
Edith Cowan University Edith Cowan University 

Research Online Research Online 

Theses: Doctorates and Masters Theses 

1-1-1997 

An approach to display layout of dynamic windows An approach to display layout of dynamic windows 

Nihar Trivedi 
Edith Cowan University 

Follow this and additional works at: https://ro.ecu.edu.au/theses 

 Part of the Graphics and Human Computer Interfaces Commons 

Recommended Citation Recommended Citation 
Trivedi, N. (1997). An approach to display layout of dynamic windows. https://ro.ecu.edu.au/theses/884 

This Thesis is posted at Research Online. 
https://ro.ecu.edu.au/theses/884 

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses?utm_source=ro.ecu.edu.au%2Ftheses%2F884&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=ro.ecu.edu.au%2Ftheses%2F884&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses/884


Edith Cowan University 
 

 

Copyright Warning 
 
 
 
 
 

You may print or download ONE copy of this document for the purpose 

of your own research or study. 
 

The University does not authorize you to copy, communicate or 

otherwise make available electronically to any other person any 

copyright material contained on this site. 
 

You are reminded of the following: 
 

 Copyright owners are entitled to take legal action against persons 
who infringe their copyright. 

 

 A reproduction of material that is protected by copyright may be a 

copyright infringement. Where the reproduction of such material is 

done without attribution of authorship, with false attribution of 

authorship or the authorship is treated in a derogatory manner, 

this may be a breach of the author’s moral rights contained in Part 

IX of the Copyright Act 1968 (Cth). 

 

 Courts have the power to impose a wide range of civil and criminal 

sanctions for infringement of copyright, infringement of moral 

rights and other offences under the Copyright Act 1968 (Cth). 

Higher penalties may apply, and higher damages may be awarded, 

for offences and infringements involving the conversion of material 

into digital or electronic form.



An Approach to Display Layout of Dynamic 

Windows 

By 

Nihar Trivedi 

A Thesis Submitted in Partial Fulfilment of the Requirements for the 

Award of 

Master of Science (Computer Science) 

Supervisors 

Dr. Wei Lai (University of South Queensland) 

Dr. Jim Millar (Edith Cowan University) 

.... -----1 
""'.~............ • •• •• . .. - ... ! I 
, · · : ... JI I I 

\ '.D,.:'" · .. LIBRARY J 

At the Faculty Science and Technology, Edith Cowan University 

Date of Submission: 12th of December, 1997. 



USE OF THESIS 

 

 

The Use of Thesis statement is not included in this version of the thesis. 



Abstract 

The development of windows based user interface has introduced a new 

dimension to the field of human computer interaction. Now a user is able 

to perform multiple tasks at a time, often switching from one task to 

another. However windows environment also imposes the burden of 

manual windows management on the user. Several studies have 

suggested that manual window management is an unproductive chore 

often resulting in clutter and confusion on the display screen. Therefore 

we need a automatic windows layout generator to free the user to perform 

other useful tasks. 

This thesis introduces SPORDAC (Shadow Propagation for Overlap 

Removal and Display Area Compaction) algorithm. This algorithm aims 

to remove overlap from the display layout and encapsulate the layout in 

the finite display area. The SPORDAC prototype integrates the 

SPORDAC algorithm with simulated annealing to optimise the display 

area usage. The usefulness and applicability of the SPORDAC approach 

are illustrated with the implementation of a prototype, samples of 

generated layouts and analysis of the collected data. 



I certify that this thesis does not incorporate without acknowledgment any 

material previously submitted for a degree or diploma in any institution 

of higher education; and that to the best of my knowledge and belief it 

does not contain any material previously published or written by another 

person except where due reference is made in text. 

Signature: 



Acknowledgement 

I am very grateful to Dr Jim Cross, Dr Wei Lai, Dr Jim Millar, Dr Craig 

Standing and my colleagues at CAZ Software for their encouragement, 

guidance and support towards the completion of this thesis. 



TABLE OF CONTENTS 

Chapter 1 Introduction 

Chapter 2 Display Layout algorithms 

Spring Algorithm 
COMAIDE Algorithm 

SHriMP View Algorithm 
Fish Eye View Algorithms 
Force Scan Algorithm 
Luders' Display Layout Algorithm 

Chapter 3 VLSI Layout Algorithms 

Display layout and VLSI layout problems 
Horizontal Shuffle Algorithm 
Line Sweeping Algorithm 
Enhanced Plane Sweep Algorithm 
Shift Compaction Algorithm 
Shape Optimisation Algorithm 

Chapter 4 The Problem 

Prominent research questions 

Discussion about NP completeness 

Chapter 5 The Solution 

Overview of the solution 
Genetic Algorithm 
Simulated Annealing 
Simulated Annealing and Genetic Algorithm 
Generating Initial Layout 

SPORDAC BackgroW1d 
Horizontal Shadow 
Vertical Shadow 
Overlap Removal and Compaction 

SPORDAC Algorithm 

1 

8 

9 
11 
15 
20 
23 
27 

32 

32 
34 
35 
37 
42 
45 

48 

48 
49 

53 

53 
56 
61 
63 
66 
67 
68 
68 
70 
76 



Integration of SPORDAC with AG approach 
Mutation 

Crossover 
Object Model 

Cha12ter 6 The Results 
Samples 

Performance of SPORDAC 

Cha12ter 7 The Conclusion 
Research Findings 
Future Research Directions 

Appendix 

Bibliography 

81 
85 
86 
91 

94 
94 
99 

108 
108 
111 

114 

119 



CHAPTER: 1 

Introduction 



Automatic Display Layout of Dynamic Windows 
Nihar Trivedi 

One of the main goals of a good user interface design is to enable the user 

to cope with information volume. It may happen that users are under 

stress and often inexperienced for the task at hand. Support must be 

provided to help the user selectively extract relevant information from 

available information. Such support must help the user integrate, 

organise, compare, distil, summarise and apply the information. The 

development of the windows based environment is an important step in 

achieving the goal. The concept of windowing grew out of the principle 

that computers should support the way that people really work. (Funke, 

Neal and Paul, 1993, p.951) 

It was observed that people seldom completed one task in a continuous 

time frame. Instead, they switched from application to application in 

response to events happening inside and outside the computing 

environment. In another study, observations were made on the way 

people arranged papers on their desktop. It was observed that users 

frequently rearranged the materials to match changing priorities. Based 

on these studies the desktop metaphor and the concept of windowing 

were born. (Funke, Neal and Paul, 1993, p.952) 



Automatic Display Layout of Dynamic Windows 2 
Nihar Trivedi 

The development and implementation of windowing have had a dramatic 

impact on the way people think about and use computers. A new 

dimension to the human computer interface has been made possible. It is 

now possible for example, to perform multiple tasks in parallel, and to 

view the results of one task while performing another. It is even possible 

to manipulate objects and parameters in one window and simultaneously 

view the results of that manipulation in another window. Also, 

information presentation can be managed in a manner that improves 

continuity of the dialogue and reduces disruption to important material on 

display. These advantages of a windowing environment have led to its 

rapid and wide-ranging acceptance. (Funke, Neal and Paul, 1993, p.952; 

Luders, Ernst and Stille, 1995, p.1183) 

However there are costs with windowing environment as well. The user 

must now assume the burden of managing the windowing environment. 

Windows must be created and displayed, placed at desired locations, and 

moved to uncover needed information on other windows, re-sized, 

exposed and de-exposed, rearranged and 'put away' when no longer 

needed. These tasks are added to the user's existing application domain 

tasks. They do not contribute to user productivity. One can view this 

scenario as challenging a user who is not so confident or competent with 

multiple different computers. 



Automatic Display Layout of Dynamic Windows 3 
Nihar Trivedi 

Several studies have suggested that the burden of window management 

on user increase the overall time taken to complete a task. Earlier 

experiments also suggest that a large determinant in the time it takes to 

solve a problem using windowing system is the time spent manipulating 

the windows themselves. It was also found that tasks finished were error 

free but required more time compared to non-windowing system. It was 

observed that the additional time was spent on window management 

operations. It is reasonable to conclude that the advantages of windows 

may be overshadowed by the window management operations that users 

must perform (Funke, Neal and Paul, 1993, p.953; Luders, Ernst and 

Stille, 1995, p.1184). 

Secondly, an important consideration in the design of windowing system 

is the choice of window layout approach. The overlapped approach to 

window layout avoids the problem of restriction on window size but it 

has its own shortcomings. Overlapped windows cover information on 

underlying windows, sometimes requiring rearrangement of windows to 

achieve the desired multi-window view. Also, in an overlapped 

windowing system, it is possible to accumulate too many windows, 

making it difficult for users to keep an organised view of what is being 

presented. This is a serious problem when some windows become 



Automatic Display Layout of Dynamic Windows 4 
Nihar Trivedi 

completely obscured by overlapped windows (Funke, Neal and Paul, 

1993, p.953; Luders, Ernst, 1995,p.l). 

From the preceding discussion it is proposed that we need an automatic 

window positioning system which generates a layout of non-overlapping 

windows. The system should be interactive to accommodate creation of 

new windows by the user, closure of any window by the user or re

positioning of a window. It is acknowledged that one of the main 

problems in display layout generation is to show more details of a portion 

of layout without hiding the remainder of the layout (Misue, Eades, Lai 

and Sugiyama, 1995, p.195; Storey and Muller, 1995). 

In this thesis, the goal is to have a window occupying more and more 

display area and other windows giving up their display area depending 

upon level of interaction of a user with open windows. For example, if a 

user is working with five windows simultaneously and majority of the 

user interaction is focused on a particular window then it should generate 

maximum number of requests to increase it's display area. Similarly, each 

of the remaining windows should generate requests to reduce their 

display area. This results in dynamic modification in size of each 

window. The dynamic modification in the sizes of windows may 

introduce overlaps to the display layout or create a situation where the 



Automatic Display Layout of Dynamic Windows 5 
Nihar Trivedi 

display layout is no longer able to fit in the available display area. The 

final display layout should remove overlaps and encapsulate the layout in 

available display area. 

The research will also investigate the relationship between preserving the 

mental map of the user and optimising the usage of display area (Misue, 

Eades, Lai and Sugiyama, 1995,p. l 86). Misue, Eades, Lai and Sugiyama 

(1995) have suggested that to preserve mental map of a diagram, the 

orthogonal ordering, clusters and topology of a diagram should be 

maintained in the transformed display layout. 

The orthogonal ordering is preserved if the horizontal and vertical 

ordering of objects is maintained. Keeping windows close in the 

distorted view if they were close in the original view preserves clusters. 

The topology is preserved if the distorted view of the graph is a 

homeomorphisim of the original view. Other properties to be preserved 

include straightness of lines, orthogonality of lines parallel to x and y axis 

and relative sizes of nodes. 

One can see that it is impossible to allocate more space to a portion of 

layout without distorting one or more of properties described above. One 

of the main problems in layout adjustment is to show more details of a 



Automatic Display Layout of Dynamic Windows 6 
Nihar Trivedi 

portion of a layout without hiding the remainder of the layout (Storey and 

Muller, 1995; Misue, Eades, Lai and Sugiyama, 1995,p.195). 

It should be apparent from the above discussion that preserving mental 

map and optimising display area usage are conflicting goals. In this 

research an attempt is made to strike a balance between the two by 

implementing and testing few unique ideas. The prime concern of this 

thesis is to remove the overlap from the window layout, compact the 

layout to optimise display area and study the resulting effects on mental

map preservation. 

The main problem to be solved by this thesis is similar in nature to graph 

layout, Very Large Scale Integrated (VLSI) circuit layout, floor plan 

optimisation and similar problems. Several graph layout algorithms have 

been developed so far. Many of them translate the graph layout problem 

into an equivalent mechanical or thermal system or combination of 

several physical systems with some instability. Then the whole system is 

brought to equilibrium by applying combination of famous laws of 

physics or their variants. The stable state is then translated back to actual 

visual system. 



Automatic Display Layout of Dynamic Windows 7 
Nihar Trivedi 

The hypothesis is that it is possible to develop an interactive automatic 

windows layout manger which can arrange windows in such a way that 

they do not overlap, fit in the finite display area, optimise the usage of 

display area and preserve the mental map of the layout to a reasonable 

degree. 

This thesis is organised as follows. Chapter-2 surveys some of the 

prominent display layout algorithms. Chapter-3 describes relevant VLSI 

layout algorithms. Chapter-4 formally states the main focus of the thesis. 

Chapter-5 proposes SPORDAC (Shadow Propagation for Overlap 

Removal and Display Area Compaction) technique to solve the problem 

tackled by the thesis. Chapter-6 documents the results and analyses the 

performance of the SPORDAC algorithm and the SPORDAC prototype. 

Chapter-7 highlights main research findings, strengths and weaknesses of 

the SPORDAC technique and concludes the thesis. 



CHAPTER: 2 

Display Layout Algorithms 



Automatic Display Layout of Dynamic Windows 8 
Nihar Trivedi 

This chapter discusses some of the prominent display layout algorithms 

developed over the years. Many algorithms translate display layout 

problems into a pseudo-physical system by replacing display objects with 

some form of a physical entity. Then different types of forces are 

assumed to apply to the system and the system is brought to equilibrium 

by applying one or more variations of famous laws of physics. The 

spring algorithm developed by Peter Eades is one of the first algorithms 

to implement such an approach (Eades, 1983 ,p.149). 

Many variations have been developed on this theme. They either refine 

the algorithm or consider more variety of forces. The force scan 

algorithm and COMAIDE are examples of such a category (Misue, 

Eades, Lai and Sugiyama, 1995 ,p.190; Dodson, 1993 ). 

Another group of algorithms implement a fish-eye view or a variation on 

the idea (Noik, 1993, p.336; Misue, Eades, Lai and Sugiyama, 

1995,p.200). Over the years many algorithms have been developed on 

this theme. This chapter describes orthogonal and biform mappmg 

approaches (Misue, Eades, Lai and Sugiyama, 1995,p.200). 

SHriMP view technique is a simple method to preserve mental-map while 

ensuring encapsulation of windows in finite display area (Storey and 

Muller, 1995). This chapter concludes with discussion of Luders's 



Automatic Display Layout of Dynamic Windows 9 
Nihar Trivedi 

automatic display layout algorithm (Luders, Ernst and Stille, 

1995 ,p.1194 ). One can also refer to an excellent bibliography of display 

layout algorithms prepared by Battista, Eades, Tamassia and Tollis 

(1994) to investigate variety of algorithms on the subject. Peter Eades 

has also reported numerous free tree-drawing algorithms (Eades, 

1991,p.1 ). 

Spring algorithm 

This algorithm attempts to generate a symmetric layout of a graph by 

applying some of the fundamental laws of physics. The main idea is to 

replace each node of the graph with a steel ring and each edge with a 

spring to form a mechanical system. Steel rings repel each other while 

springs pull the nodes together. Initial layout is generated randomly and 

the whole system is brought to equilibrium by positioning the nodes in 

such a way that opposite force cancel out each other. A conventional 

spring exerts force on a node according to Hooke's law ie., proportional 

to distance. It is observed in practice that such a spring exerts a large 

force on nodes that are far apart (Eades, 1984,p.150). 



Automatic Display Layout of Dynamic Windows 10 
Nihar Trivedi 

To remedy the situation, spring force is calculated according to following 

logarithmic formula: 

F = Cxlog(~) 
where C = constant, 

d = length of the spring, 
D = constant 

As we can see, force equals to zero if d = D . 

Non adjacent nodes repel each other by the force calculated usmg 

following formula: 

where R = constant, 
d = distance between nodes. 

The following algorithm simulates the mechanical system (Eades, 1984, 

p.150). 

1. 0 Generate random layout 

2. 0 Repeat M times 

3.0 Calculate force on each node; 

4. 0 Move the node by k x (force_ on_ node); 

5. 0 end repeat 

6. 0 Draw graph 

where k is a constant. 

This algorithm is successful in generating good layouts with less than 30 

nodes. It is acknowledged that for dense graphs quality of layout 1s 

inferior (Eades, 1984,p.151 ). 



Automatic Display Layout of Dynamic Windows 11 
Nihar Trivedi 

There are practical difficulties in employing this algorithm for this thesis 

as outlined below. 

• This algorithm ensures a spring of non-zero, positive length but it 

does not seem to handle nodes of different sizes. Hence when the 

size of a node dynamically changes, the nodes might overlap even 

though they are connected by a spring. 

• It follows from the outline of the spring algorithm that it may 

generate a layout that does not fit into the available display area. 

Co-Operative Multilayer Application-Independent Diagram Environment 

(COMAIDE) 

Dodson (1993) has suggested a method for graph layout in 3D utilising 

laws of physics. In this approach, each node has mass M and obeys 

Newton's second law of motion. Each link or edge of the graph behaves 

as a spring and has negligible mass. It is assumed that whole system is 

immersed in · a viscous liquid. Thus the display layout problem is 

translated to its equivalent thermo-mechanical system. The algorithm 

then attempts to bring this system to equilibrium. The problem is solved 

when the system attains equilibrium. 



Automatic Display Layout of Dynamic Windows 

Dodson (1993) has defined following forces for COMAIDE. 

The force exerted by a node is given by, 

F=mV 

where 
· dV 
V=

dt 

Nihar Trivedi 

V = velocity of the node 
m = mass of the node. 

12 

The force F is sum of motive force on the node and the drag because of 

viscosity. If we neglect the size of the node then we can say that, 

m V = FM011vE -kV 
where k = viscosity coefficient 

V = velocity of the node. 

Generally it is assumed that nodes have negligible mass (Dodson, 1993 ). 

Which suggests that, 

V = FM011VE • 

k 

The COMAIDE prototype discussed by Dodson (1993) calculates the 

final layout by arranging display objects in layers. The layout algorithm 

assumes the existence of variety of 'force-links' between display objects, 

layers and links themselves. Interested reader can refer to Dodson ( 1993) 

for further details on the topic. 



Automatic Display Layout of Dynamic Windows 13 
Nihar Trivedi 

The main algorithm of the system (Dodson, 1993) is as follows: 

1. 0 For each node in n: Set v(n) {the velocity of n} to [o,o,o ]; 
2. 0 While T, > 0 { where T, is the assumed size of time-step in 

seconds }; 

<<< Force Computation:_>>> 

3.0 For each node n: Set F(n) {the motive force on n} to 
[o,o,o]; 

4.0 For each node n: Add its boundary repulsion forces to F(n), 
also, 

5. 0 For each force couple between two diagram elements: 
6.0 For each member E of the pair of elements: 
7. 0 If Eis a node n: Add the relevant force to F(n) 

8.0 Else (E is a link.from node n1 to node n2 .) 

9. 0 Add the relevant forces to F(n1) and F(n2 ); 

< < < MOTION Computation > > > 

10.0 

11.0 

12.0 
13.0 

14.0 

15.0 

If inertia > 0 then: 

T T, 
.\:,·=s, 

For each node n, repeat 5 times 
Posn(n) = Posn(n) + V(n) * T,., 

V(n) = V(n) + ((p(n)-V(n) * Vi~cos~ty)* T,,) 
Mass(n) * mertza 

Else For each node n: 
V(n) = _F(n)_ 

Viscosity 

Posn(n) = posn(n) + V(n) * T,. 

u· . . ( d . ·: . . * (100 + anneal rate) YlSCosity=mmen _VlSCOSlly,VlSCOSlty 100 - ; 



Automatic Display Layout of Dynamic Windows 14 
Nihar Trivedi 

The above stated algorithm solves the layout problem by assuming that 

the layout was suspended in a thick fluid, which continually extracts 

energy from the layout and promotes low energy stable state. The motion 

and heat that are induced in actual environment are ignored. Notion of 

inertia in the system controls the effect of mass in the system. 

Some of the drawbacks of the algorithm that discourage us from utilising 

it to solve our problem are listed below. 

• It appears from the algorithm proposed by Dodson (1993) that 

COMAIDE algorithm does not deal with the problem of 

encapsulation of nodes in a finite area or volume. 

• Dodson (1993) acknowledges that the size of a node is ignored in 

analysis. This may not be a valid assumption for this thesis. 

• This algorithm partially relies on user intervention for generating 

layout (Dodson, 1993). The objective of this thesis is to find a 

solution where user is relieved from this time consuming 

unproductive chore. 



Automatic Display Layout of Dynamic Windows 15 
Nihar Trivedi 

Simple Hierarchical Multi-Perspective (SHriMP) View method 

Preserving orthogonal order of the diagram and fitting the layout in finite 

display area are the main goals of this algorithm. According to this 

algorithm other nodes give up their display area to allow a node of 

interest to grow in size. 

DOD 
DOD 
DOD 

D DD 

D0o 
DD D 

Figure 2.1 
Final layout calculated by SHriMP view technique after central node is expanded. 

As shown in above diagrams, a node grows by pushing other nodes 

outwards assuming infinite display space. The nodes are then scaled 

around the centre point of the display area to fit the available space. 

The nodes are pushed outwards by adding a translation vector [Tx, Ty] to 

its coordinates. Then the nodes are scaled around an arbitrary fixed point. 

Scale factor is decided by dividing required size of the screen to the 

requested size of the screen. 



Automatic Display Layout of Dynamic Windows 16 
Nihar Trivedi 

The following equations are applied to a node coordinate (X,Y) to 

translate it to the new position (x·, y·). 

X'= Xp+s*(X +Tx-Xp) 

Y' = Yp + s * (Y + Ty - Yp) 

Where, 
(Xp,Yp) = coordinates of fixed point 
( X, Y) = coordinates of a node 
(X' ,Y') = new coordinates of a node 
[Tx, Ty] = translation vector 
s = scaling factor 

The magnitude and direction of the translation vector T decides the new 

positions of nodes when they are pushed (Storey and Muller, 1995). 

Three variants on above theme are designed by modifying the translation 

vector T. 

SHriMP view (variant 1) 

In this method, the graph is partitioned into nine different sections by 

extending the edges of the scaled node. The translation vector for each 

node is calculated according to the partition containing its centre. 



Automatic Display Layout of Dynamic Windows 17 
Nihar Trivedi 

[-dx,-dy] [o,-dy] [dx,-dy] 
1····· ........................................................................ . 

dx 

[-dx,O] 

dy ........................................................................................ 
· ............................................................................ · 

[-dx,dy] [O,dy] [dx,dy] 

Figure 2.2 
Translation vectors for each sibling node is determined by the partition containing its centre. 

In the above diagram, dx and dy are x and y direction differences 

between the new size of the scaled node and its previous size. The dotted 

square represents new size of an expanded node. As we can see, the 

layout is divided in nine partitions with corresponding translation vectors. 

All the nodes are pushed by the same amount in both directions to 

maintain orthogonal relationships (Storey and Muller, 1995). 



Automatic Display Layout of Dynamic Windows 18 
Nihar Trivedi 

SHriMP view (variant 2) 

In the second approach each node stays on the line connecting its centre 

to that of the node being re-sized. When a node is re-sized, it pushes a 

sibling node outward along this line. This technique preserves proximity 

relationships. The direction of each sibling node's translation vector is 

equal to the direction of the line connecting the centres. The magnitude 

of this vector is equal to the distance that a comer point of the scaled 

node moves as it is enlarged . 

......................................... 

B 

dx ....................................... J 

(Xb,Yb) 

' 
' 

B (Xb,Yb) 

Ty 
µ 

i (Xa,Ya) 
--~- l(Xa, Ya) . 

.......................... . ... ; .................... L,,,,:::::::::z ... 1... ........................ .1 ...... ...................... ay .. · 

Figure 2.3(a) Figure 2.3(b) 

Fig 2.3(a) A sibling node, B , is pushed outward along the line connecting its centre 
and the centre of A, the node being scaled. Each node is pushed out by distance µ . 

Fig 2.3(b) A sibling node, B, is pushed along the vector between its centre and that 
of A, the node being scaled. The distance it is pushed along this vector is determined 
by the displacement of the intersecting node's edge as it moved along the vector. 



Automatic Display Layout of Dynamic Windows 19 
N ihar Trivedi 

The equations used in this approach are as shown below. 

µ = ~dx2 +dy2 

Xa-Xb 
Tx = µ--;======== 

~(Xa-Xb) 2+ (Ya-Yb) 2 

The second variant sacrifices orthogonal relationships to some extent but 

nodes, which were close in the original view, remain close in the 

transformed view as well (Storey and Muller, 1995). 

SHriMP view ( variant 3) 

In the third variant, the direction of the translation vector remains the 

same but the magnitude is not the same for all sibling nodes. A node 

pushes out sibling nodes according to the displacement of the scaled 

node's edge as it moved along the line connecting their centres. 

Tx = _.!_(Yb±dy-Ya)+ Xa-Xb if \ml~ 1 
m 

Tx = 0 if \ml = 0 

Tx = ±dx 

Ty = m( Xb ± dx - Xa) + Ya - Yb 

Ty=O 

Ty=±dy 

otherwise 
if O <\ml< 1 

if \ml= 0 

otherwise 

Where (Xa,Ya) = coordinates of the node being expanded, 
m = slope of the line connecting centres of 

expanding and pushed nodes. 



Automatic Display Layout of Dynamic Windows 20 
Nihar Trivedi 

The strengths and weaknesses of SHriMP view method are as mentioned 

below: 

• Storey and Muller (1995) claim SHriMP view technique to be fast 

in execution and easy to implement. 

• It is also claimed that SHriMP view technique preserves orthogonal 

relationships and the proximity of nodes and fits the final layout 

within the display area (Storey and Muller, 1995). 

• However it seems from the mathematical formulas used for 

different variants of SHriMP view technique that this method does 

not attempt to optimise usage of the display area or remove 

overlap. 

Fish Eye View layout algorithms 

The Fish Eye View (FEY) algorithm designed by Furnas ( cited in Storey 

and Muller, 1995) aims to view and navigates detailed information while 

providing the user with important contextual cues. This display method 

is based on the fish eye lens metaphor where the objects in the centre of 

the view are magnified and the objects further from the centre are reduced 

in size. In Furnas' formulation, each point in the display structure is 

assigned a priority calculated using a degree of interest function. Objects 



Automatic Display Layout of Dynamic Windows 21 
Nihar Trivedi 

with a priority below a certain threshold are filtered from the view 

(Storey and Muller, 1995). 

Several variations on this theme have been developed to deemphasise the 

information of lesser interest by using the size, position, colour or 

shading along with filtering (Storey and Muller, 1995; Misue, Eades, Lai 

and Sugiyama, 1995,p.199; Noik, 1993, p.336). A method proposed by 

Sarkar and Brown (Cited in Storey and Muller, 1995) magnifies the 

objects of interest and demagnifies the objects of lower interest around 

focal point. Therefore nodes further away from the focal point look 

smaller (Storey and Muller, 1995). 

An alternative is the continuous zoom algorithm designed by Ho et. al., 

(Cited by Storey and Muller, 1995) that allows the user to expand and 

shrink nodes while navigating a diagram. 

In the orthogonal stretching algorithm suggested by Sarkar (Cited by 

Storey and Muller, 1995) the user stretches a square region of the display 

area in X and Y directions. The Objects within this region are stretched 

while the objects outside this region are contracted uniformly 



Automatic Display Layout of Dynamic Windows 22 
Nihar Trivedi 

Misue et. al., (1995) has described three variations on the FEV method. 

They are Biform Display method (BF), the Fish Eye display method (FE) 

and Orthogonal Fish Eye method (OFE). 

Orthogonal Fish Eye method: 

This method computes display layout along both axes independent of 

each other and preserves orthogonal ordering of the display objects. It 

also preserves straightness of lines parallel to X and Y axis. The 

following equations are used to move the point (X,Y) to ex· ,Y'). 

' 1~ 
X =-L<l> 

n i=O I 

1 n-1 

y· = - Llf/; 
n i=O 

If/. =!_tan-I y-qi c· 01 1) 1 = , ..... . ,n-
' TI S; 

(} =tan-1 y-q; 
l x- P; 

-------
/ = 2r tan-1 ~(x- P;)2 +(y-q;)2 

' TI S; 

where (P;,q;)= view point 
<D = polar angle from view point 
I;= new distance of point(X,Y) 

from a view point(p;,qJ 

s; = constant to control 
magnification ratio at view 
point(p;,q;) 



Automatic Display Layout of Dynamic Windows 23 
Nihar Trivedi 

The coefficient !_ ensures that the objects stay within a square of side r . n 

This method can theoretically display an infinite domain on a finite area 

but in practice they tend to crush surrounding areas infinitely and make 

them invisible (Misue, Eades, Lai and Sugiyama, 1995, p.201). 

Biform Mapping: 

This method claims to overcome shortcomings of previous method by 

using 'view areas' instead of viewpoints. This method preserves the 

aspect ratio of the rectangular frames of display objects. The display 

objects are magnified uniformly in each view area and demagnified 

uniformly outside the view areas (Misue, Eades, Lai and Sugiyama, 1995, 

p.201). 

Force Scan Algorithm 

The Force Scan Algorithm uses the principle similar to the spnng 

algorithm to move nodes in both horizontal and vertical directions to 

avoid overlaps. The main idea is to apply force F"" between two pairs of 

u, v nodes so that overlap of node u and v can be removed. The force is 



Automatic Display Layout of Dynamic Windows 24 
Nihar Trivedi 

applied m both directions (Misue, Eades, Lai and Sugiyama, 1995, 

p.191). 

,---------,u 

<··············································y······ .. ······························· Pu 
·· .. 

···························.,. u 

··· .... V 

Figure 2.4 Actual and desirable distances between two windows. 

The force Fuv is applied along the line connecting the centres of nodes. 

The magnitude of the force is the difference between the actual distance 

Duv and the desirable distance Kuv between the node images for u and V. 

The force is analogous to Hooke's law (Misue, Eades, Lai and Sugiyama, 

1995, p.191). 

The actual distanceDu. is the Euclidian distance between Pu and P, .. The 

desirable distance Ku. is the distance required between centres of both 

nodes to remove overlap. Let r = (x,Y) be the first point along the line 

. . I I (Wu+Wv) I I (Hu+Hv) from Pu to P. for which either X - Xu ~ 2 or Y - Yv ~ 2 . 



Automatic Display Layout of Dynamic Windows 25 
Nihar Trivedi 

Then the desirable distance Km, is the Euclidean distance between Pu and 

r (Misue, Eades, Lai and Sugiyama, 1995, p.191 ). 

If the nodes u and v overlap, then the magnitude of the force Fuv 1s 

Ku. -Du .. (Misue, Eades, Lai and Sugiyama, 1995, p.191). Thus, 

Fu .. = max(O,K11" - D,,.) x u 

Where u unit vector in the 

direction from P,, to P.. 

In practice a constant value g can be added to K"', to force a gap of size 

g between nodes. 

The Force Scan Algorithm applies forces in two scans. The first is in the 

horizontal direction preserving horizontal order of nodes. The second 

scan is in the vertical direction and preserves the vertical order of nodes. 

Nodes are sorted in ascending order of x coordinates of their centre 

(Misue, Eades, Lai and Sugiyama, 1995, p.191). 



Automatic Display Layout of Dynamic Windows 26 
Nihar Trivedi 

Misue, Eades, Lai and Sugiyama (1995) outline the horizontal scan 

algorithm as follows. 

1.0 i = l; 
2. 0 While i < IVI do 

3. 0 Suppose that x; = x;+i = · · · · · · = xk+I; 

4. 0 8 ~ maxis:ms:k<Js:IVI fx vmv1 ; 

5.0 

6.0 

for J ~ k + l to IVI do 

i = k +l; 

A similar scan is applied in opposite direction. 

A variation of force scan algorithm called push - pull algorithm uses 

following force equation (Misue, Eades, Lai and Sugiyama, 1995, p.192). 

Fuv = (Ku-Duv)*U 

With this modification the force Fuv will be positive if the desirable 

distance is more than actual distance and it will be negative when nodes 

overlap. The positive value of the force pulls the diagram together and 

negative value removes overlap (Misue, Eades, Lai and Sugiyama, 1995, 

p.192). 

However, this algorithm does not always fit the diagram in finite display 

area and it is acknowledged that it may not always produce non

overlapping layout (Misue, Eades, Lai and Sugiyama, 1995, p.195). 



Automatic Display Layout of Dynamic Windows 27 
Nihar Trivedi 

Luders' s Automatic Display Layout method 

Luders's approach considers display layout generation of hierarchical 

objects as a combinatorial optimisation problem. This approach achieves 

a final display layout in two phases. 

In the first phase, all display objects are assumed to be of the same size 

and a grid based display layout is generated. The grid locations are 

calculated on the basis of dimensions of display area, and the number of 

objects that can be displayed side by side and vertically tiled. After the 

grid is generated, the size of display objects is modified in such a way 

that they do not overlap. A simulated annealing algorithm is used to 

generate the grid based layout. The cost function for simulated annealing 

algorithm is designed to accommodate hierarchical nature of the objects. 

The cost function tends to optimise the number of edge crossings, length 

of edges, edges running across objects, etc (Luders, Ernst and Stille, 

1995, p.1189). 



Automatic Display Layout of Dynamic Windows 28 
Nihar Trivedi 

In the second phase, a modified version of force directed algorithm is 

applied in two parts: 

(a) a force-directed part, which is responsible for minor changes of the 

placements of objects, and 

(b) a pressure directed part, which actually introduces different object 

sizes etc (Luders, Ernst and Stille, 1995, p.1193 ). 

Force-directed part: 

In force-directed part it is assumed that certain static spring forces and 

dynamic forces are applied to the nodes. Applicable static spring forces 

are defined as follows: 

(a) the attracting force F,,a,,H between objects which are connected by 

edges 

(b) the repulsive force F,.,a,,o between each pair of objects, and 

(c) the repulsive 'border force' F,101 ,8 between each object and the 

borders of the placement area (in each direction + x,-x,+y,-y) etc 

(Luders, Ernst and Stille, 1995, p.1193). 

The magnitudes of these forces are dependent on the distance between the 

objects and on the distance between an object and the border of the 

placement area etc (Luders, Ernst and Stille, 1995, p.1189). 



Automatic Display Layout of Dynamic Windows 29 
Nihar Trivedi 

The calculation of the repulsive forces is done in such a way that the 

force tends towards infinity with decreasing distance. Therefore, an 

overlapping of objects or the placement of an object outside the 

placement area is impossible. However, overlap may occur if the size of 

the rectangle representing the object changes (Luders, Ernst and Stille, 

1995, p.1194). 

The following dynamic forces (Luders, Ernst and Stille, 1995, p.1194) are 

defined for the system: 

(a) an attracting force F dyn,RAbs between the current and the reference 

placement of an object, and 

(b) the force Fdyn,RRe" which pushes an object in order to keep the 

relative position of two objects in two succeeding layouts. 

The forces effective on an object i are calculated by determining linear 

combination of all forces effective on i. The final location of each object 

i is determined from these forces. 

The pressure directed part: 

This part modifies sizes of objects m order to introduce objects of 

different sizes. To achieve this, inner and outer pressures of an object are 

introduced. The sizes of objects are modified observing Boyle and 



Automatic Display Layout of Dynamic Windows 30 
Nihar Trivedi 

Mariotte's law which says that product of volume V and pressure P of a 

gas is constant: P x V = canst (Luders, Ernst and Stille, 1995, p.1196). 

Luders, Ernst and Stille (1995) describe their algorithm for pressure 

directed part as outlined below. 

1.1 Determine initial placement 
1. 2 Determine forces effective on each node 

1. 3 Determine M = IP;iuter - P;nner I for each node 
1.4 Repeat 
1. 5 for i = O; i < ID; i + + begin 
1. 6 Determine node J with maximal M 

1. 7 If P;,meri - pouter; > 0 then 

1. 8 Reduce J in size 
1.9 else 
1.10 enlarge node J 
1. 11 Modify pressure differences M 
1.12 end 
1.13 for i=O;i<IF;i++ begin 
1. 14 Determine node j' with maximal F; 

1.15 Move i in the direction of F; 

1.16 Modify forces F 
1.17 end 
1.18 until stop criterion 

This algorithm terminates if the maximum number of iterations is reached 

or if the improvement of the pressure or force differences drops below a 

lower limit (Luders, Ernst and Stille, 1995, p.1198). 

It is claimed that this method effectively generates 'good' layouts for 

windows containing different types of data and hierarchical display 

objects (Luders, Ernst and Stille, 1995, p.1198). 



Automatic Display Layout of Dynamic Windows 31 
Nihar Trivedi 

However, this method is designed for non-interactive mode and may 

generate an overlapped layout if display object size is modified in force 

directed layout generation. 

One of the main objectives of this thesis is to develop an interactive 

display layout algorithm, which can generate non-overlapped layout 

under all conditions in dynamic environment. 

This chapter has surveyed some of the prominent display layout 

algorithms and evaluated their strengths and weaknesses. The next 

chapter discusses how the VLSI layout problem relates to the display 

layout problem and investigates some of the relevant VLSI layout 

algorithms. 



CHAPTER: 3 

VLSI Layout Algorithms 



Automatic Display Layout of Dynamic Windows 32 
Nihar Trivedi 

This chapter begins with comparison of the display layout and the VLSI 

layout problems followed by discussion of some of the relevant VLSI 

layout algorithms. The chapter describes few VLSI layout generation 

methods, which operate on 'constraint' graph generation principle. We 

will discuss Horizontal Shuffle, Line Sweeping Algorithm, Enhanced 

Plane Sweep method, Shift Compaction method and Shape Optimising 

method in this chapter. These methods generate a 'constraint' graph to 

represent objects and constraints to be observed. The constraint graph is 

then manipulated and final solution layout is computed. 

Display layout and VLSI layout problems 

There are several similarities between the problem of windows layout 

generation and that of VLSI layout. In both cases rectangular shapes 

need to be arranged in finite area and uphold certain constraints. It is the 

prime objective of this thesis to remove overlap and arrange the layout in 

such a way that display area is optimally utilised. Similarly, overlap 

removal and optimised usage of chip area could be one of the objectives 

of VLSI layout generation algorithm. However, there are some 

significant differences between the problems. 



Automatic Display Layout of Dynamic Windows 33 
Nihar Trivedi 

For VLSI layout generation it is generally assumed that enclosing area is 

big enough to accommodate all the objects and objects do not change 

their size. For windowing, the size of each window is dynamic and it 

keeps changing depending upon the user's interaction with the window. 

Hence the finite display area may not be enough to accommodate all 

windows in all situations. This would require scaling of the windows as 

and when necessary. 

A second difference between VLSI and display layout problems is that 

the constraints to be applied in both cases may not be identical. The 

constraints to be observed would depend upon application specific 

details. This would determine whether some algorithmic operations 

could be allowed in the system or not. For example, changing the 

orientation of a cell could be a very useful operation for VLSI layout 

generation but may not be recommended for windows layout generation 

as it may generate a layout that becomes difficult to comprehend by a 

user. Similarly, scaling is a legitimate operation for window layout 

generation but can not be applied for VLSI layout generation, etc. 

Thirdly, VLSI layout generation process does not involve any user 

interaction, as the final output is not visual in any way. But in a window 



Automatic Display Layout of Dynamic Windows 34 
Nihar Trivedi 

environment, user interaction might change the number of windows open 

and hence we need an interactive algorithm. 

Several VLSI layout algorithms have been designed over the years, which 

utilise graph theory principles to solve the problem. Many such 

algorithms construct a 'constraint graph' and 'solve' it to generate the 

final layout. A constraint graph represents objects in the layout as nodes 

and physical constraints amongst the objects as edges. 

Horizontal Shuffle 

In this algorithm, a node in the graph represents every cell or window. A 

hypothetical source and sink node is added to the diagram. The layout is 

compacted in the direction from source to sink node, ie., left to right or 

top to bottom (Lai, 1993 ,p.100 ). 

An edge between a pair of nodes is added if they overlap. The weight of 

the edge is the minimum distance required between x coordinates of 

centres of both nodes (Lai, 1993,p.101 ). 

Every node is also connected to the source and sink nodes with weight 

equal to sum of half of the width of the node and gap (Lai, 1993,p.101). 



Automatic Display Layout of Dynamic Windows 35 
Nihar Trivedi 

An algorithm to compute maximum weight path is used to determine 

final position of each node in horizontal direction. This generates a non

overlapping layout. This algorithm removes overlap but the constraint 

graph may contain redundant edges (Lai, 1993,p.102). 

The same process can be applied in the opposite direction to compact the 

diagram in both directions. 

Line Sweeping Algorithm 

The Line Sweeping Algorithm described by Hsiao and Feng (1990) 

generates a constraint graph as described below. 

When considering X compaction, a vertical line scans the diagram from 

left to right. The sweeping line jumps from left to right of the source 

layout step by step. At each step, it should stop whenever the sweeping 

line exactly encounters one or more edges of the layout rectangles. 

Moreover, every edge of a layout rectangle must be encountered during 

the sweeping operation (Hsiao and Feng, 1990, p.78). 



Automatic Display Layout of Dynamic Windows 36 
Nihar Trivedi 

At each sweeping step, the sweeping line intersects with a set of 

rectangles, which are then called active rectangles. Some of these 

rectangles' left or right edge may coincide with the sweeping line. These 

rectangles are dealt one by one in the graph generation algorithm. 

Whenever any of these rectangles is the one currently being considered, it 

is called the master rectangle. Each time after all right and left edges of 

encountered rectangles have been processed, the sweeping line 

automatically jumps to the next step using a special algorithm (Hsiao and 

Feng, 1990, p.79). 

Hsiao and Feng (1990) describe Line Sweeping Algorithm as follows. 

1.0 
2.0 

3.0 
4.0 
5.0 
6.0 

7.0 
8.0 
9.0 

10.0 
11.0 

12.0 
13.0 

{ 

14.0 
15.0 
16.0 } 

Generate an empty adjacency list and several 
temporary buffers; 
Start to scan the source layout from left to right; 
While (at each sweeping step) 
{ 

} 

Choose the master rectangle from current 
active rectangles one by one; 
For (each master rectangle) 
{ 

} 

Refer to the buffers to avoid trivial 
considerations of the constraints that 
have been dealt with before; 
Solve constraints; 
Rearrange the unnecessary constraints 
generated in the previous sweeping steps 
from the buffers; 

Update the generated adjacency list of the 
constraint graph; 

Compact the adjacency list; 



Automatic Display Layout of Dynamic Windows 
Nihar Trivedi 

Optimal constraint graph generation using Enhanced Plane Sweep 

method 

The Enhanced Plane Sweep method is an improved constraint graph 

generation method. A constraint graph contains objects as its nodes and 

directed edges as constraints applicable to the layout. 

37 

It is often found that most of these constraints are redundant and result in 

deterioration of performance. This algorithm aims to generate required 

constraints only (Awashima, Sato and Ohtsuki, 1993, p.507). 

Y compaction using this algorithm can be explained as follows. 

This algorithm aims to generate a constraint graph G = (V, E), where each 

vertex Vi represents a corresponding layout object and each directed edge 

e ii E E represents any existing constraint between vertices v; and V; . 

Since we are discussing Y compaction, the direction of separation edges 

is upward, that is, from lower objects to upper objects. Each separation 

edge is weighted according to a minimum spacing rule between two 

vertices connected by the edge. 



Automatic Display Layout of Dynamic Windows 38 
Nihar Trivedi 

An edge e is said to be redundant if and only if at least one directed path 

other than e exists that connects two vertices connected by e. In other 

words, a redundant edge e is a shortcut of a constraint graph (Awashima, 

Sato and Ohtsuki, 1993, p.508). 

j 

I 
I 

Redundant edge 

____. Constraint edge 

t 
\ 

\ 

\ 
\ 

Figure 3 .1 An example of constraints among objects 

The algorithm maintains a list called PB (Previous Boundary). Here the 

direction of plane sweep is vertical which means that the horizontal scan 

line sweeps layout objects from top to bottom. PB is the list of horizontal 

boundary edges of previously swept objects that are vertically visible 

from current scan line. During plane sweep, a CSL (Current Scan Line) 

buffer is maintained to store objects crossing the current scan line 

generation (Awashima, Sato and Ohtsuki, 1993, p.509). Horizontally 



Automatic Display Layout of Dynamic Windows 39 
Nihar Trivedi 

adjacent objects can be detected by searching this buffer. Vertically 

adjacent objects can b detected by searching PB. CSL is not necessary 

during vertical constraint graph generation (Awashima, Sato and Ohtsuki, 

1993, p.509). 

PB can be thought of as a conjunction of shadow fronts propagated from 

objects currently on the scan line and from objects that will be swept 

afterwards. Candidate objects for generating constraints can be detected 

by searching PB within a range that is derived from the size of a same 

object on the scan line. After enumerating candidate objects that are 

visible from a source object, a redundancy check is done in a simple way, 

so that redundant constraints are neglected and never generated 

(Awashima, Sato and Ohtsuki, 1993, p.508). 

The input to the algorithm is a list of n objects stored in the Event List 

(EL) and a value (D) specifying the minimum distance between objects. 

The algorithm operates on the inputs to produce an optimal constraint 

graph. Awashima, Sato and Ohtsuki (1993) explain enhanced plane 

sweep algorithm as outlined below. 



Automatic Display Layout of Dynamic Windows 
Nihar Trivedi 

1.0 Sort EL in descending order ofY coordinate of upper edges of 
objects. Set the value for D. Initialise a work list PB. 

40 

2. 0 If EL is empty then stop. Otherwise read next object S from EL. 
3.0 Search PB within the range determined by extending upper edge h 

of current object S with minimum spacing value D in both left and 
right directions and enumerate candidate objects. 

4. 0 For each candidate object, one of updating operations of PB is 
applied. Constraint is generated if necessary. 

5. 0 Insert current object S into PB according to X coordinate of left 
end point of upper edge h. Go to step 1.0. 

The update operation on PB is followed by a simple redundancy check. 

Then a constraint is added if it is not redundant. Redundancy checks are 

performed as described below. Here a candidate edge in PB is denoted 

by g and source edge on current scan line by h . The following 

redundancy checks stand on the fact that a constraint from h to g is 

redundant if and only if at least one object exists between h and 

g(Awashima, Sato and Ohtsuki, 1993, p.509). 

(a) gcovers the left end point of h 

If the right end point of g is the upper right comer of the 

corresponding object then a constraint from h to g is required. 

Update x coordinate of the right end point of g by x coordinate of 

the left end point of h (Awashima, Sato and Ohtsuki, 1993, p.509). 



Automatic Display Layout of Dynamic Windows 
Nihar Trivedi 

(b) g covers the right end point of h 

If the left end point of g is the upper left comer of the 

corresponding object then a constraint from h to g is required. 

Update X coordinate of the left end point of g by x coordinate of 

the right end point of h (Awashima, Sato and Ohtsuki, 1993, 

p.508). 

(c) h covers g 

41 

If the left end point of g is the upper left comer of the 

corresponding object and the right end point of g is the upper right 

comer of the corresponding object then a constraint from h to g is 

required. Delete g from PB (Awashima, Sato and Ohtsuki, 1993, 

p.508). 

( d) g covers h 

A constraint from h to g is always required. Duplicate g into 

gland gr . Set x coordinate of the right end point of gl by x 

coordinate of the left end point of h. Set x coordinate of the left 

end point of gr by x coordinate of the right end point of h 

(Awashima, Sato and Ohtsuki, 1993, p.508). 

It is shown that time complexity of the algorithm is O(n*logn). This 

means that the amount of time spent by this algorithm to solve the 

problem is proportional to n * log n. Here n represents the problem size. It 



Automatic Display Layout of Dynamic Windows 
N ihar Trivedi 

is also claimed that traditional constraint graph generation algorithms 

have complexity of O(n 2 ) hence this method is better (Awashima, Sato 

and Ohtsuki, 1993, p.510). 

At the end of constraint graph generation stage, we get an overlap free 

layout compacted in one direction. We can repeat the operation in the 

opposite direction to compact the layout in both X and Y directions. 

42 

Even after we compact the diagram in both directions, we may still not 

get the best solution. There are a few VLSI layout algorithms that 

operate on constraint graphs in both directions and attempt to compact the 

layout. These algorithms work in both directions simultaneously. Two 

such algorithms worth mentioning here are Shift compaction and zone 

refining method. Both methods are described below. 

Shift Compaction Algorithm: 

It is argued that two independent compactions in both directions do not 

necessarily give sufficient compaction in every situation. Therefore a 

better method is sought. 

D 
D 

Figure 3.2(a) Figure 3.2(b) Figure 3.2(c) 
Figure 3.2(a) A result of one dimensional compaction. (b) Shift operation (c) Result ofY 
compaction. 



Automatic Display Layout of Dynamic Windows 43 
Nihar Trivedi 

Let us consider the layout of blocks suggested in the figure. The usual 

one-dimensional compaction algorithms can not compact the layout. 

However, shifting both blocks A and B in X direction followed by a Y 

compaction operation produces a better quality layout as evident from the 

diagrams. The compaction method based on such an idea is described as 

follows (Sakamoto, Onodera and Tamaru, 1990, p.41). 

( 1) The layout compacted in one direction is taken as input. 

(2) The critical paths are cut off by shifting those layout elements that 

lie on critical paths in the direction perpendicular to the 

compaction direction. 

(3) Compact the layout again by using a one-dimensional compaction 

algorithm (Sakamoto, Onodera and Tamaru, 1990, p.41 ). 

In this method, objects lying on the critical path determine the layout 

width. This method shifts the objects lying on the critical path in the non

compaction direction to reduce the length of critical path in compaction 

direction. The shift direction is perpendicular to compaction direction 

(Sakamoto, Onodera and Tamaru, 1990, p.41). 



Automatic Display Layout of Dynamic Windows 
Nihar Trivedi 

Sakamoto, Onodera and Tamaro ( 1990) explain their algorithm as 

outlined below. 

Input: One dimensional compacted layout in Y direction . 

Output: Compacted layout in Y direction. 

1.0 { 
2.0 Make G Y and solve it 

3.0 Make G x and solve it 
4.0 Repeat { 
5.0 Find the critical path in G Y 

6.0 Cut the critical path in GY by shifts 
7.0 If (possible) {end} 
8.0 Determine Xpositions according to Gx with shift 

constraint edges. 
9.0 Make G Y and solve it. 

44 

10.0 } until (The critical path length of G Y is less than the current 
Ywidth) 

11.0 Compact the layout in they direction according to G Y. 

12.0 }. 

In above algorithm, Gx and GYrepresent constraint graphs in X and Y 

directions. Solving a graph means locating the critical path in the graph. 

Y shift compaction algorithm attempts to control the width of the layout. 

Similarly, it is possible to derive a X shift compaction algorithm to 

control the height of the layout. 



Automatic Display Layout of Dynamic Windows 45 
Nihar Trivedi 

However the authors acknowledge that an attempt to reduce width in one 

direction may result in increase in width in opposite direction. Because of 

this drawback, this algorithm is not utilised to solve the problem 

addressed by this research (Sakamoto, Onodera and Tamaru, 1990, p.41 ). 

Shape Optimisation Algorithm 

The main goal of this algorithm is to find the optimal shape and position 

of each layout element from the initial layout. The idea is to limit shape 

optimisation to only those objects that lie on the critical path. The shape 

of an element is then optimised to generate compact layout. This process 

is repeated until no further shape optimisation is possible (Okada, 

Onodera and Tamaru, 1995, p.170). 

Modify 

Slack . , 
........................................................................................................................ Critical path 

Figure 3.3 Conceptual illustration of shape optimisation. 

In this algorithm, an element on the critical path is replaced with another 

element of smaller width to reduce the width of the critical path. The 



Automatic Display Layout of Dynamic Windows 46 
Nihar Trivedi 

height of the whole layout remains unchanged if the increase in height of 

the element is less than the amount ofY slack (Okada, Onodera and 

Tamaru, 1995, p.5). 

Okada, Onodera and Tamaru (1995) outline their shape optimisation 

algorithm as shown below. 

1.0 { 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
9.0 
10.0 
11.0 } 

Make X graph and solve it 
Repeat 
{ 

Make Ygraph 
Select element 
Modify element 
Solve Y graph 
Make X graph and solve it 

}until (No more possibility) 

This algorithm selects an element in the same way it is selected in shift 

compaction algorithm. The selected element is modified in such a way 

that length of the critical path decreases without increasing the length of 

the critical path in the opposite direction. 

This algorithm eliminates the drawback of the shift compaction algorithm 

but there are some problems if this VLSI layout algorithm is used for 

dynamic windows' layout. 



Automatic Display Layout of Dynamic Windows 
Nihar Trivedi 

As mentioned earlier in Chapter- I, the SPORDAC algorithm calculates 

the size of each window depending upon the level of user's interaction 

with each window. The Shape Optimisation Algorithm modifies the 

height and the width of objects to optimise the layout area. If this 

algorithm is utilised for windows layout generation, it could result in 

dramatic changes in aspect ratios of the windows. This may make it 

difficult for the user to understand new layout. 

47 

It is important to clarify that, in a dynamic environment like windows, at 

some stage windows may not fit in the finite display area. Hence the 

SPORDAC prototype should apply uniform scaling to all open windows 

without sacrificing their individual aspect ratios. 

This chapter completes the survey of display layout and VLSI layout 

algorithms and methodologies. The next chapter states research questions 

and main research focus for this thesis and discusses some of the 

algorithmic aspects. 



CHAPTER: 4 

The Problem 



Automatic Display Layout of Dynamic Windows 48 
Nihar Trivedi 

Prominent Research Questions 

We can restate our research hypothesis as described below. 

The main objective of this thesis is to develop an interactive automatic 

windows display layout manager to relieve the user from unproductive 

chore of manual window management. The user can open as many 

windows as he or she may wish. Depending upon the level of interaction 

with each window we would like to automatically re-size and reposition 

all open windows in such a manner that they do not overlap, optimally 

utilise finite display area and preserve the user mental-map to fair degree. 

Our main focus would be on removing the overlap, encapsulating all open 

windows in display area and optimising the usage of display area. 

It is clear that the problem addressed by this thesis is similar to floor plan 

area optimisation, VLSI layout generation, a special case of graph layout 

generation (Battista, Eades, Tamassia & Tollis, 1994, p. 7) or any layout 

generation problem where rectangular objects need to be arranged in pre

defined space. The algorithm to be proposed by this thesis should be 

capable of handling dynamic enclosing area. 



Automatic Display Layout of Dynamic Windows 49 
Nihar Trivedi 

One can find an ample amount of literature that addresses the problem of 

facility layout planning (Suzuki, Fuchino, Muraki and Hayakawa, 

1990,p.226; Proth and Souilah, 1992, p.227; Shih, Enkawa and ltoh, 

1992, p.2839; Yaman, Gethin and Clarke, 1993, p.413; Bozer, Meller and 

Erlebacher, 1994, p.918; Bland and Dawson, 1994, p.500; Rebaudengo 

and Reorda, 1996, p.943 ). 

Discussion about NP completeness 

Pfleeger (1989,p.79) has explained that there are some problems that 

could be solved within the time bounded by a polynomial function of the 

size of the problem. For example, determining whether an item exists in 

a list or not can be done in time proportional to the size of the list. These 

types of problems are known to belong to class P. 

By contrast, there are some problems that could be solved within the time 

bounded by a polynomial function of the size of the problem provided the 

problem-solving algorithm has the ability to 'guess' the solution. This 

guessing is known as non-determinism (Pfleeger, 1989, p.79). 

There are problems known to be solvable deterministically in polynomial 

time ( P) and there are problems known not to have a polynomial time 



Automatic Display Layout of Dynamic Windows 
Nihar Trivedi 

solution (EXP). The class NP complete fits somewhere between P and 

EXP (Pfleeger, 1989, p.79). 

50 

It is acknowledged that graph layout generation is a NP complete 

problem depending upon the aesthetic criteria to be satisfied (Eades, 

1984,p. l 49). One of the recent researchers has recognised that window 

layout generation is a combinatorial optimisation problem (Luders, Ernst 

and Stille, 1995, p.1183). 

In this thesis the question of whether the problem is NP complete or not is 

not considered. Interested researcher can refer to Joy and Smith (1995) 

for further information on the topic. 

Tsuchida (1995, p.907) discusses the complexities involved with graph 

drawing and concludes that graph drawing is a NP complete problem 

under certain conditions. 



Aesthetics 

Automatic Display Layout of Dynamic Windows 
Nihar Trivedi 

Graph 

l 
LAYOUT 

ALGORITHM 

.. 4111t---- Constraints 

l 
Drawing 

Figure 4.1 Overview of display layout process. 

51 

The above figure shows a very general idea of display layout process. A 

display layout algorithm operates on description of window layout along 

with some predefined constraints and aesthetics and produces final layout 

of windows. 

This thesis assumes that the display layout problem is NP complete. In 

recent years, nature based optimisation methods have been popular in 

attempts at solving NP complete problems. Simulated annealing and 

genetic algorithms are such methods. Many of research papers cited in 

this chapter utilise one or both of these methods. 

This thesis proposes a unique shadow propagation technique, SPORDAC 

(Shadow Propagation for Overlap Removal and Display Area 



Automatic Display Layout of Dynamic Windows 52 
Nihar Trivedi 

Compaction), to remove the overlap and compact the layout at the same 

time. This thesis utilises the SPORDAC algorithm, simulated annealing 

and genetic algorithm to generate solution display layout. The following 

chapter explains the design and implementation of the SPORDAC 

algorithm and the SPORDAC prototype to generate solution display 

layout. 



CHAPTER:5 

The Solution 



Automatic Display Layout of Dynamic Windows 53 
Nihar Trivedi 

The Solution 

This chapter begins with a general outline of the solution proposed by this 

thesis followed by an explanation of the Annealing Genetic (AG) 

approach proposed by Lin, Kao and Hsu (1993) and its relevance to the 

development of the SPORDAC prototype. This is followed by the 

explanation of SPORDAC algorithm and how it is integrated with the AG 

approach. The chapter concludes with the description of the object model 

of the SPORDAC prototype. 

Overview of the solution: 

As it is stated earlier in Chapter- I and Chapter-4, the SPORDAC 

prototype should be capable of handling dynamic changes in sizes of 

windows and display area. It should also calculate the size of each 

window depending upon the level of user interaction with each window. 

This results in dynamic window sizes. The underlying display area that 

contains every window could be dynamic as well. The SPORDAC 

prototype assumes a single parent window upon which user creates and 

manipulates numerous child windows. The SPORDAC prototype 

recognises following user interactions: 



Automatic Display Layout of Dynamic Windows 
Nihar Trivedi 

• The user is allowed to change the size of the parent window and add 

or remove a window at any point in time. Hence the number of 

windows open in the display area may change dynamically. 

54 

• The user should be able to create windows at will and position them at 

will. This means that the user could introduce overlaps at any point in 

time. Hence the SPORDAC prototype should provide a mechanism 

for the user to generate overlapping windows and the SPORDAC 

algorithm should be able to remove the overlap. 

It is stated earlier in Chapter- I that every interaction with a window 

enables that window to generate a request to increase its area and the 

remaining windows generate requests to reduce their display area. An 

interaction with a window can be recognised as an occurrence of any 

specific event. The event could be a window receiving input focus or 

getting activated, etc. Which event to select for triggering the display 

layout process is an application dependent issue. The SPORDAC 

prototype has selected the double-click event of left mouse button for 

simplicity. 

The SPORDAC prototype should remain in a neutral state while it is not 

computing the solution display layout and wait for user interaction. In 

this neutral state the user will be free to modify system parameters, sizes 



Automatic Display Layout of Dynamic Windows 
Nihar Trivedi 

and number of windows, display area dimensions, or invoke the display 

layout procedure by double clicking on a window. 

55 

The SPORDAC algorithm proposed by this thesis is a one-dimensional 

method that removes overlap from the layout and compacts it at the same 

time. The SPORDAC prototype applies this method in both directions to 

get a compact layout in both directions. The compact layout is then 

passed on to the genetic algorithm and a simulated annealing based 

controlling procedure to optimise usage of the display area. The best 

solution found is then scaled and mapped on to the available display area. 

The SPORDAC prototype is implemented in Microsoft Visual C++ V 4.2 

under Windows'95 environment. Interested readers can refer to 

Appendix for a brief discussion of Object-Orientation and 

Document/View architecture proposed by Microsoft. 



Automatic Display Layout of Dynamic Windows 56 
Nihar Trivedi 

Genetic Algorithm 

Genetic algorithms (GA) are search algorithms based on the 

mechanics of natural selection and natural genetics. They combine 

survival of the fittest among string structures with a structured yet 

randomised information exchange to form a search algorithm with 

some of the innovative flair of human search (Lin, Kao and Hsu, 

1993,p.1752). 

GAs are simple yet powerful in their search for improvement. 

They are not limited by restrictive assumptions about the search 

space like the existence of derivatives, uni-modality and other 

matters. 

GAs are different from calculus based, enumerative and random 

search methods as follows (Genetic Algorithms, n.d., p.3; Jain and 

Gea, 1996, p.12): 

• GAs work with a coding of the parameter set not the parameters 

themselves. 

• GAs search from a population of points, not a single point. 

• GAs use objective function information, not derivatives or other 

auxiliary knowledge. 

• GAs use probabilistic transition rules, not deterministic values. 



Automatic Display Layout of Dynamic Windows 
N ihar Trivedi 

A simple genetic algorithm is composed of three operators. 

Reproduction 

57 

Reproduction is a process in which individual strings are 

copied according to their objective function values. We can 

think of the objective function as some measure of profit that 

we wish to maximise (Genetic Algorithms, n.d., p.5). 

Copying strings according to their fitness values means that 

strings with a higher value have a higher probability of 

contributing one or more offspring in the next generation. 

This operator is an artificial version of natural selection. The 

objective function value of each string determines which 

string will be selected. The reproduction operator may be 

implemented in algorithmic form in a number of ways. 

Implementing a biased coin or a roulette wheel could be one 

such method (Jain and Gea, 1996, p.12). 

Crossover 

After reproduction, simple crossover may proceed in two 

steps. First, members of newly reproduced string in the 

mating pool are mated at random. Second, each pair of 

strings undergoes crossing over as follows, an integer 

position k along the string is selected uniformly at random 



Automatic Display Layout of Dynamic Windows 58 
Nihar Trivedi 

between 1 and the string length less one (ie. [1,/ -1 ]), where / 

is the length of the bit string). Two new strings are created 

by swapping all characters between position k + 1 and 

/inclusively. For example, let us assume A= 011011 and 

B = 110010. 

If the mutation position is four then after a crossover 

operator is applied on this pair of strings, we get A= 011010 

andB=llOOll (Jain and Gea, 1996,p.13). 

Mutation 

Mutation is an important operator because, even though 

reproduction and crossover effectively search and recombine 

different likely solutions, occasionally they may become 

over zealous and lose some potentially useful genetic 

material. In artificial genetic systems, the mutation operator 

protects against such an irrecoverable loss. In simple genetic 

algorithms, the mutation operator is applied with small 

probability by selecting one of the strings and randomly 

modifying one of its locations. 

Mutation rates are comparatively small in natural systems. 

We can consider mutation as secondary mechanism of 

genetic algorithm adaptation (Jain and Gea, 1996,p.12). 



Automatic Display Layout of Dynamic Windows 
Nihar Trivedi 

A general outline of a simple genetic algorithm can be given as 

follows (Lin, Kao and Hsu, 1993,p.1755). 

1. 0 Initialise the parameters of the genetic algorithm; 
2. 0 Randomly generate the old_ population; 

3. 0 For generation = 1 to max_ generation 

4. 0 Clear the new_ population 

59 

5. 0 Compute the fitness of each individual in the old_ population; 

6. 0 Copy the highest fitness of individual to the solution_ vector; 

7. 0 While the noof _ individual < population_ size do 
8. 0 Select two parents form the old_ population based 

on their fitness values; 
9. 0 Perform the crossover of the parents to produce 

two offtpring; 
10. 0 Mutate each offtpring based on mutation_ rate; 

11. 0 Place the offtpring to new_ population; 
12. 0 End while 
13. 0 Replace the old_ population by new_ population. 

14.0 End/or 
15. 0 Print out the solution_ vector as the final solution. 

We can summarise several key features of genetic algorithms as follows 

(Lin, Kao and Hsu, 1993,p.1754). 

1. Genetic algorithms work from a population instead of a 

single state. By maintaining a population of well-adapted 

states, the probability of becoming trapped in a local 

minimum is greatly reduced (Lin, Kao and Hsu, 

1993,p.1754). 



Automatic Display Layout of Dynamic Windows 
Nihar Trivedi 

2. The crossover operation tries to retain genetic information 

from generation to generation, assuming that the genetic 

information always contains important substructures of the 

quality solutions. The average performance of the next 

generation is better than the previous (Lin, Kao and Hsu, 

1993,p.1754). 

60 

3. Although the mutation operation has the effect of destroying 

the structure of a solution; there is still a chance of 

producing a better one (Lin, Kao and Hsu, 1993,p.1754). 

4. Selecting parents based on their fitness values means that 

parents with a higher value always have a higher probability 

of contributing one or more offspring in the next generation. 

Even so, parents with a lower fitness value still have a 

chance to reproduce. Thus, the probability of escaping from 

local minima increases (Lin, Kao and Hsu, 1993,p.1754). 

5. If the average cost of the population is decreased from 

generation to generation, one can assure a faster 

convergence ratio for the genetic algorithm (Lin, Kao and 

Hsu, 1993,p.l 754). 



Automatic Display Layout of Dynamic Windows 61 
Nihar Trivedi 

Simulated Annealing 

Simulated Annealing (SA) is another nature-based optimisation technique 

like genetic algorithm. Genetic Algorithms are based on natural 

evolution while SA is based on thermodynamics. In SA, a control 

parameter called temperature is used to control the minimisation search, 

which may occasionally move uphill. The mean and the variance of the 

cost function are decreasing during the course of the search process. 

Theoretically, the SA can be viewed as an algorithm that generates a 

sequence of Markov chains for a sequence of decreasing temperature 

values. At each temperature, the generation process is repeated again and 

again until the probability distribution of the system states approaches the 

Boltzman distribution (Lin, Kao and Hsu, 1993,p.1753). If the 

temperature is decreased slowly enough, the Boltzman distribution tends 

to converge to a uniform distribution on the set of globally minimal 

states. The analysis of the simulated annealing algorithm can be found in 

the literature cited by Lin, Kao and Hsu (1993) and elsewhere. The SA 

algorithm does not guarantee finding a global minimum with probability 

1. 



Automatic Display Layout of Dynamic Windows 62 
Nihar Trivedi 

Maj or advantages of using nature-based algorithms are their broad 

applicability, flexibility, ease of implementation, and the potential of 

finding near-optimal solutions (Lin, Kao, and Hsu, 1993, p.1753). Lin, 

Kao and Hsu (1993,p.1753) have noted following observations regarding 

SA algorithm. 

1. There is a trade-off between the quality of the final solution 

obtained and the execution time required by simulated annealing, 

and the execution time is sensitive to the decrement ratio of the 

temperature. 

2. It is easily trapped to local minima if the temperature drops too 

quickly. 

3. The initial value of temperature effects the total number of 

iterations required by the annealing. 

4. There is still some chance of departing from good solutions if the 

number of iterations at low temperature regions is not large 

enough. 

5. It is not a trivial task to detect the equilibrium of the system at each 

temperature, so that the length of the Markov chain may not be 

easily controlled. 



Automatic Display Layout of Dynamic Windows 
Nihar Trivedi 

A general Simulated Annealing algorithm is as follows (Lin, Kao and 

Hsu, 1993, p.1757). 

1.0 Initialise the parameters of the annealing schedule; 
2. 0 Randomly generate an initial state as the current state; 
3.0 k =1 
4.0 Repeat 
5.0 Repeat 
6. 0 Generate next state; 
7. 0 ll.C = Cost_ of_ next_ state - Cost_ of_ current_ state; 

8.0 P, ; mlll{l,exp(-:,c )},-
9. 0 if P, > rand[0,1) then current_ state = next_ state 

10. 0 Until system equilibrium at Tk; 

11.0 Tk+i=Tk*a; 
12. 0 Until system has been frozen 
13. 0 Accept current state as final state. 

Simulated Annealing and Genetic Algorithm: 

63 

Lin, Kao and Hsu (1993) have explained that the probability of the SA 

algorithm arriving at a better solution increases as the number of 

iterations are increased at a specific temperature. This characteristic of 

SA algorithm results in long computation times (Lin, Kao and Hsu, 1993, 

p.1754). 

Lin, Kao and Hsu (1993) have proposed the Annealing-Genetic (AG) 

technique that combines Genetic Algorithm with Simulated Annealing to 

design an efficient annealing schedule that improvises SA technique and 

computes a near optimal solution within a reasonable time. 



Automatic Display Layout of Dynamic Windows 
Nihar Trivedi 

The AG technique begins with random initialisation of first population 

strings and calculates the initial temperature of the population by the 

formula shown below (Lin, Kao and Hsu, 1993, p.1755). 

the highest cost - the lowest cost 
initial temp = - - - -

population_ siz~ 

For each k'h epoch, a temporary population of strings (P~+i) is generated 

from current population of strings (Pk). To generate (P~+i), each string 

from (Pk) is selected in turn and it is randomly modified. The modified 

string is then added to (P~+i) if the following condition is true (Lin, Kao 

and Hsu, 1993, p.1757). 

min[ 1, exp( -~%k) J > random[l,O) 

64 

where ~C = cost of next point - cost of current point 

Tk = temperature of current population 

The next generation (Pk+i) is generated from (P~+i) after applying various 

genetic operators. The temperature of the k + l'h generation is calculated 

by following formula (Lin, Kao and Hsu, 1993, p.1755). 

where a = temperature coefficient 



Automatic Display Layout of Dynamic Windows 65 
Nihar Trivedi 

The annealing process continues until the number of generations are over 

or majority of the strings are identical in a population. The latter is 

known as a 'system frozen' condition (Lin, Kao, and Hsu, 1993, p.1755). 

The AG technique proposed by Lin, Kao and Hsu (1993) is as follows. 

1. 0 Initialise the parameters, ie., population _size,T0 ,and 

a(o <a< 1) 
2. 0 Randomly generate r,;; 

3. 0 Apply genetic operators tor,; to create P,,; 

4. 0 Calculate the fitness and the cost for each point in P,,; 

5. 0 Calculate the average cost of P,,; 

6. 0 Solution = Current point = lowest cost point in P,,; 
7.0 k = 0 

8. 0 While system is not frozen do 
9.0 No _of _point= O; 

10. 0 While no_ of_ po int <= population_ size do 
11.0 Generate next point from current point by a strategy 
12.0 11C =Cost_ of _next _point-Cost_ of_ current _point; 

13.0 P, -mi{l,ex{ ~~Jl 
14. 0 if Pr > random[ 0,1) then 

15. 0 put next point into P~+i 

16. 0 current_ po int = next_ po int 

17. 0 no_ of_ po int = no_ of_ po int+ 1 

18. 0 else pick another point from Pk as current_ po int ; 

19.0 endwhile 
21. 0 Apply genetic operators to P~+i to create Pk+t; 

21. 0 Calculate the fitness and the costs for each point in Pk+t ; 

22. 0 Calculate the average cost of Pk+t; 

23.0 If the average cost point in Pk+t < solution_ vector then 

update solution_ vector; 
2 4. 0 If it is the initial stage then determine the initial temperature 

r;; 
25.0 Else Tk+i = Tk •a; 
26. 0 Current point = lowest cost point in Pk+i; 

27.0 K = K +1; 



Automatic Display Layout of Dynamic Windows 
Nihar Trivedi 

28.0 If frozen condition is true then set system is frozen; 
29.0 Endwhile 
30.0 Perform the local search procedure; 
31. 0 Print solution vector as solution. 

The SPORDAC prototype implements the above algorithm to optimise 

the usage of display area. 

The SPORDAC prototype implements the mechanism for generating an 

initial layout of windows as follows. 

Generating initial layout 

66 

The user generates an initial layout by repeatedly creating child windows 

in the parent window opened by the prototype. Pressing down the right 

mouse button and dragging the mouse to a different location in the parent 

window and releasing the mouse button creates a child window. Mouse

down and mouse-up points on the canvas determine two opposite points 

of the child window requested by the user. A child-window represents an 

instance of CChildWnd class and is registered in a class derived from 

CDocument class of MFC framework. 

A child-window can be added and deleted from the parent window at any 

time. 



Automatic Display Layout of Dynamic Windows 67 
Nihar Trivedi 

The SPORDAC prototype has captured 'Left-Double-Click' event of the 

mouse to update the size and location of each child window present in the 

display area. The SPORDAC algorithm proposed by this thesis is as 

explained below. 

Shadow Propagation for Overlap Removal and Display Area Compaction 

(SPORDAC) Algorithm Background 

The main assumption of SPORDAC algorithm is that every window 

extends its shadow in all four directions. 

w ...................................... 

• 
HI .. 

.................................................................... 

w. .. 

i H, 

l • .. d 

Figure 5.1 An illustration of shadows extended by a window. 

The above figure illustrates a rectangular window with width of W units 

and height of H units. If the inter-window gap is d units then the 

horizontal and vertical shadows of above window are defined as follows. 



Automatic Display Layout of Dynamic Windows 
Nihar Trivedi 

Horizontal Shadow 

The SPORDAC algorithm defines a horizontal shadow of infinite width 

and finite height H,. for each window. For the window shown in figure 

5.1, the height of the horizontal shadow is calculated as shown below. 

H,. =H+2d 

68 

Where H.,· = Height of horizontal shadow 
H = Height of window 
d = Inter-window gap ( d >= 0) 

The horizontal shadow of a window is assumed to be parallel to the X 

axis. 

Vertical Shadow 

The SPORDAC algorithm defines a vertical shadow of infinite height and 

finite width W, for each window. For the window shown in figure 5 .1, 

the width of the vertical shadow is calculated as shown below. 

w:,. = W +2d 

Where W:,. = Height of horizontal shadow 
W = Height of window 
d = Inter-window gap ( d >= O) 

The vertical shadow of a window is assumed to be parallel to the Y axis. 

The SPORDAC is a one-dimensional compaction algorithm. It compacts 

the layout in one direction at a time. Hence the SPORDAC algorithm is 

executed twice to achieve compaction in both horizontal and vertical 

directions. The SPORDAC algorithm considers the shadow in the 



L 

Automatic Display Layout of Dynamic Windows 69 
Nihar Trivedi 

compaction direction at a time and ignores the shadow in the other 

direction. Thus only horizontal shadows are considered during horizontal 

compaction and vertical shadows are considered during vertical 

compaction. 

If the window in figure 5.1 has its center at (X,Y) then the top edge of the 

horizontal shadow will be at Y - H /2 + d and the bottom edge of the 

horizontal shadow will be at Y + H/2 + d. Similarly we can say that the 

right edge of the vertical shadow will be at X + W /2 + d and the left edge 

of the vertical shadow will be at X - W / 2 + d . 

A discussion about how the concept of 'shadow' is useful for overlap 

removal and compaction of display layout follows. 



Automatic Display Layout of Dynamic Windows 
Nihar Trivedi 

Overlap Removal and Compaction 

Suppose two windows with widths w; and W2 have their respective 

centers at (Xi,Y;) and (X2 ,Y;). If these windows overlap then it is 

possible to say that, 

70 

Hence to remove the overlap we must ensure that the distance between X 

coordinates of two windows is at least equal to w; + W2 + d . Similar 
2 2 

relationships could be derived for the Y direction. 

It follows from the earlier discussion about horizontal and vertical 

shadows that when two windows overlap, they would cross each other's 

horizontal and vertical shadows. If two windows are not overlapping 

then they may or may not cross each other's horizontal or vertical 

shadows. 

The following figure illustrates different situations for horizontal and 

vertical shadow crossings for two windows. 



Automatic Display Layout of Dynamic Windows 71 
Nihar Trivedi 

f't\ f't\ 
<···:·······················-··············:·-> A A ;D. : : 

I I I 
l i 

<t----+> ~t--t» ;D; ! ! 
i 2 i < .. : ....................................... :··> 

V v . . 

<···'·······································'····> v v 
Horizontal and vertical shadows do not cross Horizontal shadows cross 

A A A A 

<10( 
~ ? 

<·..! ....................................... ! .. > 
v V A A 

<1D1> 
I I ! 
i ! 

<··! ...................................... , ... > 
v V 

<j !> 
i 1' i A· . . . 

! <···:················+···············+> 
~ ! i l 

<··! ................ ) ............... ) .. > ! 
V; i ~ i 

; l 

<···! ....................................... ! .... > 
v V 

Vertical shadows cross Horizontal and vertical shadows cross 

Figure 5.2 Illustration of two windows crossing each other's shadows 

It is clear from the above figure that when the shadows of two windows 

cross each other, equation (1) is useful in calculating the positions of both 

windows such that they do not overlap and there is the minimum gap 

possible in the compaction direction. 



Automatic Display Layout of Dynamic Windows 
Nihar Trivedi 

The following figure depicts all situations where horizontal shadows of 

two non-overlapping windows cross each other. 

Figure 5 .3 All cases of X direction shadow crossings for two windows. 

72 

Similar cases for Y direction shadow crossings can be determined as well. 

So far we have discussed different situations for two windows. The 

concept of' shadow' can be applied to handle any number of windows. 

The application of 'shadow' in horizontal (X) direction is described 

below. Similar operation can also be performed in vertical (Y) direction. 

The SPORDAC algorithm begins with initialising a list of currently 

displayed windows in increasing order of X coordinate of their centre. 

An empty list is initialised to store the information about windows as they 

are placed on the display area one by one. 



Automatic Display Layout of Dynamic Windows 73 
Nihar Trivedi 

The fundamental operation is to read one window at a time from the 

sorted window list and test whether the current window crosses horizontal 

shadow( s) of any previously scanned window( s) or not. If the current 

window crosses the horizontal shadow( s) then X coordinate of its centre 

is updated to remove any overlaps generated by the current window and 

compact the layout in horizontal direction. After the current window is 

placed on the display area, it is added to the list of scanned windows and 

the process continues until all windows are placed. 

The first window read from the sorted list does not cross any horizontal 

shadow hence the first window is placed on the left edge of the display 

area without modifying its vertical position . 

................ --········································-············ .. ···· .. ·········································································································-········· 
I 
i 

1 ....................................................................................................................................................................................................... . 

Figure 5 .4 Placement of first window in display area. 

The second window may or may not cross the horizontal shadow of the 

first window. If the second window does not cross horizontal shadow of 

the first window then it is placed on the left edge of the display area. 



Automatic Display Layout of Dynamic Windows 
Nihar Trivedi 

i l : 

D'

. ::,1,,,':,,,':,,:, i 

D 
(a) Horizontal shadow not crossed (b) Horizontal shadow crossed 

Figure 5.4 Placement of second window in display area. 

I 

74 

However if the second window crosses the horizontal shadow of the first 

window then the second window is placed to the right of the first window 

such that any existing overlap is removed and only the inter-window gap 

( d) exists between two windows. 

Any window that does not cross the horizontal shadow of previously 

scanned windows is placed to the left of the display area. 

From the third window onwards, it may happen that a window does not 

cross horizontal shadow of previously scanned windows or it may cross 

horizontal shadow of one or more previously scanned windows. If the 

current window is crossing the horizontal shadow of only one previously 

scanned window then the current window is placed to the right side of 

that window. 



Automatic Display Layout of Dynamic Windows 
Nihar Trivedi 

.----··· .. ········· ........................................................................... i 

i ....................... ,,, ................................................................................... r 

(a) Horizontal shadow not crossed (b) Only one horizontal shadow crossed 

( c) More than one horizontal shadow crossed 

Figure 5.5 Placement of a window in display area. 

! 

75 

If the current window is crossing the horizontal shadow of more than one 

window then a short list of these windows is made. The current window 

is crossing the horizontal shadow of every window in the short listed 

window. The short list is further analysed to mark those windows in the 

short list that are not on the left hand side of any other window in the 

short list. Then the window with the highest value of the right hand edge 

is found from the 'marked' windows. This window is the closest 

neighbour of the current window. The current window is then placed to 

the right side of this window. This way the concept of 'shadow' is useful 

in overlap removal and compaction in one direction. 



Automatic Display Layout of Dynamic Windows 
Nihar Trivedi 

It is understandable that the process of overlap removal and compaction 

may generate a display layout that falls short of optimum display area 

usage or does not fit into the available display area. 

76 

The SPORDAC prototype integrates the SPORDAC algorithm and the 

AG approach to improve display area utilisation. The SPORDAC 

algorithm places all the windows in a virtual display area of infinite width 

and height. The SPORDAC prototype scales the solution display layout 

to the available display area size to generate the final layout. 

The formal description of SPORDAC followed by the description of 

integration of SPORDAC algorithm and AG approach follows. 

SPORDAC Algorithm 

The following discussion explains horizontal layout compaction from left 

to right direction using SPORDAC algorithm. A similar operation can be 

applied in vertical direction to achieve Y compaction. 

The SPORDAC algorithm assumes a virtual display area of indefinite 

size and calculates new position of each window. Then the layout is 

mapped from virtual display area to physical display area using a simple 



Automatic Display Layout of Dynamic Windows 
Nihar Trivedi 

scaling operation. The scaling operation ensures that the solution layout 

is encapsulated in the available display area. 

(0,0) X-----~ ( oo,0) 

············································> 

y 

Virtual display area 

Figure 5.6 Virtual display area assumed by SPORDAC 

(0, CX)) 

The block diagram of the whole process is as shown as below. 

SPORDAC 
ALGORITHM 

r·······VIRTUAL········1 

! .......... ~.~-~-~.~-~ .......... ! 
Figure 5.7 Display layout process 

PHYSICAL 
LAYOUT 

77 



Automatic Display Layout of Dynamic Windows 78 
Nihar Trivedi 

General overview of the SPORDAC algorithm is as follows. 

1. 0 Sort all windows in ascending order of X coordinate of their 

2.0 
3.0 
4.0 
5.0 

6.0 

7.0 

8.0 

9.0 

10.0 
11.0 

centre. 
Initialise an empty scan list. 
While (total scanned windows <= total windows) 

Read next window from the sorted window list. 
Prepare a short list of windows whose X direction 
shadows are crossed by X direction shadow of current 
window from the list of already scanned windows. 
Mark only those windows from the short list, which 
are not at the left side of any other window in the 
short list. 
Find the marked window with highest value of X 
coordinate for it's right edge. 
Update the left coordinate of the current window with 
the sum of inter window gap and the highest value of 
the right edge coordinate found in the previous step. 
If the short list found in step 5. 0 is empty then 
initialise the left coordinate of the current window 
with the value of inter window gap. 
Add current window to scan list. 
Update necessary counters. 

11.0 End. 

Let us consider the simple example given below to see how this algorithm 

works. 

3 

2 

Figure 5.8 Example layout of windows after window sizes are recalculated. 

Step 1.0 

Step 2.0 

Sorted list ofwindows would be {1,2,3}. 

Scan list is initialised to empty list. 



Step 3.0 

Step 4.0 

Step 5.0 

Step 6.0 

Step 7.0 

Automatic Display Layout of Dynamic Windows 
Nihar Trivedi 

1 is selected as the current window. 

1 does not cross X direction shadows of any previously 

scanned window. Hence 1 is placed at the left edge of the 

display area. 

79 

1 is placed in the scanned window list. Display layout at this 

stage is as shown below. 

Figure 5.9 Layout after first window is re-positioned 

2 is selected as the current window. 

2 crosses X direction shadow of 1. Hence 2 is placed next 

to 1. Now the display layout is arranged as follows. 

1 

2 

Figure 5.10 Layout after second window is re-positioned 



Automatic Display Layout of Dynamic Windows 
Nihar Trivedi 

Step 8.0 2 is added to scan list. 

Step 9.0 3 is selected as current window. 

Step 10.0 3 crosses X direction shadows of 1 and 2. Step 6.0 of the 

algorithm selects 2 as a direct neighbour of 3 because 2 is 

at the right side of 1. 

Step 11.0 3 is placed to the right side of 2. Display layout at this 

stage becomes as shown below and the process stops. 

I 
3 

2 

Figure 5.11 Layout generated by X compaction process 

Y compaction applied on above layout will produce final layout as 

follows because Y directional shadows are not crossed. 

2 3 

Figure 5.12 Layout generated after Y compaction applied to figure 5.11 

80 



Automatic Display Layout of Dynamic Windows 81 
Nihar Trivedi 

The above layout is generated in the virtual display area explained earlier. 

Scaling all the windows to the physical display area generates the final 

layout. 

It is noted earlier in this Chapter that two independent one dimensional 

compaction operations may not result in optimum usage of display area. 

The SPORDAC prototype integrates the SPORDAC algorithm and the 

Annealing Genetic method proposed by Lin, Kao and Hsu ( 1993) to 

promote display area optimisation. 

A general overview of the AG approach is as outlined earlier in the 

chapter. The remainder of the chapter describes how SPORDAC 

algorithm is integrated with AG approach to calculate final display 

layout. 

Integration of SPORDAC with AG Approach 

The SPORDAC prototype consists of the SPORDAC algorithm 

integrated with the AG approach along with suitable Graphical User 

Interface (GUI). The main focus of this section is to explain integration of 

the SPORDAC algorithm with the AG approach and describe functioning 

of different genetic algorithm operators in the SPORDAC prototype. 



Automatic Display Layout of Dynamic Windows 82 
Nihar Trivedi 

It is explained earlier in this chapter that AG approach continually 

operates on a set of likely candidates for the final solution until a certain 

terminating condition is met. Each candidate solution is known as a 

'string' and the set of strings is known as a 'population'. Each string in a 

population represents a likely solution to the problem being solved. 

Therefore each string in the population initialised by the SPORDAC 

prototype should represent a compact non-overlapping display layout. 

Every string in the SPORDAC prototype is represented by an instance of 

CGenString class. 

The CGenString class encapsulates the data structure to represent the 

display layout and implements methods to access and manipulate the 

encapsulated display layout information. An array of integers represents 

the display layout information as shown below. 

Id1, left1 ,top1, widt~, height1, ••• , Id;, left;, top;, width;, height;, ... , Id n, left n, topn, widthn, height n 

Where, 

width) width; widthn 
left1 + 5:: ...... 5:: left; + 5:: ..•... 5:: left,, + -~ 

2 2 2 
or 

and 

!di :¢: Id2 :¢: •••••• !di-I :¢: Id; :¢: Idi+I .. .... :¢: Id,. 



Automatic Display Layout of Dynamic Windows 
N ihar Trivedi 

The display layout is represented as a dynamic array of integers to store 

information of each window's ID, left edge coordinate, top edge 

coordinate, width and height. 

The SPORDAC algorithm and the scaling operation are implemented as 

private methods of CGenString class. The constructor of CGenString 

class calls these methods. A constructor is the default method that is 

83 

automatically called when an instance of a class is generated. The 

SPORDAC prototype passes the display layout information as an array of 

integers to the constructor of the CGenString class to create an instance of 

a string. The constructor of the CGenString class calls the method 

implementing the SPORDAC algorithm to remove any existing overlaps 

and compact the layout in both directions. Then the constructor of the 

CGenString class calls the method to scale the computed layout to the 

available display area and calculate the cost of the computed layout. The 

cost of the computed layout represents the goodness of the string. The 

cost of the string is calculated as shown below. 

. Void area 
Cost of String = -

- - Display_ area 

where Void_ area= total unoccupied area in display layout 

In the best case scenario, the solution will fully utilise the available 

display area and would be free of void area. Hence the minimum value 

possible for the cost of a string is 0. In the worst case scenario the 



Automatic Display Layout of Dynamic Windows 
Nihar Trivedi 

solution could have its cost very close to 1 but less than 1. The value is 

always less than 1 because the SPORDAC prototype does not allow a 

window size to be reduced to 0. 

84 

The process of initialising a string utilises the SPORDAC algorithm to 

ensure that it represents a likely candidate solution. The population of the 

strings is then acted upon by the AG approach to compute the final 

solution. This way the SPORDAC algorithm and the AG approach are 

integrated by the SPORDAC prototype. 

The AG approach implemented by the SPORDAC prototype utilises 

mutation and crossover operators to manipulate the population of the 

strings. Some of the important considerations for the implementation of 

mutation and crossover operators are as follows. 

Firstly, the user interaction with the open windows decides their width 

and height. Hence the mutation and crossover operators need not modify 

these properties of a window. However, they can modify the left and top 

edge values of a window. 

Secondly, the resultant layout generated by mutation and crossover 

operators may have overlaps and may not fit in the available display area. 

The resultant child strings are used to generate instances of the 

CGenString class to remove overlaps. 

The operation of the mutation and crossover operators is as described 

below. 



Automatic Display Layout of Dynamic Windows 85 
Nihar Trivedi 

Mutation 

Suppose that the mutation operator is to operate on a string that represents 

following display layout. 

12 
11 I 1 

3 

14 
I 

Figure 5.13 Initial windows layout 

The genetic string representing above display layout could be as shown 

below. 

Id1 = 2, left, = 0, top1 = 0, width1 = 100, height1 = 50,4,0,60,100,1,110,0,200,60,3,320,20,100,40. 

The mutation operator randomly selects a window and randomly modifies 

either left or top edge value of the selected window. Suppose the 

operator selects the last window and it's top edge and left edge values are 

modified as shown below. 

2,0,0,100,50,4,0,60,100,1,110,0,200,3,280,40,100,80. 

This string represents the display layout as shown below. 

l.____4 _1 '------=----13 
-

Figure 5.14 Windows layout after manipulation by mutation operator 



Automatic Display Layout of Dynamic Windows 86 
Nihar Trivedi 

If the inter window gap is set to O then the final compacted layout will be 

as shown below. 

2 l 

4 
3 

Figure 5.15 Final layout after compaction 

For above display layout, the genetic string would be initialised with 

following values. 

2,0,0,100,50,4,0,50,100,50,3,100,60,100,40,1,100,0,200,60. 

Crossover 

The crossover operator has to consider the situation where discrepancies 

may arise after the crossover operation. The initial population is 

randomly generated and each string in a population always represents a 

non-overlapping compact display layout. 

It is easy to understand that each string will represent same number of 

windows. However, random initialisation of genetic strings may not 

arrange windows at the same location in every string. Hence it is possible 

that two strings will represent same number of windows but the order of 

windows may not be identical. 



Automatic Display Layout of Dynamic Windows 87 
Nihar Trivedi 

Therefore it may not be possible to perform crossover operation 

depending upon physical location on string. Also, the width and the 

height of any window should not be modified during crossover operation. 

The crossover operator randomly selects window and swaps left and top 

edges coordinate values of windows whose Ids are more than selected 

window's Id. For example, if a display layout has ten windows and 

crossover operator selects fifth window then left and top edge coordinate 

values of all windows from sixth window to tenth window are swapped. 

This ensures that both children have same number of windows and does 

not generate any discrepancy. 

An example of crossover operation is explained in the figure shown on 

the following page. The crossover operator has selected second window. 



Automatic Display Layout of Dynamic Windows 88 
Nihar Trivedi 

l 2 4 

I 
3 

l 

3 4 

2 

Parent 1 Parent2 

3 4 

2 

Clri1d 1 Cbild2 

Child 1 (After overlap removed) Child 2 (After overlap removed) 

Figure 5 .16 Example of crossover operation 

The above figure illustrates how crossover operation is useful in 

generating alternative solutions. The crossover operation generates two 

children strings with overlaps. The array of integers representing each 

child is used to construct a corresponding instance of CGenString class. 

As explained earlier in the chapter, this would create two solution display 

layouts as shown in the figure 5.16. 

Next follows the description of how the final solution is computed by the 

SPORDAC prototype. 



Automatic Display Layout of Dynamic Windows 89 
Nihar Trivedi 

The user generates initial layout by creating one or many child windows 

on the display area and interacts with any one of the child windows by 

double clicking in its client area. This interaction triggers the SPORDAC 

prototype to recalculate new sizes of each window. An instance of 

CGenString class is created using the new sizes of the windows. This 

string object holds the temporary solution. 

Next, the AG approach is executed to calculate the final solution. The 

AG approach begins with random initialisation of initial population. The 

AG approach stops execution if a string with the cost of O is found or 

user-specified number of generations has been evolved. 

The solution computed by the AG approach is compared with the 

temporary solution initialised at the beginning of the process. The better 

solution is then mapped to the display area. 

A general overview about how the final solution is computed by the 

SPORDAC prototype follows. 



Automatic Display Layout of Dynamic Windows 
Nihar Trivedi 

1. 0 The user generates initial layout of windows that may contain 
overlaps. 

2. 0 The user double clicks on a child window. The new size of each 
window is calculated. 

3.0 An instance of a class (CGenetic) that encapsulates AG approach 
is created. 

90 

4. 0 A string of integers representing the layout of windows with their 
new sizes is passed to the instance of CGenetic created in step 3. 0. 

5. 0 The AG implementation of CGenetic initialises the population of 
necessary strings by creating instances ofCGenString class as and 
when required. 

6. 0 The AG algorithm executes and returns with the solution. 
7. 0 The solution is mapped on available display area. 

This concludes the discussion about how the SPORDAC algorithm and 

the AG approach are integrated in the SPORDAC prototype. 

A discussion about implementation of the SPORDAC prototype follows. 



Automatic Display Layout of Dynamic Windows 91 
Nihar Trivedi 

Object Model 

The object model of the SPORDAC prototype is as shown below. 

CThesisDoc i.------ CThesisApp 

CChildWnd CThesisView 

CGenString CGenetic 

Legend: Container 
object a-------<.i 

Container 
Object -------,,,i;.i 

CMainFrame 

CSysParam 

Contained 
Object 

Medlocl invocation. 
···························> 

_S""""7 
Contained U• inkncti.an 

Object 

Figure 5.17 The object model of SPORDAC prototype 

The above figure represents the relationship between various C++ classes 

implemented for the SPORDAC prototype. The Visual C++ application 

framework has generated CThesisApp, CThesisDoc, CThesis View and 

CMainFrame classes. The CMainFrame class represents the underlying 

parent window for the SPORDAC prototype. The CThesisDoc and 



Automatic Display Layout of Dynamic Windows 92 
Nihar Trivedi 

CThesis View classes represent the Document/View architecture of the 

SPORDAC prototype. It is sufficient to note here that all user 

interactions performed on parent window are diverted to the running 

instance of the CThesis View class. We request the reader to refer to 

appendix for more information on the Document/View architecture. The 

relevance of CGenetic and CGenString classes is already explained 

earlier in the chapter. The CChildWnd class represents a child window 

created by the user on the underlying parent window. The CThesisDoc 

class maintains a list of all valid CChildWnd instances. The CSysParam 

class represents the dialog box that enables a user to modify certain 

system parameters such as population size, number of generations, 

probability of crossover, probability of mutation, inter-window gap, etc. 

The display layout process begins when a user double clicks on a child 

window. The appropriate event handler in the child window invokes a 

method in the running instance of the CThesis View class to recalculate 

the size of each window and compute display area. The user interactions 

to create a new child window are also handled by the instance of 

CThesis View class. 



Automatic Display Layout of Dynamic Windows 
Nihar Trivedi 

This concludes the discussion of the SPRODAC prototype to solve the 

display layout problem. The following chapter presents the results 

obtained by the research and analyses them. 

93 



Automatic Display Layout of Dynamic Windows 94 
Nihar Trivedi 

This chapter discusses the results of the SPORDAC prototype and 

analyses them. This chapter begins with the description of various sample 

display layouts generated by the SPORDAC prototype followed by the 

analysis of the results generated by the prototype. 

Some of the sample layouts generated by SPORDAC prototype are as 

shown below. Every window clicked by the user is marked with e . 

SAMPLES 

• 

-r 
Figure 6.1 Sample layout generated by SPORDAC prototype 

The above layout was generated by the SPORDAC prototype after 

removing overlaps from the windows and compacting them. 

I~.:: :-:;; .. ti. 

or I 
: 

I 

11 

..... 

Figure 6.2 Compact and optimum layout generated by SPORDAC prototype 



Automatic Display Layout of Dynamic Windows 95 
Nihar Trivedi 

The above figure shows the optimised display layout generated by the 

SPORDAC prototype after user interaction with the central child window. 

It is apparent from the layout that the prototype has generated the best 

solution possible. Also, the interacted window has relatively large area. 

Figure 6.3 Optimised layout generated after user interaction with the marked window 

The above figure also shows the optimised display layout calculated by 

the SPORDAC prototype. 

D . o··············· ~ 
DLJD 

(a) (b) (c) 
Figure 6.4 

(a) Initial layout generated by user; (b) Layout generated after user clicks marked window; 
(c) Layout generated after user resizes underlying parent window. 

The above figure demonstrates how the relative size of the clicked 

window increases in the final layout. One can also observe that the 



Automatic Display Layout of Dynamic Windows 96 
Nihar Trivedi 

relative positions of the windows and their aspect ratios are maintained in 

the resultant layout computed by the SPORDAC algorithm. The figure 

6.4( c) demonstrates that the final layout is encapsulated in the available 

display area after its size is modified. One can observe that the 

SPORDAC algorithm has preserved the mental-map of the diagram . 

• 
11'-------'I • 

1 •• 

(a) Initial layout generated by the user (b) Final layout 
Figure 6.5 

Figure 6.5(a) shows the initial layout generated by the user. The child 

window-6 is completely overlapped in the initial layout. After several 

user interactions with the windows 4,5, and 6, one can observe that the 

windows do not overlap, and they are contained in the available display 

area. It also appears that the operation of overlap removal has destroyed 

the mental-map to considerable degree. 

l•isi- - .. ~-· 
I I • • 

-

" 
-

I I I 

-~ 
.... ~ 

(a) Initial layout generated by the user (b) Optimised final layout 
Figure 6.6 



Automatic Display Layout of Dynamic Windows 
Nihar Trivedi 

The figure 6.6 is another example of optimised display layout calculated 

by the prototype. 

(a) Layout calculated by the algorithm 

Figure 6.7 

(b) Layout generated without area 
optimisation after user interaction 
with marked window. 

97 

The figure 6.7(a) shows the layout generated by the SPORDAC prototype 

with clisplay area utilisation turned on. While the figure 6.7(b) shows the 

layout generated by the SPORDAC prototype with display area utilisation 

feature turned off. 

This experiment and comparison of figure 6.4 with figure 6.7 suggests 

that the prototype is able to maintain the mental map of the display area 

to fair degree if the original or the initial layout was overlap free before 

the user interaction. 

One can also observe that turning off the display area utilisation feature 

has generated a layout with large void around right- bottom comer of the 

parent window. This is understandable as the SPORDAC implementation 



Automatic Display Layout of Dynamic Windows 98 
Nihar Trivedi 

first generates the layout from left to right followed by a similar operation 

in top to bottom direction. 

lffif'P 

·• 

I '"""' 

(a) Initial layout (b) Final layout 
Figure 6.8 

The figure 6.8(a) shows the initial layout generated by the user. The 

figure 6.8(b) shows the layout generated by applying the SPORDAC 

algorithm in Y direction followed by X direction. We can observe from 

previous examples that the order in which the SPORDAC algorithm is 

applied makes a difference to the quality of layout generated. 

Initial layout Optimised layout generated by the 
prototype 

Figure 6.9 Figure 6.10 



Automatic Display Layout of Dynamic Windows 
Nihar Trivedi 

The figw·e 6.9 shows the initial layout generated by the user and figure 

6.10 shows the optimised layout generated by the prototype with 

SPORDAC algorithm applied in Y direction followed by X direction. 

Performance of SPORDAC 

99 

As it is apparent from above examples~ SPORDAC algorithm is 

successful in removing overlap from windows layout and compacts the 

layout to reasonable degree. The prototype was tested on 133MHz 

Pentium machine with display area of about 600 X 300 pixel. In the best 

case, the prototype has been successful in achieving compaction with 

around 93% utilisation of display area with 15 windows open. 

In the worst case we have observed 65% utilisation of display area with 

15 windows open. On average we were able to achieve 75% utilisation of 

display area with 15 windows open. 

Display area utilisation 
120 -~ 100 • !:- • "C 80 Q) 

• !!? 60 .. • • • 
:l 40 
IV 
Q) 

20 ... 
ct 

0 

0 10 20 30 
Number windows 

Figure 6.11 Average display area utilisation 



CHAPTER: 6 

The Results 



Automatic Display Layout of Dynamic Windows 100 
Nihar Trivedi 

Above graph depicts average display area utilisation performance for 

different number of windows. For each case, the prototype was run ten 

times. 

One can observe that the final display area optimisation and mental-map 

preservation achieved by the SPORDAC prototype depends upon 

following aspects. 

• Initial layout 

Figures 6.8 and 6.11 suggest that if the initial layout is overlap free 

then the resultant layout tends to maintain the mental-map to a 

reasonable degree. If the initial layout has overlapping windows 

then the overlap removal operation performed by SPORDAC is 

working against the preservation of mental-map. 

This characteristic seems to be like a counter example of SHriMP 

view technique. Chapter-2 of the thesis observes that SHriMP 

view technique preserves mental-map but does not attempt to 

remove overlap while SPORDAC removes the overlap and 

maintains mental-map under certain conditions (Storey and 

Muller, 1995, p.3). 

• Number of windows 

From the layouts shown earlier one can observe that display area 

utilisation drops as number of windows increase in number. 



Automatic Display Layout of Dynamic Windows 

• Nature of interaction 

101 
Nihar Trivedi 

Figure 6.9 is an example of a situation where the user has diverted 

most of interaction to three windows in particular. Hence these 

windows occupy maximum display area and other smaller 

windows are placed around bigger windows. It is apparent that this 

situation results in a better utilisation of display area. 

• Size modification 

With every interaction the SPORDAC prototype increases the 

width and the height of the clicked window by 15% and decreases 

the width and the height of other windows by 15%. Thus, window 

sizes are modified linearly. 

Experimenting with exponential functions for window size 

modification resulted in drastic changes in sizes of windows. 

Hence such functions were not utilised for SPORDAC and their 

usage was subsequently stopped for this research. 

• Order of compaction 

The reader can observe differences in the windows layout 

arrangement while comparing figures 6.12, 6.13 and 6.14 with rest 

of the figures. SPORDAC is a one dimensional compaction 

method. Hence to compact the layout in both directions, the 

prototype applies the same algorithm in two different directions. 



Automatic Display Layout of Dynamic Windows 102 
Nillar Trivedi 

The order selected makes an impact on the amount of compaction 

achieved by SPORDAC. 

The AG approach implemented for SPORDAC produced the following 

characteristic graph. 

Optimisation Progress 

0.6 .--------------------, 

0.5 

..., 0.4 

"' 0 0.3 

() 0.2 

0.1 

• • • • • • • 
• • • 

• 
• • • 

o,..._------------.---------1 
0 

• Average ost 

aBest olu1ion 

20 40 60 

Generation 

80 100 

Figure 6.12 Performance of AG approach for SPORDAC 

120 

The above figure plots the performance of AG approach for SPORDAC 

prototype. It is evident from the graph that the annealing process starts 

with a relatively high value of cost. When the process reaches around 

40Lh generation, quality of the solution improves by a fair degree. From 

60Lh generation onwards we see relatively smaller improvement in the 

solution. The plot resembles in nature to the curve produced by Lin,Kao 

and Hsu ( 1993) for their implementation of AG method for set 

pattitioning problem. 



Automatic Display Layout of Dynamic Windows 103 
Nihar Trivedi 

The above plot was obtained for running optimisation process for 100 

generations with value of Pc = 0.05, Pm = 0.005 and population size of 75. 

The value of temperature coefficient (a)was set to the value of0.75 by 

trial and error. 

Next follows the discussion about the execution time requirements for the 

SPORDAC algorithm and the SPORDAC prototype. 

It is noted elsewhere in the thesis that the SPORDAC prototype consists 

of integration of the SPORDAC algorithm with the AG approach. The 

SPORDAC algorithm is a one-dimensional, 'shadow' based technique to 

remove overlap and compact the layout at the same time. While AG 

approach is a combination of annealing technique and genetic algorithm. 

The SPORDAC prototype accommodates the SPORDAC algorithm with 

the genetic algorithm proposed by the AG approach. 

It follows from the description of the SPORDAC algorithm that it mainly 

involves sorting and searching of the windows or display layout objects. 

Unlike the AG approach, the SPORDAC algorithm does not involve any 

non-deterministic calculations based on a random number generator. 

Therefore the execution time required by the SPORDAC algorithm 

depends upon the searching and sorting algorithms implemented by the 



Automatic Display Layout of Dynamic Windows 
Nihar Trivedi 

user of the SPORDAC algorithm. This thesis has implemented binary 

searching and sorting techniques for implementation of the SPORDAC. 

-------------------~ 
Performance of SPORDAC 

Algorithm 

10 20 30 40 

Windows 

Figure 6.13 Performance of SPORDAC algorithm 

104 

The figure 6.13 shows the execution time required by the SPORDAC 

algorithm to generate a layout. The above timings were observed for 

application of the SPORDAC algorithm in both directions withAG 

approach switched off. The SPORDAC algorithm was applied in the X 

direction followed by the Y direction. The resultant layouts generated 

were similar in nature to figure 6.7(b), with void areas concentrated on 

the bottom-right comer of the display area, depending upon the window 

clicked by the user. Hence one can observe that, the SPORDAC 

algorithm is quick to generate an overlap free layout but the layout may 

not utilise the display area very well. 

The SPORDAC prototype has integrated the SPORDAC algorithm with 

the AG approach to optimise the display area usage,. The AG algorithm 



Automatic Display Layout of Dynamic Windows 105 
Nihar Trivedi 

operates on the display layout generated by the SPORDAC algorithm and 

attempts to improvise the layout. 

The process of improvising the layout requires more execution time as it 

is evident from the following graph. 

Time Vs Generations 

80 ~~~~~~~~~~~~~~ 

U1 60 
"O 

g 40 
0 

~ 20 

"\) n;,\) ~\) '\\) o.P ""\) "n:,r::::, "~r::::, 

Generations 

Figure 6.14 Execution time requirements for AG algorithm 

The figure 6.14 shows the execution time requirements for the 

SPORDAC prototype's implementation of the AG approach. The above 

timing characteristics were observed for five windows with population 

size of 30 strings, P,. = 0.05 and ~,, = 0.005. 

The following figure demonstrates the increase in execution tbne with 

respect to increase in the number of windows. 



Automatic Display Layout of Dynamic Windows 106 
Nihar Trivedi 

Perfonnance of AG Approach 

1 ~ J_I _.. .... *:;:;. ~::::iea;;i;;;;;·~··;i~E, :::::= =··::!·····~··=· ~=--·-=···· ···_- _···••••· •·_· ~-_J· J : :~: 

5 10 15 20 25 30 

Nurrber of Wnck:Ms 

Figure 6.15 Increase in execution time as the number of windows increase 

The series 1 in above figure represents the increase in execution time for 

population size of 50 strings, 75 generations, P(' = 0.05 and P,11 = 0.005. 

The series2 in above figure represents the increase in execution time for 

population size of 20 strings, 30 generations, Pc = 0.05 and P,11 = 0.005. 

The above execution time curves are similar in nature to those obtained 

by Lin, Kao and Hsu (1995) for set partitioning problem. 

It follows from the above graph that the execution time required by the 

AG approach is dependent on the genetic algorithm parameters selected 

by the user. The execution time increases as the population size and the 

number of generations increases. 



Automatic Display Layout of Dynamic Windows 107 
Nihar Trivedi 

Next and the last chapter of this thesis highlights the strengths and the 

weaknesses of the SPORDAC approach, the main research contribution 

of this thesis and concludes with a few suggestions about how the 

SPORDAC approach can be utilised as a building block for designing 

other display layout algorithms in future. 



CHAPTER: 7 

The Conclusion 



Automatic Display Layout of Dynamic Windows 108 
Nihar Trivedi 

This concluding chapter of the thesis will highlight the main research 

contribution, strengths and weaknesses of the SPORDAC approach and 

mention how the SPORDAC approach could be useful in developing 

different layout algorithms. 

Research findings 

The hypothesis stated in Chapter- I and Chapter-4 had envisaged an 

automatic interactive window layout generator that can handle any 

number of windows and arrange them in such a way that they do not 

overlap, optimise the display area usage and encapsulate the layout in 

available display area. 

This research has been successful in developing a umque SPORDAC 

algorithm for display layout. This algorithm has succeeded in removing 

overlap from the display layout. The SPORDAC method is fast and easy 

to implement as it mainly involves searching and sorting. Implementing 

efficient searching and sorting algorithms for shadow propagation results 

in faster operation. The algorithm is able to remove overlap from a given 

display layout within few seconds. 



Automatic Display Layout of Dynamic Windows 109 
Nihar Trivedi 

The algorithm removes overlap and arranges windows in only one 

dimension at a time. Hence display area utilisation is not always 

optimum. However, the algorithm arranges windows as close as possible 

in one dimension and removes overlap at the same time. 

Using Annealing Genetic (AG) approach with SPORDAC algorithm 

results in better utilisation of the display area. The uniform scaling maps 

the final layout to the available display area. In this way the SPORDAC 

prototype has been able to achieve non-overlapping, optimised, compact 

layout which fits in available display area. 

It was stated in Chapter-4 that the SPORDAC algorithm should preserve 

the mental map of the layout to a reasonable degree. 

As it is observed earlier in Chapter- I, preservation of the orthogonal 

ordering is an important condition in preserving the mental map of the 

user. Sometimes it is necessary to modify orthogonal ordering of the 

objects to produce a non-overlapping, compact layout. 

Hence referring to display layouts generated by the SPORDAC algorithm 

and the subsequent description, it is safe to state that the SPORDAC 

algorithm is able to maintain the mental-map under certain conditions. 



Automatic Display Layout of Dynamic Windows 110 
Nihar Trivedi 

The chapter-2 of this thesis has surveyed some of the prominent display 

layout algorithms. Most of the literature surveyed has highlighted final 

display layout generated by their respective approaches in their respective 

literary work. Unfortunately very little numerical data was found that 

would directly relate to numerical data gathered by this research, ie, 

display area utilisation factors, measure of mental-map preservation, etc. 

The SPORDAC prototype has utilised AG approach for display area 

utilisation and Chapter-6 has appropriately acknowledged the 

performance of this approach. 

Successful development and implementation of a new approach to 

generate layout of dynamic windows has been the main research 

achievement. 



Automatic Display Layout of Dynamic Windows 

Future research directions 

111 
Nihar Trivedi 

It is observed in Chapter-6 that performance of the SPORDAC algorithm 

depends upon several factors. One of the important factors is the function 

used to modify the size of a child window. This research has 

implemented a linear function to modify the size. It should be an 

interesting research topic to find a window size manipulation function 

that also takes mental-map into consideration. 

The SPORDAC prototype integrates the SPORDAC algorithm with the 

AG approach to optimise the display area usage. The figure 6.13 

suggests that the SPORDAC algorithm is able to handle significant 

number of windows in reasonable time. However figure 6.14 and figure 

6.15 suggests that the time required for calculating the final solution 

increases considerably as the number of window increases. Improving 

the speed of the annealing process is another area to be looked at. 

Bae and Perov ( 1993) have suggested several interesting variations on 

genetic algorithms. Some of the main variations include application of 

mutation operator to every string in the population before generating next 

population, implementing multi-point crossover operators, dynamic 



Automatic Display Layout of Dynamic Windows 112 
Nihar Trivedi 

calculation of population size, crossover and mutation probabilities, etc 

(Bae and Perov, 1993, p.230-233). 

It should be an interesting research exercise to study the effects of above 

stated enhancements to the speed of annealing process implemented by 

the SPORDAC prototype. 

It is noted several times that the SPORDAC algorithm is a one

dimensional compaction method. It should be possible to modify the 

SPORDAC algorithm proposed here to design a two dimensional 

approach which aims to optimise and compact the display area usage at 

the same time. The SPORDAC algorithm is a one-dimensional 

compaction approach. Hence the layout generated needs to be optimised 

using AG approach. An improved two-dimensional SPORDAC method 

may not require implementation of annealing operation. This should 

further improve the speed of the SPORDAC prototype. 

The concept of 'Shadow' has the potential to flourish into more 

sophisticated interactive display layout algorithms. 



Automatic Display Layout of Dynamic Windows 113 
Nihar Trivedi 

One such algorithm could consider shadows in both dimensions and 

directions to calculate the minimum distance required for removing 

overlap introduced by a window. 

Another approach could be to start the arrangement of windows from 

centre of display area and place all the windows along a hypothetical 

clockwise or anti-clockwise spiral. This algorithm could use the concept 

of shadow to move a new window in such a way that the resultant layout 

has minimum void. 

In conclusion, our research has been successful in developing a new 

approach for display layout. 



APPENDIX 



Automatic Display Layout of Dynamic Windows 

Object Orientation 

114 
Nihar Trivedi 

Object Orientation (00) is a technique for system modelling. 00 

is used to model a system as a set of interacting objects that in one 

way or another are related. Object model of a system depends 

upon what a system designer wishes to represent in a system. 

Interest in the object-oriented method has grown rapidly over the 

last few years. This is mainly due to the fact that it has shown 

many good qualities. Amongst the most prominent qualities of a 

system designed with an object oriented method are as described 

below (Jacobson, Christerson, Jonson and Wergaard, 1992,p.43). 

• Understanding of the system is easier as the semantic gap 

between the system and reality is small. 

• Modifications to the model tend to be local as they often 

result from an individual item, which is represented by a 

single object. 

Some of the main concepts associated with object orientation are as 

described below. 



Automatic Display Layout of Dynamic Windows 

Object: 

115 
Nihar Trivedi 

Microsoft computer dictionary defines object as a variable 

comprising both routines and data that are treated as a discrete 

entity. Data encapsulated in a object represents state of an object at 

a given time. Routines associated with an object are invoked to 

manipulate state of an object. 

An object is created from a template known as 'Class". A class 

defines internal structure of an object. A class is sometimes called 

as object's type. A class is a compile time concept while an object 

is a run-time concept. 

An object is an abstract representation of an entity defined in a 

system. Member data variables and methods or routines could be 

accessible to the owner of the object or remain private within an 

instance of an object. This is known as information hiding. 

A class may be defined as a descendant of one or more classes. 

This is known as inheritance. The class that inherits another class 

is sometimes known as derived class and inherited class is known 

as base class. A class may consist of aggregation of various other 

classes instead of inheriting them. Derived class has access to 

members of base class as determined by a programming language. 

A class may inherit from more than one class. This is known as 

multiple inheritance. There are several advantages and 



Automatic Display Layout of Dynamic Windows 116 
Nihar Trivedi 

disadvantages associated with single and multiple inheritance and 

they are highly debatable subjects. There is good amount of 

literature present which discusses these issues at length. However 

we are not addressing these issues in our research. 

Polym01:phism: 

A method or a routine in a class may support polymorphism in two 

ways. They are 'Parametric Polymorphism' and 'Dynamic 

Binding'. 

Parametric polymorphism means that a class implements a method 

that operates on a general data-type. A parameter of any type can 

be passed as an argument to this method and the method is able to 

handle the situation. This mechanism frees the designer from 

writing several similar routines that perform same operation on 

different data-types, ie, sorting integers, structures, strings, etc 

(Jacobson, Christerson, Jonson and Wergaard, 1992,p.49). 

Dynamic binding means that a class may implement several 

routines of same name that may or may not require same number 

or type of arguments. At run-time, depending upon the types 

parameters passed to the routine, correct routine is selected and 

executed (Jacobson, Christerson, Jonson and Wergaard, 

1992,p.49). 



Automatic Display Layout of Dynamic Windows 
Nihar Trivedi 

Document I View architecture 

Microsoft has developed Microsoft Foundation Class (MFC) 

library for development under MS Windows. Using MFC for 

development frees a developer to spend more time developing 

structural components of a program and less time worrying about 

minute details of Windows APL MFC attempts to simplify 

Windows development process (Prosise, 1995 ,p.18). 

117 

MFC is a hierarchy of about 130 classes. MFC is also an 

application framework. MFC helps to define the structure of an 

application and handles much of routine functionality on the 

application's behalf. CWinApp is the class that represents the 

application itself. The framework supplies most of standard code 

to support a windows based application. MFC also supports 

Document I View paradigm which allows a program's data to be 

separated from graphical representations of that data. 

Most MFC classes fall into one of these six categories. 

• CObject 
• Application architecture 
• Visual Objects 
• OLE2 
• Database 
• General purpose (Prosise, 1995 ,p.18). 



Automatic Display Layout of Dynamic Windows 118 
Nihar Trivedi 

Document I View classes fall under the category of application 

architecture classes. The application architecture classes help 

define the form and structure of an MFC application. Document I 

View paradigm allows abstract representation of program's data in 

a class derived from CDocument class. Document draws a clear 

boundary between how data is stored and how it is represented on 

screen. Role of view class is to render document class on the 

screen and translate user actions into commands that manipulate 

document object (Prosise, 1995,p.21). The SPORDAC prototype 

utilises Document/View architecture in its implementation. 



BIBLIOGRAPHY 



Automatic Display Layout of Dynamic Windows 119 
Nihar Trivedi 

Awashima, T., Sato, M., and Ohtsuki, T. (1993). Optimal consraint 

graph generation algorithm for layout compaction using enhanced plane

sweep method. IEICE Transactions on fundamentals ofelectronic, 76(4). 

507-512. 

Bac,F., Perov,V. (1993). New evolutionary genetic algorithms for NP 

complete combinatorial optimisation problems. Biological cybernetics, 

69(3). 229-234. 

Battista Di, G., Eades, P., Tamassia, R., and Tollis, I. (June 1994). 

Algorithms for drawing graphs: An annotated bibliography. Available: 

ftp. wilma. cs. brown. edu/pub/papers/compgeo/gdbiblio. tex.Z. 

Bland, J., and Dawson, G. (Sept. 1994). Large-scale layout of facilities 

using a heuristic hybrid algorithm. Applied mathematical modelling, 

18(9). 500-503. 

Bloesch, A. (August, 1993). Aesthetic layout of generalised trees. 

Software-practice and experience, 23(8 ). 817-827. 

Booch, G. (Feb., 1994). Designing an application framework. Dr. 

Dobb'sJournal. 19(2). 24-31. 



Automatic Display Layout of Dynamic Windows 120 
Nihar Trivedi 

Bozer, Y., Meller, R., Erelbacher, S. (July 1994). An improvement type 

layout algorithm for single and multiple floor facilities. Management 

Science 40(7). 918-932. 

Dengler, E., Friedell, M., and Marks,J. (1993). Constraint-driven 

diagram layout. Proceedings of 1993 IEEE Symposium on visual 

languages. 330-335. 

Dodson,D. (1995, September). COMAIDE: Information visualisation 

using cooperative 3D diagram layout. Paper presented at the proceedings 

of Graph Drawing '95, Passau, Germany [on-line]. Available 

http://web.cs.city.ac.uk/research/dig/digpapers.html. 

Eades,P. ( 1984 ). A heuristic for graph drawing. Congressus 

numerantium, 42. 149-160. 

Eades, P. (Aug. 1991). Drawing free trees. Technical report IIAS-RR-

91-17E. International institute for advance study ofsocial informaion 

science, Fuiitsu Limited. 1-29. 



Automatic Display Layout of Dynamic Windows 121 
Nihar Trivedi 

Funke, D., Neal, J., and Paul, R. (1993). An approach to intelligent 

automated window management. International journal of man-machine 

studies, 38. 949-983. 

Genetic Algorithms (Lectures 1-3). (no date). [Handout]. (Available 

from Edith Cowan University, Mount Lawley, 6050, Western Australia) 

Hsiao, P., and Feng, W. (1990). New algorithms based on multiple 

storage quadtree for hierarchical compaction of VLSI mask layout. 

Computer aided design, 22(2). 74-80. 

lzumoto, H., Wakabayashi, S., Miyao, J., and Yoshida, N. (1990). A 

Placement method for size restricted blocks in VLSI layout design. 

Electronics and communications in Japan, Part 3, 73(9). 86-96. 

Jain, S., Gea, H., (1996). PCB Layout Design Using a Genetic 

Algorithm. Journal o(Electronic Packaging. 118(1). 11-15. 

Jacobson, I., Christerson, M., Jonson, P., Wergaard, G. (1992). Object 

oriented software engineering: A Use case driven approach. ACM Press. 

USA( 4th edition). pp.43-60. 



Automatic Display Layout of Dynamic Windows 122 
Nihar Trivedi 

Joy, M., and Smith,V. (1995). NP Completeness of a combinatory 

optimisation problem. Notre Dame iournal of.formal logic. 36(2). 319-

335. 

Lai,W. (1993). Building interactive diagram applications. PhD thesis, 

Department of Computer Science, University ofNewcastle. pp. 91-120. 

Lai, W., Liu, Y., and Millar, J. (1995). Designing Tree Structure 

Diagrams for Management. Proceedings of 1995 IEEE annual 

International Engineering Management Conference (pp. 358-363). 

Singapore. 

Liao, Y., Wong, C. (1983). An algorithm to compact a VLSI symbolic 

layout with mixed constraints. IEEE Transactions on computer aided 

design ofintegrated circuits and systems, CAD-2(2). 62-69. 

Lin,F., Kao, C., and Hsu, C. (Nov. 1993). Applying genetic approach to 

simulated annealing in solving some NP hard problems. IEEE 

Transactions on systems. man and cybernetics, 23(6). 1753-1767. 

Luders,P., and Emst,R. (1993). Automatic display layout in window 

oriented user interfaces. Interfaces in industrial systems for production 

and engineering. 8(10). 27-42. 



Automatic Display Layout of Dynamic Windows 123 
Nihar Trivedi 

Luders,P., and Emst,R. (1994). The dynamic screen- Beyond the limits 

of traditional graphic user interfaces. 13th IFIP World computer 

conw:ess. 8(10) . 27-41. 

Luders,P., and Emst,R. (1995). Improving browsing in information by 

the automatic display layout. IEEE Symposium on information 

visualisaion (pp.26-33). Atlanta:USA. 

Luders,P., and Emst,R. (1995). Improvement of the user interface of 

multimedia applications by automatic display layout. Multimedia and 

networking conference (pp.54-64). San Jose:USA. 

Luders,P., Ernst, R., and Stille, S. (1995). An approach to automatic 

display layout using combinatorial optimisation algorithms. Software

Practice and experience, 25 (J 1 ). 1183-1202. 

Mangano, S. (April 1994). Algorithms for directed graphs. Dr. Dobb 's 

journal, 19(4). 92-147. 

Matsui, T. (1993). A method for two-dimensional layout of semantic 

structure of graphs. Electronics and communication in Japan, 76(3). 1-

12. 



Automatic Display Layout of Dynamic Windows 124 
Nihar Trivedi 

Messinger, E., Rowe, L., and Henry, R. (Feb. 1991). A Divide and 

conquer algorithm for the automatic layout of large directed graphs. 

IEEE Transactions on systems. man and cybernetics. 21 (] ). 1-12. 

Misue, K., Eades, P., Lai, W., and Sugiyama, K., (1995). Layout 

Adjustment and the Mental Map. Journal of Visual Languages and 

Computing, 6, 183-210. 

Nakamura, T. (1990). A multiple-window display. Systems and 

computers in Japan. 22(7). 1-11. 

Noik, E. (1993). Layout-independent fisheye views of nested graphs. 

Proceeedings of1993 IEEE Symposium on visual languages. 336-341. 

Okada, K., Onodera, H., and Tamaru, K. (1995). Compaction with shape 

optimisation and its application to layout recycling. IEICE Transaction 

on fundamentals ofelectonic, 78(2). 169-176. 

Pleeger, C.P. (1989). Security in Computing. Englewood Cliffs, New 

Jersey: Prentice-Hall. 



Automatic Display Layout of Dynamic Windows 125 
Nihar Trivedi 

Prosise, J., (June 1995). Wake Up and Smell the MFC: Using the Visual 

C++ Classes and Application Framework. Microsoft Systems Journal., 

17-34. 

Prosise, J., (July 1995). Programming Windows 95 with MFC, Part II: 

Working with Display Contexts, Pens, and Brushes. Microsoft Systems 

Journal., 39-63. 

Prosise, J., (Aug. 1995). Programming Windows 95 with MFC, Part III: 

Processing Mouse Input. Microsoft Systems Journal., 57-74. 

Prosise, J., (Sept. 1995). Programming Windows 95 with MFC, Part IV: 

Contending with the Keyboard. Microsoft Systems Journal., 35-50. 

Prosise, J., (Nov. 1995). Programming Windows 95 with MFC, Part V: 

Menus, Toolbars, and Status Bars. Microsoft Systems Journal., 41-58. 

Prosise, J., (Dec. 1995). Programming Windows 95 with MFC, Part VI: 

Dialog Boxes, Property Sheets, and Controls. Microsoft Systems 

Journal., 53-72. 



Automatic Display Layout of Dynamic Windows 126 
Nihar Trivedi 

Prosise, J., (Feb. 1996). Programming Windows 95 with MFC, Part VII: 

The Document/View Architecture. Microsoft Systems Journal., 19-40. 

Proth, J., and Souilah, A. (1992). Near optimal layout algorithm based 

on simulated annealing. International iournal ofsystems automation: 

Research and applications. 2. 227-243. 

Rebaudengo, M., and Reorda, M. (August 1996). GALLO: A genetic 

algorithm for floorplan area optimisation. IEEE Transaction on computer 

aided desi~ ofintegrated circuits and systems. 15(8). 943-951. 

Sakamoto, M., Onodera, H., and Tamaru, Keikichi. (1990). 

Shiftcompaction - Quasi-Two-Dimensional compaction method for 

symbolic layout. Electronics and communications in Japan, Part 3. 

73(9). 40-51. 

Shih, L., Enkawa, T., and Itoh, K. (1992). An AI search technique-based 

layout planning method. International iournal ofproduction research, 

30(12). 2839-2855. 



Automatic Display Layout of Dynamic Windows 127 
Nihar Trivedi 

Shin,H., Sangiovanni-Vincentelli, A. (1990). Zone-Refining techniques 

for IC layout compaction. IEEE Transactions on computer-aided desiwz, 

9(2). 167-179. 

Storey, M., Muller, H. (1995). Graph layout adjustment strategies. 

Unpublished manuscript, Simon Fraser University, Canada. 

Storey, M., Muller, H. ( 1995). Manipulating and documenting software 

structures using SHriMP views. Unpublished manuscript, Simon Fraser 

University, Canada. 

Sugai, Y., and Hirata, H. (1991). Hierarchical algorithm for a partition 

problem using simulated annealing: application to placement in VLSI 

layout. International iournal ofsystems science, 22(2). 2471-2487. 

Supowit, K., and Reingold, E. (1983). The complexity of drawing trees 

nicely. Acta informatica. 18. 377-392. 

Suzuki, A., Fuchino, T., Muraki, M. and Hayakawa, T., (April 01, 1991). 

An evolutionary method of arranging the plot plan for process plant 

layout. Journal of chemical engineering o(Japan. 24(2). 226-231. 



Automatic Display Layout of Dynamic Windows 128 
Nihar Trivedi 

Tamassia, R., Battista, G., and Batini, C. (1988). Automatic graph 

drawing and readability of diagrams. IEEE Transactions on systems. man 

and cybernetics, 18(1 ). 61-79. 

Tsuchida, K. ( 1995). The complexity of drawing tree structured 

diagrams. IECE Trans. Inf & Syst .. 78(7). 901-908. 

Wang, M., Liu, C., and Pan,Y. (1991). Computer aided panel layout 

using a multi-criteria heuristic algorithm. International iournal of 

production research, 29(6). 1215-1233. 

Yaman, R., Gethin, D., and Clarke, M. (1993). An effective sorting 

method for facility layout construction. International iournal of 

production research, 31(2). 413-427. 


	An approach to display layout of dynamic windows
	Recommended Citation

	Page 1

