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Abstract 

. ' . . . 

Contact-based smart-cards, which comply to the International Standard IS0-7816, 

communicate with their associated read/write machines via a single bi-directional serial 

link. This link is easy to monitor with inexpensive equipment and resources, enabling 

captured data to be removed for later examination. In many contact-based smart-cards 

the logical abilities are provided by eight-bit rnicrocontroller units (MCU) which are 

slow at performing effective cryptographic functions. Consequently, for expediency, 

much data may be transferred in plain-text across the vulnerable communications link, 

farther easing an eavesdropper's task. 

· Practitioners in military communications protect transmitted information by varying a 

link's carrier frequency in an apparently random sequence that is shared secretly 

between the sender and the authorised receiver. These multiplexing techniques, known 

as frequency or channel-hopping, serve to increase the task complexity for and/or 

confuse potential eavesdroppers. 

The study seeks to ascertain the applicability and value of protection provided by 

channel"'hopping techniques, when realised with minimal additional overhead of 

microcontroller resources to the contact-based smart-card communications link. The 

apparent randomised shuffling of data transferred by these techniqwts has the potential 

benefit of deterring those observers who may lack the equipment :·and expertise to 

capture and decode the communicated message. 
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1. Introduction 

This chapter contains an introduction to smart-cards and describes their origins and 

. evolution; discusses their relationship with security; and identifies that member of the 

smart-card family whose interface is of particular concern. The aims of the study are 

itemised, the research question is stated, and a synopsis of the strategy to be pursued is 

given. 

1.1 Background to the Study 

A smart-card may suitably be defined as "A card of ISO dimensions which has in7huilt 

logical ability" (Lathom-Sharp, 1995). This definition is useful in that it 

acknowledges the two main features of smart-cards: namely, that standards are in place 

to govern the fonn and interface of the cards; and that each card contains an ability to 

process data, some or all of which must be communicated to/from the card. The study 

is concerned with the privacy of communication of that data, the reasons for which will 

be developed in the remainder of this chapter. 

A smart-card may be seen as a token which possesses on-board processing power, and . 

may carry information about its holder. It has evolved from electronically readable 

tokens that emerged in 1960, when airline tickets at Chicago's O'Hare airport had 

magnetically encoded data attached to them (Hutcheon, 1992). Hutcheor: further 

reports that the nse of magnetic data swipe cti.rd s had grown by 1991 to an estimated 

US cir cu la ti on in excess of one billion, while Twentyrnan ( 1997) reports that 

MasterCard alone has almost 370 types of credit/debit cards in circulation. Hutcheon 

further suggests that the growth was primarily due to the widespread acceptance of 

Automated Teller Machines (A™) and Electronic Funds Transfer at Point of Sale 

(EFTPOS) facilities. This widespread acceptance has led to the popular adoption of 

the standard 33/s'' by 21/8" plastic card favoured by the largest providers, the banks and 

credit companies. 
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Initially, the magnetic strip was used to help combat fraud whereby data (e.g., a credit· 

limit) might be written onto the special tape moulded in the reverse of the card. 

Today, magnetic swipe cards are in widespread use to control access in a physicru or 

· logical sense, and in the main, they are used to distinguish between a person who is 
.·, 

authorised for access and one who is not. Baker (1991, p. 127) describes thref': basic 

ways to make this distinction:-

(i) using something the person has (e.g., the card itself); ';', 

(ii) ascertaining what the person knows (e.g., a PIN); and 

(iii) establishing whom the person is (some unique 

idenlijier e.g., a fingerprint). 

I 

i 
!·, 

When accompanied by the additional information of a Personal Identification Number 

(PIN), the use of swipe cards can satisfy only items (i) and (ii) above. The conventional 

magnetic swipe card, however, is limited in the amount of data that it can reliably 

contain, preventing it from canying sufficient data to perform item (iii). Furthormore, 

data contained in magnetic stripe cards may be easily read, edited and copied, using 

inexpensive equipment, thereby limiting the cards' ability to enact secure transactions. 

In particular, such limitations affect off-line operations, this being one of four 

requirements identified by Ferguson (1994, p. 318) for an effective electronic cash 

system. Specifically, these requirements are:~ 

" - Security. Every party in the electronic cash system should be protected 

from a collusion of all other parties (multi-party security). 

- Off-line. There should be no need for communications with a central 

authority during payment. 

- Fake privacy. The bank and all other shops should together not be able ,, 

to derive any knowledge from their protocol transcripts about where a 

·· user spends her money. 

- Privacy (untraceable). The bank should not be able to detennine whether 

two payments were made by the same payer, even if all shops co­

operate." 

7 



Criminal e!ements find it easy to take advantage of the limitations of magnetic stripe 

cards, leading to a level of fraud which Longley (I 994, p. 497) estimates to cost 

society hundreds of millions of dollars. The perceived scale of this criminal activity is 

illustrated by Fox (I 993), who recounts "The banking card system is teetering on the 

brink of collapse. The banks know it and they are just hanging on for as long as they 

can, hoping that they can get a new system up and running before the fallibility of the 

old system is exposed." Assuming successful trials, it appears likely that the new 

banking card system will be based upon smart-cards as they offer superiority, in terms 

of security and functionality (Longley, 1994, p. 497) over thdr passive magnetic 

predecessors. 

There have been successful long-term, high-volume smart-card trials in France, with 

some twenty-two million cards issued (Lathom-Sharp, 1995). Ongoing tria1s exist in 

other regions such as Australasia, where Visa announced the availability of Stored 

Value Cards (SVC) in Australia and New Zealand conunencing July 1995 

(ComputerWorld, 31 March 1995), and where MasterCard will run a pilot scheme for 

sixteen kilobyte memory SVCs in Canberra, A.C. T. from October 1995 (Financial 

Review, 3 April 1995). 

Industry shares the view that smart-cards will succeed magnetic stripe cards in 

banking: Hovenga, the smart-card technical marketer for Motorola's Microcontroller 

Division in Austin, Texas, USA, quoted by Hodgson (1995), says "Probably the 

application that is going to drive smart-cards here is financial/banking." Indeed, smart­

cards, wHI be used in many diverse systems which require positive user identification. 

Wh~1t's New in Telecommunications (March/April, 1995, p. 15) describes the 

dependency of the European Digital Network upon ,j~1art-cards to provide subscriber 

information; What's New in Electronics (April, 1995, p. 55) outlines their 

incorporation into complete network security models for Australian military 

~pplications; and Johnson & Tolly (1995) detail tests perfonned on several 

commercial 1mart card products used in Token Authentication applications for 

corporate networks. 
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The concept of an intelligent (smart) card was conceived by Jurgen Dethloff in 1969 

and first patented in Japan in 1970 by Prof. Arimura (Townend, 1995). In 1974, the 

French inventor Roland Moreno patented worldwide the concept of a plastic card 

containing microelectronic processing power (Longley 1994, p. 498), to provide the 

card's ir.telligence. Today, smart-cards are endowed with an embedded 

microprocessor and memory sufficient for their particular purpose. By example, the· 

smart-card's memory may be used to hold the unique identification data necessary· to 

establish Baker's ( 1991, p. 12 7) "who the person is" attribute, which may then be 

evaluated against output from on-site sensors, e.g., fingerprint or retina scanners. 

At first, smart-card microprocessors and memory devices comprised separate standard 

components, and even today's versions will typicaJly contain an eight-bit Central 

Processing Unit (CPU) of 1980s origin, e.g., those of the 8051, 68HC05, or HS CPUs 

(Townend, 1995). Recognising, however, the peculiar security needs of smart-cards 

and the size of the potential market, major electronic organisations have tailored the 

microelectronics to the task in hand, Paterson (1991, p, 29) says that security, in· 

relation to smart-cards, "can be grouped into three main categories: 

• designed in (intrinsic) security; 

• manufacturing security; and 

• application security." 

Briefly, the intrinsic security relates to the situation of the components used. If there 

.· exist control, data · and address wires betweeu components of the . on-board 

. microelectronics, then there is the possibility of attack by: 

• invasion of the plastic outer sheathing; 

• monitoring of their electromagnetic emissions; or 

• · · scanning via electron microscopes (Ferreira, 1990, p. 33 8), 

It is considered better, therefore, to place all microelectronic components on the same 

silicon die, which, by minimisation of inter-component wiring, may then be made less 

wlnerable to such attacks. 
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· Manufacturing security relates to the controls that are placed over the production and . 

testing of the smart-cards, so that they may be neither altered nor researched during 

this phase of their Ii ves. Typically in vol vecl will be the physical securing of production 

facilities and data, and the prevision of internal one-time fusible links to remove 

permanently the microelectronics from any test modes when production is complete 

(Paterson, 1991, p. 33). Such test modes are used to determine the quaHty of the 

silicon chips at several stages of their manufacture and necessarily provide access .to 

every detail of the chip under test. 

· Application security falls into the domain of the Software Engineer, who may· take 

advantage of any hardware. provided features to secure the card provider's application 

software and/or data. According to Vedder (1992), the prevalent eight-bit processors 

in smart-cards limit their cryptographic abilities to those of challenge and response 

methods employing DES-like shared-key algorithms: "Public-Key techniques are not 

yet feasible for smart-cards." More recently, however, it is evident that this limitation 

may be combatted by incorporation of additional circuitry or finnware, notes Dinnissen 

{1995). The extra circuitry may relieve the CPU of specialised software burdens, such 

as an intelligent building Local Area Network (LAN) interface (Hodgson, 1995) or 
' 

encryption processes. Circuitry for the latter may take the form of a "modular 

multiplication module" (Morita, 1990, p. 406), or similar mechanism to assist in the 

rrocessing of relatively long-key algorithms such as that created by Rivest, Shamir and 

Adleman (RSA). During 1994, Philiips B.V. announced (PhilJips, 1994) their DX 

smart-card which employs an "optimised calculation unit" to perform five hundred and 

twelve bit RSA computations directed toward secure digital signature generation. 

Despite the extra processing power. each signature computation takes approximately 

five hundred milliseconds (Phillips, 1994). 
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It is . appropriate to describe the concept of security in terms of context and 

perspective. Landwehr, Heitmeyer & Mclean (1984) provide the following definition: 

"A system is secure if it adequately protects information that it processes against 

unauthorised disclosure, unauthorised modification, and unauthorised withholding ... 

We say adequately because no practical system can achieve these goals without 

qualification; security is inherently relative." Historically, in the case of magnetic stripe 

credit-cards, it is the author's experience that the card providers exercise total control 

over the data that is secured. In the commercial area, as observed by Roberts {199 l ), 

"the integrity of infonnation is often of paramount importance, whereas the military 

field requires confidentiality as its first priority." Now recall that current smart-cards 

incorporate relatively slow eight-bit CPUs (Townend, 1995) which, in turn, detennine 

that cryptographic operations on communications with them will be slow. Vedder 

(1992) suggests that processing a sixty-four bit data block using DES will typically 

require fifteen milliseconds with a five megahertz CPU clock, and that those sixty-four 

data bits will take ten milliseconds to transmit at an (asynchronous) baud rate of 

ninety-six hundred bits per second. Given also that communication bandwidth is an 

expensive resource, the author considers it likely that the card providers will secure 

adequately only that infonnation which is precious to them - unless legislation 

mandates otherwise for protection of the cardholders. Furthermore, Fitzsimmons 

(1995), a contributor in the field of Computers and the Law, states, "The laws of 

Australia do not recognise any general right of privacy, whether by way of common 

law or by way of constitutional rights"; and, "In addition, there are many 

misconceptions concerning privacy. ... People do not have a right to control 

information about themselves." In Australia, at least, the situation is unlikely to 

change. Hilvert (1997) quotes the statement of John Howard, Australian Prime 

Minister, on 2 I 11t March 1997 "the Commonwealth will not be implementing privacy 

legislation for the private sector" and suggests that "the message for the private sector 

is that if it is not specifically legislated against, it is OK to continue to develop and 

exploit personally intrusive databases, data mining and privacy probes with little federal 

oversight". Fitzsimmons further indicates that the situation in other countries and 

states with regard to persG.ial privacy, may currently he as unprotective as Australia's, 

a view shared by De Schutter ( 1991) who states "the individual becomes the weakest 

link in the new information technology era, not only from a sociological and e~onomic 

11 



point of view ... , but equally from the angle of legal protection (privacy)." It is, · 

therefore, conceivable that data, which a cardholder may reasonably desire to remain 

secure, is communicated as plain-text in order to maintain a specified performance 

from a card whose computational power is provided by an eight-bit processor that is 

slow to perfonn cryptographic functions. This lack of privacy is noted by Dinnissen 

(1995) who states "cards reveal the card identity and data content to any reader or 

anyone tapping communications." 
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Smart-cards. nay be distinguished from memory cards by their ability to perform 

logical operations in addition to storing data. Figure 1.1 indicates that smart-cards 

assume one of two main forms: contactless or contact-based. Offshoots from these 

. include super smart-cards which incorporate keys and a liquid crystal display (LCD) in 

order that the cardholder may interact directly with the card, and hybrid cards which 

are magnetic swipe cards additionally equipped to facilitate either contactless and 

contact-based smart-card operation. Contactless cards communicate via a modulated 

electro-magnetic field~ hence, they may be accessed from distances varying from 

several centimetres (for battery-less cards) to fifty metres along a line of sight (for high 

frequency, self-powered, cards) (TIRIS, 1994, p. 7). Contact-based cards may only 

derive power and communicate via a set of pads, which are expo.sed on one face of the · 

card, when mating with a purpose built connector. 

13 



The applications of contactless cards are many and diverse: e.g., they may be found 

tracking products during production/warehousing, or the monitoring of time and 

performance data for transport operators (TIRIS, 1994, p. 7). Contactless cards are 

currently under consideration by the U.S. Anny for wartime logistics management on a 

· global basis, destined within five years to be read by satellite (Van Order, 1995). The 

chief attractions of contactless cards, as described by Hook (1995), are that they 

- provide reliable non-contact operation; are impervious to most dirt and contaminants; 

are environmentally durable; may be recoded in-situ via coded radio signals; and, can 

exhibit very low initial costs (from US$0.40c each) and maintenance costs. The 

widespread acceptance of such cards, however, is seen by Hook (1995) as being 

limited by the following impediments: lack of recognised de facto or international 

standards with respect to operating frequencies or communications protocols; and, a 

susceptibility to electro-magnetic interference which is not yet governed by widespread 

or unifonn standards. These impediments have led to a market that is populated by 

incompatible systems which often require special antenna or circuitry in order to 

achieve satisfactory perfonnance in particular envimnments or geographical areas of 

operation. Although there are many documented instances of contactless smart-cards 

-being used for small financial transactions such as ticketing and incentive schemes 

(Seidman, 1995 ), Cordonnier ( 1995) sees the fact that con tactless cards may be 

accessed remotely as a factor against their being readily accepted by consumers for 

larger financial transactions. 

Contact-based smart-cards can be accessed only when inserted into, and connected 

electrically to, a suitable reader. Three major card issuers are Visa, Mastercard and 

· · Europay (VME). Since 1993, these have sought to establish standards that will allow 

merchants and users to manage smart-cards (Hoffinan, 1995). Given that the banking 

industry currently provides a substantial user base for the smart-card's predecessor, the 

magnetic stripe card, then it is likely, as indicated in Hodgson ( 1995), that the 

emergent bank driven VME standard will propel smart-cards into widespread use. 

Now that major card providers have aligned themselves with the VME standard 

(Dancer, 1995) the credit-card proportioned, contact-based, IS0-7816 confonnant 

smart-cards may proliferate internationally 

14 



Although smart-cards may contain different application software and operating 

systems, the IS0-7816 standard for smart-cards mandates that card processing 

machinery will present a standard mechanical and electrical interface to the cards, and 

it homogenises the protocol via which communications are effected. IS0-9992 

provides for standardisation of the "messages between integrated circuit card and the 

card accepting device" (Vedder, 1992). If standardised smart-cards replace magnetic 

stripe cards as instruments of identification for access control, then many agencies may 

access, observe, and potentially alter their contained data. In order to protect against 

misuse of that data, it then becomes necessary to apply security measures such as 

encryption, the effectiveness of which, as found by Monod (1995), may vary between 

no security to a very high level of security. 

When probing the security of an entity or system, it is appropriate to identify points of 

weakness. One apparent weak point in the highly standardised ISO-7816 smart-cards 

is the single contact used as the communications interface between the card and its 

associated read/write processing machine. Using simple and readily available circuitry, 

as in Figure ,,1.2, it is possible to eavesdrop, unobtrusively and without detection, upon 

the entire conversation between the card and the read/write machine. Having collected 

the data from the conversation, the eavesdropper may attempt decryption,upon it at 

leisure. Conversely, contactless smart-cards, because of their diverse non-standardised 

designs and complex reader circuitry, render widespread monitoring of their 

communications difficult and/or unattractive. 

1: .. 
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The smart-card communications interface may be thought of as being a single channel 

a]ong which aJI data must pass for the duration of a conversation. The fields of 

military communications and radar are subject to similar problems when restricting 

their transmissions to a single c .. ~1mel. The confidentiality, integrity or availability of 

their communications channel may be compromised when monitored, eavesdropped or 

blocked. One approach to lessen such a compromise, in addition to encryption, is to 

use a mechanism known as frequency-hopping, where the data is conveyed upon 

carriers whose frequency is altered according to a pattern known only to the legally 

communicating parties. The interloper's task is further complicated by the concurrent 

transmission of invalid data on those carriers not being used to convey valid data or by 

using time division 'T,;Jltiplexing (TDM) of the data on a carrier - i.e., patterned 

interspersing periods of valid data and invalid data. Each canier frequency or pattern 

of time division may be seen as providing an independent communications cllannel via 

which data may be switched, and a direct analogy may be drawn between frequency­

hopping or time-division hopping (or a combination of the two) and channeJ.,hopping. 

Returning our thoughts to the contact-oriented smart card, the author suggests that a 

channel-hopping mechanism, or randomised shuffle of transmitted data, might be 

implemented without placing excessive demands on the eight-bit CPUs upon which the 

cards currently depend. Such a mechanism would rely upon the valid data being 

multiplexed across several channels according to a one-off pattern shared only between 

card and read/write machine, and would increase the complexity of an eavesdropper's 

task in terms of required equipment and/or methods of message detection. The result 

of this increased eavesdropper's task complexity would mean that additional protection 

might be provided economically for transmitted data which otherwise may have been 

seen as expendable in the face of the high CPU resource costs associated with effective 

encryption. 
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1.2 Significance of the Study 

From the background discussion, the following is apparent. On the one hand, the IS0-

7816 compliant contact-based smart-cards rely upon an easily monitored 

communications interface between card and read/write machine using half-duplex 

asynchronous character transmission techniques. Transmissions using this interface 

may be captured for later inspection by using inexpensive and easily obtained circuitry, 

.· an example of which is illustrated in Figure 1.2. Privacy is not guaranteed, therefore, 

for the communications link between card and read/write machine, and encryption 

currently provides the sole means of achieving security for the card-holder's 

communicated data. On the other hand, military communications engineers, in addition 

to encrypting their data, have evolved systems of frequency-hopping to complicate 

significantly the task of those who wish to interfere with or monitor their 

communications channels. In the above context, each frequency to which the 

communications link hops equates to a separate channel along which communicated 

data flows for a duration agreed by the communicating parties. 

In the main, as found by Townend (1995), IS0-7816 compliant cards employ eight-bit 

microcontroller architectures to provide the on-card logical functionality. Such logical 

functionality, together with the ability to hold significant amounts of data, as suggested 

in Hodgson (I 995), may lead to their adoption as the successors to the magnetic 

swipe-cards which are in widespread use today to control access. However, as Vedder 

(I 992) c;uggests, their eight-bit microcontrollers, whilst providing economical and 

proven technology, are CQmparatively slow in performing the calculations required for 

effective encryption. 

Importantly, the card-holder has little or no control over what elements of his/her data 

are held or transmitted in a secure manner; and, as Fitzsimmons ( 1995) implies, the law 

does not offer card-holders consistent levels of protection. Depending upon the 

implementation, Monad (I 995) found that inherent smart-card system security levels 

may range from none to very secure. 
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Now consider that magnetic swipe cards may be used for applications unforeseen by 

their original supplier. For example. building upon an employee's reluctance to part 

with their personal credit card, it is currently possible to use information contained on 

credit cards to implement building access control (Kirkpatri,:k, 1995). If smart-cards 

become used in similar circumstances, it is then possible that the card will be inserted 

into many different read/write machines, each one of which presents an opportunity for 

communicated data to be monitored and subsequently inspected using simple circuitry. 

This study aims to demonstrate the possibility of adapting channel-hopping techniques 

to complicate the task of an eavesdropper who wishes to record the conversations 

between a contact-based smart-card and its read/write machine. Successful outcomes 

of the study will afford the smart-card users, holders and manufacturers a number of 

potential advantages:-

• a more secure channel for all communicated data between card and read/write 

machine; 

• little or no additional circuitry; 

• low software overhead; 

• minimal CPU overhead; and 

• existing contact-based smart-card CPU designs may remain compliant with 

IS0-7816. 
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1.3 PurposeoftheStudy 

The study investigates the possibility of using mechanisms whereby channel-hopping 

may be implemented economically, in terms of hardware and software, by IS0-7816 

· compliant smart-cards, and to evaluate the mechanisms' effectiveness at confusing a 

potential communications link eavesdropper. Various techniques will be explored, and 

assessed, for randomly shuffling/hopping the valid data across several channels. The 

.· study will aim to demonstrate an improvement of security offered by such "randomised 

,, shuffle". mechanisms, and their cost in terms of hardware, software and CPU resources, 

when used to shield data transmitted via the contact-based smart-card's 

communications link from eavesdropping. 

'·)'1': '.· 
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1.4 .· Research Question 

The main question:-
. . 

"Can the mechanism of channel-hopping be adapted to enhance the security of data · 

transmitted between an ISO-7816 compliant contact-based smart-card and its ; 

read/write machine with minimal cost to CPU resources, hardware and software'r' 

The major components of the above question are:-

a) "What elements of channel-hopping can be utilised in the context of an JS0-7816 

compliant smart-card?" 

. b) "What channels can be exercised to provide hopping routes?" 

c) "Can the elements found in answer to a) be used in conjunction with the channels 

found in b)'r' 

1.5 Summary and synopsis of the remainder of the study 

Security, as defined by Landwehr et al. (1984), is a relative, qualified concept. 

Qualification of security may differ when viewed from the perspective of card-issuer or 

card-holder. The discussion in this chapter seeks to indicate that a vulnerable point 

exists in the communications link between a contact-based smart-card, which may be 

poised to succeed the credit card as an access token, and an appropriate read/write 

machine with which the card is obliged to communicate. Due to this vu!nerable point, 

smart-card issuers may choose, for expediency, to communicate data in unencrypted 

fonn. It is noted that military communications practitioners, when faced with similar 

vulnerability, have adopted a practice of channel-hopping via patterned alteration of 

the canier frequency. This se.rves to increase the complexity of monitoring or 

interference and so enhances the security of their communications links. The study sets 

out to answer the question of whether the channel-hopping techniques may be 

successful.ly applied, whilst consuming minimal CPU resources, to contact:..based · 

smart-cards. 
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Chapter two takes the fonn of a review of the relevant literature. Previous work, 

illustrated in the finn foundation of text books and augmented by the documented 

research and experiences given in papers and articles, fonns the basis of guidance and 

justification for the approach taken by. and substance of, the proposed study. It is 

demonstrated that the underlying presence of a weak communications link may enable 

more fundamental threats, such as infonnation leaking. The nature of 

frequency/channel-hopping is explored, together with its applications, and a 

justification is established for its adaptation to provide a solution to the problem 

outlined in the above chapter. Attacks typical of those which the solution is 

anticipated to endure are identified, based upon knowledge of attacks rendered upon 

conventional methods of coding and ciphering. 

Chapter three describes the research design. The fundamental design goals are 

outlined, together with an evaluation of potential improvements recognised at this 

stage. There follows the descriptions of the specific procedures to be developed in the 

pilot software implementation. Examples are provided in the form of scenarios, 

accompanied by appropriate pseudo-code developed for these. 

Chapter four presents the findings and results of the pilot implementation. Selection. 

criteria for a suitable target system are discussed and an overview of the features 

offered by the eventual target is given. The test programs of sender and receiver, 

which demonstrate treatment of the design goals, are examined. Suitable extracts from 

the test programs are presented~ together with their productions of randomised shuffle, 

and are used to provide answers to the research questions. 

Chapter five concludes the study. A summary is given of its beginnings and initial 

aims; the manner in which the project framework was arrived at; the design criteria for 

the pilot implementation; and, the resultant product of the randomised shuffle 

implementation. Finally, implications are discussed for current practice and future 

research of the method's potential uses in the large. 
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This document concludes with appendix. A, consisting of a comprehensive gtossary of 

terms used; appendiic B, where implementation source code appears; and a section 

where end text references used to support the study are given. 
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. 2. Review of Relevant Literature 

2.1 General Literature 

Torrieri (J 992, p. 291) relates that the interception of communications data may be 

attempted, in general, for many diverse reasons such as: reconnaissance, surveillance, 

position fixing, identification, or as a prelude to jamming. Of these, the author 

suggests that those of reconnaissance, identification and surveillance may apply to 

parties interested in intercepting a smart-card's transmitted data, implying concern for 

passive attacks rather than active ones as the physical nature of the smart-card's 

contact to receiving socket mechanism renders undetected on-line insertion of modified 

data difficult. Torrieri's described interception system includes three basic functions 

which must always be achieved: detection,freque11cy estimation and direction finding. 

Relating these to the context of a contact-based smart-card's half-duplex 

communications link reveals that: 

• detection may be achieved by observing activity on the link, (i.e., when the signal 

moves from its steady state); 

• frequency estimation may also be determined by observation. ISO-7816-3 

(JSO/IEC 7816-3, 1994, Clause 6.1. 1) mandates that cards with an internal clock 

shall use a bit rate of 9600 bits per second (b.p.s.), whilst externally clocked cards 

are prescribed an initial bit period (in seconds) of (372/ external clock-freque11cy); and 

• direction finding (of the transmitting party) may be discerned by recognition of 

"lulls" in link activity (announcing that a change of direction is imminent) and by 

examination of the conversation delimiters and/or headers which are mandated in 

ISO standards (ISO/IEC 7 816-3 Part 3, 1994). 

As Fumy (1991) states, "It is generally regarded a simple matter to record the data 

passing through a communications line without detection by the communicating 

parties." Eavesdropping, or the interception and recording of data for examination, 

may enter two of De Sch utter' s ( 1991) five categories, shown in Figure 2.1, into which 

incidence of computer abuse may be placed: namely, data espionage and unauthorised 

interception. 
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Category Example/description 

Manipulatim1 of e.g., input of false data, alteration, erasure, deterioration and/or 

data suppression of stored data or programs with fraudulent intent. 

Data espionage unlawful collection or acquisition and/or use of data. 

Computer leading to the destruction or disruption of software or 

sabotage hardware. 

Unauthorised of a computer and/or teleconununications system with 

access or infiingement of security measures. 

interception 

Program piracy e.g., the infringement of the exclusive right of the owner of a 

protected computer program. 

Figure 2.1. De Schutter's (1991) categories of computer abuse.· 

More formally, the interception of communicated data represents an underlying threat 

to system security which Ford ( 1994) has included in his hierarchy of threats. Ford's_ 

hierarchy indicates that underlying threats may enable more fundamental ones. Three 

stages of identification or classification are necessary for assembly of the hierarchy: 

namely, 

• fundamental threats, those typically associated with the confidentiality, access and 

integrity of data or resources; 

• primary enabling threats, the realisation of which may lead to an enabling of the 

more fundamental threats; and 

• underlying threats, the presence of which may enable more fundamental threats. 

Figure 2.2, adapted from Ford's explanations, provides illustration by example of each 

classification of threat. 

- , 
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Chwiflcation 

·. Fundamental 

tbreats 

Primary 

enabling threats 

Underlying 

threats 

Figure 2.2. 

Type Example/description 

Information leakage-. Information is disclosed to unauthorised entities. 

Integrity violation ~ Consistency of data is compromised through 

unaulhorised editing 

Denial of Service -. Legitimate access to resource is deliberately 

impeded 

lllegitimate use _..,,. Unauthorised use of resource 

Masquerade_..,,. An unauthorised entity poses as an authoric:d 

entity, so obtaining rights and privileges of the 

authorised entity 

Bypassing controls ~ An attacker exploits security flaws or weaknesses 

to gain access, rights or privileges 

Authorisation violation ~ An entity authorised for one resource uses that 

authority for unauthorised pqrpose 

Eavesdropping -. Infonnation is revealed by monitoring 

communications: e.g., by EM/RF interception 

Traffic analysis·~ Observation of communications traffic patterns 

Indiscretions by personnel~ An authorised person discloses information to an 

unauthorised person, reasons for which may 

include money, favours or carelessness 

Examples or threat classification to contemporary computer 

n1i:tworks (Tabulated from work done by Ford, 1994). 
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As may be seen from Figure 2.2, amongst Ford's underlying threats is that of 

eavesdropping, the use of which may enable the more fundamental threat of 

information leakage. The digital nature of serially transmitted data streams (such as 

the smart-card's communications link and RS-232 links) exhibits short rise and fall 

times which correspond to high frequency signal components that, in turn, yield 

considerable radiation for observation by an eavesdropper. The work of Smulders 

(l 990 ), showed that reconstructed messages with bit error rates of approximately O. 0 I 

· (l % ) could be achieved reliably, sensing at a distance of between one and seven metres 

when eavesdropping on shielded RS-232 cables. Now consider that the asynchronous 

serial transmissions being monitored tend to be grouped in characters of seven to 

eleven bits, simplifying the task of reconstructing any unknown bits by examination in 

context. Notably, the equipment used in these experiments was neither expensive nor 

sophisticated, comprising a standard AM/FM radio receiver, a simple whip antenna of 

one metre length and a hard limiter circuit to reconstruct the digital nature of the data. 

Smulders' article concludes: "the receiver and recording equipment for intercepting 

RS-232 data signals are very small, simple and cheap compared with the equipment 

needed for the interception of video signals. . .. Because of this fuct ... we have to take 

special account of the RS-232 eavesdropping possibilities in vulnerability studies." 

Although the smart-card's read/write machine would not be expected to possess long 

cable lengths and its voltage swings are less than those of RS-232, Smulders' work 

·demonstrates that, in addition to the direct monitoring circuitry exemplified in Figure 

I. 2, serial link eavesdropping is possible using external monitoring circuitry. 

Herskovitz (1995, June) points out the value of permitting and observing, rather than 

disrupting an enemy's communications. He cites as prime examples of this the gains 

provided by the Allies' observation of enciphered enemy messages during World War 

Two, after the enemy encryption mechanisms of Enigma and Purple had been cracked. 

Recognising the inevitability that a communicated message needs protection, 

Herskovitz (I 995, June) outlines «four basic approaches to securing the information 

conveyed by a communication system ... : 

I) permitting no unintentional signal radiation - signals may be bounded by metallic 

waveguide or within an optical fibre; 

2) minimising stray radiation ... ; 
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3) · making signal detection difficult - frequency, time or modulation coding; 

4) penriitting detection but denying understanding - enciphering." 

Of these, 1) and 2) may be afforded by the smart-card manufacturer's use of intrlnsic 

security, described in chapter one, with respect to the situation of components used in 

the card and read/write machine. Approach number 4) may be offered by application 

security, also described in chapter one, when software requirements are specified by 

the smart-card providers. Currently, no attempt is m,a.te by IS0-7816 compliant cards 

to provide approach number 3). 

2. 2 Other Literature of Significance to this Study 

The field of military communications has advanced the topic of channel-hopping 1:? a 

state of maturity where its methods and tenninology are now well-defined. Toirieri 

·. ( 1994, p. 199) provides the following development of channel-hopping using carrier 

frequencies in his description ofits fundamental concepts: 

"Frequency-hopping is the periodic changing of the frequency or · 

frequency set associated with a transmission. A frequency-hopping signal 

may be regarded as a sequence of modulated pulses with pseudorandom 

carrier frequencies. The set of possible carrier frequencies is called the . · · 

hopset. Hopping occurs over a frequency band that includes a number of, . , 

frequency channels." 



1:The effectiveness of channel-hopping depends upon the unpredictability of its hopping 

pattern. Hops may accompany each communicated data packet (fast hopping) or may 

be spread over several packets (slow hopping). Furthermore, hopping may occur 

across the bandwidth of a single channel; or across several disparate channels. To 

analogise the contents of this last statement with respect to smart-cards might be to 

hop using time-divisions on a link connected to a single card contact, or alternatively 

to hop between links connected to several of the card's contacts. A method of 

combining data to be communicated with a synthesised channel-hopping pattern to 

produce the channel-hopping signal is shown in Figure 2.3. Further security may be 

added to the chaanel-hopping pattern, for example, by combining a secret key with the 

time of day so that the pattern does not become recognisably repetitious over a 

prolonged period. This method implies that both key and time of day are correctly 

synchronised between sender and receiver before hopping may occur, and further 

implies that the key is changed infrequently relative to the volume of a link's data 

packets. 
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Radar systems (themselves forming both transmitter and receiver of a conununications 

system) use channel-hopping (Herskovitz, 1995, July), varying their carrier :frequency 

to avoid their signals being januned rather than to avoid eavesdropping. Jamming is 

also a threat to conununication systems when, for example, robust encryption prevents 

an enemy making use of intercepted data. According to Greiner & Reissberg (1987) 

and Herskovitz ( 199 5) transmitters must detect that they are being jammed, then 

reactively switch to the next hop in order to re-establish the link. This type of hopping 
-· 

is known as adaptive reaction channel-hopping where communicating parties, 

independently and ''on the fly", assess the probability of the next channel to settle 

upon, rather than hopping according to a consistent pre-communicated pattern. 

Greiner & Reissberg (1987) report that adaptive reaction systems could deal with rates 

of two hops per second while providing low communication bit rates of approximately 

one hundred baud. However, when compared to standard hopping rates in excess of 

five hundred hops per second (Telefunken System Technik, 1993), it may be suggested 

that the computation effort required for channel selection reduces data throughput. 

Although Greiner & Reissberg's 1987 report may be considered "oldu, recall that the 

CPUs used in many of today's smart-cards were designed in the 1980s (Townend, 

1995), implying similar perfonnance to that found by Greiner & Reissberg. Thus, the 

author feels it is justifiable to consider the application of a pre-defined, pre­

communicated hopping pattern. 

As often happens, the technology devised for military purpose finds its way into 

everyday commercial use. Channel-hopping no longer exists exclusively within the 

domain of military communications. Dellecave (1995) reports that vendors making 

products to meet the specification of the forthcoming IEEE 802.11 standard for 

wireless Local Area Networks (LAN) have chosen carrier-frequency based channel­

hopping techniques to improve reliability. In a report on the offerings of wireless 

LANs, Rigney ( 199 5) suitably sums up channel-hopping's perceived advantage: "This 

spreading of the data protects the signal from eavesdropping and interference." 

In addition to data, conununications networks often provide a vehicle for their own 

packaged control signals. Verschuren, Govaerts and Vandewalle (1991) observe that 

the data which flows through a communication network is typically twofold: being, 
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• user data~ and 

• protocol control infonnation (PCI) governing the communication between; 

entities. 

In the context of this study, the user data equates to the data presently sent from the 

smart-card to its read/write machine, and for which it is the study's objective to add 

protection. The PCI comprises details of the channel-hopping technique which wilt 

add the protection. This may be seen as the provision of a confidentiality service that 

prevents, for example, unauthorised disclosure of information from the 

communications link by a passive attack or eavesdropping. Verschuren et al. ( 199 I), 

propose that such confidentiality protection should be considered at two levels or 

layers of the communication system: namely, the application layer and the physical 

layer, by the use of enciphennent or cryptography. 

Cryptography, seen by Parker ( 1983) as "The premier safeguard against computer 

crime", is defined by Vandewalle, Govaerts and Preneel (1991) as "the science of 

techniques which make data unintelligible and unmodifiable by outsiders ... and still 

accessible or verifiable by the legitimate receiver." Some smart-cards provide facilities 

for encryption of data by the DES algorithm about which Vandewalle et al. (1991) 

state "Concerning the security of DES there is a rather general consensus among the 

cryptographic researchers that it is an extremely good algorithm with an unfortunately 

small key of 56 bits. Hence it is best used in a multi-encryption scheme (triple · 

encryption with two keys) .... " Later in their discussion Vanderwalle et al. (1991) 

acknowledge that speed of encryption and decryption is often too slow and they put 

forward a hybrid scheme. In this scheme, when speed is critical, key-exchange is 

effected under a strong encryption (e.g., RSA or multi-encryption of DES) and 

information exchange is effected under less onerous algorithms. Relating the scheme 

to the context of the smart-card to read/write machine communications link, the key 

exchange may equate to the channel-hopping pattern, transferred under strong 

encryption, whilst the ensuing information exchange ~s afforded the protection of the 

channel-hopping itself 
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So far, the development of channelHhopping has considered that a message may be 

multiplexed across many channels, according to an acceptable sequence which is either 

known to, or derivable by, the transmitter and legitimate receiver. If this was the 

totality of the channel~hopping implementation, then observation of all channds may 

reveal the valid one. An obvious improvement would be the concurrent transmission 

of both the valid message and random characters on some or all of the available 

channels. However, where all channels are being monitored, automated analysis which 

searches for and combines potential lexemes, may reveal the valid message. To 

obfuscate the situation, further misinformation may be offered to an interloper by 

means of "ambiguity, paradox and logic of recognition" (lngleby, 1988). Broadly 

speaking, equally plausible message sequences are transmitted on some or all of those 

channels not being used to convey the real cata. lngleby's work is directed to speech 

and image recognition where, for example, phoneme strings are assessed for possible 

patterns to aid in the recognition of spoken messages. However, as Sebesta (1989) 

suggests, an automated language recogniser acts on syntactic units (called lexemes) 

which have been produced from a known alphabet within a known lexical specification. 

Consider the following text, " 'Twas bri/lig and the slimy loves did gyre and gymbal 

in the wabe ", from Lewis Carroll's Jabberwoclcy, which might be tt ansmitted 

concurrently with a valid message. The transmitted material could be formed from 

combinations of the text and the valid message so as to fool an automated recognition 

tool scanning all received channels for lexeme possibilities. Such applied 

misinformation means that the eavesdropper must decide which is the valid message. 
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· Having developed the requirements of the proposed method thus far, it is appropriate 

. to identify the various fonns of attack which it could be expected to endure. For this, 

the study looks toward attacks which cryptanalysts apply in their investigations of 

encrypted data. First, however, the common terminology is introduced and 

conventional methods are presented in overview. Longley, Dawson & Caem' s (1994) 

examination of traditional ciphers and coding techniques suggests that they may be 

regarded in the following manner: in general, algorithms used do not treat the whole 

volume of plaintext in one pass, and they break it up into smaller units for processing. 

Ciphering techniques combine these units with a key, resulting in the production of 

ciphertext, a transformation of the plaintext. Longley et al (1994) indicate that the 

data may be processed at a fundamental unit ( of bit or byte) level, which is considered 

as a stream cipher method or, alternatively encrypted in blocks of several fimdamenta1 

units at a time: which method is known as a block cipher. Stream ciphers are 

characterised by their application of simple algorithms where plaintext and key streams 

of identical length are combined to produce a stream of ciphertext identical in length to 

that of the plaintext. Block ciphers typically utilise more complex algorithms where 

the length of the applied key is the same as that of the block. The key may be applied 

symmetrically by both communicating parties or, asymmetrically, where the algorithm 

permits each party to apply a different key for their enciphering/deciphering operations. 

Coding provides protection of transmitted data where symbols in the plaintext are 

replaced by corresponding symbols, or groups of symbols, known only to the 

legitimate communicating parties. Importantly, the product of coding yields a stream, 

the length of which may differ markedly from that of the plainiext. 
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The above techniques' capability of resisting attacks depends upon the secrecy of or 

denial, to the cryptanalyst, of some knowledge employed in the protection method 

used. Attacks may assume: 

·., knowledge of the technique used, whereby security depends upon the secrecy of 

the key; 

• that sufficient ciphertext is available for scrutiny; 

· . • that some plaintext is known to be associated with captured ciphertext; 

• that correspondence has been established between known plaintext and. known . 

ciphertext; 

• a knowledge of the chosen language's redundancy, recognised by Shannon (l949), 

which may be exploited for statistical analysis. 

Sebeny and Pieprzk (1989) provide a description of common cipher techniques, .· 

together with suggested fonns of cryptanalysis for each. Longley et al. (1994) 
,. 

summarise the most common forms of attack, which may be used in isolation or in 

combination, as: 

• key exhaustion, where attempts using many keys are made to extract the valid 

· message; 

• statistical analysis where, for example, the known frequency of usage of letters in 

the chosen language is used to isolate probable instances of the valid message; and 

• mathematical analysis, where the cryptanalyst tries their knowledge of algorithms 

against the collected ciphertext to regain the valid message. 
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2.3 Summary 

The discussion in this chapter has sought to establish that, stemming from the 

recognition that a communications link inevitably will be monitored, protection 

measures need to be applied so that the fundamental threat of information disclosure 

does not occur. The discussion has further sought to establish that the proven military 

practice of channel-hopping, now entering more general use, may appropriately be 

applied to the smart-card's communications link(s), affording added protection. 

Hopping patterns may be generated from a combination of a secret key and, if 

available, a synchronised time-of-day clock, so as to minimise decryption attempts 

based upon the isolation of a repetitive key. Having surmised that "on-the-fly" or 

reactive channel selection may introduce an excessive burden on the smart-card's CPU, 

the concept of applying pre-arranged hopping patterns, initially communicated under 

strong encryption between card and read/write machine, has been put forward as 

suitable added protection for ensuing communicated data. Requirements for the 

method to be developed were concluded by proposing that applied misinformation, in 

the form of apparently meaningful messages transmitted concurrently to the valid one, 

may further mislead and complicate the eavesdropper's task, even when automatic 

recognition is applied. Finally, the nature of attacks to which the study's method 

would be subjected were identified, drawing upon the experiences of conventional 

cipher and coding techniques. 

. . : .~ 
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3. · Research Design 

The discussion in previous chapters suggests that data transmitted via the smart-card's . 

communications link may be afforded some protection by the combination of a suitable 

channel-hopping mechanism and the co-transmission of applied misinfonnation. With 

regard to the eight-bit processors used in smart-cards the fundamental aim, then, is to 

surround the valid message with plausible misinfonnation, accomplished in a manner 

which is economical in tenns of machine resources. By plausible it is meant that the 

misinformation will match as closely as possible the nature and type of the valid .· 

message. The co-transmission of such misinformation reduces an eavesdropper's 

advantage of using automated lexical analysis to retrieve the valid message from the 

apparently randomly shuffled transmitted text. While providing a measure of security 

superior to that of transmitting data as plain-text, the method should allow the smart­

card processor to offer an option which, albeit less secure than encryption, does not 

require encryption's attendant computational overheads. 

This chapter provides a description of the basic method implemented ._and of . 
. • I .J 

enhancements to that basic method evaluated in this study .. 

· ... · 
.J:.:,: . 
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3.1 General Met/rod 

For the purpose of the study, the valid messages. embedded within their accompanying 

misinformation, arrive at the legitimate receiver via available channels, as a result of the 

following distinct processes and considerations: 

o creation of the channel-hopping pattern; 

• communication of the channel-hopping pattern to be used in the forthcoming 

communications session, in a secure manner, to the legitimate recipient; 

• selection of appropriate misinformation to transmit concurrently with the valid 

message; 

• storage of, and subsequent acces~ to, the misinformation data; and 

• transmission of the messages, with valid data according to the pre-arranged 

channel-hopping pattern, and with misinfonnation data co-transmitted on the 

remaining channels. 

Of the above list, it is to be noted that the first four items, which are perfonned once 

per communications session, are concerned primarily with the organisation of the 

transmitted data. This leaves the processor little additional work to perform at the 

time of transmission. The situation is similar for the receiver: in order to isolate the 

valid message in real-time, the legitimate receiver has only to select, according to the 

pre-arranged channel-hopping pattern, the valid characters from those received. In 

other words, by following the pattern, the receiver is able to reject received 

misinformation characters as they arrive. By contrast, encrypted data must be 

submitted to an ~ncryption process prior to transmission, nnd a decryption process 

before the valid message may be reclaimed from the received data. These resource 

consuming preparations accompany each transmitted message during a 

communications session. 
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3.2 Specific Procedures 

3.2.1 Creation or the dl.annd-bopping pattern 

Recall from chapter two that hopping may occur across the bandwidth of a single 

channel, or across several disparate channels. Analogies to these, in the context of 

smart-cards, are that hopping may be accomplished: 

• using time-divisions on a link connected to a single smart-card contact, 

whereby several logical channels are mapped onto the single physical channel of 

the smart-card's communications link; or alternatively 

• by hopping between links connected to several of the smart-card's contacts, 

whereby several logical channels are mapped onto several physical links 

between smart-card and its read/write machine. 

It is necessary to decide how many channels will be implemented within the physical 

links available. The mapping of logical to physical channels for the pilot 

implementation is according to the reasoning and practical observations which follow. 

• Smart-card hardware is unlikely to support the use of more than the two 

designated input/output (I/0) lines within the eight available. 

• Smart-cards which confonn to ISO-7816, i.e., those in widespread use, normally 

communicate via one I/0 line; 

• While the mapping of many logical channels to one I/0 line's physical channel will 

deteriorate the useful bit rate of that channel, it represents a facile mechanism by 

which to demonstrate the concepts embodied in the study. Furthermore, recalling 

that the bulk of the computation is performed prior to transmission, such a 

mapping represents the worst-case situation for the channel-hopping mechanism 

under development. Put another way, if one accepts that the organisational work is 

accomplished largely prior to transmission, the availability of extra physical . 

. channels will result in an increase of data throughput approximately proportional to 

the ratio of the increased number of channels. · . 
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The example in Figure 3 .1 shows seven logical channels, meaning that every valid 

character (V) is accompanied by six misinfonnation characters (M). 

IM\M\M V MM Ml 
Figure 3.1. Example of seven channels. In this case, the valid message 

character occupies the fourth position . 

.There is a need to use a fresh hopping pattern for each communication session 

between card and read/write machine, thus minimising repetition of pattern usage. 

Further, to minimise repetition, the pattern's length should be sufficient to disguise the 

messages which need to be transferred. That is to say, longer messages need a longer 

pattern than relatively short messages to eschew repetition throughout transmission. 

The pattern may be filled by repeated use of a pseudorandom number generator 

operating within the range of available channels. Alternatively, where a pseudorandom 

number generator proves too cyclical or produces weak patterns, the hopping pattern 

may be selected from tables of suitable, previously generated, patterns. An example of 

a hopping pattern is given in Figure 3.2. 

15 !3 11 l 2 \ 5 \ 2 \ 7 I 1 16 \ 3 !4 12 \ 5 I 
Figure 3.2. Exam pie of h upping pattern of length 13 for seven channels. 

Using the examples provided in Figures 3.1 and 3.2, each cycle of the combination of 

Va1id (V) and Misinfonnation (M) characters will be transmitted as given in Figure 3.3. 

If the valid message is longer than the pattern, the cycle will be repeated. 
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[ Channel -+ I 0 I 2 3 4 5 6 

Time M M M M V M M 

,J.. M M V M M M M 

,J.. M M M M M M V 

,l. M V M M M M M 

,J.. M M M M V M M 

,J.. M V M M M M M 

,l. M M M M M M V 

,J.. V M M M M M M 

,J.. M M M M M V M 

,J.. M M V M M M M 

,J.. M M M V M M M 

,J.. M V M M M M M 

,J.. M M M M V M M 

Figure 3.3. Cycle showing hopping pattern or length 

13 over 7 channels, illustrating the 

apparent randomised shuffling or the 

valid data. 

3.2.2 . Communication or the channel-hopping pattern to the legitimate receiver 

To minimise detection where some plaintext is known by an eavesdropper, a fresh 

hopping pattern is generated for each session between the smartwcard and its read/write 

· machine. To obstruct unwanted eavesdroppers, the hopping pattern list (effectively thfl 

"key" to the process) must be communicated under great secrecy. Whilst it is not 

intended to include key management within the scope of this study, the following 

· guidelines are suggested for communication of the hopping pattern to the legitimate 

receiver. 
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Many smart-cards provide on-card encryption routines, typicaJly that of DES/DEA. 

The application of triple DES is acknowledged, by Burton, Kaliski & Robshaw (1996), 

to provide high levels of security. The hopping pattern may be communicated under 

such encryption, making use of the on-card DES routines and associated DES key 

management facilities. Where such on-card facilities do not exist, a DES 

implementation such as that provided by Brown in Seberry and Pieprzyk {1989) may 

be utilised, and key management techniques, as described by Caelli, Dawson and 

Longley (1994) for symmetric ciphers, may be applied. 

For the purpose of the pilot implementation, it is assumed that each legitimate 

communicating party (i.e., the smart-card and its associated read/write machine) is 

aware of the channel-hopping list and that communication · of the list has been 

conducted in a secure manner. 

Clearly, key management may be a relatively time-consuming task for the smart-card. 

It is suggested that the generation and encryption of the one-off hopping pattern and 

its subsequent communication to the legitimate receiver may be accomplished shortly 

after the smart-card is inserted into its read/write machine. Notably, cardholders are 

accustomed to delays of several seconds at this "initialisation" phase of their 

anticipated transaction. Accordingly, to hold the cardholder's attention during any 

added delay, the card read/write machine might display a suitable 

promotional/welcome message. 

As an alternative to the enciphered transmission of the complete hopping pattern list, it 

may be considered worthwhile to take advantage of the algorithmic nature of computer 

pseudo-random number generators by enciphering and communicating the seed with 

. which the generator should be commenced, and the hopping pattern length. Where the 

two legitimate communicating parties use the same pseudo-random number generator, 

the hopping pattern may then be derived by each party applying the same seed. 
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3.2.3 Selection of appropriate:imisinformation for co-transmission 

The conventional application of channel-hopping, as in military radio conununications, 

operates across different cani•er frequencies, taking advantage of a situation where it 

may be difficult to monitor all possible frequencies simultaneously. This study's 

adaptation of channel-hopping differs markedly in that all channels may be monitored 

with equal ease on the seriali link. There is, therefore, a need for the application to 

surround the valid data with misinformation in which the valid data will appear 

inconspicuous. By examp1e, it is appropriate to accompany valid messages of 

binary/textual/numerical data with binary/textual/numerical misinformation 

respectively; 

There is clearly a need to provide/generate misinformation which will camouflage all 

possible types of valid data during transmission. One means of satisfying this need is 

to provide prepared libraries of misinformation from which to choose before 

transmission. Smart-card application programmers may reasonably be expected to 

know and/or control the type of data communicated by their applications. Thus, when 

writing their applications they may be able to select, from the various types of supplied 

misinformation, the type(s) most appropriate for co-transmission with their valid 

message. 

3.2.4 Storage of, and subsequent access to, the misinformation data 

Smart-card MCUs notoriously provide little RAM: typically 128, 256, 512 or 640 

bytes. However, also typically, they do provide between 8 and 20 kilobytes of ROM in 

which application code and fixed data may reside. These characteristics mandate an 

approach which is sparing in its use of RAM, but which may reasonably allocate 

sufficient of the on-chip ROM for its purpose. 

.:; . 
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Look~up tables provide a means of rapidly accessing data, and for the pilot 

implementation a small database is constructed to contain the misinformation for 

transmission in non-valid message channels. Examples of textual misinformation are 

given in Figure 3 .4, and these are, in fact, accessed from their ROM storage as arrays 

of null terminated strings. Misinformation accompanying numeric or digital data may 

either be generated in a pseudorandom fashion at the point of transmission, or libraries 

of prepared misinformation may be constructed to be held in ROM. 

/*string*/ /• of the misinformation in which the valid text will be hidden*/ 

char "Twas brillig and the s/ithy loves did gyre and gymhal in the wahe: All 

*misinfol mimsy were the horogoves and the mome raths outgrahe "; 

char "Beware the Jahberwock, my son! The jaws that bite, the claws that 

•misinfo2 catch! Beware the Juhjub bird, and shun The frumious Bander snatch! "; 
-

char "He took his vorpal sword in hand: Long time the manxome foe he 

*misinfo3 sought, so rested by the Tumtum tree, And stood awhile in thought. "; 

char ''And as in ujfish thought he stood, The Jabherwock, with eyes of flame 

*misinfo4 came whiffing through the tulgey wood, and burbled as it came! "; 

char 110ne, two! One, two.I And through and through, the vorpal blade went 

*misinfo5 snicker snack! He left it dead, and with its head, he went galumping 

back 11; 

-

Char "And hast thou slain the Jabherwock? Come to my arms, my beamish 

•misinfo6 boy! Ofrabjous day! Cal/ooh! Ca/lay! He chortled in his joy. 11; 

Figure3,4. Examples of textual misinformation. Quoted from Lewis 

Carrol's Jabberwocky. 

The study draws, in part, upon an adaptation of the teclmiques devised by Ingleby 

(I 988) for the introduction of ambiguity into a transmitted message. The ambiguity is 

introduced by the concurrent transmission of appropriate misinformation and thus may 

lead to confusion of an eavesdropper's logic of recognition. In keeping with Ingle by' s 

examples the author has quoted and used Carrol's works for the purposely designed 

ambiguity they contain. For the reader's information Lewis Carrol was the pen name 

of Charles Lutwidge Dodgson (1832~1898), a mathematician who, according to 
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-Everyman's Encyclopaedia (1973), · studied and _subsequently lectured _at -Oxford 

-University between 1854 and 1881. Amongst his publications were mathematical 

-_ papers and several works of fiction._ 
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Transmission of the message 

Having completed the previous steps, the valid message may now be transmitted using 

a hopping pattern such as in Figure 3.3. Assuming a textual message is desired to be 

co-transmitted with misinfonnation such as is illustrated in Figure 3.4, the following 

simple algorithm may be applied. 

initialise the variables used,· 
for (each character in the valid message) loop 

for (each channel) loop 
if ( this channel = this hopping pattern) then 

transmit next character from valid message; 
else 

transmit next character from randomly selected misi,iformation string; 
end if,· 

end loop; 
advance hopping pattern in a cyclic fashion; · :.:'.: 

end loop; 

Using the above algorithm, channels are filled with characters as foUows. The channel 

coinciding with the current element of the hopping pattern is allocated the next 

character from the valid message. Note that each remaining channel is supplied with 

the next character from a pseudo-randomly selected misinfonnation string/datastore. 

This prevents two identical valid messages being co-transmitted with identical 

misinfonnation, further increasing the apparent randomness of the production. 
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. The algorithm for retrieving the valid message from the stream of received· characters 

is as follows: 

initialise the variables used; 
while (characters are an-iving) loop 

for (each channel) loop 

,. 

if (this channel = this hopping pattern) the,, . 
add next received character to received 1t_1essage; 

else ·. 
discard next received character; 

end if; 
end loop; 

end loop,· 

3.3 Potential Enhancements 

Ha,ving established the functionality of the basic fonn of channel-hopping coupled with 

applied misinformation, the following potential enhancements, intended to minimi_se 

repetition, are considered: 

• addition of a time-of-day-clock modifier (see Figure 2.3) So that identical valid 

messages transmitted at different times cannot have the same hopping pattern; 

• maximise usage of the set of misinformation by swapping applicable consonants ( or 

groups of consonants) contained in the misinfonnation at the moment of 

transmission; 

• random changing of the bit order of characters transmitted, i.e., establishing a 

pattern for hopping bits to be superimposed upon the hopping pattern applied to 

the characters on the link. If this were to be effected upon all valid characters, it is 

possible that the entire message may be camouflaged within binary data. 

The above listed enhancements will be discussed in tum. 
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3.3.1 Addition of a time-of-day-clock modifier 

As illustrated in Figure 2.3, the time of day clock modifier may be used to prevent 

identical valid messages being transmitted with the same hopping pattern. In order to 

implement a reliable clock, however, generally requires an interrupt driven timer, a 

feature which is absent from typical smart-card CPUs. Accordingly, this enhancement 

was seen as impractical to realise within the context of a smart-card and was not 

pursued. 

3.3.2 Maximise usage of the set of misinformation by swapping applicable 

· consonants at the moment of transmission. 

Possibilities for implementing such swapping include: 

• selections employing a pseudorandom derived swap; and 

• selection of exchangeable characters by reference to their normal frequency of 

occurrence in the current language. 

Exemplification of the effect of consonant swapping is to be found in Lewis Carrol's 

Jabberwocky in the word "slithy". Carrol's example shows that an 'm' may have been 

exchanged with the pair "th" to present a word which at first sight appears Eng1ish­

like. Note that similar effect might have been achieved by replacing the 'm' with 'h' 

(slihy), 'd' (slidy), and so on. Importantly, a lexical analyser would probably accept 

these as plausible words. This enhancement was deemed to offer improvement and 

was implemented in the study. The modified transmission algorithm appears below~ 

with modifications appearing in bold text. 
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initialise the variables used; 
for (each character in the valid message) loop 

for (each channel) loop 
if ( this channel = this hopping pattern) then 

transmit next character from valid message; 
else 
get next character from randomly selected misinformation string; 
if (it is a consonant) then 

randomly swap it with another consonant; 
end if; 
transmit resultant character; 
end if; 

end loop; 
. advance hopping pattern in a cyclic fashion; 

end loop; 

Note that this enhancement requires no. further processing to be··accompHshed by the· 

legitimate receiver. 

For simplicity, consonant swapping was limited to that of single character and all 

consonants, excepting those deemed inappropriate for swapping (i.e., [q,w,x]), were 

considered as equal candi.dates for swapping. 

3.3.3 Random changing of the hit order of characters transmitted 

As an enhancement, such a technique offers two potential advantages: all transmitted 

data now becomes binary in nature, removing the need for such carefully selected 

misinfonnation to be applied to enveloping the valid message; and, it increases the 

complexity of the eavesdropper's task. 
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Disadvantages may also accompany the method, however, dependant upon the level of 

granularity of bit re-arrangement imposed upon the transmitted data. Where bit re­

arrangement is effected at character level, it may be shown to be a relatively facile task 

to perform an automated search of all possible bit combinations. All or part of the 

intercepted message may be examined in this way, possibly leading to recovery of the 

· · ; bit re-arrangement pattern. Where bit re-arrangement is effected on a wider scope, 

e.g., the entire message, exhaustive searches become more time-consuming, but the 

demands upon sender and legitimate recipient rise accordingly. Notably, the 

incorporation ofthis technique, with bit-order rearrangement effected on a wide scope, 

can be seen to deviate from the original operation where the organisational work is 

acccomplished ahead of the transmission, and where little subsequent work is required 

of the receiver to extract the valid message. 

As discussed previously, an application programmer may appropriately select the 

nature of misinformation for co-transmission. In like manner, the decision to apply 

additional bit re-arrangement, with its attendant CPU resource costs, could be left to 

the application programmer's discretion. 

The algorithm required to implement bit re-arrangement, at character level, is given 

below, with those modifications required to augment the basic method illustrated in 

bold text. 

initialise the variables used; 
for (each character in the valid message) loop 

for (each channel) loop 
if ( this channel = this hopping pattern) then 
get next character from valid message; 

else 
get next character from randomly selected misinformation string; 

end if; 
re-a"ange next character's bit order according to next bit-order pattern; 
transmit resultant character; 

end loop; 
advance hopping pattern in a cyclic fashion; 

end loop; 
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:· The algorithm for the legitimate receiver is given below, again with modifications 

highlighted in bold text: 

initialise the variables used,· 
while (characters are arriving) loop 

for each channel loop .. 
if (this channel = this hopping pattern) then :' .: 
get nert received character 
re-a"ange received character's hit order according to next bit-order pattern; 
add to received message; 

else 
discard next received character; 

end if; 
end loop; 

endloop; 

3.4 Summary 

The components of design for the pilot implementation whereby transmitted data may 

be protected by shuffling it across several logical channels in randomised fashion, and 

enveloping it within applied plausible misinfonnation, have been described. 

The processes and considerations contributing to the communication of the protected 

data were developed to yield the basic design. During the production of the basic 

design, potential improvements were identified. These enhancements to the basic 

design have been discussed and evaluated for inclusion in this implementation or future 

studies. Scenarios of the basic design and the adopted enhancements have been 

presented with their resultant algorithms. The design, espousing economy of 

implementation, is respectful of the basic level of facilities offered by smart-card CPUs. 
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.4. Implementation and Findings 

· Recall, from the previous chapter, that our fundamental aim is to intersperse the valid 

message within a cocoon of plausible misinformation, in order to confuse a potential 

eavesdropper. This concealment is to be accomplished in a manner which is 

economical in terms of the machine resources available from an eight-bit CPU 

exhibiting features similar to those found in contemporary smart-cards. Design 

decisions are required for the selection of appropriate software tools to perfonn the 

specific components of the implementation, and for the choice of a suitable target 

system which is adequately equipped to produce a test program illustrating the 

scenarios previously identified. 

4.1 Selection of the software tools and target system 

For reasons of availability, economy, and its feature-similarity to typical smart-card 

CPUs, a proprietary Motorola evaluation system centred on Motorola's 68HCI I 

(MC68HC 11) eight-bit microcontroller was employed as a target system. Usage of the 

evaluation system's hardware was constrained, for the study's purpose, to those 

facilities normally found within a smart-card CPU. The constraints precluded the use 

of interrupts (e.g., for timing purposes) and/or the on-chip serial ports for data 

transmission. 

Similar reasons prompted the initial use of the ImageCraft C cross-compiler/assembler 

for the MC68HC11, as the vehicle for code generation. The ImageCraft C cross­

compiler, however, proved to be incomplete in its support for the ANSI C standard. 

Limitations caused by such non-compliance prompted the employment of a Hi-Tech 

cross compiler/assembler for the later stages of implementation. Notably, neither the 

ImageCraft nor the Hi-Tech assembler was found to be fully compliant with 

Motorola's assembly language syntax, particularly in the support of macros, although 

this has not impacted upon the implementation executables. 

. if"'.' ... . 

...__ ___________ s_2 ___________ ____.! 



HS 

Timing measurements were made using a Hewlett Packard Model HP54600A one 

· . hundred MHz digital storage oscilloscope, Serial Number 3 3 3 4031110, supplied by · 

Edith Cowan University. 

4.2 Implementation of the study 

. The design discussed in chapter three suggests three scenarios to be implemented: 

• the transmission of the valid message, shuffled and encapsulated within selected 

applied misinformation - this is labelled the basic method; 

· • the basic method, enhanced by the random substitution of consonants contained 

within the applied misinformation., thus maximising re-use of the misinformation set 

- this is labelled the substitution method; and 

• the basic method, augmented by the random re-arranging/scrambling of the bit 

order of transmitted characters - this is labelled the scrambled method. 

It may be seen that variations and combinations of the above scenarios may be 

employed to gain further improvement. However, for the purpose of the study,·· 

implementation has been limited to these scenarios. 

The implementation concerning each of these will now be presented in turn, with every· 

one being discussed in tenns of: 

• its requisite implementation code in the C language; 

• · the test data chosen to demonstrate facilities offered by the technique; and 

• the resultant production given by the application of the scenario's randomised 

shuffle together with its associated applied misinformation. 

Timing measurements, yielding a measure of CPU resource usage, observed for each 

scenario will also be presented for differing data-lengths. Annotated source code 

listings may be found in Appendix B. 
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4.2.1 The basic method 

It is appropriate to view the code of the basic method, in the.:68HC1 I target system, as 

providing two interfaced layers: namely, 

• fundamental serial communications support; and 

• the Randomised-,Shuffle implementation. 

In keeping with smart-card technology, the asynchronous se1ial communications 

implemented for this study are effected by the precisely-timed toggling on/off of a bit 

connected to one of the target MCU's Input/Output (1/0) ports. Synchronisation is 

necessary between communicating devices and, by convention, those employing 

asynchronous serial techniques align themselves using the transitions of each 

character's start bit. Once the two parties have become synchrorused, each successive 

bit of the commurucated character is sampled with reference to the period elapsed from 

the character synchronisation point. Clearly, for this technique to work, the jitter (the 

variation from the anticip13ted sample time) for each bit transition must not be 

excessive. Such exactitmJe in timing mandated the use of assembly language for the 

serial communications support layer. A simple function-oriented interface, 

incorporating register-based parameter passing, is presented to the Randomised­

Shuffi e layer. The serial commurucations support layer implementation remains 

constant for all three scenarios, and its source code was supplied by a third party (see 

Acknowledgements). This code plays no part other than providing. the passage of 

characters to/from the target system in timely manner and would, in any case, be 

already present in the smart-card's existing software. As a consequence of this, the 

serial communications support Jayer is discussed no further. 

During testing, it became apparent that the Pseudo-Random Number Generation 

(PRNG) function, called rand(), supplied with the C compiler introduced considerable 

delays (approximately one-half a character's transmission time) when used to select the 

channel for each misinfonnation character to be transmitted. This PRNG acts upon, 

and furnishes as a result, a thirty-two bit integer. Whilst today's contemporary thirty­

two bit CPUs provide hardware rapid multiplication and addition instructions, 

facilitating similar linear congruential thirty-two bit calculations on smart-card eight-bit 

54 

: ~ i 

I 



CPUs takes considerably longer to perfonn. Furthermore, such a linear congruential 

method, implementing an affine relationship based upon two Jarge prime constants, is 

difficult to separate into discrete manageable components. However, there exists 

another category of PRNG which uses a shift register. For the purpose of this study, 

this type of PRNG is attractive as its register may be shifted during the idle periods that 

a smart-card's CPU endures during bit transmission of characters. Importantly, such a 

. shift register mechanism operates at a fundamental level of one bit at a time: thus, 

permitting the interweaving of the bit-shifts within several of the aforementioned 

discrete idle periods. Put another way, concurrent with the transmission of a character, 

the CPU may usefully be occupied in preparing the next pseudo-random number. 

Scheier (1992) proposes a bit-shift PRNG mechanism whc:reby the incoming bit's state 

is determined by inspection of bits according to a polynomial of z3' + z6 + 24 + 22 + 21 

+ 2°, for which the C code is presented in Figure 4.1. An explanation of the effective 

and optimised use of polynomials within bit~shift mechanisms, albeit for cyclic · 

redundancy check applications, is provided in Kientzle (1997). 

static unsigned long random_seed = Ox 1273678 IL; 

int random_bit( void) 
{ 
random_seed"" 
((( 

(random_seed >> 31) //XOR with bit 31 
"(random _seed>> 6) //XOR with bit 6 
,;(random_seed >> 4) //XOR with bit 4 
A(random_seed >> 2) //XOR with bit 2 
"(random_seed » l) //XOR with bit l 
11 (random_seed) //XOR with bit O 

& OxOOOOOOOl) //isolate resultant bit 0 
« 31) //align resultant bit with bit 31 
I (random _seed >> I)); //and move it back into bit 31 of random_seed 

. . 

return random_seed & OxOOOOOOOl; //then, return the "random''-tiit . 
) 

Figure 4.1. C code to implement Scheier's (1992) polynomial-based 'shift · 

register PRNG. 

·. l 
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Notably, Scheier's mechanism inspects (via an exclusive-OR} the state of six bits of the 

thirty-two bit register random _seed, lending itself.well to optimisation for a CPU with 

only eight bit registers. The author's highly optimised assembly code for this appears 

in Appendix B. Interwoven within the ten bits (eight data bits, plus one parity and one 

stop bit) of each transmitted character, the code was found to be rapid enough to 

generate a thirty-two bit pseudo-random number. As the basic method requires only 

three-bit pseudo-random numbers for each misinformation character's channel 

selection, there remains a redundancy sufficient to support transmission rates many 

times higher than the ninety-six hundred b.p.s. used in the study. 

The basic Randomised-Shuffle implementation, for convenience, was implemented 

using the C language. For the reader's convenience, the pseudo-code for the basic 

method appears in Figures 4.2 and 4.3. 

;J 
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· initialise the variables used;' 
for (each character in the valid message) loop · 
· for (each channel) loop 

if (this channel = this hopping pattern) then 
transmit next character from validmessage,­

e/se 
transmit next character from randomly selected misinformation string; 

endij,-
end loop,· 
advance hopping pattern in a cyclic fashion; 

end loop; 

Figure 4.2 Pseudo-code for the basic Randomised-Shuffle method 
(Transmission). 

initialise the variables used; 
while (characters are arriving) loop 

for (each channel) loop 
if (this channel ::: this hopping pattern) then 

add next received character to received message,- · .. 
else 

discard next received character,· 
end if,· 

end loop,· 
end loop,· 

Figure 4.3 Pseudo-code for the basic Randomised-Shuffle method 
(Reception). 

4.2.1.1 Implementation code/or the basic method 

· • Iti.s assumed that any variables external to the subprogram(s) may be deemed to be in 

an initialised and usable state prior to the subprogram(s) being invoked. Relevant 

pseudo-code, entered in comment form within the ensuing C code extracts, has been 

italicised and boldened for clarity. 
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The functionality of the scenario,s implementation has been encapsulated within a C 

function entitled ''put_ combined_ message", featured in Figure 4.4. 

//Subprogram 
//purpose 

: put_combined_message 
: sends the valid char, together with its 

II 
II 

: surrounding misinfonnation characters 
: out of the serial port VO link 

//return 
//parameters 
//side-effects 

: none 
: lhe_valid_message: points to start of valid message 
: none 

void put_combined_messagc( char • the_valid_message) 
{int this_hopping_pattern = 0, 

the _length = strlen(the_ valid _message), 
current_cbar; 

//for (each character in the valid message) loop 
for ( current_char=O; current_char < the_Iength; current_chart+). ·. · 
{int this_channel; 

//zero_ channels _already_ used 
memset( channels_already_used, 0, MAX_CHANNEL.;1); 

II for (each channel) loop ... 
for (this_channel=O; this_channel < MAX_CHANNEL; lhis_channel++) 
{ 1/"if(this_ channel = this hopping pattern) then .. , 
if (this_ channel === hopping_pattemf this_ hopping_panem]) 
{ /hransmit next character from valid message 

put(the _valid_ message[ current_ char)); 
} 
else 
{ lhransmit next character from randomly selected misinformation string 

put( get_next_misinfo_char( )); 
}//if 

}//for 

//advance hopping pattern in a cyclic fashion 
if(++this_hopping_pattem >= MAX_PATTERN) 

this_hopping_panern = O; 
. }//for 
} 

Figure4.4 Subprogram to transmit the combined valid message and 

misinformation. 

It may be seen, from the code in Figure 4.4, that the subprogram 

put_combined_message relies upon data held in an external array 'hopping_yattem{]' 

and a further subprogram get_ next _misinjo _ char. The former, as its name alludes, 

contains the hopping pattern understood by both transmitter. and legitimate recipient, 

and the latter is presented in Figure 4.5. 
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//Subprogram 
//pwpose 
II 
//return 

: get_next_misintb_char 
: gets next character from randomly selected 
: misinfonnation siring. 
: the next misinformation char ( typed to byte) 
: none //parameters 

//side-effects 
II 

: The array 'channe]s_already_usedl]' has the appropriate enl!y updated, 
: signifying which misinfonnation strings have already been used . 

II : during the current cycle of transmitting an 
: enveloped valid character. II 

II 
byte get_next_misinfo_char( ) 
{//randomly choose a nwnber from within the range of available channels 
int misinfo_selected = next_rand % (MAX_CHANNEL-1); 

} 

//if this channel has been previously used for accompanying 
//tlte valid channel, lhen choose the first a,m.ilable 'free' channel 
while (channels_alrcady_used [misinfo_selected)) 
{misinfo_selected += l; 
if (misinfo_selected >= (MAX_ CHANNEL-I)) 
misinfo_selected = O; 

}//while 

//record the usage of this channel 
channels _already_ used[ misinfo_selected J = 1 ; 

/Jbefore returning with lhe next char from this channel 
return (next_char_fro111(misinfo_selected)); 

'. 

.. :··.··:::;,: 

Figure 4.5. Implementation code for obtaining the next misinformation 

character within one hopping cycle. 

Referring to Figure 4.5 it can be seen that, in addition to choosing randomly a 

misinformation channel (whose next character will accompany the character from the 

valid message) it is necessary to record that the channel has been used. In the case that 

the channel has already been used, the next available channel is selected in sequential 

fashion. The array channels_ already _used[] records usage of misinformation 

characters for the cycle of transmitting a complete set of misinformation characters 

with each successive character from the valid message. Finally, subprogram 

get_ next_ misinfo _ char is dependent upon the function next_ char .....from (Figure 4.6) 

which, as its name suggests, gets the next character from the misinformation channel 

selected. The function next_char __from relies upon the array misinfo__pos[J to record 

the currently available position of the next misinfonnation character within each of the 

misinformation strings. 
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· //Subprogram 
. //purpose 
II 
II 
//return 
//parameters 
II 
II 
//side-effects 
II 
II 

: next_char_from 
: gets the next misinformation character to 
: be transmitted, selected from tht: available 
: misinformation strings 
: next misinformation character 
: misinfo_selectcd (in mode): identifies the 
: misinformation string from which the char 
: is to be taken 
: updates misinfo_pos[J, a record of the last 
: char used from each misinformation string 

char next_char_from(int misinfo_selected) 
{ char next_ misinfo _ char~ 

} 

int index; 

//retrieve position of the next available character from this channel . 
index= misinfo_pos(misinfo_selected]; · 

//obtain the character indexed by this position 
next_misinfo_char = misinfo_channels[misinfo_selected][index); 

//record next available position 
index+=!; 
//applying bounds so as not to iudex outside the misinfo string 
if (index>= misinfo_len[misinfo_selected]) 
{index= O; 
} 
//record this updated index 
misinfo_pos(misinfo_selected] = inde~ 

return next_misinfo_char; 

Figure 4.6 Retrieving the next available misinformation character,· then .· 

updating indexing information variables, 

. 4.2.1.2 Test data and resultant productions. 

Two differing sets of test data are presented, together with their output from the 

implementation for selections of applied misinfonnation. In each case the 

microcontroller has been programmed to transmit first the hopping pattern (generated 

using the C compiler's pseudo-random number generator) and, second, the valid 

message, purely as an aid to clarity of demonstration. 
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Figure 4.7 shows a batch of textual data .subjected to the randomised shuffle and 

accompanied by the textual misinfonnation featured in Figure 3.4. It may be seen that 

the valid message, a complete verse taken from Lewis Carroll's "The Walrus and the 

Carpenter", blends into its envelope of accompanying misinfonnation. 

The pattern is: 2325335611003 

The message is: The sun was shining on the sea, shining with all his might: he did his very best to 
make the billows smooth and bright and Utls was odd, because it was the middle of the night 

The output is: HA ITOABwenhnendwee das at , hsoraeatubossr knwtoi li l w hlnhlat eisu s hi 
ogJO fu asvfniehao bsbrins,hlndep ratiawilnwlthnhgo o!o cs i;:wu t ko,nognAsh In retdd imlh y It 
thae ihes nbyh b s rotneehso!taroauogv,w n do ohcs Tc:sd,ak h h?ideL n noTid injh dn Ctaego 
hggw yr mstJ iawoermbiu cthebg tlaaoh eh, t ntrhwmd a o tbyclil cgh a itemkhm,er aibn,vm wxoss 
!ti eor, hpm mtmeiaichn lgycf he yobtlbtehaec: lew saa hh sdmeeoiw e fat s dhwh bs oaifeentd :bu! 
g atoyAhmch elslilit ,snltc i chsaOcvmmok i!eerfm cryr rsB eaew yb wshsbwateinjresfoaereutdfck 
s ie n! ttb ghodtyh ea et tHmy!Jhch arkeu boeClb o ujeTartugfuolmlthgbh oe t otoi bvuheblimhr e 
lisdt I drtelCa,euan oadaeldlwls,g n, te adsh Ayaym sn!enh do dwu oo Hmweotsontdhl mTotce ,o 
hah hrcdnao nira d fldatt bhslrwsrhbe uimduih gilc robaohieutuUd ne, gsi ra hndB i hnastbdaaen h 
s ej d wtoTeeouihniywrtgss.hta ntc swaA.g ab taanmldsrcHeu i !he lomhl tAapld noidsBigen,dto 
kg w ata abrenhsbhocda eia usic uk n tt hhs vsolccOuerna f fiisJpean,aiUi s b ltbtwt hhhs 
eawrtwoeyso h! wttooJr hcdu aoe gvObken, bihctnmes m,ri hhd wdye aotd.idsnl cw osekdotgn:? I 
o yl oAfoLr n eoCd t , Tdonhahg me cenTt t hd hr tnjieagimo o euJw gims hmgaty tbhbhlb . taeehac 

Figure 4. 7. Textual valid data enveloped within textual misinformation. 
A hopping pattern length of 13 was distributed across 7 channels. 
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The pattern is: 2325335611003 
The message is: 01234567890 l 234567890l23456789012345678901234567890123 456789 
The output is: 
HAOTOABwenlnendw2e das at 3, h4oraeat5bossr k6wtoi ti7!8 hlnhl9t eiOu s hilogJO fu 
a2vfnie3ao bsbr4ns,hl5dep rat6awit7wlthnh8o o!o cs9ewu t kO,loghAsh21n re3dd imt4 y Jt tha5 
ihes6nbyh b 7 rotn8ehsoltaro9uogv0w n dolohes Tc:2d,ak h 3?4deL n 5oTid 6njh d7 Ctaego 
h8gw yr9mst.J iaOoennblu ethebg 2taao3 eh, t4ntrhwmd 5 o tbye6i7 cgh a8itemk9m,er aObn,vm 
wxols lti2eor, hp3 mtme4aiehn 15ycf 6e yob7Ibtehaee81ew saa9 

Figure 4.8. Numeric valid data enveloped within textual misinformation. 
A hopping pattern length of 13 was distributed across 7 channels. 

The set oftest data depicted in Figure 4.8, shows the results of numeric data, subjected 

to the randomised shuffle technique, and enveloped within the misinformation 

illustrated in Figure 3.4. It is evident that the numeric data is conspicuous against the 

surrounding misinfonnation, emphasising the need for an appropriate choice of data 

with which to camouflage the valid message. 

The pattern is: 2325335611003 
The message is: O l 234567890l234567890123456789012 34567890l234567890123456789 
The output is: 
~50422425114645725748619233100348499985567375596630503774852417491171103916911 
1666323612609733089433047855752693!69456286775890118766638369309978809!0958512 
09633326253940193838675315376319221378068881393952529159205035]217406637821909 
154394711299516802641175476903371888809649666178805998711344188442469539180244 
3538795251128199617474]1580045694975250067258365127673265239323443984203947847 
555106128187794696272882904549 

Figure 4.9. Numeric valid data enveloped within numeric misinformation. 
A hopping pattern length of 13 was distributed across 7 channels. 

The same numeric data, this time enveloped in numeric data, is shown in Figure 4.9 

and it may be seen that the valid data blends absolutely into the surrounding 

misinfonnation. 
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I . . 

4.2.l.3 Timing Data 

. . Observations for timing of application of the basic method for various message lengths 

are recorded in Figure 4.10. The times were measured using a hopping pattern of 

length thirteen, time division multiplexed across seven logical channels, within the 

· bandwidth provided by one physical channel at a bit rate of ninety-six hundred bits per 

second (b.p.s.). Each character's transmission is perfonned according to a protocol of 

eight data bits, one stop bit and an even parity bit and, including the time necessary for 

setting up the simulated smart-card's 1/0 link, consumed 1.35ms. 

Valid Message 
Length 
{ characters) 
1 
8 
16 
24 
Figure 4.10. 

Method Setup Process only of Process only of Process+ 
Time (ms) Transmitter Receiver (ms) Transmission 

(ms) (ms) 
24 4.5 0.32 14 
24 40 2.6 119 
24 69 4.7 223 
24 109 7.2 346 
Timing data observed for the basic method or Randomised- .. 
Shuffle and Applied Misinformation. 

Note that the transmission time includes the transfer of the number of valid characters 
times the number of channels. 
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4~2.2 The substitution method, 

Recall from chapter two, relying upon a characterMoriented variation of Ingleby's 

(1988) "ambiguity, paradox and logic of recognition", that it may be possible to fool an 

automated examination tool by the production of an enveloping text with nonsensical 

combinations of lexemes. Example was given, in chapter three, showing consonant 

substitution producing variations of the word "slimy,, as "sliby" or ''s/idy". 

Examination of the consonant set in the English language (i.e., all letters not in [a, e, i, 

o, u]) suggests that those in [ b, c, d, f. g, h, j, k, I, m, n, p, r, s, t, v, w, x, z] appear to 

be interchangeable. The letters [q, y] are not included in the interchangeable set as 'q' 

normally appears accompanied by 'u', while 'y' often behaves similarly to the letter 'i' 

arid is perceived by the author as a pseudo-vowel. To reduce repetition of the 

· available misinfonnation text enveloping its diffused valid message, an implementation 

is presented whereby consonants from the chosen subset are randomly substituted for 

each other. 

4.2.Z.1 Additional implementation code required for the random substitution of 
consonants. 

The suitably modified C function, '"put_combined_message", is featured in Figure .. ·· 

4.11. . 
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//Subprogram 
//pllIJ>Ose 

: put_combined_message 
: sends the valid char, together with its 

II 
II 

: surrounding misinfonnation characters 
: out of the serial port 1/0 link 

//return 
//parameters 
//side-effects 
II 

: none 
: the_valid_message: points to start of valid message 
: none 

void put_combined_message(char •the_valid_message) · 
{int this_hopping_patlem = o. 

current_char, 
this_channel, 
the_length = strlen(the_va1id_messagc); 

char the_char; 

I/for (each character in the valid message) loop 
for ( cwrent_char=O; current_char < the_length; current_char++) 

{ //zero _channe1s_already _ used 

} 

memset( channels_already _used, 0, MAX_ CHANNEL-I); 
II for (each channel) loop... · 
for (this_channel=O; Uus_channcl < MAX_CHANNEL; this_channel+!-) 
{ llif(lhis _ channel = this hopping pattern) then... · 
if (this_channel == hopping_pattem(this_hopping_patteml) ' 
{ I/transmit next character from valid message 

put(the_valid_message[current_char]); 
} 
else 
{ I/get next character from randomly selected misinformation string 

the_char= get_next_misinfo_char( ); 
//if iJ is a consonant, randomly swap it with another consonant 
put{ swap_consonant( the_char)); lhransmit resultant character 

}//if 
}//for 

!!advance hopping pattern in a cyclic fashion 
if(++this_hopping_pattem >= MAX_PATI'ERN) 
this_hopping_pattern = O; 

}//for 

Figure 4.11. The C function, ''put_ combined_ message", suitably modified . to 
swap consonants within the misinformation text, ,. thereby 
extending that text's usage. 

It may be seen that subprogram "swap~ consonant" is used to return a character 

which, if applicable, is a substitute. The test of applicability is that the original 

misinformation-character is a consonant. The mechanism of "swap_ consonant", 

detailed in Figure 4.12, perfom1s the consonant substitution, if, and only if, the 

original character belongs to the set of swappable consonants. Note that the case 

(upper /lower) ofthe original character is preseived through the swap. 
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//these consonants are easily swapped 
.· char •interch:ingeable_consonants = 0bcdfghjklmnprstvz,"; · 

"-----------------
. . . //Subprogram 

//p•irpo.se 
II 
II 
//return 
II 
II 
//parameters 
II 

. //side-effects 
II 

: swap_consonant 
: ifthe_charpassed in is a (swappable) 
: consonant, randomly chooses a 
: consonant with which it is swapped. 
: if able to swap the_char, retwns 
: the substitute consonant; else 
: returns the_char 
: the_char (in mode): a candidate character 
: for swapping with another consonant 
: none 

char swap_consonant(char the_char) 
{ 
char temp = tolower( the_char), //change to lower case for comparisons 

•index = interchangeable_consonanls; · 

1/ifthe_char is a consonant, randomly swap it wi1J, another consonant 
while(•index) 

· · { if( *index=::: temp) 
{ temp= interchangeable_consonanls(next_rand % consonants_lenglh]; 

//before returning, preserving the case of the original char 
retwn (is_upper(the_char) ? toupper(temp) : temp); 

} 
else 
{ index++; 
}//if 

}//while 

1/couldn 't swap, so return the original char 
return the char; · · · · 

} 

Figure 4.12~ Mechanism for random swapping of consonants.· 
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4.2.2.2 Test daJa and resultant productions 

Several productions from the "swap_consonant" subprogram, following submission of 

the word "tidy", appear in Figure 4.13. 

Figure 4~13. 

Productions from "tidy": 
lily 
vihy 
mihy 
miky 
pijy 
riby 
jiky 
nizy 
licy 
pivy 

Productions of the consonant-swapping r_outine, using the word .. 

"tidy" as original data. 

Figure 4. 14 shows a batch of textual data, a complete verse taken from Lewis Carroll's 

"The Walros and the Carpenter", subjected to the substitution method. 

The pattern is: 2325335611003 
The message is: The sun was shining on the sea, shining wilh all his might: he did his very 
best to make lhc billows smooth and bright and lhis was odd, because it was the middle of 
the night. 
The output is: JFTAJOAhsehfweade wle zba, jtsoa asouenndz wnnil ori rnf dpt a 
zgeisdu mi Bn cOopans uzaeh ibozk,igrk nnkcvzbjaa i wwinkjgo fghro! elb opwmu 
ognAk,omg se mctti kcfhy n Pa iedmhlr ynce osfd kpeoetboa!pvaucd ,owvozo ej c:D tsrab, 
nh?isesF Mn iov is h lcnmaVne w gboclk Vyllt iwaoeecilu rvprket daoha cfvn ,rpt lwa 
efyo kl lmgd ill deairh,a zpeiljt v, gwsovxop ied,sczmm deieabi c yrg eth 
jozytjkneaetb:cwa cea sh gltoee wie saj I dd rlwdea ieomvmdu:rvvoa g Abhch yljvenia, 
msp vci I dlraOvkfj ioleer etljyz pnV eayw ebzj pwcwmiezlaeesscaoctuthhc p iheh! 
slblpyojk v eajyepmCGecpl a k zujeGeh odo aTesujtdnouufglvhzmmv e oo uri cosdpbleni 
nen i!j cl kkbelGa, uezaoaedphvaw,szc t,a lz esh aAyyml!em fwmvor ouot N tjotwcofvh ir 
od,re Nn rao vpezn ao ziadhzfmdal wb nkld mehuhidji sug boizcauihoetupt hhni,c v fg as 
spa miHn arjdaefrc vi go w tveeoBuihltiyzgwm sm.azc fz vc wA.aaj hp uagfPfskegcie urld 
otp JpA nkdaiotdjiCose,crg dw ma ab abgcnhffdice oapap uifug It cj svhjOeeeous da pg 
fK.iepniaali,tzhvi sh bwtcjhwen abwl.Y.iocsw oj lslForo h aouvkepOzvp r,c eipejmehv h vi, 
wyd cpci agedofs lmwk joerdotfl?: k y !o o ftRoA g de Lotn,oLn h jlat 2'.deepe lb t t pimne z 
oirojawieuLg b fhtasyv tgtz td j. leaeate 

Figure 4.14. Textual valid data enveloped within textual misinformation of 
which the consonants have been randomly swapped. A hopping 
pattern length of 13 was distributed across 7 channels; 
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4.2.2.3 Timing Data 

Observations for timing of application of the substitution method, for various message 

lengths are recorded in Figure 4.15. The times were measured using a hopping pattern 

of length thirteen; time division multiplexed across seven logical channels, within the 

bandwidth provided by one physical channel at a bit rate of ninety-six hundred bits per 

second (b.p.s.). Each character's transmission is performed according to a protocol of 

eight data bits, one stop bit and an even parity bit and, including the time necessary for 

setting up the simulated smart-card's 1/0 link, consumed I.35ms. 

Valid Message Method Setup Process only of Process only of. Process+ 
Length Time (ms) Transmitter Receiver (ms) Transmission 
(characters) (ms) (ms) 
1 24 8 0.32 18 
8 24 72 2.6 151 
16 24 129 4.7 285 
24 24 205 7.2 439 

Figure 4.15. Timing data observed for the substitution method. 

Note that the transmission time includes the transfer of the number of valid characters 
times the number of channels. 

. i:. .... '. (! 

. ' \ 
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.· . 4.2;3 The scrambled method. 

Recall from the previous chapter that, by application of this enhancement, whereby the 

bit order of transmitted characters is re-arranged, the eavesdropper's task is made 

more complex and, as all transmitted data now becomes binary in nature, the 

application programmer may not need to select with such care the co-transmitted 

misinfonnation text. For the reader's convenience, the enhanced pseudo-code is 

presented in Figures 4. 16 and 4. 17. 

initialise the variables used; 
for (each character in the valid message) loop 

for (each channel) loop 
if (this channel = this hopping po/tern) then 
get next character from valid message; 

else 
get next character from randomly selected misinformation string; 

ffldm . 
re-arrange next character's hit order according to next hit-order pattern; . 
transmit resultant character,· 

end loop; 
advance hopping pattern in a cyclic fashion; 

end loop; 

. Figure 4.16. Pseudo-code for transmission using the scrambled method . 

· initialise the variables used; 
while (characters are arriving) loop 

for (each channel) loop 
· if (this_ channel = this hopping pattern) then 

get next received character 
re-arrange received character's bit order according to next bit-order pattern; 
add to received message,· 

else 
discard next received character: 

end if; 
end loop,· 

end loop,· 

· Figure 4.17.. l 1seudo~code for reception using the scrambled method . 
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· 1.2.J.l iJdditional implementation code requiredf~;:the random changi,ig of the.· 
· bit order of transmitted characters. 

Bitre~arrangernent, within each character, was performed according tll the.algorithm •••.. 

in Figure 4.18. 

for (each bit in the char) loop 
if (the bit is set) then 
set its substituted bit in the re-arranged character; 

end if; 
end loop~ 
advance to next bit re-arrangement pattern in cyclic manner; 

_··~.~.- .-. 
: :·.\ .. ,~ 

;; .·. 
.. I· 

t 

'· ~ . . .,. 

,__-------------------' ·:I ·-·. 

}figure 4 • .18. Algorithm for re-arrangement or bits in each transmitteJi character. 

In keeping ·withJhe study's previous algorithms applied to the transmitted data, the 

granularity of data subjected to the bit re-arrangement algorithm has been maintained 

· at character level. Modifications· and additions to the fundamental implementation · 

code are portrayed in Figures 4.19 arid 4.20. 

•i. 

'· 
' 
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': L 

~il 

//Subprogram· .. 
//pu:rpose 

: put_combined_message 
: sends the valid char. together with ilS 

II 
II 

: swrounding misinformation characle!S 
: out of the serial port 1/0 link 

//return 
//parameters 
//side-effects 

: none 
: the_valid_message: poinlS to start ofvalid message.·· .. 
: none 

II . 
void put_combined_message( char •tbe_valid_messagc) 
{int this_hopping_pattem = 0, 

CWTent_char, 
the_length = strlen(the _ valid_message)~ 

· I/for (each character in the valid message) loop 
for ( current_char-=0; current_char < the_length; current_char++j ··· 
{ int lhis_channel; 

!(zero_ channels_ already _used . . . . . 
memset(channels_already_lised, 0, MAX_CH~L~l);. 

II for (each channel) loop . . . . . . . . 
for (lhis_channel=O; this_channel < MAX_CHANNEL; this_chann.el++t 

· { byte original_char; · 
1/if(this_channel = this J,opping pattern) then 

} 

if (lhis_channel == hopping_pattern[this_hopping_pattem]) 
. { /Igel next character from "11alid message 

original_char = the_ valid_message[current_chart 
} 
else 
{ //gd next chara'cter from randomly selected misinformation string 

original_char = get_next_misinfo_char( ); 
}//if 
1/transmil resultant character; 
put( re_arrange_bits_of( original_char)); 

· }//for 

. !/advance hopping pattern in a cyclic fashion 
_if(·H-this..:.hopping_pattem >= MAX_PATIERN) · 

lhis_hopping_pattem = O; 
}//for 

Figure 4.19. The C function, "put:_combined_message", suitably modift~d to 
re-arrange the transmitted data's bit order. 
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: re_arrange_bits_of .· //Subprogram 
I/purpose 
//return 
//parameters 
I/side-effects 
II 

: re-arranges the bits of original_char 
: the re-arranged char . 
: char original_char: the char to be re-arranged 
: none 

I/get the bit patterns 
#include "bit_patt.h" 
l/111 least significant (first char) 
/Ito most significant biJ(last char) order 

byte bit_equivalents[]={ l,2,4,8,16,32,64,128}; 

byte re_arrange_bits_.if( byte originaJ_char) 
{byte re_arranged_cbar = 0, 

current_bit~ 
static char current_pattem = O; 

I/for (each biJ in the char) loop 
for{ current_bit = 0~ current_bit < 8; current_bit++) 
{ Iii/( current_biJ is set) then ... 
if( original_char & bit_cquivalents(current_bit]) 
{ I/set ils substituted bit in the re-arranged char. 
re_arranged_char 1= pattems[current_pattcm]; 

}!!if 

I/advance this shuffle pattern 
current_pattem+= I; 

}//for 

//placing bounds on the cycle of shuffle pattern 
/Ito keep the advance in cyclicftuhion 
if( currcnt_pattcm >=TOTAL_PATTERNS) 
{ currcnt_pattem = O; 
}//if 

return re_ananged_char; 
} . 

., Figure 4.20. The C subprogram re_a"ange_bits_of, which acts upon the 

passed-in parameter original_char. 

AJI data, before being transmitted, is subjected to the code contained in subprogram . 

re_arrange_bits_of( ), to which is passed the parameter of original_char. It may be 

seen that this subprogram relies upon two pre-defined data items: namely, one array of 

bytes called hit_equivalents[J, and another array of bytes called patterns[J. 

Respectively, these are depicted in Figures 4.20 and 4.21 and contain in ascending 

order (i.e., least significant bit first) images of the bits of each character, and images of 
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the bit replacements according to a randomly generated pattern. !_he. atray, patterns[]; 

is· created prior to compilation of the implementation code, the reasons for which are 

now explained. 

In order that the re-arranging of bits within each byte does not become an excessively 

costly affair in tenns of CPU resources and, that sender and legitimate receiver may 

both know the order of bit re-arrangement, the patterns of replacement bits are 

contained in the C include file "bit_patt.h". This file is necessarily included during 

compilation of the implementation code. Such a mechanism permits two economies 

over that of generating the pattern "on-the-fly": 

• it provides the rapid access mechanism provided by the use of "look-up" tables; · 

and 
• · · it permits the storage of the tables in program ROM, rather than. the. scarce RAM · 

available for the CPU;s operations. 

byte patterns[] = { 
4,64,1,32,8, 128, 16,2, 
128,2,64,32, 16,8,l,4, 
l, 16, 128,64,8,4,2,32, 
128,4,32,64,8,2, 16, 1. 
1,4,64,8,16, 128,2,32, 
8,1,4,2,128,32,64, 16, 
64, 128,4, 1,8, 16,32,2,0}; 

#defme TOTAL _PA 'ITERNS 56 

Figure 4.21 .. The contents of ''bit_patt.h", being the table of substitute bits 

used to re_arrange a byte prior to transmission. For clarity, 

these have been formatted in 'groups of eight. 

The implementation code used to generate the pattern in Figure 4.21 is illustrated in · 

Figure 4 .22. 
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-//Program 
//Pwpose 

:Bit_Sel.C 
:Outputs bit patterns which for inclusion for bit-rearrangement by smart- · 
:card communications emulation program 
:MS-DOS I Windows DOS box:/ Unix 
:Exits with 1 upon error; else Nonnal termination 

//0/S required 
//Returns 
//Pwpose :Creates a table of bit replacement values of eight times the pattern . . . 

:repetition rate. Also defines tbe amount of TOT AL_PA'ITERNS for use ·. 
:in a C program 

· //Parameters :The number of patterns required, via the program command line. 
#include <stdio.h> 
#include <stdlib.h> 

void print_usageQ//explains to user how to use the program 
{printf("\nUsage = bit_sel.ex:e n > filenamev\n\n"); 

} 

printf(" Where n = number of patterns required\n\n"); 
printf("\nFor example: bit_sel 7 > bit_Jlatt.h\n11); 

exit(}); 

void main(int argc, char •argvlJ) 
{ int outer, inner, bit, pattern_size = O; 

if (argc > 1) . . . . . . ·. · . . · 
{ if( (argv{l][O] > 'O') && (argvJI)[O] <;,, '9')) pattem_size = argv[l][O]'~ '01; 

else { print_usageQ; }//if · · · · · · 

printf("\nbyte patterns[] = {"); 

for(outer = O; outer< pattem_size; ciuter++) 
{ int used[8] = {-1 -1 -1 -1 -1 -1 -1 -1}; 

' ' ' . ... ., ' ., t . 

for( inner= O; illller < 8; inner++) 
{intok= O; 
· while {!ok) 
{ int test; 

ok = 1; bit= randO % 8; 
//has this bit image been used before? 

· for( t~st = O; test< 8; test++) 
{ ii( used[test] == bit) { ok = O; break; }//if 
}//for 

if(ok) 
{ used[inner] = bit;//mark as being used 

printf("o/od, ", OxO 1 :<< bit ); 
}//if 

}//while 
}//for 

}//for 
printf("O};\n#defi.ne TOTAL_PATI'ERNS o/Qli", (pattem_size • 8)); } . . . . 

_e]se 

} 

{ print_usage(); 
}//if 

Figure 4.22. Program code to produce the include file "bit_patt h ". · 
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· The· program whose source code is detailed in Figure 4.22 may be executed from an 

operating system command line, accepting a single command line parameter of the 

length of the bit re-arrangement pattern. The program's output may be re-directed to 

be contained in a disk file. Where no parameter accompanies the program's 

invocation, a simple message containing suggested program ::,1age is displayed for the 

user's benefit. 

4.2.3.2 Test data and resultant productions. 

Two sets of data are presented in Figures 4.23 and 4.24: one showing the results of 

valid textual data, surrounded by textual misinformation and then transmitted with each 

byte's bit order re-arranged; and the other showing valid data which is numerical in 

nature, surrounded by the same textual misinformation. As the transmitted characters. 

are now binary in nature, many are unprintable. For clarity of presentation, the output 

has been formatted into hexadecimal pairs, each pair being bracketed thus [ ]. 

The pattern is: 232533 5611003 
The me/lsage is: The sun was shining on the sea 
The output is: 
[30 J [81] [ SA] [3 8] [ 4F] ( 48J [ AO J [DD] f C9 J [D6 J ( 52 J [ CE] ( 6CJ [BS J [ 91 J(DB] { 87] [B2] [80 J f 64 JI70J 
[DC) [08] f 07] (3 A J (80] {20 J ( 15 J [80 J [08] I 46 J [ 9E] ( CF] [EI] [70] f 95 J [89] [SE] [BA] [86] [ 6F] [FS] 
[DC][ IB]I04 ]I02 J[SFJf 67] [FCI[99] [EB JI 4 71[02] [D2 ]I 6AJ[ 101(84] (DB] [04 J[ 52 ]f CA ]I67Jf3 I] 
[B 1] [89] I SEJ f 02 J [80 J [ 6CJ [71 J [DC] [09] [04 J (9EJ (80 If 62] (71 J [80 J [EB J (9 7 J [ 54 J [ 4F] l 20J[B4 J 
(90)[08] (07] [9EJ [06 J [ 65] [BS J (B4 J [C9J [ 46 J ( 92} [ CF] j 20] [BOJ [DC) [OBJ [IE J [02 I( CE) [E9] [ l 5J 
[BOJ[69] [D6J[32l[C3 ][EO]l l0][801(08] [ IE] (92][02J(6A]l70 J[DDJIA91[8E]l76][D7][66]13C] 
[BO) [ 6B J [ 46 J [B6] [CF] f 20] [F5 J (84] [EB] [04] j 96 J [97J [20] (7 4] [DD J [D9J f 04] [3 A] (80] [ 6B] [FS] 
[Al] [ 6B] [D7] [B6] [SA J [48] [FS] [BO J [ 08 J [ C6 J (76 J [80] [El J (7 4] [99] [491(86) (02] (SB] [ 6E) [JC] 
[BOJI08](4Fl[02 J[OEJ[E4J[ IO] [99]129] (07J[B2Ji80JI 6A]l3 l ]195I[9B]I04 J[76](86J[EA](3I J 
[80](OB](041[9E 1(80] [EI] [F5 ){99 ]168 J[87J [B2 J[8A ][E91 ~S 1(84 ][ 59][07]{ IE]{CF] [ 68]f7C] 

Figure 4.23. 

. . . 

·._·:·:,·· ___ .·.·:.·,:1: _ _-.·_ .. · 

Textual valid data, envdoped within textual misinformation and 

subjected to the bit re-arrangement algorithm. 
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The pattern is: 2325335611003 

The message is: 0610892461879 
The output is: 
[30]f8l](OC](38)(4F][48J[AO][DDJ(C9J[D6](2E][CE][6C][B5]{9l][DBJ(OD][B2]I80)(64]l70][DCJ 
[08](07][3AJ[80][AO][l5][80][08](46][4A][CFJ[EIJ[70J[95)(89](8EJ[CA](86](6FJ[F8J[DC][IB)[04] 
[02] [SFJ[A I J [FC} (99] [EBJ [ 47] [02 J [D2] [ 6A] ( 1 CJ [84 J [ 5A] (04] [52] [CA J (67] [31 ][Bl] (98] [SE) (02] [80] 
( 6C] [71 JIAS] [D9] [04] (9E] [80] (62 J [71 J [CD] (EBJ [97] [ 54] (4F] [20] [84] (9DJ f 08] [07] [CA] [06) [65) [85] 

Figure 4.24. Numeric valid data, enveloped within textual misinformation 

and subjected to the bit re-arrangement algorithm. 

Observation of the two productions shows that the numeric valid data blends into the 

· surrounding cocoon of misinformation in similar fashion to the textual valid data. 

4.2.3.3 Timing Data 

Observations for timing of application of the scrambled method, for various message 

lengths are recorded in Figure 4.25. The times were measured using a hopping pattern 

of length thirteen, time division multiplexed across seven logical channels, within the 

bandwidth provided by one physical channel at a bit rate of ninety-six hundred bits per. 

second (b.p.s.). Each character's transmission is performed according to a protocol of 

eight data bits, one stop bit and an even parity bit and, including the time necessary for 

setting up the simulated smart~card's I/0 link, consumed t .35ms. 

Valid Message 
Length 
( characters) 
1 
8 
16 
24 

Figure 4.25. 

Method Setup Process only of Process only of Process+ 
. Time (ms) Transmitter Receiver (ms) Transmission 

(ms) {ms) 
24 6.6 0.52 17 
24 59 4,1 139 
24 103 8 262 
24 163 12 402 

Timing data obsenred for the basic method, augmented by the 
random changing of the bit order or transmitted characte.n of' 
the transmitted text. 

Note that the transmission time includes the transfer of the number of valid characters 
times the number of channels. 
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4.3 Discussion 

The three scenarios developed in the previous chapter have each been presented in 

terms of implementation, respective production of appropriate test data, and CPU 

resource requirements. The latter has been presented in terms of time and, as the 

smart-card CPU is a single-tasking non-interrupt-driven-device, with a known clock 

frequency, the time taken to perform a task is entirely representative of that task's 

CPU resource requirements. 

The timing measurements have been separated into three components for each of the 

scenarios implementations: namely, 

• the set-up processing, or pre-amble, for the session of conversation between the 

transmitter and receiver; 

• the in-transmission processing time; and 

• the transmission time. 

The processing performed during the pre-amble, i.e., generation of the hopping pattern 

and set up of the misinformation look-up database, may be considered to be a one-off 

expense per session. Conveniently, and as stated earlier, this may be accomplished, 

together with the secret communication of the hopping pattern between the 

communicating parties, when a card holder is accustomed to delays in the norma' ·•·· 

initialisation sequence of a transaction. In consequence, this processing delay may be 

judged to cause no discernible inconvenience to the card holder. 

The in-transmission processing time may be seen to have some impact upon the rate at 

which the transmitter issues each character. However, the delay has been minimised by 

. making better use of CPU time to generate the next-needed p:]eudo-random number. 

A shift register algorithm, using an appropriate polynomia1, for this has been selected 

so that the PRNG processing is divided across the CPU's idle-time while transmitting a 

character's individual data, parity and stop bits. 

The transmission time expenditure, for each of the three techniques has been 

demonstrated, using time division multiplexing of several logical channels mapped onto 
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one physical channel. As expected, such mapping deteriorates the useful bit rate of 

that channel, representing the worstMcase situation for the channel•hopping mechanism 

under development. The provision of additional physical channels will proportionately 

improve the overall data throughput of the implementation. 

In summary, it may be stated that as much as possible of the processing required by the .' 

·techniques is shifted to the pre-amble phase, so that the in-cycle processing overhead : 

may then be held at an absolute minimum. The transmitter accomplishes much of the 

work, while the receiver's task is limited to that of collecting the vaJid cha~cters from 

the appropriate channel. 

Whilst it is accepted that encryption such as that using.the Data Encryption Staricl.ard . 

. (DES) algorithm offers much higher levels of security, it also requires notably more 

processing resources. The DES implementation code given in Seberry et al. (1989, pp .. · 
. " . . 

321-336) was compiled and run using the same target system with the following 

results: 

·· • . method setup time: 474ms; 

• each DES word length (8 bytes) encrypted: 428ms; and · 

• each DES word length (8 bytes) decrypted: 428ms . 

. Using this DES implementation would require therefore, in addition to the method set. 

up, 856ms of processing time for each set of eight bytes of the valid message, plus 

11 ms transmission time. 
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4.4 · Evidence found that supports the Research Question 

The main question, restated from chapter two, is:-

.· "Can the mechanism of channel-hopping be adapted to enhance the security of date, 

transmitted between an IS0-78/6 compliant contact-based smart-card and its 

read/write machine with minimal cost to CPU resources, hardware and software?" 

Channel~hopping, when usecl in its conventional applications, relies upon a system's 

ability to intersperse, in random fashion, the valid data across severe.I channels of lesser 

bandwidth within the system's overall bandwidth. Recall, from chapter two, Torrieri's 

(1994, p. 199) description of the fundamental concepts of channel-hopping using 

carrier frequencies: 

"Frequency-hopping 1s the periodic changing of the frequency or 

frequency set associated with a transmission. A frequency-hopping signal 

may be regarded as a sequence of modulated pulses with pseudorandom · 

.carrier frequencies. The set of possible carrier frequencies is called the 

hopset. · Hopping occurs over a frequency band that includes a number of 

frequency channels." 

The ISO 7816 standard mandates that two smart-C¥d contacts are available to provide 

physical channels for I/0 to/from the card reader. The standard further suggests that 

one channel be used for serial I/0, but provides for usage of the second channel in a 

less regulated manner. 

The study demonstrates the mapping of several logical channels (the hopset) onto the 

smart-card serial 1/0 link's available physical channels. Further, the studfs 

· implementation has mapped all logical channels onto one physical link. The valid data 

is transmitted, pseudo~randomly, on one of the logical channels within the 

communications link's available bandwidth. To protect the valid data's current 

channel, suitably chosen misinformation data is co~transmitted on the other channels 

within the hopset. 
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The. ·end. result is that the valid data may be transmitted~ within· an envelope of 

· .. ···protective misinformation data. The protection afforded by this obfuscated package of 

transmitted data increases the complexity of an eavesdropper's task, enhancing.· t:he 

· .security of the transmitted data. 

.,/ 

.. -·.·· ... ' 
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4.5 Summary 

The target hardware system is selected to be representative of the type of MCU 

featured in contemporary smart-cards in widespread use, and to allow demonstration 

of the techniques developed by this project. The language used for implementation of 

those techniques, C, permits the ready adaptation of algorithmic pseudo-code to 

compilable source code. Furthermore, C is rapidly becoming the "language of choice" 

for embedded system3 development, as found by Vereen (1996, pl9), as a result of 

both better standards and improved commercially available compilers. The use of C 

increases the portability of the implementation to other MCU targets. 

The example implementations are carefully structured to: 

• demonstrate the techniques in response to the need • of each . of the scenarios . · 

identified in chapter three; and 

· • . demonstrate appropriate output using signific.ant ex~mples of valid data. 
='<':.• ~. . . 

Suitable annotated extracts from the implementations are provided, together with their 

productions of the randomly shuffled transmitted text. The components of resource 

utilisation involved in transmitting the valid text, cocooned within its protective 

rnisinfonnation, are discussed. 

Although, the study's techniques and that of DES sit at opposite ends of the spectrum 

of security for transmitted data, the execution of the DES algorithm ( compiled using 

published source code) was observed to take approximately twenty times longer to set­

up, and approximately six times longer for the encoding and decoding of each eight-' 

byte packet of data. 

Finally, based upon the demonstration incorporated in the productions of the test data,· 
' ' 

answers in the affirmative are provided to t~e research question as stated in chapter . 

two. 
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5. Conclusion 

To introduce tltis final chapter, let us first examine the raison d'etre for this study, then_ 

retrace the study' s progress. The initial task was to perfonn an examination of the 

· serial I/0 link between a smart-card and its associated read-write machine. This 

- examination revealed the ease with which the link could be monitored, without 

detection, and its data captured and removed for later examination. At the outset, the 

field of smart-cards was, and still is, relatively unknown in the Australian community. 

_ From publications, as referenced above, it was known that Australian law provides 

little protection for the privacy of data regarding the individual. Examination of 

contemporary usage of smart-cards in other countries indicated that privacy of a card-

- holder's data does not always appear to be of primary concern for the card-issuers. 

Perceiving that smart-cards will, inevitably, become commonplace in Australia., a 

- decision was made to extend the scope of the study to explore mechanisms whereby _ 

plaintext transmitted on the smart-card communications link could be shielded from a 

potential observer. Chapter one elaborates on the above concerns, gives the 

uninfonned reader an explanation of the evolution of smart-cards, and presents a. 

formal introduction to the study and its intended form. 

· In formalising the problem during chapter two, the general issues _ of_ cq_ncealing 

- transmitted data are introduc~d. Security issues are noted, relating-fri\he fo~damentai 

threats which may be enabled by leakage of infonnation from such as an insecure __ 

communications link. The notion of adapting the concepts and techniques of channel­

hopping, now in a state of maturity in the fields of military radar and communications, 

to the resource-poor smart-card MCU, is explored and a justification established for an 

adaptation of channel-hopping, known as the Randomised-Shuffle technique, to be 

pursued. Techniques of surrounding the shuffled valid text with appropriate 

Misinfonnation are developed and justified, so that they may be applied to frustrate 

further the task of an eavesdropper. 

I . __ ___. _____________________________ __. 



Chapter three describes the development of scenarios whereby the Randomised Shuffle 

. and Misinformation may be applied to protect the valid text. These scenarios are 

employed to form a framework with which to gauge the worth of the emergent ideas. 

The applicability of the co-transmitted misinformation is discussed, a design for the 

basic method is established, and an algoritlun is provided for the fundamental 

techniques of channel-hopping and application of misinfonnation. In consequence of 

the very limited nature of the smart-card,s memory, methods are developed whereby 

specific misinformation text may be re-used and disguised to reduce the repeatability of 

its appearance when transmitted with the valid data. Those enhancements deemed to 

be achievable within the smart-card MCU, s limited feature-set, together with their 

respective algorithms, are added to the scenarios with which the implementation is 

concerned. 

Factors impacting on the choice of target system and software tools are discussed, in 

chapter four, prior to a presentation of the design and eventual implementation of each 

. of the scenarios. Three scenarios are provided with implementations: namely, 

· · • the basic method1 whereby valid data is interspersed within a cocoon of supplied 

misinfonnation text; 

• the substitution method, whereby applicable consonants within the misinfonnation 

text are substituted in an endeavour to diminish repeatability of the transmitted 

data~ and 

· • the scrambled method, whereby a further hopping pattern is applied to each bit of 

every transmitted character, thus reducing repeatability. 

The productions issuing from each of the implementations are captured and displayed, · 

together with timing data for various message lengths. The impact of the three phases 

of the mechanisms upon CPU resources are discussed in context of the amount of 

physical channels available. The implementation of enhancements to improve overall 

efficiency, such as taking advantage of non-productive timing loops to perform 

pseudo-random number generation, are demonstrated. Finally, the much greater 

processing resources required to execute the DES algorithm on the same hardware is 

determined. 
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The Randomised Shuffle and Applied Misinformation mechanisms which are achieved 

represent an extension of the proven technology of channel-hopping, applied to the 

new target of a character~based serial communications link. The techniques and their 

implementations incorporate the following features: 

• each session generates and relies upon a one-time key, in order that large quantities 

of repeatable protected text may not be gathered for analysis; 

• the co-transmitted misinformation may be aligned for similarity with the valid data, 

so that where the enveloped transmitted text is deciphered, the eavesdropper must 

still select from several plausible choices; 

• ·. the majority of the processing is accomplished at a convenient time before 

transmission, so that where sufficient physical links are available for mapping of the 

logical links, the activities of neither transmitter nor legitimate receiver are 

substantially increased; 

• repeatability within the transmitted text is further diminished by application of the 

substitution or scrambled enhancements; 
: : 

• most data elements used by the implementation reside either in ROM or ~he. system 

stack, so as to minimise the intrusion intothe data space available for other· . 

applications in the target; 

. • the techniques have been implemented in . C, thereby increasing· portability to other 

target MCUs. 

Implications for future research include the addition of suitable hardware to enable 

random numbers to be derived from natural sources (e.;; . amplified noise from within 

an on-chip resistor), the development of efficient natural language generation elements · 

to produce misinformation appropriate to the type of valid text, and the technique's 

adaptation to situations where multiple processors need to communicate secretly, using 

multiple physical channels. One possible example of the last case is where multiple 

MCUs are embedded into a single smart-card to increase the card's overall processing 

P.ower. Then, the studfs techniques could serve to obfuscate the electro-magneti~ 

radiation available to an eavesdropper from inter-MCU communications. Other .· 
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· examples ·· include -· the camouflage of data across both cable-bound · and wireless 

networks, where the available bandwidth is less limited. 

.·,/ 
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6. Appendix A: Glossary of terms 
68HC05/ An eight-bit microcontroller manufactur~d by Motorola. · 

MC68HC05 

8051 An eight-bit microcontroller manufactured by Inter and other 

manufacturers e.g., Phillips and Siemens. 

Attack An actual realisation of a threat. 

b.p.s. Bits Per Second. A measure of the rate ·· of transmission of a 

communications link. 

Carrier frequency The centre frequency of a modulated transmission. ii ,. 
;; 

·.,}.: 

Channel-hopping The periodic changing of the channel assopiated with a 

communications link or conversation. i!/ 
., 

.if 
Cipher "The method, technique or algorithm used to rend!~r the plain-text 

. ;; 

unintelligible." (Longley, Dawson & Caelli, 1994). 
':[ 
\; . 

i!. 
•I 

" 
Cipher-text The result of the application of the cipher to the plain-text, ie the 

\\ ·. 

unintelligible or scrambled form of the message (Lohgley, Dawson 
. ·. '.l . 

& Caelli, 1994). 
;i, 

(: 

·::,. 
,.. 
F 

Comment (in C Comments may be entered in C code;··, in two forms:. ejther prefixed 
!I . . ·1! 

code)· by two slashes (i.e., //) where the corrifnent does not exbeed a single 
'·.'·. ' ' ,. \', 

line; and prefixed and suffixed with a .. ,. • f' pai:r where the 

comment extends further than one line. 
.'i. 

CPU Central Processing Unit, being the part of a computer where logical 

and arithmetic instructions are performed and address and 

instruction decoding takes place. 

Cryptanalysis The methods used to break a cipher system and/ or forge coded 

signals so that they will be accepted as authentic (Longley, Dawson 

& Caelli, 1994), 

86 



Cryptographic Some additional secret information used in conjunction with the 

key cipher algorithm to perform the cryptographic process (Longley, 

Dawson & Caelli, 1994). 

Cryptography The methods used to ensure the secrecy and/or authenticity of 

messages (Longley, Dawson & Caelli, 1994). 

Cryptology The science and art of secret communications (Longley, Dawson & 

Caelli, 1994). 

DEA/DES An algorithm for encrypting/decrypting 64 bits of data using a 56 bit 

(plus 8 parity bits) key. Although originally intended for u~.e in 

protecting unclassified but sensitive US Government information, 

the algorithm is now widely used in commercial applications 

(abridged from Jackson & Hruska, 1992). 

Decryption/ The process of converting the unintelligible message (the cipher-

Decipherment text) back to its intelligible form (the plain-text) (Longley, Dawson 

& Caelli, 1994). 

EM/RF Information is extracted from Radio Frequency or Electro-Magnetic 

interception emanations from electrical/electronic equipment. 

Encryption/ The process of convertir.g the intelligible message (the plain-text) to 

Encipherment an unintelligible form (the cipher-text) (Longley, Dawson & Caelli, 

1994). 

Frequency Number of repetitions in a given time, typically measured in Hertz or 

cycles per second. 

Frequency- The periodic changing of the carrier frequency associated with a 

hopping transmission channel. 

Full-duplex Describes a communications link where data may travel in both 

directions at once. 

HS An eight-bit microcontroUer manufactured by Hitachi. 

Half-duplex Describes a communications link where data may. travel in either 

direction, but not simultaneously. 
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Integrated An electronic device containing logic gates or signal processing 

Circuit/ IC/ Chip circuitry, all contained in one plastic packag~. 

Jamming Is achieved by transmitting electromagnetic energy to influence the 

field strength of another's communications transmissions. 

Lexeme SmaJI syntactic units forming the lowest level units of a given 

language. 

Logical Access The use of procedures related to control of access to information 

Control and knowledge rather than physical security (summarised from 

Longley & Shain, 1988, p. 202). 

MC68HC11 

MCU 

Multiplexer 

PCI 

Phone~e 

PIN 

. _. _. ··. _. ·: ...... --··· 

An eight-bit microcontroller manufactured by Motorola. 

Micro Controller Unit. An alias for microcontroller. MCUs, in 

general, contain' all of the essential features that comprise a self­

contained microcomputer. These are: CPU, Memory (RAM & 

ROM), control signal circuitry, oscillator circuitry, reset signal 

conditioning, and Input/Output circuitry. 

A switching mechanism which manages the sharing of 

communications channels by conversations. In Frequency Division 

Multiplexing (FDM), the available frequency spectrum is divided 

among discrete logical channels with each carrying a conversation, 

whilst in Time Division Multiplexing (TOM) each conversation 

carrying channel takes its tum, in accessing a shared physical link(s), 

in Round-Robin, interleaved style. 

protocol control information governing the communication between 

entities. 

A unit of significant sound in a given language. Phonemes are 

constructed from phones, each of which is a simple vowel or 

consonant sound. 

Personal Identification Number. 

88 



Plain-text The original, understandable message (Longley, Dawson & Caelli, 

1994). 

Risk A measure of cost of a realised vulnerability that incorporates the 

probability of a successful attack. 

RSA A pubHc key cryptosystem scheme, devised and described by Rivest, 

Shamir & Adleman (1978). 

Safeguanl Controls or mechanisms to protect assets from threats. 

Secure channel A pathway between the sender and the receiver of a message that -

may be guaranteed to be safe, ie. free from any iJlicit observation or 

modification of messages canied on it by any third party (Longley, 

Dawson & Caelli, 1994). 

Security: "A system is secure if it adequately protects information that it 

a Deflnition _ processes against unauthorised disclosure, unauthorised 

modification, and unauthorised withholding: .. We say adequately 

because no practical system can achieve these goals without 

qualification; security is inherently relative." (Landwehr, Heitmeyer 

& Mclean, 1984). 

SVC Stored Value Cards 

Swipe Card "A plastic card with a narrow magnetic stripe that may be employed 
.. 

for access control or authority to initiate a transaction" (Longley 

and Shain, 1989, p. 206). 

TDM Time Division Multiplexing: see Multiplexer. 

Threat A person, thing, event or idea which poses some danger to _ an asset· 

in terms of that asset's confider1tiality, integrity or availability for 

legitimate use. 

Visa A global credit and banking organisation. 

Vulnerability Weakness or absence ofa safeguard. ·· 
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7. Appendix Bl: Source Code Listing:- C code. 

//Program Name 
II 

: SHUFFLE.C 

: Michael Collins //Author 
II 
//Purpose 
JI 

: ImplelT!.ents Randomised Shuffle & Misinfonnation Techniques 
: as developed for M.Sc. Thesis. Completed July 1997 

II 
//Last Update 
II 

: 27 July 1997 

//Reason: General Documentation 
II 

#include <stdlib.h> 
#include <string. h> 
#include <ctype.h> 

#define byte unsigned char 

//Memory mapped 1/0 to assist in timing measurements 
//Port A data register 
unsigned char PORT_A @ OxlOOO; 
//Port A control register-
unsigned char PORT_A_CONTROL @Oxl026; 

#define INDICATOR_BIT Oxfb 
#define SETUP _INDICATOR (PORT _A_ CONIROL l"" Oxff) 
#define SET_lNDICATOR (PORT_A i"" INDICATOR_BIT) 
#define RESET_INDICATOR (PORT_A &= -INDICATOR_BIT) 

//if this is defined, includes program sections for 
//displaying introduction messages 
1/#define PRINT _INfRODUCTION 1 

#define new_ line "\xd\xa11 

//comment out all but one or the next group 
#define RANDOM_SHUFFLE_MODE I 
//#define RANDOM_SHUFFLE_NUMERIC_DATA_MODE 1 
//#define SWAP _CONSONANTS_MODE 1 
//#define BIT _SHUFFLE_MODE l 

t•ourvalid message*/ 
char •message = . - _ _ 
"The sun was shining on the sea, shining with all his might: he did his very best to make the billows 
smooth and bright and this was odd, because it was the middle of the night. 11 ; . · 

!•the textual Misinformation in which the valid text is hidden•/ 
char •misinfo I "' 11Twas brillig and the slithy tovcs did gyre and gimble in lhe wabe: · Al] mimsy were 
the borogoves and the mome raths outgrabc "~ 
char •misinfo2 = "Beware the Jabberwock, my son! Tile jaws that bite, the claws that catch! Beware 
the Jubjob bird, and shun The frumious Bandersnatchf "; 
char •misinfoJ = "He took his vorpal sword in hand: Long time the manxome foe he sought, so rested 
by the Tumtum tree, And stood awhile in thought. 11 ; · · 
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char •misinfo4 = 11 And as in offish thought he etood, The Jabberwock, with eyes of flame came 
whiffing through the tulgey wood, and brubled as it camel 1'; 

char •misiruo5 "' "One, two! One, two! And through and through, the vorpal blade went snicker 
snack! He left it dead, and with its head, he went galumping back 11 ; 

char •misiruo6 == 11 And hast thou slain the Jabbetwock? Come to my anns, my beamish boy! 0 
frabjous day! Calloohl Callay! He chonled in his joy. \ · 

/•these consonants are easily swapped*/ 
· .. char •interchangeable_consonants = "bcdfghjklnmprstvz11 ~ 

static byte consonants_length; 

//the multiplexed channel details 
#define MAX_CHANNEL 7 
char •nusinfo_channels[MAX_CHANNELHl]; /• pointers to misinfo string~ •J 
byte misinfo_Ien(MAX_CHANNEL~I];/*pre-calculated strlen of each misinfo s~/ 
byte misinfo_pos[MAX_CHANNEL-1]; /*holding the current position of next char 

to be accessed in this string•/ 

//hopping pattern details 
Hdefin~ MAX_PATIERN 13 
byte hopping_pattern{MAX_PA ITERN]; 

, ........................ . 
function prototypes 

*·························, · //these are contained in async assembler interface moduie 
//for transmission of chars. · · 
extern scasynchvmte( byte the_char); 
extern scasynchinit(void); 
//interface to shift-register random number ganerator 
extern myrand_init(void); 
extern void myrand(void); 
extern int ncxt_rand; 

//reference the assembler code to put characters 
// n.b. x (a byte) is passed in ACC B register 
#define put(x) (scasynchwrite(x)) 

/•function prototypes contained in Uiis module•/ 
byte get_next_misinfo _char(void); 
void init_pattcms(void); 
void put_hex( byte the_byte); 
void put_string(cl,ar *U1e_message); 
void put_combined_message( char •the_valid_message)~ 

#if def BIT _SHUFFLE_ MODE 
byte re_arrange_bils_of( byte original_char); 
#endif 

char next_char_from(int misinfo_selected); 

#ifdef SW AP _CONSONANTS_MODE 
char swap_consonant(char the_char); 
#endif; 
/•these replace some <ctype.h> functions 

reducing the size of compiled code•/ 
#define LOWER_BOTIOM (Ox60) //('a' - 1) 
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#define LOWER_TOP (Ox7b) //('z' + 1) 
#define UPPER_BO'ITOM (Ox40) //('A' - 1) 
#define UPPER_TOP (Ox5b) //('Z' + 1) 
#define is_upper(x) ((x > UPPER_BOITOM} &.& (x < UPPER_TOP)) •. 
#define is_lower(x) ((x > LOWER_BOTTOM) && (x < LOWER_TOP)) 

, ••...•.....•....•• 
enuy to C program ••...•....••..•.... , 
void mainO 
{ 
//initialise serial port 
scasynchinitO; 
//initialise shift_register PRNG. 
myrand_initO; -
myrandQ; 

SETUP _INDICATOR; 

!•initialise misinfo into easily addressable matrix•i · · 
misinfo_channels[O]"' misinfol; · · 
misinfo_channels[l] = misinfo2; 
misinfo_channels[2) = misinfo3; 
misinfo_channeislJ} = misinfo4; 
misinfo_ channels( 4] "" misinfo5~ 
misinfo_channels[5} = misinfo6; 

#if( PRINT _INTRODUCTION ) 
put_string("The pattern is: "); 

#endif 
//set up hopping patterns 
init .J)attemsQ; 

#if( PRINT_IN1RODUCTION) 
put_string{ new_line); 
put_slring("The message is: 11); 

put_string( message); put_string( new_line); 
put_string("The output is:"); 

#endif 

SET_INDICATOR; 
put_combined_message{ message); 

RESET _INDICATOR; 

#if{ PRINT_IN1RODUCTION). 
put_string( new_line); 

#endif 

while(l) 
;/* loop forever, effectively halting program•/ 

}/•main•/ 

"-·------------------
//Sub-Program 
//purpose 
II 
//return 

:init.J)attems 
:initialises pseudo-random pattern for channel 
:hopping to utilise. · 
:void 
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//parameters 
oi /side-effects 
)I 

:none · . 
:Global .Variables: patteniO; misinfo_posD; · 

. void init_pattemsO 
{. ·,, 

byte ij;· 

. for (i=O; f < (MAX_CHANNEL-1); i++} 
. { nusinfo_posf i] "" O; 

misinfo_len[i] = strlen(misinfo_channels(i]); 
} . 

consonants_length = strlen(interchangeable_consonants); . 

/•initiaJise pattern of transmission•/ 
for(i=O; i <MAX_PATI'ERN; i++) 
{ j = i'andQ % MAX_C9ANNEL; 

hopping_pattern[i) = j; 

· #if( PRINT_INI'RODUCTION) 
· put(j+'01); . 

#endif 

}//if 
.r·:.-. 

II 

t) ·:~ .· .. 

..... 

------------------j /Sub MP ro gram 
llpwpose 
II . . . 

/I 
II 
II· 
1/retlim 
}/parameters 
· 11side.;effects 
II 

: put_hex 
: for testing/debugging: 
: enables program to output, 
: via the serial port 1/0 link, 
: formatted bytes in hex (base 16); 
: enclosed within[] braces. 
: none 
: lhe_char to be transmitted 
: none 

.. void.put_hex{ byte lhc_byte) 
·{.. .. . 

.. byte i, temp; . 

P.Ut( 1( 1); . ·. . . ' 

ror(i == o; i < 2; i++) 
{lf{ i ~;,;, 0) . . . 

. temp= (the_byte & OxID) lOxlQ;//upper nybble · 
\cl~ . . .. 
. <te.!DP =:= (lhe_byte & OxOf);//low~r.nybble. 

'-. .. - .. ·=. .. 

. if{temp < 10) · 
. plit(temp + '01);//offset to make into [0.,9) . • 
else . . . . . ; · . · .. 
. put(temp + S5); //offs~t to make into (A .• F} . 

}//for 

.. p~i( ']'); . 

··· .. ·:;) .. 

.·. (~ .. 

: .. : .. ··_.· 
.-~-·-. 

. ·.o 

.. ''.'(:, 

i. 
.i t 

·-=· 

. :: ._ ..... : 
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} 

II 
_ //Sub-Program -- : jJUt_string 
· , //pwpose : for testing/debugging __ _ 
· · II : sends a null terminated C-string to the seriBl 
// : port uo link 
II 
//return 
//parameters 
//side-effects 
II 

: none 
: the message to be sent 
: none 

void put_slring{cbar •lhe_message) 
{ 
while( •the_message) /•onl}' put characters which are not null(terminator)*/ 
{ puWthe_message); · 
the_message++; /•move on to the next character•/ 

} ' 

} 

byte channels_already_used[MAX_CHANNEL-1]; 
ll . . -

//Sub-Program 
//purpose 
·l/ 
//return 
//parameters 
//side-effects 
II_ 
II 
II 
ll 
II_ 

: get_next_misinfo_char 
: gets next character from randomly selected 
: misinformation string. · 
: the next misinformation char ( typed to byte) 
: none _ _ 
: The array 'channels_already_used[J' has the appropriate entry updated, 
: signifying which · 
: misinfonnation strings have already been used 
: during the current cycle of transmitting an 
: enveloped valid character. 

byte get.:_next_misinfo_char() 
' { ._ 

byte misinfo_selected = neirt_rand % (MAX_CHANNEL-i); .. 

//make sure all channels have a chance: 
//if the initial random selection has already been used ._ 
//lhen select the next one available 
while( channels_already_uscd[misinfo_selected)) 
{ misinfo_selected += l; · 

if (misinfo _selected >= (MAX_ CHANNEL~ 1)) · 
misinfo_selected"" O; 

}//while 

//mark this channel as having been used in this cycle 
channels_already_used[misinfo_selected] = 1; 

return (next_ char_ from( misinfo_selected)); 

// _________________ _ 
//Sub~J>rogra.m 
//purpose -

: put_combined_message 
: sends the valid char, together with its 
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II 
II 

: surrounding mis-information characters 
: out of the serial port 1/0 link 
: none //return 

//parameters 
//sic:!i:-effects 
II . 

: the_valid_me.ssage: points to start of valid message 
: none 

void put_combined_ message( char •the_ valid_ message) 
{ 
byte this_hopping_pattem = 0, 

current_char, 
this_ channel, 
the_length "" slrlen(tbe_ valid_message); 

//for (each character in the valid message) loop 
for ( current_char=O; currcnt_char < the_length; current_char++) 
{ . 

memset( channels_already_used, 0, MAX_CHANNEL-1)~ 

// for (each channel) loop ... 
for (lhis_channel=O; this_ cha1U1el <MAX_ CHANNEL; this_channel ++) 
{ 
//if(this_channel = this hopping pattern) then ... 
if (this_channel ""= hopping_pattem[this_hopping_pattem]) 
{ //transmit next character from valid message 

//compile this variation when running the basic scenario · 
#ifdefRANDOM_SHUFFLE_MODE 

put(the_valid_message{current_charJ); 
#endif 

//compile this variation when running the swap-consonants mode 
#ifdef SWAP_CONSONANTS_MODE 

put(the _valid_ message[ current_ char]); 
#endif 

#ifdefBIT_SHUFFLE_MODE 
put( re_arrange_bits_of( the_valid_message[current_char])); · 

// use next line to display output 
// put_hex( re_arrange_bit.i;_of( the_valid_message!currcnt_char]))~ 
#end.if 

} 
else 
{ //transmit next character from randomly selected misinfonnation string 

#ifdef'RANDOM_SHUFFLE_MODE 
put( get_next_misinfo_char( )); 

#endif 

#ifdef SWAP_CONSONANTS_MODE 
//iJ it is a consonant, randomly swap it with another consonant. 
//Lransmit resu]tant character 
put( swap_consonant( 
get_ncxt_misinfo_char( ))); 

#endif 

#ifdefBIT_SHUFFLE_MODE 
put( re_arrange_bits_of( get_next_misinfo_charQ)); 
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., 
II put_hex( re_arrange_bils_of(get_next_ntisirifo_charQ)); 
-~~ . 

. }//if 
}//for 

. //advance hopping pattern in a cyclic fashion 
if(++this_hrippiog_pattem >= MAX_PATIERN) . 

. · this_hopping_pattem = O; 
· .. ·.· }//for 

}: 

I/ . . 
//Sub-Program . 

. //purpose · 
. II . . 

II 
II 

· //return 
. //parameters 

II 
II . 
. I/side-effects 
II 
II 

: next_char_from 
: gels the next mis-information character to 
: be transmitted, selected from the available 
: misinfonnation strings 

: next mis-infonnation character 
: misinfo_selected (in mode): identifies the 
: misinfonnation string from which the char 
: · is to be taken 
: updates misinfo_posU, a record of the last 
: char used from each misinfonnation string . 

char next_chai-_from(int misinfo_selectcd) 
.{· 

char next_misinfo_char; 
int index; 

//relrieve position of the next available character's position from tllis channel 
index= misinfo_pos[misinfo_selectedJ; ·· · 

//obtain the character indexed by this position 
next_misinfo_char = misinfo_channels[misinfo_sclectedJ[index]; · 

//record next available position for similar 
index+=l~ 
//applying bounds so as not to index outside the misinfo string • 
if (index>= misinfo_len[misinfo_selccted]) · · · · · 

} 

{ index= O; 
}//if 

//record this updated index 
niisinfo_pos[misinfo_seleclcd] = index; 

return next_misinfo _ char; 

II · 
.. //Sub-Program : re_armnge_bils_of 

• .. //purpose : re-arranges the bits oforiginal_char 
II 

. //return 
II 
//parameters 

: the re-arranged char 

: char original_char: the char to be re-arranged 
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//side-effects : none 
II 
#ifdefBIT _SHUFFLE_MODE 
//get the bit patterns 
#include "bit_patt.h11 

//in least significant (first char) 
//to most significant bit(last char) order 

byte bit_equivalents[]={ l,2,4,8,16,32,64,128}; 

byte re_arrange_bits_of( byte original_char) 
{ 
byte re_arranged_char = 0, 

current_bit; 
static char current_pattem = 0~ 

//for (each bit in the char) loop 
for( current_bit = O; current_bit < 8; current_bit++) 
{ //if( current_bit is set) lhen ... 
if{ original_char & bit_equivaJents(current_bit]) 
{ //set its substituted bit in the re-arranged char 
re_arranged_char I= patterns[current_pattern}; 

}//if 

//advance this shuffle pattern 
. current_pattem+=I; 
}//for 

//placing bounds on the cycle of shuffle pattern 
//to keep the advance in cyclic fashion 
if( current_pattem >= TOTAL_PATI'ERNS) 
{ current_pattem = O; 
}//if 

return re_arranged_char; 
}. 
#endif 

: swap_ consonant //SulrProgram . 
//purpose 
ll 

: if the_char passed in is a (swappable) 
: consonant, randomly chooses a 

If 
//retum 

: consonant wilh which it is swapped 
: if able to swap the_char, returns 

/l' : the substitute consonant; else 
fl ; returns the_char 
//parameters 
II 

: lhe_char (in mode): a candidate character 
: for swapping with another consonant 

//side-effects : none 
If 
#ifdef SW AP_ CONSONANTS_MODE 
char swap_consonant(char lhe_char) 
{ 
char temp = tolower( the_char), 

+index = interchangeable_consonants; 

while("'index) 
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{ ·if( •index= temp) 
• · {temp= interchangeable_consonants[next_rand % consonants_length]; i .·. ·. 

· return (is_upper(the_char)? toupper(temp) : temp); · 
} . . 

else .. 
{ 
index++; 

. }//if 
}//while 

return the_char; 
} 
#endif. · · 

(J-"· 

9g· I 



8 . . Appendix B2: Source Code: Assembly code for PRNG .. 

;thls code fragment demonstrates the bit-shift PRNG, optimised from Scheier's original C,;code for .. •.·· 
use with the 68HC11 MPU. · · 

parity_table 
fcb 0, 128,128,0, I 28,0,0, 128, l 28,0, 0, 128,0, 128, 128,0 
fcb 128,0,0,128,0, 128,128,0,0, 128, 128,0, 128,0,0, 128 
fcb 128,0,0, 128,0, 128,128,0,0, 128, 128,0, 128,0,0, 128 
fcb 0, 128, 128,0, 128,0,0, 128, 128,0,0,128,0, 128, 128,0 
fcb 128,0,0,128,0, 128, 128,0,0,128, 12 8,0,128, 0,0, 128 
fcb 0,128,128,0 ,128,0,0,128,128 ,0 ,0, 128,0, 128, 128,0 
fcb 0, 128, 128,0, 128,0,0, l 2 8, 128,0,0, 128,0, 128, J 28,0 
fcb 128,0,0, 128,0, 128, 128,0,0, 128, 128,0, 128,0,o, 128 

... - -

ldab r_sl 
· · andb #%01010111 

ldaa r_s4 

bpi no_ hibit 
. orab #o/oOOOOlOOO 

no_hibit 

ldx #parity.:_tab1c 
ab~ · 

· Ism .. 
oraa 0,x 
staa r_s4 

• ror r_s3 ', 
roi r_s2 
ror r_sl' 

rol resl 
rol res2 

·: rol res3 . 
rolres4 . 

. ,· . . . 

;get lowest byte 
;isolate lowest byte's polynomial bits 
;get highest byte 
; after this load the CCR (Flag register) has: 

- N bit is complement of Ace A MSB 
· - Z bit set if Ace A are all reset 

;test the N bit in CCR 
;set bit3 if highest byte msbit is set 

this diminishes the size of parity 
; look up table to 128 bytes c.f 256 
; if we used lhe msbi t 

;prepare to get the parity bit 
;from the parity look-up table 
~get table start 
;add offset into parity-table 

;now the 4 byte shift for random seed update 

~first the highest byte 
;or with parity of latest bit for insertion . · 

· ;and save this · · . . : . . . 
;rotate remainder in memory thru'_ carry flag 

before finally collecting next rand.om ' 
; bit lo be · 

returned fiom this iteration 
;first into the low byte 

· ;then on into the next higher byte· 
;ditto 
;into most significant byte 
; note tl1at resl is aliased to next_rand in the C. program . 
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