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Abstract 

The nature of spatial distributions of geological variables such as ore grades is of 

primary concern when modelling ore bodies and mineral resources. The aim of any 

mineral resource evaluation process is to determine the location, extent, volume and 

average grade of that resource by a trade off between maximum confidence in the 

results and minimum sampling effort. The principal aim of almost every geostatistical 

modelling process is to predict the spatial variation of one or more geological variables 

in order to estimate values of those variables at locations that have not been sampled. 

From the spatial analysis of these variables, in conjunction with the physical geology of · 

the region of interest, the location, extent and vo]ume, or series of discrete vohimes, 

whose average ore grade exceeds a specific ore grade cut off value determined' by 

·. economic parameters can be determined, Of interest are not only the volume and 

average grade of the material but also the degree of uncertainty associated with each of 

these: Geostatistics currently provides many methods of assessing spatial variability. 

Fractal dimensions also give us a measure of spatial variability and have been found to 

model many natural phenomenon successfully (Mandelbrot 1983, Burrough 1981 ), but 

until now fractal modelling techniques have not been able to match the ve/satility and 

accuracy of geostatistical methods. Fractal ideas and use of the fractal dimension may in 

certain cases provide a better understanding of the way in which spatial variability 

manifests itself in geostatistical situations. This research will propose and investigate a 

new application of fractal simulation methods to spatial variability and spatial 

interpolation techniques as they relate to ore body modelling. The results show some 

. advantc1ges 'iJver existing techniques of geostati.stical simulation. 
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1 Introduction 

In this chapter we will outline the need for techniques that predict spatial variability of 

geological variables, present a preview summary of the thesis and give a brief 

description of the software used. 

Ll The Problem in Relation to Ore Body Modelling 

The aim when evaluating any prospect or potentially mineable orebody is to determine 

the physical extent and economic value of the mineralisation whilst at the same time 

using the minimum amount of sampling necessary to give a reliable estimate. Minimising 

sampling is a major component in minimising exploration and development costs. 

Geostatistical techniques, along with various rules of thumb, are currently used to 

achieve this. The basis of an ore body model comes firstly from the geological 

structures present and secondly from a set of sample values of some geological variable 

or variables taken from known locations throughout the region of interest. In other 

words, an ore body model is, in part, a spatial distribution of sample values in three 

dimensions. The more samples (appropriately distributed) that are taken the better the 

results of the modelling process should be. But more samples mean more costs and 

more time spent, not only with the sampling procedure itself but also with access to the 

sites that need to be sampled. For example it is physically more difficult to sample 

locations that are on steep hillsides or underwater. Therefore the number of samples 

taken and the choice of sample locations is always a trade off between maximum 

confidence in the overall results and minimum sampling effort. 
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The principal aim of almost every geostatistical modelling process is to predict the 

spatial variation of one or more geological variables in order to estimate values of those 

variables at locations that have not been sampled. Such a variable may be any geological 

property that varies over distance and that can be measured in numeric or categorical 

values. The main variable of interest is usually the mineral grade, in grams per tonne, 

but other variables such as vein widths or veining densities are often used as an 

indicator of the degree of mineralisation. From the spatial analysis of these variables, in 

conjunction with the physical geology of the region of interest, the object is to define 

the location, extent and volume, or series of discrete volumes, whose average ore grade 

exceeds a specific ore grade cut off value determined by economic parameters. Of 

interest are not only the volume and average grade of the material but also the degree of 

uncertainty associated with each of these. 

Geostatistics currently provides many methods of assessing spatial variability. Fractal 

dimensions also give us a measure of spatial variability and have been found to model 

many natural phenomenon successfully (Mandelbrot 1983, Burrough 1981 ), but until 

now fractal modelling techniques have not been able to match the versatility and 

accuracy of geostatistical methods. 

Aim of the Thesis 

The aim of this thesis is to investigate fractal modelling methods and determine whether 

and how they can be applied in a geostatistical framework to ore body modelling, and in 

particular to gold deposits, and to determine whether they offer any advantages over 

existing geostatistical techniques. 
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.Ll. Significance of the research 

With the price of gold currently at a twelve year low and with Australia now being the 

world's most expensive gold producer (Dunn 1997, p22) gold exploration and 

production companies are more and more concerned with obtaining an accurate 

assessment of their potential reserves. Any techniques that improve the accuracy of that 

assessment without substantially increasing the costs involved will therefore be of great 

benefit to the industry. 

Outline of the thesis 

In chapter two we will examine the mathematical details of the theory of regionalised 

variables underlying geostatistics and explain, with examples, the basic estimation 

process of kriging. In chapter three we will look at some of the different methods of 

geostatistical simulation and give theoretical details plus examples of two methods in 

particular, namely sequential Gaussian simulation and LU decomposition. In chapter 

four we will detail fractal theory focusing on stochastic fractals and the model of 

fractional Brownian motion before going on to propose a new scheme, SGFRACT, 

that incorporates the fractal dimension into geostatistics. The data used in the examples 

in chapters two and three are used to test the new simulation scheme. Chapter five 

shows the application of SGFRACT to an actual industrial situation using data from a 

completed gold mining operation in the Northern Territory. Chapter six contains a 

review, conclusions and recommendations for further research. 
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.Ll. Software Summaiy 

The software used for calculation, manipulation and visualisation of data is briefly 

described here and is then referred to throughout the thesis by its program name in 

capitals. 

The GEMCOM (Gemcom 1996) suite of mining software includes: 

GS32 - A three dimensional visualisation and solids creation mining software 

package. 

PCXPLOR - An exploration database management, statistics and geostatistics 

processing package. 

The GSLIB (Deutsch & Joumel 1992) suite of geostatistical routines includes: 

OKB2D - A basic two dimensional kriging estimation routine. 

SGSIM - A sequential Gaussian simulation routine. 

NSCORE & BACKTR - transformation routines. 

Other statistics and presentation software used include: 

UPFlLE (Kanevski 1997) 

V ARlOWIN 2.1 (Pannatier 1994). 

10 



2 Estimation 

Consider a continuous variable distributed in one, two or three dimensional space. In 

order to understand the nature of this variable we need to have a model of how it 

changes with distance and direction. The phenomenon can be sampled at different 

discrete locations but this only gives us information about those specific points and does 

not by itself tell us anything about the unsampled areas. We know from experience that, 

in general, things found close together tend to be similar and that things that are further 

away from each other tend to be different. This being the case, we would expect that 

some sort of spatial continuity exists that could be accurately modelled if we knew the 

exact relationship between all possible point values. However most situations that occur 

in nature, including the distribution of mineral grades throughout a deposit, do not show 

such regularity or conformity. In fact, upon initial examination many natural phenomena 

show what appears to be totally random behaviour. The task of looking br some sort 

of spatial continuity within these at least partially random phenomena therefore requires 

some sort of probabilistic model that takes account of both the random and the 

structured aspects. Geostatistics is a branch of mathematics that deals with modelling 

and estimation in such situations. 

In this chapter we will examine regionalised variable theory which is the basis of 

geostatistics and go on to outline the framework and mathematical tools that allow the 

estimation of spatial variables within a probabilistic model. The notation and 

methodology we will use mostly follows Deutsch & Journel (1992). Where conflicting 

notation could lead to confusion some amendments have been made. 
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Regionalised Variable Theory 

Regionalised variable theory states that where a property is sampled in a region of space 

each individual sample value can be considered as the outcome from a single but 

unknown random process, and that a set of sample values from different locations in a 

region of space can be considered as one outcome of a set of random processes that are 

not necessarily the same. A random process in this context is a general term covering 

any natural or artificial mechanism which produces results that appear to be without any 

pattern or order. Consider a particular location ua which is a vector of up to three 

components (u~, 1/a, u~) within a region R and where a is an index representing the 

particular location. When the variable under consideration is continuous and the 

locations are points there is an infinite number of possible sample locations within R. 

The random process at location Ua is called a random variable Z(ua). The set of all 

random variables within R is called a random junction {Z(u): u ER}. A regionalised 

value z(ua) is an individual sample value and represents one realisation of the random 

variable Z(ua). A regionalised variable {z(u): u ER} is the set of all possible sample 

values in R and represents one realisation of all the random variables in R. From this 

point on we will use Z(u) to denote a random function and z(u) to denote a 

regionalised variable. To accommodate the deterministic aspects as well as the random 

aspects of regionalised variables the random function model of Z(u) can be considered 

as being made up of three major components for all locations u within the region, 

Z(u)=m(u)+Y(u)+e \fu ER (2.1) 
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where m(u) is a deterministic, linear or non-linear, function describing the trend or drift 

component, Y(u) represents the random spatially dependent residuals from m(u) and e 

is a residual spatially independent noise term. We will investigate each of these terms in 

more detail in the following sections. This model deals with random functions whose 

joint probability distributions are unknown and we must now establish a probabilistic 

framework in which we can study and make inferences about the forms of these 

distributions. 

Point Value 

Distance 

Deterministic Trend (Drift) 

Spatially Dependent Residuals 

Noise 

Figure. 2.1. One dimensional data profile with linear drift showing random function model 
components. 

Each random variable Z(ua) within the random function Z(u) has an unknown 

cumulative distribution function F given by 

F(ua;z) =P(Z(ua) <z). (2.2) 
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· Similarly the unknown joint probability distribution of the random function Z(u) : with n 

random variables is defined by 

F(u1, ... ,un;z1, ... ,Zn)=P(Z(u1)<z1, ... ,Z(u,,)<Zn). (2.3) 

In order to obtain a probabilistic interpretation of any random variable it is necessary to 

be able to infer its probability distribution. To approximate a statisti,caI distribution it is 

often sufficient to define its first two moments, if they exist. This does not completely 

.define the distribution as it can be shown that two different distributions can have the 

same first two moments, but it does define certain characteristics of a distribution which 

tum vut to be sufficient to provide approximate solutions for mast geostatistical 

purposes (Joumel & Huijbregts 1978). The first order moment of a distribution is its 

mean ol'"its expectation. The expectation ofa random variable Z(ua), assuming it exists, 

is usually a function of u and is written as 

E[Z(u)] = m(u). (2.4) 

There are three second order moments we shall consider. The first is the variance of a 

random variable which is a. measure of the dispersion of a distribution away from its . . . 

mean. The next second order moment is the covariance which is a measure of the 

nature of association between two random variables. The third is the variogram which 

:s the variance of the increments of two random variables and is therefore a measure of 

the dispersion of the distribution of the increments. 

Definition 2.1 The variance of a random variable Z(ua), ifit exist~, is defined as, 

.. ~-

;· 

• 

(2.5) 
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Definition 2.2 The covariance of the random variables, Z(u(l) and Z(up), i~suming 

both exist, is defined as 

C(ua, up)= E[(Z(ua)- m(ua))(Z(ua, - m(up))J . (2.6) 

Definition 2.3 The variogram is the variance of the increment Z(ua)-Z(up) and is 

defined as 

2y(ua, up)= Var(Z(ua)- Z(up)). (2.7) 

To cany out statistical inference we require a number of samples from a distribution, 

the more samples there are the closer the estimation of the parameters will be to the true 

distribution parameters. However in geostatistical situations we only have one sample 

set from the random function which is in tum made up of single sample values from 

individual random variables. This is insufficient for statistical inference. To overcome 

this problem certain assumptions of homogeneity are necessary. These are broadly 

covered by the term stationarity. lf we consider the region of interest to be 

homogeneous, that is that the phenomena under investigation have been formed by a 

uniform process for that region, and hence assume that the regionalised variable repeats 

itself in space, this then provides the equivalent of many realisations of the random 

function which pennits a certain amount of statistical inference. For example, imagine a 

two dimensional grid of sample locations and a small window which is allowed to move 

around that grid. Each possible position of that smaller window is considered to be a 

different realisation of the same random function (see figure 2.2). We assume that the 

characteristics of the random function do not change when shifting a given set of points 

from one area to another. This is known as translation invariance. 

15 
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Figure. 2.2. Different realisations of the same random function with translation vector h. 

Definition 2.4 A random function Z(u) is said to be strictly stationc.rry if for any set of 

11 points u 1, ... , u11 and any translation vector h 

(2.8) 

From this it follows that any two random variables Z(ua) and Z(u(l+h) from a 

stationary random function have the same probability distribution and that all random 

variables, within a particular stationary random function, have a constant mean m which 

therefore does not depend on the location u. From equation 2.4 we now get 

E[Z(ua)] :; m Vuo. ER. (2.9) 

Another implication of the assumption of strict stationarity is that the functions in 

equations 2.6 and 2. 7 depend only on the translation vector hand not on the location u. 

Therefore any given pair of random variables (Z(ua), Z(ua+h)] can be considered as 

having the same bivariate probability as any other pair from the stationary random 

function. Thus, assuming the covariance for each pair of random variables exists, from 

equations 2.6 and 2.9 we now get 

C(ua, up)= C(ua, Ua+h) 

= E[(Z(ua)-m)(Z(ua+h)- m)) 

= E[Z(ua)Z(u(l+h)] -E[Z(ua)]m -E[Z(ua+h)]m + m2 

(2.10) 

16 



hence, 

E[Z(ua)Z(ua+h)] - m2 = C(h) Vu 11 ER. (2.11) 

Definition 2.S A random function is second order stationary if, for all vectors h, 

E[Z(ua)] =m v'ua ER 

and 

E[Z(ua)Z(ua+h)]- m2 = C(h) 'v'ua ER. 

Second order stationarity is weaker than strict stationarity in that it does not require the 

full probability distribution to be known, only the expectation and covariance function 

of the random variables must exist and the variance of the random function must be 

finite. The existence of the covariance function implies the existence of a finite variance 

because at a separation of h= O the covariance is equal to the variance . 

. -: C(O) = E[(Z(ua)-111)2] = Var(Z(ua)) Vu ER -(~; 12) 

If we now consider the s_tationary variogram function, eql':ation 2. 7 becomes 

2y(Ua', up)= Var(Z(ua)-Z(ua+b)) (2.13) 

and the existence of the right hand side does not require Var(Z(ua)) to be finite nor 

does it require the existence of the covariance function. 

··.~· 

Definition 2.6 A random function is intrinsic_ second order stationary when, for all 

vectors h, 

E[Z(ua-i-h)-Z(ua)] = 0 Vu eR (2.14) 

and 

Var(Z(u 0 +h)- Z(ua)) = 2y(h). (2.15) 

If we relate the concept of stationarity under the covariance or variogram function 

(equations 2.9, 2. 11, 2.14 and 2.15) back to our model in equation 2. I we now have 

what is known as a stationary random fu11ctio11 model 

17 



Z(u) = m + Y(u) +e 
(2.16) 

where m is a constant mean, Y(u) represents the spatially correlated random variation 

that remains once the mean has been subtracted and e is a residual error term. The 

variation with distance and direction h of the term Y(u) can be modelled by the 

covariance function in some circumstances and by the variogram function in a11 

circumstances. 

Variogram and Covariance Functions 

Having established our stationary random function model we will now concentrate on 

the component Y{u) which contains any spatially correJated structure that exists in a 

particular regionalised variable. The principal tool used to study this structure is the 

semi-variogram for an intrinsic second order stationary process which is a plot of the 

semi-variogram function 

(2.17) 

against the separation distance !hi . For the moment we will only consider models that 

come from data sets that are isotropic, that is data that show the same structure in all 

directions. The semi-variograrn is usually used in modelling in preference to the 

covariance function because it can handle random functions that are both second order 

stationary and intrinsic second order stationary. The covariance function and the 

semi-variogram function are related by the equation 

y(h) = C(O) - C(h) (2. 18) 

which can be derived from equations 2.12 ~nd 2.13. It should be noted that the 

semi-variogram can always be derived from the covariance but the converse is not 
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always possible because the semi-variogram may only be derived from a process which 

is intrinsic second order stationary. One example of a process for which the 

semi-variogram function exists but the covariance function does not is that of Brownian 

motion (Cressie 1991 ). 

When using covariance or semi-variogram functions to compute variances of a sample 

set from a stationary random function we are in fact using a li11ear combination, 

(2. I9) 

where "-a · is any real number, of the individual random variables which itself is also a 

random variable. This linear combination must adhere to the condition that its 

covariance or semi-variogram function is in some sense positive definite, ensuring that 

the variance of the random variable is never negative. The foUowing properties used in 

definitions 2. 7 and 2.8 are classical results of the theory of stochastic processes taken 

from Journel and Huijbregts (1978). 

Definition 2.7 The covariance function C(h) = C(ua, up) is positive definite if, 

Var(Y) = f f AaApC(ua, up) ~ 0 
a=I J}=l 

(2.20) 

where Ao; and 11.p are any real numbers. 

It follows from definition 2. 7 that not just any function can . be considered as the 

covariance function of a stationary random function. 

Definition 2.8 When C(O) does not exist, the semi-variogram function y(b) =y(ua, up) 

is conditional positive definite if, 
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and 

, Var(Y) = - f f A«A.py(ua, up) ;?; 0 
u=l l}=;l 

(2.21) 

where A.a and )..p are any real numbers. 

In some texts this condition on the semi-variogram is called conditional negative 

definite (Wackemagel 1995). In the rest of this chapter we will mainly refer to 

semi-variogram models and not covariance models because, as stated above, the 

semi-variogram model can always be derived from the covariance model but the 

converse is not always possible. The general form of the theoretical semi-variogram is 

y(O) = 0 and y(h) increases as lhl increases. The semi-variogram is also an even 

function, that is 

y(h) = y(-h). (2.22) 

In the case where the covariance function exists, as lhl gets very large, y(h) reaches, or 

approaches asymptotically, a particular value and remains at this value for any larger 

values of [hi. This value is known as the sill (co +c1) where co is the nugget variance, 

also known as the nugget effect, and c1 is the partial sill (see figure 2.3). The existence 

of the sill indicates an absence of correlation between the two random variables 

Z(ua) and Z(ua+h) at large values of lhl. Models with a sill are often called bounded 

models. The sill corresponds to the variance of the random function and is defined as 

co +c1 = y(oo) = Var(Z(u)) = C(O). (2.23) 

The other parameter in a semi-variogram model, where the covariance function exists, is 

the ra11ge a which is the value of lhJ at which y(h) effectively reaches the sill. We say 

'effectively reaches the sill' because with models where y(h) approaches the sill 

asymptotically the range is usually defined at the value of lhl at which y(h) is 95% of the 

sill and is referred to as the practical range. The range represents the distance beyond 

20 



which there is no spatial correlation. In cases where a sill exists the theoretical 

semi-variogram models are known as transition or bounded models and relate to 

random functions that are second order stationary and hence also intrinsic second order 

stJ.tionary. In the case where y(h) continues to increase as Jhl increases with no 

apparent limit, the theoretical semi-variograrn model is said to be unbounded and 

corresponds to a random function that can only be characterised as intrinsic second 

order stationary and not second order stationary. 

1(h) - - - -- - - - -=..-,--,----...._ _______ _ 

Partial cl // 
Sill 

//' 

/ 
'/ 

Nugget co 
Variance 

0 range !hi 

Figure. 2.3. Semi-variograrn .;omponents. 

Definition 2.9 The experimental semi-variogram (see figure 2.4) is.defined from the 

sample data by 

y(h) = L f (z(ua) -z(ua + h))2 
..... a=! 

(2.24) 

where N is the number of sample pairs. 

Equation 2.24 is known as the classical estimator of the semi-variogram. The sample 

pairs are defined by searching for all possible pairs within a stationary region that, when 

taken as a vector, match a particular distance and direction h within a given set of 

tolerances (see figure 2.5). There are a number of bounded models commonly used in 

practice, the choice of which depends on both the fitting of the data that form the 

experimental semi-variogram and a knowledge of the expected behaviour of the 
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phenomenon under investigation. The models most often used in ore body modelling are 

described below. 

r{h) 

Average lh[ for group 

Figure. 2.4. One example of an experimentar semi•variogram. 
/ 

/'·-.,._ h 

~~ 
' Yiag 2\, .. , 

.// 

lag O 

Figure 2.5. Pairselection tolerances (Jag, angle and bandwidth) where each successive lag 
· defines the pair separation distance lhl, 

The pure nugget effect model, figure 2.6, is a special case which is a model with no 

spatial structure.· It represents a complete absence of spatial correlation and therefore 

absence of structure and complete randomness of the random function. It can be 

considered to be made up of two separate but indistinguishable parts. The first, from 

which it gets its name, relates to gold mining where there is a tendency to find very high 

concentrations, or nuggets, amongst the more even general distribution of the gold 

within the geological formation. Therefore two sample values taken very close together, 

which would normally be expected to show almost identical values, may sometimes 
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show very different values. The second part of the pure nugget effect model relates to 

random errors in the sampling and measuring process itself. Although two samples 

taken very close together may actually have the same value, errors in the sampling and 

measuring process indicate that they do not Another interpretation of the nugget efffect 

is that it represents variation at a scale smaller than that of the accuracy of the 

measurements. If we relate the pure nugget effect back to equation 2.16 we see that it 

corresponds to the parameter e which we defined as a residual error term with mean 

zero. The pure nugget effect shows up on the experimental semi-variogram as a 

discontinuity at the origin and is usually modelled as a con:-..ant term together with other 

semi-variogram models. The pure nugget model also corresponds to the variance of the 

random function. 

Definition 2.10 The pure nugget model is defined by, 

y (h) 

0 

{ 0 ' y(h) = co 

sill 

ltll 

lhl=O } 
V]hl>O · 

Figure 2.6. Pure nugget effect. . 

(2.25) 

The following models do not contain terms for pure nugget effect. The term c1 will 

denote the partial sil!. 
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Definition 2.11 The sphericatmode/ is defined by, 

{ 
,C (Jlbl _ !.!!!!!.) 0 < lhl <a} y(h) ;: 1 2a 2 al • - - . 

C1 , lhl >a 
{2.26) 

In the case of the spherical model the parameter a is equal to the range. The spherical 

model, in association with nugget effect, is of the form that is most commonly 

encountered in geological situations. It is characterised by a steep linear behaviour near 

the origin then a gradual flattening to reach its sill at a finite distance which is the range 

a (see figure 2. 7). It corresponds to random function with very irregular variation at 

~mall values off hj. 

Definition 2.12 The exponential model is defined by, 

y(h) = c1 ( I - exp(-3~hl)) . (2.27) 

· The exponential model also displays linear behaviour at the origin, is steeper than the 

spherical model and only approaches its sill asymptotically. The (practical) range a is 

reached at 95% of the partial sill. This form (Isaaks & Srivastava 1989, Deutsch & 

Joumel 1992), although not the classical form, makes more sense when practically 

fitting an experimental semi-variogram. For the exponential model used in some texts 

(Journel & Huijbregts 1978, Wackernagel 1995) a is still called the range but is equal to 

a third of the practical range. 

C, 

y (h) 

0 lhl 
range 

(practical range) 

sill 
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Figure. 2.7. Bounded semi-variogram models. 

The power model is an unbounded model which, by definition, does not have a sill (see 

figure 2.8). 

Definition 2.13 The power model is defined by, 

y(h) = blhl 6 where Q < 9 < 2 

and b is the slope of the line between the origin and Jhl = I . 

(2.28) 

The linear model is a special case of the power model where 9 equals I and hence 

produces a straight line, It is defined by 

(2,29) 

y (h) 

0 lhl 

Figure. 2.8. Typical power semi-variogram models. 

Nested models are models made up of linear combinations of variogram models, 

bounded or unbounded, and can be justified in practice by imagining different sets of 

physical causes operating at different scale ranges that combine to make up the entire 

phenomenon under investigation. For example different geological processes act at 

different scales; sedimentary processes act on fine particles in the order of millimetres 

and centimetres and volcanic processes act in the order of tens to hundreds of metres. 

25 



Formally, a nested semi~variogram is made up of ····• 11 + I elemental semi-variograms 

numbered with an index " ;;::: 0, ... , 11 and is defined,by 

n 
y(h):::: E Yu(h). , 

u=O . 
(2.30) 

!; 

Note that when a nested model is made lip of ljounded models and includes a pure 

nugget effect model the sill is made .up of a summation of the nugget variance and the 
. . ~ 

partial sills of the other models,in the nest 
. . : 

sill;;:: Co+ f (c1)w. (2.31) 
ll,,';:;-_r r 

where (c 1)... denotes the partial ,sill of tr/ wth boi1nded model. Not~ also that if 
i' 

unbounded models are included in a nest a si1u' will not exist. 
. ' ;/ 

}! 

Anisotropy 
.,' ' 

. . . . . ,•' \ 

So far we have been looking at situatibns where the spatial·structure i~ the same in all 
.. 

:: - .. 

directions in two or three dimensionµ! space.This often does;not occu·~ in real data sets 
:, ·: : _J; 

and we have to model separate serni-variograms for different .,/directions of our 

translation vector h. We may find that the region under examination contains some sort 

of anisotropy. Range anisotropy exists when all the directional semi~variogram models 
tJ 

for a particular set of data have the'i same type of model with the same sill but different 
' .. 

ranges. Geometric aniso~,:opy is a form of range anisotropy t~at is described by finding 

the directions of the axes of an ellipse, in two dimensions, or an ellipsoid in three 

dimensions. These directions are found with the use of an iso-semi-variogram diagram, 

(see figure 2.9). An iso-semi-variogram in two dimensions is a plot of the values of each 

directional semi-variogram function at se!~cted values of h along each of their 
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respective directional vectors from the origin. The last value, if it exists, along the 

vector is the range in that direction. 

h0° 

\ 

\ 

\ 

.,,7! geometric 
anisotropy axes 

h 90 ° 
grid system axes 

Figure. 2.9. lso-semi-variogram diagram. 

To handle two dimensional geometric anisotropy a rotation and dilation can be 

performed on the initial rectangular co-ordinates of the data locations. The rotation 

brings the co-ordinate system into line with the major axis of the ellipse of geometric 

anisotropy and the dilation then turns the ellipse into a circle with radius equal to the 

major semi-axis. The initial orientation of the co-ordinates is then restored by reversing 

.the rotation. The transfonnation for each co-ordinate pair is as follows, 

[ ,l ~ J [ cos(-9) sin(-<p) ][ I O J[ cos <p sin cp J[ zru J 
111 { = -sin(-cp) cos(-<p) 0 t -sin cp cos q> ,l~ 

(2.32) 

where cp is the rotation angle from the grid axis to the major geometric anisotropy axis 
·; 

and t = :~ < I is the ratio of anisotropy derived from the ranges of the directional 

semi-variogram models aligned with the major and minor axes of anisotropy. In matrix 

form this is written as, 

u' = R-q, Y Rq, u = A u . (2.33) 

27 



where the prime denotes a transform. To obtain an isotropic semi-variogram model we 

can now take the matrix A and multiply it by any two dimensional separation vector h 

such that, h' = Ah and therefore, 

Yani.rotropic(h) = Y:.rotroptc{h'). (2.34) 

This is then used with the original untransformed data. Three dimensional anisotropy in 

practice is almost never geometric, however the theoretical procedure for dealing with 

it is similar to the two dimensional case. It is more usual to deal with three dimensional 

anisotropy as a mixture of geometric anisotropy and zonai anisotropy. We define zonal 

anisotropy as the case where the sill changes with direction and the range remains the 

same for all directional component semi-variograms. Zonal anisotropy is modelled as if 

the phenomenon under investigation was made up of a number of separate structures. 

A single semi-variogram model for zonal anisotropy can be considered as being a 

nested semi-variogram model with a sill value equal to the sum of the individual 

component models' partial sill values. Each directional component is modelled as for 

geometric anisotropy but with infinite ranges in the directions perpendicular to the 

e:_omponent. This sets the anisotropy ratio to O in the perpendicular directions and 

eliminates their influence. For the two dimensional example 

The appropriate transformation 

t = lim ~ = 0. 
a 1..;,co 0 1 

h1 = Ah where A= R-IP[ 1 O ]Rqi 
· 0 0 

(2.35) 

is applied to each component which can then be treated as a set of nested models and 

summed to give a final isotropic model. 

w I 
y(h) = L Yn(hn) 

n=O (2.36) 

28 



Here w is the number of reduced component directional models and n is the associated 

index. A general structural isotropic model that is a combination of geometric and 

zonal anisotropy is obtained in a similar way by nesting reduced geometric and zonal 

component models. 

Change of Support 

So far we have been looking at theoredcal models that treat the individual regionalised 

values z(ua) as point data with no dimension and no size. This is not the case in 

practice. In most cases and particularly in mining applications we are in fact dealing 

with an amount of material of some volume v from which the regionalised value zv(ua) 

is derived. This volume is known as the point support v( ua) . In general, random 

variable populations derived from small supports have a higt-er variance than random 

variable populations derived from larger supports over the same region but still maintain 

the same mean. If corrections for support are not applied to the semi-variogram and 

covariance functions they do not correctly represent any random function defined on 

anything other than point support. The process of attributing a value over a region of 

space, by considering a set of averaged point values, to a single point value is known as 

regularisation. The mean value zv(ua) is said to be the regularisation of a point variable 

z(ua) over the volume v(ua) and is expressed as the integral 

(2.37) 
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-
Figure. 2.10. Point and volume data histograms. 

The change of support has two opposite effects that need to be considered. The first 

occurs when volume data is to be treated as a point value and the second is when point 

values are used to represent volumes. In the first case, if the 'size' of the volume is small 

in relation to the average distance between samples then the values may be considered 

as quasi-point data and do not require any correction. This is what we will assume for 

all examples and the case study in chapter five. We will not encounter the second case 

in our examples and case study and will not go into any great detail here except to 

mention one simple correction method. If we already have some measure of the 

difference in variance between two distributions defined on different supports and we 

know their mean we can use an affine correction to transfonn the values of one to the 

other. 

z';:; Jj(z-m)+m 

where/is the ratio of the variances 

a 2(vlR)/a 2(vlR), 

(2.38) 

(2.39) 

V is the larger support and v is the smaller support. This, in effect, compresses the 

distribution reducing its variance but leaves the mean unchanged ( see figure 5. I). For 

more detailed theory on support correction see Joumel & Huijbregts (1978) 
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Kriging 

Simple kriging is a minimum error variance estimation algorithm based on linear 

regression and is the basis for all other types of kriging. It requires knowledge of the 

means of the random variables under consideration and in its non-stationary form is 

expressed as 

(2.40) 

where u, is the location of the random variable to be estimated, Z,k(u;) is the simple 

kriging estimate and la a= I, .... n is the set of kriging weights. In its st_ationary 

form, with a constant mean m it reduces to 

" ll ll 
ZsK(u;) = E A(lZ(u(l) +(1- I: A(l) m. 

=I =I 

The simple kriging weights for equation 2.41 are given by 

f ApC(ua,Up):::C(ua:,Ut) a= l, ... ,11 
J}=l 

The simple kriging estimation error variance is given by, 
2 n 

crsK = C(O)- L AaC(ua, lli). 
ct=l 

(2.41) 

(2.42) 

(2.43) 

Ordinary kriging is a linear system of equations that eliminates the need to know the 

means of the random variables. The ordinary kriging estimator Z~du;) is a linear 

combination of n weighted surrounding random variables, 

(2.44) 

where Aa a = 1, ... , n is a set of weights whose sum is equal to one and whose 

ordinary kriging estimation variance abK(u;) is a minimum. Ordinary kriging is an 

unbiased estimator meaning that the average estimation error is zero as shown by 

equations 2.45 to 2.47. With the condition 

we have 

II 

I: i..(l == 1 
u=l 

(2.45) 
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(2.46) 

and hence 

(2.47) 

The estimation error variance for ordinary kriging is, 

(2.48) 

The estimation error variance can be expanded (for full details see Joumel & Huijbregts 

1978)to 

(2.49) 

The equations are now in a quadratic form in Aa and i..p and cr~K(u;) can be minimised 

using the method of Lagrange multipliers by setting each of the 11 partial derivatives to 

zero 

(2.50) 

n 
where µ is the Lagrange parameter and where the condition l: A.11 = I is met. This then 

. =I . 

provides a system of n + I equations with n + 1 unknowns, which are the n weights A.a 

and the Lagrange parameter µ. This system of equations is called the ordinary kriging 

system and is written, 

{ J:, ApC(ua, up)+µ= C(ua, u,), 

f :lp = 1 
fl=! 

\fa=I, ... ,11} 

with the minimised estimation variance or kriging variance written as 

2 n .. 
O'ox(u;) = C(ua, Ua)- µ- L A.aC(ua, u,) · 

...: er.=! . '· 

(2.51) 

(2.52) 
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We mentioned in section 2.2 that in practice most structural modelling is done using the 

· semi-variogram. However the ordinary kriging equations written in terms of the 

covariance function are more efficient to program on a computer. In practice the final 

ordinary kriging equations are usually converted from semi-variogram terms in which 

the structure was modelled to covariance function terms as follows. When the 

covariance function exists, the relationship between the semi-variogram function and the 

covariance function is as in equation 2.18, namely y(h) = C(O)- C(h). When only the 

semi-variogram exists it is possible to define the pseudo-covariance Junction 

C(h) such that y(h) = A - C(h) where A is a constant greater than the greatest y(h) 

used in the kriging system. This constant A is then eliminated in the equation reduction 

process. The kriging systems can be expressed in matrix form as follows 

(2.53) 

where Cap is the matrix of variances and covariances which includes the Lagrange 

parameter terms and is obtained from our nested semi-variogram model equation, )... is 

the column matrix of unknown weights, and Cw is the column matrix of covariances 

with the estimation location which we also know from our nested semi-variogram 

model equation. Using the covariance function thei unknown weights then become 

A= c;~ Cw 

and the ordinary kriging variance becomes 

O'~K(u1); C(O)- A. Teat 

(2.54) 

(2.55) 

where cr2 is the variance of the random function under consideration. The general 

structure of the matrices is as follows. 
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C(u 1, u1) C(u1,up) C(ui. Un) 1 

Cap= 
C(up, u1) C(up,up)· C(up, 0 11) I 

C(un, U1) C(un, up) C(un, Un) l 

l 1 I 0 

Note that:the main diagonal contains the variance cr2 and that the matrix is symmetric 

since C(ua, up)= C(up, ua). 

C(ua, U;) 

C(ua, U;) 

I 

Referring back to equation 2.44, we do not need to know the mean m of the random 

function Z(u) to carry out ordinary kriging. It is enough to know that the random 

function is second order stationary or intrinsic stationary and has a constant mean. The 

final nested theoretical model that is fitted to the experimental semi-variogram is 

. actually composed of Y(u) and e, where e includes the nugget effect, and this 

combination of Y(u) and e is what is used to find the values for matrices Cap and Ca1 

in the kriging system equations. Note that ordinary kriging can be used as a moving 

neighbourhood estimation method with a random function whose mean is globally 

non-stationary but has a stationary covariance (Brownian motion behaves this way) if 

the local mean within each neighbourhood can be considered constant. This is because 

ordinary kriging re-calculates the mean at each new location to be estimated. 
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In the geostatistical literature there are now many variations on the kriging system 

which we will not be using and which are too detailed to be discussed at this point. 

Some of there are: block kriging (Goovaerts 1997), indicator kriging (Deutsch & 

Journel 1996), cokriging (Deutsch & Joumel 1996), dual kriging (Galli et. al. 1984), 

disjunctive kriging (Rivoirard 1990), factorial kriging and co-kriging (Goovaerts 1997), 

rank order kriging (Joumel & Deutsch 1996), median indicator kriging, 

(Gomez-Hernandez & Srivastava 1990) and constrained kriging (Cressie 1993). 

Examples-Ordinary Kriging Estimation 

For all the examples here and in chapters three and four we witl use two data sets for 

which we know the complete spatial distributions. These are the Troe data set and the 

Berea data set. We will use subsets of these data sets to mimic experimenta1ly sampled 

data for input into estimation and simulation procedures. We will use the True data to 

show detailed examples and the Berea data to show only the handling of anisotropy, 

throughout chapters two, three and four. 

The True data comes with the GSLIB software (Journel & Deutsch 1992). It is a two 

dimensional set of 2500 points which was created by simulated annealing (Chu 1996, 

Gomez-Hernandez & Srivastiva 1990) where the first lag of a low nugget isotropic 

semi-variogram was matched. The sample data subset, which we will call Gslib97, is 

also provided with GSLIB and consists of 97 non-clustered points that were sampled 

from the True data on a pseudo regular grid. The Tnie data set has some of the 

characteristics of a gold bearing ore body with a similar range of values and a highly 

skewed distribution but it should be emphasised that it is itself a simulation and not an 
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actual gold mineralisation data set. It is used here because both sample and complete 

populations are available thus enabling us to compare the estimations and simulations to 

reality and because it has been used in other fractal simulation studit::s. Costa & 

Dirnitrakopoulos ( 1997) used another subset of the Tn,e data for fractal simulation 

which, in addition to the 97 values in Gslib97, also contained additional data clustered 

around the higher values making a total of 140 points. We will not use the clustered 

data as we do not want to introduce the complications involved in determining 

declustering weights. Figures 2. 11 and 2.12 and table 2.1 give details of the Gslib97 

data. 
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Figure 2.11 . Gslib97 data set plot. 
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Figure 2.12. Gslib97 data histogram and cumulative frequency plot. 
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+---------------------------------------------------------------------
Histogram Statistics 

:Description= GSLIB 97 sample data 
: Tot. Population"' !:7 
:Minimum Cutoff= 0,05990 
:Maximum Cutoff= lB.76010 
:No. of Samples Used~ 97 

No. of Samples<= 0 = 0 
Minimum Histogram Value= 0,05990 

Maximum Histoqram Value= 18.76010 
Data Grouped to 

Ungrouped Data Class Intervals 
:Mean 2.21113 2.26073 
;Median N/A l.12607 
:Geometric Mean 0.98063 l.19510 
: Natural LOG Mean -0, 01956 O. l 7B23 
: Standard Deviation 3.17454 3.13694 
:variance 10.07772 9.04037 
:Log Variance 1,83469 1.17590 
:coefficient of Variation 1,43571 1,30758 
!Moment 1 about Arithmetic Mean 0.00000 0.00000 
!Moment 2 about Arithmetic Mean 10.07772 9.84037 
:Moment 3 about Arithmetic Mean 96.46899 93.09951 
:Moment 4 about Arithmetic Mean 1411.893 1337,798 
:Moment Coefficient of Skewness 3.01540 3,01599 
:Moment Coefficient of Kurtosis 13.90200 13.01555 
+---------------------------------------- ----------------------------

Table 2.1. Gslib97 data set summary statistics. 

The Berea data is a real two dimensional data set consisting of 1600 points derived 

from air permeability measurements taken on a slab of Berea sandstone (Giordano et. al. 

1985). It is used because ofits distinctive anisotropic properties, because it has a close 

to normal distribution and because it has been used in other geostatistical and fractal 

simulation studies (Journel & Alabert I 989, Chu & Joumel 1994). Chu & Joumel used 

a random sample of 64 points from the Berea data and we will do the same. However 

we do not know the random selection details which they used and our randomly 

selected points will not necessarily be the same as theirs. Our sample data set will be 

called Berea64. 
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Berea64 data 
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Figure 2.13. Berea64 data plot. 
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Figure 2.14. Berea64 data histogram and cumulative frequency plot. 

+---------------------------------------------------------------------
Histogram Statistics 

:Description= Berea64 data 
:Tot. Population= 64 
:Minimum Cutoff= 24.00000 
:Maximum Cutoff= 99.50010 
:No. of Samples Used= 64 

No. of Samples<= 0 
Minimum Histogram Value 
Maximum Histogram Value 

0 
24.00000 
99.50010 

:Mean 
: Median 
:Geometric Mean 
:Natural LOG Mean 
:standard Deviation 
:variance 
:Log Variance 
:coefficient of Variation 
:Moment 1 about Arithmetic Mean 
:Moment 2 about Arithmetic Mean 
:Moment 3 about Arithmetic Mean 
(Moment 4 about Arithmetic Mean 
:Moment Coefficient of Skewness 
:Moment Coefficient of Kurtosis 

Data Grouped to 
Ungrouped Data Class Intervals 

54.51563 54.67228 
N/A 51.43203 

52.52312 52.67184 
3.96125 3.96408 

14.89310 14.92800 
221.804 222.845 

o. 07607 0. 07607 
0.27319 0.27305 
0.00000 0.00000 

221.804 222.845 
2215.056 2088.908 

180891.3 173084.8 
0.67055 0.62794 
3.67686 3.48540 

+---------------------------------------------------------------------

Table 2.2. Berea64 data set statistics. 
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The first task in any geostatistical modelling process is that of exploratory data analysis. 

This involves becoming familiar with the data and looking for any characteristics that 

need to be taken into account during the modelling process such as irregularities in the 

sampling pattern, outliers, skewed distributions and clustering. Exploratory data 

analysis is a large topic in itself and will not be covered here except to show what was 

done in each case. See Cressie (1991), lsaaks & Srivastava (1989) and Tukey (1977) 

for more detail. It should be remembered that in practice the complete spatial 

distribution is never known and inferences are made from the experimentally sampled 

data. 

. .. 

From figures 2.11 and 2.13 it can be seen that, for both Gs/ib97 and Berea64 the 

sample point locations are ir.regularty· spaced but are reasonably well spread over the 

region and do not show a~}'· significant clustering. Looking at the histograms in figures 

2.12 and 2:14 and the summary statistics in tables 2.1 and 2.2 the main feature to 

note is that Gslib97 is a highly skewed distribution and that Berea64 is near normal. 

This will become important when simulating in chapter three but will simply be noted 

here. Neither of the histograms or data plots shows any values that could be considered 

as outliers. From all these observations we conclude that the sample data sets can be 

used for estimation without alteration. 

The next step in preparation for ordinary kriging estimation is that of modelling the 

spatial structure or variography. Any anisotropy that may be present must first be 

determined. This ,s done via an iso-semi-variogram diagram and/or via a series of 

directional serni-variograms. Once the anisotropy is determined then a serni-variogram 
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model or nested selill-vanogram model must be fitted to the experimental 

semi-variogram. We will examine the Gslib97 data first. 

The iso-semi-variogram (see section 2.3), shown in figure 2.15, and directional 

selill-vanograms, shown in figure 2.16, were all calculated using a lag spacing of 3 

units, an angular tolerance of 20° and no limit on the horizontal tolerance. The 

iso-semi-variogram does not show any anisotropy and the directional semi-variograms 

all have a similar range. Note that directions are specified with 0° equal to north, which 

is also the y axis direction and directions are measured clockwise from o0 . Direction in 

this sense is often called azimuth in mining terminology. As there is no anisotropy 

present we will fit the model to an omni-directional experimental semi-variogram which 

is calculated from all possible pairs of values in all directions at all lags from zero to 

twenty four at a lag spacing of three units. 
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Figure 2.15. lso-semi-variogram diagram for Gslib97. Lag spacing 3.0 units. 
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Figure 2.16. Four directional experimental semi-variograms, from left to right, o0 , 45 °, 90° and 
135° from Gslib97 . 
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Figure 2.17. Omni directional semi-variogram from Gslib97 and fittoo nested model. Nugget 

model of 5.0 plus spherical model with range of 12 and partial sill of 5.1. 

The fitted model is a nested nugget and spherical model expressed as. 

y(h) = { 5.0 +5.1(3!:1 
- ~:~~), o s lhl s 12} 

10.1, lhl > 12 

which is equal to a covariance model of, 

· { (Jlhl 1h13) C(h);::; 10.1- (5.0 + 5.1 M- 34S6 ), 

0, lhl > 12 
\ 

· This covariance equation is used to obtain the kriging matrices in the following example 

calculation using the sixteen surrounding values as shown in figure 2.18. The ordinary 

kriging geometry, matrices, weights and estimate calculation for the location (20.5 x 

25.5 y) are given. 
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Figure 2.18. Search radius of 1 Z units and point values for estimation at (20.5 x 25.5 ~·). 

The ful_l matrix is a 17 by 1 7 symmetric matrix of aH the possible covariance 

combinations from the sixteen closest surrounding data. However not all values are 

shown due to lack· of space. The first and last four rows of lower half of the covariance · 

matrix together with the coeffici~nts of one used with the Lagrange parameter are 

Cup= 

10.'l 
. 3.6910 10.1 

l. 7609 0.8240 I 0.1 
0.5736 0.1639 0. 7336 10,.1 · 

. \.. 

0.4539 1.,0283 0 0 
1.0283 1.6753 0.0349 · 0 
0.0719 0 1.8974 0 .. 
0.6705 1.5544 · 0 0 

1 1 I I 

\ 

1.8974 ·. 
0.0245 10.l 

0 0 10.0 

0.2311 2.575 0 10. l 
1 I 1 1 0 
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The first and last four rows of the covariance matrix of the sample locations with the 

estimate location together with the Lagrange parameter in the last row are 

3.1307 

2.0970 
1
1i 

2.0450 " J 

1.8974 

Cw;::;:; 
0.2207 

0.1236 
0.1236 

0.0471 
-0.0030 

The co-ordinates, regionalised value and kriging weight for each of the closest 

surrounding sample points in increasing order of distance lh) is shown below. 

u~ ut z(ua) A.a 

23.5 24.5 3.04 0.229 
25.5 25.5 4.89 0.101 
19.5 20.5 2.17 0.144 
15.5 27.5 1.02 0.136 
22.5 30.5 1.21 0.138 
26.5 23.5 0.79 0.040 
13.5 24.5 0.84 0.053 
14.5 21.5 033 0.056 
14.5 29.5 1.46 0.051 
23.5 18.5 0.16 0.031. 
21.5 34.5 2.84 0.019 
17.5 34.5 1.36 0.014 
27.5 32.5 1.71 0,001 
30.5 22.5 1.38 -0.010 
17.5 15.5 9.08 0.001 
31.5 26.5 0.45 -0.004 
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The ordinary kriging estimate is given by, 

z•(u,) = ~ la z(ua) 
a=I 

::::2.00. 

The kriging estimation variance is then, 

ol(u,) = C(O)- ~ Aa C(ua, u,) 
a,.! . 

8.39 = 10.10-1.71. 

The point ordinary kriging estimates and estimation variances for a 1 x 1 unit grid are 

shown in figures 2.19 and 2.20. The actual Tn1e data set values are shown in figure 

2.21. Note the smoothing effect that is produced by kriging in comparison to the Tn,e 

data plot. Looking at the kriging estimation variances plot it can be seen that the 

variances at the sample point locations are zero (light blue) and that the estimated 

locations with fewer surrounding sample locations have the highest variance. The 

histogram and summary statistics for the full True data set are shown in figure 2.22 and 

table 2 '3 for reference. 
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OKB2D ESTIMATES WITH: GSUB 97 conditioning data 
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Figure 2.19. Plot of ordinary kriging estimates from Gs/ib97. 
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Figure 2.20. Plot of ordinary kriging estimation variances from Gslib97. 
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Figure 2.21. True data plot. 
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Figure 2.22. Histograms of C/ust97 ordinary kriging estimates (left) and True data (right). 

+--------------------------------------------------------------------
Histogram Statistics 

Description= OK Clust97 
Tot. Population= 2500 
Minimum Cutoff 0.05990 

No. of Samples<= 0 0 

Maximum Cutoff 18. 7601 0 
No. of Samples Used= 2500 

Minimum Histogram Value 0 . 05990 
Maximum Histogram Value 18.76010 

Data Grouped to 
Ungrouped Data Class Intervals 

Mean 2.16407 2.16815 
Median N/A 1.64466 
Geometric Mean 1.64669 1.64247 
Natural LOG Mean 0.49877 0 . 49620 

:standard Deviation 1.72234 1.72353 
:variance 2.96645 2.97056 
:Log Variance 0.56533 0.57707 
:coefficient of Variation 0.79588 0.79493 
:Moment 1 about Arithmetic Mean 0.00000 0.00000 
:Moment 2 about Arithmetic Mean 2.96645 2 . 97056 
:Moment 3 about Arithmetic Mean 10.32363 10.17608 
:Moment 4 about Arithmetic Mean 90.96906 88.83489 
:Moment Coefficient of Skewness 2.02058 1.98757 
:Moment Coefficient of Kurtosis 10.33757 10.06716 
+---------------------------------------------------------------------

+---------------------------------------------------------------------
Histogram Statistics 

:Description= True data 
:Tot. Population= 2500 
:Minimum Cutoff= 0.00990 
:Maximum Cutoff= 102.700 
:No. of Samples Used= 2500 

No. of Samples<= 0 
Minimum Histogram Value 
Maximum Histogram Value 

' ' 
:Mean 
:Median 
:Geometric Mean 
:Natural LOG Mean 
:standard Deviation 
:variance 
:Log Variance 
:coefficient of Variation 
:Moment 1 about Arithmetic Mean 
:Moment 2 about Arithmetic Mean 
:Moment 3 about Arithmetic Mean 
:Moment 4 about Arithmetic Mean 
:Moment Coefficient of Skewness 
:Moment Coefficient o f Kurtosis 

Ungrouped Data 
2.58020 

N/A 
0.95538 

-0.04564 
5.15090 

26.53180 
2.08155 
1 . 99632 
0.00000 

26.53180 
933.611 

59434.937 
6.83150 

84.43227 

0 
0.00990 
102.700 

Data Grouped to 
Class Intervals 

3.23300 
2.13546 
2.30609 
0.83555 
4.89500 

23.96100 
0.41483 
1.51407 

0.00000 
23.96100 

871. 730 
54485.846 

7.43232 
94.90169 

+---------------------------------------------------------------------

Table 2.3. Clust97 ordinary kriged estimate statistics and True data set statistics. 
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We will now examine the Berea data. From the iso-semi-variogram plot in figure 2.23 

we can clearly see that there is anisotropy present with the major axis direction being 

approximately 123 °. Directional semi-variograms, figure 2.24 along the major and 

minor axes confirm this. A nested nugget and spherical model fitted in each direction, 

figure 2.24, shows ranges of 38 units and 13 .units respectively to give an anisotropy. 

ratio of 0.34. Note that the fitted model at 123° does not reach its sill within the limits 

of the experimental semi-variogram and for the purpose of this model is effectivly 

unbounded. This is perfectly acceptable as the model does reach a sill at a ran 1w that is 

beyond our area of interest (at 38 units). We have not extended the experimental 

semi-variogram further as, in general, semi-variograms are not reliable at distances 

greater than half the width of the region of interest (Isaaks & Srivastava 1989). In this 

case the width at I 23 ° is 48 units so the experimental semi-variogram is valid to 

approximately 24 units. The anisotropic nested model semi-variogram is 

(h) = 15 + 206.8 76 - 438976 , 0 ~ h ~ 38 { 
( 3lh11 lhll3 ) j 'l } 

y 221.s, lh'I > 38 

where 

h' = [ cos(-123°) sin(-123°) J[ I O ][ cos 123° sin 123° J h 
-sin(-123°) cos(-123°) 0 ~i -sin 123° cos 123° 

The equivalent covariance model used for the kriging matrices is, 

C(h) == 221.8 - (15 + 206.8 76 - 438976 ), o s; h s 38 
{ 

( 3lh'I lh1P ) I 'I } 

o, lh'I > 38 
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Fig1;1re 2.23. lso-semi-variogram diagram from Berea64 showing major axis of anisotropy at 

123 °. Lag spacing 2.5 units. 
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Figure 2.24. Directional semi-variograms. Major anisotropy axis at 123° and minor anisotropy 
axis at 33° from Berea64. Fitted nested models, nugget model of 15.0 for both, plus spherical 

models with ranges of 13 and 38 respectively and partial sill of 207 for both. 

The point ordinary kriging estimates and estimation variances for a 1 x 1 unit grid are 

shown in figures 2.25 and 2.26. The actual Berea data set is shown in figure 2.7. Note 
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again the smoothing effect of kriging but note also the reproduction of anisotropy. 

Referring back to the Berea64 sample data in figure 2.13 we see that the strength of the 

anisotropy in the top right hand comer of the kri3ing estimate plot is related to the 

geometry of the samples in that area and the weak anisotropy in the bottom left hand 

comer is related to a sparseness of sample data in that area. A comparison of the kriged 

data histogram to the actual Berea data histogram is given in figure 2.28 highlighting 

the reduction of variance produced by kriging. The summary statistics for the Berea 

data set are given in table 2.4 for reference . 

... 
' 
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OKB2D EST1i1P.TES WITH: Berea64 clilla 
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Figure 2.25. Ordinary kriging estimates from Berea64. 
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Figure 2.26. Ordinary kriging estimation variances from Berea64. 
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Figure 2.27. Berea data plot. 
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+--------------------------------------------------------------------
Histogram Statistics 

: Description = OK Berea64 
:Tot. Population~ 1600 No. of Samples<~ 0 0 
:Minimum Cutoff= 24,00000 Minimum Histogram Value 24.00000 
/Mal(imum Cutoff= 99,50010 Maximum Histogram Value 99.50010 
:No. of Samples Used a 1600 Data Grouped to 
: Ungrouped Data Class Intervals 
:Mean 54.92510 54,92081 
:Median N/A 51,19161 
: Geometric Mean t3. 54525 53. 5307 6 
:Natural LOG Mean 3.98053 3.98026 
: Standard Deviation 12. 94 994 12,994 6 9 
/Variance 167.701 168,862 
:Log Varia")ce 0,04917 0.04955 
:coefficient of Variation 0.23577 0,23661 
(Moment 1 about Arithmetic Mean 0,00000 0,00000 
:Moment 2 about Arithmetic Mean 167.701 168,062 
:Moment 3 about Arithmetic Mean 2269.372 2279.943 
/Moment 4 about Arithmetic Mean 104848,0 105730.3 
:Moment Coefficient of Skewness 1,04497 l,03902 
:Moment Coefficient of Kurtosis 3,72B12 3,70796 
+-------------------------------------------------------------------

+--------------------------------- .-----------------------------------
: Histogra~ Statistics 
:Description= Berea sandstone data 
: Tot. Population"' 1600 No.; of Samples <"' Cl 
: Minimum Cutoff = 19 . 5 0000 Mi ri imum Hi stag ram Ve; 1 u,:; 

0 
19.50000 
111.500 / Maximum Cutoff = 111. 500 Ma1dmum Histogram Value 

: No. of Samples Used "' 1600 Data Grouped to 

:Mean 
/Median 
:Geometric Mean 
:Natural LOG Mean 
/ Standard Deviation 
:variance 
: Log Variance 
:coefficient of Variation 
:Moment 1 about Arithmetic Mean 
:Moment 2 about Arithmetic Mean 
;Moment 3 about Arithmetic Mean 
:Moment 4 about Arithmetic Mean 
;Moment Coefficient of Ske~ness 
:Moment Coefficient of Kurtosis 

Ung rouped Data 
55.52594 

N/A 
53.21521 

3,97434 
15. 78203 

249.073 
0, 08913 
0.28423 
o. 00000 

249.073 
1490. 723 

193962, 7 
0. 37 923 
3.12656 

Class Intervals 
55.52989 
54 .4194 9 
53,22860 

3.97460 
15.77321 

248,794 
0.08864 
0.28405 
0. 00000 

248,794 
1550, 37 6 

194252,4 
0.3 9507 
3.13B24 

+--------------------------------------------------------------------------

Table 2.4. Berea64 ordinary kriging estimate statistics and Berea data set statistics. 
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Figure 2.28. Berea data histogram (left) and Berea64 ordinary kriging estimate histogram 

(right). 
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Summary 

We have detailed the underlying theory of geostatistical estimation and shown· two 

examples. It is obvious from comparisons of the kriging estimation plots with the full 

data plots that although kriging is a best linear unbiased estimator it does not provide 

the detailed variability that is exhibited in the full data sets. Simulation, which is the 

subject of chapter three addresses this problem. 
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3 Simulation 

Much of the following material is based on Deutsch & Joumel (1992,1996) and 

Goovaerts (1997). Geostatistical simulation aims to provide alternative, equally 

probable, numerical modeis of the spatial distribution of a regionalised variable Z(u) 

that conform to certain characteristics of its joint spatial distribution. These 

characteristics are usually the histogram and semi-variogram function of the 

distribution. However this is not always the case as the aim of the simulation may be to 

· reproduce other characteristics such as geometric properties of the distribution that 

relate to clustering and connectivity. The regionalised variable Z(u) may be categorical 

or continuous and each simulated realisation of its set is denoted {z(l)(u), u e R} where 

R is the region of interest and / is an index denoting a particular realisation. 

Geostatistical conditional simulation aims to provide alternative equally probable 

numerical models which as well as conforming to particular distribution characteristics 

. also coincide with the actual sampled values 

(Q ' 
Zc (ua) = z(ua), 'vi (3.1) 

where the conditional simulation is denoted by z~\u). Unlike kriging, simulation 

(conditional or non-conditional) does not produce the best estimate,s at unsampled 

locations; It does produce a numerical · .. model that, en average, conforms to the 

variability charactelistics defined by the sample population of the random function under 

consideration. As we saw with the Berea data in chapter two, if a large number of 

unknown locations within a region are kriged and the histogram of the kriged points is 

plotted; it will not be the same as the histogram of the sampled values. The kriged 

histogram will have the same mean but will have a much smaller variance. Figure 3. 1 
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shows the differences between kriging, simulation and reality for a theoretical one 

dimensional profile. 

kriging 

simulation 

reality 

l 

I'. II 
I I II 

l 
I \ 

i-T--,- -. 
I I "' 

t I J 

" 

• cond~ioning points 

Fig. 3.1. Dispersion characteristics for 1 dimensional data. (From Joumel & Huljbregts 1978) 

Conditional simulations are useful for obtaining detailed numerical models from which 

calculations can be made for such things as grade tonnage curves, in the case of ore 

. body modelling, and flow properties and rock porosity in the petroleum well modelling. 

A set of many alternative realisations of a certain conditional simulation provides a 

measure of uncertainty and averaging the values over a large number of alternative 

·. realisations will provide an estimated numerical model similar to that of kriging. 

There are now many different algorithms available to carry out geostatistical simulation. 

The ones we shall examine in detail in this chapter are sequelllial Gaussian and LU 

... · decomposition. We will briefly describe a few of the other methods that are prominent 

in the literature of geostatistics at the moment. These are, turning hands, sequential 

indicator simulation, p-field simulation, simulrrfed annealing and spectra! methods. 
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Gaussian Methods 

Sequential Gaussian simulation, as the name implies, and LU decomposition are both 

known as Gaussian simulation methods and must be :..ised with standard nonnal data 

only. Gaussian simulation methods are based on what is known in geostatistical 

literature as the multiGaussian random function model. This is a standard statistical 

multivariate normal model that consists of many univariate distributions of the same 

attribute at different locations rather than many univariate distributions of different 

attributes regardless of location. In geostatisticaI situations where there is more than 

one attribute to be considered the spatial distribution is tenned multivariate 

multiGaussian. We shall define the notation for a univariate nonnal distribution as 

N(m, cr2) and for a multivariate normal distribution as N(m, C). 

Definition 3.14 A multivariate normal distribution is· defined by its multivariate 

probability density function as, 

/(z(u n)) l e -(z( Un)-m( Un)) TC~ (z( lln)-m( Un) )/2 
(21t) 1112 1cu/il 112 __ 

where -a:> < z(ua.) < oo, a = 1, · · ·, 11 (3.2} 

Definition 3.15 A multiGaussian random function. Y(u) = { Y(u)t u ER} • is defined 

via its characteristic properties (Deutsch & Joumel 1996) as listed below. 

(a) All subsets of the random function are multivari.ate normal, i.e. 

{Y(u),u eBcA} are N(m,C) 

(b) All linear combinations of the random variable components of the random function 

are normally distributed, i.e. 

X = t C.OaY(ua) is N(m, a 2), \;/ COn where Ua E A . 
a.=] 

(c) Two random variables are independent ifC[Y(u), Y(u1)] = 0. 
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(d) All conditional distributions of any subset of the random function Y(u), given 

realisations of any other subset, are multivariate normal. 

When dealing with a conditional simulation we need to infer the conditional distribution 

of the random variables within a random function. The conditional cumulative 

distribution function is defined by. 

F(u;;zl(n)) =P(Z(u,) szl(n)) (3.3) 

where there are a.= I, ... ,n conditioning values available. Under the multiGaussian 

model the mean and variance of the conditional cumulative distribution functions at 

locations Ua. are respectively equal to the simple kriging estimate Ysx(u) and the simple 

kriging variance crk from the 11 data y(ua.) (Deutsch & Journel 1992). These two 

parameters, the simple kriging estimator and the simple kriging variance, define a 

conditional cumulative distribution function N(zk(ui), crk) at each successive unknown 

location. For example where the random variable Y(u;) models the uncertainty about a 

specific unsampled valuey(ui) given n data ya., 

ys,;:(u,) = E[Y(u,)ly(ua.) :;::Ya, ex:;::: 1, ... , n] 

(3.4) 

ak = Var[Y(u;)ly(ua.) = Ya, a.= 1, ... , n] 

(3.5) 

Note that the random function X(u) is not necessarily stationary. The multiGaussian 

random function model is extremely useful as it allows the determination of a sequence 
,I 

. . .· 

of successive conditional cumul~Jive distribution functions to be reduced to solving a 
' . ' . 

'.':, 

corresponding sequence of simp~~ krigin!~ systems. However with many real data sets 
~ . 
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their spatial distribution is not multiGaussian and the usual method in geostatistics of 

handling this is to apply a normal score transformation to the data before processing. 

Nonnal score transforms essentially compare cumulative probabilities of the ranked 

actual data to those of the normal distribution with some sort of continuity correction 

to allow for the fact that we are dealing with discrete values. Different continuity 

corrections allow handling of values that are larger than the maximum experimental data 

and smaller than the minimum experimental data. An approximation to the inverse of 

the quan+-i!es of a normal cumulative density function is then used to transform each 

ranked data value (original quantile) to that of a standard normal distribution N(O,l). 

Definition 3.16 Let Y(y) be a standard normal random function and G(y) =P[Y(y) :s;y] 

be its cumulative distribution function. Any random variable Z(u) and its corresponding 

cumulative distribution F z(z) = P[Z(u) 5 z] can be transformed to standard normal by a 

normal score transform, 

Yi= G-1(Fz(z1)). (3.6) 

In practice the n data are ranked z<1) s z<2> :5 z(3) s ... :5 z<11l and their respective 

cumulative distribution frequencies, without continuity correction, are given by 

F z(z<k>) == i where k is the rank of the unclustered data. Various continuity corrections 

exist in the literature and different software packages (in capitals below) use di!ferent 

ones. Some of these continuity corrections are listed below. 

' k-l 
F z(z<k>) = ,!- Johnson & Wichern ( 1992) 

Walpole & Myers (1993) (MINITAB) 

F z(z(k>) = ....lL 
n+l 

Journel & Huijbregts (1978) (GSLIB) 
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Other factors that need to be taken into consideration are declustering weights, which 

can change the cumulative probabilities, and some criterion for ordering tied ranked 

values (see, for example, Goovaerts 1996). An expression for the inverse function G-1 

jg very complicated and various approximations are used for example, 

G-1 (f) _ 1 h J- F ( Ck>) 
- 4.19(/l.14-(1-J)o.u, w ere - z z Walpole & Myers ( 1993) 

-I - , q> + (((qy'+i)ql+h}lp+g}q>+J) Q </ < Q.5 
{ 

(((~)cp+b)qtta) } 

G (/) - · ccc+e+dJ++c»+b»+a) -(qi+ <CCctif+,ilt+h)++g}ttJJ) 0.5 </ < I 
Kennedy & Gentle ( 1980) 

where 

and a = -0.322232431088 
b=-1.0 
C = -0.342242088547 
d = -0.0204231201245 
e = -0.0000453642210148 
f= 0.0993484626060 
g = 0.588581570495 
h = 0.531103462366 
i = 0.103537752850 
j = 0.0038560700634. 

(GSLIB) 

A normal score transform can also be done graphically and an example of this, figure 

3 .2, gives a clearer picture of the process in general. 

Experimental Cumulative Distribution Standard Normal CumulaUve Model 

I 

Zmin Z 1 22 Y2 

Figure 3.2. Graphlcal normal score transform. 
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Having transfonned a random function to normality still does not guarantee that it is 

multiGaussian normal. Strictly, all n dimensional cumulative distribution functions must 

be multivariate normal, however it is sufficient to check the bivariate distribution to 

adopt or reject the multiGaussian model. There are various ways in which this can be 

done, two of which are, squared generalised distances (Johnson & Wichern 1992) and 

semi-variogram comparison (Goovaerts 1997). We shall not examine the details here. In 

practice these checks are rarely carried out and many simulations are done under the 

assumption of being multiGaussian. There are other ways to transform to a normal 

distribution such as fitting Hermite polynomials (Joumel & Huijbregts 1978, p472) and 

various approximations such as log transfonns and power transfonns. However these 

approximate methods often do not reproduce normality well in the tails of the 

distributions (see specifically, Goovaerts 1996, p276) which is where the critical high 

values of a distribution occur. 

Once a simulation is completed a back transform of the form 

Zj = F- 1(G(yi)) (3.7) 

is necessary to reproduce the simulation with the original, non-Gaussian, distribution 

characteristics. Generally P-1 is impossible to determine directly and the back 

transform is accomplished by the use of a table created during the forward transform. 

Given that simulations generate much more data than the original sample values there 

will often be cases where some of the simulated values are lower than the smallest 

sample value and higher than the largest sample value in the transformation table. 

In order to back transform from a normal distribution to the original distribution it is 

necessary to have some model of the behaviour of the original distribution in the upper 
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and lower tails beyond existing sample data. If the data is sparse it may also be desirable 

to model the distribution as something other than linear between two consecutive 

quantiles. Deutsch & Journel (1992) and Goovaerts (1997) both suggest linear and 

power models for lower and upper tail extrapolation and include a hyperbolic model for 

upper tail as well. These tail extrapolation models are given as options in the GSLIB 

suite of Gaussian related simulation routines. 

Definition 3.1 7 The lower tail power model is defined as, 

F(z) = (:;:.::,) ro F(z1) Vz E (Zmm,z1) (3.8) 

where z 1 is the smallest sample value and Zmin is a minimum possible allowable z value. 

When ro = I this corresponds to a linear model. Where O < ro < 1 the tail is positively 

skewed and where ro > 1 the tail is negatively skewed. 

Definition 3.18 The upper tail power model is defined as, 

F(z):::: F•(zK) + C::!K) ro (1-F(zK)) Vz E (Zmin,Z1) (3.9) 

where co< 1, zx is the largest sample value and Zmax is the maximum allowable z value. 

Definition 3.19 The hyperbolic tail model is written 

F(z) = I - z~ '<:/z > ZK (3.10} 

where 

and co~ 1. 

The hyperbolic model should only be used for the upper tail of a positively skewed 

distribution. Setting ro = 1 corresponds to a very long tail and the larger the value m is 

the shorter the tail is. Deutsch & Journel (1992) suggest that co= l .5 is a good general 

purpose value. 
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Sequential Gaussian Simulation 

Sequential simulation methods were proposed by Journel & Alabert (1989, 1990) and 

are based on an application of Bayes theorem. The technique is similar to the 

generalised stochastic subdivision method in Lewis (1987). The sequential simulation 

theorem, as used by Journel & Alabert (1989), states that n dependent events 

A;, i = l, ... ,n can be simulated sequentially using the expression, 

P(A 1,A2 • .. ,,An) =P(AnlAi, ... ,An-1) • P(An-1 IA1, .. ,,An-2) •, .. · P(A2IA1) • P(A 1) . 

This requires the inference of the successive n - I conditional probability disiributions . . 

which can be obtained by simple kriging as explained in section 3.1. The general 

sequential Gaussian procedure is as follows. 

(a) Ensure that the data is, or is transformed to be, multiGaussian. 

(b) Randomly order all the locations to be simulated. 

( c) Estimate a value using simple kriging at the first/next randomly ordered location 

using all the original data as well as any previously simulated points. Take the simple 

kriging estimate and the associated simple kriging variance as the parameters of the 

conditional distribution N(zsK, old at that particular location. 

(d) Randomly select a value from this distribution to become the conditionally simulated 

value at that location. (For details of random number generation see Press et. al. 1986.) 

(e) Repeat the procedure from step (c} until all values at unknown locations have been 

simulated. 

(t) Inverse transform the set of ~dmulated values to conform to the original distribution 

if necessary. .. 
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The computational scheme is as follows, 

(3.11) 

where the subscript (NS) indicates the normal score values and w, is a random number 

drawn from a Gaussian distribution .. 

Note that the conditioning is inherent in this process. If a non-conditional simulation is 

required, no original values would be included and the first value simulated would be 

randomly drawn from the marginal distribution of the transformed random function. 

Anisotropies are also handled automatically. Strictly, simple kriging is required to be 

used with sequential Gaussian simulation because of the assumption of second order 

stationarity over the entire region, however ordinary.kriging can be used if the situation 

allows for reliable estimation of the local means within a local search area defined for 

the estimation of each simulation point. For applications of sequential Gaussian 

simulation see Nowak & Srivastava ( 1996) and Ravenscroft (1994). 

LU Decomposition 

LU decomposition is a very simple conditional simulation method but can currently 

handle only small data sets, Deutsch & Journel ( 1996) suggest 'a few hundred', because 

of computer memory requirements for largt.~ matrices. It was first introduced, in a 

geostatistical form, by Davis ( 198 7) and by AI a be rt ( 198 7) and is based on the lower 

upper triangular decomposition of the covariance matrix, 

C= LU where Lr= U. (3.12) 

62 



In the special case where C is a symmetric positive definite matrix (as is the covariance 

matrix) the factorisation can be achieved by Cholesky decomposition. The simulation 

scheme is outlined as follows. 

Consider the linear system 

C11, = (LU)A = L(UA) = y r-_,]3) 

where the vector y is defined as 

y=Lw, 

C is the covariance matrix of a set of spatially distributed. points and w is a vector of 

independent random numbers with distribution N(O, I). The expectation of y yT is then 

given by, 

E[y yr)= E[(Lw){Lwf] 

=E[LwwTU] 

= LUE[ww1] 

=LUI 

=C. (3.14) 

The covariance matrix of a stationary random function model Y(u) with mean zero and 

sample locations Ua is, 

Ca~ =E[Z(ua) Z(up)], Va.= 1, ... ,11~ ~ = 1, . .. ,n. (3.15) 

From equations 3 .12 and l. 13 it follows that Lw forms an unconditional simulation as it 

reproduces the covariance model. i.e. 

z<\ua)=Lw, "ta= l, ... ,11. (3.16) 

For conditional sirnulatiop. let ua, a= I, ... , 11 be the locations of the conditioning data 

and u;, i = 1, ... , N be the locations of the points to be simulated. To enable us to follow 
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the sub matrices subscripts have been used to distinguish them. The original covariance 

matrix is then made up of four submatrices, 

C -[ [C(ua - Up}Jnn [C(ua - Uj)]nN J 
(n+NXn+NJ - • 

[C(u; - up)]Nn [C(u; - Dj)]NN 
(3.17) 

A conditional simulation z~\u) is obtained by 

z~\u) = [ [~~Ua)Jn1 J = Lw = [ Lnn O ]· [ Wn1 ] 
[z (u1)]N1 LNn LNN Wm . 

(3.18) 

where 

W nI = L;! [z(ua)1n1 

and w NI is a column matrix of independent N(O, 1) distributed random numbers. This 

leads to an expression for the simulated values, 

z(f)(u;) = LNnL;t[z(ua)]nl + LNNWNI. (3.19) 

It can be seen from this that other realisations of the simulated values can be easily 

calculated as they only require a fresh set of random numbers w NJ and do not require 

recalculation of the decomposition. LU decomposition also handles anisotropy 

automatically. The parallels of this method to simple kriging and corrections for bias 

introduced by ordinary kriging are outlined in Alabert (1987). For applications see 

Dowd & Sarac (1994) and Glacken (1996). 

Other Simulation Methods 

· Tur11i11g Bands 

. Turning bands methods are based on the construction of a one dimensional simulation 

of a random function Y(u), by any method, which is then rotated in space a number of 

times n to uniformly cover the space under consideration (see figure 3 .3 ). Each rotation 

is given a different realisation of the one dimensional simulation. The point at which a 
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value is to be simulated is then projected onto each of these n lines to obtain a series of 

values zi(u), i = I ton which are then averaged to give the simulated value in a higher 

dimension. 

z'\u) == ~ _f z,(u) 
1=1 

(3.20) 

This results in an isotropic Gaussian non-conditional simulation. If the simulation is to 

be conditioned this is then carried out as a separate step after non~conditional simulation 

but before the final values are re-transformed to conform to the original joint 

distribution. The · · methods of simulating one dimensional random functions used with 

turning bands are, in the_ general case, spectral and in specific cases based on moving 

average methods. For applications see also Journel & Huijbregts (1978) and Brooker 

(1985). 

Ys(x) Ys(x) 

X 
----:,i., 

, I 

, I ' 
I 

Ys(x) 

Fig. 3.3. Turning bands in two dimensions. Y(u) is a simulated random functil:~n. 

Sequential Indicator Simulation 

Sequential_ indicator simulation seeks to avoid the transfom1ation to a Gaussia., 

distribution by using indicators (see Deutsch & Journel 1996). It follows a similar 
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procedure to sequential Gaussian simulation except that at each location where a value 

is to be simulated the conditional distribution is estimated directly by kriging the 

indicator transformed values defined for each specific threshold. Instead of the simple 

kriging value and simple kriging variance being used to define a normal distribution, an 

estimated conditional probability distribution function F' at each location is built up by 

indicator kriging for each threshold resulting in a distribution whose detail reflects the 

number and relative spacing of the thresholds used. For applications see Chu ( 1996) and 

GomezRHemandez & Srivastava (1990). 

Simulated Annealing 

GeostatisticaI simulated annealing is really an optimisation procedure rather than a true 

simulation. It is based on an analogy with the physical process of annealing by which a 

material (usually a metal) undergoes heating and is then slowly cooled. The slow 

cooling allows the molecules of the material to reorder themselves into a highly 

structured state or a 'low energy' state. Simulated annealing does not require any 

reference to a random function model. It works by gradually perturbing an initial 

numerical model so that changes are accepted if they bring the model closer to the 

target constraints which are usually to reproduce the semi-variogram and histogram. 

The conditioning is done by not allowing the original data at their locations to change. 

The initial numerical model is usually some sort of geostatistical simulation that already 

has some of the required properties but needs to be constrained further. The process of 

geostatistical simulated annealing is still called a simulation because there are usually 

many approximate solutions to the optimisation problem and hence a range of different 

but equally probable final numerical models can be generated by the annealing process. 
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An even greater range of final models can be produced if different equally probable 

initial images are used. Further details can be found in Deutsch & Cockerham (1994), 

Deutsch & Joumel (1992,1996) and Goovaerts (1997). 

p-field simulation 

This method is based on the idea of using autocorrelated random numbers that conform 

to the desired covariance function to sample from conditional cumulative distribution 

functions at each location where a value is to be to be simulated. For a detailed 

examination of this method see Froidevaux (1993), Goovaerts (1997) and Srivastava 

(1992). 

Spectral analysis 

Fourier analysis, spectral analysis and power spectra are not examined in detail here as 

they are rather more complex,and less easy to implement. However they are relevant to 

spatial statistics and also to stochastic fractals and some relationships will be briefly 

described. Fourier analysis can be applied to any quantity that fluctuates in time or 

space and involves fitting sine and cosine series of various amplitudes frequencies and 

phases to approximate the data. The Fourier transform equation relates the time (or 

distance) domain to the frequency domain and is written 

"' . Z(t) = fff Z(u)e2:rifudu 
-00 

where f is the frequency vector. The spectral density is then written as 

S(f) = IZ(f)l 2. 

(3.21) 

(3.22) 

The covariance of a ··irandom function 1s related to· its speCtral density by th«\\'_. .·/1 

Wiener-Khintchine theory as follows 
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00 

C(h) = Hf S(f)e2rurudf. (3.23) 
-00 

Spectral methods are also related to fractal simulations which we will deal with in 

chapter four. For more details and spectral applications see Chiles & Delfiner (1996), 

Fox (1987), Peitgen & Saupe (1988) and Turcotte (1992). 

Examples 

We will illustrate sequential Gaussian simulation using the two sample data sets Gslib97 · . 

. and Berea64 that were used in chapter 2. The GSLIB suite of programs is used for the 

normal score transformations, sequential Gaussian simulation and back transformation. 

Note that the normal score and back transformation parameters in the examples used 

here are taken from the probability density function inferred from the sample data alone. 

We will examine the Gslib97 data first. 

The variography needs to be assessed using standard normal scores. We would expect it 

to have similar anisotropy and range values to that of the original data but the 

semi-variogram models must be expressed in terms of the normal score values for input 

into the simulation routine. A direct translation of the semi-variogram model used in 

chapter one gives a nugget of 0.495, a range of 12 and a partial sill ·of 0.505. The 

ex~c::riri.ental semi-variogram given by the normal scores is noticeably smoother than 

that given by the original data and models with a nugget effect lower of 0.3, range 12 

and partial sill 0. 7. The omni-directional normal score semi-variogram and fitted nested 

nugget and spherk1l mode are shown in figure 3.4 and the fitted model is, 

y(h) == { o.3 +o.1<3i:1 - ~!~~). o s: lhl ~ 12 } 
.. · 1, Jhl > 12 
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Figure 3.4 Normal score semi~variogram and fitted model tor Gslib97. 

· An example calculation using the node Ui = (20x, 25y) follows. The estimate is a simple 

kriging estimate derived from sixteen surrounding values, however these are not the 

same sixteen values used in the example in chapter two. This is beca~se some of the 

other nearby points have already been simulated and the sixteen values used for simple 

kriging are made up of the closest sixteen points regardless of whether they a~e origii:ial 
. . ~ " 

conditioning points or previously simulated points. 

ZSK(NS)(U;) = 0. 7727 "" ZsK(U1) = 2.87 

ah,(NS) = 0.5507 

.. 
w, = -0.0391 

z~?NS)(u1) = 0. 7727 + (-'b.0391 · J0.5507) = 0. 7434 - zf>(u1) = 2.'79 

... 

As Gsiib97 is .a highly skewed data set the back transfo.rm uses a linear lower tail 
' . 

cumulative frequency distribution extension with a· minimum value of zero and an 

hyperbolic upper tail extension with. a ·. flattening parameter of I . S. The resulting 
. .-·--·· ,,. ·- . , . 
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full simulation is shown in figure 3.5. Note that this is a much more realistic looking 

plot than the plot of the kriged data in figure 2.19. 

25 .000 50 .000 

0 .0 
0 500 
·1.000 

·1 .500 
2.000 
2 .500 
3 .000 
3 .500 
4 000 
10.0,JO 

Figure 3.5. One realisation of a sequential Gaussian simulation from Gslib97. 

Looking at the Berea64 data we find that the experimental normal score directional 

semi-variograms model slightly differently from a direct translation of the original data 

models. In this case the nugget effect is higher and the range in the 33° direction 

models marginaJJy lower at 12 units rather than 13 units. The fitted model is, 

o :s: l1i1 I :s; 12 } 

1h11 > 12 

where I h 11 is the isotropic transformed lag distance and the anisotropy ratio is O. 315 8. 

1.00'.l -

L 200 

C OO'.l -1-----.--~-~--~, --1 
u I~ 2'.1 

1.20) --r------------, 

1.00) 

go.ffii 
~ 

c'.5 0.400 

0.2').) 

/~' 
I 

0.00) -+-- --r---.---...,-----.---; 
0 LO 15 20 25 

Figure 3.6. Directional normal score semi-variograms for Berea64 at 123 ° (left) and 33 ° 
(right). 
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The back transformation was done with a linear lower and upper cumulative distribution 

tail extension with a minimum of zero and a maximum of 120. The resulting simulation 

is shown in figure 3.7. Note that the simulated plot looks more like the actual Berea 

data than the kriging plot in figure 2.25. 

SGSIM Simulation Berea64 

0 
ci 0.0 20.000 40.000 

20.000 
28.000 
3El .OOO 

44.000 

52.000 
60.000 
El8.000 
76.000 
84.000 
92.000 
100.000 

Figure 3.7. One realisation of a sequential Gaussian simulation from Berea64. 

Summary 

We have given an overview of geostatistical simulation in general and have looked 

specifically at sequential simulations to see how they can provide a better model than 

kriging of the overall variability of a random function. In the next chapter we will 

examine fractal concepts and simulation methods and show how they can be 

incorporated into and enhance geostatistical Gaussian simulation methods. 
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4 Fractals 

Fractal geometry deals with the concept of self simiiarity at different scales and has been 

found to apply to a wide range of natural phenomena. Examples (Burrough 1981) 

include tree ring indices, annual precipitation, river flows, ground water 1evels and land 

forms. The basic characteristic of fractals is that detail at one scale remains similar at all 

other scales. The classic example of a natural feature exhibiting fractal characteristics is 

that of a coastline where decreasing scale and increasing resolution continue to reveal 

detail that is similar in shape and statistical variability to that at each previous scale. A 

geometric example which is simpler to visualise is that of a Koch curve (see figure 4.1). 

Figure. 4.1 Koch curve showing increasing levels of detail with increasing resolution. 

In this chapter we will examine stochastic fractal theory and the model of fractional 

Brownian motion and show how it is linked to the power model in geostatistics. We 

then propose a new fractal simulation scheme, SGFRACT, and test it using the data 

from chapters two and three. 
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Fractal Theory 

The strict definition of a fractal set requires it to have a Hausdorff dimension that is 

greater than or equal to its topological dimension. For a formal definition of .fractal 
.. . 

dimension, Hausdorff dimension and topological dimension see James & James (1992). 

A more general definition is that a fractal is a shape made of parts that are similar to the 

whole in some way (Mandelbrot 1983). We will explain this in terms of self similarity 

and self affinity. The following definitions of self similarity and self affinity are based on 

Voss ( 198 8 & 198 5) with notation changes to conform to previous sections. 

Definition 4.1 Let the set n be a bounded subset of Euclidean space of dimension E 

where each location u is made up of co-ordinates 111 , ... , u E • Using a similarity 

transfonn with O < r < I I n becomes r!l with locations ru = (ru1, ..• , rue). The set n 

is self similar if it is the union of N disjoint subsets each of which is congruent to r!l 

where congruent here means identical under translation and rotation. 

Definition 4.2 The fractal dimension D of .Q is defined by 

1 =Nr0 or (4.1) 

. . 

Definition 4.3 A set n. is statistically self similar if it is the union of N disjoint subsets 

each of whose distributions are unchanged by the similarity trans~orm O < r < I. 

In practice the statistical aspects are usually limited to the first few moments of the 

distribution of n. The fractal dimension D also characterises the covering of the set .Q 

by E dimensional 1boxes' of linear size L (see figure 4.2). 
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If the entire set is contained within one box of size Lmax then each of the N = IJ,-D 

subsets will fall within one box of size L = rLrnar.. Thus the numb.er of boxes N(L) of size 

L needed to cover the set Q is then 

N(L)/N(Lmax) = ~ = (LmaY.IL)D or N(L) oc 1/LD. (4.2) 

Definition 4.4 A set n is self affine when it is the union of N disjoint subsets each of 

which is identical under translation and rotation to rn where r = (r1, ... ,rE) and 

O<r;<l, i=l, ... ,E. 

Therefore each co-ordinate may be scaled by a different ratio r; and the set n 1s 

transformed torn with location co-ordinates r1ti1, ... , rEuE. 

Definition 4.5 The set n is statistically self affine if it is the union of N disjoint 

subsets each of whose distributions are unchanged by the affine transform 

r where O < r 1 < I, i = 1, ... , E . 

It is not such a simple matter to obtain the fractal dimension from this definition of self 

affinity and we shall introduce the concept of the fractal co-dimension H, also known 

as the Hurst exponent or intermittency exponent. To do this we will look atfractional 

Brownian motion which is an extension of the traditional Brownian motion stochastic 

process or random walk. Usually Brownian motion B(t) is expressed in one dimensional 

time however we will.express it in terms of spatial co-ordinates u. 

Definition 4.6 Brownian motion B(u) is the sum of a sequence of independent 

Gaussian random variables 

B(u) = LW(u) (4.3) 

where W(u) represents the Gaussian random function also known as white noise. 

Brownian motion is extended to fractional Brownian motion BH(u) by re-scaling. The 
.• 

fractal co-dimension H relates the typical change ABH(u) in BH(u) to the change 
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Au = h in u by the scaling law 

MH(U) cc hH. 

The parameter His a measure of spatial similarity of BH(u) and its values fall into three 

distinct categories. When O <H < 0.5 the increments of Bn(u) are negatively 

correlated, for H = 0.5 the increments are uncorrelated Gaussian white noise and for 

0.5 < H < 1 the increments are positively correlated. A value of H = 1 means that the 

function is detenninistic, differentiable and smooth. 

LN=1 

Figure 4.2. Box counting method of determining H. 

The relationship between the fractal dimension D and fractal co-dim.ension H is 

illustrated by considering a one dimensional trace of fractional Brownian motion 

covering lhl = I in the horizontal direction and MJH(u) = I in the vertical direction 

(figure 4:2). Here ]hi represents a particular distance increment or lag. BH(u) is 

statistically self affine since when his scaled by rand BH(u) is scaled by r1' a re-scaled 

fraction of the trace is obtain,ed identical in distribution to the . original trace. Dividing 

the horizontal interval into N equal subintervals gives 

lhl = 1/N and ABn(u) = lhlH = 1/N". (4.5) 
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If we use the box coverage method as in equation 4.2 to detennine D each interval will 

be covered by Mn(u)/lhl = (1/NH)/(1/N) =NINH square boxes of linear scale L=JIN. 

The total number of boxes becomes 

N(L) = N (NINH) = N2-h = I/L 2-H 

By comparison with equation: 4.2 noting that now N(Lmax) = 1, 

D=2-H 

and this can be generalised to higher dimensions to give the general rule 

(4.6) 

D =E+ 1-H (4.7) 

where E is the Euclidean dimension of the space in which the set is contained. 

Definition 4. 7 The fractal co-dimension H is defined by 

H=E+ 1-D 

where E is the Euclidean dimension and D is the fractal dimension. 

We now examine the properties of fractional Brownian motion. The following 

discussion is based on Mandelbrot & Wallis (1969, part 3) with appropriate notation 

changes. Brownian motion is a self affine process in that if u = r(u + h) then 

B(u)-B(O) =B(r(u + h)) "'."B(O) is statistically the same as r 0·5(B(u + h)-B(O)). It · 

follows from this and equation 4.4 that 

Var[B(u+:tB(u)] = 1 or E[(B(u + h)-B(u)) 2] = (h 0·5) 2 (4.8) ·· 

It can now be seen that the increments of Brownian motion have a vanance 

proportional to the absolute location difference. 

E[IB( u ex) - B(up)l 2] oc I Uci - Up I (4.9) 

Similarly the increments of fractional Brownian motion Bn(ua)-BH(up) (in any 

Euclidean dimen.:.,on) have a Gaussian distribution with variance 

E[!Bu(uu)-BH(up)l 2] = Vi1lua - Up 1211 (4.10) 
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where VH is a constant of proportionality and O <H <I. Note that H = 0.5 gives the 

traditional Brownian motion with AB(u) 2 oc lhl. Equation 4.10 is equivalent to a 

variogram function as it is a variance of increments hence, 

(4.11) 

and V H is therefore the total variance at the reference unit scale lh/= 1. 

Brownian motion has no derivative as it shows irregular ·behaviour at all scales. 

However if some amount of smoothing is accepted this lack of derivative can be 

overcome. The derivatives of smoothed fractional Brownian motion with H values other 

than 0.5 are referred to asfractional Gaussian noises represented by WH(u) and have a 

covariance given by 

C(h,o) = f vH 52H-2<ll + 1 l2H -2lil2H + I~ - 1 l2H) (4.12) 

where 8 is an arbitrarily small interval over which smoothing has taken place. For more 

detail on the derivation of this covariance see Mandelbrot & Van Ness (1968). 

Fractional Brownian motion and fractional Gaussian noise with O < H < l and their 

associated semi-variogram and covariance functions (equations 4.11 and 4.12 

respectively) are the two types of model used in all stochastic fractal simulations. 

Determining The Fractal Dimension 

A useful property of fractal sets is that, like Euclidean sets, they typically reduce their· 

dimension by one under intersection with a plane. Often the intersection of a self affine 

fractal object with the plane will result in a fractal set that is then self~sirnilar but, as 

with topographic profiles, this may only be true for :,articular directions. (Voss 1988, · 
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Klinkenberg 1994, Bruno & Raspa 1989). Most methods of detennining the fractal 

dimension of an object are based on measurements carried out on one dimensional 

curves or profiles. The most widely used methods of determining D are box counting, 

divider, spectral analysis, line scaling, area methods, area perimeter and DIM 

triangles. A good review of these can be found in Klinkenberg (1994), however we will 

not examine them in detail here as two and three dimensional distributions can be 

examined in more detail using semi-variogram methods which use all the data at once 

rather than examining a series of sections or profiles. Other reasons for using the 

semi-variogram are that it is already a key tool in geostatistics and is well understood, it 

is simple to use, and it appears to have properties that make it preferable to such 

methods as spectral analysis (Carr & Benzer 1991, Klinkenberg & Goodchild 1992). 

Semi-variogram methods have been criticised by Lovejoy & Schertzer (1987) for the 

fact that they only explore the nature of the self affine value fluctuations (the values at 

the locations and their separation distance as opposed to the geometric arrangement of 

the locations) but this is of no concern in geostatistics as it is precisely these value 

fluctuations in which we are interested. The value fluctuations are self affine because we 

. are dealing with a different quantity, for exampie mineral grade, in that 1direction1 as 

opposed to some standard distance measure in all of the co-ordinate directions. 

Equation 4. 11 is the same as the power model of definition 2.13 with 

b = i Vu. and 8 = 2H. Distributions that conform to equation 4. 11 are statistically self 

affine since variations over any scale rlhl are related to the variations over scale [hi by 

y(rh) = rmy(h). ( 4.13) 
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This implies that the variance at any scale can be detennined by the variance measured 

at any )>ther scale (Hewett 1986). In practice the experimental semi-variogram is 

determined from the avajlable data using equation 2.24. If the experimental 
." 

semi-variogram is plotted with log scales on both axes the slope of the fitted line is 

equal to 2H and the anti-log of the y(h) axis intercept is f VH. i.e. 

2H = L1lny(h)/Aln !hi (4.14) 

and 

lV - eY(O) 2 H- . (4.I5Y, 

The same precautions that would be used in· semi-variogram model fitting apply to 

finding H (i.e. choice-of lag spc1;cing, maximum lag, number of pairs etc.). There is some 
: . -__ -r<'~ _\ . 

disagreement in the literature (Isaaks & Srivastava 1989, Joumel 1996, Cressie 1991, 

Shibli 1996) as to whether automatic or manual curve (line) fitting should be used for 

both semi-variogram models and determination of D from log-log plots. We will use 

linear regression to find the slope of log-log experimental semi-variograms and thus to 

determine 2H. A power model with the appropriate power 2H can then be fitted to the 

experimental semi-variograms in order to determine 1 V H. Other · methods of 

determining D using serni-variograms are semi-variogram integrals (Shibli 1996) and 

graded normalised sequences (Hewett 1986). 

Stochastic Fractal Simulations 

There are two basic categories of fractal simulation algorithms for creation of two · 

dimensional surfaces and two dimensional random fields. One category is -based on -. 

midpoint displacement methods and the other on Fourier transform techniques. The 

methods in the midpoint displacement category are basic midpoint displacement (Voss 
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1988), successive random additions (Voss 1988), generalised stochastic subdivision 

(Lewis 1987), modified successive random additions (Prasad 1991) and the method of 

Rumelin (1990 & 1992) which we shall calt the covariance of increments method. The 

methods in the Fourier transform category are the fast Fourier transform (Voss 1988) 

and the Weierstrass-Mandelbrotfimction (Voss 1988 Chu & Joumel 1992). Although 

· all of these methods and their variants maintain the fractal co-dimension of the field they 

do not always maintain the covariance structure and are not necessarily conditional. In 

addition most variants of the midpoint displacement method do not handle irregularly 

spaced conditioning data well. We will focus on the covariance of increments method 

as it does reproduce both the fractal co-dimension and the covariance structure and we 

will propose an adaptation of it to cariy out geostatistical simulation with sparse 

irregularly spaced data in two dimensions. 

Rumelin ( 1992) suggests how sparse irregular data might be handled but he does not 

provide examples or details of this. We will show that the covariance of increments 

algorithm, with some adaptations, can be used in a geostatistical framework with 

. sequential Gaussian and/or. LU decomposition conditional simulations in order to 

handle sparse irregularly spaced data. Within the geostatistical fractal framework we 

aim to reproduce a specified histogram, population mean, population variance, fractal 

co~dimension and spatial correlation ( discussed by means of a power law 

semi-variogram model). The covariance of increments method allows generation of an 

arbitrary number of values of fractional Brownian motion in one step and simplifies if 

only a single value is to be simulated. It follows sinular logic to the (non-fractal) LU 

decomposition method described by Davis (19 8 7) and Alabert ( 198 7) discussed in 
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section 3.3 but also isolates one of the conditioning values to use as an arbitrary fixed 

reference value. This reference value is then used to calculate increments and as a 

benchmark against which to gauge the scaling parameter required to implement use of 

the fractal co~dimension H. This allows the use of the fractal co-dimension H in a 

stationary structure function to determine the variance of the conditional distribution at 

each location to be simulated instead of using the simple kriging variance derived from 

geostatistical structure functions such as spherical and exponential semi-variogram 

models. A summary of the covarianc~ of increments method is given below. 

Consider the scheme 

(4.16) 

where w is a vector of independent random variables with normal distribution N(O,l),}.. 

is an N x n matrix of weights that maintains the spatial structure of the field while 

estimating z(u,) and S is an N x N standard error mati'ix controlling the rate of random 
•:·,, 

variation necessary for each simulated value. If we now arbitrarily choose a specific 

conditioning value z(u'l) and reformulate equation 4.16 in terms of increments with 

respect to u11 we obtain 

A.1[ Z(NS)(lla)-Z(NS)(ull)] + Sw a.:::; I, ... , 11- 1 i ='1, . .. N (4.17) 

where '),.,1 is an N x n-1 matrix (1.. without the u'l terms). Multiplying both sides of 

equation 4.17 from the right· by [Z(NS)(up)- Z(NSJ(uTJ)V and taking expectations 

reduces this to 

.. [C(u, - Ua)] = 'A.1 [C(uo: - up)] (4.18) 
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· This linear system is similar to a kriging system and can be solved for 'J...1 by Cholesky 

decomposition in the same fashion as the LU decomposition in section 3 .3, if the two 

covariance matrices are known. Rtimelin (1990) has shown that 

C[(uo. - Ufi)] ::;£[(z(ua)-z(uTJ)) (z(up)-z(uTJ))] 

:::; 0.5VH[lua - u11 I 2H - In« - up I 2H + lull - Up I 2HJ (4.19) 

and this applies for any covariance matrix of the increments between any paired 

combination uo:, up, u1 and ui. Note that Rumelin (1990) dici not include the 

proportionaJity constant VH as we have here (see equation 4.10 and proof in appendix 

D). Ihe important thing about the covariance function in equation 4. 19 is that it is 

intrinsic second order stationary. Having solved for 'A.1 we can then be find A by the 

inclusion of 

. n-l 
A.111 :::; 1 - .z Ai/ i = I, .. . ,N. 

r-1 
(4.20) 

To obtain matrix S we multiply both sides of equation 4.17 from the right by wr and 

take expectations giving 

(4.21) 

Again we multiply both sides of equation 4.17 from the right by [z~NS)(u1)- Z(NS)(uTJ)f 

and take expectations and using equation 4.21 as well we arrive .. at 
; 

S gr::; [C(u; - Uj)] -'>./ [C(ui - ua)F. · (4.22) 

Now S can be computed by Cholesky decomposition. We now have all that is required 

to calculate the simulation values as in equation 4.16. The notation for this 

computational scheme can be reduced to what is essentially a set of kriging and error 

variance equations where i..1 . is the matrix of weights without the weight of the closest 

point u'l, i.e. 
(4.23) 
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(4.24) 

. Equation 4.22 reduces to. 

(4.25) 

when only one point at a time is being simulated.The weight for point u11 is then found 
''-

by equation 4.20. From here the point esdmate and variance factor can be comp~ted. If 

we introduce !hi as a unit incremenf value it can be seen from equation 4.19, that 

Ca,pt11 , Ci,ultJ and C;J11l are all proportional to lhl 2H. Therefore the calculation/of Ji. 

from equation 4.23 is independent of lhl. However ssr is proportiqnal to C;,1TJ 
., 

therefore ssr, or s2 , is proportional to lhf2H. Thus for any system that uses the same 

geometry, calculation of the variance factor at · any scale r only requires S or s to be 

scaled by a factor r1' and does not require recalculation of the entire system. 

This method still has the current restrictions that apply to LU decomposition, that is the 

number of points that can be simulated at any one time is limited to several hundred 

because of the size of· the covariance matrices. If applied on a regular grid with 

conditioning data also on a regular grid, the same data location configuration exists at 

· · every simulation point (disregarding edge effects) and hence only one linear system 

needs to be solved. This makes a moving wi~<l,o~ _implementation very fast for 

simulating large numbers of nodes providing regular conditioning data exists. It can 
. .: . . 

with some care be applied to conditioning data that is not on a regular· grid but then a 

· different location geometry occurs for every new simulation location and a different 

linear system must be solved each time. Computationally this is very time consuming if 

we follow an LU approach simulating many points at one time. 
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SGFRACT 

It is proposed here that a sequential approach as described previously in section 3 .2 

utilising an adaptation of the covariance of increments method, simulating only one 

value at a time, can be used to compute a geostatistical simulation when used with a 

sufficient number of local irregularly spaced conditioning data. Computationally solving 

a linear system involving only one simulation point with up to 30 conditioning values is 

still fast and it is reasonable to recalculate at every individual simulation point. We will 

call this new simulation algorithm sequential Gaussian fractal simulation and call the 

resulting computer program SGFRACT. The implementation of the scheme parallels 

that of sequential Gaussian simulation and is as follows. 

(a) Ensure that the conditioning data is, or has been transformed to be, multiGaussian. 

(b) Randomly order all locations to be simulated. 

( c) Define a local anisotropic search routine to be used at every node to find a specified 

number of both conditioning data and previously simulated data. (Any previously 

simulated data become conditioning data also.) 

(d) At the first (or next) randomly ordered location to be simulated, split off the closest 

conditioning point to act as a refe,rence va1ue Z(NS)(U11) .. 

( e) Calculate the fracta1 estimate and fractal variance to form the parameters of the 

conditional distribution N(l[Z(NS)(Ua)], s2) at that location. 

(f) Randomly select a value from this distribution to become the. conditionally simulated 

\, -~Ue at that point. 

(g) Repeat the procedure from step (d) until all locations have been simulated. 
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If at any stage the local search fails to find any conditioning data a simulated value is 

arrived at by an estimate · of zero and a random variance. between zero and one 

(Remember we are dealing with normal score data). If a minimum number of 

conditioning points is specified and at any stage the local search does not find this 

minimum number the node is not simulated. To overcome the potential for leaving gaps 

in· this case an optional feedback loop can be used to check all nodes once the first 

random path is complete and to attempt to simulate any not assigned a value, as there 

should now be more previously simulated nodes to search. If after a specified number of 

cycles of the feedback loop a location still cannot be simulated then it is left blank 

The GSLIB FORTRAN routine SGSIM was adapted as outlined above to create 

SGFRACT for the implementation the following fractal simulation examples and·. to 

carry out the cast: study in chapter five. Points to note about SGFRACT are: 

1. It does not use a covariance lookup table (although part of the subroutine ctahle is 

retained as it is necessary for the search routines) as this unnecessarily complicates 

matters when applying the fractal algorithm. 

2. A feedback loop is included so that nodes not simulated due to lack of close data can 

be re-examined after the first random path is completed. 

3. An option is included to set the minimum number of data and/or simulated nodes that 

together will be used to simulate any point, thus allowing the option for nodes to be 

simulated entirely from previously simulated nodes without any original conditioning 

data. 

4. A normalisation factor is applied to the square root of the fractal variance to bring 

the simulated population variance back to around one. This factor is not fixed and is 
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· dependent on the geometry of the particular simulation. For example the normalisation 

factor changes with the model, the grid size and/or the overall field size. This 

normalisation factor is applied at each individurt point simulation rather than at the 

completion of the simulation so that it does not displace the conditioning data values. 

5. The option of using a two dimensional bounding polygon is also included to enable 

the simulation of non-rectangular fields. 

6. Following Rtimelin (1990) a Cholesk.)' forward/backward substitution routine is used 

to solve the linear system, as opposed to the Gaussian elimination routine used in 

SGSIM. 

7. The search radius is explicitly set by the model to equal the range and cannot be 

altered. This is because when trying to reproduce a sill the power model is only valid up 

to the range. Beyond that the structure is uncontrolled. 

Fitting a power model for use with SGFRACT with bounded data involves fitting a 

truncated power model. When using normal score data the concept of range as applied 

to a·'power law model translates to be the distance at which the model semi-variance 

equals 1. In theory if a sill exists in the experimental semi-variogram it should occur at a 

semi~variance of l. Therefore the first step when modelling a power law is to decide on 

the approximate lag at which the range or flattening occurs. The power 2H should then 

be determined (to one decimal place) from the slope of the linear regression of the 

log-log scaled experimental semi-variogram up to where the value of Jhj equals the 

range. Using this value for 2H the power law model is fitted by eye to the data by 

adjusting the coefficient t V H • The exact range can then be calculated by 
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(4.26) 
. :1 . 

a ~ e-ln(f Vy)/2H . 
i; , .. 

This range then serves as the search radius calculated by SGFRACT. The coefficient 

f V n could be takeri directly from the regression but it is best to check the fit by eye as 

there may be other factors to be considered such as model fits in other directions or 

extremely erratic experimental. semi-variogram data. If the semi-variogram being fitted 

has no sill th.en the regression and power model should be titted up to _the largest 

reliable lag,. usually half the field size in any given direction. This system of determining 

the power model parameters applies unchanged for anisotropic modelling. 

Examples and evaluation or SGFRACT 

The aim of this example is to test the algorithm and to mustrate the working of 

SGFRACT rather than to check the degree of accuracy it achie;~s in a practical 

situation. In order to gauge how well SGFRACT works, the same dat~ and parameters 

(where possible) were used to create a series of simulations using a modified version of 

GSLIB's SGSIM routine. The properties of the SGSIM(SK), where (SK) denotes 
. . . . . 

simple kriging, simulations will provide benchmarks for SGFRACT. We will use the · · 

data sets True and Berea from chapters two. and three ... 

. . . 
. .·· . .... . . 

In practice the Tnie data is not kriown arid variography and normal score transformation 

. parameters are esti~ated from the sample. data dslib97 as we have do~e in, chapter 
. . . 

three. In this case, in order to eliminate as many sourc:es of variation as possible, we will 

use the variography and normal score transformation parameters that come fr~~ the 
. . . 

. 1hie data set as input for our simulations. Note that in this case each e>f the sa1t1ple 

87 



conditioning data . will be locat~d exactly on a simulation node. Cases where 

conditioning data are not located exactly on simulation nodes wiII be dealt with in the 

next chapter. 

Calculation of the power 2H and hence the fractal co-dimension H, is shown in table 4. I 

as linear regression fits on successive lags for the log-log normal score experimental 

semi-variogram. It should be remembered that with the power model in this situation we 

only want to fit the model up to the range or the lag at which the population variance 

of one is reached. In this case a power of 0. 7 was chosen and used interactively to fit 

the best looking model. This gave a coefficient f Vn of 0.22, in tum giving a calculated 

range of 8.70. A nested nugget and spherical model was fitted to the same 

semi-variogram for use with SGSTh1(SK). The fitted models for both SGFRACT and 

SGSIM(SK} are shown i.n figure 4.3. Note that a nugget effect is not necessary when 

using fractal modelling in this case. 

l,.M 1,2,::0 

l.<.00 um 

(a) 5=0.8]1) (b) IO.Im 

ja.~ Eo.«x> 
0,(00 ~0.(00 

o.zoo 0.200 

Q,00) 

0 10 llO 0.000 
I) 10 

Figure. 4.3. Normal score experimental semi.variogram and fitted models. {a) Power model 

y(h) = 0.22!hl 0·7 • (b) Spherical model, nugget 0.01, range 11.0, partial sm 0.9. 
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10 100 

Figure. 4.4. Log-log experimental semi-variogram fitted up to lag 8.70 by power model 

y(h) = 0.22lhl 0·7 . 

Lag 2H VH 
2.32 0.72 0.20 
3.30 0.74 0.20 
4.24 0.75 0.20 
5.32 0.75 0.20 
6.33 0.75 0.20 
7.33 0.74 0.20 
8.38 0.72 0.21 
9.38 0.69 0.21 

10.37 0.67 0.22 
11.34 0.64 0.22 
12.32 0.61 0.23 

Table 4.1. Progressive linear regression fits to the True data log-log semi-variogram. Values 
closest to the range of 8. 7 shown in bold 

A sample SGFRACT calculation of the estimate, local variance and random addition 

will be shown below for the situation in figure 4.5. This figure shows the geometry for 

the first point to be simulated in the SGFRACT routine using a random seed of 112060. 

The ordinary kriging estimation and error variance are also given for this situation using 

the same power model. 
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Figure 4.5. Layout of the conditioning data points used in the simulation at node (40.5x, 5.5y). 

Point values and (weights) are shown. 

The closest conditioning point u~ is first split off to become the increment reference 

point. The covariance matrices Ca,pl~ and C;,al~ can then be calculated from 

equation 4.19. The linear system Ca,pl~ 'J,.,,
1 = C;,al~ can then be solved for 'J,.,,1 giving the 

following matrices ( shown here rounded to 3 decimal places) 

Ca,pl~ ').,,I C,a1~ 

0.455 0.316 0.358 0.228 0.243 0.377 0.228 
0.316 0.865 0.551 0.230 0.595 0.119 0.267 
0.358 0.551 0.865 0.339 0.414 0.006 = 0.233 
0.228 0.230 0.339 0.756 0.183 -0.006 0.124 
0.243 0.595 0.414 0.183 1.125 0.072 0.245 
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The weight for the increment reference point is simply one minus the sum of the other 

·. weights by equation 4.20. Hence the equivalence to ordinary kriging. 

"-11 = 1-0.568=0.432 

. The estimate is then computed via z•(ut) = ).z(ua.), a.= T\, I, ... , 5 

z"'(u,) = -1.193. 

The variance factor for this situation is then found by s2 = C;,1h1 - 11.'Cfa1,, which is 

s2=0.715-0.272=0.443. 

With the inclusion of the normalisation factor of I . 13 applied to the standard deviation 

this becomes s2 = 0.567 ors= 0.753. The random component w = -1.161 is generated 

and rr.ultiplied by the square root of the error variance together with the normalisation 

factor to givethe appropriate random variation for this point. The final simulated.value 

is then . 

z~\u 1) = -1.193 + 0.753(-1.161)= ~2.,067. 

Using the same data,. geometry and power model the ordinary kriging estimate and 
. . 

weights as calculated by GSLIB's OKB2D routine are exactly the same but the kriging 

error variance is 0.443 compared to SGFRACT's (normalised) variance factor of 0.567. 

Note that the fractal variance· before normalisation is also exactly the same as the 

ordinarykriging variance . 

. · The normalisation factor required for SGFRACT is established by starting with a value 

of 1.0 and running sets of ten simulations with each simulation using a different initial 

random seed. The normalisation factor was interactively. adjusted until the set of ten 

simulations.produced an average mean of close to.·zero for the simulated population 

and an average variance of close to one and this yielded a normalisation factor of 1.13. 

· Ten simulations were then calculated using both SGFRACT and SGSIM(SK) and the 
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best three from each method were chosen as examples, where best is taken to be the 

closest to a populatipn mean of zero and population variance of one as detailed in table 
. ., 

4.2. 

SGFRACT SGSIM(SK) 

Seed Variance Mean Variance Mean 

112060 0.99 0.04 0.86 0.03 
112061 1.00 -0.06 0.86 -0.05 
112062 1.08 -0.02 0.93 -0.02 
112063 0.95 0.03 0.82 -0.03 
112064 1.05· 0.01 0.89 -0.01 
I 12065 0.93 -0.03 0.81 -0.02 
112066 0.89 0.05 · 0.77 0.04 
112067 0.96 0:09 0.84 -0.08 
112068 1.06 0.08 0.91 -0.08 

.·· ,112069 1.08 0.01 0.94 -0.01 

Table 4.2. Population mean and variance from ten simulations with selected simulations 
· shown in bold. 

For each method a series of 100 simulations was calculated with all simulations being 

accepted regardless of how close they were to the desired mean and variance. These 

series were used to evaluate average grade tonnage curves. All simulations were then . 

. . . 

back transformed and, because the reference data set is highly skewed, a hyperbolic 
. ' 

model was chosen for the upper tail extension with a tail length parameter of L 5. The 

choice of the upper tail parameters can have a significant effect on the back 

transformation and care should be taken to establish a realistic tail length . 

. The resulting t-,.:perirnental serni-variograms . for the three selected· simulations from 

·. · SGFRACT and SGSW(SK), before and after back transformation, are shown in figures 
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4.6 and 4.7 together with the respective models used. Table 4.3 shows the summary 

statistics for the selected simulations in comparison to the Tme (Real) statistics and 

figures 4.8 and 4.9 show the simulation plots from SGFRACT and SGSIM(SK) 

respectively. 

1.20:l 1.200 

1.000 .. uoo 

5=0.am :co.ax, 
~o.eoo 

Bo.4ltl 

Jo.ax, 
0.40:l 

0.200 0.200 

0.axl o.cro 
0 lO 0 10 

Figure 4.6. Experimental normal score semi-variograms for three example simulations, True 
data in black and model as full line, for SGFRACT (left) and SGSIM(SK) (right). 

:,o,oa, -

0.000 -+-------.,----.,----! 
10 l:O 0 

o.om -1----r-, --~----i 
10 0 

Figure 4.7. Experimental back transformed semi-variograms for three example simulations, 
true data in black for SGFRACT (left) and SGSIM(SK) (right). 
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Real 

Fractal Sim. 1 
Fractal Sim. 2 
Fractal Sim. 3 

BG Slm.1 
SG Sin't. 2 
SG SIM. 3 

Real 

Fractal Sim. 1 
Fractal Sim. 2 
Fractal Sim. 3 

SG Slm.1 
SG Sim. 2 
BG SIM. 3 

mean variance skewness kurtosis max min 
0.00 1.00 0.0( 3.00 3.56 -3,54 

0.04 0.99 0.00 2.83 3.30 -3.26 
·0.06 1.00 -0.09 2.91 2.94 ·3.37 
0.04 0.95 0.06 2.94 3.57 -3.34 

·0.02 0.93 0.06 3.00 3.14 -3.39 
0.08 0.91 -0.06 2.59 3.17 -2.63 
0.00 0.94 -0.04 3.09 3.48 -3.11 

mean 

2.68 24.57 5.02 39.60 66.51 0.01 
2.28 16.71 4.57 31.89 44.46 0.01 
2.66 28.54 6.90 84.84 107.03 0.01 

2.41 22.38 5.26 39.55 55.68 0.01 
2.55 16.19 4.36 39.65 56.52 0.03 
2.45 23.49 7.07 84.06 92.14 0,01 

Table 4.3. S!mu[ation population statistics and comparisons. 

For SGFRACT the average normal score mean over 100 simulations was 0.024 and the 

average variance was 1.004. For SGSIM(SK) the average normal score mean was 

0.029 and the average variance was 0.895. The average variance for SGSIM(SK) is 

unexpectedly low. The reason for this is not clear. A check .set of l 00 simulations was 

done using sample data that conformed exactly to mean 0.0 and variance l.O but this 

still returned a low value average variance of0.922. 
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SGFRACT Simulation 1. GSLIB 97 data. 

SGFRACT Simulation 2. GSLIB 97 data 
g Back Transform 
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SGFRACT Simulation 3. GSLIB 97 data. 
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Figure 4.8. SGFRACT selected simulations. 
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SGSIM Simulation 1. GSLIB 97 data. 
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SGSIM Simulation 2. GSLIB 97 data. 
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SGSIM Simulation 3. GSLIB 97 data. 
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Figure 4.9. SGSIM(SK) selected simulations. 
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In mining operations grade tonnage curves are used in evaluating sample value cut offs 

to be used for particular areas of a deposit that will maintain a particular average grade 

and produce sufficient tonnage determined by the extraction and processing costs of a 

maforial. It is critical that the estimated grade tonnage curve is as close as possible to 

reality when evaluating an ore body and planning mining. Grade tonnage curves for this 

example were calculated by assuming that values are in grams per tonne and that each 

node represents a block of material Im x Im x Im with a specific gravity of 2.5. This 

approximates values that would be found in a typical gold deposit. Note that in this case 

no correction for block support has been applied. The cut off values used in the plots 

below are from 0.5 git to 3.0 git. Each marker defines a 0.25g step from which can be 

read the average grade above that cut off and the total tonnage above that cut off 

•' 

Figures 4.10 and 4.11 show the three selected simulation grade tonnage curves from 

SGFRACT and SGSIM(SK) respectively in comparison to the True (reference) curve. 

Figure 4.12 shows the averaged grade tonnage curves over 100 simulations for 

SGFRACT and SGSIM(SK) in comparison to the True curve. 

Ciit .a~1;> Tom age, Cornpa,iSOl'l 5 
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8Ymat Rud• git 
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3.0 g.lt 
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5 -0 

~ 0.2S git 
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Figure 4.1 D. Grade tonnage curve showing three simulations from SGFRACT. The True 
reference data is full line. 
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Figure 4.11. Grade tonnage curve showing three simulations from SGSIM(SK). The True 
reference data is full line. 
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Figure 4.12. Average grade tonnage curves over 100 simulations. The True reference data is 
full line with square markers. · 
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For the Berea data we will also use the variography and nonnaJ scores that are derived 

from the actual Berea data rather than the sample data in order to minimise 

uncertainties while testing SGFRACT. The anisotropic semi-variogram modelling with 

fractal power models is shown in figure 4.13. Note that use of a nugget effect is not 

necessary. We can calculate the anisotropy ratio -r in two ways, by simply taking the 

ratio of the directional ranges given by equation 4.26 as is usual, or by defining 

(4.27) 

where v=(iVm)/(tVm) and tvHI is the coefficient m the principal direction of 

anisotropy (Chu & Journel I 992). 
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Figure 4.13. Actual directional semi-variograms from Berea and fitted fractal power models. 

At 33° the model isy(h) = 0.381hlOAwith a range of 11.2 (feft). At 123° the model is 
y(h) = 0.20lhl 0-" with a range of 55.9 (right). 

The same procedure as for the Gslib97 data simulations was followed to give the 

simulations shown in figure 4.14. 
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SGFRACT Simulation 1 Berea64 data 

SGFRACT Simulation 2 Berea64 data 
o Back Transform g.,.,.,....--.-,-..,.._ 
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SGFRACT Simulation 3 Berea64 data 
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Figure 4.14. Three selected simulations from the Berea64 data. 
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Summary 

We have shown that SGFRACT provides estimates and error variances that are the 

same as ordinary kriging with a truncated power model but without having to resort to 

a pseudo-covariance function and without the use of the Lagrange parameter. 

From examination of the three individual True simulations in figure 4.9 and the 

averaged statistics over 100 simulations it is clear that SGFRACT produces simulations 

that are broadly similar to those of SGSIM(SK) for this situation. Looking at the plots 

in figure 4. 14 in comparison to the Berea simulation example in figure 3.7 we can see 

that the anisotropy is also reproduced well. Figure 4. 12 shows that the average grade 

tonnage curve from SGFRACT is closer to the real curve than that from SGSIM(SK). 

We conclude that, for these two data sets, SGFRACT has, overall; performed well and 

that it can now be applied, and analysed in more detail, to an real industrial data set. 
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5 Application of SGFRACT to gold mineralisation 

The aim of this case study is to evaluate how well SGFRACT reproduces grade controi 

data from exploration data in an actual industrial example as compared to two current 

methods, sequential Gaussian simulation and ordinary kriging. There are many ways to 

evaluate the results depending on the intended use of the simulations. We will examine 
. . : 

three selected individual simulations created by SGFRACT, SGSIM(SK) and 

SGSIM(OK) using exploration data and compare their individual population statistics 

(mean, variance, skewness, kurtosis, maximum and minimum), their normal score 

semi-variograms, their grade tonnage curves and their data plots with the grade control 

data and with ordinary kriged data. We shall also compare individual simulation · · 

averages from sets of one hundred simulations, for population mean and variance and 

grade tonnage curve, with grade control data. Finally we will compare the population of 

individual point averages over one hundred simulations with ordinary kriging estimates 

and data plots. The most important comparison from a mine planning point of view is 

that with the grade tonnage curve as, when calculated for an entire deposit, this defines 

the size and value of the deposit for different minimum grade scenarios. The grade 

tonnage curve comparisons in this case study can be viewed as an exploration to grade 

control reconciliation exercise. The case study will be carried out using _ real gold 

mineralisation data provided by Western Mining Corporation from the Goodall gold 

mine in the Northern Territory. First we give a brief summary of gold exploration and 

open pit mining procedures for deposits such as Goodall. 
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Once a mineralised target has beer, determined from surface mapping and sampling it 
,_ 

will be further investigated by diamond drilling, which produces solid cores of rock, and 

some sort of percussion or reverse circulation drilling, which produces small chips of 

rock and rock dust. The diameter of these drill holes can vary from I 00 millimetres to 

400 millimetres depending in the type of drilling rig used. Typically one or more holes 

are drilled on vertical sections across the target area on section spacings of 100, 50 or 

25 metres. These holes are sampled by one metre segments down the hole and may be 

up to 300 metres lo.ng. They are designed to intersect the potential ore body rather than 

to follow it in order to define i~s limits and are typically inclined at a dip of -60° to the 

horizontal. These holes are known as the exploration holes. 

Once mining of the ore body begins, blast holes and/or grade control holes are drilled 

on each mining bench. A bench or level is a horizontal slice of rock that is mined at one 

time or one pass. These holes are typically drilled on a three to five metre grid or offset 

grid and are usually from 50 to 150 millimetres in diameter. They are usually drilled at 

between -60° and -90° from the horizontal and can be from one to 30 metres long 

depending on the mining method used. 

In this chapter we will give a brief description /Of the geology of the Goodall deposit, 

describe the _ data sets we use, discuss the details of normal score transforms, 

variography and simulation parameters, then present and analyse the results. 
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Data set history and geology 

!he data acquired are from an area of the Goodall open cut gold mine in the Northern 

Territory know as A-Pod. Mfrling of A-Pod was completed in 1992 and all pre-mining 

exploration data and post mining grade control assays are available. A brief description 

of the geology is given below. A full description can be found in Quick (1991). 

"The mineralisation occurs on the eastern limb of an anticline in a well 

defined sub-vertical zone which measures up to 50m in width and 800m 

along strike, and up to 140m in depth. The folding is related to the Fl 

Howley anticline and is an open upright anticlinal fold slightly overturned 

to the west. Dykes have intruded after the main folding and cross-cut the 

fold axis. The gold mineralisation is epigenetic, structurally controlled, 

and is associated with thin (5 to 50 mm) vein arrays of quartz-sulphide 

veins which bulk to around five to 20 percent of the rock. The 

mineralisation occurs primarily within the sulphides. Grades are slightly 

higher along the eastern margin and lower in the cen,...e of the mineralised 

zone. 11 

We will use a small subset of the A-Pod data for the actual simulation examples but it is 

important, in the sense of potential industrial application, to have an understanding of 

the entire deposit, how it was formed and the implications this has when modelling the 

subset we are using. In effect we have a mineralised zone consisting of long narrow 

vertical structures which merge, separate and contain discontinuities. The subset of 

data we will use refers to a 2.5m thick horizontal slice through these structures. 
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Description of Data sets 

Subsets from two raw data sets from the same region will be used in this study. The first 

raw data set will be called the exploration data set and comes from a mixture of 

· diamond drilling core splits and percussion drilling samples taken as one metre down 

hole composites From holes drilled on 25 metre spaced venical sections. The raw 

exploration ·data comprise approximately 19 000 samples. These holes are between 25 

and 200 metres long. Because of the differences between diamond and percussion 

-drilling there is potential for these two populations to exhibit different characteristics . 

. However, the summary statistics calculated on both sets showed no great-difference 

(see table 5.1). 

E»>l.ORA TION COMPOSITES SUMMARY STA TIS TICS 

meein V6riance skewness kurlosis mru,c min 

Dieimond split 0.94 J.47 6.05 61J7 25.88 0.00 
Composites 

Percussion 0 91 3.20 5.16 39.61 19.19 0.00 
Composites 

Table 5.1. 

The second raw data set will be called the blast hole data set and consists of blast hole 

sampling taken as I . 5 metre down hole composites from bench by bench blast hole and 

grade control hole drilling on an approximate four metre by two metre spacing. These 

holes are between 1.5 and 12 metres deep. The raw blast hole data comprise 

approximately 126 000 samples. The two raw data sets need to be composited so that 

the samples represent the same vertical thickness and can be compared in similar regions 
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of space. Compositing involves calculating and assigning gold grade values to specified 

segment lengths located at specified positions down the hole that are different from the 

actual segments assayed. In this case we want to compare segments that are contained 

within each bench at a 2.5 metre vertical thickness. The volume of sample will be 

assumed to be the same for both exploration diamond split, exploration percussion, and 

blast hole data even though in reality they are all slightly different. The composited 

populations of the exploration data and the blast hole data sets will be called the 

expcomp data set and the blastcomp data set respectively (see figures 5.1 to 5.3). 

Figure 5.1. 30 perspective view of expcomp holes for A-Pod showing assay values above 
O.Sg/t in red. 

Both data sets contain mineralised and non-mineralised populations and these need to 

be separated before processing. The separation was done by outlining the mineralised 

zones, in section for the exploration data and in plan for the blast hole data, determined 

by a 0.5 gram per tonne (git) gold assay cut off (figures 5.2 and 5.3). The choice of this 
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bounda1y is based on the interpretation of the zones done by the geologists at the mine 

as shown on the actual section plans used to determine the extent of the ore body From 

the exploration sections an approximate tlu·ee dimensional model was created from the 

section outlines in GS32 in order to visualise the approximate shape and extent of the 

mineralised zone. 
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Figure 5.2. Cross section at 10900N showing mineralised zone outline (green), expcomp hole 
traces and b/astcomp grade control for 540RL. Assays above 0.5g/t in red. 

Modelling an entire three dimensional deposit would be a complicated and time 

consuming exercise and, in order to test SGFRACT, we will only be looking at a two 

dimensional subset of data from part of a single bench. The area we will examine is the 

mineralised zone that lies within the co-ordinates 10 800N - 11 100 N, 10 130E - 10 

210E, 537.SRL - 540RL (see figure 5.3). Note that RL stands for reduced level or 

elevation. 
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Figure 5.3. 540RL study area showing expcomp (large rectangles) and blastcomp (crosses) 
assays greater than O.Sg/t in red. 

The subset of the expcomp data set that lies within this zone will be called the exp5-IO 

data set and consists of 21 values (see figures 5.4 and 5.5 and table 5.2). 
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Figure 5.4. Exp540 data plot. 
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Figure 5.5. Histogram of exp540. 

t------------------------------~--------------------------------------
Hi:;togrilffl Statist;ics exr,540 

:nesc~iption • expl. comp. 540RL as used for simulations 
!Tot. Population~ 21 No. of Samples<= 0 ~ 0 
:Minimum Cuto[f ~ 0.05150 Minimum Kistogra~ Value~ 0.05150 
:Maxirrum Cutoff= 12.67830 Maximum Histogram Value= 12.67830 
:!le. of Sarnpl,;:; VsP.d = 21 Data<, )Uped to 

Ungrouped Dnta Class Intervals 
:!-"!~an 
: Medi.rn 
;Geometric Medh 
:tiatural LOG Hear, 
:standard Deviation 
;variance 
: Log \/adancce 
:coefficient of Variation 
:Moment 1 about Arithmetic Hean 
:Moment 2 about Arithmelic Mean 
:Moment 3 about Arithmetic Mean 
: M,::iment 4 about Ari ~hmet i c Mean 
:Moment C::ie(fi~ient of Skewness 
:t-:om<:>nt Coefficient. of ~'.urto:sis 

2.27361 24~7058 
N/A l.19397 

1. 113635 I. 26639 
0.17088 0.23617 
2.849~7 2.01802 
8.11947 7.9sl24 
1.49402 1.11551 
l. 25328 
0.00000 
9.11947 

55, 05677 
514. 'H4 

2. 31968 
8.12108 

1.24110 
0.00000 
7,94124 

51.10401 
515,790 

2. 28.361 
8. 17892 

+---------------------------------~------------------~-------~--------

Table 5.2. 

The subset of the blastcomp data set that lies within the mineralised zone will be called 

the b5-104x./ data set and, when thinned to eliminate holes that do not lie on the 

approximate 4m x 4m grid, contains 720 values (see figures 5.6 and 5.7 and table 5.3). 

Note that the exp5./0 and b5404x./ data sets are independent of each other in that the 

assays were collected .at different times and with different methods. 
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Figure 5.6. b5404x4 data plot. 
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Figure 5.7. Histogram of b5404x4 data set. 

+---------------------------------------------------------------------
Histogram Statistics b5404x4 

:oescr:.ptio:1 = 540 rl 4::4 ref . 
:Tot . Population= 720 
:Minimum Cutoff= 0 . 00990 
:Maximum :::utoff = 49 . 30000 
:No . of Samples Used= 720 

No . of Samples<= 0 = 0 
Minimum Histogram Value= 0 . 00990 

Maximum Histogram Value= 49 . 30000 

:Mean 
;Median 
: Geometric >lean 
:Natural LOG Mean 
:standard Deviation 
:variance 
: Lo•, 1/arianc':! 
:coefficient of Variation 
:Moment l about Arithmetic Mean 
:Moment 2 abc,ut Arithmr-:!tic MerJn 
:Moment 3 abr:iut ArithmeLi"..: Mean 
:Moment 4 about Arithmetic M"Jan 
:Moment Coeffi~j~nl of Skewn~ss 

Unc, rouped Data 
2 . 76546 

N/A 
1 . 37625 
0 . 31936 
4 . 61701 

21 . 31682 
1.375'.::3 
1 . 66953 
0 . 00000 

21 . 3168'2 
471 . 1!3~ 

15233.456 
4 . 79000 

Data Grouped to 
Class Intervals 

'.: . 83038 
1 . 46317 
1 . 65039 
0 . 50101 
4 . 56990 

'.:0 . 88399 
0 . 80606 
1 . 61459 

0 . 00001) 
'.:0 . 88399 

,16.:: . ! 93 
l.:!'91) . ~65 

1; . 34601 
:M•:m1.e:1t Coeffir:ient \:if Kurtosis 33 . 52.382 33 . 92?42 
+---------------------------------------------------------------------

Table 5.3. 
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Nonnally we would not know the variography of the b5404x4 data in advance and we 

would therefore have to estimate it from the sample data we have. The exp540 data do 

not contain enough values to properly estimate the variography and it will be necessary 

to use a larger subset of the expcomp data set to do so. We will use extra information 

that is available at the expcomp data scale to infer the variography of the study area. 

The variography we infer at the scale of the exp540 data may well be different from that 

at the scale of the b5./0./r-l data but it is the best information we have at that stage, as in 

practice no blast hole data would yet be available. The subset of the expcomp data used 

to infer thP. variography will be that which is refers to the same horizontal slice and 

same bounding polygon as the exp540 data set but also includes data that is 20m 

vertically above and below it. This subset will be a three dimensional subset called the 

expvGY data set and cont.ains 638 values (see figures 5.8 and table 5.4). 

;SD 

-
§ !00 -u 

0 .......... ~....,... ............ =-.-----.......------.---
0.ro;, 0.100 UXlO 10 IX!) 

Figure 5.8. Histogram and lognorrnal histogram of expvar. 
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+---------------------------------------------------------------------
Histogram Statistics expvar 

:oescription ~ expl. comp. 
:Tot. Population; 638 
:Minimum Cutoff - 0.00000 
:Maximum cutoff - 25.88350 
:No_ of Samples Used• 636 

520~560RL min. ~one at 540RL 

:Mean 
:Hedi an 
:Geometric Meiln 
:Natural LOG Hean 
:standard Deviation 
:variance 
:Log Variance 
:coefficient of Variation 
:Moment lab-out Arithmetic Mean 
:Moment 2 about Arithmetic Mean 
!Moment 3 about Arithmetic Mean 
:Moment 4 about Arithmetic Mean 
:Moment Coefficient of Stewness 
:Moment Coefficient of Kurtosis 

No. of samples <~ 0 ~ 6 
Minimum Hist,,gram Value• Q.00000 

Maximum Hist~gram Value; 25.88350 

Ungrouped Data 
1.13573 

NIA 
!I/A 
!l/ A 

2.5207 
6.37243 

NIA 
1.45436 
0.00000 
6.37243 

64.25421 
1074. 24 9 

3. 99433 
26.45418 

Data Grouped to 
Cl ass Int.~:v al ,s 

1.71293 
0. 89926 

NIA 
NIA 

2. 50811 
6. 29094 

NIA 
1.41470 

0.00000 
6.29094 

63.35739 
1039.821 

4.01535 
26.27421 

~--------------------------------------------------· ------------------

Table 5.4. 

Normal score transforms 

Both the expvar and h5404x./ data sets are highly skewed and appear to apprnximate a 

log normal distribution (see figures 5.5 and 5.8). We will not use log normal transforms 

in our simulations but a log histogram is a useful way of viewing of a highly skewed 

population. The simulation algorithms SGFRACT and SGSIM require normal score 

data and normal score ~.emi-variogram models as input. In this case using a normal 

score transform presents us with a number of problems as we have a small number of 

conditioning data points. If we use only the 21 conditioning data points in our exp540 

data set these will not provide enough information to model the semi-variogram and, as 

discussed in the previous section, they are unlikely to be a good representation of the 

global population and will provide poor transformation parameters. If, instead, we use 

the surrounding information :,:as contained in our expanded set expvar to estimate 
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semi-variogram models and global population statistics. as we have, the subset of the 

nonnaJ score transform that contains the 21 sample point va1ues will not be standard 

nonnai. In this case erp5-IO has a mean of 0.29 and a variance of 0.87 ra!her than zero 

and one. The mean and variance of the back transfonued population are veiy sensitive 

to the way in which values greater than the highest va1ue in the transformation table are 

handled. Using a hyperbolic upper tail extension ( see section 3. I) assists in reproducing 

a highly skewed distribution but only if the simulated normal score distribution is wider 

than the back transformation table used. Hence if the sample distribution has a variance 

less than one, few if any. of the simulation values produced with it will extend beyond 

the largest value in the transformation table, resulting in a lower back transform average 

and variance. 

Modelling the spatial strncture 

All data will be treated as point data in two dimensional space rather than block data for 

the purposes of modelling simulation and estimation. Semi-variogram modelling and 

determination of 1H was done using the normal score transform of expvar. To conform 

to our two dimensional sample data, the three dimensional search tolerances used were 

set with a small vertical bandwidth of plus or minus one metre, so that a1though the 638 

variography data cover a 40m vertical extent, pairs are only calculated if they are in the 

same one metre thick horizontal slice as each other. This amounts to averaging a 

stacked series of 2 dimensional semi-variograms. The experimental semi-variograms 

were calculated with lags at intervals of four metres, angular t0lerance of 30c and 

horizontal tolerance of ten metres. The long thin nature of the layout of the data 
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suggests that the principal axis of any anisotropy will occur along strike in the 

north-south direction. The iso-semi-variogram plot is ambiguous due to the scarcity of 

east-west data, however semi-variograms at 0° and 90° confirm the presence of 

anisotropy. Note that the maximum reliable lag in the east west direction is only about 

25m as the mineralised zone averages oruy 50m wide. Because of this, the east-west 

semi-variogram is very difficult to interpret and the value for 2H as shown in table 5.5 

has been calculated from the north-south dfrection only and then assr.med for the 

east-west direction. 

Lag 2H VH 
23.19 0.31 0.33 
25.90 0.27 0.35 
29.75 0.30 0.33 
33.59 0.30 0.33 
47.0S 0.30 0.33 
50.37 0.29 0.34 
53.88 0.29 0.34 
57.42 0.25 0.37 

Table 5.5. Progressive linear regression fits to log-log normal score directional 

semi-variogram at 0° from expvar. Bold lettering indicates the lags either side of where the 
sill begins. 

10.(l)j ---------------, 

:c 

~ l.001 . 

8 

0.100 

I 

~ I.COO 

8 

0.100 
10 IO'J lOX'I 10 

Figure 5.9. Directional log-log semi-variograms o 0 and 90° frtted by 
y(b) = 0.33]hl 0·3 and y(h) = 0.45lhl 0·3 respectively. 
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Figure 5.11. Normal score ditectlonal semi-varlograms 0° and 90°titted by nugget= 0.4, 
partial sill= 0.6 and ranges 40m and 14m respectively. 

Simulation 

The following list is an extract from the parameter file used for SGFRACT showing 

parameter groups (a) to (f). With the exception of the power model specification (d) 

and the normalisation factor (e) these parameter groups apply to SGSIM as well. Each 

groups will be explained in detail after the listing. 

(a) 18 10131.3 4 \nx,xmn,xsiz 

74 10804.0 4 \ny,ymn,ysiz 
(b) 0 \O=two part search, 1 =data-nodes 
(c} 2 \max per octant(O ~> not used) 

0.0 0.0 0.0 0.35 1.0 \sang 1,sang2,sang3,sanis 1 t2 
1 16 \min, max data for simulation 
16 \number simulated nodes to use 
4 2 \min data+sirn nodes, fback loops 

(d) 6 0.3 0.33 \it, Power=2H (aa),Constant=VH (cc) 
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(e) 
(t) 

0.0 0.0 0.0 0.35 1.0 
1.23 
1 

Group (a) 18 · 10131.3 
74 10804.0 

4 
4 

\ang l ,ang2,ang3 ,anis l ,anis2: 
\nonnalisation factor 
\use bounding polygon? yes=l, no=O 

\nx,xmn,xsiz 
\ny,ymn,ysiz 

This defines the grid upon which grades will be simulated. The lower left hand corner is 

10131.JE, 10804N. These co-ordinates correspond approximately to the alignment of 

the centres of the b5404x4 blast hole pattern on the 540RL bench. The blast holes are 

usually within half a metre radius of any node on this grid. The grid is square with a 

four metre spacing in each direction and extends for eighteen nodes or 68 metres to the 

east and 74 nodes or 292 metres to the north. 

Group (b) 0 \O=two part search, 1 =data-nodes 

Thf exp540 conditioning data are not aligned with the b5404x4 data or with the 

simulation grid. This parameter gives the option to relocate the conditioning data to the 

closest grid node in order to speed up the search routine at the· expense of a loss of 

accuracy. As the data set we are using is small and the conditioning data could be up to 

two metres away from the closest grid node we will not relocate the conditioning data. 

Group (c) 2 
0.0 0.0 0.0 0.35 1.0 
1 16 
16 
4 2 

\max per octant(O -> not used) 
\sang l ,sang2,sang3, sanis 1,2 
\min, max data for simulation 
\number simulated nodes to use 
\min data+sim nodes, fback loops 

These parameters define how the local search is carried out and which surrounding 

conditioning data and/or previously simulated points are used. The values of sang and 

sanis define the anisotropy parameters for an elliptical search in three dimensions. Here 

the principal axis of anisotropy is parallel to the north-south direction and no rotation 

on any of the three co-ordinate axes is required. The ratio of the minor and major axes 
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is defined by the range in their respective directions, namely 14/40=0.35. The elevation 

axis is not used and its ratio remains set at one. The search routine then finds all original 

values within this ellipse taking the closest two within each octant. It then finds all 

previously simulated values within this ellipse again taking the closest two within each 

octant. If there are more than sixteen original values plus simulated values returned then 

the total number is reduced to sixteen favouring the closest original values. If there is at 

least one original value and at least three other values simulation proceeds. If there are 

fewer than a total of four values found then the value at that node is not simulated on 

the first '.2op. 

Group (d) 6 0.3 0.33 

0.0 0.0 0.0 0.35 1.0 

\it, Power= 2H (aa),Constant = iVH (cc) 

\ang 1,ang2,ang3, anis 1,anis2: 

The semi-variogram model is defined by its coeffir-i.ent iVH=0.33, its power 2H=0.3, 

and its anisotropy as described in (c). The anisotropy of the model may be different 

from that for the s~arch ellipse. The value of six is a flag that tells the program that it is 

using a fBm model. 

Group (e) 0.87 \normalisation factor 

A normalisation factor of O. 87 was determined as described in section 4. 4 . 

Group (j) I \use bounding polygon? yes=l, no=O 

The grid definition covers a rectangular region within which the irregularly shaped study 

area is contained. To restrict the simulation to only those grid nodes contained within 
. · .. 

the study area, a bounding polygon is defined as a separate file composed of vertex 
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co-ordinates. Note that the search routine can still find original data that is outside the 

bounding polygon. This may be desirable· in some circumstances if only part of a 

simulation is required but in this study it is undesirable and is controlled by initially 
. . 
eliminating any original data outside the polygon. 

The SGSIM program also has the option of using simple kriging or ordinary kriging for 

computation of the estimates. As we have very sparse data ordinary kriging is unlikely 

to estimate the local mean accurately and simple kriging should give a better result . 

. Howi!ver a:; SGFRACT produces ordinary kriging estimates only it is useful to also 

compare SGSIM's results with the ordinary kriging option. Both sets of results are 

presented. 

Ordinary kriging with a power model was carried out with exp5 ./0 in its original form . 

( model y(h) = 2. I I h I 0·3 ) and with its normal score form. These two kriged data sets will 

be known as rawok and nshtok. The normal score kriging results were back transformed . 

using the expvar transformation table and upper tail extension in the same waY as the 

normal score simulations. In order to compare the different simulation met~ods to 

kriging each point in the study area for each simulation method was averaged over I 00 

simulations. These averaged simulations will be called fractal 1 OOav, .'igav 1 OOsk and 

sgavJOOok. (see figure 5.18). See also appendix E for the 'evolution' of the various 

Goodall data sets. 

The grade tonnage curves were calculated by assuming that each value of h5./04x-l and 

each value of every simulated point is representative of a block 4m x 4m x 2.5m 
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centred on the value's location. No block support correction is applied because we are 

comparing point support simulations to point support grade control data. A full 

simulation includes all blocks whose · centres lie within the bounding polygon and 

contains 722 blocks. The real b5404x4 data set has 720 values. The missing values are 

due to the realistic imperfect nature of its grid. Because of the different random paths, 

some simulations contain situations where, even after feedback loops, some nodes could 

not be simulated due to lack of close data. These simulations have fewer than the full 

722 values, the worst of the ~imulations ·having ·about two percent missing. When 
,I 

averaging each grade tonnage curve. over 100 simulations f 1is has very little effect on 

the results. Curves are aiso calculated for the point averaged sets over I 00 simulations 

as distinct from the curve averages. Confidence limits for the average grade tonnage 

curves were calculated by finding the variance for eac.h grade and tonnage above each 

cut off used from 100 simulations. 

Analysis of results 

From the first ten simulations of each method the three simulations with the best mean 

and variance were chosen for detailed examination. The results for these are shown in 

the following figures and tables. It is very encouraging to find that the fractal 

co-dimension in this case remains the same for the actual data and the nonnal score 

data. This was not the case with the True data used in chapter four, possibly because 

the Tnw data. is not real data but is itself simulated without regard to the fractal 

co-dimension. Table 5.6 shows that the model used and the three individual simulations 

examined provided a good estimate of the actual fractal co-dimension Hof 0.1. 
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Figure 5.13. Experimental normal score semi-variograms for three example simulations from 
SGSIM(SK) 0° and 90°. 85404x4 in black and model as full line. 
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Figure 5.14. Experimental normal score semi-variograms for three example s imulations from 
SGSIM(OK) 0° and 90°. B5404x4 in black and model as full li ne. 

It appears that the larger than expected normal score average mean obtained using 

SGFRACT shown in table 5. 7 is due to the fact that it produces ordinary kriging type 

estimates rather than simple kriged estimates. Ordinary kriging with OKB2D also 

produces a similarly high mean when usmg the normal score sample data as does 

SGSIM(OK). SGSIM(SK), as strictly required by the theory, produces an average 

mean closer to the expected mean of zero. 

Method 
SGFRACT 
SGSIM(SK) 
SGSIM(OK) 

Mean 
0.23 
0.08 
0.19 

Variance 
1.08 
0.96 
1.39 

Table 5.7. Average mean and average variance over 100 normal score simulations. 
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The larger than expected average means from SGFRACT and SGSIM(OK) indicate 

that exp540 data are probably too sparse to support ordinary kriging and the use of 

ordinary kriging estimates may be inappropriate for reproduction of the global mean in 

this situation. We mentioned earlier that our input sample values were not perfectly 

normal with a mean of 0.29 and a variance of0.87, and OK appears to be reproducing a 

mean closer to this. Subsequent simulations using the norma1 score transform of the 21 

sample points only (giving perfect normality) gave an average mean over 100 

simulations of - 0.07 and an average variance of 1.10 for SGFRACT and - 0.08 and 

1AO for SGSIM(OK). This gives a much better average mean but to back transform 

with this data would be inappropriate as discussed in section , 5.3. In both sets of 

simulations with SGSIM(OK) the average variance is much larger than expected. The 

average variance from SGFRACT is approximately normalised to begin with so it is 

difficult to tell ifit is being affected by the OK nature ofits estimates. 

Looking at the individual simulation summary statistics for both SGFRACT and SGSIM 

in tables 5. 8 and 5. 9 we see that although the nonnal score means and variances are 

reproduced reasonably, the back transformed means and variances are all considerably 

lower than expected. This is probably due to the input normal score samples being only 

quasi-nonnal. The lower sample variance of 0.87 leads to narrower normal score 

simulation distributions which do not allow as many va1ues to fall in the sensitive upper 

tail region of the back transformation table. This effect can be shown in another way. If 

a top cut of25g/t is applied to the 720 h5404x./ data, with the loss of only 10 values, 

the mean and variance of this top cut reference data are now in more line with the 

individual simulations with a mean of 2.42 and a variance of 10.22. 
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exp540 
b540'4x4 

Frede.I Sim. 1 
Fradal Sim. 2 
Fro.de.I Sim. 3 

SG Sim. 1 (SK) 
SG Sim. 2 (SK) 
SG Sim. 3 (SK} 

SG Sim. 1 (OK) 
SG Sim. 2 (OK) 
SG Slim.3 (OK) 

NSBTOK 
RAWOK 

Fractal AVl 00 
SGAV100 (SK) 
SG AV100 (OK) 

exp540 
b5404x4 

Fractal Sim. 1 
Fractal Sim. 2 
Fradol Sim. 3 

SG Sim. 1 (SK) 
SG Sim. 2 (SKj 
SG Sim. 3 (SK) 

SG Sim. 1 (OK) 
SG Sim. 2 (OK) 
SG Slim.3 (OK) 

NSBTOK 
RAWOK 

Fractal AV100 
SG AV1 00 (SK) 
SG AV100 {OK) 

ORJGINAL AND BACK TRANSFORMED STATISTICS 
mean voril!nce 

8.11 
2.76 21.31 4.79 33.52 

1.6li 4.73 3.35 19.38 19.16 
1.92 10.81 5.86 55.08 -42.64 
1.72 5.31 3.27 17.21 18.33 

1.99 7.66 3.00 13.98 18.53 
1.69 4.69 2.87 13.35 15.25 
1.73 5.10 3.10 16.30 19.09 

2.29 39.96 12.11 189.84 112.81 
2.07 8.27 3.02 14.50 19.60 
1.90 7.18 3.25 16.88 22.30 

1.35 0.64 1.85 9.41 6.13 
2.10 1.91 l.86 7.91 9.46 

2.49 2.91 4.35 35.60 21.11 
1.89 0.36 2.86 21.68 8.05 
3.97 80.79 13.26 208.62 157.01 

Table 5.8. 

NORMAL SCORE STATISTICS 
mean variance skewness kurtosis max 
0.29 0.87 -o.oa 3.01 2.32 
0.00 1.00 0.00 2.96 3.20 

-0.04 1.03 -0.19 2.99 2.82 
-0.01 1.15 -0.03 3.04 3.38 
0.01 0.98 -0.0B 2.85 2.73 

0.10 1.03 0.07 2.69 2.75 
0.03 0.91 -0.05 2.84 2.48 
0.03 0.95 -0.08 3.01 2.81 

-0.05 1.38 -0.01 3.25 3.75 
0.12 1.06 0.07 2.65 2.85 
0.06 1.03 0.01 2.58 2.9B 

0.20 28.00 -0.96 4.85 1.67 

0.22 0.19 0.07 3.19 1.83 
0.08 0.05 0.66 5.07 1.05 
0.19 0.18 0.10 2.78 1.47 

Table 5.9. 

0.01 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

0.00 
0.00 

0.00 
0.00 
0.00 

min 
-1.87 
-3.20 

-3.42 
-3.70 
-2.95 

-2.67 
-2.95 
-3.49 

-4.16 
-2.73 
-3.98 

-1.87 

-0.78 
-0.54 
-0.78 
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Examination of the point averaged simulation sets in tables 5. 9 shows an exceedingly 

high maximum sgavok. This is due to the back transformation. A few of individual 

simulations within the 100 produce very high point nonnal score values of around five. 

A value of five is unusual but theoreti~l'IJ!y . acceptable. This did not affect the normal 

score point means as the few high values were absorbed by the averaging process. 

However, when the high values are back transfonned to a highly skewed distribution 

using a tail length parameter of 1.5 (see section 3.2) a value of five back transforms to a 

value of 6890 which is unrealistic and influences the point mean considerably. This 

shows one of the deficiencies of using normal score transformations. Subsequent test 

back transformations using a more conservative tail length parameter of 2.5 give a value 

of 73 8 which is still unacceptable. 

Visual inspection of the data plots in figures 5.15 to 5.19 is subjective but details of the 

clustering and anisotropy are best examined in this way. None of the individual 

simulations from any of the methods captures. the elongated higher grade clustering 

obvious in the b5-IO-lx-l data plot. However SGSIM(SK) appears to have done a better 

job of reproducing anisotropy than the other methods. The comparisons of ordinary 

kriging with the averaged point simulation data show that kriging still produces a 

smoother picture than the others. 

124 



,::1 540 rl 4:-:4 blasthole data 
(£) 
0~ Au 

10800.000 ·10949 995 

0 
SGFRACT Simulation 1. 540RL exploration data 

~ Back Transform 
~ 
~ 

D 
s ,.,, 
lJ1 
(£) 

o 
5 

~ 

0 
~ 

0.0 

0 .500 
·1.000 
·1.500 

2 .00 0 

2.500 

3.000 
3.500 

4 .00 0 

·10.000 

·1·1 0 9 9 .990 

0 .0 

0 .500 
·1.000 
·1.500 

2 .000 

2.500 
3 .000 
3 .500 

4.000 

10.000 

1------------------.--- -------------
·10804 .000 ·1 0 950 .ODO 

0 
SGFRACT Simulation 2. 540RL exploration data 

~ Back Transform 
~ - -0 
s 
(1') 

LJ:i 
(!) 
~ 

0 

0 
0 
(T) 

(l) 
m 
0 
~ 

' 
10804.0 0 0 10950.000 

0 SGFRACT Simulation 3. 540RL exploration data 
~ Back Transform 

~ 

0 
~ 

1·1096.000 

0 .0 

0 .500 
·1 .000 
·1.500 

2 .00CI 

2.500 
3 .000 
3 .5 00 
4 .000 

10.000 

1·1 096 .000 

O.CI 

0 .500 
·1.000 

·1.500 

2 .000 
2 .500 
3.000 

3 .500 
4 .000 

-J0.000 

1---------------~------ - --------1 
·1 0 804 .0 0 0 ·1 0950 .ODO 1109 6 .000 

Figure 5.15. Plots of actual data values (top) compared with the three selected SGFRACT 
simulations. 
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Figure 5.16. Plots of actual data values (top) compared with the three selected SGSIM(SK) 
simulations. 
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Figure 5.17. Plots of actual data values (top) compared with the three selected SGSIM(OK) 
simulations. 
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Figure 5.18. Plots of ordinary kriged data values (top) compared with the average point 
values over 100 simulations for SGFRACT, SGSIM(SK) and SGSIM(OK). 
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Figure 5.19. Plot of actual data values (top) compared with normal score back transformed 
ordinary kriging. 

The results of the grade tonnage curves and their confidence limits should be 

considered, bearing in mind the above comments on normal score transformations and 

that higher average means and variances will give higher average grades at any specific 

cut off value. (For an explanation of how to read the grade tonnage curves refer to the 

text above figure 4.10 in section 4.5.) None of the kriging or point averaging methods 

reproduce the con-ect grade tonnage curve well (see figures 5.21 and 5.22). SGFRACT 

produces an average curve that is close to reality (see figure 5.23). Below a cut off of 

2. 5 git its average grades are very close to reality but the tonnages are lower. Above a 

cut off of 2.5 git its grades are less than in reality and its tonnages are slightly more. It 

can be seen from figure 5.24 that SGSIM(OK) produces grade tonnage curves that 
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fluctuate excessively and are unrealistic. SGSIM(SK) which gave the most acceptable 

normal score data back transforms to give a curve that · is lower in both grade and 

tonnages compared with reality (see figure 5.25). Its• confidence limits are narrower 

· than SGFRACT's and do not encompass the real curve. 
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Figure 5.20. Average grade tonnage curves from SGFRACT, SGSIM(SK), SGSIM(OK) and 

for b5404x4. 
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Figure 5.21. Grade tonnage curves for the point averaged simulation sets and b5404x4. 
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Figure 5.22. Grade tonnage curves for the kriged data and b5404x4. 
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Figure 5.23. Average grade tonnage curve and 95% confidence intervals for 100 simulations 

ofSGFRACT. 
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Figure 5.24. Average grade tonnage curve and 95% confidence intervals for 100 simulations 

of SGSIM(OK). 

132 



~GSIMtSK} GRA.DRTONNAGE CURVE 
95% CONFIDENCE LIMITS FOR 100 SIMULATIONS 

AVERAGE GUDE git 
16 .--------------------------------, 

14 

12 

10 

·8 

6 

2 

0 7500 15000 22500 , 30000 37500 45000 5.!500 6000~ 67500 75000 
roNNA.Gl; 

-.:- SGS!M{SKHOO o LOWER %%LIMIT 1,. UPPER 'J5% UMIT 
a B54MK4(REALITYl 

Figure 5.25. Average grade tonnage curve and 95% c~,ifidence intervals for 100 simulations 

of SGSIM(SK). 

Summary 

We have shown that fractal modelling of the spatial structure of an actual gold 

distribution is practical and achieves results that are, at least as good in all aspects and, 

for grade tonnage curves, better than sequential Gaussian simulation using a spherical 

model. 
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6 Conclusions and Recommendations 

A variety of stochastic fractal simulations methods are in practical use in areas such as 

in computer graphics for surface visualisation and in the petroleum industry for flow 

simulations. However, to date, with the exception of Prasad ( 1991) whose Ph.D. thesis 

used a modified successive random additions fractal method on sulphur in coal. only 

theoretical applications to ore body modelling with fractal simulations have been 

undertaken. This is perhaps because previous fractal methods cannot handle irregularly 

spaced data and/or cannot quickly condition a simulation and/or do not reproduce the 

spatial structure. At best the spectral fractal methods available have been found to 

produce results that are no better or worse than traditional geostatistical methods 

(Bruno & Raspa, I 989 ; Chu & Journel 1992). 

Conclusions 

What we have achieved in this thesis is the creation of a new tool that incorporates 

fractal concepts into geostatistics and which can be used in geostatistical simulation and 

ore body modelling. This tool has been formed by drawing together simulation 

techniques and ideas from both geostatistics and computer graphics and combining 

them in a unique way. The original contributions of the thesis are: 

( 1) A method for the use of the (truncated) power model with bounded experimental 

semi~variogram models. 

(2) The adaptation and extension ofRumelin's covariance equations to work with spars~ 

irregularly spaced data while maintaining the conditionality of a simulation enabling the 

use of the power model with sequential Gaussian simulation. thus overcoming the two 

major drawbacks of most existing fractal simulation methods. 
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(3) The incorporation of the fractal co-dimension as an additional statistic that can be 

reproduced with Gaussian geostatistical simulations. 

It is also the first time that we know of that a real gold mineralisation, highly skewed 

data set has been simulated with a fractal method. The importance of this new tool is 

that it creates geostatistical simulations that specifically capture the fractal nature of a 

distribution as well as its histogram and spatial structure. The other advantage of 

SGFRACT is that it does not require knowledge of spectral techniques and anyone 

already familiar with semi-variograms has the theo,retic~I knowledge required to 

understand and implemer.t it. 

Specifically it has been shown that, for the two skewed distribution data sets, Gslib97 

and exp5./0, SGFRACT produces a simulated average grade tonnage curve that is 

closer to reality than sequential Gaussian simulation and ordinary kriging. Also, in the 

sparse data situation in chapter five SGFRACT produced a smaller range of fluctuations 

compared with SGSIM(OK) and is therefore less sensitive to anomalies that occur in 

back transforming. The method runs just as fast, in terms of computing time, as 

sequential Gaussian for simulations of the sizes used in the case studies. 

The method has the limitation that it can provide only ordinary kriging type estimates 

but this is of very little concern as ordinary kriging is preferable to simple kriging in 

most situations. Another possible limitation is that the method can only be used with a 

power model. It is alsc restricted to using normal score data but this disadvantage is riot 

exclusive to SGFRACT. 
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Extensions and Recommendations 

The major aspect that needs attention is the normalisation factor. With further work the 

relationships between the grid size, field size, model parameters and random path used 

could be further analysed with the aim being to determine the normalisation factor 

theoretically rather than. experimei1tally. It is possible that the normalisation factor is 

partly related to the introduction of a feedback loop that allows the simulation of points, 

from previously simulated points alone, that would otherwise remain unknown. Further 

studies examining the possible creation of bias by t!ie normalisation and/or the feedback 

loop would be useful. The sensitivity of the simulations to the normalisation factor 

should also be examined. 

There is still the potential for extension of this method and to date an LU version that 

simulates many points at once (LUFRACT) has been written but will not be discussed in 

detail here. The first obvious extension is to · adapt both SGFRACT and LUFRACT to 

three dimensions. There is no theoretical reason for this not to be a simple task. The 

next obvious possible extension is to implement nesting so that a nugget effect, by way 

of 2H = 0, can be included if desired. However, practice so far has shown that the 

power model alone copes quite well in situations where a nested nugget and spherical 

model would normally be used. Some other possible extensions and questions that need 

to be answered are: 

(a) Can SGFRACT be adapted to indicator methods? 

(b) Can it handle zonal anisotropy? 

( c) Do we ever need to moder' a nugget effect? 

(d) Can multi-fractals be incorporated? 
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In the sense that they all deal with nesting of models, (b), (c) and (d) are all related. Chu 

& Joumel (1992) have shown that fractal models can be nested using spectral methods 

but whether the same style of nesting would work with SGFRACT requires 

investigation. 

( e) When working with data that have a sill, could results be improved by selecting 

only those models that reproduce a clear sill? 

Examination of many individual simulated semi-variograms showed a tendency for some 

to continue to increase with distance while others created by the same simulation 

parameters but different random path showed a definite sill. This presumably occurred 

because of the truncated nature of the model where the spatial structure beyond the 

range was uncontrolled. 

(f) What is the relationship betwee;:i the normal score fractal co-dimension and the 

actual fractal co-dimension? 

In the case of the isotropic data set True i~ c;hapter four the fractal co-dimension for the 

actual and nonnal score data were not the same. With the anisotropic real data sets 

Berea and b5404x4 used in ~hapters four and five the fractal co-dimension did remain 

the same after normal score transformation. This may be because these two data sets are 

real and the GSLIB data is a simulation that takes no account of the fractal . 

co-dimension. 

In conclusion we can say that use of the fractal co-dimension does make a useful 

contribution to ore body modelling and geostatistics when used in conjunction with 

existing methods. SGFRACT achieves this and has potential to provide even better 

results with future work on the topics listed above. 
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Appendix A- Notation and Symbols 

The notation and symbols used throughout the thesis are listed in order of appearance in 

the text. 

R 

u 

a,p 

Z(ua) 

Z(u) 

z(ua) 

z(u) 

m(u) 

Y(u) 

.e 

F 

P() 

E[J 

cr2 

Var() 

C() 

2y(h) 

h 

m 

y(h) 

lhl 

A, 

Co 

Region 

Location vector (uX, u>', uz) 

Location subscript indices eg. Ua. 

Random variable 

Random function 

Regionalised value 

Regionalised variable 

Non.stationary mean of a random function, also drift 

Stationary random function 

Noise term 

Cumulative frequency distribution function 

Probability function 

Expectation 

Variance 

Variance function 

Covariance 

Variogram function 

Translation vector or increment 

Stationary mean 

Semi-variogram function 

Increment distance or lag 

Weight· 

Nugget variance 
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c1 Partial sill 

a flange 

b Constant of proportionality 

e Power of power model 

q> Principal direction of anisotropy in degrees 

't Anisotropy ratio 

R Rotation matrix 

A Anisotropy transformation matrix 

v(u 0 ) Support volume at u 0 

zv(u 0 ) Regionalised value defined on support v 

Zk(ui) Simple kriging estimator 

crk Simple kriging estimation error variance 

ZoK(u;) Ordinary kriging estimator 

cr~K Ordinary kriging estimation error variance 

µ Lagrange parameter 

C Variance covariance matrix 

A. Matrix of weights 

z<O(u) Unconditional simulation 

z~\u) Conditional simulation 

N(m,a2) Normal distribution 

fl.. ) Probability density function 

G( ) Standard normal cumulative distribution function 

ro Flattening parameter for upper tail extrapolation 

L Lower decomposition of variance covariance matrix C 

U Upper decomposition of variance covariance matrix C 

w Vector of standard normal score values 
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n 
E 

r 

D 

r 

B(u) 

Bn(u) 

H 

Set of points 

Euclidean dimension 

Scale factor 

Fractal dimension 

Scaling vector where r, is not necessarily equal to r1 

Brownian motion 

Fractional Brownian motion 

Fractal co-dimension 

Vn Proportionality constant equal to the characteristic variance at 

the reference unit lag for fractional Brownian motion 

Wn(u) Fracdonal Gaussian noise 

S · EsHmation error standard deviation matrix 

Tl Subscript index for a specific regionalised value used for 

increment·calculation with the covariance of increments fractal· 

simulation method 

s Standard deviation 
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Appendix BM Data (sub)Set listings 

Gslib97 

GSLIB 97 conditioning data 
4 

Xlocation 
Ylocation 
Elevation 
Primary 

39.500 18.500 0.000 0.060 
5. 500 1.500 0.000 0. 060 

38.500 5.500 0.000 0. 080 
20.500 1.500 0.000 0.090 
27.500 14.500 0.000 o. 090 
40.500 21.500 0.000 0.100 
15.500 3.500 0.000 0.100 

6.500 25.500 0.000 0 .110 
38.500 21.500 0.000 0 .110 
23.500 18.500 0.000 0.160 

0.500 25.500 0.000 0 .160 
9.500 19.500 0.000 0 .170 

36.500 43.500 0.000 0 .180 
21. 500 5.500 0.000 0.190 
13. 500 .· 3.500 0.000 0.190 
40.500 7.500 0.000 0.190 
31.500 17.500 0.000 0.220 
46.500 40.500 0.000 0.240 
10.500 7.500 0.000 0.260 
28.500 11.500 0.000 0.280 

8. 500 7.500 0.000 0.280 
47.500 0.500 0.000 0.310 
4.500 37.500 0.000 0.320 

14.500 21.500 0.000 0.330 
22.500 48.500 0.000 0.340 

. 18. 500 6.500 0.000 0.340 
3.500 38.500 0.000 0.340 

11. 500 46.500 0.000 0.400 
31. 500 26.500 0.000 0.450 
14.500 29.500 0.000 0.460 
14.500 43~500 0.000 0.510 
38.500 28.500 0.000 0.570 
45.500 14.500 0.000 0.620 

4. 500 30.500 0.000 0.650 
6.500 41.500 0.000 0.670 
7.500 ·12.soo 0.000 0. 710 

26.500 23.500 0.000 0.790 
8.500 45.500 0.000 0.810 

14.500 46 .500 · 0.000 0.830 
13.500 24.500 0.000 0.840 
26.500 1.500 0.000 0.890 
33.500 7.500 0.000 0.920 
45.500 22.500 0.000 0.930 
48.500 25.500 0.000 0.940 
35.500 10.500 0.000 v. 960 
34.500 14.500 0.000 0.990 
13.500 39.500 0.000 0.990 
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7.500 18.500 0.000 1.010 
15.500 27.500 0.000 1.020 

3.500 33.500 0.000 1.100 
11. 500 15.500 0.000 1.110 
22.500 30.500 0.000 . 1. 210 
45.500 29.500 0.000 1.210 
13.500 12.500 0.000 1. 270 . 
22.500 11.500 0.000 1. 340 
17.500 34.500 0.000 1.360 
39.500 43.500 0.000 1.370 

3.500 23.500 0.000 1.380 
30.500 22.500 0.000 1.380 
46.500 13.500 0.000 1.660 
30.500 9.500 0.000 1.700 
27.500 32.500 0.000 1.710 
12.500 34.500 0.000 1. 780 
25.500 4.500 0.000 1.810 
27.500 34.500 0.000 1.820 
45.500 6.500 0.000 1. 890 

3.500 47.500 0.000 1.960 
33.500 31.500 0.000 1.980 
41. 500 26.500 0.000 2.130 
19.500 20.500 0.000 2.170 

0.500 41.500 0.000 2.330 
5.500 22.500 0.000 2.340 

43.500 10.500 0.000 2.470 
41. 500 45.500 0.000 2.750 
28.500 42.500 0.000 2.760 
21.500 34.500 0.000 · 2. 840 
16.500 13.500 0.000 2.990 
23.500 24.500 0.000 3.040 

2.500 1.500 0.000 3.330 
47.500 44.500 0.000 3.350 
39.500 38.500 0.000 3.510 
46.500 34.500 0.000 3.810 
35.500 45.500 0.000 4.600 
25.500 25.500 0.000 4.890 
28.500 44.500 0.000 5.050 
19.500 42.500 0.000 5.150 
38.500 36.500 0.000 5.310 

2.500 9.500 0.000 6 .260 
32.500 36.500 0.000 6.410 

0.500 8.500 0.000 6.490 
31.500 45.500 0.000 7.530 

9.500 29.SOO· 0.000 8.030 
39.500 ·31,500 0.000 8.340 
17;500 15.500 0.000 9.080 

2.500 14.500 0.000 10.270 
30.500 41.500 0 .000 · 17.190 
35.500 32.500 0.000 18.760 
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Berea64 

Berea64 data 
4 

Xloc 
Yloc 
Elevation 
Variable 1 
2 5. 5000 29. 5000 . 0.0000 45.0000 
26.5000 10.5000 0.0000 51.0000 
36.5000 19.5000 0.0000 51.5000 

9.5000 9.5000 0.0000 59.5000 
21.5000 15.5000 0.0000 59.5000 
25.5000 0.5000 0.0000 42.5000 
17.5000 11.5000 0.0000 54.5000 
33.5000 19.5000 0.0000 56.0000. 
27.5000 2.5000 0.0000 34.0000 
33.5000 21.5000 0.0000 45.0000 

8.5000 24.5000 0.0000 41.5000 
26.5000 1.5000 0.0000 40.0000 
. 2.5000 31.5000 0.0000 51.0000 
12.5000 34.5000 0.0000 50.5000 

9.5000 18.5000 0.0000 ·50.0000 
30.5000 34.5000 0.0000 80.0000 
28.5000 20.5000 0.0000 64.5000 

0.5000 38.5000 0.0000 60.5()00 
20.5000 33.5000 0.0000 49.5000 

3.5000 39.5000 0.0000 64.5000 
24.5000 11.5000 0.0000 45.0000 
39.5000 32.5000 0.0000 99.5000 

1.5000 30.5000 0.0000 56.0000 
27.5000 14.5000 0.0000 64.0000 
30.5000 3.5000 0.0000 72.0000· 

7.5000 19.5000 0.0000 30.0000 
32.5000 7.5000 0.0000 60.0000 
20.5000 1.5000 0.0000 62.0000 

6.5000 37.5000 0.0000 65.0000 
26.5000 36.5000 0.0000 80.0000 
20.5000 20.5000 0.0000 62.5000 
17.5000 25.5000 0.0000 55.0000 
17.5000 1.5000 0.0000 45.5000 
3.5000 26.5000 0.0000 49.0000 
6.5000 39.5000 0.0000 55.0000 

34.5000 23;5000 0.0000 34 .0000 . 
2.5000 23.5000 0.0000 50.5000 

24.5000 10.5000 0.0000 47.0000 
20.5000 37.5000 0.0000 65.0000 

8.5000 33.5000 0.0000 70.0000 
34.5000 1. 5000 0.0000 71.0000 

· 22. 5000 33. 5000 0.0000 48.0000 
21.5000 30,5000 0.0000 36.0000 
20.5000 · 8.5000 0.0000 24.0000 
34.5000 32.5000 .· 0.0000 82.0000 
37.5000 9.5000 0.0000 88.5000 
9.5000 33.5000 0.0000 47.0000 

29.5000 24.5000 0.0000 42.0000 
2.5000 11.5000 0.0000 36.5000 
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30.5000 14.5000 0.0000 61. 5000 
26.5000 20.5000 0.0000 57.5000 
36.5000 ~6.5000 0.0000 91.0000 
16.5000 31.5000 0.0000 51. 0000 
··1.5000 3.5000 0.0000 42.5000 
31.5000 7.5000 0.0000 50.0000 
18. 5;000 7.5000 0.0000 27.0000 
17.5000 22.5000 0.0000 59.5000 

·29.5000 7.5000 ·0.0000 57.5000 
13.5000 38.5000 0.0000 42.0000 
10.5000 29.5000 0.0000 45.0000 
19.5000 15.5000 0.0000 50.0000 
35. 500('1 21. 5000 0.0000 52.0000 
7.5000 25.5000 0.0000 41.0000 

35.5000 6.5000 0.0000 69.0000 
I 
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exp540 

expl. comp. 540RL as used for simulations 

4 
Northing 
Easting 
Elevation 
Au 

10898.96 
11000.07 

·10947.87 
10948.43 
11049.63 
10846.27 

,11102.01 
11047.54 
10996.27 
10800.00 
10825.00 
10825.00 
10849.90 
10849.60 
10876.50 
10875.00 
10900.10 
10900.10 
10925.00 
10950.00 
11075.00 

·10154.20 
10178.87 
10171.24 
10144.03 
10175.81 
10160.30 
10181.02 
10178.34 
10157.20 
10152.24 
10146.38 
10174.72 
10148.60 
10162. 85 · 
10143.17 
10174.95 
10139.15 
10168.95 
10168.81 
10173.54 
10161.97 

538.75 
538.74· 
538.75 
538.75 
538.75 
538.75 
538.75 
538.76 
538.75 
538.75 
538.75 
538.75 
538.75 
538. 75 
538.75 
538.75 
538.75 
538.75 
538.75 
538.75 
538.75 

1.06 
0.05 
1.08 

12. 68 
0.54 
0.31 
5.52 
0.23 
4.99 
0.76 
5.26 
1.93 
o .38 
1.25 
1.65 
3.97 
1.54 
1.50 
0.53 
1.42 
1.11 
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Appendix C - SGFRACT Fortran 77 Code 

The following two subroutines krige and cova3 are part of the SGFRACT program 

source code and contain the essential differences between SGFRACT and SGSIM. 

They are not sufficient on their own to carry out a fractal simulation but are part of a 

much larger body of source code that was originally written by C. V. Deutsch for the 

SGSIM program and has been modified by DJ. Kentwell to form the SGFRACT 

program. Deutsch & Joumel (1992) contains a full copy of the source code for SGSIM 

on disk and it is also available on the internet atftp:llbanach.stanford.edulgslibl. 

subroutine krige(ix,iy,iz,xx,yy,zz,cmean,cstdev) 

c-----------------------------------------------------------------------
c 
C 

.c 
Builds and Solves the SK or OK Kriging System 
********************************************* 

C 

c INPUT VARIABLES: 
C 

c ix,iy,iz index of the point currently being simulated 
c xx.,yy,zz location of the point currently being simulated 
C 

C 

C 

c OUTPUT VARIABLES: 
C 

c cmean 
c cstdev 
C 

C 

C 

kriged estimate 
kriged standard deviation 

c EXTERNAL REFERENCES: cholfbs Cholesky LU linear system solver 
c sqdist anisotropic squared distance 
C 

C 

c ORIGINAL: C.V. Deutsch 
c MODIFIED: D.J. i(entwell 

DATE: August 1990 
May 1997 

c-----------------------------------------------------------------------
indude 1sgfract.inc1 

flg=O 
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C 

c Split off first node as reference value n and resize close(): 
C 

if(nclose.gt.O) then 
index=int( close(l)) 
xn=x(index) 
yn=y(index) 
zn==z(index) 
vra(l)=vr(index) 
nclose--=nclose-1 
if(idbg.ge.3) then 

write(ldbg, *) 'n-xy' ,xn,yn 
write(ldbg, *) 1 i-xy' ,xx,yy 

endif 
do 7 k=I,nclose · 

close(k)=close(k+ 1) 
7 continue 

else 
C 

c if all data is colocated with simulation nodes 
C 

index=l 
xn=cnodex(index:) 
yn=cnodey(index) 
zn=cnodez(index) 
vra( 1 )=cnodev(index) 
ncnode=ncnode-1 
flg=l 
if(idbg. ge.3) then 

write(ldbg, *) 1 n-xy' ,xn,yn 
write(ldbg, *) ' i-xy' ,xx,yy 

endif 
do 8 l= 1,ncnode 

icnode(l)=icnode(l+ 1) 
8 continue 

endif 
C 

c Calculate the reference step size. 
C 

is=I 
step=sqdist(xx,yy,zz,xn,yn,zn,is,MAXROT,rotmat) 
step=sqrt( step) 
if(idbg.ge.3) write(ldbg, *)'step= ',step 

C 

c Size of the linear system: 
C 

na = nclose + ncnode 
if(idbg.ge.3) then 
write(ldbg, *) 1nclose= 1 ,nclose ,'ncnode=' ,ncnode 
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endif 
C 

c Set up kriging matrices without reference value: 
C 

in=O 
do I j=I,na 

C 

C Sort out the actual location of point 1r 
C 

ifij.le.nclose) then 
index = int(close(j)) 
xi = x(index) 
yl = y(index) 
zl = z(index) 
vraG+ 1) = vr(index) 

else 
C 

c It is a previously simulated or colocated node: 
C 

C 

index = j-nclose 
if{flg.eq. I) then 

indexx = j+l 
else 

indexx = index 
endif 
xl = cnodex(indexx) 
yl = cnodey(indexx) 
zl = cnodez(indexx) 
vra(j+ 1) = cnodev(indexx) 
ind = icnode(index) 
ixl =ix+ (int(ixnode(ind))-nctx-1) 
i y 1 = iy + (int(iynode(ind) )-ncty-1) 
izl = iz + (int(iznode(ind))-nctz-1) 

endif 
iftidbg.ge.3) then 

write(ldbg, *)' 1-xy' ,xl,yl 
endif 
do 2 i=l,j 

c Sort out the actual location of point 11 i" 
C 

C 

if(i.le.nclose) then 

else 

index = int(close(i)) 
x2 = x(index) 
y2 = y(index) 
z2 = z(index) 

c It is a previously simulated or colocated node: 
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C 

C 

'index = i-nclose 
if(flg.eq. l} then 

indexx: = i+ I 
else 

indexx = index 
endif 
x2 
y2 
z2 
ind 
ix2 
iy2 
iz2 

endif 

= cnodex(indexx) 
= cnodey(indexx) 
= cnodez(indexx) 
= icnode(index) 
=ix+ (int(ixnode(ind))-nctx-1) 
= iy + (int(iynode(ind))-ncty-1) 
= iz + (int(iznode(ind))-nctz-1) 

c Now, compute the covariance matrix values: 
C 

in= in+ I 
cov=cova3 ( x I ,Y l ,z I , x2,y2,z2,xn,yn,zn, step) 
a(in)=dble( cov) 

2 continue 
C 

c Get the RHS column matrix: 
C 

C 

cov=cova3(xl ,yl ,z l ,xx,yy,zz,xn,yn,zn,step) 
r(j)=dble( cov) 
rrG)=rQ) 

continue 

c Get the single value 11 S": 
C 

cov=cova3(xx,yy,zz,xx,yy,zz,xn,yn,z.n,step) 
ss=dble(cov) 
if(idbg.ge.3) write(ldbg, *) 1ss= ',ss 

C 

c Write out the kriging Matrix if Seriously Debugging: 
C 

if{idbg.ge.3) rhen 
write(ldbg, 100) ix,iy,iz 
is= I 
do 4 i=l,na 

ie =is+ i - 1 
write(ldb g, IO 1) i,r(i), ( aG),j=is,ie) 
is= is+ i 

. 4 continue . 
100 format(/, 'Kriging Matrices fo, Node: ',3i4,' RBS first') 
101 format(' rC,i2,') =',f7.4,' a= ',99f7.4) 

endif 

J 
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C 

C Solve the linear System: 
C 

call choltbs( a, t,lu,r,s,na,na, ierr) 
C 

c Write a warning if the matrix is not positive definit!: 
C 

C 

if(ierr. eq. I) then 
if{idbg.ge.l) then 

write(ldbg, *) 'W ARNlNG chol-not positive definite' 
_write(ldbg, *) ' for node',ix,iy,iz 

endif 
cmean = 0.0 
cstdev = LO 
return 

endif 

c Write out the kriging Matrix if Seriously Debugging: 
C 

if(idbg.ge.3) then 
do 40 i=l,na 

write(ldbg, 140) i.s(i) 
40 continue 
140 format(' Kriging weight for data: ',i4,' = ',f8.4) 

endif 
C 

c Compute missing reference element and local variance .... 
C 

cstdev=O.O 
bn=O.O 
do 5 i=l,na 

bn=bn+real(s(i)) 
cstdev=cstdev+real( s(i) )* rr(i) 

5 continue 
bn=I-bn 
cstdev=ss-cstdev 
if( cstdev.lt. 0. 0) then 

write(ldbg, *) 'NEGATIVE VARIANCE: 1,cstdev 
cstdev = 0.0 

endif 
C 

c Get the standard deviation 
C 

cstdev=sqrt{ cstdev)*normf 
C 

c Compute the estimate and return: 
C 

cmean == reaJ(bn)*vra(l) 
if(idbg.ge.3) then 

154 



write(ldbg,*) 'vral' ,vra(I) ,'bn' ,bn 
endif 
do 6 i=l,na 

cmean = cmean + real(s(i))*vra(i+I) 
it"{idbg.ge.3) then 

write(Idbg, *) 'vra', (i+ I),' 1 , vra(i+ I) 
endif 

6 continue 
return 
end 

real function cova3(xl,yl,zl,x2,y2,z2,xn,yn,zn,step) 
c-----------------------------------------------------------------------
c 
C 

C 

C 

Covariance Between Two Points (3-D Version) 
******************************************* 

c This function returns the covariance associated with a fBm power model 
c that is specified by possibly four different 
c nested variogram structures. The anisotropy definition can be 
c different for each of the nested structures. 
C 

C 

C 

c INPUT VARIABLES: 
C 

c xl,yl,zl 
C x2,y2,z2 
c xn,yn,zn 
c nst 
c cO 
c cc(nst) 
C 

C aa(nst) 
C it(nst) 
C angl 
C 

C ang2 
C 

c ang3 
C 

C 

C 

c anisl 
C 

C 

C anis2 

Coordinates of first point 
Coordinates of second point 
Coordinates of the reference point 

Number of nested structures (max. 4). 
Nugget constant (isotropic). 
Multiplicative factor of each nested structure. 

Slope VH for power model. 
Parameter "a11 (2H = power) of each nested structure. 

Type of each nested structure 6 = fBm: 
Azimuth angle for the principal direction of 

continuity (measured clockwise in degrees from Y) 
Dip angle for the principal direction of continuity 

(measured in negative degrees down from horizontal) 
Third rotation angle to rotate the two minor 

directions around the principal direction defined 
by angl and ang2. A positive angle acts clockwise 
while looking in the principal direction. 

Anisotropy (radius in minor direction at 90 
degrees from "angl II divided by the principal radius 
in direction "angl 11 ) 

Anisotropy (radius in minor direction at 90 degrees· 
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C 

C 

C 

C 

C 

vertical from nangl II divided by the principal 
radius in direction 11angl ") 

c OUTPUT VARIABLES: returns 11cova3 11 the covariance obtained from the 
c variogram model. 
C 

C 

c EXTERNAL REFERENCES: sqdist computes anisotropic squared distance 
C 

c ORIGINAL CV. Deutsch 
c MODIFIED: DJ. Kentw~ll May 1997 
c-----------------------------------------------------------------------

C 

parameter(P'la=•3. l 4 l 59265,DTOR=PI/180.0,PMX=9999.) 
include 1sgfract.inc1 

c Loot-i over all the structures: 
C 

C 

cova3 = 0.0 
do 2 is=l,nst 

c Compute the appropriate structural distance: 
C 

hsqdl=sqdist(xl,yl,zl,xn,yn,zn,is,MAXROT,rotmat) 
hsqd2=sqdist(x l ,y l ,zl ,x2,y2,z2,is,MAXROT ,rotmat) 
hsqd3=sqdist(xn,yn,zn,x2,y2,z2,is,MAXROT ,rotmat) 
hl = sqrt(hsqdl) 
h2 = sqrt(hsqd2) 
h3 = sqrt(hsqd3) 
if(idbg.ge.3) then 
write(ldbg, *} 'hl-3 1 ,h 1,h2,h3 

endif 
C 

c Calculate the fBm model covariances as per Rumelin 1991. 
c 'Simulation of fractional Brownian motion' in Peitgen et.al. (eds) 
c Fractals in the Fundamental and applies Sciences. Elsevier. 1991. 
C 

tmp=cc(is)*(hl **aa(is)-h2**aa(is)+h3**aa(is)) 
cova3=cova3+tmp 

2 continue 
return 
end 
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Appendix D - Proof: Covariance of the increments of Fractional Brownian . 

Motion 

The increments or fractional Brownian motion are stationary and have mean 0. Hence 

C(AB(u);;: E[ABH(u)ABn(u + h)J 
;;: E[ABH(Ua)ABH(Up)] 

The covariance of the increment with respect to a known but arbitrary value at location . 

u11 is then 
;;: E[{Bn(ua)-Bn(u11))(Bn(up)-Bn(u 11))]. (D.1) 

From equation 4.10 we have 

£[1Bn(ua)-Bn(up)l 2] = Vulua - upl2H {D.2) 

where VH is a constant of proportionality. Alternatively 

E[(Bn(ua)-BH(up))2] = E[((BH(llu)-BH{Uri) +BH(Uri)-BH(up))2] 

= E[(Bu(ua)-BH(u11 ))2] +E[(Bn(u11)-Bn(up))2] 

+2E[(Bn(ua)-Bn(u11))(Bn(uri)-Bn(u13))]. (D.3) 

From equations D. l and D.3 we get 

E[(BH(ua) -BH(u11))(Bn(uri)-Bn(u13))] = 

0.5Vn(lua - up I W - lua - uril 2H - luri - upllH). (D.4) 

Alternatively 

E[(Bn(ua) ~ Bn(u"))(Bn(uTJ)-Bn(up))] = 

-E[(B n(ua) - B n(u11))(Bn(up) - B n( uTJ))]. (D.5) 

From equations D. l, D.4 and D.5 we the have the result 

C(ABH(u)) = 0.5Vn(lua- uril 28 - lua - upl2H + lu11 -upl2H). (D.6) 
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(krlging) 

rawok 
nsbtok 

Appendix E- Goodall data set 'Evolution' 

blast hole 
(raw data) 

b/aLomp 
( composited data) 

b54l4x4 
( reference data) 

( a verged simulations) 

fractal100av 
sgav100sk 
sgav10Dok 

exploration 
(raw data) 

expcomp 

(i~ 
exp540 expvar 
(s mple data) (variography data) 

(simulations) 

fractal sim 1 
fractal sim2 
fractal sim3 
sgsim(sk)1 
sgsim(sk)2 
sgsim(sk)3 
sgsim(ok)1 
sgsim(ok)2 
sgsim(ok)3 . 
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