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ABSTRACT 

Enamel plays an important role in tooth function. Optimal combinations of 

composition and structure endow enamel with unique mechanical properties that 

remain largely unexplored. Specifically, more detailed understanding of the load-

bearing ability of enamel is needed to mimic it synthetically and to design next 

generation biocomposite materials. This research investigates the variables that 

influence deformation behaviour of tooth enamel in relation to its hierarchical 

structure. 

Initially, a new method was developed for preparing flat, finely polished tooth 

samples that were maintained in their normal hydrated state for nanoindentation 

testing. In contrast to conventional methods, which commonly utilise either 

inappropriate or excessive drying and/or chemically based embedding media 

(i.e., resins, glues), a novel embedding process was developed using an aqueous 

putty compound. Additionally, a custom-designed holder was manufactured for 

mounting wet tooth specimens on the nanoindentation stage that eliminated the 

need for hot wax or glue during testing. Considering that enamel is a functionally 

graded material that has different values of Young’s modulus (E) and hardness 

(H) over the enamel thickness, a new approach of data analysis was developed 

for interpreting the mechanical properties of enamel at a range of fixed constant 

indentation depths. Resultant functions were used for predictive purposes. The 

values of E and H obtained from the nanoindentation instrument demonstrated a 

well-known decreasing gradient from the enamel occlusal surface towards the 

enamel-dentine junction (EDJ). In contrast to studies using conventional 

methods, this research showed that both properties also decreased with increasing 

depths at fixed locations. Furthermore, experimental results showed that resin 

embedding had detrimental effects on the E and H of enamel (i.e., both properties 

decreased with increasing depth), but had positive effects on both mild and 

severe wear resistance parameters (i.e., both parameters increased with increasing 

depth). When contrasted against the mechanical properties of enamel samples 

prepared using conventional protocols, this study postulates that the new 
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hydrated method has, for the first time, revealed the genuine E and H properties 

of this tissue. 

The effects of sample preparation methods on tooth microstructure, especially 

along the EDJ, were investigated with optical microscopy and scanning electron 

microscopy (SEM). The new method of sample preparation combined with a 

careful dehydration process maintained the integrity of the EDJ interface even 

after applying multiple Berkovich indents up to maximum load of 400 mN. In 

contrast, the EDJ and the enamel surface were commonly separated and fractured 

in teeth that had been resin-embedded. Accordingly, the new method of sample 

preparation proved to be reliable for investigating the genuine microstructural 

characteristics of teeth. 

The behaviour of the elastic region in tooth enamel was investigated with 

analytical and finite element models. The models were fitted into experimental 

values of E obtained from nanoindentation tests with a Berkovich indenter to 

identify a relationship between the mechanical responses of enamel under 

different loading conditions and microstructure. The decrease in E for enamel 

with increasing indentation depth was related to its enhanced load-bearing ability. 

The change of E was directly linked to the microstructural evolution (i.e., the 

rotation of mineral crystals) of enamel. The effective crystal orientation angle 

was found to be between 44
o
 and 48

o
 for indentation depths from 0.8 and 2.4 μm 

below according to the analytical model. The range of angles facilitated the shear 

sliding of mineral crystals and reduced the stress level as well as the volume of 

material under higher loads. 

The behaviour of the plastic region in healthy enamel was investigated with 

finite element models fitted to nanoindentation data obtained with a Berkovich 

indenter to determine deformation mechanisms that result in excellent 

mechanical responses for tooth enamel during loading. When nanoindentation 

was conducted with increasingly applied loads but at a fixed location, the values 

of H decreased with increasing indentation depth. The decreasing trend in H was 

simulated by finite element models and showed a reduction in stress level and 

yield strength with increasing load. This key mechanism of the loading 
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dependence of mechanical properties resulted in remarkable enamel resilience 

and was related to the change of effective crystal orientation angle within the 

enamel microstructure. 

The mechanical behaviour of enamel with respect to its microstructure was 

also investigated on teeth exposed to commercially available whitening 

treatments (tooth bleaching). Enamels exposed to a 6% bleaching treatment 

exhibited degraded mechanical properties (E and H) compared to unbleached 

controls. Furthermore, the creep and recovery responses of bleached enamel were 

also significantly reduced compared to controls. To determine the variables 

regulating tooth enamel deformation mechanisms during whitening treatments, 

analytical models were fitted to stress-strain curves. The effective crystal 

orientation angle of healthy enamel and the protein shear stress, τc, were 

identified as 50
o
 and 2.5 % of the transverse stiffness of a staggered composite 

(E2), respectively. After the bleaching treatment, the effective crystal orientation 

angle of enamel increased to 54
o
 for τc = 1.5 % of E2. Notably, bleaching reduced 

shear (τc) by 40 % compared to normal readings for unbleached controls. The 

changes in mechanical responses of bleached enamel were linked to the decrease 

of the shear bearing ability of protein components in the enamel microstructure. 

It is envisaged that these findings will provide new perspectives on applications 

of bleaching treatments and lead to the development of bleaching agents with less 

damaging effects to healthy enamel. 

This work should stimulate new interest in understanding the deformation 

behaviour of tooth enamel at small scales, and offer new methods for the 

collection and analysis of data from samples prepared close to their native state, 

upon which novel and biologically relevant high-performance biocomposite 

materials can be engineered. 
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1. Introduction 

This chapter presents a description of the current literature on the deformation 

behaviour of tooth enamel and outlines the relevant problems that exist in the 

field of dental materials science. The objectives are given along with questions 

posed in this research. The aims and significance are also summarised. The last 

section of this chapter is devoted to the scope of the thesis. 

1.1  Problem statement 

The study of tooth enamel is a core aspect of dental research and has 

important applications in human health. Enamel, the outer exposed part of the 

tooth (Figure 1-1(a)), is a fascinating material owing to its inherently complex 

structural and functional properties. Enamel possesses remarkable mechanical 

properties stemming from its unique composition and hierarchical structure, 

which extend across multiple length scales (Figure 1-1) [1-4].  

 

Figure 1-1. Hierarchical structure of human tooth enamel at (a) millimetre scale, (b-c) 

micron scale and (d) nanoscale.  
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At the nanoscale, enamel is composed of three distinct components: stiff 

inorganic flattened hexagonal apatite crystals (Figure 1-1(d)), soft organic 

proteins and water [5]. At greater length scales, these apatite crystals are glued 

together by proteins to form the basic building blocks of enamel, the rods 

(Figure 1-1 (c)). These rods are then joined by proteins making the keyhole-like 

shape of the enamel macrostructure (Figure 1-1 (b)). It has been shown that each 

level of hierarchy has distinct mechanical responses. However, the explanations 

of these responses and how they are interlinked to structure across each length 

scale (i.e., from nanoscale to macroscale) are still not well understood [3]. 

Notably, one of the important variables of the enamel microstructure that has 

been identified by analytical models is the effective orientation angle of the 

crystals [6, 7]. This angle was considered as the critical linking variable between 

the nanoscale deformation mechanism and mechanical responses of tooth enamel 

at the macroscale. 

This angle may play a critical role in enamel ability to adjust its structure 

against an applied load, which is also called the “adaptive mechanical design” 

[8]. This mechanism is still not well identified and is an important, but missing, 

piece of information needed for the design of dental materials in restorative 

dentistry. Materials such as amalgam or composite fillings are used in dental 

treatments to repair the tooth. However, these materials commonly exhibit poor 

mechanical biocompatibility and are non-benign to the oral environment [9, 10]. 

These materials have a short longevity, a high tendency for microleakage and 

release chemical substances into the mouth (e.g. mercury, resins). This causes 

excessive wear to opposite teeth and as a result, numerous replacement 

procedures are required [9, 10]. 

The current understanding of the main mechanisms regulating deformation 

responses of tooth enamel against applied stresses during chewing, biting or 

grinding is also limited. It has been suggested that a key mechanism governing 

the renowned resilience of biomineralised tissues is the ability of proteins to 
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provide bridging and sacrificial bonding properties [11-13]. Other researchers 

have concluded that the unique deformation resilience of tooth enamel is related 

to a shear mechanism in the organic matrix [14]. Interestingly, enamel has been 

described as having metallic-like behaviour, where deformation resistance is 

achieved by shearing forces [15-17]. Although the excellent deformation 

mechanisms of tooth enamel are related to the toughening and shear mechanisms 

of proteins, there is no evidence to suggest how the organic component regulates 

these mechanisms when the loads change. 

Methods of preparing and testing tooth enamel for nanoindentations are 

highly varied in the literature, as are the reported values for the mechanical 

properties of enamel. A broad range of protocols have been applied, with most 

relying on conventional resin-based embedding procedures for producing 

polished cross-sections of enamel [7, 15, 18-20]. Furthermore, few 

nanoindentation studies exist where enamel has been studied in its hydrated state 

[15, 21]. If biomimetic dental materials are to be fabricated that accurately 

emulate the tooth’s functional properties, the genuine mechanical properties of 

tooth enamel must be known. Thus, potential artefacts arising from sample 

preparation procedures must be considered in dental research. To date, there are 

no studies reporting details on how to prepare tooth enamel for nanoindentation 

testing without using an embedding medium, or how to mount and test dental 

tissue in a wet environment without using glue or hot wax. Additionally, 

alterations of other factors such as different storage solutions, storage 

temperature, time, age and microarchitectural location are also known to result in 

changes to the measured nanomechanical properties of tooth enamel [18, 22-27]. 

Conventional methods for preparing enamel specimens commonly involve 

chemical dehydration and infiltration/encapsulation into mounting media (resins) 

followed by cutting, grinding and polishing prior to mechanical testing. 

Dehydration is a critical step in the process as any remaining water can impede 

the hardening and adhesion of the resin to the sample [28]. If done incorrectly, 
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the dehydration process can also change the enamel microstructure [29]. It has 

been shown that resin can infiltrate the surface of the tooth through pores and 

crevices and expand or contract during its transitional phase from liquid to solid. 

Resins used in vivo are also known to degrade due to enzymatic activity, saliva 

and water uptake, which can make resin more compliant and less stiff [30-35]. 

Given this evidence, resin embedding may significantly affect the mechanical 

properties of tooth enamel. However, the processes by which the sample 

preparation method alters enamel structure and composition, and the subsequent 

measured changes in its material properties, are poorly understood. 

In addition to the sample preparation issues outlined above, variations in the 

way nanoindentation tests are undertaken and reported make inter-study 

comparisons difficult. For instance, Zhou and Hsiung [36] showed that Young’s 

modulus of enamel varies, i.e. decreases with increasing indentation depth, even 

at a fixed location. Thus, given the dependence of Young’s modulus of enamel 

on the penetration depth, it is essential to conduct measurements at constant 

depths when interrogating Young’s modulus of enamel across its thickness. 

Unfortunately, most nanoindentation tests are performed under load control (i.e., 

constant loads), making it difficult to compare the modulus values obtained from 

different samples and regions, where indentation depths may differ [36-38]. 

Moreover, although the testing condition is known to affect the mechanical 

properties of enamel [23, 26], the majority of the tests are carried out either on 

dried samples or ‘wet’ specimens that were once dried during preparation [18, 

39]. 

The mechanical properties of tooth enamel have been a topic of great 

scientific interest [40-51]. One of enamel most intriguing properties is its fracture 

toughness, which is comparable to that of glass, yet it is able to function under a 

wide range of loads and withstand forces up to 740 N with minimal fracture 

damage [52]. Recent results show that enamel is capable of recovery and even 

limited self-healing [53, 54]. Also, tooth enamel has the ability to absorb 
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considerable damage over time without catastrophic failure [53]. This ability has 

been explained by a microstructural mechanism of damage resistance, in 

conjunction with the capacity of the tooth to limit the generation of stresses under 

compressive loads. However, the load dependence and load carrying capability of 

tooth enamel with respect to its mechanical properties is not understood. 

In addition to the need to repair damaged or diseased teeth, procedures based 

on cosmetic applications are also an important aspect of dentistry. Tooth 

whitening (bleaching) is considered a safe procedure by manufacturers and 

dentists and is increasing in popularity with the general public [55]. However, 

evidence is building that such treatments can result in adverse effects on tooth 

tissue and restorative materials [56, 57]. Furthermore, the mechanism by which 

teeth are whitened by oxidising materials such as hydrogen peroxide and 

carbamide peroxide is also currently under debate [58]. In a recent review it was 

shown that most bleaching products have no significant deleterious effects on the 

composition, structure and mechanical properties of enamel [59]. In contrast, 

another study demonstrated degradation of Young’s modulus and hardness in 

bleached enamel, which was linked to an altered protein concentration within the 

tooth [60]. 

It has been argued that the alteration of properties and structure reported by 

these authors could be due to the methodologies used, which do not accurately 

reflect the in vivo situation [59]. With creep and recovery nanoindentation tests, 

the plastic deformation and recovery behaviour upon subsequent load release 

have been observed and related to the protein remnants within healthy enamel 

[15, 61, 62]. However, the creep-recovery deformation mechanism on bleached 

enamel in relation to its composition and structure, as well as variables that lead 

to the degrading properties of tooth enamel, are yet to be identified. 
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1.2  Primary objective 

To close the gap in our understanding of the mechanical behaviour of tooth 

enamel, the main objective of this research was to measure the enamel 

nanomechanical properties in its hydrated environment and develop a basic 

understanding, especially at the nanostructural level, of the factors that contribute 

to the excellent deformation mechanisms of tooth enamel. The depth-sensing 

instrument (nanoindenter), optical microscope, scanning electron microscope and 

transmission electron microscope were used for this purpose. 

1.3  Secondary objectives 

 To develop a new method of sample preparation for testing tooth 

enamel in its hydrated state and identify the effects of resin 

embedding in the preparation process. 

 To develop a new data analysis approach that probes the mechanical 

properties of tooth enamel at a constant indentation depth. 

 To validate the effects of whitening treatments on enamel 

microstructure and determine variables controlling the mechanical 

responses of tooth enamel before and after bleaching treatments. 

1.4  Research questions 

1. Can the enamel specimen be prepared for nanoindentation testing with 

minimum surface and subsurface damage? 

2. Can the embedding medium affect the mechanical properties of tooth 

enamel and its microstructure? And if so, how? 



 

  Chapter 1 

7 

 

 

3. Can tooth enamel be mounted and tested in the nanoindenter (UMIS) in 

an environment approximating the enamel native state without using 

media such as glue or wax? 

4. Can nanoindentation data be analysed at a constant indentation depth? 

5. What are the mechanical properties of tooth enamel in its hydrated state 

and how do these values compare with conventional methods? For 

example: Young’s modulus, hardness and wear resistance when tested 

with the new method and are these measurements a more accurate 

reflection of the tooth’s properties? 

6. Can the analytical models [6, 7] be used to justify mechanisms regulating 

deformation behaviour of tooth enamel in its elastic and plastic regions? 

7. What is the relationship between composition, microstructure and 

mechanical properties? 

 What is the role of the organic component of enamel? 

 How does the structure of tooth enamel respond to a wide range of 

imposed loads? 

 Is there a relationship between protein – mineral crystal - water 

content, hierarchical structure and mechanical properties? Can the 

inelastic behaviour of tooth enamel be explained? 

8. Can the deformation behaviour be modelled by considering compositional 

and micro-structural features in tooth enamel? 

1.5  Anticipated outcomes 

By addressing the primary and secondary objectives in Sections 1.2 and 1.3, 

the following research outcomes are anticipated: 
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 To offer a comprehensive understanding of the deformation 

mechanisms of tooth enamel and provide novel insights into 

mechanical function, protection and interrelation of the 

microstructural design of human teeth that will benefit the next 

generation of biocomposite materials. 

 To present a picture of the genuine structure and mechanical 

properties of tooth enamel that will open the door to the design and 

application of new biomaterials in other fields, such as tissue 

engineering, restorative dentistry and dental material manufacturing. 

 To offer scientists new opportunities to explore the unique 

microstructure and mechanical properties of other hydrated samples 

using innovative methods of sample preparation for nanoindentation. 

 To advance the knowledge of why and to what extent whitening 

treatments change the mechanical properties of tooth enamel. 

1.6  Scope of thesis 

This thesis is made up of 12 main chapters. Starting with the introduction 

(Chapter 1) and ending with the list of references and appendices (Chapters 11 

and 12, respectively), the chapters in between present a review on human tooth 

enamel, theories and methods used in this research and the five main research 

topics that were investigated. 

Chapter 2 provides a review on the composition, structure and mechanical 

properties of tooth enamel. Sample preparation methods used in previous studies 

for nanoindentation testing and microscopic observations are discussed. Problems 

related to these methods are highlighted. Elastic/plastic deformation behaviour 

and creep – backcreep responses of human enamel are explained. The importance 

of these topics is summarised. Bleaching procedures and their effects on the 
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structure and mechanical properties of tooth enamel are also given. The chapter 

concludes with the application of numerical and analytical models that have been 

used in previous studies to investigate deformation behaviour of enamel. 

The essential theoretical background of nanoindentation is summarised in 

Chapter 3. The fundamental concepts of E and H properties, stress-strain 

relationship and creep-backcreep nanoindentation tests are presented. Chapter 4 

describes the materials and methods used in this research. Besides the newly 

developed method, conventional methods of tooth enamel preparation for 

nanoindentation testing are given. Steps of dehydration and drying procedures 

and whitening treatments are outlined. Variables and settings used for numerical 

and analytical models are also given. 

In Chapter 5, a new method of sample preparation is presented, as are details 

of a new data analysis approach for nanoindentation, both of which were 

developed to investigate the effects of resin embedding in the sample preparation 

process. The effects of sample preparation methods on enamel microstructural 

integrity are presented in Chapter 6. Chapter 7 investigates load-dependent 

behaviour of tooth enamel in its elastic region and discusses the changes of 

Young’s modulus across its thickness as well as at fixed locations and depths. 

Chapter 8 provides an explanation of the load-dependent plastic behaviour of 

tooth enamel by fitting the experimental results into finite element analysis 

models. In Chapter 9, the effects of whitening treatments on tooth enamel are 

presented.  

Chapter 10 summarises the research presented in the thesis, and highlights the 

most significant findings that may stimulate further investigations on the 

deformation behaviour of both natural and synthetic composites. 
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2.  Literature review 

This chapter begins with a simple description of teeth before providing 

background information on the chemical, physical and mechanical properties of 

tooth enamel as a prelude to reviewing five particular topics that are closely 

related to this research. The key aim is to identify critical variables that influence 

deformation mechanisms of tooth enamel. 

Dental health and overall health are directly linked. While an optimum 

nutritional intake through biting, grinding and chewing contributes to good dental 

health, strong healthy teeth are conducive to the overall health and wellbeing of 

humans and animals [40, 41, 51, 63]. Being the most outer layer of the tooth 

(Figure 2-1), enamel has evolved a unique composition and structure that 

provides direct protection against ensuing damage during dental function by 

retaining or adapting its shape [8, 17, 64]. 

 

Figure 2-1. A healthy human molar. In this image, the tooth is made up of a crown and 

four roots. Enamel, the most visible shiny part of dental tissue in the oral cavity, is in the 

crown region of the tooth. The root, the bottom part of the tooth below the gums, 

anchors the tooth in the alveolus bone socket in the jaw. Scale bar = 4 mm. 
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2.1  Enamel 

In dental anatomy, human teeth consist of three distinct calcified tissues: 

enamel, dentine and cementum (Figure 2-2). Enamel is the non-regenerative part 

that protects the tooth while dentine is the inner part of the tooth nourished by a 

layer of cells (odontoblasts) that are arranged along the wall of the pulp cavity. 

The pulp cavity is filled with pulp that is developed from the connective tissue. 

The pulp contains nerve fibres and blood vessels which are nervous tissue and 

epithelial tissue, respectively. Cementum surrounds the tooth root and helps to 

hold the tooth in place in the bone socket. The interface where enamel and 

dentine fuse is known as the enamel-dentine junction (EDJ). 

 

Figure 2-2. Cross sectional view of a human tooth, illustrating its major functional parts: 

enamel, dentine, cementum and pulp. Tooth enamel is a hard, brittle tissue that covers 

the outer part of the tooth in the crown region and encases the softer tougher dentine and 

pulp. Scale bar = 1 mm. 
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Enamel is finalised during the early stages of enamel development through 

numerous interactional processes occurring over time at various rates and 

durations between two adjacent tissues, the oral epithelium and neural crest-

derived mesenchyme [65]. During development, mineral and organic phases 

undergo considerable changes which are controlled by the enamel forming cells, 

the ameloblasts [66]. The formation of these phases is dictated by the presence of 

Tomes’ processes at the apical surface of ameloblasts cells [5]. 

 In addition, the post-eruption maturation and remineralisation of enamel are 

affected by the existence of saliva, which has great importance in partially 

protecting teeth against early carious lesions [67]. However, enamel is not fully 

protected from the mechanical and chemical daily activity in the normal oral 

environment [40]. It is also important to mention that the thickness of the enamel 

layer varies considerably and that longer surviving enamel has a longer 

maturation process [68]. 

2.2  Chemical composition  

Chemical composition plays an important role in terms of the overall 

understanding of mechanical responses of human tooth enamel. This composition 

can be better understood by taking into consideration the three main components 

of enamel: mineral, protein and water.  

 Mineral  

Enamel is considered a biocomposite material composed of 96 % mineral 

[69], which is made of crystalline calcium phosphate hydroxyl apatite (HAP), 

Ca10(PO4)6(OH)2 [70, 71]. Alongside the major elements, calcium and 

phosphorus, traces of carbon, sodium, magnesium, chlorine, zinc, iron, strontium, 

fluoride and potassium are also found within the HAP crystals [72-74]. 
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Notably, the density and chemical concentration of elements vary from the 

enamel surface towards the EDJ [75]. In general, the density of mineral crystals 

in healthy enamel decreases from the surface towards the EDJ. In terms of 

chemical concentration, calcium and phosphorus tend to decrease from the 

surface towards the dentine (Table 2-1).  

Table 2-1. Enamel mineral elements and their gradient from the enamel surface to the 

enamel-dentine junction (EDJ). Symbols  and  represent increasing gradient and 

decreasing gradients, respectively. 

Chemical elements 

of enamel mineral 

Gradient concentration from the 

enamel surface to the EDJ 

Ca  

P  

Na  

Mg  

Cl  

Conversely, distributions of minor elements in tooth enamel vary (Table 2-1). 

For instance, the average concentrations of magnesium and sodium in dry weight 

are higher near the EDJ than in the outer enamel layers, in contrast to chlorine, 

with its decreasing concentration gradient towards the EDJ  [73, 76, 77]. 

It is important to introduce the role of fluoride as one of enamel chemical 

constituents in dental health. Human tooth enamel is exposed to fluoride in 

different ways, through food, toothpastes or drinking water. An optimal intake of 

fluoride is considered a key element in fortifying enamel against dental caries. 

However, fluoride intake must be used with caution. Excessive ingestion of 

fluoride is known to have negative effects on the tooth structure, such as 

increased porosity, pitting and corrosion, which can make enamel more prone to 

fracture and wear [78]. Some studies indicate a relationship between the 

solubility of enamel, its resistance to acid and the fluoride concentration [75, 79]. 

Fluoride concentration decreases from the surface towards the EDJ, making the 
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enamel surface less soluble and thus more resistant to acid attack from the oral 

environment compared to the subsurface.  

 Protein  

Tooth enamel contains approximately 1% protein [69]. Proteins cement the 

apatite crystals together. The density of proteins increases from the enamel 

surface towards the EDJ [75]. The protein function has not been fully clarified 

[75]. However, it is believed that this organic material allows limited differential 

movements between adjacent rods to reduce stresses without crack growth, 

thereby making enamel more flexible and resilient [14, 47]. 

 Water 

Although mature enamel contains only 3% water [69], this still plays a 

significant structural role by supporting permeability, ion exchange, elasticity and 

reactivity of chemical elements within enamel [80]. Notably, no relationship has 

been demonstrated for permanent teeth between water content and the age or type 

of tooth [81]. 

Techniques such as vibrational spectroscopy, micro-Raman spectroscopy and 

scanning electron microscopy (SEM) equipped with the energy dispersive X-ray 

spectroscopy (EDS) have been shown to be useful tools for taking accurate 

measurements of chemical composition in dental hard tissues. The first detailed 

spectrographic analysis on human tooth enamel was presented by Lowater [82], 

who identified and qualitatively estimated the constituent chemical elements. 

With the development of more sensitive micro-Raman spectroscopy with high 

spatial resolution up to 1 µm, detailed mapping of organic and mineral 

compounds became popular for the analysis of human tooth enamel and other 

mineralised tissues [83]. By employing the latter technique, a monotonically 

decreasing gradient of mineral content from enamel to dentine with a concurrent 

monotonic increase in the organic component across the EDJ has been identified 

[83, 84]. Additionally, Raman spectrometry and SEM-EDS revealed that the 
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chemical composition of tooth enamel is altered by the presence of dental 

diseases [85, 86]. 

2.3  Hierarchical structure 

2.3.1  Characterisation of enamel hierarchy 

Tooth enamel is composed of many different hierarchical structural units at 

different scales, making enamel a robust natural biocomposite with great 

resilience against applied loads during dental function. The most important 

hierarchical structural units of enamel can be observed at both nanoscale and 

micron scale (Table 2-2). 

Table 2-2: Summary of hierarchical structural features of human enamel. 

Structural characteristics  Hierarchical 

features 

Basic crystal unit Ca10(PO4)6(OH)2 Hexagonal  unit 

Crystal system hexagonal   
Crystal shape  hexagon Needle 

Lattice variables a = 0.94 nm  

c = 0.68 nm 
  

Average crystal diameter  d = 40 nm Ribbon 

Length of crystal L = 100 – 1000 nm   
Average length    = 500-600 nm Prism 

Rod diameter (head) 5 µm   
Enamel boundary 1 µm Rod 

 Nano-Scale Organisation 

Early in the enamel development, mineral crystals are commonly hexagonally 

shaped platelets in cross-section with average lattice variables a = 0.94 nm and c 

= 0.68 nm (Figure 2-3) [75, 87]. 
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Figure 2-3. Crystal structure of hydroxyapatite and the relationship between the 

hexagonal and crystallographic unit cell. Adopted from [75]. 

As enamel matures, the mineral crystals can appear rectangular or as irregular 

polygonal shapes, with different lattice patterns as a result of density fluctuation, 

compositional variation, dislocations or other distortions [88-91]. In cross-

section, the diameter of the dominant crystals in healthy, mature enamel is 40 to 

50 nm, which corresponds to the combined average values of width and thickness 

of the mineral crystal 68.3 ± 13.4 nm and 26.3 ± 2.2 nm, respectively [89]. The 

long axis of the crystallite is parallel to the crystallographic c axis (Figure 2-3). 

The crystals grow in width, then in thickness (Figure 2-4) [89].  

 

 

Figure 2-4. Size and shape of enamel crystallites and growth [89]. 
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It has been suggested that the crystals may reach a total length of 100 to 1000 

nm with an average crystalline length of 500 to 600 nm [91]. As the crystals 

develop, they pack together to adopt a ribbon-like shape with highly organised 

parallel arrays, which comprise the next order of hierarchical structure, the 

prisms (Table 2-2). 

 Micron Scale Organisation 

In mature enamel, the prisms, together with proteins and water, make up the 

next building blocks, the rods [5]. The keyhole-like rods with the “head” and 

“tail” regions are interlocked and bonded together by softer organic proteins 

(Figure 2-5), and these interspaces between adjacent rods of approximately 100 

nm are very often described as the sheaths [40]. 

 

Figure 2-5. Schematic illustration of a key-hole like enamel microstructure. Modified 

from [92]. Scale bar = 5 µm. 

In the central part of the rod, also called the “head”, HAP crystals run 

generally parallel to the rod axis, while those close to the edges of the rod slightly 

incline from the longitudinal axis. The diameter of the “head” region is about 5 

m. In the “tail” region, crystals are oriented in different directions (Figure 2-5). 

At the microscopic level, rods run from the EDJ nearing perpendicular direction 

to the enamel surface [40]. The orientation of the rods and how rod bundles cross 

Rod boundary 

Tail 

Head 

Mineral 

crystallites 
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from the EDJ to the enamel surface (decussation) result in mechanically stiffer 

enamel with higher fracture resistance [17, 93]. 

 Millimetre Scale 

There are structural features that can be observed in tooth enamel at the 

millimetre scale, including Retzius lines and the Hunter-Schreger bands (Figure 

2-6), which result from the cross striated and interwoven rods [5]. Retzius lines 

form during alternating growth and rest periods over the course of the enamel 

development [94]. The Hunter-Schreger bands can be seen under reflective light 

as light and dark bands at the cross-sectional surface of enamel [95, 96]. It has 

been suggested that the appearance of Hunter Schreger bands is related to 

differences in the orientation and organisation of prisms [97]. This structural 

feature is preventing crack propagation within enamel making it harder and more 

resilient [98]. 

 

Figure 2-6. Observation of the cross-sectional enamel surface in a hydrated environment 

using reflective light. The arrows indicate Hunter-Schreger bands. Scale bar = 1 mm. 
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2.3.2  Defects in tooth enamel structure 

Although tooth enamel is designed to last and function as it needs to, some 

nanoscale to millimetre scale defects have been identified in the tooth enamel 

structure.  

 Nano-Scale 

Enamel crystal structure at the atomic scale has a bearing on mechanical 

properties of the tooth. However, several crystalline defects have been reported; 

for instance fusion, dislocations and planar defects with central dark lines that 

may affect tooth properties and how the tooth functions. Kerebel et al. [90] and 

Daculsi et al. [89] reported that during enamel development, closely packed 

mineral crystallites induce mechanical stresses that result in dislocations, fusion 

and shrinkage in the crystallographic structure. Furthermore, Daculsi et al. and 

Kerebel et al. investigated the central dark line in the enamel crystals and 

postulated that this defect is only “a focal phenomenon, being no longer visible at 

high resolution magnifications” [89]. Later, Marshall et al. [99] argued that the 

central dark line can be seen using transmission electron microscopy and may 

exist due to variations in chemical composition or separation of crystalline phases 

in enamel. The authors emphasised that the occurrence of this dark line is of 

particular interest as it undergoes preferential dissolution and indicates the early 

initiation of caries. 

 Micron Scale to Millimetre Scale 

Tufts and lamellae have been reported as structural defects in tooth enamel 

from the micron to the millimetre scale. The tufts are closed cracks or defects 

filled with protein-rich matter that originate at the EDJ and run along tooth walls 

towards the occlusal surface of the tooth [40]. The tufts have been thought for a 

long time to represent weakened planes that lead to the onset of damage and the 

subsequent fracture as a result of the mechanical function of the tooth [100]. 

However, these defects have been shown to play an important role in the 
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mechanical responses of human teeth [53]. On the other hand, lamellae can be 

seen on the mature enamel surface and can also be defined as closed cracks filled 

with the organic matter [101] extending from tufts with progressing age [40, 53]. 

2.3.3  Techniques for observing enamel structure 

Scanning electron microscopy (SEM) and transmission electron microscopy 

(TEM) have been commonly used for investigating many biological materials. 

While SEM can provide information about the material surface, TEM gives 

information from the projection of the thickness (~100 nm) of the internal 

structure of a material at the nanoscale level [102, 103]. 

The SEM is a widely used surface imaging tool that is suitable for structural 

observations of bio-mineralised materials. In SEM, two main signals are 

collected from the sample, including secondary electrons, which are emitted from 

atoms in the sample following excitation by the primary electron beam, and back-

scattered electrons, which are primary beam electrons that have interacted with 

the sample. For this instrument, the specimen must be coated with gold or 

platinum (~2 nm) to minimise charging of the specimen in the vacuum chamber. 

Depending on the signal used and how the specimen is prepared, a conventional 

SEM image can show topographic and compositional contrast with high 

resolution. However, this method cannot physically reveal the material’s 

subsurface structure. Dual beam techniques, combining a focused ion beam (FIB) 

with SEM, can facilitate the extraction of TEM sections from polished cross-

sections of enamel and other hard tissues, thereby providing information on 

subsurface structure. 

FIB is a traditional technique used by material scientists or geologists to cut 

thin sections of material. It is increasingly being used to study hard biological 

materials, i.e. biominerals [7, 104, 105]. This is because these materials cannot be 

cut with conventional apparatus such as microtomes. FIB-TEM sections can be 

produced in 2 to 3 hours by thinning the specimen at precise locations where 
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previous mechanical testing (nanoindentation, nanoscratching) has been 

conducted [7, 102, 103]. Because human tooth enamel is electrically non-

conductive, a thin layer (≈ 2 nm) of gold, platinum or carbon is applied to the 

enamel surface before FIB milling. 

2.4  Mechanical properties 

In this section, the principles of materials testing are given along with how 

these are applied to studies investigating the mechanical properties of human 

tooth enamel. 

2.4.1  Materials Science Fundamentals 

In Materials Science, Young’s modulus and hardness are key properties in 

engineering designs [106]. Young’s modulus, E, is the property used to quantify 

the resistance of a material to elastic deformation [106]. The elastic deformation 

is reversible, which means that when an applied load is released, the material can 

return to its original shape. The E value is an important property defining the 

maximum limit of the materials’ capability to function without failure. This value 

is commonly reported in [GPa] and expressed as the ratio of stress to strain, E = 

σ/ε, where σ is the stress ratio of the applied force on the area and ε is the ratio of 

the deformation elongation to the original length. When the stress to strain ratio 

is proportional (i.e., linear), the deformation is elastic following Hooke’s law, σ = 

E.ε. Thus, E can be expressed as E = dσ/dε. However, this equation can only be 

applied for isotropic material. If the applied stress is at some angle to one of the 

three principal axes of anisotropic material, the elastic modulus must be defined 

for each direction of the x, y and z axes, and is thus defined as Ex, Ey, and Ez. 

The hardness, H, of a material is defined as the resistance of a material to 

plastic deformation, usually by penetration (indentation), bending, scratching, 

abrasion or cutting [106]. This property of a material is the result of a performed 

procedure. To obtain the H, the depth/area of an indentation left by an indenter is 
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measured while other variables are specified before experimental test: 1) shape of 

indenter, 2) applied force and 3) time. There are three traditional methods for 

expressing the relationship between hardness and the size of the impression: 

Brinell, Vickers, and Rockwell. While each of these methods is divided into a 

range of scales, defined by a combination of applied load and indenter geometry, 

they do not allow measurements of local properties of specimens that are 

relatively very small compared to indenter geometry. 

Other properties, such as ductility, resilience, toughness and flexural strength, 

are also used for defining the mechanical behaviour of materials including tooth 

enamel (Table 2-3, pp. 25). 

Ductility refers to the amount of plastic deformation that materials can sustain 

before they fracture and it can be expressed as a percentage of elongation, % LA, 

or reduction, % RA, of the material’s cross-sectional area at the point of fracture 

[106]. Therefore, the ductility is a very important property in terms of designing 

and manufacturing materials, as it specifies the range of plastic deformation that 

the material can undergo before mechanical failure. Resilience of the material, 

Ur, is defined as the area under the stress-strain curve from the unloading state up 

to the state of yielding. The yielding point is determined by values of the yield 

stress and yield strain [106]. This property specifies the ability of a material to 

absorb energy during elastic deformation and then, upon unloading, to recover 

this energy. The area under the stress-strain curve can be measured from the state 

of unloading up to the point of fracture. The term toughness, Kc, is used to 

express the allowable amount of energy that the material can absorb upon 

fracture. The Kc of a material is determined by the ability of the material to resist 

the extension of pre-existing cracks, despite the build-up of stress concentration 

[106]. A property related to Kc is the flexural strength, σfs, which is defined as a 

force per unit area required to initiate and propagate a crack to fracture [106]. For 

brittle materials such as ceramics, three or four point transverse bending tests are 

commonly employed. 



 

  Chapter 2 

23 

 

 

In contrast to the traditional methods that allow the measurement of 

microscale to macroscale properties of the bulk samples outlined above, 

nanoindentation instruments have been developed for measuring these properties 

down to the nanometre scale (Chapter 3). 

2.4.2  The mechanical characteristics of enamel 

Different mechanical testing methods are used to measure the mechanical 

responses of tooth enamel; these methods result in different approaches of data 

interpretation. Understanding the mechanical properties of human tooth enamel is 

essential for: 

 evaluating mechanical properties and comparing enamel to other 

materials, 

 assessing the suitability of dental materials (i.e. ceramics, veneer, 

alloy) and investigating the structure-properties relationship, and 

 identifying the critical variables that regulate the structure properties-

relationship, and theoretical modelling of enamel-like material. 

Therefore, it is important that the methods used for measuring are 

comparable.  

Enamel has unique mechanical properties related to its function of enabling 

the dental surface to concentrate stresses [17, 64, 107]. Furthermore, it has been 

shown that the E and H of enamel is related to its high mineral content [18], and 

yet it is a brittle material [53]. Numerous studies have been conducted to explore 

the mechanical properties of human tooth enamel; however, the deformation 

mechanisms of tooth enamel remain elusive. Understanding the relationships 

between the composition, structure and mechanical properties at the nanoscale is 

crucial for the future development of novel bio-mimic dental materials [25]. 
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Human tooth enamel is a challenging material when trying to characterise and 

compare its mechanical properties, owing to its hierarchical structure [108]. At 

the macroscale, enamel appears as a homogenous bulk material, but at the 

microstructural level, enamel is a composite made of fibre-like rods embedded in 

a water-protein matrix. Its mechanical behaviour is similar to that of composite 

materials such as ceramics or columnar titanium nitride film [109-111]. 

Since mechanical properties change with the directions of crystallites as well 

as rods, enamel is considered as an anisotropic composite [107, 112]. Spears 

[112] evaluated the anisotropic behaviour of tooth enamel from two levels of 

hierarchy: the crystalline level, where the enamel is made up of straight parallel 

crystals held together by organic material, and the rod level, where structured 

enamel is composed of differently orientated crystals. With finite element 

models, Spears showed a strong dependency of E values with regard to prism 

orientations. In 1998, Xu et al. [39] determined that the E and Kc of tooth enamel 

is strongly dependent on the rod orientation and location of measurement (i.e., 

axial versus occlusal plane). Shimizu et al. [107] and Spears [112] showed that 

enamel properties vary as a function of prism orientation. However, results 

presented by Cuy et al. [18] and later by Braly et al. [113] contradict this. Both 

studies show only a weak correlation between mechanical properties and prism 

alignment. Moreover, Cuy et al. [18] have found a correlation between 

mechanical properties and chemical constituents of HAP in enamel. Notably, the 

authors reported a decreasing gradient of E and H values from the enamel surface 

to the EDJ and the same trend has been identified for the concentration of 

calcium and phosphate. 

Averaged values of E, H, Kc and σfs for tooth enamel and other materials are 

summarised in Table 2-3.   
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Table 2-3. Mechanical properties (E, H, Kc and σfs) of human tooth enamel and other 

materials. Kc 

Scale Method  Specimen Occlusal plane Axial plane Ref. 

 

 
E of enamel [GPa] [GPa]  

Macro- Compression testing 1
st
 molars 84.2 ± 6.2

a
 78 ± 4.8

b
 [114] 

Micro- Modified Vickers 

indentation 

3
rd

 molars 94 ± 5 80 ± 4 [39] 

Nano- Nanoindentation 3
rd

 molars 87.5 ± 2.2 72.7 ± 4.5 [24] 

E of other materials  [GPa]  

Micro- Indentation dentine 20 (average value) [41] 

Micro- Vickers indentation dental 

ceramics 

65 ± 1.5 to 265 ± 10 [115] 

Nano- Nanoindentation dental alloy 199.54 ± 12.5 [9] 

H of enamel [GPa] [GPa]  

Micro- Modified Vickers 

indentation 

3
rd

 molars 3.62 ± 0.20 3.37 ± 0.15 [39] 

Nano- Nanoindentation 3
rd

 molars 3.9 ± 0.3 3.3 ± 0.3 [24] 

H of other materials   [GPa]   

Micro- Indentation dentine 0.6 (average value) [41] 

Micro- Vickers indentation dental 

ceramics 

5.3 ± 0.2 to 13 ± 0.3 [115] 

Nano- Nanoindentation dental alloy 4.1 ± 0.17 [9] 

Kc  of enamel [MPa  ] [MPa  ]  

Micro- Standard Vickers 

indentation 

3
rd

 molars 0.77 ± 0.05  0.52 ± 0.06 

1.30 ± 0.18 

[39] 

Kc  of other materials 

Micro- Indentation dentine 3.1 (average value) [41] 

Micro- Vickers indentation dental 

ceramics 

1.2 ± 0.14 to 7.4 ± 0.62 [115] 

σfs of enamel [MPa]  

Macro- n/a enamel 30 (average value for bulk 

sample) 

[41] 

Macro- Three point bend test enamel 49 ± 17 to 68±16 [116] 

Micro- Micro-cantilever 

bend test 

enamel-rod 750 ± 240 to 

1420 ± 410 

560 ± 160 

to 412 ± 37 

[116] 

σfs of other materials  [MPa]  

Micro- Indentation dentine - [41] 

Micro- Three-point bending 

strength test 

dental 

ceramics 

106 ± 17 to 840 ± 140 [115] 

a,b
 Average values from Tables 1 and 2 [114] recalculated to GPa; 1 GPa = 145 000 psi. 

When comparing tooth enamel to dental ceramics, enamel shows a higher 

stiffness than dental ceramics, while dental ceramics are harder than enamel. 

Furthermore, it has been shown that dental ceramic materials have the yield point 

that is three times higher than enamel [9]. This means that dental ceramics can 
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resist higher forces than enamel without sudden fracture. However, from a 

reliability point of view, the harder ceramic in contact with enamel can result in 

premature failure - i.e. excessive wear in the form of permanent plastic 

deformation or even surface damage of enamel [9]. 

To conclude, human tooth enamel is highly variable in shape, size, thickness, 

structure and properties. There are considerable variations in its composition, 

structure and mechanical properties between teeth or even within a single tooth. 

2.5  Sample preparation 

2.5.1  Methods of preparing teeth for 
nanoindentation testing 

Nanomechanical properties of teeth are commonly measured with depth-

sensing instruments. Because the scale of deformation during testing is very 

small, nanoindentation tests are considered as non-destructive and can be 

conducted on specimens of various sizes and types, including hard dental tissues, 

such as enamel [48, 117]. The sample preparation may be a simple process for 

most metallurgical samples; however, there are many caveats in the preparation 

methods of human teeth and other biological materials for nanoindentation tests 

[118, 119]. 

The sample is usually stored in aqueous solution, dried with tissue paper or in 

the air [1, 119, 120], then embedded in resin [18, 27, 36, 47, 121]; later the 

specimen is cut, ground, polished, and finally mechanically tested. Although the 

main purpose of resin embedding is to hold the specimen during preparation and 

testing, there are several problems associated with the use of resin during the 

preparation process. 

One of these problems is related to the inappropriate dehydration or drying 

process. If this process is not followed carefully, trapped water in the specimen 
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can interfere with the medium [28]. Besides water uptake, enzymes, cholesterol 

esterase and saliva fluid also degrade exposed resin, making the resin more 

compliant and less stiff [31, 32, 34, 35, 122]. As a result, a poorly-polymerised 

resin may cause considerable contamination of the sample surface during cutting, 

grinding and polishing [123] and lead to fractured or cracked enamel surfaces 

[29]. 

Another problem may occur because of the dimensional changes and 

temperature of the resin during polymerisation. Contraction stresses may develop 

within resin due to polymerisation shrinkage and increasing temperature. Also, 

one may suspect that large scale shrinkage of resin may lead to considerable 

defects in the form of fractures within tooth enamel [124]. 

Depending on the viscosity of the embedding media, the use of resin can 

infiltrate pores and crevices in the tooth. Molecules of a smaller size will 

penetrate into tissue more easily and promote greater resin shrinkage than larger 

molecules [124]. As a result, the resin’s ability of infiltration may lead to changes 

of the structure and near-surface properties of tooth enamel. 

In order to ensure that nanoindentation measurements are consistent within 

and between samples, testing must be conducted on flat, level surfaces. In order 

to meet this requirement, samples are commonly polished in a consistent way 

using methods that minimise surface or subsurface damage. These methods are 

highly variable depending on the material concerned. To date, no studies have 

described the preparation of hydrated, flat, polished enamel surfaces for 

nanoindentation [48]. Furthermore, standard dry polishing protocols are highly 

varied in the literature, making it difficult to compare and contrast findings from 

different studies. Some of the artefacts and negative effects that can be generated 

by sample preparation include: 

 Inaccuracy in flatness. This can occur due to uneven pressure while 

holding the sample during manual grinding and polishing procedures. 
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 Contact area errors. Since nanoindentation instrument measures 

mechanical properties indirectly from the contact area between the 

indenter and the tooth specimen at the specific indentation depth, the 

higher values of surface roughness may cause higher errors in 

measuring a contact area under the indenter at the specific depth 

[117].  

 Surface and subsurface damage. As enamel is a brittle material, 

grinding and polishing may create some amount of surface and 

subsurface damage. This is because the quality of the finished surface 

depends on the microstructure and mechanical properties of the 

specimen material, the rate of material removal and how abrasion 

particles interact with surface of the specimen [125, 126]. For 

instance, it has been shown that grinding was encountered by residual 

surface cracks which affect strength and performance of the material 

[127]. Additionally, by investigating the relationship between the 

material removal rate and stress dependency on crystallographic 

orientations of brittle materials, previous studies showed that the 

primary deformation mechanism in lapping procedure is a brittle 

micro-cracking followed by plastic deformation mechanism in the 

polishing process [126, 128]. 

 Errors in nanoindentation testing. Mounting specimens in the 

nanoindenter is commonly achieved by adhering the sample to a flat 

stainless steel base with pre-heated wax [3, 54, 118] or cyanoacrylate 

glue [129]. Although only a thin layer is used, these gluing media may 

affect the samples’ flatness or, if porous, its chemical properties, 

thereby affecting the microstructural or mechanical properties of the 

test specimen. A larger obstacle is testing the sample in a hydrated 

environment. Continuous spraying of the sample during 

experimentation has been used [21]; however, this can cause errors in 



 

  Chapter 2 

29 

 

 

testing results due to changes in instrument temperature (thermal 

drift). 

Apart from the artefacts and defects described above, it has been shown that 

different storage solutions, storage temperatures, times and testing in a hydrated 

or dried state have significant effects on the nanomechanical properties of tooth 

enamel [22, 23]. This is because the depth sensing instrument gathers properties 

from the near surface layer of the sample [22]. 

2.5.2  Microstructural observation of the enamel-
dentine junction 

The EDJ is a 15 to 25 µm-wide scalloped-like region that provides an 

interface between the hard, yet brittle enamel and the softer, tougher dentine and 

plays an important role in maintaining the biomechanical function of the tooth 

[21, 121, 130, 131]. Some authors reported that the EDJ acts to arrest cracks 

initiated from the enamel surface down to the EDJ [21], while others observed 

internal cracks extending from the EDJ into enamel [40].  

Previous authors have investigated crack propagation across the EDJ with 

Vickers indents and reported that “the vacuum of conventional SEM sometimes 

led to cracking either along the line of indents or at/near the optical EDJ” [21]. 

However, it may be speculated that these defects resulted from drying procedures 

possibly due to different ratios of shrinkage of more hydrated dentine and less 

hydrated enamel. Although some authors used environmental SEM to confirm 

that “such spurious cracking did not compromise the results” [21], it has been 

demonstrated that the inappropriate drying process builds up tensions and is more 

likely to initiate a gap formation along the EDJ [29]. 

In order to overcome the disadvantages of the resin embedding process and 

potential degrading effects of sample preparation on structural and mechanical 

characteristics of tooth enamel, a new approach was followed in this research to: 
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1. develop a new method of tooth preparation that permits cutting, 

grinding and polishing human tooth enamel in a wet environment 

without chemical or liquid-based embedding media, 

2. design and manufacture a new nanoindentation holder that provides 

testing of the tooth in a hydrated environment and avoids the 

application of a mounting media, such as wax, resin or glue during 

testing, and 

3. provide high resolution morphological images of the EDJ. 

2.6  Deformation behaviour of tooth enamel 

A detailed understanding of the mechanical behaviour of tooth enamel is 

essential for improving the biocompatibility, functionality and longevity of 

current dental materials. A close bio-mimicking of tooth enamel elastic, plastic 

and viscous deformation responses could lead to enhanced longevity as well as 

the environmental sustainability of dental materials and restorative treatments. 

While the elastic responses of material can be assessed with E values acquired 

from nanoindentation load-displacement curves, plastic responses can be 

analysed with values of H and the yield point captured in stress-strain curves. By 

ascertaining elastic or plastic behaviour in this manner, it is assumed that 

deformations occurred instantaneously with no-time dependent effects. On the 

other hand, the time-dependent viscous behaviour can be analysed from 

indentation creep tests, by measuring depth as a function of time, and simulated 

with rheological models, such as Voigt, Maxwell and Voigt-Maxwell. 

2.6.1  Elastic behaviour 

Like many other rigid biomaterials, such as shells, bones or spicules [132], 

enamel exhibits a superior combination of mechanical properties emanating from 

a nanostructured assembly of a very hard crystalline phase enveloped by a 
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surpassingly soft, glutinous protein matter. However, enamel must maintain its 

functionality and endure high cyclic contact loads due to regular interactions with 

opposite teeth and return to its original shape [17]. 

The unique shape and functionality of enamel promote remarkable resistance 

to elastic deformation when applied loads are released. The E value is the 

property that quantifies this resistance and defines the maximum limit of enamel 

capability to function without failure. The E of enamel is frequently measured by 

depth-sensing indentation and is determined from the unloading part of the load 

displacement curve. It is therefore important to note that although there can be 

plastic deformation during unloading, it is assumed that these deformations are 

elastic [133] . In the nanoindentation theory, a known area of the contact is of 

great importance as the final calculations of properties are based on this variable 

[117]. The properties, derived from the contact area, are indirectly inferred from 

load-displacement curves; i.e., from the maximum depth of penetration and the 

slope of the unloading curve at the maximum load. Thus, the depth of penetration 

(the indentation depth) plays a critical role in data evaluation. If the E decreases 

from the enamel surface towards the EDJ, then it is anticipated that the 

penetration depth and analogous contact area increases under a constant load in 

this direction.  

Generally, nanoindentation data are calculated and presented to the average 

depth of penetration. However, previous studies clearly demonstrate that the 

mechanical properties of enamel decrease with increasing depths of penetration 

[2, 37, 38, 54]. Therefore, each depth of penetration is critical in data 

interpretation and should not be averaged. Notwithstanding numerous amounts of 

nanoindentation studies, there are no reports on mapping of mechanical 

properties of human tooth enamel to the constant depths. Notably, the values of E 

vary as a result of many factors - such as: area of testing, testing environment and 

age of human enamel [18, 24-27]. In addition, the changes in indentation depth 

affect the E of enamel [36]. 
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Thus, it is important to present E values at constant depths from the enamel 

occlusal surface towards the EDJ. However, constant loads are applied in most 

nanoindentation tests, which result in difficult E value comparisons when enamel 

is measured at different locations of the sample [36-38]. Another difficulty arises 

from drying specimens during sample preparation and nanoindentation testing 

[18, 23, 26, 39]. 

Thus, to provide guidance in the design of novel enamel-like nanomaterials 

[134] or in many other fields such as materials science, engineering, aeronautics 

and astronautics[135], it is essential to: 

 conduct an in-depth investigation of the elastic region in tooth enamel 

under the influence of mechanical loads, and 

 analyse the depth dependence of E in conjunction with a mechanistic 

based model and the enamel microstructure. 

An elastic deformation model was used by Xie et al. [7] to identify a link 

between the E values of enamel, the thickness of proteins and the loading 

direction. The proposed nanoscopic model connected elastic responses of tooth 

enamel at the microscale by simulating E values from nanoindentation 

instrument. By doing so, the effective crystal orientation angle and the thickness 

of protein were identified. The authors demonstrated that these variables affect 

elastic responses of enamel during complex loadings. Accordingly, this well 

accepted model used for the investigation of elastic behaviour of tooth enamel [7] 

has been found essential to identify a relationship between the E values of enamel 

and the constant indentation depth in this study. 

2.6.2  Elastic-plastic behaviour 

The stress-strain curve provides important information on the elastic and 

plastic deformation of any material. To those who are unfamiliar with terms used 

in the field of materials science, a short explanatory introduction is given here. 
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As shown in Figure 2-7, the curve starts with a linear relationship between stress 

and strain (elastic region) and then generally deviates from this curve (plastic 

region). 

 

Figure 2-7. Schematic stress-strain curve indicating the elastic and plastic behaviour of a 

material. The transition from the elastic to plastic region is identified as the yield point. 

Beyond this point, the material undergoes permanent deformation.  

The maximum stress on the linear portion of the curve represents the elastic 

limit, which is also called the yield or flaw stress, beyond which the material 

undergoes plastic deformation. Once the material is plastically deformed, this 

deformation is irreversible, resulting in the permanent damage of the material. 

Berkovich and spherical indenters are commonly used in nanoindentation tests to 

investigate the mechanical properties of a material. In contrast to the Berkovich 

indenter, whose representative strain remains constant (≈ 8 %) for all indentation 

depths, the determination of stress-strain responses of materials can be performed 

with the spherical indenter whose strain gradually changes with the increasing 
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indentation depth/load and therefore, a gradual transition between the elastic and 

plastic region can be captured. This is because the start of the plastic deformation 

is delayed with a spherical indenter which is advantageous of the blunt tips while 

the plastic deformation occurs immediately even at small depths when the 

nanoindentation tests are performed with a Berkovich indenter [136, 137]. 

The early investigations of the elastic–plastic deformation behaviour of tooth 

enamel at a macroscale level was performed by Staines et al. in 1981 [26]. By 

using a spherical ball with a 6.32 mm diameter, the authors observed elastic 

deformation behaviour of tooth enamel on the initial loading curve to 1.6 µm 

indentation depth, the depth for which the reloading part of the curve matched the 

loading part. Based on this experimental observation and Timoshenko’s & 

Goodier’s theory of elasticity for ductile materials (metals), which assumes the 

start of the plastic deformation of material at 92 % of the mean pressure, Staines 

et al. reported the yield stress of 3.3 GPa for 2 µm indentation depth. 

Although there has been a considerable amount of research carried out to 

investigate E and H of enamel at the nanoscale, no stress-strain properties of 

enamel had been reported in detail until the study by He et al. in 2006 [37]. That 

study extensively investigated the elastic-plastic responses of enamel. 

Interestingly, no transitional shifts from the elastic to plastic region of enamel 

were observed and only the plastic deformation of enamel was revealed, possibly 

due to the high range of applied loads used in this study (1 mN – 450 mN). The 

same study also introduced a new method of defining stress-strain properties in 

enamel by plotting the contact pressure, H, against tanθ, where H denotes the 

stress and tanθ the strain property of the material. This method was based on a 

simple model for a spherical indentation for nanoindentation testing that was 

proposed in 1993 [138] and later refined in 2004 [139]. The advantage was to 

eliminate the radius of the indenter in all stress-strain calculations, and therefore, 

to decrease significant errors in measurements due to differences between the real 

and nominal tip of the spherical indenter. However, despite the high accuracy in 
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calculations of stress-strain responses of the material, this method did not 

determine a maximum load that could be used in defining elastic as well as 

plastic responses of enamel. 

Given the importance of the maximum applied load in determining elastic to 

plastic regions of tooth enamel in respect to its hierarchical structure, in 2009, 

Ang et al. [118] investigated elastic-plastic behaviour at the intrarod level (< 5 

μm) with a 8 μm diameter spherical indenter and much lower loads of 5 and 11 

mN. The authors reported 1.6 ± 0.1 GPa for the yield stress and 0.6 ± 0.05 % for 

the yield strain at the indentation depth of 7 nm under a load of 280 μN. Notably, 

the value of the yield stress was halved when compared to Staines et al [26]. This 

was possibly due to the different testing method used in the stress-strain 

investigation of enamel. While Staines et al. investigated stress-strain properties 

at the macroscopic level as a whole tooth with a 6.32 mm diameter spherical 

indenter [26], Ang et al. reported these properties at the nanostructural level 

involving several hundreds of crystallites with a 8 μm diameter spherical indenter 

[118]. A more complex study was published by Ang et al. in 2010 revealing 

stress-strain properties of enamel over four different hierarchical length scales 

measured with three different spherical indents of radii: 8.3, 0.86 and 0.063 μm, 

respectively [3]. The authors identified the yield stress between 0.9 GPa for the 

multiple-rod level and 17 GPa for the single crystallite level in the range of 

applied loads between 32 and 1400 μN. The transitional phase from the elastic to 

plastic region was identified only for the crystallite level of enamel (nanoscale) 

possibly due to the lower loads and small volume involved in the deformation 

process. On the other hand, elastic deformation followed by the microcracking 

mechanism was identified for the macroscale level. Ang et al. suggested that 

different hierarchical structures and the role of proteins were critical in the 

deformation behaviour of enamel. Those findings were in agreement with results 

from earlier theoretical models proposed by He & Swain [111] and Xie et al. [7, 

105]. In 2007, He & Swain introduced a simple nanoscopic model simulating a 

plastic deformation mechanism of tooth enamel in conjunction with the role of 
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proteins within its microstructure. Notably, this model showed that the shear 

deformation of proteins played a critical role in enamel resilience resulting in 

nonlinear plastic deformation. In 2008, Xie et al. developed more complex 

mechanical models for the elastic as well as plastic deformation mechanism of 

tooth enamel. As observed earlier by He & Swain [111], Xie et al. also identified 

protein properties such as the thickness and shear as the most critical variables 

influencing mechanical responses in enamel. Furthermore, the models 

determined the secondary variable, the effective crystal orientation angle of 

enamel crystallites between the indentation load and longitudinal axes of 

crystallites that affect the mechanical responses of tooth enamel. 

Similar to enamel, biological materials such as spider silk also illustrate 

nonlinear deformation responses against contact-induced damage [2, 140]. The 

latter study showed that the key mechanisms of structural integrity to 

accommodate localised induced stresses were found in softening properties at the 

yield point and significant work hardening at large strains. In enamel, a work 

hardening has been previously observed without prior softening mechanism at 

the proportional limit. Because the stress-strain curves of tooth enamel are 

generally plotted in terms of scattered data and best fit functions, one may 

speculate that some softening mechanism in enamel may exist to promote the 

resistance against applied loads. 

2.6.3  Creep and recovery 

In the field of materials research, creep is defined as the time-dependent 

permanent deformation when a material is subjected to a constant load or stress 

[141]. 

Observed by several workers, tooth enamel has been found to have an 

exquisite time-dependent viscous behaviour that is believed to yield the superior 

ability of this biocomposite to function in the oral cavity over a person’s lifetime 

[15, 16, 54, 62, 111].  
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Performing creep analysis on tooth enamel, He & Swain  reported relatively 

stable creep responses under a 250 mN applied load over 900 s holding time and 

an even more striking extent of recovery up to 60 % at a load of 5 mN over a 

holding time of 900 s [15]. The authors related creep and backcreep mechanisms 

to structural and functional protein properties in enamel, i.e. to protein sheets and 

their sacrificial bonds, respectively. Furthermore, a greater creep-backcreep 

ability of enamel has been reported for the area near the EDJ than at the outer 

surface, possibly due to the higher organic content near the EDJ [54]. It was 

previously reported in the study by Ji & Gao, who investigated mechanical 

behaviour of nanostructured biocomposites with the use of mechanical models, 

that the higher volume concentration of proteins in biocomposite can be 

attributed to a material’s capability to sustain extraordinary large plastic 

deformation over a longer period of time. This was found due to an inbuilt 

sacrificial bond mechanism that gives proteins the ability to undergo transition 

from entropic elasticity to metal plasticity [142]. Additionally, by investigating 

environmental conditions on mechanical responses of tooth enamel, the authors 

came to the conclusion that the decreasing content of proteins results in 

increasing brittleness of the material with decreasing ability of creep-backcreep 

behaviour [143]. Recently, Schneider et al. proposed a 3D creep model for two 

hierarchical levels of enamel that predicts viscous flow within enamel crystallites 

or rods [62]. For both the crystallite and rod level, the protein-water compound 

was treated as a viscous fluid whose flow represented shear stresses within the 

structure. In the model by Schneider et al., 4 % and 1 % indentation creep strains 

were determined for the crystalline and rod level, respectively. In contrast to the 

rod level, the authors suggested that the higher volume content of proteins at the 

crystalline level yielded a greater creep behaviour of tooth enamel. 

Lastly, the process of self-healing mechanisms of damage resistance in brittle 

materials should be noted. For instance, in mica and silica, the process of self-

healing occurs through a bridging mechanism in which the interfaces of cracks 

re-bond through the precipitation of fluid and chemical reactions of the crack 
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walls [144]. As a result, this bridging mechanism improves material properties 

such as strength and toughness [144]. A similar mechanism of self-healing has 

been found in tooth enamel [53]. In enamel, crack-like defects in the form of tufts 

are housed along the EDJ. Although these defects are unavoidable, they can be 

partially inhibited by replenishment of protein-rich material in those cracks [53]. 

Notably, one may investigate the self-healing mechanism in tooth enamel by 

performing a backcreep indentation test when the material endeavours to recover 

under minimum load after an unloading process over a time period. 

2.7  Tooth whitening (bleaching) 

Tooth whitening is a very popular procedure used by the public as well as by 

dental practitioners because of the aesthetics outcomes. The cosmetic 

improvement of tooth discoloration and the removal of various stains both 

increase self-esteem and confidence arising from having a “white bright smile”. 

Although whitening procedures are more affordable and less destructive than 

restorative dental procedures, bleaching is not always guaranteed to be successful 

[145]. The efficiency of the whitening depends on the type, concentration and 

duration of application of the bleaching agent used [58]. The most common 

bleaching agents are hydrogen peroxide (HP) or carbamide peroxide (CP). CP, 

which is also called urea peroxide or urea hydrogen peroxide, is a compound 

product of urea (≈ 64 %) and hydrogen peroxide (≈ 36 %) [146]. Although the 

detailed mechanism of bleaching agents within the tooth structure remains 

elusive, it is understood that these agents act as oxidisers. They react with the 

organic matter within the tooth [147, 148] and they bleach extrinsic, intrinsic or 

internalised stains located within dental tissue through degradation of the organic 

compounds and oxidation of chromophores [57, 58, 149]. The extrinsic stains are 

of metallic (e. g., from intake of iron supplement tablets) or non-metallic origin 

(e. g., from intake of coffee, tea etc.) deposited on the surface of enamel, 

whereby intrinsic discolorations occur as a result of a change in the composition 
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or structure of dental hard tissue caused by, for instance dental fluorosis, 

tetracycline intake or ageing. On the other hand, the internalised stains originate 

from developmental effects (e. g., hypo- and hyper-mineralisation) and acquired 

effects (e. g., dental caries, some types of dental materials used in restorative 

treatment) [149]. While most extrinsic stains can be partially or completed 

removed mechanically (e. g., with whitening toothpastes), the intrinsic and 

internalised stains require chemical treatments. In general, the whitening 

treatments can be applied internally in root-filled teeth or externally on teeth with 

clinically normal pulps. 

There are three main techniques for external whitening of teeth [145, 146, 

150, 151]: 

a) dentist or dental personnel administered bleaching technique (also known 

as “in-office bleaching”, “power bleaching”, “in-surgery bleaching”, or “in-chair 

bleaching”), 

b) dentist-supervised, patient-administered nightguard bleaching technique 

(also known as “take-home bleaching”, or “at-home bleaching”), and  

c) patient-administered at home bleaching products sold over-the-counter 

(also known as “OTC” bleaching products). 

The “in-office” bleaching treatment is a one-off procedure that uses bleaching 

agents for a shorter period of time (under 60 min). HP and CP are used with the 

following concentrations [146]: 25 % HP without a heat source, 35 % HP with or 

without a heat source, 35 % HP with a curing light, 70 % HP with a heat source 

and 35 % CP without a heat source. Depending on the level of HP concentration, 

the “at-home” bleaching treatment is a 2 to 6 week procedure. The HP 

concentrations vary from 1.5 % up to 10 %. The “OTC” whitening products 

include teeth whitening strips, mouthwashes, chewing gums and toothpastes. 

Because of their low concentrations of HP (less than 6 %) [58], these products 

http://www.yourwhiteningteeth.com/teeth-whitening-strips/
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yield improved tooth whiteness over a longer period of time [152, 153]. 

However, their effects can be unpredictable and potentially dangerous [146]. 

Beside local adverse effects such as tooth cervical root resorption [154], non-

reversible pulp damage [155], hypersensitivity and gingival irritation [156], the 

excessive usage of a high concentration of HP over longer periods of time may 

result in potential health hazards [57] such as genotoxicity, cytotoxicity and 

carcinogenicity [57, 157]. Furthermore, some investigators have indicated 

deleterious effects on mechanical properties of enamel and dentine [158-160], 

and restorative dental materials [56, 161] as well as tissue/material interfaces 

[162, 163]. Other adverse effects of whitening treatments include: alterations of 

the enamel surface and its inner structure [164, 165], increased porosity [166], a 

decreased Ca/P ratio [167, 168], denaturation of proteins [164, 169], a decreased 

fracture toughness [169], an increased surface roughness [170, 171] and an 

increase of mercury release from dental amalgam have been reported. On the 

contrary, other studies have claimed either no significant changes in surface 

morphology [172-174], chemical composition [173, 174], hardness [174, 175], 

surface roughness [176] or improvement in the enamel susceptibility to erosion 

[177].  

It is clear that some of the studies investigating the whitening effects on 

dental hard tissues are conflicting, which may be attributable to differences in 

preparation methods, tooth samples, different bleaching agents (CP or HP) and 

their concentration and time of application, different testing methods (nanoscale 

vs. microscale testing), testing environment (dry vs. wet) or storage conditions 

(distilled water, artificial saliva, human saliva or no solution) [57, 58, 159, 173]. 

Although conclusions on dental hard tissue whitening treatments remain 

elusive, it is suggested that the degradation of enamel is more likely due to the 

alteration of the organic matter within the enamel microstructure under the 

chemical action of bleaching agents [164, 169]. Hegedüs et al. hypothesised that 

bleaching agents change the structural integrity of proteins, namely enamelin and 
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amelogenin [164]. HP, as the main bleaching agent or as one of the compounds 

of CP, oxidises organic components and chromophores in enamel. The second 

compound of CP is urea. Urea, also present in saliva, is a compound of carbon 

dioxide and ammonia [178, 179]. It has been reported earlier that urea has the 

capability to attack inter-prismatic regions inside enamel by destroying hydrogen 

bonds between carbon oxide and ammonia groups [164, 180-182]. Another study 

demonstrated increased porosity and an increased number of pits in the enamel 

surface which was exposed to urea for a week [181]. This is in agreement with 

the study by Goldberg et al., which identified tiny micro-channels in enamel after 

urea treatment [182]. Additionally, Arends et al. claimed that urea weakened or 

destroyed part of the peptide structure in the inter-prismatic region of enamel and 

that its interaction yielded protein removal [180]. However, the organic removal 

would have catastrophic effects on the mechanical responses of tooth enamel 

under applied loads. As discussed previously (Section 2.6), the organic matter 

plays a very important role in regulating the deformation mechanism of tooth 

enamel due to the ability of proteins to prevent catastrophic crack propagation 

within the enamel microstructure. Therefore, the potential organic removal 

during bleaching treatments would result in irreversible damage to the tooth. 

Enamel capability of self-healing and recovering during whitening treatment may 

be also hindered as a result of the tooth whitening process. 

To the best of our knowledge, variables dictating the deformation mechanism 

of tooth enamel during whitening treatments have not been investigated. 

However, nanoindentation creep–recovery tests may provide new insights into 

self-healing and the recovery ability of unbleached (i.e., healthy) and bleached 

enamel, and they may help to determine variables controlling the mechanical 

responses of tooth enamel during whitening treatments. 
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2.8  Mechanistic models 

2.8.1  Numerical models 

Beside nanoindentation measurements, the biomechanical roles of tooth 

enamel can be explored with the use of finite element models (FEM). FEM can 

validate or disprove a hypothesis and theoretical assumption in conjunction with 

experimental results obtained from nanoindentation tests. In general, FEM 

simulate tooth function by dividing a virtual volume into a large number of cells 

and then applying virtual forces onto the surface. Distributions of ensuing stress 

are tracked by numerical iteration. 

In previous studies investigating the deformation behaviour of tooth enamel, 

FEM were used to: 

 predict deformation behaviour of tooth enamel at different levels of 

hierarchy under different loads [49, 107, 112], 

 determine hoop stresses for axisymmetric, frictionless loading within 

the tooth crown and quantify initiation and evaluation of margin 

failure processes of cracks under critical loads within enamel [183-

186], and 

 investigate stress-strain behaviour of tooth enamel over its entire 

thickness [50]. 

A three-dimensional study by Spears [112] suggested that stresses remain 

confined to the region below the loaded area if the E value of tooth enamel is 

directionally-dependent at the crystalline and the microstructural level. For the 

crystalline level, Spears adopted the model from Katz [187] for a simple 

composite that illustrates enamel anisotropic behaviour (Figure 2-8). 
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Figure 2-8. Deformation of tooth enamel at a crystalline level. Eorg and E crys denote 

Young’s modulus of protein and mineral crystal, respectively. Adopted from [112]. 

In addition, by employing the model used by Ashby and Jones [188], the 

theoretical stiffness of the composite in a direction parallel (Epara) and 

perpendicular (Eperp) to the direction of crystal orientation was determined as Epara 

= VcrysEcrys +(1-Vcrys)Eorg and Eperp = 1/[(Vcrys/Ecrys)+((1-Vcrys)/Eorg)], where Vcrys 

denotes the proportion of total enamel volume occupied by crystals, which is also 

known as volumetric fraction. For the crystalline level, Spears proposed to model 

enamel as a simple composite (based on the Katz’s model) with the following 

prerequisites: 1) homogenous crystal orientation, and 2) Vcrys between 0.81 and 

0.99 [189], Ecrys = 114 GPa and Eorg = 4.3 GPa [112]. For the microstructural 

level, Spears modelled enamel as a hierarchical composite with anisotropic 

behaviour. For the modelling tooth enamel at the microstructural level, Spears 

used a cubic grid with 256 equally-spaced nodes and the Gantt model to 

reproduce the anisotropic behaviour of tooth enamel [112]. By assigning a 

Poisson’s ratio of 0.3 to all elements in the rod, Spears was able to calculate the 

theoretical E value for each direction. Spears showed that enamel behaved 

anisotropically with respect to its stiffness. However, the shortcomings of this 

model were: 

Protein, Eorg = 4.3 GPa 

Mineral, Ecrys = 114 GPa 

Small deformation Large deformation 

E parallel  E perpendicular 
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 assuming Vcrys in a limited range and constant value for Poisson’s 

ratio in all planes, and 

 using ideal values of horizontal (Ex = 20 GPa) and vertical (Ey = 30 

GPa) across-prism stiffness by omitting rod orientations in enamel. 

In 2005, seven FEM were investigated by Shimizu et al. and modifications 

were made, resulting in the following advantages [107]: 

 representing the geometry of the keyhole-shaped rod by reducing the 

number of elements to 14 (Figure 2-9(a-d)), 

 

 

Figure 2-9. Finite element model of enamel. (a) Dimensions of prisms and elements, (b) 

entire enamel block, (c) 14 elements from the front view and (d) differences in crystal 

orientation. Adopted from [107]. 
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 investigating different orientations of rods in relation to the enamel 

wear, and 

 assuming Ez = 103 GPa and Ex = 32.1 GPa (E values in two 

directions), Vcrys = 0.9, Gyz = 31 GPa (shear modulus) and νzx = 0.313 

and νxy = 0.177 (Poisson’s ratios in two planes). 

From the theoretical findings presented in the study by Shimizu et al., it could 

be inferred that the rod orientations affect the mechanical properties of tooth 

enamel. Although FEM are only based on theoretical assumptions, the latter 

results were found to be in accordance with anatomical and archaeological 

evidence. 

Furthermore, FEM have been used for investigating deformation responses of 

intact teeth. Barak et al. used micro-CT scans to generate three dimensional FEM 

of human premolars for investigating deformation responses and stiffness of teeth 

before and after the initiation of defects [49]. By introducing a small cavity in the 

tooth, less than 10 % decrease of the relative tooth stiffness was observed. On the 

other hand, when the tooth was restored with composite resin, 98 % to 99 % of 

the tooth stiffness was recovered. With FEM, Barak et al. showed that a repaired 

tooth has lower fracture resistance against applied loads than an intact tooth. This 

study also demonstrated that restorative composite resin could not fully recover 

the tooth to its original state. However, despite a decreasing stiffness in the 

enamel cap due to the presence of a small cavity, enamel was still fully capable 

of resisting applied loads. This study provided clear evidence that the remarkable 

deformation resistance of the tooth stems from the shape of the tooth crown and 

morphology of the enamel cap. The authors concluded that while the enamel cap 

(i.e., the crown) protects dentine from accumulated detrimental strain 

concentrations, it also precisely controls tooth deformation resistance against 

applied loads [49]. 
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Notably, dental crowns showed the ability to control the cracking 

mechanisms during masticatory function [183, 184]. A complete understanding 

of cracking modes within the dental crown when subjected to axial and off-axial 

loading is critical in the overall understanding of the deformation mechanism of 

teeth before they fracture. Although this topic has not been thoroughly 

investigated in this research, one should acquire knowledge of fracture modes to 

correctly interpret and therefore understand the overall deformation responses of 

tooth enamel under applied loads when they are simulated with FEM. 

In 2007, Qasim et al. experimentally and numerically investigated margin 

crack mechanisms in strictly axial loaded brittle dome structures made of 

hemispherical glass shells filled with polymer resin [183]. To determine the 

initiation of crack propagation in situ, the dome structure representing a dental 

crown was subjected to a load of 2000 N with disk indenters of various 

compliances and was observed with a video camera. Later, the dome-like FEM 

were used to calculate hoop stress distributions within the structure and to 

validate experimental results. The experimental and numerical results showed 

that the behaviour of crack propagation was strongly dependent on the indenter 

that simulated chewing with food. The study showed that a protective mechanism 

of the tooth against catastrophic fracture under loads initiated with more 

compliant indenters representing a food bolus was to move the maximum tensile 

stresses away from the near contact area of the dome structure. Later, Ford et al. 

used FEM to validate the cracking mechanism of the dome structure when 

subjected to off-axial loading at 45 degrees to the axis of the dome [184]. The 

authors reported that dental crowns subjected to off-axial loading were more 

prone to fracture under low load due to increased deleterious tensile stresses in 

the dome side walls. In 2009, Chai et al. extended the FEM used previously by 

Qasim et al. and Ford et al. and reported another protective deformation 

mechanism of the tooth before its fracture [185]. By introducing loads between 

250 and 600 N with a Teflon indenter representing food bolus of 0.48 GPa, the 

authors observed that cracks initiated first at the cervical margin of the tooth, 
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which longitudinally grew towards the occlusal surface with increasing loads. 

Although the FEM was simplified and did not include all of the variable elements 

in the calculation of stress dissipations in terms of the enamel shape, thickness 

etc., the model closely determined the fracture process within the dental tissues 

as an additional protective mechanism to survive a wide range of loads during 

masticatory function. The FEM proposed by Chai et al. [185] was later extended 

by Barani et al. [186], who used a three-dimensional FEM that included the 

dimensional and property characteristics of the tooth. Thickness, shape, and 

toughness, as well as crack propagation, have been identified as variables 

dictating fracture mechanisms within tooth tissue. Additionally, with the use of a 

combined nanoindentation and numerical approach, An et al. [50] identified a 

gradient in the mechanical properties as another variable having an effect on the 

fracture resistance of the tooth tissue. 

The importance of a properties gradient in biological mineralised materials 

has been also highlighted by Bruet et al., who investigated dermal scales of 

armoured fish with the use of multi-layered FEM simulations [190]. The 

armoured fish scales are biocomposite materials made of mineral and protein 

with a quad-layered, interlocking structure. The first two outer layers of fish 

scales are ganoine and dentine, with E and H values ranging from 62 to 17 GPa 

and 4.5 to 0.54 GPa, respectively. Interestingly, the mechanical properties as well 

as gradients within each layer are similar to those of enamel and dentine in 

human teeth. The FEM showed that each layer of a fish scale exhibited its own 

unique deformation and fracture mechanism to maximise its survival. The 

knowledge of mechanical principles of fish scales structures and their gradients 

may provide a new, yet inspiring, approach to understanding composition– 

structure-property relationships within dental tissues. 

To the best of our knowledge, a link between structural variables of tooth 

enamel (e. g., the effective crystal orientation angle and properties of proteins) 

within tooth enamel under applied loads in its elastic-plastic regions and 
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increasing indentation depths has not been investigated. Given the importance of 

gradient in properties and the structure-load adaptation of biological materials, 

FEM may prove/disprove variables that govern the mechanical responses of 

dental tissues. 

2.8.2  Analytical models 

Gradual changes of mechanical properties over the enamel thickness are well 

accepted and are related to the change of chemical composition and 

microstructure [54, 113]. 

These changes have been shown to be related to enamel microstructure, and 

more specifically to the effective crystal orientation angle of tooth enamel, θ, as 

illustrated in Figure 2-10 [6, 38, 105]. The analytical model of human tooth 

enamel under applied load in its elastic and plastic region has been proposed by 

Xie et al. [105]. This model predicts the effective crystal orientation angle as the 

one of the critical variables influencing the deformation behaviour of tooth 

enamel regardless of loading direction. 

Figure 2-10. Deformation model of tooth enamel with schematic illustration of 

representative variables used for theoretical modelling of mineral crystal orientation 

angle, θ [7]. 



 

  Chapter 2 

49 

 

 

For the elastic behaviour of tooth enamel, the angle θ is derived from the 

modified mechanical model for wood tissues [191]. By considering enamel as a 

staggered mineral-protein composite [191, 192], Xie et al. proposed the elastic 

stress-strain behaviour of tooth enamel under compressive loads as [105]: 

      , 
 (2-1) 

where σ, Ee and ε denote stress, elastic stiffness and strain of tooth enamel. 

According to this model, the stiffness of enamel before the yield point, Ee, is 

defined as: 

   
     θ     θ  

    θ
    

    θ

    θ
   

 (2-2) 

where θ is the angle between the mineral crystal and loading direction, E2 the 

compression modulus of staggered, mineral-protein composite perpendicular to 

the c axis of the mineral crystal and G the shear modulus of staggered, mineral-

protein composite. 

According to a study by Liu et al. [193], the transverse stiffness of a 

staggered composite structure, E2, and the shear modulus of a staggered 

composite, G, are expressed as: 

   
 

             

              
 

 
  

     (2-3) 

  
     

  
     

 

(2-4) 

where hm and l are the thickness and the length of the mineral crystal, hp  and Gp 

the thickness and the shear modulus of protein layers between mineral platelets, α 

the non-uniformed shear strain factor of the composite, Ez the modulus of a 
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sandwich composite perpendicular to c axis of mineral platelet and Kp the bulk 

modulus of proteins. 

The shear modulus of protein, Gp, the factor, α, the modulus of a sandwich 

composite perpendicular to c axis of mineral platelet, Ez, and the bulk modulus of 

protein, Kp, are determined as: 

   
  

       
    (2-5) 
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Notably, the properties of proteins are important variables in the estimation of 

enamel stiffness perpendicular to the c-axis of mineral platelet (Eq. (2-3)) [105]. 

The stress-strain behaviour of tooth enamel beyond the yield point is defined 

as [105]: 

 

 

where the parenthesis in Eq. (2-9) indicates the elastic region of tooth enamel 

while remaining  
    

    
   represents the plastic region, ε is the compressive strain 

of enamel and τc denotes the shear strain of proteins in enamel and can be 

   
  

        
  

 
(2-8) 
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predicted as a percentage of the E2 value [105]. By employing the analytical 

model for investigating variables regulating the deformation behaviour of tooth 

enamel, Xie et al. reported the angle θ = 33
o
 for healthy enamel [105] and they 

concluded that the deformation behaviour of tooth enamel is affected by the 

thickness and properties of proteins. A latter study by Xie et al. suggested that 

enamel behaves rather isotropically at the nanoscale level [6]. This study showed 

that the angle θ of tooth enamel in its elastic-plastic region ranges between 33
o
 

and 34
o
 and is independent to applied loads. 
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3.  Theory of nanoindentation 

Conventional tests, such as compressive, tensile, bending, shear strength and 

punch shear tests, have been used to investigate macroscale mechanical responses 

of bulk, biological materials such as teeth [48, 194]. At the microscale, properties 

of human teeth have also been very often explored by conventional indentation 

tests using Vickers or Knoop indenters in which optical measurements of residual 

indentation imprints were critical for determining the properties of materials [50, 

109, 159, 175, 195-197]. 

However, these conventional tests have disadvantages. They do not measure 

submicron scale properties of materials, which is of importance for acquiring 

local properties of non-homogenous anisotropic structures such as human teeth 

[48, 198]. The nanoindentation instrument is an excellent tool for this purpose 

[24]. 

In general, Berkovich and spherical indenters are used to measure Young’s 

modulus, E, and hardness, H, of human tooth enamel with indentation 

instruments [18, 27, 36, 105, 118, 129, 199, 200]. Depending on the type of 

indenter, the applied load and the enamel area of testing, the size of imprints can 

typically range from 5 to 20 µm. Notably, there are some other studies, in which 

authors used loads of 3, 5 and 10 mN to achieve residual imprints less than 1 µm 

[3, 201]. The accurate optical measurements of these imprints which are needed 

for determining the properties of a material are expected to be difficult and more 

likely inaccurate [202]. Therefore, in the nanoindentation instruments the contact 

area is not determined by direct measurements of imprints but by recording load 

as a function of indentation depth (Figure 3-1).  
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Figure 3-1. A schematic representation of load, P, versus displacement, h, obtained from 

nanoindentation experiments. The quantities shown are the maximum indentation load, 

Pmax, the contact depth after unloading, hc, the contact stiffness during unloading, dP/dh. 

The hc, and dP/dh determine Young’s modulus and hardness of material. Modified from 

[203]. 

The maximum depth of penetration for a particular load, P, and the slope of 

the unloading curve yield E and H measurements of the specimen [117]. The 

unloading curve is assumed to be purely elastic with no occurrences of plastic 

deformations after load removal [117, 133]. 

Notably, measurements of material properties with a nanoindenter depend 

significantly on accurate measurements of the maximum load, Pmax, total 

displacement, ht, at the Pmax, as well as the contact stiffness, S, during elastic 

unloading [139]. This indirect measurement of the contact area at the Pmax and the 

depth of penetration, h, are often generalised as a depth-sensing indentation 

technique (DSI) [204]. 

 

S = dP/dh 

Elastic-plastic loading 

Elastic unloading 

P 

h hc 

ht 

Pmax 
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3.1.1  Projected area of contact, Ac 

 Berkovich indenter 

The projected contact area, Ac, at the Pmax for a Berkovich indenter is 

expressed as (Figure 3-2(a)): 

    
   

 
  

 (3-1) 

where a and L represent the side and the length of the projected equilateral 

triangle, respectively. 

 

Figure 3-2. (a) A schematic representation of a Berkovich indenter with the projected 

area, Ac. The 65.27
o
 semi-angle in (b), which represents the face angle with the central 

axis of the indenter, is used to calculate the Ac. The height of the dark-shaded triangle 

denotes the contact depth of penetration, hc. 

The L of the projected triangle in Figure 3-2(a), and the hypotenuse, b, of a 

shaded triangle in Figure 3-2(b) are given by: 

  
 

 
         

 (3-2) 
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    (3-3) 

Therefore, the contact indentation depth, hc, of the Berkovich indenter is 

given by (Figure 3-3): 

                 (3-4) 

 

Figure 3-3. A Berkovich indenter at the full load and unload with indicated depth from 

the original specimen surface, ht, at the maximum load, Pmax, and the contact depth, hc, 

after unloading, respectively. Adopted from [25, 133, 138]. 

Substituting equations (3-2) and (3-3) into (3-4) gives: 

   
 

                
    (3-5) 

From equation (3-5), the a of the projected equilateral triangle is: 

                    .  (3-6) 

The Ac at the Pmax for a Berkovich indenter is determined from the 

substitution of equation (3-6) with equation (3-1): 

ht 
hc 

Surface profile after 

removal load, P 

Surface profile at the 

maximum load, P 

Surface  
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 (3-7) 

 

 Spherical indenter 

The Ac at the hc of a spherical indenter is expressed as (Figure 3-4): 

       
   

 (3-8) 

where ac denote the radius of the indenter at the hc. 

 

Figure 3-4. A schematic representation of the elastic indentation with a spherical 

indenter at full load, P at the indentation depth, ht. R and 2ac denote the nominal radius 

and the contact diameter of the indenter at the contact indentation depth, hc, respectively. 

Adopted from [25, 133, 138]. 

From the known geometry of the spherical indenter under the P it is easy to 

see that: 

      
       

   
 (3-9) 

By rewriting equation (3-9) as: 

          
       

   
 (3-10) 
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hc 
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2ac 



 

  Chapter 3 

57 

 

 

the ac can be expressed as: 

            
   

 (3-11) 

By substituting equation (3-11) into (3-8) and assuming   
    when    , 

the Ac for the spherical indenter is given by: 

        . 
 (3-12) 

3.1.2  Young’s modulus 

In nanoindentation instruments, E of a specimen is derived from the reduced 

modulus, E
*
. Valid for any axisymmetric indenter, the value of E

*
 is determined 

from the slope of the unloading curve at Pmax as a function of the S = dP/dh and 

the Ac at the hc [139, 205, 206]: 

   
 

 
 
  

  
 

  

   

 

 
   (3-13) 

In the equation (3-13), the geometry correction factor, β, is equal to 1.034 and 

1.0 for a Berkovich and spherical indenter, respectively [117, 207]. 

The E* combines E and Poisson’s ratio,   of the indenter (subscript i) and the 

specimen (subscript s), respectively: 

 

  
 

 

  
  

 

  
    

 (3-14) 

 

   
 

    
   (3-15) 

With known values of E and   for diamond tip indenter of 1050 GPa and 

0.07, respectively, along with a reported value of   for tooth enamel of 0.25, the 

E value of a specimen can be calculated from equation (3-14) [112, 193]. 
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Notably, the Ac for the Berkovich and spherical indenters has been defined 

previously by equations (3-7) and (3-12). 

 Berkovich indenter 

The E
* 
for the Berkovich indenter is expressed as: 

   
 

 

  

  

 

  
 

 

    
 

 

     
   

 (3-16) 

 Spherical indenter 

For the spherical indenter, the E
*
 value is derived as: 

   
 

 

  

  
 

 

  
 

 

    
   

 (3-17) 

Substituting (3-8) into (3-17) or (3-12) into (3-17), the E* is also given as: 

    
 

  

  

  
  

 (3-18) 

   
 

 

  

  

 

     

   (3-19) 

 

3.1.3  Hardness 

The H value is known as the indentation hardness or the mean pressure, pm. In 

a nanoindenter test, the H is calculated as: 

     
 

  
  

 (3-20) 

where Ac is       
  and       for the Berkovich and spherical indenters, 

respectively (Equations (3-7) and (3-12)). 
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3.1.4  Stress–strain relationship 

As discussed in Section 2.6.2, the elastic–plastic deformation behaviour of a 

specimen can be analysed from the stress-strain curves with a spherical indenter 

whose strain varies with indentation load [117].  

For a spherical indenter, the mean contact pressure, pm, is expressed from 

equations (3-8) and (3-20) as: 

   
 

   
   

 (3-21) 

The Hertzian equation in the elastic region for the ac at the hc is given by: 

  
  

 

 

  

  
  

 (3-22) 

Substituting equation (3-21) into (3-22) gives a relationship between pm 

(stress) and a/R (strain): 

     
   

  
 
  

 
  

 (3-23) 

The ac of the spherical indenter used in equation (3-23) is determined from 

equation (3-11) when   
    as: 

        . 
 (3-24) 

Notably, the hc must be determined for the calculation of the ac. The hc is 

assumed to be half of the ht in the region of elastic deformation during initial 

loading [117]: 

   
 

 
    

 (3-25) 
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Equation (3-25) is valid for the specimen surface that is frictionless and in the 

elastic contact with the spherical indenter. The ht is expressed as: 

    
    

 

 

 
  

 

   

    
       

 (3-26) 

where r denotes the semi-circle radius of the P, in which the stress is acting [208, 

209]. The equation is valid when     . The value 
    

 
 denotes the E

*
. 

Substituting (3-21) into (3-26), the ht can be rewritten as [209]: 

    
 

  
 
 

 
 
 

   
   

  

  
    

 (3-27) 

Assuming 
  

  
    and substituting (3-22) into (3-27) gives: 

     
  

   
 

 
 
 
 

 
 

 
 
  

 

 (3-28) 

where E* is obtained from equation (3-14). 

3.1.5  Creep – backcreep 

3.1.5.1  Theory 

The conventional nanoindentation tests provide values of E and H from load-

displacement curves under a condition that enamel has no time-dependent 

behaviour under applied loads. However, recent studies have shown that enamel 

exhibits creep behaviour when loads are applied [16, 61, 62]. 

Creep can occur over a period of time under applied loads in the elastic or 

plastic region of a material and it can be quantitatively measured from 

indentation or uniaxial tests. 
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There are 4 potential mechanical responses that can be observed under 

applied loads within a material [117]: 

a) Elastic–plastic, where the material undergoes no time-dependent elastic 

deformation and no time-dependent plastic deformation, 

b) Viscoelastic–plastic, where the material undergoes time-dependent elastic 

deformation, but no time-dependent plastic deformation, 

c) Elastic–viscoplastic, where the material undergoes no time-dependent 

elastic deformation, but time-dependent plastic deformation, and 

d) Viscoelastic–viscoplastic, where the material undergoes time-dependent 

elastic deformation followed by time-dependent plastic deformation. 

The creep properties of materials have been studied at the macro-scale with 

conventional uniaxial tests. For these kinds of tests, the specimen has to be of 

tens of millimetres in size to be able to fasten it at both ends for tensile testing. In 

the nanoindentation instruments, the specimen can be of a few millimetres size 

(i.e., less than 5 mm) and must be mounted flat to the nanoindentation stage for 

creep measurements. Although nanoindentation creep tests have the advantage of 

investigating creep responses of materials at the micron scale, tensile tests are 

different to compressive tests, i.e., the material may behave differently when 

subjected to the tensile or compressive loads. However, it has been shown that 

the nanoindenter, which uses compressive loads, provides to some extent 

information on the “elastic” and “viscous” properties of a material [117]. 

Although indentation instruments can also provide information on the 

indentation creep stress exponent, n, of a solid material, an important fact 

supported by the theoretical background should be noted. The value of n is 

derived from a power of law creep equation for a uniaxial test as [210]: 

          
 (3-29) 
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where     denotes the creep rate from the uniaxial test, A represents the material 

constant from the uni-axial test and σ denotes the uniaxial creep stress.  

Based on the theory of Bower et al. [211], equation (3-29) can be generalised 

and rewritten in the form of: 

     
   
  

        
 (3-30) 

where     and   
  in the parentheses represent the material constant, A.  

Substituting (3-20) into (3-29) and assuming B as the material constant 

obtained from the indentation tests gives: 

             
 (3-31) 

or alternatively: 

             
 (3-32) 

where     is the indentation creep rate of the material from indentation test. 

The indentation creep rate is defined as the ratio of indenter displacement 

velocity,   , to the indentation depth, h: 

    
  

 
  

 (3-33) 

where    is defined as: 

    
  

  
  

 (3-34) 

The dh/dt ratio is easily calculated from the indentation time–depth (t – h) 

curve. 
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Assuming the same value of n for equations (3-29), (3-31) and (3-32), and by 

knowing the relationship between A and B, the value n can be calculated from P-

h-t values obtained from the indentation experiment. 

In addition to equation (3-30), Bower et al. defined a link between the A and 

B for a viscous linear material tested with a conical indenter [211]: 

   
  

      
   

 

 (3-35) 

where β and c represent the semi-angle of a conical indenter and the pile-up/sink 

parameter, respectively. However, LaManna et al. showed that the A obtained 

from indentation tests measured with a conical indenter is 30 % less than if it is 

measured with a uniaxial test [210]. 

Based on the theory by Tabor [212], the representative strain rates for conical 

indenter, εc and spherical indenter, εs can be expressed by: 

              
 (3-36) 

 

        
  

 
   (3-37) 

where β represents the angle between the face of the conical indenter and 

indented surface of the specimen. 

By substituting differentiated equations (3-36) or (3-37) with respect to time 

into (3-32) and expressing the pm, which is also known as H, from equation 

(3-20), He & Swain showed [61] that the n and the B can be calculated from 

logarithmic H -    curves for both a Berkovich and spherical indenter. 

The creep indentation theory assumes that the strain rate sensitivity exponent, 

n, of a flow stress in (3-29) is the same as the strain rate sensitivity exponent, n, 
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of hardness in (3-32) and that the square root of the project area of the contact, 

Ac, required in the equation (3-13) increases proportionally with increasing 

indentation depth, ht, which enables extraction of the strain rate sensitivity 

parameter from a depth-time curve [213]. With the use of FEM, Stone showed 

that both assumptions are unfortunately invalid, except for low H/E materials 

[213]. 

Because the theoretical relationship between the uniaxial creep and the 

indentation creep remains unjustified [210, 213], this research was only 

motivated to report fundamental creep-backcreep responses of unbleached and 

bleached enamel. 

3.1.5.2  Modelling 

The indentation (h-t) curves can be fitted into rheological models consisting 

of a series of springs and dashpots to obtain the viscoelastic components of a 

material. The simulated responses of springs and dashpots provide information 

about stiffness and viscosity of the material in terms of the storage modulus, E
*
, 

and the loss modulus, η, respectively. 

There are three different kinds of models that can be analysed by IBIS 

software in the nanoindentation instrument, UMIS Australia [214]: a) three 

element Voigt model, b) two element Maxwell model and c) four element Voigt-

Maxwell model. 

The general theory used for the calculation of viscoelastic variables in spring 

-dashpots models can be explained by a single two element Voigt model (Figure 

3-5). 
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Figure 3-5. A single Voigt model. The model represents the viscoelastic creep behaviour 

of a material under tensile forces, F. A spring with the storage modulus, E
*
, and a 

dashpot with the viscous component of a material, η, are connected in parallel to 

simulate the creep behaviour. 

The spring force, F1, and dashpot force, F2, are given by: 

      ,  (3-38) 

 

     
  

  
,  (3-39) 

where k and c represent the E
* 

of the spring and the η of the dashpot, 

respectively.  

The equations (3-38) and (3-39) can be rewritten in the general form for the 

tensile stress of a spring, σ1, and a dashpot, σ2, as: 

      ,  (3-40) 

 

    
  

  
    (3-41) 

The total tensile stress under creep loading, σ, for time, t > 0, is: 

       
  

  
.  (3-42) 

Dividing both sides of the equation (3-42) by η and then multiplying it by 

 
   

 , equation (3-42) becomes: 

  

F F 
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    (3-43) 

Integrating equation (3-43) according to the mathematical 

relationship             , where C is the constant, gives: 

 

   
   

     
   

   .  (3-44) 

For t = 0 and ε = 0, the constant C is expressed by: 

  
 

  .  (3-45) 

The ε value can be calculated from equation (3-44) by substituting equation 

(3-45) into (3-44): 

  
 

      
    

     (3-46) 

Hook’s law is given by: 

     ,  (3-47) 

where σ, E and ε denote variables from tensile tests.  

Dividing equation (3-47) by σ and E gives a general definition of the creep 

compliance, J(t): 

 

 
      

 

 
   (3-48) 

Equation (3-46) can be rewritten as: 

 

 
      

 

      
    

     (3-49) 

The equation (3-28) for a spherical indenter can be rearranged as: 

 
 
  

 

 
 

 

  
 
 

 
 

 
 
   (3-50) 
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Substituting equation (3-49) into equation (3-50) gives a t-h-P relationship 

(creep) of the material under load with a spherical indenter. 

Similarly, the ht for a Berkovich indenter is expressed from Sneddon’s 

solution as [215]: 

  
  

 

 
 

 

  

 

        
   (3-51) 

Substituting equation (3-49) into equation (3-51) gives a t-h-P relationship 

(creep) of the material under load with the Berkovich indenter.  

Notably, the E
*
 values in resulting creep equations represent only the   

  

values (refer to equation (3-14)). 

  J(t) of the three element Voigt model 

The total tensile force, F of the three element Voigt model is given by: 

         ,  (3-52) 

where F1 represents a spring force with the storage modulus,   
 , that is in series 

with the force, F2, which denotes a parallel spring-dashpot elements with the 

storage modulus,   
  , and the viscosity, η2, respectively (Figure 3-6).  

 

Figure 3-6. Three element Voigt model under tensile forces, F. The model illustrates the 

spring storage modulus,   
  and   

 , with the dashpot loss modulus, η2. Modified from 

[214]. 

F F 
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The elements in series are subjected to the same force, whereas the parallel 

elements encounter the same incremental extension [216]. Therefore, equation 

(3-52) can be rewritten in terms of the total tensile stress acting on the system as: 

     
       

     
  

  
 .  (3-53) 

The combined system of viscous and non-viscous elements in series or 

parallel undergoes the same integration procedure as described previously for a 

single Voigt model. 

The J1(t) of the spring with the   
  is: 

       
 

  
 .  (3-54) 

The J2(t) of a parallel spring - dashpot element with the   
  and η2 is given by: 

       
 

  
     

   
  

   .  (3-55) 

Summation of equations (3-54) and (3-55) gives the total J(t) of the three 

element Voigt model in the form of: 

J    
 

  
   

 

  
     

   
  

   .  (3-56) 

Substituting (3-56) in equations (3-50) and (3-51) gives a t-h-P relationship 

for a spherical and a Berkovich indenter, respectively: 

 
 
  

 

 
  

 

  
   

 

  
     

   
  

     
 

 
 

 
 
   (3-57) 

 

  
  

 

 
  

 

  
   

 

  
     

   
  

    
 

        
   (3-58) 

 J(t) of the Maxwell model 

The total force, F, of the Maxwell model is: 
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            (3-59) 

where F1 represents the force of a spring with the storage modulus,   
 , that is in 

series with force, F2, which denotes a dashpot element with viscosity, η (Figure 

3-7).  

 

Figure 3-7. Maxwell model under tensile forces, F. The model illustrates the spring 

storage modulus,   
 , and the dashpot loss modulus, η1. Modified from [214]. 

Equation (3-59) can be rewritten in terms of the total tensile stress acting on 

the Maxwell system as: 

     
       

  

  
    (3-60) 

where      
   and      

  

  
. 

The J1(t) of the spring with the storage modulus,   
 , is: 

       
 

  
    (3-61) 

Dividing both sides of the σ2 by η and integrating it, the J2(t) of a dashpot 

element is: 

       
 

  
 .  (3-62) 

Summation of equations (3-61) and (3-62) gives the total J(t) of the Maxwell 

model: 

J    
 

  
   

 

  
 .  (3-63) 

  
     

F F 
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Substituting (3-63) in equations (3-50) and (3-51) gives a t-h-P relationship 

for a spherical and a Berkovich indenter, respectively: 

 
 
  

 

 
  

 

  
   

 

  
   

 

 
 

 
 
   (3-64) 

 

  
  

 

 
  

 

  
   

 

  
  

 

        
   (3-65) 

 J(t) of the Maxwell-Voigt model 

The total J(t) of the Maxwell-Voigt model is obtained from the summation of 

equations (3-55) and (3-63) following the schematic representation given in 

Figure 3-8: 

 

Figure 3-8. Maxwell-Voigt model. The storage moduli,   
  and   

 , denote springs in the 

model and represent the elastic responses of material. The loss moduli, η1 and η2, are 

related to dashpots and determine the viscous responses of material. Modified from 

[214]. 

J    
 

  
     

   
  

    
 

  
   

 

  
    (3-66) 

Substituting (3-66) in equations (3-50) and (3-51) gives a t-h-P relationship 

for a spherical and Berkovich indenter, respectively: 

 
 
  

 

 
  

 

  
     

   
  

    
 

  
   

 

  
   

 

 
 

 
 
  (3-67) 
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  (3-68) 

  

3.1.6  Calibration 

During nanoindentation measurements, the actual geometry of a Berkovich or 

spherical indenter may be different to that of the ideal one. For instance, the 

change of the shape of the tip will inherently cause inaccuracy in the calculation 

of the Ac at the Pmax. As shown in equations (3-13) and (3-20), the Ac is a very 

important variable in the calculation of the E
*
, and thus in the accurate estimation 

of E as well as H of a specimen. 

In order to avoid incorrectness during tests due to any non-ideal shape of the 

indenters, the indenters must be calibrated against a standard calibration material. 

Fused silica, which has a constant E value, is often used for such calibration 

purposes. The aim of the calibration process is: 

 to obtain a correction factor which represents a ratio between the 

actual projected area, Ac, and the ideal projected area, Ac,i, of the 

indenter at the hc, and 

 to apply the correction factor, Ac/Ac,i in the calculation of E* and H, 

respectively. 

The Ac,i of a Berkovich or spherical indenter is determined from equation 

(3-7) and (3-12), respectively, whereas the Ac is determined from the rewritten 

equation (3-13) as: 

    
 

 
  

  

  

 

  

 

 
 
 

  
 (3-69) 

where E
*
 is calculated directly from equation (3-14) for known values of E and υ 

for the diamond tip of the indenter, i.e., 1070 GPa and 0.07, respectively, along 
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with standard values of E and υ for fused silica, i.e., 72.5 GPa and 0.17, 

respectively [117]. 

Given the importance of the Ac value, the E
*
 and H of a specimen can be 

rewritten as: 

   
 

 
 
  

  
 

  

   

 

 
 
     

   

   

 

 (3-70) 

 

  
 

  
 
    

  
    (3-71) 

where Ac/Ac,i denotes the correction factor. 
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4.  Methodology 

This chapter covers the laboratory protocols of the sample preparation 

methods, instruments and test settings used in this work. Besides standard 

materials and methods, a new method of tooth preparation, a new 

nanoindentation device allowing testing of human teeth in the wet environment, 

as well as a new approach to data analysis are given.  

4.1  Sample preparation 

4.1.1  Collection and storage 

Ethical approval for human research was obtained from the Ethics Review 

Committee of Edith Cowan University with protocol number 4503. Healthy 

molars collected from private dental practices were extracted for orthodontic 

reasons and informed consent was obtained from the patients involved. Upon 

extraction, teeth were stored in Hanks’ balanced salt solution (HBSS) (SIGMA - 

Aldrich Co., St. Louis, USA) with the addition of 0.02 % thymol crystals at 4 
o
C 

to prevent demineralisation and bacterial growth [22, 217]. Teeth were prepared 

and tested within less than four weeks from the extraction date. 

4.1.2  New method 

A new method of embedding was developed in order to maintain precise 

control over the tooth orientation and to conduct analyses of the teeth in their 

hydrated state. Epoxy resin and hardener (EpoFix, Struers A/C, Copenhagen, 

Denmark) were used at a ratio of 15 to 2 by volume to form 30 mm diameter by 

10 mm high cylindrical blocks using plastic moulding cups (FixiForm, Struers). 

A ~15 mm diameter hole was drilled through the centreline of the block to form a 

hollow cylinder that was then partly filled at one end with aquatic putty (Selleys 

Knead-It Aqua, Selleys, Australia). This putty can polymerise in the presence of 

water and was chosen as a mounting medium to keep the tooth hydrated in 
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HBSS. The tooth was then inserted root first into the cylinder and pressed into 

the putty, leaving only the enamel occlusal surface exposed. The embedded tooth 

was placed back into HBSS with 0.02 % thymol crystals and stored at 4 
o
C for 60 

minutes to ensure proper polymerisation of the putty. After an hour, the teeth 

were sectioned into two halves using a precision saw (Isomet 1000, Buehler Ltd., 

Lake Bluff, IL, USA) (Figure 4-1(a,b)).  

 

Figure 4-1. Preparation of the tooth specimen from a mandibular right third molar (M3) 

for nanoindentation tests. (a) Location of the first and second cuts in the tooth, relative to 

the mesial-distal plane. The polished surface is also indicated. Parallel black dashed lines 

show the approximate thickness of the sample. (b) Sectioned tooth embedded in the 

putty inside an epoxy cylinder. Specimens were kept hydrated to preserve their natural 

structure before indentation tests. Scale bar = 1 mm. 

The cut surface was ground and polished following the key technical 

parameters given in Table 4-1. After each grinding and polishing step, the 

surface was examined under a light optical microscope (Trinocular Metallurgical 

Microscope, Brunel SP-200-XM, Brunel Microscopes Ltd, UK). A second cut, 

parallel to the first, was made at a distance of 5 mm from the polished surface. 

HBSS was used as a coolant during cutting. Once prepared, the specimen was 

immersed in HBSS with 0.02 % thymol crystals prior to nanoindentation tests. 

The enamel specimen was prepared in the hydrated environment within less than 

2 hours. 

Mesial-distal plane

Putty 

a)                                                                    b) 

1st cut 

Polished surface 

2nd cut 
Resin 

Mesial surface 

Distal surface 
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Table 4-1. Technical parameters of the new method of tooth preparation. 

Step  Consumables/Tools  
Lubricant  

(Coolant)  

Speed  

[rpm]  

Time  Optical 

micrographs 

Scale bar = 100 μm 

Resin 

holder 

15 ml resin 

2 ml hardener 
n/a  n/a  12 hrs n/a 

Blind hole Ф15mm twist drill 

bit 
n/a  n/a  5 min n/a 

Embedding 

and curing 
5-10 g putty n/a  n/a  1 hr  n/a 

1
st

 Cutting Ф 152 mm 

diamond disk 
HBSS 100 20 min n/a 

Grinding 1 
SiC paper 320  

(46 µm)  
Water 90 20 s 

 

Fine 

grinding  
SiC paper 500  

(30 µm)  
Water 90 20 s 

 

Polishing 1 
SiC paper 1,200 

(14 µm)  
Water 90 1 min 

 

     

Polishing 2 
SiC paper 4,000 

(5 µm)  
Water 90 1 min 

 

Final 

polishing 

Nap cloth, MD 

NapR  
Water 90 3 min 

 

2
nd

 Cutting 
Ф 152 mm 

diamond disk 
HBSS 100 20 min 

 

 

Enamel 

Enamel 

Enamel 

Enamel 

Enamel 

Enamel 

Dentine 

Dentine 

  Dentine 

Dentine 

Dentine 

Dentine 
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Optical micrographs of the enamel surface responses from severe damage 

after sectioning to defect-free surfaces after polishing are shown in Table 4-1.  

During sectioning, uniformed, approximately 50 µm wide saw marks/ 

grooves were produced in the enamel surface. High resolution scanning electron 

microscope images of the enamel resistance against severe damage can be also 

found in Appendix A. 

Severe damage to the enamel surface was gradually removed during the 

grinding process, which involved suppressing the grinding grooves with 

successively finer grade silicon carbide papers. By applying 5 µm silicon carbide 

paper to the enamel surface, a matt ground surface of enamel with exposed 

interior microstructure was produced prior to final polishing. A defect-free 

surface of enamel was achieved with the synthetic napped cloth and water as the 

lubricant in the final process of polishing. The purpose of using water in this 

method was to avoid any chemically based lubricants which could affect 

mechanical properties of the tooth under investigation. Once prepared, the 

enamel surface was tested with a depth-sensing indentation system. 

4.1.3  Conventional method, A 

The intact human tooth sample was dried on the bench with tissue paper 

before resin embedding. A cold-curing epoxy resin mixture (EpoFix, Struers 

A/C, Copenhagen, Denmark) was poured into a plastic moulding cup (FixiForm, 

Struers) over the dried tooth specimen. Once the resin had cured, the tooth was 

sectioned following the protocol outlined above in Section 4.1.2, and then it was 

ground and polished following the procedure outlined in Table 4-2.  

Notably, DiaPro Nap R and OP-U (Struers A/C, Copenhagen, Denmark) are 

mechanochemical polishing agents that were used during the final polishing 

process for good surface finish and they are part of the conventional protocol of 

the sample preparation. Specifically, DiaPro Nap R is a diamond polishing 

suspension while OP-U is a colloidal silica polishing suspension. These 
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suspensions have been developed by Struers A/C to reduce the time of 

preparation by 30 %, and at the same time improve the surface quality [218].  

Table 4-2. Sample preparation of enamel embedded in epoxy resin. 

Step 
Consumables/Tools 

Lubricant 
(Abrasive) 

Speed  
[rpm] Time 

Resin 

embedding  

15ml resin  

2 ml hardener  
n/a 

 
12 hrs  

1
st

 Cutting  Ф 152 mm diamond disk  HBSS  100  20min  

Grinding 1  SiC paper 320 (46 µm)  Water  150  1min  

Fine grinding  SiC paper 500 (30 µm)  Water  150  2min  

Polishing 1  SiC paper 1,200 (14 µm)  Water  150  2min 

Polishing 2  SiC paper 4,000 (5 µm)  Water  150  2min  

Final polishing 1  
Synthetic nap cloth,  

MD Nap  

DiaPro 

Nap R  
150  3 min  

Final polishing 2  Porous neoprene cloth, MD 

Chem  
OP-U  150  2 min  

2
nd

 Cutting  Ф 152 mm diamond disk  HBSS  100  20min  

4.1.4  Conventional method, B 

The conventional method B was used to investigate the effect of resin 

embedding on the mechanical properties of the cut tooth surface. The intact 

human tooth sample was inserted with the root first into the resin cylinder hollow 

and pressed into the putty, leaving only the enamel occlusal surface exposed. The 

embedded tooth was placed back into HBSS with 0.02 % thymol crystals and 

stored at 4 
o
C for 60 minutes to ensure proper polymerisation of the putty. The 

tooth was sectioned in half with a precision saw (Isomet 1000, Buehler Ltd., 

Lake Bluff, IL, USA). One half of the tooth was dried on the bench with tissue 

and immediately embedded in cold-curing epoxy resin for 12 hours (EpoFix, 

Struers A/C, Copenhagen, Denmark). Once the resin had cured, the sample was 
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ground and polished following the key technical parameters outlined in Table 

4-2. 

Notably, the conventional method B differs from the new method by applying 

the resin embedding technique after cutting the tooth. This procedure was used to 

investigate how the surface properties may be affected by resin medium. To do 

so, the tooth was prepared by following the first four steps of the new method 

(refer to Table 4-1). The first four steps of the new method were required for the 

ease of handling the tooth during cutting.  

4.1.5  Dehydration and drying procedure 

Tooth samples were dehydrated and then dried following Janda’s method 

[29]. In order to dehydrate the teeth, the specimens were submerged in water-

ethanol mixtures with progressively increasing ethanol content of 70 %, 80 % 

and 96 % for 24 hr and 100 % for 72 hours; then, in water-acetone mixtures with 

increasing acetone content of 80% and 96% for 24 hours, and 100 % for 72 

hours. Lastly, the specimens were dried in a vacuum desiccator for 2 hours. 

4.1.6  Bleaching 

Healthy human tooth samples were prepared by the new method (Section 

4.1.2). Then, the specimens were submerged in HBSS leaving approximately 1 

mm of polished surface above the solution level. The NiteWhite
 ®

 ACP Turbo 

Take-Home Whitening Product (Discus Dental, LLC, CA, USA) in a 2.4 mL 

multi-dose syringe was applied on the tooth surface for a maximum period of 2 

weeks following the recommended patient instructions for NiteWhite
®
 ACP and 

DayWhite
®
 ACP

 
Take-Home Whitening Products. This whitening tooth gel, with 

6 % hydrogen peroxide, was injected onto the fibre-free pad and placed gently on 

the exposed polished surface for 8 hours and stored at 4 
o
C in a fridge. After 8 

hours, the tooth specimen was rinsed with HBSS and stored for 16 hours in 

HBSS at 4 
o
C in a fridge. This procedure was repeated every day for 14 days. 
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4.2  Structural analysis 

4.2.1  Optical microscopy 

The enamel surface responses, from severe damage after sectioning to defect-

free surfaces after polishing during enamel preparation, were observed with a 

light optical microscope (Trinocular Metallurgical Microscope, Brunel SP-200-

XM, Brunel Microscopes Ltd, UK). 

4.2.2  Focused ion beam milling/Transmission 
electron microscopy  

Ultra-thin sections of enamel, taken parallel to the direction of the rods, were 

prepared for transmission electron microscopy (TEM) using a dual-electron 

focused ion beam (FIB) workstation (Nova Nanolab 200, FEI Company, 

Hillsboro, OR, USA). The detailed procedure has been provided elsewhere [219]. 

Briefly, a layer of platinum (~ 1 μm in thickness) was first deposited to protect 

the surface area of interest from ion beam damage during the milling processes. 

A “rough” sectioning was then performed with a current of 10 nA, in which 

trenches were created on both sides of the platinum strip to obtain a cross-section 

of ~3 μm in thickness. A number of “fine” mills were taken at reduced currents 

(from 5 to 1 nA) to thin the section to ~1 μm. Final mills were carried out at 

further reduced currents (from 300 to 100 pA) to decrease the thickness down to 

~100 nm for electron transparency. 

The transfer of the TEM specimen from the FIB sample holder to carbon 

coated copper TEM grids was conducted ex-situ using a high-precision 

micromanipulator (Kleindiek Nanotechnik GmbH, Reutlingen, Germany). TEM 

imaging was performed using a field emission gun-TEM (Philips CM200, 

Eindhoven, Netherlands). 
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4.2.3  Scanning electron microscopy 

Tooth specimens were dehydrated and then dried following the protocol 

given in Section 4.1.5. The uncoated specimens were observed in a Zeiss 1555 

environmental scanning electron microscope (SEM). Pressure between 9 and 10 

Pa, high current beam signal, 120 µm apertures and 20 keV voltage were used for 

the variable pressure mode. The working distance was determined experimentally 

and was changed upon observation from 8 to 10 mm. Once aligned, secondary 

and backscattered electron images were obtained. The variable pressure mode has 

been used only for the observation of the enamel-dentine junction after diamond 

saw tooth sectioning. The images that show tooth enamel sections are attached to 

Appendix A. However, the variable pressure caused a lot of charging inside the 

SEM vacuum chamber during imaging and often resulted in blurry images.  

In addition to the variable pressure, microscopic observation was conducted 

on coated specimens sputtered with a 3 nm layer of platinum. The alignments and 

focus were carried out with secondary electrons under accelerated voltage 

between 10 and 15 keV and 30 µm aperture. The working distance was set 

experimentally and was changed upon observation between 9 and 12 mm. Both 

secondary and backscattered images of the enamel surface have been collected. 

4.3  Nanoindentation test settings 

4.3.1  Testing instrument 

A depth-sensing indentation system (Ultra-Micro Indentation System, UMIS-

2000, CSIRO, Australia) with inbuilt IBIS2 software was used to investigate the 

near surface deformation behaviour of tooth enamel. 

4.3.2  Sample holder design 

The UMIS indentation stage was replaced with a custom designed stainless 

steel holder (Figure 4-2). 
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Figure 4-2. An indentation device for probing mechanical properties of human tooth 

enamel in a hydrated environment. 

This holder, which was manufactured in the CNC Machining Centre 

(OKUMA, ACE Centre MB-46VAE, Japan) at the Edith Cowan University, 

clamped the tooth specimen onto the bottom of the bath using a slide-screw 

assembly (Figure 4-3(a)). In this way, the use of glue or wax was avoided.  

 

Figure 4-3. (a) A specially designed holder for nanoindentation testing of human tooth 

enamel in a wet environment. (b) Stainless steel hexagonal socket set screws with flat 

points are driven into each slide towards the specimen. The bath is filled with Hank’s 

Balanced Salt Solution. No mounting medium (i.e., glue or wax) is required for holding 

the samples in place during testing. Scale bar = 5 mm. 

(a)

(b) (c) 

    a)                                                    b) 



 

  Chapter 4 

82 

 

 

The slides (Figure 4-3(b)) were inserted into the slotted recess of the holder. 

A 1 mm thick stainless steel plate was placed on top of the specimen to distribute 

the pressure evenly and to protect the specimen from damage during clamping. 

The holder allowed the tooth specimen to be submerged in HBSS and to test 

dental tissues in their hydrated state. The specifications of the holder and slides 

are attached to Appendix B and Appendix C. 

4.3.3  Verification of indentation spacing 

In order to verify the indentation spacing, arrays with 10 indents 20 µm apart 

were made under applied loads of 50, 200 and 400 mN, as depicted in Figure 

4-4(a). The 20 µm spacing between indents resulted in residual impressions from 

previous indents, mainly for 200 and 400 mN loads (Figure 4-4(a)). 

 

Figure 4-4. Indentation spacing of each array and each indent in distance of 20µm (a) 

and 50µm (b). In (a), indentation loads of 50, 200 and 400 mN were applied onto the 

enamel surface. The residual impression from previous indents of 20 µm apart was 

unavoidable for 200 and 400 mN. In (b), partial loading-unloading was applied up to 400 

mN with indentation arrays of 50 µm apart from the enamel surface towards dentine. No 

overlaps of indents were found in the softer part of the tooth, the dentine (b). Scale bar = 

100 μm. 

For the three-sided Berkovich indenter, the contact area, Ac, is expressed as 

24.56hc
2
, where hc is the contact indentation depth (Equation (3-7)). The 

relationship between the length, L, of an altitude of the triangle and hc can be 

calculated from equations (3-2) and (3-6): 

50 
200 

400  

a)                                          b) 

enamel 

dentine 

enamel 
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              . (4-1) 

Based on the current experimental work, the maximum hc of enamel was 

found to be less than 3 µm. Therefore, it could be easily deduced that the L at the 

hc of 3 µm is 19.5 µm. As shown in Figure 4-4(b), a distance of 50 µm 

completely avoided any interferences of residual impressions from previous 

and/or neighbouring indents during nanoindentation testing from the enamel 

occlusal surface towards the dentine. SEM images of Berkovich indents from 

different regions of tooth enamel are given in Appendix D.  

4.3.4  New method of data analysis to the constant 
indentation (Berkovich indenter) 

Young’s modulus, E, and hardness, H, of the polished surface of enamel was 

measured with a Berkovich indenter and determined to the constant indentation 

depth. The contact area of the tip as a function of penetration depth was 

calibrated on fused silica [139, 203]. A typical example of a calibration curve for 

the Berkovich indenter is shown in Figure 4-5.  

 

Figure 4-5. Typical calibration curve of a Berkovich indenter. The Ac,i/Ac parameter 

denotes the ratio of an ideal contact area to a real contact area of a Berkovich indenter at 

the contact indentation depth, hc. 

The specimen was submerged in HBSS during testing. Each row contained 5 

indents with an interval of 50 µm. The spacing between rows was 50 µm. Load-
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partial unload tests were run in a closed-loop under load control. For the 

Berkovich indenter, the maximum 400 mN load was applied in eight increments. 

Following each increment were 10 decrements. Upon that, a function for E and H 

of enamel was derived for each indentation line [7, 8]. From this function, E and 

H were determined and plotted as a function of constant indentation depth 

(Figure 4-6(a,b)). 

 

Figure 4-6. (a) Optical micrograph of the indentation layout on enamel. Residual 

impressions of Berkovich indents after partial loading-unloading was applied up to 400 

mN with indentation arrays of 50 µm apart across the enamel surface (b) Indentation 

load, P, as a function of displacement (i.e., penetration depth), ht, of enamel measured by 

a Berkovich indenter. Scale bar = 100 μm. 

4.3.5  Stress – strain test settings (Spherical 
indenter) 

The stress-strain properties from the middle region of tooth enamel were 

investigated with a spherical tipped indenter of a 5 µm nominal radius and 90
o
 

flank angle. The middle region of tooth enamel was located half of the distance 

between the occlusal surface of the tooth and the enamel-dentine junction (i.e., a 

normalised distance of 0.5). The specimen was submerged in HBSS during 

testing. The contact area of the tip was calibrated on fused silica [139, 203]. A 

typical example of a calibration curve for a 5 μm spherical indenter is shown in 

Figure 4-7. 
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Figure 4-7. Typical calibration curve of a 5 μm spherical indenter. 

For a conical indenter with a flank angle, α, of 90
o
 and nominal radius, R, of 5 

µm, the maximum strain (a/R) when the indentation depth is equal to the depth at 

the transition between a sphere and cone can be easily derived from the geometry 

shown in Figure 4-8(a): 

  

 
 

      

 
       

. 
(4-2) 

  

 

Figure 4-8. (a) Schematic representation of a spherical indenter of nominal radius R, 

contact radius, ac and a flank angle, α, at the depth, h, that represents the transition 

between the sphere and cone. (b) Typical stress-strain (H - ac/R) curve of tooth enamel 

with 30 incremental steps up to a load of 400 mN. The shaded area denotes 10 

incremental steps and highlights the elastic-plastic region of tooth enamel before it 

softens and/or fractures. 
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 (H-a/R) plots obtained from tests up to a maximum load of 400 mN shows 

that the first 10 incremental steps corresponded to the elastic–plastic region of 

enamel prior to the enamel softening and potentially fracturing. From Figure 

4-8(b), the maximum indentation load, P = 130 mN used for investigation of the 

stress-strain behaviour of tooth enamel was calculated from the relationship of 

the maximum load and the number of increments as: 

  
    

                
                        (4-3) 

where Pmax = 400 mN, incrementstotal = 30, incrementsshaded area = 10. 

The tests were run in two rows of indents; each row contained 5 indents with 

an interval of 50 µm. The spacing between rows was 50 µm. Load-partial unload 

tests were run in a closed-loop mode under load control. The indenter was loaded 

to a maximum load of 130 mN in thirty increments and unloaded to 2% of a 

maximum load in 10 decrements. The H values of enamel were derived as a 

function of hc [7, 8]. H-ac/R curves were generated with IBIS2 software 

according to the relationship given by equation (3-23).  

4.3.6  Creep 

In the creep indentation tests, the middle region of tooth enamel was tested 

with a spherical indenter of 5 µm (UMIS-2000, Australia). The specimens were 

submerged in HBSS during testing. The contact area of the spherical indenter 

was determined by calibration against fused silica. There were three separate 

creep-recovery tests that were run in a four-step loading mode on each sample. 

For creep measurements, the indenter was loaded to a maximum load of a) 50 

mN, b) 100 mN and c) 130 mN within 10 s and held at a constant for 900 s and 

then unloaded to 5 mN within 15 s and held constant for 900 s. Each test 

commenced after a three hour thermal soak period in a closed laboratory 

environment. For each maximum load, the tests were run in a row of 5 indents 

with an interval of 50 µm. The distance between the indents was 50 µm to avoid 
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residual impressions from previous indents. After the completion of tests on 

healthy enamel, other creep measurements were repeated for tooth enamel that 

had been bleached for 7 days (Section 4.1.6). 

4.4  Modelling of human tooth enamel 

Two different approaches were used to investigate and theoretically predict 

the mechanical behaviour of human tooth enamel: numerical models and 

mechanistic models. 

4.4.1  Numerical models 

4.4.1.1  Elastic behaviour 

It has been shown that mineral platelets of enamel start to slide against each 

other when the shear stress in the protein matrix exceeds a critical value [105]. 

Thus, finite element models (FEM) were constructed to clarify the effect of shear 

deformation on the magnitude and distribution of contact-induced stress in 

enamel. The simulations were performed using the COMSOL software. A two-

dimensional axisymmetric model, with the axial coordinate z along the loading 

direction of the indenter, was built. The model consisted of an enamel block 

measuring 50 µm  50 µm, loaded by a two-dimensional, conical-shaped 

axisymmetric indenter, with a tip angle of 70.30°, which approximated the three-

dimensional Berkovich nanoindentation experiments. A refined mesh was used 

within an area of 10 µm  10 µm directly underneath the indenter, where the 

stress concentration was expected to rise during indentation in order to achieve 

high accuracy around the contact zone (Figure 4-9).  
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Figure 4-9. FEM refined mesh used in the simulations.  

The total number of mesh elements was 17,631, which included the elements 

within the indenter. Further mesh refinements did not improve the simulation 

accuracy significantly. The contact between the indenter and the sample was 

assumed to be frictionless.  

The details of the boundary conditions were as follows:  

The bottom of the block (z = 50 µm) was fixed in the z direction, while the 

right edge (x = 50 µm) was fixed in the x direction. The axisymmetric axis 

coincided with the left edge of the block (x = 0 µm) to obtain full 3D simulation 

results. The tip of the indenter was located at z = 0 µm (0 displacement) before 

the simulations. The indentation process was simulated as a downward 

displacement of the indenter from 0 to 0.4 µm at a step of 0.04 µm. 

4.4.1.2  Plastic behaviour 

COMSOL Multiphysics software (Version 3.5a) was used in this work to 

evaluate the stress distributions within the samples under nanoindentations at 

different depths. A non-linear FEM of a two-dimensional, conical-shaped 

axisymmetric indenter, with a tip angle of 70.30°, was adapted to approximate 

the three-dimensional Berkovich nanoindentation experiments. 

An independent study confirmed that, compared to full three dimensional 

modelling, the accuracy of such two-dimensional axisymmetric approximation 

was 2 to 3 %, a range within any experimental comparison significance [190]. 
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The effect of the indenter tip was modelled by a distributed force (Figure 

4-10(a)), which generated a deformation profile corresponding to the 

experimentally determined indenter cross-sectional tip-area function.  

 

Figure 4-10. (a) The force simulates the effect of a conical indenter, as a function of the 

distance from the axisymmetry, which is used to generate the desired deformation 

produced by the conical indenter, (b) the z displacement at the surface of the sample, 

generated by the force in (a). 

The linear relationship was confirmed by a cross sectional plot along the 

loading boundary, with a maximum error of less than 0.5 %. In order to avoid the 

unrealistic artefact of high stress around an idealised sharp tip, a curvature was 

introduced with a radius of ~20 nm. FEM meshes were generated in an 

interactive way to ensure that the mesh was denser in the regions where a large 

stress gradient was expected (Figure 4-10 (b)). Boundary conditions were set as 

follows: The left-hand side was the axial symmetry axis. The bottom and the 

right-hand side were fixed along the z and x directions, respectively, but were 

free to move in the other directions. For all models used, the overall dimension of 

the model was considerably larger than the coating thickness; thus, the edge 

effect due to boundary constraints was negligible. 
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4.4.2  Analytical models 

4.4.2.1  Elastic behaviour 

A mechanistic-based model given by equation (2-2) was used to simulate the 

elastic responses of tooth enamel under applied loads up to a maximum load of 

400 mN with a Berkovich indenter. The structural and mechanical properties of 

the main constituents of enamel (i.e., the mineral and protein) used for the 

calculation of the transverse stiffness of a staggered composite, E2, and the 

effective crystal orientation angle, θ, are given in Table 4-3 [3, 90, 91, 112, 142, 

193, 220]. 

Table 4-3. Structural and mechanical properties of the enamel constituents used in the 

modelling analysis. 

Property: 
Mineral crystal Protein 

Symbol Value Ref. Symbol Value Ref. 

Thickness 

(nm)  
hm 50 [90] hp  1.5*  

Length (nm)  l 500 [91]    

Poisson ratio   m 0.25 [193]  p  0.45 [193] 

Young’s 

modulus [GPa]  
Em 129 [3] Ep  2 [112, 142, 220] 

Spacing of 

mineral 

crystals  

d 1.5     

4.4.2.2  Stress–strain 

The nanoindentation stress–strain responses of unbleached and bleached 

enamel (Section 4.3.5) were fitted into the mechanistic-based model expressed by 

equation (2-9) to determine variables regulating the deformation behaviour of 

tooth enamel during the whitening process.  

Given that the organic matrix may denature during the bleaching (Section 

2.7), it was hypothesised that if the hardness of enamel will decrease, the shear 
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modulus of proteins, τc, will also decrease for bleached enamel while the θ (i.e., 

the effective crystal orientation angle) of bleached enamel will increase due to 

the damaged functionality of proteins. 

4.5  Mild and severe wear 

Considerable efforts have been made in the field of Materials Science to 

increase materials’ resistance against abrasion (i.e. wear) [221]. Scientists are 

often looking for answers and ideas regarding biological materials [222]. For 

instance, teeth in humans as well as in animals have been studied for their unique 

capability of being able to maintain their integrity as well as for their wear 

resistance. However, how tooth enamel is able to resist wear in the oral cavity 

over a person’s lifetime remains unclear. Nevertheless, understanding of enamel 

wear resistance may provide key variables on how to strengthen other synthetic 

engineering materials and improve their resistance against abrasion. On the other 

hand, some factors could affect the wear resistance of the tooth, e. g., diet, the 

nature and preparation of the food, and cultural aspects in human population 

[223]. 

The resistance of tooth enamel can be ascertained theoretically with use of 

well-known ranking parameters and with data obtained from a nanoindentation 

instrument. 

There are two types of wear of materials; mild and severe. While mild 

abrasion is considered as a multi-body process involving at least two materials 

with more likely dissimilar properties and the possible addition of some fluid. It 

also involves the material’s removal at a scale of a grain or sub-grain size under 

low load and the action of polishing particles [224]. Severe abrasion is defined as 

a multiple-point multiple-pass body process in which the removal of particles is 

significantly larger than the grain size [128]. To ascertain wear resistance of a 

material, the H values have been used for a long time as the critical property of a 
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material for ranking. However, it has been shown that the E value is also an 

important in determining the wear behaviour of materials [221, 224, 225].  

Parameters such as H/E and KIC
4
/H*E

2
 have been determined for ascertaining 

mild and severe wear resistance of materials, respectively. The H/E ratio is a 

well-known parameter in assessing the elastic limit of a material’s wear 

resistance with surface contact [225]. As this parameter ranks a material’s wear 

resistance in its elastic region before the material begins to be plastically 

deformed, this parameter can be used for measuring the tooth enamel resistance 

against mild wear. On the other hand, the KIC
4
/H*E

2 
ratio measures the resistance 

to micro-cracking; in other words resistance to the severe wear of a material. The 

theory of fracture mechanics underlying this parameter is summarised below. 

The microcracking wear mechanism from sharp and stiff particles has been 

shown to be initiated at loads for which the predicted crack lengths are larger 

than the indent size [224, 226]. The threshold (i.e., the critical load for the 

initiation of cracks) is expressed as [226]: 

   
 

 
 

 
 
 
  

  
 

 
 
  (4-4) 

where c is the crack length measured from the centre of the indent, Kc is the 

fracture toughness and χ is 0.022 for the Berkovich indenter. Before the initiation 

of cracks at indent corners, the dimension of a plastic indent, a, is equal to the 

final crack, c, with both measured from the indent centre. Therefore, given a = c, 

the critical load, Pc, for the initiation of a microcrack against a sharp contact can 

be derived and rewritten as: 

    
 

    

  
 

   
  (4-5) 

where α is 1.30 for the three-sided Berkovich indenter. 
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Omitting constant values of α and χ in equation (4-5) yields the ratio of 

KIC
4
/H*E

2
. This ratio may provide additional insights into the severe wear 

abrasion resistance of brittle biomineralised tissues such as teeth [227]. 
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5.  Effects of preparation methods on the 
mechanical behaviour of tooth enamel 

5.1  Summary 

A new method of tooth preparation was used to measure the mechanical 

properties of human tooth enamel in its wet environment. These properties were 

compared to the conventional methods, A and B. For the first time, experimental 

results obtained from the nanoindentation instrument were reported to the 

constant indentation depths from the enamel surface up to 2 μm. The overall data 

showed that the use of resin in the sample preparation of tooth enamel had 

detrimental effects on the Young’s modulus, E, and hardness, H, but it had 

positive effects on mild and severe wear resistance. In addition, minimal changes 

of E and H from the enamel surface toward the enamel-dentine junction (EDJ) 

were found for dehydrated and later dried enamel compared to wet enamel. 

5.2  Introduction 

Tooth enamel is a highly brittle, yet resilient dental hard tissue [53], with 

characteristics of a woven fibre-reinforced composite [40], comprising on 

average 96% mineral, 1 % proteins and 3% water by weight [91]. Sustaining high 

loads of more than 1000 N [52, 228], enamel must withstand repeated contact 

damage while protecting the underlying softer dentine and pulp. In contrast to the 

self-healing ability of dentine, enamel cannot fracture during masticatory 

function, as the resultant damage of this hard tissue is non-reversible. Sample 

preparation plays an important role in determining the true mechanical properties 

of enamel. Different from testing of synthetic material, there is no standard 

approach established amongst researchers on how to prepare human teeth for 

nanoindentation testing in the wet environment [48] even tough experimental 

results obtained from the nanoindentation instrument as well as structural 
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features of tooth enamel may be considerably affected by the preparation method 

[29]. 

Highlighting the evidence of sample preparation caveats in teeth and other 

biological materials (Section 2.5.1), the main aim of this study was to investigate 

the mechanical properties of tooth enamel prepared by three different methods: 

the new method and conventional methods A and B. In addition, the resulting 

mechanical properties of tooth enamel were analysed to constant indentation 

depths by employing a new approach of data analysis. The dehydration and 

drying process and its effect on the enamel properties were also investigated. In 

addition, mild and severe wear resistance of tooth enamel prepared by three 

different methods were ascertained according to the ratio’s parameters of H to E 

and the resistance to micro-cracking, respectively (Section 4.5). 

5.3  Materials and methods 

Ten human molars were collected and stored following the protocol outlined 

in Section 4.1.1 and were tested within 4 weeks. The E and H values were 

reported in the range of constant indentation depths (i.e., from the enamel surface 

up to 2 µm). The values at 0 µm were extrapolated from experimental data to 

justify and compare the results with other studies. 

 Spatial distribution 

Three enamel specimens prepared by the new method were tested from the 

enamel surface to the EDJ with a Berkovich following the test settings given in 

Section 4.3.4.  

 E and H values of tooth enamel prepared by three different methods 

Five teeth were used for the comparison of sample preparation methods: two 

teeth were prepared by conventional method A (Section 4.1.3), three halves of 
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teeth were prepared by conventional method B (Section 4.1.4) and the 

remaining three halves of teeth were prepared by the new method (Section 

4.1.2). The E and H results were obtained with the Berkovich indenter up to the 

maximum load of 400 mN in the wet environment using the test settings given in 

Section 4.3.4. On each specimen, 25 indents were made in the middle region of 

the enamel. Assuming a location area of indents being too small (i.e., 250 μm
2
), 

the values of E and H were analysed simultaneously and extrapolated to the 

constant indentation depths. 

The E and H values of enamel specimens that were prepared by three 

different methods were analysed with t-tests to determine whether there were any 

statistically significant differences between the values/methods used. Since the 

methods were not dependent in any way, the first step was to employ the F-test 

two-sample for variances to ascertain whether there were significant differences 

in the variances between E and H values, respectively. The level of significance 

was set at p = 0.05 (i.e. 5 %). The null hypothesis (i.e., assuming equal variance 

between values) was accepted for p > 0.05. Upon analysing the resulting values 

of p values from the F-test, homoscedastic or heteroscedastic t–tests were 

employed at the significance level of 0.05 to determine whether E and H were 

deemed significant between different methods. 

 E and H values of wet and dehydrated – dried enamel 

For the dehydration and drying investigations, two molars, “enamel 1” and 

“enamel 2”, were prepared with the new method (Section 4.1.2) and tested with a 

Berkovich indenter up to a load of 400 mN in the wet environment from the 

occlusal surface towards the EDJ (Section 4.3.4). Later, enamel samples were 

dehydrated and dried following Janda’s approach (Section 4.1.5) and re-tested 

again alongside the previous indents following the test settings given in Section 

4.3.4. Each line containing five indents was analysed individually to the constant 

indentation depth by extrapolating the average values of E and H, respectively. 

For more details about nanoindentation test settings, refer also to Sections 4.3.1, 
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4.3.2 and 4.3.3. Indentation imprints across the EDJ from nanoindentation tests in 

wet and dry environments are shown in Figure 5-1. 

 

 

Figure 5-1. Optical microscopic image of Berkovich indents across the EDJ. Berkovich 

indents in enamel and dentine exhibited larger sizes of imprints in the wet environment 

compared to the dry state. Scale bar = 50 μm. 

 Wear resistance of tooth enamel prepared by three different methods 

The effects of resin embedding on the enamel wear resistance were 

investigated with ratios of a) H/E (mild wear), and b) K
4

IC/H*E
2 

(severe wear) at 

constant indentation depths up to 2 µm (Section 4.5). 

5.4  Results and discussion 

5.4.1  E and H values 

Typical spatial distributions of E and H over the entire thickness of tooth 

enamel are shown in Figure 5-2(a,b). 
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Figure 5-2. Distributions of (a) E [GPa] and (b) H [GPa] data of healthy human molars 

prepared by the new method. These data were measured from the enamel occlusal 

surface (normalised distance = 0) towards dentine (normalised distance = 1). Standard 

error bars are derived from measurements on the three molars’ specimens. 

By employing the new method of nanoindentation data analysis, the E and H 

plots show a decreasing gradient from the enamel occlusal surface towards the 

EDJ, yet interestingly a gradient with the increasing indentation depth up to 2 μm 

Dentine Enamel 

Indentation depth, ht [μm]: 

120 

80 

40 

0 

Indentation depth, ht [μm]: 

EDJ 

0                        0.5                        1                        1.5 
Normalised distance 

H
ar

dn
es

s,
 H

[G
P

a]
 

6 

4 

2 

0 
0                       0.5                       1                      1.5 

Normalised distance 

Y
ou

ng
’s

 m
od

ul
us

, E
 [

G
P

a]
 

(a) 

(b) 

0.0 μm 
0.5 μm 
1.0 μm 
1.5 μm 
2.0 μm 

0.0 μm 
0.5 μm 
1.0 μm 
1.5 μm 
2.0 μm 

EDJ Enamel Dentine 



 

  Chapter 5 

99 

 

 

at fixed locations. Varieties of spatial mappings of E and H of individual enamel 

specimens are also presented in Figure 12-8 in Appendix E. 

The E and H mean values (± standard errors) of healthy enamel prepared by 

three different preparation methods and plotted for selected indentation depths up 

to 2 µm are presented in Figure 5-3(a,b).  

 

Figure 5-3. (a) E [GPa] and (b) H [GPa] of tooth enamel prepared by three different 

methods and measured at different indentation depths. This charts show that resin 

embedding significantly affects the E rather than the H values of tooth enamel. Notably, 

E values of tooth enamel are significantly different for all preparation methods and 

indentation depths, while only the H values of the conventional method B are 

significantly different to the conventional method A and the new method. 

In general, E values decreased with increasing indentation depth for all of the 

preparation methods (Figure 5-3(a)). Comparing E values to conventional 

method A, the moduli of conventional method B were significantly different (p < 

0.05) and lower for all indentation depths. For example, at 1 µm indentation 

depth, E values of conventional method B decreased by 23.94 (± 2.81) % 

compared to conventional method A (Table 5-1).  
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Table 5-1. Improvement and/or degradation of E (± standard error) in % as a positive or 

negative value, respectively. 

Comparison of E in % 
 

Indentation depth [µm] Overall 

0.0 0.5 1 1.5 2 mean 

Conventional method, B  

to conventional method, A 

-6.19  

(±0.42) 

-15.44  

(± 1.78) 

-23.94 

(± 2.81) 

-31.50 

 (± 3.52) 

-37.89 

 (±3.77) 

-22.99  

(± 6.30) 

New method  

to conventional method, A 

 

16.60 

(±0.87) 

14.29 

 (± 1.42) 

13.16  

(± 2.09) 

13.45  

(±2.73) 

15.45 

 (± 3.58) 

14.59 

 (±0.72) 

 

 

     

The results summarised in Table 5-1 clearly show that the use of resin on the 

sectioned tooth (conventional method B) during the sample preparation process 

had the most detrimental (i.e. negative) effects on the enamel stiffness. Statistical 

comparison of resulting E values for conventional methods A and B can be found 

in Appendix F. 

On the other hand, E moduli of the new method were significantly higher 

than the values of conventional method A (p < 0.05). For instance, at 1 µm 

indentation depth, the value of E for the new method increased by 13.16 (± 2.09) 

compared to conventional method A. The new method resulted in higher values 

of E moduli for all indentation depths (Table 5-1). Comparison of the resulting 

values of E for conventional method A and the new method are given in 

Appendix H. 

By analysing the results from both methods (Table 5-1), it is clear that the 

enamel stiffness is significantly higher in the new method while it is lower in the 

conventional methods. The higher value of the enamel stiffness was attributed to 

the sample preparation of the new method in which no chemically based 

substances were used that could degrade its properties. Therefore, the new 

method was adopted in this study to avoid any artefacts which could affect the 

nanoindentation testing results.   

Decreasing trends of E moduli at different indentation depths have also been 

reported by other authors [36-38]. However, values reported in these studies were 
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much lower than the values obtained in this study with the new method. For 

example for 0.5 µm indentation depth, the reported values of E were between 60 

and 70 GPa [38]. By comparing these values to the new method, the E modulus 

of the new method was 106.27 (± 0.92) GPa for the same indentation depth and 

region (Table 12-13 in Appendix H), which corresponded to the decrease by 

34.13 % to 43.54 % in the E of the new method. Interestingly, although Zhou & 

Hsiung used resin during the preparation process [36], their study showed the 

closest values of E moduli at representative depths for tooth enamel prepared by 

the new method. 

Enamel H values of the three preparation methods decreased with increasing 

indentation depth for all three methods (Figure 5-3(b)). By comparing 

conventional method B to conventional method A, enamel at a depth of 0.5 µm 

was softer by 1.11 (±0.44) % (Table 5-2).  

Table 5-2. Improvement and/or degradation of H (± standard error) in % as positive or 

negative value, respectively.  

 

 

     
Comparison of H in % 

 Indentation depth [µm] Overall 

0.0 0.5 1 1.5 2 Mean 

Conventional method, B  

to conventional method, A 

-0.26 

(±0.53) 

-1.11  

(± 0.44) 

-2.61 

 (± 0.67) 

-6.94 

 (± 0.13) 

-11.48 

 (± 0.37) 

-4.48 

 (± 2.34) 

New method  

to conventional method, A 

 

9.85 

(±0.001) 

6.17 

 (± 0.95) 

4.59  

(± 0.30) 

0.46  

(± 0.59) 

- 0.51  

(± 0.79) 

4.11  

(± 2.12) 

The H values of conventional methods A and B differed at lower depths, i.e. 

from 1.5 μm indentation depth. On the other hand, and by comparing the new 

method to conventional method A, the H obtained from the new method had 

higher values for all indentation depths with an overall mean of 4.11 (±2.12) % 

(Table 5-2). For example, at 1 µm indentation depth, the H value of the new 

method was 4.07 ± 0.04 GPa (Table 12-19 in Appendix I), while H values for 

conventional methods A and B were 3.89 ± 0.05 GPa and 3.79 ± 0.08 GPa 

(Table 12-7 in Appendix G), respectively. Although the new method 
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demonstrated higher values of H for all indentation depths, the values between 

conventional method A and the new method significantly differed (p < 0.05) only 

for indentation depths ranging from the surface to 1 μm indentation depth. In 

contrast, differences of H values between conventional method A and the new 

method were not found to be significant (p > 0.05) for indentation depths 

between 1.5 and 2 μm. Resulting values of H comparisons (i.e., p-values) 

between conventional methods A and B and conventional method A and the new 

method can be found in Appendix G and Appendix I, respectively. 

As previously published studies reported either constant load or average 

values of H, there was great difficulty in comparing H values to other studies in 

relation to the sample preparation process. Therefore, only as an example, a value 

from a chart for 0.5 µm indentation depth was extrapolated to represent enamel H 

prepared by resin-embedding. The H of the new method was 4.48 ± 0.07 GPa for 

0.5 µm indentation depth, while previously published values of H for a given 

depth were between 4.00 GPa - 4.10 GPa [37], which corresponded to lower 

values of 8.48 % and ≈ 10.71 % in the H obtained with the new method. 

Comparing conventional methods B to A and to the new method, the results 

of E and H for the sectioned tooth that was inappropriately dried (conventional 

method B) indicated the most negative effects of resin embedding on enamel 

mechanical responses. On the other hand, the new method which avoided resin 

embedding in the preparation process yielded the highest E and H values of 

enamel. Although previous studies showed several degradation mechanisms of 

resin embedding [31, 32, 34, 35, 122, 124], it could not be concluded whether the 

traces of water and the organic matter within inappropriately dried enamel 

affected resin polymerisation and thus compliance and stiffness of resin, or other 

well-known factors such as curing temperature, resin shrinkage and contraction 

stresses damaged the composition and/or structure of the dental tissue which 

resulted in a lower stiffness of enamel. 
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The detail of the resin infiltration through the tooth was outside of the scope 

of this study. Instead, this research focused on how the mechanical properties 

were affected by resin as an embedding medium. An important factor that may 

explain why E is more affected by resin is the measuring procedure in the 

nanoindentation test. From the nanoindentation measurements, the E value is 

estimated by analysing the unloading responses of the load-displacement curve 

while hardness is a less well defined term, changing with the load and the contact 

size (i.e., the contact area). An assumption is considered in the method of 

analysis of experimental values that the loading phase is elastic-plastic while 

unloading is elastic [117]. As the resin was used as an embedding medium in 

previously used conventional methods, the plastic deformation could more likely 

occur during the unloading phase. This deformation would affect the values of E 

during the nanoindentation test. Furthermore, as the E value is extracted from the 

combined value of a reduced modulus, E* (Section 3.1.2), the H value is 

determined only as a load divided by a contact area Ac (Section 3.1.3). Notably, 

this could also lead to significant differences in reported E values compared to H 

values between the new method and conventional methods. 

On the other hand, based on the results from the nanoindentation instrument, 

this study demonstrated that: 

 resin embedding had significant degrading effects on the mechanical 

responses of tooth enamel that resulted in lower values of E and H; 

 conventional methods should be replaced by the new method for the 

investigation of enamel mechanical behaviour in its hydrated state. 
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5.4.2  Dehydration and drying 

Typical spatial distributions of E and H values between dry and wet enamel 

are shown in Figure 5-4(a,b). 

 

 

Figure 5-4. Typical distributions of (a) E [GPa] and (b) H [GPa] of tooth enamel at a 

normalised distance of between 0 and 1 and dentine at a normalised distance higher than 

1 for the constant indentation depth 0.5 µm in the hydrated and dry state. The shaded 

region indicates the indentation area for which comparison analyses for wet and dry 

enamel were made. The standard error bars of two specimens at each location denote the 

combined value of experimental data, i.e. N = 80 of two enamel specimens. 

By observing E and H values between wet and dry enamel over the entire 

thickness (Figure 5-4(a,b)), clear differences of E and H values were noticed 
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particularly near the EDJ. This could be explained by the gradual increase of 

water protein matrix and concurrently by the gradual decrease of mineral density 

in healthy enamel from the enamel occlusal surface towards the EDJ [189]. The 

increasing E and H differences between wet and dry enamel samples at the EDJ 

were possibly due to the existence of the organic phase that was affected by the 

dehydration and drying procedures. Since the enamel occlusal surface and the 

EDJ were not the main subject of this study, the comparisons between wet and 

dry samples were only pursued for the middle region of enamel, as indicated by 

the shaded region in Figure 5-4(a,b). 

Dry and wet E and H values of “enamel sample 1” measured in the middle 

region at selected indentation depths of up to 2 µm below the surface showed 

decreasing E and H trends with increasing loads/depths (Table 12-25 in 

Appendix J). From this table, the average E values in the dry environment 

(95.04±0.79 GPa) were higher than the values in the wet environment 

(92.28±1.19 GPa), giving the overall ratio of 1.03 for all averaged indentation 

depths (≈ 3 %). E values of tooth enamel measured in the dry conditions 

decreased gradually from 100.39±1.46 GPa at the enamel surface (i.e., 0 µm 

indentation depth) to 90.31±0.40 GPa at 2 µm indentation depth. In contrast, the 

values of E in the wet environment declined from 99.37±1.01 GPa to 84.57±1.07 

GPa. On the other hand, by comparing wet to dry H values of enamel (Table 

12-25 in Appendix J), the average H value of dry samples was higher (4.02±0.05 

GPa) than for the wet samples (3.72±0.06 GPa) resulting in the overall ratio of 

1.08 for all averaged indentation depths (≈8 %). In addition, “enamel sample 2” 

exhibited a similar trend to “enamel sample 1”, i.e., decreasing values of both E 

and H of enamel with increasing indentation depth. The ratios between wet and 

dry enamel samples of E and H were found to be 1.05 and 1.07, respectively, for 

the overall average indentation depths (Table 12-26 in Appendix J).  

The combined average values of E and H of enamel and their standard 

deviations, i.e., “enamel samples 1&2”, are represented in Table 5-3. A careful 
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dehydration and drying process increased E and H values by ≈ 4 and ≈ 7 %, 

respectively, compared to normal readings for wet samples (Table 5-3). In 

contrast, the differences of E and H values between dry and wet samples were 

much smaller than reported by other authors; for instance, it was postulated that 

samples were 15 % stiffer if they were tested in a dry environment [26]. In 

contrast to the results of the current experiments which both indicated E and H 

differences in the wet and dry environments, other authors have reported similar 

or identical E values between wet and dry samples and 100 % higher values for 

dry samples (ratio between dry and wet state 2:1) [23]. Additionally, 23 % higher 

values of microhardness were reported for protein-free enamel [47].  

Table 5-3. Mean values of E and H (± standard error) of “enamel samples 1 & 2”. The 

resulting values represent combined E and H values, respectively from the middle region 

of enamel for overall indention depths from 0 to 2 µm. 

Enamel samples 1 & 2  Dry Wet 

E [GPa]  96.12(±0.59)        92.42(±0.72) 

H [GPa]  4.09(± 0.04)  3.81(±0.05) 

Enamel is a composite of three different components: mineral, protein and 

water [189]. Although enamel contains only 1 % protein on the weight percent 

basis [91], this compound plays a pivotal role in enamel remarkable resistance 

against applied loads [45]. It optimises strength and maximises tolerance of flows 

within tissue by allowing limited differential movement between rods [14, 43, 

47]. Furthermore, enamel comprises very little water content, i.e. 3 % by weight 

[91] . Although water itself plays a key role in the enamel structure [80], the 

water-protein matrix softens and plasticises human enamel [109]. In contrast, the 

dehydration media such as ethanol-water and acetone-water mixtures remove, 

either partially or completely, the water-protein phase from enamel [143]. As a 

result, enamel becomes harder and stiffer.  
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E and H data of enamel samples tested in the wet and dry state at the constant 

indentation depth between 0 and 2 µm were reported for the first time in this 

study (refer to Appendix J for more details). It was demonstrated that a careful 

dehydration and drying process had detrimental effects on enamel mechanical 

properties; however, this study showed that these effects were minimised when 

appropriate care was taken during sample preparation and dehydration-drying 

process. 

From the above, it is proposed that the structure controls the mechanical 

responses of tooth enamel. Moreover, by protecting and preserving it, minimal 

differences between E and H can be achieved. 

5.4.3  Mild wear of enamel 

The elastic strain to failure ranking parameter H/E ratio, which is also called 

the plasticity index or the mild wear resistance parameter, was used to measure 

the limit of the elastic behaviour of tooth enamel at the surface contact (Section 

4.5). The results of mild abrasion resistance of human tooth enamel prepared by 

the new and conventional methods A and B at the constant indentation depths are 

presented in Figure 5-5.  

 

Figure 5-5. Mild wear of enamel prepared by the new method and conventional methods 

A and B for indentation depths between 0 and 2 µm. 
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Based on the experimental results, the mild wear ratio supports the hypothesis 

that resin used in the sample preparation process can significantly alter 

mechanical properties in nanoindentation tests. The H/E ratios of mild wear 

removal for enamel prepared by the conventional methods of A and B were 

significantly higher than for enamel prepared by the new method for all 

indentation depths. The overall values of mild wear resistance of enamel 

prepared with conventional methods, A and B, were 0.046±0.001 and 

0.057±0.001, respectively, in contrast to the ratio of enamel prepared by the new 

method, which was only 0.041±0.003 (Table 5-4).  

Table 5-4. Summary of the mild wear resistance of human tooth enamel for indentation 

depths ranging between 0 and 2 µm.  

H/E ratio  
Indentation depth [µm] 

Overall H/E 

0 0.5 1 1.5 2 

New method 0.044±0.001 0.042±0.001 0.041±0.001 0.039±0.001 0.039±0.001 0.041±0.001 

Conventional method, A 0.047±0.001 0.046±0.001 0.045±0.001 0.045±0.001 0.045±0.001 0.046±0.001 

Conventional method, B 0.050±0.001 0.053±0.002 0.057±0.003 0.060±0.004 0.065±0.004 0.057±0.001 

The overall ratio clearly indicates that a chemically based resin used during 

preparation had significant affirmative effects on the mild wear resistance of 

enamel with the increasing indentation depth. The highest value of mild wear 

resistance was found for enamel that was sectioned before resin embedding 

(conventional method B) possibly due to the greatest infiltration of the medium 

into the material, i.e. enamel. Although resin helped to improve mild wear 

resistance of enamel with depth, conventional methods A and B showed the 

largest detrimental effects on E and H (Section 5.4). Notably, there was an 

imperceptibly decreasing gradient of mild wear resistance with increasing 

indentation depth for enamel prepared by the new and conventional method A in 

contrast to conventional method B, which indicated an increasing gradient of H/E 

ratio with increasing indentation depth, as indicated in Table 5-4. 
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However, having higher values of the H/E ratio at the surface than at lower 

depths, as was shown for the new method and conventional method A, gives 

enamel a unique wear ability of being able to suppress abrasive removal material 

at the surface and therefore protect it from further mild abrasion. This study 

suggests that the significantly larger differences of the H/E ratio between enamel 

prepared by the new method and conventional method A and B were due to the 

resin infiltrated structure of enamel during the preparation process. Hence, it is 

apparent that resin drastically reduced E and H values while it enhanced tooth 

enamel mild wear resistance.  

For ranking of enamel with other materials, the values of E and H reported in 

the literature are listed in Table 5-5. 

Table 5-5. Mechanical properties of selective biological and dental materials used for 

mild wear comparison to human enamel [9, 115, 227, 229]. 

 

Biomaterials E [GPa] H [GPa]  Ref 

Dry laminated biosilica, M. chuni  ≈ 34 ≈  5 [229] 

Dry radular teeth, C. stelleri  90-125 9-12 [227] 

    Dental materials E [GPa] H [GPa]  Ref 

Zirconia-based ceramics (yttrium partially stabilised 

tetragonal zirconia polycrystal Y-TZP)  ≈ 240.0  ≈ 13.00  [115] 

Glass-based feld spathic dental ceramics  ≈ 78.90  ≈ 10.64 [9] 

Comparing the overall H/E ratio of tooth enamel prepared by the new method 

to other biomaterials, i.e., 0.041±0.003 (Table 5-4), the ratio of mild abrasion 

wear of wet enamel is ≈ 2.39 and ≈ 3.59 times less than for radular teeth (H/E ≈ 

0.098) and biosilica (H/E ≈ 0.147), respectively. 
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Figure 5-6. Ranking of tooth enamel with other biological and dental materials.  

Biosilica and radular teeth have distinguished, yet superior mild abrasion 

capabilities compared to tooth enamel [11, 12]. Notably, the mild wear resistance 

of tooth enamel is similar to that of zirconia-based ceramics. In contrast, the 

glass-based ceramics exhibit similar wear behaviour as biosilica; however, they 

have ≈3.3 times higher mild wear ratio than enamel resulting in rather 

detrimental mild wear effects to opposing teeth (Figure 5-6).  

5.4.4  Severe wear 

Severe abrasive wear of enamel can be defined as a multiple-point multiple-

pass body abrasive wear process that occurs in the oral cavity, for instance during 

grinding, biting or chewing of hard food, and can be ascertained by Kc
4
/E

2
H ratio 

(Section 4.5). The values of fracture toughness used in the calculations of this 

parameter for different materials are listed in Table 5-6. 

Table 5-6. Fracture toughness, Kc of enamel and other biological and dental materials. 

 

Fracture toughness, Kc  MPa.m
1/2

  Ref 

Enamel in wet state 0.70 [230] 

Dry laminated biosilica, M. chuni  0.84 [229] 

Glass-based ceramics 1.36 [231] 

Zirconia-based ceramics 5.5 [115] 

                  1                     2                     3                     4                     5 
Material’s ranking 

H
/E

 r
at

io
 [

 -
 ]

 

0.16 

0.12 

0.08 

0.04 

0 

 

Enamel 

(prepared by 

the new 

method) 

Zirconia- 

based 

ceramics 

(Y-TZP)  

 

Radular 

teeth,  

C. stelleri  

 

 

Glass-based 

feld spathic 

dental ceramics  

 

 

Dry laminated 

biosilica,  

M. chuni  

 

 



 

  Chapter 5 

111 

 

 

While fracture toughness of radular teeth remains unknown [227], only 

laminated biosilica and the two most common dental ceramics were used in the 

present evaluations and comparisons of severe wear to human enamel prepared 

by the new method and conventional methods A and B. This study presents the 

results of threshold of ascertaining resistance to micro-cracking of enamel 

prepared by the new and conventional methods A and B at constant indentation 

depths between 0 and 2 µm, as shown in Figure 5-7. 

   

Figure 5-7. Severe wear of enamel prepared by the new method and by the conventional 

methods A and B for indentation depths between 0 and 2 µm.  

 In contrast to the mild wear of enamel prepared by the new method and 

conventional method A, which both demonstrated a diminutive decrease with 

increasing indentation depth, the resistance to micro-cracking indicated an 

opposite trend and increased with the indentation depth for all three preparation 

methods of enamel (Table 5-7). 

Table 5-7. Summary of severe wear of tooth enamel for indentation depth ranging 

between 0 and 2 µm. 

Kic4/H.E2 

[ mN x 10-4] 
Indentation depth [µm] Overall  Kc4/H.E2 

[ mN x 10-4] 0 0.5 1 1.5 2 

New method 0.036±0.001 0.048±0.001 0.060±0.001 0.076±0.002 0.088±0.003 0.062±0.003 

Conventional method, A 0.053±0.002 0.067±0.004 0.083±0.005 0.102±0.009 0.124±0.016 0.086±0.005 

Conventional method, B 0.060±0.002 0.092±0.008 0.147±0.016 0.241±0.033 0.390±0.074 0.186±0.023 
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In addition, tooth enamel performed better against severe wear damage in 

greater depths than at the surface level and even better when it was infiltrated 

with resin. Enamel sectioned before resin embedding (conventional method B) 

indicated significantly better overall averaged abrasion damage against sharp 

particles than enamel encapsulated in resin without cutting (conventional method 

A), 0.186 ± 0.023 (mN x 10
-4

) and 0.086 ± 0.005 (mN x 10
-4

), respectively.  

Comparing enamel prepared by conventional methods, the overall severe 

wear of enamel prepared by the new method was only 0.062 ± 0.003 (mN x 10
-4

) 

for all indentation depths. Ascertaining enamel resistance to severe damage, 

enamel alone without infiltration of any media manifested higher vulnerability to 

the severe wear indicating that tooth enamel was more prone to cracks and 

fractures. 

The experimental results suggested that environment and indentation depth 

strongly influenced the inhabitation and stabilisation of crack-like defects 

augmented by a mechanism of stress-shielding, prism-interweaving and self-

healing [53]. Although resin embedding may reinforce enamel structure [49], the 

organic matter may be plasticised and this may result in enhanced severe wear 

abrasion resistance with increasing indentation depth. The very small volume of 

proteins in enamel plays a vital role in the crack resistance stability to tooth 

fracture by closing or gluing cracks within the material [53]. The enhanced 

toughness with increasing depth may be also due to the increasing interweaved 

prism-organic matter interplay that leads to enhanced crack shielding ability by 

subsequent sliding at the interfaces [229]. 

The resulting values of severe wear parameter for biosilica and dental 

ceramics are listed in Table 5-8. 
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Table 5-8. Severe wear of laminated biosilica and dental materials represented by 

proportional resistance parameter to micro-cracking from a sharp abrasive, Kc
4
/H.E

2 
 

[mN x 10
-4

]. 

 Biomaterial 

K
c

4

/H.E
2 

 [mN x 10
- 4

] 

Dry laminated biosilica, M. chuni  0.86  

   
Dental materials 

 Glass-based feld spathic dental ceramics  0.52  

Zirconia-based ceramics (yttrium partially stabilised 

tetragonal zirconia polycrystal Y-TZP)   12.22  

The overall mean value of the severe wear parameter, Kic
4
/H.E

2 
 of tooth 

enamel prepared by the new method was found to be significantly lower (i.e., 

0.062±0.003 from Table 5-7) by a factor of 8, 14 and 200 compared to glass-

based ceramics, biosilica and zirconia-based ceramics, respectively (Figure 5-8).  

 

 

Figure 5-8. Severe wear comparison of enamel prepared by the new method with other 

biological and dental filling materials. 
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Notably, the severe wear parameter is strongly dependent on the value of 

fracture toughness of the material. For instance, for a value of fracture resistance, 

Kic = 0.57 MPa.m
1/2

 [47] (instead of 0.7 MPa.m
1/2

), the overall severe wear of 

enamel prepared by the new method decreased from 0.062 ± 0.003 MPa.m
1/2 

to 

0.027 ± 0.001 MPa.m
1/2

.  

While evaluating the results of mild and severe wear of tooth enamel to other 

materials, the mild wear properties of glass-based ceramics and severe wear 

properties of zirconia-based ceramics showed the most suitable wear 

characteristics to human tooth enamel. However, abrasion wear parameters are 

not the only factors that influence the wear between enamel and dental materials. 

Other variables such as ceramic microstructure, fracture toughness, and contact 

damage mechanism must also be considered in the overall evaluation and design 

of novel dental materials [9]. 

5.5  Conclusion 

In conclusion, this chapter proposed a new method of tooth preparation for 

nanoindentation testing in the wet environment. The experimental E and H 

results from the new method at constant indentation depths were found to be 

higher by 14.59±0.72 % and 4.11±2.12 %, respectively, compared to the 

conventional method A with a gradually decreasing gradient with increasing 

indentation depth at one location.  

To the best of our knowledge, this is the first study which has attempted to 

report E and H values of wet and dry enamel at constant indentation depths 

between the enamel surface (i.e., 0 µm) and 2 µm. Although a careful 

dehydration and drying process increased E and H by ≈ 4 % and ≈ 7 %, 

respectively, experimental data demonstrated that the E and H differences 

between dry and wet samples were diminished for tooth enamel prepared by the 

new method.  
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Mild wear resistance was analysed with elastic strain to failure ratio H/E to 

ascertain the effects of resin embedding in sample preparation process. The H/E 

ratios of mild wear removal for enamel prepared by conventional methods A and 

B were significantly higher than for enamel prepared by the new method for all 

indentation depths. The overall ratios showed that resin used during sample 

preparation had positive effects on the mild wear resistance of enamel with the 

increasing indentation depth. Notably, there was a decreasing gradient of mild 

wear resistance with the increasing depth for the new and conventional method A 

in contrast to conventional method B, which demonstrated an increasing gradient 

of H/E ratio with the increasing depth. Comparing enamel H/E ratio to other 

materials, the H/E ratio for enamel was 2.39, 3.59 and 3.3 times less than for 

radular teeth, laminated biosilica and glass-based ceramics. Zirconia-based 

ceramics exhibited similar mild wear behaviour to enamel. 

This study presented for the first time the results of severe wear of enamel 

prepared by the new and conventional methods A and B at constant indentation 

depths between 0 and 2 µm. In contrast to the mild wear resistance of enamel 

prepared by the new method and conventional method A, which showed a 

diminutive decrease with increasing indentation depth, the resistance to micro-

cracking indicated an opposite trend and increased with indentation depth for the 

new and conventional methods A and B. It was concluded that enamel performs 

better against severe wear damage at greater depths and when it is permeated 

with resin. 
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6.  Effect of preparation methods on 
enamel microstructure 

6.1  Summary 

Two enamel specimens prepared by the new method and conventional 

method A were used to investigate the detrimental effects of preparation 

methods on the enamel microstructure. In addition, a tooth prepared by the new 

method was tested with a Berkovich indenter across the enamel-dentine junction 

(EDJ) in the wet state and later dehydrated and dried following an appropriate 

protocol. High resolution SEM images revealed the intact interface with no 

formation of cracks along or across the EDJ for a tooth prepared by the new 

method. On the other hand, a split boundary between enamel and dentine as well 

as a large amount of defects in the form of fissures on the enamel surface were 

observed for inappropriately dried enamel embedded in resin (conventional 

method A). This study showed that the new method of enamel preparation 

combined with Janda’s dehydration and drying protocol yielded a preserved, 

genuine structure of dental tissue. 

6.2  Introduction 

Badly dehydrated and/or dried human teeth are hard, yet not compact, 

particularly near the EDJ [29]. Given the ratio of water-protein content for 

dentine and enamel 30 wt% and 4 wt%, respectively[48], these two distinctively 

hydrated tissues with very different biomechanical properties are expected to dry 

differently during dehydration and drying processes [130]. 

Once tooth specimens are dehydrated and all water replaced by ethanol and 

later on by acetone, both solvents must be removed in a controlled environment, 

for instance by using a vacuum desiccator to preserve the tooth structure. 
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Previous authors have investigated crack propagation across the EDJ with 

Vickers indents and reported that “the vacuum of conventional SEM sometimes 

led to cracking either along the line of indents or at/near the optical EDJ due to 

an inappropriate drying procedure” [21]. 

Given the unpreserved structure is a probable cause in abrupt changes along 

the EDJ region, the main objective of this investigation was to provide high 

resolution images of the EDJ interface for the enamel specimens prepared by the 

new method (Section 4.1.2) and the conventional method, A (Section 4.1.3). 

6.3  Materials and methods 

Two human molars were collected and stored following the protocol outlined 

in Section 4.1.1. One tooth was prepared by conventional method A (Section 

4.1.3), dehydrated, and then dried following Janda’s approach (Section 4.1.5). 

The other tooth was prepared by the new method (Section 4.1.2) and tested with 

a Berkovich indenter up to maximum load of 400 mN in the wet environment 

near the EDJ. Later, this tooth sample was dehydrated, and then dried following 

Janda’s approach (Section 4.1.5). 

The EDJ observation was conducted on coated specimens with 3 nm layer of 

platinum in a Zeiss SEM. For more details about the test setting apparatus, refer 

to Section 4.2.3. 

6.4  Results and Discussion 

SEM images of a human tooth prepared by the conventional method A are 

shown in Figure 6-1(a,b). In this method, the tooth was dried on the bench 

before resin embedding. As a result, widespread sets of fractures over the tooth 

surface and crack formations along the EDJ (Figure 6-1(a)) and across the tooth 

(Figure 6-1(b)) were observed.  
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Figure 6-1. SEM images of (a) mesial and (b) distal areas of human molar prepared by a 

conventional method, A. Detrimental effects of conventional method A on the enamel 

microstructure are evident. The tooth specimens exhibited artefacts in the form of 

fractures and cracks along the EDJ. Scale bar = 200 µm. 

A split EDJ boundary could be explained by the shrinkage of enamel and 

dentine due to uneven drying of the tooth during resin solidification. This leads to 

tension stresses along the EDJ that result in formation of cracks and fractures 

along the EDJ. By using conventional method A during the enamel preparation 

process, the EDJ appeared as a weak interface.  

a) 

b) 

enamel 

enamel 

dentine 

dentine 

EDJ 

EDJ 
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On the other hand, while preserving tooth microstructure under a careful 

dehydration and drying protocol, the genuine EDJ was observed (Figure 

6-2(a,b)).  

 

Figure 6-2. Morphological images of the EDJ prepared by the new method. 

A scalloped pattern of the EDJ is shown in Figure 6-2(a), with detailed focus 

in Figure 6-2(b). In addition, the images show the intact EDJ even after multiple 

Berkovich indents up to a maximum load of 400 mN (Figure 6-3(a,b)). 
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Figure 6-3. SEM images of Berkovich indents of 400 mN load across the EDJ region. 

Marked with a white arrow in a) and b), the images show no initiations of cracks from 

the edges of an indent along the EDJ boundary. Scale bar = 10 µm. 

While the EDJ is considered as a weak interface due to mismatched 

properties between enamel and dentine [21], no propagating cracks along the 

indentation lines in enamel, dentine or at the EDJ were found after multiple 

indentation lines across the EDJ region up to maximum load of 400 mN (Figure 

6-3(a,b)). The reason of using a Berkovich indenter was to probe the EDJ 

interface and see if corner cracks would emanate from the imprints under applied 

dentine 

dentine 

enamel 

enamel 
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loads. The absence of the corner cracks was in part associated with the benefits of 

the new method of the sample preparation.   

Although it was previously shown that the role of the organic matrix may 

play an important role in preventing delamination of enamel and dentine [47], 

this study suggests that the preserved structure rather than the composition plays 

a more crucial role in maintaining the integrity of the EDJ. If the dehydration and 

drying procedure removes, partially or completely, the protein–water content of 

the tooth tissue [232], a weakened EDJ should be expected [47]. However, in this 

study, the EDJ remained intact and showed a strong physical interface that was 

revealed by SEM images. 

6.5  Conclusion 

This chapter demonstrated that an inappropriate dehydration and/or drying 

procedure followed by resin encapsulation during the sample preparation process 

resulted in the fractured EDJ and cracks across enamel. By following the protocol 

of the new method of tooth preparation, an intact boundary with a strong physical 

appearance was observed even after multiple indentations with Berkovich indents 

up to a load of 400 mN.  

The features of the scalloped interface combined with gradual decreasing 

changes in mechanical properties are critical in designing novel hard coating 

materials in the field of nanotechnology where joining of two materials with two 

mismatched mechanical properties is of significant. A comprehensive modelling 

mechanism of the EDJ from the nano- to macro-scale is the topic of on-going 

investigation. 
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7.  Elastic behaviour of tooth enamel 

7.1  Summary 

The relationship between the elastic behaviour and microstructure of enamel 

during loading was investigated under fully hydrated conditions. Young’s 

modulus of enamel, E, was determined at constant depths according to the newly 

developed method of data analysis and simulated with a mechanical model. This 

model linked the depth-dependent modulus to the contact-induced 

microstructural evolution, i.e., to the change of the effective crystal orientation 

angle. The angle was found to be ~45 and could aided shear sliding in enamel 

by which the stress build-up was relieved. 

7.2  Introduction 

Being the hardest tissue in human body, tooth enamel is built to last [51]. The 

load-bearing capacity of enamel is governed by its unique ultrastructure that 

comprises well-organised hydroxyapatite (HAP) platelets glued together by 

protein matrix (Figure 2-5) [5]. The E value is commonly used to define the 

enamel resistance to deformation. Treated as a hybrid laminate at small scales [6, 

111], enamel modulus is determined not only by the volume fraction and 

properties of its constituents, but also by the orientation of the mineral crystals 

[7].  

The E of enamel is determined by depth-sensing indentation (DSI, often 

named nanoindentation) [139, 203]. Notably, E values of enamel reported in the 

literature vary considerably, where typical ranges from 50 to 120 GPa are found 

[18]. The observed variation in E stems from inconsistencies in measured 

location, testing environment (i.e., dry or hydrated) and sample condition (i.e., 

young or aged tooth) [18, 24-27]. Nevertheless, Zhou and Hsiung [36] showed 

Enamel 
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that the E of enamel decreases incessantly with increasing indentation depth even 

at a fixed location. They suggested that it is necessary to establish a direct link 

between the changing modulus and microstructural evolution of enamel during 

mechanical contact in order to better understand its function. 

Given the dependence of E of enamel on the penetration depth, it is essential 

to conduct measurements at constant depths when interrogating the E of enamel 

across its thickness. Unfortunately, most DSI tests are performed under load 

control (i.e., constant loads), making it difficult to compare the modulus values 

obtained from different samples and regions, where indentation depths may differ 

[36-38]. Moreover, although the testing condition is known to affect the 

mechanical properties of enamel [23, 26], the majority of DSI tests are carried 

out on either dried samples or ‘wet’ specimens that were once dried during 

preparation [18, 39]. 

In the current study, an in-depth investigation of the elastic behaviour of 

enamel under the influence of mechanical loads was conducted. Enamel samples 

were prepared and tested in the fully hydrated state. E of enamel was measured in 

two different ways: from the surface to the enamel-dentine junction (EDJ) at 

constant depths and at a fixed location to different depths. The indentation size-

dependence of E in the middle region of enamel was analysed using a 

mechanistic model with respect to its microstructure characteristics.  

7.3  Materials and methods 

 Sample preparation and testing 

Two human molars were collected and stored according to the protocol given 

in Section 4.1.1. Teeth were prepared by the new method (Section 4.1.2) and 

tested with a Berkovich indenter from the occlusal surface towards the EDJ 

following the test settings given in Section 4.3.4. Later, the middle region of 
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tooth enamel was selected as the representative area for analysing E values with 

increasing depths.  

 Statistical analysis 

A one-way analysis of variance (ANOVA) was employed to verify whether 

there were any significant statistical differences between the E of enamel with 

increasing indentation depths. An ANOVA result was deemed significant if the 

p-value was less than 0.05, after which a Bonferroni post hoc test was 

implemented to determine the level of indentation load that results in a 

significant change in the E of enamel. 

 Microstructural observation 

Transmission electron microscope (TEM) images were taken according to the 

protocol described in Section 4.2.2. 

 Finite element analysis modelling 

Finite element models (FEM) were constructed to clarify the effect of shear 

deformation on the magnitude and distribution of contact-induced stress in 

enamel by using the COMSOL software. For more details, refer to Section 

4.4.1.1. 

7.4  Results and discussion 

Load-displacement curves of enamel show that the resistance to deformation 

varies in enamel (Figure 7-1(a-c)). The contact indentation depth, hc, measured 

at the enamel occlusal surface gradually increased towards the EDJ, suggesting 

that enamel becomes less stiff towards the inner region. This observation agrees 

with findings presented in Chapter 5. In addition, the overall indentation depth, 

ht, increased from the occlusal surface towards the EDJ by 6.11 ± 1.42 % 

(Appendix K).  
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Figure 7-1. A typical illustration of the indentation load, P, as a function of a 

displacement (i.e., indentation depth), h, of enamel produced by a Berkovich indenter in 

regions: (a) near the enamel occlusal surface, (b) in the middle and (c) close to the EDJ. 

The contact depth, hc, was estimated to be ~1.8 µm, ~1.9 µm and ~2.1 µm in (a), (b) and 

(c), respectively. 

As discussed previously in Chapter 5, E decreased with the increasing 

distance from the enamel occlusal surface as well as with increasing indentation 

depths. The change of the elastic behaviour of enamel can, in part, be attributed 

to the variation in the concentration of calcium and phosphate from the surface 

towards dentine [18, 91]. Notably, a similar E decrease from the enamel occlusal 

surface towards the EDJ has been observed previously  [36, 37], leading to the 

identification of enamel as a functionally graded material [54]. 
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One of the objectives of this work was to illustrate that the E value varies 

with changing depths. However, it was extremely difficult to measure E exactly 

at a specified depth under controlled load, and hence, a direct comparison of E 

among the pre-determined depths was not a viable option. Alternatively, one 

could approach the problem by investigating whether there is a difference in E at 

various loads, which can then be translated to the corresponding depths. To begin 

with, the link between the indentation load and depth was explored for the middle 

region of enamel. As expected, larger loads led to greater depths (Table 7-1). On 

average, a load of 50 mN yielded an indentation depth of 0.80 µm, which steadily 

increased to 2.41 µm at a load of 400 mN. 

Table 7-1. Mean indentation depth, h of five indents (from one indentation row) 

measured from the middle region (i.e., a normalised distance of 0.50) of enamel at 

various loads. 

Load (mN)  

Mean depth (µm) 

Specimen 1  Specimen 2  Overall  

50  0.81  0.79  0.80  

100  1.17  1.15  1.16 

150  1.44  1.42  1.43  

200  1.68  1.67  1.68  

250  1.91  1.87  1.89  

300  2.10  2.07  2.09  

350  2.26  2.24  2.25  

400  2.42  2.40  2.41  

The legitimacy of this approach was confirmed by a Pearson correlation 

analysis between the indentation load and depth (Table 7-2), which indicated that 

there was a strong linear and positive correlation (r > 0.98). Consequently, 

translating a load into a depth was a fairly straightforward process, which 

involved the linear interpolation of the mean depth values given in Table 7-1. 
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Table 7-2. Linear association between indentation load, P and depth, ht. 

Tooth 
Pearson 

Correlation r  

Specimen 1  0.987  

Specimen 2  0.991  

A simple exploratory analysis was initially carried out to provide the mean 

and standard deviation (Table 7-3) of E measurements at five indents taken from 

a single indentation row, which was located in the middle region of enamel.  

Table 7-3. Mean ± standard deviation of E modulus at five indents (from one 

indentation row) measured from the middle region (i.e., a normalised distance of 0.5) of 

enamel. 

Load (mN)  

Mean ± St. Deviation 

Specimen 1  Specimen 2  

50  95.70 ± 2.88  97.54 ± 1.91  

100  92.91 ± 3.82  95.14 ± 2.64  

150  89.70 ± 2.28  93.13 ± 1.17  

200  88.53 ± 2.47  92.29 ± 0.80  

250  86.71 ± 2.72  92.19 ± 1.12  

300  85.59 ± 2.72  91.38 ± 0.89  

350  85.13 ± 3.59  90.36 ± 0.90  

400  82.65 ± 1.98  89.12 ± 0.76  

The middle region was defined by a normalised distance of 0.5 from the 

enamel occlusal surface. The preliminary results from Table 7-3 indicated that 

there was a systematic reduction in E with increasing load (and hence, increasing 

depth). On average, the difference in E between loads of 50 and 400 mN was 

approximately 13 and 8 GPa, respectively, for tooth specimens 1 and 2. It must 

be noted here that the E values presented in Table 7-3 for the middle region of 

tooth enamel are slightly higher than the values reported in Figure 5-2(a) for the 

same region. As there are great variations between and within human teeth, the 
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different E values could be explained by different samples used in this part of the 

study.  

The results of the ANOVA indicated that there was a significant difference (p 

< 0.001) among the indentation loads in E values of enamel for the two tooth 

specimens. Subsequently, a Bonferroni post hoc test was implemented to 

determine the level of indentation load that resulted in a significant reduction in E 

of enamel. The results of the post hoc test are presented in Table 7-4. 

Table 7-4. P-values for the comparisons of E moduli values measured at various loads 

against that obtained at the maximum indentation load of 400 mN. As previously shown, 

load is strongly correlated with indentation depth, thus these comparisons are also depth 

comparisons. 

Load  

P-value 

Specimen 1  Specimen 2  

50  < 0.001  < 0.001  

100  < 0.001  < 0.001  

150  0.007  0.002  

200  0.040  0.018  

250  0.452  0.024  

300  > 0.500  0.468  

350  > 0.500  > 0.500  

400 > 0.500  > 0.500  

The Bonferroni post hoc test revealed that, with the exception of specimen 2 

at load 300 mN, there were no significant differences in E at loads 300 to 400 

mN (p > 0.05), which translates to a ~2.09 to ~2.41 µm mean indentation depth. 

However, at lighter loads (i.e. < 250 mN or < 1.89 µm depth), the E of enamel 

began to significantly differentiate itself from that obtained at 400 mN (p < 0.05). 

With p values of less than 0.001, there was strong evidence to suggest that E at a 

load of 50 mN (0.80 µm overall mean depth) was substantially greater than that 

at a load of 400 mN (2.41 µm overall mean depth) for both tooth specimens. The 

results strongly agreed with Zhou et al. [36], who stated that  that the E values do 
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vary with changing depth. Additionally, the previous results showed (Chapter 5) 

that the E reduced with increasing depth in human tooth enamel over its entire 

thickness, i.e., from the occlusal surface toward the EDJ.  

The changes of E with the indentation depth in a fixed location of enamel 

were analysed with a mechanical model. This model was built from the 

observation (Figure 7-2(a,b)) that enamel exhibits a staggered mineral-protein 

structure, in which the mineral crystals could rotate to accommodate the 

deformation [36].  

 

Figure 7-2. Transmission electron micrographs of (a) tooth enamel  prepared parallel to 

the direction of the rods, (b) an enlarged view of circled area in (a). Courtesy of Dr. Z. 

Xie. 

According to the analytical model (Sections 2.8.2 and 4.4.2.1), the E of 

enamel in its elastic region is calculated as    
      -      

 

     
    

     

     
 . By 

using structural and mechanical properties of the main constituent of enamel, i.e., 

mineral and protein from Table 4-3, the shear modulus of the mineral–protein 
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component, G, and the modulus perpendicular to the c axis of mineral crystal, E2, 

were calculated (Table 12-28 in Appendix L). Later, the effective crystal 

orientation angle was defined for the E moduli measured at different indentation 

depths at a location in the middle region of enamel for the loads between 50 and 

400 mN (Table 7-5). The results showed that when the overall mean penetration 

depth increased from ~0.80 to ~2.41 µm (Table 7-1), the effective crystal 

orientation angle changed from ~44 to ~48 degrees (Table 7-5). The resulting 

values of the angle calculations for specimen 1 and specimen 2 can be found in 

Appendix L: Table 12-29 and Table 12-30, respectively. 

Table 7-5. The change of E in the middle region of enamel governed by the tilting of 

mineral crystals (angle θ ± standard deviation) during deformation. 

  Specimen 1 Specimen 2 

P [mN] E [GPa] θ
o
 E [GPa] θ

o
 

50.00 95.70±2.88 44.59 
+0.27 

97.54±1.91 44.85 
+0.44 

-0.26 -0.41 

100.00    92.91 ± 3.82 44.94 
+0.41 

   95.14 ± 2.64 45.28 
+0.66 

-0.38 -0.58 

150.00    89.70 ± 2.28 45.25 
+0.19 

   93.13 ± 1.17 45.83 
+0.43 

-0.18 -0.39 

200.00    88.53 ± 2.47 45.38 
+0.13 

   92.29 ± 0.08 46.04 
+0.49 

-0.13 -0.44 

250.00    86.71 ± 2.72 45.40 
+0.19 

   92.19 ± 1.12 46.40 
+0.59 

-0.18 -0.52 

300.00    85.59 ± 2.72 45.53 
+0.15 

   91.38 ± 0.89 46.63 
+0.63 

-0.15 -0.55 

350.00    85.13 ± 3.59 45.71 
+0.16 

   90.36 ± 0.90 46.74 
+0.87 

-0.16 -0.73 

400.00    82.65 ± 1.98 45.93 
+0.14 

   89.12 ± 0.76 47.32 
+0.53 

-0.14 -0.47 

Recently the effective crystal orientation angle has been identified as the 

critical variable, among others, that regulates the mechanical behaviour of 

enamel [105]. Using this concept, a deeper understanding of the elastic behaviour 

of enamel was developed in this work, that is, the decrease of E of enamel with 
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the increase of the indentation depth was governed by the rotation of the mineral-

protein laminate assembly under the mechanical loading (Figure 7-3). 

  

Figure 7-3. Schematic illustrations showing the responses of mineral crystals to 

increasing indentation loads from P1 to P3 (i.e., the increasing severity of deformation) 

by changing the effective crystal orientation angle from 1 to 3, resulting in a change in 

E in the middle region of enamel.  

The findings of a decreasing pattern of E from the occlusal surface of tooth 

enamel to the EDJ were previously related to the mineral and organic content or 

decussation. In general, the content of calcium and phosphorus decreases from 

the surface to the EDJ, while the protein content increases in this direction 

(Chapter 2). This reflects the decrease of E values from the surface to the EDJ 

(Chapter 5). In addition, this study revealed that the effective crystal orientation 

angle changes under applied loads with increasing depths. The relationship 

between E findings and the effective crystal orientation angle was also analysed 

by a physical model in this study for the middle region of tooth enamel. Note this 

nanoscale model simplified the prism decussation pattern of tooth enamel in 

order to observe the changes of E values and the effective crystal orientation 

angle for one region/one location. 

θ 

(b)
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According to the Hook’s Law, a reduction in E would slow down or even 

reduce the rise of contact-induced stress in enamel, compared to the conventional 

material having a constant modulus. By doing so, the load-bearing ability would 

increase. In addition, it is interesting to note that the calculated values of the 

effective orientation angle are about 45. A mechanistic model was used to 

rationalise the adoption of such an effective angle in the enamel structure (Figure 

7-4). 

 

Figure 7-4. Model of shear deformation between mineral crystallites. Note that A’ is the 

projected area of a mineral platelet having a surface area of As onto the horizontal plane, 

 is the shear stress, and ,  are the angles that the platelets make with the horizontal 

and vertical directions, respectively. 

According to the model, the shear stress,  can be expressed as: 

  
 

 
        (7-1) 

where  is the normal stress expressed as a force divided by an area. The shear 

deformation between mineral crystals is essential for the remarkable damage 

tolerance observed in enamel [6, 111]. To enable such shear process, the shear 
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stress developed between the mineral crystals should be maximised through the 

optimisation of the effective crystal orientation angle. Therefore, to meet this 

requirement, the effective crystal orientation angle should be close to 45°, which 

is consistent with what the model revealed (Table 7-5). 

FEA simulations were performed to elucidate the benefit of shear 

deformation to enamel mechanical function. Compared to the ‘purely elastic’ 

model (i.e., without considering the shear process) (Figure 7-5(a)), a reduction in 

the maximum shear stress from 5.5 to 5.0 GPa, was observed, when the shear 

effect was taken into account (Figure 7-5(b)). 

 

Figure 7-5. The shear stress distribution generated in enamel by indentation at a depth of 

0.28 µm: (a) perfect elastic model and (b) shear sliding enabled model. 

Additionally, the stress distribution pattern was also modified under shear 

deformation; the volume populated by larger stress was reduced significantly 

(Figure 7-6). For example, the volume acted by the stress level > 3.5 GPa was 

reduced by more than 70 % when the shear was enabled, and the volume 

influenced by the stress level > 4.5 GPa almost diminished when the shear was 
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considered. Consequently, the decrease of stress level and reduction of material 

volumes subjected to higher stresses, resulting from the shear deformation 

between mineral crystals, could further enhance the load-bearing ability of 

enamel. 

 

Figure 7-6. The size of regions under the influence of shear stresses greater than (s1) 3.0 

GPa, (s2) 3.5 GPa, (s3) 4.0 GPa and (s4) 4.5 GPa, calculated from the FEM simulations. 

Note that ‘PE’ stands for the perfect elastic model and ‘SS’ for the shear-sliding model. 

Notably, there are some shortcomings of this study that are important to 

discuss. The results of modelling showed that the crystal orientation is one of the 

important variables which could contribute to reduction of the enamel stiffness 

under indentation loading by the rotation; however, there are other factors 

involved that may contribute to the change of E with increasing depth, i.e., the 

level of observation, anisotropy of E moduli and orientation of mineral crystals 

[112], prism orientations [107], level of hierarchy [3], the shape of the tooth 

crown and morphology of the enamel cap [49], thickness and shape [186], 

gradient in mechanical properties [50], increasing organic content from the 

occlusal surface towards EDJ [5], as well as micro-cracking mechanism [50].  

Although a micro-cracking mechanism could affect resulting values of the angle 
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θ due to loads higher than 200 mN [50, 105], no cracks or fractures have been 

observed under applied loads of 400 mN for the middle region of enamel (Figure 

12-6). On the other hand, larger indents induced by higher loads could also be a 

concern as the indents may easily involve more than one crystal or prism, and 

thus greater organic content may lead to the decreased values of E moduli. 

Despite all limitation listed above, this study contributed to the identification of 

the effective crystal orientation angle as another variable that affect the 

remarkable resilience of tooth enamel in its elastic region. However, more 

investigations are needed to explore the application of this concept across the 

thickness of enamel when other factors are also involved. 

7.5  Conclusion 

By combining depth-sensing indentation tests and modelling, this study has 

shown that the change of E with increasing indentation depth was directly linked 

to the tilting of mineral crystals in the middle region of enamel. The results also 

showed that the effective crystal close to 45 facilitated the shear-sliding of 

mineral crystals during loading and was essential for the mechanical resilience of 

enamel. FEM revealed that the shear deformation not only lowered the stress 

level, but also reduced the size of material volumes subjected to larger stresses.  

The present work is expected to renew interest towards understanding the 

mechanical characteristics of biological materials that often assume a laminate 

structure, through which additional design guidelines can be formulated for 

developing robust load-bearing materials. 
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8.  Effect of microstructure on plastic 
behaviour of tooth enamel 

8.1  Summary 

Enamel, the outer layer of the tooth, has evolved over millions of years to 

perfect its mechanical function. The functionally gradient design of enamel has 

been extensively studied, which has been identified among other strategies to be 

crucial for its remarkable resilience during mechanical loading. However, another 

important mechanism through which the excellent mechanical properties of 

enamel is realised, the loading dependence of mechanical properties, has not yet 

been fully understood. Here experimental results which confirmed that the 

hardness, H, and yield strength, σ
y
, of enamel decreased with increasing 

compressive loading are presented. Finite element models (FEM) revealed a 

significant reduction of stress level within enamel, resulted from the observed 

strain softening. This was attributed to the loading adaptive structure of enamel, 

i.e., through a change in the micro-fibril angle in enamel. Loading dependent σ
y
 

was proved to play a key role in the observed stress reduction. It is envisaged that 

this work will stimulate in-depth investigations on the local mechanical 

behaviour of both natural and synthetic composites, and provide a fresh, 

important guide in the development of bio-inspired materials. 

8.2  Introduction 

The mechanical properties of tooth enamel, the outer layer of the tooth, have 

been a topic of great scientific and evolutionary interests [40, 41]. As one of the 

most inspiring properties, enamel only has a fracture toughness which is 

comparable with that of glass, yet it is designed to survive millions of functional 

contacts over a lifetime of the host individual. As such, it is often depicted as a 

smart biocomposite, which is highly resistant to cumulative deformation and 
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fracture [53]. The exceptional characteristic of damage tolerance of tooth enamel 

is also reflected by the substantial overloads required to drive any developing 

cracks to ultimate fracture, even though tooth enamel contains a multitude of 

microstructural defects that can act as sources of fracture [40]. The primary 

composition of enamel is hydroxyapatite (HAP). However, the indentation 

stress–strain curves and creep behaviour of enamel are totally different to HAP. 

Rather, enamel has mechanical properties similar to those of metals, not ceramics 

[54]. As one of the most durable natural materials, it has attracted increasing 

attention in the quest for advanced hard and tough composite materials [54, 233, 

234]. 

Traditionally, tooth enamel was thought to be non-regenerative. However, 

strong experimental evidence from recent studies indicated that this material is 

capable of back-creeping, and even limited self-healing [53, 54]. Based on 

observations from the ex situ loading of human and sea otter molars, a 

microstructural mechanism of damage resistance was proposed. The ability of 

tooth enamel to absorb considerable damage over time without catastrophic 

failure was explained by a microstructural mechanism of damage resistance, in 

conjunction with the capacity of the tooth configuration to limit the generation of 

tensile stresses in largely compressive biting [53]. The microstructure of tooth 

enamel can be treated as a hybrid laminate that comprises long HAP mineral 

platelets held together by a thin layer of proteins [6, 111]. The mechanical 

properties of this structured biomaterial are determined not only by the volume 

fraction and properties of its components, but also by the orientation of its 

layered assembly [7]. 

It has been demonstrated previously in Chapter 5 and Chapter 7 that the H 

and elastic modulus, E, of human enamel were dependent on the indentation 

depth. This effect was attributed to the evolution within the microstructure during 

loading process (Chapter 7). However, the effect of loading dependence of E and 
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H on the stress distribution and load carrying capability of tooth enamel require 

further investigation. 

This work aimed at investigating the implications of loading dependent 

mechanical variables. Experimental works were carried out using 

nanoindentation, and the results were analysed with the help of FEM. It has been 

found that the load-dependent variables play an important role in “loading 

adaptive structure”, which, in conjunction with the self-healing property, formed 

one of the key mechanisms which fulfilled the excellent property of exceptional 

resilience of tooth enamel. 

8.3  Materials and methods 

 Sample preparation and testing 

Three teeth were used in this study. Teeth were collected and stored following 

the protocol in Section 4.1.1. The tooth samples were prepared by the new 

method (Section 4.1.2) and tested with a Berkovich indenter from the occlusal 

surface towards dentine according to the protocol given in Section 4.3.4. The 

occlusal surface was selected as the representative area in this study. 

 FEM 

COMSOL software was used in this work to evaluate deformation and stress 

distributions of tooth enamel under applied load. Physical variables of enamel, 

including E and σ
y
 at different indentation depths obtained from the experiment, 

are given in the Results section. More details about the simulation test settings 

can be found in Section 4.4.1.2. 
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8.4  Results and discussion 

Nanoindentation experiments were carried out in order to obtain the 

mechanical variables for further FEM. Results obtained from extrapolation of 

load-depth-E-H results to the constant indentation depths indicated that E 

reduced with increasing indentation depth (Table 8-1), which was attributed to 

the changing fibre-angle in the enamel microstructure (Chapter 7). 

Table 8-1. Experimental results of mechanical properties of enamel obtained from 

extrapolation of nanoindentation results. 

 

Physical variables  
Indentation depth [ μm]  

0.5  1.0  2.0  

Indentation load (mN)  24.59 (± 5.05)  81.99 (± 1.37)  288.30 (± 4.17)  

Young’s modulus (GPa)  103.48 (± 0.26)  94.13 (± 0.44)  87.41 (± 0.80)  

Hardness (GPa)  4.71 (± 0.03)  4.30 (± 0.05)  3.73 (± 0.04)  

Yield strength (GPa)  1.57 (± 0.03)  1.43 (± 0.05)  1.24 (± 0.04)  

Load-displacement curves of enamel showed that enamel becomes less stiff 

towards the inner region (Figure 7-1). The functionally graded properties of 

enamel were also observed in previous works [37, 54], and partly attributed to the 

variation in the chemical concentration of calcium and phosphate from the 

surface towards dentine [18, 54, 91]. 

For indentation depths of 0.5, 1 and 2 µm, the average H values were ~4.71, 

~4.30 and ~3.73 GPa, respectively (Table 8-1), which fall within one standard 

deviation of the corresponding measurements recorded previously [36]. This was 

in contrast to the E values which were found significantly higher for each 

indentation depth. The σ
y
 value at different indentation depths was derived as one 

third of the experimental H values. Notably, following the load dependence of 

the H, σ
y
 is also a function of the indentation depth (Table 8-1). 
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To clarify the effect of changes in E and σ
y
 as a function of indentation depth 

on the stress distribution within enamel, loading conditions at three different 

indentation depths, 0.5, 1.0 and 2.0 µm, labelled as model 1, 2 and 4, respectively 

(Table 8-2), were modelled using the corresponding E and σ
y
 values which were 

obtained from the current experiments. 

Table 8-2. Physical variables (± standard deviations) used in the FEM simulations. 

Variable  Model  

1  2  3  4  5  

Indentation load, L [mN]  24.59 

(± 5.05) 

81.99 

(± 1.37) 

81.99 

(± 1.37) 

288.30 

(± 4.17) 

288.30 

(± 4.17) 

Effective elastic modulus, E [GPa]  103.48 

(± 0.26) 

94.13 

(± 0.44) 

103.48 

(± 0.26) 

87.41 

(± 0.80) 

103.48 

(± 0.26) 

Yield strength, σ
y 
[GPa]  1.57 

(± 0.03) 

1.43 

(± 0.05) 
1.57 

(± 0.03) 
1.24 

(± 0.04) 

1.57 

(± 0.03) 

The loads to produce these three indentation depths in enamel were found to 

be 24.59 (± 5.05), 81.99 (± 1.37), and 288.30 (± 4.17) mN, respectively (Table 

8-1). A bi-linear elastic-plastic model using von Mises criteria was assumed, and 

the isotropic tangent value used in the simulation was 2 GPa, which was obtained 

by calibrating the simulating results using experimental data. 

 For comparison purposes, simulations on two further models, model 3 and 

model 5, were also presented. For these two models, a hypothetical material, 

comparison material 1, was assigned. These had constant E and σ
y
 values being 

equal to those of model 1, which were the experimental values obtained at 0.5 

µm indentation depth. The indentation loads for models 3 and 5 were identical to 

those used for the models 2 (81.99 (± 1.37)) and 4 (288.30 (± 4.17)), respectively 

(see Table 8-2). 

Contour plots of different stress components are shown in Figure 8-1(a-c).  
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Figure 8-1. Contour plots of stress distributions induced by a Berkovich indenter at 

288.30 (± 4.17) mN obtained via FEM simulations.  (1) – (5) represent models 1-5 (see 

Table 8-2). FEM prediction of a) von Mises stress field σv, b) maximum in-plane shear 

stress σsmax, and c) contours of the vertical displacement h. Note that the smax is defined 

as (1 - 3)/2, where 1 and 3 are the first and the third principal stresses, respectively, 

both of which are within the simulation plane. 

Figure 5.  Contour plots of stress distributions, obtained via FEA simulations.  (1) – (5) represent model 1-5 (see Table 2). (a)-(e), FEA 

prediction of von Mises stress field sv, maximum in-plane shear stress ssmax, and compressive normal stress -sz(vertical), -sr (horizontal) and –sf

(the hoop stress), respectively. 
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A comparison between models 2 and 3, as well as between 4 and 5, revealed 

that under the same load, the real tooth material, enamel (models 2 and 4), had a 

larger deformation (Figure 8-1(c)), but with a substantially smaller stress level, 

compared to that within the comparison material (models 3 and 5), respectively. 

This was more evident for the von Mises stress (σv) (Figure 8-1(a)) and the 

maximum in plane shear stress (smax) (Figure 8-1(b)), which more clearly 

indicated the degree of destructive level of the stress in the material. It is also 

interesting to note that, due to the reducing σ
y
 with the increasing indentation 

depth, reductions of the levels in σv and smax were observed (comparing model 3 

and 5 in Figure 8-1(a,b)), while the areas affected by these stresses increased. In 

other words, stress was more evenly distributed in tooth enamel than in the 

comparison material. As such, enamel showed less stress levels and better 

integrity over conventional materials under the same loading conditions, 

particularly when large deformations were induced. Furthermore, under the same 

288.30 (± 4.17) mN load, the maximum strain within tooth enamel was ~ 30 % 

higher, as compared to that in the comparison material 1 (Figure 8-2(a,b)), and 

the indentation depth (h-displacement) was also larger in enamel (Figure 

8-2(c,d)).  

 

Figure 8-2. Maximum equivalent strain in (a) enamel, indentation loading 288.30 (± 

4.17) mN, (b) comparison material 1, the same indentation loading; and the h-

displacement (c) enamel, indentation loading 288.30 (± 4.17) mN, (d) the comparison 

material, the same indentation loading. 
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Although the elastic strain limit is only 0.1 for most materials, it has been 

shown that in tooth enamel the highest shear strain near the edge of the contact 

area could be as high as 0.48, since the initial inelastic deformation comes from 

the protein layer [111]. 

This study demonstrated that changes in two variables, E and y, resulted in a 

“strain softening” mechanism in enamel which significantly reduced the stress 

level under the same loading condition. In order to determine which variable (i.e., 

E, or y) played the more important role in this mechanism, models with two 

more comparison materials, comparison materials 2 and 3, were simulated. The 

former used the experimentally obtained E for different indentation depth and a 

constant y, while the latter used a constant E, but the experimentally obtained y 

(see Table 8-3).  

Table 8-3. Mechanical properties of enamel and comparison materials used in FEM 

simulations. 

Mechanical property:  Elastic modulus, E [GPa]  Yield strength, σ
y 
[GPa]  

Enamel, 0.5 μm depth  103.48 (± 0.26) 1.57 (± 0.03) 

Enamel, 1.0 μm depth 94.13 (± 0.44) 1.43 (± 0.05) 

Enamel, 2.0 μm depth  87.41 (± 0.80) 1.24 (± 0.04) 

Material 1  103.48 (± 0.26) 1.57 (± 0.03) 

Material 2   87.41 (± 0.80) 1.57 (± 0.03) 

Material 3  103.48 (± 0.26) 1.24 (± 0.04) 

The simulation results are presented in Figure 8-3(a-d). The models showed 

that the change in y played a decisive role for inducing the observed strain 

softening effect, while the effect of E was insignificant. For example, a ~17 % 

change in E only resulted in a change of ~3 % in the equivalent stress, while a 

~20 % change in y induced a change of > 50 % in the equivalent stress (Figure 

8-3(e)). 
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Figure 8-3. FEM results of von Mises stress distribution, σv, induced by nanoindentation 

using the same load of 288.30 (± 4.17) mN, in a) comparison material 1, b) comparison 

material 2, c) comparison material 3 and d) enamel. (e) Normalised volume fraction with 

different stress levels enclosed – (1) σv > 1.28 GPa, (2) σv > 1.47 GPa, (3) σv > 1.65 GPa. 

In addition, the plastic zones were compared between model 4 (enamel) and 5 

(comparison material 1) in Figure 8-4(a,b).  

 

Figure 8-4. FEM simulations of plastic zones produced by nanoindentation using the 

same load of 285.35 mN in (a) enamel and (b) comparison material 1. 
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3D volumes of the plastic zones were estimated by using the sub-domain 

integration. Under the same load of 288.30 (± 4.17) mN the volume of the plastic 

zone was almost doubled (~192 %) in the enamel sample, compared to that in 

comparison material 1. Strain energy in enamel was ~171 % of that in the 

comparison material 1, i.e., tooth enamel was capable of absorbing much more 

energy than the conventional material, while incurring smaller stress. The 

experimental results in an independent study demonstrated that enamel showed 

much higher energy absorption capacity than a ceramic material with equivalent 

modulus [111].  

Tooth enamel has a hybrid laminate microstructure [6, 111]. The effective 

modulus is determined not only by the volume fraction and E of its components, 

but also by the micro-fibril angle  [7]. This micro-fibril angle will change during 

the loading process, inducing a change in the effective elastic modulus (Chapter 

7). The experimental findings in this work indicated that, under compression 

loading conditions a similar change was also induced in H and y.  

Notably,  loading induced changes in mechanical properties were observed in 

wood cells which also have a micro-fibril structure [192], with results obtained 

during tensile experiments. It was found that both E and y of the wood specimen 

increased with the increase of tensile loading and decrease of micro-fibril angle, 

hence this effect was termed as strain stiffening. A model was developed based 

on a specific type of cell wall material, which is fully elastic up to a critical shear 

stress at which shear flow may occur in the matrix between cellulose fibrils and 

in a direction parallel to them. It has been reported that plants use the orientation 

of cellulose micro-fibrils to create cell walls with anisotropic properties, which 

enables organisms to control the shape and size of cells during growth, in order to 

adjust the mechanical performance of tissues, and to perform bending movements 

of organs [235]. In comparison, the indentation loading in the current experiment 

was compressive in nature. An increase in the compressive loading resulted in a 

micro-fibril angle increase and “strain softening”, with reduced E, H and y. The 
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observed strain softening in enamel and strain stiffening wood cells have the 

same mechanism - the change in macroscopic properties of the material results 

from a change in micro-fibril angle. As such the observed micro-fibril structure 

can be termed as the “loading adaptive structure”, the significance and 

functionality of this to the integrity of tooth enamel will be discussed below. 

Under a specific loading condition, the overall structural integrity of enamel 

in human tooth is dependent upon a number of factors, including its toughness, 

the degree of its strain softening, and its ability of self-healing. Remarkably, 

tooth enamel can sustain plastic deformation under moderate loading without 

catastrophic failure [41], and deform significantly during indentation with the 

potential for short-term [54] and long-term recovery [53]. This capability of self-

healing and recovery enables the structure to absorb significant loading energy 

while maintaining structural integrity. 

Therefore, sacrificial bonds [236] seem to play a key role in fulfilling the 

objective of adopting “loading adaptive structure” in tooth enamel. Smaller stress 

will induce smaller plastic deformation, which is repairable if the tooth is alive 

within a human body [54]. On the other hand, for a material with the constant E 

(conventional material), larger stress will be induced under the same loading 

conditions within the same region, which may result in larger deformation or 

fracture, which could be irrecoverable. As such, the design principal of the bio-

material here is to sacrifice temporary plastic deformation in return for a smaller 

stress level within enamel, in order to avoid catastrophic permanent deformation 

or fracture. As such, a sacrificial bond is realised through loading adaptive 

structure which induces the observed strain softening. 

Notably, the region-dependent plastic damage under indentation in the outer 

and inner part of tooth enamel has been explored in the recent study by An et al. 

[201]. This study attributed gradient distributions of enamel properties to a 

gradient in damage properties. The authors demonstrated on the Drucker Prager 

model, into which the chain density of proteins has been introduced, that the 
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region-dependent damage is dictated by the micro-crack propagation and the de-

bonding and stretching of proteins in tooth enamel. Although this model closely 

matched the simulated plastic behaviour of tooth enamel under applied loads 

across the enamel thickness with experimental results and showed that enamel 

has higher capability to dissipate energy in the inner region due to the higher 

content of proteins in this area, the authors did not consider the effective crystal 

orientation angle that may significantly contribute to the region dependent 

gradient in properties. The combination of the modified Drucker Prager, which 

introduces the chain density of proteins, and the plastic model presented in this 

study, which incorporates the effective crystal orientation angle and properties of 

proteins, supported by Synchroton micro-compression testing in situ in hydrated 

state have a great potential to reveal the genuine deformation mechanisms and 

variables regulating deformation responses of tooth enamel across different 

length scales. Further investigations are therefore essential to closely simulate, 

and therefore bio-mimic tooth enamel. 

8.5  Conclusion 

Nanoindentation experiments and FEM were carried out on human tooth 

enamel to investigate the effects of load-induced changes in mechanical 

properties. The E and H of human tooth enamel were confirmed to be load-

dependent; the y value, derived from hardness data, was also load-dependent. 

The same indentation load induced larger deformations but a lower stress level 

within enamel, compared to those induced in the comparison material with 

constant E and y. The change in y played a key role for inducing the observed 

strain softening. By contrast the contribution from the change in E was 

insignificant. The observed strain softening was partially attributed to the change 

in the micro-fibre angle under loading conditions. A sacrificial bond was realised 

through load-dependent plasticity within a loading adaptive structure. 
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In this study, tooth enamel was modelled as a homogenous and isotropic 

medium to clarify the impact of the load dependent variables on the stress and 

strain distributions within the material. Further investigations into the micro-

structural level are desirable to obtain a deeper understanding of the relationship 

between the localised change of the enamel microstructure and the mechanical 

variables under loading conditions. 
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9.  Bleaching 

9.1  Summary 

Tooth enamel is considered a biocomposite material with a unique 

microstructure. The aim of this research was to investigate the mechanical 

responses of this material during a tooth whitening process. The mechanical 

effects of a bleaching agent containing 6% hydrogen peroxide were probed with 

nanoindentation testing. Three main measurements, Young’s modulus, E, – 

hardness, H, with the Berkovich indenter, creep – backcreep and stress-strain 

with a 5 μm spherical indenter, were performed on unbleached (i.e., healthy) and 

bleached enamel. The results of these measurements were analysed to determine 

the key variables influencing mechanical responses during whitening treatments. 

Overall, the results indicated that the bleaching agent applied on the enamel 

surface for 7 days (i.e., standard treatment) compromised the structural integrity 

of mineral and proteins in tooth enamel. As a result, this study found that both E 

and H significantly decreased after whitening procedure. In terms of critical 

variables, this research showed that the critical shear stress of proteins, τc, 

decreased from 2.5 to 1 % of the transverse stiffness of a staggered composite, 

E2, which corresponded to a 40 % decrease of normal readings for the 

unbleached controls. Notably, θ angles with the Berkovich indenter were defined 

for the enamel in its elastic region in the range of ~44
o
 to ~48

o
 (Chapter 7). In 

this study, the θ increased when the 5 μm spherical indenter was used to 

investigate the elastic as well as plastic region of tooth enamel during whitening 

treatment, i.e., from 50
o
 (healthy control) to 54

o
 (bleached control). Given all of 

the above evidence, these findings may provide new perspectives on the use of 

bleaching agents. This may lead to development of new bleaching products with 

less harmful and damaging effects to healthy enamel. 
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9.2  Introduction 

Bleaching has become a popular technique in restorative dentistry. This is 

because of the perceived improved aesthetics after the whitening procedures. 

However, there have been numerous studies reporting adverse effects of 

whitening treatments on tooth enamel composition and structure of. For instance, 

it has been shown that bleaching tooth enamel may alter or completely collapse 

hydrogen bonds in the protein structure. Furthermore, the bleaching agents can 

cause additional negative chemical reactions in the organic phase that can 

consequently result in the structural damage of proteins. Moreover, the urea (i.e., 

a component of the carbamide peroxide (CP) whitening agent) can potentially 

cause protein removal. Apart from affecting the enamel organic component, 

bleaching agents may significantly affect the enamel surface. Micro-channels, 

porosity and pits have been observed on the enamel surface following bleaching 

treatments. 

The aim of this research was to determine the effects of a 6 % hydrogen 

peroxide whitening agent on enamel E and H properties at constant indentation 

depths ranging from 0 to 2 μm. Investigation of enamel self-healing and recovery 

ability during whitening treatments was also undertaken with creep and 

backcreep testing methods. Nanoindentation tests were performed to analyse 

stress-strain properties in healthy and bleached enamel. By fitting analytical 

models into stress-strain curves for healthy and bleached enamel, variables 

regulating deformation mechanism in the elastic–plastic region were determined. 

In Chapter 7, the θ of healthy enamel in its elastic region over constant 

indentation depths was identified with the Berkovich indenter from 44
o
 to 48

o
. 

Here, a calibrated 5 μm spherical indenter was used to probe the elastic-plastic 

responses of tooth enamel during whitening treatments. 
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9.3  Materials and methods 

Seven healthy molars were collected and stored following the protocol 

outlined in Section 4.1.1. Before initiation of the bleaching experiments, teeth 

were prepared by the new method (Section 4.1.2) and kept in HBSS in separate 

Petri dishes with the exposed polished surface facing upwards, and were stored at 

4 
o
C in a fridge. The level of HBSS was adjusted to half the thickness of the tooth 

sample in the Petri dish. In this way, the bleaching product containing 6 % 

hydrogen peroxide was applied only to the polished tooth surface while the 

bottom part of the tooth was kept hydrated in HBSS. More details about the 

product and its application can be found in Section 4.1.6. 

 E and H properties 

The E and H properties were tested with a Berkovich indenter following the 

nanoindentation test settings and data analyses given in Section 4.3.4. These 

properties were measured by applying 15 indents in the middle region of each 

sample before and after the application of bleaching agent for 1 day, 3 days, 7 

days and 14 days according to the bleaching protocol outlined in Section 4.1.6. 

Then, the enamel was submerged in HBSS for 7 days and re-tested according to 

the protocol outlined in Section 4.3.4. Three teeth were used for this experiment.  

 Creep and backcreep  

Nanoindentation tests with a 5 μm nominal radius spherical indenter were 

used to analyse the creep and backcreep behaviour of healthy and bleached 

enamel. First, healthy enamel prepared by the new method (Section 4.1.2) was 

tested according to the nanoindentation creep protocol given in Section 4.3.6. 

Then, the specimen was bleached for 7 days according to the bleaching protocol 

outlined in Section 4.1.6. After bleaching, enamel was re-tested by conducting a 

nanoindentation creep test (Section 4.3.6) and compared to the unbleached 
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controls. Three indentation lines in total of 15 indents were made on each enamel 

surface.  

For modelling the viscoelastic behaviour of healthy and bleached enamel, the 

storage modulus, E*, and viscous modulus, η, of the three-element Voigt model, 

two-element Maxwell model and four-element Maxwell-Voigt model were 

computed with the IBIS2 software by fitting creep curve functions into equations 

(3-57), (3-64) and (3-67). Two healthy molars were used for this experiment. 

 Stress and strain  

Two healthy molars prepared by the new method were tested with a 

calibrated 5 μm nominal radius spherical indenter to measure the stress-strain 

behaviour of tooth enamel in its middle region following the protocol given in 

Section 4.3.5. Another stress-strain experiment was conducted on enamel that 

was bleached for 7 days according to the protocol outlined in Section 4.1.6. The 

experiment was run in the middle region of tooth enamel following the test 

settings given in Section 4.3.5. An analytical model was used to determine the τc 

and θ values for healthy and bleached enamel (Section 4.4.2.2). In total, 10 

indents were conducted in each experiment. 

9.4  Results and discussion 

Because of the nanoindentation instrument limitation in nanoindentation, flat, 

cross-sectional samples were prepared by the new method and tested by this 

instrument in the hydrated state. The same samples were also used for using the 

bleaching agent to investigate the effects of the whitening treatment on enamel 

properties. Therefore, this study assumed that the bleaching agent will affect 

tooth enamel from its occlusal surface towards the EDJ in a similar way as it 

would be applied to the enamel surface of the intact tooth in a real world 

scenario. 
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9.4.1  E and H  

 E and H values for 14 days whitening treatment and 7 days recovery 

The bleaching results of E values obtained from the nanoindentation tests 

with the Berkovich indenter are presented in Figure 9-1. The E values increased 

slightly after 3 days of bleaching at indentation depths between 0.5 and 2 µm. 

After that, the values decreased continuously to the end of the bleaching 

treatment. The E values near the surface of enamel (~0 µm) fluctuated with no 

clear increasing or decreasing trend. The E mean values of tooth enamel that was 

retested 7 days after termination of the bleaching (refer to “7 days after 

bleaching” in Figure 9-1) dropped evidently compared to the bleached control 

(“14 days bleaching” in Figure 9-1) as well as to the unbleached control by 5 % 

(refer to “Before Bleaching” in Figure 9-1) for indentation depths between 0 and 

1.5 µm. However, at 2 µm indentation depth, the mean E value also decreased by 

4 % compared to unbleached enamel, while it remained unchanged compared to 

14 days bleached enamel. Detailed results of E values during the whitening 

treatment can be found in Appendix M. 

 

 

Figure 9-1. E values of enamel undergoing a 2 week bleaching treatment and 7 days 

after bleaching treatment (recovery). 
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The results of H values during the whitening process obtained from the 

nanoindentation tests with a Berkovich indenter are presented in Figure 9-2. 

 

 

Figure 9-2. H values of enamel during a 2 week bleaching treatment and 7 days after 

bleaching treatment (recovery). 

For H values (Figure 9-2), there was no change between the mean values 

during the bleaching procedure at indentation depths between 1.5 and 2.0 µm. In 

contrast, the values fluctuated at indentation depths from 0 to 1.0 µm. By re-

testing bleached enamel 7 days after finishing the bleaching, the mean H values 

decreased by 18 % and 16 % compared to 14 days bleached and unbleached 

enamel, respectively, for all indentation depths. More details for H values during 

the whitening process can be found in Appendix N. 

Overall, this study showed that the bleaching treatment for 14 days did not 

cause any significant changes in the mechanical properties of enamel for all 

indentation depths. However, compared to unbleached enamel, E and H values 

decreased after the 7 day recovery period following bleaching treatment at all 

indentation depths. 
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 E and H values for 7 days bleaching 

For a 7 day bleaching treatment, the values of E and H were analysed in detail 

and then extrapolated as a function of a constant indentation depth in the range of 

0 (i.e., the near surface value) and 2 µm. The general trend for both E and H 

values measured with the Berkovich indenter decreased with increasing 

indentation depths (Table 9-1) and agreed with previously reported trends shown 

in Section 5.4.1. 

Table 9-1. E and H values for unbleached and 7 days bleached enamel measured with a 

Berkovich indenter at the constant indentation depth ranging from 0 to 2 μm. 

Young's modulus [GPa] Berkovich indenter 

Indentation depth [μm] 0.00 0.50 1.00 1.50 2.00 

Unbleached enamel 103.94(1.46) 97.95 (1.62) 91.96 (1.92) 85.97 (2.32) 79.98 (2.77) 

Bleached enamel 104.10(1.45) 98.87 (1.50) 93.63 (1.64) 88.39 (1.85) 83.16 (2.11) 

      Hardness [GPa] Berkovich indenter 

Indentation depth [μm] 0.00 0.50 1.00 1.50 2.00 

Unbleached enamel 4.28 (0.11) 4.04 (0.10) 3.81 (0.09) 3.58 (0.09) 3.37 (0.10) 

Bleached enamel 4.21 (0.11) 4.00 (0.09) 3.79 (0.08) 3.57 (0.06) 3.33 (0.06) 

 

From Table 9-1, the values of E for 7 days bleached enamel were higher 

compared to unbleached controls while the H values were found to be lower for 

all indentation depths. The results showed that E, and therefore the ability of 

bleached enamel to return to its original shape, increased marginally during 

bleaching treatment, while the H value and therefore the resistance to plastic 

deformation slightly decreased. 

The mild wear resistance ratio, H/E was considered as a parameter to predict 

and rank the wear resistance of enamel to abrasive particles during whitening 

treatment (refer to Section 4.5). While the E values increased during bleaching 

treatment, which could be assessed as an improvement of enamel stiffness, the 

overall ratio H/E decreased for bleached enamel, i.e., by approximately 2.4 %. 
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As shown previously in Figure 9-1 and Figure 9-2, the effects of a bleaching 

agent on the mechanical properties of unbleached enamel appeared within 7 days 

of finishing the bleaching procedure. As there is no clear information about the 

composition of bleaching agents, this study can only speculate that these 

whitening products may contain some enhancement ingredients that temporarily 

support the structural and mechanical integrity of enamel during bleaching. This 

assumption is based on the study by Thompson et al. [12], which demonstrated 

that by soaking the proteins in some solutions, such as calcium, sodium or 

phosphate, the energy dissipation improved within the protein matrix. As a result, 

the E and H of the material increased and the dissipated energy within the 

organic matrix also increased. 

Therefore, this study suggests that when the bleaching agents with those 

added elements are applied to the enamel surface, the damage to the structural 

and mechanical properties of enamel are controlled by those agents. However, 

when the bleaching is terminated, the mechanical properties degrade even 

further. This indicates that potential alterations occurred inside the enamel 

structure. The retention of a whitening effect is an issue. As a result, it is 

challenging to maintain the mechanical properties.  

The 7 day whitening treatment was further explored by investigating the 

creep-backcreep and stress–strain behaviours of tooth enamel. 

9.4.2  Creep and backcreep behaviour 

Typical creep-backcreep behaviour of unbleached and 7 days bleached 

enamel is shown in Figure 9-3(a-c). 
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Figure 9-3. Representative load displacement curves of unbleached and 7 days bleached 

enamel with a calibrated 5 µm spherical indenter showing a creep responses with 900 s 

holding time under maximum indentation load of 50 mN (a), 100 mN (b) and 130 mN 

(c) and backcreep (self-recovery) behaviour responses with 900 s holding time at 

minimum loads of 5 mN, respectively. The insets represent potential mechanical 

deformation of sacrificial bonds in proteins during loading (top image) and unloading 

(bottom image). It is expected that the damage to proteins (represented as a number of 

damaged/broken springs) gradually increases with increasing load for unbleached as well 

as bleached enamel. 
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The figure illustrates two load displacement curves of unbleached and 

bleached enamel for three maximum loads of 50, 100 and 130 mN with a holding 

time of 900 s at maximum and minimum loads. These curves represent the creep 

mechanical responses of enamel at maximum load and the recovery behaviour at 

minimum load of 5 mN. These curves are typical for one specimen at one 

location and were obtained from the nanoindentation test with a calibrated 5 μm 

spherical indenter. 

From Figure 9-3(a,b), the indentation depth, ht, of bleached enamel at creep 

stage slightly increased compared to unbleached enamel, while the recovery of 

the indentation depth diminished at minimum load. However, a 130 mN 

maximum load resulted in the significant increase of indentation depth, ht, at 

creep stage and almost no recovery at minimum load (Figure 9-3(c)). 

In recent years, investigations of protein functions have attracted more 

attention as their role still remains elusive and unclear. The protein is considered 

as a polymer, made of chains of different lengths that can fold and unfold, which 

contains sacrificial bonds that play a crucial role in providing superior 

toughening mechanisms and thus resistance against applied loads [12, 111]. As 

reported in pioneering studies [54, 61, 62], creep and more importantly self-

healing (recovery) behaviour are of great importance for enamel to survive 

against applied loads in the oral cavity. It has been observed that the protein, 

acting as a gluing agent, prevents the separation of mineral crystals within 

biocomposite during applied loads and the material partially recovers as a result 

of the reformation of sacrificial bonds when the load is removed [13]. This could 

explain enamel behaviour, which could be associated with the important roles of 

the organic compounds within enamel in the creep and backcreep testing under 

maximum and minimum loads, respectively. Therefore, by assuming that the 

bleaching agent may affect the functionality of the organic matrix in terms of 

sacrificial bonds and remove, partially or completely, the protein compound, one 

may suspect that bleached enamel will be less recovered than unbleached enamel 
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after unloading. Overall, this agrees with the results showing that the bleaching 

agent used in this study had detrimental effects on creep and more importantly 

backcreep behaviour of tooth enamel. 

 It is clear that with increasing load the indentation depth, ht, dramatically 

increased for bleached enamel due to the potential change of the protein’s 

rigidity. The averaged values of indentation depth, ht (± standard error), in µm 

measured during creep testing for healthy enamel were 0.66 (0.01), 1.30 (0.02) 

and 1.71 (0.06) µm, while for bleached enamel were 0.70 (0.01), 1.42 (0.03) and 

1.84 (0.04) at maximum loads of 50, 100 and 130 mN, respectively. As 

mentioned earlier (Section 2.7), the bleaching agent may affect the structure and 

mechanical integrity of proteins. Based on these results, this study assumes that 

the low carrying capability of sacrificial bonds was more likely to yield serious 

damage within the protein matrix. This damage could be observed mainly in the 

recovery stage of enamel at the minimum load. 

Table 9-2 summarises ∆ht values for unbleached and 7 days bleached enamel 

which correspond to the differences between the start and the end of the creep 

and recovery test, respectively.  

Table 9-2. The absolute value of ∆ht (± standard error) [µm] for creep at 50, 100 and 

130 mN loads and recovery at 5 mN of unbleached and 7 days bleached enamel 

specimens. The holding time of 900 s was applied for both, creep and recovery 

measurements. 

∆ ht [µm] 50 mN 5 mN 

Unbleached enamel 0.063 (0.008) 0.014 (0.004) 

Bleached enamel 0.078 (0.001) 0.013 (0.004) 

 

∆ ht [µm] 100 mN 5 mN 

Unbleached enamel 0.159 (0.009) 0.025 (0.002) 

Bleached enamel 0.199 (0.009) 0.020 (0.005) 

 

∆ ht [µm] 130 mN 5 mN 

Unbleached enamel 0.188 (0.046) 0.061 (0.014) 

Bleached enamel 0.313 (0.045) 0.007 (0.005) 

 



 

  Chapter 9 

160 

 

 

These ∆ht values are overall results and denote 20 indentation locations. From 

this table, ∆ht for bleached enamel increased by 23 %, 25% and 66 % under 

maximum loads of 50, 100 and 130 mN, respectively. On the other hand, there 

was a prominent decrease in the ∆ht values between unbleached and bleached 

enamel in the recovery stage at minimum load of 5 mN by 72 and 90 %, 

respectively, after applying maximum loads of 100 and 130 mN, yet only a 

decrease of 7 % after applying the maximum load of 50 mN.  

The typical curves of creep and backcreep behaviour that were tested with a 

calibrated 5 µm spherical indenter at maximum loads of 50, 100 and 130 mN and 

minimum load of 5 mN are shown in Figure 9-4(a-f).  

 

 

 

Figure 9-4. Typical creep and backcreep curves of unbleached and bleached enamel at 

(a,b) 50 and 5 mN, (c,d) 100  and 5 mN, (e,f) 130 and 5 mN with 900 s holding time at 

maximum and minimum load, respectively. 
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The creep and backcreep experiments can provide additional information 

about the mechanical responses of the organic compound in enamel. Therefore, 

to analyse the effects of a whitening treatment on the organic compound in 

enamel, rheological models were used to determine variables regulating creep 

behaviour within tooth enamel.  

Typical creep responses for unbleached and bleached enamel at a 50 mN load 

by incorporating a hold period of time of 900 s are shown in Figure 9-5(a-c).  

 

Figure 9-5. Creep responses for hold period of 900 s at 50 mN on unbleached and 

bleached enamel with a 5 µm nominal radius spherical indenter. (a) Maxwell model, (b) 

Voigt model and (c) combined Maxell-Voigt model were used to determine creep 

variables regulating deformation behaviour during bleaching treatment. 
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Three models (Maxwell, Voigt and Maxwell-Voigt) were used to determine 

the storage moduli, E
*
,
 
and loss moduli, η, of enamel. To do so, the experimental 

data were fitted according to equations derived earlier in Section 3.1.5.2.  

The Maxwell model did not show a reasonable fit for both unbleached and 

bleached enamel (Figure 9-5(a)). In comparison, the fitting procedure of creep 

responses curves into experimental data improved considerably in the Voigt 

model (Figure 9-5(b)). A nearly perfect fit between simulated and experimental 

data for unbleached and bleached enamel was found in the combined Maxwell-

Voigt model (Figure 9-5(c)). The creep variables from these models are shown 

in Table 9-3.  

Table 9-3.   
  and μ values from creep modelling at 50, 100 and 130 mN loads for 

unbleached and bleached enamel. 

Model: 50 mN load  100 mN load 130 mN load 

Maxwell  Unbleached enamel Bleached enamel Unbleached enamel Bleached enamel Unbleached enamel Bleached enamel 

  
 

 [GPa] 33.41 (0.98) 30.51(0.61) 23.00(1.02) 21.12(0.60) 16.36 (0.43) 14.95 (0.69) 

µ1 [1012 Pa.s] 511.23 (46.83) 317.53 (14.65) 281.41(20.16) 186.61 (25.79) 205.52 (16.98) 115.16 (15.65) 

Voigt  
  

    

  
  [GPa] 34.03(0.99) 31.59(0.69) 24.13(0.99) 22.19 (0.56) 17.70 (0.66) 15.94 (0.72) 

  
  [GPa] 657.64 (85.29) 474.16 (30.56) 275.36(21.59) 208.77(16.63) 233.62 (4.68) 141.16 (3.06) 

µ2 [1012 Pa.s] 88.88 (7.55) 65.07 (8.67) 40.79(4.11) 34.84(3.16) 40.75 (1.85) 17.97 (1.43) 

Maxwell - Voigt  

  

    

  
   [GPa] 35.26 (1.23) 31.89 (0.74) 24.56 (0.87) 22.91 (0.50) 18.13 (0.54) 16.40 (0.67) 

  
  [GPa] 930.68 (100.96) 909.78 (80.86) 436.50(79.19) 275.66(22.29) 280.66 (15.48) 158.11 (10.89) 

µ1 [1012 Pa.s] 808.46 (121.37) 365.32(24.89) 582.43(74.50) 331.24(12.86) 407.91(10.77) 324.27(28.19) 

µ2 [1012 Pa.s] 30.01 (4.26) 19.33 (3.07) 20.97(2.28) 13.83 (1.37) 17.43 (3.24) 8.35 (0.81) 

 

In general, the storage modulus,   
 , and viscosity, η, decreased with 

increasing applied loads from 50 to 130 mN for unbleached and bleached enamel. 

In addition, the modelling   
 and η values were lower for bleached enamel 

compared to unbleached enamel (Table 9-3).  
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The viscosity values, η, from Table 9-3 were affected by two factors: the 

applied loads and the effects of application of the bleaching agent during creep 

experiments. Regarding the applied loads, the decreasing trend of viscosity could 

be explained by possible shear-thinning within the water-protein compound for 

unbleached and bleached enamel with increasing loads. On the other hand, the 

results showed that the viscosity dropped after the application of the bleaching 

agent on unbleached enamel for 7 days. The application of bleaching agents 

possibly yielded less sticky behaviour of this organic compound as shown on the 

decreasing trend of the viscosity for the bleached controls. 

9.4.3  Stress-strain analysis and modelling 

For a better understanding of the effects of 7 day whitening treatments, stress-

strain analyses were conducted for unbleached and bleached enamel and fitted 

into analytical models. Raw data of stress, σ and strain, ε [0.2 a/R] (refer to 

Appendix O) from the nanoindenter were plotted into a chart to demonstrate 

transitional phase from the elastic to plastic region (Figure 9-6). 

 

Figure 9-6. Fitting curves obtained from stress-strain measurements for unbleached and 

7 days bleached enamel. For each simulating procedure, the effective crystal orientation 

angle, θ, and the critical shear stress, τc, of the protein matrix were identified. 
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As mentioned in Section 3.1.4, the reason for using a spherical indenter for 

these types of analyses was because the ε value increases under a spherical 

indenter with increasing applied loads, while it remains constant under a 

Berkovich indenter. 

Furthermore, the analytical model defined by equations (2-1) and (2-9) for 

elastic and plastic regions, respectively, was used to determine variables 

regulating mechanical behaviour during bleaching treatment. This model was 

fitted first into stress-strain data for unbleached enamel. By using variables given 

in Table 4-3 in equations (2-1) and (2-9), the effective crystal orientation angle, 

θ, and the critical shear stress, τc, of protein were found 50
o
 and 2.5 % of E2, 

respectively, where E2 denotes the transverse stiffness of a staggered composite 

structure. The yield point values, σy and εy, for unbleached enamel modelling 

curve were found to be 4.579 GPa and 0.061 (refer to Appendix O). 

In the next step, the analytical model was applied to the raw data of bleached 

enamel. For this modelling, it was assumed that enamel microstructure, i.e., 

related to the angle θ, will not be affected and therefore will remain constant (50 

degrees) during bleaching treatment, while the τc value within the organic matrix 

was expected to decrease. The iterative process was employed to determine the τc 

value for bleached enamel that closely fit to the stress-strain nanoindentation 

data. The generated curve revealed σy at 3.536 GPa and εy at 0.047 (refer to 

Appendix O). The closest fitted τc value of 2.0 % of E2 for bleached enamel was 

identified from this process. However, for this value, the analytical modelling 

curve did not show a reasonable fit as presented in Figure 9-6. Therefore, 

another model was implemented for bleached enamel stress-strain data by 

changing both the θ and τc variables. As a result, the best fitted values of θ and τc 

for stress-strain data of bleached enamel were found to be 54
o
 and 1.5 % of E2, 

respectively, with yield point values of σy = 2.899 GPa and εy = 0.041 (refer to 

Appendix O). 
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It is clear that the elastic region of unbleached enamel was reduced by the 

whitening treatment process. This was observed from a decrease of the σy and εy 

values from 4.579 to 2.899 GPa and from 0.061 to 0.041, respectively. 

Furthermore, the results of stress-strain analytical models in this study showed 

that shear properties of proteins were affected significantly. This can be seen 

from a decrease of τc value by 40 %, i.e., from 2.34 to 1.41 GPa (Appendix O). In 

addition, the rotational ability of mineral platelets increased after a whitening 

treatment yielding an increase of angle θ by 4
o
, i.e. from 50 to 54

o
. As a result, it 

was assumed that the structural integrity of mineral and proteins within 

unbleached enamel was compromised after bleaching. 

In previous studies, shear properties and the angle θ values have been 

investigated for unbleached and hypomineralised enamel by using an analytical 

model [7, 105]. On the other hand, this study reports these variables for 

unbleached and bleached enamel for the first time by using the same analytical 

model. It was stated that shear properties of proteins affect the mechanical 

behaviour of enamel [105]. From this point of view, the authors demonstrated 

that the decrease of τc resulted in the reduction of enamel resistance to 

deformation which agrees with the findings in this research. Moreover, the 

authors demonstrated that the increase of angle θ resulted in more ductile enamel 

[105]. Hence, this study showed that enamel became less resistant to deformation 

with an increased θ angle after a whitening treatment.  

9.5  Conclusion 

This study demonstrated that bleaching agents containing 6% hydrogen 

peroxide have some control over the structural integrity of tooth enamel in terms 

of its mechanical responses during a whitening treatment. The termination of 

whitening treatment yields a significant decrease in stiffness and hardness of 

healthy enamel. 
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The creep and backcreep analysis showed that the bleached enamel recovered 

to a lesser extent than healthy enamel after unloading from maximum loads of 

50, 100 and 130 mN, due to possible damage of the structural integrity of the 

organic matrix. 

Moreover, this study showed that viscosity values, η, decreased due to 

applied loads as well as the whitening treatment. This study postulates that this 

was because of shear-thinning within the organic matrix. In addition, the organic 

matrix became less viscous as a result of bleaching agent application. 

Regarding stress-strain measurements, the values of the yield point decreased 

after bleaching. Moreover, the analytical models elucidated variables regulating 

deformation behaviour of bleached enamel. Based on this modelling, the values 

of τc decreased significantly while the θ increased for bleached enamel. This gave 

evidence that the structural integrity of the mineral-protein compound in enamel 

was affected by the whitening treatment. 
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10. Conclusion 

Understanding tooth function and structure is important for promoting and 

improving human health and wellbeing. Specifically, human tooth enamel, the 

outer part of the tooth, has been studied extensively in relation to its unique 

structural and compositional characteristics, which must withstand considerable 

forces during repeated daily use during the course of an individual’s life. 

Unfortunately, the link between the microstructure, mechanical properties and 

function remain uncertain. A deep understanding of how they are linked is crucial 

for advancing dental health science but also for developing new biocomposite 

materials. 

The main objective of this research was to understand the deformation 

behaviour of human tooth enamel in relation to its microstructure. To do so, a 

new preparation method was designed and applied to accurately determine 

mechanical properties of human tooth enamel in a hydrated state (Chapter 4, 

Section 4.1.2). The method included the use of a new embedding process 

(Chapter 4, Sections 4.1.3 and 4.1.4). Moreover, a steel holder was designed and 

manufactured to hold and test tooth specimens on the nanoindentation stage in a 

wet environment without the use of chemically based glues or hot waxes, as is 

the case for conventional methods (Chapter 4, Section 4.3.2). 

A new analysis approach was developed to examine the mechanical 

properties of enamel at constant indentation depths (Chapter 4, Section 4.3.4). 

This is because the Young’s modulus (E) and hardness (H) from nanoindentation 

tests are affected not only by samples and regions but also by indentation depths. 

In addition, the enamel-dentine junction (EDJ) was investigated using an optical 

and scanning electron microscopy (SEM) to identify the effects of preparation 

methods on the structural integrity of this region.  
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For a deeper understanding of the deformation behaviour of enamel, 

analytical and finite element models (FEM) were used to relate the elastic and 

plastic behaviour of tooth enamel to its microstructure.  

Lastly, the effects of whitening treatments on the structure and mechanical 

properties of healthy enamel were explored. Both creep and recovery 

investigations were also included for healthy and bleached enamel to elucidate 

the effects of a bleaching agent on the structural integrity of enamel components 

(i.e., mineral and protein). 

10.1 Findings 

The following major findings can be drawn from this body of work: 

 The E and H values of enamel prepared by the new method were 

higher compared to the properties obtained from conventional 

methods. While E values were significantly higher for all indentation 

depths, the H values only differed significantly from the enamel 

surface to 1 µm. This is because resin embedding during the sample 

preparation in the conventional methods had the most negative effects 

on E and H values. The elimination of the resin embedding in the new 

method resulted in the highest values of E and H (Chapter 5, Section 

5.4.1).  

 This study revealed that enamel is a functionally graded material 

measured at constant depths. In addition, there was a gradual decrease 

in these values with increasing indentation depth at one location over 

the entire thickness of tooth enamel (Chapter 5, Section 5.4.1). 

 The differences of E and H values were reduced between hydrated 

enamel prepared by the new method and dried enamel prepared by a 

careful dehydration-drying process, suggesting that the microstructure 
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plays an important role in regulating the mechanical properties of 

enamel. Moreover, the values of E and H for hydrated and dried 

enamel samples were reported for the first time at constant indentation 

depths (Chapter 5, Section 5.4.2).  

 Interestingly, while the use of resin decreased E and H, it had a 

positive effect in predicting mild wear (H/E) and severe wear 

(Kc
4
/H.E

2
) resistance of tooth enamel. The H/E parameter decreased 

with indentation depth for the new method and conventional method 

A, i.e., for the intact tooth embedded in resin prior to sectioning. 

However, the H/E parameter of the conventional method B increased 

with indentation depth, i.e., for the sectioned tooth prior to resin 

embedding. On the other hand, Kc
4
/H.E

2
 parameter increased with 

indentation depth for all preparation methods. Therefore, enamel is 

expected to resist severe wear damage, especially when the resin 

embedding process is used (Chapter 5, Sections 5.4.3 and 5.4.4). 

 No cracks or fractured EDJ were observed for enamel prepared with 

the new method followed by a slow careful dehydration process even 

after multiple loads of 400 mN. The new method maintained a strong 

physical bond between enamel and dentine as revealed by SEM 

examination (Chapter 6).  

 The changes of E values with indentation depth were linked to the 

effective orientation angle (θ) of the mineral crystals in enamel. This 

was quantified with a mechanistic model simulating enamel elastic 

behaviour. The range of angle θ was determined and found to change 

from 44 to 48
 
degrees when indentation depths increased from 0 to 2 

µm. Such angles facilitated the shear-sliding of the mineral crystals 

and lowered stresses under applied loads (Chapter 7).  
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 The H values also had a decreasing trend with increasing indentation 

depth. From FEM analysis, the decreasing yield strength resulted in 

reduction of the stress level. The load- dependent hardness can also be 

linked to the change of the angle θ in tooth enamel (Chapter 8). 

 Regarding the whitening treatment (bleaching), the nanoindentation 

tests showed that the bleached enamel 7 days after treatment was less 

stiff and softer than the unbleached control. In addition, the creep test 

showed that the bleached enamel recovered to a lesser extent after the 

load was released. It was inferred from the rheological creep models 

that the protein in bleached enamel was less viscous due to 

detrimental effects of the bleaching agent (Chapter 9).  

 The values of the protein shear stress, τc, and the angle θ were affected 

significantly by bleaching. According to the analytical model, the τc 

value of proteins decreased, while the angle θ of mineral crystal 

increased for bleached enamel. The changes of these properties 

resulted presumably from the affected structural integrity of mineral 

and protein after whitening treatment (Chapter 9). 

These findings not only bring new perspectives to the structure-property-

function relationship of enamel, but should also help develop new robust load–

bearing materials. In addition, the results of tooth bleaching experiments reported 

in this study support the need to conduct further research into the viability of 

current bleaching agents and the development of new, less damaging, methods 

for bleaching tooth enamel.  

10.2 Future research directions 

Even though significant advances in characterising the deformation behaviour 

of human tooth enamel at the microscale were achieved, future work is required 
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to cover the overall concepts of this behaviour under applied loads. This includes 

more investigations to: 

 determine compositional and structural changes in enamel resulting 

from the sample preparation process. This includes, for instance, the 

use of scanning and transmission electron microscopy, spectroscopy, 

Micro-CT etc. to identify the effects of embedding medium on tooth 

enamel. In addition, investigations about how far the resin penetrates 

into the dental tissue and why H is less sensitive than E to the 

preparation technique are also required to identify the exact effects on 

mechanical properties of tooth enamel. 

 conduct fine mapping of structural, compositional and mechanical 

properties across the EDJ in conjunction with more comprehensive 

mechanical models from the nano-scale to macro-scale. This includes 

the use of different type of indenters (e. g., Vickers) and loads in order 

to investigate the initiation and propagation of cracks from the 

indentation sites at the EDJ. These investigations will shed light on 

the EDJ interface, which remarkably combines two very distinct 

materials. This will lead to the design of new hard-coatings and dental 

materials where similarly fused disparate materials are of importance. 

 explore the relationship between the enamel structural and mechanical 

variables under localised loads at different length scales. An in-depth 

understanding of the local mechanical behaviour will provide a new 

guide to develop enamel-like biomimetic materials with remarkable 

resilience and adaptive structure against applied loads. 
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12. Appendices  

Appendix A: SEM images of tooth sectioning 

 

 

Figure 12-1. Backscattered electron images of the enamel-dentine junction after 

diamond saw sectioning. The images were taken on uncoated samples under the variable 

pressure of 9 Pa. Hard, brittle tooth enamel was found to be less resistant against severe 

damage than softer dentin with noticeable grooves from 30 μm to 50 μm. The arrowhead 

indicates the enamel-dentine junction. Scale bar = 20 μm. 
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Figure 12-2. Secondary electron images of the enamel-dentine junction after diamond 

saw sectioning under variable pressure of 10 Pa. The arrowhead indicates transition of 

grooves from harder enamel to softer dentin. Scale bar = 20 μm. 
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Appendix B: Nanoindentation holder – part 1 

 

Figure 12-3. Nanoindentation holder developed for UMIS nanoindentation instrument to 

test tooth enamel in its hydrated state. 
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Appendix C: Nanoindentation holder – part 2 

 

Figure 12-4. Slides used for mechanical mounting of the enamel specimens.  

Slides 
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Appendix D: SEM images of Berkovich 

indents from different regions  

 

Figure 12-5. Backscattered SEM image of Berkovich indents near the occlusal surface 

of tooth enamel after applying the load of 400 mN. The indents and arrays are 50 μm 

apart with no evident residual overlaps. Scale bar = 20 μm. 

 

Figure 12-6. Backscattered SEM image of Berkovich indents 50 μm apart in the middle 

region of tooth enamel. Notably, the applied load of 400 mN did not yield crack. Scale 

bar = 10 μm. 
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Figure 12-7. Berkovich indents across the enamel-dentine junction. There were no radial 

cracks initiated from the edges of indents even after 400 mN load across the boundary 

between hard, brittle enamel and soft, tough dentin. Scale bar = 10 μm. 
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Appendix E: E and H spatial distribution 

 

Figure 12-8. Typical distributions of E and H of three healthy molars (a-c) from the 

enamel occlusal surface (normalised distance = 0) across the enamel-dentine junction 

(EDJ). The EDJ is indicated by a dashed line in the charts. 
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Appendix F: E values - conventional methods 

A and B 

Table 12-1. E moduli values comparison between conventional methods A and B. 

Young's modulus, E [ GPa] 
 Comparison of conventional method, B to conventional 

method A 

Depth [μm] 0.00 0.50 1.00 1.50 2.00 

Conventional method, B 92.50 78.63 66.55 56.25 47.75 

Std. error, std. method B 2.24 3.31 4.20 4.71 4.81 

Max 94.73 81.94 70.74 60.97 52.56 

Min 90.26 75.32 62.35 51.54 42.93 

Conventional method, A 98.60 92.99 87.49 82.12 76.87 

Std. error, std. method A 1.95 1.96 2.28 2.67 3.09 

Max 100.55 94.94 89.77 84.79 79.97 

Min 96.66 91.03 85.21 79.45 73.78 
Comparison of means:  method B to 
A in % -6.19% -15.44% -23.94% -31.50% -37.89% 

Max -5.78% -13.70% -21.20% -28.10% -34.27% 

Min -6.62% -17.25% -26.82% -35.13% -41.81% 

Average % - Max (absolute value) 0.41% 1.74% 2.74% 3.40% 3.62% 

Min - Average % (absolute value) 0.43% 1.82% 2.88% 3.63% 3.92% 
Averaged  std. error comparison in % 
(absolute value) 0.42% 1.78% 2.81% 3.52% 3.77% 

Overall average  -22.99% 

Overall std. error  6.30% 

Table 12-2. P-values from t-tests for comparing E values between conventional methods 

A and B at 0 μm indentation depth. 

Depth 0 μm     

t-Test: Two-Sample Assuming Equal Variances Method B Method A 

Mean 92.495 98.603 

Variance 40.077 30.312 

P(T<=t) two-tail 0.047   

Note: there is a significant difference between E values  

F-Test Two-Sample for Variances 

P(F<=f) one-tail 0.364   

P(F<=f) two-tail 0.182   
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Table 12-3. P-values from t-tests for comparing E values between conventional methods 

A and B at 0.5 μm indentation depth. 

Depth 0.5 μm     

t-Test: Two-Sample Assuming Equal Variances Method B Method A 

Mean 78.629 92.985 

Variance 87.527 38.327 

P(T<=t) two-tail 0.002   

Note: there is a significant difference between E values  

F-Test Two-Sample for Variances 

P(F<=f) one-tail 0.144   

P(F<=f) two-tail 0.289   

Table 12-4. P-values from t-tests for comparing E values between conventional methods 

A and B at 1.0 μm indentation depth. 

Depth 1.0 μm     

t-Test: Two-Sample Assuming Equal Variances Method B Method A 

Mean 66.548 87.491 

Variance 140.818 52.169 

P(T<=t) two-tail 0.001   

Note: there is a significant difference between E values  

F-Test Two-Sample for Variances 

P(F<=f) one-tail 0.102   

P(F<=f) two-tail 0.204   

Table 12-5. P-values from t-tests for comparing E values between conventional methods 

A and B at 1.5 μm indentation depth. 

Depth 1.5 μm     

t-Test: Two-Sample Assuming Equal Variances Method B Method A 

Mean 56.254 82.119 

Variance 177.651 71.268 

P(T<=t) two-tail 0.001   

Note: there is a significant difference between E values  

F-Test Two-Sample for Variances 

P(F<=f) one-tail 0.121   

P(F<=f) two-tail 0.242   
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Table 12-6. P-values from t-tests for comparing E values between conventional methods 

A and B at 2.0 μm indentation depth. 

Depth 2.0 μm     

t-Test: Two-Sample Assuming Equal Variances Method B Method A 

Mean 47.745 76.871 

Variance 185.418 95.781 

P(T<=t) two-tail 0.001   

Note: there is a significant difference between E values  

F-Test Two-Sample for Variances 

P(F<=f) one-tail 0.198   

P(F<=f) two-tail 0.396   
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Appendix G: H values - conventional methods 

A and B 

Table 12-7. H values comparison between conventional methods A and B. 

Hardness, H  [ GPa] 
 Comparison of conventional method, B to conventional 

method A 

Depth [μm] 0.00 0.50 1.00 1.50 2.00 

Conventional method, B 4.63 4.17 3.79 3.39 3.08 

Std. error, std. method B 0.05 0.05 0.08 0.07 0.08 

Max 4.68 4.22 3.87 3.46 3.17 

Min 4.58 4.12 3.71 3.32 3.00 

Conventional method, A 4.64 4.22 3.89 3.65 3.48 

Std. error, std. method A 0.08 0.03 0.05 0.07 0.08 

Max 4.72 4.25 3.94 3.72 3.56 

Min 4.57 4.19 3.84 3.58 3.40 
Comparison of means:  
method B to A in % -0.26% -1.11% -2.61% -6.94% -11.48% 

Max -0.78% -0.67% -1.95% -6.81% -11.12% 

Min 0.27% -1.56% -3.29% -7.06% -11.87% 
Average % - Max (absolute 
value) -0.52% 0.44% 0.66% 0.12% 0.36% 
Min - Average % (absolute 
value) -0.54% 0.45% 0.68% 0.13% 0.38% 
Averaged  std. error 
comparison in % (absolute 
value) -0.53% 0.44% 0.67% 0.13% 0.37% 

Overall average  -4.48% 

Overall std. error  2.34% 

Table 12-8. P-values from t-tests employed for comparing H values between 

conventional methods A and B at the enamel surface (i.e., 0 μm indentation depth). 

Depth 0 μm     

t-Test: Two-Sample Assuming Equal Variances Method B Method A 

Mean 4.629 4.641 

Variance 0.021 0.046 

P(T<=t) two-tail 0.896   

Note: there is no significant difference between H values  

F-Test Two-Sample for Variances 

P(F<=f) one-tail 0.162   

P(F<=f) two-tail 0.081   
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Table 12-9. P-values from t-tests employed for comparing H values between 

conventional methods A and B at 0.5 μm indentation depth. 

Depth 0.5 μm     

t-Test: Two-Sample Assuming Equal Variances Method B Method A 

Mean 4.173 4.220 

Variance 0.020 0.008 

P(T<=t) two-tail 0.446   

Note: there is no significant difference between H values  

F-Test Two-Sample for Variances 

P(F<=f) one-tail 0.127   

P(F<=f) two-tail 0.254   

Table 12-10. P-values from t-tests employed for comparing H values between 

conventional methods A and B at 1.0 μm indentation depth. 

Depth 1.0 μm     

t-Test: Two-Sample Assuming Equal Variances Method B Method A 

Mean 3.791 3.893 

Variance 0.047 0.022 

P(T<=t) two-tail 0.291   

Note: there is no significant difference between H values  

F-Test Two-Sample for Variances 

P(F<=f) one-tail 0.162   

P(F<=f) two-tail 0.324   

Table 12-11. P-values from t-tests employed for comparing H values between 

conventional methods A and B at 1.5 μm indentation depth. 

Depth 1.5 μm     
t-Test: Two-Sample Assuming Equal Variances Method B Method A 

Mean 3.394 3.647 

Variance 0.039 0.039 

P(T<=t) two-tail 0.023   

Note: there is a significant difference between H values  

F-Test Two-Sample for Variances 

P(F<=f) one-tail 0.497   

P(F<=f) two-tail 0.993   
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Table 12-12. P-values from t-tests employed for comparing H values between 

conventional methods A and B at 2 μm indentation depth. 

Depth 2.0 μm     

t-Test: Two-Sample Assuming Equal Variances Method B Method A 

Mean 3.083 3.483 

Variance 0.058 0.053 

P(T<=t) two-tail 0.004   

Note: there is a significant difference between H values  

F-Test Two-Sample for Variances 

P(F<=f) one-tail 0.456   

P(F<=f) two-tail 0.911   
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Appendix H: E values - conventional method 

A and the new method 

Table 12-13. E moduli values comparison between conventional method A and the new 

method. 

Young's modulus, E [ GPa] 
 Comparison of new method to conventional 

method A 

Depth [μm] 0.00 0.50 1.00 1.50 2.00 

New method 114.97 106.27 99.01 93.16 88.75 

Std. error,  new method 1.41 0.92 0.76 0.79 0.82 

Max 116.38 107.19 99.76 93.95 89.57 

Min 113.56 105.35 98.25 92.38 87.92 

Conventional method, A 98.60 92.99 87.49 82.12 76.87 

Std. error, std. method A 1.95 1.96 2.28 2.67 3.09 

Max 100.55 94.94 89.77 84.79 79.97 

Min 96.66 91.03 85.21 79.45 73.78 
Comparision of means: 
new method to method, A in % 16.60% 14.29% 13.16% 13.45% 15.45% 

Max 15.74% 12.90% 11.13% 10.80% 12.01% 

Min 17.49% 15.74% 15.30% 16.27% 19.18% 

Average % - Max (absolute value) 0.85% 1.39% 2.03% 2.65% 3.44% 

Min - Average % (absolute value) 0.89% 1.45% 2.14% 2.82% 3.73% 
Average std. error comparison in % 
(absolute value) 0.87% 1.42% 2.09% 2.73% 3.58% 

Overall average  14.59% 

Overall std. error  0.72% 

Table 12-14. P-values from t-tests for comparing E values between conventional method 

A and the new method at the enamel surface (i.e., 0 μm indentation depth). 

Depth 0 μm     

t-Test: Two-Sample Assuming Equal Variances New method Method A 

Mean 114.968 98.603 

Variance 15.907 30.312 

P(T<=t) two-tail 8.48E-06   

Note: there is a significant difference between E values  

F-Test Two-Sample for Variances 

P(F<=f) one-tail 0.207   

P(F<=f) two-tail 0.104   
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Table 12-15. P-values from t-tests for comparing E values between conventional method 

A and the new method at 0.5 μm indentation depth. 

Depth 0.5 μm     

t-Test: Two-Sample Assuming Unequal Variances New method Method A 

Mean 106.273 92.985 

Variance 6.749 38.327 

P(T<=t) two-tail 0.001   

Note: there is a significant difference between E values  

F-Test Two-Sample for Variances 

P(F<=f) one-tail 0.018   

P(F<=f) two-tail 0.036   

Table 12-16. P-values from t-tests for comparing E values between conventional method 

A and the new method at 1.0 μm indentation depth. 

Depth 1.0 μm     

t-Test: Two-Sample Assuming Unequal Variances New method Method A 

Mean 99.005 87.491 

Variance 4.606 52.169 

P(T<=t) two-tail 0.003   

Note: there is a significant difference between E values  

F-Test Two-Sample for Variances 

P(F<=f) one-tail 0.002   

P(F<=f) two-tail 0.005   

Table 12-17. P-values from t-tests for comparing E values between conventional method 

A and the new method at 1.5 μm indentation depth. 

Depth 1.5 μm     

t-Test: Two-Sample Assuming Unequal Variances New method Method A 

Mean 93.163 82.119 

Variance 4.940 71.268 

P(T<=t) two-tail 0.007   

Note: there is a significant difference between E values  

F-Test Two-Sample for Variances 

P(F<=f) one-tail 0.001   

P(F<=f) two-tail 0.002   
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Table 12-18. P-values from t-tests for comparing E values between conventional method 

A and the new method at 2.0 μm indentation depth. 

Depth 2.0 μm     

t-Test: Two-Sample Assuming Unequal Variances New method Method A 

Mean 88.748 76.871 

Variance 5.435 95.781 

P(T<=t) two-tail 0.010   

Note: there is a significant difference between E values  

F-Test Two-Sample for Variances 

P(F<=f) one-tail 0.001   

P(F<=f) two-tail 0.001   
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Appendix I: H values - conventional method A 

and the new method 

Table 12-19. H values comparison between conventional method A and the new 

method. 

Hardness, H [ GPa] 
 Comparison of new method to conventional method 

A 

Depth [μm] 0.00 0.50 1.00 1.50 2.00 

New method 5.10 4.48 4.07 3.66 3.47 

Std. error, new method 0.13 0.07 0.04 0.05 0.05 

Max 5.23 4.55 4.11 3.71 3.52 

Min 4.97 4.41 4.03 3.62 3.41 

Conventional method, A 4.64 4.22 3.89 3.65 3.48 

Std. error, std. method A 0.08 0.03 0.05 0.07 0.08 

Max 4.72 4.25 3.94 3.72 3.56 

Min 4.57 4.19 3.84 3.58 3.40 

Average % 9.85% 6.17% 4.59% 0.46% -0.51% 

Max 10.79% 7.11% 4.29% -0.11% -1.28% 

Min 8.87% 5.21% 4.90% 1.06% 0.30% 
Average % - Max (absolute 
value) -0.95% -0.95% 0.30% 0.57% 0.77% 
Min - Average % (absolute 
value) -0.98% -0.96% 0.31% 0.60% 0.81% 
Average std. error comparison 
in % (absolute value) -0.96% -0.95% 0.30% 0.59% 0.79% 

Overall average  4.11% 

Overall std. error  2.12% 

Table 12-20. P-values from t-tests for comparing H values between conventional 

method A and the new method at the enamel surface (i.e., 0 μm indentation depth). 

Depth 0 μm     

t-Test: Two-Sample Assuming Unequal Variances New method Method A 

Mean 5.098 4.641 

Variance 0.132 0.046 

P(T<=t) two-tail 0.011   

Note: there is a significant difference between H values  

F-Test Two-Sample for Variances 

P(F<=f) one-tail 0.021   

P(F<=f) two-tail 0.041   
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Table 12-21. P-values from t-tests for comparing H values between conventional 

method A and the new method at 0.5 μm indentation depth. 

Depth 0.5 μm     

t-Test: Two-Sample Assuming Unequal Variances New method Method A 

Mean 4.481 4.220 

Variance 0.044 0.008 

P(T<=t) two-tail 0.009   

Note: there is a significant difference between H values  

F-Test Two-Sample for Variances New method Method A 

P(F<=f) one-tail 0.021   

P(F<=f) two-tail 0.041   

Table 12-22. P-values from t-tests for comparing H values between conventional 

method A and the new method at 1.0 μm indentation depth. 

Depth 1.0 μm     

t-Test: Two-Sample Assuming Equal Variances New method Method A 

Mean 4.072 3.893 

Variance 0.012 0.022 

P(T<=t) two-tail 0.016   

Note: there is no significant difference between H values  

F-Test Two-Sample for Variances 

P(F<=f) one-tail 0.240   

P(F<=f) two-tail 0.480   

Table 12-23. P-values from t-tests for comparing H values between conventional 

method A and the new method at 1.5 μm indentation depth. 

Depth 1.5 μm     

t-Test: Two-Sample Assuming Equal Variances New method Method A 
Mean 3.664 3.647 
Variance 0.019 0.039 
P(T<=t) two-tail 0.847   

Note: there is no significant difference between H values  

F-Test Two-Sample for Variances 
P(F<=f) one-tail 0.183   
P(F<=f) two-tail 0.366   
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Table 12-24. P-values from t-tests for comparing H values between conventional 

method A and the new method at 2.0 μm indentation depth. 

Depth 2.0 μm     

t-Test: Two-Sample Assuming Equal Variances New method Method A 
Mean 3.465 3.483 
Variance 0.023 0.053 
P(T<=t) two-tail 0.858   

Note: there is no significant difference between H values  

F-Test Two-Sample for Variances 
P(F<=f) one-tail 0.144   
P(F<=f) two-tail 0.288   
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Appendix J: E and H values for wet and dry 

samples 

Table 12-25. E and H values of “enamel sample 1” in dry and wet environments. The 

overall mean values denote the average of all E values for all indentation depths and 

regions. 

Enamel sample 1 

  Indentation depth [μm] 

E values [GPa] 0.00 0.50 1.00 1.50 2.00 

Dry sample           

Mean E [GPa] 100.39 97.11 94.84 92.58 90.31 

Standard error of E [GPa] 1.46 0.81 0.64 0.49 0.40 

Overall E mean [GPa] 95.04         

Overall E standar error [GPa] 0.79         

Wet sample   

Mean E [GPa] 99.37 96.43 92.48 88.52 84.57 

Standard error of E [GPa] 1.01 1.35 1.25 1.16 1.07 

Overall E mean [GPa] 92.28         

Overall E standar error [GPa] 1.19         

Dry to wet E ratio  1.01 1.01 1.03 1.05 1.07 

Dry to wet E overall ratio 1.03         

H values [GPa]           

Dry sample           

Mean H [GPa] 4.37 4.19 4.02 3.84 3.67 

Standard error of H  [GPa] 0.03 0.02 0.02 0.03 0.04 

Overall mean [GPa] 4.02         

Overall standard error [GPa] 0.05         

Wet sample   

Mean H [GPa] 3.99 3.85 3.72 3.59 3.46 

Standard error of H [GPa] 0.17 0.14 0.11 0.08 0.05 

Overall H mean [GPa] 3.72         

Overall H standard error [GPa] 0.06         

Dry to wet H ratio  1.10 1.09 1.08 1.07 1.06 

Dry to wet H overall ratio  1.08         
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Table 12-26. E and H values of “enamel sample 2” in dry and wet environments. The 

overall mean values denote the average of all E values for all indentation depths and 

regions. 

Enamel sample 2 

  Indentation depth [μm] 

E values [GPa] 0.00 0.50 1.00 1.50 2.00 

Dry sample           

Mean E [GPa] 102.46 99.95 97.44 94.93 92.42 

Standard error of E [GPa] 1.63 1.23 0.83 0.43 0.12 

Overall E mean [GPa] 97.44         

Overall E standar error [GPa] 0.91         

Wet sample   

Mean E [GPa] 97.20 94.88 92.57 91.51 88.71 

Standard error of E [GPa] 1.22 1.03 1.02 1.43 1.04 

Overall E mean [GPa] 92.64         

Overall E standar error [GPa] 0.81         

Dry to wet E ratio  1.05 1.05 1.05 1.04 1.04 

Dry to wet E ratio standard error 1.05         

    

H values [GPa]           

Dry sample           

Mean H [GPa] 4.53 4.35 4.17 3.99 3.81 

Standard error of H [GPa] 0.17 0.14 0.10 0.07 0.04 

Overall mean [GPa] 4.17         

Overall standard error [GPa] 0.07         

Wet sample   

Mean H [GPa] 4.27 4.09 3.90 3.72 3.54 

Standard error of H [GPa] 0.14 0.11 0.08 0.06 0.04 

Overall H mean [GPa] 3.90         

Overall H standard error [GPa] 0.06         

Dry to wet H ratio  1.06 1.06 1.07 1.07 1.08 

Dry to wet H overall ratio 1.07         
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Appendix K: Indentation depths for occlusal 

surface and EDJ 

Table 12-27. Values of indentation depths measured at the occlusal surface and near the 

EDJ. 
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Appendix L: Elastic behaviour of tooth 

enamel 

Table 12-28. Resulting values of enamel model in its elastic region. 
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Table 12-29. Mean ± standard deviation of E values at 5 indents (from one indentation 

row) measured from the middle region  (i.e., a normalised distance of 0.5) used for the 

calculation of the effective crystal orientation angle, θ as a function of indentation depth, 

h for specimen 1. 

 

 

 

 

 

E [GPa] A B C X1 X2 sqrt(X1) Sqrt(X2) Angle MINUS SD PLUS SD

95.70 -184.74 280.44 -93.79 0.50 1.02 0.71 1.01 -0.71 -1.01 44.85 0.41 0.44

92.91 -187.53 280.44 -93.79 0.50 0.99 0.71 1.00 -0.71 -1.00 45.28 0.58 0.66

89.70 -190.74 280.44 -93.79 0.51 0.96 0.72 0.98 -0.72 -0.98 45.83 0.39 0.43

88.53 -191.91 280.44 -93.79 0.52 0.94 0.72 0.97 -0.72 -0.97 46.04 0.44 0.49

86.71 -193.73 280.44 -93.79 0.52 0.92 0.72 0.96 -0.72 -0.96 46.40 0.52 0.59

85.59 -194.85 280.44 -93.79 0.53 0.91 0.73 0.95 -0.73 -0.95 46.63 0.55 0.63

85.13 -195.31 280.44 -93.79 0.53 0.91 0.73 0.95 -0.73 -0.95 46.74 0.73 0.87

82.65 -197.79 280.44 -93.79 0.54 0.88 0.74 0.94 -0.74 -0.94 47.32 0.47 0.53

98.58 -181.86 280.44 -93.79 0.49 1.05 0.70 1.03 -0.70 -1.03 44.45 0.55

96.73 -183.71 280.44 -93.79 0.49 1.03 0.70 1.02 -0.70 -1.02 44.71

91.98 -188.46 280.44 -93.79 0.51 0.98 0.71 0.99 -0.71 -0.99 45.43

91.00 -189.44 280.44 -93.79 0.51 0.97 0.71 0.98 -0.71 -0.98 45.60

89.43 -191.01 280.44 -93.79 0.52 0.95 0.72 0.98 -0.72 -0.98 45.88

88.31 -192.13 280.44 -93.79 0.52 0.94 0.72 0.97 -0.72 -0.97 46.08

88.72 -191.72 280.44 -93.79 0.52 0.95 0.72 0.97 -0.72 -0.97 46.01

84.63 -195.81 280.44 -93.79 0.53 0.90 0.73 0.95 -0.73 -0.95 46.85

92.82 -187.62 280.44 -93.79 0.51 0.99 0.71 0.99 -0.71 -0.99 45.30

89.09 -191.35 280.44 -93.79 0.52 0.95 0.72 0.97 -0.72 -0.97 45.94

87.42 -193.02 280.44 -93.79 0.52 0.93 0.72 0.96 -0.72 -0.96 46.26

86.06 -194.38 280.44 -93.79 0.53 0.92 0.73 0.96 -0.73 -0.96 46.53

83.99 -196.45 280.44 -93.79 0.53 0.89 0.73 0.94 -0.73 -0.94 46.99

82.87 -197.57 280.44 -93.79 0.54 0.88 0.73 0.94 -0.73 -0.94 47.26

81.54 -198.90 280.44 -93.79 0.55 0.86 0.74 0.93 -0.74 -0.93 47.61

80.67 -199.77 280.44 -93.79 0.55 0.85 0.74 0.92 -0.74 -0.92 47.85

P [mN] E [GPa]
+0.44

-0.41

+0.66

-0.58

+0.43

-0.39

+0.49

-0.44

+0.59

-0.52

+0.63

-0.55

+0.87

-0.73

+0.53

-0.47

350.00    85.13 ± 3.59 46.74

400.00    82.65 ± 1.98 47.32

250.00    86.71 ± 2.72 46.40

300.00    85.59 ± 2.72 46.63

150.00    89.70 ± 2.28 45.83

200.00    88.53 ± 2.47 46.04

100.00    92.91 ± 3.82 45.28

θo

50.00 95.70±2.88 44.85
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Table 12-30. Mean ± standard deviation of E values at 5 indents (from one indentation 

row) measured from the middle region  (i.e., a normalised distance of 0.5) used for the 

calculation of the effective crystal orientation angle, θ as a function of indentation depth, 

h for specimen 2. 

 

 

 

E [GPa] A B C X1 X2 sqrt(X1) Sqrt(X2) Angle MINUS SD PLUS SD

97.54 -182.90 280.44 -93.79 0.49 1.04 0.70 1.02 -0.70 -1.02 44.59 0.26 0.27

95.14 -185.30 280.44 -93.79 0.50 1.01 0.71 1.01 -0.71 -1.01 44.94 0.38 0.41

93.13 -187.31 280.44 -93.79 0.50 0.99 0.71 1.00 -0.71 -1.00 45.25 0.18 0.19

92.29 -188.15 280.44 -93.79 0.51 0.98 0.71 0.99 -0.71 -0.99 45.38 0.13 0.13

92.19 -188.25 280.44 -93.79 0.51 0.98 0.71 0.99 -0.71 -0.99 45.40 0.18 0.19

91.38 -189.06 280.44 -93.79 0.51 0.97 0.71 0.99 -0.71 -0.99 45.53 0.15 0.15

90.36 -190.08 280.44 -93.79 0.51 0.96 0.72 0.98 -0.72 -0.98 45.71 0.16 0.16

89.12 -191.32 280.44 -93.79 0.52 0.95 0.72 0.97 -0.72 -0.97 45.93 0.14 0.14

99.45 -180.99 280.44 -93.79 0.49 1.06 0.70 1.03 -0.70 -1.03 44.33 0.20

97.78 -182.66 280.44 -93.79 0.49 1.04 0.70 1.02 -0.70 -1.02 44.56

94.30 -186.14 280.44 -93.79 0.50 1.01 0.71 1.00 -0.71 -1.00 45.06

93.09 -187.35 280.44 -93.79 0.50 0.99 0.71 1.00 -0.71 -1.00 45.25

93.31 -187.13 280.44 -93.79 0.50 0.99 0.71 1.00 -0.71 -1.00 45.22

92.27 -188.17 280.44 -93.79 0.51 0.98 0.71 0.99 -0.71 -0.99 45.39

91.26 -189.18 280.44 -93.79 0.51 0.97 0.71 0.99 -0.71 -0.99 45.55

89.88 -190.56 280.44 -93.79 0.51 0.96 0.72 0.98 -0.72 -0.98 45.79

95.63 -184.81 280.44 -93.79 0.50 1.02 0.71 1.01 -0.71 -1.01 44.86

92.50 -187.94 280.44 -93.79 0.51 0.99 0.71 0.99 -0.71 -0.99 45.35

91.96 -188.48 280.44 -93.79 0.51 0.98 0.71 0.99 -0.71 -0.99 45.44

91.49 -188.95 280.44 -93.79 0.51 0.98 0.71 0.99 -0.71 -0.99 45.52

91.07 -189.37 280.44 -93.79 0.51 0.97 0.71 0.99 -0.71 -0.99 45.59

90.49 -189.95 280.44 -93.79 0.51 0.96 0.72 0.98 -0.72 -0.98 45.69

89.46 -190.98 280.44 -93.79 0.52 0.95 0.72 0.98 -0.72 -0.98 45.87

88.36 -192.08 280.44 -93.79 0.52 0.94 0.72 0.97 -0.72 -0.97 46.08

P [mN] E [GPa]
+0.27

-0.26

+0.41

-0.38

+0.19

-0.18

+0.13

-0.13

+0.19

-0.18

+0.15

-0.15

+0.16

-0.16

+0.14

-0.14

350.00    90.36 ± 0.90 45.71

400.00    89.12 ± 0.76 45.55

250.00    92.19 ± 1.12 45.40

300.00    91.38 ± 0.89 45.53

150.00    93.13 ± 1.17 45.25

200.00    92.29 ± 0.80 45.38

θo

50.00 97.54±1.91 44.59

100.00    95.14 ± 2.64 44.94
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Appendix M: E values for tooth enamel during 

whitening treatment 

Table 12-31. E values of tooth enamel during 14 days bleaching treatment.  

The Young's modulus [GPa] Indentation depth [µm] Overall 

AVERAGE 0.00 0.50 1.00 1.50 2.00 - 

DAY1: no bleaching 103.94 97.95 91.96 85.97 79.98 91.96 

DAY1: no bleaching, SD 1.46 1.62 1.92 2.32 2.77 1.55 

The Young's modulus [GPa] Indentation depth [µm] Overall 

AVERAGE 0.00 0.50 1.00 1.50 2.00 - 

DAY 2: 1 day bleaching 105.60 100.23 94.86 89.50 84.13 94.86 

DAY 2: 1 day bleaching,  SD 2.12 2.00 2.13 2.45 2.91 1.52 

The Young's modulus [GPa] Indentation depth [µm] Overall 

AVERAGE 0.00 0.50 1.00 1.50 2.00 - 

DAY 4: 3 days bleaching 104.51 100.28 96.04 91.81 87.58 96.04 

DAY 4: 3 days bleaching, SD 2.09 1.94 1.81 1.73 1.69 1.35 

The Young's modulus [GPa] Indentation depth [µm] Overall 

AVERAGE 0.00 0.50 1.00 1.50 2.00 - 

DAY 8: 7 days bleaching 104.10 98.87 93.63 88.39 83.16 93.63 

DAY 8: 7 days bleaching, SD 1.45 1.50 1.64 1.85 2.11 1.34 

The Young's modulus [GPa] Indentation depth [µm] Overall 

AVERAGE 0.00 0.50 1.00 1.50 2.00 - 

DAY 15: 14 days bleaching 104.76 97.84 90.93 84.01 77.10 90.93 

DAY 15: 14 days bleaching, SD 2.77 2.23 1.72 1.30 1.06 1.69 

The Young's modulus [GPa] Indentation depth [µm] Overall 

AVERAGE 0.00 0.50 1.00 1.50 2.00 - 

DAY 22: 1 week recovery 97.67 92.46 87.26 82.05 76.85 87.26 

DAY 22: 1 week recovery, SD 1.97 1.98 2.11 2.34 2.65 1.46 

Differences between recovered enamel and unbleached enamel 0.06 0.06 0.05 0.05 0.04 

 
Mean difference for indentation depth 0 and 1.5 μm 0.05 

     
Std. deviation for indentation depth 0 and 1.5 μm 0.01 

     
Differences between recovered enamel and 14 days bleached enamel 0.07 0.05 0.04 0.02 0.00 

 
Mean difference for indentation depths 0 and 1.5 μm 0.05 

     
Std. deviation for indentation depth 0 and 1.5 μm 0.02 
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Appendix N: H values for tooth enamel during 

whitening treatment 

Table 12-32. H values of human tooth enamel during whitening treatment. 

The Young's modulus [GPa] Indentation depth [µm] Overall 

AVERAGE 0.00 0.50 1.00 1.50 2.00 - 

DAY1: no bleaching 4.28 4.04 3.81 3.57 3.33 3.81 

DAY1: no bleaching, SD 0.11 0.10 0.09 0.09 0.10 0.07 

The Young's modulus [GPa] Indentation depth [µm] Overall 

AVERAGE 0.00 0.50 1.00 1.50 2.00 - 

DAY 2: 1 day bleaching 4.44 4.17 3.91 3.64 3.38 3.91 

DAY 2: 1 day bleaching,  SD 0.13 0.11 0.09 0.08 0.08 0.07 

The Young's modulus [GPa] Indentation depth [µm] Overall 

AVERAGE 0.00 0.50 1.00 1.50 2.00 - 

DAY 4: 3 days bleaching 4.28 4.06 3.83 3.61 3.39 3.83 

DAY 4: 3 days bleaching, SD 0.11 0.09 0.07 0.05 0.04 0.07 

The Young's modulus [GPa] Indentation depth [µm] Overall 

AVERAGE 0.00 0.50 1.00 1.50 2.00 - 

DAY 8: 7 days bleaching 4.21 4.00 3.79 3.58 3.37 3.79 

DAY 8: 7 days bleaching, SD 0.11 0.09 0.08 0.06 0.06 0.06 

The Young's modulus [GPa] Indentation depth [µm] Overall 

AVERAGE 0.00 0.50 1.00 1.50 2.00 - 

DAY 15: 14 days bleaching 4.48 4.19 3.91 3.63 3.34 3.91 

DAY 15: 14 days bleaching, SD 0.19 0.16 0.14 0.11 0.09 0.09 

The Young's modulus [GPa] Indentation depth [µm] Overall 

AVERAGE 0.00 0.50 1.00 1.50 2.00 - 

DAY 22: 1 week recovery 3.57 3.39 3.21 3.02 2.84 3.21 

DAY 22: 1 week recovery, SD 0.16 0.14 0.11 0.09 0.09 0.06 

Differences between recovered enamel and unbleached enamel 0.17 0.16 0.16 0.15 0.15 

 
Mean difference for indentation depth 0 and 2.0 μm 0.16 

     
Std. deviation for indentation depth 0 and 2.0 μm 0.01 

     

       
Differences between recovered enamel and 14 days bleached enamel 0.20 0.19 0.18 0.17 0.15 

 
Mean difference for indentation depths 0 and 2.0 μm 0.18 

     
Std. deviation for indentation depth 0 and 2.0 μm 0.02 
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Appendix O: Stress-strain properties of 

unbleached and bleached enamel 

Table 12-33. Experimental stress-strain values of unbleached enamel in its elastic-

plastic region.  

Sound enamel   
Bleached 
enamel   

 

Sound 
enamel   

Bleached 
enamel   

ε [ - ] σ [GPa] ε [ - ] σ [GPa] 

 
ε [ - ] σ [GPa] ε [ - ] σ [GPa] 

0.019399454 3.000284 0.059223 3.065561 
 

0.0245412 2.337557 0.0812725 4.27564 

0.0311102 3.706704 0.0822181 3.516573 
 

0.0377288 2.635642 0.0989029 4.480052 

0.04271262 3.91787 0.0931121 3.913349 
 

0.0483839 3.272387 0.1112067 4.474267 

0.0536758 3.982789 0.1040729 4.117671 
 

0.0573951 3.623638 0.122422 4.631022 

0.06310308 4.202327 0.1145439 4.337181 
 

0.0664873 3.972208 0.132067 4.733591 

0.07191566 4.443325 0.1252601 4.457236 
 

0.0760109 4.198354 0.1396502 4.827995 

0.0804965 4.569816 0.1348045 4.538462 
 

0.0848312 4.373466 0.0571584 3.195386 

0.0892307 4.676704 0.0599283 3.04023 
 

0.0935118 4.495286 0.0808415 3.6896 

0.0982102 4.732808 0.0801925 3.79926 
 

0.1018295 4.593628 0.0806019 3.905934 

0.10706238 4.821146 0.0800093 3.957779 
 

0.1098034 4.705336 0.1005361 4.337238 

0.11614644 4.888074 0.097582 4.622631 
 

0.1182665 4.841598 0.1127729 4.470912 

0.1253246 4.932003 0.1067439 4.936758 
 

0.1270596 4.948369 0.1226762 4.617051 

0.13504702 5.011731 0.1163171 5.052284 
 

0.1351101 5.044605 0.1311447 4.800377 

0.018422616 3.243412 0.1266487 5.101793 
 

0.0197676 2.88027 0.1407776 4.749356 

0.03057726 3.767115 0.1350119 5.168097 
 

0.0302645 3.715747 0.0571154 3.299853 

0.04105142 3.811519 0.0699515 2.647707 
 

0.0394971 4.072058 0.0806714 3.724552 

0.05102772 4.301571 0.0840632 3.100658 
 

0.0483724 4.632127 0.0941283 3.893942 

0.05994766 4.476565 0.0964375 3.591026 
 

0.0560739 4.958851 0.105148 4.050265 

0.06942948 4.674934 0.1053067 4.04662 
 

0.0642702 5.166389 0.1147637 4.317095 

0.0781961 4.805948 0.1142865 4.358734 
 

0.0725248 5.328329 0.1269475 4.359878 

0.08731156 4.84926 0.1230193 4.595041 
 

0.0809921 5.449015 0.1359423 4.465216 

0.09656696 4.923282 0.1314952 4.776445 
 

0.0889294 5.48049 0.0688891 2.694865 

0.1057185 4.92413 0.1388236 4.888339 
 

0.097533 5.515971 0.0817537 3.561985 

0.1152917 4.97281 0.0750378 2.366586 
 

0.1066886 5.431083 0.0902279 3.874565 

0.12482328 4.987825 0.0794039 2.721641 
 

0.1163924 5.420109 0.1001731 4.371619 

0.13451774 5.034566 0.0993001 3.344896 
 

0.1258883 5.445055 0.1064091 4.501224 

0.02006694 2.961455 0.1052386 3.653895 
 

0.136072 5.418108 0.121331 4.701719 

0.03215346 3.484949 0.1194185 4.028411 
 

0.0212989 2.776232 0.1301841 4.873909 

0.0426094 3.865534 0.1281556 4.289557 
 

0.0350026 3.20049 0.1388947 4.881745 

0.051779 4.080295 0.1363073 4.438586 
 

0.0469761 3.559457 0.0568502 3.323904 

0.06119752 4.343865 0.0658001 2.847793 
 

0.0578443 3.588963 0.0776583 4.145315 

0.06992356 4.580155 0.0820956 3.533973 
 

0.0683769 3.920414 0.0791435 4.031207 

0.07901636 4.705454 0.0940488 3.911186 
 

0.0789051 4.059009 0.098121 4.561542 

0.08843042 4.749701 0.1023604 4.221361 
 

0.0890489 4.122633 0.107634 4.872593 

0.0971239 4.81629 0.1109882 4.476927 
 

0.0985445 4.223484 0.1176102 4.95472 

0.1060809 4.900917 0.1209533 4.728796 
 

0.1076912 4.324986 0.12745 5.049557 

0.11469764 4.984396 0.1301139 4.880292 
 

0.117156 4.395565 0.1352076 5.154318 

0.12251286 5.064031 0.1374705 4.98615 
     0.13055012 5.191578 0.0561785 3.372485 
     0.13932958 5.267976 0.0774843 4.157374 
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Table 12-34. The best fit modelling values (i.e., τc = 2.5 % of E2 and θ = 50
o
) of 

unbleached enamel in its elastic-plastic region.  

Calculated values from elastic model 
    G [GPa] 23.68 

      E2 for staggered composite 
[GPa] 93.79 

    
τ = 2.5 %* E2 

2*τ(cosθ/sinθ) 
     

Sound enamel: θ = 50 
degrees 

τ = 2.5 %*E2 [GPa] 2.34 
    

strain stress 

      
0.000 0.000 

Angle θ 
E 

elastic E plastic τ 2*τ(cosθ/sinθ) 
 

0.005 0.374 

50.00 74.90 8.21 
2.5 % * 
E2 3.94 

 
0.007 0.524 

      
0.010 0.749 

ELASTIC REGION 
PLASTIC 
REGION   Modelling: 

 
0.020 1.498 

ε σ ε σ Elastic region: 

 

0.030 2.247 

0.00 0.00 0.00 4.08 σ = Eelastic * ε 
 

0.040 2.996 

0.01 0.75 0.01 4.16 
  

0.050 3.745 

0.02 1.50 0.02 4.24 Plastic region: 

 

0.060 4.494 

0.03 2.25 0.03 4.32 
σ = Eplastic*ε + 
2*τ(cosθ/sinθ) 0.061 4.579 

0.04 3.00 0.04 4.41 
  

0.061 4.579 

0.05 3.74 0.05 4.49 
  

0.070 4.652 

0.06 4.49 0.06 4.57 
  

0.080 4.734 

0.07 5.24 0.07 4.65 
  

0.090 4.816 

0.08 5.99 0.08 4.73 
  

0.100 4.898 

      
0.110 4.980 

  Elastic Plastic 
Critical point 

Elastic=Plastic 
 

0.120 5.062 

Angle a1 a2 b b/a1-a2 
 

0.130 5.144 

50.00 74.90 8.21 4.08 0.061 
 

0.140 5.227 
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Table 12-35. The best fit modelling values (i.e., τc = 2.0 % of E2 and θ = 50
o
) of 

unbleached enamel in its elastic-plastic region.  

Calculated values from elastic model 
    G [GPa] 23.68 

      E2 for staggered composite 
[GPa] 93.79 

    
τ = 2.0 %* E2 

2*τ(cosθ/sinθ) 
     

Sound enamel: θ = 
50 degrees 

τ = 2 %*E2 [GPa] 1.88 
    

strain stress 

      
0.000 0.000 

Angle θ 
E 

elastic E plastic τ 2*τ(cosθ/sinθ)   0.005 0.374 

50.00 74.90 8.21 2 % * E2 3.15 
 

0.007 0.524 

      
0.010 0.749 

ELASTIC REGION 
PLASTIC 
REGION   Modelling:   0.020 1.498 

ε σ ε σ Elastic region:   0.030 2.247 

0.00 0.00 0.00 3.26 σ = Eelastic * ε 
 

0.040 2.996 

0.01 0.00 0.01 3.34 
  

0.047 3.536 

0.02 0.00 0.02 3.43 Plastic region:   0.047 3.536 

0.03 0.00 0.03 3.51 
σ = Eplastic*ε + 
2*τ(cosθ/sinθ) 

 
0.050 3.559 

0.04 0.00 0.04 3.59 
  

0.060 3.641 

0.05 0.00 0.05 3.67 
  

0.070 3.723 

0.06 0.00 0.06 3.75 
  

0.080 3.805 

0.07 0.00 0.07 3.84 
  

0.090 3.887 

0.08 0.00 0.08 3.92 
  

0.100 3.969 

      
0.110 4.052 

  Elastic Plastic 
Critical point 

Elastic=Plastic   0.120 4.134 

Angle a1 a2 b b/a1-a2 
 

0.130 4.216 

50 
74.899

049 
8.21299503

7 
3.148114

271 0.047   0.140 4.298 
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Table 12-36. The best fit modelling values (i.e., τc = 1.5 % of E2 and θ = 54
o
) of 

unbleached enamel in its elastic-plastic region.  

Calculated values from elastic model 
    G [GPa] 23.68 

      E2 for staggered 
composite [GPa] 93.79 

    
τ = 1.5 %* E2 

2*τ(cosθ/sinθ) 
     

Bleached enamel: θ = 54 
degrees 

τ = 1.5 %*E2 [GPa] 1.41 
    

strain stress 

      
0 0.00 

Angle θ 
E 

elastic E plastic τ 2*τ(cosθ/sinθ)   0.005 0.35 

54.00 70.90 20.91 
1.5% * 

E2 2.04 
 

0.007 0.50 

      
0.01 0.71 

ELASTIC REGION 
PLASTIC 
REGION   Modelling:   0.02 1.42 

ε σ ε σ Elastic region:   0.03 2.13 

0.00 0.00 0.00 2.04 σ = Eelastic * ε 
 

0.04 2.84 

0.01 0.71 0.01 2.25 
  

0.041 2.899 

0.02 1.42 0.02 2.46 Plastic region:   0.041 2.899 

0.03 2.13 0.03 2.67 
σ = Eplastic*ε + 
2*τ(cosθ/sinθ) 

 
0.05 3.09 

0.04 2.84 0.04 2.88 
  

0.06 3.30 

0.05 3.55 0.05 3.09 
  

0.07 3.51 

0.06 4.25 0.06 3.30 
  

0.08 3.72 

0.07 4.96 0.07 3.51 
  

0.09 3.93 

0.08 5.67 0.08 3.72 
  

0.1 4.14 

      
0.11 4.34 

  Elastic Plastic 
Critical point 

Elastic=Plastic   0.12 4.55 

Angle a1 a2 b b/a1-a2 
 

0.13 4.76 

54 70.90 20.91 2.04 0.041   0.14 4.97 
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