes and drawings that made up the "office set" record of design methods used and decisions taken to resolve the design solutions. Figure 28 (p. 227) shows some over-sketching elements (see the darker line paits) that were introduced by Mentor 6 as successful ways for resolving problem areas in the studenl's work, but based on pats the mentor's own "office set" drawings being referred to as exemplars during the wotk session. The paticular elements discussed are room lay outs and furniture and littings items shown at the cenler of the plan displayed. The manner in which Mentor 6 had used elements such as these in his own works to define spaces in the plan was taken up by Student 24 in his organisation of space in the design shown here. Although a seemingly small design clement in itself, at the time it represented a conceptual barrier to Student 24 in his development of a design solution. By using his own works as an exemplar to scaffiold learning for Student24, Mentor 6 assisted Student 24 to overcome that batrier.

Figure 28. CAD drawing showing sketched development of fine details.
During Phase Three work sessions, I observed Student 24 create and use his own "office set" in much the same manner as modelled for him by Mentor 6. Student 24 adopted the working practices modelled by Mentor 6 and used by him as a tool to scaffold leaming when coaching Student 24 through areas of difficulty. Using exemplar "office set" design drawings in this way provided Student 24 with the means to quickly explore multiple design ideas and possible solutions. This I regarded as evidence of development of metacognition. Evidence of the exploration of multiple design ideas in one drawing developed by Student 24 can be seen in Figure 29 (p. 228), which has as its base a CAD drawing, but has been heavily over-sketched by the student when exploring ideas for refining the plan and elevational treatments.

Figure 29. Over-sketched CAD drawing.
Drawings like this were compared by Student 24 to others in design office "office sets" which provided benchmarks against which he could evaluate emergent ideas and synthesise them with new ones developed for the real work design project. This is shown in Student 24's elevational treatment of his design which were developed from ideas first presented to him by Mentor 6 as part of one of his own design office commissions and demonstrates evidence of tacit knowledge transfer about design procedures acquired by Student 24 from Mentor 6. The over-sketching of the roof forms as seen in Figure 30 (p. 229) came about as a result of Mentor 6 and Student 24 working on the design together with reference to the exemplar drawings introduced by Mentor 6.

Figure 30. CAD drawing showing roof form development.
Further development of the ground plan seen in Figure 28 (p. 227) also contributed to the formal drawing of the elevations seen in Figure 30. Very little evidence of over-sketching can be seen in these drawings because during coaching, Mentor 6 made use of translucent overlay paper to trace out new ideas over the existing drawings, rather than work directly on the student's most recent work. When questioned on this point, following completion of the project, Mentor 6 commented that he did this deliberately to allow the student to feel some sense of closure coming to the design, but to still keep an open mind on late changes explored as disposable thoughts on paper.

This process was said by Mentor 6 to also allow Student 24 to feel ownership of the final design and that any changes to be made at that stage were for the student to initiate and decide. In so doing, Mentor 6 contended (post project interview) that at this stage of the design, "the student becomes the designer, no longer the apprentice" (Mentor 6) and thus takes responsibility for the design, working in autonomous ways at a higher level of decision making and project management. From these and other data about student transition from being dependent on scaffolding support, to working independently, I determined that most students had at this stage developed autonomous use of metacognitive design methods for exploring and refining design solutions.

3.4.4 Consulfants and others with special vkll/.s.

In most of the design olfice situations, the nentors arrenged for experienced personnel to advise ank guide students at limes when the mentor was not uvailahle. Most of the students said that this was of great value because it provided them with altemative points of view and they ollen provided the assistance they needed to resolve some difficulty which would otherwise have halted their progress while they waited for the return of their mentor. When discussing his use of a back-up mentor, Mentor 3 said:

When the student came lor the first meeting 1 bought in Jack as my assistant so that he could be involved and to be there as a back up for times when I may not be available as well.

One key aspect of having experts on hand to assist students to work through difficult parts of their design involved coaching methods and scaffolding materials linked to curent design office works in progeses. The use of such prujects gave the students authentic examples of the mentors' problem solving strategics and methods of application used by the mentors and others in their everyday culture of praetice activities. Student 16 said of this aspect of working with Mentor 6 and his staff:

When I gol stuck they were good at giving me just enough to get on with it. Some of the lime when I was working there they got me to work on projects that they were doing in the business and that showed me a lot about how they worked through problems in design and how they ran the business.

Student experience with working on authentic commissions with the mentor and others in the design office assisted them to acquire tacit knowledge of design procedures and declaralive knowledge required for their application. This was an important part of student learning in the design office situations of this study.

Most of the students commented that their mentor used examples of Uleir current works to assist them in resolving the design problems of the study project. This they said laught them a great deal because the examples were real and represented actual solutions to authentic problems that the mentor had resolved. Some students said they felt conf ident when incorporating elements of the mentors' work into their oundesigns because they valued the mentor's expertise. On this point Student 8 commented:

He sprung an idea because he said look I am currently working on this and we looked at how we could adapt what he was working on to what we were doing together on the project.

Analysis of Phase Three data showed that during 32\% of the work session times Mentor 3 and his assistant mentor used scalfolding materials consisting mostly of
sketches, drawings and contract documents that had been produced in the design olfice us partof real work commissionss. By using these matterials throughout the work sessions, Mentor 3 was uble to scaföld Student 22 over dillicu'tics he had encountered with his own design by applying work practices, design solutions und methods for addressing emergent problems to the student's project. When Mentor 3 was not avuilable, his assistant was able to use the same materials to scaltiold student learning, adding his own interpretation of situations and heuristic design strategies in so doing. $\Lambda \mathrm{n}$ important aspect of using design oflice commission drawings for scafolding was that when a "back up rnentor" or other person in the selting ussed the same resource materials as the mentor when assisting the students. This often provided the students with another interpretation of the design methods or solutions shown and thereby introduced alternative perspectives, to assist problem solving.

Both Mentor 3 and his assistant also provided scaffolding by using exemplar materials and quick sketches of design ideas or possible solutions. They also included notes on their sketches about design strategics used and the reasons for decisions taken, for later referenee by the student when further exploring the ideas thus introduced. For example, during one work session, l observed Mentor 3 and Student 22 create the sketch and noles shown here in Figure 31 (p. 232). Mentor 3 said that this was typical of his work practices and that he used this approach with students to ensure that they documented designdecisions and the reasons for using design elements so that they could refer to these later when defending their proposed solutions.

Figure 31. Sketch and notes format as used in exemplar office drawings
Analysis of Phase Two data showed that the timely provision (see quote below from Student 9) of specialist knowledge or problem solving tips by the mentors and others was said by many students to be a key part of overcoming barriers to their learning. For example, Student 9 said that much of what Mentor 15 did to help him through difficult aspects of the work centred on discussion and sketching. Associates of the mentor provided other help. He also said that when he became "bogged down" with a complex roof form, a building consultant who worked with his mentor provided detailed explanations with quick sketches that helped him to visualise and understand the interrelationship of components needed to resolve the roof design. Commenting on this, Student 9 said:

After I managed to get the plan reasonably right, I started on the sections and elevations. I couldn't work out the roof plan and so he (building consultant in office) showed me how to extend the roof out this way so that it came out a bit and sorted it out.

Analysis of Phase Two data also showed that the sludents, who
worked in design office situations where they had contact with other designcrs or consultants from associated disciplines working in association with their mentor, were assisted in their learning by the advice and assistance provided by them. For cxample. Student 13 made the following comment when discussing how an associate of his mentor had helped him to take a diffierent view of design when she was not progressing:

He had a lot of diffierent ideas and diflierent ways of putting it across. That was the great thing about it, he had such a lot of experience he is able to say look l've tried it this way or that way and he gave me examples of where it worked or failed.

Student learning was enhanced by the students having access to the experience of multiple experts who provided opinions, heuristic design strategics and working practices, logether with their tacit knowledge of typical design procedures shown by them to be successful when applied to authenlic projects.
The mentors and others used the following scaflolding methods to assist student learning:

- frechand sketching backed up with detailed explanations of the reasons for using the design/corstruction strategies or details presented;
- exemplar "oflice set" drawings illustrating heuristic design strategics, problem solving procedures and benchmarking standards;
- over-sketching of hand drawn and C \wedge D based drawings to show multiple alternative design strategies or solutions;
- timely presentation of "tips and tricks" based on authentic commissions and tacit knowledge;
- use of a diveıse range of non-context specific materials such as magarincs, journals, pictures and the like, as well as discipline specific codes and regulations;
- notes on sketches and drawings for locussing student use of design procedures and to convey declarative knowledge of design situations, regulations or usual office practices;
- use of notes and schedules for sequencing of leaming events in design and to link these to incremental tasks that progreasively build on student knowledge and design skills; and
- providing a CAD databasc of pre-drawn elements to address individual problem aspects ofdesign and facilitate rapid exploration of multiple design ideas.

Theme 4: Design office experlence and learning

In this section findings are reported from analysis ofdata coded using the following categorics:

4.1 Developing a creative, innovalive approach to design;

42 Reifying knowledge in design offlice learning; and
design styic.
Findings that emerged fiom anulysis of data using each of these categories ure now discussed ialong with supporting dulu.

Catcgory 4,1 Developlng a creative, in novative approach to design

Analysis of Phase Two data showed that most of the students considered that working with a mentor inspired them to achieve excellence in their design work and most also said that the y had lenmed a great deal trom the experience. l:or example, the following comments made by Student 8 are regarded by me to be typical of many others in data coded in this cutcgory.

Working with him I felt really charged up. It made me aware of how important it was to get stuff done on time and it made me then put in a big effiont to get everything else done that I had been letting go for some time. I fed more confident and positive about what I am doing. Before that I would do my designs and I'd think I would wonder if this will work and l'd think no thats just a shit idea, but now he has broadened my horizons a bit and now Ithink hang on maybe that might work and I'll tiy it out.

In these comments, Student 8 has mentioned se veral points said by most of the mentors to be key goals they sought to achieve when working with students. These are:

- development of a confident positive attitude;
- feeling inspired about design work;
- planning design stages by using time schedules; and
- being innovalive and adventurous whenexploring alternative design ideas.

Most of the mentors said that they sought to inspire students to develop an imaginative, creative and innovative approach to design. Findings from analysis of studyd at a strowed that they used various methods to achie ve this including discussion, showing pictures and drawings of other works, going to the site of works in progress and hand sketching of ideas with the students during work sessions. Mentor 4 explained that he sought to generate enthusiasm with the students as a means of taking them on a "joumey of discovery" in which he stimulated the ir imagination using diverse range of verbal and visual images, including those displayed in his own work environment. Mentor 4 said of this approach:

My approach is to generate enthusiasm. This enthusiasm can be intepreted in a couple of ways, one: it can be on the project which they have; two, Is about the fiture they have in the industry itself, the ir career. Essentially what they do when they come into my oflice is they are
impresserd by the environment, the environment suys everything, this is the lead or key point. Once you lauve established the environment the expectation, the excitement, the enthusiasm starts to flow from there, it sets the goal or focus or lender ship aspect.

The video recordings of work ses!sions in which Mentor 4 worked with Student 23 were studied to detennine how Mentor 4 applied the approach that he desseribed above. In those work sessions, the mentor began by talking about diflierent design commissions that he had undertaken and showed Student 23 examples ofthese by using photographs and drawings that were displayed on the olfice walls. With car:h project discussed, he describel what it was that inspired him in the design and what he hoped to potray in its aesthetic Ireatment and spatial construction. Throughout this process, he placed great emphasis on inspiring new thought by using descriptive language with sketching to encourage Student 23 to visualise ideas and design cosecpts. At the same lime, he encouraged Student 23 to sketch out ideas tor his own design project. Whe n the student had "mn out of ideas", Mentor 4 used photographs and images in travel brochures and the like to introduce new concepts, or to create an imaginary situation from which innovative design ide as might be created by the student. Activities of this kind took place during 44\% of the work session times. Commenting on this approach, Student 14 said:

I tay to be creative and innovative in my design work so it was good to have a mentor who did the same and was prepared to look at things that were a bit out of the ordinary even if they were a bit radical. He came up with ideas from almost anything. He used pictures of all sorts of situations to make up stories about peoples' lifestyles, like the shots of those houses that the opal miners live in. From those I got some radical ideas going like building it partly underground.

The nonner in which Mentor 4 used imoges in resource materials he introduced to inspire creotive ide as was to start out by sketching geometric shapes in loose form sketches. These, he said, provided a vehicle for him to explore with Student 23, altemative ideas before settling on a design theme to lollow. During my obser vation of the work sessions involving Mentor 4 and Student 23, I saw them de velop the rough concepl sketch, shown here as Figure 32 (p. 236) and Figure 33 (p.236), to a linal presentation design. Much of what took place in those work sessions consisted of quick sketching over CAD drawn outline plans, suppor ted with very descriptive explanations of how the details of the design might be developed and the reasons for exceuting them in particular ways. Throughout this process, Mentor 4 sought to inspire Student 23 to explore and develop his own solutions, rather than have him provide them. I le didthis
by encouraging Student 23 to articulate each stage of design development
from visualised concepts of raw ideas down to structural systems and finishing details, often with very little of this being put to paper. For example, the bold triangular forms explored by Student 23 in a work session with Mentor 4 dominate the concept design sketch shown here in Figure 32 and again in Figure 33. These forms can still be seen in the final presentation drawing (see Figure 34, p. 237) that Student 23 developed from ideas inspired during the work session with his mentor.

Figure 32. Design concept sketch.

Figure 33. Concept sketch for triangulated plan forms.

Figure 34. Presentation drawing showing triangulated forms.
The design development seen in the Figures 32, 33, 34 demonstrate how Student 23 applied his conceptual learning using knowledge and design skills acquired as a result of working with Mentor 4 . A feature of the design methods used by Mentor 4 and applied by Student 23 in his design project was exploration of multiple potential design ideas using "brainstorming" discussions in work sessions. Most of the mentors said that they used questioning to stimulate discussion and to encourage the students to openly express their ideas irrespective of how radical they might be, or whether or not they were suitable for the design task at hand. Similarly, most of the mentors also encouraged the students to respond quickly to their inspirations by sketching out ideas in rough form without trying to resolve them immediately. This they said paved the way for exploring multiple solutions rapidly and branching off new ideas for further development. Of this approach Mentor 7 said:

I tried to explain to him that it is most important to quickly get down your ideas in a basic design sketch without worrying too much about the details; just sketch it in roughly at first then take time later to refine it.

During Phase Three, I observed 5 mentors using ideas presented by students in this manner, and encouraging the students to defend their ideas by articulating their views and sketching possible solutions. The mentors also encouraged the students to explore other aspects of those design ideas by branching off to new lines of inquiry as each idea was exhausted. Throughout these work sessions the mentors maintained the student's enthusiasm by providing immediate feedback on ideas they presented and by backing this up with heuristic design strategies or problem solving solutions to resolve
emergent design problems. Some mentors said that this appronch led to student exploration of new innovative ideas. ^ctivities aimed at inspiring new thought and visualising ideas took place during 44% of the work sessioa times. One way in which the mentors insspired the students' thinking about design was by using anecdotes of design problem situations the y had resolved fior authent ic commissions. For example, when Mentor 6 was t ying to inspire Studeni 24 to develop bold elevation lonns for his design project, he used brochures that he had produced lor a real eslate developer to raise linance lor u church building re-development. The student was encouraged to skech elevation lorms that incorporated the triangulated and arched forms of the church portico shown in the brochure. These elements appear in the elevation developed later by Student 24, as shown below in Figure 35, which demonstrates evidence of learning in his final design submission. In this way, ideas introduced by the mentor using brochures to slimulate exploration of new ideas, led to Student 24 creating his own design solution, but inspired by design elements acquired liom the mentor.

Figure 35, Elevation developed by Studeal 24 from Meator inspir ed concepl.
Most mentors provided students with ways for resolving design forms by sketching solutions they had developed for their own works, while articulating the reasons behind design decisions made and design strategics employed. Mentor 4 said that he sought to balance the technical side of design against the creative/artistic side, by maintaning the llow of ideas to inspire a global vision of the design tasks. Of this approachMentor 4 said:

I tell them (the students) that we don't need to give them too much to begin wilh because wecan get bogged down and confused. I tell them we need to always be able to sec the light at the end of the tunnel and I talk to them about how they naed to have that vision in what they are doing and they relate to that.

Analysis of Phase Three data showed that when students presented impractical ideas, some of the mentors used these to stimulate student creativity by helping them to refine usefuil elements into viable solutions. When discussing how he worked with Student 16 in this manaer Mentor 5 said:

She (the student) had a feew good ideas which worked well but it (her design) kept coming back to standard stulf; nothing that you would look at and go wow. What we were trying to bring out in her was to do something really diflierent. We tried to get her to be more creative ands we pushed that and small elements came out but I think that if we hadn't pushed it she would not have come out with it at all.

Mentor 15 also used delibeme strategics to encourage a creative approach to design for Student 9. In their collabomtion, ideas presented by Student 9 were developed and explored using a variety of materials. Ofhis experience. Student 9 said:

> I jast had an idea on paper and then we used books and drawings to come out with other ideas and then sort of created more ideas off those and from there we came up something that looked interesting.

Most of the mentors said that they sought to encourage students to think problems through for themselves. To achicve this, the mentors worked to find a balance between doing the work for the studeixs aixl having them develop their own creative design skills with the ase of appropriate scaffolding. Findings from the data indicated Ilat the mentors were not concerned with the studeat designs being perfiect solutions, but were looking instead to have the students develop procedures that allowed them to refine and resolve the designs methodically, as well as developing long term skills. When discussing this aspect of his working practices. Mentor 1 commented:

We want them to be able to think. We don't want to have to hand feed them. The big problem is getting someone in here who keeps saying what do I do now? We want someone who goes away and thinks well maybe if I do this. We don't care if they make mistakes, but at least it shows that they are thinking about the problems.

Analysis of work sessions involving Mentor 1, Ia and Student 25 showed that the mentors introduceddesign activities intended to inspire new thought during 44\% of the work session limes. These activities led to other activities regaided by me lo involve student visualisation of ideas, which they then explored and defended during 61% of the work session times. Mentor I used this approach in six work sessions that he and Mentor la shared with Student 25. Findings from Phase Three dala showed this approach to be commonly used by all of the Phase Three mentors when seeking to inspire the students under their direction to think through, present and justify ideas.

When commenting on how Mentor 3 guided him through the design process, Student 13 said:

Abstract

Ile was great because he let me put up all sorts of ideas und we worked through them. Ile mave me discuss and justify everything thal I suggested, just as he did the same by always sitying why he did things the way he did. We worked Itrough the design togelher by resolving one little bit al a tinte, then strung it all together to get a linal result. For each new purt llat be brought into the design process, he nande me explain my reasons fior denling with it in the way thut I did. Whien I couldn't give him good reasons, he would go through his way of doing it and tell me why each part was done ns it was. Thul really helped because he explained as he wenl.

I concluded that mentor use of structured design tusk sassisted students to acquire creative ways for visualising aad defending design ideas. Throughout this study, most of the mentors commented that forcing the design process, or pushing too hard for results stilled creativity, enthusiasm and vision which prevented students making the transition from simply drawing to designing. Mentor 3 said that he took a guiding approach to avoid having students leel too pressured to pcrfonn and thereby loose their creativity. Commenting on this, Mentor 3 said:

In the beginning the students don't know much in the way of design but they get aspects of it which we can inluence by showing them how we would hke to go about it. We tiy to give them ideas by using little design tasks that make them come up with quick simple solutions which we can then use to discuss diliferent ways of resolving the problems commonly found in those situations.

Most of the mentors said thal they sought to encourage student creativity by inspiring students to explore new directions in their work and to develop solutions to a variety of problemsituations. One way in which some mentors encouraged student creativily was to provide positive leedback and support lor the exploration and development of alternative solutions when students present their work lor criticism. Mentor 3 made the following comments in relation to his use of this approach when working with Student 13:

He worked his own design up, I just indicated to him areas that could be done better and olfered two or three solutions that might be applied, you can't just say that's no bloody good or you've lost them and crushed their spirit. Thnt's the nature of how I thy to run the business il's all about learming new information, for all of us we never stop leaming and the design process is a learning experience and the nature of our business is ever changing. So there is no point in making someone upset or humiliating them, what you have to do is give themthe positive side by saying it's OK, now let's try to do that better or diffierently.

When discussing his approach to progressively building on a design development with Student 20, Mentor I commented:

Once the basic design is in place, then we go through it again and suggest elanges or extra stulfithal need to be included. We leave them as much as possible to their own devices and when you do that they soon develop design Пlair.

This approach, according to Mentor 1 had to be done in a manner that did not push the student to a point where they were overcome by the magnitude of the tusk, or fek that they were too fir out of their depth. Some mentors commented that being too critical of the student's workat this stage might resull ina loss of conficlence for the studentsand reduce their ability to complete the task. On this point Mentor I said:

Sometimes, like with David they tty too hard and that's not how design works, you just can't force it, when that happens we just throw it away and start again.

Student 8 experienced this approach first hand when working with Mentor 28. He said:

In the first few meetings I came in with a lot of stuff just sketched out but I had a lot of wacky ideas. They got canned pretty quick. Ile said that some of the ideas wouldn't work, so we put them aside and then used other pats to build up the design.

When students presented ideas that are were too radical, the mentors did not discard them outright, but tried instead to modify and incor porate them into the design. Student 18 found that Mentor 26 worked through his ideas by first discussing which aspects of them were likely to be approprlate to the design, then explored variations of those ideas withhim to find areative solutions. Of this approach, Student 18 said:

I came up with quite a few ideas that she was able to look at and say this will work and that wor't. She was able to tell me why, so that helped me to understand why some of my ideas were not going to be praetical in the situation. We picked out all the parts that filted together well and built up a good design from them.

Commenting on how Mentor 26 used this approach when working with him, Student 18 said:

In the kitchen I had the fridge and the pantry in one comer and she (Mentor 26) suggested swapping them around and cutting of the comer to make access to the room easier and putting it all at 45 degrees to open it out. She did a lot of stuff like that while we were sketching out ideas just to test other ways of doing things. In the end the design was mostly my ideas, but with some of hers in there as well.

Here, Student 18 hos highlighted how his mentor was able to reify her tacit knowledge and how he then used knowledge and skills he had thus acquired to
synthesise the mentor's ideas with his own to develop a design solution. This suggested that the methods used be Mentor 26 had facilitated lcarning for Student 18.

During three Pluase Two work sessions involving Student 18 and Mentor 26, I observed numerous situations similar to the one described ubove us the participants worked towards a design solution. Mentor 26 made extensive use of examples from her own design commissions to provide multiple design elements for Student 18 to consider for inclusion in his design. In this way, she reitied her lacil knowledge of many diflierent design situations as well as the solutions that she had developed lor them. She then encouraged Student 18 to apply the methods she had modelled as her approach to design to develop his own multiple design variations for each new design element explored. Mentor 26 also encouraged Student 18 to explain his reasons for using particular design methods and lor including elements in the final design solution. This approach emerged as being commonly used by mentors to encourage students to develop their own ideas even ifit meant that they were not what the mentor might choose to use as a solution. Mentor 3 encouraged Student 13 to explore multiple solutions, so as to create choices and introduce allemative ideas. Of the solutions presented by Student 13, Mentor 3 said:

It might not be what I would do but I thought it was really good and I commended him for that. It's not important that they get it peffect lirst time. What is important is that they have a go at doing it for themselves and explore all possible variations on a design solution to evaluate their ideas before accepting a final solution.

Some students said that they came to the project thinking that the mentors would simply come up with a design in a flash, but found inslead that the mentors used multistaged replicable procedures in a structured, methodical approach to develop design ideas. When discussing his approach to working on designs with Student 16, Mentor 6 commented:

There were no great thunderbolts, it was mainly little clicks and penny drops along the way you know, a process of building up one idea on top of another.

In contrast to this approach, some students expressed the view that learning in TAFE had stifled their creativity because it supported only a single approach to design. Student 8 made the following observation about his TAFE experiences:

As students we are taught in a way that very much knocked out our imagination. Maybe they (TAFE) don't put an er , phasis on giving you a way of sticking it in a certain category, or how to design a house to guide you on what is wrong and what is right.

Findings from annlysis of data in this categon y led me to contend thint mentor modelling of multi-staged replicable procedures to resmlve diflicult design texsks assisted student learning by bringing structure to the creative process and this fucilitated student exploration of multiple design concepts and creative thinking. Working with u mentor in this way gave students the conlidence to attempt radical and innovative works through a process of exploration and discovery based on quick sketching and discussion methods ofevaluation.

Learning these diffierent approaches firom the mentors gave the students a broad view of design. On this point Student 8 said:

It was good learning his approach to design and it was nlso good that he let me change it to my ideas. In the end I found that I was thinking through my design ideas just like he showed me he did with his. That really helped me because I felt like I was working like a real designer and I knew that if I came unstuck he was there to help me sort it out without making me feel like shit.

For many students, just seeing mentors develop ideas inspired them to do the same. For some students, it encouraged them to be innovative and be prepared to "have a go' at the design without fear offailure or ridicule. Most students said that the experience of working with a mentor had greatly enhanced their confidence in their oun ability to design and document a real work design project and to work with an authentic brief in a design olfice. Student 9 said:

1 now feel more confident and positive about what I an doing. Before that, (working with the mentor) I would do my designs and I'd think I wonder if this will work and I'd think no that's just a shit idea. But now he has broadened my horizons a bil and now I think, hang-on maybe that might work and I'll try it out.

The mentors encouraged the development of a creative and innovative approach to design in the students by:

- use of a diverse range of resource materials and rich descriptive language to create verbal images, suppotted by visual images using sketching or other illustrations;
- use of questioning, discussion and sketching to coach students in techniques supporting the exploration of ideas and branching of lines of inquiry:
- encouraging and supporting student exploration, defence and development of ideas;
- exploring mulliple design solutions generated from the stem of each new idea revealed during the development of student design concepts;
- not forcing the design process, or pushing too hard fur results;
- use of multi-stoged replicable procedures to resolve difficult design tasks and to facilitate innovative exploration of multiple design concepts; and
- supporting students in their development ofautonomous ways ofusing design knowledge and procedures when visualising concept fonns and possible solutions.

Cnicgory 42 Relfyling knowledge in design oflice Icarning

A common theme to emerge fiom analysis of the study data was shut most of the mentors said that the y worked ut some stages in un almost intuitive manner when traking design decisions and would often cull upon specialist consultunts where issucs of safety or structural integrity are in question. Working in this manner, the mentors drew upon tacit knowledge they luive acquired over years of profissional practice in the building design discipline. To make such knowledge and design practices visihle when mentoring students was said by some mentors to require of themdilficrent ways of working. This they said was because they had to consciously think aboul how they drew upon their knowledge and heuristic design strategies. These they said were largely invisible in their everydoy practices, something that I regarded as illustrating their metacognitive ways of dealing with design problems. Commenting on this aspect of working with students, Mentor 10 ssid:

Alter working as a building designer for so long, I don't have to think about how to go about resolving difficult or new design problems, I just rely on my accumulated knowledge of other similar jobs and apply the same procedures that have worked well for me many times. When you come to have a student sitting there in front of you and you want to say to him we'll handle this like the Massey job or the Blakensec job, but that means nothing to them. You have to get back to thinking how do I do this and break it down for them with explanations and sketches that spell out the reasons why it's done that way. Don't give them a soltilion, but give them a method and a way of thinking so they can nut it out lior themselves.

To understand how the mentors reified their knowledge and working practices, I compared Phase Two data about what was said to have occurred in the student/mentor collaborative work sessions with findings from analysis of Phase Three data, which was based on actual obser vation ofactual work sessions.

Each of the five mentors observed durlng Phase Three had slightly different approaches to design practice, but they shared similaritiesin their manner of working with students. Geneıally, they all began by establishing design criteria fiom anolysis of the brief and questioning the stıdents about their intelpretation of these. Following this, the mentors all modelled their ow ndesign methods with the aid of exemplar "office set" drawings, while sketching and articulating detailed explanations of their use of paticular work practices or design strategies. Student application of the mentors' work practices to the ir own design problems was supported by nentor coaching in the cortect use of conunon design procedures, olong with appropriate scallokling such as "tips and tricks" based on their lacil knowledge of similar situations to those being addressed by
students. In this way, students acquired skills to visualise and explore
multiple design solutions in order to evaluate and defend them for inclusion in final design solutions. Commenting on his approach to encouraging student use of common design strategies, Mentor I said:

We work with the students mostly by showing them the way at first then Iet them have a go at it themselves and lave time to think it over belore we get back to working through their ideas with them. We said to him go away and think about it, then come back when you huve the design under way.

Mentor 7 used a similar approach when working with the students. Ile summed up his approach as follows:

We'll start out with a concept based on the brief.. We break the brief down so that they understand each part and lave a handle on it otherwise you can't do anything. Once I am comfortable that they are at that point, then we start. We get some ideas down. I just bounce some ideas off them and get them to think about what might be possible, you know, be creative, let it flow.
I get them to sketch their ideas and explain to me why they think it works. Then we analyse it logether and I give them reasons why I think it's going to work or not based on jobs that I have done. I pull out drawing sets to show them similar situations and solutions that have worked in the past.
Most of the time the ideas are there but they (the students) are too shy to say this is what I think. Some of them will jump in and talk about their ideas, but others are not confident to speak out. You have to get them to the point where they are conlident enough to speak out and to back up their solutions with reasons why they think it is good or will work. They must justify it, because they might think this really is the solution, but I might say I would have done it differently why do you think your solution's right and then I get them to justify it. If they can't justify their ideas then they come to understand that perhaps it's not the best solution and then I'll do the same, l'll justify my solution and say it's appropriate for these reasons, but if theirs is just as good I'll go with theirs.

Findings from data coded in this category suggested that most of the mentors used methods similar to those outlined above by Mentor 7. The manner in which the mentors reified their tacil knowledge and heuristic design strategies was in past determined by the problems that emerged from the design lasks and the procedures that the mentors used to resolve them. Common to all of the mentors though was the use of sketching, supported by articulation of the reasons behind the methods used or underly ing facts and procedures. Such methods were said by the mentors to be lypical of their usual working methods with employees, other designers and consultants from associated disciplines. Mentor la said that te sought to guide students through the
design process by giving detailed explanations of the reasons for doing
things in a parlicular ways, carly in the design process, then reducing his use of these explanutions as the students develop further skills. Of his approach, Mentor la said:

You tell them things like it's to Iet more light in there or the beam will not span that far, you tend to explain the reasons fier doing things in a particular way as much as you can at lirst. When they start showing more of an understanding, you tack olf the explanations a bit and let them do the explaining so that you can see if they really krow the how and why of it all. Once you see where they are at, you can then start filling in the gaps with information or techniques for solving problems that come out of each new part of a design as it is developed.

Mentor 3 rejified his knowledge of design and construction by using examples of his oun works to explain ways for identifying problem areas in a design and procedures used to resolve them. To do this, he sketched and explained in detail the reasons behind the design practices used to develop each of the exemplar designs represented by a divesse range of building types and sitnations. Of this approach Mentor 3 said:

We do all sorts of work that is in!]uenced by all sorts of people and situations and you enn't train for all of that, you have to develop ways of solving each new lask based on what you have leamed from other jobs.

Some of the students said that the most usefinl learning situations for them look place on building sites. This occurred when their mentors look them to projects under construction, then pointed out and explained the positive and negative aspects of the design as buill. Student 18 , when working with Mentor 26 , visited a number of building sites where the mentor had design commissions under construction. Of this experience Student 18 said:

The first day that l was there working with her she had some appointments on site so I went along with her to some of the jobs that she had designed. She explained to me a lot of things about the way she designs and showed me them in those houses. Some of things that we looked at and talked about in her work I have put into my designs. Things like putting the walk-in robes awuy firom the outside walls to free up window space and putling the bathrooms in place where there are odd shapes that would make furnishing a room diflicull. I learnt heaps fiom seeing her projects as they were being built and having her lalk about why she designed the way that she did. She asked me questions all the time wanting me to explain why I thought things should be done in a particular way.

In work sessions involving Mentor 3 and Student 22, the mentor used 74\% of the work session time in aetivities reify, ing his design methods by sketching and verbalising the reasons for using particular practices. For example, he used detailed
explamations and sketching to show design practices he had used to resolve problems in authentic commissions that were similar to those faced by the student in his design. For each design situation or method the mentor presented, he also articufated his reasons for the methods used and design decisions taken. When interviewed prior to the work sessions, Mentor 3 commented that he used this technique to introduce to the students a broad range of design ideas that had been proved through application in compleled buildings.

During each of the work sessions, l observed that Mentor 3 demonstruted his design strategics hy presenting examples of successful works, along with examples of design lailures to illustrate where some strategies did not work. For example, Mentor 3 used "office set" drawings and correspondence from office files to show how a proposed design had been accepled by the client, but rejectad by the planning authorities because of its impact on the "ambience of the street". By showing the modified design drawings, the correspondence between the designer and the council, as well ns the designer and the client, the mentor was abic to present a detailed explaration of why the design concept had failed, then how it was modilied thenaccepted by client and council. Throughout his presentation of this authentic design situation, Mentor 3 supported his design processes and decisions by showing the student drawings and photographs, as well as giving rich anecdotal articulation of his personal views of how the various situations described may have been better handled.

Mentor 3 compared design problems, that he and Student 22 had identified in the project on which they were collaborating, with similar ones in project documents he presented os exemplars, along with the strategies and solutions he had used to resolve them. In this way, Mentor 3 reificd his heuristic design strategics and tacit knowledge of problem situations and solutions that were then used as models ior addressing the student's authentic design project. Activities such as this took place during 48\% of the work sessiontimes. Mentor 3 structured activities with Student 22 to include exploration of multiple solutions and the reusons for accepting or rejecting them when developing the final design. In this way, Mentor 3 and Student 22 were able to link problem aspects of the student's design with solutions that the mentor had already tested and then accepted for inclusion in commissions of his own. The nusnncr in which they worked together was highly inter active with both student and mentor each contributing to discussion and sketching activities. In this way, the mentor was able to introduce many ideas and design procedur es for applicationto problems emer gent from the student's design project.

Findings fiomanalysis of Phase Three data confirmed the approad, that Mentor 3 said was his way of uorking with students, during Phase Two. Mentor 3 gave Student 22 designer status during all of their work sessikuns. This, Mentor 3 said, helped to establish a bulanced working relationship where both he and the student contributed ideas and stralcgies for resolving design solutions. It also assisted him to present his usual working practices in ways that were timely and appropriate to address problems that emerged from the st udent's project in collaborative ways rather than having a prescript ive approach. The approach uscel by Mentor 3 when working with Student 13 in Phase Two was evident also in his work with Student 22 during Phase Three. When comment ing on his appronch with Student 13, Mentor 3 said:

He struck me us a very switched on self motivated young man and vely with it, he was good because he was prepared to listen and ask the right questions, he got involved in the discussion and didn't jast sit there, he was a participalor and that was brilliant, it was a three way discusision and we worked as a team just as you would with any other designer. That's the way I sec my role with them. They are here to be a designer and you have to work openly and cooperatively if it's going to work at all.

Mentor 3 placed emphasis on providing students with highly detniled explanations of design situntions and methods that he used in his everyday practice. In each work session he linked aspects of the design problems that emerged from the student's design project to codes and regulations that govern many of the decisions taken to resolve design solutions. By expressing his liacit knowledge in this manner, Mentor 3 assisted Student 22 to acquire explicit knowledge for the interpretation and application of codes and regulations. Findings from analysis of work session data indicated that Mentor 3 used this approach during 51\% of the lirst work session and on average for 20% of each of the remaining work scssions. Knowledge shared in this way was set by Mertor 3 in the context of its application to the procedures and processes used in his professional everyday activities.

Wixen Mentor 3 introduced new concepts, ideas, or tips, he supported them with examples of his own works as seen in"office set" drawings. Often he sketched the item being discussed while giving a detailed description of why it wus appropriate nnd what possible problems or shortfalls may be associated with its use. The highly visual and descriptive manner in which he did this helped Student 22 to nequire ways to apply those design practices.
^ctivities in which design ideas were explored by students and mentors using sketching and articulation to apply heuristic des ignstmegies took place during 51% of
the work session limes. When interviewed fillowing completion of the design project, Student 22 commented that this aspect of working with Mentor 3 grantly assisted him by providing him with ways of dealing with unfamiliar design prohlems. He also noted that much of what he had learnt through the mentor's explunations had assisted him in many other subject areats in his building design course of study particularly construction and struclural mechanics.

I determined that the principal mcuns by which mentors reilied their design knowledge was through the use of detailed explanations and sketching to convey how they developed design solutions and by articulation of the reasons why lhey used particular design practices.

Analysis of the study data suggest that the mi:ntors reify their knowledge and design procedur es by:

- articulation of personal views and their reasorls for working in the manner that they do when making design decisions;
- providing detailed explanations lor all design procedures and decisions based on their tacit knowledge of codes and regulation developed through experience in the domain of practice;
- using sketching techniques that were more detailed than their usual methods when seeking to explain heuristic design strategies and construction details;
- extensive use of exemplar "office set" drawings to show/ examples of design situations, problems and solutions;
- linking problems that emerged fit om the student design projects with similar ones in current commissions to explain the use of problem solving strategics;
- encouraging students to use questioning to explore, defend und justify all design ideas, design strategies and proposed solutions for their authentic design project; and
- using examples of both successes and lailures in design with reasons for the strategies used and outcomes achieved in resolving emergent problems.

Category 4.3 Visualisatlon, Exploration, Rencetion and Design Style

Findings from analysis of Phase Two data suggested that most of the mentors contended that student development of basie problem solving skills and drawing methods were only the first stage of their becoming building designers. $\boldsymbol{\Lambda}$ view common to most of the mentors was that the key to becoming a building designer was to develop crealive, imaginative waystor visualising and resolving design solutions. as well as the technical skills needed to communication these using industry standards. Analysis of the study data suggested that students first acquired knowledge and basic design procedures that together were used to facilitate the resolution of simple design problems. This approach was said by Mentors 1, 3 and 6 a to use only procedural ways for developing solutions and did not utilise advanced skills for visualising and mentally manipulating
design concepts in the manner required of building designers in their everyday practices. Commenting on how he encouraged students to de velop design skills, Mentor 6 said:

You lirst have to identify what the student is doing. Are they druwing or are they designing? I flhey are just drawing then you have no clunnce of them learning to design, that's just a mechanical skill, design is diflerent. First get them thinking, then get them sketching and pretly soon you'll fltud that they start to design in th:ir heads before trying to draw up ideas that are only half cocked.

Mentor la similarly encouraged creative thinking in his approach to mentoring. He said:

We want them to be able to think, we don't want to have to hand feed them, the big problem is getting someone in here who keeps saying what do I do now? We want someone who goes away and thinks well maybe if I do this, we don't care if they make mistakes, but at least it shows that they are thinking about the problems.

The view of design practice expressed here by Mentor la suggests the need for student learning to be: at a high cognitive level for them to be successful with design, because mere competency with drawing skills is insulficient.

An approach used by most of the mentors when guiding students through a design project is summed up in the following quote made by Mentor 4 when he described the manner in which he introduced his design methods.

When a student comes in here I tiy to lirst of all inspire them and give then a structure to work with that may take them on that joumey of discovery and lead them almost anywhere they want to go, you know, leave the destination open.
When I get a student to work with I take the wad of detail paper and say to them, OK this is how we are going to go with this, big broad global approach with quick, loose sketches to get the big picture.
You need to go through a sequence that is a collective thing before you can start to figure out where the plumbing is going to go you must know about a whole lot of other things lirst, it's a process of building knowladge about the brief'. I begin by gelting them to visualise the situalion, the project, you know, get them to become part of the environment, for which they are designing.

Most of the mentors interviewed during Phase Two said that they began by encouraging students to visualise the design setting as presented by the client brief: They then sought to quickly sketch out ideas that flowed from their initial thoughts, without getting bogged down liy ing to solve all the emerging problems, until mulliple ideas were there to work with. Of this approach Mentor la said:

I give them a starting point with some sketches und then let them experiment with the ideas, when they come back with something too outrageous I just slowly pull them back by getting them to show me how they might actunlly build in. You migly say to them what a great idea but get back to the real world.

Once the students had identified key design criteria and developed a broad design concept, the mentors then encouraged them to reflect on that design so as to explore all variations to that design or multiple design solutions. As purt of that exploration, the students were eneoumged to reline each potential design by resolving key elements for each, before evaluating the most suitable solution for inclusion in the final design. Mentor 6a said that he tried to lead students through the de sign process by encouraging them to constantly reflect on the overall design concept while exploring new elements and visualising possible solutions. This, he said, was an important way for assisting students in making the shilt from simply using "paper based procedures" to visualising and resolving design concepts "mentally" before documenting solutions. Of this approach Mentor 6a said:

It's really important for a student to visualise the process by which a design is brought up not just in plan form but through all of the related drawings so that at any one time the overall concept is evident. In that way they can mentally test ideas and resolve them before locking into something that is not filly developed.

Mentor 3 also supported this view. He commented that each of the students he had mentored did not develop their design skills unt il they made the transition from merely acquiring information and procedures to being able to visualise and explore design ideas "in their head" before looking to communicate them on paper or computer.
Mentor 3 said:
When Benny first case here he had excellent drawing skills and a good grip on construction methods. He was also quite caprble when it came to examining the brief and working out the design criteria. What he did then though was launch into a design'without thinking through or visualising the impact that his ideas would have on the site, or how alternative approaches to the development might be more appropriate. We had to get him thinking in a global way so that he could explore a range of options and rellect on what was going to be the best to refine for the linal concept. (Mentor 3, member check interview, post Phase Three)

Once the students had formulated the basic design concepts for the project at hand, the mentors encouraged each to communicate what they had visualised by using sketches and three-dimensional CAD drawing methods. All of the mentors said that they sought to developin the students a frechand sketching "vocabulary" with which
they could communicate and delend their ideas. When commenting on this,
Mentor 7 said:
When they have been doing the course for two ycars there is not many of them who have visualisation skills. That comes aller years and years, that takes \boldsymbol{n} lot of experience to be able to close gour cyes und to be able to sue the house there. When they come in here they can sketch OK hut firom uneclmicul viewpoint. What we do is tench them to use sketehing like most peopic use words; its another language that lets you express a great deal withjust a few quick lines. That's what we are after, sec it in your head, then get it on the paper.

Mentor 7 snid that u vitnl element in his approach to mentoring students was to recognise when n student was not able to visualise and communicate ide as and to coach them in ways that might assist them to develop those skills. On this point Mentor 7 said:

That is where it is difficull for them to design and that's where the guidance from the mentor comes in. You should be able to pick up a problem quickly and say well that's wrong. We need to do something there, what are your ideas and then get them to focus on certain things 'cause they may not have the ability to do that for themselves.

Most of the mentors encouraged the st udents to deve lop their thinking skills in various ways. Some mentors sought to inspire and stimulate the student's imagination with books and other design images, others used a more direct approach by sitting down with the student and working one step at atime with them through the design. Student 14 said that Mentor 10 inspircd him to be imag inative in design by accepting his ideas no matter how "radical" and being prepared to explore and evaluate them for use in the linal design. Student 14 commented.

I try to be creative and innovative in m y design work so it was good to have a mentor who did the same and was prepared to look 5 ! things that were a bit out of the ordinnry even if they were a bit radical. Together we came up with some really crazy ideas and that made me feel like uying anything atxl everything to get something different out of it (the design).

Mentor 10 confirmed that he look this approach with Student 14 so as to encourage him to take a lateral view of design and to further encourage his creative input. He also commented that he had coached Student 14 through problems that emerged from the developing design by introducing structured procedures to evaluate and focus new elements being introduced. This, Mentor 10 said, brouglt rigour to the work and demonstrated to the elient or others who viewad the drawings that the design had evolved as a well-considered form rather than an inspired event that may not answer all of the demands of the original brief: On this point Mentor I0 said:

1 encournge them to take a hit of time to read the brief anil unclerstand the slesign problems and to them write down on their design drawings the reasons lor making particular decisions. When people sec those drawings they cun sec that he lias put a bit of thouglit into this and designed it knowing the problems and solving them.

Student 13 and Student 14 both worked with mentors, who required them to lirst visualise their ideas, then justify every aspect of the design be fore accepling the work. Student l/3 said:

Anything that I did he nasde me explain why I did it that way, I had to justify everything in my work. It kept me really focussed and tied to the brief;' I kept it practical.

Student 14 worked with a mentor who also used this approach. Ile said:
He would get me to show him what I had done und he made me justify ench part by saying why I had done it that way. If he saw in my design something that he thought should be done a diflierent way he would ask me why I had done it that way. Then he would make suggestions about improving it, or sometimes ifI had a good reason fir it he would go with my idea.

Another linding to emerge from analysis of Phase Two data indicated that all of the mentors required the students to reflect on the development path taken and the ideas that had emerged. This process oflen led to exploration of new design ideas that stemmed fiom rellection on earlier concepts, as documented in the "office set" which provided a trail of evidence of the design deve lopment.

Most of the students interviewed during Phase Two said that their mentors often worked through ideas with them until all possible aspects of those ideas had been exhaustively examined. If the idea being in vestigated were shown to be unsuitable to the design, the mentor retraced their steps to the stem of the idea and then took a new approach to solving the problem. Three students said that this way of designing was not what they lad been used to at TAFE, where according to them, often the first idea for the design became the only idea to be explored. The sketch, discuss and justify, approach taken by the mentors provided the students with a structure upon which to base their own design investigations and for many, changed their whole manner of problem solving in design. Student 9 commented:

He would go back over them and say this didn't work and then we would come back to that earlier design and work fiom that and get awny from the one that didn'l work. He would follow an idea through and if that didn't work he would just come back to the earlier sketch and work fiom there again and expand on that idea until that hit a dead end and then sort of tty again right fiom scratch.

This aspect of exploration in the development of design was studied using the video record of Phase Three work sessions. In work sessions involving Mentor 4 and Student 23, the mentor made extensive use of rich descriptive language as a scaffolding tool to build images to suggest the lifestyle around which the design might be developed. For example, the following sequence of sketches and mentor comments were used by Mentor 4 in one work session to scaffold Student 23 when he was "lost for ideas" with his design. After Student 23 had compiled a list of design criteria from the project brief, Mentor 4 asked him to imagine first the design setting and the kind of lifestyle that people choosing to live in the valley site might desire. The mentor began by describing what he imagined it would be like in the valley where the house was to be built by saying:

Just imagine the misty coolness of the morning with the sun breaking through the trees at the top of the site and how that might be brought into the house. Think also of the end of the day when you want to sit down on a verandah to enjoy the view and the breeze flowing in from the southwest and imagine the relaxed life-style that goes with that kind of environment.

While Mentor 4 was describing this picture of the design setting, he was also sketching the rough forms shown in Figure 36. He went on to use these with Student 23 to plan the approach that they were to use together to develop the design.

Figure 36. Design roots sketch.
He then encouraged Student 23 to describe his ideas about features of the design setting that would influence the layout of the house, like the fall of the land, the views down the valley, as well as orientation factors for wind and sun penetration. Using
these, Mentor 4 and Student 23 together developed the sketch shown in Figure 37, which shows the first area relationships of the design.

Figure 37. Area relationships in design.
This sketch was further developed to become the basis plan form shown in Figure 38, as both the student and the mentor discussed their visualisation of the use of space and form to create a design that became a "part of the setting".

Figure 38. Plan based on student/mentor ideas.
In this sketch, reference to the orientation can be seen (W for West at the top) as well as comments that suggested the beginnings of visualisation of the threedimensional aspects of the design (see "Elevated" note about section at top right of sketch).

Mentor 4 encouraged Student 23 to imagine the design environment and what it might mean or offer to the people who were to live in the building they were designing
in their working collaboration. For 59% of the work session times during
Phase Three, Mentor 4 used simple uncomplicated sketches like those shown above, around which he built stories of imagined events or experiences to encourage Student 23 to visualise the design setting.

In later interviews, Mentor 4 commented that he kept the sketches open and vague to allow himself and the student to fill in the details from their "free roaming ideas or imagination". This, he said, encouraged the development of creativity and design freedom in a non-scripted graphical form that opened the way to exploration rather than using closed forms that narrowed cognitive development of ideas. Figure 39 shows a typical loose form sketch created by Mentor 4 for this purpose.

Figure 39. Loose concept forms exploring shape in design.
Findings from Phase Three confirmed that in student/mentor work sessions the students were encouraged by the mentors to explore every design element through to resolution before branching to other lines of inquiry to build a comprehensive picture of the overall design situation. This approach assisted students to develop skills for reflecting on design problems and potential solutions by encouraging metacognitive ways for visualising and resolving design problems.

Findings here have also suggested that the use of reflective design practices by students was a key element in their transition from simple application of the vocabulary and tools of design, to having a discovery focussed metacognitive approach. Other findings to emerge from analysis of the study data have suggested that as students
acquired ways lor resolving design problems in the manner modelled hy experts, they also underwent n truussition from using paper-based design procedures, to using more metncognitive methods to creale, explore and develop innovnlive solutions. Other findings to emerge suggested that this led to the students making connections between des ign theory nad the methods used by experts to solve complex design problems in the context and culture ofprofessional design practice.

Explomtion of potential solutions oflen led to test ing of ideas for acceptance in, or rejection from, linal design solitions. Students work ing in this marmer shared rich context specific experiences with their mentors whose collaborat ive involvement Ielt space for personal development and investigation. At the same lime, the students' exploration of design idens nnd reflection on altemative solutions led to their development of personal design styles. This occurred when the students synthesised elements of diffierent histor ical design styles with characteristics of the mentor's own style, those of other designers and style elements based on the student's own preferences. This aspect of student learning is discussed next.

Personal Design Style.

Must of the mentors and most of the students saikl thnt they sought to have their own style in design. Sorne of the students sa id that they took note of the ir mentor's design style, but tried to develop a style of the ir owt. The following comment made by Student I 6 is tyọical of others lfouod in data coded in this category.

Working with Sam and Jack gave mean ins ight into how they did their design work and what the ir design style was. I have my own ideas that are more focussed on altemative lifestyles lor down South that I would like to design for.

Some of the students said that they had copied design elements they had seen their mentor using and in so doing developed their design style using a synthesis of the mentor's style and their own ideas. Student 18 said of his use of Mentor 26 's design style elements:

She likes the idea of columns to separate arcas like the lounge and dining, that's why I have used them in my design. I saw that in the houses that we looked through together and on the drawings that she showed me.

The most common feature of the development of a personal style in design emerged as student integration of the mentor's design leatures and design strategics into their own design practices and personal preferences. Student 13 sa id that he had acquired aspects of his mentor's (Mentor 3) design methods lor use in his own design
practices. In the following quotation, Student 13 has expressel a number of key asp:ects of his experience of working with Mentor $\mathbf{3}$ that deline some of his learning outcomes. Ile has also relerred to the effiect that this has had on lis design practices now thal he ls employed under another designer who havil also worked with Menlor 3.

There u heaps of things that ! keamt there with larry thit I now use, perhaps not everyday but usually you come across a little problem similar to things I did there. I tind myself thinking of what Burry has said worked lor that situation and then I tiy it out lor the problem that's there, Sometimes I see in the drawings that I um doing and that Mario is doing things that Barry showed me how to do. You get little reminders all the lime alout how things work nnd how the aestheties might be developed using his style ofdesign.

Analysis of Phase Three data showed that Mentor 3 placed great emphasis on the importarice of rellective practices in design lor developing a personal style in the use of architectural fealures and problem solving methods. During 55% of the work session times, Mentor 3 used questioning and explanation-building methods to review every aspect of the design presented by Student 22. Throughout this process of review, Mentor 3 encouraged Student 22 to explore many other ideas and concepts by visualising how he might resolve them into a design style of his own. This process Mentor 3 said increased student understanding and led to a greater sophistication of the design solutions produced, as well as the emergence of a personal design style.

The manner in which Student 22 developed his personal design style was said by
Mentor 3 lo come from the immediate feedback he provided concerning the Itunetionality and basic guidelines lor the aesthetics of the final design lonn and from sketching multiple variations of design ideas. Commenting on this. Mentor 3 said:

I work on the basis of being fully inlonned belore making any design decisions. That's what I wanted him to do also, so I gave him encouragement and feedback on each aspect of the design that we worked on so that at any lime we both knew where it was at. Every time he came up with an idea!got him to explain the reasons why he wanted to use it and I'd get him to sketch how he was going to implement them. I made sure that he understood how to resolve the problems thut came out of those ideas and when he could not readily explain, then I would give him some alternatives and explain why and how I would use them. This went for everything fiom lixing details to the aesthetics of the final design.

The basic lonns suggested by the sketches developed in the work sessions (sec Figure 40, p.259) by this student/mentor collaboration can still be seen in the final design drawings (sec Figure 41, p. 260). The curved shapes lirst suggested in Figure 42
(p. 261) can be seen in the final design elevations shown in Figure 43 (p.
262). The formal box like plan layout shown in Figure 40 (p. 259) has been refined in the final design (Figure 41, p. 260) by Student 22 to reflect the functional and practical approach for which his mentor is known.

From my observation of the student/mentor collaborative work sessions and analysis of the study data, I have concluded that student development of design practices based on exploration and reflection contributed to the emergence of individual style in design. Student personal design styles evolved from the synthesis of their own ideas with those of their mentor, along with other influences such as traditional design styles or those of other recognised designers.

Figure 40. Sketch showing initial formalisation of plan.

Figure 41. Final layout plan for student 22.

Student 22 commented at the conclusion of the study project that the curved roof forms in his design were his own idea and represented a particular style that he wished to develop. He noted also that he had derived inspiration for that style from project drawings he had seen in the office of Mentor 3 and from a book of the design works given to him on loan by Mentor 3 for inspiration. Note that in Figure 42 (p. 261), some parts of the drawing appear to be upside down. This occurred because the mentor and the student sat opposite each other at a desk sketching on the same paper as they developed ideas together. I observed this taking place as Mentor 3 and Student 22 produced the sketch shown in Figure 42.

Figure 42. Sketch showing alternative roof and section design forms.
In this instance, Student 22 developed his own design style which he said was a "blend" or synthesis of thnt of his mentor, influences acquired fiom a study of the works ofother recognised designers and his own personal views as expressed in the elevational treatments given the building. The curved roof forms explored in Figure 42 (p. 261) can be seenin the final design elevations shown in Figure 43 (p.262).

Figure 43. Elevation treatment for final design.
Mentor 3 mentored Student 13 in Phase Two and Student 22 in Phase Three. He commented that these students did not develop design skills until they had made the transition from merely acquiring injormation and procedures, to being able to visualise and explore design ideas "in their head" be fore looking to communicate them on paper or by using a computer. Six other mentors also suppotted this view in member check interviews conducted after the study data were analysed and preliminary findings were reported. When interviewed at the conclusion of the project, Student 22 confirmed that working with Mentor 3 had provided him with inspiration and suppott, leaving him free to explore his own ideas and to discover his own design style. He said that he had begun to feel confident in his design ability skills alter having first developed an understanding of the tools modelled by his mentor as those typically used in the everyday practices of a building design oflice.

Findings from analysis of the study data suggested that student development of skills lor visualising and refining design ideas was assisted by:

- exploration of every design element throughto resolution before branching to other lines of inquiry to build a comprehensive picture of the overall design situation;
- reflection on design problems and potential solutions to enhance visualisation skills and malacognitive resolution of design problems;
- reflection on design processes to develop metacognitive ways for applying knowledge and design tools in creative, innovative ways;
- making connections between design theory and the methods used by experts to solve complex design problems in the context und culture of professional design pructice;
- quick ske tehing methods to explore multiple design ideas that stemmed fiorn design criteria de terınined by the project elient brief;
- use of pre-drawn CAD design components und "oflice se (" document sets to rapidly explore multiple design ideas when emergent design problems could be linked to similar situations for which solutions had already be ende veloped anl! proved, und
- development of student persomal design styles through synthesis of their own ideas with those of their mentor and other inlluenees such as traditional design styles or those of other contemporan y designers.

Summary of findings.

Three phases of student learning in the design office situations of this study emerged fi om the study findings. They are:

- student entay to the design olfice culture of practice;
- student acquisition of declurative knowledge, procedural knowledge and tacit knowledge needed to resolve problems emergent from authentic building design tasks; aud
- student development ofmetacognitive ways for creating and retining design solutions.

Tbe relationships between these three learning phases and the key activities identified in these lindings as lacilitating student learning in each phase are described in the lollowing summary of lindings. The study lindings arereported here using numbered headings thut logether represent the categories used fir analysis of the study data as well as the key teaching strategies of a cognitive apprenticeship learning approach (Collins, ct al, 1989).

Findings that emerged from analysis of the study data have indicated that the students begun the lirst phase of their learning in the study situation by obtaining entry to the design olfice culture of practice through their collaboration with their assigned mentor. The manner in which this took place was Influeneed by expectations held by the students and the mentors about how their collaboration might be shaped, as well as each indi vidual's expectations about work practices und leaming outcomes. Some of the findings to emerge here suggested that student and mentor corslidence assisted student entry to the design office culture of practice, as did team-based work practices.

The second phase of student learning in this study took place when the students commeneed work with the mentors on the authentic design projects. Working with the mentors facilitated acquisition of declurative knowledge, procedural knowledge and tacit knowledge needed to resolve design problems. The mentors used disc ussion,
articulation and sketching when modelling, conching nad senffilding
methods to demonstrate, explain nod assist students to implement design knowledge and procedures.

In the third phase, the st udents implemented heuristic design strategics acquired from their design experiences with the mentors, who had reitied their tacit knowledge of design when using cognitive apprenticeship teaching strategies und other pructices typical of their design.office op crations. This assisted the st udents to develop metncogni tive ways fire exploring and refining design ideas they had visualised and this I contend facilitated their development of ercative and innovative design practices. For example Student 13 said:
... there are heaps of things that I learnt there with Barry that I now use, perhaps not everyday but usually you come acrossa little problem similar to things I did there, and I find myself thinking of what Barry' has said worked for that situation and then I tiy it out for the problem that's there.
... I lind that I can be a lot more creative now because I'm confident to have a go, and I can visualise a heap of dillicrent solutions before deciding on which one to nen with. That's what I got out of doing the project with Barry.

Each of the netivities or elements that emerged as assist ing student learning is summarised here using headings that together represent the ealegories used for analysis of the st udy data.

Phase One

1. Student entiy to the culture of practice and development of their social construction of knowledge took place by:

- st udents adopting a professioutal manner of speaking including not swearing and the use of a lechnical vocabulary; dress standards based on smart casual wear as typical of the design office;
- students participating in the broad scope of design office activities;
- observation ofothers in the design office;
- using job management schedules as modelled by the mentors;
- being accepted by the mentor and others in the design office as a designer; and
- development of a passion for design and a desire to achieve professional status as modelled by the mentors and o thers.

2. Student and mentor expectations affected student leaming in the following ways:

- student anxiety about hnving inadequate skills nand mentor domination of the design process were dispelled by mentor confidence in st udents and their willingness to give students apprentice designer status;
- men tor use of a sequenced approach to design removed student anxiety over work loads and knowledge/skills development;
- constructive feedback by mentors and acc cplance of sudent ide as built sturl enl confidence to te innovutive and to explore new design ideus;
- mentor expu"etations uhout student performance were mal by afiòrding students apprentice designer stut us nnd by having them undertake snull easily achieved design tasks to buidd knowledge and skills needed to uddress problems emergent from their main design project. This encouraged st udent ownership of emerging design solutions; and
- mentor moulelling of embusiastic attitudes towards design led to student development of similar nttitudes and willingness to contribute to the collaboration.

3. Conlidence in their mentor and in their own abilities assist ad student learning by:

- being accepted by the mentor as a fi:llow building designer;
- having a mentor model conidence in the student's ability to resslve complex design problems;
- mentor use of non-judgemental, positive reinforcemem, in fealback when assessing, coaching, or sentlo lding the student's work;
- mentor support for student presentation of original ide as and design strategies;
- mentor encouragement of reflective practices when seif assessing design ideas;
- mentor support for student defence of ideas; and
- autonomous us cof design strategi cs and procedures by stude nts as modelled by the mentor.

4. Team-based methods used by st udents and mentorsin the design office situation assisted st udent learning by:

- providing students with opportunities to work in design office situations where they witnessed and participated in all aspects of usual design offi ce practicesi in cluding exchanges withexpert consultants in disciplines associated with building designer and construction;
- making avni luble design office personnel to ensure continuity of support in work sessions when the principal mentor was not available provided students with a community of practi ce having multiple sour ces of knowledge and expertise to assist learning; and
- in cluding students in teams working on authentic design office commissions in ways that allow them to make a contribution to design solutions and to the processes used to develop them.

Phase Two

5. Declarative and tacit knowledge transfier was facilitated though the application of design processes and prncedures by mentors using cognitive apprenticeship teaching strategics and by:

- examination of the design brief and all influencing fizctors in preparation for a design development;
- extensive use ol questioning and thinking aloud to: - introduce, explore and defend design ideas; - explain the processes used to develop design solutions; and - to evaluate and test design elements.
- the use of extensive and diverse nonecontext specific resource materials;
- extensive use of retlection on past and current design projects as design resources;
- matching of proved design and construction practices to design concepts being explored in the student/mentor collaboration;
- use of the "ollice set" approach to provide visual representition of ideas explored, inlormation researched, variations on design concepts or deteils, branching of lines of inq uiry, evaluation of design elements and influencine fiactnrs;
- extensive use of visunlismtion to explore multiple perspectives and solutioas;
- the use of C^D design and drawing methods to quickly explore new ideas or concepts,
- mentor availability and the extended support offered by comtact with others in the work place or nssociated discipline consultants; and
- student participation site visits nnd current ollice proj-cels in which the mentors link actual practices with theory or concepts.

6. Discussion was used to assist learning in the loliowing ways:

- work session discussions assisted students to acquire a technical vocabulary and ways of speaking used in the design office culture of practice;
- disceussions between students and mentors that facilitated transfer of declarative knowledge absuut design situations, codes, regulations and practices;
- work session discussions lacilitated student acquisition of ways lor explaining design ideas anxl usiug processes, procedures and heuristic design strategies used by building designers to resolve complex problems;
- work se:sion discussions exposed st udents to the mentors' methods of questioning, evaluating and detending ideas; and
- work session discussions assisted students to acquire ways of rellecting on design methods and creative ideas leading to exploration of multiple concept forms and design solutions.

7. Articulation was used by the mentors ancl the stuxlents to:

- facilitate transter of tacit knowledge;
- express declarative knowledge about multiple design situations;
- explain procedural knowiedge necessary of application of design processes;
- explain the use of heuristic design strategies and to provide reasons lor their application;
- provide insights into decision making methods employed for problem solving and the exploration of multiple design ideas or solutions; and
- rellect on and delénd design decisions.

8. Sketching was used as a communication tool and to scaflold lenming by:

- providing vistinl communication of concepts, ide as, problem solving methods and solutions;
- lacilitating exploration of multipic design fierms and relining varintions;
- showing a vis ual audit trail of design thinking and processes or procedures used in developing solutions;
- providing immediate lèedback on concepts or ideas that emerge during design;
- representing three dimensional complex planer relationships.
- tacilitating acquisition of declarative knowledge about multipledesign situations as seen In exemplar "office set" drawings of authentic commissions;
- assisting students to acquire tacit knowledge thmugh experimentation with design methods reiticd by the mentors using sketching to show similar problem design situations and the methods they had used to develop design solutions;
- showing procedures, knowledge and alternative design practices used by the mentors through overlay sketching ofexemplar drawings to raify their use of heuristic design strategics as applics to the student's own project; and
- showing design methods and multiple solutions to problems ty pically addressed in everydhy designsituations that emerged from authentic projects as demonstrated by the mentors when sketching design elements from their own works to illustrate potential ways for resolving problems that emerged from the student's design project.

9. Modelling was used by the mentors to:

- demonstrate their usual design methods, problem solving strategics and a structured approach to design through the use of authentic "office set" drawings, sketching, ovcr-sketching of C^D drawings, schedules, lists and notes;
- demonstrate to the students design tools, heuristic design strategies, defined directions and set time lines tor completion of tasks;
- provide declarative knowledge of design situations, regulations, codes and standards as well as procedural knowledge for applying design methods; and
- structure design activitics to replicate the sequencing of design production in authentic practices.

10. Ccaching took phace through

- guiding students' application of design, heuristic design strategics for resolving emergent design problems and for retining design solutions;
- explanation building to detail the reasons underlying design processes and decisions. based on personal experiences;
- over-sketching of students' drawings to provide immediate feedback on ideas explored or solutions accepted; and
- assisting exploration of new design ideas that stemmed fiom enrlier concepts. us documented in the "office set".
ll. Scatfolding was used by the mentors to assist student learning by:
- frectand sketching backed up with detailed explanations of the reasons for using the design/construction strategics or details presented;
- use ofC \wedge D design components and exemplar "olfice set" drawings that illustrated heuristic design strategies, problem solving procedures, benchmarking standards and declarative knowledge about the fillowing design situations and elements:
- commonly used solutions firr room layouts in kitchens, bathrooms, bedrooms and technical areas like medical or industrisl scllings;
- relationships between rooms tor traffic llow in various settings;
- regulations and codes as applicd to specitic design situations;
- construction details such as fiotings, roof structures, truss nad beam tixings and the like;
- colour and texture of surlàce tinishes; and
- appropriate selection of materials and different construction methods as deternined by specitic design problems or situations.
- over-sketching of hand dra wn and C^D hasad drawings to show multiple alternative design stmetegics or solutions:
- timely presentation of "tips and tricks" based onuuthentic commissions und tucit knowledgc;
- usc of u diverse range of non-context specific materials such as magazincs, journals, pictures and the like, as well as discipline specific codes and regulntions;
- use of notes on sketches and drawings for fucussing student use of design procedures und to convey declarutive knowledge of design situutions, regulations or usual office practices;
- use of notes and schedules for sequencing of learning events in design and to link these to tasks that progressively build on student knowledge and design skills;
- provision of CAD data base of pre-drawn elements to address individual problem aspects of design and to facilitate rapid exploration of multiple de sign idens.

Phasc Three

12. The mentors reilied their tacit knowledge, declarative knowledge und procedural knowledge through:

- articulation of personal views and their reasous for working in the manner that they do when making design decisions;
- providing detail ed explanatious for all design procedures and decisions based on their tacit knowledge of codes and regulation developed the ough experience in the donuin of practice;
- using sketching techniques that were more detailed than their usual methods when seeking to explain heuristic de sign strategics and construction details;
- extensive use ofexemplar"office set" drawings to show examples of design situations, problems and solutions;
- linking problems tbat emerged from the student design projects with similar ones in current commissious to explain the use of problem solving strategics;
- encouraging students to use questioning to explore, defend and justify all design ideas, design strategics and proposed solutions for their authentic design project; and
- using examples of both successes und failures in design with reasons for the strategics used and outcomes achieved in resolving emergent problems.

13. Visualising and Retining of design ideas by students was ussisted by:

- exploration of every design clement through to resolution before brautching to other lines of inquiry to build a comprehensive picture of the overall design situation;
- rellection on design problems and potential solutions to enhance visualisation skills and metacognitive resolution of design problems;
- reflection on design processes to develop metacognitive ways for applying knowledge and design tools in creative, innovative ways;
- making conncetions between design theory and the methods used by experts to solve complex design problems in the context and culture of professional design practice;
- quick sketching methods to explore nualtiple design idens that stemmed from design criteria determined by the project client bricf;
- use of pre-drawn C^D design components mind "ollice set"document sets to rapidly explore multiple design ideas when emergent design problems could be linked to similar situations for which solutions had alreudy been developed and proved, and
- development of student pers.simal design sty les throught synthesis of their own ideas with those of their mentor and other inllucnecs such as traditional design sty les or those of other contemporary designers.

14. ^ Creative and Innovative approach to design by students was facilitated by:

- use of a diverse range of resource materials and rich descriptive language to create verbal images, supported by visual images using sketching or other illustrations;
- use of questioning, discussion and sketching to coach students in techniques supporting the exploration of ideas and branching of lines of inquiry;
- encouraging and supporting student exploration, defience and development of ideas;
- exploring multiple design solutions gener ated from the stern of each new idea revealed during the development of student design concepts;
- not forcing the design process, or pushing too hard for results;
- use of multi-staged replicable procedur es to resolve difficult design tasks and to facilitnte innovative exploration of multiple design concepts; and
- supporting students in their development of autonomous ways of using design knowledge and procedur es when visualising cone ept forms and possible solutions.

Contirmation of student learning out comes - judging of designs

At the conclusion of each of the authentic design projects, a panel of judges who were ind epend ent from this study assessed the stud ents` designs. Data collected from this process provided ind epend ent opinions about the standards ofdesign and presentation achieved by the students, assessed according to industr'y standards of practice. Findings from analysis of these data wae regarded by me to confirm student learning outcomes asdescribed throughout this Chapter and in the summary of findings shown above.

Judging of the students' designs.

^ new judging team was selected to evaluate the student designs for each of the three authensic design projects used for the three phases of this study. The judging of the student designs that resulted fiom their working with a mentor in a design office situation was an integral part of undertaking their undet1aking authentic design projects. This was because their evaluation involved the same processes and accoumability that protessional building designers encounter as part of their everyday culture ofpractice activities in design. Therefore, the assessment of the student designs was seen as part of the usual process that they would experience in industry. In addition, the judging of the students' work by expert building designers and others provided lecedback about the success of their design efforts that was ind epend ent of the ment ors with whom they had worked. For these remsons the judging of the students' works was regarded as important
to the research questions because it provided :mother souree of information about their learning.

The evaluation of student designs from Phase Three was viewed with particular interest. This was because the results of the judging could readily be compared with other data. These data ineluded Phase T'wo data about what the students and the mentors snid had occurred and Phasc Three data that were based on my observation of what took place in the work sessions in which the students de veloped their designs. ^nalysis of these data assisted in confirming some aspects of the students' learning outcomes.

Each judging team included experts recognised lor their specialised knowledge of design ard industry specific aspects of the design project brief: Judging was conducted using checklist sheets to address various aspects of the building designs, as per industiy standatds set by the judges, expert building designers and TNFE lecturers. An example of the checklist used lor assessment of Phase Three student desigus is shown in Appendix H. Written comments made by the judges on the judging checklists (see Appendix H) when analysed provided information about student learning outcomes as seen by independent industry experts. During the judging process, and as part of informal discussions immediately following the jadging, 1 recorded personal journal notes about what the judges said about each of the student designs. Data collected in this way were analysed by coding in the same manner as other similar data collected using other methods. These data provided information about what experts in the building design profession saw as the students' design achievements compared to the experts' industry standards. Findings from this process provided conlirmation of student leaming outcomes as assessed by the independent experts.

Data collected by using the judgingsheets served as a basis for post judging discussions with the expert judges to ascertain their views on the standard of work presented by the student/mentor collaborative design teams. This was done to explore links between what industry deterinined was an aceeptnble standard and what actually was produced by the students in the mentor suppoited design office learning situations.

Judging Criteria

The design eriteria documented in the brief used by students working on this project were developed in consultation with specialist experts in the steel industry and with experienced building designers. The judging panel, using a checklist developed by three industry experts and two TAFE lecturers, assessed the students' design solutions. Having building design industry experts and a TAFE lecturer on the judging panel
provided industry expert knowledge as well as education expert knowledge.
Ench judge was nsked to allocatc marks tor all categories in each of two sections of the judging firm. The assessment categories were:

- satisfaction of the design bricf (40 nurks);
- Duragull products (use ol) (40 marks);
- exlerior nesthetic (40 marks);
- design lor climate and energy efficiency (40 marks);
- project presentation (40 marks);
- zoning of activilics (20 marks);
- indoor/outdoor relationships (20 marks);
- traffic llows (20 marks); and
- furnishabilty of spaces (20 marks).

The maximum number of points available to each student from this judging fism was 280. Six different judges assessed the student designs. The sum of all of the judges' scores meant that the maximum score available to each student wos 1680. 1 total of 20 students, all of whom had worked with a mentor in a design office, had their designs judged. Four of those students were the ones who were closely studied in Phase Three of this study. All of the student designs were judged to be of on industry standard of design and presentation. Some were better than others, as evidenced by the spread of scores. These ranged from 975 to I 169. The top three scores were:

$$
\text { First } \quad 1169
$$

Second 1164
Third 1161
Two of the four students who were closely studied in Phase Three of this study attained the lirst and second placing in the overall scores. Another of the lour scored in top 25% of the student gresup and the fourth student scored in the $50-75 \%$ range.

Commemts from the judges

The industiy representative fiom the steel industry commented that:
The students and mentors have really come up with some new ideas fir us to take back to the company. Some of the designs are quite radical and might be:challenging to build, but that is what we wanted, you know, something dilficrent to gel new idens into the market. (Judge 1).

This view was supported by the judge from a large construction company commented that:

I am amazed at the professional standard of the designs, particularly the C'AD based drawings. This is the type of work that we see coming out of the design offices of our consultant firms. There is some really usefal
material here, a lot more than I had expected from n student project.
(Judge 4)

Another of the judges, when discussing the top three award winning designs said:
... each of thesc has something special happening to make the best use of natural heating, cooling and ventilation. What is interesting is that they all do it in diflierent ways, but quite elficctively. (Judlge 3)

This judge went on to say that the designs had provided some new ideas for him to incorporate in his promotional materials. Judge 3 also commented that:

The students seem to have a broad freethinking approach to the use of lightweight materials to do tasks that we all too oflen think of ns needing heavy masonry. They've come up with some different thirsking here, so maybe we have to do a little rethinking ourselves now.

Critical comment by the Building Design ^ssociation (BD^) judging panel member was regarded as being especially impattant because of his close links to the building design industry and current knowledge of standards of design and drawing presentation used by professional designers. He commented that:
... the overall standard of the designs presented here are the best l've seen for student work for this type of project. The top live or six designs show clever use of the structural steel system that was on essential requirement for this project. The designs arc creative and quite innovative in their use of a variety of other building materials and design ideas like how they achieved solar energy efficiency, in an aesthetically pleasing but functional design. (Judge 5)

Judge 5 also said that he was particularly impressed by the attention paid by the students to detailing the designs and to the presentation of theirdinwings. These he said were key elements in selling an idea to a client in the commercial setting. When commenting on thetop three student designs, he said that they were as good as most professional design offices present in their day to day operations and could thus be considered as meeting industly standards of professional design.

The TAFE lecturer (Judge 6) who perlonned judging duties had ten year's experience leaching building design and five year's experience working with students on authentic projects under the direction of a mentor. With this background, Judge 6 was well placed to assess the student designs nad to muke comment on them using comparisons with work that she had seen produced by studerts in classroom design projects thnt were not guided by professional designers ns mentors.

When commenting on the overall stundard of the design submissions, Judge 6 noted thut the students had nehicved levels of design and presentation signitienntly higher than those of their peers in current design classes undertaking classroom based design projects. This she based on having already assessed student submissions based on the same design brief used by the students for their authentic projects, but executed by other students in classroom based situations without input from a practising building designer acting us a mentor. She also noted that "these designs (the study project) show a greater sense of style and innovation and are firr more creative in the ir use of building materials". Judge 6 also commented:
... the range of presentation methods used by the students is more diverse and professionally executed than the sort of thing that you see in the newspaper presented by most of the big firms when they ure promoting developments and schemes.
^nalysis of data such as those shown in the above examples led me to contend that the students in this study achieved standards of design and presentation that the judges assessed as meeting and in some instances exceeding industiy standards. Overall, I believe that the quality of the works produced by the student/mentorcollaborations in the design of fiec situntions used were regarded by the judging panel to have execeded standards that they normally expected of students at this level of training. From this, I contend that learning outcomes for students studied here were of a higher stnndard and resulted from their learning in a mentor supported design office situation organised us ing cognitive apprenticeship teaching strategics.

Conclusion To This Chapler

The collection, recording, transcribing and analysis of data in this study followed a three plased cumulative process, with analysis commencing with the first data collected. Multiple collection methods were used to gather data that were coded using categories that emerged during transcription and interpretation of difterent ty; pes of inYörmation recorded.

In this chapter, findings that emerged from analysis of the mostly interview based Phase Two data nad the mosily observation based Plase Three duta have been reported, along with data units which supported and illuminated those findings. During annlys is of dntn collected here, replienble procedures were used within a coding framework estnblished using NUD•IST (1998) soliware.

Data werc collected over n 14-monh period using a varicly of dilyerent methods. Data were unalysad using coding and other methods inc luding summaries and tables based on themes ithat emerged us coding eategories were deve loped Ior Index Tree framew orks that evolved as new datu were collected. As new themes emerged, some cutegorics were merged uned collapsed as similar data were identified and re-coded. Coding of data was undertaken in three phnses, as deternined by the collection methods and the work focussed tusks being undertaken by the study participants

The first phase of coding and analysis was basud on what took place in the real work design projed implemented us part of the pilot study. During this tirst stage an overall view was soughl to describe the events and activities that shaped the student/mentor collaborative work situations developed using authentic design projects.

The second phase of coding and analysis tocussed more on identifying the individual activities carried out by the st udy participants in the student/mentor collaborative design ivork sessions. Themes that emerged from this phase of the study shaped the investigative structure developed lor Phase Three, which involved the obscrvation of actual work sessions involving the students and the ir mentors.

The thitd phase of data collection and a nalysis sought to confirm findings that emerged fiom analysis of Phase Two data and to also identify any new aspects of the study situation or events thought to inlluence learning. With each new phase of data collection and analysis, emerging tre reds themes delined by "intensity and fiequency" (Holsti, 1969, p. 126) of the participants' responses were used to further develop the study fiamework as well as the tools tor data collection and ongoing analysis. Key elements, noted as important to learning in the study situation, were used as major coding categories to organise and implement other emerging aspects of the situation, events, views and activities revealed througl analysis of the necumulated data.

The authentic nature of data collected in fuce-to-face interviews, inlormal discussions, vide o recorded work session in which the rescarcher played an active role. was contirmed through comparison with the physical evidence of sketches and drawings, as well as in member checks conducted througlout each phase of this study. Every eflort was made to ensure that data collection methods used in ail three phases of this research were consistently applied. Using the same methods for collection and analysis within each phase assisted in ensuring the dnta reliability and consistency of data through replicable procedures. This I regard added rigour to the study. The intemetive nature of nll of the data collection methods used, provided opportunities at
every stage for me to confirm my interpretution of cvents as they transpired, by using member checks nnd for the study participants to exchange their views with me.

A all times the participants reninined voluntecrs in the study und were kept inlormed of the meusures being maintained to ensure their :monymity and the conlidentinlity of nll information that they provided. None of the patticipants withdrew firom the study, or declined to participate in any part of the study. This meant that the data were collected from willing participats. For this renson, I regard the study data to be from authentic sourees and likely to have provided a trustworthy and reasonable record of what the study participants actually exper ienced.

This Chapter sought to provide a holistic picture of the processes used to imeipret the study data and findings that emerged during analysis. It report ed findings about what occurr ed when mentors and students worked together on autlientic projects and how the design solutions produced by the student/mentor collaborations were judged as part of deternining learning outcomes.

In the next Chapter, the research questions are answer od using findings that emerged from analysis of the study data.

CHAITIER SEVEN

ANSWERINGTIIE RESEARCII QUESTIONS AND DISCUSSION

Introduction

In this chapter, the research questions are answered. This is followed by a discussion of the st udy findings with reference to pertinent litcrature. The use generally of cognitive apprenticeship methods for learning in the building design discipline and other similar domains is also discussed here ns an extension of the find lings that have emerged from this rescarch.

This st udy se to ut to investigate st udent learning in a cognitive apprenticeship sit uation. The setting used for the masin data gathering part of this st udy consisted of IO commercial building design olfices, in each of which st udents worked with expert building designers, acting as mentors, on nuthertic projects. Data about the events experienced by st udents in their collaboration with the mentors were collected from multiple sources, using \boldsymbol{n} variety of collection methods. The previous \mathbf{i} wo Chapters hnve detailed data analysis and lindings about many difficrent aspects of the st udy situntion which I regarded ns alfecting st udent learning. Here, the research questions are answered using summaries of the tindings from the previous Chapter.

Rescarch Question I

What kind of declarative knowledge and procedural knowledge is acquired by students in the building design prafession in a cosgnitive apprenticeship learning situation?

Five broad aspects of st udent fearning emerged as being outcomes in this study. They were:
1
Students acquired ways of speaking, behaving and self-presentation similar to those used by professional designers in the building design olfice culture of practice;
2 Studen ts acquired dec larative knowledge about:

- the organisation of a commercial design olfice;
- regulatory fáctors governing building design;
- the organisation of design office methods for planning and implementing nuthentic design projects;
- multiple design situations fir equently encountered by building designers when undert, king authentic projects;
- the knowledgenecessary for suceessful applicution of heuristic design strategies used by expert building designers to creat eatd refine design solutions; nnd
" building design industry standards ripplied to constructinn detailing nad presentntion methods commonly used in drawing praclices.

3 Students acquired procolural knowledge about:

- the methods used by building designers to analyse design bricf specilicutions;
- ways for nssembling resources necessary to address authentie design criteria;
- ways for organising authentic design projects using planned stages of development and review;
- the methods used by experts to implement their usual he uristic design strotegies to develop solutions to problems emergent from authentic design tasks; und
- the methods used by building designexperts to present and defend their design solutions to clients and others.

4 Students developed autonomous ways of creating, visualisirg, exploring and resolving original design ideas; and
5 Students developed personalised, individualistic design styles that emerged fiom a synthesis of the student's own ideas with those of the mentors', historical style elements and other fiactors.

These five student learning outcomes indicated that mentor use of cognitive apprenticeship teaching strategies was an elfiective means for assisting student learning in a design office situation. In broad tenns, the study findings have suggested that the students gained entry to the design office culture of practice and acquired design knowledge and design skills used by expert building designers to cr eate and refine solutions to complex design problems. The principal learning outcome for the students was that they developed autonomous ways of creating, visualising, exploring and resolving original design ideas. In developing those skills, the students also gained confidence in their use of information and design methods modelled by the mentors and developed multiple design perspectives in their application of innovative ways to resolve emergent design problems in ways that became their own design style.

This led most students to develop a strong sense of achievement and a strong sense of satisfaction and confidence in learning new skills and design strategies. The students underwent a transition from using simple design procedures to resolve commonly encountered design problems, to visualising, exploring and resolving design problems often using metacognitive strategies: Students increasingly used articulation to explain the reasons for design decisions they had taken when definding design elements or solutions developed by them. This method of design practice was oflen representative of the working methods used by the mentors to visualise, create and refine, innovative design idens. Student adoption of this manner of design practice indicated their development of mastery of design, as used by expert building designers.

Rescarch Qucstion 2

What kinds if declarative knowledge and procedural knowledge is transferred in this (design office cognitive apprenticeship) learning siluationi"

Declarative knowledge transf crred

Findings from this stidy have suggested that the students acquired declarative knowledge of many aspects of design practice, as well as other knowledge necessary for them to apply design procedures as modelled by the mentors. The kinds of deciarative knowledge acquired by the students included knowledge about:

- climatic, geographical, geological and environmental factors that inlluence design;
- codes nnd regulations that govern building design practice;
- building construction standards and constr uction details used in fi equently occurring sit uations common to a varicty of building types;
- various sources of information such as legel inter pretations and rulings abo ut planning or design guidelines, as well as existing design solutions used by building designersas resources to create and sefine new design solutions;
- reasons why expert building designers make particular choices when using heur istic design strategies to create and resolve design solutions; and
- roles played by experts in discipline areas associated with building design and how they influence und support the building design domain of practice.

Students acquired declarative knowledge fiom their mentors who provided them with explicit information about the organisation of the design office, availability of resources and the relationships that link the building designer's activities with associated disciplines such as engineering, electrical services, plumbing consultants and the like. Findings from this study stowed that transfer of declarative knowiedge of these kinds mostly took place using discussion and sketching. Extensive use was also made of "office set" contract documents for transler of knowledge nbout design situations and methods used by experts to resolve design problems encountered by them in the various disciplines that together represent the building design domain of practice.

Mentor modelling of personal design preferences or elements led students to acquire declarative knowledge ubout:

- a broad range of design situations typically encountered by building designers in their usual culture of practice activitics:
- the kinds of information assembled by expert building designers when preparing to use heuristic design strategies to develop solutions to problems emergent firom the design process;
- the rettsons given by expert building designers for using particular design strategies when addressing $1:$ range of dfflierent building design situations;
- multiple design solutions used by the mentors in various commissions covering a range of commonly occuring design situations; and
- the tools used by expert building designers to reline and present the ir design solutions in accordance with standards of practice determined hy building design industry commons practices.

Transfer of declarative knowledge took place simulancously with transfer of procedural knowledge as the students developud the ir overall understanding of the problem situations addressed by building designers, the methods they use to resolve them nod the rensonsiwhy they apply particular strategics or practices.

Procedural knowledge transferred

Students acquired building design knowledge and problem solving skills as modelled by the mentors. Transier of procedural knowledge mostly occurred through mentor modelling and conching during design office work sessions. Procedural knowledge acquired included the tollowing aspects of design office practice:

- procedures for dealing with the everyday operations of a design office including management of personnel and resources such as:
- technical information libraries including codes and regulations;
- past project "olfice set" documents;
- C \wedge D based design element databases;
- client brief documentation; and
- contract documents for authentic commissions.
- protocols and procedures found in design office hierarchics including:
- how to participate in team-based design procedures with other design office staff;
- how to incorporate design contributions fromassociated discipline experts or consultants, regulatory authorities, local govemment agencies and the like.
- procedures used by experts to assemble and utilise a broad range of design resources including:
- books, magazines, trade literature and advertising materials having images of aspects of design, colour, texture, construction materials which stimulated design ideas and solutions; and
- drawing sets and photographs of completed design commissions covering a broad range of building design situations or other objects including furniture, cars and lashion ilems.
- procedures used by expert building designers to identify, in a new design comm ission, frequently occurring design situations and appropr inte methods to resolve them based on commonly used solutions suitable for the emerging new design;
- methods used by expert building designers to create, explore and refine new des ign solutions through the application of heuristic design strategics and design office procedures including the "office set" overlaid drawing design technique and C^D basal methods; and
- methods used by expert building designers to ineorporile persomal design sty le elements in new design solutions.

Rescarch Quession 3

How is tacit knowled, pe transferred in a cognitive apprenticeship lcorning vibuation:'

Tmasfer of tacit knowledge took place in the following ways:

- the mentors verbalised their thoughts und their reasons lor using particular courses of netion when modelling their usual design practices and when coaching students in the application of these;
- mentors provided detailed deseriptions of milliple design situations they regarded as typical or frequently occurring, the design problems encountered with these and the solutions that they and others had developed to resolve those problems in accordance with building codes mj regulations governing standards of construction practice;
- men tors used exemplar "ollice set" drawings of authentic commissions to demonstrate procedures they used to identify common designsituations and the procedures used by them to adapt commonly used design solutions to problems emergent from those sit uations;
- students undettook sequenced authentic design tasks of increasing complexity, with coaching by the mentors in the application of heuristic design strategics based on the ir design experience, with articulation and sketching being used to convey their reasons for using partic ular design methods or for taking design decisions;
- mentors' analysis of the student's own design project in termsoftypical design problems and possible solutions based on others they had used in their everyday domain of practice;
- mentors and students using notes on sketches and drawings that provided a vehicle for the expression and exchange of tacit knowledge about design decisions and procedures used in the exploration mide evaluation of ideas that led to their design solutions;
- students' defence of their own design solutions to others and having them suggest altemative procedures lor resolving emergent design problems;
- student participation in construction site visits during which the mentors linked theoretical design knowledge to design solutions as seen constructed, while also explaining their reasons for the methods used as shaped by their design experiences and tacit knowiedge of multiple similar situations; and
- student interaction with other designers and consultants from associated disciplines in design office work sessions and in infirmal ways as part ofeveryday workplace exchanges or in workplace social gatherings.

Knowledge transfer was facilitated through discussion, articulation and

 sketching being used together by students and mentors to exchange inlormation and to express their interpretation of complex design situations and design solutions.
Rescarch Qucstion 4

If problem solving heuristic strategies are ascol, how are they picked ul) bythe stukent?

Dala colleeted here include many inst unces in which the mentors were observed using problem solving methods based on "rules ofthumb" (Brown, ct. al, 1989, p. 4(9) ways to resolve building design problems and other heuristic strategics bisted on their experience with resolving design problems in muny difierent situations. Problem solving he uristic stmtegies, were modelled for students anel demonstrated further in coaching sessions in the following ways:

- through modelling and couching by mentors and other experts fiom supporting dise iplines during collaborative work sessions in which the students imd the mentors explored multiple design strategics and solutions as applied to the authent ic student project they were underlaking;
- in construct ion site visit sessions in which the mentors demonstrated the ir design commission solutions and described in detail various aspects of the buildings along with the heuristic design strategies they had applied in developing the design solutions used for construction:
- in design officecrit ique sessions where the students and the mentors defi:nded their design methods and decision making, while also sturing multiple or ulternative strategies fordealing with problems emergent from the students' authent ic design project; and
- application by the st udents of the mentor's design office practices including preparation nnd research of materials, scheduling and seguencing of des ign tasks and procedures as modelled by mentors for creating, exploring, testing and retining design solutions.

Heuristic strategics were mostly implemented by the mentors and the students using quick sketching methods, as well as detailed over-sketching of"olfiec set" drawings of exemplar design projects and of the st udents' own design drawings. Working in this way, the mentors reitied their heuristic design strategies and demonstratedhowthey could be applied by students to the ir own design project problems. Aspart of this approach, the mentors also oflen simultancously explained the reasons tor using the methods being presented. In design office situations where the students worked with other stall on current commissions that were part of the mentors usual culture of practice activities, they also participated in design activities where heuristic design strategies were being applied by others. In this way, the st udents gained experience in the use of those he urist ic design strategics, in the context of the domain of practice.

Rescarch Question 5

What features of this learuing situationt prominted student learninn??

The nuthentic design ollice siluations used as the seilling fior the stuilen/mentor collaborations provided many dilferent oppxertunities fire students to antjuire design knowledge and skills. The one-on-one and semetimes multiple, inentor support that students experienced when tackling the ir design prnject pro)vided them with oppottunitics to uequirc knowlelge and des ign methods used hy experts as part of the ir usual practices. Student learning mostly took place hy ha ving expert building designers model and discuss in detail their watys for resolving design problems anc. by the mentors us ing the ir lacit knowledge and heuristic design strategies when coaching the students in the ir application of those knowledge axdl strategics to authentic projects.

Many features of this learning environment promoted and supported knowledge transfer. Three aspects of the study situation that promoted and supported knowledge transfer emerged from the sludy findings are used here to present those fi:atures. They arc:

- design offìce cullure of practice factors;
- design office facilities and resources; and
- work activitics and practices.

Design affice culture of practice factors.

These features were shown to promote and support knowledge transfer:

- acceptance and respect shown by the mentors and others fior the student as a designer in the design oflice team;
- mentor commitment to the collaboration as demonstrated by preparation of resources, provision ofback-up personnel and difficrent learning opportunities such as site visits;
- implementing the student/mentor collaboration in a manner that replicated the work ing situation typical of the ever yday culture of practice activities of the design oflice in which all parties contributed design ideas and problem snlving strategies to develop a design solution;
- student observation of the mentor and others reify ing des ign knowledge and practices while collaborating on authentic design office commissions within the same work-space as the student/mentor collaboration;
- student inclusion in design office tasks which enabled them to experience duties typical of design oflice pradices as required of all design team members:
- social interaction with others in the design office which fiscilitated infiormal communication and transfcr of less formal kinds of knowledge; and
- access to professionals from other diseiplines who provided insight.s into busine ss practices in the design offlice und also into the wider domain of construction industry practicc.

Design affice facllifies and resources.

The availuhility of the fillowing filcilitics and resources were shown to pmote student lenrning:

- provision of a work station within the design office which provided ready uss css to other designers with whom the students could readily exchange ideas or from whom the y could saik assistance which gave the students acecss to multiple points of view anil dilfierent design practices;
- access to a vast array of resources such as a technical lihrary, codes and regulations, sets ofoffice commission drawings and files, C \wedge I) database resources and other materials typically used for design development which are not lypically available in classroom tased leaming situations;
- access to computers, photocopying machines, reprographics equipment, drawing mounting and binding facilities which provided students with the means to develop and present their design works in the manner used by prolessional building designers;
- ready access to the design office for rescarcting inforn nation and drawing production as ofliced by most of the design mentors; and
- extended mentor support during out of hours times as well as having acecss to design office support stalfand other expert consultants fiom associated disciplines or expert services, as provided by some of the mentors.

Work activities and practices.

The following mentor supported design office activities and practices emerged as supporting and promoting student learning:

- frequent work sessions with mentor and others;
- student presentation and defence of design ideas and problem solving strategies;
- use of "offiec set" drawings as exemplars for creating design concepts, development, presentation and delénce of design solutions;
- use of "oilice set" drawings to explore the evolution of building designs by reflecting on pathways explored belöre accepting design elements as past of linal solutions,
- mentor use of methods to make the design process a guided journey of discovery to encourage student conf idence and creative, innovative practices,
- mentor use of an extensive and diverse array of scaf folding materials;
- mentors reif ying the ir creative design practices to encourage student visualisation and exploration of ideas to enhance metacognition;
- mentor and student use of questioning, rellecting and defending of ideas to develop multiple perspectives and design solutions;
- setting of standards by mentor assessment ofstudent works using design office commissions to define industry standards and benchmarks for student periormance:
- use of multi-staged, replicable procedures to resolve emerging problems in the context and culture of practice of usual design office method::
- mentor sequencing of design tasks to avoid pushing students too hard for ideas in design so as nol to discourage creativity;
- linking design solutions of exemplar commissions to the processes and procedures used to develop them in order to scaftold students over batriers to their progress created by problems emerging fiom the real work design project;
- placing emplasisis on explanation building and reflection on the devekıpment path of design with exploration of all idcas shown through sketching and notcs, backed up by atticulation of the rcasonas buthind the aeceptance or rejection of the ideas presented to facilitate metacognitive ways for visualising and exploring design forms; and
- oversketching of drawings to provide a visual audit trail of the ideasexplored and to promote grealer depth of design analysis and melacognition in design.

Summary Of Answers To The Research Questions

This study has found that the use of cognilive apprenticeshipteaching methods by expent building designers in design office seltings provided an effective means for assisting student learning. Findings here show that the students gaine:d entry to the design office culture of practice and acquired design knowledge and design skills used by expent building designers to create and reline solutions to complex design problems. This gave them confidence in their autonomous use of ways for crealing, visualising, exploring, resolving and presenting original design ideas.

The students acquired declarative knowledge necessary for resolving problems :hat emerged firom authentic building design tasks. Knowledge acquired from interaction with the mentors and through paticipation in authentic design tasiks covered a broad range of topics encountered by expert building designers in their cveryday activitics. These included explicit information about design situations, reyulatory factors, usual design practices and the reasoas for using various design strategics for paticular problems. Much of what the students learned focussed on why and how expert building designers work in the maoner that they do. This assisted students to apply procedural knowledge and to implement problem-solving methods when using heuristic design strategics.

Transf er of procedural knowledge mostly occurred through mentor modelling, coaching and scaflolding during design office work sessions. The kinds of procedural knowledge acquired by students focussed on the use of everyday design office practices. These included the management of design projects, protocols for dealing with associated discipline professionals in the building designer domain of practice. managing and using design resources and the application of heuristic design strategics with common design office procedures for resolving building design problems.

Students in this Ienrning situntion also acquired tacit knowledge from the mentors. Transfi:r oftncit knowledge mostly took place hy the mentors verbalising their thoughts during work session:; in which they modelled design metho ds and concbed students in the use of heur istic design strulegics. \AA key part of the mentors' reif ying their tacit knowledge was their use of detailed descriptions of various design situa tions they had experienced and their rensons for using their particular strittegies or solutions. $\Lambda \mathrm{s}$ well as these descriptions, the mentors also used a diverse range of scalfolding materials and methods including sketches und sets of drawings to illustrate each of the situations and solutions that they presented. In so doing, the mentors provided rich ver bal and visual images to confirm their tacit knowledge of a broad mnge of building design practice. The mentors also encouraged the students to use this approach todefend the ir design solutions by expressing how those solutions had evolved and why particular design methods or decisions had been adopted.

Mentor modelling of their heuristic design strategics followed by conching students in their correct application led to the students adopting for use in their own projects. The use ofheuristic design strategics was ollen confirned by the mentors by using visit sto construction sit es to demonstrnte oucomes firom design office practices and in critique sessions with students in which design strategies and decisions were presented and defended by the students. Application of mertor modelled heuristic design strategies by students led them to acquire those methods for their own use and to adapt them es needed to resolve problems that emerged from their authentic design tasks.

Student Icarming in design office situations where cognitive apprenticeship methods are used was influenced by many factors. These wer e grouped into three broad areas that I regrded as promoting student learning in this situation. The three arcas were: design office culture of practice factors; design office facilities and resources; and activities or proctices used to promote learning and knowledge ironsfer. When used toge ther, these elements provided a learning environment in which students acquired fiombuilding design mentors ways for resolving design problems typical of themanner used by experts in their everyday culture of practice activities.

DISCUSSION OF •TIT: STUDY IINDINCiS

Ilnving alrcady provided answers to the research questions, u discussion of the overall findings is now presented with particular reference to the teaching strategics of the cognitive opprenticeship Iearning opprouch that underpins this study.

In this study, data were collected about the kearning experiences of a group of students working on authentic design projects, in real design ollice setlings, with expert building designers ucling as their mentors. The mentors were initially regaraled by me 10 broadly use cognitive apprenticeship (Collins, et al., 1989) teaching strategics. As the study progressed, this was confirmed through their particular use of modelling, coaching, scaffolding nnd fading, articulation, rellection and exploration in their work sessions with the students. The authentic design projects undertaken by the students were organised by the mentors to replicate their usual prafessional practices and applied by them in the context of the building design di cipline domain. This appreach utilised a learning situation structured in accordance with principles suggestell by Schön (1983). who contended that much learning occurs as prolessional practitioners engage in every activity of their everyday world.

The authentic nature of the design olfice situations of this study meant that students worked in settings uhere prolessional designers applied specialist knowledge and sophisticated mental model.s in the social and cultural context of their usual practices. This allowed students to construct their domain expertise, in ways similar to that suggested by Hennessy, (1993).

All of the mentors who participated in this researeh were recognised by their proficssional organisation, the BDA, as being experienced experts in the fie ld of building design, a prof ession thal demands highly developed verbal and visual communication skills. Most of the mentors who patticipated in this study were invited to do so because of their previous classroomexperience with buildiog design students.

Good communication skills and teaching experience were regarded as valuable attributes for the participating mentors because successful mentor interaction and communication with students was eentral to the studen/mentor collaborative working situation. Their communication skills and interactive working practices based on commercial design olfice methods, provided an appropriate basis lior learning using cognitive apprenticeship melhods. In supporl of this view, Casey (I 996, p. 82) contends that cognitive apprenticeship is heavily dependent on the ability of an expert to interact
with the learner by: "modelling expert practiccs, observing student performance, supporting performance through scaflolding ancl firting of support as performance improves". This was cleurly evident in data conlceted fire this research.

From the outsel of this study, most of the mentors extended, to the students, designer status. Working in this way mamt that in ill of thcir design oflice interactions, the students experienced the authentic culture of practice events in ways typical of the mentors' usunl practices. 'This apprnach is in keeping with that proposed by Resnick (1987) who contended that auther tic learning must involve situations where actual cognitive processes are involved rather than simulated processes as found in many classroom situations. Authentic experiences used as the basis of design tasks in this research stuxly setting facilitated the students' enculturation (Collins, et al., 1989) into the menlors' cullure of practice through authentic activities and social interaction (Wilson, 1993).

The study situation used here facilitated learning through cognitive apprenticeship methods by making visible to the students the largely tacit knowledge possessed by the mentors about design and problem solving procedures. Findings that emerged from this study have suggested that some of the mentors approached their work with the students by taking them on a guided journey ofdisco very. This, some mentors said, assisted students to deal with authentic tasks in the context and culture of everyday design offīce practices.

Most of the mentorscommenced their work with the students by introducing them to typical design office methods lor assembling resources appropriate to the design pro ject described by the client briel: The mentors then modelled for the students their design methods and coached them in the application of those methods to the students' authentic design pro ject. By working in this way, the students were provided with experience based learning situations in which they used self evaluation and reflection when defending their design endeavours. The authentic experience-based learning situation allowed students to construct their knowledge about ex pert practices in ways that were modelled by the mentors (Koufman, 1996).

Thisstudy has found that the cognitive apprenticeship situation developed in the design offices provided mentor support for progressive transfer of responsibility to the students for their own Iearning in ways similar to that suggested by Palinscar \& Brown (1984). Collaboration betweren the students and the mentors also provided situnted learning oppottunities giving students critienl oppottunity to obser ve, engage in, or invent expert strategics in context (Hennessy, 1993; Collins, et al., 1989). The students
then applied strategics they had lenrned to nuthentic lasks with the nid of mentors, in the design ollice culture of proctice of the study setting. In this wny, the students became engnged in authentic, meaningfill real work design proje:cl tu:sks. This led them to develop design expertise within a cognitive apprenticeship fiamework, implemented using collnbomtive mentnr/lenm-hased ollice activities (Ilenncssy, 1993; I'ieters \& de Bruijin, 1992; Brown clal., 1989). It nlso lacilitaled student developmeat of persomslised wnys for solving design problems and helped them to acquire declarative and procedurul knowlelge of design methods. This look place through activities situated in the usual context of their use by mentor supporled "Yarming-through-guided-experience on cognitive and metacognitive, rather than physical, skills and processes" (Collins, et al., 1989, p. 457).

What has emerged from this rescarch?

Thisstudy sought to determine the learning outcomes for studentsin a cognitive apprenticeship situation, to understand what kinds of knowledge were acquired by those students, what licuristie strategies were learnt and what was it in the study situation that lacilitated student learning. In the Collias et al. (1989) model, some learning content is considered as strategic or tacit knowledge and this unklerlies an expert's ability to make use of concepts, facts and procedures to resolve problems emerging from authentic lasks. It also includes problem solving strategies and heuristic strategics used by expents when solving emergent puoblems in the context of their usual practices and when exploring new concepts (Collins, cl al., 1989).

In this research the domain knowledge of the expert building designers, acting is mentors, was grounded in the discipline of their practice and included explicit factual knowledge and procedures used by them to solve problemsin the context and manner of their usual culture of practice activities. Heuristic design strategics gave students discipline specific ways of dealing with problematicsituations that emerged fiom the real work design project. These were used by the mentors in the manner of "tricks of the trade" (Collias, et al., 1989, p. 478) that had been lacitly acquired by them through professional experience in the domnin. For example, one mentor conched students under his direction in the use of CAD based pre-drawn design elements to rapidly develop multiple design solutions without regard for closure of the geometiy, in order to explore broadly before defining the linal form of the design. Heuristic design strategics like this were used by all of the mentors, but in individualist ways.

Much of what was observed ns mentor use of heuristic design strategics here pertuined to managing problem solving in building design. This occurred through reflective work practices nnll the sequencing of design tusks us scheduled by the mentors. This approuch gave structure nnd firmasity to the development of cognitive processes by selting the strategics in the corxext of the domnin, thus making them purposefill through student uppliention, which enhanced their understanding of their role (Choi \& Hannafin. 1996).

Each of the six key teaching strategics of the cognitive apprenticeship learning uppronch used for the conceplunl frnmework of the study ure now discussed with referenes to lindings and pertinent literature.

Modelling.

Modelling in this study involved mentor demonstration of design strategics and procedures used by them in their everyday culture of prnctice activities, as applied to the authentic tasks of the students' design projects. The approach taken by most of the mentors when modelling their usual wark practices provided highly visible representations of their tacit and procedural knowledge of huilding design. This method of presenting infornation, processes and procedures in the context and domain of expert practice is flındamental to the Collins et al., (1989) cogaitive apprenticeship learning model. Brandt, et al., (1993) contend that cognitive apprenticeship can only be successful when someone can perform ways of dealing with tasks to be learned in real life, this being elearly evident in emergent findings here also. During Phase Three of this research the mentors were observed interacting with the students by modelling their manner of dealing with complex cognitive problems that emergent from the authentic situations being rescilved in the context and culture of their usual practices (Cascy, 1996).

Findings from this study indicated that the mentors, when working with students indi vidually or in collaborative teams, used modelling to de monstr ate a structured approach to design. When model ling their design methods, the mentors often gave explanations for using particular practices by verbalising their reasons for working in the manner that the y did. This enabled the mentors to introduce and demonstrate ways for resolving tasks using typical design office practices such as the "oflice set" approach to design.

In addition to mode lling practices that extemalised cognitive processes and activities (Collins, et al., 1989), the mentors also incorporated modelling into almost
every aspect of their collaborative activities with the students. From the study outset, the mentors modelled elements such us uppropriute behaviours, language, dress stnndards, technicnl vocabulary, profissionnul attiludes and respect fire others within the hierarchicul stracture of their orgunisution and the broader design industry. Findings that emerged concerning ull of these uspocts of the study indicuted thut this helped students to acquire knowledge and skills amd gnve them entry to the building design office culture of practice. Much of this leaming took place as a process of "enculturation" (Brown et al., 1989) as the students observed how the mentors belaned and talked with others in their professional working culture.

While observing and working collaboratively with a mentor, many students in this study nlso worked in the design office as part of larger design teams and had experience of the working practices of consultunt experts firom associated disciples. Through such experiences, the students were provided with many examples of work practices, explicit knowledge and problem solving strategics, as modelled by experts from other discipline contexts and having multiple design models anl perspectives. Interaction with consultants fr om disciplines associated with the mentor's building design practice provided models of the links to other professions that exist in the wider community of practice of design and construction. Nlthough the students were often only informally in volved in much of what took place with consulinnts in the design office, the social interaction taking place around the students allowed them to acquire knowledge through situated opportunity (Brown, et al., 1989) brought about by their proximity to others interacting in the domain (Duncan, 1996).

Three elements of mode lling emerged as being highly elficetive in knowledge transfer in the design olfice situations in which the students worked with the mentors.

The first aspect is that of mentors (ailid later the students) explaining their thought processes and reasons behind design practices or decisions by verbalising their thoughts about how and why they work in the namer that they do. Verbal exchanges between designers consultants and clients, when discussing the reasons behind design decisions were for many students a source of valuable information applicable to their own design tasks. It also provided them with inlonnation, domain specific expressions and common practices that assisted their communication with others and supported their entry to the design office culture of practice ns they were drawn into such exchanges or discussed them with their raentor later.

The practice of verbalising while modelling their design practices was observed to be an effective means used by the mentors and the students to reify their tacit
knowledge, problem solving strutegics and personalised design style prefi:rences. Mentor use of highly deseriptive language when discussing renl design situations and when urticulating their views and problem solving strategics ulso emerged as n vital element in student learning. The use of this approach allowed meniors to reify fire students the returons underpinning how they solved complex problems in the context of their usual culture of pructice activities as described by Jnrvela, (1995).

The second vital element of modelling used by mentors was sketching. Frechand sketching und over-sketching of hard-line or $\mathrm{C} \wedge \mathrm{D}$ drawings was extensively used in every student/mentor design office collaboration studied here. Sketching emerged us the principal tool used by building designers for the creation, exploration, development and communication of design concepts, emergent problems and possible solutions. Whenever sketching was used, it was always in conceet with rich deseriptive explanations of the reasons underlying design decisions or problem solving strategics, as well as personal points of view or design preferences articulated by the mentors and later also by the students. Sketching made visible aspects of abstract concepts or ideas and allowed rapid exploration of multiple perspectives or design solutions fire a given situation, thus allowing the study participants to "criss-cross the knowledge in numerous ways" (Cascy, 1996, p. 76).

The highly inter active nalure of the student/mentor collaborative work sessions was characterised by the use of verbal/visual communication methods for the rapid demonstratiom and exploration of ideas. Throughout the study the mentors' use of modelling constantly shifted to coaching and back to modelling ns they introduced ideas and stralegies used by them in authentic design commissions. The mentorsthen acted to coach students in the application of those ideas or strategies in the context and culture of the tasks at hand. This approach I regarded as facilitating the students' conceptualisation of new design forms and their exploring new aspects of these. This approach is in keeping with a cognitive apprenticeship (Collins, et al., 1989) learning style because it incor porates concrete experience, rellective observation, conceptualisation and active experimentation (Dinmore, 1997; Kolb, 1984).

Articulation and sketching were ased logether as communication tools in modelling of heur istie design strategics, concepts and probiem solving methods typical of the mentors' everyday culture of practice activities. The:' provided the means firs transfer of explicit declarative knowledge and procedural knowledge fiom mentors to students as they worked collaboratively on a real work design project. As the students
acquired design and communication skills during their collntoration with the mentors, the work sessions became more interactive with less modelling by the mentor and greater inpur from the students. The comenunicntion fiacilit used by nll of the participants using articulation, disc ussion und sketching us ans integrated tool fire the expression and exploration of idens enlananeed interaction between the parties and allowed negotiation ofmeıming and a frame ofreference for the context of the work domain. This interaction indicated a growth of reciprocal understanding between the students and the mentors mel self-directellness by the st udents in their development of metacognitive skills in ways similar to those reported by Jarvela, (1095).

The third aspect of modelling to emerge, as a key learning clement was the use of authentic task examples, practices and procerlures in all modeliod aspects of design practice presented by the mentors. ^uthentic activities were said by Collins et al., (1989), to develop understr, - \& through social interacion and collaboration in the culture of authentic domain d.avity. They contended that student learning is enhanced through observation with guided and supported practice along with feedback for the develupment of cognitive and metacognitive skills (Collins, et al., 1989). Findings fiom this study support the Collins et al. (1989) approach to learning. The six key teaching strategies of the cognitive apprenticeship approach used for the framework in this rescarch are well supp orted by the e vidence that emerged fiom analysis of the study data.

In every studen/mentor collaborative situation investigated here, the mentors made extensive use of past authentic design office commissions to pro vide exemplars of their usual practices in design, problem solving and presentation. All of the tasks requir ed oft he student/mentor collaborative teams were authentic real work design project based a nd evaluated by practicing design experts to industry established sta ndards.

Findings here have suggested that student performance was enhanced when they explored multiple solutions by applying real work based design and problem solving strategies they had seen successfilly used by the mentors when modelling their owi authentic design commissions, an approach supported by Jarvela, (1995). Student acquisition ofexplicit knowledge and heuristic design strategies modelled by mentors using exemplar design ollice commissions wns expedited by the links made visible by mentors reifying their work practices when addressing problems emerging from the students' authentic design project (Baird \& Fetherston, 1999).

Another uspect of using authentic design oflice commissions as exemplors when modelling usual prnetices was the mentors' inclusion of students in visits to works under construction, which they had discussed earlier with the students during work sessions. In some instances, coulsultant discipline experts, builders, or other designers also occompanied mentors and students on site visits. During these visits the mentors provided detailed explanutions atrout the design and construction delailing. These site sessions provided conerete evidence of outcomes from design decisions made and discussed in the olfice, with the ad vantage of huving the real fonn there to sec successes and lailures. The immediacy of feedback from the mentor and others on site provided ready transler of knowledge anil strategics used in the development of a design and encouraged discussion and exploration of ideas.

Coaching.

Coaching, in the cognitive apprenticeship approach to leaming proposed by Collins et al. (1989, p. 481), is considered to be about:
"...observing students while they carry out a task and olfiering hints, scaffolding, feedback, mrodelling, reminders and new lasks aimed at bringing their perfornıance close to expert performance."

In the student/mentor collaborative situations studied here, coaching mostly look place as part of the work sessions in which the students and the mentors together resolved the real work design projects. Coaching also look place in the design ollice as part of the everyday praclices of the mentor and other design stalf when working with students in an incidental manner or when addressing minor issues arising from the students' design de velopment. In situations such as this, the mentors provided the students with coaching and advice to assist them to learn by building on what they already knew, using tips and tricks and new knowledge or techniques (Choi \& Hannaf in, 1996). In this study, the methods used to coach students through their design and development of a real work design project were locussed on guiding and advising them so as to maximise their use of cognitive skills and resources and to de velop decision making processes and problem solving stralegies. This approach is similar to thal proposed by Tobin \& Dawson (1992) and that of Cascy (1996) who contended that coaching needs to occur in highly cooperative, interactive learning environmends in order to be effective.

The exlensive use of discussion and articulation by mentors in the design office siluations examined here mostly eentred on explaining the reasons why and how the
mentors make decisions when resolving authentic complex tusks. This appmnch parallels lindings by Casey (1996, p. 78) who said:
"...the only way to get learners to verbalise and thoroughly surfice internal processes seems to the through a coopcrative learning environment in which they talk with their peers".

In this study, the students were afforded designer status by most of the mentors and others in the design office who oflen treated them as peers in the team-based work situations there. This provided the students with opportunities to verbalise their thoughts abo ut problems that emerged from the design tasks and strategics they had used to resolve them.

The studenUmentor collaborative work sessions were characterised by an ever shifting balance between modelling and coaching, as the students' needs changed according to the information, skills and strategics needed at any one time. When coaching took place, it mostly took the form of mentors assisting students to apply heuristic design strattegies and problem solving methods to their own design problems, but shaped by the context and culture of the mentor's usual practices. In this way, the mentors were able to clarify, describe, compare, negotiate and reach consensus on the meaning of various experiences they shared with the students (Hooper, 1992) pertaining to the tasks at haod, while operating as they nornally would with another designer.

A key feature of the conching methods used by all of the mentors studied here was their thinking aloud (Dirmore, 1997) when articulating personal thoughts concerning multiple perspectives, problem solving strategics, or solutions to the tasks at hand. This was oflen done in tandem wîh sketching to illustrate the idens being discussed and questioning the students to involve them in the works.

The very focussed nature of the working collaborations formed in the student/mentor teams created a highly interactive environment for the exchange of idens and for leaming design practices. The building design discipline brings together creative skills and technical processes each with its o vn cognitive demands and discipline specific elements such as style in design and C \wedge D practices for technical aspects.

Some aspects of coaching used by the mentors studied here were shaped by parts of the design diseipline or other unique aspects of the study situation that required particular coaching practices. Conching was observed to almost always involve some modelliog by the mentors and the use of detailed explanations to reify the reasons for working in particulnr ways. Often when coaching, the mentors used explanation building to detail the reasons underlying design processes and decisions they made as
influcrard by their professional design experiences. This usually took the form of verbalisntion to articulate personal thoughts about the tasks being nddrcssed while using sketching to provide visual explnnations for the verbal images being preserad.

This apprnnch to coaching promoted visualisution and communication of ideas or concepts. When using this approach, most of the mentors also used a broad range of design office resource materials to stimulnte a lateral approach to thinking about design. In this way, the mentors guided st ude nts through difficult design elements and procedures using a str uctured approach to apply heuristic design strategics and methods. During conching sessions, the mentors encouraged the students to reflect on the development path taken and the design ideas that had emerged. This process led to st udent exploration of new design ideas that stemmed fiom earlier concepts, as documented in the "oflice set" which provided and audit-trail ofdesign development.

Nithough much of what took place in the student/mentor collaborative work sessions involved intense one-on-one activities, conching was not just restricted to that situntion. Other designers or consultants from associated disciplines, provided asne eded and often informal coaching that was also impor tant to st udent learning. Most of the materials used b the study mentors to coach students were based on authentic design office commissions, professional practice experiences and current real work projects.

Througho ut the development of the students' authentic design project, most of the mentors emphasised in their coaching the vital role of exploration and reflection in design, for the de velopment of multiple solutions and multiple perspectives for any given design situation. In this way, the students were encouraged to evaluate their own works and to model for the mentors the ideas created and their thoughts in exploring all possible variations on those ideas at a metacognitive level. The highly interactive exchanges observed during work sessions between the mentors and the students indicated the development of reciprocal understanding between the participants as the st udents increased their use of metacognitive ways to resolve problems that emerged from the real work design project. Optimal social interaction in the st udent/mentor collaborative working situations observed here wns enhanced by mentor use of progressive scafloldding that enhanced st udent self directed learning, un approach similar to that proposed by Jarvela (1995).

The complex, multi-faceted nature of building design demands a broad understanding and declarative knowledge of many interrelated facts about situations, regulations and construction details. McInerney \& McInerncy (1994, p. 210) consider
decharative knowiedle to tee what we knerw nhout the world and "hypothesised to be structured ns an interrelated network of lact silhal exist as propositions". When considering the diversity of in formuation and the convplex relistionships that determine fow some elements of a design situation nffect others, the interactive nnturi: of coaching becomes more importnnt us new situalions constantly evolve during the design processes. In ndelitiun, the transfer of procedural knowledge, "knowing how to perfionn varinus cognitive netivitics" (MeInerncy \& Mc!nerncy, 1994, p. 211) becomes more complex as usual practices are modelled hy mentors, then implemented by students with coaching by the mentors until independent interpretationapplication is achicved.

The success of the: coaching methods used by the study mentors was partly due to the sequencing of design activities introducesl by them with materials that facilitated the students' gradual progression through the real work design project. This coincided with the students' development ofmetacognilive skills as needed to resolve problems as they emerged from the ongoing design process. As the students developed the ir knowledge and skills, the mentors introditeed new design tasks of increased number and complexity to address all of the issucs found in the real work design project. Throughout this process, the mentors coached the students in ways to resolve emergent problems and to implement strategies enabling them to operate on metacognitive levels, free from the contextual bindings of the tools level individual elements of the design situation (Collins, ct al., 1989).

Scaffolding and Fading.

Prior to the development of the Collins et al., (1989) cognitive apprenticeship model for learning, the use of scaflolding to assist learning had bx:en explored by many other rescarchers. For example, Scardamalia \& Berciter, (1985) and Scardamalia. Bereiter \& Steinbach (1984) investigated the usc of physical supports in what they deseribed as Procedural Facilitation. Palinsenr \& Brown (1984) reported on the use of suggestions or help in reciprocal tear:iing. In an carlier study, Scardamal ia \& Berciter (1983) discussed the use of scafliolding to assist learning as part of n technique called co-investigntiort. Scaflolding in the Collins et al. (1989) model is considered to be one of the three (modelling, craching, suaffolding) core teaching strategies of a cogniive apprenticeship approach to learning. Collins et al. (I 989, p.482) proposed that seaffiolding 'refers to the supports that the teacher provides to help the student curry out the tasks".

Findings that emerged from this study have suggested that scaltolding mostly took place concurre:mly with modelling imd conching activitics and was observed to take many firnis including:

- physical matcrials to expedite resolution ofdesign elements or to stimulate metncognitive design visualisntion and resolution; und
- verbal assistance from mentors, from con:sultant discipline experts, or other design office stall; in the form of "rips unki tricks" to boost understanding and visualisation of problem situations and potential solutions or strategics for resolving them.
The content, nature and timing of the many difierentscalfiolding methods observed in use here was governed by mentor pereeptions of student needs as seen by their progress with the real work design project and the level of cognitive skills they were using to resolve emergent problems. This aspect of seaffolding is closely linked to the sequencing (Collins, et al., 1989) of learning events so as to make available to stidents information and procedures to keep their cognitive development ahead of elements in the learning situation that represent barriers to their progress.

Findings to emerge here suggest that as students acquired knowledge and skills that allowed them to work with greater autonomy at each level of design practice, seaffolding was gradually withdrawn by the mentors and others. Progressive fading (or withdrawal) of scaffolding is an important aspect of lcaming in a cognitive apprenticeship situation.

In this study, scaffiolding took many forms, was introduced by the mentors from the outset of the first studen/mentor collaborative work session:s and continued throughout the entire study as an integral part of the culture of practice through social interaction and defined work practices. This approach to using scaffolding to suppoit learning was reported by Casey, (1996), Carver, (1995), Jarvela, (1995), Benyman, (1991) and Collins, ct al., (1989), as being successlillly applied in studies conducted by them involving cognitive apprenticeship methods.

Greentield (1984) contended that scaffiolding closes the gap hetween task requirements and skill le vels by creating the match between the cognitive le vel of the learner and the characteristics of the instruction. Ile also reponted that observed guided instruction using timely scalfiolding elements was enhanced by the teacher/mentor being cognisant of the student's cognitive skill levels in order to provide appropriate support. Anextensive range of materials and techniques was used by the mentors who participated in this research, to scalfold student learning. Findings here have suggested
that mentor use of sicalliolding in the design ollice situntion mostly occurred when students encountered dillicultly with specific aspe:cts of design and when they needed new design sirategies or prohlem solving melhoils in order to progress heynnd the level of design skills thitt the y had already attained. This use of scaltislding hats its roots in the concept of the \%one of proxinal de velopment proporied hy Vygotsky (19(2).

The very nature of the huilding design dis;cipline demands multi-ficeeted skills in creative, autistic contexts and in technical contexts. Scaffolding methods and materials used by mentors to assist students to overcome problems that emerged during their resolution of n real work design project were in some instances global stimulants to encourage imnginative creotivity and in others, specific task focussed methods for dealing with details, design processes or replicable procedures. Numerous scaffolding elements were geared to the usual culture of practice activities of the design office and occasionally methods'items of a non-contextual nature, like fiashion magazines were used to encourage innovative ways of solving emergent problems.

As the students' skills improved and they were regarded by the mentors to be able to work with greater autonomy, scaflolding was faded or withdraw n (as: discussed on page 108 of this thesis) as reported in other studies using cognitive apprenticeship (Choi \& Hannalin, 1996; Rogofr \& Gardner, 1984). Careful monitoring of this process by the mentors ensured that the students remained on track with the ir design work. This was achie ved through fiequent design evaluation meetings organised as per the usual practices of a design office and through questioning. The mentors used questioning with students to ensure that they could defend their design decisions and could de monstrate exhaustive exploration and evaluation of all design elements they had incorporated in their works. Where students were not able io justify their design decisions, the mentors used coaching and scaffolding to introduce information and procedures with which the students could diversify the ir design approach to include other perspectives, heuristic design strategics, or solutions. This approach is similar to findings reported by Hennessy (1993, p. 31) who contends that the teacher should "assist the students to access and use their prior knowledge appropriately in solving problems in the new domain under mastery".

One asspect of undertaking authentic design tasks involves accountability to design process time-lines. Part of the mentor sequencing (Casey, 1996) of tasks to have increasing complexity, increasing diversily and the de velopment of global before local knowledge and skills (Collins. et al., 1989) involved the use of design office schedules. These were used by mentors to scafloldstudent learning by bringing to the design
process. structurc, time firames, tasks and goals. Using sehe dulcs enabled the students and the mentors to keep track of the design process, quickly identily problems presenting barriers to student progress and to put in place seafliolding appropriate to the problems encountered. Schedules used in this manner ussisted the mentors tu maintain awarenes:' of student progress and to match their development level in the design to new stages of the work to be done, in a ma nner that aligned learning experiences with intended outcomes (Ilcnnessy, 1993; Simpson, 1988). For many studerys, the schedules often provided a concept map of their progress and tasks to be addressct and as such became an advance organiser for their learning.

The diflierent methods used by the mentors in this study to assist student leaming forned I believe part of a cycle of learning in which modelling, coaching and scaffolding became an integrated vehicle for knowledge transfer and the acquisition of metacognitive skills. Figure 44 (p.299), below, shows the interdependence of these three teaching strategics to knowledge transier in the authentic situations used in this research.

Figure 44. Knowiedge transfer using M odelting, Coaching and Scalfolding.

The learming environment developed in the mentor supported design olfice situations studied here assisted the students in having control over their own learning processes and the confidence to engage in critical analysis of their own works. Student development of higher cognitive processes in building design in this study was born out of cognitive activities experienced by them in the social context of an authentic design office situation and extended by the ir shared cogniiive experiences with experts in the domain. This has its roots in the learning theories of Vygotsky (1978) and echoes the model of cogutitice apprenticeship presented by Collins et al., (1989).

Articulation.

Articulation and rellection are paired by Co!lins, et al., (1989, p. 48I) as tenching methods designed to help students to "fucus their ob:iervations of expert problem solving and conscious access to (and control ol) the ir own problem solving stmegies". In the situntions studied here, the very focussed mature of the one-on-one studen/mentorcollnbomtive work sessions provided excellent opportunitics for the articulation of personal views and problem solving str ategics. Observation of studen $/$ mentor collaborative work sessions revealed extensive use of artic ulation by the mentors and the students, usually supported by sketching and ofien in conjunction with the use of "office set" documents to conlimn ideas aired, or demonstrate application of strategies proposed. $\Lambda \boldsymbol{s}$ the students gained confidence and acquired knowledge and skills to develop their own building designs, the balance of articulation used in the work sessions shifled from mosily mentor based to mostly student based. This took place in response to mentor questioning of students to encour age them to external ise the ir thought processes as they implemented problem solving strategies using metacognitive des ign processes (see comments by Student 13, p. 160). Solving emergent problems in this way encouraged student learning throughknowledge transler and problem solving strategics embedded in one context, then applying them in multiple contexts that emerged from authentic situntions embedded in complex projects rather than isolated elementary situntions. This approach is founded on the elements of situated cognition (Brown et al.,1989) and as incorporated by them in their cognitive apprenticeship model.

Articulation during problem solving and debriefing sessions was reported in a study by Cashet al. (1997). In that study, the resenrehers noted the importance of studend attic ulation of their thought processes when using problem solving strategies and diagnostic skills to resolve problems emergent from authentic tasks. Evidence of this emerged also in this research study. In a diflierent study that has parallels with this one, Scardamalin \& Bereiter (1983) reported that student use of articulation and reflective practices prompted by mentor scaflolding assisted learning during coinvestigation. They fo und that students reflected on the ir own knowledge and constructed new meanings in the context of the domain afer rellecting on design practices artic ulated by the mentor. This study also supports the ir findings. Here the students were observed exploring new approaches to design after ref|ecting on design elements introduced nad explained by the mentors as part of their current design office commissions.

Casey (1996) reporterd that student use of urticulation supporis
students in demonstrating their mastery of new thots and knowledge. lividence of this emerged in daln from observed work sessions in lhase Thri:c where open discussions with the uxentors and others in the design office provided a forum fior the expression of personal views und design strategics. Dehate and personal contributions from others in such \boldsymbol{n} forum provided students with multiple perspectives for reflective evaluation of their own works in the context of the donain. This also enabled the students to compare problem solving strategics or solutions ollicred by experts with their own methods and to focus on dilficrences at a finite level (Cascy, 1996).

The mentors stulied here modelled many heuristic design strategics for the students to use in resolving problems that emerged from the real work design project. The mentors backed up their use of such slrategies by articulating their reasons for using them as they did. This approach is similar to that articulated by Schoenfeld (1987) when using rules of thumb to deal with firequently occurring problem situations, or tricks of the lrade.

The use of articulation emerged as a feuture common to all the student/mentor collaborative work patnerships observed in the design ofl ice situations studied here. Arliculation was ilsed to convey individual interpretation of infonnation and procedures used indesign. It was also used for the expression of personal thoughls or points of view pertaining to work practices anddesignst yle when reflecting on decisions taken and pathways followed in the creation and development of authentic design solutions. Articulation was used by the mentors and students to reify persinnal knowledge and procedures, derived fiom authentic design experience in the physical and social context of the domain.

Findings from this study have suggested that student leaming was enhanced by mentor articulation of personal strategics used to resolve design problems, thus making visible their experience based tacit knowledge that provided a means for knowledge transfer to students in the context of application in the mentors' culture of practice.

Reflection.

Reflection as a leaching strategy is described by Collins et al. (1989, p. 456) as the process that "underlies the ability of leamers to compare their own performance at both micro and macro levels, to that of an expert". They also contended that by using rellective practices, students can develop a conceptual model of their learning that can be continually updated through further observation and feedback which encourages

Icarning autonomy. Through ongoing exploration and rellcction on learning experiences and methods modelled hy mentors, students diagoo ix difficulties and "incrententnlly adjust the ir perlormance" until they reach competence (Collins, et al., 1989, p. 456). Collins, et at. (1989, p 473) nlso contended that student use of reflective practices cnhnnces the ir "sclfmonitoring and self dingnnsis skills" nnd this enhances the ir nbility to articulate the ir reasons lor working in the manner that the y do. Through this process the students gnin cont rol over their rellective nod metaengnitive processes in their problem solving.

Findings from this study support these content ions and showed that rellective practices were used by the students and the mentors throughout all phascs of the design process. Student use of reflective practices assisted their fucus on emerging design solutions and the strategies they had applied to resolve them. This use of rellective practices throughout the entire design process is similar to that reported by Carver (1995, p 208) who contends that "the key is to focus student reflection on all phases of the process, not just the final presentation". Rellective pract ices used by students and mentors led students to invest igate fally, emer gent aspeets of the design solutions being developed and to reflect on practices modelling by the mentor:; when denling with similar problem situntions emergent from authentic design projects. Coliins et al. (1989) advocated two strategics to promote reflection. They nre the compar ison of expert and noviee perlormances on problem solving processes and students' self. an: Iysis of the process. Both of these practices occured during the work sessions when the mentors monitored the students' design perforarance by comparing the students' works with exemplar design solutions of the mentor's own projects. The mentors then provided expl ic it instructions to the students about how to apply heuristic design strategics used in design solutions presented in exemplar drawings, to the students own emerging design solutions by rellecting on pathways followed and ideas explored. Findings here show that student use of rellection, supported by explicit instruction by the mentor to address emergent problems assisted student learning by helping them to resolve design solutions. This learning outcome is similnr to lindings reported by Carver (2000, p. 5) who contends that "short-term explic it instruction can promote student learning, transfer and retention". In this study, the mentors encouraged the students to constantly reflect on the design pathways and solutions they had explored and to self assess the suitability of the solutions being developed for inclusion in a linal design proposal. They also provided the st udents with explicit instructions nbo ut using heuristic design strategics to resolve problems that emerged from their reflect ion on different aspects of the designs
being developed. The comhinntism of student reflection on the design process and mentor instruction in wilys to address emergent problems led to :turtent acquisition of proble ms solving strategics and tncit knowledge based on dicir own des iga experiences when npplying the mentor's strntegics. This isped of their Icarning I regned as a vital part of the student's de velopment of metac ognitive design skills and the main menns hy which the y progn:ssively refined theirdesign solutions while work ing with grenter independence from the mentor.

The common design toolused by most of the students and the mentors in the design oflice situations of this research for rellectingon pathways fillowed in the development of Itesign solutions, was the "ollice set" of drawings. These drawings provided rich sour ces of infirmation and visual representation of heuristic design strategies implemenied with problem solving procedures applied by mentors in the context and culture of their usual design practices. The use of the "oflice set" by students when reflecting on the ir own work and when articulating the reasons for design decisions made or practices adopted, situated their learning firmly in the context of practice. It also lacilitated rellective exploration of design elements which led to their development of multiple perspectives of authentic situations from which doma in specific knowledge was transfierred into other settings or design applications (Choi \& Hannalin. 1996).

Findings here have suggested that use of the "office set" enhanced the students' higher order thinking skills and the development of metacognitive design methods thus lacilitating thetr transition from novice to skillied designer, in a manner similar to that reported by Choi \& Hannalin (1996). Student development of the ir oun "oflice set" drawings allowed them to reflect on and compare their design ideas and solutions with those modelled by mentorsin authentic commission "of lice set" documents. This enabled them to evaluate the ir own works and to focus on differences at a finite level (Casey, 1996). The use of "office set" drawings to demonstrate outcomes firom the students' cognitive design processes also lacilitated student rellection on their own performance when using problem solving processes. This was observed to occur when students compared their design solutions with those modelled by the mentors. Mostly this took the form of "replaying the performance of both expert and novice" in the design work sessions in which the students defended their design solutions (Collins, Hawkins, \& Carver, I991, p. 224). In those sessions, the students demonstrated for the mentor the ir use of he uristie design strategies nnd, in reply, the mentors modelled their ways for applying those methods to the same problems. I regard the use of rellective
proctices in this wny to have asssisted stuelents to neçuire enhanced visualisation skills and to acquire metacognitive wuys to eonceplualise und resolve design problems. This wiss possible teecause it provided u menns for students to "compare their perfirmance with that of others" in the context of expert building design practice applied to authentic tusks (Collinset al., 1991, p. 228).

Findings thint enverged here ahout the use of reflective princtices by students and mentors suggest thit this helped in fiecilitating student transition fiom simple application of the vocabulary ind tools of design, to using metncognil ive wnys for exploring and retining design solutions. Student useof advancod sketching methods und rich description of the ir thought processes when reflecting on their application of heuristic design strategies in work sesusions with the mentors towards the end of the ir design project was said by some of the mentors to signify their use of advanced design methods. It also provided evidence of the ir use of reflective practices as part of the ir development of creative, innovative design practices methods typical of the eulture of practice activities us:ed by expert building designers.

Exploration.

In the Collins et ill. (I 989, p. 48I) cognit ive apprenticeship learning model, exploration is regarded as a teaching stralegy "aimed at encouraging learner autonomy". Students, learning in a cognitive apprenticeship situation us proposed by Collins, et al. (1989, p. 483), are "pushed into a mode of problem solving of their own". forcing them to explore. This, they proposed, is the naturnl culmination of the fiding of suppot ts (modelling and scafYolding) thus forcing the students to go it alone after having first aequired the basic skills to explore in the domelin and act on what they find.

From the outset of this study, the mentors encouraged the students to explore multiple design ideas in their quest to develop solutions to problems that emerged from the ir authentic design projects. This, the mentors did by lirst modelling ways for assembling and evaluating a diverse range of materials and techniques that they used in the ir evectyday culture of practice activities. Then the mentors coached the students in the application of those resourees and design methods to the ir design project. Ilaving established the resourees and the tools necessary for the students to develop design solutions, the mentors then enco uraged the students to work in more independent ways to explore multiple variations of potential design solutions before aceepting uny elements as part of a linal design presentation. This approach was mostly implemented us ing overlaid sketches to progressively build on ideas and explore alternotives using
the "oflice set" as the basis fur reflecting on diffierent pathways explored and ideas acecpled or rejected along the way. The "ofliec set" drawings provided a context for Icaming and lacilitalad knowledge transtier hy making nvailuble concrete examples of multiple interrelated design situalions (Choi \& Ilumulin, 1996). By using explorution in this way, the students in this study were regarded to construct underslunding ruther than being taught specilic knowledge (Winn, 1993) because their leurning was situated in the context of its upplication to authentic tasks.

Finding here show that the mentors encouraged the students to explore design ideas beyond their lirst solutious by utilising resourec materials and problem solving strategics to address tasks of increasing leveis of difficulty. In this way, the stutlents were able to "stretch the ir ability to an appropriate degrec" in order to meet the challenges of the authentic design project (Brandt, ct al., 1993, p. 77). It also encouraged students to explore multiple design variations and design elements in the searchforthe best solution to their real work design project and thereby "explore what strategies work lor given situalions and what strategies don't work in a real world context" (Casey, 1996, p. 79). This led students to be reflective in exploring ani evaluating their design ideas and to then explore other design concepts they visualised and ref ined in metacognitive ways (Collins, et al., 1989).

Phases of learning activities observed in this study.

Findings from this study have suggested that student learning in this authentic design office situation is characterised by three phases that revolve around activitics and experiences that provided students with entry to the culture of practice, knowledge of the discipline domain and ways lor asing design strategics. The three phases are as lollows:

- Phase Ore - Entiy to the design oflice situation

Involved bonding with the mentor and establishing links with others operating in the domain.

- Phase Two - ^cquisition ofknowledge and skills in the doma in of practice

This phase is constructed around a three-part cycle of learning focussed on:
(a) Culture of practice activities with the mentor and other experts in the broad spectre of the design industıy;
(b) Kıumedge Acquistion, including Dechorutive knowledge (explicit). Procedural knowledge (design prucesses and procedures), Ficit knowhedge (experience based stmicgics and understanding); and
(c) Commanication: the use of Discension, Articudation end Skerching to exprexs visualised design concepts using induslry limgnage and vocahuhry.

- Plusse Three - Development and application of metacognitive ways for crenting, visualising and resolving design concepts

This phase is constructed around a threc-part cycle of learning fiecussed on:
(a) Development of Creativity and Innovation - using knowledge and design lools; and
(b) Testing und Defending design ideas for acceptance or rejection - applying evaluation procedures.
(c) Exploration and Reflection - using metacognitive ways to creale, explore and refine design idens by rellecting on multiple potential solutions
The use of modelling, coaching and scaffolding tor knowledge transfer as shown in Figure 44 (sec p.299) applies to Phase Two and Phase Three of this proposed structure. The three phases of student learning to emerge firom this st udy are graphically represented as a theoretical framework in Figure 45 (p. 307) with arrow links being used to represent the interdependence of each of the cyeles of learning that twok phace.

Figure 45. Icarning Phuses in this study.

Implementation Of Cognitive Apprenticeship Methots In A Classrsoom

Findings from th is study have suggested thnt mentor use of the teaching stmtegics proposed by Collins, et nl ., (1989) in their cognitive apprenli ceship approach to Ienming provided a success[iulmeans tor tanching building design in the situntions studied here. Using authentic activities, the students developed skills during their socinl interaction nod collaboration with expert building designers acting as mentors, in the context and culture of practice of their usual design activities. The combination of the cresitivity based design domain with the te chnically based construction and documentation domain makes the learning environment complex, much more so than a TAFE classroom. Many aspe ets of student learning with the mentors in this situation involved ovalapping activities, ongoing a divities and metacogniliv c processes to resolve problems. Students were often required to use creative design skills and technical pro cedures with oonstru ction detailing methods.
'Throughout the work sessions, the st udents were observed to gain confidence in their use of design knowledge and fundamental problem solving procedures, then work in more independent ways to apply heuristic design strategies to resolve design problems and to delend their solutions. Many of the students were also observed to undergo a trajisition from simply using information and procedures to resolve design problems, to using heuristic design strategies in creative, innovative ways. This is consistent with lindings repoit ed in other studies about using a cognitive apprenticeship approach to learming and supports the Collins et al. (1989) contentions about students attaining mastery ofknowledge and skills modelled by experts.

Having first attained mastery of the methods used by expert designers, the students then mostly applied their knowledge and design skills in creative and innovative ways to explore and refle et different design ideas as theyrefined and developed new design sol utions, with personal style elements. Findings here have shown that using the six teaching strategies of a cognitive apprenticeship approach to learning provided a successfill means lö learning building design when implemented with authentic tasks in a design ollice settings. They have also indicated that student learning was enhanced through having a wdl defined learning situation and authentic activities structur ed to address specific aspects of practice.
$\mathbf{I I}$ is my contention that cognitive apprenticeship methods can be used eflicetively for classroom-based student learning in the building design discipline. In order for
students to operate in the manner used by expert building designers, they need to have mentors who are expert in the building design discipline to assist their learning. They must also have a learningenvironment that replicates the conditions und practices typical of the commercial design of lice situations used in this rescarch. The learning tasks used must be based on authentic projects and lxe implemented using the kinds of resources antl methods that emerged from this study as lypical of those used by expert building designers in their everyday culture of practice activities.

Findings about the three phases of student learning (swe Figure 44, p. 307) that emerged from this study and the manner in which cognitive apprenticeship (Collins, et al., 1989) teaching methods were used by the mentors suggested that a particular structure was needed to optimise student learning opportunities. It is proposed here that student learning in the building design discipline can be facilitated by cognitive apprenticeship teaching metitods in conjunction with a four part structure that incor porates teaching activities and authentic tasks that together replicate everyday desigu office culture of practice operations.

It is also proposed here that for teaching building design students in a TAFE classroom, the six teaching strategies of a cognitive apprenticeship (Collins, et al., 1989) learning approach can be effiectively implemented in such a learning environment if structured using the four elements outlined below. 1 summary list of elements recommended lor constructing the leaming environment, the learning activities and the learning tasks is also provided in Appendix I.

1. The mentor.

The most vital clement in creating a cognitive apprenticeship based leaming situation lor teaching building design is the nentor. The mentor must be able to model expert practice which includes the knowledge and procedures for resolving problems that emerge from the development of design solutions. In the classroom situation multiple expert mentors may be required to address problems that emerge as part of the many dilfierent aspects of design and construction that commonly occur in commercial building design practice. For this reason a team-based approach in which academic stalf with expertise in different areas of design might work in collaboration with experts from industiy on an as needed or structured occasional basis. In this way, the teaching strategies of a cognitive apprenticeship approach might be implemented by multiple expets, each of whom could contribute specific key knowledge and skills to a collective model for student learning. Having multiple experts, each of whom bring a different
perspective ond expertise to the learning situation, may enhance student learning by support ing a community of learning as suggc:sted by this study's lindings.

The inclusion of expert building designers, who ure enguged in commercial operations, in classroom based mentoring teams may lacilitute student acquisition of up-to-date knowledge of building design methods and construction practices in the manner experienced by the students studied here. I laving other experts contribute to student learning by participating as consultants to the students in support of the classroom lecturer would reflect the kinds of working situations seen to be effective fior implementing cognitive npprenticcship teaching strategies as seen in lindings thet emerged here.

I contend that the use of modelling, coaching, scaflolding, lading, rellection and exploration by classroom lecturers working in ways like those observed being used by the mentors in this study would provide similar learning opportunities fire classroom based students to those experienced by the students studied here. To support this approach tolearning, the teaching environment, learning activities and tasks that are arranged in ways as described next.

2. The learning enviromment.

The learning environment should be structured to replicate the authentic environment typically experienced by expert practitioners in the professional discipline targeted. Such a learning environment should include individual student work stations equipped with all of the resources lypically found in commercial design office setlings, including computing and reprographic equipment for CAD based design practices. Materials such as "ol fice set" drawings, sets of codes and regulations, trade literature and magazines, used by the mentors to inspire innovation and sealfold learning, should also be made readily available in the students' work environment.

To replicate a commercial design olf ice culture of practice situation in a classroom selting, standards of behaviour, dress codes and language used in the classroom should typify those used by building design practitioners in industry, Also, the team-based working situation of a commercial design office setting should be applied by having students working in multi-skill level teams on various authentic projects within the one work-space to promote peer monitoring and incidental assistance.

The lcarning environment should incorporute the following napects:

- a classroom situntion that replicates the working environment of a typical design ollice with individual work stations and equipment arranged fir one-on-one tutoring, as well us for group interaction;
- have avaitable industry based consultant designers to suppont the classroom teacher on an as-needed basis to mentor, advise and assess the students necording to industry stundarils of design and presentation;
- provide access to experts in associated disciplines having multiple perspectives, design styles, working practices and allernative upproaches to resolving design problems
- provide within the classroom a diverse range ofresource materials including urehival "olfice set" documents of authentic commercial projects produced by recognised expert designers, student projects, books, nugazines, technical publications, codes and regulations, computer equipmen, telcphune/fax, photocopier, and other similar items as used in commercial design office settings;
- include in theclassroomenvironment the kinds of dress codes, behaviour, language use, and design office fà cilities and services such as music and refireshments to replicate the social working sit uation present in mosit commercial design offices;
- ereate a tcambased classroom environment in which students from different course levels work in collaborative teams on difficrent projects in the same general workspace, so that peer mentoring and incidental assistance and learning may take place in a environment that presents a broad pieture of design endeavour;
- provide "after hours" acecss to all of the classroom facilities, including acecss to expert advice and support fiom rost cred stall; or consultant experts, either face-toface or via the telephone or e-mili; and
- provide ways for students to participate in building site visits involving experts from nssociated disciplines to introduce multiple perspectives of each design situation, and to explore multiple solutions.

3. The learning activities.

The learning activities should be based on authentic problems and work practices thatreflect the typical working methods used by expett practitioners in the target discipline area in their evesyday culture of pr actiec activities.

へetivities that encourage creative practices and support the anxiety-free expression of innovative ideas by students must be ba sed on out hentic situations that require st udent explomtion of multiple design ideas and solutions. Such activities should include mentor modelling of heuristic design strategies lor resolving frequently occurring design situations and coaching in the application of those staategies to problems emergent from authent ic design tasks. Assessment of st udent design solutions should be based on industiy standards as detennined by benehmarks set by expert building designers and assessed by industuy based practicing designers.

Projects undertaken by students in the classroom setting should be organised around team-based methods as used in commercial practice nod be structured to suppoit
collaborative relationships betweecn group: and individuals operuling al different levels or on diflerent pmjects within the sume work-sparc. Design activitics used should be planned to encourage incraction belwecn students working in the classroom selting in ways that make learning journcy of discovery in which they communicate ideas using sketching nmil disc ussion to urticulate design coneepts and solutions when defending their design ideas.
The learning activities should Include:

- tenching methods that encourage student self conlidence nod anxielyfiece expression of inno vative ideas;
- modelling nnd coaching in the use of sketching and dise ussion methods typically used by experts in the building design discipline when exploring, debating and de fending design idens;
- suppott for using col laborative tcam. based work prnctices based on explorition, reffection, and evaluation of ideas to resolve complex design tanks in the manner of commercial design offle practices;
- support for an inquisitive approach (10 design) with a senwe of excitement and inspiration;
- modelling of methods used by expert designers to matehpattems of design problems and solutions shown to occur frequently in authentic building design situations, to elements of student design projects
- integrate with design practices the use of rich descriptive artic ulation of personal design ideas and problem solving methods as patt of visualisation and exploration of proposed designs, along with sketching and over-sketching of firmal or C^D based dra wings;
- incorporate the overhid drawing "office set" upproach into all design projects along with detailed notes and explanatory repotting of the methods and rationale behind design dec isions and branching of Jesign elements explored. cvaluatel. and accepted/rejected in the final presentation;
- introdluec industuy standards to the ass essment of design presentations by having industry experts eval uate student works, or contribute to benchmarks lor teacher assessmeot of tbe students' work;
- create design teams similar to the student mentorcollaborative teams, within the classroom each working on diflerent projects, but able to interact with others by contributing to their works ns consultams,
- place emphasis on developing collaborative relationships between student: , vithin groups, with other groups at diflerent development levels, and with teaching staff;
- encourage a communicative and supportive approach with all class members using rich explanations and highly visual presenation of theirdesign methods and outcomes as developed for the authentic design tasks;
- place the emphasis in design on it being a guided joumey of discovery with etear conmunication by the students of the ir design development path showing ll: exploration of all ideas using sketching ank notes, backed up by open formm artic ulation of the reasons why they accepted or rejected the ideas presented; and
- provision of positive reinforcement of student dessign ideas throughout project developmem.

The learning tasks should be based on authentic discipline specific projects, struetured for classroom deliver y, sequenced to provide stnall readily achieved units that provide knowledge and skills regarded as necessary for professional practice in the target discipline. The authentic projects used must replicate design situations experiences by expert building designers and provide opportunities for teacher guided application of design methods that represent as completely as possible those used in commerc ial design office culture of pradice commissions .

The learaing tasks should be arianged to:

- use authentic projects that replicate broatl basel design office comm issionss using design situations where leacher guided analysis of the design brief can readily define key elements as linked to replicable design processes and procedures that can be implemented through small stnges of design development;
- implement small st nged design procedures of increasing complexity and dilficulty lypical of design olfice work ing practices;
- address particular aspects of design or design situations, for which authentic commercial design "office sel" drawings arc available that show how similar problems to those in the student projects, were addressed by proless ional designers. Include multiple design industiy disciplines and real links to regulatory bedies and municipal approval agencies; and
- provide sulficient challenge in their diversity nad degree of difficulty to promote student striving to achieve excellence in creative, innovative design solutions.

Using cognitive apprenticeship for learning building design

The use of a learning situation that incotpomes the working environment, activities aud tasks presented in the four-part structure outlined above, in conjunction with the teaching strategics of a cognitive apprenticeship (Collins, et al, 1989) approach to leaming can be an effiective way to teach building design students. Such an appronch is essentially constructivist. Findings to emer ge from th is research show that the complex demands of the building design profession, with its need for creativity and technical know-how, were successfilly addressed using the methods and learning situation describad here. I contend that application of a similar structure and teaching methods to a classroom setting can potentially facilitate student learning in ways similar to those observed in the design olfice setlings of this study.

Conciuslon to this Chapter

This Chapter began by addressing each of the research questions using summary lindings that emerged fiom analysis of the studydata. Following this, the overall study
lindings were discussed as part of the six teaching strategics of a cognitive apprentices hip approach to lcarning (Collins, et al., 1989) used in the conceptual framew ork that usklerpins this study.

In presenting a global view of how student learning took place in the design ollice situation, a model showing three phases of development was proposed. In that model, two phases of student development were shown as cycles of knowledge and skills acquisition. 'lise first, at an elementary procedural level and the second being used to represent a cycle of metacognitive ways for creating, visualising and resolving design ideas. The discussion of student learning represented in this model was based on lindings that emerged from this study. Findings here have suggested that when students make the transition from application of design procedures to using metacognitive ways for design development, they move from operating al technician level, to operating as a creative designer.

A proposed strategy for structuring the learning environment, activities and tasks appropriatc for implementing cognitive apprenticeship lcarning methods was introduced and discussed in terms of its possible classroom application for teaching building design students.

In the next Chapter, conclasions to this study are presented, along with a discussion of the study limitations and recommendations for firther research.

CIIAP'TER EIGIfI'

CONCLUSION TO TIIE STUIJY

This research study set out to investigate student learning inu cognitive apprenticeship situation in a building design olliec. Its main iocus was to identily learning outcomes firr students working with expert building designers, ucting as mentors in a commercial design oflice setting. The study also sought to detenninc how students acquired knowledge and how they acquired ways fir solving complex problems emergentlirom tasks integral to authentic design projects, typical of those faced by experts in the context and culture of their everyday practices.

The extensive body of data collected provided infortuation detailing the personal thoughts, experiences and learning outcomes for the study group. The diverse range of data collection nxethods and multiple sources of data conceming the same events or phenomena studied here provided rigour, reliability and validity to the investigation and interpretation of each element that fonned part of the overall study situation.

This research study has revealed many aspects of student learning in design office, mentor supported, situations that I consider as important learning elements appropriate to a cognitive apprenticeship approach. Suggestions have been made here aboul how lindings from each of these rescarch questions might be applied to classroom teaching practices so as to replicate aspects of the design olfice experiences that enhanced student learning, in ways that could closely resemble authentic practice.

In addition to conlirming the suitability of the six main cognitive apprenticeship teaching strategics suggested by Collins et al. (1989) as used in this study, a strategy for organising the mentors, the learning situation, activities and tasks emerged from the study findings. The main putpose of this proposed strategy is to facilitate student learning by linking knowledge and skills acquisition to autonomous application of higher order design and problem solving procedures in ways that replicate those of expert building designers in authentic design olfice operations. The proposed strategy for organising a learning situation in which to apply cognitive apprenticeship teaching strategies for building design students utilises a group of teaching practices and study situation conditions. When used together in the design oniec situations studied here, these elements provided a learning environment and support structur, hat lacilitated studentlearning. They provided ways lorstudents to link context specific domain knowledge and skills with metacognitive ways for solving complex problems, emergent

Firom authentic lasks, in the manner used hy experts in their ever yday cullure of practice activities.

Findings reported in this thesis show how students acquired knowledge and skills used by expert building designers to visualise, create, explore, refine, def end nnel present complex building design solutions in the context and culture of their everyday prectices. The teaching strategics and classroom application conditions recommended ns part of the lindings presented in this thesis can be readily applied in the classroom setting and for design olfice in house training methods. All of the conditions aad strategics recommended here could fitcilitate student learning in a cognitive apprenticeship situation based on authentic problem solving experiences, guided by expert practitioners within the discipline domain.

Application of the study findings

Although this study focussed on learning in the building design profession, I regard that findings reported here have wider upplication in education and training in other discipline areas. Some aspects of what this study has shown have application to aay prof ession where there is a demand for creativity in visualising and resolving problem situations through the use of replicable procedures and heuristic strategies that may be used for dealing with multi-factor intluenced situations.

The dual domains of creative design and technical knowledge of construction methods required of a building designer have similarities with other pro fessions such as engineering, sutveying, cartography, dental technicians and web-page design, as some examples. The following elements of this study can be applied to any similar discipline using leaming situations constructed around a cognitive apprenticeship approach to leaming:

- all tasks must be authentic and true to the usual demands of the discipline;
- all of the participants must be willing to contribute to the collaborative activities required by modelling, coaching, scaffolding, articulation, rellection and exploration;
- students need to have at least elementary skills in the discipline in order to commence their collaboration with a mentor at a level that does not require the mentor's total attentionat all times;
- mentors are best selected (as volunteers) fromexpert practitioners who have shown:
- execllence in their professional practices;
- have established communication skills;
- have at least elementnl experience with Icaching or mentoring in the commercial sector or lettiary institution;
- have an awar::ness of the teaching strutegics and nalure of n cognitive npprenticeship approach to lenming, either fonnnily acquired or intuitive.
- the mentoring situation newers to be typical of the environment and culture in which the expert practitioner usually operates in order to replicate the context and culture of the domain of practice; and
- the leaming situation necals to be filly resourced in the same manner that the students might encounter when entering professional practice in a commercial setting,

Limitatlons Of The Study

This study was conducted in metropolitan Western Australia where there is only one teaching institution that offiersthe fill range of building design courses as approved by under Australian National Curriculum for building design. These meant that the 29 students in the study sample all came from a single institution population and are not necessarily represuntative of other groups in other states.

Datu collected from the small discreet sample used for this study have indicated many similarities and some diflierences in the manner that the mentors usod cognitive apprenticeship leaching strategies. These data may be interpreted dilferently when analysed by others not connected with the study situation in the manner of this researcher, who has close links with the study participants nnd discipline domain. For these reasons, findings that hnve emer ged here may not be regarded as readily generalisable when studying other similar situations.

The tasks undertaken by the students with the mentors were constructed around authenlic building des ign problems lör which there were many possible design-solving procedures and suitable solutions. Nithough this provided Ilexibility in the student/mentor collaborative work situations, it also demanded a broad view when nssessing student leaning outcomes and therefore the effectiveness of the cognitive apprenticeship leaching stratgies in assisting students to acquire new knowledge and skills.

FURTHER RESEARCH

This research study has used a clearly defi ned situation to investigate a cognitive apprenticeship approach to learning. Findings reported her eare couched in ter ms of the specific situation used, but have the polential to be applied in many dilfierent domain
contexis where there is a need for individuals to synlhesise creative thinking with discipline specific knowledge and procedures, executed using metacognilive methods.

Any discipline domain thut requires high levels of cognitive thought and conununication of concepts or solutions using verbal and graphical means is well suited to the use of a cognitive apr renticeship approach to leaming for its exponents and should be investigated. In particular, the proposed structure lor implementing cognitive apprenticeship in the classroom as suggested in this thesis (sec page 308) might well b: applied to many such disciplines. This would include any professional discipline where students must take a "leap of laith" from simply acquiring and applying basic knowledge and procedures as might a teclenician, to synthesising concepts then visualising new ideasthen exploring and resolving them in metacognitive ways.

Fur ther study to investigate how findings from this research may be applied to teaching in other disciplines may improve the generalisability of findings from this study. More focussed research could address specific issues such as:

- application of cognitive apprenticeship methods in learning situations created using multimedia and Web-based learning materials utilising verbal and visual exchanges between student and mentor/teacher using electronic means between remote locations;
- computer based coaching in vittual office situations with immediac y of ficedback and rapid presentation of ideas being used to replicate the "look and feel" of one-onone learning with a mentor; and
- Iraining for work-skills intended to address the more flexible contract facussed work settings that have replaced the traditional "job for life" approach and to address training issues about multiple career changes and "on the job" or "in house" training conducted using cognitive apprenticeship methods.

Research to determine how cognitive apprenticeship teaching strategies can be effectively applied along with the strategy proposed here for organising the envir onment, activities and tasks, may provide new ways to deliver education and training in at least each of the areas suggested here.

REFERENCES

^bbott, J. (1998). Turning leaming upside down and inside out. The Schrowt Administrutor, 55 (I), 17-21.

Baird, C. ^., \& Fetherston, ^. (1999). Mentor suppoted lcurning using uuthentic experiences in a building design office. Prucicedingen of the second Regional Conference on Tutoring and Mentorings [Online].
^vnilahlc:http://wwwcomm.murdoch edu ,uu:80/star/conf crence_proccedings.html [2000, April 3].

Baird, C. A. (1996). CAD Implementation in the hulding, design and cunwruction industry. Perttr Western Mustralinn Department of 'Imining.

Baird, C. А. (1997). 「raditional rendering of the C^D phenomenon. The Nallonal Designers Bricf, I (I), 25-27.

Bondurn, A. (1977). Social learnilig theory Morr istown, NJ: General Learning Press.
Berryman, S.E. (1991). Designing effective learning environments: Cognitive apprenticeship models. Cognitive Science: Challenging Schools to Design Effective Learning Environments [Online].
Available http://www.ilt columbia .edu/kI2 ${ }^{\text {ivetext/docs/betryl.html [1998, }}$ February 21].

Brandt, B, Famer, J.^. Jr, \& Buckmaster, ^. (I993). Cognitive apprenticeship approach to helping adults learn. New Directions for Adulls and C'ontinuing Education, 59. 69-77.

Brown, J. S., Collins, A.S., \& Duguid, P. (1989). Situated cugnition and the culture of learning . Educational Researcher. 18 (I), 32.

Burns, R. (I995). The adulf learner at work Sydney: Business and Professional Publishing.

Butler, J. (1992). Teacher professional development: ^n Austral ian case study. Journal of Educallan for Tieaching, 18, 231-238.

Calderhead, J. (1989). Reflective teaching and teacher education. Teaching and Teacher Education, 5, 43-51.

Candy, P. C. (1989). Altemative paradigms in educational research. Austrolian Educational Researcher, 16 (3),1-11.

Carver, S.M.(2001). Cognition and instruction: Enriching the laboratoty experience of children, teachers, parents, and undergraduates. In Cognition and Insturaction: twenty-five years of progress. Carver, S. M. and Klarh, (Eds.) Hillsdale NJ. Lawrence Earl haum ^ssociates.

Carver, S, M. (1995). Cognitive apprenticeships: Putting theory into prnctice on a large scale. In C. Iledley, P. Antontcci \& M. Rahinowit\% (Eds.), Thinking and Iitcracy, the mind at work (pp. 203-228). Itillsdalc, NJ: I.awrence lirlhisum Associates.

Casey, C. (1996). Incorporating cognitive apprenticeship in multi-media. Eidacutirmal Technologey Rescar ch and Development, if (1), 71-84.

Cash, J.R., Behrmann, M.B., Stadt, R.W., \& Daniels, II.M. (1997). E:fleetiveness of cognitive apprenticeship instructional methods in college automotive technology classrooms. Jomrnal of Industrial Teacher Eiducation, 34 (2), 29.49.

Charmaz. K. (1990). Discovi:ring chronic illness: Using grounded theory. Srocial Sicience and Medicinc: 31), 1161-1172.

Choi, J., \& Hanaafin, M. (1996). Situated cognition and learning environments: Roles, stractures and implications for design. Educational Technology, Research and Development, 43 (2), 53-69.

Collins, ^., Brown, J.S., \& Newman, S.E. (1989). Cognitive apprenticeship: Teaching the crafts of reading, writing, and mathematics. In L.B. Resnick (Ed.), Knowing learning and instruction: Essays in honor of Robert Claser (pp. 453-494). Hillsdale, NJ: Lawrence Erlbaum Λ ssociates.

Collins, ^., Hawkins, J., \& Carver, S. (1991). Cognitive apprenticeship for disadvantaged students. In B. Means, C. Chelemer \& M.S. Knapp (lids.), Teaching advanced skills to af-risk students: Views from research and practice (pp. 216243). San Francisco: Josse yBass.

Dewey, J. (1938). Experience and education. New York: Collicr.
Dinmore, I. (1997). Interdisciplinarity and integrative learning: ^n imperative for adult education. Education, $1 / 7$ (3), 452-467.

Duncan, S. L. (1996). Cognitive apprenticeship in classroom instruction: Implications lör industrial and technical teacher education. Journal of Industrial Teacher Education, 3 (3), 66-86.

Eisenhardt, K.M. (1989). Building theories from case study research. Academy of Management Review. 14 (4), 532-550.

Ferry, N. M., \& Ross-Gordon, J. M. (1998). ^n inquiry into Schön's epistemology of practice: Exploring links between experience and reflective practice. Adull Edacation Quarlerly, 4 , (2), 98-1 12.

Goctz, J. P., \& LeComptc, M. D. (1984). Ethnography and qualitative design in educational research. New York: ^cademic Press.

Gonczi, Λ, Iluger, P., \& ^tharusou, J. (1994). The develupment of competency-hused arseqsisment strutegles fir the profexvions Cunberru: Λ ustraliun Government Publication Scrvice.

Greenficld, P. M. (1984). A theory of the teacher in the leurning activities of everycluy liic. In B. Rogofl \& J. Lave (Eds.), Everyday cosnitirm: Its development In social context. (pp. 117-138). Cambridge, M^: Ihrvurd University Press.

Guba, E. G. (1981). Criteria for assessing the trustworthiness of naturalistic inquiries. Educational C'omnnunications and Tecimolozy.Journal, 29, 75-92.

Guba, E. G. (1978). Toward a methudedsery of naturalistic inquiny in educational evaluation. Los ^ngeles Center for the Study of Evaluation, UCL^ Graduate Scílool of Education.

Hennessy, S. (1993). Situated cognition apprenticeship: Implications for classroom learning. Suudles in Science Educatlon, 22, 1-41.

Holsti, R. (1969). Content analysis for the social sciences and humanities. Ontario: Addison Wescy.

Hooper, S. (1992). Cooperative leaming and computer based instruction. Educallonal Technalogy Research and Development. 40 (3), 21-38.

House, E. (1977). The logic of evaluative argument. Los ^ngetes: Center for the Study of Evaluation, UCL^ Graduate School of Education.

Jarvela, S. (1995). The cognitive apprenticeship model in a technologically rich learning environment: Interpreting the learning interaction. Learning and Insiructiem, 5 . 237-299.

Kaufman, D. (1996). Constructivist based experiential Icarning. Action in Teacher Educalion, 18 (2), 40-50.

Knowles, M. (1980). The modern practice of adulf education. New York: Λ ssociation Press.

Kolb, D. (1984). Experlential Iearning: Experience as the smurce of learning and development. New Jersey: Prentice Hall.

Love, J. (1988). Cognition in practice: Mind, mathematics and culture In everydas, lific New York: Cambridge University Press.

Lave, J. (1990). Views of the classroom: Implications for math and science learning research. In M. Gardener, J.G. Greeno, F. Reif, ^. Schoenficld, A. di Sessa \& E. Slage (Eds.), Toward a practice of.science education (pp. 251-263). Hillsdale. NJ: Lawrence Erlbaum Associates.

Lave, J., \& Wegner, E. (1991). Sifuted icarning: Iesitimute peripheral purticipation. New Yotk: Cunbridge University Press.

Le Comptc, M., \& Goetz, J. (1982). Problems of reliability and validity in ethnographic research. Review of Educational Research, 52 (1), 31-60.

Lincoln, Y. S., \& Guba, E. G. (1985). Naturalistic inquiry. Newbury Park, C^: Suge Publications:

Mcinerney, D. M. (1994). Edicational nsychology: Consiructing learning. Englewood Cliffs, NJ: Prentice Hall:

McMillan, J. H., \& Schumacher, S. (1989). Research in education. A conce ptual introduction ($2^{\text {nd }}$ ed.). New York: Harper Collins.

Mezirow, J. (1996). Towarda learning theory of adult learning. Adull Basic Education. $\therefore \quad 6(3), 115-126$.

Miles, M. B., \& Huberman, A. M. (1994). Qualitative data analysis: An expanded source book ($2^{\text {nd }} \mathrm{ed}$.). Thousand Oaks, C^: Sage Publications.

Mumfiord, ^. (1993). Putting learning styles to work: An integrated approach. Journal of European Industrial Training, 17 (10), 3-10.

NUD.IST. (1998). Qualitative data analysis program (Version 4). Melbourne: Qualitative Solutions Research.

Nystrand, M. (1986). The structure of written communication: Studies of reciprocity between writers and readers. Londo n: ^cademic Press.

Palinscar, A. S., \& Brown, A. L. (1984). Reciprocal feaching of comprehensionfostering and comprehensian-moniloring aetivities: Cognition and instruction. Hillsdale, NJ: Lawrence Erlbaum Associates.

Papert, S. (1980). Mindstarms: Childien, computers and powerfud ideas. New York: Basic Books.

Patton, M, Q. (1990). Qualitative evaluation methods ($2^{\text {nd }}$ ed.). London: Sage Publications.

Pieters, J. M., \& de Bruiịin, F. M. (1992). Learning environments for cognitive appreiteiccship: From experience to expertise, In P. A. M. Kommers, D.I. Jonassen \& J.T. Mayes (Eds.), Cognitive fools far learning, Berlin: Springer Verlag.

Resnick, L. B. (1987). Learning in school and out. Educational Researcher, 19 (9), 13. 20.

Richards, T. J., \& Richards, L. (1995). Using hicrarchicul categories in qualitative data analysis. In U. Kelle (Ed.), Computer-uided qualitutive data unulyyis, (pp. 80-95). London: Sngc Publicntions,

Rogolf; B., \& Gardrer W. P. (1984). Adult guidance of cognitive development. In II. RogolY\& J. Lave (Eds.), Everyday cognition: Its elevelopment In sectial context (pp. 1-8). Cambridge, M^: Ilarvard University Press.

Ryun, G, \& Bernard, H. (2000). Data management and analysis methods. In N. Denzin \& Y. Lincoln (Eds.), Handbook of qualilativeresearch (pp. 769-802). 'Thousand Oaks, Cへ: Sage Publications.

Scnrdamalia, M., \& Bereiter, C. (1983). Child as co-invcstigator: Helping children gain insight into their own mental processes. In S. Paris, G. Olson \& II. Stevenson (Eds.), Learning and motivation in the classrarm (pp. 83-107). Hillsdale, NJ: Lawernce Erlba um Λ ssociates.

Scnrdamalia, M, \& Bereiter, C. (1985). Fostering the development of selfregulation in childr en's knowledge processing. In M. S. Chipman, J. W. Segal \& R. Glaser (Eds.), Thinking and learning skills, research and open questions (pp. 563-577). Hillsdale, NJ: Lawrence Erlbaum ^ssociates.

Scardamalia, M, Bereiter, C, \& Steinbach, R. (1984). Tcachability of reflective processes in written composition. Cognilh'e Science, 8. 173-190.

Schoenfield, ^. H. (1987). What's all the fitss about metacognition? In A. H. Schoenfeld (Ed.), Cognitive science and muthematics education (pp. 189-215). Hillsdale, NJ: Lawrence Erlba um Associntes.

Schen, D A. (1983). The raflective practitioner: How professionals think in action. New York: Basic Books.

Schratz, M. (1992). Rescarching while teaching: An action research approach in higher education. Stuelies in Higher Eelucation, 17,81-95.

Simpson, M. (1988). Improving leaming in schools - what do we know? ^ cognitive science perspective. Scoutish Eelucational Review, 20 (I), 22-3I.

Strauss, ^., \& Corbin, J. (I990). Baries of qualitative research. Newbury Park, C^: Sage Publications.

The cognition and technology group at Vanderbilt. (1990). Anchored instruction and the relationship to situated cognition. Educational Researcher, 19 (6), 20.

Tobin, K., \& Dawson, G. (1992). Constraints to curriculum reform: Teachers and the myths of schooling. Educational Technology Research and Development, 10 (1), 81-92.

Voight, J, (1987). Modelling and coaching of rellevanl metacognitive strategics for enhancing university sludents’ learning. I.earning and In.struction, 4, 319-336.

Vygotsky, L. S. (1978). Mind in.suclety: The development of higher psycholosical processes Cambridge M 1 : Ilaneud Universily Press.

Vygotsky, L. (1962). Thought and language. Cambridge, MA: MIT Press.
Wilson, ^.L. (1993). The promise of situated cognition. New Directlons for Adsd! and Contiming Educotion. 57, 71-79.

Winn, W. (1993). Instructional design nod situated Icarning: Paradox or partnership. Educollonal Technolocy, 33 (3), 16-21.

Yin, R. K. (1993). Applications of case situdy reseorch (^pplied social science rescarch methods series 34). California: Sage Publications.

Yin, R. K. (1994). Case study research: Design and methods (Λ pplied social science rescarch methods serics 5). California: Sage Publications.

APPI:NDIX \wedge

INTERVII:W GUIDI: QUESTIONS FOR ROUND ONE MIENTOR INTERVIEWS Introduction For Mentors

My aim in conducting this study is to establish how students acquired knowledge and skills when working on uuthentic projects with a building designer acting as their mentor. Understanding how sludents acquire the knowledge and skillsthat expert building designers use when solving complex design problems may assist in the development of TAFE training courses incorporating leaming approaches similar to those used in industty, and in on-the-job real work project experiences.

In this interview I amseeking to understand what took place between the students and the mentors in the design oflice situations of this study and how this assisted the students to acquire cesign knowledge and skills. Mostly I would like to hear your views about whattook place und how you view that as having assisted student leaming.

In order to explore some aspects of how information was shared and how the mentors assisted the students to learn to apply design methods, I will ask specific questions that address six key teaching strategies used in a cognitive apprenticeship approach to learning. The teaching strategies arc: modelling, coaching, scaffolding (and fiading), articulation, reflection, and exploration.

General Themes For Interview Guide Questions

- What do students learn from unrking with mentor.s in a design office situation using a cognitive apprenticeship learning approach?
- How is knowledge (declaralive, procedural, tacil) transferred?
- How are problem solving heuristlc strategies used?

Begin each interview by asking:
Could you tell me about what took place when the student first came to work with you in the design oflice?

Using questions that stem from the mentor's response to the opening question, to explore the mentor's views of what look place and how this may have affiectedstudent leaming. Focus questions on the six key leaching strategics of a cognitive apprenticeship approach to learning as set out below.

Question themes based on Cognitive Apprenticeship Teaching Strategies

Modelling

Please explain for me how you showed students your approach to design?
What did you do to facilitate student leaming about your approach to design?

Coaching

How did you go about guiding students to use your design methouls to resolve problems that they encountered in tiker design project?
Could you explain how sketching and discussion was used in work sessions to explore design ideas and to develop du sign solutions?
How did you go about assisting stutlents to work through design problems?

Scouffolding (and fading)

How did you keep the students on track witi. a design task and boost their performance to the next level of diflicul' y as they prsiucsscosi through the design process?
Can you tell me about any :rocesses or pircedures that you used to enhance the students' performance or tio streamlive (l. ir resolution of design problems?
Are there tips and tricks that you osed to keep the students going"?
What kinds of resource materials. like drawing sets or CAD elements, did you use to help the students to overcome dilliculties that may have blocked their progress? How did the student react when you reduced your involvement in their work, and let themgo it alone on the tasks?

Articulation

Could you explain for me how you went about explaining to students your approach to designand decision making in the design process?
To what extent did you use detailed explanations of your thoughts and actions when working on a project with students?
In what ways did you encourage stıdents to discuss their approach to problem solving and their design decisions?
What role did hand sketching and drawing play in your interaction with the students?

Reflection

Can youtell me about the role of reflection in leaming design. In what ways did the students use reflectionto revise and refine their design solutions?
In what ways did you encourage students to reflect on their experiences and leam from them?

Exploration

In what ways did you guide the students to explore innovative or sudical approaches to design while working on authentic projects?
Can you tell me aboutsituations where you saw students developing creative, original. or innovative approaches to design projects, based on their experiences in the design office?

APPENDIX B

INTERVIEW GUIDE QUESTIONS FOR ROUND ONE STUDENT INTERVIE WS

 IntroductionMy aim in conducting this study is to cstablish how students acquired knowledge and skills when working on authentic projects with a building designer acting as their mentor Understanding how students acquire the knowledge and skills that expert building designers use when solving complex design problems muy assist in the development of T AFE training courses incorporating learning approaches similar to those used in industry, and in on-the-job real work project experiences.

In this interview I an seeking to understand what took place between the students and the mentors in the design office situations of this study and how that assisted the students to acquire design knowledge and skills. Mostly I would like to hear your views about what took place and how you view that assisted your learning.

In order to explore some aspects of how infiurmation was shared and how the mentors assisted the students to learn to apply design methods, I will ask specil ic questions that address six key teaching stralegics used in a cognitive apprenticeship approach to learning. Tbe teaching strategies are: modelling, coaching, scafoolding (and fading), articulation, reflection, and exploration.

General Themes For Intervicw Questions

- What do students learn from working with mentors in a design affice sifuation using a cognitive apprenticeship learning approach?
- How is knowledge (declaralive, proccdural, tacif) transferred?
- How are problem solving heuristic strategies used?

Begin each interview by asking:
Could you tell me about what happened first when you went to work with your mentor in the design office?

Using questions that stemfrom the student's response to the opening question, explore their learning experiences using other questions based on the following cognitive apprenticeship teaching strategies.

Question themes based on Cognitive Apprenticeshlp Teaching Strategics

Madelling

In what ways did your mentor demonstiate for you the knowledge and skills that you needed to acquire to do the tasks required of you in the design office?

Can youdescribe fiur me the manner in which your menlor used these to resolve problems that emerged from your design proje:cl.

Cooching

Which as pects of working with your mentor were most usefiul to you in understanding and resolving design problems?
Can you tell me about ways used by your mentor to help you to undersland and apply design strategics and problems solving methods?
Are there problem solving strategies that you have seen your mentor using that you now incorporate into your design work?

Scaffolding (and fading)

Can youtell me about ways in which you mentor provided you with assistance in problem solving at times when you were struggling to resolve you designs? For example, tips and tricks or other materials that were usefill in sorting out problems that emerged during design.
^s you became more conlident and competent with the work you were doing, did you have less need to consult your mentor in resolving design dif ficultics?

Articulation

Can you tell me about the sorts of discussions that look place between you and your mentor during the sessions where you worked together in resolving design problems? In what ways did your mentor explain the reasons for his approach to resolving design problems?
To what extent do you think that your learning wasenhanced by the hearing others in the design oflice talking about the ir design methods?

Reflection

Looking back at your experiences working with your mentor, what do you think were the most useful aspects of the collaboration?
Can you tell me about problem solving strategies that you now use for design that have resulted from your experie nees with your mentor?
Are there aspects of your working with a mentor thal you lieel were not of valuc?

Exploration

In what ways have you been able to build upon the knowledge and skills gained through your experiences working with a mentor?
Can you tell me what you might now do differently in your approach to design as a result of your design oflice experiences?

APPI:NDIX C

INTERVIEW GUIDI: SUPPLEMENT FOR ROUND TWO INTI:RVII:WS WITII MENTORS AND STUDENTS

General Themes For Intervlew Questions

- What do students learn from werking with mentors in as design office siluation asin!: a cosnitive apprentices hil p learning approsech?
- How is knowfedge (declurative, procedural, sacit) Iransferred?'
- How are prohlem sohving hetorivtic strategiev nsed!'

Emergeal Themes To Explare

Eight themes that emerged from analysis of data collected through the first round of interviews are presented here as guides for questioning mentors and students in second round interviews.

1 Entry to the culture of practice: acceptance by others in the affice culture

- How does the mentor relate to the students;
- What status do the me ntors extent to the studests: apprentice designer or student; and
- Conlirming evidence of student status e.g. language, access to mentor, access to the office facilities, access to other staff., access to olf ice archives, social interaction with others in the ollice.

2 Expectations of the collaboration by both parties

- What does the studen look forin the mentor, a solution or guidanee;
- What does the student expect of themselves; and
- What does the mentor expect of the student, and of themselves.

3 Value afforded to the collabonation by both parties

- Preparation by the student and by the mentor prior to their first meeting us an indication of the commitment that each has to the collaboration;
- What does the student go away with following a session with the mentor?; and
- Explore confidence building through activities and mutual respect earned by each party secing the commitment made by the other to the common goal.

4 Making knowled ge visible

- Having the mentors reifying existing substantial knowledge by making it accessible to the students through attic ulation, discussion, sketching, explanation building. notes, site visits;
- Observing how the mentors communicate their knowledge using such tools: and
- Role played by articulation and sketching when used by students to explore and communicate their design ideas.

5 Heurisllc design strategies and design pracedures' used in their

implemsentation

- Use of the "oftice set" approach by the mentor;
- Use of sketching, discussion, and articulation as communication und des ign tools;
- Use of nominuted us ual approaches for the type of design probiems associated with the particular type of design project used in this study; and
- Preparation and research methods suggested by the mentors as tools fir the students to use in the assembling of resources and the implementation of processes and procedures for the resolution of the design.

6 Problem solving: becoming an expert and working fonwards

- Using questioning techniques (both mentors and students) to reveal, discover, and develop knowledge, ideas, concepts. and strategics tor resolving designs;
- Paltemmatching experiences and solutions to the problems of the project at hand;
- Multiple perspectives - presented by the ment or, by the situation, through investigation and discovery by the students; and
- Scaffolding- exemplars and numerous other materials, resources and expert persons (3 levels).

7 Building metacognitlon

- Having to justify ideas and have them conf irmed by practising designers;
- Defending ideas, concepts, solutions, methods and strategics using sketching, discussion, articulation, and explanatory notes; and
- Evaluation practices and strategics for testing, accepting and rejecting of ideas against industry standards or practices;

8 Style developmens

- As a synthesis and development of thnt of the mentor and personal views;
- Reflective pmetices used in evolving a design and branching to alternative lines of inquiry; and
- Exploration of new and diverse design ideas from the stem of design concepts emerging form the project brief:

APPENDIX D

JNDI:X TRI:I: ONI:
Categories used to code data collected in Phase One of this situdy were arranged as lollows:

Primary Catcgory	Sccondury Calcgories
1. ^divities	1.1 Groupact jvixics 1.2 Design excrcises 1.3 Site visits
2. Afliect	2.1 Stimulation 2.2 Freedom in design
3. Learning	3.1 Situational factors 3.2 Mentor inlluen ce 3.3 Input by others
4. Application	4.1 Evaluating ide as 4.2 Sclfdevelopment

[^0]: ... the stmeegics used for data collectioo, the varieties of obser vational and interviewing strategies, the range of non-interactive methods and the strategies used in amplifying, modifying and relining data during early stages of analysis while the researcher is stili operating in the field".

[^1]: Note: Categories shown in this index tree structure were used for analysis of Phase Two round one interview data. The fipures shown in parenthesis indicate the percentage of data unit retrievals for each category used for coding first round interview data.

[^2]: ... once you have established the environment the expectation, the excitement, the enthusiasm starts to flow from there, it sets the goal or locus or leadership aspect.

