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Abstract 

This research is in the area of geostatistics and consists essentially of two parts. The 

first is an investigation of the variogram and cross variogram and the associated 

kriging and cokriging methods of spatial prediction and the second is an application of 

these in the analysis of two ( original) data sets. 

In the first part (chapter 1 to chapter 5), the focus is on summarising and illustrating 

the various techniques of Exploratory Data Analysis (EDA) and some methods used to 

estimate and model the experimental variograms and cross variograms for a given data 

set, together with some of the geostatistical methods of kriging and cokriging used for 

prediction purposes. The research also illustrates some of the many applications of 

this theory in the earth and environmental sciences. 

The second part of the thesis (chapter 6) is an application of these geostatistical 

techniques to the analysis of two (new) data sets. The first data set consists of the 

Available Phosphate (in ppm) and Potassium (in ppm) from two fields (one cropped 

and one uncropped) in the Jimperding Brook area of Western Australia. The second 

data set consists of the number of species of Banksia at various locations within a 

region of Southwestern Australia. 

viii 



1. INTRODUCTION

1.1. Background and Significance 

The term Geostatistics was first introduced by Matheron ( 1962) in connection with 

the analysis of problems arising in the mining industry. It was subsequently extended 

to geology (Matheron 1963a, 1963b, 197 l a) in general and to other earth sciences 

such as geography (Boots and Dufournaud 1994) and soil science (McBratney and 

Webster 1986 ; Yost et al 1982). However the theory involved is now being applied 

in a wide variety of other areas. These include hydrology (de Kwaadsteniet 1990), 

pollution control (Wartenberg, Uchrin, and Coogan 1991 ), and atmospheric science 

(Hass 1990). Some of the ideas introduced by Matheron had appeared earlier in other 

forms. For instance, what Matheron refers to as the variogram was called a structure 

function in physics by Kolmorogov ( 1941 ), in probability by Yaglom ( 1962), and in 

meteorology by Gandin ( 1963), and a mean-squared difference by Jowett ( 1952) in 

time series. However it is Matheron's terminology that has persisted and which will be 

used throughout this thesis. 

The name kriging was introduced by Matheron in honour of the South African mining 

engineer D. G. Krige who (Krige 1951, 1966) developed methods for determining the 

true ore-grade distributions from the distributions based on the sampled ore grades. 

However the formulation of spatial linear prediction did not come from Krige's work. 

The contributions of Weiner (1949), Wold (1938), and Kolmogorov (1941) all contain 

optimal linear prediction methods. 



In geostatistics one is dealing with spatial data, where the locations of the samples, as 

well as their values, are important. Such data frequently exhibit spatial autocorrelation, 

which, loosely speaking, means that nearby values will be more alike than values 

located far away from one another. One is interested in obtaining a profile of the 

distribution of the data values and in using this to predict the value at a particular 

location. The variogram is an important tool in modelling the spatial continuity (the 

spatial dependence) of the data while kriging is the method, or more accurately 

methods, of spatial interpolation used for prediction purposes. The type of kriging 

used depends on the nature of the data and the underlying assumptions of the 

mathematical model to be used. One advantage of this approach is that it is possible, 

via the kriging variance, to obtain an idea of the accuracy of such predictions. When 

multivariate data are analysed, methods of co-kriging are sometimes used as the 

prediction accuracy of one variable can often be improved by knowledge of values of 

another variable measured at the same locations. 

1.2. Regionalized Variables 

Matheron (1962, 1971b, 1973) introduced the term regionalized variable z(s) where 

the location index s is assumed to vary continuously over the domain D, a fixed subset 

of d-dimensional Euclidean Space R
d

. Regionalized variables and their relevant 

applications in constructing models are very important in geostatistics. A regionalized 

variable is simply a random variable where the values vary with temporal or spatial 

location, defined in space-time to exhibit certain types of spatial or temporal 
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characteristics. A regionalized variable exhibits two main features, one of which is a 

structure aspect, and other is a random aspect. The first is based on theoretical 

grounds which express structural and geometrical properties in an adequate form, and 

the second is based on practical grounds which solves the problem of estimation of a 

regionalized variable from fragmentary sampling data. These two purposes are related 

to each other because the error of estimation depends on the structural characteristics; 

for example, the error of estimation becomes greater when the regionalized variable is

more discontinuous. Regionalized variable theory focusses attention on means and 

variances of the variables under consideration. In paiticular, under the intrinsic 

stationarity assumptions, increments between all pairs of points, situated at a given 

distance h, have a mean zero and a finite variance that remains the same in the various 

parts of the area under study. This makes it possible to use the variogram. 

1.3. Notation and Stationarity Assumptions 

In general, although not exclusively, throughout this thesis we shall follow the notation 

used by Cressie (1991). Geostatistical models are handled with the help of a 

probabilistic framework which is traditionally presented in terms of continuous random 

processes. In this thesis we consider a point s in d-dimensional Euclidean space 

Rd and suppose that a random variable { z(s):sE D} at spatial location s is a realization 

of a stochastic process {Z(s):sED}. For simplicity we will give examples from 

R
2 

throughout this thesis. 
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The process {Z(s)} is said to exhibit strict (strong) stationarity, if for any integer m, 

and locations s1, ••• , sm , and any vector he Rd and all m � 1 

This means the joint distribution of this process evaluated at any set of points is 

unchanged if all the points are moved the same distance in the same direction. In

particular, the expected value (mean) of Z(s) is constant and does not depend on the 

actual position. Then the process is said to be stationary in the mean and this can be

expressed as 

E[Z(s) - Z(s+h)] = 0 (1.2) 

where h (lag) is a vector in Rd . If the covariance cov (Z(s), Z(s+h)) is finite and 

depends upon only h, then the function C(h), called the covariogram, can be defined 

by 

C(h) = cov[Z(s), Z(s+ h)] (1.3) 

If C(h) is a function of only 11h11 then C(h) is called isotropic.

The process {Z(s)}is said to be second order (weak) stationary if it satisfies (1.2) and 

(1.3). Strong stationarity implies second-order stationarity whenever P{Z(s) �z} 

yields a finite second moment. 
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The process {Z(s)} is said to be increment stationary if it satisfies equation (1.2) and 

for any integer m, locations s,, ... , sm , and vector h 

P[Z(s 2 ) - Z(s,) � z,, .. . , Z(sm ) -Z(sm_,) � Zm-i ]= 

P[Z(s 2 + h)-Z(s, +h)�z,, ... ,Z(s m +h)-Z(sm_, +h)�zm_,] (1.4) 

If the variance of the difference between Z(s) and Z(s+h) is finite , and depends only 

on h then the variogram 2y(h) can be defined as 

2y(h) = var [Z(s)-Z(s+h)] ( 1.5) 

The process {Z(s)} is said to be intrinsic stationary or, alternatively , to satisfy the 

intrinsic hypothesis if it satisfies equations ( 1.2) and ( 1.5). In this case the variogram 

can be written as the expected squared difference between random variables Z(s) and 

Z(s+h) as below. 

2y (h) = E[(Z(s)-Z(s + h))
2 ] (1.6) 

Note that y (0) = 0, y(h) � 0 and y(-h) =y(h). If var [Z(s)] = C(O) (finite) ,  and 

second-order stationarity is satisfied, then the variogram can be written in terms of the 

covariogram as 

2y(h) = var [Z(s)-Z(s + h)]

5 
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2y (h) = var (Z(s)) + var (Z(s + h)- 2cov (Z(s), Z(s + h)) 

2y(h) = 2(C(O)-C(h)) (1.7)

which implies that Z(s) is also intrinsically stationary. In this case the variogram is 

bounded and C(O) is known as the sill of the variogram. 

For processes whose means and variances exist, strict stationarity implies second order 

stationarity but the converse is not always true. Increment stationarity implies intrinsic 

stationarity but the converse is not always true. Second order stationarity implies 

intrinsic stationarity, but the converse is not always true. Strict stationarity implies 

increment stationarity, but the converse is not always true. A familiar example here is 

Brownian motion which is increment stationary but not strictly stationary (Christensen 

1990). 

1.4. Probability Model 

In the stationarity framework, the regionalized variable Z(s) can be modelled as the 

sum of a deterministic part µ(s), a mean function called the drift, and a zero-mean 

stochastic process 8(s) called the residual random part. The mean function can be 

thought of as the large scale variation representing the variable's global trend over D. 

The zero-mean stochastic process can be thought of as the small scale variation 

representing the spatial dependence after the trend is removed. This type of model is 

known as a stochastic model or a probabilistic model (Cressie 1991) and can be 

expressed as equation (1.8) 
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Z(s) = µ(s) +8(s), SED (1.8) 

If µ(s) varies slightly over a region, or the expected value of the drift is not constant 

but varies over the region D then the drift may possibly be expressed as a linear 

combination of suitable base functions and we can write 

p+I 

Z(s) = I.P
j
-l f

j
_ 1

(s) +8(s) 
j=I 

(1.9) 

where sis a location index, � 
j
-i, j = 1, ... ,p+ I are called the unknown drift coefficients, 

and fj-i (s), j= 1, ... ,p+ 1 are known base functions at s. The model expressed in 

equation ( 1.9) is known as the universal kriging model in geostatistics. A special case 

of the universal kriging model is the ordinary kriging model, when µ (s) is unknown 

but constant and the simple kriging model when the mean function is known. This 

will be discussed in detail in chapter 4. 

7 



2. Exploratory Data Analysis

2.1. Overview 

Exploratory Data Analysis (EDA) is an important step in the analysis of any data. It 

can be used to detect outliers (atypical observations), symmetric, non-Gaussian and 

skew distributions and also to check stationarity assumptions and look at the spatial 

continuity of the data. One of the aims of EDA is to detect these effects before the 

modelling and prediction. The idea is to apply EDA in order to obtain a better 

geostatistical model and hence improve the description of the underlying spatial 

structure. 

EDA deals with the identification of distributional properties of the data (such as 

location, spread, skewness, and tail properties), and provides resistant methods and 

graphical tools for better description, modelling and interpolation. The methods of 

EDA are also useful in model evaluation, hypothesis formulation and methodology for 

hypothesis testing (Raining 1990). 

EDA should be distinguished from Confirmatory Data Analysis (CDA) which is 

concerned with significance and hypothesis testing, estimation and prediction after the 

model has been fitted and any underlying model assumptions have been checked. The 

use of EDA may be particularly important in areas where fmmal CDA test procedures 
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are difficult to implement or are of unknown reliability. It may detect not only the data 

problems mentioned above but also problems that are associated with the spatial 

organization of the data and which may affect the fitting of the spatial model. 

Resistant estimation procedures are designed to handle the situations where the data 

satisfy the assumptions made but contain a small number of local or global outliers, 

whereas robust methods are designed to handle the situations where the data violate 

the model assumptions and contain atypical observations. These outliers may produce 

errors and lead to the selection of inappropriate models. 

For example, to remove the problem of trend in the data, Cressie (1991) suggests the 

use of the median polish. The approach is to apply median polish to the data to obtain 

a set of residuals that are without trend. The residuals from this resistant fit then can 

be used for further analysis to obtain a good model for interpolation. 

Some methods of EDA will be illustrated here on a data set given in a different context 

by Cressie (1986). The measurements are taken from an ore body in Australia and 

consist of Iron Ore (% Fe2 03 ) data modified by multiplying by and adding unspecified 

constants. The data were sampled on a regulary spaced grid of 50 metres by 50 

metres. Along with their spatial locations, the modified data, called here The Iron Ore 

Data, are given as Appendix A. l 
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2.2. Stem-and-Leaf plots 

A stem and leaf plot is one of the simplest ways of providing a graphical 

representation of the overall structure of the data. It provides some idea of shape, 

distribution and the location of global outliers. However a stem-and-leaf plot does not 

provide any indication of local outliers or the local configuration of the data. The 

stem-and-leaf plot given in figure 2.1 below is for the iron ore data and was obtained 

by using MINITAB. The second and the third columns give the stem and leaves 

respectively. For example in the first row 45 stem and 46 leaves indicate 45.4% and 

45.6% iron ore respectively. The first column provides a count of the number of 

leaves. 

Stem and leaf plot of iron ore data 

2 45 46 

3 46 9 

8 47 12558 

9 48 0 

14 50 03455 

23 51 233455699 

31 52 01125689 

38 53 1255557 

47 54 012333348 

(11) 55 00111477899

54 56 11122345667778999 

37 57 11345668889 

26 58 112344566777999 

11 59 001116677 

2 60 38 

Figure 2.1 
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We can see from Figure 2.1 that the distribution is negatively skewed. Because the 

actual data are retained in a stem and leaf plot, the data values are easily viewed and 

global outliers can be noted. There are no global outliers in this particular data set. 

However, a global outlier can be seen in the stem-and-leaf plot in Figure 2.2 which 

uses the coalash data (Cressie 1991) given in Appendix A.3. The second and the third 

columns give the stem and leaves respectively. For example in the first row 7 stem 

and 003 leaves indicate 7.0%, 7.0% and 7.3% coalash data respectively. The first 

column provides a count of the number of leaves. 

Stem and leaf plot for coalash data 

3 7 003 

14 7 66678888999 

27 8 0011122222223 

51 8 556666666788888899999999 

84 9 000000001111122222233333333444444 

(36) 9 555555666666667778888888888999999999

88 10 000000001111111222222333334444444 

55 10 56666677777788888899999 

32 11 0000111122222223344 

13 11 5666789 

6 12 

6 12 578 

3 13 11 

1 13 

1 14 

1 14 

1 15 

1 15 

1 16 

1 16 

1 17 

1 17 6 

Figure 2.2 
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2.3 Box Plots 

A boxplot is a graphical display of the five-number summary consisting of maximum, 

minimum, median, upper and lower quartiles. In the case of the iron ore data this five-

number summary is 60.8, 45.4, 55.4, 57.8 and 52.5 respectively and the box plot of 

this data was obtained using MINIT AB and is g1ven in figure 2.3. 

Boxplot of Iron Ore data 

60 

I 
55 

50 

45 

Figure 2.3 

2.4 Surface and Contour Plots 

A surface plot displays a three-dimensional surf ace. The data values are displayed as 

the z co-ordinate while the data locations are given as the x and y coordinates 

respectively. The surface plot of the cropped field Available Phosphate data (listed in 

Appendix A.4 and analysed in detail in section 6.2) was obtained using MINITAB and 

is given in figure 2.4. 
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Phos 

9J 

40 

30 

Surface plot of Phosphate data 

Figure 2.4 

A contour plot depicts contour curves for the relevant surf ace. A contour plot for the 

iron ore data was obtained using MINITAB and is displayed in figure 2.5. 

9 

8 

7 

6 

� 5 
a: 4 

3 

2 

Contour Plot of Iron Ore Data 

0 .... ---�---�---�-� 

0 5 10 

Column 

Figure 2.5 
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15 
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...... 53.5 
--- 56.0 
--- 58.5 



2.5 Post Plots 

Post plots provide a graphical display of the data, in which we can see not only the 

values but also the actual locations of the sample points. The sample locations can be 

regularly or irregularly spaced. Post plots allow us to get an idea of the general trend 

of the values in different directions. Figure 2.6 below shows the post plot of the iron 

ore data. It has been obtained by using GEOEAS. The four different symbols 

represent intervals between adjacent quartiles. It is possible via GEOEAS to obtain a 

plot with the actual values listed at each location. From Figure 2.6 we can visualise a 

trend in the N-S direction, which is gradually increasing from the South to North 

(from bottom to top). The distance between two locations was scaled to lag 1 from 

50 metres in this graph. 

Post plot of Iron Ora Dcto 

.. )( .. .. CJ .. .. )( 

CJ .. CJ CJ • • CJ .. + X 

X .. )( .. CJ .. CJ .. CJ CJ CJ )( + )( + 

er, )( + + CJ CJ + .. .. .. .. .. )( X CJ 

·=

5 CJ X X + • CJ + C .. X .. C CJ • 

+ + X + X X + + X C .. .. .. CJ CJ )( CJ 

+ + + )( + + )( + + CJ )( CJ )( X + CJ .. 

+ X + + X + + + X CJ + C CJ • 

C X X 

0 

0 5 10 15 

E<isting 

1st auorlila: +o.+oo '5 + '5 02.!:IOO 

2nd Qugrlil•: o:z.:;oo < X '5 o�.ii.oo 

3rd Cucrtil11: 00.B-00 < D '5 07,B-00 

+t:h Cuortile: 07,300 < * '5 50.SOO 

Figure 2.6 
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2.6 Bivariate Plots 

A bivariate plot is a graphical description of pairs of sample values. Each pair can be 

represented as a point (x,y), and one plots Z(s+he) against Z(s) for a particular lag h 

and unit vector e. Bivariate plots are useful to draw attention to atypical observations 

and also exhibit the spatial continuity of the data. This technique is illustrated here 

using the iron ore data with h=l and e=(l,0) a unit vector in the E-W direction. There 

are no global outliers evident in this plot. 

6a 

Q) 55 

+ 

5a 

J( 

Bivariate plot of Iron Ore Data 

X 

>< " 
" 

>< 
X 

" 

xx 
X,c X. X 

.I:' >< 
'X 

>< " 

A 

X 
A 
A 

>< 

X 

X Jl.X.� :-'x
'X",,. X 

X x$" 
x"x " 

>< 
";. 

" 

A 
" 

" 

"' X 

X 

'X 

is ......,_ __ �-..-------.----�-' 

5a 55 6C 

Z(s) 

Figure 2.7 

2.7 Row and column means and medians plots 

When the data are given on a rectangular or square grid then this method is 

appropriate to provide graphical to help to get an idea of trend by using both mean and 

median plots across the rows and across the columns (Cressie 1991). It is important in 

the preliminary steps to look for data outliers, spatial pattern and if possible to remove 
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any trend or drift present in the data. The presence of possible outliers is indicated by 

large (positive and negative) values on row or column mean and median plots. If 

outliers appear in the data then the effect of these may be able to be minimised by an 

appropriate transformation. There are two important aspects of using median and 

mean. From the EDA point of view the median is a resistant statistic whereas the 

mean is a nonresistant statistic (Cressie 1991). The compa1ison between mean values 

and median values may highlight atypical observations in rows or columns. For 

example if the differences between the mean values and the median values are too 

large or too small then these rows or columns may contain atypical observations. 

Column means and medians as well as row means and medians were plotted in order 

to check the directional trend of the iron ore data. The column means and the column 

medians were plotted in figure 2.8 and the row means and medians in figure 2.9. In 

these the median is denoted by a solid circle and the mean is denoted by a cross. These 

correspond to calculations in the E-W and the N-S directions respectively. In the E-W 

direction there are two atypical observations (bottom left) and there is no trend. In 

figure 2.9, the estimated row mean and row median plots, the data exhibit 

nonstationarity and a strong linear trend exists in the N-S direction. This 

nonstationarity in the mean, or trend, can be minimised by applying a resistant 

technique (for example median polish) to obtain a new data set (the residuals) which 

hopefully will provide a symmetric distribution which also satisfies the intrinsic 
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hypothesis. These plots are produced by using MINIT AB and are given in Figures 2.8 

and 2.9 respectively. 

Column mean and median plots of Iron Ore Data 

• 

• X • • • 
' 56 - • X X 

i • • '. 
X X 

-0 • • 

� 
� 51 -
0 

• 

46 - I 
• 

I I I 
0 5 10 15 

Column 

Figure 2.8 

Row mean and median plots of Iron Ore Data 

59 -

• 

58 -
X • 

57 -
X • 

• 
-0 

• X 
� 56 - X X � 
� 55 - • • 

X 

54 - X 

• 

53 - X 

X 

52 - I I I I I I I I I I 
0 1 2 3 4 5 6 7 8 9 

Row 

Figure 2.9 
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2.8 Median Polish 

Median polish (Velleman and Hoaglin 1981) is similar to two-way analysis of variance 

and both use additive models. The difference between these two is that two-way 

analysis of variance fits the model by finding row and column means whereas median 

polish fits the model by finding row and column medians. The additive model is one in 

which each cell is represented as the sum of four components: a constant common 

term, row effects, column effects and residuals. 

Median polish is resistant to atypical observations and is used when the data are 

nonstationary in the mean. Such spatial outliers could have a serious distorting effect 

on the values of non-resistant statistical estimators of the statistical properties. It 

would be inappropriate to fit a variogram in the presence of trend in the data. It may 

be possible to minimise the trend by performing a sweep across the rows and another 

sweep down the columns. The subtraction of these row medians from the data values 

is called half sweep and subtraction of these column median from the numbers in its 

column obtained from the half sweep called one complete sweep. Then the data 

denoted by D
ij 
can be modelled as 

(2.2) 
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where C, REi CEi and Rij are common term, row effects, column effects and 

residuals respectively. 

The residuals from median polish for the iron ore data were obtained for fifteen 

iterations using MINIT AB and is given in Appendix A.2. These residuals satisfy a 

Gaussian distribution exhibiting no systematic pattern and appear to be compatible 

with the intrinsic hypothesis. 
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3. Variograms

3.1. Overview 

In this chapter we shall consider a number of variogram models and also look at ways 

of estimating y(h) from the data. We shall refer to such an estimate as the 

experimental or empirical variogram. We shall consider mainly the so-called classical 

estimator introduced by Matheron (1963b) but we shall consider also one of the robust 

estimators introduced by Cressie and Hawkins (1980). The former is usually denoted 

A 
-

by y(h) and the latter by y(h) but, when the meaning is clear, we shall continue to 

write simply y(h). The experimental variogram is used mainly for obtaining an idea 

of the spatial continuity in different directions by measuring the spatial autocorrelation 

of the data. These experimental variograms are also useful for the identification of 

drift and the determination of anisotropy of the data (FmT and Hampen 1986). The 

(theoretical) variogram model will be denoted by 2y(h,0). The type of theoretical 

model depends upon the parameters 0 . Once an appropriate theoretical model is 

chosen then the parameters of this model can be estimated to fit the points of the 

experimental variogram. The estimated parameters in the fitted models play an 

important role in the subsequent kriging methods of interpolation. Details will be 

given in chapter 4. 

If the variogram at first increases with lag but later levels off then we have what is 

known as a bounded model. In this case 0 takes the form 0 = (c0 , c, a) where 
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c0, c and a are called the nugget effect, partial sill and range respectively. In 

addition, c
0 

+ C is called the sill and is the least upper bound of the model values. If 

h 
the sill in direction 

llhll 
is attained by 2y (h) at a finite distance a, then 2y (h) is said

to have range a in that direction. However the variogram may have a sill but attain it 

only asymptotically. In this case we take as the (effective) range the distance at which 

95% of the sill is reached (Zimmerman 1993). The range of the variogram is important 

because it marks the limit of the spatial autocorrelation of the variable concerned. As 

noted in section 1.3 we have y (0) = 0. If y (h) = c
0 

> 0 as h � 0 then c
0 
is the 

nugget effect (Matheron 1962). It is generally thought that this discontinuity at the 

origin is due to microscale variation. However Cressie (1991) suggests that this is an 

over-simplification and that c
0 

should be split up as c
0 

= c Ms + c ME where c Ms is due 

to microscale variation and c ME is the measurment error. 

In the unbounded model, the variogram increases with increase in lag. In this case 0 

is given by 8 = ( c
0

, b' ) where c
0 

is again the nugget effect and b is the slope of the 

model. 

For measuring the spatial continuity of the data, the behaviour of variogram near the 

origin is very informative for subsequent interpolation. Matheron ( 1971 b) 

categorized some important types of such behaviour and these have been summarised 

by Cressie (1991) as follows. 
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(i) The variogram is continuous at the origin. Then Z(s) is

continuous ( E[Z(s + h)- Z(s) ]2 

� 0 if and only if 2y (h) � 0, as 11h11 � 0 ). 

L 
2 

(ii) The variogram does not approach zero as the lag approaches zero. Then Z(s) is

not L,_ continuous. This discontinuity of y (h) at the origin is the nugget effect 

discussed above. 

(iii) y(h) is a positive constant (except of course at h = 0). Then Z(s1) and Z(s2) 

are uncorrelated for any s1 # s
2

• Then Z(s) is called white noise. 

Also the variogram 2)'(h) must satisfy the property of conditional negative definiteness 

which means that for any locations s
i 

i=l, 2, ... , m and real numbers a;, i=l,2 , ... , m 

satisfying Lai = 0, it follows that 
i=l 

m m 

LLa;aJY(s;-s j) � 0 
i=l j=I 

3.2. Variogram Models 

In the bounded case there are three forms of simple model generally considered. They 

can be used singly or the model used can be a combination of two or more simple 

models (of the same or different types). The combined model is a complex model and 

is used to get better fit. The three simple bounded models in frequent use are the 

Spherical model, the Exponential model and the Gaussian model. In each of the first 
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two models the variogram exhibits linear-type behaviour near the ongm and 

approaches its sill asymptotically. 

The spherical model appears to be model most commonly used and is given by 

0 , h=O 

y(h, 0 )= c0 +c, { � (�1)-G) (�l)l O < 11h11 < a,

Co +cs 11h11 > as

(3.1) 

where the parameter 0 =(c
0
.c.a.)' where c

0 
� O,c, � O,and a,� 0 and the partial sill 

c and the range a have the subscripts to indicate the spherical model is being used. 

The exponential model has become very useful to statisticians because of its wide 

application in first-order auto-regressive and Markov processes in time series 

(McBratney and Webster 1986) and is given in equation (3.2). 

h=O 

(3.2) 

0 =(c
0
,c,aJ' where c

0 
� O,c, � O,anda, � 0. In this case c and a have the subscript 

e. However Isaaks and Srivastava (1989) write the exponential model with 3h in 

place of h in equation (3.2) and this is used by GEOEAS package also. 

The Gaussian model also approaches its sill asymptotically but it exhibits parabolic­

type behaviour near the origin. The Gaussian model is given by 
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One example of the unbounded case is the linear model. This is often used in 

combination with one or more of the simple bounded models. The linear model is 

given by 

h=O 
(3.4) 

0 = (c
0

• b/ ), where c
0
.b

1 
� 0. Here bis the slope of the model with subscript l. 

Sometimes more complex forms of theoretical model can be considered while fitting 

the experimental points. Any linear combination of variograms with positive 

coefficients is itself a valid variogram. The most useful combinations of the models 

have been applied in soil sciences by incorporating two or more different ranges of the 

bounded variogram model. 
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Single and Double Fitted Spherical Models 
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Webster and McBratney (1989) have applied such a combination in mineral 

exploration and soil research to describe the variation in copper and cobalt sampled 

from South East Scotland. Single models (dashed and dotted lines) and a double 

spherical model (solid line) were fitted to the experimental semivariogram of Jog 
10 

copper concentration in the top-soil. This is illustrated in figure 3.1 which was 

scanned from Webster and McBratney (1989). 

3.3. Sample Variograms 

In practice the variogram must be estimated from the data. As mentioned in section 

3.1 we shall consider two estimators in detail and refer to these as the classical 

estimator and the robust estimator. The former is the one used almost exclusively in 

practice and is in the standard geostatistical software. However, it is very sensitive to 

the effect of outliers. As its name suggests the robust estimator is more resistant to 

outliers and was introduced for this reason. 
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The classical estimator was introduced by Matheron (1962) and is given by 

/\ 1 2y(h)=-
, 
-

, 
L(Z(s;)-Z(s))2 

N(h) N(h) 
(3.5) 

where the sum is over N(h)={(i,j):s;-s
j 
=h}, and jN(h)j is the number of distinct 

pairs in N(h). On a regular grid, we can estimate the classical variogram for various 

discrete values of h for each pair of observations. Geostatistical software packages 

such as GEOEAS and GEOPACK use the classical estimator. In addition, we have 

written MINITAB macros for the four directions E-W, N-S, EW-NS, and NE-SW 

and these are listed in Appendix B. l .  The classical estimator of the variogram was 

estimated in the E-W direction for the iron ore data using one of these MINIT AB 

macros and is given in figure 3.2 below. 

Classical Variogram of the Iron Ore Data 
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Figure 3.2 

The experimental variogram obtained here shows that the variogram values are 

steadily increasing as the lags are increasing. This indicates a possible trend 
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in the data. However the corresponding experimental variogram estimated for the 

residuals of the iron ore data obtained by median polish shows no such trend (figure 

3.3). The values of the classical estimator for the original and residual iron ore data 

are given in Appendices B.2 and B.3 respectively. 

Classical Variogram of the Iron Ore Residuals 
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Figure 3.3 

The GEOEAS package calculates the experimental semivariogram (y(h)) and uses 

directions and tolerances along with bandwidth to capture a resonable number of data 

pairs. The tolerances use both plus and minus on the distance and on the direction of 

h. Bandwidth is used to define the width of two parallel lines and is perpendicular to

the direction of centerline to the second point in a pair. More detailed information 

about the GEOEAS software package is given in the GEOEAS 1.2.1 USER GUIDE 

(Englund and Sparks 1991). The variogram plot of the iron ore data was also 

produced by using GEOEAS with tolerance, bandwidth, and direction 1, 20, and 0 
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respectively and is given in figure 3.4. The variogram values were obtained by using 

GEOEAS. The values of classical and robust variograms for the original iron ore data 

are given in Appendix B.4. 
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Figure 3.4 

The classical estimator is very senisitive to the effect of outliers. It gives an unbiased 

estimate when Z(s) satisfies the intrinsic hypothesis. However the estimate has O(Yn) 

bias when Z(s) is second order stationary (Cressie 1991 ). Some improvement was 

made to deal with these outliers. For example, Cressie and Hawkins ( 1980) 

introduced several robust methods of estimating the variogram; Unlu et al ( 1990) 

compared various methods of fitting a model to the empirical variogram. The word 

robust is used to describe inferences of procedures that are stable when the model 

assumptions depart from those of a central model (Cressie 1991 ). 

estimators mentioned above are given in (3.6) and (3.7). 
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2- h - { )Nti;jf N�J lz(s,) -Z(s l r
'Y ( ) -

( 0.457 + 0.494)
N(h) 

- [med(lz(si)-Z(s l :(5;,s} E N(h)lr
and 2y (h) = -=---------------=­

B(h) 

(3.6) 

(3.7) 

where med{.} denotes the median of the sequence {.} and B(h) is a correction for 

bias. Thus vanous location estimators can be applied to 

{lzcsJ-Z(s)IYi :(s;,s)EN(h)}, which after normalising for bias, yield robust 

variogram estimators. Cressie and Hawkins ( 1980) proved that absolute 

transformation produced more Gaussian-like process in comparison to other 

transformations, such as log. A Gaussian process Z(s), (Z(s+h)-Z(s)) 2 is distributed 

as 2y(h). X 2 where X 2 is a chi-square random variable with 1 degree of freedom. 

Thus 2y(h) is the first moment of a highly skewed random variable. The robust 

variogram for the residuals of the iron ore data was computed using a MINITAB 

macro given in Appendix B.1 in the E-W direction and is given in figure 3.5. The 

robust estimator of the variogram in figure 3.6, for the original ore data, has lower 

values than the classical variogram estimator because it downweights potentially 

atypical observations. However changing to the robust variogram does not remove 

the trend present in this data. It is very obvious that there is no trend in the figure 

3.6, the robust estimator for the residuals of the or edata. The values for figure 3.5 
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and 3.6 are given in Appendices B.2 and B.3 respectively. 

Robust Variogram of the Iron Ore Data 

55 -
X 

50 -
X 

45 -
X 

40 - X 

� 35 - X 
X 

(j_ 30 
X X 

X 

25 -

20 - X 

X 

15 - X X 
X 

10 -
I I I I 

0 5 10 15 

Lag 

Figure 3.5 

Robust Variogram of the Iron Ore Residuals 
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Figure 3.6 

Resistant and exploratory techniques were also used to improve the estimation of 

variograms (Cressie, Hamlett and Horton 1986). 
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3.4. Fitting a Variogram Model 

Fitting a model is an important process in all applied mathematics and is no less so in 

geostatistics. A good fit of the variogram near the origin is especially important. 

(Cressie 1991; Stein 1988). In earlier papers Burgess and Webster (1980) and 

Webster and Oliver (1990) have illustrated experimental variograms of soil variables in 

several regions and fitted theoretical variograms to them. There are some important 

statistical procedures for fitting the theoretical model to the experimental variograms 

as given below. 

Fitting a variogram 'by eye' (trial and error method) is a commonly used method 

generally available in geostatistical software such as GEOEAS and GEOP ACK. This 

method requires an experienced person to fit the variogram model accurately. As used 

in GEOEAS it provides estimates for the parameters and gives a general picture of the 

fitted model. The values obtained can be used as the initial values when fitting the 

model by other (iterative) methods. 

To produce a variogram plot in GEOEAS the Prevar module is used to create a file 

for data pairs and these pairs are used in the Vario module to produce the variogram 

plot. The Vario module is also used to superimpose variogram models on the 

experimental variogram until a reasonable fit is obtained. The iron ore data were used 

once again. The omnidirectional semivariogram plot of the iron ore data was 

produced using GEOEAS and the values are given in Appendices B.5 and B.6. In 

Figures 3.7 and 3.8 spherical and Gaussian models respectively have been fitted to this 
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omnidirectional semivariogram. 
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Figure 3.8 

The choice of model type is particularly important and the final choice 1s often 
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determined by specialist knowledge of characteristics of the actual variable under 

consideration. 

Several other procedures for fitting a variogram model have been proposed. The 

simplest is ordinary least squares. Suppose the theoretical variogram model is denoted 

by 2 y (h j ;8), and the experimental variogram model is denoted by 2 y (h j) . The 

objective of ordinary least squares is to find the value of 8 will minimise the error 

variance as given in (3.8) below. 

(3.8) 

The estimation of parameters based on least squares methods can be improved in this 

context by using weighted least squares which is a non-linear optimisation process for 

evaluating the optimal set of variogram parameters. The weighted least squares (cost 

criterion) approach here is to estimate 0 to minimize 

f IN(h(j))I 2{
'Y "(h(j))-y(h(j);8)}

2 

j = 1 (y(h(J);y)) 
(3.9) 

The weights chosen here are those given by Cressie (1991 ). One of the advantages of 

this option is that it automatically gives more weight to early lags with maximum 

number of pairs and downweights lags with a small number of pairs to produce 

unbiased estimated minimum variance. 
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To get a weighted least squares estimate of the parameters, the weight can be assigned 

to each sample. When it is included, the expression is evaluated for each observation 

in the data set to be analysed, and the values obtained are taken as inverse elements of 

the diagonal variance-covariance matrix of the dependent variable. As mentioned by 

McBratney and Webster (1986) Laslett has an alternative choice with the weights 

defined by 

N(h )y(h .) 
.I J 

The cost criterion suggested by Cressie in equation (3.9) is very reasonable in the 

sense that the smaller the theoretical variograms, the more weight the residual assigns 

to it. Also, the more pairs of observations N(h1 ) there are, the more weight is 

assigned to it to obtain a good fit of the variogram model (Cressie 1991; Stein 1988). 

This is important to obtain a good fit of the variogram model near the origin. 

However Zhang, Eijkeren and Heemink (1995) pointed out some drawbacks in 

Cressie's cost criterion. These are the following. 

(i) Weighted least squares uses a non-linear optimisation process to evaluate the

optimal set of parameters and the sum of the weights differs in each iteration. This 

may lead to wrong conclusions when the cost of two iterations with different 

weighting factors are compared. In this case the minimization procedure may 

converge to local minimum or even diverge. 
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(ii) Weighted least squares does not yield the same cost for a positive or negative

deviation. To check this, one experimental variogram y* = 1 with N=l was 

considered. Now let if y(h(i);A) =.5, then the cost is 1, while if y (h(j) = 1.5, the cost 

is only 1/9. They proposed a new cost criterion, given in (3.10) below, to overcome 

these problems. 

f IN(h(j))l{y(h(j))-y(h(j);8)}

2 

j = I (h(J))2 
(3.10) 

It is clear that the weights are constant throughout the iterations because the weights 

do not depend on the parameters in (3.10), and this criterion gives the same cost for 

positive and negative deviations. So it removes the drawbacks while keeping the 

merits of Cressie's method. 

The DUD and Marquardt methods are two algorithms used for fitting a variogram 

model by the weighted least squares method (Gotway 1992). They assign the 

weighting scheme to each individuals sample depending upon the numbers of distinct 

pairs N(h). The weights are defined as the ratio of N(h) (number of distinct pairs) and 

the variogram model. The sum of weights assigned to each sample must be such that 

it gets an unbiassed estimate. In the Marquardt method the partial derivative of the 

model with respect to each parameter must be defined. In any particular example one 

frequently needs to use these algorithms interchangebly to obtain the best estimates. 

For example, Cressie ( 1991) computed the robust variogram from the original coalash 
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data in the N-S direction and fitted a spherical model to the experimental variogram 

using the weighted least squares method. The values of the parameters obtained are 

C0 = 0.89, Cs = 0.14 and a,= 4.31.

3.5. Anisotropy 

We have already noted in section (1.3) that if the 2y (h) ( or 2 C(h)) is a function only 

of 11h11 then 2y(h) (ar2C(h)) is called isotropic. Now we will consider anisotropy. If 

the distance between Z(s) and Z(s+h) depends upon the direction of h, as well as its 

magnitude then 2y(h) (ar2C(h)) is anisotropic. In other words, anisotropic 

directional variograms are obtained if the structural character of the regionalized 

variable (for example, grade of mineral deposit) differs in various directions. It is 

important to explore the possible pattern of anisotropy to understand the structural 

character of the data. In this case this structural character of the regionalized variable 

may exhibit major changes in the range or the sill or the nugget as the direction 

changes. 

Geometric anisotropy is determined by looking at the contour map of the variogram 

values when the range changes with direction, while the sill remains constant. If these 

form an elliptical pattern then we have geometric anisotropy (Isaaks and Srivastava 

1989). Sometimes this anisotropy can be corrected by a linear transformation of the 

lag vector h. The anisotropic semivariogram may be detected either to the gradient of 

an unbounded model or the distance parameter of a bounded model and is defined by 
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(3.11) 

where A is the gradient of the variogram in the direction of maximum variation, B is 

the gradient in the direction of minimum variation, <I> is the angle of maximum gradient 

and 8 is the angle between the maximum variation and the minimum variation. When 

8=cp the equation (3.11) becomesy 1 (h)=Ah and when 8=cp+rr/2it becomes

y 
2 
(h) = Bh. To measure the anisotropy ratio in this case the degree of anisotropy can 

be defined as the ratio of the maximum to minimum gradients as given below. 

(3.12) 

In the case of the bounded model Isaaks and Srivastava ( 1989) suggested handling 

geometric anisotropy by estimating the ratio of maximum range to the minimum range 

with help of a rose diagram in two dimensions. The ratio A is a measure of the
B 

anisotropy. Once the isotropy is decided then we fit the isotropic variogram model to 

the omnidirectional experimental variogram. Generally a more efficient way of scaling 

the geometric variogram model in the bounded case is to combine more than two 

directional variogram models from different directions into a single function that is 

consistent in all directions and describes the spatial continuity. Apart from geometric 

anisotropy the other term one finds used is zonal anisotropy. However the definition 

of this differs somewhat from author to author. A common approach is to define 

zonal anisotropy as any kind of anisotropy except geometric anisotropy. However 

Isaaks and Srivastava (1989) define zonal anisotropy as the case where the sill 
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varies with direction but the range does not. Myers and Journel (1990) computed and 

interpreted variograms with zonal anisotropies. For the unbounded model slope 

anisotropy is obtained when nugget effect is constant but slope is different in different 

directions. A more specific classification of anisotropy, and the one we shall follow 

here, was introduced by Zimmerman (1993) and refers essentially to range, sill and 

nugget anisotropy, with slope anisotropy to be considered the unbounded model 

equivalent of range anisotropy. 

Range (slope) anisotropy is observed when the sill and nugget effect are the same but 

the range (slope) varies with direction. Geometric anisotropy is thus a special case of 

range (slope) anisotropy. The range (slope) anisotropy which is not geometric could 

be called non-geometric range (slope) anisotropy (Zimmerman 1993 ). The graphical 

illustrations of slope and range anisotropy are given in figure 3.9 and figure 3.10 

respectively. 
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Figure 3.9 
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Figure 3.10 

Sill anisotropy is observed when range and nugget effect are constant and the sill 

varies with direction. An illustration of sill anisotropy is given in figure 3.11. 
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Figure 3.11 

If the variograrn model has a sill then the process Z(s) is second order stationary, and 

the variogram and the covariograrn are related by 

y (h) = C(O) - C(h) (3.13) 

If the sill is direction-dependent, then using (3.13), we can write 

lim y (ah)= C(O) - lim C(ah) (3.14) 
a�oo a�oo 
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L 

Thus, if the sills are different in at least two directions then there exist vectors h
1 
and 

that lim C(ah1) "# lim C(ah2) which implies further 
a �oo a �oo 

that lim C(ah) "# 0 for some h. Hence if the sill varies, then the spatial correlation 
a �oo 

between two sample points does not vanish in every direction as the distance between 

two data locations increases. Zimmerman (1993) has described two possibilities: 

either a second order stationarity is appropriate but the spatial correlation does not 

vanish in every direction as distance increases or the second order stationary model is 

simply not appropriate. In order to illustrate these two possibilites Zimmermann 

(1993) has given two ( constructed) examples on R2 of processes with direction­

dependent sills. In the first of these the sill anisotropy is due to a process where the 

stationarity assumptions are appropriate but the spatial correlation does not vanish in 

every direction as lag increases. In the second of these the sill anisotropy is due to the 

process exhibiting nonstationarity in the mean. 

Despite these comments comments, geostatisticians normally deal with direction­

varying sills by representing the semivariogram as a nested model of the form 

'Y (h) = L 'Yi CIIAi hl l) 
i=l 

(3.15) 

where A1, ... ,A m are matrices that are defined in an appropriate directions and 

A1 
(h) Amh d (h ) (h ) . . . . 

IIA1hll '""'IAmhl 
an '¥1 1 , ... ,'Ym m are 1sotrop1c sem1vanograms.
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If the nugget variance varies by changing direction while the range and the sill remain 

constant then we have nugget anisotropy. This situation is illustrated in the figure 

3.12. A pure nugget effect model entails a complete lack of spatial correlation. 

Var iuyra111 

1 

Nugget effect 

o----------�----

Figure 3.12 

To establish anisotropy, variograms must be estimated in at least two or three different 

directions. In many practical studies there is some prior information about the axes of 

the anisotropy. For example a contour map may be able to offer some clues to the 

directions of minimum and maximum continuity. Once the directions of maximum and 

minimum continuity have been established, one needs to choose directional and 

distance tolerances that are large enough to allow sufficient pairs for estimating precise 

variograms. 

We shall illustrate anisotropy here by use of the residuals of the iron ore data. Using 

GEOEAS nine directional semivariograms were estimated and these are given in 

figures 3.13 to 3.21. The directions chosen were O (N90E), 20 (N70E), 40 (N50E), 
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60 (N30E), 80 (NlOE), 100 (NlOW), 120 (N30W), 140 (N30W) and 160 (N70W). 

For each direction an angular tolerance of ±20° was chosen to capture a reasonable 

number of data pairs in each direction. A variogram value of 7 was fixed for each 

direction and the corresponding range estimated. These values are given in the 

appendices B.7 to B.16. A rose diagram was then prepared to check for geometric 

anisotropy. 
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Figure 3.13 
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Figure 3.14 

42 



9.S 

9.0 

8.S 

8.0 

cij 1.S 

N50E \/\4th tolerance 20 and Bandwidth 10 

> l.O -+-----,;f'· 

6.S 

6.0 

s.s 

S.O 

i.S 

8 .s 

._ 7 .S 
(11 
> 

� 

"' 

6 .s

s .s 

8.S 

l.S 

> 6.S 

s.s 

LS 

Lag 

Figure 3.15 

i 10 

N30E wth tolerance 20 and Bandwidth 10 

Lag 

Figure 3.16 

N10E V1Ath tolerance 20 and Bandwidth 10 

2 3 

Figure 3.17 

43 



T .5 

ffl 
> 5.5 

5 .5 

N 1 OW with tolerance 20 and Bandwdth 1 D 

5 5 

Lag 

Figure 3.18 

N3DW with tolerance 20 and Band\/llidth 1 D 

5 6 

Lag 

Figrue 3.19 

1D 

N50W with tolerance 20 and Band\/llidth 1 D 

5 5 

Lag 

Figure 3.20 

44 

8 g 10 



I.S 

n; fU5 
> 

5.5 

N70Wwith tolerance 20 and Band\l\iidth 10 

Lag 

Figure 3.21 

The rose diagram is shown below in figure 3.22. An ellipse can be fitted to this rose 

diagram with its major axis 160° 
from the East and its minor axis 70° from the East. 

This elliptical pattern indicates geometric anisotropy. 

Rose diagram 

Figure 3.22 
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Another example of range anisotropy is given for soil data from the Riverland area of 

South Australia (Brooker, Winchester and Adams I 993). The purpose of the 

experiment was to assist in crop selection and irrigation design and scheduling. Soil 

data were collected from a square grid of 75 m by 75 m covering an area about 6 

square kilometres. This study concentrates on two regionalized variables, the depth of 

topsoil in centimetres and the root zone readily available water in millimetres and 

determines values of them for irrigation valve areas. 

The experimental semivariograms were estimated for both regionalized variables in the 

N-S, E-W, NW-SE and NE-SW directions (see figure 3.23). These exhibited 

anisotropic variation. A spherical model was fitted to the scaled experimental 

variogram for the both regionalized variables (see figures 3.24 and 3.25) and the 

relevant parameters were estimated. From figure 3.23, it can be seen that variation in 

the N-S direction is much more rapid than in the E-W direction. The scaling of the 

semivariogram can be done in several ways (by changing range, direction, and sill). In 

this paper it was done by scaling the distance in the E-W direction by the ratio of the 

range N-S to the range E-W. In other words, the ranges which are 995 metres in E-W, 

and 220 metres in N-S direction, obtained from two experimental semivariogram 

models were combined into a single function that describes the spatial variation as 

given in figure 3.25. The anisotropic ratio was calculated in the E-W direction by 

dividing maximum range by its minimum range which is equivalent to 995/220=4.5 
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metres (ratio of larger values of range to smaller values). Figures 3.23, 3.24 and 3.25 

were scanned and reproduced from Brooker, Winchester and Adams (1993). 
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To illustrate range anisotropy, Huijbregts and Matheron ( 1970) computed the 

experimental covariograms in the E-W and the N-S directions for data measuring the 

gravimetric recognition in Val d'Or. This is given in Appendix A.10. A spherical 

covariogram model was then superimposed on each of these experimental 

covariograms. The range in the E-W direction was different from that in the the N-S 

direction so range anisotropy was confirmed. This range anisotropy was modelled 

overall as the sum of two spherical covariogram models. 

3.6 Relative Variograms 

The relative variogram is useful when a subregion of region D has a higher variance 

than the average variance at other subregions. In this case, the variograms can be 

estimated in various subregions to minimise the whole complex structure of the 

regions. The use of the relative variogram becomes essential when the structural 

region D is very complex and the data violate the stationarity assumptions (Cressie 

1991 ). Then the region D can be divided into different subregions in each of which 

intrinsic stationarity exists and the variograms can be estimated for every subregion. 

The estimated variograms obtained from each subregion are combined and scaled to 

obtain a nearly constant sill. Let the region D be a disjoint union of subregions 

{ Dj :j = 1, ... ,k} and assume that in the jth subregion the process Z is intrinsically 

stationary with mean µ j and variogram 2y �\h) , j= 1, ... ,k. Consider the function 

Y(s)=g(Z(s)) where g(Z(s)) is a smooth transformation and contains at least two 
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continuous derivatives. This function can be expanded m a Taylor series about 

E[(Z(s)] by 8 -methods (Kendall and Stuart 1969). 

It was suggested (Joumel and Huijbregts 1978) that some extent of nonstationarity in 

2y�)(h) 
the mean can be modelled by the relative vanogram for some positive 

f(µj ) 

function f, independent of j, where its estimation can be combined over various 

subregions of D with common mean µ j. The most common relative variogram in this 

case is 

Isaaks and Srivastava (1989) have given an illustration of the use of relative 

variograms. Because of the complexity of the data the Walker Lake region was 

subdivided into seven subregion to investigate the consistency of the experimental 

variogram and the spatial estimates. They estimated relative omnidirectional 

variograms for each subregion. 
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4. Kriging

4.1. Overview 

The particular methods of spatial prediction known collectively as kriging will be 

considered here. Kriging exploits second order stationarity properties to produce 

unbiased minimum variance predictions. Kriging is the prediction of unobserved 

values of a random variable based on a weighted average of observed values of that 

variable. This average function can be expressed as the second order moment of the 

random function in terms of a linear combination of observed values { Z (s;) i= 1.. .,n}. 

It is optimal because it produces an estimate of the value at an unsampled location 

with minimum error variance. 

There are two types of kriging methods that will be considered in this chapter. These 

are parametric and non-parametric methods. The parametric methods include the 

linear techniques of simple, ordinary, universal and median-polish kriging. These 

linear techniques, particularly ordinary kriging, are used extensively in spatial data 

analysis and we shall consider them in detail in sections 4.2, 4.3 and 4.4. The non­

linear techniques were developed to handle outliers but being based on normal 

related hypothesis, they are not always applicable in practice. The most widely used 

non-parameteric method, particularly in the area of ore-reserve estimation, 1s 

indicator kriging and we shall describe this method in detail in section 4.5. A 

comparison of different kriging estimators has been made by Boufassa and 

Armstrong (1989) and Laslett and McBratney (1990). 
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4.2. Ordinary Kriging 

When the intrinsic hypothesis holds then kriging with mean unknown but constant is 

simply a minimum variance method of predicting certain average values of the 

random function Z(s) on the basis of observed values {Z(s i ), i = 1, ... ,n}. We wish to 

estimate Z( s
0 ) via a weighted linear combination of the data at n neighbouring 

sample points. We write 

n 

p(Z;s0 ) = I,).. iZ(sJ 
i=l 

Also, we need the constraint 

to ensure an unbiased estimate. In this case, and using (1.2), and writing 

we have 

E{R(s0 )]= � �A;Z(s;)- Z(s,)tA; l 
n 

= LA i E[Z(sJ-Z(s0 )] 
i=l 

= 0 

The kriging variance is denoted by 
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(4.1) 

(4.2) 

(4.3) 

(4.4) 



using ( 4.4) from which it follows that 

(4.5) 

We wish to minimise O' ! subject to (4.2). To this end we apply the method of 

Lagrange multipliers to the function 

n 

<p (11. 1 ,11. 2 , • • •  ,/\. n , m)= O'� -2m(LA; -1) (4.6)
i=I 

where m is the Lagrange parameter. Setting d<p , i=l, 2, ... , n and d<p equal to zero 
dll.; dm 

we obtain the ordinary kriging system of equations 

y(sl -sn ) 1 
I\. I y(s1 -so) 

= 

"((Sn -Sn) 1

1 0 
/\. n 'Y (sn -So) 
m 1 

The system can be written in matrix notation as 

from which it follows that the system has the solution 

The kriging variance or minimum mean square prediction error can be written as 

n n n 

O'�(s0 )=2LA;'Y(S; -s0 )- LLA;\y(s; -s) 
i=l i=I j=I 

(4.7) 

(4.8) 

Ordinary kriging is an exact interpolation method which means that this optimal 

linear predictor, written as Z (s0
), satisfies 
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Z(s0)=Z(s;), i = 1,2, . .. ,n (4.9) 

We have defined kriging in terms of the semivariogram and now we will give the 

corresponding system in terms of the covariogram. Suppose equation (1.3) and the 

model ( 1.  7) hold. In this case 

n n n 

cr/=C(O)+ LLA)1.
j
C(s; -s)-2LA;C(s; -s0 ) 

i=l j=l i=l 

and the ordinary kriging system of equations can be written as 

C(s1 -s1
) C(s 1 -sJ 1 

A 1 
C(s1 -s0

) 

= 

C(sn -s 1
) C(sn -Sn ) 1

1 1 0 
An C(sn -s0 )

m 1 

The above system of equations can be written in matrix notation as 

CA=c 

from which the system has the solution as given below 

(4.10) 

(4.11) 

The kriging variance or minimum mean square prediction error can be written as 

n n n

crt(s
0 ) = C(0)-2LA;C(s; -s0 )+ LLA;A

j
C(s; -s) 

i=l i=l j=I 

( 4.12) 

When the local mean is known but constant, E[Z(s)] = µ say, and equal to the 

population mean then ordinary kriging is known as simple kriging, the covariogram 

must be used and the constraint (4.2) no longer applies. In this case, if second order 
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stationarity holds, we only need to model the residuals with the help of the 

covariance function (Cressie 1991). 

n 

p(Z;s0 ) = µ + L/'•;(Z(s,)-µ)
i=I 

The residuals can be obtained below as 

Then it follows that 

n 

= 1)•; E[Z(s;)-Z(s 0 )]
i=l 

=0 

The kriging variance is denoted by 

using ( 4.15) from which it follows that 

n n n 

cr/= r:�:),.) ... jC(s; -s
j
)+C(0)-2LA;C(s; -so) 

i=l j=I i=l 

We wish to minimise cr � without any constraint. 

( 4.13) 

(4.14) 

(4.15) 

(4.16) 

Setting d<p , i= 1, 2, ... , n equal to zero this leads to the simple system of equations 
dA, 
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C(s 1 -s 1 ) C(s 1 -s
n) 1 A. 1 C(s 1 - s0 ) 

C(s
n 

-s 1 ) C(s
n 

- Sn) 1 
A. n 

C(s
n -So) 

This system can be written in matrix notation as 

CA= C

from which it follows that the system has the solution 

A. = c-1c

(4.17) 

The kriging variance or minimum mean square prediction error can then be written as 

n n n 
a�= LLA;A. jC(s; -s)+C(0)-2LA;C(s; -s0 )

i=l j=l i=l 

(4.18) 

The practical application of simple kriging is limited so we shall not consider it 

further in this thesis. 

The iron ore data were considered once again simply to illustrate ordinary kriging. 

GEOEAS was used to produce the ordinary kriging estimates. We first used the 

Prevar and Vario options to estimate and model the variogram and then used the 

Krige option for the actual kriging. A spherical model with parameters as = 7 , 

cs = 9.5 and c0 = 4.6 were chosen to fit the experimental semivariogram. The value 

at each location within the specified region can be kriged and the kriging values are 
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produced, in this case in terms of appropriate quartile symbols. The values obtained 

by GEOEAS is given in Appendix C. l. 

Point kriging: Ora 
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For example, the values of the kriging estimate and the kriging variance at location 

(6, 1) were obtained as 50.7 and 8.96 respectively, using the surrounding 

neighbourhood of iron ore data as shown in figure 4.2. 
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Isaaks and Srivastava (1989) gave a very simple example using seven sample data 

points to illustrate the mechanics of ordinary kriging. They used the covariogram 

and an exponential model in this example. 
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4.3. Universal Kriging 

As mentioned earlier in section 1.4 in equation ( 1.8) universal kriging is appropriate 

when data are nonstationary in the mean. In this case the order k of the polynomial 

and the variogram of the residuals must be known (Cressie and Helterbrand 1994). 

Suppose Z(s0
) is to be predicted from data {Z(s;) , i=l, ... ,n} andf

i
-l is a 

polynomial of order j-1 U-1 = 1, ... , k) where f
i
-l and k were defined in section 1.4. 

Then the unbiasedness condition becomes 

( 4.19) 

and a set of sufficient conditions for this is 

L AJ�-1 (s,) = �-1 (so) j-1=1, ... ,k (4.20) 
i=l 

We minimise cr �, given below in equation ( 4.21 ), subject to the constraints in ( 4.19) 

and (4.20). 

n n n 

cr� 
= -IIJ.,Aiy(s; -si

)+2LA;y(s0 -s
i
) 

i=l j=l i=l 

To do this we apply the method of Lagrange multipliers to the function 
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p+I n 

cp(A 1 
,A2 , ••• , An ,m1 , ••• ,m

P ) = cr � -2I.m1_1 {L,A;f;-i (s; )-f;-i (s0 )} 
j=I i=I 

(4.22) 

where mi ,···,mp 
are the Lagrange parameters, to obtain the universal kriging system 

of equations 

"( (S n -S I ) 
f-n-1 (s) 

An 

"((Sn -Sn ) f-n-l(si ) ml 
f-n-l(sj ) 0

The above system equation can be then written in symbolic form as 

from which it follows that the system has the solution 

(4.23) 

(4.24) 

The kriging variance or minimum mean square prediction error can be written as 

n n n p+I 11 

cr � = -L L,A;A 1y(s; -s1) + 2 L,A;Y(s0 -s1 )-2 I.m1_1 {L,\�_1 (s;) -f;-i (s0 )} ( 4.25)
i=I j=I i=I j=I i=I 

A sample of 85 potentiometric data was collected and measured in irregularly spaced 

intervals over a 250 by 200 metre region of the Palo Duro Basin, Texas, for a high 

level nuclear waste repository in salt (Furr and Hampen 1986). This is, in fact, the 

original Wolfcamp-aquifer data set considered differently by Cressie (1991). They 

used the semivariogram to quantify the spatial relationships of the data and universal 
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' 

" 
'· 

kriging was used to estimate the potentiometric surface of the Wolfcamp-aquifer. 

They also used the semivariogram to check for trend and anisotropy. These were 

done by plotting the semivariogram in the E-W, N-S, EW-NS and EN-SW directions. 

They found that the four directional semivariograms appear almost the same for the 

first 75 metres indicating confirmation of isotropy but spreading after 75 metres 

shown the sign of anisotropy. However they found that the spreading was caused by 

drift dominating the semivariograms after 75 metres. They also used cross validation 

to identify those data values that did not fit the pattern of the rest of the data. The 

degree of drift was specified and determined in order to obtain a good model for the 

variogram. One method of doing this involves fitting a least squares polynomial 

trend surface to the original data. Then the parameter of the drift will be locally 

estimated as part of the kriging estimation. Statistical linear regression techniques 

were used to fit a trend surface to the 85 potentiometric values using SAS. The 

linear function was sufficient to remove the trend in this case and the residuals were 

then analysed. If the kriging neighbourhood used is less than 75 metres then the 

assumption of isotropy is reasonable. 

4.4. Median Polish Kriging 

Median polish kriging is a useful alternative to universal kriging when the data 

exhibit directional trend. This trend can often be removed by applying median polish 

to the original data. If the residuals satisfy stationarity assumptions then ordinary 

kriging can be applied to the residuals and the final prediction at point s0 can be 
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obtained by adding the estimated large scale variation (the fit) with the prediction 

obtained by small scale variation. Cressie and Glonek ( 1984) proved that median 

based removal of the trend gave a less biased estimation of the stationary error 

covariance than mean-based. 

The deterministic component of the surface µ(s) is the normal form of trend surface 

and is defined by. 

µ(s) =a+ c(x)+ r(y) s=(x y)' eD (4.26) 

The residuals R(s) of the stochastic component obtained from the median polish is 

also a random variable and its estimate is a weighted average of the data of the form 

"
" 

R(s0
) = �) .. ;R(s;) 

i=I 

s eR
2

0 (4.27) 

If these residuals satisfy the intrinsic hypothesis then ordinary kriging can be applied 

on them. The final result can be obtained as 

" "

Z(s0) = µ(s0) + R(s
0
) (4.28) 

"

where µ(s
0

) the estimated trend surface and R(s
0
) is the estimate of the weighted

average of the data under consideration. 

Cressie (1988) gave an example of median polish kriging on the residuals of the iron 

ore data. In this analysis, Cressie found that data are nonstationary in mean and a 

trend exists in the N-S direction. He used median polish to remove this trend and the 

residuals then appeared to satisfy the intrinsic hypothesis. The variograms obtained 

from the residuals exhibited range anisotropy. He doubled the scale in the N-S 

direction and used an isotropic variogram model. The predictor of actual Fe 2 0 3 was 
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obtained simply by adding the predicted residuals to the trend estimated by 

interpolating planes between the median polish fit. In this case we analysed the data 

by using GEOEAS and applied ordinary kriging on the residuals of the iron ore data 

obtained from the median polish which is given in Appendix A.2. These residuals 

are treated as a new data set which satisfy the intrinsic hypothesis. The variogram is 

estimated and modelled using GEOEAS and the values of kriging estimates can be 

seen below in figure 4.3. The values obtained by GEOEAS are given in Appendix 

C.2.
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The value at location (4.556, 3.667) was kriged by considering the surrounding 

neighbourhood of the iron ore residuals and the estimate and kriging variance were 

obtained as -.670 and .647 respectively. 
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The original value can be obtained at location (4.556, 3.667) by adding the common 

effect, row effect, cloumn effect and residuals is 53.67 as described in section 2.8 in 

equation 2.2. 

4.5. Indicator Kriging 

Indicator kriging is a nonparametric geostatisitcal technique used when the 

distribution of the variable under consideration is highly skewed. It has advantages 

over ordinary kriging or simple kriging because it enables us to have a confidence 

interval to confine our risk for the estimated values and works on the transformed 

data (0, 1) according to several cut off properties. Indicator kriging is data dependent 

and takes account of any extreme values. Indicator kriging is more efficient in 

estimating particular irregular properties such as mineralization. However its 

disadvantage is that it requires the estimation and modelling of many (indicator) 

variograms thus making kriging equations very complex. 

Indicator kriging works on simple binary transformation whereby each datum is 

transformed into an indicator before variography or kriging is performed 
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(Joumel 1990 ; Solow 1993). The indicator variogram estimated from the 

transformed data set based on several cut off properties can then be interpolated at 

other locations. The final result of indicator kriging is a cumulative probability 

density function for every block, enabling the probability of that block exceeding the 

specific cut off values to be calculated (Fytas, Chaouai and Lavigne 1990). Indicator 

kriging has been applied in the many areas, such as the estimation of recoverable 

reserves (Lemmer 1984) and the estimation of spatiotemporal distributions of 

hydrogen-ion deposition (Bilonick 198 8 ). 

Suppose the indicator random variables are defined as 

l(z,s) = {
1, if Z(s) � z
0, otherwise, s E D,z ER

where Z(s) is the observed value at locations and z is a cut off value. 

If second order stationarity holds for Z(s) then we can write 

F(z)=E[l(s,z)]=E[(l(s+h),z)] 

and then the Indicator variogram 2y z (h) can be written as 

2y z (h) = var( /(s + h, z) - l(s, z)), h E Rd , z ER 

which depends only on h. 

(4.29) 

(4.30)

Knowledge of 2y z (h) can be obtained from the bivariate distribution of Z(s+h) and 

Z(s). The ( ordinary) indicator kriging predictor of I( s0 ,z), based on data 

A 
n 

l(s0 .z) = � A;(z)/(s;,Z), 
i=I 
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n 

where L,.A;(z) =l 
i=l 

Writing R(s
0
,z) = I(s

0
,z)-l(s

0
,z) , we have 

E[R(s0 ), z)] = { t. A; (z)l(s;, z) - l(s0, z) t. A; ( z)]

= L\E[I(s;,z)-l(s
0

,z)] 
i=l 

=0 

The kriging variance is denoted by 

cr ! = var (R(s
0 

)) 

using (4.33), from which it follows that 

n n n 

cr/=-:I :IA;(z)A/z)y /s; -s)+2L\(z)y 2 (s; -s0 ) 
i=l j=l i=l 

(4.32) 

(4.33) 

(4.34) 

We wish to minimise cr! subject to (4.32). We will apply the method of Lagrange 

multipliers to the function 

n 

cp (A,, A 2, ••• , An , m) = a! -2m(z)(L A;(z)-1) (4.35) 
i=l 

where m(z) is the Lagrange parameter . Setting d<p , i= 1, 2, ... , n and dcp equal to 
dA; dm 

zero we obtain the ordinary kriging system of equations 
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y z(S 1 -sJ 1
A 1 (z) Yz(S 1 -So) 

= 

Yz(Sn -sJ 1
A/z) Yz(Sn -So) 

1 
m(z) 1 

The above system equation can be written in symbolically as 

r(z)A(z) = y z 

from which it follows that the system has solution 

A(z) = r-
1 (zrr z

(4.36) 

The kriging variance or minimum mean square prediction error can then be written as 

n n n 

cr �(So)= 2 L A.;(zrr z(S; - So)+ L L A.;(z)A. /zrr z(S; -sj ) 
i=l i=l j=l 

(4.37) 

The expression /(s
0
,z) is actually an approximation to 

Pr(Z(s0 ) � zj/(s1 ,z), ... , l(s
n
,z)), based on the knowledge of F(z). If F(z) is known then 

we have a case of simple kriging which yields a better approximation to this 

conditional probability. 

Fytas, Chaouai and Lavigne ( 1990) studied ore reserve estimation in the new Pascalis 

gold deposit located in the Abitibi region (Canada). In this case, six cut off grades 

were selected for each mineralization and each composite was transferred to O and 1. 

Indicator kriging was performed on the transformed composite values (0, 1). For 

example all the composites below .2g Au/tonne are transformed to 1 and the rest to 0 
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and then indicator kriging was carried out for each of the six cut off grades selected. 

Three experimental semivariograms were estimated for each group of transformed 

grades. These were taken in the E-W (horizontal) N-S (vertical) and EW-NS 

directions respectively. Spherical variogram models were fitted to these 

experimental semivariograms and tested by cross-validation. 

4.6. Cross Validation 

Cross-validation is a standard statistical technique and is used to test the goodness of 

fit of the variogram model that has been used. Before applying cross-validation it is 

important that the theoretical variogram fits the empirical variogram well near the 

origin. Cross-validation is applied by removing each datum from the data set, one at 

a time, and estimating its value based on the surrounding data, using kriging 

techniques with the proposed theoretical semivariogram model (Burgess and Webster 

1980). Repeating cross-validation many times allows an assessment of the variability 

of prediction error. This can help to check the adequacy of the proposed theoretical 

model and diagnose those data values that do not fit the overall pattern. It also 

detects atypical observations when the absolute values are too large. Atypical 

observations can be detected by evaluating the cross-validation residuals, and are 

then standardized to their distribution. The standard residuals should have mean O 

and standard deviation 1. This emphasises the need for visual analysis such as a plot 

of, standardised residuals (cross-validation). Thus, identification of potentially 

anomalous data is possible. 
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McBratney, Webster, McLaren and Spiers (1982) performed Cross-validation on data 

sampled from South East Scotland. The fits shown in figure 3.1 were tested by 

cross-validation and confirmed that the double spherical model was a good fit and the 

single spherical model was a poor fit. 
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s. Multivariate Geostatistics

5.1. Overview 

Essentially for completeness we shall give, in this chapter, a brief overview of some of 

the main ideas of multivariate geostatistics. This area was developed, initially as 

Factorial Kriging Analysis by authors such as Wackernagel (1988, 1989, 1995), Royer 

(1984), Wartenberg (1985), Goulard (1989), Goulard and Voltz (1992) and 

Goovaerts (1991, 1992, 1994). We shall describe the standard multivariate technique 

of principal component factor analysis as well as a range of spatial multivariate 

techniques. In section 5.2 we outline the main details of principal component analysis. 

In section 5.3 we give a brief overview of the cross variogram and the cross 

covariogram. In section 5 .4 we describe the types of correlation structure used to 

describe a range of interrelationships between the variables. In section 5.5 we shall 

consider the particular method of multivariate spatial prediction known as ordinary 

cokriging which exploits the appropriate joint stationary properties to obtain an 

unbiased minimum variance prediction estimate based on the values of two or more 

variables observed here at the same sample locations. 

Multivariate geostatistics has been applied in several areas such as geophysics (Chiles 

and Guillen 1984; Galli 1984) geology ( Jaquet 1989 ; Cressie and Hoef 1993) remote 

sensing (Ma and Royer 1988), soil science (Wackernagel 1988; Goulard 1989; 

Goovaerts 1991) and hydrogeology (Rouhani and Wackernagel 1990). 
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5.2. Principal Component Analysis 

In this section we consider principal component analysis. This is a standard 

multivariate analysis technique used to transform a set of correlated variables 

Z1, Z2, ... , Zk into a set of uncorrelated factors Yi, Y2, ... , Yk . The criterion used is to 

select the set of orthogonal factors which extracts successively a maximum proportion 

of the overall variance on the original set. For example, the first transformed variable 

i;: (s), or first principal component has maximum variance. The second principal 

component .I-; (s) has the second largest variance and so on. The idea is to explain the 

variance-covariance structure of the original variables by means of a reduced set of 

principal components or factors. These principal components (factors) are suitable 

linear combinations of the original variables. 

Let Z(s) = [z, (s), ... Z
k
(s)] where the original variables have been centred by the 

subtraction of the relevant means. The principal component decomposition of 

V = cov(Z(s)) is given by 

V = 
QAQ' (5.1) 

V = 
(QAt12 ) (QAt12 ) (5.2) 

= 
AA' (5.3) 

70 



where (A;, e;) with A1 � A2 �- .. � A k are the eigenvalue-eigenvector pairs of V, and 

In this case the principal components 

Y(s) = [Yi (s ), ... , 1j (s)] are given by 

and hence 

That is, 

Y(s) = Z(s)A (5.4) 

Z(s) = Y(s)A' (5.5) 

Z
j 
(s) = _Lapj ypj (s) where j = 1,2, ... ,k. (5.6) 

p=I 

One disadvantage in using classical principal component analysis for spatial data is 

that it does not take into account any spatial correlation which may exist between 

observations. 

5.3. Cross Covariograms and Cross Variograms 

The cross variogram and the cross covariogram are two ways of measuring the spatial 

relationship between two variables. 

Let Z(s) = (z, (s), ... ,Zk
(s)) s eD be a multivariate stochastic process. If Z(s) 

satisfies the conditions 

(5.7) 

where µi is constant, and 

E[(Z;(s)- µ; )(Z
j 
(s+ h)- µ j] = C

ij 
(h) (5.8)
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where C
ij 
(h) is called the cross covariogram, then the process { Z(s)} is said to be 

joint second-order stationary. Note that, in general, 

c
ij 
(h) "#- c

ji (h) and c
ij 
(-h) "#- c

ij 
(h) but c

ij 
(h) = cji (-h).

E[Z;(s + h)-Z;(s)] = 0 

cov[(Z;(s + h)-Z;(s)}(Z/s + h)- Zj 
(s) )] = 2y 

ij (h)

(5.9) 

(5.10) 

where 2y ij (h) is called the cross covariogram, then the process { Z(s)} is said to be 

joint intrinsic stationary. In this case the cross semivariogram y 
ij 

(h) can be written 

as 

y
ij
(h)= �E[Z;(s+h)-Z;(s)][Z/s+h)-Z/s)], he Rd 

and y u (h) is an even function with y ;; (h)y j/h) � � (h)i 2 . 

When the process { Z(s)} satisfies joint second order stationary then 

(5.11) 

(5.12) 

An example of the cross semivariogram has been given by Webster, Atteia and 

Dubois ( 1994 ). Their aim was to determine the cross dependence of the 

concentration of seven potentially toxic metals contained in their soil data. The 

experimental cross semivariograms were computed, interpreted and finally modelled. 
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5.4. Analysis of the Correlation Structure 

In the analysis of the correlation structure there are three matrices which represent a 

relationship between the variables. The variance-covariance matrix V represents the 

interrelationship between variables at the same location. The variogram matrix 

r(h)=(Yu(h)) describes how the relationship between the spatial increments alters 

with h. The coregionalization matrix Bu represents the relationship between 

variables at the spatial scale defined by the basic variogram model and will be 

considered in detail in section 5.6. 

If the correlation between two variables does not depend on the spatial scale then 

these variables exhibit intrinsic correlation. In this case we can write 

and so 

C(h) = Vp(h) 

cr .p(h) cr .. y y 

�cr ;;P(h)cr jjp(h) 
= 

.Ja: [<i; 
= 

rij 

This happens when C
ij 

(h) = b
if 
p(h) and then we can interpret b

ij 
as the cru. 

For variograms the corresponding model is 

r(h)=By(h) 

(5.13)

(5.14) 

(5.15)

for some (positive semi-definite) matrix B called the coregionalization matrix. In 

this case we can write 

y jj' (h) =bjj 'y(h) jj' =1,2, ... ,k 

for some basic variogram model y(h).
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We then carry out a principal component analysis on B, as described in section 5.2. 

Hence B=AA' with A=(� .... ,�A*e* ), where (11.
P
,e

P
) are the eigenvalue­

eigenvector pairs of B and A
1 

� A
2 

�---�A*. Thus 

(5.17) 

and b
jj 

= I,a
pj

a
pf

, j j' = 1,2, ... ,k (5.18) 
p=l 

The resulting factors are given by Y(s)=Z(s)A and associated linear model of 

intrinsic correlation is defined by 

Z/s)= I,a
pj

Y
p
(s) (5.19) 

p=l 

where the Y
P 
(s) have pairwise uncorrelated increments, so that 

E[Y
P
(s+ h)-Y

P
(s)][�(s+ h)-Z

q
(s) ]=0, p-:;, q (5.20) 

and the same variogram, given by 

(5.21) 

In this case kriging can be performed separately on the relevant factors of the original 

set of variables. Two way of checking for intrinsic correlation are described below. 

Firstly, if the cross variograms between principal components are not zero at all lags 

then the principal components are not uncorrelated at all spatial scales and the 

intrinsic correlation model is not appropriate. 

Secondly, consider the codispersion coefficients (Matheron 1965) 
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cc(h)= y /
h)

�y ii (h)y jj (h) 
(5.22) 

If these are constant then the correlation of the pairs does not depends on the spatial 

scale and we can write 

b .. y(h) b .. 
cc(h)= IT, = IT r .

.
'\Jviivjjy(h) '\Jbiibjj 'l 

5.5. Ordinary Cokriging 

(5.23) 

In ordinary cokriging the secondary variables are normally cross correlated with the 

primary variables. For example, in mineral industry, core samples may contain not 

only the grade of copper but also the grade of lead and zinc. We will consider only 

the case of isotopy here when all the variables are measured at the same sample 

locations. In this case cokriging is better than separate kriging as it preserves the 

coherence of the estimators. 

k k 

This means that if W(s)=L,.Zi (s) then one always has w(s0)=I,.i
i (s0) under

i=l i=l 

k 

cokriging but, in general, W( So) c/a L,. .Zi (So) under kriging.
i=l 

When the joint intrinsic hypothesis holds then ordinary cokriging with unknown 

means is a simply a minimum variance unbiased prediction of Z1 (s0 ) on the basis of 

observed values Z
j 
(s;) where i = l, ... ,n, j = l, ... ,k. We write 

n k 

Zz(so)= Pz(Z;so)= LL"-JizJ(si) 
i=l)=l 

where A Ji is the weight assigned to the jth variable at the ith location.
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For unbiased prediction, we need 

n {l, 
LAY =8ij = 0 
i=I 

' 

j = l 
j =:/: l 

where 8 Jl is the Kronecker delta. With this condition

Hence it follows that 

k n 

= LL\;E[z/sJ-zi (s0)] =0

j=l i=l 

and this is to be minimised subject to the constraint in (5.25). 

(5.25) 

(5.26) 

(5.27) 

In similar fashion to the details given in section 4.2 for ordinary kriging, var(Rz(s0)) 

can be written in terms of covariograms (under the assumption of joint second order 

stationarity) or variograms (under the assumption of joint intrinsic stationarity 

together with the assumption that all the cross variograms are symmetric). The 

method of Lagrange multipliers can then be used to carry out the minimization. In 

terms of the covariogram the resulting ordinary cokriging system of equations is 

given by 
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n k 

LLA jicjj'(si -Si' )-m j' = C lj,(so -Si' ),i' = 1,2, ... ,n, j' = 1,2, ... ,k 
i=l j=l 

""'A .. =8 .1, 
L.J JI } 

i=l 

(5.28) 

where the m
j
', j' = 1,2, ... , k are the Lagrange parameters. The resulting minimum 

error variance is then given by 
n k crHs0 )= Cu(s0 ,s0 )- LLAjiCji(s0 ,sJ+m1

i=ll=l 

5.6 Linear Coregionalization Analysis 

(5.29) 

Let {z/s); j = 1, ... k} satisfy the joint second-order stationarity assumptions. Then 
we decompose {zi (s)} into sets {z

ju (s), u = 0,1, ... , l }of spatially uncorrelated 
components so that 

Z/s) = LZju
(s) + µ 

j
' j = 1, ... ,k 

u=l 

where for all j,j' ,u, v

and 
{cov[(Z;/s),Z;./s + h) i(z j/s),Z/Js + h) )] = 2Cij . (h)cov[(Z;/s),Zi' v (s+ h))]= 0, u :;t: v

(5.30) 

(5.31) 

(5.32) 
The cross covariograms C j

/u (h) is composed of real coefficients bjj 'u and are 
proportional to real correlation coefficients p u (h) so that 

l l cjj'Jh) = Icjj'u (h) = Lbjj 'u P u (h) 
u=O u=O 
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Coregionalzation matrices B
u 

of order kxk can be set up and the one has a nested 

covariance function model given by 

C(h) = LBuPu(h) (5.34) 
u=O 

where the Bu are positive semi-definite. Note that this model is equal to the intrinsic 

correlation model when one can write B
u 

= a
u
B. In this case 

I I 

C(h) = LauBPu(h)= BLaupJh) (5.35) 
u=O u=O 

In the general case we can write 

I 

cjj 'u (h) = Lbjj'u PJh), jj' =1,2, ... ,k (5.36) 
u=O 

for some set of correlation functions p u (h) . 

We then carry out a principal component analysis, as described in section 5.2, on 

B
u

, u = 1,2, ... ,l. 

eigenvector pairs of B
u 

and A 1u � A 2u 
�---� A1cu. Thus 

k 

bjju 
= I a

jpu
a

j . pu j. l = 1.2 •...• k

p=I 

The resulting factors are given by Y,,(s)=Z(s)A
u 

. Hence we can write 

I k 

Zj Js) = LLa
jpu

Y
pjs) 

u=O p=I 
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' 
! 

and the associated linear model of coregionalization is defined by 

where for all j, u, v, p, q

l k 

ZjJs) = LLajpu ypu(s) 
u=O p=I 

(5.40) 

(5.41) 

These regionalized factors Y
ps (s) can be estimated at location s

0 
by ordinary 

cokriging with the Z
j 
(s) as described in section 5.5. 
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6. Applications

6.1. Overview 

In this chapter we shall analyse two original data sets. In doing so we shall use many 

of the techniques detailed in the preceding chapters. The first data set consists of soil 

data collected by Bloom (199 6) from the Jimperding Brook area of south-west 

Western Australia. Soil samples were taken at points on two llxll grids with grid 

spacing of 6m. Both grids were located on cleared land but one field had been 

cropped only once fifteen years ago while the other field had been cropped regularly 

over the past fifteen years. Several variables were measured in each case but we shall 

concentrate here on an analysis of two of these variables, Available Phosphate (in 

ppm) and Potassium (in ppm). These data are given in Appendices A.4, A.5, A.6 and 

A.7 respectively. The Available Phosphate data will be considered in section 6.2 and

the Potassium data will be considered in section 6.3. 

The second data set is the distribution of Banksia species in a region of Southwestern 

Australia. The samples were taken on a l 6x22 grid with grid spacing of 50 metres. 

These data are given in Appendix A.10. These data were sampled and collected by 

Lamont and Connell (1994) for a study on the biogeography of Banksia distribution in 

Southwestern Australia. The analysis is given in section 6.4. 

MINIT AB and GEOEAS were used throughout this chapter to produce the required 

plots. 
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6.2. Available Phosphate analysis 

A stem-and leaf plot of the cropped field Available Phosphate data is given in figure 

6.1. This indicates that these data contain one global outlier. The last row of stem 5 

and leaf 1 indicates 51 ppm Phosphate (truncated data). 
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Figure 6.1 

A histogram and box plot of the cropped field Available Phosphate data, along with a 

range of descriptive statistics, are given in figure 6.2. From these plots it can be seen 

that the data are positively skewed. 
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Figure 6.2 
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Post plots and row and column mean and median plots were prepared m order to 

check for directional trend for the cropped field Available Phosphate data. These post 

plots are shown in figures 6.3 and 6.4. From these post plots no trend is evident. 
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The row mean and median plots are given in figure 6.5. These plots indicate that there 

is no trend in the N-S direction. 

Row mean and median plots 
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The column mean and median plots are shown in figure 6.6. From these plots it can 

be seen that there is no trend in the E-W direction. 
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The natural log transformation of the original data was used to obtain a more 

symmetric distribution. A histogram and box plot of the transformed cropped field 

Available phosphate data are given in figure 6. 7. 
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From a comparision of figure 6.7 and figure 6.2 it can be seen that the transformed 

data has a more symmetric distribution than the original data. 

Four directional semivariogram plots were produced to visualise the spatial continuity 

of the transformed cropped field Available phosphate data. The four directional 

semivariograms were estimated in the E-W, EN-SW, N-S and NE-SW directions and 

are given in figures 6.8, 6.9, 6.10 and 6.11 respectively. 
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The pattern of spatial continuity of the experimental semivariograms m all four 

directions is essentially the same so an isotropic model can be used and this can be 

fitted to the omnidirectional semivariogram which is given in figure 6.12. The values 

of all five experimental semivariograms considered were obtained using GEOEAS and 

are given in Appendices B.17 to B.21. 
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A spherical model with partial sill c, = 0.19, nugget effect c
0 

= 0.06 and range a, = 4 

was fitted to the omnidirectional semivariogram using GEOEAS and this fitted model 

is shown figure 6.13. Note that the fit is very good near the origin. 
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Figure 6.13 
The values of the parameters of the spherical model were then estimated by weighted 

least squares, using the above values as the initial choices. The parameter estimates 

c, =0.06, c
0 

=0.20 and a, =4 were obtained and the 

semivariogram model is displayed in figure 6.14. 
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The parameter estimates obtained by weighted least squares were used in kriging. 

Ordinary kriging was appropriate in this case and was performed on the transformed 

data. The results of this are given in figure 6.15. The values obtained by GEOEAS 

are given in Appendix C.3. 
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For example, the values of the kriging estimate and the kriging variance at location 

(6.666, 3.333) were obtained as 2.30 and 0.0279 respectively, using the surrounding 

neighbourhood of cropped field Available phosphate data as shown in figure 6.16. 
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The kriging estimate for the original data can now be obtained, making use of an 

appropriate correction for the bias involved in using the exponential as a back -

transformation here (Cressie 1991 ). 

For the uncropped field Available Phosphate data a stem and leaf plot is given in figure 

6.17. We see from figure 6.17 that, in this case, there are two global outliers. For 

example, the bottom row of stem 3 and leaf 5 indicates 35 ppm Phosphate (truncated 

data). 

Stem and leaf plot for uncropped field Available Phosphate data 
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Figure 6.17 

A histogram and box plot of the uncropped field Available phosphate data were also 

obtained. These are given in figure 6.18. 
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From figure 6.18, we can see that the data are positively skewed with two outliers and 

the natural log transformation will be used in this case. Post plots, row and column 

mean and median plots were also obtained to check for directional trend. From the 

postplots in figures 6.19 and 6.20 there is no trend. 

Poetplot of JF'hoa from dote file jpophg.dot 

10 + + D + D D + .. D .. D 

)( + + )( D + D D .. + 

D )( )( + )( + D + D .. X 

e D D + + + + D .. + 

)( + X .. .. )( + .. )( + + 

5 D )( D "' .. + .. D + D + 

.. D .. .. .. D .. .. + .. X 

+ + .. .. .. .. )( D )( .. X 

D D )( .. D X + )( D .. )( 

)( )( .. + D )( )( + .. D 

0 X + + .. + X )( X .. .. D 

0 5 10 

EoBling ( ppm) 
1st Oucir-tile: 2..200 as + as 4,000 

2nd Oua rtil•: +.OOO < X Iii :S-,000 

3rd Ouartil•: :S-.000 < 0 Iii 6,2.00 

+t:h Ouartile: 6.200 < * ,I; 34,000 

F igure 6.19 

91 



Poetplot of JPhoa from data file jpophg.dot 
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The row mean and median plots and the column mean and median plots are given in 

figures 6.21 and 6.22. These plots confirm the lack of trend in the N-S and E-W 

directions respectively. 
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Column mean and median plots 
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Figure 6.22 

Once again four directional semivariograms were obtained to visualise the spatial 

dependence of the transformed data. The estimated directional semivariograms are in

the E-W, N-S, EW-NS and EN-SW directions and are given in figures 6.23. 6.24, 

6.25 and 6.26 respectively. The values of all five experimental variograms are also 

given in Appendices B.31 to B.35 respectively. 
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The pattern of spatial continuity of the experimental semivariograms m all the four 

directions is essentially same so an isotropic model can be fitted. This was done for 

the omnidirectional semivariogram which is shown in figure 6.27. 
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A spherical model was fitted using GEOEAS with partial sill c, = 0.11, nugget effect 

c
0 

= 0.08 and range a, = 4 and this fit is shown in figure 6.28. 
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The values of parameters for this model were then estimated by using weighted least 

squares, obtaining the estimates c, = 0.09. c
0 

= 0.08 and a, = 4. This fitted model 

is shown in figure 6.29 below. 
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The parameter estimates from weighted least squares were then used in the subsequent 

kriging. Ordinary kriging was appropriate in this case and was performed on the 

transformed uncropped field Available data and is shown in figure 6.30. 
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The values of the kriging estimate and the kriging variance at location (6.666, 3.333) 

were obtained here as 1.72 and 0.02 respectively, using the surrounding 

neighbourhood of uncropped field Available phosphate data shown in figure 6.31 

below. 
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The second and third columns give the stem and leaves respectively. For example in 

the last row of 11 stem and 3 leaf indicates 113 ppm cropped field Potassium. The 

first column provides a count of the number of leaves. 
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Post plots of these data are given in figures 6.34 and 6.35. From these plots we can 

see a trend in the E-W direction, with values increasing from east to west. 
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The estimates of the original data can then be obtained. 

The spatial variation for both cropped and uncropped field Available phosphate data is 

very clear from figures 6.13 and 6.28. From these figures it is apparant that spatial 

variation for the uncropped field Available phosphate data is much more rapid than for 

the cropped field Available phosphate data. For both data the ranges are the same and 

equal to 24 metres. It means that data pairs for both cropped and uncropped field 

Available data are correlated at distance up to 24 metres and uncorrelated at distance 

greater than 24 metres. The nugget effect for the cropped field Available Phosphate 

data is larger than the uncropped field Available Phosphate data while the sill for the 

cropped field Available Phosphate data is lower that for the uncropped field Available 

Phosphate data. This latter result was to be expected given that the actual variance of 

the cropped field Available Phosphate data is lower than the actual variance for the 

uncropped field Available Phosphate data. 

6.3. Potassium analysis 

The stem-and leaf plot of the cropped field Potassium data was obtained and is given 

in figure 6.32. Two global outliers can be seen. A histogram and box plot, together 

with summary statistics, for the cropped field Potassium data are given in figure 6.33. 

From all three plots it can be seen that the data are positively skewed. 
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Figure 6.34 

Postplot of Potcas from data file phapot.dot 
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Figure 6.35 

The row and column means and medians were also plotted and these plots are given in 

figures 6.36 and 6.37 respectively. Figure 6.36 confirms the lack of trend in the N-S 

direction. 

100 



Row mean and median plots 
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Figure 6.36 

From figure 3.37 we can see evidence of the previously mentioned trend in the E-W 

direction. 
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Column mean and median plots 
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As one way of dealing with this trend in the E-W direction, median polish, using six 

iterations, was performed on the original data and the residuals obtained were treated 

as a new data set. A stem and leaf plot of the residuals is given in figure 6.38. It can 
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be seen from this figure that there are two global outliers. The last row of stem 6 and 

leaf O indicates a residual of 6.0 ppm for the cropped field (truncated) Phosphate data. 

Stem and leaf plot for residuals of the cropped Phosphate data 
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Figure 6.38 

A histogram and box plot of the residuals, together with descriptive statistics, are 

given in figure 6.39. From a comparision of 6.33 and 6.39 it can be seen that the 

transformed data has a more symmetric distribution than the original data. 
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Post plots of these residuals are given in figures 6.34 and 6.35. From these plots we 

can see no trend in any direction. 
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F'oetplot of Rapol frorn data file reepot.dat 
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Figure 6.41 

The row and column means and medians were also plotted and are given in figures 

6.42 and 6.43 respectively. Figure 6.42 confirms the lack of trend in the N-S 

direction, while figure 6.43 confirms the lack of trend in the E-W direction. 
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Figure 6.42 

Column mean and median plots 
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1D 

Four directional semivariogram plots were produced to visualise the spatial continuity 

of the cropped field Available Potassium data. These four directional semivariograms 

are in the E-W, N-S, EW-NS and NE-SW directions and are given in figures 6.44, 

6.45, 6.46 and 6.47 respectively. 
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Figure 6.45 
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Uari ogran ftor RsPot 
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Figure 6.46 
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Figure 6.47 

The pattern of spatial continuity in all the four directions 1s essentially the same. 

These semivariograms display a total nugget effect and the residuals can be considered 

to be spatially uncorrelated. This conclusion can be bring out by consideration of the 

omnidirectional semivariogram for the residuals which is given in figure 6.48 below. 
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This means that all the spatial variation in the data comes from the trend. 

The experimental semivariogram values for above directions obtained are given in 

appendices B.22 to B.26 respectively. 

Another approach to the analysis of these data is to consider the semivariogram of the 

original data in the N-S direction where there is no trend and use this as an overall 

semivariogram. This semivariogram is given in figure 6.49. 
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Figure 6.49 
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A spherical model with partial sill c
s 

=88, c
0 

= 100 and a.,· = 4, was fitted to the 

semivariogram estimated in the N-S direction for the cropped field Potassium data 

using GEOEAS and this fitted model is shown in figure 6.50. 
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Figure 6.50 

Using weighted least squares with these GEOEAS values as the initial values, the 

parameter estimates c
s 

= 93 , c
0 

= 88 and a
., 

= 3 were obtained in the same direction. 

This fitted model is given in figure 6.51 below. 
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These parameter estimates were then used in the subsequent kriging. Ordinary kriging 

was appropriate in this case and was performed on the cropped field Potassium data 

and is shown in figure 6.52. 
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The values of the kriging estimate and the kriging variance at location (6.666, 4.444) 

were obtained as 4.92 and 2.14 respectively, using the surrounding neighbourhood of 

cropped field Potassium data is shown in figure 6.53. 
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A stem and leaf plot of the uncropped field Potassium data is given in figure 6.54. 

This indicates that these data contain two global outliers. The last row of stem 3 and 

leaf 4 indicates 34 ppm uncropped field (truncated) Potassium data. A histogram and 

box plot are also given in figure 6.55. 
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From these figures it can be seen that the data are positively skewed. 

Post plot and row and column mean and median plots were also obtained to check for 

directional trend. These are given in figures 6.56 to 6.59. These plots show trends in 

the E-W and N-S directions. 
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Row mean and median plots 
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Column mean and median plots 
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Figure 6.59 

Median polish will be used here to minimise these trends. Median polish was 

performed using six iterations on the original cropped field Potassium data and the 

residuals were treated as a new data set. A stem and leaf plot of the residuals is given 

in figure 6.60. From this figure we can see three global outliers. 

112 

"{ 

I "

(" 



The last row of stem 7 and leaf 3 indicates a (truncated) residual of 7 .3 ppm for the 

uncropped field Potassium data. 

Stem and leaf plot for the residuals of the uncropped field potassium data 
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A histogram and box plot are obtained for the residuals are given in figure 6. 61. 
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The distribution of the residuals is reasonably symmetric (apart from these global 

outliers referred to earlier) and so we shall not take any further transformations here. 

Post plots and row and column mean column mean and median plots were produced 

for these residuals. These plots are given in figures 6.62 to 6.65. 
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Column mean and median plots 
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An examination of the above plots confirms that the residuals do not exhibit directional 

trend. 

Four directional semivariogram plots were produced to visualise the spatial continuity 

of the residuals of the uncropped field Potassium data. These four directional 

semivariograms are in the E-W, N-S, EW-NS and NE-SW directions and are given in 

figures 6.66, 6.67, 6.68 and 6.69 respectively. 
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Figure 6.69 

The pattern of spatial continuity in all directions 1s essentially the same. These 

semivariograms display total nugget effect and the residuals are spatially uncorrelated. 

This means that all the spatial variation in the data comes from the trend. The 

omnidirectional semivariogram is also obtained to look overall variation in the 

residuals and 1s given in figure 6.70. 
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All of the experimental semivariogram values for above directions obtained are given 

in appendices B.35 to B.39. 

However, It should be noted here that, although we have taken the Potassium data 

from the two fields to have the same type of spatial continuity, the situation for the 

uncropped field is not nearly as clear as that for the cropped field as the 

semivariograms for the uncropped field are much more erratic than those for the 

cropped field. 
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6.4. Banksia Analysis 

As mentioned earlier, the Banksia species data are given in Appendix A.10. From the 

plots in figures 6. 71 and 6. 72 it can be seen that, although the distribution of Banksia 

species is positively skewed, it contains no global outliers. The last row of stem 2 and 

leaf O indicates 20 species. 
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Post plots and row and column mean and median plots were prepared in order to 

check for directional trend for the banksia species. The post plot in figure 6.73 

indicates a trend in the N-S direction. The row and column mean and median plots in 
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figures 6.74 and 6.75 confirm the trend in the N-S direction and the lack of trend in the 

E-W direction.
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Median polish with four iterations was then performed on the original data of Banksia 

species to deal with this trend. From the plots of the residuals in figures 6.76 and 6.77 

below it can be seen that the distribution of the residuals is reasonably symmetric with 

no global outliers. The residuals of the Banksia data are given in Appendix A.11. In 

the last row of stem 1 each leaf O indicates a (truncated) residual of 1.0 species. 

Stem and leaf plot of residuals for Banksia data 
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Post plots of these residuals are given in figures 6.78 and 6.79. From these plots we 

can see no trend in any direction. 
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The row and column mean and median plots in figures 6.80 and 6.81 confirm the lack 

of trend in the E-W and the N-S directions. 
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I 
! 

f. 

Four directional semivariogram plots were produced to visualise the spatial continuity 

of the residuals of the Banksia distribution. These four directional variograms are in 

the E-W, N-S, EW-NS and NE-SW directions and are given in figures 6.82, 6.83, 6.84 

and 6.85 respectively. 

The values were obtained using GEOEAS and are given in Appendices B.27 to B30 

respectively. 
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From the above figures, we see that, although it would be possible to fit a spherical 

model with the same nugget effect and range to all four experimental semivariograms, 

and the same sill in the case of the semivariograms in figures 6.82, 6.83, and 6.85. A 

different sill is needed for the N-S semivariogram in figure 6.84. This indicates that we 

have here a case of sill anisotropy. 
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The spherical model with c
s 

= 9, c
0 
=1 and a

s 
= 6 in the E-W, NE-SW and the SE-

NW directions and the spherical model with c
s 

= 15, c
0 
=1 and a

s 
= 6 in the N-S 

direction were fitted to the experimental semivariograms by using GEOEAS. These 

fitted models are given in figures 6.86, 6.87, 6.88 and 6.89 respectively. 
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To deal with this sill anisotropy we use here a nested semivariogram model as 

discussed earlier in previous section 3.5. Since the spatial variation in the E-W, SE-

NW and NE-SW directions is the same then we can consider one of these direction 

with the N-S direction. 
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In this case we will model semivariogram in the E-W diretion with that in N-S the N-S 

direction to represent the overall spatial continuity of the residuals of the banksia data. 

The combined (nested) model is given by 

yJh)={�(:)-(�)(:S, 0<h<6 (6.2) 

1 , h �6 
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7. Conclusion

In the preceding chapters we have given an account of the Exploratory Data Analysis 

of spatial data (chapter 2), the essential features of variogram modelling and kriging 

methods of estimation (chapters 3-5) and an application of these to two new data sets 

relating to Western Australia (chapter 6). 

One advantages of kriging that it provides, via the kriging variance, an idea of the 

precision of the estimate at each point. However as a measure of the accuracy of the 

estimates, the kriging variance has disadvantages as well as advantages. 

One advantage of kriging itself is that it is an exact interpolator and hence the kriging 

variance is zero at the data points. Also, the kriging variance depends on the spatial 

model used. Hence the selection of spatial model is very important and a poor choice 

of spatial model might lead to imprecise results. On the other hand the kriging variance 

depends only on the data configuration and is independent of actual data values, 

producing the same value for two or more locations with same local data 

configurations. Intuitively the potential for error might be expected to be greater at a 

location surrounded by unlike data values compared to one with like data values. 

What we have given in this thesis constitutes only part (although a very fundamental 

part) of the vast area of modern geostatistics but should be sufficient to provide the 

interested reader with a firm foundation for further study in this rapidly expanding area. 
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For example, we have chosen to restrict our treatment to point kriging. This can be 

easily extended to block kriging but one then needs to take into account the problem of 

change of support with subsequent regularisation of the variograms considered. Block 

kriging is the type used in mining geostatistics. 

Another issue of great importance in this area is the problem of conditional bias. 

Murphy (1988) stated that the conditional bias (regression bias) is zero when the slope 

of the regression line for predicting values at unknown locations is 1.0 (perfect 

correlation). In the estimation of climate-scale rainfall for example (Morrissey and 

Janowiak 1996), the conditional bias produces overestimates of high rainfall and 

underestimates of low rainfall. 

Having noted above that one disadvantage of the kriging variance is that it is not 

dependent on the actual data values used, one therefore needs some estimate of both 

local and global uncertainty which is conditioned to the data. One approach to this at 

the local level is the local confidence interval approach and another is to use 

conditional simulation (Armstrong and Dowd 1994 ; Cressie 1991 ). 

There is a wide range of simulation algorithms which are currently being used. The 

method of turning bands was developed by Matheron (1973) for simulating the more 

general intrinsically stationary processes, and Cressie ( 1987) shows how to use the 

Cholesky matrix decomposition method (LU decomposition) for simulation. The LU 
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decompostion method is also discussed by Dowd and Sarac ( 1994). Much of the 

current work using conditional simulation is being done as an application of simulated 

annealing techniques (Deutsch 1994; Deutsch and Cockerham 1994; Deutsch and 

Journel 1992). 
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9. APPENDICES

9.1. Appendix A 

A.1 Iron ore data

60.8 54.8 58.9 59.1 57.4 59.1 

57.8 58.1 57.8 56.1 

55.1 59.6 53.2 58.4 

54.3 51.9 52.0 56.7 

56.2 55.4 54.3 50.0 

45.6 46.9 53.5 52.2 53.5 55.7 

47.1 50.5 51.4 55.8 47.5 51.9 

50.4 54.0 51.3 47.8 

57.9 54.4 

58.7 58.7 57.3 58.1 51.5 

55.9 58.6 56.1 58.5 56.9 

57.8 50.3 58.2 58.3 59.0 

58.9 56.5 51.6 57.1 58.4 

52.2 47.2 54.1 57.6 58.7 

55.0 48.0 45.4 56.9 53.7 

52.6 50.5 51.2 52.1 53.5 

55.9 55.1 53.1 

Table 2.1 

A.2 Residuals of the iron ore data

2.37 -3.86 1.30 0.76 -2.57 .63 -.63 -2.4

0.63 .69 1.45 -.98 -0.018 1.49 .018 -.815 .011 -1.159 

54.2 

56.3 56.6 

58.9 59.7 

55.7 59.6 

58.6 59.1 

57.5 55.1 

56.7 51.5 

0.74 5.00 -0.32 4.18 0.00 4.20 1.63 .333 1.82 1.15 -0.79 -0.76 -1.45 

54.3 52.5 54.3 51.3 

52.9 52.8 57.1 

56.6 56.9 59.0 

56.1 56.7 55.0 56.4 

53.5 47.5 57.6 60.3 

56.2 56.8 59.7 

-2.85 -5.43

-.33 -2.97 -1.80 2.15 1.61 -4.3 3.45 -2.09 .004 -3.2 2.02 -2.48 -1.434 -.333 

0.34 -0.69 -0.73 -5.77 1.49 .60 -4.36 .25 2.14 1.47 .69 -.004 1.44 .34 

-1.38 -2.43-.51 -2.15 0.31 1.77 -3.36 -6.85 -.025 .81 -1.59 1.63 2.03 1.33 3.08 -1.81 .00 

1.37 2.42 -1.35 2.80 -4.4 -0.76 .69 -4.79 -7.46 -2.3 -1.07 2.52 -.700 .00 -4.85 2.04 5.16

-0.66 2.69 1.05 -3.18 -.01 -.609 .018 0.0 -2.57 2.61 4.38 6.12 5.83 

.004 0.0 -2.54 

A.3 Coalash Data

8.59 9.00 11.86 8.91 9.99 

11.62 10.91 8.76 8.89 9.10 7.62 9.65 

10.39 10.65 10.36 9.58 10.66 8.92 7.80 7.84 9.03 8.60 

9.79 9.06 10.70 11.21 8.98 9.27 8.19 7.88 7.61 8.20 8.77 

10.74 12.80 10.03 9.36 8.57 9.01 9.04 7.28 9.58 9.69 9.96 9.91 

11.21 9.89 10.34 8.20 9.82 10.06 8.58 8.89 8.64 7.04 8.81 7.95 

9.97 9.70 9.84 10.29 9.84 10.01 9.01 7.68 9.25 7.83 9.14 7.63 9.07 

11.17 10.14 9.93 10.27 10.21 11.09 10.63 8.82 10.18 9.34 8.61 

9.92 10.82 11.65 8.96 9.88 8.90 10.18 9.34 10.56 9.06 

10.21 10.73 9.46 9.35 9.78 10.38 9.79 8.91 9.22 11.43 

12.50 9.63 10.82 10.12 9.40 9.48 10.99 9.92 7.85 8.21 

9 .92 11.05 10.11 11.46 10.41 8.45 8.90 8.07 7.96 7.00 7.90 

11.31 9.41 9.37 11.21 9.93 10.70 9.27 9.28 10.13 8.61 8.78 

11.15 9.91 10.17 10.55 11.61 9.16 10.04 11.19 8.10 11.30 

10.82 11.75 9.78 11.00 9.79 10.19 9.15 8.15 9.20 

10.01 8.23 11.04 10.28 13.07 10.47 11.58 9.46 8.54 10.87 

10.39 11.11 10.96 10.83 10.09 8.69 11.17 9.39 9.56 

10.41 10.82 17.61 10.87 * 13.06 11.41 9.96 9.15 

9.76 11.10 10.80 8.86 9.48 9.22 9.61 8.20 

10.93 10.94 9.53 10.61 10.27 9.59 9.82 7.81 

9.64 9.52 10.06 12.65 9.63 

9.29 8.75 8.96 8.27 8.14 

10.59 10.43 9.32 
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A.4 Cropped field Available Phosphate Data (P-P04)

6.6 7.5 22.0 18.1 25.6 13.8 30.0 22.1 9.9 8.6 11.1 

13.2 9.4 22.1 12.2 14.6 12.2 12.8 8.7 9.8 7.2 2.8 

10.9 12.9 24.5 14.9 10.0 20.5 11.6 11.6 5.5 13.4 21.8 

10.8 19.6 11.1 11.7 13.9 8.2 7.0 9.2 6.2 7.9 4.2 

7.7 28.5 16.1 12.5 8.3 6.3 17.4 13.7 7.0 5.1 4.4 

9.7 7.6 13.7 13.8 7.7 14.2 9.8 30.6 5.8 15.9 51.3 

5.5 12.1 13.1 14.6 7.0 14.3 17.0 12.1 15.9 7.1 14.7 

5.5 12.0 18.3 10.8 1.3 15.8 9.9 14.0 13.6 5.8 9.2 

8.6 8.7 18.0 7.1 16.3 8.8 11.4 27.3 15.9 7.0 11.6 

7.6 12.7 17.7 9.2 10.4 11.1 17.5 24.8 12.5 8.8 8.7 

15.1 19.5 11.9 6.0 21.5 15.2 8.7 7.3 11.7 12.5 13.1 

A.5 Cropped filed Potassium Data

40 51 44 44 49 69 41 30 27 37 24 

48 43 55 63 45 64 40 35 35 27 30 

45 57 54 58 44 74 50 35 36 30 29 

32 92 56 44 44 34 26 42 26 28 34 

39 61 113 40 31 29 50 25 29 28 26 

39 51 47 36 24 41 34 30 30 29 17 

37 51 37 38 67 37 52 40 28 24 25 

30 99 60 32 32 43 31 33 31 39 23 

34 61 68 31 50 31 31 43 32 25 25 

22 38 62 27 38 26 42 29 28 26 32 

62 41 38 26 41 32 28 24 39 25 30 

A.6 Uncropped field Available Phophate Data

4.7 3.9 3.2 7.9 3.5 4.5 4.9 4.1 8.5 7.0 5.8 

* 4.9 4.3 9.2 4.0 5.4 4.1 4.9 3.6 6.7 6.0 

5.6 5.1 4.1 34.5 5.4 4.5 3.6 4.7 6.0 6.3 4.1 

4.0 3.2 6.4 10.4 7.9 6.7 4.9 5.8 4.9 7.0 4.4 

6.5 6.1 8.1 7.8 31.0 6.1 7.3 7.3 3.6 7.8 5.0 

5.8 5.0 5.6 8.3 7.5 3.9 6.3 5.1 3.9 5.1 3.6 

4.3 3.8 4.2 8.5 6.3 4.5 2.6 6.3 4.9 4.0 2.6 

5.3 * * 5.6 3.5 3.9 3.6 3.9 5.6 8.5 2.9 

6.1 4.3 4.3 2.8 4.5 2.5 5.1 3.0 5.8 6.6 4.9 

4.2 2.2 * 4.0 4.1 5.6 3.9 5.2 5.7 7.1 4.0 

3.4 2.9 6.1 3.0 6.1 5.1 3.2 7.3 6.2 6.7 6.2 
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A.7 Uncropped field Potassium Data

78 56 106 177 57 49 64 42 39 32 49 
* 102 73 353 66 33 38 49 34 43 41 

97 94 113 89 44 55 57 60 45 31 89 

158 68 75 68 75 52 52 57 38 86 56 

126 47 106 67 174 92 58 49 29 71 92 

101 79 58 154 116 77 52 51 36 149 80 

93 83 70 120 138 48 67 48 52 82 151 

117 * * 92 137 73 57 75 56 99 99 

72 49 75 59 104 209 87 68 63 105 49 

167 93 * 48 97 189 111 89 138 136 129 

96 69 46 192 70 290 92 46 139 164 134 

A.8 Residuals of the Cropped field Potassium Data (P-P04)

0 -5 -11 3 4 29 1 -5 -8 5 -6

8 -13 0 22 0 24 0 0 0 -5 0 

4 0 -2 16 -2 33 9 -1 0 -3 -2

-7 37 2 4 0 -5 -13 8 -8 -3 5 

3 9 62 3 -10 -7 14 -6 -2 0 0 

4 0 -3 0 -16 6 -1 0 0 2 -8

0 -2 -15 0 25 0 15 8 -4 -5 -2

-6 47 9 -5 -9 7 -5 2 0 11 -3

-1 10 18 -5 10 -4 -4 13 2 -2 0 

-11 -11 14 -7 0 -7 9 1 0 1 9 

30 -7 -9 -7 4 0 -4 -3 12 1 8 

A.9 Residuals of the uncropped field Potassium Data

-1 0 -1 2 5 26 1 -1 -3 6 -3

8 -7 11 22 2 22 1 5 6 -3 4 

3 5 8 15 -1 30 9 3 5 -2 1 

-5 45 15 6 4 -5 -10 15 0 1 11 

3 15 73 3 -8 -9 15 -1 4 2 4 

4 6 8 0 -14 4 0 5 6 4 -4

-1 3 -5 -1 26 -3 15 12 1 -4 1 

-6 53 20 -5 -7 5 -4 7 6 13 1 

-1 16 29 -5 12 -6 -3 18 8 0 4 

-11 -5 25 -7 2 -9 10 6 6 3 13 

30 -1 2 -7 6 -2 -3 2 18 3 12 
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(A.10) These are the Banksia data with residuals 

Col l Rl Dl Rsl Col 2 R 2 D2 Rs2 

1 18 1 0.005 10 4 9 -0.891

2 17 6 0 10 5 7 0.647

2 18 3 0.02 10 6 6 1.413

3 15 7 2.48 10 7 2 -1.28

3 16 7 0.017 10 8 2 -1.335

3 17 6 0.008 10 9 1 -2.185

3 18 2 -0.97 11 2 19 8.3 

4 12 4 0 11 3 17 9.3 

4 13 5 2.04 11 4 5 -3.58

4 14 8 6.54 11 5 5 -0.045

4 15 7 4.45 11 6 3 -0.282

4 16 5 -0.017 11 7 2 0.02223 

4 17 2 -2.026 11 8 1 -1.032

4 18 1 -0.005 12 2 16 4.25

5 3 8 -5.52 12 3 13 4.25 

5 4 7 -7.41 12 4 9 -0.632

5 10 14 4.96 12 5 6 -0.093

5 11 17 8.58 12 6 4 -0.326

5 12 15 5.853 12 7 3 .0223

5 13 8 -0.103 12 9 1 7.928

5 14 7 0.396 13 3 17 3.037

5 15 4 -3.694 13 4 13 2.57 

6 2 6 -6.314 13 5 9 0.342 

6 3 7 -2.314 13 6 5 -0.352

6 4 7 -3.205 13 7 3 -1.406

6 5 6 -0.666 13 8 2 -1.256

6 6 5 0.099 13 9 2 -3.58

6 7 6 2.404 13 10 1 3.264 

6 8 8 4.349 14 4 13 -1.196

6 9 14 10.5 14 5 5 0.57

6 10 15 10.17 14 6 5 1.87 

6 11 14 9.79 14 7 5 -0.179

6 12 10 5.06 14 8 3 -0.029

6 13 4 0.103 14 9 3 -1.735
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6 14 2 -0.396 14 11 2 3.008 

6 15 1 -2.486 15 4 15 -1.452

7 2 7 -4.375 15 5 4 0.313

7 3 4 -4.37 15 6 4 1.618

7 4 7 -2.26 15 7 3 -0.436

7 5 8 2.27 15 8 4 -0.285

7 6 5 1.038 15 9 3 5.29

7 7 6 3.34 16 4 13 -2.16

7 8 9 6.289 16 5 7 -0.4

7 9 7 4.439 16 6 4 -0.095

7 10 4 0.1117 16 7 1 0.8496 

7 11 2 -1.266 16 8 3 0 

7 12 4 0 16 9 3 -2.02

7 13 1 -1.957 16 10 2 -2.4

7 14 1 -0.457 16 11 1 3.594 

8 1 8 -0.054 17 4 11 1.133 

8 2 6 -5.05 17 5 8 -0.099

8 3 8 -0.054 17 6 2 -1.795

8 4 6 -2.94 17 7 1 0.15

8 5 6 0.593 17 8 1 0.3007 

8 6 3 -0.64 17 9 1 3.29 

8 7 5 2.66 18 4 10 3.83 

8 8 4 1.609 18 5 8 -0.4

8 9 3 0.76 18 6 2 -0.0959

8 10 4 0.43 18 7 1 -0.15

8 11 3 0.054 19 4 9 0 

8 12 1 -2.67 19 5 4 1.16 

9 1 7 0 19 6 1 2.7 

9 2 10 0 20 4 7 -1.532

9 3 7 0 20 5 2 -1.228

9 4 7 -0.891 20 12 1 0 

9 5 4 -0.352 21 4 7 1.538 

9 6 4 1.41 21 5 5 0 

9 7 6 4.71 21 11 1 -0.733

9 8 4 2.66 21 12 1 -0.49

9 9 1 -0.185 22 4 6 0.0488 

9 10 1 -1.51 22 5 3 1.815 

9 11 1 -0.891 22 6 3 -0.1117 
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A.11 The data measuring the gravimetric recognition in Vald' Or

-12 5 14 42 57 18 -4 13 18 20 10 -13 038 -97 -133 -139

-23 -24 18 50 35 9 9 16 12 9 0 -25 055 -80 -94 -133 -155

-12 -8 13 18 9 9 6 2 7 -5 -26 -47 -65 -91 -128 -147 -159

-10 4 -4 -15 -22 -4 -26 -2 -23 -35 -49 -50 -88 -130 -135 -154 -181

-8 -26 -2 -22 -25 -19 -46 -49 -57 -55 -75 -86 -111 -120 -139 -158 -189

-14 -17 1 -21 -41 -45 -67 -64 -74 -91 -97 -120 -138 -165 -171 -199

-2 -4 -13 -29 -21 -43 -59 -73 -87 -82 -94 -117 -121 -140 -167 -174 -214
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9.2 Appendix B 

B.1 This macro was written for estimating robust variogram in the E-W direction by using

MINITAB. 

LET CK3=SQRT(ABSO(Ck2-CK1)) 

LET Kl=Kl+l 
LET K2=K2+1 
LET K3=K3+1 

END 

This macro was written for estimating robust variogram in the E-W direction by using 

first macro. This is an EXECUTIVE file. 

LET Kl=l

LET K2=K4+1 
LET k3=25 
execs 'c:\mtbwin\Rvargm2.MAC' K5 
LET K6=25+K5-1 

STACK C25-CK6 C99 

ERASE C25-CK6 

LET C98(K4)=N(C99) 
LET CI00(K4)=(MEAN(C99)**4)/(.457+.494/c98(k4)) 
LET K4=K4+1 

LET K5=K5-1 

END 

This macro was written in the EW-NS direction by using LAG commands. 

LAG K4 CKl C95 
LET CK3=SQRT(ABSO(C95-CK2)) 
LET Kl=Kl+l 

LET K2=K2+1 
LET K3=K3+1 
END 

execs 'c:\mtbwin\vargm2.MAC' K5 
LET K6=30+K5-1 

STACK C30-CK6 C99 

ERASE C30-CK6 
LET C98(K4)=N(C99) 
LET CI00(K4)=MEAN(C99) 

LET K4=K4+1 
LET K5=K5-1 
END 

This macro was written in EN-ES direction by using Lag commands. 
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LAG K4 CK2 C95 
LET CK3=SQRT( ABSO(CK1-C95 ) )
LET Kl=Kl +l 
LET K2=K2 +1 
LET K3=K3 +1 
END 

LETKl=l 
LETK2=K4+1 
LETk3=30 
execs 'c:\mtbwin\vargm2.MAC' K5 
LET K6=30 +K5-1 
STACK C30-CK6 C99 
ER AS E C30-CK6 

LET C98(K4)=N(C99) 
LET C 100 (K4)=ME AN(C99) 
LETK4=K4+1 
LET K5=K5-1 
END 

(B.2 ) The robust and classical variograms for t he original iron ore data. 

La Count 

1 103 

2 94 

3 85 

4 77 

5 69 

6 61 

7 53 

8 45 

9 38 

10 31 

11 25 

12 19 

13 13 

14 7 

15 4 

RobVar Clvar 

13.110 14.3956 

14.815 18.4433 

14.669 16.9335 

17.318 18.6804 

26.522 23.6839 

19.199 18.5369 

27 .329 24.6851 

41.646 33.3302 

35.996 34.2584 

27.162 30.1542 

37.365 39.6672 

39.888 37.0468 

48.084 39.0292 

53.180 48.7786 

165.287 96.2250 

I\ 

B.3 The classical and robust variograms denoted by 2y(h)and 2y(h) respectively for

t he iron ore residuals.
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- A 

Row 2y(h) 2y(h) Lag 

1 11.'4178 11.8100 1 

2 11.1922 13.3489 2 

3 12.0209 12.7622 3 

4 13.7444 13.7885 4 

5 18.4904 17.2498 5 

6 14.7159 15.0603 6 

7 21.6566 21.4137 7 

8 19.1106 22.8629 8 

9 23.1600 20.4777 9 

10 14.4020 13.4749 10 

11 19.0415 17.6163 11 

12 15.7714 16.5716 12 

B.4 This is the semivariogram values obtained by using iron ore data in the E-W.

+------------------------------- R E S U L T S --------------------------------+ 

: Variable: oree I : Direction : .OOO 
I 

I I 

: Minimum: 45.400: Estimator Variogram : Tolerance: 1.000 I 

I 

: Maximum: 60.800 : Total Pairs 720 : BandWidth : n/a I 

I 

I I 1------------------------------------------------------------------------------, 

I Pairs Avg Distance Estimate: Pairs A vg Distance Estimate I 

I I 

:--------------------------------------+---------------------------------------: 

I 1 103 1.000 7.198 : 13 13 13.000 19.515 I 

I I 

I 2 94 2.000 9.222 : 14 7 14.000 24.389 I 

I I 

I 3 85 3.000 8.467 : 15 I 

I 

I 4 77 4.000 9.340 : 16 I 

I I 

I 5 69 5.000 11.842 :17 I 

I I 

I 6 61 6.000 9.268 : 18 I 

I I 

I 7 53 7.000 12.343 : 19 I 

I I 

I 8 45 8.000 16.665 : 20 I 

I I 

I 9 38 9.000 17.129 : 21 I 

I I 

: 10 31 10.000 15.077 : 22 I 

I 

: 11 25 11.000 19.834 : 23 

:12 19 12.000 18.523 : 24 I 

I 

B.5 Spherical model is fitted to the iron ore data obtained by GEOEAS.

I Pairs A vg Distance Value I 

: 1 197 1.000 7.003 

:2 352 1.699 8.126 

: 3 615 2.560 9.520 

:4 659 3.493 10.761 

: 5 857 4.524 12.725 

:6 697 5.506 14.024 

: 7 614 6.425 13.998 

: 8 597 7.383 14.231 

:9 474 8.415 14.119 

: 10 367 9.447 12.836: Nmrnet : 4.500 I 

I 

: 11 261 10.410 14.101: I 

: 12 202 11.353 15.133: Type Sill Range: 

: 13 159 12.353 14.642: I 

I 

: 14 I Spherical 9.500 6.500: I 
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B.6 The semivariogram values were fitted using GEOEAS.

+--------------------------------- M O D E L ----------------------------------+ 
I Pairs Av Distance Value: Pairs Av Distance Value : I 

: 1 197 1.000 7.003: 18 
:2 352 1.699 8.126: 19 

: 3 615 2.560 9.520: 20 

:4 659 3.493 10.761 : 21 

:5 857 4.524 12.725: 22 

:6 697 5.506 14.024: 23 

: 7 614 6.425 13.998: 24 

: 8 597 7.383 14.231 +--------------------------------------

:9 474 8.415 14.119: Model 

: 10 367 9.447 12.836: Nu et: 6.000 

: 11 261 10.410 14.101: 

:12 202 11.353 15.133 l T e Sill Ran e 

: 13 159 12.353 14.642 l 

:14 Gaussian 8.500 6.000 

B.7

+------------------------------- R E S U L T S --------------------------------+ 

: Variable: Ore : Direction: .OOO : 

I 

-, 

: Minimum: -8.207: Estimator : Vario ram : Tolerance: 20.000 :

: Maximum: 6.129: Total Pairs: 2380 : BandWidth: 10.000 : 
I I ,------------------------------------------------------------------------------, 

: Pairs A v Distance Estimate : Pairs A v Distance Estimate : 

:--------------------------------------+---------------------------------------: 

1 99 1.000 5.863 : 13 116 12.327 6.710 I 

I 

:2 92 2.000 5.932 : 14 77 13.295 5.912 I 

I 

: 3 83 3.000 5.976 : 15 42 14.322 7.294 I 

I 

:4 228 3.438 6.607 : 16 16 15.284 8.519 

: 5 207 4.407 7.654 : 17 4 16.208 13.451 

:6 185 5.386 6.953 : 18 

: 7 262 6.353 7.842 : 19 

: 8 228 7.326 7.344 : 20 

:9 194 8.311 7.469 : 21 

: 10 215 9.336 5.758 : 22 

: 11 173 10.316 5.895 : 23 

:12 159 11.353 6.151 : 24 
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B.8

+------------------------------- R E S U L T S --------------------------------+ 

: Variable: Ore : Dire ction : 20.000 : 

: Minimum: -8.207: Estimator : Vario ram : Tole rance : 20.000 :

: Maximum: 6.129: Total Pairs: 2124 : BandWidth: 10.000 : 
I I ,------------------------------------------------------------------------------, 
I Pairs Av Distance Estimate: Pairs Av Distance Estimate : I 

:--------------------------------------+---------------------------------------: 

1 99 1.000 5.863 : 13 70 12.401 5.881 

:2 92 2.000 5.932 : 14 44 13.377 5.141 

3 165 2.620 5.854 : 15 26 14.355 5.199 

4 214 3.588 6.728 : 16 12 15.359 5.471 

5 240 4.624 8.149 : 17 3 16.267 10.798 

6 213 5.563 7.375 :18 

7 217 6.499 7.973 : 19 

8 202 7.477 7.335 : 20 

:9 185 8.473 6.177 : 21 

: 10 141 9.489 5.463 : 22 

: 11 113 10.449 6.127 : 23 

: 12 88 11.409 5.373 : 24 

B.9

+------------------------------- R E S U L T S --------------------------------+ 

: Variable: Ore : Dire ction : 40.000 : 

: Minimum: -8.207: Estimator : Vario ram : Tole rance: 20.000 :

: Maximum: 6.129: Total Pairs: 1108 : BandWidth: 10.000 : 
I I ,------------------------------------------------------------------------------1 
I Pairs Av Distance Estimate: Pairs Av Distance Estimate I 

:--------------------------------------+---------------------------------------: 

1 : 13 8 12.427 10.413 I 

I 

:2 88 1.414 6.781 : 14 2 13.928 17.704 

: 3 151 2.507 6.469 : 15 

:4 121 3.606 7.113 :16 

5 198 4.646 7.325 : 17 

:6 161 5.647 6.204 :18 

7 95 6.519 5.103 : 19 

: 8 125 7.431 5.410 : 20 

:9 91 8.512 5.290 : 21 

: 10 39 9.605 9.479 : 22 

: 11 23 10.589 8.011 : 23 

: 12 6 11.180 10.026 : 24 
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B.10

RESULTS 

: Variable: Ore I : Direction : 60.000 I 

I I 

: Minimum: -8.207 : Estimator Vario!!ram : Tolerance : 20.000 I 

I 

: Maximum: 6.129 : Total Pairs : 809 : BandWidth: 10.000 I 

I 

I I 1------------------------------------------------------------------------------1 

I Pairs AV!! Distance Estimate: Pairs Av!! Distance Estimate I 

I I 

:--------------------------------------+---------------------------------------: 

I 1 : 13 I 

I I 

I 2 88 1.414 6.781 : 14 I 

I I 

I 3 142 2.524 6.741 15 I 

I I 

I 4 116 3.380 7.756 16 I 

I I 

I 5 184 4.438 6.627 17 I 

I I 

I 6 132 5.491 5.474 18 I 

I I 

I 7 61 6.460 4.691 19 I 

I 

I 8 61 7.317 5.704 20 I 

I I 

I 9 16 8.401 9.588 I 21 I 

I I 

: 10 9 9.295 15.289 : 22 I 

I 

B.11

+------------------------------- R E S U L T S --------------------------------+ 

: Variable: Ore I : Direction : 80.000 I 

I I 

: Minimum: -8.207 : Estimator Vario!!ram : Tolerance : 20.000 I 

I 

:Maximum: 6.129: Total Pairs: 738 : BandWidtb: 10.000 I 

I 

I I ,------------------------------------------------------------------------------1 

I Pairs A vg Distance Estimate: Pairs Av!! Distance Estimate I 

I I 

:--------------------------------------+---------------------------------------: 

I 1 92 1.000 6.592 : 13 I 

I I 

I 2 75 2.000 6.848 : 14 
I 

I I 

I 3 135 2.587 6.457 : 15 I 

I I 

I 4 107 3.538 8.650 :16 I 

I I 

I 5 124 4.483 7.009 : 17 I 

I I 

I 6 85 5.419 6.940 : 18 I 

I I 

I 7 83 6.366 4.579 : 19 I 

I I 

I 8 31 7.236 7.702 : 20 I 

I I 

I 9 6 8.062 6.887 : 21 I 

I I 
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B.13

+------------------------------- R E S U L T S --------------------------------+ 

: Variable: Ore I : Direction : 100.000 I 
I I 

: Minimum: -8.207 : Estimator Vario2ram : Tolerance : 20.000 I 

I 

: Maximum: 6.129 : Total Pairs : 768 : BandWidth 10.000 I 

I 

I I 1------------------------------------------------------------------------------1 

I Pairs A v2 Distance Estimate: Pairs A v2 Distance Estimate I 
I I 

:---·----------------...................................................... +---------------------------------------: 

I 1 92 1.000 6.592 : 13 I 

I I 

I 2 75 2.000 6.848 : 14 I 

I I 

I 3 136 2.584 7.064 : 15 I 
I I 

I 4 108 3.535 7.481 : 16 I 

I I 

I 5 123 4.483 8.393 : 17 I 

I I 

I 6 83 5.423 9.016 : 18 I 

I I 

I 7 88 6.377 6.117 : 19 I 

I I 

I 8 41 7.296 5.880 : 20 I 

I I 

I 9 22 8.273 6.880 : 21 I 

I I 

: 10 : 22 I 

I 

: 11 : 23 I 

I 

: 12 : 24 I 

I 

B.14

+------------------------------- RE S U LT S --------------------------------+ 

: Variable: Ore I : Direction : 120.000 I 

I I 

: Minimum: -8.207 : Estimator Variogram : Tolerance: 20.000 I 

I 

: Maximum: 6.129 : Total Pairs : 928 : BandWidth 10.000 I 

I 

I 1------------------------·----·-------------------------------------... ----------1 

I Pairs A v2 Distance Estimate: Pairs Av2 Distance Estimate I 

I I 

:--------------------------------------+---------------------------------------: 

I 1 : 13 1 12.042 12.236 I 

I I 

I 2 88 1.414 5.331 : 14 
I 

I I 

I 3 145 2.526 7.042 : 15 I 

I I 

I 4 117 3.378 7.712 : 16 I 

I I 

I 5 186 4.438 8.479 : 17 I 

I I 

I 6 133 5.499 8.810 : 18 I 

I I 

I 7 68 6.465 8.571 : 19 I I 

I 8 88 7.348 8.144 : 20 I 

I I 

I 9 48 8.430 8.046 : 21 I 

I I 

: 10 42 9.436 8.331 / 22 I 

I 

: 11 10 10.630 7.451 : 23 I 

I 

: 12 2 11.314 1.831 : 24 I 

I 
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B.15

+------------------------------- RE S UL T S --------------------------------+ 

: Variable: Ore I : Direction : 140.000 I 
I I 

: Minimum: -8.207 : Estimator Variogram : Tolerance: 20.000 I 

I 

:Maximum: 6.129 : Total Pairs: 1401 : BandWidth : 10.000 I 

I 

I I 
1------------- --------------------------------------------------------------"" -""I 

I Pairs A vg Distance Estimate: Pairs A vg Distance Estimate I 
I I 

:--------------------------------------+---------------------------------------: 
I 1 : 13 27 12.432 8.067 I 
I I 

I 2 88 1.414 5.331 :14 12 13.606 13.640 I 
I I 

I 3 155 2.507 5.808 : 15 4 14.430 15.066 I 
I I 

I 4 124 3.606 7.301 :16 1 15.232 3.876 I 
I I 

I 5 210 4.647 7.505 : 17 I 

I 

6 175 5.643 7.199 : 18 I 

I 

7 111 6.524 7.754 : 19 I 

I 

8 166 7.441 7.100 : 20 I 

I 

9 146 8.519 6.473 : 21 I 

I 

10 99 9.607 6.778 : 22 I 

I 

11 55 10.607 6.186 : 23 I 

I 

12 28 11.367 7.679 : 24 I 

I 

B.16

+------------------------------- R E S U L T S --------------------------------+ 

: Variable: Ore I : Direction : 160.000 I 
I I 

: Minimum : -8.207 : Estimator Variogram : Tolerance: 20.000 I 

I 

:Maximum: 6.129 : Total Pairs: 2438 : BandWidth : 10.000 I 

I 

I 1------------------------------------------------------------------------------1 
I Pairs A vg Distance Estimate: Pairs A vg Distance Estimate I 

I I 

:--------------------------------------+---------------------------------------: 
I 1 99 1.000 5.863 : 13 93 12.408 8.557 I 

I I 

I 2 92 2.000 5.932 : 14 54 13.412 9.227 I 

I I 

I 3 167 2.616 5.476 : 15 24 14.416 9.934 I 

I I 

I 4 220 3.583 6.200 :16 7 15.352 11.805 I 

I I 

I 5 253 4.619 6.788 : 17 1 16.031 21.410 I 

I I 

I 6 230 5.552 6.459 :18 I 

I I 

I 7 246 6.487 7.351 :19 I 

I I 

I 8 245 7.461 6.675 : 20 I 

I I 

I 9 243 8.459 6.885 : 21 I 

I I 

:10 191 9.503 6.346 : 22 I 

I 

: 11 152 10.452 6.495 : 23 I 

I 

:12 121 11.404 7.523 : 24 I 

I 
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B.17

------------------------------- R E S U L T S --------------------------------+ 

: Variable: LN (P04) I : Direction : .OOO 
I 

I I 

: Minimum: .262 : Estimator Vario$!:ram : Tolerance: 90.000 I 

I 

: Maximum: 3.938 : Total Pairs : 7258 : BandWidth : n/a I 

I 

I I 1------------------------------------------------------------------------------1 
I Pairs A vg Distance Estimate: Pairs Avg Distance Estimate I 

I I 

:--------------------------------------+---------------------------------------: 
I 1 220 1.000 .220 : 13 60 12.330 .188 I 

I I 

I 2 398 1.706 .241 :14 8 13.454 .276 I 

I I 

I 3 698 2.566 .256 : 15 I 

I I 

I 4 762 3.499 .268 : 16 I 

I I 

I 5 1016 4.532 .262 : 17 I 

I I 

I 6 856 5.515 .259 : 18 I 

I I 

I 7 796 6.432 .261 : 19 I 

I I 

I 8 830 7.396 .269 : 20 I 

I I 

I 9 710 8.421 .241 : 21 I 

I I 

: 10 538 9.481 .236 : 22 I 

I 

: 11 272 10.448 .291 : 23 I 

I 

:12 94 11.384 .222 : 24 

B.18

+------------------------------- R E S U L T S --------------------------------+ 

: Variable: LN (P04) I : Direction : .OOO 
I 

I I 

: Minimum: .262 : Estimator Variogram : Tolerance 20.000 I 

I 

: Maximum: 3.938 : Total Pairs 1643 : BandWidth : 10.000 I 

I 

I I ,------------------------------------------------------------------------------1 
I Pairs AV$!: Distance Estimate: Pairs Avg Distance Estimate I 

I I 

:--------------------------------------+---------------------------------------: 
I 1 110 1.000 .217 : 13 I 

I I 

I 2 99 2.000 .266 :14 I 

I I 

I 3 88 3.000 .246 : 15 I 

I I 

I 4 237 3.434 .255 : 16 I 

I I 

I 5 206 4.404 .243 : 17 I 

I I 

I 6 175 5.382 .272 : 18 I 

I I 

I 7 234 6.348 .302 : 19 I 

I I 

I 8 185 7.318 .318 : 20 I 

I I 

I 9 136 8.287 .284 : 21 I 

I I 

: 10 119 9.308 .277 : 22 I 

I 

: 11 54 10.215 .411 : 23 I 

I 

: 12 : 24 I 

I 
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B.19

+------------------------------- RE S UL T S --------------------------------+ 

: Variable: LN (P04) I : Direction : 45.000 I 
I I 

:Minimum: .262 : Estimator Variogram : Tolerance : 20.000 I 

I 

: Maximum: 3.938 : Total Pairs : 1720 : BandWidth : 10.000 I 

I 

I I .------------------------------------------------------------------------------.
I Pairs A vg Distance Estimate: Pairs A vg Distance Estimate I 
I I 

:--------------------------------------+-------------------... -------------------: 
I 1 : 13 30 12.330 .075 I 

I I 

I 2 100 1.414 .248 : 14 I 

I I 

I 3 261 2.420 .268 : 15 I 

I I 

I 4 144 3.606 .288 : 16 I 

I 

I 5 302 4.619 .290 : 17 I 

I I 

I 6 145 5.772 .226 : 18 I 

I I 

I 7 164 6.552 .226 : 19 I 

I I 

I 8 166 7.397 .181 : 20 I 

I I 

I 9 171 8.492 .196 : 21 I 

I I 

:10 122 9.564 .189 : 22 I 

I 

: 11 68 10.567 .214 : 23 I 

I 

: 12 47 11.384 .177 : 24 I 

I 

B.20

+------------------------------- R E S U L T S --------------------------------+ 

: Variable: LN (P04) I : Direction : 90.000 I 

I I 

:Minimum : .262 : Estimator Variogram : Tolerance: 20.000 I 

I 

:Maximum: 3.938 : Total Pairs 1643 : BandWidth : 10.000 I 

I 

I I ,------------------------------------------------------------------------------1 
I Pairs A vg Distance Estimate: Pairs Avg Distance Estimate I 

I I 

:--------------------------------------+---------------------------------------: 
I 1 110 1.000 .224 : 13 I 

I I 

I 2 99 2.000 .237 :14 I 

I I 

I 3 88 3.000 .234 : 15 I 

I I 

I 4 237 3.434 .253 :16 I 

I I 

I 5 206 4.404 .241 : 17 I 

I I 

I 6 175 5.382 .246 : 18 I 

I I 

I 7 234 6.348 .241 : 19 I 

I I 

I 8 185 7.318 .253 : 20 I 

I I 

I 9 136 8.287 .180 : 21 I 

I I 

: 10 119 9.308 .192 : 22 I 

I 

: 11 54 10.215 .215 : 23 I 

I 

: 12 : 24 I 
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B.21

+s------------------------------ RE S UL T S --------------------------------+

: Variable: LN (P04) I : Direction : 135.000 I I 

: Minimum: .262 : Estimator Variogram : Tolerance : 20.000 I 

I 

: Maximum: 3.938 : Total Pairs 1690 : BandWidlh : 10.000 
I I 1---------------------·--------------------------------------------------------1 
I Pairs A vg Distance Estimate: Pairs Avg Distance Estimate I 

I I 

:--------------------------------------+---------------------------------------: 
I 1 : 13 I 

I I 

I 2 100 1.414 .211 14 I 

I I 

I 3 261 2.420 .255 15 I 

I I 

I 4 144 3.606 .296 16 I 

I I 

I 5 302 4.619 .260 17 I 

I I 

I 6 145 5.772 .255 18 I 

I I 

I 7 164 6.552 .269 19 I 

I I 

I 8 166 7.397 .310 20 I 

I I 

I 9 171 8.492 .290 I 21 I 

I I 

:10 122 9.564 .294 : 22 I 

: 11 68 10.567 .309 : 23 I 

I 

: 12 47 11.384 .267 : 24 I 

I 

B.22

+------------------------------- R E S U L T S --------------------------------+ 

: Variable: RsPot I : Direction : .OOO 
I 

I I 

: Minimum: -17.000 : Estimator Variogram : Tolerance : 90.000 I 

I 

: Maximum : 60.000 : Total Pairs : 7096 : BandWidlh : n/a I 

I 

I I ,------------------------------------------------------------------------------1 
I Pairs A vg Distance Estimate: Pairs Avg Distance Estimate I 

I I 

:--------------------------------------+---------------------------------------: 
I 1 220 1.000 138.300 : 13 I 

I I 

I 2 398 1.706 147.085 : 14 I 

I I 

I 3 698 2.566 143.897 : 15 I 

I I 

I 4 762 3.499 140.785 :16 I 

I I 

I 5 1016 4.532 139.481 : 17 I 

I I 

I 6 856 5.515 143.224 : 18 I 

I I 

I 7 796 6.432 138.413 :19 I 

I 

I 8 830 7.396 135.039 :20 I I 

I 9 710 8.421 134.411 : 21 I 

I I 

:10 538 9.481 118.703 : 22 I 

I 

: 11 272 10.448 90.588 : 23 I 

I 
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B.23

+------------------------------- R E S U L T S --------------------------------+ 

: Variable: RsPot I : Direction : .OOO 
I 

I I 

: Minimum: -17.000 I Estimator Vario!!ram I Tolerance : 20.000 I 

I 

I Maximum: 60.000 I Total Pairs : 1643 I BandWidth: 10.000 I 

I 

I I 1------------------------------------------------------------------------------1 

I Pairs A vg Distance Estimate I Pairs A vg Distance Estimate I 

I I 

:--------------------------------------+---------------------------------------: 

I 1 110 I.OOO 148.382 I 13 I 

I 

I 2 99 2.000 148.460 I 14 I 

I I 

I 3 88 3.000 144.773 : 15 I 

I I 

I 4 237 3.434 135.426 116 I 

I I 

I 5 206 4.404 158.998 :17 I 

I I 

I 6 175 5.382 129.749 118 I 

I I 

I 7 234 6.348 138.442 :19 I 

I I 

I 8 185 7.318 141.465 I 20 I 

I I 

I 9 136 8.287 168.173 I 21 I 

I I 

: 10 119 9.308 134.084 I 22 I 

I 

I 11 54 10.215 50.269 I 23 I 

I 

B.24

+------------------------------- R E S U L T S --------------------------------+ 

I Variable: RsPot I I Direction : 45.000 I 

I I 

:Minimum : -17.000 I Estimator Variogram : Tolerance 20.000 I 

I 

I Maximum: 60.000 I Total Pairs 1643 I BandWidth : 10.000 I 

I 

I I .------------------------------------------------------------------------------. 

I Pairs Avg Distance Estimate I Pairs A vg Distance Estimate I 

I I 

:--------------------------------------+---------------------------------------: 

I 1 I 13 I 

I I 

I 2 100 1.414 123.665 14 I 

I I 

I 3 261 2.420 144.490 15 I 

I I 

I 4 144 3.606 149.149 16 I 

I I 

I 5 302 4.619 135.012 17 I 

I I 

I 6 145 5.772 143.834 18 I 

I I 

I 7 164 6.552 137.348 19 I 

I I 

I 8 166 7.397 156.840 20 I 

I I 

I 9 171 8.492 124.673 I 21 I 

I I 

I 10 122 9.564 112.783 I 22 I 

I 

I 11 68 10.567 62.949 I 23 I 

I 

I 12 : 24 I 
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B.25

+------------------------------- R E S U L T S --------------------------------+ 

: Variable: RsPot I : Direction : 90.000 I 

I I 

: Minimum : -17.000: Estimator Variogram : Tolerance : 20.000 I 

I 

: Maximum: 60.000: Total Pairs: 1643 : BandWidth: 10.000 I 

I 

I I 1------------------------------------------------------------------------------. 
I Pairs A vg Distance Estimate: Pairs Avg Distance Estimate I 

I I 

:--------------------------------------+---------------------------------------: 
I 1 110 1.000 128.218 : 13 I 

I I 

I 2 99 2.000 159.237 : 14 I 

I I 

I 3 88 3.000 159.818 : 15 I 

I I 

I 4 237 3.434 142.011 :16 I 

I I 

I 5 206 4.404 134.937 : 17 I 

I I 

I 6 175 5.382 154.843 : 18 I 

I I 

I 7 234 6.348 136.122 :19 I 

I I 

I 8 185 7.318 120.797 : 20 I 

I I 

I 9 136 8.287 105.985 :21 I 

I I 

:10 119 9.308 101.269 : 22 I 

I 

: 11 54 10.215 121.167 : 23 I 

I 

: 12 :24 I 

I 

B.26

+------------------------------- RE S UL T S --------------------------------+ 

: Variable: RsPot I : Direction : 135.000 I 

I I 

: Minimum: -17.000: Estimator Variogram : Tolerance : 20.000 I 

I 

: Maximum: 60.000 : Total Pairs : 1643 : BandWidth : 10.000 I 

I 

I I 1------------------------------------------------------------------------------1 
I Pairs Avg Distance Estimate: Pairs A vg Distance Estimate I 

I I 

:--------------------------------···---+---------------------------------------: 
I 1 : 13 I 

I I 

I 2 100 1.414 157.115 :14 I 

I I 

I 3 261 2.420 137.640 :15 I 

I I 

I 4 144 3.606 139.226 :16 I 

I I 

I 5 302 4.619 133.737 : 17 I 

I I 

I 6 145 5.772 138.034 :18 I 

I I 

I 7 164 6.552 142.704 : 19 I 

I I 

I 8 166 7.397 127.852 : 20 I 

I I 

I 9 171 8.492 135.629 : 21 I 

I I 

: 10 122 9.564 127.287 : 22 I 

: 11 68 10.567 128.382 : 23 I 

: 12 :24 I 

I 
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B.27

+------------------------------- R E S U L T S --------------------------------+ 

: Variable: SPECIES I : Direction : .OOO 
I 

I I 

: Minimum: -7.410 : Estimator Variogram : Tolerance: 20.000 I 

I 

: Maximum: 10.500 : Total Pairs : 2438 : BandWidth n/a: 
I I 1------------------------------------------------------------------------------. 

I Pairs A vg Distance Estimate: Pairs A vg Distance Estimate I 

I I 

:--------------------------------------+---------------------------------------: 

I 1 121 I.OOO 4.321 : 13 167 12.372 9.990 I 

I I 

I 2 101 2.000 7.635 : 14 I 

I I 

I 3 84 3.000 10.415 : 15 I 

I I 

14 228 3.416 10.425 :16 I 

I 

I 5 193 4.396 10.262 : 17 I 

I I 

I 6 171 5.394 9.834 : 18 I 

I I 

I 7 258 6.359 8.769 : 19 I 

I I 

I 8 238 7.328 10.289 : 20 I 

I I 

I 9 214 8.299 9.991 : 21 I 

I I 

: 10 252 9.337 9.930 : 22 I 

I 

: 11 203 10.317 12.347 : 23 I 

I 

:12 208 11.385 11.033 : 24 I 

I 

B.28

+------------------------------- R E S U L T S --------------------------------+ 

: Variable: SPECIES I : Direction : 45.000 : I 

: Minimum: -7.410 : Estimator Variogram : Tolerance : 20.000 I 

I 

:Maximum: 10.500 : Total Pairs : 1634 : BandWidth: n/a : 
I I 1------------------------------------------------------------------------------1 

I Pairs A vg Distance Estimate: Pairs Avg Distance Estimate I 

I I 

:--------------------------------------+---------------------------------------: 

I 1 : 13 50 12.397 8.938 I 

I I 

I 2 105 1.414 7.539 : 14 I 

I I 

I 3 248 2.413 10.199 : 15 I 

I I 

I 4 123 3.606 9.817 :16 I 

I I 

I 5 248 4.622 9.367 : 17 I 

I 

I 6 128 5.774 9.277 : 18 I 

I 

I 7 152 6.556 9.143 : 19 I 

I I 

I 8 155 7.398 8.636 : 20 I 

I I 

I 9 166 8.494 8.814 : 21 I 

I I 

: 10 126 9.572 7.215 : 22 I 

I 

: 11 71 10.560 6.328 : 23 I 

I 

:12 62 11.385 6.155 : 24 I 

I 
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B.29

+------------------------------- RE S UL T S --------------------------------+ 

: Variable: SPECIES I : Direction : 90.000 I 

I I 

: Minimum: -7.410 : Estimator Variogram : Tolerance: 20.000 I 

I 

: Maximum: 10.500 : Total Pairs : 1500 : BandWidth: n/a I 

I 

I I ------------------------------------------------------------------------------1

Pairs Avg Distance Estimate: Pairs Avg Distance Estimate I 

I 

-------------------------------------+---------------------------------------: 

1 122 1.000 4.237 : 13 I 

I 

2 99 2.000 7.814 : 14 I 

I 

3 80 3.000 11.529 : 15 I 

I 

4 222 3.408 11.546 : 16 I 

I 

5 178 4.379 14.634 : 17 I 

I 

6 143 5.357 17.751 : 18 I 

I 

7 197 6.342 18.369 :19 I 

I 

8 153 7.304 19.652 : 20 I 

I 

9 111 8.275 20.013 : 21 I 

I 

: 10 112 9.340 18.229 : 22 I 

I 

: 11 83 10.308 15.325 : 23 I 

I 

: 12 : 24 I 

I 

B.30

+------------------------------- R E S U L T S --------------------------------+ 

: Variable: SPECIES I : Direction : 135.000 I 

I I 

: Minimum : -7.410 : Estimator Variogram : Tolerance : 20.000 I 

: Maximum: 10.500: Total Pairs : 2164 : BandWidth : n/a I 

I 

I I .------------------------------------------------------------------------------, 
I Pairs A vg Distance Estimate: Pairs Avg Distance Estimate I 

I I 

:--------------------------------------+---------------------------------------! 
I 1 : 13 I 

I I 

I 2 118 1.414 5.818 : 14 I 

I I 

I 3 300 2.424 7.205 : 15 I 

I I 

I 4 169 3.606 7.818 : 16 I 

I I 

I 5 354 4.624 9.138 : 17 I 

I I 

I 6 176 5.772 9.624 :18 I 

I I 

I 7 199 6.549 9.975 :19 I 

I I 

I 8 218 7.404 9.425 : 20 I 

I I 

I 9 253 8.516 10.216 : 21 I 

I I 

: 10 211 9.582 7.983 : 22 I 

I 

: 11 166 10.569 7.963 : 23 I 

I 

: 12 :24 I 

I 
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B.31

+------------------------------- R E S U L T S --------------------------------+ 

: Variable: JPhos I : Direction : .OOO 
I 

I I 

: Minimum: 2.200: Estimator Variogram : Tolerance : 90.000 I 

I 

: Maximum : 34.500 : Total Pairs : 5893 : BandWidth : n/a : 
I I 1------------------------------------------------------------------------------. 
I Pairs A vg Distance Estimate: Pairs A vg Distance Estimate I 
I I 

:--------------------------------------+---------------------------------------: 
I 1 206 I.OOO 14.535 13 I 

I I 

I 2 373 1.708 17.201 14 I 

I I 

I 3 657 2.567 19.392 15 I 

I I 

I 4 720 3.500 19.459 16 I 

I I 

I 5 965 4.532 19.677 17 I 

I I 

I 6 807 5.515 16.169 18 I 

I I 

I 7 745 6.431 18.777 :19 I 

I I 

I 8 767 7.395 14.853 : 20 I 

I I 

I 9 653 8.421 I0.983 : 21 I I 

B.32
+------------------------------- RE S UL T S --------------------------------+

: Variable: JPhos I : Direction : .OOO 
I 

I I 

: Minimum: 2.200: Estimator Variogram : Tolerance : 20.000 I 

I 

: Maximum : 34.500 : Total Pairs : 1366 : BandWidth n/a I 

I 

I I 
,-------·----------.... __________________ .... ______________________________________ , 

I Pairs Avg Distance Estimate: Pairs A vg Distance Estimate I I 

:--------------------------------------+---------------------------------------: 
I 1 104 I.OOO 16.401 : 13 I 

I I 

2 93 2.000 17.782 : 14 I 

I 

3 84 3.000 20.300 I 15 I 

I 

4 225 3.434 19.619 16 I 

I 

5 194 4.403 17.282 17 I 

I 

6 163 5.381 16.200 18 I 

I 

7 216 6.347 18.520 19 I 

I 

8 167 7.315 13.304 20 I 

I 

9 120 8.292 2.512 21 I 

I 

B.33

+------------------------------- R E S U L T S --------------------------------+ 

: Variable: JPhos I : Direction : 45.000 I 

I I 

: Minimum: 2.200 : Estimator Variogram : Tolerance 20.000 I 

I 

: Maximum: 34.500 : Total Pairs : 1386 : BandWidth : n/a I 

I 

I I ,-------------------------------------------- .... --------------------------------1 
I Pairs A vg Distance Estimate: Pairs A vg Distance Estimate I 

I I 

:------------------------------------.... + .............................................................................. : 
I 1 : 13 I 

I I 

I 2 93 1.414 17.266 : 14 I 

I 3 245 2.420 18.651 : 15 I 

I 4 136 3.606 22.665 :16 I 

I 5 289 4.621 21.680 : 17 I 

I 6 140 5.771 21.307 : 18 I 

I 7 158 6.550 22.049 : 19 I 

I 8 161 7.397 25.267 : 20 I 
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B.34

+-------------------------------RE S UL T S --------------------------------+ 

: Variable: JPhos I : Direction : 90.000 : I 

: Minimum: 2.200 : Estimator : Variogram : Tolerance: 20.000 : 

: Maximum : 34.500 : Total Pairs 1377 : BandWidth: n/a: 

I Pairs A vg Distance Estimate I 

I 1 102 1.000 12.632 I 

:2 94 2.000 16.299 

: 3 82 3.000 15.325 

:4 222 3.438 16.904 

: 5 195 4.402 18.563 

:6 164 5.379 15.069 
I 7 219 6.344 19.931 I 

: 8 170 7.322 13.710 

B.35

+-------------------------------RE S UL T S --------------------------------+ 

: Variable: JPhos I : Direction 135.000 I 

I I 

: Minimum: 2.200: Estimator Variogram : Tolerance : 20.000 I 

I 

: Maximum: 34.500 : Total Pairs 1354 : BandWidth : n/a I 

I 

I I 

, ________ .., ____ ... .., ____________ ................................................................................................... ___________ .., ______ , 

I Pairs A vg Distance Estimate I 

:--------------_..,_.., ____________________ +---------------------------------------: 
I I 2 93 1.414 17.468 I I 

I 3 246 2.421 21.176 I 

I 4 137 3.606 20.154 I 

I 5 287 4.618 20.034 I 

I 6 136 5.772 15.098 I 

I 7 152 6.552 14.081 I 

I 8 151 7.395 6.695 I 

I 9 152 8.493 2.193 I 
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B.36

+-------------------------------RES UL T S --------------------------------+ 

: Variable: RsPot ' : Direction .OOO: ' 

:Minimum: -96.000: Estimator : Variogram : Tolerance : 90.000 :

:Maximum : 278.000: Total Pairs : 6637 : BandWidth : n/a : 

I 
1
------------------------------------------------------------------------------

1 

I Pairs A vg Distance Estimate: ' 

I 

1 206 1.000 1809.686 ' 

' 

2 373 1.708 1917.988 I 

' 

3 657 2.567 1996.186 ' 

:4 720 3.500 1822.661 

' 

5 965 4.532 1869.376 ' 

I 
6 807 5.515 2138.142 ' 

' 

7 745 6.431 2022.573 ' 

' 

8 767 7.395 2269.663 ' 

' 

9 653 8.421 2178.811 ' 

: 10 491 9.481 2482.878 

: 11 253 10.443 2157.432 

B.37

+------------------------------- RE S U LT S --------------------------------+

: Variable: RsPot I : Direction : .OOO 
I 

I I 

:Minimum: -96.000: Estimator Variol!:ram : Tolerance 20.000 I 

I 

: Maximum: 278.000 : Total Pairs : 1524 : BandWidth: n/a I 

I 

I I 

1
------------------------------------------------------------------------------

, 

I Pairs A Vl!: Distance Estimate: Pairs A VJ!: Distance Estimate I 

I I 

:--------------------------------------+---------------------------------------: 

I 1 104 1.000 2251.865 : 13 I 

I I 

I 2 93 2.000 2328.331 :14 I 

' I 

I 3 84 3.000 2202.132 : 15 I I 

I 4 225 3.434 2101.011 :16 I 

I I 

I 5 194 4.403 2148.984 : 17 I 

I I 

I 6 163 5.381 1999.707 :18 I I 

I 7 216 6.347 1776.424 :19 I 

I I 

I 8 167 7.315 1734.729 : 20 I 

I ' 

I 9 120 8.292 917.217 :21 I 

I I 
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B.38

+------------------------------- R E S U L T S --------------------------------+ 

: Variable: RsPot I : Direction : 45.000 I 
I I 

: Minimum: -96.000 : Estimator Variogram : Tolerance: 20.000 I 

I 

: Maximum: 278.000 : Total Pairs : 1563 : BandWidth: n/a : 

I I 1------------------------------------------------------------------------------1 

I Pairs A vg Distance Estimate: Pairs Avg Distance Estimate I 

I I 

:--------------------------------------+---------------------------------------:

I 1 : 13 I 

I I 

I 2 93 1.414 1930.049 : 14 I 

I I 

I 3 245 2.420 2110.486 : 15 I 

I I 

I 4 136 3.606 1756.871 :16 I 

I I 

I 5 289 4.621 1802.770 : 17 I 

I I 

I 6 140 5.771 2480.683 118 I 

I 

I 7 158 6.550 2502.025 :19 I 

I I 

I 8 161 7.397 2454.291 : 20 I 

I I 

I 9 164 8.491 2549.628 : 21 I 

I I 

:10 115 9.562 2835.673 : 22 I 

I 

: 11 62 10.566 2310.900 : 23 

B.39

+------------------------------- RE S UL T S --------------------------------+ 

: Variable: RsPot I : Direction : 90.000 I 

I I 

: Minimum: -96.000 : Estimator Variogram : Tolerance : 20.000 I 

I 

: Maximum : 278.000 : Total Pairs 1542 : BandWidth : n/a I 

I 

I I .------------------------------------------------------------------------------,

I Pairs Avg Distance Estimate: Pairs Avg Distance Estimate I 

I I 

:--------------------------------------+---------------------------------------: 

I 1 102 I.OOO 1358.838 : 13 I 

I I 

I 2 94 2.000 1419.922 :14 I 

I I 

I 3 82 3.000 1984.624 : 15 I 

I I 

I 4 222 3.438 1590.433 :16 I 

I I 

I 5 195 4.402 1772.581 : 17 I 

I I 

I 6 164 5.379 2274.144 :18 I 

I I 

I 7 219 6.344 2177.673 : 19 I 

I I 

I 8 170 7.322 3091.332 : 20 
I 

I I 

I 9 129 8.282 3409.825 : 21 I 

I I 
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B.40

+------------------------------- RE S UL T S --------------------------------+ 

: Variable: RsPot I : Direction : 135.000 : I 

: Minimum : -96.000 : Estimator Variogram : Tolerance: 20.000 : 

: Maximum: 278.000 : Total Pairs : 1519 : BandWidth: n/a: 

I I ,------------------------------------------------------------------------------1

I Pairs A vg Distance Estimate: Pairs Avg Distance Estimate I 

I I 

I 2 93 1.414 1999.014 : 14 I 

I I 

I 3 246 2.421 1815.897 :15 I 

I I 

: 4  137 3.606 1807.170 :16 I 

I 

I 5 287 4.618 1813.238 : 17 I 

I I 

I 6 136 5.772 1849.884 :18 I 

I I 

I 7 152 6.552 1650.552 : 19 I I 

I 8 151 7.395 1607.547 : 20 I 

I I 

I 9 152 8.493 1675.347 :21 I 

I I 

: 10 105 9.562 1241.692 : 22 I 

I 

: 11 60 10.563 1297.836 : 23 
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9.3. Appendix C 

C.1

Point kriged is :( 6.000, 

X(i) Y(i) V(i) 

1.000) 

Distance W(i) B2(i) 
-------------------------------------------------------------------------

6.00 2.00 47.8 1.00 .265 7.32 

5.00 2.00 51.3 1.41 .191 6.45 

7.00 2.00 52.6 1.41 .191 6.45 

6.00 3.00 51.9 2.00 .313E-01 5.25 

8.00 2.00 50.5 2.24 .102 4.79 

7.00 3.00 55.0 2.24 .194E-01 4.79 

4.00 2.00 54.0 2.24 .102 4.79 

5.00 3.00 47.5 2.24 .194E-01 4.79 

8.00 3.00 48.0 2.83 .237E-02 3.69 

4.00 3.00 55.8 2.83 .231E-02 3.69 

6.00 4.00 55.7 3.00 -.146E-01 3.39 

9.00 2.00 51.2 3.16 .607E-01 3.11 

5.00 4.00 53.5 3.16 -.163E-01 3.11 

3.00 2.00 50.4 3.16 .606E-01 3.11 

7.00 4.00 52.2 3.16 -.163E-01 3.11 

3.00 3.00 51.4 3.61 .214E-03 2.41 

Neighbors: 16 Weights: 1.000 

Estimate: 50.7 CVV: 14.000 

k: 2.99 WiB2i: 5.976 

2k: 8.96 µ: -.936 

C.2

Point kriged is :( 4.556, 3.667) 

X(i) Y(i) V(i) Distance W(i) B2(i) 
-------------------------------------------------------------------------

5.00 4.00 .313 .555 .143 2.46 

4.00 4.00 -2.15 .648 .136 2.42 

5.00 3.00 -4.43 .801 .980E-01 2.13 

4.00 3.00 2.81 .868 .963E-01 2.12 

5.00 5.00 -.731 1.41 .371E-01 1.46 

4.00 5.00 -.698 1.44 .353E-01 1.44 

6.00 4.00 1.77 1.48 .940E-01 2.04 

6.00 3.00 -.769 1.59 .728E-01 1.82 

3.00 4.00 -.513 1.59 .844E-01 1.97 

3.00 3.00 -1.35 1.69 .692E-Ol 1.80 

5.00 2.00 1.06 1.73 .189E-01 1.13 

4.00 2.00 2.69 1.76 .188E-Ol 1.13 

6.00 5.00 -5.77 1.97 .335E-01 1.30 

3.00 5.00 .343 2.05 .290E-01 1.24 

6.00 2.00 -3.19 2.21 .173E-01 .989 

3.00 2.00 -.669 2.28 .168E-01 .999 

Neighbors: 16 Weights: 1.000 

Estimate: -.670 CVV: 2.551 

k: .804 WiB2i: 1.969 

2k: .647 µ: -.065 

169 



C.3

Point kriged is :( 6.666, 3.333) for phosphorus data 

X(i) Y(i) V(i) Distance W(i) B2(i) 
-------------------------------------------------------------------------

7.00 3.00 2.22 .472 .134 .639E-Ol 

6.00 3.00 1.95 .745 .108 .565E-01 

7.00 4.00 2.62 .746 .108 .565E-01 

6.00 4.00 2.86 .943 .929E-01 .513E-01 

7.00 2.00 2.45 1.37 .629E-01 .398E-01 

8.00 3.00 1.82 1.37 .656E-01 .398E-01 

6.00 2.00 2.45 1.49 .566E-01 .369E-01 

8.00 4.00 1.95 1.49 .59IE-01 .369E-01 

5.00 3.00 2.10 1.70 .474E-Ol .318E-Ol 

7.00 5.00 3.42 1.70 .475E-01 .317E-01 

5.00 4.00 1.84 1.79 .450E-01 .295E-01 

6.00 5.00 2.28 1.80 .448E-01 .295E-01 

8.00 2.00 1.70 1.89 .413E-01 .274E-01 

5.00 2.00 3.02 2.13 .309E-Ol .220E-Ol 

8.00 5.00 1.76 2.14 .318E-01 .220E-01 

7.00 1.00 2.16 2.36 .243E-01 .l 75E-Ol 

Neighbors: 16 Weights: 1.000 

Estimate: 2.30 CVV: .066 

k: .167 WiB2i: .044 

2k: .279E-01 u: -.005 

C.4

I Pairs Avg Distance Value for Croooed Phosphate I 

: 1 206 I.OOO .119 

:2 373 1.708 .145 

: 3 657 2.567 .172 

:4 720 3.500 .182 

: 5 965 4.532 .190 

:6 807 5.515 .165 

: 7 745 6.431 .180 

: 8 767 7.395 .15 5 +---------------------------------------: 

:9 653 8.421 .135 : Model I 

I 

: 10 I Nuirnet : .080: I 

: 11 
I I 

I I 

:12 I Type Sill Range: I 

: 13 I 

I I 

:14 I Spherical .110 4.000 I 
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I 
I 

I: 
ij 
I 

C.5

Point kriged is :( 6.666, 3.333) 
X(i) Y(i) V(i) Distance W(i) B2(i) 

-------------------------------------------------------------------------

7.00 3.00 1.76 .472 .207 .75IE-01 

6.00 3.00 1.59 .745 .150 .664E-01 
7.00 4.00 1.99 .746 .150 .664E-01 

6.00 4.00 1.99 .943 .118 .602E-01 
7.00 2.00 1.55 1.37 .609E-01 .468E-01 

8.00 3.00 1.59 1.37 .605E-01 .468E-01 

6.00 2.00 1.28 1.49 .508E-01 .434E-01 
8.00 4.00 1.28 1.49 .504E-01 .433E-01 

5.00 3.00 1.90 1.70 .327E-01 .373E-01 
7.00 5.00 1.63 1.70 .327E-01 .373E-01 

5.00 4.00 1.81 1.79 .266E-01 .347E-01 

6.00 5.00 1.84 1.80 .266E-01 .347E-01 
8.00 2.00 1.79 1.89 .208E-01 .322E-01 
5.00 2.00 1.50 2.13 .742E-02 .258E-01 
8.00 5.00 1.36 2.14 .729E-02 .258E-01 
7.00 1.00 1.59 2.36 -.133E-02 .206E-01 

Neighbors: 16 Weights: I.OOO
Estimate: 1.72 CVV: .077 

k: .139 WiB2i: .058 
2k: .194E-Ol u: .OOO 

C.6

I Pairs A vg Distance Value for residuals of the Potassium I 

: 1 220 I.OOO 138.300 
:2 398 1.706 147.085 
: 3 698 2.566 143.897 
:4 762 3.499 140.785 
: 5 1016 4.532 139.481 

:6 856 5.515 143.224 
: 7 796 6.432 138.413 
: 8 830 7.396 135. 039 +---------------------------------------:
:9 710 8.421 134.411 : Model I 

: 10 538 9.481 118.703 : Nugget : 116.000 : 

: 11 272 10.448 90.588: I 

I 

: 12 I 

Tvoe Sill Range : I 

: 13 I I 

I I 

:14 I Spherical 30.000 2.000: I 
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C.7

Point kril?ed is :( 2.111, 7.666) 
X(i) Y(i) V(i) Distance W(i) B2(i) 

-------------------------------------------------------------------------

2.00 8.00 47.0 .352 .154 19.5 
2.00 7.00 .OOO .675 .119 14.4 
3.00 8.00 7.00 .950 .893E-01 9.93 
3.00 7.00 -15.0 1.11 .749E-01 7.54 
1.00 8.00 -9.00 1.16 .731E-01 6.82 
1.00 7.00 -1.00 1.30 .627E-01 5.12 
2.00 9.00 10.0 1.34 .566E-01 4.59 
3.00 9.00 16.0 1.60 .446E-01 2.17 
2.00 6.00 1.00 1.67 .430E-01 1.72 
1.00 9.00 -4.00 1.74 .435E-01 1.34 
3.00 6.00 -4.00 1.89 .407E-01 .698 
4.00 8.00 -6.00 1.92 .377E-01 .601 
1.00 6.00 2.00 2.00 .403E-01 .386 
4.00 7.00 1.00 2.00 .394E-01 .360 
4.00 9.00 -6.00 2.31 .400E-01 .150E-01 
2.00 10.0 -10.0 2.34 .416E-01 .OOO

Neil?hbors: 16 Weights: 1.000 
Estimate: 6.23 CVV: 19.720 

k: 4.37 WiB2i: 7.550 
2k: 19.1 µ: -6.905

C.8 'Estimation of the variogram parameters by MARQUARDT METHOD';

Data Variogram; {Start of the program} 
Input Gamastar Count Lag { define variable} 
Cards; { Input residuals of iron ore digits} 
Proc NLIN Best=30 Maxiter=400 Methods=MARQUARDT; {Non linear optimization process} 
Parms As Cs As { Starting value of the parameters} 

Model Gamastar= C
0 
+ C, X (3 I 2) X (Lag I As)-(1/ 2) X (Lag I As)3 ; {Define the model}

_ Weight_= Count I C
0 
+ C, X (3 I 2) X (Lag I As)-(1/ 2) X (Lag I As)3 ; {Define Weight}

Der.Co=l 

Der.Cs= ((3 I 2) x (Lag I As)-(l I 2) x (Lag I As)3 

Der.As= Cs x (3 I 2) x (Lag I As)
2 
+ (3 I 2) x (Lag3 I As

4); 

End; 
Else Do; 
Model Gamastar=Co + Cs; { Model of the equation} 

_ Weight_= Count I (Co+ Cs) x 2; 

End; 
If={_Obs_=l and _Model_=l) Then Do; 
Sill=Co +Cs; 
Put Cs=Sill;End 
Run; 
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(C.9) 

Point kriged is :( 9.000, 1.000) 

X(i) Y(i) V(i) Distance W(i) B2(i) 
-------------------------------------------------------------------------

9.00 1.00 6.70 .OOO .177 5.26 

9.00 .OOO 7.00 1.00 .105 4.80 

8.00 1.00 3.60 1.00 .900E-01 4.80 

10.0 1.00 6.00 1.00 .105 4.80 

9.00 2.00 6.30 1.00 .900E-01 4.80 

10.0 .OOO 5.80 1.41 .836E-01 4.53 

10.0 2.00 4.10 1.41 .684E-01 4.53 

8.00 .OOO 8.50 1.41 .684E-01 4.53 

8.00 2.00 6.00 1.41 .554E-Ol 4.53 

7.00 1.00 4.90 2.00 .295E-01 4.15 

9.00 3.00 7.00 2.00 .295E-01 4.15 

7.00 .OOO 4.10 2.24 .294E-01 3.99 

7.00 2.00 4.70 2.24 .195E-01 3.99 

8.00 3.00 4.90 2.24 .195E-01 3.99 

10.0 3.00 4.40 2.24 .294E-Ol 3.99 

Neighbors: 15 Weights: 1.000 

Estimate: 5.91 CW: 5.211 

k: .733 WiB2i: 4.691 
2k: .537 u: 

-.017 

C.10
+--------------------------------- M O D E L ----------------------------------+
I Pairs A vg Distance Value I 

: 1 121 1.000 4.321 : 

:2 101 2.000 7.635 

: 3 84 3.000 10.415 

:4 228 3.416 10.425 

: 5 193 4.396 10.262 

:6 171 5.394 9.834 

: 7 258 6.359 8.769 

: 8 238 7.328 10.289 

: 9  214 8.299 9.991: Model I 

I 

: 10 252 9.337 9.930: Nmrnet : 1.000: 

: 11 203 10.317 12.347: I 

I 

: 12 208 11.385 11.033 : Type Sill Range: 

: 13 167 12.372 9.990: I 

I 

:14 I Spherical 10.000 4.ooo:I 
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