Edith Cowan University
Research Online

Theses: Doctorates and Masters Theses

1-1-1997

Fractal relationships and spatial distribution of ore body
modelling

D. J. Kentwell
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses

b Part of the Mining Engineering Commons

Recommended Citation
Kentwell, D. J. (1997). Fractal relationships and spatial distribution of ore body modelling.
https://ro.ecu.edu.au/theses/882

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses/882


https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses?utm_source=ro.ecu.edu.au%2Ftheses%2F882&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1090?utm_source=ro.ecu.edu.au%2Ftheses%2F882&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses/882

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose
of your own research or study.

The University does not authorize you to copy, communicate or
otherwise make available electronically to any other person any
copyright material contained on this site.

You are reminded of the following:

e Copyright owners are entitled to take legal action against persons
who infringe their copyright.

e A reproduction of material that is protected by copyright may be a
copyright infringement. Where the reproduction of such material is
done without attribution of authorship, with false attribution of
authorship or the authorship is treated in a derogatory manner,
this may be a breach of the author’s moral rights contained in Part
IX of the Copyright Act 1968 (Cth).

e Courts have the power to impose a wide range of civil and criminal
sanctions for infringement of copyright, infringement of moral
rights and other offences under the Copyright Act 1968 (Cth).
Higher penalties may apply, and higher damages may be awarded,
for offences and infringements involving the conversion of material
into digital or electronic form.



; Fractal Relationships andepatial Distributions in Ore Body Modeiling

- Thesis

| Mastér of Science (Mathemaﬁcs and Planning) -

D. J. Kentwell

F aéulty of Science, Technology and Engineering
School of Computer, Information and Mathematical Sciences
Edith Cowan University

August 1997



USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.



Table of Contents
Abstract
Declaration
Acknowledgements
1 Introduction
1.1 The Problem in Relation to Ore Body Modelling
1.2 Aim of the Thesis
1.3 Significance of the Research
1.4 Outline of the Thesis
1.5 Software Summary
2 Estimation
2.1 Regionalised Variable Theory
2.2 Variogram and Covariance Functions
2.3 Anisotropy
2.4 Change of Support
2.5 Kriging
2.6 Examples - Ordinary Kriging Estimation
2.7 Summary
3 Simulation
3.1 Gaussian Methods
3.2 Sequential Gaussian Simulation
3.3 LU Decomposition
3.4 Other Simulation Methods
3.5 Examples
3.6 Summary
4 Fractals
4.1 Fractal Theory
4.2 Determining The Fractal Dimension
4.3 Stochastic Fractal Stmulations
4.4 SGFRACT
4.5 Examples and Evaluation of SGFRACT
4.6 Summary
5 Application of SGFRACT to Gold Mineralisation
5.1 Data Set History and Geology
5.2 Description of Data sets
5.3 Normal Score Transforms
5.4 Modelling the Spatial Structure

Page

- RIS SRS

00 00 w1 . ~3 =~ = =1 O O\ O\ N W LA A b L R R e e e e
D E ST A URN -~ AN~ @R h = 00 0 N — O

101
102
104
105
112
113



5.5 Simulation
5.6 Analysis of Results
5.7 Summary

6 Conclusions and Recommendations

6.1 Conclusions

6.2 Extensions and Recommendations
References
Appendix A - Notation and Symbols
Appendix B - Data (sub)Set Listings
Appendix C- SGFRACT Fortran 77 Code
Appendix D - Proof: Covariance of Increments of Fractional Brownian Motion
Appendix E - Goodall Data Set 'Evolution’

115,

119
133
134

134

136
138
142
145
150
157
158



Abstract

The naturé of spatial distributions of geological variables such as ore grades is of
priméry concern when modelling ore bodies and mineral resources. The aim of any
minéraﬂ resource evaluation process is to determine the location, extent, volume and
average grade of that resource by a trade off between maximum confidence in the
results and minimum sampling effort. The principal aim of almost every geostatistical
modelling process is to predict the spatial variation of one or more geological variables
in order to estimate values of those variables at locations that have not been sampled.
From the spatial analysis of these variables, in conjunction with the physical geology of -
the region of interest, the location, extent and volume, or series of discrete voiufri»es,
whose average ore grade exceeds a specific ore grade cut oﬂ‘ value determinedf by
. economic parameters can be determined. Of interest are noi only the volume and
average grade of the material but also the degree of uncertainty associated with each of
these. Geostatistics currently provides many methods of a‘ssessing spﬁtial variability.
Fractal dimepsions_ also give us a measure of spatial variability and have been found to
model ﬁany natural phenomenon successfiilly (Mandelbrot 1983, Burrough 1981), but
until now fractal modelling techniques have not Been able to match fhe vé‘%‘s'atility and
accuracy of geostatistical methods. Fractal ideas and use of the fractal dimez‘.].sion‘ may in
certain cases provide a bettér understanding of the”way in which spatial variability
manifests itself in geostatistical‘situation”s. This research will propose and investigate a
new application of fractal simulationv methods to spatial variability and spatial
interpolation’ techniques i-iS they relate to. ore body modelling. The results show some

:advantagebs over existing techniques of geostati,stical simulation.
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1 Introduction

In this chapter we will outline the need for techniques that predict spatial variability of
geological variables, present a preview summary of the thesis and give a brief

description of the software used.

oy
—

1.1 The Problem in Relation to Qre Body Modelling

The aim when evaluating any prospect or potentially mineable orebody is to determine
the physical extent and economic value of the mineralisation whilst at the same time
using the minimum amount of sampling necessary to give a reliable estimate, Minimising
sampling is a major component in minimising exploration and development costs.
Geostatistical techniques, along with various rules of thumb, are currently used to
achieve this. The basis of an ore body model comes firstly from the geological
structures present and secondly from a set of sample values of some geological variable
or variables taken from known locations throughout the region of interest. In other
words, an ore body model is, in part, a spatial distribution of sample values in three
dimensions. The more samples (appropriately distributed) that are taken the better the
results of the modelling process should be. But more samples mean more costs and
more time spent, not only with the sampling procedure itself but also with access to the
sites that need to be sampled. For example it is physically more difficult to sample
locations that are on steep hillsides or underwater. Therefore the number of samples
taken and the choice of sample locations is always a trade off between maximum

confidence in the overall results and minimum sampling effort.



The principal aim of almost every geostatistical modelling process is to predict the
spatial variation of one or more geological variables in order to estimate values of those
variables at locations that have not been sampled. Such a variable may be any geological
property that varies over distance and that can be measured in numeric or categorical
values. The main variable of interest is usually the mineral grade, in grams per tonne,
but other variables such as vein widths or veining densities are often used as an
indicator of the degree of mineralisation. From the spatial analysis of these variables, in
conjunction with the physical geology of the region of interest, the object is to define
the location, extent and volume, or series of discrete volumes, whose average ore grade
exceeds a specific ore grade cut off value determined by economic parameters. Of
interest are not only the volume and average grade of the material but also the degree of

uncertainty associated with each of these.

Geostatistics currently provides many methods of assessing spatial variability. Fractal
dimensions also give us a measure of spatial variability and have been found to model
many natural phenomenon successfully (Mandelbrot 1983, Burrough 1981), but until
now fractal modelling techniques have not been able to match the versatility and

accuracy of geostatistical methods.
1.2 Aim of the Thesis

The aim of this thesis is to investigate fractal modelling methods and determine whether
and how they can be applied in a geostatistical framework to ore body modelling, and in
particular to gold deposits, and to determine whether they offer any advantages over

existing geostatistical techniques.



13 Significance of the research

With the price of gold currently at a twelve year Jow and with Australia now being the
world's most expensive gold producer (Dunn 1997, p22) gold exploration and
production companies are more and more concerned with obtaining an accurate
assessment of their potential reserves. Any techniques that improve the accuracy of that
assessment without substantially increasing the costs involved will therefore be of great

benefit to the industry.

14 Qutline of the thesis

In chapter two we will examine the mathematical details of the theory of regionalised
variables underlying geostatistics and explain, with examples, the basic estimation
process of kriging. In chapter three we will look at some of the different methods of
geostatistical simulation and give theoretical details plus examples of two methods in
particular, namely sequential Gaussian simulation and LU decomposition. In chapter
four we will detail fractal theory focusing on stochastic fractals and the model of
fractional Brownian motion before going on to propose a new scheme, SGFRACT,
that incorporates the fractal dimension into geostatistics. The data used in the examples
in chapters two and three are used to test the new simulation scheme. Chapter five
shows the application of SGFRACT to an actual industrial situation using data from a
completed gold mining operation in the Northern Territory. Chapter six contains a

review, conclusions and recommendations for further research.



1.5 Software Summary

The software used for calculation, manipulation and visualisation of data is briefly
described here and is then referred to throughout the thesis by its program name in

capitals.

The GEMCOM (Gemcom 1996) suite of mining software includes:

GS32 - A three dimensional visualisation and solids creation mining software
package,
PCXPLOR - An exploration database management, statistics and geostatistics
processing package.
The GSLIB (Deutsch & Journel 1992) suite of geostatistical routines includes:
OKB2D - A basic two dimensional kriging estimation routine.
SGSIM - A sequential Gaussian simulation routine.
NSCORE & BACKTR - transformation routines.
Other statistics and presentation software used include:
UPFILE (Kanevski 1997)

VARIOWIN 2.1 (Pannatier 1994).

10



2 Estimation

Consider a continuous variable distributed in one, two or three dimensional space. In
order to understand the nature of this variable we need to have a model of how it
changes with distance and direction. The phenomenon can be sampled at different
discrete locations but this only gives us information about those specific points and does
not by itself tell us anything about the unsampled areas. We know from experience that,
in general, things found close together tend to be similar and that things that are further
away from each other tend to be different. This being the case, we would expect that
some sort of spatial continuity exists that could be accurately modelled if we knew the
exact relationship between all possible point values. However most situations that occur
in nature, including the distribution of mineral grades throughout a deposit, do not show
such regularity or conformity. In fact, upon initial examination many natural phenomena
show what appears to be totally random behaviour. The task of looking for some sort
of spatial continuity within these at least partially random phenomena therefore requires
some sort of probabilistic model that takes account of both the random and the
structured aspects. Geostatistics 1s a branch of mathematics that deals with modelling

and estimation in such situations.

In this chapter we will examine regionalised variable theory which is the basis of
geostatistics and go on to outline the framework and mathematical tools that allow the
estimation of spatial variables within a probabilistic model. The notation and
methodology we will use mostly follows Deutsch & Journel (1992). Where conflicting

notation could lead to confusion some amendments have been made.

11



2.1 Regionalised Variable Theory

Regionalised variable theory states that where a property is sampled in a region of space
each individual sample value can be considered as the outcome from a single but
unknown random process, and that a set of sample values from different locations in a
region of space can be considered as one outcome of a set of random processes that are
not necessarily the same. A random process in this context is a general term covering
any natural or artificial mechanism which produces results that appear to be without any
pattern or order. Consider a particular location u, which is a vector of up to three
components (&%, w4, u%) within a region R and where o is an index representing the
particular location. When the variable under consideration is continuous and the
locations are points there is an infinite number of possible sample locations within R.
The random process at location wu,, is called a random variable Z(u,). The set of all

random variables within R is called a random function {Z(0) 1 u € R} | A regionalised

value z(uy) 1s an individual sample value and represents one realisation of the random

variable Z(ug). A regionalised variable {z(0) 1 u € R} is the set of all possible sample

values in R and represents one realisation of all the random variables in R. From this

point on we will use Z(u) to denote a random function and z(u) to denote a

regionalised variable. To accommodate the deterministic aspects as well as the random
aspects of regionalised variables the random function model of Z(u) can be considered

as being made up of three major components for all locations u within the region,

Z(u) =m(u) + ¥Y(u) +e Vue R (2.1)

12



where m(u) is a deterministic, linear or non-linear, function describing the trend or drift
component, F(u) represents the random spatially dependent residuals from m(u) and e

is a residual spatially independent noise term. We will investigate each of these terms in
more detail in the following sections. This model deals with random functions whose

joint probability distributions are unknown and we must now establish a probabilistic

framework in which we can study and make inferences about the forms of these

distributions.

Point Value

Distance

Deterministic Trend (Drift)

/—\/\_ Spatially Dependent Residuals
’Y\MM[\/VWW Noise

Figure. 2.1. One dimensional data profile with linear drift showing random function model
components.

Each random variable Z(u,) within the random function Z(u) has an unknown

cumulative distribution function F' given by

F(ua;2) = P(Z(uy) < 7). (2.2)

13



" "Similarly the unknown joint probability distribution of the random function Z(u) . with
random variables is defined by )

Fon, oo izt o 2) =P <21, ZW) <20) . (2.3)
I order to obtain a probabilistic interpretation of any random variable it is necessary to
be able to infer its probability distribution. To approximate a statistical distribution it is
often sufficient to define its first two moments, if they exist. This does not completely
define the distribution as it can be shown that two different distributions can have the
same first two moments, but it does define certain characteristics of a distribution which
turn out to be sufficient to provide approximate solutions for rhoét geostatistical
pufpﬁkes (Journel & Huijbregts 1978). The first order moment of a distribution is its
mean orits expectation, The expectation of a random variable Z(u,), assuming it exists,
is usually a function of u and is written as

E[Z(w)] = m(u), 2.4)

There are three sg:cond order moments we shall consider. The first is the variance of a
random variable which is. a measure of the dispersioq of a: distri}nution away from its
mean. The next second ofder moment is the covariance which is a measure of the
nature of association between two random variables. The third is the variogram which
is the variance of the increments of two random variables and is therefore a measure of

the dispersion of the distribution of the increments.

Definition 2.1 The variance of a random variable Z(u,), if it exists, is defined as,

6" = Var(Z(ua)) = ElZ(wa) - m(ua)]. (2.5)

14



Definition 2.2 The covariance of the random variables, Z(u) and Z(ug), assuming

both exist, is defined as
C(ua, up) = £[(Z(ua) ~ m(ua){(Z(uo) — m(ug))] . (2.6)

Deftnition 2.3 The variogram is the variance of the increment Z(u,) - Z(up) and is

defined as
27(uq, up) = Var(Z(u,) ~ Z(up)). 2.7

To carry out statistical inference we require a number of samples from a distribution,
the more samples there are the closer the estimation of the parameters will be to the true
distribution parameters. However in geostatistical situations we only have one sample
set from the random function which is in turn made up of single sample values from
individual random variables. This is insufficient for statistical inference. To overcome
this problem certain assumptions of homogeneity are necessary. These are broadly
covered by the term stationarity. If we consider the region of interest to be
homogeneous, that is that the phenomena under investigation have been formed by a
uniform process for that region, and hence assume that the regionalised variable repeats
itself in space, this then provides the equivalent of many realisations of the random
function which permits a certain amount of statistical inference. For example, imagine a
two dimensional grid of sample locations and a small window which is allowed to move
around that grid. Each possible position of that smaller window is considered to be a
different realisation of the same random function (see figure 2.2). We assume that the
characteristics of the random function do not change when shifting a given set of points

from one area to another. This is known as franslation invariance.

15
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Figure, 2.2. Different realisations of the same random function with translation vector h,

Definition 2.4 A random function Z(u) is said to be strictly stationcry if for any set of

n points uy, ..., u, and any translation vector h

Fapwin 2ty o 20} = Fopn, uen (21, . 20) . (2.8)

From‘ this it follows that any two random variables Z(u,) and Z(ua+h) from a
Stationary random function have the same probability distribution and that all random
variables, within a particular stationary random function, have a constant mean m which
therefore does not depend on the location u. From equation 2.4 we now get
ElZ(ug)=m Yu, e R. 2.9)

Another implication of the assumption of strict stationarity is that the functions in
equations 2.6 and 2.7 depend only on the translation vector h and not on the location u.
Therefore any given pair of random variables [Z(ug), Z(ua+h)] can be considered as
having the same bivariate probability as any other pair from the stationary random
function. Thus, assuming the covariance for each pair of random variaﬁles exists, from

equations 2.6 and 2.9 we now get

C(ug, up) = C(ug, ug+h) (2.10) .
= E[(Z(ua) - m)(Z(ua+h) - m))

= E[Z(0q) Z(ug+h)] — E[Z(ue)]m - E[Z(ui ;+h)]m +m?

16



hence, :
E[Z(ua)Z(ug+h)] - m? = C(h) Vu, € R. (2.11)

Definition 2.5 A random function is second order stationaiy if, for all vectors h,

E[Z(ug)] = m Yus € R

and

EZ(ua)Z{u,th)) -m* = Ch) Vus. e€R.
Second order stationarity is weaker than strict stationarity in that it does not require the
fuil probability distribution to be known, only the expectation and covariance function
Qf the random variables must exist and the variance of the random function must be
finite, .The existence of the covariance function implies the existence of a finite variance
because at a sepafation of h= 0 the co_v_ariance is equa;I; to the ‘variance.v

A C(0) =_E[(Z(u;) -';}:')2»} =Var(Z(u.)) Vu eR | (2.12)

If we ﬁd@vconsider fhé _s.tati;onary‘v\vrdt{‘iogram function, equation 2.7 becomes

240, up) = Var(Z(ue) - Zug+h) (2.13)
and the existence of the nght hand side does not require‘Var(Z(un)) to be finite nor
does it require the exiétence of the covariance ﬁlhﬁtion.
Definition 2.6 A random ﬁm(.:t;i':y.n is imrin;fic sécond order stationary when, for all
vectors h, “

E[Z(uath) —'%(ua)] _0  VueR 2.14)
arid

Var(Z(us +h) - Z(ua)) = 2y(h). , (2.15)
If 'er relate the concept of statidnarity under the covariance or variogram function

(equations 2.9, 2.11, 2.14 and 2.15 ) back to our model in equation 2.1 we now have

what is known as a stationary random function model

17



Z(uy=m+¥(u)+e (2.16)

where m is a constant mean, ¥(u) represents the spatially correlated random variation

that remains once the mean has been subtracted and e is a residual error term. Thé
variation with distance and direction h of the term F(u) can be modelled by the

covariance function in some circumstances and by the variogram function in all

- circumstances.

2.2 artogram and Covariance Function

Having estéblished our stationary random function model we will-now concentrate on
the component ¥{u) which contains any spatially correlated structure that exists in a
particular regionalised variable, The principal tool used to study thié structure is the
semi-variogram for an intrinsic second order stationary process '{vhich 15 a pict of the
semi-variogram function

() = $E[(Z(ua + ) - Za))] @10

against the separation distance {h| . For the moment we will only consider models that

come from data sets that are isofropic, that is aata that shéw the same structure in all
directions. The semi-variogram is usually uvsedvin modelling in preference to .the
covariance function because it can handle random functions that are both second order
stationary and intrinsic second order stationary. The covariance function and the
semi-variogram function are related by the equation

y(h) = C(0) - C(h) (2.18)

which can be derived from equations 2.12 and 2.13. It should be noted that the

semi-variogram can always be derived from the covariance but the converse is not

18



always possible because thie semi-variogram may only be derived from a process which
is intrinsic second order stationary. One example of a process for which the
semi-variogram function exists but the covariance function does not is that of Brownian

motion (Cressie 1991).

When using covariance or semi-variogram functions to compute variances of a sample
set from a stationary random function we are in fact using a linear combination,
Y= % AaZ(ua) | (2.19)
=]

where A, is any real number, of the individual random variables which itself is also a
random variable. This linear combination must adhere to the condition thaf its
covariance or semi-variogram fu'nctic'm is in some sense positive definite, ensuring that
the variance of the random vanable is never negative. The following properties used in
.. definitions 2.7 and 2.8 are classical results of the theory of stochastic p'rocesses taken

from Journel and Huijbregts (1978).

Definitien 2.7 The covariance function C(h) = C(uq, up) is positive definite if,
Var(Y) = i‘. ,,% AarpCllig, up) =0 (2.20)

where lgv._vand Ap are any real numbers.
+ 1t follows from definition 2.7 that not just any function can be considered as the

covariance function of a stationary random function.

Definition 2.8 When C(0) does not exist, the semi-variogram function y(h) < ¥(&te, up)

is conditional positive definite if,

éllaso

19



and :

. Var(Y )-—-—agl ﬂg?‘alﬂ(“m up) =0 (2.21;)
where A and Ap are any real numbers.
In some texts this condition on the semi-variogram is called conditional negative
definite (Wackernagel 1995). In the rest of this chapter we will mainly refer to
semi-vartogram models and not covariance models because, as stated above, the
semi-variogram model can always be' derived from the covariance model but the
converse is not always possible. The general form of the theoretical semi-variogram is
¥(0)=0 and y(h) incregSes as |hl increases. The semi-variogram is also an even
function, that is |

y(h) =y(-h). (2.22)
In the case where the covariance function exists, as [hl gets very large, (h) reaches, or
approaches asymptotically, a particular value and remains at this value for any larger
values of [h|. This value is known as the sil/ (co +¢1)} where co is the nugget variance,

also known as the nugge! effect, and ¢\ is the partial sill (see figure 2.3). The existence

of the sill indicates an absence of correlation between the two random variables
Z(uu) and Z(ugt+h) at large values of [h|. Models with a sill are often called bounded
models. The sill corresponds to the variance of the random function and is defined as
co+cy = 1(05) = Var(Z(u)) = C(0) (2.23)

The other parameter in a semi-variogram model, where the covariance function exists, is
the range a which is the value of |h| at which y(h) effectively reaches the sill. We say
‘effectively reaches the silll because with models where y(h) approaches the sill
asymptotically the range is usually defined at the value of |h| at which y(h) is 95% of the

sill and is referred to as the practical range. The range represents the distance beyond

20



which there is no spatial correlation. In cases where a sill exists the theoretical
semi-variogram models are known as transition or bounded models and relate to
random functions that are second order stationary and hence also intrinsic second order
stationary. In the case where y(h) continues to increase as |h| increases with no
apparent limit, the theoretical semi-variogram model is said to be unbounded and
corresponds to a random function that can only be characterised as intrinsic second

order stationary and not second order stationary.
oy {8l C, +C,
//T
Partial C, ‘ ’
Sill /

!

r

|

v/ r
: {

r

|

Nugget ¢

Variance

0 range Iht
Figure. 2.3. Semi-variogram components.

Definition 2.9 The experimental semi-variogram (see figure 2.4) is defined from the

sample data by

¥hy =2 ?_fl(z(uu) —2(uq +h))? (2.24)
where N is the number of sample pairs.

. Equation 2.24 is known as the classical estimator of the semi-variogram. The sample
pairé are defined by searching for all possible pairs within a sfationary region that, when
taken as a vector, match a particular distance and direction h within a given set of
tolerances (see figure 2.5). There are a number of bounded models commonly used in
practice, the choice of which depends on both the fitting of the data that form the

experimental semi-variogram and a knowledge of the expected behaviour of the

21



phenomenca under investigation. The models most often used in ore body modelling are

described below.

Y{h)

Average [h] for group

- Figure. 2.4. One example of an experimental semi-variogram.

anguiar tolerance

lag0

Figure 2.5. Pair selection tolerances (lag, angle and bandwidth) where each successive lag
: - defines the pair separation distance fhi.

The pure nugget effect model, figure 2.6, is a special case which is a model with no
spatial structure. It represents a complete absence of spatial correlation and therefore
absence of structure and complete randomness of the random function. It can be
considered to be made up of two separate but indistinguishable parts. The first, from
which it gets its name, relates to gold mining where there is a tendency to find very high
concentrations, or nuggets, amongst the more even general distribution of the gold
within the geological formation. Therefore two sample values taken very close together,

which would normally be expected to show almost identical values, may sometimes

22



show very different values. The seconrd part of the pure nugget effect model relates to
random errorsv in the sampling and measuring process itself. Although two samples
taken very close together may actually have the same value, errors in the sampling and
measuring process indicate that they do not. Another interpretatibn of the nugget efffect
is that it represents variation at a scale smaller than that of the accuracy of the
measurements, If we relate the pure nugget effect back to equation 2.16 we see that it
corresponds to the parameter ¢ which we defined as a residual error term with mean
zero. The pure nugget effect shows up on the experimental semi-variogram as a
discontinuity at the origin and is usually modelled as a cons.ant term together with other
semi-variogram models. The pure nugget model also corresponds to the variance of the

random function.

Definition 2.10 The pure nugget model is defined by,

0o . lhl:ﬁ}

v(h) ={c0 . VIni>0 (2.25)

sill

0 [t

Figure 2.6. Pure nugget effect. .

The following models do not contain terms for pure nugget effect. The term ¢; will

denote the partial sill.

23



Definition 2.11 The spherical:model is defined by,

sl 1in3 '
() = c,(-;—z a,) ,05|h|_<_a}.

(2.26)
&r , - Inlsa

In the case of the spherical model the parameter a is equal to the range. The spherical

model, in association with nugget effect, is of the form that is most commonly

encountered in geological situations. It is characterised by a steep linear b¢haviour near

the origin then a gradual flattening to reach its sill at a finite distance which is the range

a (see figure 2.7). It corresponds to random function with very irregular variation at

small values of |hj.

Definition 2.12 The exponential model is defined by,

Y(h)=61(l—eXp(~1':5‘-')- e

‘The exponential model also displays linear behaviour at the origin, is steeper than the
spherical model and only approaches its sill asymptotically. The (practical) range a is
reached at 95% of the partial sill. This form (Isaaks & Srivastava 1989, Deutsch &
Journel 1992), although not the classical form, makes more sense when practically
fitting an experimental semi-variogrém. For the exponential model used in some texts
(Journel & Huijbregts 1978, Wackémégel 1995) a is still called the range but is equal to

~ athird of the practical range.

sph:rical' | /L(axponentiali ) 'sm

Th) \ i
' |
‘|

| o =
range ]
0 LH {practical range}
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Figure. 2.7. Bounded semi-variogram models.

The power model is an unbounded model which, by definition, does not have a sill (see

figure 2.8).

Definition 2.13 The power model is defined by,
y(h) =blhl®  where 0 <8 <2 ' (2.28)

and b is the slope of the line between the origin and |h] = 1.

The linear model is a special case of the power model where 6 equals 1 and hence

produces a straight line. It is defined by

y(h) = blhl. (2.29)

Ol
T

0 [
Figure, 2.8, Typical power semi-variogram models.

Nested models are models made up of linear combinations of variogram models,
bounded or unbounded, and can be justified in practice by imagining different sets of
physical causes operating at different scale ranges that combine to make up the entire
phenomenon under investigation. For example different geological processes act at
different scales; sedimentary processes act on fine particles in the order of millimetres

and centimetres and volcanic processes act in the order of tens to hundreds of metres.
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Formally, a nested semi-variogram is made up of _:_-5n+l elemental semi-variograms

numbered with an index # =0,...,» andis deﬁned_;_b'y

1= v, @30

* Note that when a nested model is made up of :,fjjfounded models and includes a pure
nugget effect model the sill is made up of a summnation of the nugget variance and the
partial sills of the other models in the nest

sill=co+ Sew. % @3

where (¢{)w denogés the partial s:ll of thewth bqghdé" | model. Note also that if

unbounded mdde!s;’;are included in a nest a sxrli will not exist.

4

So far we have been looking at situations where the spatial structure is the same in all
- directions in two or three__dimension;ﬂ spéce.,_fl‘his often does not occqff' in real data sets
and we have to model separate semi-variograms for different /directions of our

translation vector h. We may find that the region under examinatiqﬁ contains some sort

of anisotropy. Range anisotropy exists when all the directional semi-variogram models

{i

for a particular sét of data have .thvé"usame type of model v«.;ith the same sill but different
ranges. Geométric anisoiropy is d;form of fange anisotropy that is described by finding
the directions of the axes of an ellipse, in two dimcnsionj;, or an ellipsoid in three
dimensions. These directions are found with the use of an iéo-sem:’-variogmm diagram,
{see figure 2.9). An iso-semi-variogram in two dimensions is a plot of the values of each

directional semi-variogram function at se'scted values of h along each of their
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respective directional vectors from the origin. The last value, if it exists, along the

vector is the range in that direction.

/ Q /7 geom efric

TN anisotropy axes

/ / A ) a/ hso®

kf’g / /S grid system axes
.

range-a

Figure, 2.9. lso-semf—variogram diagram.
To handle two dimensional geometric anisotropy a vrdiation and dilation can be
performed on the initial rectangular co-ordinates of the data locations. The rotation
vvb'n’ngs the co-ordinate system into line with the major axis of the ellipse of geometric
aﬁisotropy and the dilation then turns the ellipse into a circle with radius equal to the
major séﬁli-axis. The initial orientation of the co-ordinates is then restored by revcrsihg

the rotation. The transformation for each co-ordinate pair is as follows,

w'y | _| cos(—¢) sin(—p) 10 cosq sin@ | u% (2.32)
W% |} —~sin(-¢) cos(9) || 0 1 || —sinp cose || vk

where o is the rotation angle from the grid axis to the major geometric anisotropy axis

and t= 2—; <1 is the ratio of anisotropy derived from the ranges of the directional

semi-variogram models aligned with the major and minor axes of anisotropy. In matrix

form this is written as,
wW=Ro,TRou=Au. ' (2.33)
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where thevv"fxime denotes a transform. To obtain an isotropic semi-variogram model we
can now take the matrix A and multiply it by any two dimensional separation vector h
such that,. h’ = Ah and therefore, | |
Varionare () = YionopelH). @3
This is then used with the original untransformed data. Three dimensional anisotropy in
practice is almost never geometric, however the theoretical procedure for dealing with
it is similar to the two dimensional case. It is more usual to deal with three dimensicnal
anisotropy as a mixture of geometric anisotropy and zonal anisotropy. We define zonal
anisotropy as the case where the sill changes with direction and the range remains the
same for all directional component semi-variograms. Zonal anisotropy is modelled as if
the phenomenon under investigation was made up of a number of separate structures.
A single semi-variogram model for zonal anisotropy can be considered as being a
nésted semi-variogram model with a sill value equal to the sum of the individual
component models’ partial sill values. Each directional component is modelled as for
geometric'anisotropy but with infinite ranges in the directions perpendicular to the
* component. This sets the anisotropy ratio to 0 in the perpendicular directions and

eliminates their influence. For the two dimensional example
= lim &=
T= alll_' 1 & =0.
The appropriate transformation

h' = Ah where A=R_,,,|:(l) g ]R.,, (2.35)

is applied to each component which can then be treated as a set of nested models and

summed to give a final isotropic model.

yh) = £ va(h) | (2.36)
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Here w is the number of reduced component directional models and » is the associated
index. A general structural isotropic model that is a combination of geometric and
zonal anisotropy is obtained in a similar way by nesting reduced geometric and zonal

component models.

24 hange of Su

So far we have been looking at theoretical models that treat the individual regionalised

values z(uq) as point data with no dimension and no size. This is not the case in

practice. In most cases and particularly in mining applications we are in fact dealing
with an amount of material of some volume v from which the regionalised value z,(u.)

is derived. This volume is known as the point support v(ug). In general, random
variable populations derived from small supports have a higher variance than random
variable populations derived from larger supports over the same region but still maintain
the same mean. If corrections for support are not applied to the semi-variogram and
covariance functions they do not correctly represent any random function defined on
anything other than point support. The process of attributing a value over a region of
space, by considering a set of averaged point values, to a single point value is known as
regularisation. The mean value z,(ug) is said to be the regularisation of a point variable

z(u,) over the volume v(uy) and is expressed as the ‘ntegral

20(0a) = 3 fyu 2(0a) A (2.37)
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Figure. 2.10. Point and volume data histograms.
The change of support has two opposite effects that need to be considered. The first
occurs when volume data is to be treated as a point value and the second is when point
values are used to represent volumes. In the first case, if the 'size' of the volume is small
in relation to the average distance between samples then the values may be considered
as quasi-point data and do not require any correction. This is what we will assume for
all examples and the case study in chapter five. We will not encounter the second case
in our examples and case study and will not go into any great detail here except to
mention one simple correction method. If we already have some measure of the
difference in variance between two distributions defined on different supports and we

know their mean we can use an affine correction to transform the values of one to the

other,

2= [fz-m)+m (2.38)
where f is the ratio of the variances o
| o} (VIR)/s 2(vIR), (2.39)

V is the larger support and v is the smaller support. This, in effect, compresses the
distribution reducing its variance but leaves the mean unchanged (see figure 5.1), For

" more detailed theory on support correction see Journel & Huijbregts (1978)
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Kriging
Simple kriging is a minimum error variance estimation algorithm based on linear
regression and is the basts for all other types of kriging. It requires knowledge of the
means of the random variables under consideration and in its non-stationary form is
expressed as

Zix) - (i) = £ A(Z(u) - m(ua) - (240)
where u; is the location of the random variable to be estimated, Zg(u,) is the §ii;1ple
kriging estimate and A, o«=1,..,» is the set of kriging weights. In its stgiionary
form, with a constant mean m it reduces to |

Z(u) = £ AaZua) + (1= £ Ay m. 24

The simple kriging weights for equation 2.41 are given byv
lél ApCug,up) =Clug,uy) a=1,...n (2.42)
The simple kriging estimation error variance is given by,
ke = C(0) - g AaClug,u). - (2.43)
Ordinary kriging is a linear system of equations that eliminates the need to know the
‘means of the random variables. The ordinary kriging _eétimator Zg,g(ﬁ,) is a linear
combination of 72 weighted surrounding random variables,
. y | 2.44
Zo(u) = & AaZ(ue) 249
where Aa a=1,..,7 is a set of weights whose sum is equal to one and whose
ordinary kriging estimation variance ohg(u;) is a minimum. Ordinary kriging is an
unbiased estimator meaning that the average estimation error is zero as shown by_.

equations 2.45 to 2.47. With the condition
£ ha=1 '~ (2.45)

we have
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EZy(uil = 3 AlZ(ua)] = m £ hu=m = E[2(u)] - (2.46)
and hence.
BZ(u) - Zoe@h] =0, e
The estimation error variance for ordinary kriging is,

Shewi) = EL(Z(u) - Zo ()] ey
The estimation error variance can be expanded (for full details see Journel & Huijbregts
1978) to
She(0) = Cloa, 1) 2 £ 1eC0a )+ £, EshaCluaug).  249)
| The eqﬂations are now in a quadratic form in Ao and A and o2x(u;) can be minimised
using the method of Lagrange multipliers by setting each of the parti.;l derivatives to
| zero

2]
Aahe2n 30 ha)
u=1
e

—o (2.50)

where | is the Lagrange parameter and where the condition :‘._",l Aa =1 is met. This then

provides a system of # + 1 equations with »# + 1 unknowns, which are the n-weights Aq

- and the Lagrange parameter p. This system of equations is called the ordinary kriging

- system and is written,

£ 1Clus,up)+p =Cluau), Va=1 ..n

2.51
+a p=1 ( )
fi=1 ,
with the minimised estimation variance or kriging variance written as
o) = CQua,ua) ~ 1~ £ AaCluo, ) - (2.52)
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We mentioned in section 2.2 that in practice most structural modelling is done using the
f:semi-variogram, However the ordinary kriging equations written in terms of the
covariance function are more efficient to program on a computer. In practice the final
ordinary kriging equations are usually converted from semi-variogram terms in which
the structure was modelled to covariance function terms as follows. When the
covariance function exists, the relationship between the semi-variogram function and the
covariance function is as in equation 2.18, namely y(h} = C(0) - C(h). When only the
semi-variogram exists it is possible to define the pseudo-covariance function

C(h) such that y(h) = A — C(h) where 4 is a constant greater than the greatest y(h)

used in the kriging system. This constant A is then eliminated in the equation reduction

process. The kriging systems can be expressed in matrix form as follows

Cop h=Cu (2.53)

where Caop is the matrix of variances and covariances which includes the Lagrange
parameter terms and is obtained from our nested semi-variogram model equation, A is
the column matrix of unknown weights, and Cy is the column matrix of covariances
with the estimation location which we also know from our nested semi-variogram
model equation. Using the covariance function the""unknown weights then become

3 = Ct_rlli Cy, (2.54)
and the ordinary kriging variance becomes

ohx ()= C(0)~ATCar 2.55)

where o2 is the variance of the random function under consideration. The general

structure of the mairices is as follows.
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r_C(u;,ul) - Clug,up) - C(ui,u,,) 1]
Corm C(up;,ul) C(ug:,ug)'--- C(u;i,u,,) 1
Cun,u1) - Clunyug) - Clun uy) 1

1 1 1 0]

Note that"; the main diagonal contains the variance o2 and that the matrix is s etric
_ g ymm

since C(uq, ug) = C(up, ug).

[ A, ] [ Clug,u) |
e R
A, O, u17)

| K] L 1 |

Referring back to equation 2.44, we do not need to know the mean m of the random
function Z(u) to carry out ordinary kriging. It is enough to know that the random
function is second order stationary or intrinsic stationary and has a constant mean. The
final nested theoretical model that is fitted to the experimental semi-variogram is
‘actually composed of Y(u) ande, where e includes the nugget effect, and this
combination of Y(u) and e is what is used to find the values for matrices Cop and Co

~in the kriging system equations. Note that ordinary kriging can be used as a moving
neighbourhood estimation method with a random function whose mean is globally
ﬁon-stationary but has a stationary covariance (Brownian motion behaves this way) if
the local mean within each neighbourhood can be considered constant. This is because

ordinary kriging re-calculates the mean at each new location to be estimated.
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In the geostatistical literature there are now many variations on the kriging system
which we will not be using and which are too detailed to be discussed at this point.
Some of there are: block kriging (Goovaerts 1997), indicator kriging (Deutsch &
Journel 1996), cokriging (Deutsch & Joumnel 1996), dual kriging (Galli et. al. 1984),
disjunctive kriging (Rivoirard 1990), factorial kriging and co-kriging (Goovaerts 1997),
rank order knging (Journel & Deutsch 1996), median indicator kriging,

(Gomez-Hernandez & Srivastava 1990) and constrained kriging (Cressie 1993).

2.6 Examples-Ordinary Kriging Estimation

For all the examples here and in chapters three and four we will use two data sets for
which we know the complete spatial distributions. These are the True data set and the
Berea data set. We will use subsets of these data sets to mimic experimentally sampled
data for input into estimation and simulation procedures. We will use the 7rue data to
show detailed examples and the Berea data to show only the handling of anisotropy,

throughout chapters two, three and four.

The True data comes with the GSLIB sofiware (Journel & Deutsch 1992). It is a two
dimensional set of 2500 points which was created by simulated annealing (Chu 1996,
Gomez-Hernandez & Srivastiva 1990) where the first lag of a low nugget isotropic
semi-variogram was matched. The sample data subset, which we will call Gs/ib97, is
alsp provided with GSLIB and consists of 97 non-clustered points that were sampled
from the 7rue data on a pseudo regular grid. The 7rue data set has some of the
characteristics of a gold bearing ore body with a si:_nilar range of values and a highly

skewed distribution but it should be emphasised that it is itself a simulation and not an

35



actual gold mineralisation data set. It is used here because both sample and coinplete
populations are available thus enabling us to compare the estimations and simulations to
reality and because it has been used in other fractal simulation studies. Costa &
Dimitrakopoulos (1997) used another subset of the True data for fractal simulation
which, in addition to the 97 values in Gs/ib97, also contained additional data clustered
around the higher values making a total of 140 points. We will not use the clustered
data as we do not want to introduce the complications involved in determining

declustering weights. Figures 2,11 and 2.12 and table 2.1 give details of the Gslib97

data.
GSLIB 97 conditioning data
9 Primary
g 0 . - o.n
T LS 0.500
T ¢ T . 1 000
- - 1.500
- " os o : - 2.000
3| - - o B 2.800
o, ., - . = 3.000
g. " Il . as a.500
" . . 4.000
, = o L . 10.000
=) . " a . ’ o
o -«
Q L] L] v 3
<0,500 24.500 48.500

Figure 2.11. Gsiib37 data set plot.
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Figure 2.12. Gsl/ib87 data histogram and curﬁhlative frequency plot,
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H Histogram Statistics -
iDescription = GSLIB 97 sample data

1 Tot. Population= 27 Ho. of Samples <= 0 =0
{Minimum Cutoff = 0.05990 Minimum Histogram Value = 0,05990
'Maximum Cutoff = 1B.78010 Maximum Histoqram Value = 18.76010
'No. of Samples Used = 97 : Data Grouped to
N Ungrouped Data Class Intervals
iMean . 2.21113 2.26073
'Median N/A 1.126Q7
'Geometric Mean 0.98063 1.1951Q
(Natural LOG Mean ~0.015856 0.17823
1Standard Deviation 3.17454 3.13694
'Varliance 10.07772 ©.84037
yLog Variance 1.83468 1.175B0
'Coefficient of Varlation 1.4357) 1.38750
{Moment 1 about Arithmetic Mean 0.00000 0.00000
{Moment 2 about Arithmetic Mean 10.07772 9,84037
{Moment 3 about Arithmetic Mean 96.46899 93.09951
‘Moment 4 about Arithmetic Mean 1411.893 1337.798
Moment Coefficient of Skewness 3.01540 3.01599
IMoment Coefficlent of Kurtosis 13.930200 13.8155%

4 e o e ko g T e e o el A e e e e e e e

Table 2.1. Gs/ib97 data set summary statistics.
The Berea data is a real two dimensionai data set consisting of 1600 points derived
from air pcﬁneaﬁilify measurements taken on a slab of Berea sandstone (Giof&ano et. al.
1985). It is used because of its distinctive anisotropic properties, because it has a close
to normal distribution and because it has been used in other geostatistical and fractal
simulation studies (Journel & Alabert 1989, Chu & Journel 1994). Chu & Journel used
a random sample of 64 points from the Berea data and we will do the same. However
we do not know the random selection details which they used and our randomly
selected points will not necessarily be the same as theirs. Our sample data set will be

called Bereats4.
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Bereatd data
§ Permeability
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Figure 2.13. Berea64 data plot.
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Figure 2.14. Berea64 data histegram and cumulative frequency plot.
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H Histogram Statistics

iDescription = Bereadd data

iTot. Population= 64 No. of Samples <= 0 = 0

‘Minimum Cutoff = 24,00000 Minimum Histogram Value = 24,00000
'Maximum Cutoff = $9.50010 Maximum Histogram Value = 99.50010
INo. of Samples Used = 64 Data Grouped to
! Ungrouped Data Class Intervals
IMean 54.51563 54,67228
iMedian N/A 51.43203
!Geometric Mean 52.52312 52.67184
‘Matural LOG Mean 3.96125 3,96408
'Standard Deviation 14,89310 14.82800
'Variance 221.804 222.845
'Log Variance 0.07607 0.07607
Coefficient of Variation 0.27319 0.27305
'Moment 1 about Arithmetic Mean 0. 00000 0.0000%0
{Moment 2 about Arithmetic Mean 221.804 222.845
Moment 3 about Arithmetic Mean 2215.056 2088, 908
'Moment 4 about Arithmetic Mean 180891.3 173084.8
iMoment Coefficient of Skewness 0.67055 0.62794
iMoment Coefficient of Kurtosis 3.67686 3.48540

Table 2.2. Berea64 data set statistics.




The first task in any geostatistical modelling process is that of exploratory data analysis,
This invoives becoming familiar with the data and looking for any characteristics that
- need to be taken into account during the modelling process such as irregularities in the
sampling pattern, outliers, skewed distributions and clustering. Exploratory data
analysis is a large topic in itself and will not be covered here except to show what was
done in each case. See Cressie (1991), Isaaks & Srivastava (1989) and Tukey (1977)
for more detail. It should be remembered that in practice the complete spatial
distribution is never known and inferences are made from the experimentally sampled

data.

From figures 2.11 and 2.13 it can be seen that, for both Gsl/ib97 and Berea6+ the
sample point locations are izreg‘tvlvléx;ly'spaced but are reasonably well spread over the
region and do not show an'y« significant clustering. Looking at the histograms in figures
2.12 and 2.14 and the summary statistics in tables 2.1 and 2.2 the main feature to

note is that Gslib97 is a highly skewed distribution and that Berea64 is near normal.
This will become important when simulating in chapter three but will simply be noted
here. Neither of the histograms or data plots shows any values that could be considered
as outliers. From all these observations we conclude that the saminle data sets can be

used for estimation without alteration.

The next step in preparation for ordinary kriging estimation is that of modelling the
spatial structure or variography. Any anisotropy that may be present must first be -
determined. This s done via an iso-semi-variogram diagram and/or via a series of

directional semi-variograms. Once the anisotropy is determined then a semi-variogram
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model or nested semi-variogram model must be fitted to the experimental

semi-variogram. We will examine the Gs/ib97 data first.

The iso-semi-variogram (see section 2.3), shown in figure 2.15, and directional

semi-variograms, shown in figure 2.16, were all calculated using a lag spacing of 3

units, an angular tolerance of 20° and no limit on the horizontal tolerance. The
iso-semi-variogram does not show any anisotropy and the directional semi-variograms
all have a similar range. Note that directions are specified with 0% equal to north, which

is also the y axis direction and directions are measured clockwise from Q°. Direction in

this sense is often called azimuth in mining terminology. As there is no anisotropy
present we will fit the model to an omni-directional experimental semi-variogram which
is calculated from all possible pairs of values in all directions at all lags from zero to

twenty four at a lag spacing of three units.

-24-21-18-15-12-0 B -3 D 3 & € 12 96 98 2124
hy

Figure 2.15. Iso-semi-variogram diagram for Gs/ib97. Lag spacing 3.0 units,
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Figure 2.16. Four directional experimental semi-variograms, from left to right, 0°,45°,90° and
135° from Gslib97.
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Figure Z;i 7. Omni directional semi-variogram from Gs/ib97 and fitted nested model. Nugget
model of 5.0 plus spherical model with range of 12 and partial sili of 5.1.

“The fitted model is a nested nugget and spherical model expressed as,

50+51(MW_10) o<l <12

y(h) =
10.1, Inl>12

which is equal to a covariance mode! of,

10.1—(5.0+5.1(?2'-';1-;';'—',§)), o<hl<12

C(h) =
0, |nl >12

“This covariance equation is used to obtain the kriging matrices in the following example
Jéalculation using the sixteen surrounding values as shown in figure 2.18. The ordinary
kriging geometry, matrices, weights and estimate calculation for the location (20.5 x
25.5 y) are given,

B
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Figure 2.18. Search radius of 12 units and point values for estimation at (20.5 x 25.5y).

The full matrix is a 17 by 17 symmetric matrix of all the possible covariance
combinations from the sixteen closest surrcunding data. However not all values are
" shown due to lack of space. The first and last four rows of lower half of the covariance -

~ matrix together with the coefficients of one used with the Lagrange parameter are

[ 101 L ]
| 3.6910 101

1.7609 0.8240 10.1
0.5736 0.1639 0.7336 10‘.\1

Cap=| 04530 10283 0 o0 18974-.
| 1.0283 1.6753 0.0349- 0 0.0245 -.- 101
00719 0 18974 0 0 . 0 100
0.6705 1.5544 0 0 02311 ---2.575 0 101
1 1 11

1 1 1 10



The first and last four rows of the covariance matrix of the sample locations with the

estimate location together with the Lagrange parameter in the last row are

[ 3.1307
20970 |
2.0450 | -
1.8974 |
Ca=\ 02207
0.1236
0.1236
0.0471
| -0:0030 |

The co-ordinates, regionalised value imd knging weight for each of the closest

surrounding sample points in increasing order of distance |h) is shown below.,

ur, Uy z(uy) Aa
23.5 245 3.04 0.229
25.5 25.5 4.89 - 0.101
19.5 20.5 2.17 1 0.144
15.5 275 1.02 0.136
225 305 1.21 0.138
26.5 23.5 0.79 - 0.040
13.5 245 0.84 0.053
14.5 - 215 0.33 0.056
14.5 295 1.46 0.051
235 18.5 0.16 0.031.
215 34,5 2.84 10.019
17.5 345 1.36 0.014
275 325 1.71 - 0.001
30.5 22.5 1.38 -0.010
17.5 15.5 9.08 10.001

315 265 0.45 -0.004
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' The ordinary kriging estimate is given by,
z'(n) = ugl Ao z(ug)
= 2.00,
The kriging estimation variance is then,
ol(u;) = C(0)— El Aa Cllia, us)

8.39=10.10-1.71,

The point ordinary kriging estimates and estimation variances for a 1 x 1 unit grid are
shown in figures 2.19 and 2.20. The actual 7rue data set values are shown in figure
2.21. Note the smoothing effect that is produced by kriging in comparison to the True
data plot. Looking at the kriging estimation variances plot it can be seen that the
~variances at the sample point locations are zero (light blue) and that the estiméted
locations with fewer surrounding sample locations have the highest variance. The
histogram and summary statistics for the full 7rue data set are shown in figure 2.22 and

~ table 2 3 for reference.
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OKB2D ESTIMATES WITH: GSLIB 97 conditioning data
Estimate
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Figure 2.19. Plot of ordinary kriging estimates from Gslib97.

OKB2D ESTIMATES WITH: GSLIB 97 conditioning data
9 Estimation variance
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Figure 2.20. Plot of ordinary kriging estimation variances from Gslib97.
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Figure 2.21. True data plot.
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Figure 2.22. Histograms of Clust97 ordinary kriging estimates (left) and True data (right).

N —— - - -
H Histogram Statistics
iDescription = OK Clust97

{Tot. Population= 2500 No. of Samples <= 0 =0
{Minimum Cutoff = 0.05990 Minimum Histogram Value = 0.05990
{Maximum Cutoff = 18.76010 Maximum Histogram Value = 18.76010
{No. of Samples Used = 2500 Data Grouped to
: Ungrouped Data Class Intervals
|Mean 2.16407 2.16815
{Median N/A 1.64466
|Geometric Mean 1.64669 1.64247
{Natural LOG Mean 0.49877 0.49620
'Standard Deviation 1.72234 2783863
\Variance 2.96645 2.97056
iLog Variance 0.56533 0.57707
iCoefficient of Variation 0.79588 0.79493
iMoment 1 about Arithmetic Mean 0.00000 0.00000
{Moment 2 about Arithmetic Mean 2.96645 2.97056
Moment 3 about Arithmetic Mean 10.32363 10.17608
{Moment 4 about Arithmetic Mean 90.96906 88.83489
iMoment Coefficient of Skewness 2.02058 1.98757
{Moment Coefficient of Kurtosis 10.33757 10.06716
e ——————— S S g S,
e ————— ———— o e
¢ Histogram Statistics

{Description = True data

{Tot. Population= 2500 No. of Samples <= 0 =0

{Minimum Cutoff = 0.00990 Minimum Histogram Value = 0.00990
{Maximum Cutoff = 102.700 Maximum Histogram Value = 102.700

{No. of Samples Used = 2500 Data Grouped to
: Ungrouped Data Class Intervals
{Mean 2.58020 3.23300
‘Median N/A 2.13546
|Geometric Mean 0.95538 2.30609
{Natural LOG Mean -0.04564 0.83555
|Standard Deviation 5.15090 4.89500
\Variance 26.53180 23.96100
iLog Variance 2.08155 0.41483
|Coefficient of Variation 1.99632 1.51407
‘Moment 1 about Arithmetic Mean 0.00000 0.00000
'Moment 2 about Arithmetic Mean 26.53180 23.96100
'Moment 3 about Arithmetic Mean 933.611 871.730
'Moment 4 about Arithmetic Mean 59434.937 54485.846
'Moment Coefficient of Skewness 6.83150 7.43232
'Moment Coefficient of Kurtosis 84.43227 94.90169

+ —————————————————————————————————————————————————————————————————————

Table 2.3. Clust97 ordinary kriged estimate statistics and True data set statistics.
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We will now examine the Berea data. From the iso-semi-variogram plot in figure 2.23

we can clearly see that there is anisotropy present with the major axis direction being

approximately 123°. Directional semi-variograms, figure 2.24 along the major and

minor axes confirm this. A nested nugget and spherical model fitted in each direction,
figure 2.24, shows ranges of 38 units and 13 .units respectively to give an anisotropy -
ratio of 0.34. Note that the fitted model at 123° does not reach its sill within the limits
of the experimental semi-variogram and for the purpose of this model is effectivly
unbounded. This is perfectly acceptable as the model does reach a sill at a range that is
beyond our area of interest (at 38 units). We have not extended the experimenial
semi-variogram furcher as, in general, semi-vartograms are not reliable at distances
greater than half the width of the region of interest (Isaaks & Srivastava 1989). In this

case the width at 123° is 48 units so the experimental semi-variogram is valid to
, P g1

approximately 24 units. The anisotropic nested model semi-variogram is

il I3
Y(h) - 15+ 2068(? — 435976)’ 0< “'l/l <138
221.8, |n'l>38

where

b= cos(~123% sin(-123% || 1 0 || cos123% sin123° b
—sin(~123%) cos(-123%) {| 0 3 || -sin123° cos123°

The equivalent covariance model used for the kriging matrices is,

221.8 - (15+206.8(24l - ey, o<l <38 }

e
( { 0, fh'l>38
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Figure 2.23. Iso-semi-variogram diagram from Berea64 showing major axis of anisotropy at

123°. Lag spacing 2.5 units.
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Figure 2.24. Directional semi-variograms. Major anisotropy axis at 123° and minor anisotropy
axis at 33° from Berea64. Fitted nested models, nugget model of 15.0 for both, plus spherical
models with ranges of 13 and 38 respectively and partial sill of 207 for both.

The point ordinary kriging estimates and estimation variances for a 1 x 1 unit grid are

shown in figures 2.25 and 2.26. The actual Berea data set is shown in figure 2.7. Note
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again the smoothing effect of kriging but note also the reproduction of anisotropy.
Referring back to the Berea64 sample data in figure 2.13 we see that the strength of the
anisotropy in the top right hand corner of the krizing estimate plot is related to the
geometry of the samples in that area and the weak anisotropy in the bottom left hand
corner is related to a sparseness of sample data in that area. A comparison of the kriged
data histogram to the actual Berea data histogram is given in figure 2.28 highlighting
the reduction of variance produced by kriging. The summary statistics for the Berea

data set are given in table 2.4 for reference.
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OHB2D ESTIMATES WITH: Bereatd data
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Figure 2.25. Ordinary kriging estimates from Berea64.

OKB2D ESTIMATES WITH: Bereabd data
3 Estimation Variance
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Figure 2.26. Ordinary kriging estimation variances from Berea&4.

Berea sandstone data
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Figure 2.27. Berea data plot.
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+ ----- - - -
! Histogram Statistics
{Description = OK Berea{

ATot. Population= 1600 No. of Samples <= 0 = 0

'Minimum Cutoff = 24.00000 Minimum Histogram Value = 24.00000
Maximum Cutoff = 99,50010 Maximum Histogram Value = 99.50010
‘No. of Samples Used = 1600 . - Data Grouped to
) : Ungrouped Data Class Intervals
'Mean 3 54.92510 54,92081
{Median : N/ A 51,19161
{Geometric Mean ) £3.54525 53.53076
'Natural LOG Mean ' 3.98053 3.98026
y8tandard Deviation : 12.94994 12,95469
{Variance 167.701 168 662
iLog Varijiance 0.04817 0.04955
1Coefficient of Variation 0.23577 0,23661
tMoment 1 about Arithmetic Mean 0.00000 0.00000
{Moment 2 about Arithmetic Mean 167.701 168.862
yMoment 3 about Arithmetic Mean . . 2269.372 2279,943
{Moment 4 about Arithmetic Mean 104848.0 105730.3
\Moment Coefficlient of Skewness 1,04497 1.039%02
'Moment Coefficient of Kurtosis 3.72812 " 3,70196
+ ___________________________________________________________________
o o o kS e e 7 e e e e ek e o

' HistogransStatlstics
{Description = Berea sandstone data

!Tot. Population= 1600 No./ of Samples <= 0 =Q

. 'Minimum Cutoff = 19.50000 Minimum Histogram Value = 19.50000
{Maximum Cutoff = 111.500 Maximum Histogram Value = 111.500
‘No. of Samples Used = 1600 Data Grouped to
! Ungrouped Data <Class Intervals
‘Mean . 55.52594 55.52989
{Median N/A 54.41949
1 Geometric Mean 53.21521 53.228860
yNatural LOG Mean 3.97434 3.97460
{Standard Deviation ) 15.78203 15.77321
{VYariance 249.072 248,794
{Log Variance 0,089123 0.08864
iCoefficient of Variation 0.28423 0.28405
'Moment 1 about Arithmetic Mean 0.00000 0.00000
!Moment 2 about Arlithmetic Mean 249.073 248,794
{Moment 3 about Arithmetic Mean 1490.7123 1550.376
'Moment 4 about Arithmetic Mean 193%62,7 194252.4
'Moment Coefficient of Skewness 0.37923 0.338507

'Moment Coefficient of Kurtosis 3.12656 3.13824

Table 2.4. Berea64 ordinary kriging estimate statistics and Berea data set statistics.
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~ Figure 2.28. Berea data histogram (left) and Berea64 ordinary kriging estimate histogram

(right).
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2.7 Summary

We ha\;e detailed the underlying theory of geostatistical estimation and shown two
examplés. It is obvious from comparisons of the kriging estimation plots with the full
data plots that although kriging is a best linear unbiased estimator it does not provide
the detailed variability that is exhibited in the full data sets. Simulation, which is the

subject of chapter three addresses this problem.
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3 Simulation

Much of the following material is based on Deutsch & Journel (1992,1996) and

Goovaerts (1997). Geostatistical simulation aims to provide alternative, equally

probable, numerical modeis of the spatial distribution of a regionalised variable Z(u)
that conform to certain characteristics of its joint spatial distribution. These
characteristics are usually the histogram and semi-variogram function of the
distribution. However this is not always the case as the aim of the simulation may be to
“reproduce other characteristics such as geométric properties of the distribution that
relate to clustering and connectivity. The regionalised variable Z(u) may be categorical
or continuous and each simulated realisation of its set is denoted {z®(u), u € R} where
R is the region of interest and / is an index denoting a particular realisation.
Geostatistical conditional simulation aims to provide alternative equally probable
numerical models which as well as conforming to particular distribution characteristics
- also coincide with the actual sampled values
2 (1) = 2(us), VI G.1)

where the conditional simulation is denoted by zg}(u). Unlike kriging, simulation
(coﬁditional or nonv-conditionalv) does not produce the best estimates at unsampled
locations. It does produce a numerical ‘model that, cn avervage,' conforms to the
variability characteristics deﬁned by the sample population of the random function under
cv:onsideration., As we saw with the Berea data in chapter two, if a large number of
unknown locations within a region are kriged and the histogram of the kriged points is
plotted, it will not be the same as the histogram of the sampled values. The kriged

histogram will have the same mean but will have a much smaller variance. Figure 3.1
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shows the differences between kriging, simulation and reality for a theoretical one

dimensional profile.

[P ~.-  ldiging »  conditioning peints

_______ simulation
reality
Fig. 3.1. Dispersi'on characteristics for 1 dimensional data. (From Journel & Huijbregts 1978)

_Cop__d_itional simulations are useful for obtaining detailed numerical models from which
calculations can be made for such things as grade tonnage curves, in the case of ore
‘body modelling, and flow properties and rock porosity in the petroleum well modelling.
A set of many alternative realisations of a certain conditional simulation provides a
measure of uncertainty and averaging the values over a large number of alternative

 realisations will provide an estimated numerical model similar to that of kriging.

There are now many different algorithms available to carry out geostatistical simulation.
The ones we shall examine in detail in this chapter are sequential Gaussian and LU
_ decomposition. We will briefly describe a few of the other methods that are prominent
‘in the literature of geostatistics at the moment. These are, turning bands, sequential

indicator simulation, p-field simulation, simulnted annealing and spectral methods.
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3.1 Gaussian Methods

Sequential Gaussian simulation, as the name implies, and LU decomposition are both
known as Gaussian simulation methods and must be used with standard normal data
only. Gaussian simulation methods are based on what is known in geostatistical
Iiterature as the multiGaussian random function model. This is a standard statistical
multivariate normal model that consists of many univariate distributions of the same
attﬁﬁute at different locations rather than many univariate distributions of different
- attributes regardless of location. In geostatistical situations where there is more than
one attribute to be considered the spatial distribution is termed multivariate

multiGaussian. We shall define the notation for a univariate normal distribution as

N(m,?) and for a multivariate normal distribution as N(m, C).

Definition 3.14 A multivariate normal distribution is- defined by its multivariate

probability density function as,

o) =5 rz|lc (17 ¢~ (#ua)(ua))TCop(z(ua)-m(ua))2
)" off

where -w<z(ug) <o, a=1,--,n (3.2)

Definition 3.15 A multiGaussian random function, Y(u) = {¥(u),u € R} is defined
via its characteristid properties (Deutsch & Journel 1996) as listed below.

(a) All subsets of the random function are multivariate normal, i.e.
{Y(uyueBcd} are Nm,C)

(b) All linear combinations of the random variable components of the random function

are normally distributed, i.e.

X= gm.,Y(ua) 15 N(m,c?), Vo, where s, € 4.

(c) Two random variables are independent if C[Y(u), Y(u'))=0.
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(d) All conditional distributions of any subset of the random function Ku), given

realisations of any other subset, are multivariate normal.

When dealing with a conditional simulation we need to infer the conditional distribution
of the random variables within a random function. The conditional cumulative
distribution function is defined by ,

Fu;zl() = PZuy) <zlg) - (33
where there are a.=1,...,n conditioning values available, Under the muitiGaussian

model the mean and variance of the conditional cumulative distribution functions at

locations u are respectively equal to the simple kriging estimate yg(u) and the simple
kriging variance ogx from the n data Y(ne) (Deutsch & Journel 1992). These two
parameters, the simple kriging estimator and the simple kriging variance, define a
conditional cumulative distribution function N(z§(u,), 63) at each successive unknown

location. For example where the random variable ¥(u,) models the uncertainty about a

specific unsampled value y(u;) given # data y,,
Vi) = EF@)lY00) =y, 0 = 1, ..,
=mu)+ £ haGa-m)) (3.4
ok = Var[Fu)ly(wa) = ya,a=1,..., 1]
= Clw, u)~ 5 haClu,, ug) (3.5
Noté that the random function Y(u) is not necessarily stationary. The multiGaussia;n
random function model is extrem;?ly useful as it allows the determination of a sequence

of successive conditional cumula;iive dist}ibution functions to be reduced to solving a

corresponding sequence of sxmp&e kriging systems. However with many real data sets
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their spatial distribution is not multiGaussian and the usual method in geostatistics of

handling this is to apply a normal score transformation to the data before processing.

Normal score transforms essentially compare cumulative probabilities of the ranked
actual data to those of the normal distribution with some sort of cc;nfinui{y correction
to allow for the fact that we are dealing with discrete values. Different continuity
corrections allow handling of values that are larger than the maximum experimental data
and smaller than the minimum experimental data. An approximation to the inverse of
the quantiles of a normal cumulative density function is then used to transform each
ranked data value (original quantile) to that of a standard normal distribution N0, 1).
Definition 3.16 Let ¥(y) be a standard normal random function and G() = P[Y(y) £ y]
be its cumulative distribution function. Any random variable Z(u) and its corresponding

cumulative distribution #z(z) = P[Z(u) < z] can be transformed to standard normal by a

normal score transform,
yi =G (Fz(z)). : (3.6)
In practice the # data are ranked zV <z <28 <. <z and their respective

cumulative distribution frequencies, without continuity correction, are given by

F2(z®) =% where k is the rank of the unclustered data. Various continuity corrections
exist in the literature and different software packages (in capitals below) use dierent

ones. Some of these continuity corrections are listed below.

ok
Fo(z®)y =22 Johnson & Wichern (1992)
3
Fa(z0)==% Walpole & Myers (1993)  (MINITAB)
4
Fa(z®)y =4 Journel & Huijbregts (1978) (GSLIB)
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Other factors that need to be taken into consideration are declustering weights, which

can change the cumulative probabilities, and some criterion for ordering tied ranked

values (see, for example, Goovaerts 1996). An expression for the inverse function G~

is very complicated and various approximations are used for example,

Gl(H= W where f= F,(z*) Walpole & Myers (1993)

e,
¢+ Garnehpaey ° < <05

GUN=1 1 (oeriprerrbmro) Kennedy & Gentle (1980)
_(¢ + (((wwwm) 05<f<1
where ,
_ I = i L :
¢ = fIn( ,ﬂ_) and (b-.- In a7 _ (GSLIB)
and a = -0.322232431088

=-1.0
¢ = -0.342242088547

d = -0.0204231201245

e = -0.0000453642210148
f=0.0993484626060

g =0.588581570495

h = 0.531103462366

i =0.103537752850

j = 0.0038560700634.

A normal score transform can also be done graphically and an example of thié, figure

3.2, gives a clearer picture of the process in general.
Experimental Cumulative Distribution Standard Normal Cumulative Model v
o : :

Zmin Z1 22 Zmax Y1 Y2

~.J
AN|

,Figuré 3.2, Graphical normal score transform.,
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Having transformed a random function to normality still does not guarantee that it is
multiGaussian normal. Strictly, all # dimensional cumulative distribution functions must
be multivariate normal, however it is sufficient to check the bivariate distribution to
adopt or reject the multiGaussian model. There are various ways in which this can be
done, two of which are, squared generalised distances (Johnson & Wichern 1992) and
semi-variogram comparison (Goovaerts 1997). We shall not examine the details here. In
practice these checks are rarely carried out and many simulations are done under the
assumption of being multiGaussian. There are other ways to transform to & normal
distribution such as fitting Hermite polynomials (Journel & Huijbregts 1978, p472) and
various approximations such as log transforms and power transforms. However these

approximate methods often do not reproduce normality well in the tails of the
distributions (see specifically, Goovaerts 1996, p276) which is where the critical high

values of a distribution occur.

Once a simulation is completed a back transform of the form
zi= FY(G() | 3.7

is necessary to reproduce the simulation with the original, non-Gaussian, distribution

characteristics. Generally F~' is impossible to determine directly and the back
transform is accomplished by the use of a table created during the forward transform.
Given that simulations generate much more data than the original sample values there
will often be cases where some of the simulated values are lower than the smallest

sample value and higher than the largest sample value in the transformation table.

In order to back transform from a normal distribution to the original distribution it is

necessary to have some model of the behaviour of the original distribution in the upper
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and lower tails beyond existing sample data. If the data is sparse it may also be desirable
to model the distribution as something other than linear between two consecutive
quantiles. Deutsch & Journel (1992) and Goovaerts (1997) both suggest linear and
power models for lower and upper tail extrapolation and include a hyperbolic model for
upper tail as well. These tail extrapelation models are given as options in the GSLIB

suite of Gaussian related simulation routines.

Definition 3.17 The lower tail power model is defined as,

)= ( T ) mF(zl) Yz € (Zmin, 21) (3.8)

Z1*Zmin

where z) is the smallest sample value and g, is a minimum possible allowable z value.

When ® =1 this corresponds to a linear model. Where 0 <o < 1 the tail is positively

skewed and where @ > 1 the tail is negatively skewed.

Definition 3.18 The upper tail power model is defined as,

F&)=F* () + (m*}) m(1 —F(zg)) Yz & (Zmin,21) (3.9)

where © < 1, zx is the largest sample value and zmax is the maximum allowable z value.

Definition 3.19 The hyperbolic tail model is written
F(Z)Zl—ﬁ,' VZ>Z]{ (310)

where
A= zp(1 - F* (zx))

ando = 1.

The hyperbolic model should only be used for the upper tail of a positively skewed

distribution. Setting ® = 1 corresponds to a very long tail and the larger the value @ is

the shorter the tail is. Deutsch & Journel (1992) suggest that 0 = 1.5 is a good general

purpose value.
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32 Sequential Gaussian Simulation

Sequential simulation methods were proposed by Journel & Alabert (1989, 1990) and
are based on an application of Bayes theorem. The technique is similar to the
generalised stochastic subdivision method in Lewis (1987). The sequential simulation

theorem, as used by Journel & Alabert (1989), states that » dependent events

Ai, i=1,...,n can be simulated sequentially using the expression,

P(A\,A2,...,An) =P(AnlAr, .., An1) - P(Anildy, ..., An2) ... - P(A214)) - P(4)) .
This requires the inference of thé successive #— 1 conditional probability distributions
whi‘cl.a can Ee obtained by simple kriging as explﬁinéd in §ecti0n 3.1. The general
sequential Gaussian procedure is as follows.

(2) Ensure that the data is, or is traﬁﬁformed to be, multiGaussian,

(b) Randomly order all the locations to be simulated.

(c) Estimate a value using simple kriging at the ﬁrstfnext randomly ordered location
using all the original data as well as any previously simulated points. Take the simple
kriging estimate and the associated simple kriging variance as the parameters of the
conditional distribution M(z&, o) at that particular location.

(d) Randomly select a value from this distribution to become the éonditiona!ly simulatéd
value at that location. (For details of random number generation see Press et. al. 1986.)
(e) Repeat the procedure from sfep (c) ;mtil all vaiues at unknown locations havé beenv
simulated. | |

(f) Inverse transform the set of sim_ulated values to conform to the original distribution

if necessary.
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The computational scheme is as follows,

D)= F I(ZE.«(;'&sg(“f) +(wi oskvs)), i=1,..,N Gl
{us) o=1,...n -
where the subscript (NS) indicates the normal score values and w; is a random number

- drawn from a Gaussian distribution..

Note that tﬁe conditioning is inherent in this process. If a ﬁon-condiﬁonal simulation is
~ required, no original values would be included and the first value simulated would be
randomly drawn from the marginal distribution of the transformed random function.
Anisotropies are also handled automatically. Strictly, stmple kriging is required to be
used with s_equential Gaussian simulation because of the assumption of second order
stationérity over the entire region, however ordinary kriging can be uséd if the situation
allows for reliable estimation of the log:al means within a local search area defined for
the estimation of each simulation point. For applications of sequential Gaussian

simulation see Nowak & Srivastava (1996) and Ravenscroft (1994).

33 LU Decomposition

LU decomposition is a very simple conditional simulatién method buf can currently
handle only s@all dafa sets, Deutsch & Journel (1996) suggest 'a few hu'n‘dred',' because
of computer membry requirefnents for largée ‘matrices. It was first introduced, in a
geostatistical form, by Davis (1987) and by Alaﬁért (1987) and is based on the lower

upper tfiangular decomposition of the covariance matrix,'
C=LU where LT=0. : (3.12)
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In the special case where C is a symmetric positive definite matrix (as is the covariance
matrix) the factorisation can be achieved by Cholesky decomposition. The simulation

scheme is outlined as follows.

- Consider the linear system : : .
CA=(LUA =L(UA) =y ' (":13)
where the vector y is defined as -
y =Lw,
C is the covariance matrix of a set of spatially distributed points and w is a vector of
indepéndent random numbers with distribution N(0, 1). The expectation of ¥ ¥ is then
gfven by, |
Ely y'}= E[(Lw)(Lw)]
= E[Lww U}
= LUE[wwT]
= LUI _
=C, _ (3.14)

The covariance matrix of a stationary random function model ¥{(u) with mean zero and
sample locations Uy 1S, v

Cop = E[Z(uo) Z(up)], Vo= 1; LLomB=1n (3.15)
* From equations 3.12 and 3.13 it follows that Lw forms an unconditional simulation as it
| reproduces the covariance model. i.e.

) =Lw, Ya=1,..,n (3.16)

For conditional simulation let uq, o= 1, ..., # be the locations of the conditioning data

and w;,i = 1,..., N be the locations of the pqints to be sir_nulatéd. To enable us to follow
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the sub matrices subscripts have been used to distinguish them. The original covariance

matrix is then made up of four submatrices,

[Clua—up)],, [Clua—uy)]
C;H» NY — . 31
e [[aus—uam,, (= )y ] &1
A condmonal simulation P (u) is obtained by
() _ [Z(Ha)]"l - _ Lew 0 | wm _
= [ [0y, J o [ Lwy LNN}[ ww ] T

where
| wa =L} [2(ud)],,

and wm is a column matrfx of independent N(0,1) distributed randorf; numbers. This
leéds to an expression for the simulated values,
O@)= Lnlilel, +Lawy . (3.19)

It can be seen from this that other realisations of the simulated values can be easily
calculated as they only require a fresh set of random numbers W and do not require
reczilculation of the decomposition. LU decomposition also handles anisotropy
automatically. The parallels of this method to simi:le kriging and corrections for bias
introduced by ordinary kriging are outlined in Alabert (1987). For applications see

Dowd & Sarac (1994) and Glacken (1996).

| 34 | : Other Simulation Methods

- Turning Bands

‘Turning bands methods are based on the construction of a one dimensional simulation

of a random function ¥{u), by any method, which is then rotated in space a nﬁmbef of

times # to uniformly cover the space under consideration (see figure 3.3). Each' rotation

~is given a different realisation of the one dimensional simulation. The point at which a
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value is to be simulated is then projected onto each of these n lines to obtain a series of

~ values zi(u),i =1 to 7 which ave then averaged to give the simulated value in a higher
dimension. |
HOEFPEIC | (3.20)
This resultslih_ an isotropic Gaussian non-conditional simulation. If the simulation is to
be éonditioned this is then carried out as a separate step after ncn;éonditional simulation
but before the final values are re-transformed to conform to the original joint
dis.tributif)n.. Tl;e"'“met'hdds of simulating oﬁe dimensional random functions used with
turning bands arr_e", in thvév gé_nerai case, spectral and in specific cases based on moving
'average methods. For applications sée also Journel & Huijbvregts (1978) _énd.Broc;kef

(1985).

VI Ys(x}

Ys(x)

Fig. 3.3. Turning bands in two dimensions. Y{u) is a simulated rand_ém functiqn.

Sequential Indicator Simulation
‘Sequential indicator simulation seeks to avoid the transformation to a Gaussian

distribution by using indicators (see Deuisch & Journel 1996). It‘{followbs' a similar
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procedure to sequential Gaussian simulation except that at each location where a value
is to be simulated the conditional distribution is estimated directly by kriging the
indicator transformed values defined for each specific threshold. Instead of the simple
kriging value and simple kriging variance being used to define a normal distribution, an
estimated conditional probability distribution function F™* at each location is built up by
indicator kriging for each threshold resuiting in a distribution whose detail reflects the
number and relative spacing of the thresholds used. For applications see Chu (1996) and

Gomez-Hernandez & Srivastava (1990).

Simulated Annealing

Geostatistical simulated annealing is really an optimisation procedure rather than“a trhe
'.l‘simulation. It is based on an analogy with the physical process of annealing by which a
material (usually a metal) undergoes heating and is then slowly cooled. The slow
cooling allows the molecules of the material to reorder themselves into a highly
structured state or a 'low energy' state. Simulated annealing does not requ.ire any
reference to a random function model. It works by gradually perturbing an initial
numerical model so that changes are accepted if they bring the model closer to the
target constraints which are usually to reproduce the semi-variogram and Iﬁstdgram,
The éonditioning is do‘ne by not allowing the original data at their locations to change.
The initial numerical model is usually some sort of geostatistical simulation that already
has some of the required properties but needs to be constrained further, The process of
geostatistical simulated annealing is still called a simulation because there are usually
many approximate solutions to the optimisation problem and hence a range of different

but equally probable final numerical models can be generated by the annealing process.
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An even greater range of final models can be produced if different equally probable
initial images are used. Further details can be found in Deutsch & Cockerham (1994),

Deutsch & Journel (1992,1996) and Goovaerts (1997).

p-field simulation

This method is based on the idea of using autocorrelated random numbers that conform
to the desired covariance function to sample from conditional cumulative distribution
functions at each location where a value is to be to be simulated. For a detailed
examination of this method see Froidevaux (1993), Goovaerts (1997) and Srivastavab

(1992).

Spectral analysis

Fourier anzilysis, spectral analysis and power spectra are not examined in detail here as
they are rather more complex;:énd less easy to implement. Howe{/er they are relevant to
spatial statisfics and also to stochastic fractals and some relationships will be briefly
described. Fourier analygis can be applied to any quantity that fluctuates in time or
épace and involves fitting sine and cosine series of various amplitudes frequencies and
phases to apbroxi'rﬁate ‘the data, The Fourier transform equation relates the tit‘ne‘(or
distance) domain to theﬁequency domain and is written v |

) '=j3°2(u)e2"fmdu | | @2

where f is the frequency vector. The spectral density is then written as
- | s =1zml*. E N € )

The covariance of a 'random function is related to its spectral density by thei;

_Wiener-Khintchine theory as follows
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C(h) = i Semds. | L (3.23)
Spectral methods are also related to fractal simulations which we will deal with in

chapter four. For more details and spectral apnhcatlons see Chiles & Delfiner (1996),

Fox (1987), Peitgen & Saupe (1988) and Turcotte (1992).

35 Examples

We will illubstrate sequential Gaussian simulation using the two sample data sets Gslib97
and Berea64 that were used in chapter 2. The GSI.iB suite of programs is used for the
noﬁnal score transformations, sequential Galvxvssian simulation and back transformation.
Note that the normal score and back transformation parameters in the examples used
here are taken frofn the probability density function inferred from the sample data alone.

We will examine the Gs/ib97 data first.

- The variography needs to be assessed using standard normal scores. We would expect it
to have similar anisotropy and range values to‘that ‘of the original data but the
semi-variogram models must be expressed in terms of the normal score values for input
into the simulation routine. A direct translation of the semi-variogram model used in
chapter one gives a nugget of 0.495, a range of 12 and a partial sﬂIof 0.505. The
exp’-irirjental semi-variogram given by the normal scores is noticeably smoother than
thatb glven by the original data and models with a nugget effect lower of 0.3, range 12
and partial sill 0.7. T‘he omni-directional normél score n:seriii-variogram and fitted nested

' nugget and Spheriml mode are shown in figure 3.4 and the fitted model is,

y(h) = o3+07(3tm 31'4";,) o<lnl<12 |
U Inl > 12

b4
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Figure 3.4 Normal score semi-variogram and fitted model for Gslib97.

" An example calculation using thé node u; = (20x, 25y} follows. The estimate is .a‘ simp_l‘e
kngmg estimate derived from sixteen surrounding values, hqwever.thes'e ﬁ;e not the
same sixteen vvalues used in the example in chapfer two. This is because some of the
bfher nearby poihts have alread'y'been simulated and t.he sixteen values used for simple
kriging are made up of the closest sikteen povints regardless of Whether th‘ey afe'origi?al :
conditioning points or previously simulated points.

Ty () = 0.7727 ~ z3(u;) = 2.87 o :
og-m,&': 0.5507
. w;=-~0.0391

25ty (i) = 0.7727 + (=0.0391 - J0.5507 ) = 0.7434 ~ z2(u;) =279

.r'J\

As Gslib97 is .a highly skewed data set the bai;k transform uses a linear lower tail
*cumulative frequency distribution extension with a’ minimum value of zero and an

“hyperbolic upper tail extension with, z‘.lif;.fj_gttenin‘g parameter of 1.5. The resu_lting .
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full simulation is shown in figure 3.5. Note that this is a much more realistic looking

plot than the plot of the kriged data in figure 2.19.

SGSIM Simulation Gslibd?

g Back Transform

0.0
0.500
. 1.000
1.500
H 2.000
2.500
3.000
3.500
4.000
10.000

Figure 3.5. One realisation of a sequential Gaussian simulation from Gs/ib97.
Looking at the Berea64 data we find that the experimental normal score directional

semi-variograms model slightly differently from a direct translation of the original data
models. In this case the nugget effect is higher and the range in the 33° direction

models marginally lower at 12 units rather than 13 units. The fitted model is,

3l
“f(ll): 024028 .
1.0,

In’I3
T 4389767

0o<lnl<12
Ih/| > 12

where |h'| is the isotropic transformed lag distance and the anisotropy ratio is 0.3158.
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Figure 3.6. Directional normal score semi-variograms for Bereat4 at 1230 (left) and > 330
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The back transformation was done with a linear lower and upper cumulative distribution
tail extension with a minimum of zero and a maximum of 120. The resulting simulation
is shown in figure 3.7. Note that the simulated plot looks more like the actual Berea

data than the kriging plot in figure 2.25.

S5GSIM Simulation Bereafid

20.000
23.000
n 38.000
44,000
S2.000
n 50.000
88.000
78.000
84.000
22.00Q
100.000

Figure 3.7. One realisation of a sequential Gaussian simulation from Berea64.

(o8]
(@)}

Summary

We have given an overview of geostatistical simulation in general and have looked
specifically at sequential simulations to see how they can provide a better model than
kriging of the overall variability of a random function. In the next chapter we will
examine fractal concepts and simulation methods and show how they can be

incorporated into and enhance geostatistical Gaussian simulation methods.
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4 | Fractals

Fractal geometry deals with the concept of self simila;ity at different scales and has been
. found to apply to a wide range of natural phenomena. Examples (Burrough 1981)
include tree ring indices, annual precipitation, river flows, ground water levels and land
forms. The basic characteristic of fractals is that detail at one scale remains similar at all
other scales. The classic example of a natural feature exhibiting fractal characteristics is
that of a coastline where decreasing scale and increasing resolution continue to reveal
détail that is similar in shape and statistical variability to that at each previous scale. A -

geometric example which is simpler to visualise is that of a Koch curve (see figure 4.1).

Figure. 4.1 Koch curve showing increasing levels of detail with Ehcreasing resolution.

In this chapter we will examine stochastic fractal theory and the model of fractional
* Brownian motion and show how it is linked to the power model in geostatistics. We
 then propose a new fractal simulation scheme, SGFRACT, and test it using the data

from chapters two and three.

72



41 | | Fractal Theory

The strict definition of a fractal set requires it to have a Hausdorff dimension that is
-~ greater than or equal to its topological dimension. For a formal definition of fractal
d:’men.;ion, Har:sdog{;‘ dimension and topological dimension see James & James (1992). .
A more general definition is that a fractal is a shape made of parts that are similar to the
whole in some way (Mandelbrot 1983). We will explain this in terms of self similarity
and self affinity. The following definitions of self similarity and self affinity are based on

Voss (1988 & 1985) with notation changes to conform to previous sections.

Definition 4.1 Let the set Q be a bounded subset of Euclidean space of dimension E

where each location u is made up of co-ordinates #1,...,ur . Using a 'similarity
transform with 0 <r < 1, Q becomes r(2 with locations ru = (ruq, ..., rug). The set O

15 self similar if it is the union of N disjoint subsets each of which is congruent to rQ

where congruent here means identical under translation and rotation.

Definition 4.2 The fractal dimension D of Q is defined by

1=N" or D={’;~—f : BN CRY

Definition 4.3 A set Q is statistically self similar if it is the union of N disjoint subsets
each of whose distributions are unchanged by the similarity transform 0 <r<1.

In practice the statistical aspects are usually limited to the first few moments of the

distribution of 2. The fractal dimension D also characterises the covering of the set Q

by £ dimensional 'boxes' of linear size L (see figure 4.2).
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If the entire set is contained within one box of size Ly then each of the N= 1/7P

subsets will fall within one box of size L = #Lmax. Thus the number of boxes N(Z) of size

L needed to cover the set 2 is then

NOYNLwa) = % = CaxlL)? or N@L)oc VLD, (4.2)

1
/D
Definition 4.4 A set Q) is self affine when it is the union of ¥ disjoint subsets each of
which is identical under translation and rotation to rQ where r=(ry,...,7g) and
O<ri<l, i=1,...,E.

Therefore each co-ordinate may be scaled by a different ratio 7; and the set Q is

transformed to r€2 with location co-ordinates 7,1, ..., Fgug.

Definition 4.5 The set Q is stdfisfiéal{y self affine if it is the union of N disioint
subsets each of whose distributions are unchanged by the affine 'tfansfonn
rwhere0<r;<l,i=1..,F.

It is not such a simple matter to obtain the fractal dimension from this deﬁnitién of self
affinity and we shall introduce the concept of the fractal co-dimension H, also known
as the Hurst exponent or intermittency exponent. To do this we will look at fractional

Brownian motion which is an extension of the traditional Brownian motion stochastic

process or random walk. Usually Brownian motion B(?) is expressed in one dimensional

time however we will express it in terms of spatial co-ordinates u.

Definition 4.6 Brownian motion B(u) is the sum of a sequence of independent

Gaussian random variables ,
B(u) = Z W(u) - (4.3)

where W(u) represents the Gaussian random function also known as white noise.

Brownian motion is extended to fractional Brownian motion By(u) by re-scaling. The

Jractal co-dimension H relates the typical change ABg(u) in Bx(u) to the change
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Au=hin u by the scaling law

AB(u) x b, (i4)
The parameter 4 is a measure of spatial similarity of Bx(u) and its values fall into three
distiﬁct categories. When 0 <H < 0.5 the increments of By(u) are negatively

correlated, for A =0.5 the increments are uncorrelated Gaussian white noise and for

0.5 <H <1 the increments are positively correlated. A value of H=1 means that the

function is deterministic, differentiable and smooth.

]

LN=1

Figure 4.2. Box counting method of determining H.

The relationship between the fractal dimension D and fractal co-dimension H is

illustrated by considering a one dimensional trace of fractional Brownian motion

c'éwering [hl.:zl in the horizontal direction and ABy(u) =1 in the vertical direction
(figure 4;‘2).‘ Here  ]11| represents a particular distance incnfement or lag. By(u) is
stat‘ist“ically self affine since when h is scaled by r and BH(ﬁI) is scaled by r 4 re-scaled
fraction of the trace is obtained identical in distribution to the original trace. Dividing

the horizontal interval into N equal subintervals gives

Ihl = 1/ and ABg(u) = |nl¥ = 1/NH @)
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If we use the box coverage method as in equa'gion 4.2 to determine D each interval will

be covered by ABy(u)/Ikl = (/N¥)/(1/N) = NIN® square boxes of linear scale L=1/N .
The total number of boxes becomes |

N(L)=N (NIN¥y = N*b = L (4.6)

By comparison with equation. 4.2 noting that now MLmax) =1,
D=2-H

and this can be generalised to higher dimensions to give the general rule ,
D=E+1~H YY)

where £ is the Euclidean dimension of the space in which the set is contained.

Definition 4.7 The fractal co-dimension H is defined by
H=E+1-D

where F is the Euclidean dimension and D is the fractal dimension.

We now examine thé properties of fractional Brownian motibn. The following
discussion is based on Mandelbrot & Wallis (1969, part 3) with appropriate notation
.'changes. Brownian motion is a self affine process in that if u=r(u+h) then
B(u) - B(0) =B(r(u + h)) ~ B(0) is statistically the same as r®3(B(u+h)-B(0)). It ‘
follows from this and equation 4.4 that
VPO o EBu by -B@)T = (0% as)
It caﬁ now be seen that the increments of Brownian mdtion have a. varianée '
proportional to the absolute loqation difference.
| E[|B(uq) - Bup)l?] o luy —upl o (4.9)
Similarly the jincrements of fractional Brownian motion BH(ug);B;;(up) (in any
Euclidean dimens.on) have a Gaussian distribution With variance' | |

E[lB;,r(u‘a):—BH(iip)lz];,Vyluu?uﬁl”’ o @1
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where Vy is a constant of proportionality and 0 <H < 1. Note that H=0.5 gives the

* traditional Brownian motion with AB(u)? < [hl, Equation 4.10 is equivalent to a

”variogram function as it is a variance of increments hence, v v
2y(h) = Vylhl# @1

+ and Vy is therefore the total variance at the reference unit scale [hj=1. |

Brdwnian motion has no deﬁvﬁtive as it shows irregular behaviour at all scales.
‘However if some amount Of, smoothing is accepted this lack of derivative can be
overcome. Thé‘deﬁvatives of smoothed fractional Browni.an motion with & valqé§ other
thavn 0.5 are referred to as ﬁaéficmd{ Gaussian nbise.é represented vl.).y-WH(l_l) and have a
qovariance given by - , | | ,
C(h, 8) = Vi 522 + 112 ~ 2[4 |2 1|24 (4.12)

where 8 is an arbitrarily small interval over which smoothing has taken iﬁlace. For mbre
~ detail oﬁ t.he derivation of this covariance see. Man;ielbrot & 'ifan Ness (1968).
Fractional 'Br(ownian. motion and: fracfional Gaussian noise with 0 <H <1 and their
associated‘ semi-variogram and covariance functions (equations 4.11 and 4.12

respectively) are the two types of model used in all stochastic fractal simulations.

4.2 . - Determining The Fractal Dimension

A useful property of fractal sets is that, like Euclidean sets, they typically reduce theif”
dimension by one under intersection with a plane. Often the intersection of a self affine
fractal object with the plane will result in a fractal set that is then self-similar but, as

with topographic profiles, this.may only be true for particular directions. (Voss 1988, -
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Klinkenberg 1994, Bruno & Raspa 1989). Most methods of determining the fractal
vdirnenvsion of an object are based on measurements carried out on one dimensional
curves or profiles. The mosi: widely used methods of determining D are box counting,
divider, spectral analysis, line scaling, area methods, area perimeter and DITM
triangles. A good review of these can be found in Klinkenberg (1994), however we will
not examine them in detail here as two and three dimensional distributions can be
examined in more detail using semi-variogram methods which use all the data at once
rather than examining a series of sections or profiles. Other reasons for using the
semi-variogram are that it is already a key tool in geostatistics and is well understood, it
is simple to use, and it appears to have properties that make it preferable to such
‘methods as spectralv analysis (Carr & Benzer 1991, Klinkenberg & Goodchild 1992).
Semi-variogram methods Have been criticised by Lovejoy & Schertzer (1987) for the
fact that they only explore the nature of the self affine value fluctuations (the values at
the locations and their,separation distance as opposed to the geometric arrangement of
the locations) but this is of no concern in geostatistics as it is precisely these value
fluctuations in which we are interested. The value fluctuations are self affine because we
~are dealing with a different quantity, for exampie mineral grade, in that 'direction’ as

opposed to some standard distance measure in all of the co-ordinate directions.

Equation 4.11 is the same as the power model of definition 2.13 with
b= %fo,and 6 = 2K Distributions that conform to equation 4.11 are statisticaily self

affine since variations over any scale r|h| are related to the variations over scale [h| by

v(rh) = ¥y (h). @y
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| This impli_f}g that the véria_nce at any scale can be determined by the variance measured
at any_;;f’t_);thelf scale (Hewett 1986). In practice the experimental semi-variogram is
d‘eteml'line’d from the available data using equation 2.24. If the experimental
séﬁﬂ-variogram is plotted with log scales on both axes the slope of the fitted line is

equal to 2H and the anti-log of the ¥(h) axis intercept is 1V, i.e.

2H = Alny(h)/Aln|hl ' (4.14)
and o _

V= e, | (415)-
The same precautions that would be used in semi-variogram model ﬁ@ing apply to
finding H (i.e. chéicé of lag s_;?tqging, mﬁximum lag, .n'umber 6f pairs etc.). There is ébme
disagl"eement‘in the literatzi;re EIsaaks & Srivaéta\éa 1989, Journel 1996, Cressie 1991,
Shibli _1996) as to whether éutomatic or manual curve (ling) fitting should bé used for
both semi-variogram models'and deterrﬁination of D from log-log plo.ts. We will use
linear regreséion to find the slope 65 log-log experimental semi-vaﬁograms and thus to

determine 2H. A power model with the appropriate power 2H can then be fitted to the

experimental semi-variograms in order to determine %VH. Other methods of
‘determining D using semi-variograms are semi-variogram integrals (Shibli 1996) and

gfaded normalised sequences (Hewett 1986).

43 o Stochastic Fractal Simulations

There are two basic categories of fractal simulation algorithms for creation of two
dimensional ‘surfaces and two dimensional random fields. One category is based on
midpoint displacement methods and the other on Fourier transform techniques. The

methods in the midpoint displacement categofy are basic midpoint displacement (Voss
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1988), successive random additions (Voss. 1988), generalised stochastic subdivision
v(Lewis 1987), maodified successive ranalfom additions (Prasad 1991) and the method of
”Rvumelinv (1990 & 1992) which we shall call the covariance of increments method. The
methods in the Fourier transform category are the fast Fourier transform (Voss 1988)
and the Weierstrass-Mandelbrot function (Voss 1988 Chu & Journel 1992). Although
‘all of these methods and their variants maintain the fractal co-dimension of the field they
do not always maintain the covariance structure and are not necessarily conditional. In
addition most variants of the midpoint displacement method do not handle irregularly
spaced conditioning data well. We will focus on the covariance of incremenis method
as it does reproduce both the fractal co-dimension and the covariance structure and we
will propose an adaptation of it to carry oﬁt geostatistical simulation with sparse

irregularly spaced data in two dimensions.

- Rumelin (1992) suggests how sparse irregular data might be handled but he ddes not
provide examples or details of this. We will show that the vcovarfanée of r'ncrements
algorithm, with some adaptations, can be used in a geostatistical framework with
sequential Gaussian and/or LU decompositidn conditional simulations in order to
handle sparsé irregularly. spaced data. Within the vgeostatistic.al fractal framework we
aim to reproduce a speciﬁed_histogram, population mean, population variancze, fractal
co-dimension and spatiél correlation (diSCLissed by means of a power | law
seﬁﬁ;\»rariogram model). The covariance of increments method allows generation of an
arbitrary number of values of fractional Browniar.l» motion in one step and simplifies _if
dnly a }s'mgle value is to be simulated. Tt follows similar logic to the (non-fractal) LU

decomposition method described by Davis (1987) and Alabert (1987) discussed in
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section 3.3 but also isolates one of the conditioning values to use as an arbitrary fixed
reference value. This reference value is then used to calculate increments and as a
benchmark against which to gauge the scaling parameter required to implement use of
the fractal co-dimension H. This allows the use of the fractal co-dimension H in a
stationary structure function to determine the variance of the conditional distribution at
-each location to be simulated instead of using the simple kriging variance derived from
geostatistical structure functions such as spherical and exponential semi-variogram

models. A summary of the covariance of increments method is given below.

Consider the scheme
2] = Al zus(ua)] +Sw a=1,..,n i=1,.,N = (416)
where w is a vector of independent random variables with normal distribution N(0,1), A

is an N x » matrix of weights that maintains the épatial structure of the field while
estimating z(w;) and S is an N x N standard error matf‘ix controlling the rate of random
variation necessary for each simulated value. If we now arbitrarily choose a specific

conditioning value z(u,) and reformulate equation 4.16 in terms of increments with
respect to uy, we obtain
[y (i) — zusy ()] =
M zwsy(o) - zws(uy)] +Sw a=1,..,n-1 i=1,.N  (4.17)
where A/ is an N x n-/ matrix (A without the u, terms). Multiplying both sides of
‘equation 4.17 from the right by [zevs)(up) = zqusy(uy)]” and taking expectations.
reduces this to

Oy —ua)] = ¥ [Clua ~ug)] @)
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‘This linear system is similar to a kriging system and can be solved for A’ by Cholesky
- decomposition in the same fashion as the LU decombosition in séc_fion‘S 3, if the two

covariance matrices are known. Riimelin (1990) has shown that
Cl(ua - up)} = £[(z(1a) — 2(un)) (2(up) - z(uy))]

=G.5Vg[iuu—unlz“’—lua—ugl"’f“+lun—uglz“"]; (4.19)

and this applies for any covariance matrix of the increments between any paired
combination U, up,u; and u; Note that Riimelin (1990) did not include the

proportionality constant ¥ as we have here (see equation 4,10 and ljroof in appendix
D). The important thing about the covariance function in equation 4.19 is that it is
intrinsic séébnd order stationary. Having solved for A’ we can then be find A by the
inc_lusioh of
A = 1‘-;5:1‘ Ay i=1,...N. " (4.20)

To obtain matrix S we multiply both sides of equation 4.17 from the right by w’ and
take expectations giving | o | v
EQo@) - zam@w]=S.  (42))

Again we multiply both sides of equation 4.17 from the right by [z (1) - zavsy ()]

and take expectatioﬁs and using equation 4.21 as well we arrive at
S 87 = [Cui— )] -V [Cui-u)]”. (4.22)

Now 8 can be computed by Cholesky decomposition. We now have all th_atv_i's required
to calculate the simulation values as in equation 4.16. The nutati_én for this
computational scheme can be reduced to what is essentially a set of kriging and error

variance equations where A’ is the matrix of weights without the weightv of the closest

point u,,, i.e. L o e
- Cugln A= Cigln ' 4.23)
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88T = Cyiy =AM CL, | 4.24)

Equéﬁon 4.22 reducesto

- e Frayil
§t= Cl'#l‘l —-A C:‘,uln

(4725')

_ when onivy'bné _poifxt at é time is being simulated.v_.vTﬁé weight for point un isA:then found
| by equation‘ 4.26. From here the point e;;timate and variance factor can be cor;iigted. If
we introduce |h| as a unit incremenf:fvalue it can be seen from equation 419 that
Caply, Cialy and Cjjy are all prof;ox‘tional to |nl24. Therefore. the calcula;ilqn/:)f A
'f‘rom'equation.4‘23 is independent of _lh}. However SS7 is proportiqnzit to Cijn

 therefore S8, or s, is proportional to [hl2%. Thxis for any system that uses the same
geometry, cal_culaﬁon-of the vaﬁaﬁce‘ factor at any scale 7 only réquircs S or s to be

scaled by a factor ¥ and does not require recalculation of the entire system.

This mefhod still has the current restrictions that apply to LU decomposition, that is the
number of points that can be simulated at any one time ié. limited to several hundred
because of the size of the covariance matrices. If appiied on a regular grid with
cor{&itioning data also on alregular grid, the same défa Iqéatioﬁ configuration exists at
every simulation point’ (disregafding edge e&‘ecfs)’ and hence only one linear system
needs to“ be”-solvved. This makés a mdvfng window _i(mplemeﬁtationv verjz fast fof

simulating large nughbers of nodes providing regular conditioning data exists. It can

with some care be applied to ,conditicninvg data that is not on a regular grid But then a

different location geometry occurs for every new simulation location and a different
linear system must be solved each time. Computationally this is very time consuming if

-we follow an LU approach simulating many points at one time.
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44 | " SGFRACT

It is proposed here that a sequential approach as described previously in section 3.2
utilising an adaptation of the covariance of increments method, simulating only one
value at a time, can be used to compute a geostatistical simulation when used with a
sufficient number of local irregularly spaced conditioning data. Computationally solving
a linear system involving only one simulation point with up to 30 conditioning values is
still fast and it is reasonable to recalculate at every individual simulation point. We will
call this new simulation algorithm sequenffal Gaussian ﬁacta! simulation and call the
resulting computer program SGFRACT. The implementation of the scheme parallels

that of sequential Gaussian simulation and is as follows.

(a) Ensure that the conditioning data is, or has been transformed to be, multiGaussian.
-(b) Randomly order ali locations to be §imulated.

(c) .Deﬁ.ne a local anisotropic search routine to be used at every node to find a specified
.number of fﬁ_oth conditioning data and previously simulated data. (Any pre‘viously
éimulated data become conditioning data also.) |

(d) At the first (or next) randomly ordered location to be simulated, split off the closest
conditioning point to act as a reference value Zxs)(Un) .

(e) Calculate the fractal estimate and fractal variance to form the parameters of the
conditional distribution N(l[z(um(u;)],sz) at:that location.
0 Randomly select a value from_tﬁi:‘s distrib;’ition to become the conditionally simulated

" _iue at that point.

'(g‘)v Repeat the procedure from step (d) until alt locations have been simulated.
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If at any stage the local search fails to find any conditioning data a simulated value is
arrived at by an vestimatév of zero aﬁd a random variance between zero and one
(Remember we are dealing with normal score data). If a minimum number of
conditioning points is specified and at any stage the local search does not find this
minimum number the node is not simulated, To overcome the potential for leaving gaps
in this case an optional feedback loop can be used to check all nodes once the first
random path is complete and to attempt to simulate any not assigned a value, as there
should now be more previously simulated nodes to search. If after a specified number of

cycles of the feedback loop a location still cannot be simulated then it is left blank. -

- The GSLIB vFORTRAN routine SGSIM was adapted as outlined above to cfeate
SGFRACT for thev implementation the following fractal simulation examples and to
carry out the case study in chaptér five. Points to note about ”SGFRACT are;

1. It does not use a covariance lookup table (although part of the subroutine ctaéle is
retained as it is necessary for the searcﬁ routines) as t.his unnecessarily complicates
matters v?hen applying the fractal algorithm.

2. A feedback loop is included so that nodes not simulated due to lack of close data can
be re-ekamined after the first random path is comvpleted.

3. An obtion isl included to set the minimum number of data and/or simulated nodes that
together \#ill bbe used to simulate any point, thus allowing .the 6ption for nodes to bbe
s}imulated entirely from previously simulated nodes witho.ut any original conditioning |
data. o

4 A normalisation factor is applied to the square root of the frabtal variance to bring

the simulated population variance back to around. one. This factor is not fixed and is.
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‘dependent on the geometry of the particular simulation. For example the normalisation
factor chén’ges with the model, the grid size and/or the overall field size. Thié
normalisation factor is applied at each individus! point simulation rather than at the
- completion of the simulation so that it does not displace the conditioning data values.
5. The option of using a two dimensional bounding polygon is also included to enable

the simulation of non-rectangular fields.

6. Following Riimelin (1990) a Cholesky forward/backward substitution routine is used
to solve the linear system, as opposed to the Gaussian elimination routine used in

SGSIM.

7. The search radius is explicitly sét by the model to equal the range and cannot be
| altered. This is because when trying to reproduce a sill the power model is only valid up

to the range. Beyond that the structure is uncontrolled.

Fitting a power model for use with SGFRACT ﬁitﬁ bounded data involves fitting a
truncated power model. When using normal score data the concept of range as applied
to a power law model translates to be the distance at which the model semi-variance
equals 1. In.theory if a sill exists in the experimental semi-variogram it should occur at a
svenﬁ'-vvériance' of 1 ;I’herefore the first step when modelling a power law is to decide on
. tfle approximatgjllag at which thé range or flattening occurs, The power 2H vshou.ld then
be determined (to one decimal place) from the slope of the linear regression of the
‘Iog~‘log scaled experimental semi-variogram ﬁp to where t‘he' value of |h} thals the
,rangé. Using this value for 2H the po;er law model is fitted by eye to the Idata by

adjusting the coefficient '%VH. The exact range can then be calculated by

86



g = GYRRE (420) )

This range then sérvés as tﬁe search radius calculated by‘SGFRACT. The coeﬁiéiént
%VH could be taken directly from theA regression but it is best to check the fit by eye as
there ﬁﬁy be other factors to be considered such as model fits in other directions or
extremely ertaﬁc experimental.semiwariogram data. If the semi-variogram being fitted
has no sill then the regression and power model should be fitted up to the largest
reliable lag, usually half the field size in any given direction. This system of determining

the power model parameters applies unchanged for anisotropic modelling. |

45 . Examples and evaluation of SGFRACT

The aim of this example is to test the algorithm and to'illustfate the wo;‘king of
SGFRACT rather than to check the degree of accuracy it ac.}lie;és in a practical
situation. Ih order to gauge how well SGFRACT works, the éame détg and parameters
{where possibig) were used to create a series of simulatidhé using a modified version of
GSLIB's SGSII\»IV routine. The 'properties of theSGSIM(SK), where (SK) denoctes
simple kriging, simulations will provide_béhc",hmarks for' SGFRACT. We will usé the

data sets True and Berea from chapters two and three. .

In prﬁctice the Trtie data is xvmtv knownmand_ variogfaphy and normal score transférmati@n
 parameters are estimgted'frbfn' the sample data Gslib97 as we have'doﬁe ih:chﬁptér
three. In this ca}’se, in drder to eliminate as manglr sourdes of variation as possiblé, we will
vuSe the vvaridgraphy'and_ norméi score transformation parameters that ccr'né, vfi'(;m'the

True data set as input for our simulations. Note that in 'this'casg"each of the vsarﬁple
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-conditioning- data® will be located exactly on a simulation node. Cases where
conditioning data are not located exactly on simulation nodes will be dealt with in the

next chapter.

Calculation of the power 24 and hence the fractal co-dimen#ion H, is shown in table 4.1
as linear regresvsion fits on successive lags for the log-log normal score experirﬁenta!
semi&an'ogram. It should be remembered that with the power model in this situation we
only want to fit the model up to the range or the lag at which the population variance

of one is reached. In this case a power of 0.7 was chosen and used interactively to fit

the best Iookiiig model, This gave a coefficient %V # of 0.22, in turn giving a calculated
‘range of 8.70. A nested nugget and spherical model was fitted to the same

semi-variogram for use \#ith SGSIM(SK). The ﬁtted models for both SGFRACT and

SGSIM(SK) are Shown in ﬁguvre. 4.3. Note that a nugget eﬁ’éct is not necessary when

using fractal modelling in this case.

© L0 1.200
_ 1000 g 100 e
(a) vv':I—‘:n.mo - (b) T80 o
a.80 - gulw -
Eo.'«m 1 (R0 —
0.200 -/ .20
o 0.0 — ,
v 10 : 2 k|

Figure. 4.3. Normal score experimental semi-variogram and fitted models. (aj Powervm"odel
v(h) = 0.22{h[°®7. (b) Spherical model, nugget 0.01, range 11.0, partial sill 0.9,
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Figure. 4.4. Log-log experimental semi-variogram fitted up to lag 8.70 by power model
y(h) = 0.22[h]®7.

Lag 2H Vu
232 0.72 0.20
3.30 0.74 0.20
4,24 0.75 0.20
5.32 0.75 0.20
6.33 0.75 0.20
7.33 0.74 0.20
8.38 0.72 0.21
9.38 0.69 0.21
10.37 0.67 0.22
11.34 0.64 0.22
12.32 0.61 0.23

Table 4.1. Progressive linear regression fits to the True data log-log semi-variogram. Values
closest to the range of 8.7 shown in bold

A sample SGFRACT calculation of the estimate, local variance and random addition
will be shown below for the situation in figure 4.5. This figure shows the geometry for
the first point to be simulated in the SGFRACT routine using a random seed of 112060.
The ordinary kriging estimation and error variance are also given for this situation using

the same power model.
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Figure 4.5. Layout of the conditioning data points used in the simulation at node (40.5x, 5.5y).

Point values and (weights) are shown.

The closest conditioning point u, is first split off to become the increment reference
point. The covariance matrices Cqply and Cigjy can then be calculated from

equation 4.19. The linear system Coplq A’ = C; ol can then be solved for A’ giving the

following matrices (shown here rounded to 3 decimal places)

Copin A Cialn

[ 0.455 0316 0.358 0.228 0243 || 0377 | [ 0.228 |
0.316 0.865 0.551 0.230 0.595 | 0.119 0.267
0.358 0.551 0.865 0.339 0.414 | 0.006 |=| 0.233
0.228 0.230 0.339 0.756 0.183 || ~0.006 0.124

| 0.243 0.595 0.414 0.183 1,125 || 0.072

| 0.245
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The weight for the increment reference point is simply one minus the sum of the other

- weights by equation 4.20. Hence the equivalence to ordina_fy kriging.
Ay =1-0.568=0.432
~The estimate is then colﬁput_gd via z* (u;) = Az(ta), a=mn1,...,5

z'(q,)=—1.193.

T
i,(1|r|

_ 'I“he' variance factor for this situation is then found by s - Cidn—A'C which is
- | $7=0.715-0.272=0.443.
With th_e' inclusion of the normalisation factor of 1.1'3 applied to the standard dcviatioﬁ
| fhis beconies 5% =0.567 or s =0.753. The rando_rh component w = -1.161 is generated
and multiplied by the square root of theverrlor variance together with the norfn;lisation_
factor to give the appropriate random varia‘tsi‘of)'for this pbint_ The; final simulated value
is thén - | |

z8(u;) =-1.193 +0.753(-1.161) = ~2.067.

Using the same data, geometry arId power modei the ordinary kriging estimate and

wetghts as calculated by GSLIB's OKB2D routine are exactly the same but the kr_i_girig
error Qariance 1s 0.443 compared' to SGFRACT's (normalised) \}afiaﬁcé factor of 0.567.
Note .that_ the fractal variance'beforeVnormalisation is also exactly the same Vas. the

ordinary kriging variance.

‘The nbrrhalisation factor required for SGFRACT is established by starting with a value
of 1.0 and running sets of ten simulations with each simulation using a different initial -
random seed. The novrmaliisﬁtiovn favct’or.'was vinteractivelvyv adjusted uritil- thé -set -'of tgn
simulatidns"'prqduééd an average mean of éIOse to"'zgro fdr t'h§ simillgted popufation
and an avérage variange of close to one and this yielded a normalisation factdr of 1.13.

~ Ten simulations were then calculated using both SGFRACT and SGSiM(SK)an_d the
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best three from each method were chosen as examples, where best is taken to be the
closest to a population mean of zero. and population variance of one as detailed in table

- 4.2

SGFRACT | ~ SGSIM(SK)

Seed Variance Mean Variance Mean
112060 0.99 0.04 0.86 0.03
112061 1.00 -0.06 0.86 -0.05
112062 1.08 -0.02 093 < - -0.02
112063 0.95 0.03 082  -0.03
112064 1.05 0.01 0.89 -0.01
112065 0.93 -0.03 081 -0.02
112066 0.89 0.05 -0.77 0.04
112067 0.96 0.09 0.84 -0.08
-~ 112068 1.06 0.08 0.91 -0.08
~.112069 1.08 0.01 0.94 -0.01

Table 4.2. Population mean and variance from ten simulations with selected simulations
' ' shown in bold.

Fbér each rhethod a series of v1.00 simulations was calculated with all simulations being
accepted regardiess of how closé they were 1o the desired mean and gf?;iance, These
series were used to évaluate-average: grade tonnage curveé. All simulations were then
»back tr»ﬁnsformed and, because the reference data set is highly sk;:Wed, a'hyperbplic
| _. mddel wavs: cﬁdsc:n for the upper tail exfansion with a tail lenéh parameter of l.S.vTheA
choice of the up-[')erv tail parametefs can have a significant effect on the back'

t’ranSfo'rmation and care should be taken to éstablish a realistic tail length.

* The resulting c..perimental semi-variograms for the three selected simulations from

- SGFRACT and SGSIM(SK), before and after back transformation, are shown in ﬁgﬁrés V
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4.6 and 4.7 together with the respective models used. Table 4.3 shows the summary
statistics for the selected simulations in comparison to the 7rue (Real) statistics and

figures 4.8 and 4.9 show the simulation plots from SGFRACT and SGSIM(SK)

respectively.
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Figure 4.6. Experimental normal score semi-variograms for three example simulations, True

data in black and model as full line, for SGFRACT (left) and SGSIM(SK) (right).
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Figure 4.7. Experimentai back transformed semi-variograms for three example simulations,

frue data in black for SGFRACT (left) and SGSIM(SK) (right).




Real 0.00 1.00 0.0¢ 3.00 3.56 -3.54
Fractal Sim. 1 0.04 0.99 0.00 283 330 -3.26
Fractal Sim. 2 -0.06 1.00 -0.09 2.91 2.94 3371
Fractal Sim. 3 0.04 0.95 0.06 294 3.57 -3.34
s6Sm.1 -0.02 0.93 0.06 3.00 314 -339
8G Sim. 2 0.08 0.91 -0.06 2589 317 -2563
SG SIM. 3 0.00 0.94 -004 3.08 3.48 -3.11
BACKTRANSFORMED DATA
o mean yariance  skewnegss kurosis  max min
Real 2.58 76.53
Fractal Sim. 1 2.68 24 57 502 39.60 66.51 0.01
" Fractal Sim. 2 228  1B.71 457 31.89 4446 0.01
Fractal Sim. 3 2.66 28.54 6.30 84.84  107.03 0.01
56 Sim. 1 2.41 22.38 526  39.55 55.68 0.01
SG Sim. 2 2.55 16.19 436 ~ 3865 . 56.52 0.03
SG SIM. 3 2.45 23.49 7.07 ©  84.06 92.14 0.01

Table 4.3. Simulation population statistics and cornparisons.

For SGFRACT the average normal score mean over IQG simulations was 0.024 and the
average variance was 1.004. For SGSIM(SK) the éverage normal score mean was
0.029 and the average vafiance was 0.895. The average variance for SGSIM(SK) iv_s'
unexpectedly low. The reason for this is not clear. A check set of 100 simulations waé
done using sample data that conformed exactly to mean 0.0 and vaﬁaﬁcg i-._O but this

still returned a low value average variance of 0.922.
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SGFRACT Simulation 1. GSLIB 87 data.
Back Transform
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SGFRACT Simulation 2. GSLIB 97 data.
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SGFRACT Simulation 3. GSLIB 97 data.
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Figure 4.8. SGFRACT selected simulations.
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SGSIM Simulation 1. GSLIB 97 data.
= Back Transform

0 0.0
E 0500
1.000
1.500
2.000
l 2.500
3.000
8 2.500
0 4.000
10+ 10,000
n
D "
(@] HE
Ll‘J_
lw] 0.500
SGSIM Simulation 2. G5LIB 97 data.
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SGSIM Simulation 3, GSLIB 97 data.
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Figure 4.9. SGSIM(SK) selected simulations.
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| In mining operations grade fonnage curvés are used in evaluating sample value cut offs
to be used for particular areas of a deposit that will maintain a particular average grade
énd produce sufficient tonnage determined by the extraction and processing costs of a
mar’e:;i.él. It is critical that the estimated grade tonnage curve is as close as possible to
reality when evaluating an ore body and planning mining. Grade tonnage curves for this
example were calculated by assuming that values are in grams per tonne and that each
node represents a block of material 1m x 1m x 1m with a specific gravity of 2,5. This
approximates values that would be found in a typical gold deposit. Note that in this“case
no correction for block support has been applied. The cut off values used in the plots
below are from 0.5 g/t to 3.0 g/t. Each marker defines a 0.25g step from which can be
read the average grade above that cu"c off and the total tonnage above that cut off
Figufes 4,10 and 4.11 show the tﬁ;;eé selected simulation grade tonnage curves from
SGFRACT and SGSIM(SK) respectively in comparison to the True (reference) cufve.
Figure 4.12 shows the averaged‘ grade tonnage curves over 100 simulations for

SGFRACT and SGSIM(SK) in comparison to the True curve,

Gtate Tonnagqe MISONS
| Iptiong - ’ i,

¢ 025pn
J

2 v .
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Tonnige

Figure 4, 10 Grade tonnage curve showing three simulations from SGFRACT The True
reference data is full line,
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Figure 4.11. Grade tonnage curve showing three simulations from SGSIM(SK) The Tme
reference data is full line.
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Figure 4.12, Average grade tonnage curves over 100 simulations. The True reference data is
fuli line with square markers.
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For the Berea data we will also use the variography and normal scores that are derived
from the actual Berea data rather than the sample data in order to minimise
uncertainties while testing SGFRACT. The anisotropic semi-variogram modelling with

fractal power models is shown in figure 4.13. Note that use of a nugget effect is not

necessary. We can calculate the anisotropy ratio T in two ways, by simply taking the

ratio of the directional ranges given by equation 4.26 as is usual, or by defining
T=ylA (4.27)

where v=(GVm)/(3Vim) and 1V is the coefficient in the principal direction of

anisotropy (Chu & Journel 1992).

[Fo.2] / 1.0
[ .-;n..,oa\\\ T A
Toam o /

—oan g £ M
g .
UO‘W 5

020 [’
-1 l om L 1 13
0 om : - : ! 4 1 1 1= b
n b1 0 15 »
10.000
12 000

11l

t

Gammg (H)
8

Coxrmy {H)
2

Lol 1 21J1l

e

0100 T TTTTIT — T 300 BN IR AL
i i

Figure 4.13, Actual directional semi-variograms from Berea and fitted fractal power models.
At 33° the model is Y(h) = 0.38|h]%*witk a range of 11.2 (left). At 123° the mode! is
y(h) = 0.20{h{%* with a range of 55.9 (right).

The same procedure as for the Gs/ib97 data simulations was followed to give the

simulations shown in figure 4.14,
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SGEFRALT Simulation 1 Bereadd data

= Back Transform
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SGFRACT Simulation 2 Bereafd data
o Back Transform

SGFRACT Simulation 3 Bereatd data
Back Transform

o

Figure 4.14. Three selected simulations from the Bereat4 data.
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46 | Summary

“ We have shown that SGFRACT provides estimates and error variances that are the
same as ordinary kriging with a truncated power model but without having to resort to

a pseudo-covariance function and without the use of the Lagrange parameter.

From examinatiﬁn of the three individual Trwe simulations in figure 4.9 and the
averaged statistics over 100 simulations it is clear that SGFRACT produces simulatidns
that are broadly similar to those of SGSIM(SK) for this situatipn. Looking at the plots
in figure 4.14 in comparison to the Berea simulation example in figure 3.7 we can see
that the anisotropy is also reproducéd well. Figure 4.12 shows that the average grade
tonnage curve from SGFRACT is closer to the real curve than that from SGSIM(SK).
&We conclude that, for these two data sets, SGFRACT has, overall; performed well and

that it can now be applied, and analysed in more detail, to an real industrial data set.
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5 - Application of SGFRACT to gold mineralisation

The aim of this case study is to evaluate how well SGFRACT reproduces grade controi’
data from exploration data in an actual industrial example as compared to two current
methods, sequential Gaussian sifﬁﬁlation and ordinary kriging. There are many ways to
evaluate the results depending on the intended use of the simulations. We will examine
three ~selected individual simulations cree;ted by SGFRACT, SGSIM(SK) and
SGSIM(OK) using exploration data and compare their individual population.:statistics
v(m'ean,v variance, skewness, kurtdsis, maximum and miﬁimum), their normal score
semi-variograms, their grade tonnage curves and thgir data plots With the grade control
data and with ordinary kriged data. We shall also compare individua_l simulation
averages from sets of one hﬁndred simulations, for populatioh mean and van'aflce_ and
grade tonnage curve, with grade control data. Finally we will compare the population of
individual point averages over one hundred simulations with ordinary kriging estimates
and data plots. The f;lost important comparison from a mine planning point éf view is
that with the grade tonnage curve as, when calculated for an entire deposit, this defines
the size and value of the deposit for different minimum grade scenarios. The grade
tonnage curve comparisons in this case study can be viewed as an exploration to gradev
control reconciliation exercise. The case study will be carried out using . real gold
mineralisation data provided by Western Mining Corporation from the Goodall gold
mine in the Northern Territory. First we give a brief summary of 'gdld exploration and

open pit mining procedures for deposits such as Goodall.
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Once a mineralised target has beex determined from surface mapping and sampling it
will be further investigafed by diar;ﬁé»ﬁd- drilling, which produces solid cores of rock, and
some sort ofmp'ercﬁssion or reverse circulation drilling, which produces small chips of
rock and robck dust. The diameter of these drill holes can vary from 100 millimetres to
400 millimetres depending in the type of drilling rig used. Typically one or more holes
are ‘drilled on vertical sections across the target area on section spacings of 100, 50 or

25 metres. These holes are sampled by one metre segments down the hole and may be

up to 300 metres long. They are designed to intersect the potential ore body rather than

to follow it in order to define its limits and are typically inclined at a dip of ~60° to the

horizontal. These holes are known as the exploration holes.

Oncé mining of the ore body begins, blast holes and/or grade control holes are driiled
on each mining bench. A bench or level is a horizontal slice of rock that is mined at one
time or one pass. These holes are typically drilled on a three to five metre grid or offset

grid and are usually from 50 to 150 millimetres in diameter. They are usually drilled at

between ~60° and —90° from the horizontal and can be from one to 30 metres long

depending on the mining method used.
In this chapter we will give a brief description:@é‘f the geology of the Goodall deposit,

describe the data sets we use, discuss the details of normal score transforms,

variography and simulation parameters, then present and analyse the results.
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5.1 Data set history and geology

v'}‘he data acquired are from an area of the Goodall open cut gold mine in the Northern
Territory know as A-Pod. Mining of A-Pod was completed in 1992 and all pre-mining
exploration data and post rnining grade control assays are available. A brief description

of the geology is given below. A full description can be found in Quick (1991).

"The mineralisation occurs on the eastern limb of an anticline in a well
defined sub-vertical zone which measures up to 50m in wndth and 800&1
along strike, and up to 140m in depth. The folding is related to the F1
Howley‘anticline and is an open upright anticlinal fdid slightly overturned
to the west. Dykes have intruded after the main folding and cross-cut the
fold axis. The gold mineralisation is epigenetic, structuraily controiled,"
and is associated with thin (5 to 50 mm) vein arrays of quartz-sulphide
veins which bulk to around five to 20 percent of the rock. The
mineraliéation occurs primarily within the sulphides. Grades are slightly
higher along the eastern margin and lower in the cen*~e of the mineralised

zone."

We will use a small subset of the A-Pod data for the actual simulation examples but it is
important, in the sense of potential industrial apptlvication, to have an undersbtandving” of
the‘entire deposit, how it was formed and tht‘a‘implic‘ati’ons this has when modelling the-
subset we aré using. In effect we have a miﬁeralised zone consisting of long narrow
vertical structures which merge, separate and contain discontinuities. The subset of

data we will use refers to a 2.5m thick horizontal slice through these structures.
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52 Description of Data sets

Subsets from two raw data sets from the same region wil.l be used in this study. The first
raw data S'et will be called the exploration data set and comes from a nﬁxmre of
‘diamond drilling core splits and percussion dﬁlling samples taken as one metre down
hole composites from ho_le_; drilled on 25 metre spﬁced vertical sections. The raw
exploratioﬁv”data comprise apprﬁximately 19 000 samples. These holes are between 25
and 200 metres long. Because of th.e differences between diaménd and percussion
~dnilling there is potential for these two populations to exhibit different characteristics.
However, the summary.__statistics calculated on both sets showed no great- difference

(z:see table 5.1).

EXPLORATION COMPOSITES SUMMARY STATISTICS

mean  vanance skeawness kurtosis mex "~ min
Diamond split 0.94 347 6.05 61.37 25.88 0.00
Composites
Percussion 0.91 320 5156 39.61 19.19 0.00
Composites
Table 5.1.

The second rhaw data set will be called the blast hole data set and consists of blast hole
sampling taken as l..S metre down hole composites from bench by bench blast hole and
grade control hole drilling on an approximate four metre by two metre spac-ing. These
holes are between 1.5 and 12 metres deep. The raw blast hole data coﬁiprise
épproximately 126 600 samples. The two raw data sets need to be composited so that

the samples represent the same vertical thickness and can be compared in similar regions
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of space. Compositing involves calculating and assigning gold grade values to specified
segment lengths located at specified positions down the hole that are different from the
actual segments assayed. In this case we want to compare segments that are contained
within each bench at a 2.5 metre vertical thickness. The volume of sample will be
assumed to be the same for both exploration diamond split, exploration percussion, and
blast hole data even though in reality they are all slightly different. The composited
populations of the exploration data and the blast hole data sets will be called the

expcomp data set and the blastcomp data set respectively (see figures 5.1 to 5.3).

Figure 5.1. 3D perspective view of expcomp holes for A-Pod showing assay values above
0.5g/t in red.

Both data sets contain mineralised and non-mineralised populations and these need to
be separated before processing. The separation was done by outlining the mineralised
zones, in section for the exploration data and in plan for the blast hole data, determined

by a 0.5 gram per tonne (g/t) gold assay cut off (figures 5.2 and 5.3). The choice of this
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boundary is based on the interpretation of the zones done by the geologists at the mine
as shown on the actual section plans used to determine the extent of the ore body. From
the exploration sections an approximate three dimensional model was created from the
section outlines in GS32 in order to visualise the approximate shape and extent of the

mineralised zone.
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Figure 5.2. Cross section at 10900N showing mineralised zone outline (green), expcomp hole
traces and blastcomp grade control for 540RL. Assays above 0.5g/t in red.

Modelling an entire three dimensional deposit would be a complicated and time
consuming exercise and, in order to test SGFRACT, we will only be looking at a two
dimensional subset of data from part of a single bench. The area we will examine is the
mineralised zone that lies within the co-ordinates 10 800N - 11 100 N, 10 130E - 10
210E, 537.5RL - 540RL (see figure 5.3). Note that RL stands for reduced level or

elevation.
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Figure 5.3. 540RL study area showing expcomp (large rectangles) and blasicomp (crosses)
assays greater than 0.5g/t in red.

The subset of the expcomp data set that lies within this zone will be called the exp540

data set and consists of 21 values (see figures 5.4 and 5.5 and table 5.2).

axpl. comp. 540RL as used for simulations
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Figure 5.4. Exp540 data plot.
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Figure 5.5, Histogram of exp540.

H Histogram Statistics exp540
'Description = expl. comp. 540RL as used for simulations

iTot. Population= 21 No, of Samples <= 0 = 0
iMinimum Cuteoff = 0.05150Q Minimum Histogram Value = 0.05150
'Maximum Cutoff = 12.67630 Maximum Histogram Value = 12.67830
o, of Samples Used = 21 Data & »uped to
' Ungrouped Data Class Intarvals
VMean 2.27368) 2.27058
iMedian N/A 1.18397
iGeometrioc Mean 1.14635 1.26639
‘Hatural LOG Mean 0.17088 0.23617
|Standard Deviation 2.84947 2.81802
'Variance B8.11947 7.94124
1Log Variance 1.49402 1.11551
‘Cnefficient of Variation 1.25528 1.24110
‘Moment 1 about Arithmetic Mean 0.00000 0.00000
‘Moment 2 about Arithmetic Mean B.11%47 7.94124
iMoment 3 about Arithmetic Mean 55, 059677 51.10401
Moment 4 about Arithmetic Mean 574.944 515.790
Moment Coefficient of Skewness 2.379468 2.28361
'Moment Coefficient of Hurtesis 8.72108 B8.17892
o A o .y % o o o T M e o o A7 i o ok o
Table 5.2.

The subset of the blastcomp data set that lies within the mineralised zone will be called
the b3404x4 data set and, when thinned to eliminate holes thai do not lie on the”
approximate 4m x 4m grid, contains 720 values (see figures 5.6 aﬁd 5.7 and table 5.3).
Note that the exp540 and 55404x+ data sets are independent of each other in that the

assays were collected at different times and with different methods.
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Figure 5.6. h5404x4 data plot.
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Figure 5.7. Histogram of b5404x4 data set.

_{ ______________________________________________________________________
! His ram Statistics bb4dD4xd
i 540 rl 4xd ref,.
& = 720 No. of Samples <= 0 = 0
IMinimum Cutoff = 0.00990 M mum Histogram Value = 0.008920

com

49.30000

'Maximum Zuto =
Used = 720

of Samples

Ungromoed

Table 5.3.
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Normally we would not know the variography of the 55404x4 data in advance and we
would therefore have to estimate it from the sample data we have. The exp540 data do
not contain gnough values to properly estimate the variography and it will be necessary
to use a Iafger subset of the expcormp data set to do So. We will use extra informati(;m
that is available at the expco:ép data scale to infer the variography of the study area.
The variography we infer at the scale of the exp540 data may well be different from that
at the scale of the 53-40-x-f data but it 1s the best information we have at that stage, as in
practice no blast hole data would yet be available. The subset of the expcomp data used
to infer the variography will be that which is refers to the same horizontal slice and
same bounding polygon as the exp540 data set but also includes data that is 20m
vertically above and below it. This subset will be a three dimensional subset called the

expvar data set and contains 638 values (see figures 5.8 and table 5.4).
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Figure 5.8, Histogram and lognormal histogram of expvar.
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' Histogram Statistics expvar

‘Description = expl. comp. 520-~580RL min. zone at S5J0RL

‘Tot. Population= 638 Ho, of Samples <= ¢ =6
iMinimum Cutoff = 0.00000 Minimum Hist:..gram Value = 9.00000
'Maximum Cutoff = 25.88350 Maximum Histogram Value = 25.88350
‘Ho. of Samples Used = 638 Data Grouped to
H Unqrouped Data Class Intwurvals
iMean 1.73573 1.77283
iMedian H/A 0.89926
iGeometric Mean HiA N/A
tNatural LOG Mean H/R N/A
1Standard Deviation 2.52437 2.50817
‘Variance 6.37243 6.29094
Log Variance N/A NfR
Coefficlent of Varilation 1.4549386 1.41470
‘Moment 1 atoufr Arithmetic Mean 0.00060 0.00000
\Moment 2 about Arithmetic Mean 6.37243 ©.29094
!Moment 3 about Arithmetic Mean 6§4.25427 63.35739
‘Moment 4 about Arithmetic Mean 1074.244 1039.827
‘Homent Coefficient of Skewness 3.98433 4.01535
iMoment Coefficient of Kurtosis 26.45418 26.27421
o v — o — 1 — ] b ] —— -
Table 5.4.

[

Normal scgre transforms

Both the expvar and 55404x+4 data sets are highly skewed and appear to approximate a
log normal distribution (see figures 5.5 and 5.8). We will not use log normal transforms
in our simulations but a log histogram is a useful way of viewing of a highly skewéd
population. The simulation algorithms SGFRACT and SGSIM require normal score
dafa and normal score semi-variogram models as input. In this case using a normal
score transform presents us with a number of problems as we have a small number of
conditioning data points. If we use only the 21 conditioning data points in our exp540
data set these will not provide enough infonna;ion to model the semi-variogram and, as
discussed in the previous section, they are unlikely to be a good representation of the
global population and will provide poor transformation parameters. If, instead, we use
the surrounding informatioq as contained in our expanded set expvar to estimate
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semi-vartogram models and global population statistics, as we have, the subset of the
normal score transform that contains the 21 sample point values will not be standard
normai. In this case exp540 has a mean of 0.29 and a variance of 0.87 rather than zero
and one. The mean and variance of the back transfornied population are very sensitive
to the way in which values greater than the highest value in the transformation table are
handled. Using a hyperbolic upper tail extension (see section 3.1) assists in reproducing
a highly skewed distribution but only if the simulated normal score distribution is wider
than the back transformation table used. Hence if the sample distribution has a variance
less than one, few if any, of the simulation values produced with it will extend beyond
the largest value in the transformation table, resulting in a lower back transform average

and vanance,

54 Modelling the spatial stnucture

All data will be treated as point data in two dimensional space rather than block data for
the purposes of modelling simulation and estimation. Semi-variogram modelling and
determination of 2H was done using the normal score transform of expvar. To conform
to our two dimensional sample data, the three dimensional search tolerances used were
set with a small vertical bandwidth of plus or minus one metre, so that although the 638
variogfaphy data cover a 40m vertical extent, pairs are only calculated if they are in the
same one metre thick horizontal slice as each other. This amounts to averaging a

stacked series of 2 dimensional semi-variograms. The experimental semi-variograms

were calculated with lags at intervals of four metres, angular tolerance of 30° and

horizontal tolerance of ten metres. The long thin nature of the layout of the data
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suggests that the principal axis of any anisotropy will occur along strike in the

north-south direction. The iso-semi-variogram plot is ambiguous due to the scarcity of

east-west data, however semi-variograms at 0” and 90° confirm the presence of
anisotropy. Note that the maximum reliable lag in the east west direction is only about
25'm as the mineralised 2one averages only 50m wide. Because of this, the east-west
semi-variogram is very difficult to interpret and the value for 24 as shown in table 5.5
has been calculated from the north-south direction only and then assimed for the

east-west direction.

Lag 2H Vu

23.19 031 0.33
125.90 0.27 0.35
29.75 0.30 0.33
33.59 0.30 0.33
47.05 0.30 0.33
50.37 0.29 0.34
53.88 0.29 0.34
57.42 0.25 0.37

Table 5.5. Progressive linear regressior fits to log-fog normal score directional
semi-variogram at 0° from expvar. Bold lettering indicates the [ags either side of where the

sill begins.
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- Figure 5.9. Directional log-log semi-variegrams 0 and 90° fitted by
y(h) = 0.33|h[°? and y(h) = 0.45Ih{% respectively.
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Figure 5.10. Directional normal score semi-variograms for expvar 0° and 90° fitted by
y(h) = 0.33h°? and y(h) ~ 2.45h®? respectively.
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Figure 5.11. Normal score directional semi-variograms 0% and 90°fitted by nugget = 0.4,
partial sill = 0.6 and ranges 40m and 14m respectively.

55 Stmulation

- The following list is an extract from the parameter file used for SGFRACT showihg
parameter groups () to (f). With the exception of the power model specification (d)
and the normalisation factor (e) these parameter groups apply to SGSIM as well. Each

groups will be expléined in detail after the listing.

(a) 18 101313 4 \nx,xmn,xsiz
74 108040 4 - \ny,ymn,ysiz
) o . \O=two part search, 1=data-nodes
(c) 2 \max per octant(0 -> not used)
00000003510 \sangl,sang2,sang3,sanisl,2
1 16 \min, max data for simulation
16 \number simulated nodes to use
4 2 \min data+sim nodes, fback loops
(d 603033 \it, Power=2H (aa),Constant=VH (cc)
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0.0 0.0 0.0 035 1.0 \ang],ang2,ang3 anis1 anis2:

(e) 1.23 \normalisation factor
(f) 1 \use bounding polygon? yes=I, no=0
Group (a) 18 101313 4 \nx,xmn, xsiz

74 108040 4 \ny,ymn,ysiz

This defines the grid upon which grades will be simulated. The lower left hand corner is
| 10131.3E, 10804N. These co-ordinates correspond approximately to the alignment of
the centres of the »b5404x4 blast hole pattern on the 540RL bench. The blast holes are
usually within half a metre radius of any node on this grid. The grid is square with a
four metre spacing in each direction and cxtends for eighteen nodes or 68 metres to the

east and 74 nodes or 292 metres to the north.

Group (b) 0 . \O=two part search, 1=data-nodes
The exp540 conditioning data are not aligned with the 55404x4 data or with the

stmulation grid. This parameter gives the option to relocate the conditioning data to the
closest grid node in order to speed up the search routine at the expense of a loss of
accuracy. As the data set we are using is small and the conditioning data could be up to

two metres away from the closest grid node we will not relocate the conditioning data.

Group (c) 2 \max per octant(0 -> not used)
0.0 0.0 0.0 035 1.0 \sangl,sang2 sang3, sanis1,2
1 16 \min, max data for simulation
16 \number simulated nodes to use
42 g \min data+sim nodes, fback loops

These parameters define how the local search is carried out and which surrounding
conditioning data and/or previously simulated points are used. The values of sang and
sanis define the anisotropy parameters fo.r' an elliptical search in three dimensions. Here
the principal axis of anisotropy is paraliel to the north-south direction and no rotation

on any of the three co-ordinate axes is reQUi_red. The ratio of the minor and major axes
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is defined by the range in their respective directions, namely 14/40=0.35. The elevation
axis is not used and its ratio remains set at one. The search routine then finds all original
values within this ellipse taking the c]os_est two within each octant. It then finds all
previously simulated values within this ellipse again taking the closest two within each
octant, If there are more than sixteen original values plus simulated values returned then
the total number is reduced to sixteen favouring the closest original values. If there is at
least _oné original value and at least three other values simulation proceeds. If there are

fewer than a total of four values found then the value at that node is not simulated on

the first cop.

Group (d) 6 03 033 \it, Power = 2H (aa),Constant = %VH {cc)
0.0 0.0 00035 1.0 \angl,ang2,ang3,anis,anis2:

The semi-variogram model is defined by its coefficient %VH=O.33, its power 2H=0.3,

and its anisotropy as described in (c). The anisotropy of the model may be different

from that for the search ellipse. The value of six is a flag that tells the program that it is

using a fBm model.

Group (e) 0.87 \normalisation factor

- A normalisation factor of 0.87 was determined as described in section 4.4 .

Group (f) 1 ' \use bounding polygon? yes=1, no=0
- The grid definition covers a rectangular region within which the 1rregularly shaped study
area is contained. To restrict the simulation to only those gnd nodes contained ‘within

the study area, a bounding polygon is defined as a separate file composed of vertex
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co-ordinates, Note that the search routine can still find original data that is outside the
bounding polygon. This may be desirable in some circumstances if only part of a
simulation is required but in this study it is undesirable and is controlled by initially

élinﬂnating any ori ginél data outside the polygon.

The SGSIM program also has the Opiion of using simplé kriging or ordinary kriging for
computation of the estimates. As we have very éﬁarse data ordinary kriging is unlikely
to éstimate the local mean acclzp:itely and simpie kriging should give a better result.
‘However as SGFRACT produces ordinary kriging estimates only it is useful to also
compare SGSIM's results w.ith'; the ordinary kriging option. Both sets of results aré

presented.

Ordinary kriging with a pvdwer modél was carried out with exp5+0 in its original form
(model y(h) =2.1 [hl 033 avnd with its normal score form. These two kriged data se::fs will
be known as rawok and nishtok. Tﬁe normal score kriging results were back transf;arnned |
using the expvar transformation table and upper tail extension in the same wa;f as the
normal score simulé:tions, In order to compare the different simulation met;f;ods to
kriging each point in the study area for each simulation method was averaged t;ver 100
simulations. The#e averaged simu]ationsvvwil! be called fra:v:!avljﬂﬂav, sgavif0sk énd
- sgavi00ok. (sge figure 5.18). See also appendix E for the 'evolufion‘ of the various

Goodall data sets.

The grade’ tonnage curves were calculated by assuming that each value of 55404x+ and

 each value of every simulated point is representative of a block 4m x 4m x 2.5m
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centred on the value's location. No block support correction is apblied because we are
comparing point support simulations to point support grade conatrol data. A full
simulation includes all blocks whose centres lie within the bounding polygon and
contains 722 blocks. The real 65404x+ data set has 7;.0 values. The missing values are
c_im;. to the realistic imperfect nature of its grid. Because of the different random paths,
some simulations contain situa;ions where, even after feedback loops, some nodes could
not be simulated due to lack of close data. These simulations have fewer than the full
722 values, the worst of the simulations having ‘about tv«'.fo‘ percent missing. When
| averaging each grade tonnage curve over 100 simufations this has very little effect on
the results. Curves are aiso calculated for the point averaged sets over 100 simulations
as distinct from the curve averages. Confidence limits for the average gradé tonnagé_
curves were calcﬁlated by finding the variance for qaq@i grade and tonnage above each

cut off used from 100 simulations.

5.6 ' Analysis of results

From the first tén simulations of each method the three simulations with the best mean
and variance were chosen forv detailed examination. The results for these are shown in
the following figures and tables. It is very encouraging to find thatvthe fractal
co-dimension in.this case remains the same for the actual data and the normal score
data. This was not the case with the Zf'rz:é data used in chapter four, possibly because
the True data, is not real dvaté but is itself simulated without regard to the fractal
co-diménsion. Table 56 shows fhat the model used and tllle'thrée indiQid{;_al simu'lat‘ions

~ examined provided a good estimate of the actual fractal co-dimension H of 0.1.
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NS Semi-variogram
b5404x4 (reality)
expvar (model)
Fractal Sim.1.
Fractal Sim.2.
Fractal Sim.3.

Semi-variogram
b5404x4

Table 5.6. Reproduction of (twice) the fractal co-dimension, 2H at range = 40m.

0.2

Fy

0.48
0.33
0.28
0.27
0.19

11.80

Figures 5.12, 5.13 and 5.14 show the variography for the three selected simulations for

each of the three methods, SGFRACT, SGSIM(SK) and SGSIM(OK) overlaid with the

their respective models and with the b/5404x4 semi-variogram. The first chosen

simulation is identified by diamond markers, the second chosen simulation is identified

by circular markers and the third chosen simulation is identified by square markers.

These figures show that the 65404x4 data in the north-south (0°) direction actually has

a steeper semi-variogram in the first ten metres than any of the models or any of the

simulations.
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Figure 5.12. Experimental normal score semi-variograms for three example simulations from

SGFRACT 0Y and 90°. B5404x4 in black and model as full line.
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Figure 5.13. Experimental normal score semi-variograms for three example simulations from
SGSIM(SK) 0? and 90° . B5404x4 in black and model as full line.
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Figure 5.14. Experimental normal score semi-variograms for three example simulations from
SGSIM(OK) 0% and 90°. B5404x4 in black and model as full line.

It appears that the larger than expected normal score average mean obtained using
SGFRACT shown in table 5.7 is due to the fact that it produces ordinary kriging type
estimates rather than simple kriged estimates. Ordinary kriging with OKB2D also
produces a similarly high mean when using the normal score sample data as does
SGSIM(OK). SGSIM(SK), as strictly required by the theory, produces an average

mean closer to the expected mean of zero.

Method Mean Yariance
SGFRACT 0.23 1.08
SGSIM(SK) 0.08 0.96
SGSIM(OK) 0.19 1.39

Table 5.7. Average mean and average variance over 100 normal score simulations.
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The larger than expepted average means from SGFRACT and SGSIM(OK) indicate
that. Iexp540 data are probably too sparse to support ordinary 'kriging and the use of
ordinary kriging estimates may be inabpro;’iriate for reproduction of the global mean in
this situation. We mentioned earlier that our input sample values were not perfectly
normal with 2 mean of 0.29 and a variance of 0.87, and OK appears to be reproducing a
mean closer to this. Subsequent simulations using the normal score transform of the 21
sample "points only (giving perfect normality) gave an average mean over 100
simulations of - 0.07 and an average variance of 1.10 for SGFRACT and - 0.08 and
1.40 for SGSIM(OK). This gives a much better average mean but to back transform
with this data would be inappropriate as discussed in section 5.3. In both sets of
simulations with SGSIM(OK) the average vaﬁance is much larger than expected. The
average variancé from SGFRACT is approximately normalised. to begin_ with so it is

difficult to tell if it is being affected by the OK nature of its estimates.

Looking at the individual simulation summary statistics for both SGFRACT and SGSIM
in tables 5.8 and 5.9 we see that although the normal score means and variances are
reproduced reasonably, the back transformed heans and variances are all considerably
lower than expected. This is pr.obably due to the input normal score samples being only
quasi-normal. The lower ﬁamp:le variance of 0.87 leads to narrower normal score
simulation distributions which‘do not allow as many values to'fail in the sensitive upper
tail region of the back tra:isformatién table. This eﬁ‘ecf can be shown in another way. If
| a top cut of 25g/t is applied to the 720 55404x+ data, with the loss of only 10 values,
the mean and variance of this top cut ‘refcfrence data are now in more line with the

~ individual simulations with a mean of 2.42 and a variance of 10.22.
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exp540
b5404x4

Fractal Sim. 1
Fractal Sim. 2
Fractal Sim. 3

SG Sim. 1 (3K)
SG Sim. 2 (SK)
SG Sim. 3 (3K)

SG Sim. 1 (OK)
SG Sim. 2 (OK)
SG Slim.3 (OK)

NS BT OK
RAW OK

Fractal Av100
SG AV100 (SK)
SG AV100 (0K)

exp540
b5404x4

Fractal Sim. 1
Fractal Sim. ¢
Fractal Sim. 3

SG Sim. 1 (SK)
SG Sim. 2 (SK)
SG Sim. 3 (3K)

SG Sim. 1 (OK)
SG Sim. 2 (OK)
SG Slim.3 (0K)

NS BT OK
RAW OK

Fractal AV100
SG AV100 (SK)
SG AV100 (OK)

ORIGINAL AND BACK TRANSFORMED STATISTICS

mean __ variance skewness __kurasis max _min
227 811 237 872 1267 0.05]
278 21.31 478 3352 49.30 0.01
165 473 3.36 19.38 19.16 0.00
192 10.81 .86 55,08 42.64 0.00
172 5.31 327 17.21 18.33 0.00
1.99 7.66 3.00 13.98 18.53 0.00
1.69 468 2.87 13.35 15.28 0.00
1.73 510 310 16.30 19.09 0.00
2.29 39.96 1211 189.84 112.81 2.0
2.07 B.27 302 1450 1960 0.00
1.0 718 325 16.88 22.30 0.00
1.35 0.64 1.85 941 613 0.00
210 1.91 186 7.91 9.46 0.00
2.49 2.91 435 3560 211 0.00
1.89 0.36 2.86 2168 8.05 0.00
3.97 80.78 13.26 208.62 157.01 0.00

Table 5.8.
NORMAL SCORE STATISTICS

mean _ variance skewness kurtosis max min
0.29 087 -0.08 20 232 -1.87
0.00 1.00 0.00 296 320 -3.20

-0.04 1.03 -0.19 2.99 282 -3.42

-0.0t 1.186 -0.03 3.04 338 -3.70
0.01 038 -0.08 2.85 213 -2.95
010 1.03 0.07 2.69 2.75 -2.67
0.03 0.9 -0.05 2.84 248 -2.95
0.03 0.95 -0.08 3.0 2.81 -3.49

-0.05 138 -0.01 3.28 - 375 -4.16
0.12 1.06 0.07 2.65 285 -2.73
0.06 1.03 0.01 2.58 2.98 -3.98
0.20 ZB.DU, N -0.96 485 ‘1.8?_ - -1.87
0.22 019 0.07 319 1.83 -0.78
0.08 0.05 0.86 5.07 1.05 0.54
0.18 0.18 0.10 2.79 1.47 -0.78

Table 5.9.

123



Examination of the point averaged simulation sets in tables 5.9 shows an exceedingly
high maximum sgavok. This is due io the back transfoﬁnation‘ A few of individuaiv
simulations within the 100 produce very high point normal score values of around five.
A value of five is unusual but thwreﬁgaﬂy -acceptable. This did not affect the normal
_ scofe point means a$ the few high ;.faIues were absorbed by the averaging process.
However, when the high values are back trahsfonned toa hjgﬁly skewed distribution
using a tail length parameter of 1.5 (see section 3.2) a value of five back transforms to a
value of 6890 which is unrealistic and influences the point mean considerably. This
" shows one of fhe deficiencies of using normal score transformations. Subsequent test
back transformations using a more conservative tail length parameter of 2.5 give a value

of 738 which is still unacceptable.

Visual inspectio‘n of the data plots in ﬁgures:};VS.lS to. 5.19 is subjective but details of the
clustering and anisétmpy are best examined in this way. None of the individual
simufations from any of the methods captures. the eiongated higher grade clustering
obvious in the 5540-4x+ data plot. However SGSIM(SK) appears to have done a better
~ job of reprOducing anisotropy than the other methods. Thf: compan’sqns of ordinary
}krig'm'g with the averaged point simulation data show that kriging still produces a

smoother picture than the others.
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Figure 5.15. Plots of actual data values (top) compared with the three selecied SGFRACT
simulations.
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Figure 5.19. Plot of actual data values (top) compared with normal score back transformed
ordinary kriging.

The results of the grade tonnage curves and their confidence limits should be
considered, bearing in mind the above comments on normal score transformations and
that higher average means and variances will give higher average grades at any specific
cut off value. (For an explanation of how to read the grade tonnage curves refer to the
text above figure 4.10 in section 4.5.) None of the kriging or point averaging methods
reproduce the correct grade tonnage curve well (see figures 5.21 and 5.22). SGFRACT
produces an average curve that is close to reality (see figure 5.23). Below a cut off of
2.5 g/t its average grades are very close to reality but the tonnages are lower. Above a
cut off of 2.5 g/t its grades are less than in reality and its tonnages are slightly more. It

can be seen from figure 5.24 that SGSIM(OK) produces grade tonnage curves that



fluctuate excessively and are unrealistic. SGSIM(SK) which gave the most acceptabie
normal score data back transforms to give a curve that is lower in both grade and
tonnages compared with reality (see ﬁguré 5.25). Its' confidence limits are narrower

‘than SGFRACT's and do not encompass the real curve.
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Figure 5§.20. Average grade tonnage curves from SGFRACT, SGSIM(SK), SGSIM(OK) and

for b5404x4.
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Figure 5.21. Grade tonnage curves for the point averaged simulation sets and b5404x4.
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Figure 5.22. Grade tonnage curves for the kriged data and b5404x4.
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Figure 5.23. Average grade tonnage curve and 95% confidence intervals for 100 simulations

of SGFRACT,
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Figure 5.24, Average grade tonnage curve and 95% confidence intervals for 100 simulations

of SGSIM(OK).
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Figure §.25, Average grade tonnage curve and 95% ceafidence intervals for 100 simulations

of SGSIM(SK).

5.7 : Summary

We have shown that fractal modelling of the spatial structure of an actual gold
distribution is practical and achieves results that are, at least as good in all aspects and,
for grade tonnage curves, better than sequential Gaussian simulation using a spherical

model.
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6 Conclusions and Recommendations

A vafiety of stochastic fractal simulations methods are in practical use in areas such as
in computer graphics for surface visualisation and in the petroleum industry for flow
sim_ulations. However, to date, with the exception of Prasad (1991) whose Ph.D. thesjs
used a modified successive random additions fractal method on sulphur in coal, only
thebretical applicaticns to ore body modelling with fractal simulations have been
undertaken. This is berhaps because previous fractal methods cannot handle irregularly
spaced data and/or cannot quickly condition a simr.ilation and/or do not reproduce the
spatial structure. At best the spectral fractal methods available have been found to
produce results that are no better or wo;sé than traditional geostatistical methods

(Bruno & Raspa, 1989 ; Chu & Journel 1992),

6.1 Conclustons

What we have achieved in this thesis is the creaticn of a new tool that incorporates

fractal concepts into geostatistics and which can be uséd in geosta;tistical simulatioﬁ and

ore body modelling. This tool has been formed by drawing together simulatio.n

techniqugs and idéas from both geostatistics and computer graphics and combining

themin a ﬁnique way. The original contributions of the thesis i);i:gl |

(1) A method for the use of the (truncated) power model with bounded experimental

semi-variogram models. |

" (2) The adaptation and extensicn of Rumelin's covariance equations to work with sparse
irregulafly spaced data while maintaining the conditionality of a simulation enabling then
use of»the powef model with sequential Gaussian simulation, thus overcoming the two

majof drawback}s of most existing fractal simulation methods.
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(3) The incorporation of the fractal co-dimension as an additional statistic that can be

reproduced with Gaussian géostatistical simulations.

It is also the first time that we know of that a real gold mineralisation, highly skewed
data set has been simulated with a fractal method. The importance of this new tool is
that it creates geostatistical simulations that specifically capture the fractal nature of a
distributioq_ as well as its histogram and spatial structure. The other advantage of
SGFRACT is that it does not require knowledge of spectral techniques and anyone
already ‘familiar with semi-variograms has the thegretic".] knowledge required to

understand and implemer.t it.

Speéiﬁcally it has been shown that, for the two skewed distribution data sets, Gslib97
vzvmd exp340, SGFRACT produces a simulated average grade tonnage curve that ‘is
closer to reality than sequential Gaussian simulation and ordinary kriging. Also, in the
sparse data situation in chapter five SGFRACT produced a smaller range of fluctuationsv
compa;‘ed with SGSIM(OK) and is therefore iess sensitfve to anomalies that occur in
back transforming. The method nins'just as fast, in terms of' computing time, as

sequential Gaussian for simulations of the sizes used in the case studies.

Tﬁe method has the limitation that it can provide only ordinary kriging 'type estimates
but this is of very little concern as ordinary kriging is preferable to simple kriging in
rﬁost situations. Another possible limitation is that the method can iny be used v?ith a
power model. It is alsc restricted to using normal score data but this disad.vantage is not

exclasive to SGFRACT.
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6.2 Extensions and Recommendations

The major aspect that needs attention is the normalisation factor. With further work the
relationships vbetWeen the grid size, field size, model parameters aﬁd random path used
~ could be furtﬁer analysed v;/ith the aim being to determine the normalisation factor
theolretichlly rather than experimentally. It is possible that the normalisation factor is
partly related to the introduction of a fee'dback loop that allows the simulation of points,
ﬁ'om previously simulated points alone, that‘ wbuld otherwise remain unknown. Further
studies examining the possible creation of bias by the normalisation and/or the feedback
loop would be useful. The sensitiﬁty of the simulations to the nohnalisatioa factor

Wshould also be examined.

There is still the potential for extension of this method and to date an LU version that
simulates many points at once (LUFRACT) has been written but will not be diséussed in
detail here. The first dbvious extension is to -édapt both SGFRACT and LUFRACT to
three dimensiohs. There is no theoretical reason for this not to be a simple task. The
next obvious possible extension is to implement nesting so that a nugget effect, by way
of 2H = 0, can be included if de;ired. However, practice so far has shown that the
power model alone copes quite well in situations where a nested nugget and spherical
model would normally be usgd. Some other pbssible gxtensions and questions that need
to be answered}are: | |
(a) Can SGFRACT be adapted ;o iﬁdicator methods?

(b) Can it handle zonal .arlisotro‘py?

(c) Do we ever need to model a nugget effect?

{d) Can multi-fractals be i‘ncorpd_rated?



In the sense that they all deal with nesting of models, (b), (c) and (d) are all related. Chu
& Journet (199:2) have shown that ﬁaéfal models can be nested using spectral methods
but whether thé same style of nesting would work with SGFRACT requires
investigation.

(e) When working with data that have a sill, could results be improved by selecting

only those models that reproduce a clear sill?

Examination of many individual simulated semi-variograms showed a tendency for some
to continue to increase with distance while others created by the same simulation
paranieters but different random path showed a deﬁni;e sill. This presumably occurred
because of the truncated nature of the model where the sjiati_al structure beyond the
range was uncontrolled. |

(f) What is the rélationsﬁip betweg:iv'}he nofrﬁ;il score fractal co-dimension and the
actual fractal co-dimension?

In the case of the isotropic dﬁta set 7] rue__il,"'. chapter four thé fractal co-dimension for the
actual and normal score data were not thg same. With the anisotropic real data sets
Berea and b5404x+4 used in chapters four anﬂ ‘ic the fractal co-dimension did remain
the same after normal score transformation. This may be because these two data sets are
real and the GSLIB data is a simulation that takes no account of the fractal.

co-dimension.

In conclusion we can say that use of the fractal co-dimension does make a useful
contribution to ore body modelling and geostatistics when used: in conjunction with
\existing methods. SGFRACT achieves this and has potential to provide even better

results with future work on the topics listed above.
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Appendix A - Notation and Symbols

The notation and symbols used throughout the thesis are listed in order of appearance in

the text.

Q,
Z(ua)
Z(u)

- Z(uy)

z(u)
n(u)
¥(u)

PO
E]

Var()

O
2y(h)

y(h)

|nl

Cog

Region
Location vector (#*, #”, u%)

Location subscript indices eg. ug

Random variable

Random function

Regionalised value
Regionalised variable

Non-stationary mean of a random function, also drift

Stationary random function

Noise term

Cumulative frequency distribution function
Probability function
Expectation

Variance

Variance function

Covariance

Variogrﬁm function
Translation'vector or increment
Stationary mean
Semi-variogram function
Inérement distance or lag
Weight |

Nuggét variance
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Cy

W(uy)

zv(ug)
Zge(ui)
Ok
Zok(ui)

2
Cox

z(’)(u)
22(u)
N(m,c?)
JO

G()

Partial sill

Range

Constant of proportionality
Power of power model

Principal direction of anisotropy in degrees
Anisotropy ratio |

Rotation matrix

Anisotropy transformation matrix

Support volume at u,

Regionalised value defined on support v

Simple kriging estimator

Simple kriging estimation error variance
Ordinary kriging estimator

Ordinary kriging estimation error variance
Lagrange parameter

Variance covariance matrix

Matrix of weights

Unconditional simulation

Conditional simulation

Normal distribution

Probability density‘ ﬁmctiop_

Standard normal cumulaiivé distribution function
Flattening parameter for upper tail extfapolation

Lower decomposition of variance covariance matrix C

Upper decomposition of variance covariance matrix C

Vector of standard normal score values
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B(u)

By(u)

~ Set of points

Euclidean dimension
Scale factor

Fractal dimension

Scaling vector where r; is not necessarily equal to 7;

- Brownian motion

Fractional Brownian motion
Fractal co-dimension

Proportionality constant equal to the characteristic variance at

the reference unit [ag for fractional Brownian motion

Fracdonal Gaussian noise

" Estimation error standard deviation matrix

Subscript index for a speciﬁé regtonalised value used vfor..

increment calculation with the covariance of increments fractal

simulation method

Standard deviation
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Appendix B - Data (sub)Set listings

Gslib97
GSLIB 97 conditioning data
: 4
~Xlocation
- Ylocation
Elevation
Primary '
39.500 18.500 0.000 0.060
5.500 1.500  0.000 0.060
38.500 5.500 0.000 0.080
20.500 1.500 0.000 0.090
27.500 14.500 0.000 0.090
40.500 21.500 0.000 0.100.
15.500 3.500 0.000 0.100
6.500 25.500 0.000 0.110
38.500 21.500 0.000 0.110
23.500 18.500 0.000 0.160
0.500 25.500 . 0.000C 0.160
9.500 19.500 0.000 .0.170
36.500 43.500 0.000 0.180
21.500 5.500 0.000 0.190
13.500. 3.500 0.000 ¢.190
40.500 7.500 0.000 0.190
31.500 17.500 0.000 0.220
46.500 40.500 0.000 0.240
10.500 7.500 0.000 0.260
28.500 11.500 0.000 0.280
8.500 7.500 0.000 0.280
47,500 0.500 0.000 0.310
4,500 37.500 0.000 0.320
14.500 21.500 0.000 0.330
22.500 48.500 0.000 0.340
. 18.500 6.500 0.000 0.340
3.500 38.500 @ 0.000 0.340
11.500 46.500 0.000 0.400
31.500° 26.500 0.000 0.4590
14,500 29.500 0.000 0.460
14.500 43.500 0.000 0.510
38.500 28.500 .0.000 0.570
45.500 14.500 0.000 0.620
4.500 30.500 0.000 0.650
6.500 41.500 0.000 0.670
7.500 12.500 0.000 0.710
26.500 23.500 0.000 0.790
8.500 45.500 0.000 0.810
14.500 46.500 0.000 0.830
13.500 24.500 0.000 0.840
26.500 1.500 0.000 0.890
33.500 7.500 -.0.000 - 0.920
45.500 22.500 0.000 0.930
48.500 25.500 0.000 0.940
35.500 10.500 . 0.000 ©.960"
34.500 14.500 0.000  0.990
0 0.990

13.500 39.500 .000
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7.
15.
.500
11.
.500
.500
.500
.500
.500
39.
.500
.500
46.
.500
.500
12.
.500
.500
45.
.500
.500

22

- 45

13
- 22
17
30

30
27

25
27

33

41,
19.
.500
.500
.500
41,
28.
21.
.5G0
.500
.500
.500
39.500
46,
.500
25,
28.
.500
.500
.500
.500
.500
31.500
.500
39.
.500
.500
30.
.500

43

16
23

47
39

35
19
38
32

35

500
500

500

500

500

500

500

500
500

500
500
500

500

500
500

500
500

500

18
27
33

15

30

29,
.500
.500
500.
.300
.500

11

34,

43
23

22.
.500
.500
.500
.500
.500
.500
.500
47.500
31.
.500
.500 .
a1,
.500
.500
.500
42.
34.
.500
.500
.500
.500

13

32
34

34
47

26
20

22

10
45

13
24

44

38.
34.
.500
.500
44,
42,
36.

45
25

36

45.

29

31
15,
14.
.500
500 -

4]

32.

.500
.500
.500
.500
.500

500

500

500

500

500
500

500

500

500
500

500
.500 -
.300
.500 -
500
.500
.500 -

500
500

OOODOOOOOOCDOOOOOODOOC)OODDOOOOOOOQ<O0.00000000000DOOO

.000
.000
.000
.000
.000
.000 -
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
. 000
.000.
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000 -
.000

- ‘ . ) _ _ .
ommmqmmmmmmpbwwwuumwmmmmmwmwwHHHHHHHHHHMHHHFHHHH

B
0 ~3

.010
.020
.100
.110
.210
.210
.270
.340
.360
.370
.380
.380
.660
.700
.710
.780
.810
.820
.890
.960
.980
.130
.170
.330
.340
.470
. 750
.760
.840
.990
.040
.330
.350
.510
.810
.600
.890
.050
.150
.310
.260
.410
.490
.530
.030
.340
.080
.270
.190
.760
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Bereat4

Bereabd data
Xloc
Yloc
Elevation :
Variable 1
25.5000 29.5000
26.5000 10.5000
36.5000 19.5000
9.5000 9.5000
21.5000 15.5000
25.5000 0.5000
17.5000 11.5000
33.5000 19.5000
27.5000 2.5000
33.5000 21.5000
8§.5000 24.5000
26.5000 1.5000
. 2.5000 31.5000
12.5000 34.5000
9.5000 18.5000
30.5000 34.5000
28.5000 20.5000
0.5000 38.5000
20,5000 33.5000
3.5000 39.5000
24,5000 11.5000
39.5000 32.5000
1.5000 30.5000
27.5000 14.5000
30.5000 3.5000
7.5000 19.5000
32.5000 7.5000
20.5000 1.5000
6.5000 37.5000
26.5000 36.5000
20.5000 20.5000
17.5000 25.5000
17.5000 1.5000
3.5000 26.5000
6.500C 39.5000
34.5000 23.5000
2.5000 23.5000
24.5000 10.5000
20.5000 37.5000
8.5000 33.5000
34.5000 1.5000
- 22,5000 33.5000
21.5000 30,5000
20.5000 - 8.5000
34.5000 32.5000 -
37.5000 9.5000
"9.,5000¢ 33.5000
29.5000 24.5000
2.5000 11.35000

0000 45.0000
.0000 51.0000
.0000 51.5000
.0000 59.5000
.0000 59.5000
.0000 42.5000
.0000 54,5000
.0000 56.0000
.0000 34.0000
.0000 45.0000
.0000 41.5000
.0000 40.0000
.0000 51.0000
.0000 50.5000
.0000 50.0000
.0000 80.0000
.0000 64.5000
.0000 60.5000
.0000 49,5000
.0000 64.5000
.0000 45.0000
.0000 99.5000
.0000 56.0000
.0000 64.0000
.0000 72.0000
.0000 30.0000
.0000 60.0000
.0000 62.0000
.0000 65.0000
.0000 80.0000
.0000 62.5000
.0000 55.0000
.0000 45.5000
.0000 49.0000
.0000 55.0000
.0000 34.0000 .
.0000 50.5000
.0000 47.0000
. 0000 65.0000
.0000 70.0000
.0000 71.0000
.0000 48.0000
.0000 36.0000
.0000 24.0000
.0000 82.0000
.0000 88.5000
.0000 47.0000
.0000 42.0000
.0000 36.5000
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30.
26,
36.
.5000

31.

18,
.5000
.5000

16

- 17
28

13.
.5000
.5000
.5000
.5000
.5000

10
19
35

7
35

5000
5000
5000

5000

5000
5000

5000

14.
.5000
.5000
.5000
3.
7.
.5000
.5000

20
36
31

?

22

7.
.5000
.5000
.5000
21.
.5000
6.

38
29
15

25

5000

5000
5000

5000

5000
5000

CO0COOOOOODOQOOC

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

61.
57.
91.
51.
.5000

42

50. 00
.0000

27

59.
.5000

57

42,
45,
50.
.0000
41.
69.

52

5000
5000
0000
0000

0000
5000
0000
0000
0000

0000

0000

148



4 .
Northing
Easting
Elevation
Au

10898.
11000.
10947.
10948.
11049.
10846.
.01

.54

.27

11102
11047
10996

10800.
10825.
.00
.90

10825
108495

110849.
10876.
.00

10875

10900.
10900.
10925.
.00
.00

10950
11075

96
07
87
43
63
27

00
00

60
50

10
10
00

10154,
10178.
10171.
10144,
10175.
10160.
10181,
10178.
10157.
10152.
10146.
10174,
10148,
10162
10143,
10174.
10139.
10168.
10168.
10173,
10161.

exp540
expl. comp. 540RL as used for simulations

538.75

" 538.74
' 538.75
538.75

538.75
538.75
538.75
538.76
538.75
538.75
538.75
538.75
538.75
538.75
538.75
538.75

. 538.75

538.75
538.75
538.75
538.75

e

FORRFWHHOHUOROUIOONRO 1 |

.06 -
.05
.08
.68
.54
.31
.52 -
.23
.99
.76
.26
.93
.38
.25
.65
.97
.54
.50
.53

1.11
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Appendix C - SGFRACT Fortran 77 Code

The following two subroutines Arige and coval are pért of the SGFRACT program
source code and contain the esséntial differences between SGFRACT and SGSIM.
They_ are not sufficient on their own to carry out a fractal simulation but are part of a
much larger body of source code that was originally written by C.V. Deutsch for the
SGSIM program and has been modified by D.J. Kentwell to form the SGFRACT
program. Deutsch & Journel (1992) contains a fuil copy of the source code for SGSIM

on disk and it is also available on the internet at fip:/banach.stanford.edu/gshib/.

subroutine krige(ix,iy,iz,xx,yy,zz,cmean,cstdev)

Builds and Solves the SK or OK Kriging System

ok ok ok sk R o S ok ok o s o 3Ok s ok okt ok ok ok ok ok e o

INPUT VARIABLES:

ix,ly,iz index of the point currently being simulated
XX,YY,2Z location of the point currently being simulated

OUTPUT VARIABLES:

cmean kriged estimate “
cstdev kriged standard deviation

EXTERNAL REFERENCES: cholfbs Cholesky LU linear system solver
' sqdist - anisotropic squared distance

OO0 0 60 006G 0G0 000 o0o6oa60a0q

c : v
¢ ORIGINAL: C.V. Deutsch DATE: August 1990
¢ MODIFIED: D.J. Kentwell : May 1997
¢

i;iclude 'sgfract.inc’
flg=0
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c
¢ Split off first node as reference value n and resize close( ):
c

7

v

c

8

C

if{nclose.gt.0) then

index=int{close(1})

xn=x(index)

yn=y(index)

zn=z(index)

vra(i)=vr(index)

nclose=nclose-1

if{idbg.ge.3) then
write{ldbg,*) ' n-xy' ,xn,yn
write(ldbg, *) ' i-xy' ,xx,yy

endif

do 7 k=1,nclose -
close(k)=close(k+1)

continue g

else

¢ if all data is colocated with simulation nodes -

index=1

xn=cnodex(index)

yn=cnodey(index)

zn=cnodez(index)

vra(1)=cnodev(index)

ncnode=ncnode-1

flg=1

if{idbg.ge.3) then
write(ldbg,*) ' n-xy' ,xn,yn
write(ldbg,*) ' t-xy' ,xx,yy

endif

do 8 I=1,ncnode
icnode(l)=icnode(1+1)

continue

endif

¢ Calculate the reference step size.

v

c

is=1

step=sqdist(xx,yy,zz,xn,yn,zn,is,MAXROT,Vrotmat)

step=sqrt(step)
if(idbg.ge.3) write(ldbg, *)'step=",step

c Size of the linear system:

c

= nclose + ncnode

if{idbg.ge.3) then v :
write(ldbg,*) 'nclose=" ,nclose ,'ncnode=" ,ncnode
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endif

- €

¢ Set up vk.vi'iging matrices without reference value:
c
in=0
_ do1j=1,na
. _

¢ Sort out the actual location of point "j"
C

if(j.le.nclose) then
index = int(close(j))

x1  =x(index)

yl =y(index)

zl =z(index)

vra(j+1) = vr(index)
else

c
¢ It is a previously simulated or colocated node:
c
index = j-nclose
if{flg.eq.1) then
indexx = j+1
else ,
indexx = index
endif
x1 = cnodex(indexx)
yl = cnodey(indexx)
zl = cnodez(indexx)
vra(j+1) = cnodev(indexx)
ind = icnode(index)
ix] = ix + (int(ixnode(ind))-nctx-1)
iyl =iy + (int(iynode(ind})-ncty-1)
izl =iz + (int(iznode(ind))-nctz-1)
endif
if{idbg.ge.3) then
write{ldbg,*) ' I-xy' ,x1,yl
endif
do2i=1j
c v
¢ Sort out the actual location of point "i"
c _
if(i.le.nclose) then
index = int(close(i))
X2 =x(index)
y2 = y(index)
z2 =z{index)
else’
c S :
¢ It is a previously simulated or colocated node:
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‘index = i-nclose
if(flg.eq.1) then
indexx =1+1
else ‘
indexx = index
endif
x2 = cnodex(indexx)
y2 = cnodey(indexx)
Zz2 = cnodez(indexx)
ind =icnode(index)
ix2 =ix + (int(ixnode(ind})-nctx-1)
iy2 =iy + (int(iynode(ind))-ncty-1)
iz2 =iz + (int(iznode(ind})-nctz-1)

endif
c
¢ Now, compute the covariance matrix values:
C
in=in+1
cov=cova3(xl,yl,z1,x2 y2 22, Xn,yn,zn ,step)
a(in)=dble(cov)
2 continue
c
¢ Get the RHS column matrix:
c
cov=cova3(xl,yl,z1,xx,yy,zz,xn,yn,zn,step)
r(j)=dble(cov)
rr(@)=r(j)
1 continue
c .
¢ Get the single value "S":
c
cov=cova3(Xx,yy,zz,XX,yy,Zz,Xn,yn,zn,step)
ss=dble(cov)
if(idbg.ge.3) write(ldbg,*) 'ss=",ss _ N
c
¢ Write out the kriging Matrix if Seriously Debugging:
c
if{idbg.ge.3) then : -
write(ldbg, 1 00) ix,iy, iz |
is=1 . ‘
do 4 1-1 ,na ' ‘
=is+i-1
wrlte(ldb 2,101) i,r(3), (a(l),rls ie)
is=is+i
4 continue

100 format(/,'Kriging Matrices fo‘ Node 314 RHS ﬁrst') '
101 format(' r(,i2,) ='17.4, a—'99f’7 4) . o
 endif
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c
" ¢ Solve the linear System: -

¢

call cholfbs(a,t,lu,r,s,na,na,err)
c
¢ Write a warning if the matrix is not positive definit :
c
if(ierr.eq.1) then

if{idbg.ge.1) then
write(ldbg, *) 'WARNING chol-not positive definite'
write(ldbg,*) ' for node',ix,iy,iz

endif.

cmean =0.0

~cstdev=1.0
return
endif

C N
¢ Write out the kriging Matrix if Seriously Debugging:
c
if(idbg.ge.3) then
do 40 =1,na
write(ldbg, 140) i,s(i)
40 continue
140 format(' Kriging weight for data: ',i4,' =",18.4)
endif ’
Y .
¢ Compute missing reference element and local variance
c .
cstdev=0.0
bn=0.0
do 5i=1,na
bn=bn+real(s(i})
cstdev=cstdev+real(s(i)}*rr(i)

S continue
bn=1-bn
cstdev=ss-cstdev
if{cstdev.1t.0.0) then - _
write(ldbg,*) NEGATIVE VARIANCE: ',cstdev
cstdev =0.0 '
endif
C .
¢ Get the standard deviation
c
cstdev=sqrt{cstdev)*normf
c

¢ Compute the estimate and return:
C : :
cmean = real(bn)*vra(1)
if{idbg.ge.3) then
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wi-ite(ldbg,*) "vral',vra(1),bn',bn

endif

do 6i=1,na
cmean =cmean + real(s(t))*vra(i+1)
if{idbg.ge.3) then
write(ldbg,*) 'vra\,(it+1), ' ,vra(it])

endif
continue

return
end

real function cova3 (xlu,yl,zl,x2,y2,z2,xn,yn,zn,step)

O o000

C

Covariance Between Two Points (3-D Version)
o 33k ke ok ok ok ok ok sk ok e e e ok o sl ok o b s s ok ol o o ok e e ok ok a sl ok ol ok sk ok ok ok ok

¢ This function returns the covariance associated with a fBm power model
¢ that is specified by possibly four different

¢ nested variogram structures. The anisotropy definition can be

c different for each of the nested structures.

c
c
c
¢ INPUT VARIABLES:
c
x1,yl,zl Coordinates of first point
X2,y2,22 Coordinates of second point
Xn,yn,zn Coordinates of the reference point
nst Number of nested structures (max. 4),
c0 Nugget constant (isotropic).
ce(nst) Multiplicative factor of each nested structure,
Slope VH for power model.
aa(nst) Parameter "a" (ZH = power) of each nested structure.
it(nst) Type of each nested structure 6 = fBm:
angl Azimuth angle for the principal direction of
continuity (measured clockwise in degrees from Y)
ang2 Dip angle for the principal direction of continuity
(measured in negative degrees down from horizontal)
ang3 Third rotation angle to rotate the two minor
directions around the principal direction defined
by angl and ang2. A positive angle acts clockwise
while looking in the principal direction.
anisl Anisotropy (radius in minor direction at 90
degrees from "angl" divided by the principal radius
in direction "ang1")
anis2 Anisotropy (radius in minor direction at 90 degrees

O G 00000000006 G oo oOoaaaghalf

155



c vertical from "angl" divided by the principal
c- radius in direction "angl")
c
c
c
¢ OUTPUT VARIABLES: returns "cova3" the covariance cbtained from the
c variogram model.
c
c
¢ EXTERNAL REFERENCES: sqdist computes anisotropic squared distance
c
¢ ORIGINAL CYV. Deutsch
¢ MODIFIED: D.J. Kentwell May 1997
c
parameter(PI=3.14159265,DTOR=PI/180.0, PMX=09999 )
include ‘sgfract.inc'
c
¢ Loop over all the structures:
c
cova3 =0.0
do 2 is=1,nst
c .
c Compute the appropriate structural distance: -
c
hsqd1=sqdist(x1,y1,z1,xn,yn,zn,is, MAXROT,rotmat}
hsqd2=sqdist(x1,y1,z1,x2,y2,22,is MAXROT,rotmat)
hsqd3=sqdist(xn,yn,zn,x2,y2,22,is MAXROT,rotmat)
hl = sqrt(hsqd1)
h2 = sqrt(hsqd2)
h3 = sqri(hsqd3)
if(idbg. ge.3) then
write(ldbg,*) 'h1-3 ' |h1 h2 h3
endif
c

¢ Calculate the fBm model covariances as per Rumelin 1991,
¢ 'Simulation of fractional Brownian motion' in Peitgen et.al. (eds)
¢ Fractals in the Fundamental and applies Sciences. Elsevier. 1991,
¢
tmp=cc(is)*(h1**aa(is)-h2**aa(is)+h3**aa(is))
coval=cova3--tmp
2 continue
return
end
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Appendix D - Proof: Covariance of the increments of Fractional Brownian

Motion

~ The increments or fractional Brownian motion are stationary and have mean 0. Hence .

C(AB(u) = E[ABx(u)ABx(u + h)]
= E[ABy(ua)ABr(up)]

The covartance of the increment with respect to a known but arbitrary value at location
v_uﬁ is then | _
= E[(Br(ua) - Bu(un))Br(up) - Br(uq))]. D.1)
'From equation 4. 1 0 we have |
- E[lBri(ua) - Bra(up)?] = Vislua - ugl (D.2)
‘where Vy is a constant of ‘proportionality. Alternatively
El(Br(ua) - Bu(ug))?] = EN(Bu(ua) ~ Bir(uy) +Bi(ug) — Bu(ug))?]
= E[(Ba(ue) ~ Bu(un))?] + E[Br(un) — Bu(up))?]
H2E[(Br(ua) - Bu(un))Br(un) - Br(up))].  (D.3)

From equations D.1 and D.3 we get
E[(Bir(ua) — Br(un))(Bu(un) — Bu(up))] =

0.5Vr(lua— upl % — lug — uy| %7 - lu,, — ugl ). D.4)
Alternatively '
E[(Bu(ua) — Bu(ug))(Bu(uy) — Bu(up))] =
~E[(B11(ua) = Br(un)X(Br(up) — Br(uy))]. (D.5)

From equations D.1, D.4 and D.5 we the have thé result
C(AByx(w)) = 0.5Vy(lug—ugyl# —lu, —upl? +lu, —ugl?). (D.6)

157



(kriging)

rawok
nsbtok

Appendix E - Goodall data set 'Evolution’

blast hole exploration

(raw data) (raw data)

blastcomp expcomp

(composited data) (composited data)
b5404x4 exp540 expvar

(averged simulations)

fractal100av
sgav100sk
sgav100ok

(reference data) (sample data)  (variography data)

(simulations)

fractal sim1
fractal sim2
fractal sim3
sgsim(sk}1
sgsim(sk)2
sgsim(sk)3
sgsim{ok)1
sgsim{ok)2
sgsim{ok)3
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