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Abstract 

The success of any mining operation greatly, if not entirely, depends on 

the accuracy of prediction of recoverable mining reserves. However, 

prior to mining, knowledge about the distribution of the Selective 

Mining Unit (SMU) is limited. The SMU represents the volume on 

which extraction of ore takes place and on which recoverable mining 

reserves are based. Realistic recoverable reserve estimates can be 

obtained from the grade-tonnage curve that corresponds to the unknown 

distribution of the SMU rather than to the distribution of exploration 

sample data. In general, if the reserve calculation, at the given cut-off 

grade, is based upon exploration drill samples, with much smaller 

support than the SMU, then there is a high probability of incorrect 

estimation of the tonnage and the grade of ore, and this can have serious 

implications for the economic side of the mining project. 

Various techniques for correction for the change of support of data, in 

other words change of the volume on which the data are defined, enable 

more accurate estimates of the distribution of the variable of interest 

(that is grade of a precious metal). The fact that the volume (support) 

represented by the variable is taken into account makes the estimates 

more reliable and, as we will show in the study, closer to reality. The 
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distribution of the SMU is derived from the known distribution of 

samples by applying a correction model. 

Among these techniques are two recent methods these are a conditional 

simulation method detailed by I. Glacken and a kriging method due to A. 

Arik. This study aims to examine these two methods and compare them 

with the standard techniques. The methods will be applied to real data 

acquired from the Boddington Gold Mine in the south-west of Western 

Australia. In addition to accuracy, the practicality and simplicity of 

implementation of each method will also be discussed. 
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1. INTRODUCTION 

1.1 Background and significance 

The main focus of this study is to show the importance to recoverable 

ore reserve estimation of the effect of the volume, also referred to as the 

support, on which an attribute (for example grade of a precious metal) is 

defined. For a mining operation to be successful correct estimation of 

recoverable mining reserves is essential and so the correction for the 

change in support from sample data to Selective Mining Unit (SMU) is 

an issue that should not be neglected. 

The identification of a potentially mineable ore body always raises the 

question of the minimum amount of sampling necessary to determine a 

reliable estimate of its physical limits and economic viability. At the 

development stage of any mining prospect, one of the main sources of 

costs is the exploration drilling and sampling. Hence, taking a very 

simple approach, minimising the sampling will also minimise the costs. 

On the other hand, even overlooking the economic side and assuming 

that financial resources are available to conduct a rigorous sampling 

program, the volume of samples taken from the project area is usually 
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very small in comparison to the volume of potentially mineable reserves; 

therefore the potential for error is high. 

A sample set of some geological attribute obtained from an exploration 

drilling program provides valuable information regarding the location 

and values of that attribute. Based on the definition, originally derived 

from the geology of the region of interest, further interpretation of an ore 

body can be undertaken using this set. In geostatistical terminology, the 

modelling of the mineralised region is carried out. A model of an ore 

body is based on the spatial distribution of the samples taken and hence 

the quality of the model is directly dependent on the relevant sampling. 

In general, the more samples the better the estimate should be, providing 

that the samples are evenly distributed (no clustering or preferential 

drilling). However, more samples will mean at least higher financial 

expenditure. That forces the decision to be made on the minimum level 

of confidence in the final results that can be accepted and on the 

minimum amount of data necessary to provide such a level of confidence 

(Recny, 1982). Usually there is no easy answer to this question. To help 

in solving this complex problem a number of geostatistical methods have 

been developed. 
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For an ore body the property of prime concern is the content of a mineral 

per unit of weight of the ore. This is called the grade and is usually 

expressed in grams per tonne (g/t). The grade can be measured 

numerically and changes from one location to the other. Taking a 

geostatistical approach, the grade can be seen as a variable. There are 

also other variables, which may be of interest during the process of 

geological modelling. Geological modelling attempts to determine the 

spatial variability of the attributes of interest. Further examination of the 

spatial properties enables us to define a grade shell. The grade shell is a 

volume, whose limits and location are determined by a given cut-off 

value. The amount of ore inside grade shells, defined by an ore cut-off 

based on actual economic parameters, is called a reserve. The term 

reserves, or better recoverable reserves, can be used at the stage where 

this economic cut-off is determined and applied to a physically "possible 

to mine" deposit. Any material extracted with the grade content above 

the cut-off will generate profit. Material below the cut-off is usually 

wasted. Without loss of generality it will be assumed here that the study 

area is a mineable deposit and that the cut-offs that we are using are 

economic cut-offs. 
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However, mining occurs on a volume different from the sample volume. 

Hence the statistical distribution of the mineable unit can be expected to 

be different from the distribution of the sample data. Applying the same 

cut-off grade to different distributions ( eg. the sample distribution and 

the mineable unit distribution) may result in different amounts of 

tonnage at the different grades. This is where the problem arises. The 

recoverable reserves, in most cases, cannot be accurately predicted from 

sample data only, without applying any correction for the volume 

(support) change. 

There are several methods available to estimate ore reserves, ranging 

from simple contouring methods to sophisticated geostatistical kriging 

and simulation techniques. Each of these methods has its advantages and 

disadvantages. Yet sometimes not enough consideration is given to 

making an appropriate choice to best suit the specifics of the data used. 

Generally, the estimation is done by building a block model of the 

mineralised zone of interest. Using available sample data, the grade of 

each block in the block model is estimated by the chosen technique. 

Blocks are of regular shape, usually rectangular, their dimensions mainly 

dependent on the drill spacing and the bench height. By performing the 
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process of estimation of the grade and tonnages of blocks using sample 

data, we move from a sample volume (smaller support) to a much larger 

support and bigger volume, which is the volume of a block. The result of 

the change from point distribution to block distribution is known as the 

change of support effect and allowance may be made for this change by 

means of a variance correction factor (lsaaks and Srivastava, 1989; Rossi 

and Parker 1993). In practice, as previously said, mining takes place at a 

volume different from sample and block volumes. This mining volume is 

usually called the Selective Mining Unit (SMU) and is the smallest 

volume that can be selectively mined. It is primarily defined by the 

equipment which is to be used during the ore extraction. This is, in fact, 

a very general approach to the problem of the SMU. A good practice in 

defining the SMU requires that a thorough consideration should be given 

to the exploration drill spacing, the intended grade control technique as 

well as the machinery. This is an interrelated system and, to some extent, 

the size of the mining bench and therefore equipment is indirectly 

dependent on the exploration drilling. For the purpose of this study we 

will assume that the size of a block from the models used is equal to the 

SMU. This does not affect the results of our calculation because once the 

SMU size is determined an additional model can be built with the block 

size equal to the SMU in order to estimate the relevant distribution. 
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The choice of the correction for change of support is not a simple one. 

Prior to the actual mining, the distribution of blocks in the block model 

is not fully known. Extraction of ore takes place on the volume of the 

SMU and therefore a realistic recoverable reserve estimate can be 

derived from the grade-tonnage curve that corresponds to the SMU 

distribution. However, at the modelling stage only the estimated point 

distribution is known, in other words, the global distribution of the 

exploration samples (composites). The complexity of this topic may be 

the reason why the correction and the change of support are sometimes 

neglected. Such an approach during the development of any 

geostatistical model can introduce a bias on estimated recoverable 

reserves. It can also result in a serious over- or underestimation of the 

percentage of blocks above a given cut-off grade. 

1.2 Aims and objectives 

Due to its significance with respect to mineral resource estimation, the 

change of support and the need for correction for it are well recognised 

in the geostatistical literature. A number of techniques have been 

developed that enable such a correction to be performed in order to 

obtain unbiased estimates. The "standard" techniques which are 
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currently used include: affine correction, indirect lognormal correction 

and discrete Gaussian transformation. Each has its advantages as well as 

limitations. The research in the field of the support correction has been 

continuing with the aim of developing a practical and a robust method. 

We shall consider here two relatively recent methods suggested for 

correcting for the change of support. One of these methods is called 

Nearest Neighbour Kriging (NNK) (Arik, 1998), designed especially for 

use when estimating recoverable reserves with skewed grade 

distribution. It has a built-in mechanism which allows for honouring the 

volume on which data is defined. 

In the second method (Glacken, 1996) the use of conditional simulation 

is proposed as the way of accounting for the differences in support. This 

method also allows for the incorporation of economic measures during a 

process of block delineation as ore and waste. 

As stated in Section 1.1 this study aims, first of all, to show the influence 

that the data volume may have on recoverable reserve estimation. By the 

data volume, or support of data, we mean the volume represented by a 

datum, which in our case will be a sample from the exploration or grade 

control data set and a block from the block model. We examine here the 
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effect of change in the support of the data on the grade and tonnage of 

the estimated reserves. The two recent correction methods, referred to 

earlier, along with the standard affine correction will be used. These will 

be done in the context of a comparison using real data from the 

Boddington Gold Mine in the south-west of Western Australia. 

Moreover, during this process, the practicality and simplicity of 

implementation of the chosen methods will also be investigated. Based 

on the results from these exercises and available data from the mine, the 

degree of influence that the change of support effect may have on 

recoverable reserves will be addressed. In other words, this study will 

investigate the effect on the estimated grades and tonnages introduced by 

applying the chosen correction techniques. The results generated by the 

two new correction methods will be analysed individually due to the 

inherent differences between the estimation process, which includes 

kriging algorithms, and simulation. These techniques are designed with 

different objectives as will be shown in the course of this study. 

As an additional check, the grade control data set adjusted by the affine 

correction method (in order to represent the same volume as the kriging 

estimates) will be compared to the results obtained from the kriging 

(ordinary kriging OK and NNK). 
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1.3 Methodology and notation 

In this section the methodology is briefly summarised. It is divided into 

several stages for clarity. Each of these stages contains subsequent tasks. 

Next the notation that is going to be used through the study is presented. 

Methodology 

Stage 1. 

Review the mathematical background and theory of: 

a) Random function model; 

b) The volume - variance relationship and the change of support; and 

c) The standard change of support correction techniques. 

Stage 2. 

Investigate the theory and the mathematical framework of the chosen 

correction methods: 

a) Correction using conditional simulation; 

b) Nearest Neighbour Kriging developed by Arik (1998); and 

c) Sequential Gaussian simulation. 

Stage 3. 

The chosen methods (Stage 2), the standard method (that is the affine 

correction) and the ordinary kriging (OK) method will be applied to real 
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exploration data from the Boddington Gold Mine (BGM) in South-west 
Western Australia. This data set consists of two subsets. One is the 
sample set obtained from exploration drilling and the other is the 
complete grade control set, very often referred to as "reality". The 
practicality and the level of complexity of use of the methods from Stage 
2 will be examined. In addition, for the sake of a theoretical comparison, 
the affine correction method will be applied to the grade control data and 
compared with the kriging estimates (for both OK and NNK). 

Stage 4. 
The results obtained in Stage 3 will be compared with the grade control 
data from the BGM. Attention will be given primarily to the comparison 
between the grade-tonnage curves generated from the grade estimations 
carried out in Stage 3 and the grade-tonnage curves from the grade 
control data set. The results obtained will be analysed in order to 
determine how the methods performed in this particular case. An attempt 
will be made to evaluate the level of impact of the support changes on 
mineral resource estimation. In addition, OK estimation will be 
performed without applying any correction for the support changes. 
Along with the results from the methods from Stage 2, especially from 
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NNK, this shall form a base for a comparison of how serious an effect 

the support problem may have on the reserve estimation. 

a 

C() 

Co 

C 

CV 

E{ } 

F 

f 

fv 

y(h) 

G(y) 

gdh) 

h 

k 

m 

List of Symbols 

for all 

range of semivariogram 

covanance 

nugget variance (nugget effect) 

partial sill of semivariogram 

coefficient of variation (abbreviation) 

expected value 

cumulative distribution function 

nearest neighbour kriging smoothing correction factor 

variance correction factor 

semivariogram function 

standard normal cumulative distribution function 

basic semivariogram model, h=lhl 

separation vector 

number of emphasised nearest samples for nearest 

neighbour kriging 

stationary mean 
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J(u
a
) kriging weights associated with datum at location u

a 

Jnnk 
nearest neighbour kriging weights 

A0k ordinary kriging weights 
µ Lagrange parameter 
q quantile function 
r ordinary kriging residuals 
a2 variance of the random variable Z 
aJ block variance from a block model 
a-; composite variance 
a�K ordinary kriging variance 
s2 , s\v,V) experimental dispersion variance of values with support v 

within region V 
support volume at u

a 

support of a block (for instance SMU) 
vanance 

V 
Var{ } 
A region (also denotes the support or measure of the volume 

of the study region) 
Sn 

set of n measurements of an attribute - sample set 
U location VeCtOr (ux ,UY ,U z ) 

a, /3 location indices e.g. u
a 
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y = (f)(Z) transform function (fl(.) relating two random variables Y and 
z 

z = (f)-1 (Y) inverse transform function (fl(.) relating random variables 
Z andY 

Z(u
a

) 

Z(u) 

z�K 
(u) 

z;
K

(u) 

z;NK
(u) 

z(u) 

random variable at a sample location 
random function 
ordinary kriging estimator 
simple kriging estimator 
nearest neighbour kriging estimator 
z value at location ua 

true value at unsampled location u 
l th realisation of random variable Z(u) 

l th realisation conditional to some neighbouring data 
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2. RANDOM FUNCTION MODEL 

2.1 Overview 

Our aim here is to describe mathematically the "behaviour" of natural 

phenomena such as the grade of a gold deposit. Of main interest is the 

distribution of the grade values in three dimensional space, i.e. within the 

deposit. It is known from experience that properties like grade are often 

structurally controlled. For example there are rich zones (high grade) and 

poorer zones (low grade). Therefore a kind of spatial continuity may be 

assumed. This means that the values are related in a certain way. If we 

know this relation we can model the entire distribution providing that 

some grade values, obtained from sampling at the discrete points, are 

available. Yet, looking at this attribute, that is the grade, at a smaller 

scale, say a low-grade zone itself, we may find a behaviour that seems to 

appear totally random. Samples taken next to each other may have 

extremely different values. To be able to capture this random component 

within the spatial continuity we need a model. A model which is capable 

accounting for both the structural and the random aspects is a 

probabilistic model. It provides the information of how the variable 
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changes with distance and location. Furthermore, the model will contain 
information for any location and not only the sampled locations. 

We give here an overview of the theory of the random function model. 
This description, in the main, follows Goovaerts (1997), but Joumel and 
Huijbregts (1978) is also used as a major reference text. 

Description of a sample data set Sn (this can be any sample data set 
including drill samples), in statistical terms, is very rarely, if ever, the 
goal per se. Usually we want to characterise the whole population from 
which the samples have been drawn. If Sn ={z(ua ),a=l, ... n} is the set of 
samples taken from the study area A, the population will comprise all 
possible measurements over the area A and can be denoted as 
{z(u), Vu E A}, where u is the location vector within area A with up to 
three (uX,uY,u z ) components and a represents a certain location. As 
shown, Sn does not contain all the information that may be required 
since it is only a subset of the whole population. Therefore we need to 
set up an appropriate probability model to enable us to estimate reality, 
together with some measure of the estimation error involved. 
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A random variable (RV) is a real-valued function defined on the set of 

outcomes of an experiment. Random variables can be divided into two 

categories, discrete and continuous according to the type of values it 

takes. 

In this thesis we consider only continuous random variables. The RV 

itself will be denoted by an upper case letter and its value by the 

corresponding lower case letter. 

A continuous RV Z(u) is described by its cumulative distribution 

function ( cdf) in the following way: 

F(u;z) = Pr ob{Z(u) � z} Vz 
Also the following relations must be satisfied: 

F(u;z) E [0,1] Vz 

F(u;z) � F(u;z') Vz'> z 

(2 - 1) 

(2 - 2) 

(2 - 3) 

In this context the sample data set is considered to be a set of outcomes 

from an unknown random process. A sample value z(ua) at location ua , 

for example gold grade from an exploration drilling, is considered as a 

realisation of a random variable Z(ua). 
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A random function (abbreviated to RF) is defined as a set {Z(u), VuE A} 

of RV's Z(u) which are not, in general, independent but are related by a 
correlation expressing the spatial structure of the random variables. 
Following this definition, for multiple sample locations uk , k = l, ... ,N 
within region A, there will be a vector of N random variables, such as 
{Z(u1

), ... ,Z(u
N

)}, that corresponds to these locations. Because it is a 
vector of N random variables it is described by an N-point (or N-variate) 
cdf: 

(2 - 4) 

For any combination of locations uk and positive integer N, the set of 
such cdf s (2-4) is referred to in geostatistics as the spatial law of the RF 
Z(u). 

2.2 Assumption and moments of stationarity 

The use of the RF model as a geostatistical tool is applicable when its 
probability law can be inferred (or at least a part of the probability law) 
so that the RF is defined in its entirety. This is only possible when 
multiple realisations {zu) (u) ,zu) (u'); l = 1, .. .L} of the RF are available for 
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each of the locations. This is almost never the case in practice 1
. 

Furthermore, most often there is only a single measurement z(u) with a 

finite number of sample points Uj. In order to solve this problem certain 

assumptions are required. These assumptions are called the hypothesis of 

stationarity. The main idea behind them is that the considered set of 

sample data must demonstrate a spatial homogeneity within the study 

area A. In practice, all the paus of measurements 

{ z(ua ), z(ua + h); a = l, ... , n}, recorded a vector h apart within A are treated 

as repetitions. Effectively they are now the multiple realisations 

available to infer the probability law of the RF. This also implies that the 

pairs of RVs {Z(ua),Z(ua + h); a= l, ... ,n} originate from the same two-

point distribution. In more general terms, the RF Z(u) is defined to be 

stationary if any two vectors of N random variables {Z(u1
), ... ,Z(uN )} and 

{Z(u1 +h), ... ,Z(uN +h)} have the same multivariate cdf for any translation 

vector h. In other words the multivariate cdf is said to be invariant under 

translation: 

In practical applications geostatistical analyses do not go beyond the 

two-point cdf' s and the first and second order moments, if they exist. 

1 Even if the measurements for the same location are repeated in time then the RF is defined in space 
and time and should be denoted Z(u,t) 
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F(u,u';z, z') = Prob{Z(u) � z,Z(u') � z'} = E{J(u;z) · J(u'; z')} (2 - 6) 

where J(u· z) = 'dz 
{1 if Z(u) � z ' 0 otherwise (2 - 7) 

The first moment is the mean (expected value) E{Z(u)} of the distribution 

denoted by: 

E{Z(u)} = m(u) 

The second order moments considered here include: 

- the covariance 

C(u,u ') = E{Z(u) · Z(u ')}-E{Z(u)} · E{Z(u ')} 

the correlogram 

( ') C(u,u ') p u u = --;====== ' �C(u,u) · C(u ',u ') 

the variogram 

2y(u, u ') = Var{Z(u)-Z(u ')} 

(2 - 8) 

(2 - 9) 

(2 - 10) 

(2 - 11) 

Each of the moments (2-8) to (2-11) listed above is location dependent. 

However under the assumption of stationarity the location is no longer 

needed and can be replaced by the separation vector h. Therefore we 

have: 

- two point cdf 

F(h;z,z') = Prob{Z(u) � z,Z(u +h) � z'} 
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- expected value 
E{Z(u)} = m 

- covanance 
C(h) = E{Z(u) · Z(u + h)} -E{Z(u)} · E{Z(u + h)} 

- correlogram 
(h) = 

C(h) 
p C(O) 

- vanogram 
2y(h) = Var{Z(u)-Z(u + h)} = E{[Z(u)-Z(u + h)] 2} 

If the variogram function 2y(h) and the covariance function C(h) depend 
only on the distance I h I then we say that they are isotropic. Whereas if 
2y(h) and C(h) depend on both the distance and the direction of the 
separation vector h then they are said to be anisotropic. There are two 
types of anisotropy: (i) geometric anisotropy - the range of directional 
semivariograms varies and the sill remains the same for every direction 
and (ii) zonal anisotropy - the sill changes with direction. Modelling 
anisotropy in two-dimensions is described in Goovaerts (1997, pp. 90-
95) and in three-dimensions in Isaaks and Srivastava (1989, pp. 377-
991). 

27 



In a situation where the expected value E{Z(u)} exists and is invariant 
within A, and the two-point covariance function C(h) exists and depends 
only on the separation vector h, the RF model is said to be stationary of 
order two or second-order stationary. Under these circumstances the 
following relations hold: 

y(h) = C(O) - C(h) 

p(h) = 1- y(h) 
C(O) 

(2 - 12) 

(2 - 13) 

It is worth noting here that stationarity is not a property of the attribute 
under consideration. It is an assumption made by the user. In fact it 
cannot be verified or refuted from the data. Stationarity is a property of 
the RF model that is necessary for inference. 

If the increments Z(u) - Z(u+h) are second-order stationary then the RF 
is said to be intrinsic stationary or to satisfy the intrinsic hypothesis. 
Second-order stationarity implies the intrinsic hypothesis but the 
converse is not true. 
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2.3 Semivariogram 

In this chapter the mathematical background of one of the statistics, 

commonly used in geostatistical studies, is presented. This summary 

statistic is referred to as the semivariogram. 

It was established in the previous section that the RF model is used in 

order to determine the statistical parameters of the population 

represented by the sample data set Sn. Using the sample measurements 

from Sn parameters of the RF are inferred. The parameter of interest is 

the semivariogram or more precisely the sample semivariogram denoted 

y(h). The sample semivariogram is expressed by the following equation: 

1 N(h) 

f(h) = �)z(ua)-z(ua + h)]
2 

2N(h) a=I 

(2 - 14) 

where N(h) is the number of the sample pairs located vector h apart. The 

semivariogram is sensitive to outliers and there are more robust 

measures available to help to produce a clearer description of the spatial 

continuity. One group of these is introduced under a general name of 

relative semivariograms (Isaaks and Srivastava, 1989). General relative 

semivariograms adjust each of the semivariograms y(h) by a function of 
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the mean f(m(u)) of all the data values used to calculate j>(h). This 
relationship is expressed as follows: 

where 

h - j>(h) YcR ( ) - f(m(h)) (2 - 15) 

1 N<h> m + m  m(h) = :�)z(ua ) + z(ua + h)] = -h +h (2 - 16) 2N(h) a=I 2 

The function fused in (2-15) is usually derived from a scatter diagram 
where on one axis there are local means and on the other axis local 
variances. If these values are linearly correlated with non-zero slope such 
a data set is said to exhibit proportional effect. 

Another type of the relative semivariogram is called pairwise relative 
semivariogram yPR (h) and is computed as follows: 

(2 - 17) 

This relative semivariogram (2-17) re-scales each of the sample pairs by 
their average value. Unlike the semivariogram given in (2-14) the 
relative semivariograms have denominators that serve as a scaling factor 
to minimise the influence of large values. 
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Computation of a sample sermvanogram gives a set of values 
corresponding to the finite number of lags h and direction used during 
computation. To enable computation of the semivariogram for any lag 
and direction a continuous function is required. This function is fitted to 
the experimental values of the semivariogram, and the process is called a 
modelling of the semivariogram. Permissible semivariogram models 
need to be conditionally negative definite (Goovaerts, 1997, p. 88) and 
are usually taken as a linear combination of standard models g(h). The 
standard models written in isotropic form, most often used include: 
• Nugget effect model 

{o if h = o g(h) = 1 otherwise 

• Spherical model with range a 

• Exponential model with practical range a 

(-3h) g(h)=l-exp -a-

• Gaussian model with practical range a 

(2-18) 

(2 - 19) 

(2-20) 
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( 3h2 ) 
g(h) = 1- exp ---;;z 

• Power model 
g(h) = hm with O <OJ< 2 

(2 - 21) 

(2 - 22) 

These are illustrated in Figure 2. 1. Another feature that is illustrated in 

Sill 

------------------------::..::;::;;-:;_-�--�- -:----
,.._::, 

,,' ,,·""' ,, / 

,,,' ./· 
,' ./ 

,' / 
,' / 

/ / 
, / 

-------- Exponential model 

-- Spherical model 

-·-·--- Gaussian Model 

a - range h 

-------- O>=l.0 
-- 0>=0.5 
---·-· - 0>=0.1.5 

h 

Figure 2. 1 Bounded semivariogram models (top graph) and power models (bottom graph) for different values of m . 
the first four (bounded) models is the sill. For the nugget effect model 
the sill is reached as soon as h>O. The spherical model reaches its sill at 
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the range a, whereas the exponential and Gaussian models reach their sill 

at the practical range, defined as the distance at which the model value is 

95% of the sill. In the cases presented here (2-18) to (2-21) the sills are 

equal to 1 since the models are standardised. The fifth model, that is the 

power model (2-22), does not have a S\ll. 

Very often experimental semivariograms calculated in different 

directions exhibit different values for the range a and sill. We say that 

the spatial continuity of the attribute changes with the direction of the 

vector hand not only with the distance h = lhl. As earlier mentioned this 

type of behaviour is called anisotropy. 

2.4 Kriging 

Kriging is a term used for a group of algorithms that use a least-squares 

regression technique. Kriging is a best linear unbiased estimator (BLUE) 

method. The linear regression estimator, being a basis of kriging, can be 

expressed as follows: 

n(u) 

Z*(u)-m(u) = LAa(u)[Z(ua)-m(ua)] (2 - 23) 
a=I 

33 



In (2-23) u and ua denote an unsampled location and a sampled point 

respectively. A sample value z(ua) is a realisation of a RV Z(ua) and 

Aa(u) is the weight assigned to a sample value z(ua). In this equation 

m(u) and m(ua) are the expected values of two RV's Z(u) and Z(ua) 

respectively. 

Simple kriging (SK) assumes that m(u) is known constant within the 

study region A. Therefore the SK estimate can be expressed by the 

equation: 

n(u) 

z;K (u) = LA!K (u)[Z(ua)-m]+ m (2 - 24) 
a=l 

During the estimation only the n(u) neighbouring data are retained and 

the n(u) kriging weights are derived so that the error variance a�(u) 1s 

minimised under the unbiasedness condition (2-26). 

a�(u) = Var{ z;K (u)-Z(u)} (2 - 25) 

(2 - 26) 

Where u is the location of the RV being estimated and z;
K 

(u) is the SK 

estimate. The SK minimum error variance is given by: 

n(u) 

aJK(u) = C(O)- LA!K (u)C(ua -u) (2 - 27) 
a=l 

34 



The SK weights can be written as: 
n(u) 

LA�K (u)C(u
a 

- up)= C(u
a 

- u) a= 1, ... , n(u) 
P=I 

(2 - 28) 

The assumption made on the mean for the SK may sometimes be 
difficult to satisfy. Ordinary kriging (OK) allows for variation of the 
local mean. The stationarity of the mean is limited only to a local 
neighbourhood. Therefore the estimator (2-23) can be written as: 

(2 - 29) 

Because the OK estimate is unbiased the weights ,.ta (u) have to add up to 
one. In effect the second term from the right hand side of (2-29) 
vanishes. The OK estimate can be then written as: 

n(u) n(u) 

Z�K (u) = LA�K (u)Z(ua) and LA�K (u) = 1 
a=l a=I 

(2 - 30) 

The OK estimate Z�K (u) is a linear combination of n(u) RV's Z(ua ) .  
,.t�K (u) are the OK weights whose estimation variance a�K (u) is 
minimum. The average error of the OK estimates is equal to zero under 
the unbiasedness condition: 

n(u) 

E{ Z�K 
(u) - Z(u) }= L A�K (u) m(u) - m(u) = m(u) - m(u) = 0 (2 - 31) 

a=I 

The OK error variance can be written as 
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(2 - 32) 

As already mentioned the OK variance has to be minimised. To do this 

n(u) 

under the unbiasedness condition, i.e. L J�K (u) = 1, the Lagrange 
a=I 

multiplier method is used (for detailed presentation see Goovaerts, 

1997). The final result of this derivation is the OK system (2-33) with 

n+ 1 linear equations in n+ 1 unknowns, that is n data weights and the 

Lagrange parameter µ0K (u) 

n(u) 

LA�K (u) C(u
a -u13) + µ0K (u) = C(u

a - u) a= l, ... ,n(u) 
/3=1 

n(u) 

LA�K (u) = 1 
/3=1 

The minimum OK variance then takes the following form: 

n(u) 

a�K (u) = C(O) - LA�K (u) C(u
a - u) - µ0K (u) 

a=I 

(2 - 33) 

(2 - 34) 

The OK system (2-33) is expressed in terms of covariances. On the other 

hand most of the geostatistical modelling of the variability of the study 

data is done in terms of the semivariogram. Taking into account the 

relation between the semivariogram and the covariance function (2-12) 

the OK system (2-33) can be re-written: 
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n(u) LA�K (u)[C(O) - y(ua -up )]+ µ0K (u) = C(O) - y(ua - u) a= l, . . .  ,n(u) 
P=I 

n(u) LA�K (u) = 1 
P=I 

(2 - 35) 

The equation shown in (2-35) can be simplified considering the fact that 
n(u) L ..:l�K (u) = 1 .  In its simpler form (2-35) is presented as: 
P=I 

n(u) LA�K (u) y(ua - u) - µ0K = y(ua - u) a= l, ... ,n(u) 
P=I 

n(u) LA�K (u) = 1 
P=I 

(2 - 36) 

There are a number of other variations of the kriging algorithm. They are 
not used in this study and so discussion of them is not given here. 
References can be found for example in Goovaerts (1997), Deutsch and 
Joumel (1998), Joumel and Huijbregts (1978) and Yerly and Sullivan 
(1985). 

2.5 Simulation 

The following discussion is based on Goovaerts (1997) unless otherwise 
stated. Simulation is designed to reproduce the spatial variability of a 
data set. It aims to give the best reproduction of properties such as the 
histogram and the covariance of the model. However, as opposed to 
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estimation, it does not give the best estimate at unsampled locations. It 
does not concentrate on the local scale yet generates global 
representation of patterns of spatial continuity (Deutsch and Journel; 
1998). As a result of simulation a map of realisations of z-values within 
the study region A, i.e. {z (I) (u), u E A}, is produced, where l denotes the 
/-th realisation at location u. In conditional simulation data values are 
honoured at their locations; that is 

(2 - 37) 

Usually a large number of alternative realisations over the study area A 

is generated. This set of realisations models the spatial uncertainty. The 
joint probability of exceeding the value of a certain threshold at a given 
location u j can be numerically calculated. Each of the realisations 
represents a possible "picture" of the spatial distribution of the attribute 
under study. In effect for every point (or node) being simulated we have 
a distribution of possible values. Yet most practical applications call for 
only one value for a given location u j .  Therefore often the results of 
simulation constitute input data for further post processing such as via a 
loss function as in the case presented by Glacken (1996). 
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A number of different simulation algorithms have been developed. In 

this work we shall examine in more detail sequential Gaussian 

simulation and LU decomposition. References to other algorithms can be 

found, for instance, in Goovaerts ( 1997) and in Deutsch and Joumel 

( 1998). 

2.5 . 1  The multi Gaussian approach 

Both sequential Gaussian simulation and LU decomposition are 

performed under the assumption of the multivariate Gaussian random 

function model. Recall, to infer the cdf we need to know the spatial law 

of the RF (Section 2.2). More precisely, in the case of conditional 

simulation the cdf is conditioned to the (n) local data and is called 

conditional cumulative distribution function ( ccdf) and is expressed by 

F(u; z I (n)) = Prob{Z(u) � z I (n)} (2 - 38) 

The fact that the Gaussian RF model is fully defined by the covariance 

function makes it extremely useful with respect to the inference of its 

ccdf. The properties characterising a multiGaussian RF model 

{Y(u),u E A} with covariance function Cy (h) are listed below (Goovaerts, 

1997) : 

• All subsets of that RF are multivariate normal i.e. {Y(u),u E D  c A}; 
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• The one-point cdf of any linear combination of RV components is 

normal, i.e. X = LAaYCua) is normal for any ;ta and at any location 
a=I 

• The distribution of any pair of RV's Y(u) and Y(u + h) is normal and 

fully defined by the covariance function Cy (h) ; 

• If two RV's are uncorrelated they are also independent, 1.e. if 

Cov{Y(u), Y(u')} = 0 ,  then Y(u) and Y(u') are independent; 

• All conditional distributions of any subset of the RV Y(u) are 

multivariate normal, given realisations of any other subset of Y(u). 

If we consider a single RV Y(u) , under the multiGaussian model, its 

conditional distribution is fully defined by its mean and variance, given 

n(u) data y(ua). Further, the mean and variance of the ccdf at location u 

are identical to the simple kriging estimate y;K (u) and simple kriging 

variance o}K(u) from n(u) data y(ua). The ccdf can then be expressed as: 

(2 - 39) 

where GO is the standard normal cdf (Abramovitz and Stegun, 1972, 

p.932) and 
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n(u) 

y;K (u) = m(u) + LA!K (u)[y(ua)- m(ua)] (2 - 40) 
a=I 

n(u) 

a;K(u) = CR(O)- LA!K (u) CR(ua -u) (2 - 41) 
a=I 

The weights A!K (u) are given by (2-28). The RV's Y(ua) and Y(u) do not 

have to be identical therefore the RF {Y(u), u E A} does not have to be 

stationary. As it turns out, it is enough to solve the SK system, at a given 

location u, to infer the ccdf, under multiGaussian RF model. To be able 

to take advantage of the model it has to be assumed that the study data 

satisfy the multiGaussian assumption. Yet, in reality, it would be very 

difficult, if not impossible, to find a variable, such as the grade, in any of 

the earth sciences with perfect multiGaussian distribution. Therefore the 

distribution of the variable has to be transformed into normal space prior 

to the simulation being performed. This transformation involves the 

steps presented below. 

Firstly, the original z data are transformed to y values which have a 

standard normal histogram. This procedure is referred to as a normal 

score transform and the y values y(ua ) = ¢(z(uJ) are called normal 

scores. Secondly, the multiGaussian model is applied to the normal 

scores. This enables us to derive the Gaussian conditional cdf at any 

unsampled location u, such as: 

41 
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G(u; y I (n)) = Prob{Y(u) :::;; y I (n)} 

With respect to the last equation there is another requirement which has 

to be satisfied that is the two-point cdf of Y(u) should also be normal see 

(Goovaerts, 1997, pp. 271-275) and (Deutsch and Joumel, 1998, pp. 142-

144). 

In the third step the conditional cdf of the original variable is retrieved 

F(u; z I (n)) = Pr ob{Z(u) � z I (n) } 

= Prob { Y ( u) � y I ( n) } 

= G(u; ¢(z) I (n)) 

¢(.) is the normal transform function and is monotonic increasing. 

If all the assumptions are satisfied and the multiGaussian RF model 

holds for the normal score variable y, then the simulation with the 

sequential paradigm can proceed. 

2.5.2 Sequential Gaussian simulation 

The sequential simulation paradigm is based on Bayes' axiom 

(Goovaerts, 1997 pp.376-377) by which any two-point ccdf can be 

expressed as a product of two one-point ccdf's :  

F(u; ,u; ; zi , z2 I (n)) = F(u; ; z2 I (n + 1)) · F(u; ; z, I (n)) (2 - 42) 
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It 1s possible to decompose the N-point conditional cdf 
F(u; ... ,u� ; zi , · · ·zN I (n)) so that it can be expressed as a product of N one

point conditional cdf s based on Bayes' theorem. The sequential 
simulation proceeds in the following steps: 
• At the first location u; the cdf is modelled conditional to the n 

existing data z(ua ) ,  i.e. F(u; ; z I (n)) = Prob{Z(u; ) � z I (n)}; 

• From the modelled ccdf a realisation is drawn zu) (u; ) .  This realisation 
becomes a conditioning datum for all further drawings; 

• The two steps are repeated until all N nodes are simulated. 
As a result of this process a set of values {z<l) (u), j = 1, ... , N}, referred to as 
realisation of the RF {Z(u),u E R} is obtained. 

If the multiGaussian RF model is used with the sequential paradigm then 
this type of simulation is called sequential Gaussian simulation. The 
algorithm of sequential Gaussian simulation of a continuous attribute z 
will be considered. The area over which the simulation is done has to be 
gridded and the calculation is performed at the grid nodes. The grid does 
not need to be regular. The variable is conditioned to the data values 
{z(ua ),a = 1, . . . , n}. We assume that z-data were transformed to the normal 
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score y-data and that the multiGaussian RF model is retained. Following 
Goovaerts (1997) this process can be presented in the subsequent phases: 
• For each realisation define a random path to visit all grid nodes only 

once; 
• For each node u' estimate the mean and the variance of the Gaussian 

ccdf, G(u'; y I (n)) by carrying out simple kriging. The semivariogram 
model of the normal score data Yr (h) should be used. Here (n) 
denotes the conditioning information, i.e. the number n(u') of normal 
score data y(ua ) and values /l ) (u� ) previously simulated from the 
neighbourhood that should be used during simple kriging; 

• Draw a simulated value y <0 (u) from this ccdf and add it to the 
simulated data set; 

• Continue to the next grid node according to the random path and 
repeat the last two phases; 

• Iterate until all nodes are simulated; 
• Back-transform the simulated normal scores {y<l ) (u),j = 1, . . .  ,N} where 

N is the number of nodes, into simulated values for the original 
variable 

j=l, . . .  ,N 
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¢-1 (.) = F-1 (G(.)) , where F
1
(. ) is the inverse cdf of the variable Z and 

G(.) the standard Gaussian cdf. The number of realisations can be 
arbitrary. This means that other realisations are obtained by repeating the 
steps outlined above beginning with the step where the random path is 
defined. 

2.5.3 The LU decomposition algorithm 

This is another example of a simulation technique that relies on the 
multiGaussian RF model. The simulation is realised by decomposition of 
the covariance matrix. This method is usually used when simulating a 
small number N of points with sparse conditioning data (Goovaerts, 
1 997). Since the decomposition algorithm is performed in the normal 
space therefore the original z-data is first transformed into normal score 
y-data. The simulation is conditioned to the sample data set 
{z(ua ),a = l, ... ,n} and we have N grid nodes with location u� . The 
subsequent steps of the LU decomposition algorithm are as follows: 
• The covariance matrix C is constructed between all (n + N) sample 

points and simulated grid nodes: 
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where Cy (h) is the covariance function of the standard normal RF Y(u) 

and c1 1, , C22 , and C12 = C!1 are the n x n sample-to-sample covariance 
matrix, the N x N node-to-node covariance matrix and the data-to-node 
covariance matrix, respectively. 
• The matrix C is then decomposed and written as a product of a lower 

and an upper triangle matrix, such as: 

C = L · U = [L1 1  0 ] 
[
U1 1  U12 ]  

L21 L22 0 U22 

• A realisation {y</) (u), j = 1, ... , N}, conditioned to the neighbouring 
sample data, is derived as the following linear combination: 

(2 - 43) 

In (2-43) Ya is the vector of the n conditioning data and co<I) is the vector 
of N standard normal deviates. 
• The last step involves the back-transform of the simulated normal 

scores to the simulated original values {z<l ) (u�) = ¢,-1 (y</ ) (u: )), j = 1, . . .  ,N}. 
Subsequent realisations are generated by multiplying of co(/') , l' -:f:. l by the 
matrix L22 from (2-43). This allows the generation of a large number of 
realisations in a short computation time. 
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As one would expect, the results of simulation, both sequential Gaussian 
and LU decomposition, may contain values that are higher than the 
largest original sample value and others that are lower than the smallest 
sample value. Therefore to back-transform from the simulated normal 
scores to the original attribute data it is necessary to model the sample 
distribution beyond the smallest z-data value z1 (lower tail) and above the 
largest zK (upper tail). Three different models are suggested (Deutsch 
and Joumel, 1998), (Goovaerts, 1997) for extrapolation. The models 
include: 
• Power cdf model for the lower tail 

(2 - 44) 

where m > l, z1 is the smallest z-data value, zmin is the chosen minimum z-
value. If m = 1 than we have a particular case of (2-44) which is the 
linear model. Distributions with m > 1 are negatively skewed and with 
m < 1 are positively skewed. 
• Power cdf model for the upper tail 

(2 - 45) 
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where m < I ,  zK is the largest z-data value and zmax 
is the maximum data 

value chosen by the user. 
• Hyperbolic cdf model for the upper tail 

(2 - 46) 

The magnitude of m affects the tail being extrapolated, that is the larger 
· the value of m the shorter the tail. A suggested value of cv = 1.5 gives 
good results in most cases. 
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3. CHANGE OF SUPPORT AND VOLUME - VARIANCE 

RELA TIONSIDP 

In the discussion so far the data values z(ua ) were treated as point 
samples. In reality, however, the variable of interest (for instance grade 
of a gold deposit) represents a particular volume or sometimes a surface. 
This can be the volume of a drill sample v(ua ) or the volume V of a 

, '  block in a mining block model. This value is called the support of the 
variable of interest. There is a relation, discussed later in this chapter, 
between the support of data and the distribution of their values. 
Intuitively, data with smaller support, e.g. the grade of drill samples, will 
have a larger variance than data with a larger support, e.g. the grade of 
blocks ( often containing hundreds of tonnes of rock each) from a block 
model. 

Let us consider the same property of a gold deposit, that is the grade, but 
with different supports, i.e. different size samples arising from distinct 
drilling types. In effect, we have two different variables because the 
volumes/supports they exhibit are not equal. That also implies individual 
statistical characteristics. The question is whether these two variables are 
related in any way, and whether two variables with different supports 
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can be related. Also of interest is the problem of modelling the 
distribution of one of the variables knowing, or having estimated, the 
distribution of the other one. In our case where we wish to determine the 
distribution of the SMU (block) knowing the distribution of the 
exploration data, because in practice, when mining commences, one will 
rely on the SMU to calculate the recoverable reserves . 

. From the statistical point of view, a variable with smaller support, 
sample values in our case, is more dispersed than a variable with larger 
support, in our example SMU. However, the global mean, at the zero 
cut-off, of the point distribution is not affected by change of support. 
Samples are most often considered as point samples since the volume 
v(ua ) they represent is very small compared to the larger SMU volumes 
whose average we are trying to estimate. 

The support effect has a practical impact on rmmng. Estimating 
recoverable reserves, at the given cut-off grade, based on the point 
support grade-tonnage curve may be biased if actual mining uses an 
SMU with much larger volume. In general, at a given cut-off, as the size 
of the SMU increases, the average grade of ore decreases. For cut-off 
grades below the average grade of a deposit, increasing the volume of 
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the SMU often results in an increase in the estimated tonnage of ore. For 

cut-off grades above the average grade, larger SMU usually results in a 

decrease in the estimated tonnage of ore (Isaaks and Srivastava, 1989). 

In particular, if a selection of blocks as waste or ore, based on a given 

cut-off grade, is made on the basis of exploration drill samples then there 

is the possibility of overestimating the percentage of blocks above the 

cut-off grade. This equates to overestimating the tonnages above the cut

off grade. Now, depending on the magnitude of the error this can have 

very serious, sometimes even disastrous, financial implications for a 

mining project. 

Increase in support reduces the spread of the data as illustrated in Figure 

3. 1. By increasing the support the values of the variable are averaged 

over increasing volume. To illustrate this we can imagine a situation 

where the whole model contains only one block, which covers the whole 

study area A. In such a hypothetical situation the frequency distribution 

of the variable would become a spike with the value equal to the value of 

the mean of the considered deposit. Summarising, we can say that the 

larger the support the smaller the variance. 
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Figure 3. 1 Example of the frequency distributions of data with volume V and v, where V>v 

Denote by V(u) an SMU of volume V centered on location u. Suppose 

that V(u) is divided into N production units v(ua ) ,  centred on location 

ua and having volume v. Then the mean value (grade) of Z over the 

volume v(ua) is given by 

and mean value (grade) on V(u) is given by 

1 1 N Zv (U) = - f z(u)du = - � Zv (ua) 
V Jv(u) N ;:t 

The dispersion of the N grades z/ua) about their mean value zv (u) can 

be described by the mean square deviation (J ournel and Huijbregts, 

1978): 

1 N 
2 

s2 (u) = -I[zv (u)-z/ua)] 
N a=t 

(3 - 1) 
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If we consider each of the components of (3-1) as realisations of RV's 
then this equation can be re-written as: 

(3 - 2) 

The dispersion variance of the RV S 2 (u) is the expectation of this 
variable, assuming the hypothesis of stationarity (Section 2.2). The 
dispersion variance of smaller volume (support) v within larger volume 
(support) V is defined by 

D2 ( v IV) = E {S 2 (u) }= E{ ! �[Zv (u) - Z, (u. }]2 } (3 - 3) 

In more general terms the variance of dispersion D2 ( v IV) can be also 
expressed as the mean value over V(u) of the estimation variance a 

E 
of 

grade Zv (u) (e.g. grade of SMU) by grade Z(ua ) (grade of samples) with 
volume v(ua ) within V(u) (for more details see Joumel and Huijbregts, 
1978): 

D2 (v lV) = _!_  f E{ [Zv (u) - Z)ua )]2}dua 
V Jv(u) 

1 J 2 = - (f 
E (V (u), v(ua ) )dua V V(u) 

(3 - 4) 
v << V  

In (3-4) V is significantly larger than v, as in case of drill sample data 
and, for instance, SMU blocks. In practical applications the dispersion 
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variance can be calculated from (3-1). In this case z,(u) = z = _!_ l z/ua), 
n a 

where n is the number of grade samples and n :::; N . The equation (3- 1) 

has now the form 

(3 - 5) 

The equation (3-4) can also be written in terms of semivariograms: 

D2(v!V) = y(V,V)-y(v,v) (3 - 6) 

and this form is often used for computation of the dispersion variance. 

Another relationship involving the dispersion variance is the volume 

variance relationship, which was derived experimentally by D.G. Krige 

is frequently referred to as "Krige' s  relation": 

D2 (v I A) = D2 (v IV) +  D2 (V I A) (3 - 7) 

where v � V � A, with A here denoting the measure of the volume of the 

deposit. 

Equation (3-7) illustrates quite well the way the different supports affect 

the variability. Using it we can calculate by how much the total variance 

D2 (v l  A) needs to be reduced to more accurately reflect the variance 

between blocks D2 (V I  A) . The variance adjustment factor fv is defined as 
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the ratio of the block vanance to the point vanance (Isaaks and 
Srivastava, 1989): 

f 
= IY(YIA) = d(v!A) - D2(v!V) = l  IY(v/V) 

v d(vl A) D2(vl A) D2(vl A) 
(3 - 8) 

From the discussion presented above it can be seen that a change in the 
support may have significant effect on the results of mineral resource 
estimation. Hence, there is a definite need for an effective way of dealing 
with this issue. In the current geostatistical literature several methods of 
correcting for the change of support are proposed. Some of these are 
examined in detail in the following chapter. 
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4. CORRECTION FOR THE SUPPORT EFFECT 

4.1 Overview 

Firstly a brief insight into research on the correction for the change of 
support is given. Subsequently, different correction methods are 
presented. 

Since the theory of regionalised variables was developed by G. Matheron 
( 1971)  the volume - variance relationship and the change of support 
problem have been well recognised within the field of geostatistics. One 
of the first studies that demonstrated the significance of accounting for 
the change of support during mineral resource estimation was that of M. 
David ( 1977). The theoretical foundations for the most commonly used 
methods of change of support correction were devised and presented by 
Joumel and Huijbregts ( 1978). These formed the basis for several ways 
to correct the point variance into the block variance, eg. affine 

correction, indirect lognormal correction (Isaaks and Srivastava, 1 989 ), 

discrete Gaussian correction (Joumel and Huijbregts, 1 978). Each of 
these assumes a certain type of underlying distribution. The models are 
typically applied to the "global" distribution ( derived from all available 
data), yet in practice mineral resources need to be estimated on a local 
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scale. Rossi and Parker, ( 1993) presented a case study to test the most 
commonly used correction techniques, affine correction, indirect 
lognormal and Gaussian method. In the conclusion the authors suggest 
their own approach for handling the change of support. This involves 
kriging and conditional simulation in order to derive the support 
correction factor on a global and local scale. 

There are a number of publications investigating the theory as well as the 
limitations of the topic (David, 1 972; Huijbregts, 1 976; Joumel, 1 985). 
In these cases special attention is given to the grade-tonnage 
relationships. Properly used, the volume-variance relationship may be 
employed for production planning. It also helps to compute fluctuation in 
grade over different periods of time (Parker, 1 980). Resolving the 
optimal mining as well as the milling method depends strongly on 
estimated ore body characteristics - grade, tonnage, and variability. 
Hence, the accuracy of the estimates is critical (Parker, 1980; Recny, 
1 978). 

There is also a method known as lognormal short cut, developed by 
David ( 1972, 1 977). However, it was developed mainly for a porphyry 
copper-type deposit and may produce biased results in some other cases, 

57 



eg. gold deposits, following Rossi and Parker (1993). Those authors also 
refer to Sullivan and Yerly (1983) whose results demonstrate biased 
estimates, in case of a gold deposit, produced by the lognormal short cut. 

A number of papers regarding change of support was collected and 
published by Dimitrakopoulos (1994). Various techniques are discussed, 
along with case studies, also including use of conditional simulation. 
Literature that relates to the different methods of conditional simulation 
and the volume - variance relationship is well developed. References can 
be found in many sources, eg. (Goovaerts, 1997; Deutsch & Joumel, 
1998; Dagdelen et al, 1997) 

Summarising, the volume - variance relationship and the problem of 
accurate prediction of mineral resources, hence accounting for the 
change of support, has received a great deal of attention in the 
geostatistical literature. There have been many methods developed to 
help in solving this problem. In general, they can be classified into two 
groups: 
• Direct methods: recoverable reserves are estimated directly from the 

data available (eg. Disjunctive Kriging (Matheron, 1975b), 
Probability Kriging, MultiGaussian Kriging) 
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• Indirect methods: recoverable reserves are estimated by applying one 

of the correction methods to build a block grade model. 

Each of these approaches has its own advantages and disadvantages. The 

following sections present methods deemed to be the most commonly 

used in practice. 

4.2 Affine correction 

Possibly the most frequently used procedure for correcting for the 

support effect is the affine correction. The affine correction transforms 

values (in this case quantiles qz) of one distribution into values (or 

quantiles qy) of another distribution (lsaaks and Srivastava, 1989; 

Joumel and Huijbregts, 1978) and it is described by the following 

equation: 

(4 - 2) 

where m is the common stationary mean of both distributions and the 

factor fv is the variance correction factor defined by (3-8). Equation 

(4-2) is illustrated in Figure 4. 1. 
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Figure 4. 1 Affine correction transformation 

According to the geostatistical literature ( e.g. Isaaks and Srivastava, 
1989; Rossi and Parker, 1993) the value of the correction factor fv 

should fall between 0.7 - 0.8 for the affine correction method to be 
effective. With a reduction in variance above 30% (moving from smaller 
support v to larger support V) a symmetrisation of the distribution may 
occur. Therefore the adjustment factor should not be smaller than 0. 7. 
Too low a value of the factor may also produce a minimum value of the 
transformed distribution which is not realistic. The value of fv can be 
also estimated as the ratio of the arithmetic variance a; of the original 
variable, say z , and the variance a; of the variable Y whose distribution 
is being estimated. The support of z is v and the support of Y is V, with 
v< V. Therefore we have: 

2 

J, = O"y V 2 
O"z 

(4 - 3) 
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This correction method is based on the assumption that the shape and the 

mean of the distribution do not change. Only the variance changes. 

Effectively, the variance of the original variable Z can be shrunk around 

the mean that is common and known, to obtain the distribution of other 

variable Y, usually of the SMU. The method is not difficult to apply and 

that is its main advantage. In practice the affine correction technique 

gives results very similar to those obtained from the indirect lognormal 

correction (Joumel and Huijbregts, 1978) discussed in the next section. 

4.3 Indirect lognormal correction and discrete Gaussian 
transformation 

These two methods, i.e. indirect lognormal correction and the discrete 

Gaussian transformation are not used in our study and so will not be 

discussed in great detail in this thesis. 

The Indirect Lognormal Correction is given by the following exponential 

equation: 

where: r 1
2 m �CV 2 +1 

a= �fv *CV 2 
+1 m 

(4 - 4) 
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and b = 
ln(f

v 
* CV 2 + 1) 

ln(CV 2 + 1) 

(Isaaks and Srivastava, 1989 pp. 472-476) 

As before, m is the mean and fv 
is the variance correction factor. The 

coefficient of variation is denoted by CV and is defined as the ratio of the 

standard deviation to the mean. References on this method can be also 

found in Joumel and Huijbregts (1978). 

The discrete Gaussian transformation is a more sophisticated method 

than the two discussed so far. It was developed by G. Matheron (1975a) 

and it involves a transformation of the original variable Z into the 

Gaussian distribution by means of Hermite polynomials. The mean and 

the variance of the transformed distribution are then determined. Based 

on the results the variance correction factor is obtained. Then the 

Gaussian histogram is back-transformed. The mean is preserved while 

the variance has been reduced. This is a very brief description of the 

method. References can be found in Joumel and Huijbregts (1978). The 

discrete Gaussian method is considered more robust by some authors 

(Rossi and Parker, 1993), than the other methods discussed. Nevertheless 

it has not been widely used in practice due to its high level of 

complexity. 
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4.4 Change of support by conditional simulation. 

Change of support by conditional simulation is one of the two relatively 

new correction methods of support changes chosen for this study. This 

method was detailed by Glacken (1996) who gave an example of its use 

as a tool for recoverable reserve estimation at different supports. Two 

simulation algorithms are suggested as the best suited for the purpose of 

correction the changes in the support of data. The algorithms include: 

• The LU simulation (Section 2.5.3); and 

• Sequential Gaussian simulation for blocks (Section 2.5.2). 

The LU decomposition algorithm is limited to local change of support 

and is suggested as better suited for grade control purposes. The 

covariance between simulated block values is not reproduced since they 

are treated as separate entities. For the global change of support 

sequential Gaussian simulation is proposed. This simulation takes into 

consideration the relation between the simulated block values i.e. the 

covariance between blocks. This global approach enables reproduction 

of the recoverable reserves for a given support, which is what we would 

like to achieve in the study. Therefore the sequential Gaussian simulation 

method will be used for the purpose of this research. We also intend to 

compare the results of applying different change of support correction 
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methods in terms of the grade tonnage curves. These curves can be 

derived from resource estimates. 

A brief summary of the change of support by use of conditional 

simulation is given here. For full details see Glacken (1996). The 

correction for the support change is accomplished directly during the 

conditional simulation and there is no need for the separate correction 

factor used by other methods. The main idea is to simulate the values of 

the variable at the discretised volume of a block. Then, if the variable 

averages linearly, those values can be averaged to calculate the value of 

the block at the desired support. In practice, nearly any simulation 

algorithm may be adopted for this purpose, however LU decomposition 

and sequential Gaussian simulation are the two methods proposed. 

Averaging the point values over many realisations produces a probability 

distribution of the values (i.e. grades) for each block simulated. This 

models the uncertainty at unsampled locations. In most cases we are 

interested in a single value per block to be returned. Yet having the 

distribution of the grade for each block gives the flexibility of applying 

different criteria (including economic) to determine the "optimal" grade. 

Use of the theory of profit and loss functions is suggested. The general 

assumption behind the definition of the function is that selection of any 
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value except for the true value, which is unknown, will incur a loss. It is 

possible to determine the value which minimises the expected loss for 

any given simulated probability distribution. 

This method may have very practical application possibilities for mining 

operations. It allows the incorporation of economic parameters for a 

grade control during block selection, as well. The traditional block 

selection procedure, which uses a deterministic cut-off grade, is replaced 

with a probabilistic approach. The probability of the block exceeding the 

cut-off grade is compared with a "threshold probability". If the 

probability is higher than the threshold probability then the block is 

selected, otherwise it is rejected. This threshold takes into account the 

uncertainty about the grade and economic parameters. What is even 

more interesting, the method does not require a grade estimate because it 

works in the probability space. A case study is given by Glacken (1997). 

4.5 Nearest neighbour kriging 

Nearest neighbour kriging, (NNK) is the second new method used in this 

study for correction for the support effect of the data. This method was 

developed by Arik (1998) and is a modification of ordinary kriging (OK) 
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designed especially to deal with skewed distributions when estimating 

recoverable reserves. It also accommodates the variance correction 

factor. Hence it honours the change of support effect. The NNK 

estimator z�
NK 

is similar to the OK estimator z�
K 

(2-30) and can be 

written as follows: 

n(u) n(u) 

Z�
NK

(u) = LA;NK(u)Z(u
a
) and LA;NK(u) = 1 

a=l a=I 

(4 - 5) 

where ,1,;NK (u) are the NNK weights. The NNK estimation variance can 

be derived as in (2-32). The NNK estimator z�
NK 

(u) is a linear 

combination of n(u) RV's Z(u
a
). In general, more weight is given to the 

nearest neighbour sample value than to the other values. The weights are 

increased or decreased by a certain proportion, so that the sum of the 

weights is one in order to satisfy the general unbiasedness condition of 

the kriging technique. The proportion used to obtain NNK weights is 

called the smoothing correction factor. The suggested value for the 

factor is the square root of the ratio of the SMU block variance a; to the 

sample variance a-; (Arik, 1998). 

(4 - 6) 
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This is the correction factor f which accounts for the changes in the 

variance moving from smaller support to larger support. Adjustment of 

the ordinary kriging (OK) weights A�K (u) to determine the NNK weight 

J;NK (u) can be carried out as follows: 

for the nearest sample ( 4 - 7) 

for all other samples ( 4 - 8) 

Although the standard approach with NNK would be simply to consider 

the nearest sample, the algorithm does allow one to emphasise k nearest 

samples. (In practice, the actual value(s) taken fork would differ on the 

particular case under consideration). If \(u) is the sum of OK weights 

of k nearest samples then, 

A
k 

(u) = L J7K (u) < 1 
i=l 

and each Pi is the ratio of the weights of one of k sample values to the 

sum A
k 

(u) which can be written as follows 

A7K (u) 

P; = A
k 

(u) 

Then equations ( 4-7) and ( 4-8) can be written as 

i = 1, ... , k 

i = 1, ... , k 

j = k + 1, ... , n 
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These two equations can be also presented in the simpler form (Arik, 

1998) 

i = 1, ... , k (4 - 9) 

A�NK (u) = A
j 

(u) * (1- f) j=k + 1, ... ,n (4 - 10) 

As shown, the NNK method is an effective way of reducing the 

smoothing (the closest samples are given most importance) usually 

introduced by the kriging algorithm and, at the same time, adjusting the 

estimate to take into account the changes in the support of the data. And 

indeed, emphasising the nearest sample ( or samples if deemed 

appropriate) may prove beneficial with variables from the earth sciences 

which very often exhibit a skewed distribution. Further, this method, on 

top of employing all of the variographic parameters used by OK, 

determines in statistical terms, which of the nearest samples influence 

the estimate most. Different panel size estimates can be generated 

without a need for a separate change of support correction. 

In the next chapter a description of the data set used in the study is given. 
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5. DATA SET AND TREATMENT 

5.1 Introduction 

The data for this study were acquired from the Boddington Gold Mine 

(BGM) database. The BGM is located in the Darling Scarp Jarrah Forest, 

approximately 130km south east of Perth in Western Australia. Ore is 

extracted from both weathered oxide and fresh bedrock zones utilising 

open cut mining methods. The data set used here comes from the oxide 

profile only. At the beginning a comprehensive description of the 

exploration and mining practices at BGM will be given, followed by the 

presentation of the data sets used throughout the study. 

5.1.1 Exploration and grade control practices at BGM 

An identified mineralised structure is usually defined further by an 

exploration drilling. Diamond, hammer or reverse circulation drilling is 

used. Solid cores of rock can be obtained only from the first type of 

drilling. The other two methods result in small chips of rock and rock 

dust. At BGM the drill holes are located on a pseudo regular grid 

(approximately 25 by 25 metres). Holes have widely varying azimuth 

and dip, and the density of drill holes is sometimes greater in high-grade 
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areas. They are sampled at one-metre intervals down the hole. The 

diameter of these holes can vary from 60 mm to 122.6 mm depending on 

the type of rod and drill rig used. The data from the exploration samples 

serve as an input for building a 3D model of the ore body and the grade 

and the tonnages are estimated using geostatistical techniques. This 

model is then optimised and the optimal pit envelope is defined 

(Boddington Gold Mine Internal Report, 1998). Before the mining phase 

begins another drilling campaign occurs, called a grade control infill 

drilling. This is done inside the optimised pit shell in order to confirm 

and further define the extent of the ore body. Effectively the drill spacing 

is denser. However, only the exploration data is used in geological 

modelling because the grade control data is not available at that stage. 

The grade control sampling occurs on each bench before it is actually 

mined. 

Two raw data sets will be used in this study. The sets were primarily 

extracted from the data base covering the following region: 

East 9193m - 9674m 

North 10924m - 11549m 

The coordinates used in this thesis are quoted from the mine grid. The 

mine grid north is 42° 20' 40" to the west of true north. This, however, is 

not the final study area, which will be defined in section 5.2.2. The first 
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set contains the exploration drill data. After compositing it will be called 

excomp. This set will serve as our exploration sample set. The second set 

is the grade control data set. It consists of the grade control trench 

samples. At BGM the vast majority of grade control data come from 

channelling, which occurs on every bench prior to mining. This data set 

will be called grchanraw. Grade control data are very often used as data 

against which geostatistical estimates are reconciled. In this study the 

data from grchanraw will be used for a similar purpose. However, the 

estimation itself will be done using data from excomp only. 

5.2 Exploration data set 

Data for a total of 815 drill holes were extracted from the BGM 

database. The set consists of three different types of drilling: 

• diamond drilling; 

• reverse circulation drilling; and 

• hammer drilling. 

There are 265 holes of diamond drilling type, 322 holes drilled using the 

reverse circulation technique and 228 holes of hammer drilling type. 

Samples, in most cases, are taken every metre down the hole. 

Essentially, the holes were drilled on a pseudo regular square grid with 

grid spacing of approximately 25 metres. However, in some areas 
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drilling density appears to be higher than in the others. It should be noted 

that the set described here as the exploration set might also include some 

of the grade control drill holes (infill drilling) drilled before mining was 

commenced. Because of several campaigns of drilling within BGM it 

was found very difficult, in some cases even impossible, to distinguish 

some of the grade control holes from exploration holes. However, this 

should not affect, to any extent, the outcome of the study. A few drill 

holes were found with very high sample values in some cases even as 

high as 1000 grams per tonne of ore. Investigation of this anomaly 

(Khosrowshahi et al, 1992) showed that, in one of the pits there were 

three spatial domains with very high grade values of copper and gold 

identified in the lower part of the weathered profile. It should be noted 

that this pit constitutes the southern part of our study area. 

Because of possible differences between drilling types, the exploration 

data set was split into three separate sets each containing only one type 

of drilling. The summary statistics calculated on each of them is 

presented in Table 5. 1. Essentially, there is very little difference between 

the diamond and the hammer drilling types. The reverse circulation data 

is less variable than the other two. 
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Table 5.1 Summary statistics by drilling type. Raw exploration data set. 

Type of 
Standard 

Coefficient 
drilling Mean 

Deviation 
Min. Max. Number of 

Variation 

Diamond 1.702 18.508 0.010 1310.690 13503 10.874 

Reverse 1.148 10.056 0.010 639.000 9299 8.760 

Circulation 

Hammer 1.480 16.686 0.010 1310.690 8616 11.274 

This could be attributed to many factors, for instance: 

• the nature of reverse circulation drilling (it produces rock dust) can 

introduce some degree of smoothing; and 

• there are only three holes, from the reverse circulation set, drilled in 

the high grade zone in the pit mentioned earlier. 

For these reasons the data from the reverse circulation drilling is 

considered to be a complementary data set rather than a separate 

population. Hence, for the purpose of this study, it was decided to 

combine all three sample populations. 

Our study will concentrate on one representative bench chosen from the 

entire data set. A bench or level is a horizontal (in the case of BGM 

inclined at 2 % ) slice of rock mined at one time or pass. This bench was 

selected to intersect with the described high grade zone. The reduced 

level (RL) of the bench is 228.0 m, it is not inclined and is three metres 

thick, hence the bottom RL is 225.0m. The fact that the bench is 
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horizontal is important from the point of view of the grade control trench 

data; this will be discussed further in the next sections. 

To be able to compare the exploration data with the grade control data 

set in the same region of space, the samples must represent the same 

vertical thickness. In order to achieve this the samples needed to be 

composited. Compositing involves calculating and assigning values to 

specified segment lengths located at specified positions down the hole. 

These segments are generally different from the actual sections assayed. 

In this case the aim is to compare the sections that are contained within 

each bench at 3.0 metres vertical thickness. We have assumed here that 

the volume of a sample is the same for both data sets. At this point, it 

should be noted that the trench data from grade control are, in fact, 

already composited. The reason for this is that trenching occurs on every 

bench. Moreover, the channel depth is equal to 3.0 metres, which is the 

bench height. Hence, every channel sample represents the same 

thickness, which is equal to our chosen segment length for compositing. 

The composited exploration data set is called excomp. 
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5 .2.1 Descriptive statistics of excomp 

The statistics presented in this section are calculated for the chosen 

representative bench and over the primary region defined at the end of 

section 5 .1.1. The summary statistics for excomp are presented in Table 

5.2 below. 

Table 5.2 Summary statistics calculated on excomp for the bench 228.0 RL. 

Standard 
Coefficient 

Data Set Mean 
Deviation 

Min. Max. Number of 
Variation 

Excomp 1.303 6.172 0.010 84.330 1 707 4.736 

The frequency plot for the bench 228.0 RL and also the lognormal 

probability plot for excomp are shown in Figure 5.1. As can be seen, this 

is a relatively variable population, positively skewed with a tail of high 

values. It will be necessary later on to identify and separate the high 

grade composites from the rest of the population. Consideration of the 

lognormal probability plot indicates that the distribution may be regarded 

as approximately lognormal, although it should be noted that this 

assumption does not affect the results of the calculations performed in 

this study. 
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Figure 5.1 Excomp frequency plot (a) and lognormal probability plot (b), bench 

228.0 RL. 

5 .2.2 Definition of sample data set 

Within the reg10n covered by excomp, apart from other geological 

formations, there are a few dolerite dykes present. The dolerites, based 
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on the BGM experience, are barren rocks and they do not host any gold 

mineralisation (Boddington Gold Mine Internal Report, 1998; 1996). 

Hence, taking any sample data from the intersection with dolerite dykes 

into the calculation of the statistics and experimental semivariograms 

would create a bias. There is also a high-grade zone, already mentioned 

in Section 5.2, located in the southern part of the project area. Since it is 

a separate population from both a geological and a statistical point of 

view, it has also been excluded from the calculations. In order to enable 

exclusion of the above-described populations every sample from excomp 

was assigned an integer code. If a sample came from an intersection with 

one of the dolerites or with the high-grade zone a special, three-digit 

code was attributed to it so that it could be excluded from the subsequent 

calculations. 

The coding mentioned above was done using solids acquired from BGM. 

The solids were created based on the exploration drill data and they 

represent different dolerite dykes in the region. One solid represents the 

high-grade zone. After the coding was carried out, the coded drill data 

were listed in order to check the results. Any questionable drill holes, i.e. 

a sample with a gold grade within a dolerite dyke, were then edited, 

using MineSight® software, and the codes corrected. No alteration to the 
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sample values was made in any case. The coding was done within 

Medsystem® statistical suite. 

As a result of these modifications to the excomp data set, effectively a 

new data set was generated. This new data set, referred to here as 

finexcomp is the exploration set that is used in this study. A plan view of 

the study area with finexcomp composite data is shown in Figure 5.2. 

Summary statistics for finexcomp are given in Table 5.3. 

Table 5.3 Summary statistics calculated forjinexcomp for the bench 228.0 RL. 

Data Set Mean 

Finexcomp 1.464 

Standard 
Deviation 

4.906 

Min. 

0.010 

Max. Number 

52.860 143 

Coefficient of 
Variation 

3.351 

The final study project limits, over which summary statistics were 

calculated, are: 

E: 9410m-9630m 
N: 11 lOOm-11330m 
Elevation: 225m - 228m RL 
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Figure 5.2 Final study area (E: 9410-9630m, N: 11100-11330m). Plan view 
finexcomp - 228.0 RL. Composites between 0.4 and 5.0 g/t shown in 
blue, greater than 5.0 git shown in red 

The frequency plot and the lognormal probability plot for finexcomp are 

shown in Figure 5.3. As can be seen the majority of samples from 

finexcomp fall below 2.5 (g/t) cut-off grade and the data set is positively 

skewed. The lognormal probability plot indicates that the data exhibit an 

approximately lognormal distribution. 
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Figure 5.3 Finexcomp data set: (a) histogram and (b) lognormal probability plot 

5.3 Grade control data set 

After mining of the ore body has commenced, every mining bench is 

channelled. Channels are narrow trenches cut across the bench to its full 

depth of three metres. The trench spacing is equal to ten metres. A soil 
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pile builds up along the sides of a trench during the digging process. 

Samples are taken along the soil pile in two-metre increments. Therefore 

the support represented by one grade control sample can be defined by 

the following parameters X=2m, Y = 1 Om and Z=3m. It should be noted 

that there is no need for blasting as long as the oxide material is soft 

enough to be mined in situ with an excavator. Grade control is done on 

inclined benches. The inclination is defined by the following parameters: 

• hinge point coordinates: 

• inclination direction 

• inclination 

10200 m South, 11500 m North 

180 (i.e. South) 

2% 

Grade control data for the chosen bench come from the trenching. The 

set containing these data is referred to as grchanraw and comprises 

approximately 23,913 samples, within the chosen horizontal bench 

within a range from 228.0 RL to 225.0 RL and the primary coordinates 

as defined at the end of Section 5 .1.1. 

The grchanraw set, similarly to excomp, contains mineralised and non

mineralised zones including the high grade structure. In order to be able 

to distinguish ore from waste, plan views of both populations were 

generated as shown in Figure 5.4. Because grchanraw covers a smaller 

area than excomp, both sets were constrained to the same region i.e. E: 
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9410m- 9630m, N: 1 l lOOm- 11330m and elevation: 225m - 228m 

RL (see Section 5.2.2), before the geostatistical analysis was carried out. 

Figure 5 .4 shows initial area larger than the final study area. 
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Figure 5.4 Plan view excomp (a) and grchanraw (b)- 228.0 RL. Composites 
between 0.4 and 0.5 g/t shown in blue, greater than 5.0 git shown in red. 

5.3.1 Descriptive statistics of the grade control data set. 

This section consists of two parts. The first refers to the statistical 

properties of grchanraw from the region defined in Section 5 .1.1. The 

second part presents the summary statistics for grchan, the final grade 

control data set, which comes from the final study region as defined in 

Section 5 .2.2. 
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Part 1 

Summary statistics for grchanraw are presented in Table 5.4 

Table 5.4 Summary statistics calculated for grchanraw for the bench 228.0 RL 
(primary region see Section 5.1.1). 

Data Set Mean 

Grchanraw 0.929 

Standard 

Deviation 

2.149 

Min. Max. 

0.010 42.340 

Number 

23 913 

Coefficient 

of 

Variation 

2.314 

The histogram for the bench 228.0 RL and the lognormal probability plot 

for grchanraw are shown in Figure 5.5 (a) and (b) respectively. This set 

contains a much larger number of samples/composites, and has a lower 

level of variability in comparison to excomp. Also grchanraw has a 

positively skewed distribution. The lognormal probability plot in Figure 

5.5 shows that the distribution of this data set is approximately 

lognormal. The deviation from the straight line takes place especially at 

the upper end of the curve where high grade values occur. 

Part 2 

As discussed m Section 5.2.2, the final study region was based on 

geological and statistical properties. Similarly to finexcomp, the samples 

within the grchanraw set that intersect with the high-grade zone and with 

the dolerite dykes were flagged so that they could be identified and 

excluded during the statistical calculations. As a result the final grade 

control data set was generated, and is referred to as grchan. 
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Figure 5.5 Grchanraw - frequency plot and (a) and lognormal probability plot. 
Initial region (see Section 5.1.1) 

Summary statistics for grchan are presented in Table 5 .5. 

Table 5.5 

Data Set 

Crehan 

Crehan summary statistics for the bench 228.0 RL 

Mean 

1.095 

Standard 
Deviation 

2.419 

Min. Max. 

0.010 42.340 

Number 

3980 

Coefficient of 
Variation 

2.209 
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In Figure 5.6 the frequency plot and the lognormal probability plot, 

respectively, of grchan are shown. 
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Figure 5.6 Grchan frequency plot (a) and lognormal probability plot (b) 

Looking at the plots in Figure 5.6 and the plots presented earlier for 

finexcomp in Figure 5.3, some similarities can be seen. The grade control 
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data are certainly much smoother and contains many more data samples 

than the exploration data set (finexcomp ). However the grchan statistics 

confirm the fact that our study region has a relatively high variability and 

includes considerably high sample values. It is positively skewed with an 

approximately lognormal distribution. 
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6. VARIOGRAPHY OF FINEXCOMP 

6.1 Analysis of spatial continuity of.finexcomp 

The analysis of the spatial properties of finexcomp data set is done using 

the semivariogram function (Section 2.3). In order to achieve a better 

representation of the spatial continuity of the data set and a clearer 

picture of the directional semivariograms, data from benches adjacent to 

the bench of interest were used. The bench chosen for the study is 

described as follows: crest 228 RL and toe 225 RL and during the 

semivariogram calculations two additional benches above and two below 

the data set, each 3 m thick, were incorporated. Horizontal lag distance 

of 25 m was used, due to the drill spacing, with 12.5 m tolerance. 

Calculation was done for ten lags h (2-14 ). 

In addition, several h-scatter plots of finexcomp were generated in the 

directions from N0°E to Nl 80°E. These calculations helped in 

ascertaining the major direction of the continuity of the data set. It was 

found that the h-scatter plot for the Nl 40°E yields the highest correlation 

coefficient amongst the all h-scatter plots generated. It should be noted 

that in the report, (Khosrowshahi et al, 1992), the major direction of the 
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continuity used for the semivariogram modelling, within approximately 

the same region, was also N140°E. However, the data set used in that 

report is different from that used in our study. 

Raw data directional semivariograms were calculated for the range of the 

azimuths N0°E to N180°E. However, they did not give a clear 

representation of the spatial continuity of finexcomp. An example of 

these semivariograms is presented in Figure 6.1. 
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Figure 6.1 Experimental classical sernivariograms. Directions: NlO E - red, 

N50°E - orange, N140°E- purple. 

Since the data set contains some considerably high values, it was decided 

to use a more robust type of semivariogram which would help to reduce 

the influence of the outliers. The type of semivariogram chosen is the 
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pa1r-w1se relative sermvanogram (2-17) (lsaaks and Srivastava 1989, 

Goovaerts 1997, Arik 1997). Recall that this semivariogram is obtained 

from the classical one by adjusting the semivariogram calculation by a 

squared mean. The adjustment is done separately for each pair of sample 

values. The average of the two values is used as the local mean. 

Another supporting factor for the computation of the pair-wise relative 

variogram is the fact that the relation between the local mean and the 

standard deviation in the case of finexcomp is approximately linear. This 

relation is presented graphically in Figure 6.2. This type of behaviour is 

known as proportional effect (Section 2.3). This type of semivariogram 

was also used by Khosrowshahi et al (1992). 

Local Mean vs Standard Deviation (only eels with more than one 
sample included) 

30,--- ------------, 
25 - - - - - - - - - - - - - - - - - • - - - - - - - -· 

20 - ------ - - -------

15 - - - - - - - --------- - - - - - --

10 - - - - - - - - - - -

8 10 12 14 16 
Mean 

• E)plora!lnd;11ias.1-hxeomp -Trendlinct 

Figure 6.2 Finexcomp - local mean versus standard deviation 

As discussed earlier in this section, the major direction of continuity of 

finexcomp was determined to be N140°E, based on the correlation 
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coefficient from the calculated h-scatter plots. In order to check this 

assumption further, a contour plot of the pair-wise semivariogram 

surface was generated. The parameters used for the contouring are: 

• minimum contour value 

• maximum contour value 

• contour increment 

0.01 

2.0 

0.025 

It is noticeable that the values listed above are low. This is due to the re-

scaling introduced by the pair-wise semivariogram algorithm (2-17). The 

contoured semivariograms were calculated from N0°E to NI 80°E 

azimuth on finexcomp with the parameters described earlier. The results 

of the contouring are given in Figure 6.3. 

�i1 ,---... -� -(t a, .. a, 

Figure 6.3 Finexcomp pair-wise experimental semivariogram surface contours. 
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From the plot it can be clearly seen that the major direction of the 

continuity was correctly determined. 

As expected, the pair-wise relative semivariogram gave a much clearer 

picture of the spatial continuity of our exploration data set. The pair-wise 

relative semivariograms calculated in the major and the minor directions 

of continuity, along with the omnidirectional two-dimensional 

semivariogram are shown in the following Figure 6.4. 
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A 

Figure 6.4 Experimental pair-wise sernivariograms. Major direction, N140°E -
purple; minor direction N50°E - red; omnidirectional 2-dimensional 
sernivariogram - yellow. 
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Because our study data set comprises one bench, 3 m thick which is also 

the thickness of the composites, it can be considered as a two

dimensional data set. Hence only horizontal semivariograms were 

calculated. As was mentioned earlier, additional benches included during 

experimental semivariogram computations served only as an auxiliary 

source of data for the purpose of the variography. It was deemed that 

additional composite data should improve the picture of the variographic 

properties of the study data set and help to get better estimate of its 

spatial continuity. 

The parameters used to compute the experimental semivariograms are: 

• lag distance h 25 m; the distance is mainly 

determined by the drill spacing which is approximately 25 m; 

• lag tolerance 12.5 m; 

• number of lags 1 O; 

• beginning angle o
o

; 

• windowing angle 45°; may be also considered as an 

angle tolerance during semivariogram computation; 

• angle increment 10°; 

• number of angles 18; and 

• effective horizontal band width 3 m. 

Analysing Figure 6.4 it is noticeable that the semivariograms presented 

have the same sills. Only when the range exceeds a distance of a 100 

metres the line representing the minor direction semivariogram contains 
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two points with higher Y values than the value of corresponding points 

from the major and omnidirectional semivariograms. It is very likely that 

these two points are the effect of some isolated high grade pods in that 

direction. This also affects the omnidirectional two-dimensional 

semivariogram to some extent. Nevertheless, all three curves, in Figure 

6.4 do stabilise with increasing distance. The lateral dimensions of our 

entire project, i.e. 220 m in X and 230 m in Y, imply that the major area 

of interest from the "variographic" point of view is that up to, 

approximately, a 110 m range. Having said that, it was assumed here that 

finexcomp demonstrates geometric anisotropy, i.e. the sill of the 

directional semivariograms stays the same and only the ranges are 

changing with the direction and also that the value of the nugget effect 

should be the same in every direction. 

The nugget effect very much depends on the variability of a deposit 

(usually the more variable the deposit the higher the nugget) and also on 

the sampling error (and again the higher the error the larger the nugget 

effect). Yet, reading the value of the nugget directly from the 

experimental semivariogram curves presented in Figure 6.4 could prove 

difficult and not very accurate. The nugget is defined as the lack of 

continuity at a very short scale, smaller than the first lag of the 
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experimental semivariogram. Because we are considering a short scale 

the best way of determining of the nugget effect would be the direction 

most densely sampled. It does not matter which direction this is since the 

nugget is always isotropic. Often the most closely sampled direction 

(also in our case) is the so called "down the hole" direction. Hence, the 

nugget value was based on the down-hole semivariogram. This is also 

the common practice employed at BGM (Boddington Gold Mine, 1998). 

The down-hole semivariograms, raw data and pair-wise relative, were 

calculated using the following parameters: 

• lag distance 

• lag tolerance 

• number of lags 

• beginning angle - horizontal 

• beginning angle - vertical 

• windowing angles 

3 m (bench height); 

1.5 m; 

4; 

oo; 

-90°; and 

45°. 

The results of the calculation together with the modelled semivariograms 

from raw data and pair-wise down hole semivariograms are shown in 

Figure 6.5 and Figure 6.6, respectively. 
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Figure 6.5 Raw data down-hole semivariograrn (red) along with the modelled 
semivariograrn. 

The modelled value of the nugget effect is: 

C0=0.058 (6 - 1) 

This value was taken as the value of the nugget for the semivariogram 

models of finexcomp. 

The available information, obtained from the calculation performed so 

far, enables us to model the variography of finexcomp. This process is 

described in Section 6.2. 
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Figure 6.6 Pair-wise relative down-hole sernivariogram (blue) along with the 
modelled sernivariogram

2
. 

6.2 Finexcomp variography modelling 

Although the calculated set of directional sample sermvanograms 

provides us with very useful information with respect to the spatial 

continuity of finexcomp, in most cases it cannot deliver all the 

semivariogram values required by the kriging system. Kriging 

algorithms (2-30 and 4-5) will be used later in the study to estimate 

grade for finexcomp. For the kriging system we need sermvanogram 

values between the sampled locations and non-sampled locations where 

an estimate is going to be made. Therefore we have to build a 

2 The points (small circles or black dots appearing above the semivariograms) visible in Figure 6.6 
and 6.5 are software specific. These points "define" the variogram being modelled and can be used to 
interactively fit the model to the experimental semivariogram by dragging them. 
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sermvanogram model which will contain all the data required. The 

model also enables calculation of the semivariogram value for any 

separation vector h. 

Modelling a sermvanogram involves fitting a curve to a given 

experimental semivariogram. Usually there are two models created first, 

for the major and minor direction of continuity of the data set. 

Subsequently, based on the built directional models, the model of 

anisotropy can be derived, if an anisotropy is present. There are several 

theoretical semivariogram models available, which can be used. The 

most common ones were listed in Section 2.3. 

In the case of finexcomp, as was discussed in Section 6.1, we have 

geometric anisotropy. This means that the semivariograms in the major 

and minor directions need to be modelled. Then based on these models 

the anisotropy parameters can be derived. 

The directional semivariogram for the major direction of continuity i.e. 

N 140°E, was modelled first. The modelling was done using 

Medsystem® software (Arik 1997). This model, referred to as the major 

direction model, is a nested structure and consists of two basic 
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exponential models (2-20). The parameters describing the model are 

given in Table 6.1. 

Table 6.1 Major direction of continuity N 140°E semivariogram model 

Type Anisotropy Sill Range 
e 

Structure 1 nugget 0.058 
Structure 2 exponential geometric 0.492 16.48 
Structure 3 exponential geometric 0.010 101.70 

A graphical presentation of the major direction model along with the 

experimental pair-wise relative semivariogram in this direction can be 

seen in Figure 6.7. 

Similarly, a model for the minor direction of continuity of finexcomp 

was developed. The minor direction is perpendicular to the major 

direction of continuity. This model is also a nested structure which is a 

combination of two exponential basic models (2-20). The semivariogram 

model for the minor direction of spatial continuity is characterised by the 

parameters presented in Table 6.2. 
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Figure 6.7 Finexcomp, major direction model and experimental pair-wise relative 
semivariogram for the major direction (N140°E) of continuity 

Table 6.2 Minor direction of continuity, N50°E, semivariogram model 

Type Anisotropy Sill Range 
T 

Structure 1 nugget 0.058 
Structure 2 exponential geometric 0.492 4.65 
Structure 3 exponential geometric 0.010 5 1 .2 1  

Figure 6.8 shows the minor direction model and the experimental pair

wise relative semivariogram calculated in this direction. 

The variography modelling based on the pair-wise relative 

serrnvanograms presented in this section enabled us to determine the 

major parameters of spatial continuity of finexcomp. Summarising, we 

have (see Table 6.3): 
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Figure 6.8 Finexcomp, minor direction model and experimental pair-wise 
semivariogram for the minor direction (N50°E) of continuity 

Table 6.3 Finexcomp spatial continuity parameters based on pair-wise relative 
seffil v ar1 o grams 

Nugget: Ca=0.058 (6- 1 )  

Type of 
Variogram 

Model 

Anisotropy 
Type 

Structure 1 Exponential geometric 
Structure 2 Exponential geometric 

Sill 

0.49 
0.01 

Range Max. Range Min. 

16.48 4.65 
1 0 1 .70 5 1 .2 1  

The chosen se1D1vanogram model represents the spatial continuity of 

finexcomp. Using this the subsequent kriging will estimate the grade at 

every point of the ore body covered by the study project. The estimation 

will be done using composite data from finexcomp. However, not all 

parameters derived from the pair-wise relative semivariograms can be 

directly applied to kriging. Furthermore, use of the kriging variance from 
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the kriging algorithm calls for a vanogram model based on the 

traditional (classical) semivariogram (Goovaerts, 1997). Therefore the 

parameters from the variogram models based on the relative 

semivariograms (anisotropy directions and ranges) will be used to model 

the classical semivariogram. Then the generated models, fitted to the 

classical experimental semivariograms, will be utilised during kriging. 

Of significance is the fact that these models do not deliver the actual sill 

values since the sill values already modelled (see Table 6.3) are affected 

by the re-scaling introduced by the chosen type of the relative 

semivariogram (2-17). 

The model for the classical semivariograms are shown in Figure 6.9 and 

Figure 6.10 on the next page, while Table 6.4 summarises the properties 

of these models. 

As for the pair-wise relative semivariograms, the models for the classical 

semivariograms are nested models consisting of two exponential single 

structures in each of the major and minor directions of continuity. The 

parameters presented in Table 6.4 characterise the semivariogram 

models that will be used to estimate the grade of the bench used for the 

study purpose. 
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Figure 6.9 Major direction (N 140°E) semivariogram model with experimental 
classical semivariogram (major direction - purple). 
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Figure 6.10 Minor direction (N 50°E) semivariogram model with experimental 

classical semivariogram (orange). 
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The estimation will be done by use of the kriging algorithms, that is 

ordinary kriging (2-30) and nearest neighbour kriging (4-5). 

Table 6.4 Finexcomp spatial contmmty parameters based on classical 
experimental semivariograms 

Nugget: Ca=0.058 (6-1) 
Type of 

Anisotropy 
Variogram 

Type 
Sill Range Max. 

Model 

Structure 1 Exponential geometric 6.38 16.48 
Structure 2 Exponential geometric 0.22 101.70 

6.3 Cross validation of the ordinary kriging estimates 

Range Min. 

4.65 
51.21 

Cross validation is one way of evaluating our chosen model. The value 

of a given sample is temporarily removed and then the estimation is 

performed, at the same location, using the remaining sample values. The 

process is repeated for each sample value. Results of the estimation can 

be compared with the true sample values (Isaaks and Srivastava, 1989; 

Goovaerts, 1997). Although cross validation can provide a good insight 

into the performance of the chosen method, it does not point specifically 

at any of particular parameters used. Hence, if the results are considered 

to be not satisfactory it is not evident whether it is due to the 

semivariogram model used, the search strategy parameter employed or, 

possibly, the technique itself. On the other hand, a good outcome from 
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the cross validation does not guarantee the best estimates at the 
unsampled locations. This may be the case when preferential sampling is 
present. Some authors (Goovaerts, 1997) even state that a decision on 
which model to use made on the basis of experience, available 
information and the purpose of the study may be more appropriate than 
the one based on the results of different statistical tests. Summarising, it 
can be said, that cross validation (also called point validation) is a good 
source of information but it should not be seen as the only or final 
judgement as to whether to accept or discard a certain estimation 
technique or its parameters. There are other factors such as experience, 
history of the deposit and geological input, to list only a few, that are 
also significant. These factors are very often deemed to be the most 
important in making a decision on the whole estimation system. In our 
case the grade estimates generated by OK method (2-30) will be 
validated using finexcomp data set. The search parameters used are 
described in Section 7 .2.1. A Medsystem® procedure was used for to 
perform the cross validation. 

The results from cross validation are presented below. Table 6.5 contains 
a companson of the estimates calculated by OK and the finexcomp 

values. 
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Table 6.5 Summary statistics of the finexcomp and the kriging estimate 

Item Mean 
Standard 

Minimum Maximum Median Skewness 
Deviation 

Composite 1.473 4.922 0.010 52.860 0.530 8.642 
value 
OK 1.472 1.813 0.260 11.640 0.900 3.661 
estimate 
Kriging 5.768 1.137 2.709 6.923 6.241 -1.164 
variance 

Table 6.6 summanses the statistical properties of the OK estimate 

residuals. Residuals (errors) are defined as the difference between the 

estimated values and the actual composite values. 

Table 6.6 Summary statistics of residuals from OK estimate. 

Item 
Mean 
Standard Deviation 
Minimum 
Maximum 
Skewness 
Weighted Squared Error 

Ordinary Kriging Estimate 
0.0008 
4.954 
-10.050 
48.060 
6.876 
32.345 

The weighted squared error WSE is defined by the following equation 

where r is the value of the residuals and a;x (u
a
) (2-32 and 2-34) is the 

kriging variance at location a . 
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As expected, the distribution of the kriging estimates is much smoother 

than the distribution of the values used for the estimation. Also the 

minimum and the maximum value of finexcomp and the OK estimates 

show that the latter has a smaller range. 
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Figure 6. 1 1  h-scatter plot with least square fit line (red) - (a) and q-q plot - (b) of the 
composite values (Y axis) and the OK grade estimates (X axis) 

What is very important is that the average grade of the data set was 

estimated with a high degree of accuracy. The actual and the estimated 

means are virtually equal (see Table 6.5). The mean value of the 

distribution of the residuals (errors) and the variance of that distribution 

(see Table 6.6) show that the main objective of the kriging algorithm was 

achieved. The mean of the residuals is very close to zero. The variance 
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reflects the variability of the original composite values and is relatively 

high. 

From the graphical presentation of the cross validation results in Figure 

6.11 (a) and (b) it can be seen that some overestimation occurred within 

the range of grade values from zero to approximately five grams per 

tonne (g/t). Once the limit of five (g/t) is exceeded (high grade zones) 

underestimation seems to be present. The nature of finexcomp data set, 

that is high variability and positively skewed distribution (even though 

the high grade quartz vein was omitted during the statistical calculation) 

may exacerbate, to some extent, the differences between the smooth OK 

estimated and the actual composite values. The distribution of the 

residuals, shown in Figure 6.12, is reasonably symmetrical. 

Histogram of OK estimate residuals 

0% �lr-T-,I ..... 

� � � � � � � � � � � � � � � � � � � � � � � � �  
Cut-off grade (git) 

-OK residuals 

...... Cumulalive frequency 

Figure 6 . 12 Histogram of the OK estimate residuals 

10% 
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Therefore it can be expected that, for the whole project considered, the 

grade estimate should be fairly accurate. Indeed, the mean grade of the 

original composite values used during the OK estimation and the mean 

value of the estimates are nearly identical. The mean of the composites is 

1 .473 (g/t) and the mean of the OK estimates is 1 .472 (g/t). 

� �- - - - - - - - -� 
� . . . . . "' . . -�.000 

-25.000 

! 
C: 0 � ;  
o _  

• • 
• • • 

-5.000 

• a -2.500 
-1.CXX) 

-0.500 

a 0.0 

0.500 

1.000 

2.500 

5.000 

25.000 

�- 000 

• • • a • I • 
• • • 

a • • • • • . • a • a I 
• • I 

• • • .. , 
• •• Ill I 

• • 11 a aaa a a 
z -----�-- - ---< 

9411 9520 9628 

EllOtin (m> 

Figure 6.13 Position of residuals from the cross validation of the OK estimate. The 
legend bar specifies the magnitude of the residual 

Figure 6. 13 presents a bench plan with the residuals from the cross 

validation plotted. They are represented by small squares. The colour of 

a square reflects the magnitude of the error according to the legend bar. 

From this map it can be seen that even though the estimated grades seem 

to be higher than the actual grades of the composites the magnitude of 

the differences is not large. It is also evident that, in most cases, where 

the residuals appear to be higher there is usually a mixture of 
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overestimated and underestimated points. Hence the overall error should 

not be significant. 

In view of the results of cross validation presented here, together with 

the information acquired from the BGM geology and mining 

departments, and the fact that the spatial continuity parameters derived in 

this study are similar to published results (Khosrowshahi et al, 1992), 

(BGM Inter. Report, 1996), it is deemed that the semivariogram model 

validated here is appropriate. This model (Table 6.4) along with the 

search parameters detailed later in Figure 7 .1, Figure 7 .2 and Figure 7.3, 

will be used in this study for further kriging grade estimations. 
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7. CHANGE OF SUPPORT AND GRADE ESTIMATION USING 

FINEXCOMP 

7 .1 Introduction 

The mam purpose of a geostatistical study, with respect to mmmg 

applications, is to generate grade estimates of a geological attribute of 

interest such as grade of precious metal ( such as gold, as in our case) or 

some other elements. Not only do we want the value of the grade but we 

would also like to know its spatial continuity and other statistical 

properties. Since the economic success of an operation greatly, if not 

entirely, depends on these factors it is crucial for our estimates to be as 

accurate as possible. There is no estimation which would give perfect 

results. Nevertheless a number of different methods have been developed 

to meet these requirements. 

Many different factors can bias the estimation results. One of these 

factors, as already discussed, is the change of support. The level of 

impact of the change of support on the estimates may be increased if for 

instance the size of a panel which is estimated is not equal to the size of 

the SMU. The support effect can also be critical, if neglected, when 
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global estimation of recoverable resource at a given cut-off is based on 

the grade distribution of exploration data. 

In the following sections grade estimations using finexcomp will be 

performed using three different methods: 

• ordinary kriging (OK); 

• nearest neighbour kriging (NNK); and 

• sequential Gaussian conditional simulation. 

Special attention will be given to the change of support effect on the 

estimation results. The latter two methods have a built-in mechanism that 

takes into account the support changes. The results from each of the 

methods will be compared with the grade control data grchan by means 

of grade-tonnage curves. This comparison is very important from a mine 

planning point of view. By calculating grade-tonnage curves (if 

calculated for the whole mineral deposit) the tonnage of the deposit can 

be determined for different minimum grades, often called cut-off grades. 

Furthermore, the average grade of the deposit can be readily derived at 

the given minimum cut-off grade. Then, if economic parameters are 

applied, the monetary value of the deposit can be calculated. The change 

of support correction on finexcomp will be carried out using the affine 

correction method (Section 4.2). 
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For theoretical purposes an affine correction will also be applied to the 

grade control data grchan to adjust its distribution according to the panel 

size used during the grade estimation. Then the grade-tonnage curves 

from the adjusted data will be compared with the appropriate grade 

estimates. In addition, using each of the listed methods, grade estimation 

will be carried out for the panel size equal to the support of our grchan 

data set, which is 2 m by 10 m laterally and 3 m vertically. 

7 .2 Ordinary kriging and the nearest neighbour kriging estimation 

7 .2.1 Background 

The geostatistical estimation techniques used in this section include: 

ordinary kriging and the nearest neighbour kriging. Each of these 

techniques will be applied to estimate the grade of panels using sample 

data from finexcomp. The mathematical background of the first of the 

method, that is OK, is given in Section 2.4. The NNK algorithm is 

presented in Section 4.5. Recall, the nearest sample ( or k nearest 

samples) is emphasised during the NNK estimation of the grade of a 

block. The proportion by which the NNK weight ;.,:NK 
(u) (4-9 and 4-10) 

of this sample ( or k nearest samples) is increased, is directly proportional 

to the variability of the deposit being estimated. Intuitively a less smooth 
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estimated grade distribution could be expected from NNK than from OK, 

and NNK should be more robust, especially in a variable deposit such as 

our data set. 

While performing an estimation we often talk about a sample 

neighbourhood. This term describes the search parameters required by 

the OK and NNK methods. These parameters determine the area around 

the unsampled location u being estimated within which samples are 

accepted for use in the estimation. Often the search area has an 

ellipsoidal shape due to anisotropy of a data set, for example like in the 

case of .finexcomp - geometric anisotropy. It is important to define the 

search parameters correctly and not to include samples which are too far 

away. Conversely, one has to retain enough data to make the estimate 

reliable. The determination of the parameters should be based on the 

geostatistical properties of the spatial continuity of the data set and 

geological input in the case of earth sciences (see also Arik, 1990). Other 

properties required by the kriging system are provided by the 

semivariogram model used during the estimation process. 

Once all the necessary parameters are defined, the kriging estimation can 

be carried out. With respect to our .finexcomp data set, appropriate 
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semivariogram models have been prepared as described in Section 6.2. 

The spatial continuity parameters of the models are listed in Table 6.4. 

Similarly the search parameters for the data have been determined. These 

parameters are listed in the form of the Medsystem ® software entries in 

the following figures: Figure 7.1, Figure 7.2 and Figure 7.3. Note that an 

explanation of the "Kriging Search Parameters" from Figure 7 .1 is given 

in Appendix 1. 

p62405 dot 11!11[!!1 

PAR1 
PAR2 
PAR3 
PARII 

PAR7 

PAR8 

IOP7 
IOP16 
IOP19 

"'624V1. KRIGING SEARCH PARAMETERS 

[1su."°" Search distance fro• block on eastings (REQUIRED) 

l15D. � Search distance fro• block on northings (REQUIRED) 
1.5  Search distance fro• block on elevations (DEFAULT• .1) 

[23n.""" Nax 3-D dist. fro• block to accept data 
( DEFAULT • SQRT ( PAR1 -2 • PAR2-2 • PAR3-2 ) 

rm:- Nax distance allowd to the closest co11posite 
(DEFAULT•PARII) 

rm:- Nax distance to project single co11posite 
(DEFAULT•PAR7) 

rs- Nin a of co11ps to use for a block (DEFAULT•1) 

[2T Nax I of co11ps to use for a block (DEFAULT•15) 

' Nax I of co11ps per hole (DEFAULT•I, no 11.tt) 

IOP12 O - - �  I-No special selection; 1•0ctant; 2•Quadrant 
IOP2 r--- Nax a of co11ps per octant/quadrant (if IOP12>1) 

Figure 7 .1 Primary search parameters for OK and NNK runs 

The following section presents the results of the grade estimation 

obtained from the several kriging runs. These results are analysed in 

detail in Section 7 .2.3. 
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Figure 7.2 Semivariogram parameters for OK and NNK runs 
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Enter MEDS , GSLIB, or COORO 

Leave blank if no rotation necessary 

P' Use anisotropic distances? (effective for search only) 

P Use Hearest Neighbor Kriging option? 

Figure 7.3 Ellipsoidal search parameters for OK and NNK runs 

7 .2.2 Finexcomp grade estimation results 

The estimations were done using two panel sizes as follows: 

• first X=12.5m by Y=12.5 m by Z=3m (referred to as panel size 1) 

and then 

• X=2 m by Y=lOm by Z=3m (referred to as panel size 2). 
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The latter panel size was used in order to achieve the same support as the 

grchan grade control data set against which the estimation results are 

compared. 

OK estimations were run prior to NNK so that the variance of block 

values could be determined. This value is necessary to calculate the 

correction factor f for NNK. Its value can be calculated from the 

equation ( 4-6) as f = 

Two sets of kriging runs were done, one of which was with block 

discretisation equal to one, effectively point kriging. The second one 

incorporated block discretisation equal to five for block kriging. It can be 

seen from the graph in Figure 7.4 that with the discretisation (in the X 

and Y directions) above five there are no significant changes to the block 

vanance. 

Block Oiscretisation v. Block Variance 

� 5 - - - - - - - - - - - - - - - - - - - - - - - - - - - -" "' 
1: 4  - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

.,. 3 
(,) 
m 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

4 5 6 
Block discretisation 

10 

Figure 7.4 Block discretisation versus block variance 
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The block variance and standard deviation from the point kriging (panel 

size 1) are: 

a ;P = 6.66 and a bp = 2.58 (7 - 1) 

whereas the block variance and standard deviation from the block 

kriging (panel size 1) are: 

(7 - 2) 

It follows that the two factors fb
p for NNK point and fbb 

block kriging 

respectively are: 

(7 - 3) 

The number k of nearest samples for NNK was varied from k=l to k=3 

for point and block kriging. Effectively three runs in each of these cases 

were carried out. 

Figure 7. 5 shows grchan channel data alone within the final study area. 

In Figure 7 .6 the results of the point kriging from OK and NNK are 

presented in the form of bench plans overlayed with grchan channel 

data. 
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Figure 7. 5 Grchan channel assay data - bench plan, final study area. 
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Kriging grade estimates and channel assay data. Point kriging. OK 
estimate is shown in (a), NNK estimates are shown in figures (b) -
f=0.53, k=l, (c) - f=0.53, k=2 and (d) - f=0.53, k=3. Panel size 1 -
X= l2.5m,Y=l2.5m, Z=3m. 
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The four mosaic plots in Figure 7.7 present the results of the panel size 1 

block kriging, again overlayed with grchan channel data. 
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Figure 7.7 Kriging grade estimates and channel assay data. Block kriging. OK 

estimate is shown in (a), NNK estimates are shown in figures (b) -

f=0.36, k=l, (c) - f=0.36, k=2 and (d) - f=0.36, k=3. Panel size 1 

X=12.5m,Y=12.5m, Z=3m. 

A companson of the grade-tonnage curves (panel size 1) for point 

kriging is given in Figure 7.8. In every case the thick dark-blue curves 

represent the grade-tonnage curves of the grchan data set. Figure 7.8 (a) 
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presents the grade-tonnage curves from OK estimates while Figure 7.8 

(b) shows the grade-tonnage curves from NNK. There are three different 

estimates for three different numbers of samples k ( equations 4-9, 4-10) 

emphasised during NNK estimation process, i.e. k= l, k=2 and k=3. Note 

that the grchan sample support 1s clearly defined, that 1s one sample 
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represents the volume contained within the dimensions X= 2m, Y = 1 Om 
and Z= 3m. In order to avoid a bias, the declustering weights were used 
to calculate the grchan statistics prior to the comparisons presented from 
now on. Unless otherwise stated cell declustering was used with the cell 
size equal to the size represented by one sample from grchan. This data 
set is used throughout the study for comparison with the results from the 
different methods. There is only one exception, described later in this 
section, where affine corrected grchan was used (Figure 7 .11 and Table 
7.3) .. 

Figure 7.9 (a) and (b) present block kriging estimates from OK and NNK 
respectively. In addition the corrected finexcomp distribution using the 
affine correction method is presented in Figure 7.9 (a) in the form of 
grade-tonnage curves. The correction was done for the panel size 12.5m 
x 12.5m x 3 m. The affine correction factor ft was calculated as the 

ratio of the block variance a;b = 3.08 to the finexcomp point variance 

a; (Table 5.3) and is equal to 

ft=� 3.08 = 0.36 
V 24.07 

As already discussed in Section 4.2 the value of this factor should not be 
too small otherwise less reliable results may be expected from the affine 
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correction method. Notwithstanding this, for the purpose of this research, 

we wanted to test and compare different correction methods therefore it 

was decided to use this method and apply the correction factor as 
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calculated above. This also gives us an opportunity to check in practice 

the assumption about the value of the factor .fJ: . 

Table 7 .1 lists the summary statistics for grchan and the kriging grade 

estimates presented in Figure 7.8 and Figure 7.9 as well as the summary 

statistics offinexcomp after the affine correction was carried out. 

Table 7.1 Grchan and grade estimates statistics summary. Finexcomp - affine 
corrected. Panel size 1 for kriging (12.5xl2.5x3 m). 

Data Set Mean 
Standard 

Min. Max. Number 
Coefficient of 

Deviation Variation 

Grchan 1.089 2.514 0.010 42.340 2188 2.308 

Finexcomp 1.464 1.755 0.944 19.852 143 1.199 
affine correct. 

OK 111 0.916 1.277 0.050 14.310 420 1.394 

NNK 111, 0.926 2.093 0.050 34.740 420 2.260 
f=0.53, k=l 

NNK 111, 0.938 1.989 0.050 32.360 420 2.120 
f=0.53, k=2 

NNK 111, 0.927 1.696 0.050 23.450 420 1.830 
f=0.53, k=3 

OK 121 0.947 1.165 0.200 11.560 420 1.230 

NNK 121, 0.943 1.679 0.152 26.369 420 1.780 
f=0.36, k=l 

NNK 121, 0.946 1.514 0.174 22.836 420 1.600 
f=0.36, k=2 

NNK 121, 0.947 1.411 0.170 16.800 420 1.490 

f=0.36, k=3 

Note: [1] - point kriging (no block discretisation) 
[2] - block kriging (block discretisation X=5, Y =5, Z=l) 

The results presented in Figure 7.6 to 7.9 are the results obtained from 

the kriging estimates using panel size 1 support (X=12.5m by Y=12.5m 

by Z=3m) which is not equal to the support of grchan. If we consider the 
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grade control data set, one sample represents a support of X=2m by 

Y=lOm by Z=3m. The direct comparison of the tonnage curves by the 

means of the percentage of the population above given cut-off is not 

possible, because the support of samples and the support of panels are 

different. 

Consequently to enable such a comparison an average tonnage 

represented by a sample from grchan and by a panel from kriging was 

incorporated. In the case of grchan, the average tonnage per sample was 

calculated based on the volume of the study bench, the number of 

samples and the specific gravity (SG). The SG is expressed in tonnes per 

cubic metre (t/m3
) and for the weathered (clay) profile at BGM is 

approximately equal to 1.5 (t/m3
). The volume of the panel is readily 

defined and so is the tonnage. Whenever the support of both samples and 

the panels from the estimation or simulation were equal, the grade

tonnage curves were calculated as the percentage of the population 

above given cut-off and the mean grade above cut-off, respectively. 

Assigning tonnage to the samples and the panels in such a case (tonnages 

would be equal because the support of both of these is the same) would 

re-scale the graph but would not affect the direct relationship between 

these curves. 
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To illustrate the results one would obtain from estimating the grade and 

tonnage of the study deposit based solely on finexcomp, the appropriate 

curves are presented in Figure 7.10. In the same figure there are also 

grade-tonnage curves obtained from affine corrected finexcomp. This 

time, however, the correction was done for the panel size 2, in order to 

achieve the same support as grchan. The new affine correction factor 

fl was based on the block variance C5; = 4.32 from the panel size 2, 

and the finexcomp sample variance (Table 5.3). The correction factor is 

equal to 
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Grchan is presented by blue curves, raw finexcomp by orange curves and 

corrected finexcomp by green curves. For the raw finexcomp the 

tonnages are reasonably well estimated. However the grades of both the 

raw finexcomp and corrected finexcomp deviate from the grchan grade 

curve. Note that the summary statistics for finexcomp after this support 

correction are included later in Table 7.4. 

Subsequently, to make the comparison more comprehensive the data 

from grchan had been subjected to some preparation in order to account 

for the change of support effect. Specifically, the set was first 

declustered using cell declustering with a cell size equal to X=12.5m and 

Y=12.5m (the same as the panel size from previous grade estimation). 

Then the composite values were corrected for the change of support 

using the affine correction method. This was done in order to test the 

performance of this method. It should be noted that the modifications 

described above were made for this exercise alone. The subsequent 

comparisons are not affected. The experimental variance correction 

factor ..fl used for the affine correction in this case is the ratio of the 

block variance a;b = 3.08 to the variance a;= 3.21 of the de-clustered 

grchan. Table 7 .2 presents summary statistics of grchan after de

clustering was carried out. 
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Table 7.2 Summary statistics of de-clustered grchan. Cells size 12.5m x 12.5x3m. 

Data Set Mean 

De-clustered 1.118 
Grchan 

Standard 

Deviation 

1.791 

Min. 

0.05 

Hence the correction factor is equal to 

17 =P-08 =0.98 
-..JJv 3.21 

Max. Number 

17.76 321 

Coefficient of 

Variation 

1.602 

(7 - 4) 

The value of the variance correction factor (7-4) is greater than 0.85. 

That means that in this instance the affine correction technique should be 

adequate. 

The outcomes of the affine corrected grchan and the kriging estimates 

using panel size 1 are presented graphically in Figure 7 . 1 1. As in 

previously described cases, charts in Figure 7 .11 (b) show the grade

tonnage curves from three NNK estimates for k= l, 2 and 3 (panel size 1) 

and the grade-tonnage curves of grchan data set after the affine 

correction was applied. As already stated, the correction applied to 

grchan enabled us to account for the support differences between grchan 

and the panel volume, which was used during the kriging runs. For ease 

of analysis the grade-tonnage curves from OK estimation, along with the 

corrected grchan, are presented separately in Figure 7.11  (a). 
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affine corrected grchan (dark blue curves). Panel size 1 
X=12.5m,Y=l2.5m, Z=3m. 

The results shown m this section are discussed m detail m the next 

section. 
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Table 7 .3 surnmanses the main statistical properties of the affine 

corrected grchan and, for comparison, descriptive statistics of the kriging 

estimates are presented. 

To accomplish this, a series of kriging estimates of the finexcomp grade 

were generated on the panel size with the support equal to the support of 

grchan. This enables a direct comparison of the distributions of both 

populations, i.e. grchan and the estimated panels. It is the equality of 

support (volume) represented by one sample from grchan and a panel 

from the grade estimation that makes the comparison possible. This 

support is our panel size 2, i.e. X=2m, Y=lOm, Z=3m. 

Table 7.3 Affine corrected grchan and grade estimates statistics summary table. 
Panel size 1 for kriging (12. 5m x 12.5x3m). 

Data Set Mean 
Standard 

Min. Max. Number 
Coefficient of 

Deviation Variation 

Grchan 
affine 1.118 1.754 0.070 17.420 321 1.569 

corrected 

OK 121 0.947 1.165 0.200 11.560 420 1.230 

NNK 121, 0.943 1.679 0.152 26.369 420 1.780 
f=0.36, k=l 

NNK r21, 0.946 1.514 0.174 22.836 420 1.600 
f=0.36, k=2 

NNK l21, 0.947 1.411 0.170 16.800 420 1.490 
f=0.36 k=3 

Note: [2] - block kriging (block discretisation X=5, Y=5, Z=l ) 
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The correction factor f for the NNK method was recalculated since the 

block variance a;
b 

changed due to the smaller panel size. In this case the 

value of standard deviation is 

abb = .J4.32 = 2.08 (7 - 5) 

Hence the proportion of our new a bb to the standard deviation of 

finexcomp a
p 
=4.91 (Table 5.3) is equal to 

f = 2.08 = 0.42 
4.91 

(7 - 6) 

The value shown in (7-6) is the NNK correction factor for the grade 

estimation using panel size 2. 

A visual comparison of the results of kriging estimates (OK and NNK) 

overlayed with the trench assay data from grchan is presented in Figure 

7. 12 in the form of bench plans. Panel size 2 (X=2m, Y=lOm and 

Z=3m), i.e. grchan support, was used during kriging calculations. Figure 

7. 12 (a) shows OK grade estimate contours whereas Figure 7. 12 (b), (c) 

and ( d) are the contoured results of NNK with k= 1, 2 and 3 nearest 

samples emphasised, respectively. 
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grades 

i 

Figure 7. 12 Kriging grade estimates and channel assay data. Block kriging. OK 
estimate is shown in (a), NNK estimates are shown in figures (b) -
f=0.42, k=l, (c) - f=0.42, k=2 and (d) - f=0.42, k=3. Panel size 2 -
X=2.m, Y=lOm, Z=3m. 

Grade-tonnage curve comparison between kriging estimates, using panel 

size 2 and grchan data set, is presented in Figure 7 .13. In addition, 

Figure 7.13 (a) shows the finexcomp grade-tonnage curves after the 

affine correction for panel size 2 was applied. The affine correction 

factor expressed as ff= 0.42 and is equal to the NNK factor (7-6). 
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Figure 7.1 3 Kriging estimates with support equal to grchan sample. Block kriging. 
Grade-tonnage curves comparison, block kriging. (a) OK (red curves); 
(b) NNK f=0.42 (k=l-brown, k=2-blue, k=3-light blue); grchan (dark 
blue curves), (a) finexcomp affine corrected (green curves). Panel size 2 
- X=2m,Y=l0m, Z= 3m. 

Summary statistics of grchan and the kriging estimates, that is OK and 

NNK for k=l,2 and 3 and J=0.42, are listed m Table 7.4. The NNK 

estimate (k=l) yields the closest estimate of all in comparison to grchan 

summary statistics. 
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Table 7.4 Grchan, finexcomp affine corrected and grade estimates statistics 
summary table. Panel size 2 for kriging and affine correction (2m x 
lOm x 3m). 

Data Set 

Grchan 

Finexcomp 
affine correct. 

OK [21 

NNK [21, 
f=0.42, k=l 

NNK [21, 
f=0.42, k=2 

NNK [21, 
f=0.42, k=3 

Mean 
Standard 

Deviation 

1.089 2.514 

1.464 1.755 

1.029 1.513 

1.015 2.040 

1.000 1.790 

1.016 1.808 

Min. Max. Number 

0.010 42.340 2188 

0.944 19.852 143 

0.160 25.100 2530 

0.110 36.870 2530 

0.120 36.200 2530 

0.120 36.120 2530 

Note: [2] - block kriging (block discretisation X=5, Y=5, Z=l) 

Coefficient of 

Variation 

2.308 

1.199 

1.470 

2.010 

1.790 

1.780 

In the following section the kriging results presented will be analysed in 

more detail. 

7 .2.3 Analysis of the kriging estimation results 

The previous section described the estimation process and presented the 

results of the kriging (OK and NNK) grade estimations based on the 

finexcomp data set. 

Even though the average tonnages are reflected reasonably well by the 

exploration data set in comparison to the grade control set, the grade at 

different cut-offs is not. This shows that the support of data plays a very 

important role and cannot be neglected. The affine correction of 
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finexcomp certainly helped, to some extent, mainly with respect to the 

grade estimate. The grade curve fluctuates, however there are some 

points where the two, the grchan grade curve and the finexcomp grade 

curve meet. Tonnages are not reflected very well at the cut-offs below 

the mean value of the data set (the green curves from Figure 7.10), where 

they are overestimated. The correction method generated unrealistic 

values in this section of the corrected distribution - hence the 

overestimated tonnages. This test shows that the affine correction may 

generate less reliable results when used for distributions with significant 

differences in variability (finexcomp and distribution of panel size 2 i.e. 

X=2, Y=lO and Z=3m). 

For point kriging from NNK (Figure 7 .8) the outcome is relatively good. 

The grade, and especially the tonnages, of our grade control set are quite 

well estimated. The grade is best estimated by the NNK run with k = 1 

(brown curve from the graph) up to the cut-off of about 3.5 (git). Then 

the curve (light blue) representing the run with k = 3 seems to give the 

best fit. This may suggest (at least in the case of this deposit) that for the 

higher cut-off estimates it would be more appropriate to increase the 

number of nearest samples k during NNK runs. The tonnages are slightly 

overestimated with low cut-offs (below 0.5 g/t). For the range of cut-offs 
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from approximately 1.0 to 2.0 (g/t) there is a slight tendency to 

underestimate the tonnages. Overall the estimates are deemed to produce 

a good fit. That NNK has improved the kriging technique is apparent 

when compared with the OK results in Figure 7.8 (a). Indeed, looking at 

Table 7 . 1, it is clear that NNK with k= 1 gives the best results of all when 

comparing with grchan summary statistics. 

Also in the block kriging case (see Figure 7.9 and Table 7. 1) NNK 

proved to be more robust than the traditional OK method. Again when 

k=l the closest results to grchan were obtained. However the differences 

between these are not as pronounced as for the point kriging. This can be 

attributed to the much lower NNK correction factor f used during the 

block kriging. This may suggest that more consideration should be given 

to the value of the correction factor used. Figure 7.9 (a) shows the grade

tonnage curves of finexcomp after a change of support correction using 

the affine method. This time the correction was done to account for the 

volume of panel size 1. The results of the correction show that although 

tonnages are overestimated above the mean grade of finexcomp, below 

the mean grade they fit the tonnage curve from kriging quite well. Also 

the grade fluctuates and again is relatively well estimated close to the 

mean grade of finexcomp. The affine correction test done here used a 
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correction factor of 0.36, which is lower than suggested in the literature 

0.7-0.8 (Section 4.2). Notwithstanding this, as already stated in Section 

7 .2.2, our purpose is to test the correction techniques, not to reject or 

accept them, hence the correction performed and analysed above. 

Because we wished to compare our estimates against grchan we also 

considered a panel size (panel size 2) with support equal to the support 

of grchan. Actually NNK has the built-in flexibility of enabling one to 

estimate panels of arbitrary size, taking into account the size of SMU. In 

our case this means that we could have used panel size 1 during the 

estimation and only had to re-calculate the correction factor f using the 

variance of panel size 2. But OK does not have such flexibility written 

in, so for the sake of being able to run it along with NNK, panel size 2 

was used. 

In each of NNK and OK, the change from panel size 1 to panel size 2 

brings about a clear improvement in our estimates ( compare Figure 7 . 13 

with Figure 7 .9). This is an example of how the estimates are affected by 

different support. If panel size 2 was our SMU and panel size 1 our 

mining block model panel, we could not and should not simply estimate 
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the mineral resources without g1vmg consideration to the support 

differences. 

From Figure 7.13, it can be seen that NNK performs better than OK, 

even though a significant improvement in the case of OK is visible when 

comparing with Figure 7.9 (a). The better results from NNK are also 

confirmed by the statistics presented in Table 7.4. In this case also, NNK 

with k=l yielded the results closest overall to the grchan statistics. The 

NNK estimates produced very good fit of the tonnages when compared 

with the grade control data. They were higher only for low cut-offs, 

below 0.4 (g/t), whereas the tonnages from OK were higher for the range 

of cut-offs below 2.5 (g/t) and then slightly lower from approximately 

3 .5 (g/) onwards. Commonly the grade from the kriging estimates is 

lower than the grade of grchan. This can most likely be attributed to the 

smoothing introduced by this algorithm. It is even more pronounced here 

since our data include some considerably high sample values. 

Another feature of the support changes is that the larger the support of 

the panel being estimated the lower the mean grade of the estimates (see 

Table 7.1 and Table 7.4). For comparison in Figure 7.9 (a) there are also 

grade-tonnage curves for .finexcomp after the affine correction technique 
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was applied for panel size 2. This case has been already discussed at the 

beginning of this section. 

Looking at how our estimates are positioned in space, Figure 7 .6, Figure 

7.7 and Figure 7. 12, it can be seen that they are fairly similar. This was 

to be expected, since the same data (finexcomp) were used in all cases. 

The NNK estimates are more variable than the OK equivalents. The 

main feature of these plots is a high grade zone running through the 

middle and across the study region, with some isolated high grade pods 

in the middle and left lower (South) sections of the project. Comparing 

the contoured grade estimates with the trench data, some overestimation 

occurred in the upper (North) left comer of the region. There is no 

indication from the trench data of higher grade in that region. In contrast, 

the grade in the upper middle section of the study area is underestimated. 

The trench data indicate the grade value between 2.5 and 5.0 (git) but it 

is likely that the exploration drilling (see Figure 5.2) did not intersect any 

of the higher grade formations in this region and this is reflected in the 

kriging estimates. Overall the estimation worked well with the results 

being comparable with the grade control data regarding the spatial 

position. 
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The last of the support effect tests carried out was the affine correction in 

the case of grchan distribution. Although theoretical it is deemed to be 

very useful and gave very interesting results. It is called theoretical here 

because usually the distribution of the grade control data set is not 

adjusted to reflect, say, the distribution of the SMU panel, providing that 

the two have different supports. This kind of exercise may have a 

practical application for grade control and it makes a lot of sense. If we 

assume that the grade control data is the exhaustive data set but actual 

mining occurs on different support/volume of the SMU, then to estimate 

the recoverable reserve accurately on a per mining bench basis, the 

distribution of grade control data (grchan in our example) should be 

adjusted to the distribution of the SMU (panel size 1 in our example). 

The results of correcting grchan data to the support of kriging estimates 

by the use of the affine correction method are shown in Figure 7 .11. The 

correction procedure worked very well in this case. In particular, the 

curves from the NNK estimates are close to the grchan curves. Some 

fluctuation does occur but the goodness of fit is high with NNK with k=2 

being the closest. With respect to the tonnages, after the correcting of 

grchan, the kriging results are lower with some exceptions for cut-off 

grades below 0.5 (g/t) for OK and below 0.4 (g/t) for NNK. For the 
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range of cut-offs between 1.5 (g/t) and 2.5 (g/t) the tonnages are nearly 

equal. 

Looking at the statistical characteristics of all the sets compared (see 

Table 7 .3) it was difficult to choose the set which could be considered 

the closest to grchan. However the NNK estimate with k=3 was 

considered as having the statistical properties most similar to the affine 

corrected grchan. 

In summary, the correction for the support changes plays a very 

important role during the mineral resource estimation. Estimation done 

using only the exploration data proved to be far less reliable than using 

alternative methods that account for the difference in the volume on 

which the data are defined. Nearest Neighbour Kriging produced results 

closer to the grade control data set used than the ordinary kriging method 

itself in all of the instances tested. NNK, in the case of the data used in 

this study, demonstrated more robustness than OK. The improvement 

introduced by NNK in comparison to OK confirms the fact that 

correction for the data support improves the results and reduces the bias 

in the mineral resources estimation. 
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The outcome of the affine correction method tested in the course of the 

study produced variable results. Although the results are data specific, 

this is an example that, under certain circumstances and honouring the 

assumptions behind the method, it may well be used as a support 

correction tool. 

7 .3 Change of support by conditional simulation 

7.3.1 Background 

In the following section sequential Gaussian conditional simulation (see 

Section 2.5) using the finexcomp data set will be presented. The 

simulation was performed with a special attention given to the problem 

of the change of support. This was achieved by the use of a program, 

namely bsgsim, developed by I.M. Glacken (1996) and made available to 

the author. This program is a modification of the sgsim program 

presented in GSLIB (Deutsch and Joumel, 1998) and allows for 

simulation at the discretised block volume and then, after back

transformation, averages the results into the desired block volume. 

Effectively the change of support problem is resolved because the 

simulation can be done on a very fine grid and then the results are 

averaged to a given support (volume of the SMU for example). Since no 
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economic parameters were applied to any of the previous estimates the 

simulation results were not constrained economically in order to avoid a 

bias in the final outcomes. 

7.3.2 Sequential Gaussian conditional simulation 

The sequential Gaussian simulation paradigm calls for the random 

function model with multiGaussian distribution (see Section 2.5.2). Our 

sample set finexcomp is not normally distributed (Figure 5.3 and Table 

5.3) so, prior to the simulation, a normal score transform was applied. 

The transformation was done on the declustered finexcomp. The 

declustering weights used were those from the cell declustering 

algorithm ( cell size, X=30m, Y =30m and Z=3m). We refer to the 

transformed set as nfinexcomp. The histogram of nfinexcomp is 

presented in Figure 7.14 and summary statistics are given in Table 7.5. 
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Table 7.5 Summary statistics of nfinexcomp. 

Data Set Mean 

Nfinexcomp 0.000 

Standard 
Deviation 

0.866 

Min. Max. 

-2. 10 1  2 . 10 1  

Number 

55 

Coefficient of 
Variation 
2888.297 

Experimental sermvanograms for nfinexcomp were calculated in 

directions from N0°E to N180°E with a step of 10° and a tolerance of 

25°. Lag distance of 31m (due to the de-clustering cell size) with 15.5m 

lag tolerance was used. Band widths of 16m and 1.5m were taken in the 

horizontal and the vertical direction respectively. 

In addition, several h-scatter plots were calculated, in the same range of 

directions and the same angular step as for the sernivariograms. This was 

done in order to check and confirm the major direction of continuity of 
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the normal scores. This was determined to be N120°E and the minor 

direction of continuity is then N30°E. Subsequently, based on the results, 

semivariogram models for the major direction (Figure 7.15 (a)) and the 

minor direction of continuity (Figure 7 .15 (b)) were developed. The 

models presented in these figures are geometric anisotropy models ( see 

Section 2.3). Table 7.6 summarises the parameters of the semivariogram 

models shown in Figure 7.15. 

Table 7 .6 nfinexcomp normal scores spatial contmmty parameters based on 
covariance function experimental semivariograms 

Nugget: 

Structure 1 
Structure 2 

Co=0.06 

Type of 
Variogram Model 

Spherical 
Spherical 

Anisotropy 
Type 

geometric 
geometric 

Sill Range Max. Range Min. 

0.66 59.62 44.04 
0.28 107.03 89.17 

The program bsgsim was then applied. In our case the simulation was 

done on a fine grid with the cell size X=2m by Y=2m by Z=3m and then 

the results were averaged to block size X=2m by Y = 1 Om by Z=3m. This 

block size is equal to the support of grchan which is the exhaustive data 

set used for comparison. By using equal supports for our simulated 

values and grchan a direct comparison of the statistics and, more 

importantly, of the grade and tonnage curves is possible. 
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Figure 7 . 1 5  nfinexcomp normal scores semivariogram models. (a) major direction -
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The program, bsgsim, calls for the non-transformed data set as an input 

file. Therefore the data from finexcomp from the Medsystem® project 

145 



were dumped into an ASCII format file and then used with the program. 

The bsgsim parameter file used is given in Appendix 2. 

For the upper tail extrapolation (Section 2.5.2) of the back-transform 

distribution the hyperbolic option (2-46) with m = 2 has been used. For 

this project 50 realisations were generated. Each of these realisations is 

equally probable and these were analysed by means of their 

grade/tonnage curves and summary statistics were calculated. Three of 

these realisations were selected representing the highest, lowest and 

median values with respect to the tonnages and the grade. This was done 

in order to present one of the main features of simulation namely the 

spread of the results. 

Grade/Tonnage Curves, Simulation - grchan support 
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Figure 7 . 16  Grade/tonnage curves SGCS realisations #4(highest), #9 (median), #28 
(lowest) and de-clustered grchan. 
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Figure 7 .16 presents the grade/tonnage curves for these three 

realisations, that is respectively realisation R#4 (green curves), 

realisation R#9 (purple curves) and realisation R#28 (red curves), 

together with grchan (blue curves). 

Summary statistics of each of the data sets from Figure 7 .16 are 

presented in Table 7. 7 below. 

Table 7.7 Summary statistics of de-clustered grchan and realisations #4(highest) 

#9 (median) and #28(lowest). 

Data Set Mean 
Standard 

Min. Max. Number 
Coefficient of 

Deviation Variation 

Grchan 1.089 2.514 0.010 42.340 2188 2.308 

R#4 1.304 3.272 0.045 44.888 2640 2.509 

R#9 0.756 1.011 0.017 21.375 2640 1.336 

R#28 0.516 0.510 0.022 5.595 2640 0.990 

The information presented in Figure 7.16 and Table 7.7 will be discussed 

in the next section. 

7.3 .3 Sequential Gaussian conditional simulation results analysis 

Simulation, as already discussed in Sections 2.5 and 7.3.1 is not intended 

to estimate, for example the grade of a deposit, it is rather designed to 

reproduce the variability of the distribution of the data set being 
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considered. Simulation delivers a distribution of values for each 

estimated panel, modelling the uncertainty about an unsampled location. 

Conditional simulation, used in this study, honours the sample values at 

their locations but does not necessarily give the best estimate at 

unsampled locations. Following this logic the results, that is the 

realisations, of simulation should be looked at as a whole. 

In our study, the spread of the set of 50 realisations that were generated 

is illustrated by the grade/tonnage curves presented in Figure 7 .16. In the 

same figure the grade and tonnage curves of grchan are also presented. 

The two most extreme grade/tonnage curves, that of R#4 and R#28, 

provide us with some upper and lower limits of our results. Even though 

it is not possible to pick "the best realisation" the median realisation, 

within the tolerance limits provided by the highest and the lowest 

realisations, may be considered as representative for the whole set. 

In Figure 7.16 the tonnage curve (green) of the highest realisation R#4 

seems to be very close to that of grchan (blue). Just above the cut-off 

grade of 1.50 (g/t) the green curve departs from the blue one but gets 

close to it again for the cut-offs above 6.00 (g/t). Now looking at the red 

curve that illustrates the tonnage of the lowest realisation R#28, it can be 
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seen that for any given non-zero cut-off this curve is below the tonnage 

curve of grchan. The largest discrepancies take place in the steepest 

section of both curves for the range of cut-offs from about 0.30 to 3.00 

(g/t). The third tonnage curve (purple) of the 'middle' realisation R#9 is 

remarkably close to that of grchan for the range of cut-off grades from 

0.0 to 1.00 (g/t) after which it starts to move away from the blue curve 

and gradually comes closer to the tonnage curve of R#28, following the 

latter one precisely from the cut-off grade of approximately 3.00 (g/t). 

Considering these features with respect to the tonnes of our exhaustive 

data set grchan, we may expect, with reasonable confidence, that the 

estimate should be fairly accurate in the low grade section of the 

distribution below the 1.00 (g/t) cut-off grade where the curves of the 

median realisation R#9 as well the highest realisation R#4 follow that of 

grchan. This situation will deteriorate slightly as we move to the higher 

grade range (above 1.00 (g/t)) where R#9 is below grchan and hence 

some under-estimation may be expected. Overall, however, our set of 

realisations captured the tonnes distribution of grchan quite well. 

Looking at the grade curves in Figure 7 .16 a rather different situation to 

the one described above can be seen. For the lower cut-off grade range 

from 0.75 (g/t) to approximately 1.50 (g/t) the blue curve of grchan lies 
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within the "fan" of results of the simulation, although always closer to 

R#4 than to R#28 and R#9 which follows the latter one closely within 

this range. In all other cases the two grade curves, for grchan and R#4 

are very close to one other. The median realisation R#9 lies in the 

proximity of the lower bound rather than in the middle of the spread. The 

median realisation R#9 is also consistently below the grchan grade 

curve, with some improvement for cut-off grades above 4.50 (git) where 

it becomes steeper. 

In general, it can be stated that simulation is a functional tool for the 

correction of the change of support of data. It delivers a set of features 

which can have very practical application during the mineral resources 

estimation. Furthermore, the mechanics of the change of support by 

conditional simulation, as carried out in the study, does not, in fact, 

require any correction factors. Hence, for this purpose there is no need to 

know the theoretical variability of the chosen panel or SMU that is being 

simulated. This is an evident advantage of the method since every 

additional estimate, i.e. an estimate of the unknown distribution of the 

SMU, may introduce an additional error. 
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Under given circumstances, as in the instance of our data set, and with 

this particular set of 50 realisations returned by the conditional 

simulation the distribution of grade and tonnage of chosen panel size or 

SMU were reproduced with a varying level of accuracy (Figure 7 .16). 

Both of these properties, that is the grade and tonnage distributions, were 

captured by the realisations set. Yet, using the median realisation R#9 as 

representative for the whole set the latter property was better reproduced 

than the former one. The results of the conditional simulation performed 

throughout this section suggest, perhaps, that with a deposit of high 

variability and positive skewness the realisation returning higher grade 

and tonnages should be given special consideration when trying to derive 

the grade and tonnage distribution of this deposit. 

151 



8. CONCLUSIONS 

This final section of the study is intended to summarise the outcomes of 

the research performed. Conclusions will be drawn from the results of 

our dissertation regarding the two main topics, namely the change of 

support effect on the resource estimation and correction for the change of 

support by two specific methods. 

The research presented in this thesis was based on real data acquired 

from the Boddington Gold Mine (BGM). Because the data come from a 

region that was already mined out, two sets of data were available, 

exploration data referred to as finexcomp and grade control data referred 

to as grchan. All the calculations, i.e. estimations and simulations were 

compared against declustered grchan which was considered as reality in 

this case. This was done in order to reflect real mine planning practice 

and is called grade and tonnage reconciliation. 

The results obtained from all the estimations and simulations are 

certainly very valuable and form a very good base for an indication of 

the way that different methods were performing. Nevertheless due regard 

should be given to the fact that we were dealing with a specific, real data 

set. Every data set is unique and, to a certain extent, it would be difficult 

152 



to fully predict the performance of the tested methods in any other case. 

Therefore one must be careful not to overgeneralise the results obtained. 

This, however, does not detract from the validity of the comparison 

exercises performed in this study. 

The support or volume on which data used for reserve estimation is 

defined does have a significant effect on the results of estimation. An 

attempt to estimate the recoverable reserves, which are usually defined 

on the support of SMU, using the exploration data with no regard to the 

differences of the volume represented by an exploration sample and the 

SMU may introduce a serious bias that could have disastrous effects on 

the economic viability of a mining project. 

There is a strong need for correction for change of support during any 

type of estimation. If the size of a panel or a block from a mining block 

model, where the estimates of the grade and tonnages are stored, is 

different from the size of the SMU (the volume on which mining occurs) 

then the distribution of the blocks from the model has to be corrected to 

the distribution of the SMU blocks. Only this can ensure that the error of 

the recoverable reserve estimate will be minimised. The larger the panel 

size used the lower the mean grade of the estimated reserves. 
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There are several traditional methods available for the change of support 

correction (see Section 3 and 4). One of those was tested in this study, 

namely the affine correction method. For this method to deliver unbiased 

results it is important that the value of the correction factor used is not 

too low (not less than 0.7-0.8). This was the case in this study when the 

affine correction method was applied to grchan in one instance, when 

fully acceptable results were obtained. However, in other cases, where 

the correction factor was below the limit suggested by geostatistical 

literature, biased outcomes were observed. 

The NNK method accomplishes the correction of the support differences 

by applying a correction factor that is derived from the proportion of the 

variance of the data used for estimation and the blocks being estimated. 

This method, when applied to the study data set, showed a clear 

improvement of the estimation results in comparison to the ordinary 

kriging algorithm applied to the same data set. This is evidence that an 

estimation technique that honours the support of data and adjusts for it is 

very likely to deliver far more reliable results than one that does not. 

NNK can be globally unbiased and more robust than OK, especially 

when applied to a variable deposit with some high grade values, as in 

case of our study data. It is however suggested that the global 
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unbiasedness of the NNK method should be checked. It generates 

estimates which are less smooth then those from OK, giving the user the 

ability to control the number of samples from the nearest neighbourhood 

which get the most weight. This is particularly useful with highly 

variable grade distributions. Since the results of NNK estimation depend 

on the number k of nearest samples chosen as well as the smoothing 

correction factor f, particular attention should be given to those variables. 

Our estimation tests demonstrated a clear advantage in this case in using 

NNK over OK. However NNK may introduce conditional bias when 

producing more variable results, e.g. estimating regions preferentially 

drilled. Also the number k of nearest samples to be emphasised is not 

categorically defined. This puts a special importance on the user's 

experience and knowledge of the data set in order to be able to choose a 

value of k in such a way so that the "best" possible estimate is obtained. 

The change of support by conditional simulation (in this study the 

sequential Gaussian simulation algorithm was used) is realised by 

generating point values simulated at a smaller scale (fine grid) and then 

averaging them to derive the block ( or SMU) value. There is basically no 

limitation when it comes to the block size/volume. What is more 

important is that there is no need to know the theoretical distribution of 

155 



the block being simulated because the method does not call for a 

correction factor. Simulation has the advantage of generating a set of 

values for each block estimated, i.e. a distribution of values, which 

models the uncertainty. This information can be used for determining the 

optimal grade under different criteria. The analysis of the 50 realisations 

revealed that the tonnage distribution of grchan was well reproduced 

unlike the grade distribution which was located close to the upper bound 

of our realisations ensemble. Perhaps larger number of realisations is 

required in this case to further refine the outcomes. The results obtained 

also seem to suggest that the realisations with higher grade and tonnages 

should be given a particular attention, when dealing with data sets like 

finexcomp (high variability, positive skewness with some very high 

grade values). Interestingly a similar tendency, although not so 

pronounced, to under-estimate the grade of grchan was observed in the 

case of NNK. These may actually indicate that our exploration data set 

does not have sufficient amount of information to enable accurate 

estimation or reproduction of certain properties of grchan. Some errors 

are unavoidable, but as shown, the support correction helped to 

minimised them. The change of support by conditional simulation using 

sequential Gaussian simulation can be seen as a global method because it 

accounts for the covariances between block values. Summarising, the 
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method is easy to implement and, in the cases tested, gives acceptable 

results. It should become a "standard step" during the recoverable 

reserve/resource estimation process. 

The two new correction methods, NNK and change of support by 

conditional simulation proved to be useful and practical. They can both 

be easily applied to any data set. A direct comparison of the two methods 

is difficult since one is a simulation method and the other one is an 

estimation method and these two methods are based upon different 

underlying assumptions. Nevertheless each of these methods has its 

apparent advantages and certainly can provide the user with a very 

helpful analytical tool. They might even be viewed as two 

complementary methods. 
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Appendix 1 

Medsystem®/Minesight® - 3-D search parameters definition for kriging 

interpolation technique. 
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MEDSYSTEM®I/MineSight® 
Proprietary Software: Mintec, inc. M624V1-KRIGING INTERPOLATION TECHNIQUE 

I. Primary 3-D search parameters defining a box around a block: 

PARl 

PAR2 
PAR3 

X-SEARCH DISTANCE 

Y-SEARCH DISTANCE 
Z-SEARCH DISTANCE 

NOTE: PAR3 not used for SCAN l-D or SCAN2-D. However, still enter a small non-zero value (e.g. 0.1). 

PAR4 MAXIMUM 3-D DISTANCE FROM BLOCK CENTROID TO ACCEPT DATA 

(default = SQRT ((PAR1)2 + (PAR2)2 + (PAR3 )2)) 
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Figure 1. Definition of Primary Coordinate Search Parameters (PAR], PAR2, and PAR3). 

All of the composites within this rectangular "box" are checked against the maximum 3-D search distance (PAR4). The composites 
that are less than or equal to this distance from the center of the box are retained for further screening, such as geologic matching. 

If there are more than "n" number of composites for a given block after all the tests, then the composites are sorted by increac;ing 

distance. Only the closest "n" are retained for calculating the weights. Based on these weights, the grade of the block is computed 
and stored. 

IMPORTANT NOTE: To interpolate GSM or 2-D surface data, the coordinate selection must be based on X and Y coordinates 

only. If this is the case, then depending on which source is appropriate, use one of the following command lines in your run file: 

ITMn CARD DATA INPUT SCAN2-D (ASCII Input Data) OR 
ITMn FILE DATA INPUT SCAN2-D (Composite File 8) 
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M624V1-KRIGING INTERPOLATION TECHNIQUE 

II. Optional full 3-D (ellipsoidal) coordinate search definition 

MEDSYSTEM®i/MineSight® 

Proprietary Software: Mintec, inc. 

To add a full 3-D search within the primary search explained above include the following command in your run file: 

CMD SEARCH RY RX RZ ROTN DIPN DIPE 
or 
CMD SEARCH GSLIB RY RX RZ ROTI ROT2 ROT3 

or 
CMD SEARCH COORD filename RY RX RZ 

where 

SEARCH 
RY 

RX 

Keyword for the program indicating a 3-D search 
Search distance (range) in the new north (major-axis) direction 
Search distance (range) in the new east direction 
Search distance (range) in the new up direction RZ 

ROTN 
DIPN 
DIPE 

Rotation from the old north axis to the new north axis( clockwise is a positive rotation) 

Dip of the new north axis measured horizontally (negative dip is plunging down) 
Dip easterly from the new north axis 
(the horizontal component of this vector is 90 degrees clockwise from the horizontal component of the 
new north axis. The dip is measured as in DIPN.) 

GSLIB 
ROTI 
ROT2 
ROT3 
COORD 

filename 

Keyword to specify GSLIB rotation entry 
Horizontal rotation of north axis 
Rotation of the north axis from horizontal 
Final rotation around the new north axis 
Keyword to specify rotation with three points 

Name of the ASCII file with coordinates of these points 

For a detailed description ofrotation parameters, see the 600-series Technical section. 

Figures 2, 3, and 4 below and Sample Run File #2 show the relationships of the various parameters for ellipsoidal search. 

NORIH 

Figure 2. Definition of ROTN, RY and RX used in 3-D 
Ellipsoidal Coordinate Search 
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Figure 3. Definition of DIPN, RY and RZ used in 3-D 
Ellipsoidal Coordinate Search 

_.� 
\ 
\ 
\ 

\ 
\ 

\ 
\ 

DOWN 

\ 
\ 
\ 

\ 
\ 

\� #' 
8ECTDIVEW 

(WIWI RODI• Dl'tl • 0) 

Figure 4. Definition of DIPE, RX and RZ in 3-D 
Ellipsoidal Coordinate Search 

This search forms an ellipsoid around the center of the block based on the search ranges and angles used. The composites within this 
ellipsoid are retained for calculations. The 3-D distances (RX, RY, RZ) between the block center and the composites are "adjusted" 

distances based on anisotropy ratios between the ranges. Therefore, if the full 3-D search is used, the value of the maximum 3-D 
search distance (PAR4) must reflect the distance in the new coordinates. This option supercedes the I0P3 setting. This option should 
not be used for the GSM mine model or File 13 interpolation. 
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MineSight® 
Proprietary Software: Mintec, inc. M624V1-KRIGING INTERPOLATION TECHNIQUE 

III. Optional interpolation parameters 

PAR7 

PARS 

MAXIMUM DISTANCE TO CLOSEST POINT FOR INTERPOLATION (default = PAR4) 

MAXIMUM DISTANCE TO THE CLOSEST COMPOSITE WHEN THE NUMBER OF COMPOSITES 
WITHIN THE SEARCH = IOP7 (default = PAR7) 

NOTE: The difference between PAR7 and PARS is that PAR7 is tested at all cases whereas PARS is tested only 
when the number of composites within the search volume is equal to IOP7. 

PAR9 

PARlS 

MINIMUM GRADE VALUE (ifI0P5=l )  

MAXIMUM ESTIMATION ERROR ALLOWED 

NOTE: If the kriging variance for a block exceeds PARIS, the block estimate is not stored. 

IV. Optional 3-D search distance at a specified cutoff 

Maximum 3-D search distance can be changed for the assays that are greater than a specified cutoff. For this, add the following lines 

in your run file: 

PAR31 

PAR32 

PAR33 
PAR34 

CUTOFF GRADE FOR CHANGING THE 3-D SEARCH DISTANCE 

THE 3-D SEARCH DISTANCE AT THE SPECIFIED CUTOFF 
(i.e., for composites greater than or equal to PAR3 l in value, the maximum 3-D search distance 

will be PAR32, instead ofregular PAR4). 
LOW GRADE CUTOFF TO CHANGE THE SEARCH 
MAX. 3D SEARCH DISTANCE AT PAR33 

NOTE: P AR3 l - P AR34 apply to the items in the first calculation only. 

V. Specification ofvariogram model parameters 

The M624Vl run file must contain the specifications of one variogram model to be used for kriging. To specify the nugget and sill 

values for the variogram, enter the following command lines: 

CMD NUGGET nug-value 
CMD SPH sill-value Rl R2 R3 [ROTN DIPN DIPE] 
or 
CMD SPH GSLIB sill-value Rl R2 R3 ROTI ROT2 ROT3 
or 
CMD SPH COORD filename sill-value Rl R2 R3 
where 

NUGGET 
nug-value 
SPH 

sill-value 

Rl 
R2 

R3 
ROTN 
DIPN 

Keyword for the program (could be abbreviated NUG) 
Nugget value for the program. Enter even when it is zero. 

Keyword for the program for spherical model. 

Use LIN for a linear variogram or EXP for an exponential. 
Individual sill value for the specified variogram (C 1 or C2, etc.). 

For a single model, this value equals to "total sill minus the nugget". 
Range in the new north (major-axis) direction 
Range in the new east direction 
Range in the new up direction 
Rotation from the old north axis to the new north axis (clockwise is a positive rotation) 
Dip of the new north axis measured horizontally (negative dip is plunging down) 

DIPE Dip easterly from the new north axis (the horizontal component of this vector is 90° clockwise from 
the new north axis projected in the old horizontal plane. The dip is measured as in DIPN.) 

ROTN, DIPN, DIPE = MEDS rotation angles 
ROTI , ROT2, ROT3 = GSLIB rotation angles 

filename = Name of the ASCII file with coordinates of points defining rotation 
See the Technical section for a detailed description ofrotation parameters. 
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Appendix 2 

Parameter file for bsgsim 

START OF PARAMETERS:  
declusl .dat 
2 3 0 5 6 0 

0.0001 l .Oe21 
2 
1 5 1 
bsg50.tm 
0 
nofile.out 
1 2 
0.0 
1 
4 
1 

70.0 
0.0 

2 

bsg50.dbg 
bsg50.out 
50 
1 10 1 .0 2.0 
1 20 1 .0 2.0 
1 0.0 1 .0 
1 12063 
0 20 
1 2  
0 
1 3 
0 
1 20.0 10.0 1 .50 
1 20.0 0.0 0.0 
0 0.60 1 .0 
. ./data/ydata.dat 
0 
2 0.06 
1 0.66 1 20.0 0.0 0.0 

59.62 44.04 1 .5 
1 0.28 1 20.0 0.0 0.0 

107.03 89. 17  1 .5 

\ file with data 
\ columns for X,Y,Z,vr,wt,sec.var. 
\ trimming limits 

\ transform the data (O=no, l =yes, 2=block av.) 
\ discretization factor for block averaging 
\ file for output trans table 
\ consider ref. dist (O=no, l =yes) 
\ file with ref. dist distribution 
\ columns for vr and wt 
\ zmin,zmax(tail extrapolation) 
\ lower tail option, parameter 
\ upper tail option, parameter 
\ debugging level: 0, 1 ,2,3 

\ file for debugging output 
\ file for simulation output 
\ number of realizations to generate 
\ nx,xmn,xsiz 
\ ny ,ymn,ysiz 
\ nz,zmn,zsiz 
\ random number seed 
\ min and max original data for sim 
\ number of simulated nodes to use 
\ assign data to nodes (O=no, l =yes) 
\ multiple grid search (O=no, l=yes),num 
\ maximum data per octant (O=not used) 

\ maximum search radii (hmax,hmin,vert) 
\ angles for search ellipsoid 
\ ktype: O=SK, 1 =0K,2=L VM,3=EXDR,4=COLC 
\ file with L VM, EXDR, or COLC variable 
\ column for secondary variable 
\ nst, nugget effect 
\ it,cc,angl ,ang2,ang3 
\ a_hmax, a_hmin, a_ vert 
\ it,cc,ang 1 ,ang2,ang3 
\ a_hmax, a_hmin, a_ vert 

By entering 2 at the fourth line of the parameter file the block averaging 
option is specified 

The fifth line contains the block discretisation parameters. 
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Appendix 3 

Parameter file for postsim 

Parameters for POSTSIM 
**********************  

START OF PARAMETERS: 
bsg50.dat 
50 
-0.001 1 .0e21 
1 10 24 1 
Clbsg50.dat 
1 

\ file with simulated realizations 
\ number of realizations 
\ trimming limits 
\ nx, ny, nz 
\ file for output array(s) 
\ output option [ I l ,  output parameter 

Note: 

[ l ]  for probability intervals calculation in the last line of the 
parameter file a digit four followed by 0.95 should appear. Four is 
the output option and 0.95 is the output parameter for the 95% 
confidence intervals calculation. 
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