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1BAbstract 

 

Biodiversity conservation throughout the world is challenged by the impacts of a 

changing climate on fragmented landscapes. To mitigate these threats, conservation 

managers require models which can demonstrate the consequences of both negative 

impacts and management actions.  This need can be addressed through spatial modelling 

applications. Unfortunately, throughout much of the world, spatial modelling is forgone, 

being seen as requiring skills and resources beyond the means of many conservation 

planners and managers. This thesis seeks to address this dilemma by delivering criteria 

for a successful modelling application and by providing case studies which demonstrate 

how appropriate modelling can be undertaken without highly specialised skills or 

prohibitively expensive software and equipment. In this way it facilitates the delivery of 

better targeted and, consequently more effective, management actions.                        

For my case studies I have used the south-western corner of Australia as a demonstration 

landscape. This region is recognised internationally as a “biodiversity hotspot,” not only 

for the biological richness and uniqueness of species but also for the level of threat to 

which they are subject. Like many landscapes throughout the world, much or this region’s 

natural biota exists in fragmented, fragile and degraded patches and is therefore highly 

vulnerable to the anticipated impacts of anthropogenic global warming. 

In this thesis I have: 1) examined the principles of spatial modelling and reviewed how 

spatial modelling has been applied to conservation management in this region, 2) 

conducted examples of different forms of spatial modelling using actual regional 

conservation management issues, and 3) demonstrated how these examples can be 

incorporated into conservation management planning.  

My key findings are: 

 Spatial modelling provides users with an opportunity to effectively test 

hypotheses, thereby informing the planning process and improving conservation 

outcomes. Where spatial modelling is omitted from the process, knowledge gaps 

are often addressed by the axiomatic and by assumption. This is contrary to the 

principles of effective adaptive management. 
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 Modelling tools are inherently more effective when selected for their capacity to 

meet a planning objective rather than where projects are tailored to meet a 

model’s capacity.  

 The coordinated use of multiple tools can often provide a more robust 

understanding of the consequences impacts and mitigating actions. 

 All tools and data sets used should be utilised with a clear and acknowledged 

understanding of their suitability, strengths and limitations. 

 A wide range of spatial modelling tools (and data sets) are freely and readily 

available to conservation managers. Most of these come with excellent tutorials 

and support services. 

 Data gaps can often be addressed through targeted field observations, obtained 

through complimentary planning processes, or synthesised from accessible data 

sets. 

 There is a very large body of peer reviewed literature demonstrating means by 

which others have applied existing modelling tools, or developed tools 

themselves, to meet a wide range of applications. Accessing this literature is an 

excellent means of building spatial modelling capacity. 

 New and improved tools, methodologies and data sets are constantly being 

developed. 

 A failure to implement effective spatial modelling is becoming increasing difficult 

to justify. 
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3BCaveat 

 

It should be noted that this research project was undertaken within the context of a single 

landscape. Every landscape has a unique composition of pressures, biotic and abiotic 

components. Therefore, the specific findings of this research may not be directly 

transferable to other landscapes. However, through this project, it is my intention to 

demonstrate the application of a set of globally relevant general principles by which 

spatial modelling can be made a more effective tool for the management of biodiversity. 
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 General introduction 1

 

1.1 16BIntroduction 

Throughout the world conservation managers
1
 have had to grapple with the impacts of 

global warming in the context of fragmented landscapes (Pearson & Dawson 2005; 

Fischer & Lindenmayer 2007; Benito et al. 2009; Yates et al. 2010b; Milad et al. 2011). 

Increasingly they have relied on spatial modelling techniques as a practical, affordable 

and cost effective means of developing effective management actions to ameliorate 

existing impacts and/or mitigate threatening processes (Gritti et al. 2006; Yates et al. 

2010a; Adams-Hosking et al. 2011; Lawson et al. 2012). Spatial models enable this 

because they can be used to identify the potential impact of threatening processes and the 

efficacy of management actions (Ferrier & Guisan 2006). However, the effective use of 

spatial models relies on the selection of a model, or suite of models, appropriate for a 

given application and that these models are used in conjunction with the best available 

data and an understanding of the model’s limitations and assumptions (Moore & Swihart 

2005; Gontier et al. 2010). 

In conservation management there is often a tendency for planning methodologies and 

tools to focus on the setting of outputs (management actions) and their post-

implementation evaluation (TNC 2007).  

My test landscape, south-western Australia, is internationally recognised as a biodiversity 

hotspot not only for the diversity and uniqueness of its biota but also for the high level of 

threat faced by biota (Myers et al. 2000; Hopper & Gioia 2004). Threatening processes 

include a high level of landscape fragmentation and a rapidly changing climate 

(Environmental Protection Authority 2007). To date, in south-western Australia, project 

outputs have largely been set by assumptions based on a combination of experience and 

                                                 
1
 For the purposes of this document the term conservation manager refers to those people who are vested 

with, or assume, the responsibility of developing and/or implementing on ground projects or planning 

initiatives with the intention of conserving, protecting, enhancing or re-establishing populations or 

assemblages of native biota and the abiotic resources upon which they rely. These people may be private 

individuals, representatives of government or non-government organisations, or participants in relevant 

interest or community groups. 
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intuition (Lindenmayer et al. 2008).  In appraising a situation intuitively, it is easy to 

assume that the immediate and most visible threat is the threat that should be addressed 

and that the delivery of outputs, selected intuitively or because they are the usual, or 

historical, response will deliver actions capable of achieving project objectives (Albert et 

al. 1998; Rodrigues & Brooks 2007; Hodgson et al. 2009). In this way, assumptions 

applied to conservation management projects through complex and apparently 

comprehensive planning tools can provide a potentially misleading appearance of rigour 

(TNC 2007; Beger et al. 2010; Vasconcelos et al. 2012). Consequently, planning tools are 

often used without the benefit of appropriate modelling.  

In this study I have examined how spatial modelling has been applied to the fragmented 

landscapes of south-western Australia and demonstrated means by which it can be made 

more effective. To that end, I have:  

1. Examined spatial modelling principles and reviewed how spatial modelling 

has, to date, been applied to conservation management in this region.  

2. Conducted examples of different forms of spatial modelling using actual 

regional conservation management issues.  

3. Demonstrated how these examples can be incorporated into conservation 

management planning processes. 

In light of the above discussion I have demonstrated ways by which spatial modelling 

tools can be made more relevant and effective in conservation management within the 

context of the fragmented landscapes of south-western Australia. It was the objective of 

this research project to examine the principles of spatial modelling by investigating the 

landscape requirements of a group of endemic species and finding ways to map, or 

predict, these requirements. I have examined the strengths and limitations of current 

spatial modelling tools and investigated ways in which spatial modelling can be applied, 

or made more effective, in meeting the requirements of the region’s unique landscapes 

and species.  
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1.2 17BResearch overview 

This research has been undertaken in seven components: an introduction; four papers (for 

future publication), each of which are designed to provide a different perspective on 

spatial modelling applications; a demonstration exercise by which the finding of these 

four studies can be applied to the conservation of a species facing the dual threats of 

climate change and landscape fragmentation, and a discussion of the findings of this 

research. These are described in the following chapters: 

1. Introduction: (this section). A review of the observations and hypotheses that 

lead to this research, the objectives of this research and the methodologies 

chosen. 

2. Spatial modelling, a review of a methodology and its applications: Five 

forms of spatial modelling used in this region to date have been: realistic GIS 

modelling, focal species, proximity analysis, Marxan® and Conservation 

Action Planning (a decision support matrix often used as a substitute to spatial 

modelling). In this paper we develop a set of criteria for effective spatial 

modelling and then evaluate the five spatial modelling techniques using these 

criteria. 

The criteria used in evaluating spatial modelling tools are: 1) capacity to 

quantify barriers to movement; 2) capacity to quantify habitat; 3) capacity to 

accurately predict target responses; 4) capacity to demonstrate how change will 

happen over differing time frames; 5) effectiveness of the tool within a 

project’s data limitations; 6) ease to which outputs are understood; 7) utility of 

the tool within a project’s skill limitations; and 8) efficacy within a project’s 

resource limitations. 

Reviewed methodologies focus on distance thresholds as a barrier to movement 

between patches of suitable habitat. These assumptions are often misleading 

because both habitat and barriers to movement differ for different species and 

thresholds are binary by nature, whereas in reality habitat and barriers to 

movement are viewed as probabilistic responses to predictive variables. 
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3. Quantifying habitat value using existing survey data: In the highly 

fragmented landscapes of south-western Australia conservation managers often 

simply consider patches of remnant vegetation to be habitat. In doing so they 

make a broad assumption which, although potentially valid for some 

management applications, fails to answer two major questions pertinent to 

conservation management: firstly, what species and communities is a site 

habitat for; and secondly, how can we quantify the habitat value of this area?  

Biodiversity management in south-western Australia has long been hampered 

by significant knowledge gaps and quantifying habitat values usually involves 

undertaking comprehensive research which is beyond the capacity and 

resources of many project managers. Under these circumstances assumption 

becomes the main, and often only, means of informing conservation 

management initiatives. In this chapter I demonstrate means and methodologies 

by which habitat value can be identified and quantified using readily available 

data.  

The objective of this exercise is to demonstrate the construction of a statistical 

tool which can identify and quantify the habitat values of patches of eucalypt 

woodland in the vicinity of the Augusta-Margaret River Shire in south-western 

Australia. The purpose of this exercise is to enable local conservation managers 

to identify and quantify habitat by determining how the probability of presence 

or absence of target species changes in response to landscape parameters and 

management regimes. This will enable regional conservation managers to 

quantify, model, and therefore demonstrate how target species will respond to 

foreseeable impacts and management actions.  

To do this, bird survey data for the target landscape has been sourced from the 

Birdlife Australia Atlas Database. A suite of indicator species (Caro 2010) 

were selected as surrogates to indicate a habitat value. These species were 

selected because they were sedentary, local bird species which are known to be 

reliant on good quality eucalypt woodland: i.e. areas within which the canopy, 

structure and species diversity of these floristic assemblages are largely 

undisturbed by anthropogenic impacts, and because they were recorded in 
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numbers large enough to demonstrate a distribution representative, in response 

to these variables, of the greater population (i.e. n >30) (Caro 2010; Phillips & 

Dudik 2008). Presence and absence of these species was then compared to a 

number of landscape parameters in a GIS environment and set of landscape 

parameters which could be effectively measured within the limitations of 

available GIS databases (and which directly affected the probability of 

presence for all of the indicator species) was determined. These parameters 

were area of the nearest neighbouring patch, amount of remnant vegetation in a 

1 kilometer radius of the survey site, amount of remnant vegetation in a 5 

kilometer radius of the survey site, and the vesting of that survey site. These 

parameters were calculated for all relevant survey sites in a given sample and 

multivariate regressions were undertaken to produce a series of coefficients 

which were used to produce modelling tools for all of the target species 

(Appendix chapter 3). Of the species tested, only those species which could be 

modelled with an acceptable level of accuracy were chosen for use in 

conservation management applications. 

4. Informing species management in a fragmented landscape; a case study of 

the koomal (Trichosurus vulpecula hypoleucus): Climate change is predicted 

to have a major impact on south-western Australia. With this looming scenario, 

the persistence of many species will rely on their ability to survive in, and 

migrate through, fragmented landscapes. The purpose of this study was to 

investigate the ecology of a sub-species of the common brushtail possum 

within the context of a fragmented landscape, thereby enabling the 

development of more informed and effective conservation management 

strategies for this species in a changing climate scenario. 

The koomal is a geographically isolated sub-species of the common brushtail 

possum, endemic to south-western Australia. Since European settlement in this 

region this sub-species has undergone a significant reduction in range and 

population size (Jones 2004). It is currently listed as “Lower Risk” (near 

threatened).  
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A year-long trapping and radio tracking exercise was undertaken on four 

adjoining properties in the Margaret River region of south-western Australia. 

Trapped areas comprised 11 habitat patches ranging in size from 1.3 to 28.4ha, 

producing a total study area of 100.4ha in a landscape with 41% remnant 

vegetation cover. Field work comprised one thousand eight hundred and 

seventy two trap nights over thirty six sites and weekly tracking of eleven 

individuals over periods ranging from several weeks to the full study period. 

5. Species distribution modelling using bioclimatic variables to determine the 

impacts of a changing climate on the western ringtail possum 

(Pseudocheirus occidentals): The ngwayir (pronounced “n-wa-ear”) or 

western ringtail possum is a highly arboreal species endemic to south-western 

Australia (de Tores 2008). The range and population of this species have both 

been significantly reduced through anthropogenic impacts including habitat 

loss, changed fire regimes and introduced predators. Consequently, this species 

is now classified as Vulnerable by the International Union for the Conservation 

of Nature (IUCN). The ngwayir is highly susceptible to extremes of 

temperature and reduced water intake (Jones 2004).  

The potential distribution of ngwayir was determined using three different 

species distribution models which used ngwayir presence records and related 

these to a set of nineteen bioclimatic variables derived from historical climate 

data. Each of these distribution models was then overlaid with three 2050 

scenarios.  

MaxEnt was used to identify core habitat and to demonstrate how this habitat 

may be impacted. A supplementary modelling exercise was also conducted to 

ascertain potential impacts on tree species upon which, according to the 

literature, ngwayir are reliant for habitat.  

6. Incorporating the outcomes of fieldwork into species distribution and 

climate change modelling on the koomal (Trichosurus vulpecula 

hypoleucus). This chapter demonstrates a means by which taxon specific 

observations, gathered through fieldwork, can be used to add resolution and 

robustness to spatial distribution models (SDMs) in defining potential 
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distribution (PD). This chapter demonstrates a means by which the work 

undertaken in previous chapters can be synthesised to inform conservation 

planning and management activities. To achieve this, data obtained in the field 

for chapter 4 has, with the aid of GIS software and statistical analyses 

techniques, been used to enhance the climate change modelling techniques 

trialled in chapter 5. This exercise demonstrates how spatial modelling can be 

used to model a future PD for a taxon which has been shown to be vulnerable 

to the impacts of landscape fragmentation, a rapidly changing climate and 

dieback, a virulent plant pathogen which impacts negatively on koomal habitat.  

In chapter 5 the MaxEnt SDM tool used in combination with a group of proven 

Global Climate Models (GCMs) was effective in modelling current and future 

bioclimatic PD for an arboreal mammal. However, this exercise did not include 

variables, such as remnant vegetation extent, which limited the actual 

distribution of a species of taxon. In chapter 4 it was observed that home range 

for the koomal rarely exceeded 1 km in width, dieback Phytophthora 

cinnamomi infested areas were not occupied, and that the amount of remnant 

vegetation in a landscape was linked to presence. To incorporate these 

observations into the MaxEnt model, a perspective GIS data set was developed 

and tested statistically, which showed that a raster with a 1 km pixel whose 

value represented the percentage of remnant vegetation within that pixel and a 

1 km buffer of its edges could be used to predict koomal presence. This was 

incorporated into a MaxEnt model within which only 5 bioclimatic variables 

were used (to prevent potential over-fitting). A dieback GIS data set was then 

overlayed onto the results of this model to exclude dieback affected areas from 

the PD. 

The results of this exercise showed that observation data could be used to 

produce a more targeted PD model which removed areas which were not 

habitat, from the bioclimatically derived outputs. 

7. Discussion: All previous exercises are reviewed and their findings discussed in 

light of their conservation management applications in landscapes subject to 

the combined impacts of fragmentation and a rapidly changing climate.  
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The emphasis of this work will be the eight criteria for a successful spatial 

model given in chapter 2 and the way by which the exercises undertaken over 

the course of this study have met those requirements.  

1.3 Purpose 

This study demonstrates how spatial modelling applications are particularly useful in 

informing the planning process. Conversely, just as planning processes can be enhanced 

by data obtained through spatial modelling, that data alone will not bring about change. 

Data can only bring about change when used to drive and inform the development of 

management actions. To that end, spatial modelling and project planning processes are 

complementary in nature. Therefore, it falls to conservation managers to recognise that 

these processes enhance each other and that using one process to supplant the other can 

have a highly detrimental impact on conservation management.  
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 9BSpatial modelling, a review of a methodology and its applications 2

 

2.1 18BIntroduction 

2.1.1 44BOverview 

Spatial modelling encompasses a broad and growing suite of tools and methodologies 

which enable the user to compile and analyse spatial information in a realistic, implicit or 

explicit manner. In relation to landscape ecology, a successful spatial modelling tool has 

the capacity to demonstrate the potential consequences of impacts and/or management 

actions on spatial relationships within the context of a subject landscape, species, 

community or population (Collinge 2009). Spatial modelling can be particularly useful in 

recognising and prioritising assets within a landscape (Ferrier & Guisan 2006; Foody 

2008), demonstrating metapopulation requirements (Hanski & Ovaskainen 2003) and 

modelling impact and management outcome scenarios at multiple spatial and temporal 

scales (Fischer et al. 2004; Ferrier & Guisan 2006). Furthermore, models are usually 

evaluated against inherent assumptions and the data used to construct the model. Under 

such circumstances, confidence in selecting the best models would be improved by 

evaluation of their outputs, particularly through comparisons amongst models which 

differ in their underlying method and assumptions (Rastetter 2003). 

Habitat fragmentation is the leading cause of population decline and extinction in many 

terrestrial landscapes (Lindenmayer et al. 2008; Collinge 2009). Species and communities 

in fragmented landscapes are also particularly vulnerable to the impacts of anthropogenic 

climate change (Fitzpatrick et al. 2008; Greg & Andrew 2009). Consequently, spatial 

modelling tools and methodologies are increasingly being applied to demonstrate the 

consequences of climate change in fragmented landscapes (Hanski & Ovaskainen 2003; 

Zafra-Calvo et al. 2010). 

It should be noted that when modelling fragmented landscapes it is important to 

understand that fragmentation refers to the fragmentation of habitat and that habitat is 

species specific in nature. For example, to a woodland species fragmentation may be 

brought about by a decrease in woodland extent. Conversely, as is currently the case with 

pastoral species in much of the European Alps where climate change is bringing about an 
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expansion in alpine forest extent, fragmentation can be brought about by reafforestation 

(Brambilla et al. 2010; Sitzia et al. 2010; Tattoni et al. 2010; Tattoni et al. 2011).  

In managing biodiversity in fragmented landscapes, it is generally accepted that the 

ecological viability and biodiversity conservation value of the whole of a patch which 

touches, or comes within close proximity to another patch, will probably be greater than 

that of a comparable patch which is isolated (Tischendorf & Fahring 2000b; 

Freudenberger & Brooker 2004; Watson et al. 2005; Lindenmayer et al. 2008). The 

application of this principle has given rise to biodiversity planning and management tools 

which measure and evaluate landscape connectivity through the spatial relationships 

which exist between patches of remnant vegetation. The purpose of these tools is to 

demonstrate the movement of biota within the context of fragmented landscapes, thereby 

allowing conservation managers to predict biotic movement between remnants under 

current and future landscape configurations (Belisle & Desrochers 2002; Hobbs & Yates 

2003; Fischer et al. 2004; Ferrier & Guisan 2006; Fitzpatrick et al. 2008). 

The diverse physical characteristics and habitat requirements of individual species imply 

that the use of simple spatial modelling tools may be of limited use in the management of 

many specific species. For example, a distance of 100 m between patches of remnant 

vegetation may be an insurmountable barrier to a small woodland reptile, a partial barrier 

to a terrestrial marsupial and no obstacle at all for a large raptor. Conversely, landscape 

elements or structures such as roads, watercourses, landform and vegetation structure can 

facilitate or impede the movement of different species in different ways. These impacts 

are often overlooked in simple spatial modelling applications (Holland & Bennett 2009). 

In recent years, worldwide use of spatial modelling tools and methodologies in ecological 

connectivity projects has steadily grown in number, scale and sophistication leading to a 

corresponding growth in spatial modelling applications (Kindlmann & Burel 2008; Urban 

et al. 2009; Lafortezza et al. 2010; Saura & Rubio 2010; McLane et al. 2011; Schooley & 

Branch 2011; Luque et al. 2012; Šímová & Gdulová 2012). Landscape connectivity 

projects such as Yellowstone to Yukon and the Wildlands projects in North America 

(Foreman 1999), the Terai Arc project in Asia (Lumpkin & Seidensticker 2006), the 

STEP project in Africa (Rouget et al. 2006) and the Green Bridges project in Europe 

(Voelk et al. 2002) are all examples of large-scale connectivity projects aiming to 
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improve landscape to regional-scale connectivity by incorporating a wide variety of 

spatial modelling tools and methodologies into their decision-making frameworks.  

Effective spatial modelling also enables biodiversity managers to predict the response of 

biota to a variety of stochastic and deterministic impacts such as fire, changes in habitat 

extent or quality, climate change, the introduction of exotic species or pathogens, and/or 

changes to management regimes (Turner et al. 1995). Therefore the importance of spatial 

models to conservation planning and management is increasing. 

In light of the above our research question is: How can spatial modelling techniques be 

made more effective to meet both the needs and the capacities of landscape managers 

who wish to undertake spatial modelling in fragmented landscapes? To this end, an 

example of a highly biodiverse region within which both fragmentation and climate 

change are recognised as significant threats to biodiversity, the south-west floristic region 

of Australia (Figure 1), is used as a case study. The conservation significance of this 

region has resulted in a number of spatial modelling approaches being used by different 

agencies, and this provides a unique opportunity to compare the application and 

effectiveness of these techniques.  

2.1.2 45BStudy area 

The south-western corner of Australia is recognised internationally as a “biodiversity 

hotspot,” (Figure 1) not only for the biological richness and uniqueness of species but 

also for the level of threat faced by these species (Myers et al. 2000; Hopper & Gioia 

2004). It is currently the only international “hotspot” recognised in Australia by the 

International Union for the Conservation of Nature. Rapidly increasing residential and 

rural-industrial development, inappropriate fire regimes, exotic species, pathogens and 

demands for expanded infrastructure contribute to an ongoing decline in the extent and 

condition of native vegetation throughout the region (Environmental Protection Authority 

2007). In 2007, it was found that there was less than 22% of native vegetation remaining 

on the southern Swan Coastal Plain (Molloy et al. 2007) while the 2001 Land and Water 

Resources Audit (Australian Government 2001) shows that some local government areas 

in the Western Australian Wheatbelt have less than 5% of native vegetation remaining. 

This contributes to a landscape where much of the native vegetation remaining exists 

within small patches fragmented throughout the landscape. 
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Figure 1: The south-western biodiversity hotspot. Sourced from Hopper and Gioia (2004) 

 

Historically the management of biodiversity in Western Australia has focused on the 

recognition, conservation and management of individual assets, i.e. conservation estate, 

individual species and ecological assemblages (McKenzie & May 2003). This focus has 

largely been the result of Australian (ANZECC/MCFF 1997) and Western Australian 

Government policy which has, in turn, been largely driven by legislative requirements.  

Through working within this policy and legislative framework (Table 1) the concept of 

maintaining and managing biodiversity at the landscape scale, and the consideration of 

maintaining connectivity as a major requirement for the persistence of biodiversity in a 

fragmented landscape, has been, until recently, largely overlooked by government 

authorities and natural resource management organisations. Although there has been 

some acknowledgement that connectivity should be considered in biodiversity planning 

and management (ANZECC/MCFF 1997; Environmental Protection Authority 2006) 

there has been no clear understanding of how this should be implemented.  
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Table 1: Legislation relevant to management of Biodiversity in Western Australia (Molloy et al., 2007) 

Act Description 

 Australian Government 

Environment 

Protection and 

Biodiversity 

Conservation Act 

1999. 

This Act relates to specially protected species, landscapes and communities 

deemed significant or important from the national perspective.  This act also lists 

the obligations of the Australian Government in relation to international treaties 

and conventions. 

 Western Australian Government 

Wildlife Conservation 

Act 1950 

Although out-dated, this Act is the primary State legislation responsible for the 

protection of native flora and fauna in Western Australia.  

Conservation and 

Land Management 

Act 1984 

This Act applies to State forest, timber reserves, national parks, conservation 

parks, nature reserves, and other land vested in the Conservation Commission 

created under this Act.  

Environmental 

Protection Act 1986 

 

This Act determines acceptable levels of impact on biodiversity are largely 

defined through State and Australian Government legislation and through the 

asset based CAR criteria (Environmental Protection Authority 2008). 

 

Much of the revegetation undertaken in south-western Australia pays scant attention to 

effective ecological connectivity (Lawes & Dodd 2009), while those projects which do 

take ecological connectivity into consideration have, in general, been: 1) small in scale 

(within catchment or local government boundaries); 2) instigated as opportunistic wildlife 

corridor models such as the Peel Harvey Regional Ecological Linkages Project (Green 

Skills 2007); 3) catchment scale focal species based projects (i.e. where parameters for 

landscape function are drawn from the needs of a select species or group of species, such 

as the Wallatin Creek Project (Lambeck 1999); or 4) localised species and/or community 

specific connectivity projects (Brooker & Brooker 2003; Davis 2004).  

It has long been recognised that properly established wildlife corridors are important for 

the persistence of native species in fragmented landscapes (Hobbs et al. 1993; Huggett 

2007). However, in practice they have a tendency to be established opportunistically as 

thin disjunct strips of revegetation which are composed of inappropriate species or 

provenances (Hobbs & Saunders 1991; Wilson & Lindenmayer 1995; Smith 2008).  

Largely as a result of the growing awareness of the potential impacts of climate change 

on fragmented reserve systems (Dunlop & Brown 2008; Heller & Zavaleta 2008), 

regional biodiversity managers have become more aware of the value of connectivity to 

landscape function and biodiversity management (Environmental Protection Authority 

2009; National Biodiversity Strategy Review Task Group 2009). This gradual shift in 
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management priorities from asset retention to landscape conservation has given rise in 

recent years to many significant and high profile connectivity-based projects.  These 

projects include: catchment-based focal species projects (Lambeck 1999; Freudenberger 

& Brooker 2004; Watson et al. 2005; Huggett 2007); the South West Regional Ecological 

Linkages (SWREL) project (Environmental Protection Authority 2009; Molloy et al. 

2009); Gondwana link (Hamish 2008); Alps to Atherton (New South Wales. Dept. of 

Environment and Climate Change et al. 2007); and similar connectivity projects in the 

eastern states such as Slopes to Summit (Mackey et al. 2010). Although these projects 

take a variety of forms to match a similar variety of landscapes and purposes, the 

planning and implementation of all of these projects is reliant on spatial modelling. 

In recent years, the use of spatial modelling tools and methodologies in ecological 

connectivity projects has steadily grown in number, scale and sophistication. This reflects 

a similar growth in spatial modelling applications worldwide (Collinge 2009). Landscape 

connectivity projects such as Yellowstone to Yukon (Bergman 2003) and the Wildlands 

(Foreman 1999) projects in North America, the Terai Arc (Lumpkin & Seidensticker 

2006) project in Asia, the STEP (Cowling et al. 2006) project in Africa and the Green 

Bridges (Voelk et al. 2002) project in Europe are all examples of large scale landscape 

connectivity projects which incorporate a wide variety of spatial modelling tools and 

methodologies into their decision making frameworks. Effective spatial modelling also 

enables biodiversity managers to predict the response of biota to a variety of stochastic 

and deterministic impacts such as fire (wildfire or used as a management tool), changes in 

habitat extent or quality, climate change, the introduction of exotic species or pathogens, 

and changes to management regimes (Turner et al. 1995). Therefore planning exercises 

based on spatial models can sometimes be assigned considerable significance. For 

example, internationally, spatial modelling has long been considered a fundamental tool 

in evaluating impacts to ecological function in environmental impact assessment 

processes (Wathern 1988; Cserny et al. 2009) and within Australia’s south west the 

principles of spatial modelling are now being applied by State Government agencies and 

relevant organisations as a formal consideration in biodiversity planning and 

environmental impact assessment (Environmental Protection Authority 2009).  

2.1.3 46BSpatial modelling 

Collinge (2009) gives the three most common forms of spatial modelling as: 
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1. Spatially explicit models: As demonstrated in Figure 2, these models spatially 

specify the locations of nominated assets and evaluate how particular spatial 

configurations affect ecological processes. These models often rely on grids 

being placed across a simulated landscape and assigned values based on 

landscape assets assigned to grid squares. Having done this, asset values or 

spatial arrangements between grids are then manipulated to provide the 

modeller with a series of potential outcomes that may result from impacts or 

changes to management activities.  

 

 

Figure 2: Spatially explicit modelling. In this application (Marxan®) conservation targets for vegetation 

types have been used to provide a scenario where the retention of assets within nominated grid squares will 

see all targets met. 

 

2. Spatially implicit models: As demonstrated in Figure 3, these models imply 

spatial and interactive relationships between species and communities. This 

form of spatial modelling is often used in depicting metapopulation movements 

and as such patches are not usually considered. 

Spatially explicit
(theoretical)



17 

 

 

Figure 3: Spatially implicit modelling. Modelled relationships between populations are depicted in an 

abstract form and not directly related to habitat patches. 

 

3. Spatially realistic models: As demonstrated in Figure 4, these models show a 

realistic (to scale) relationship between assets as they exist in a landscape. 

These models can be manipulated to demonstrate spatial changes to, and 

between, assets enabling an assessment of the impacts that disturbances or 

management regimes might have on a landscape. This form of modelling is 

most often used in basic landscape ecology. 
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Figure 4: Spatially realistic modelling. Modelled relationships are depicted realistically and to scale. 

 

2.2 19BMethods 

A review of the literature was conducted to determine the principles of spatial modelling 

for the management of biodiversity in fragmented landscapes. To do this I reviewed all 

relevant, peer reviewed, post 1990 papers on Web of Science using the following separate 

keywords: fragmentation, habitat, spatial model, conservation management and Australia. 

A standardised comparison was made to determine a set of attributes common to 

successful spatial modelling tools and methodologies applicable to biodiversity 

conservation in fragmented landscapes. The intention of this exercise was to compile a 

list of the most useful and informative attributes for a successful spatial modelling 

application (i.e. one best capable of informing the formulation and delivery of effective 

management actions). These attributes are then given as criteria by which the efficacy of 

spatial modelling tools and methodologies were evaluated during the course of this thesis 

(Table 2). 

Individual spatial modelling applications used in south-western Australia were reviewed 

and their individual strengths and weaknesses discussed in light of each of these criteria. 

Spatially realistic
(basic landscape ecology)
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Having identified the strengths and shortfalls of spatial modelling applications used in 

this region to date, methods by which spatial modelling can be better used to meet the 

requirements of regional biodiversity conservation managers will be explored. 

Conclusions will then be drawn and presented based on the findings of this review. 

2.2.1 47BCriteria for a successful spatial model 

To review the effectiveness of a spatial modelling tool it is necessary to develop a set of 

criteria by which individual tools and methodologies can be compared and assessed 

(Table 2). In turn, the development of criteria begins by acknowledging the objective of 

the spatial modelling exercise.  

For the purposes of this review it was assumed that the objective of the spatial modelling 

exercise was to gather relevant information to inform and, where appropriate, drive 

conservation planning processes, identify and prioritise effective management actions 

and, in turn, to deliver targeted conservation management outcomes. To that end, in 

setting criteria it becomes necessary to consider: firstly, the type and quality of 

information required by the conservation manager 0F; secondly, the resource limitations of 

the conservation manager; and finally the capacity of the conservation manager to 

adequately comprehend and apply the outputs of the spatial modelling process through 

the development and delivery of effective management actions (Ferrier & Guisan 2006; 

Shaw et al. 2006; Collinge 2009; Gurrutxaga et al. 2010). Therefore, it is proposed that to 

undertake an effective spatial modelling exercise for biodiversity conservation within the 

context of a fragmented landscape the following criteria should be met 1F

2
: 

1. Barriers to movement should be quantifiable: One of the principal impacts 

of fragmentation is that it impairs the fulfilment of metapopulation 

requirements, particularly in regard to recruitment and dispersal. To manage 

and ameliorate this impact, biodiversity managers must be able to quantify the 

                                                 
2
 For a spatial model to be effective is should also be able to engage stakeholders. However, the major 

barriers to stakeholder engagement (such as skill levels, comprehension, budget and resource constraints, 

quantifiability and efficacy Smith, A., Lambeck, R. J. & Greening Australia (W.A.). (2004) Living 

landscapes : the story of a successful landcare program in Western Australia. Fremantle, W.A.: Greening 

Australia (WA) Inc. are all covered in the existing criteria. Therefore, the concept of stakeholder 

engagement is considered to have been adequately addressed, consequently this topic (although still an 

important consideration) is, as a criteria in its own rite, not considered appropriate for use as a criteria in its 

own rite for the purposes of this review.  
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movement requirements of target species and the degree to which 

fragmentation impacts on that requirement (Lambeck 1999; Tischendorf & 

Fahrig 2000a; Fischer et al. 2004; Watson et al. 2005; Majka et al. 2008). 

2. Habitat should be quantifiable: Not all remnant vegetation is habitat for all 

species. Further, habitat and resources are often found or supplemented by 

resources in areas that are not remnant vegetation. Therefore the management 

of target species relies on understanding those habitat parameters which 

facilitate or impede persistence (Lambeck 1999; Tischendorf & Fahrig 2000a; 

Fischer et al. 2004; Watson et al. 2005; Chetkiewicz et al. 2006; Majka et al. 

2008). 

3. The response of species and communities to disturbance scenarios should 

be predictable: Conservation management requires that the manager be able to 

understand how target species and communities will react to both foreseeable 

impacts and management actions (Turner et al. 1995; Tischendorf & Fahrig 

2000a; Collinge 2009). 

4. Models should be able to demonstrate how change will happen over 

differing time frames, i.e. they have a multivariate capacity: Effective 

biodiversity management requires that managers be able to model 

consequences of impacts and management actions beyond the present and 

preferably in short, medium and long term scenarios (Turner et al. 1995; 

Chetkiewicz et al. 2006; Heller & Zavaleta 2008; Lindenmayer et al. 2008; 

Majka et al. 2008; Collinge 2009; Greg & Andrew 2009). Models should also 

have the capacity to incorporate adaptive management methodologies, i.e. they 

should also be able to incorporate changes in knowledge, objectives and 

scenarios as they arise (Dallmeier & Comiskey 1998). 

5. Models should be able to make valid predictions based on data that is 

either currently held or can be obtained within a project’s capacity, i.e. 

they can compensate for expected knowledge gaps: A model or 

methodology which is reliant on data which is not available cannot fulfil its 

purpose and could, in turn, lead to wasted resources or misinformation. It is 

therefore appropriate that any spatial modelling tools selected for use be 
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selected with a full understanding of the type and form of data that will be 

available (Lambeck 1997; Ferrier & Guisan 2006; Heller & Zavaleta 2008; 

Lindenmayer et al. 2008),  

6. The outputs of the model must be easily understood by a variety of 

stakeholders: If the output of a model is not properly understood it cannot be 

applied. If conservation managers are not able to adequately comprehend the 

outcomes a spatial modelling exercise or be able to convey the outcomes of that 

exercise to the project stakeholders the findings of the modelling process may 

be misapplied. For this reason there is a preference for graphic outputs from 

spatial models  (Turner et al. 1995; Foody 2008; Heller & Zavaleta 2008),  

7. Skill levels required to use the model effectively are accessible: There are a 

plethora of spatial modelling tools and applications available many of which 

require specialist skills and complex software and equipment. If an 

inappropriate model is selected or a model is not properly used, misinformation 

may result (Lambeck 1999; TNC 2007; Heller & Zavaleta 2008; Lovett et al. 

2008; Collinge 2009), and 

8. The model should be within a project’s budget and resource constraints: 

When selecting a spatial modelling tool, conservation managers should be 

mindful that the model selected, along with the equipment, training and data 

required to run that model, must fit within a project’s budget constraints. 

Conversely, when planning a conservation project the full costs of an 

appropriate spatial modelling exercise should be budgeted for (Simpson 1999; 

Freudenberger & Brooker 2004; Foody 2008; Heller & Zavaleta 2008; 

Lindenmayer et al. 2008). 

2.3 20BSpatial modelling applications identified 

Environmental planning and project officers from the Western Australian Department of 

Environment and Conservation, the state Environmental Protection Authority (as 

representatives of the primary state government agencies vested with responsibility for 

conservation planning and management), the South West Catchment Council and the 

Cape to Cape Catchments Group (as the community based Natural Resource Management 
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organisations within the study area) were contacted in order to identify the major spatial 

modelling applications used in south-western Australia to date. These applications are: 

2.3.1 Geographic (or geospatial) information systems (GIS).  

Background: GIS is a generic term referring to a group of spatially realistic desktop 

software packages that enable users to manage, analyse and manipulate geospatial data. 

These software packages can be used to create maps, charts, reports and other statistical 

outputs. They can also be used to examine and portray ways by which impacts can alter 

landscapes (Brebbia & Pascolo 1998). Since the mid-1980s, GIS packages have become 

progressively more sophisticated and user friendly allowing GIS packages to be used in 

an increasing number of applications by an increasingly diverse user group. This, in turn, 

has led to a corresponding growth in the development of databases, analysis tools and 

training options being made available to a growing and multidisciplinary user group. In 

this way, both the capacity and the use of GIS in spatial modelling applications continue 

to grow exponentially (Kontic & Kontic 2009). 

Prior to GIS becoming readily available, most spatial modelling undertaken by ecologists 

relied on cartographic maps as a basis for spatial modelling (Turner et al. 1995). Because 

cartographic maps were expensive it became common practice for modellers to draw 

different scenarios on sheets of Perspex overlaid on maps, thus enabling multiple 

scenarios and perspectives to be examined without damaging the original map. The 

advent of GIS enabled users to similarly overlay different data sets and scenarios over a 

representative landscape within a personal computer software program (Schuurman 

2004).  It therefore comes as no surprise that ecologists have been both quick and 

enthusiastic in the uptake of GIS for spatial modelling (Brebbia & Pascolo 1998; Mersey 

et al. 2002; Gurrutxaga et al. 2010). 

Method: GIS creates a spatially defined landscape grid through a specified datum. 

Objects in GIS data bases are then added to this landscape to produce maps or to enable 

analysis. Objects are stored in GIS databases as geodatabases, shapefiles or rasterfiles. 

The geodatabase is the common data storage and management framework. It combines 

"geo" (spatial data) with "database" (data repository) to create a central data repository for 

spatial data storage and management. Shapefiles are comprised of drawn objects such as 

roads, patches of remnant vegetation, sites of interest and topographic or climatic isohyets 



23 

 

are depicted. Rasterfiles are comprised of a matrix of cells or pixels organized into a grid 

where each cell contains a value representing information, such as temperature. Rasters 

can be digital and remotely sensed items such as aerial photographs, imagery from 

satellites, digital pictures, or scanned maps (ESRI Australia Pty. Ltd. 1999).  

GIS enables users to link and display features and recorded values within single and 

multiple databases, to share and exchange values and data between databases, create new 

data sets (through combining, querying, or analysing data), and to alter and link databases 

enabling multivariate analysis. GIS is effective in the development of accurate maps, it 

enables a ready means of interpreting and applying remotely sensed data (Foody 2008), 

and it readily measures distances, areas and densities. GIS is therefore an excellent tool 

for mapping an actual landscape and determining how impacts may change that 

landscape.  

Applications: Project officers for relevant agencies and natural resource management 

organisations report that basic GIS mapping has been, and remains, the preferred spatial 

modelling tool used in biodiversity conservation in south-western Australia. This is 

because:  

 GIS portrays landscape information in a simple and easily understood format;  

 it is particularly useful in displaying spatial relationships between patches of 

remnant vegetation and changes in vegetation extent will alter these relationships;  

 it is simple to use; most conservation managers have had training in its use; and 

 basic GIS software and data is relatively inexpensive and readily obtainable.  

For these reasons GIS remains the sole spatial modelling tool for many of the 

connectivity projects in this region (Hobbs & Saunders 1991; Environmental Protection 

Authority. 2003; Green Skills 2007; Molloy et al. 2009).  

Limitations: Using GIS in this manner is a simple form of spatial modelling which relies 

on two main assumptions: i.e., habitat is assumed to be the patch (habitat values are 

generally not recognised outside of the patch and habitat value is generally assumed to be 
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uniform within the patch) and the only barrier to movement is assumed to be distance 

(Lindenmayer & Nix 1993; Lambeck 1999).  

Comments: Effective spatial modelling for ecological viability in fragmented landscapes 

requires being able to quantify the impacts of change on species and communities 

(Bestelmeyer et al. 2003; Fischer et al. 2004; Freudenberger & Brooker 2004; Fischer & 

Lindenmayer 2007; Lindenmayer et al. 2008; Lawes & Dodd 2009; Gurrutxaga et al. 

2010). Consequently, a means of identifying the requirements of species and communities 

and incorporating these requirements into a GIS modelling matrix, is required. 

2.3.2 Focal species.  

Background: The need to incorporate the habitat requirements of nominated species into 

spatial modelling applications leads to the development of the focal species approach. 

The focal species approach is a spatially realistic form of modelling (Department of 

Environment and Conservation. 2007) which rose to prominence and wide-scale 

application in the Western Australian Wheatbelt in the late 1990s. Although it has 

undergone considerable refinement, it remains this region’s most commonly used 

biodiversity conservation planning tool (Huggett 2007). 

Method: In describing this approach Lambeck (1997, p849) proposed, “a multi-species 

approach for defining the attributes required to meet the needs of the biota in a landscape 

and the management regimes that should be applied. The approach builds on the concept 

of umbrella species, whose habitat requirements are believed to encapsulate the needs of 

other species.” Lambeck did this by noting landscape attributes such as patch size, and 

isolation, vegetation composition, structure and condition and comparing these attributes 

with observed presence or absence data for a suite of nominated bird species. These bird 

species were selected to represent dispersal and resource limited species, or were selected 

because a species required management as a conservation priority. By doing this, it 

became possible to determine which landscape attributes enabled a species, or a suite of 

species, to persist in a landscape and how this persistence related to threatening processes. 

Management activities could then be designed and implemented which would enable the 

persistence, recolonisation or reintroduction target bird species to the subject landscape. 

Birds were used as focal species because they were deemed to be effective environmental 
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indicators and because their presence or absence in a patch could be easily determined 

(Lambeck 1999).  

Implicit in the focal species approach is the umbrella concept. This refers to the 

assumption that through facilitating the persistence of a nominated suite of bird species 

the needs of other, more cryptic, species would be met (Lambeck 1997). This assumption 

has drawn criticism to the focal species approach (Lindenmayer et al. 2002). In spite of 

this, the focal species approach to spatial modelling remains widely used and is 

considered very effective in engaging community support as concepts easily 

demonstrated and understood and participation does not require specialist skills (Wallace 

et al. 1998; Lindenmayer et al. 2002; Freudenberger & Brooker 2004; Smith et al. 2004; 

Department of Environment and Conservation. 2007; Huggett 2007; Smith 2008). 

Applications: In earlier applications of the focal species approach thresholds were set 

based on habitat characteristics such as minimum size, condition, vegetation type, and 

distance between patches. These thresholds were then used to define habitat and to 

demonstrate how far focal species would move from their home patch. GIS software 

could then be used to map patches of habitat and demonstrate gaps which would act as 

barriers to movement. In theory, this enabled planners to determine which patches were 

essential to facilitate movement of a species within the landscape and to determine 

revegetation sites that would enhance patch habitat values and/or link patches by acting as 

“stepping stones” between patches (Lambeck 1997).  

Limitations: In practice, thresholds become wrongly interpreted as absolutes. For 

example, nominating a maximum distance threshold between patches of 100 m for 

species A, gives the impression that this species can cover a gap between habitats of up to 

100 m without restriction while all movement between patches ends beyond this 

threshold. In a more realistic scenario we can assume that although species A has been 

assigned a distance threshold of 100 m, a 20 m gap between patches will impede dispersal 

less than would a 100 m gap, and a gap much greater than 100 m may not act as a total 

barrier to movement. Therefore, the degree to which a gap in habitat impedes movement 

throughout a landscape can effectively be conceptualised as a probability. That is, the 

probability of species A covering a 20 m gap in habitat will probably be much greater 

than the probability of the same species covering a gap of 100 m and the probability that a 
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gap of 200 m crossed could be small to insignificant but it is still possible. Consequently, 

the real management question becomes what is the probability of species a crossing a gap 

of x meters or what is the probability of presence of species a with a patch size of x 

hectares. In practice probabilities become more effective than simple thresholds. To that 

end in later focal species projects, the impacts of factors such as patch isolation, size and 

condition came to be quantified as probabilities and enabling more effective modelling of 

the way in which landscape factors influence habitat and movement (Brooker & Brooker 

2002; Freudenberger & Brooker 2004; Watson et al. 2005; Huggett 2007; Lindenmayer et 

al. 2008; Brouwers & Newton 2009b; Holland & Bennett 2009).   

Comments: Changing the emphasis of focal species applications from thresholds to 

probabilities allows probabilities to be compounded over various time frames. For 

example, if a probability is calculated for species A to colonise a patch across a gap 

between 2 patches x
1
 in a year it becomes possible to calculate the probability of that 

species crossing a further gap x
2
 to colonise a third patch within the same or consequent 

years (Brooker & Brooker 2002). This greatly enhances the capacity of the focal species 

approach to be applied to spatial modelling over various temporal scales.  

Probabilities reflecting landscape factors are largely viewed independently, whereas in 

practice probabilities relating to landscape factors are interrelated. For example, a 

probability of presence for species Z in a patch of 20 ha will still vary in response to 

factors such the condition or structure of the patch, management regimes or patch 

isolation. Therefore, to effectively apply focal species principles to spatial modelling 

applications it is necessary to understand which landscape factors most directly influence 

species presence and movement and to be able to use these factors as appropriately 

weighted covariates in the development of probabilities (Brouwers & Newton 2009a). We 

also need to be aware of (and compensate for) the limitations of the subject species to act 

as planning surrogates for non-target species (Freudenberger & Brooker 2004). 

2.3.3 Proximity analysis.  

Background: Proximity analysis is a generic term which refers to a suite of GIS based 

tools which allow users to quantify and manipulate the spatial relationships between 

objects or assets, thereby providing users with insights into ecological functions and their 

responses to variations in spatial arrangements (Ruggiero et al. 1994; Karanth et al. 2006; 
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Huck et al. 2008; Benitez-Lopez et al. 2010; Metzger et al. 2010; Shova & Hubacek 

2011). In general, although these tools tend to be crude and simplistic in nature, they are 

capable of providing useful data to users providing that their strengths and weaknesses 

are understood and acknowledged (Tischendorf & Fahrig 2000a; Tischendorf & Fahrig 

2000b).  

The SWREL project was undertaken as a partnership project between the Western 

Australian Local Government Association and the Western Australian Department of 

Environment and Conservation to provide a response to the issues of fragmentation and 

climate change through the identification of regional scale ecological linkages. These 

ecological linkages were to be designed through a collaborative and consultative process 

involving federal and state agencies, local government authorities, and regional natural 

resource management organisations. The objectives of this project were to: support more 

effective recognition of ecological linkages in land use planning policy and processes, 

retain native vegetation and fauna habitat, and to maintain key ecological functions across 

the project area (Environmental Protection Authority 2009). 

This project recognised that historically there had been a strong policy framework which 

required that ecological linkage be a consideration in planning frameworks 

(Environmental Protection Authority 2006; Environmental Protection Authority 2008). 

However, there were no methodologies for demonstrating, or quantifying, the impacts of 

development proposals or management actions on landscape connectivity that were 

comprehendible or applicable available to relevant planning organisations. Therefore the 

requirement to consider impacts on ecological linkages and consequently ecological 

function were generally overlooked in planning and assessment processes. In recognising 

this situation, project staff developed a method of proximity analysis as a means of 

demonstrating connectivity between patches and quantifying impacts to ecological 

connectivity that may arise from proposed projects or changes to management actions 

(Molloy et al. 2009). 

Method: The SWREL project developed a proximity analysis tool to provide decision 

support data for the development of the SWREL and to provide an indication of the 

impacts to landscape connectivity that may arise from a proposed development. This tool 

was used to assign proximity values, or thresholds, to a series objects at predetermined 
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compound distance based thresholds relevant to any nominated point of feature as 

spatially realistic GIS data. In determining the SWREL this tool was used to assign one of 

ten proximity values to patches of remnant vegetation relevant to a linkage axis line. The 

linkage axis line being drawn as a base point from which ecological linkage relevant to a 

series of patches, acting as stepping stones for biota, was measured (Molloy et al. 2009).  

Applications: This tool enables changes in connectivity, as depicted by changes to patch 

proximity values, to be quantified in response to proposed changes arising from either 

revegetation or the clearing of native vegetation (Molloy et al. 2009). The proximity 

analysis methodology used in this project is an example of crude distance based 

ecological modelling with distance thresholds derived through a review of literature and 

broad scale ecological principles and habitat is given as binary, i.e., all patches are given 

as habitat of equal value and habitat values are not recognised outside of patches. 

 

 

Figure 5: An example of SWREL proximity analysis 
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Limitations: This methodology is of limited use in the management of specific species or 

communities in that it relies on assumed and arbitrary definitions of barriers to movement 

and habitat in the absence of probability based parameters for individual species, e.g. in 

this habitat we have a probability of x that species A will be present and a probability of y 

that this species will cross a given gap. However, crude distance based models, such as 

this one, can be effective if their limitations are recognised (Tischendorf & Fahrig 2000a). 

Regardless of the dangers of assumptions in managing species and communities, it should 

be remembered that distance between patches is a barrier to movement (Belisle & 

Desrochers 2002; Lindenmayer et al. 2008; Robertson & Radford 2009) and patches of 

native vegetation do provide habitat for many target species (Amarasekare & Possingham 

2001; Fahrig 2003; Hanski & Ovaskainen 2003).  

Comments: The objective of this method of proximity analysis was to quantify the 

impacts of fragmentation in a manner which planners and others who are not trained in 

ecological principles can understand and apply and has been deemed successful in doing 

this (Environmental Protection Authority 2009). The proximity analysis tool makes the 

application of this methodology a fast, simple and automated process. It incorporates 

more detailed modelling processes, such as Marxan®, and expert inputs into prioritising 

conservation targets. Outputs are easily understood. Like basic GIS applications, it has a 

capacity to incorporate temporal variations through multivariate scenarios and this 

process enabled a comparatively quick, effective and cheap means of designing a 

complex ecological linkage matrix over a large and highly varied landscape mosaic. 

2.3.4 Marxan®.  

Background: This is a spatially explicit software package that is designed to deliver 

decision support for reserve system planning. The end user requirements are expressed 

through input targets and parameters that enable Marxan® to select a group of planning 

units whose retention will best reflect the user’s reserve planning priorities and 

constraints (Ball & Possingham 2000). Within the south-west region Marxan® has been 

used for decision support in the SWREL Project (Molloy et al. 2009), marine planning 

(Watts et al. 2009) and the South West Eco Region Initiative (Gaia Resources 2009). The 

Swan natural resource management organisation and Western Australian Department of 
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Planning and Infrastructure are currently looking at ways of incorporating Marxan® into 

their regional planning processes. 

Method: Marxan® is primarily intended to solve a particular class of reserve design 

problem known as the ‘minimum set problem’, where the goal is to achieve some 

minimum representation of biodiversity features for the smallest possible cost (Ball & 

Possingham 2000). In minimum set problems the elements of biodiversity that you wish 

to conserve are entered as constraints to solutions of the problem as their retention is 

required in all modelled scenarios (Possingham et al. 1998). Given reasonably 

comprehensive data on species, habitats and/or other relevant biodiversity features, it 

aims to identify the reserve system (a combination of planning units) that will meet user-

defined biodiversity targets for the minimum cost (Watts et al. 2009). 

Applications: Although Marxan®  can be used for a variety of purposes at a different 

stages in the systematic conservation planning process, it was designed primarily to help 

inform the selection of new conservation areas for minimal “cost” and facilitate the 

exploration of trade-offs between conservation and socio-economic objectives (Ball & 

Possingham 2000). Marxan® can help set priorities for conservation action by 

highlighting those places that are likely to be important inclusions in an efficient reserve 

network. Marxan® can also be employed as a tool for evaluating the representation and 

comprehensiveness of existing reserve networks (Watts et al. 2009).  

Limitations: Marxan’s® effectiveness in planning and designing ecological linkages is 

limited in that, although it can be used to effectively determine habitat given the 

appropriate input data, it cannot adequately quantify barriers to movement other than 

distance between habitat, distance to area ratios of habitat, or proportion of defined 

habitat within a given landscape. This results in arbitrary thresholds being used to 

quantify barriers to movement and the problems inherent therein (Zielinski et al. 2006; 

Huber et al. 2010). 

Comments: Although a popular and potentially informative planning tool, Marxan® 

requires skilled operation, accurate and extensive input data sets, and expensive GIS 

software packages. Knowledge and information gaps have the potential to significantly 

skew results. Marxan® outputs require skilled interpretation and most Marxan®-based 

planning projects are undertaken by specialist consultants (Watts et al. 2009). For this 
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reason Marxan® may be incorporated into planning processes by project staff that lack an 

adequate appreciation of the intended applications and inherent limitations of this type of 

software (Langford et al. 2009). 

2.3.5 Conservation Action Planning (CAP: International) 

Background: The Nature Conservancy’s Conservation Action Planning (CAP) process is 

not by definition a spatial modelling tool, but as it has been widely used as the technical 

basis for planning in major connectivity projects (Lovett et al. 2008; Gondwana Link 

2009), is the only known tool of its type used for conservation planning in this region and 

is a tool widely used around the world (TNC 2007) the inclusion of this process was 

deemed appropriate. 

The CAP process is designed to help conservation projects develop strategies, take action, 

and measure their success and then to adapt and learn over time (TNC 2007). This 

planning tool has had wide application by Greening Australia and WWF and is currently 

being used by the Gondwana Link Project (Lovett et al. 2008). Adaptive management is 

at the heart of the CAP process. This CAP process is delivered in a spreadsheet type 

project management tool which uses expert opinion to set project priorities and 

management actions using 10 steps to project planning and management under four 

general headings. These headings are; defining the project, developing strategies and 

measures, implementing strategies and measures, and adapting and improving. This 

process provides scant guidance on exactly how to identify and rank assets, and 

managements, leaving the definition of such details to the project’s experts (TNC 2007).  

Method: This is a Delphi planning process based on the skills of a group of nominated 

experts, and as such, can be an effective way of turning the opinions and values of that 

group of experts into project management actions. This can be an enormous asset to a 

project in that it can enable high level skills and knowledge to be converted into project 

level management actions. However, it can also be a handicap in that management actions 

relate directly to the opinions, priorities, knowledge limitations, and personal dynamics of 

the expert group. In recognition of this potential handicap the CAP process emphasises 

need to appoint experts to the planning group (TNC 2007; Lovett et al. 2008). 
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Applications: The CAP process has shown itself to be an excellent way of enlisting 

expert opinion into a project. It is has also shown that it can be effective in bringing 

community values and hence support to a project and as a catalyst bringing about 

interaction between expert and community. This means that the process is potentially 

very effective in defining and prioritising targets and management actions and this can be 

very effective in spatial modelling.  

Limitations: There is little that the CAP process brings to spatial modelling other than its 

capacity to apply the finding of more rigorous spatial modelling tools and applications 

(TNC 2007). It does not define or recognise barriers to movement or habitat values 

beyond the understanding of the expert group, nor does it inform the group of the impacts 

of management actions on these landscape attributes. Similarly the CAP process lacks a 

multivariate capacity. It tends to portray temporal variation as before and after in response 

to a limited set of management priorities and actions. It lacks the capacity to demonstrate 

how multiple management scenarios over differing temporal scales will impact on the 

resilience of a fragmented landscape.  

Comments: Although not a spatial modelling application, the CAP process like other 

integrative or participatory approaches has the capacity to incorporate data derived from 

spatial modelling tools and applications into large scale conservation planning initiatives. 

This is because the CAP process enables project managers to facilitate the data derived 

through spatial modelling tools and methodologies into integral project planning 

processes such as the development and delivery of project priorities, target setting, works 

planning and monitoring and evaluation procedures. In this way the CAP process can 

provide a mechanism which will enable the findings of spatial modelling exercises to 

make the contextual “leap” from the theory and research to on-ground management 

action.  

2.4 48BComparison 

Table 2 summarises the key requirements of spatial modelling applications used to date in 

south-western Australia. The purpose of this is to allow a quick comparison of the relative 

strengths and weaknesses of each methodology. In this table scores of low, medium or 

high are given to reflect the degree to which each of these applications meets each of the 

attributes which a successful spatial modelling application should possess if it is to 
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effectively demonstrate how subject impacts affect a fragmented landscape. The scores 

given reflect the findings of the above discussions and are only provided for comparative 

purposes. The arbitrary nature of this table and its inherent limitations are therefore 

acknowledged. 

 

Table 2: Comparison of reviewed methodologies relative to the stated attributes of an effective spatial 

modelling methodology. Comparison score is given for suitability as high (3), medium (2) and low (1). 

Criteria Spatial Modelling Applications 

GIS (Basic 

map 

making) 

Focal Species Proximity 

Analysis 

Marxan®  CAP 

Defines barrier to 

movement. 

(1=low) 

 

1 

(Barriers to 

movement 

are 

arbitrarily 

defined by 

users.) 

2 

(Species 

requirements 

given as 

thresholds.) 

2 

(Species 

requirements 

given as 

thresholds.) 

2 

(Species 

requirements 

given as 

thresholds.) 

1 

(Barriers to 

movement are 

arbitrarily 

defined by 

users.). 

Defines Habitat. 

(1=low) 

1 

(Habitats 

are defined 

arbitrarily 

by users.) 

1 

(Habitats are 

defined 

arbitrarily by 

users.) 

1 

(Habitats are 

defined 

arbitrarily by 

users.) 

2 

(Habitat 

recognition can 

be partially 

undertaken 

through GIS 

data and target 

setting.) 

1 

(Habitats are 

defined 

arbitrarily by 

users.) 

Predicts target 

species/community 

response to 

impact. (1=low) 

1  

(Responses 

to impact 

are 

arbitrarily 

defined by 

users.) 

2  

(Crude 

responses can 

be predicted 

based on 

thresholds and 

basic habitat 

identification.) 

2  

(Crude 

responses can 

be predicted 

based on 

thresholds and 

basic habitat 

identification.) 

1  

(Responses to 

impact are 

arbitrarily 

defined by user.) 

1  

(Responses to 

impact are 

arbitrarily 

defined by 

user.) 

Demonstrates 

multivariate 

scenarios. (1=low) 

1  

(Only 

functions in 

a single 

given time 

frame.) 

2  

(Can 

demonstrate a 

before and 

after 

response.) 

3  

(Allows 

instant 

demonstration 

of impacts 

over multiple 

time frames.) 

3  

(Allows instant 

demonstration 

of impacts over 

multiple time 

frames.) 

1  

(Only 

functions in a 

single given 

time frame.) 

Input data 

requirement. 

(1=most data 

required) 

2  

(Basic 

mapping 

requires 

several 

readily 

available 

GIS data 

sets.) 

2  

(Requires 

several readily 

available GIS 

data sets.) 

1  

(Effective use 

requires many 

GIS data sets. 

Many of these 

sets may not 

be available or 

may require 

development.) 

1  

(Effective use 

requires many 

GIS data sets. 

Many of these 

sets may not be 

available or may 

require 

development.) 

1  

(Effective use 

requires many 

GIS data sets. 

Many of these 

sets may not 

be available or 

may require 

development.) 
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2.5 21BDiscussion 

In any form of management, it is generally considered more cost effective and efficient to 

prevent disaster rather than to reverse it. Therefore, effective conservation management is 

preventative in nature (Lindenmayer et al. 2008). Preventative conservation management 

in fragmented landscapes requires that managers are able to predict how species, 

communities and ecological processes will be affected by an impact or management 

action and the degree to which they will be affected; and they will rely on spatial 

modelling to give them this information. To that end, effective spatial models will be 

those with the capacity to use the individual and collective habitat requirements of a 

broad suite of species to define and quantify: a) what is a barrier to movement; b) what is 

habitat; and c) how these quantifiable values will change, in relation to a modelled 

impacts or management actions (Lambeck 1997; Lambeck 1999; Watson et al. 2001; 

Freudenberger & Brooker 2004; Watson et al. 2005; Huggett 2007; Lindenmayer et al. 

2008) Conversely, where spatial modelling is undertaken in situations and there are 

limited resources and large knowledge gaps, spatial modelling becomes reliant on 

Outputs are easily 

understood 

(1=highest skill 

required) 

3  

(Outputs 

easily 

understood.) 

3  

(Outputs 

easily 

understood.) 

2  

(Some training 

required to 

fully 

understand 

outputs.) 

1  

(Comprehension 

of products 

requires 

extensive 

training.) 

2  

(Some 

training 

required to 

fully 

understand 

outputs.) 

Skill level 

required to 

implement. 

(1=highest skill 

required) 

3  

(Basic 

operation of 

most 

software 

requires 

minimal 

training.) 

2  

(Basic GIS 

operation 

skills plus 

additional 

training in this 

methodology.) 

2  

(Basic GIS 

operation 

skills plus 

additional 

training in this 

methodology.) 

1  

(Moderate to 

high level GIS 

skills required 

plus extensive 

training required 

for this 

methodology.) 

2  

(Basic GIS 

operation 

skills plus 

additional 

training 

required for 

this 

methodology.) 

Cost (resource 

requirements). 

(1=highest cost) 

2  

(Basic GIS 

software, 

data sets 

and personal 

computer 

equipped 

with 

Microsoft 

Office® 

required.) 

2  

(Basic GIS 

software, data 

sets and 

personal 

computer 

equipped with 

Microsoft 

Office® 

required.) 

2  

(Basic GIS 

software, data 

sets and 

personal 

computer 

equipped with 

Microsoft 

Office® 

required.) 

1  

(Advanced GIS 

software, high 

level data sets 

and personal 

computer 

equipped with 

Microsoft 

Office® 

required). 

3  

(PC equipped 

with 

Microsoft 

Office® 

required.) 

Total  14 16 15 12 11 
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assumptions (often of an anthropocentric perspective) and the use of insufficient, 

inadequate or inappropriate surrogates (Tischendorf & Fahring 2000b; Watson et al. 

2001; TNC 2007; Lovett et al. 2008; Caro 2010).  

GIS represents an anthropogenic perspective of habitat which may differ significantly 

from those parameters which actually define the habitat of subject species.  This appears 

to be a consequence of significant knowledge gaps regarding the habitat requirements of 

many species, and an apparent abundance of available GIS data which has largely been 

compiled for purposes other than conservation managment (Landgate 2011). 

Furthermore, GIS tools and data are readily available to a wide range of users of varying 

skill levels. For these reasons many of the GIS modelling applications seen to date in 

south-western Australia have not been as effective as they might have been. 

Marxan® and Proximity Analysis deliver decision support information through the 

formulaic analyses of GIS data.  As such they are representative of a diverse and rapidly 

growing group of planning tools with widely varying degrees of sophistication (Collinge 

2009). However, the application of such tools in south-western Australia shares the same 

anthropogenic perspectives as discussed above in relation to GIS and is therefore subject 

to the same criticisms. In comparison to the other modelling approaches discussed, these 

tools tend to require considerably greater resources in regard to hardware and software to 

operate, and require similarly high skill levels to use (Ball & Possingham 2000). This can 

lead to a situation where the limitations and suitability of these tools is not fully 

understood by project planners. Furthermore, the ouputs of these modelling tools are also 

much more difficult to understand and are therefore liable to be misunderstood or 

misapplied in the development of conservation managment activities. The CAP process 

helps to develop managment actions through a Delphi process (Klenk & Hickey 2011), 

i.e. a process which aims to develop consensus between a group of experts over several 

rounds of deliberation on the assumption that combining the expertise of several 

individuals through these structured discussions will provide more reliable results than 

consulting one or two experts individually. The CAP process does not provide 

information as to how subject landscapes, communities or species will react to impacts or 

managment actions. This form of tool is highly palatable as it requires few resources and 

is easy to use and understand and is effective in enlisting community support. It is also 

very useful in situations where there is little published data available on target species or 
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landscapes. However, as in any Delphi process, the quality of the outcome relies on the 

quality of the expert input and this is likely to bias the outcomes since it is inevitably 

influenced by the perceptions, misconceptions, values and beliefs of those whose expert 

opinion is sought. In south-western Australia to date, the only spatial modelling tools 

used by biodiversity conservation managers which attempt to demonstrate how biota may 

react to impacts or management actions, are applications of the Focal Species approach to 

conservation management. However, Focal Species applications used in this region have 

focussed on the use of a few birds species, used simplistic single factorial regressions as 

predictors of presence/absence, and have used relatively simplistic definitions of habitat 

(Freudenberger & Brooker 2004; Huggett 2007; Fahrig & Triantis 2013). Although the 

use of “focal,” “indicator” or “surrogate” species has long been common practice in the 

conservation management of fragmented landscapes, their effective use requires a number 

of assumptions. Firstly, the habitat needs of the “focal” species should be well enough 

understood to be quantifiable; and secondly, the suite of “focal” species selected should 

represent a range of habitat requirements diverse enough to enable that suite of species to 

provide a meaningful insight into the way management actions will affect the entire biota 

of the modelled landscape (Lambeck 1997; Watson et al. 2001; Freudenberger & Brooker 

2004; Huggett 2007).  

In the application of all spatial modelling tools there is a need to incorporate the 

knowledge of relevant experts. This usually gives rise in an expert consultation or Delphi 

approach to the designation of project objectives, targets and priorities (Collinge 2009). 

The inherent problem with this is that, at some time during the planning process, expert 

knowledge must be applied with an understanding of the strengths, weaknesses and 

appropriate applications of the selected spatial modelling tools. The operation of more 

complex spatial modelling  tools requires highly skilled and specialised operators. 

Consequently, the potential for conflicts and misunderstandings between modellers and 

other technical specialists representing different disciplines and perspectives increases 

where more sophisticated spatial modelling tools are utilised. Therefore, when using 

complex spatial modelling tools, effective project planning and implementation becomes 

increasingly reliant on assigning tasks and responsibilities to team members in 

accordance with the expertise of the indivual and on maintaining frank and effective 

communication between all paticipants (Klenk & Hickey 2011). 
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In light of the above, this review supports a general consensus amongst ecologists that, 

when it comes to selecting a spatial modelling application, there is no “one size fits all” 

(Caro 2010). Therefore, successful spatial modelling relies on the careful selection and 

application of an appropriate suite of modelling tools or applications. None of the spatial 

modelling applications reviewed can adequately consider the many ecological and social 

processes influencing the viability of a landscape (Tischendorf & Fahrig 2000b; Ferrier & 

Guisan 2006; Huggett 2007; Lovett et al. 2008).  

As demonstrated (Table 2), when comparing these spatial modelling applications against 

the attributes of a successful spatial modelling methodology, all of the reviewed 

applications have different strengths, weaknesses and resource requirements. This reflects 

the varied intentions and perspectives of model designers and those who have, for various 

reasons, opted for their use. However, a combination of these applications can be used to 

meet all of the listed criteria, and by adapting certain aspects of some of these 

applications to directly meet our criteria, the development of a spatial modelling 

methodology capable of better meeting the needs and circumstances of both regional 

biodiversity and conservation planners can be developed. For example, a Focal Species 

approach that incorporates data from terrestrial and arboreal surrogate species to enhance 

the bird data currently used can improve our understanding of how distance and 

landscape attributes act as barriers to movement. This data can be used to develop 

probabilistic decision support tools, for example, Bayesian Belief Networks (Smith et al. 

2007) which can quantify barriers to movement as species specific probabilities which 

can be used to replace arbitrary thresholds in proximity analysis. Therefore, a study of the 

habitat requirements of an appropriate group of surrogate species can be used to define 

probabilities for presence absence based on landscape attributes which can be used as a 

basis for project planning as demonstrated (Figure 6). These attributes can be modelled 

using Marxan® to identify, rank and prioritise habitat zones, while all stages of the 

planning process can be checked by an appropriate group of experts through a CAP like 

Delphi process. It is also possible to incorporate all of these proposed spatial modelling 

activities into a GIS format as GIS remains the most effective way of displaying spatial 

data in an easily comprehensible manner. 
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Figure 3: A conceptual framework for incorporating species requirements into biodiversity 

conservation  

 

project planning. Actions most amenable to spatial modelling applications are shaded. 
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Outputs 
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Targets 

 
Collect and quantify species data 

For all indicator species determine: 

populations of indicator species, 

habitat and metapopulation thresholds 

for each of these species, extent of 

habitat for these species. 

Project review 

All aspects of the project are to be 

reviewed and the findings of this 

process are to be incorporated into 

further project delivery through an 

adaptive management process. 

Threatening processes 

Are they identified? 

Can they be prioritised and managed? 

How do we manage them? 

How can the efficacy of management 

actions be measured? 

 

 

 

Select indicator species 

Resident species amenable to study 

whose habitat requirements are 

quantifiable and whose responses to 

changes to their habitat reflect changes 

in project target. 

Stakeholder expectations 

What do stakeholders desire 

and expect from the project. 

Resources 

What skills and materials are 

available and what other 

resources may become 

potentially available. 

Legislative framework 

Obligations and priorities 

arising legal and contractual 

obligations. 

 

Target setting 

What must be achieved to 

reach the project objective? 

Planning Review 

Consideration of all relevant 

matters. 

Project objective 

For example: A viable ecological 

assemblage at the landscape scale. 

 

Figure 6: A conceptual framework for incorporating species requirements into biodiversity conservation 

project planning 



39 

 

2.6 22BConclusions 

The development of spatial modelling applications capable of demonstrating both the 

needs of regional biota and the response of that biota to perceived impacts and 

management actions is fundamental to meeting this bioregion’s ongoing conservation 

planning needs. This requires a reduction in the level of assumption currently applied by 

conservation managers and replacing that assumption with data which is both relevant 

and quantifiable. This can be done by quantifying the metapopulation requirements of an 

appropriate suite of species (selected for their ability to demonstrate the effects of 

ecological impacts on ecological assemblages or for other conservation values) and using 

this data to demonstrate how species and communities will respond to changes in habitat 

values or management actions as probabilities for presence/absence. For example, where 

a site may be currently assumed to be either habitat or not habitat for species Z it is 

possible to use statistical analyses to demonstrate that, given the current set of 

management actions and habitat parameters, the probability of species Z being present at 

that site will be PxZ1 and that if these management actions and/or habitat parameters were 

to change that probability would become PxZ2. It will also be possible to calculate the 

accuracy of these models using standard statistical tests. In this way it is possible to 

effectively quantify and demonstrate how subject species and communities will respond 

to perceived changes in circumstance thereby enabling conservation managers to 

construct and apply spatial modelling applications based on quantifiable data applied 

through logic matrices such a Bayesian Belief Networks rather than on the simple 

application of assumption. In this way, quantifiable spatial models can be designed and 

applied to more effectively demonstrate the current and future needs of regional biota 

than management based largely on assumption.  In so doing, this will enable the 

development of spatial modelling applications more capable of meeting the current and 

future challenges faced by species and communities wherever fragmentation threatens 

persistence and where a rapidly changing climate exacerbates that threat.  
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 10BQuantifying habitat value using existing survey data. 3

 

3.1 23BIntroduction 

3.1.1 49BOverview 

In this chapter I will demonstrate a methodology by which habitat value can be indicated 

and quantified using readily available data applied through logistic regressions. This will 

enable conservation managers to identify and quantify habitat by determining how the 

probability of presence or absence of target species changes in response to landscape 

parameters and management regimes. This will enable conservation managers to quantify, 

model, and therefore demonstrate how target species will respond to foreseeable impacts 

and management actions.   

As discussed in ch.2, one of the major problems facing conservation managers is 

determining how to quantify the most likely outcome when assessing the consequences of 

detrimental processes, such as clearing or climate change, or implementing management 

actions, such as revegetation or incorporation of land into the conservation estate (Herzog 

et al. 2001; Lindenmayer & Fischer 2006; Greg & Andrew 2009; Holland & Bennett 

2009). 

Given the capacity to model in this way, managers can identify and prioritise threats, test 

the efficacy of potential management actions and, in light of this information, devise 

effective solutions to threatening processes (Moore & Swihart 2005; Tattoni et al. 2010; 

Yates et al. 2010b; McLane et al. 2011; Reiss et al. 2011). 

It is therefore hypothesised, that in my study region of south-western Australia, where 

much of the landscape has been, and continues to be, cleared of natural vegetation 

(Environmental Protection Authority 2007; Molloy et al. 2007; Burbidge 2010) and 

where major revegetation and conservation planning projects are being undertaken 

(Watson et al. 2008; Gondwana Link 2009; DEC 2012), conservation planning and 

management actions would benefit through managers being able to quantify the 

consequences of changes to both management actions and vegetation extent.  
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Statistical regression modelling enabling the correlation between independent, predictive, 

landscape variables and dependant, response, species variables to be identified and 

quantified is common practice in environmental modelling (Peeters et al. 1998; Brouwers 

& Newton 2009b; Gougeon 2009; Duchesne et al. 2010). In this type of modelling, a set 

of relevant predictive variables, quantifying change, is developed for a target landscape 

and these predictive variables are linked to a dependant or response variable, such as the 

presence or absence of an indicator species (Lambeck 1997; Caro 2010). It then becomes 

possible to develop a statistical model which can quantify the degree to which potential 

changes in predictive variables will bring about ecological consequences and thereby 

demonstrate the probable reactions of the subject, indicator species (Ball et al. 2005; 

Ferrier & Guisan 2006; Urban et al. 2009; Navarro-Cerrillo et al. 2011; Reiss et al. 2011; 

Broennimann et al. 2012; Guerin & Lowe 2012). 

3.1.2 50BIndicator species (response variables) 

In ch.2 I argued that biodiversity management has long been hampered by significant 

knowledge gaps, and quantifying habitat values usually involves undertaking 

comprehensive research, and that level of research is often beyond the capacity and 

resources of many project managers (Lambeck 1999; Smith et al. 2006; Environmental 

Protection Authority 2007; Pressey & Bottrill 2008). In such a scenario, assumption can 

become the primary, and often only, means of informing conservation management 

initiatives. For this reason, conservation managers often find it useful to employ the 

concepts of target, umbrella, focal, and/or surrogate species which all attempt to reduce 

inherent complexities and uncertainties by focussing on species which are deemed more 

important or influential in terms of their contribution to biodiversity patterns and/or 

processes (Lambeck 1997; Lindenmayer et al. 2002; Freudenberger & Brooker 2004; 

Collinge 2009). In so doing, managers are able to monitor and manage the response of 

ecological assemblages by identifying and quantifying the habitat requirements of a small 

number of relevant target species, rather than by trying to monitor and manage a large 

numbers of species within an assemblage (Caro 2010). 

Historically, bird species have been commonly used as indicators of habitat value in 

south-western Australia because: 1) they can be readily observed; 2) observation is 

considered to have little direct impact on the target species; 3) bird presences at the 

landscape scale are comparatively well recorded; 4) bird species within an ecological 
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assemblage will fill a variety of niches; and 5) because the presence of many species is 

directly related to variations in patch matrices and management regime, readily 

responding to changes in these variables (Lambeck 1997; Watson 2003; Huggett 2007; 

Davis et al. 2013). 

3.1.3 51BPredictive (independent) variables 

When modelling species distributions and movements in highly fragmented landscapes, 

conservation managers often conflate all patches of remnant vegetation as habitat (Hobbs 

& Saunders 1991; Lambeck 1999; Green Skills 2007; Gondwana Link 2009; Molloy et 

al. 2009). In doing this, managers make the broad assumption that all habitat is the same 

which, although potentially valid for some management applications, fails to identify or 

quantify habitat from a species-specific viewpoint. In other words, the nomination of a 

landscape attribute as habitat requires the recognition of what species it is habitat for and 

which quantifiable landscape variables can be used to define that habitat value 

(Tischendorf & Fahrig 2000a; Favreau et al. 2006; Huggett 2007; Fitzpatrick et al. 2008; 

Lindenmayer et al. 2008; Collinge 2009). This highlights the need for a conservation 

planning tool that reflects the way in which changes in management regime and 

landscape matrices impact on habitat value by quantifying the response of an indicator 

species to a proposed change in a nominated variable linked, either directly or indirectly, 

to habitat type and quality.  

Individual bird species have proven to be ideal indicator species for this type of modelling 

in the past, however, the use of individual species is inherently biased by the narrow 

focus of a single species’ habitat requirements (Lindenmayer et al. 2002; Huggett 2007; 

Beier et al. 2008; Caro 2010). Consequently I have sought to minimise this bias by 

modelling habitat value from the perspective of a set of indicator species, using both 

individual and combined species models. This method, an application of commonly-used 

statistical sampling principles (Liu & Suesse 2008; Erdbrügge et al. 2011), averages the 

response of an impact, or change in a predictive variable, over an appropriate set of 

indicator species, or response variables. In doing this, the consequences of modelled 

variations in predictive variables becomes standardised, e.g. a variation in one variable 

might have a very high or low impact on one or two indicators but a much less dramatic 

impact on the set as a whole. 
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3.1.4 52BModel development 

Outputs of models that can effectively define habitat or barriers to movement should be 

probabilistic by nature as the effects of a landscape matrix or management regime on 

habitat distribution can rarely be binary, i.e. landscape composed of habitat or non-habitat 

(Cabeza 2003; Fahrig 2007). For a given patch or landscape, a specific probability for 

presence or absence of a species can be quantified and the accuracy of that prediction 

determined (Phillips & Dudík 2008; Brouwers & Newton 2009b; Gougeon 2009; Santika 

& Hutchinson 2009; Saura & Rubio 2010; Fahrig & Triantis 2013). This can be done by 

gathering robust survey data for a subject or indicator species and matching populations 

or presences of such species with landscape variables to develop predictive models 

(Possingham et al. 1998; Tischendorf & Fahrig 2000a; Watson et al. 2005). These models 

can then be tested for accuracy, both statistically and via further field trials (Herzog et al. 

2001; Dang et al. 2010; Broennimann et al. 2012). 

Multivariate regressions enable the development of a formula that describes how changes 

in a group of independent predictive variables will impact on a response variable 

(McGarigal et al. 2000). This enables a probability for indicator species occurrence to be 

calculated based on the combined parameters of a set of predictive variables (Peeters et 

al. 1998; Brouwers & Newton 2009a; Gougeon 2009; Duchesne et al. 2010). Models 

derived through univariate regressions, although commonly used as a basis for 

quantifying presence or absence (Lambeck 1999; Lindenmayer et al. 2002; Davis 2004; 

Freudenberger & Brooker 2004; Huggett 2007), cannot account for the way that multiple 

variables tend to combine and interact to define habitat (McGarigal et al. 2000; 

Kobayashi et al. 2009; Mateo et al. 2010; Navarro-Cerrillo et al. 2011; Broennimann et 

al. 2012). For example, the habitat capacity of a remnant for a species is probably not 

simply defined by just the size of the remnant, but may well also vary in response to 

variables such as vegetation type and condition, and other landscape metrics (McGarigal 

et al. 2000; Brouwers & Newton 2009b; Saura & Rubio 2010; Broennimann et al. 2012).  

3.1.5 53BObjectives 

In this chapter I demonstrate a means by which pre-existing data can be used to 

quantifiably model the potential consequences of detrimental impacts or mitigating 

actions on habitat value at both patch and landscape levels. To do this I will: 
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1. Assess the effectiveness of using a combined set of indicator species to 

demonstrate the impacts on biota of changes in vegetation extent or management 

regime. 

2. Develop landscape-specific spatial modelling tools capable of assigning a 

probabilistic habitat value to a patch based on the habitat requirements of a set of 

indicator species.  

3. Compare these models with independent survey data for two test landscapes to 

test their accuracy. 

4. Discuss the strengths and limitations of this methodology. 

3.2 24BMethodology 

Data used for this exercise covers a 40 km radius from the township of Margaret River, 

Western Australia (Figure 7). This area selected is part of the South West Floristic Region 

(Hopper & Gioia 2004) where the original vegetation is largely fragmented 

forests/woodlands with ongoing loss of vegetation. Levels of clearing vary significantly 

between sub-regions of the SW Floristic Region. For example, although remnant 

vegetation cover in the Avon Wheatbelt Region is <20%, with some Shires having <5%, 

cover in the Jarrah Forest region is closer to 50% (McKenzie & May 2003). Furthermore, 

anthropogenic climate change is expected to have a severe impact on biota of the region 

(Opdam et al. 2009; Yates et al. 2010a; Fordham et al. 2012; Prober et al. 2012).  
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Figure 7: The project area depicting Margaret River, Collie and IBRA regions. 

 

The study area covers elements of the Jarrah Forest and Warren Interim Biogeographical 

Regionalisation of Australia (IBRA) sub-regions (Department of Sustainability 2011) and 

is situated in south-western corner of the South West Floristic Region. Geologically, this 

is where Yilgarn Craton meets and intrudes into the Albany Orogen. Dominant vegetation 

is comprised of karri (Eucalyptus diversicolor) forest on deep loams and jarrah (E. 

marginata)/marri (Corymbia. Calophylla) woodland/forest on laterite with leached sandy 

soils in depressions and plains supporting low Jarrah woodlands and paperbark/sedge 

swamps (Dell et al. 1989; Havel & Mattiske 2000). Holocene dunes with Peppermint and 

Banksia woodlands predominate in coastal areas to the north and south of the study area 

(McKenzie & May 2003). The climate for this area is described as mild Mediterranean 

with warm dry summers and cool wet winters and annual rainfall of 1000 mm and a mean 

annual maximum temperature of 21
o
C (BoM 2012) and similar patch matrices. 

Major threats to biodiversity conservation in this region include climate change (Gibson 

et al. 2010; Yates et al. 2010b), weeds (Richardson 2007), feral animals (Robinson et al. 

1993; Cowled 2009), clearing (Burbidge 2010), dieback (Phytophthora cinnamomi) 
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(Anderson et al. 2010), fragmentation impacts (Hobbs 1993b) and inappropriate fire 

regimes (Burrows et al. 2003). 

 

Figure 8: Overview of methodology used for model construction and testing. 

 

Multiple logistic regression was chosen for the development of the predictive tool as it 

enables the use of both categorical and scale predictive variables, and quantifies the 

degree to which those variables determine a response, e.g. if the area of a patch is 

changed from z to x then the probability of presence for that indicator species changes 

from Pz to Px (Januchowski et al. 2008; Brouwers & Newton 2009b; Gougeon 2009; 
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Duchesne et al. 2010; Stankowski & Parker 2010). A process to develop and test these 

models was developed from a standardised adaptive management process (Dallmeier & 

Comiskey 1998) (Figure 8). This process is described below: 

3.2.1 54BSource species survey data 

Bird survey datum is utilised because it was the only species survey data available for the 

subject landscape with sufficient sample size. This datum was sourced from the BirdLife 

Australia Atlas Database (Barrett et al. 2003). This database provided geo-referenced, 

date-coded information on bird species presence. Only species for which there were 

greater than 30 records were considered (Table 3). This figure was required as >30 

records, a minimum representative sample, are needed to have sufficient data to do 

modelling (McCullagh & Nelder 1983). The Atlas provided survey data for all surveys 

conducted within a 40 km radius of the Margaret River town site. The data set contained 

8,829 recorded bird sightings taken from 897 surveys conducted between 1998 and 2010. 

3.2.2 55BShapefile creation  

The x, y coordinates of these 8,829 sightings were used to develop a GIS shapefile using 

Arc Map® version 9.3. In doing so, it was found that many of the survey sites could still 

not be attributed to a patch of remnant vegetation (as sourced from the Department of 

Food and Agriculture Western Australia 2012 Remnant Vegetation GIS data set at 5 m 

resolution). Outlying sites that were near to remnants (<50 m) were repositioned centrally 

within those remnants as were sightings whose comments, record numbers, or place 

names allowed them to be repositioned with reasonable confidence to a particular 

remnant. Those site positions that were obviously wrong, or whose position could not be 

attributed to a patch of remnant vegetation with reasonable certainty, were deleted from 

the shapefile along with all coastal (shore and marine bird) survey records. In this way a 

GIS shapefile was produced containing the findings of 247, 2 ha (2 ha refers to a 

nominated search type in the data base) surveys conducted in terrestrial patches of 

remnant vegetation within a 40 km radius of the Margaret River town site. Given the 

defined nature of the search type and the and the experience and training given to survey 

participants through BirdLife Australia, the probability of detection for the presence and 

absence of modelled bird species has, for the purposes of this exercise, been assumed to 
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be comparable for all surveys. Survey results are therefore assumed to be directly 

comparable. 56B  

3.2.3 Data correction and editing  

To construct a database that will enable bird survey data to be compared with landscape 

parameters, individual bird survey records had to be fixed to site in a Geographic 

Information System (GIS) environment. Inconsistencies within the bird survey data meant 

that significant editing was required before this could be done. To prevent conflicts and 

minimise assumptions, only data which used the most common and current datum (GDA 

1994) were used for this exercise, and records from all other datums were disregarded. 

Multiple survey types were also recorded in the data. To achieve consistency, only 

records of the most numerous survey type (2 ha search) were used. Faults were also found 

within the remnant vegetation GIS shapefile provided by the Western Australian 

Department of Agriculture in that multiple and separate polygons within this shapefile 

were identified in this shapefile as single polygons. This was rectified by clipping a 

smaller shapefile relevant to the test area in which these linked polygons were separated. 

The shapefile with smaller remnant vegetation patches was used in this analysis.  

 

Table 3: Species used in the model testing process, i.e. those with greater than 30 Atlas records, and their 

preferred broad-scale habitats as given by Higgins et al. (2006). Woodland specialists are shaded. 

Species id. 

No. 

Species Habitat 

1 Australian Magpie 

Cracticus tibicen 

Open forest, woodland, agricultural and urban land. 

2 Australian Raven  

Corvus coronoides 

Most types except closed forest. 

3 Australian Ringneck 

Barnardius zonarius 

Tall wet forest to mallee and mulga. 

4 Common Bronzewing 

Phaps chalcoptera 

Dry forest, woodlands, mallee, heath and coastal scrub. 

 

5 Golden Whistler 

Pachycephala pectoralis 

Rainforests, open forests, woodlands, mallee and coastal 

vegetation. 

6 Grey Fantail 

Rhipidura albiscapa 

Forests and woodlands. 

7 Inland Thornbill 

Acanthiza apicalis 

Dry scrub to coastal heaths. 

8 New Holland honey-eater 

Phylidonyris novaehollandiae 

Coastal heaths to woodlands. 

9 Red Wattlebird 

Anthochaera carunculata 

Generalist, forests, woodlands and suburbs. 

10 Red-winged Fairy-wren 

Malurus elegans 

Near water and swamps in Darling and Stirling Ranges 

of south-western Australia. 
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11 Silvereye 

Zosterops lateralis 

Most natural vegetation types within their range, 

orchards and gardens. 

12 Splendid Fairy-wren 

Malurus splendens 

Forest margins to dryer inland areas, often feeds higher 

in trees and shrubs than other wrens. 

13 Striated Pardalote 

Pardalotus striatus 

Eucalypt forests and woodlands. 

14 Tree Martin 

Petrochelidon nigricans 

Open woodland. 

15 Welcome Swallow 

Hirundo neoxena 

All types, especially near water. 

16 Western Gerygone 

Gerygone fusca 

Open woodlands, mallee. 

17 Western Rosella 

Platycercus icterotis 

Open forests, woodlands and farmlands. 

18 Western Spinebill 

Acanthorhynchus superciliosus  

Heaths and woodlands. 

19 White-breasted Robin 

Eopsaltria georgiana 

Southern birds: open forests usually near streams. 

Northern birds: coastal scrubs or thickets. 

20 White-browed Scrubwren 

Sericornis frontalis 

Dense undergrowth all attitudes, including urban areas, 

salt marshes and heaths. 

21 Willie Wagtail 

Rhipidura leucophrys 

Generalist except very wet forests 

 

3.2.4 57B3Target species and habitat covariant selection 

Of the available 21 species with a sample sufficient for modelling, only nine were 

considered to be woodland specialists (Higgins et al. 2006) and therefore considered 

potentially suitable for use as indicator species (Table 4).  

Comparable modelling exercises of these nine species were undertaken using six 

predictor variables: patch size, vegetation condition, area of the nearest neighbouring 

patch, isolation, vegetation type and management regime as these variables and 

derivatives thereof figure prominently in the literature on modelling habitat values in 

fragmented landscapes. (McGarigal et al. 2000; Lindenmayer et al. 2002; Brooker & 

Brooker 2003; Fahrig 2003; Freudenberger & Brooker 2004; Moore & Swihart 2005; 

Watson et al. 2005; Huggett 2007; Urban et al. 2009). I trialled these variables, 

individually and in combination, to evaluate and quantify their influence on the presence 

of indicator species, i.e. to determine their suitability for use as predictive variables in a 

multivariate logistic regression model. Where suitable data to develop these variables was 

not available, surrogate data sets, as discussed below, were devised and trialled. As 

variables contribute differently to defining habitat for different species and a set of 

variables was required which could be applied to all nine indicator species, final selection 

of variables was based on the contribution each variable made to the set as indicated by 
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Wald chi-square statistics attained through logistic regressions (SPSS readouts, 

Appendices ch.3,1-9). 

To test for covariance in all species models, ANCOVA analyses were conducted 

(McCullagh & Nelder 1983) using SPSS 20®. ® and P values >0.6 resulted for all 

models indicating that none of the regression slope and intercept were significant. 

The BirdLife Australia dataset gives no indication of vegetation type or condition at 

survey sites. To compensate for this short-fall, GIS data bases were obtained from the 

Western Australian Department of Environment and Conservation showing different 

vestings of land (broad land tenure/ownership categories). These were used based on the 

assumption that different vestings experience particular management actions (e.g. 

prescribed fire, resource extraction such as timber harvesting, grazing by livestock) and, 

consequently, they would broadly provide some indication of vegetation condition. Seven 

vesting groups were identified for the subject landscape, these being: conservation, 

national park, none given (predominantly private land), protected, railway, recreation and 

state forest (which is subject to timber harvesting). Classification of vegetation type 

would also have been a variable worth testing, however the most suitable vegetation 

classification used in this region (Havel & Mattiske 2000) proved inappropriate for this 

landscape since most vegetation descriptions had small samples (<5).  

Five spatial variables were included in the modelling process: distance to nearest 

neighbour patch, area of remnant vegetation within 5 km and 1 km radii, patch size and 

nearest neighbour patch size. These variables were created for each survey record site 

using the FRAGSTATS application (Kupfer 2012) in ArcMap® version 10.1 

environment. These variables were then compared with species data using ACCESS® 

2007. This allowed species richness at each survey site to be modelled against individual 

landscape variables using SPSS 20®.  

The reasoning behind developing these ‘radii’ data sets was that  patch size, distance to 

nearest neighbour patch, and nearest neighbour size, and the degree of fragmentation in a 

landscape were all inherent in the radii concept. Consequently, a nominated area, such as 

the area within a radius from a chosen point, containing a high percentage of remnant 

vegetation is statistically more likely to have more and larger patches, with smaller gaps 

between those patches, than a similar area with a smaller percentage of remnant 
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vegetation (Bridle et al. 2009; McGarigal et al. 2009; Kupfer 2012). Furthermore, radii 

are not influenced by the cadastral errors such as “ghost objects” and “hidden linkages” 

that were encountered in the vegetation shapefile. The 1 and 5 km radii distances were 

selected through an exploratory process which found variables based on these distances to 

be the most effective predictive variables for most of the candidate indicator species 

(Figure 10). 

3.2.5 58BLogistic regressions  

The occurrence data for each of woodland bird species were used to construct multivariate logistic 

regression models of bird responses to the spatial variables using PASW Statistics 18® and the 

results given in the SPSS readouts (Appendices ch.3,1-9). It should be noted that the vesting for 

State Forest in all models is 0 as this was the reference condition for all other vestings (i.e., the 

comparison group).  

3.2.6 59BEvaluation and review  

Individual species models were initially evaluated by statistical testing, i.e. percentage of 

correct predictions, Hosmer and Lemeshow, and Nagelkerke R
2
 test values. These tests 

were conducted in SPSS 20® as part of logistic regression process. Summaries of these 

tests are provided in Table 4.   

3.2.7 60BFinal species selection  

Five species models were selected for incorporation into the final modelling tool as a 

confidence set (Shimodaira 1998). The reasons for this decision were: modelling with less 

than five species could give highly variable results through influence by outlier models; 

modelling with more than five species provided no discernible improvement in model 

accuracy for the additional effort or resources required; from a set of nine species model, 

removing the four least effective models meant removing those models whose 

performance was below the mean; and limiting the model to five species allowed the 

omission of less accurate species models. In so doing, it is acknowledged that although 

changing the mix of species used in the final model could result in a statistical change in 

model outputs; this risk is significantly reduced by presenting a group response to a 

change in predictive variables through the five species, confidence set approach. 

However, this potential for bias remains a concern to be monitored throughout the model 

refining process. 
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3.2.8 61BRefining the model 

When building a species distribution model based on a statistical correlative approach the 

implicit nature of this form of model must be acknowledged (Dormann et al. 2012) as the 

philosophical nature of these models, and their statistical tests, means that they are 

impossible to verify (Oreskes et al. 1994). This is because these tests rely on running 

models against the data from which they are created and can therefore give a false 

impression of accuracy. For this reason, the testing of models against independent data 

has become preferred practice in verifying model accuracy (Lawler & Edwards 2002; 

Araujo et al. 2005; Randin et al. 2006; Burns & Grear 2008; Schmolke et al. 2010).  

To develop independent test data, two test data sets were created. One was created from 

previously discarded survey records whose projections were not GDA84 datum (n=129). 

The second was extracted from a similarly developed data set taken from the Collie 

region, another Shire in the southern Jarrah Forest with comparable climate, vegetation, 

landscape fragmentation matrices and a similar set of avian fauna (n=224). Models were 

run against these test landscapes and predicted presences for each species compared with 

actual presences taken from the test data sets. Comparisons were made for individual 

species and Student’s t-Tests (paired 2 sample for means) used to compare means of 

actual presences with predicted presences. 

Models that could accurately predict presence or absence in more than 70% of cases were 

considered acceptable for further testing as this shows a statistically significant 

improvement over the 50% success rate expected from a null model (Hijmans 2012).  

This measure of accuracy depends on an arbitrary presence/absence model, i.e. not 

present is determined where P <0.5 and present determined where P ≥0.5). Although it is 

possible to develop more accurate models by altering this cut off figure from 0.5 and 

changing which variables are applied for individual species, the purpose of this exercise is 

to develop generalised tools which can be applied uniformly to a group of indicator 

species and be used by most landscape managers. Therefore such refinement was 

considered unnecessary.  

The use of a simple binary output, i.e. present or absent, is usually less accurate than the 

sum of probabilities (∑P) measurement. For example, if within a hundred sites there is a 

10% P that species Y will be present at each site we can expect a total population of 10 

(∑P) where a simple present-absent model will give a total population of 0. Inversely, if 
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the model predicted that there was a 70% P of presence at each of 10 sites, a total 

population of 10 would be given by the binary model. However, as in this case, where a 

data set is being tested against itself the ∑P will always equal the number of presences for 

each species. For this reason regression models developed for this data set are tested 

against Margaret River and Collie test data sets. 

3.2.9 62BTool production  

Selection of the five-most effective species regression models, from the nine constructed, 

was achieved by trialling the accuracy of the five most accurate models, as determined by 

statistical tests, i.e. Hosmer and Lemeshow statistics and Nagelkerke R
2
, and by 

comparing predicted presences against actual recorded presences in two independent test 

landscapes. Further statistical tests (Cox and Snell R
2
, Omnibus Squared and general 

descriptive statistics) and plots of model efficacy (ROC/AUC and Observed groups 

against predicted probabilities) are given in the SPSS readouts (Appendices ch.3,1-9). 

To convert regression outputs into a predictive tool that will enable conservation 

managers to calculate the probability for the presence or absence of a species at a 

nominated site (as long as it is comparable to the sites used in the regression), spreadsheet 

tools; i.e., a utility spreadsheet designed to automatically provide users with a probability 

for presence conditional upon having been provided with appropriate values for the five 

predictive spatial variables, for each species were developed (Appendices ch.3,1-9). 

These tools use the β coefficients for all of the covariates used in the regression and 

enable users calculate P value of any given site or scenario by changing any of the 

covariate input values. These tools have been created in an Excel® 2007 spreadsheet by 

converting the following algorithms into spreadsheet functions: 

 P = elogit/1 + elogit 

 where 

elogit= Exp. (β Constant + (β remarea x remarea) + (β NNDist x NNDist) + (β NNArea x 

NNArea) + (β Area5kBuffer x Area5KBuffer) + (β Area1kBuffer x Area1KBuffer) + (β 

VestedPurpose x1)).  

This algorithm can also be used to develop tools which will calculate the P value for 

multiple species in response to any combination of values in the nominated covariates. It 
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is also possible to substitute β coefficients with Wald statistics from the regression 

outputs where the covariates are based on scale inputs (McCullagh & Nelder 1983; 

Brouwers & Newton 2009b; Field 2009). As Wald statistics do not reflect changes in 

nominal or categorical inputs (i.e., different types of vesting), β coefficients were used for 

this exercise. 

3.3 25BResults 

The impacts of different variables and vestings varied significantly in importance 

between bird species (SPSS readouts, Appendices ch.3,1-9). e.g., based on Wald chi-

square statistics, vesting is important for the Striated Pardalote and not the Western 

Gerygone, and the amount of remnant vegetation in the 5 km buffer has a much greater 

influence on the Common Bronzewing than it has on the Striated Pardalote. Furthermore, 

the ROC/AUC plots in these readouts demonstrate how scalar variables differ in their 

predictive influence on different species. 

The number of species present in a patch varies with different vestings with the highest 

number found in state forest and the lowest found in railway reserve (Figure 9). This 

variation indicates that vesting may be an effective and important predictive variable for 

bird species richness. Similarly, when the number of bird species present are plotted 

against each landscape variable (Figure 10), a positive relationship was evident between 

species richness and the amount of vegetation within both a 1 km and 5 km buffer. Slight 

positive relationships were observed in patch and nearest neighbour patch sizes and no 

relationship was seen with the distance to nearest neighbour variable. These relationships 

are also mirrored in the ROC/AUC tests (SPSS readouts, Appendices ch.3,1-9) which 

consistently show the 1 km and 5 km buffers to be the best performing variables and the 

nearest neighbour distance variable to be the worst performing. Consequently, this nearest 

neighbour distance variable was not used in further regression modelling.  
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Figure 9: Average number of species recorded per 2 ha observation event by vesting with standard error. 

Vestings are considered and important variable as they reflect general differences in management regime 

and, therefore, condition. Those sites without a vesting relevant to conservation (mostly private property) 

were assigned to the “None given” category. 

 

Statistical tests undertaken as part of the regressions such as total correct predicted, 

Hosmer and Lemeshow, and Nagelkerke R2 along with a separately calculated ∑P value 

(the sum of all probabilities for presence), show that of the nine woodland species 

selected, eight species responded to the chosen covariates with a degree of accuracy 

capable of providing a good indication of that habitat value of a given site with prediction 

success ranging from 66 to 85% (Table 4). The full readouts for all statistical tests are 

supplied in the individual species regression tools (Appendices ch.3,1-9). 
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Figure 10: Number of species per survey site used in the GIS site shapefile relative to a) the area of remnant 

vegetation within a 1 km radius of that site, b) the area of remnant vegetation within a 5 km radius of the 

site, c) the area of the patch containing a site, d) the area of the nearest neighbouring patch to a patch 

containing a site, and e) the distance between site patches and nearest neighbour patches.   
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Table 4: Summary of regression outputs for woodland specialist spp.: number of species present in sample, 

the total of all probabilities for that species in sample, % of sites correctly predicted present, % of sites 

correctly predicted absent, % sites predicted correct overall, Hosmer & Lemeshow test results (test if model 

fits the data (significance > 0.05 = good model fit)), Nagelkerke effect size test (R
2 = 

scale 0-1).  

Species # 

Present  

Sum of 

P (∑P) 

% 

Correctly 

predicted 

present 

% 

Correctly 

predicted 

absent  

%  Total 

correctly 

predicted 

Hos. & Lemeshow Nagelk-

erke R
2
 

X
2
 df Sig  

Common 

Bronzewing 

38 38 0 100 84.6 17.04 8 0.03 0.148 

Golden Whistler 68 68 17.6 91.6 71.3 19.165 8 0.014 0.225 

Red-winged Fairy-

wren 

45 45 44.4 95 85.8 24.04 8 0.002 0.369 

Striated Pardalote 52 52 15.4 97.9 80.6 10.304 7 0.172 0.259 

Western Rosella 55 55 5.5 100 78.9 9.883 8 0.273 0.176 

Western Gerygone 60 60 15 95.2 75.7 9.38 8 0.311 0.216 

Western Spinebill 43 43 2.3 99.5 82.6 14.135 8 0.078 0.28 

White-breasted 

Robin 

56 56 46.4 91.1 81 23.769 8 0.003 0.303 

White-browed 

Scrubwren 

75 75 5.3 91.9 65.6 36.123 8 <0.001 0.159 

Mean 70.09 70.09 27.91 84.24 70.71 16.701 7.9 0.207 0.189 

 

Although the ∑P test shows a perfect correlation with recorded presences, as this test is 

examining the input presence data from which these result are derived, this result is to be 

expected as ∑P will equal input presences when regression outputs are correct. However, 

where the regression model is run against a different input data set, such as the two test 

landscapes, ∑P represents the total predicted occurrence for that species for the test 

landscape. 

Where regression models for all 9 woodland species are run against independent data 

from both the Collie and Margaret River test landscapes (Table 5) a strong correlation is 

evident between the predicted and the actual presences. This is supported by a two-tailed 

t-Test P(T<=t) value of 0.18, which at a significance value of 0.05 supports the null 

hypothesis (H0), means of presences and ∑P values for all species are the same across 

both test landscapes. On examination of this data it becomes evident that difference 

between these two values is particularly high for some “outlier” models and the removal 

of these species models would enable the development of a more effective modelling tool. 

The question then becomes one of recognising the most effective test with by which the 

five most effective species can be selected. 
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Table 5: Number of presences for each species in the test landscape data sets, the ∑P predicted by the 

models for each species as derived from the original Margaret River bird survey data set, the difference in 

number of presences between these two figures, the number of presences (binary) predicted by these 

models, the number of correct predictions, the % predictions correct and means for each category. 

Collie (N=169 sites)

Species Total Present ∑P Difference Number predicted Correct predictions % correct

Common Bronzewing 27 10 17 0 142 84

Golden Whistler 66 68 -2 57 98 58

Red-winged Fairy-wren 52 32 20 4 115 68

Striated Pardalote 76 92 -16 101 82 49

Western Gergone 97 57 40 15 77 46

Western Rosella 61 67 -6 53 101 60

Western Spinebill 39 24 15 0 130 77

White-breasted Robin 59 73 -14 91 105 62

White-browed Scrubwren 61 64 -3 26 104 62

Mean 60 54 39 106 63

Margaret River 2 (N=129 Sites)

Species Total Present ∑P Difference Number predicted Correct predictions % correct

Common Bronzewing 18 13 5 0 111 86

Golden Whistler 41 79 -38 95 67 52

Red-winged Fairy-wren 31 94 -63 100 60 47

Striated Pardalote 38 29 9 8 93 72

Western Gergone 45 53 -8 64 82 64

Western Rosella 33 61 -28 78 68 53

Western Spinebill 32 104 -72 111 50 39

White-breasted Robin 33 61 -28 64 88 68

White-browed Scrubwren 41 38 3 9 79 61

Mean 35 59 59 78 60

t-Test: Paired Two Sample for Means

Present ∑P 

Mean 47.22222222 56.59119422

Variance 388.0653595 757.9267579

Observations 18 18

Pearson Correlation 0.31269253

Hypothesized Mean Difference 0

df 17

t Stat -1.399389085

P(T<=t) one-tail 0.089839342

t Critical one-tail 1.739606726

P(T<=t) two-tail 0.179678684

t Critical two-tail 2.109815578  
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Where the four worst performing models, i.e. those with the greatest difference between 

presences and ∑P are removed for each test landscape, are removed (Table 6) the models 

become stronger and the P(T<=t) two-tail increases significantly to 0.47 reflecting an 

increased probability of H0.  However, this method effectively diminishes the test sample 

and compromises in accuracy may result. 

 

Table 6: Comparison of model outputs with presences for the 5 species with the best performing models for 

each test landscape, i.e. with outliers removed. 

Collie (N=169 sites)

Species Total Present ∑P Number predicted Correct predictions % correct

Golden Whistler 66 68 57 98 58

Western Rosella 61 67 53 101 60

Western Spinebill 39 24 0 130 77

White-breasted Robin 59 73 91 105 62

White-browed Scrubwren 61 64 26 104 62

Mean 57 59 45 108 64

Margaret River 2 (N=129 Sites)

Species Total Present ∑P Number predicted Correct predictions % correct

Common Bronzewing 18 13 0 111 86

Striated Pardalote 38 29 8 93 72

Western Gergone 45 53 64 82 64

White-breasted Robin 33 61 64 88 68

White-browed Scrubwren 41 38 9 79 61

Mean 35 39 29 91 70

t-Test: Paired Two Sample for Means

Total Present ∑P 

Mean 46.1 49.02482

Variance 234.5444444 458.6837

Observations 10 10

Pearson Correlation 0.825798147

Hypothesized Mean Difference 0

df 9

t Stat -0.75141171

P(T<=t) one-tail 0.235797896

t Critical one-tail 1.833112933

P(T<=t) two-tail 0.471595792

t Critical two-tail 2.262157163   
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By selecting the five species with the highest Hosmer & Lemeshow significance value a 

very effective modelling tool can also be produced with a very high P(T<=t) two-tail 

value of 0.67 (Table 7). Species selected in this manner can be confidently applied to all 

test landscapes. This method inherent rigour associated with a well-recognised statistical 

test applied to both test landscapes. 

 

Table 7: Comparison of model outputs with presences for the 5 species with the best performing species by 

as defined by the Hosmer & Lemeshow significance value. 

Collie (N=169 sites)

Species Total Present ∑P Number predicted Correct predictions % correct

Common Bronzewing 27 10 0 142 84

Striated Pardalote 76 92 101 82 49

Western Gergone 97 57 15 77 46

Western Rosella 61 67 53 101 60

Western Spinebill 39 24 0 130 77

Mean 60 50 34 106 63

Margaret River 2 (N=129 Sites)

Species Total Present ∑P Number predicted Correct predictions % correct

Common Bronzewing 18 13 0 111 86

Striated Pardalote 38 29 8 93 72

Western Gergone 45 53 64 82 64

Western Rosella 33 61 78 68 53

Western Spinebill 32 104 111 50 39

Mean 33 52 52 81 63

t-Test: Paired Two Sample for Means

Actual ∑P 

Mean 46.6 50.8705

Variance 594.0444444 1026.3

Observations 10 10

Pearson Correlation 0.447921177

Hypothesized Mean Difference 0

df 9

t Stat -0.44502081

P(T<=t) one-tail 0.333407563

t Critical one-tail 1.833112933

P(T<=t) two-tail 0.666815127

t Critical two-tail 2.262157163  
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By using removing individual species models with low Nagelkerke R
2
 values (Table 8), 

an effective model can also be produced which also uses a full test landscape and a well-

supported statistical methodology. However with a P(T<=t) two-tail value of 0.32 and a 

greater variation between presences and ∑P this method is less effective than using the 

Hosmer & Lemeshow test. 

 

Table 8: Comparison of model outputs with presences for the 5 species with the best performing species by 

as defined by the Nagelkerke R
2
 test. 

Collie (N=169 sites)

Species Total Present ∑P Number predicted Correct predictions% correct

Red-winged Fairy-wren 52 32 4 115 68

Striated Pardalote 76 92 101 82 49

Western Gergone 97 57 15 77 46

Western Spinebill 39 24 0 130 77

White-breasted Robin 59 73 91 105 62

Mean 65 56 42 102 60

Margaret River 2 (N=129 Sites)

Species Total Present ∑P Number predicted Correct predictions% correct

Red-winged Fairy-wren 31 94 100 60 47

Striated Pardalote 38 29 8 93 72

Western Gergone 45 53 64 82 64

Western Spinebill 32 104 111 50 39

White-breasted Robin 33 61 64 88 68

Mean 36 68 69 75 58

t-Test: Paired Two Sample for Means

Total Present ∑P 

Mean 50.2 61.85577

Variance 470.4 819.8172

Observations 10 10

Pearson Correlation 0.021203944

Hypothesized Mean Difference 0

df 9

t Stat -1.036783036

P(T<=t) one-tail 0.163444667

t Critical one-tail 1.833112933

P(T<=t) two-tail 0.326889334

t Critical two-tail 2.262157163   
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As all species models are either “good” or very close to good statistically (Hosmer and 

Lemeshow significance is >0.05), it is also valid to select species models by simple 

efficacy (Table 9). By using the five species models with the highest percentage of 

correct prediction and applying them to the test landscapes compliance between total 

presences and ∑P  remains very strong and the P(T<=t) two-tail value of 0.94 is 

excellent. Consequently this set of species was selected for use in the final modelling tool. 

 

Table 9: Comparison of model outputs with presences for the 5 species with the highest % correct for the 

Margaret River 2 sample.  

Collie (N=169 sites)

Species Total Present ∑P Difference Number predicted Correct predictions % correct

Common Bronzewing 27 10 17 0 142 84

Striated Pardalote 76 92 -16 101 82 49

Western Gergone 97 57 40 15 77 46

White-breasted Robin 59 73 -14 91 105 62

White-browed Scrubwren 61 64 -3 26 104 62

Mean 64 59 47 102 60

Margaret River 2 (N=129 Sites)

Species Total Present ∑P Difference Number predicted Correct predictions % correct

Common Bronzewing 18 13 5 0 111 86

Striated Pardalote 38 29 9 8 93 72

Western Gergone 45 53 -8 64 82 64

White-breasted Robin 33 61 -28 64 88 68

White-browed Scrubwren 41 38 3 9 79 61

Mean 35 39 29 91 70

t-Test: Paired Two Sample for Means

Total Present ∑P 

Mean 49.5 49.0095

Variance 575.1666667 692.154

Observations 10 10

Pearson Correlation 0.714541407

Hypothesized Mean Difference 0

df 9

t Stat 0.081110209

P(T<=t) one-tail 0.468564702

t Critical one-tail 1.833112933

P(T<=t) two-tail 0.937129403

t Critical two-tail 2.262157163
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3.4 26BDiscussion 

3.4.1 63BThe effectiveness of a combined set of indicator species 

The use of multiple indicator species to define a habitat value and to monitor change in 

that value has long been common practice in conservation management (Karr 1991; 

Cairns et al. 1993; Tjørve 2002; Herman et al. 2005), and the use of multiple bird species 

as indicators of habitat value been shown to be effective for this purpose (Lambeck 1997; 

Tjørve 2002; Gregory et al. 2005; Watson et al. 2005; Huggett 2007). In this exercise the 

use of multiple indicator species has been taken one step further, in that, although 

probabilities of presence for individual species are given to show a species response to 

changes in a generic set of habitat parameters, a combined model is also given to indicate 

a median response as an implicit habitat value.  

When model outputs were tested against survey results for two comparable test 

landscapes, the results showed the model to be capable of a high level of accuracy for 

indicator species, individually and collectively (Table 7). Although it can be argued that 

the collective model is a more effective indicator of habitat value than the individual 

models, because of the statistical propensity for larger and more diverse samples to 

reduce the influence of outlier (non-conforming) models and because it implicitly 

considers a greater diversity of habitat requirements and perspectives, the needs of 

individual species, particularly conservation priority species, may not be reflected in the 

collective model (Bonn & Schröder 2001; Herman et al. 2005; Franklin 2010). Therefore, 

a modelling tool with the capacity to reflect responses from both explicit species specific 

and implicit generalised perspectives in a complimentary manner will provide a more 

robust insight into the consequences of changes in predictive variables than a single 

species or combined model alone (Bascompte & Solé 1996; Hui et al. 2006; Dormann et 

al. 2012). These values have been incorporated into the development of the spreadsheet 

tool which can instantly demonstrate individual and collective responses to modelled 

change (Appendix 3.1.10). 

3.4.2 64BTool development 

Models used by conservation managers are often based on univariate regressions that 

combine dependant variable data based on species survey data with single quantifiable 

landscape variables (Brooker & Brooker, 2002; Huggett, 2007; Watson et al., 2005). 
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However, rarely is a single variable responsible for defining habitat for any species or 

community. As previously discussed, the habitat value of a patch is defined by a 

combination of variables, many of which are quantifiable. Therefore the use of 

multivariate logistic regression models is an inherently more effective tool for defining 

habitat as it allows the use of the multiple covariates which better portray how habitat is 

quantified (Baker & Harris, 2007; Brouwers & Newton, 2009b; Duchesne et al., 2010; 

Peeters et al., 1998). Furthermore, inexpensive and readily available software packages 

now make the development and application of models based on logistic regressions a 

viable option for conservation managers who, because of skill and resource limitations, 

were previously unable to define habitat values and to demonstrate how species or 

communities would react to impacts or management actions. 

3.4.3 65BComparing models with independent test landscapes 

Wald and chi-square statistics (SPSS readouts, Appendices ch.3,1-9) indicate that, while 

models developed for individual indicator species can be very accurate predictors of 

response, this is not always the case. Therefore, the question became how to select the 

best species models for use in the combined model? The inherent limitations of applying 

statistical tests (Dormann et al., 2012) meant that the value of these tests the best 

performing models for incorporation into a multi- species model. 

To select the five best performing species models and to improve the integrity of the final 

combined model, it was found that the selecting species with the highest predictive 

success rate provided an effective means of selecting the most appropriate species 

models. However, in comparing populations of individual species there will always be 

stochastic anomalies. To minimise the impacts of these anomalies, the use of a mean ∑P 

for all species becomes a suitable, repeatable, quantifiable and reliable measure of habitat 

value for this set of species. Therefore, a mean ∑P model was selected for adoption as a 

suitable model for indicating a generalised habitat value in the Margaret River area and 

for demonstrating how changes to modelling covariates will impact upon that habitat 

value. 

3.4.4 66BStrengths and limitations 

This exercise has used a reactively selected set of species with the intention of delivering 

a quantifiable and generalised perspective of habitat using generic and readily available 
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data. Its methodology can therefore be considered reactive in that it is driven by 

circumstances rather than being proactive in identifying surrogate species or communities 

for a specific purpose and gathering variable data which accurately reflects their 

requirements. Unfortunately this degree of specificity is all too often beyond the skills 

and resources of many conservation managers (Caro, 2010; Collinge, 2009). This 

methodology has been developed in response to the needs of conservation managers in 

this situation. Consequently, it is acknowledged that methodology has produces some 

statistically weak species models and therefore should be used as an alternative for more 

specific or proactive applications; instead, it is intended as a substitute for such models 

where resource limitations make more specific modelling impractical. Furthermore, 

through its application this methodology does demonstrate the need for more specific 

modelling and inspires the development of more relevant and detailed variant data sets 

such as block size, vegetation type, vegetation conditions, and management regimes.  

The major limitations of this methodology as applied in this exercise are: 

 Large sample sizes are required to make categorical covariates effective. 

 Models inputs are limited to the range parameters of the landscape data used in the 

logistic regression: e.g., if the range of the 1 km buffer values was from 86-

360,000 m
2
, then values outside of this range would negatively affect model 

accuracy. Model parameters are given in the combined species modelling tool 

(Appendix 3.1.10). 

 The probability of presence for all indicators will vary with differing vegetation 

types. This model has been designed to work at the landscape scale within the 

Margaret River region and generically applied the proportional mix of vegetation 

types found within that landscape. Therefore, the disproportionate application of 

this model to individual vegetation types will skew results. 

 The set of covariates selected are generic in nature, having been selected to model 

the needs of a broad set of species. It is probable that more effective covariate data 

sets could be developed to address the needs of individual species. 

 Species models used have been selected as broad woodland specialists from which 

survey data can be used to produce statistically valid models with the covariate 
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data supplied. The selection of surrogate species which, by their presence or 

absences from sites can determine a specific response to an impact or habitat 

characteristic would enable the development of models which would provide a 

more effective basis for modelling habitat value. 

 Obtaining and applying covariate data sets which pertain more directly to those 

factors which define habitat for individual species could also be used to make 

models more effective and informative. 

 It should always be recognised that the purpose of this, like any form of Spatial 

Distribution Model SDM, it to inform the planning process, not to replace it.  

 This form of model is largely implicit by nature and relies therefore relies heavily 

on assumption. The use of independent test landscapes goes a long way 

minimising the level of assumption, but there remains an inherent weakness that 

should be acknowledged. Therefore model outputs should always held to an 

appropriate level of scrutiny.  

 Probability maps were attempted but the results were very disappointing due to 

the large and varied area of the test landscape and the nature of the predictive 

tools: i.e. such maps were dominated by large patches, which by their nature were 

generally uniform in modelled values Meanwhile, the smaller patches, in more 

fragmented parts of the landscape, which gave greater variation in probability 

value did not show up. Therefore when producing probability maps at a landscape 

scale (as required for this purpose) it appeared that there was negligible variation 

in habitat value at even the highest practical resolutions hence they were not 

considered suitable for inclusion in this thesis. 

Despite these limitations, this methodology can provide a repeatable and quantifiable 

insight into the habitat value of a nominated site and demonstrate how habitat value may 

change in response to changes in one or more of the input variables. This will enable 

conservation managers to: develop databases which will enable them to accurately model 

probabilities for presence and absence for a broad set of species; choose species models 

that will enable them predict the consequences of management actions or ecological 
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impacts and thereby enable conservation managers to identify, develop and incorporate 

variable databases that will make modelling more activities more effective. 

To date, conservation management and planning in south-western Australia, as in much 

of the world, has largely relied on an assumed habitat value for revegetation, clearing and 

reserve design (ch.2). The tool developed in this exercise is capable of quantifying the 

consequences of all of these impacts and modelling a range of management action 

scenarios by using no more than the software, skills and resources which are normally 

available to conservation managers. It should be noted that this is a demonstration 

exercise on the value and application of logistic regression outputs and that this 

methodology can, with appropriate regard given to its limitations, be readily altered to 

allow other predictor variables and indicators to be used in order to model the potential 

impacts of different threats in different landscapes. Therefore, tools based on logistic 

regression represent an opportunity to add quantifiability and rigor to the planning 

process. 

3.5 27BConclusions 

This chapter provides a demonstration of how available survey data can be used in 

conjunction with spatial and management-related variables to build statistical models 

capable of quantifying and demonstrating changes in habitat value as a consequence of 

losing and/or degrading native vegetation. It also allows conservation managers to model 

the potential consequences of their management actions. For example, multiple 

revegetation scenarios could be modelled where potential revegetation projects, differing 

in site and extent, are run and the results of this exercise used to determine the best 

approach to improve landscape habitat value or to mitigate a potential threat. Similarly, 

multiple changes in vesting might be modelled to inform the selection of conservation 

estate.  

These models, developed through multivariate logistic regressions can be applied to 

quantify impact responses for many species and communities where adequate survey data 

is obtainable and a response in that data to a variation in one or more nominated habitat 

parameters can be observed and quantified. Habitat variables as diverse as vegetation type 

and condition, fire or management regime, climate, geology, topography or hydrology 

can all be applied to species survey data through multivariate regressions to produce 
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simple models with the capacity to quantify habitat from a species or community specific 

perspective and to quantifiably demonstrate how changes to that habitat will effect 

populations of target species.  

3.6 28BCaveat 

The author readily acknowledges that modelling based on a set of bird species alone may 

bias the findings of this exercise to a degree and that the use of a broader and more 

diverse set of species would have the potential to provide more robust findings. However, 

such data, as is often the case in conservation management, was not available. It is also 

not the intention of the author to demonstrate the quantification of habitat for individual 

target species; although this methodology could certainly be adapted to that purpose. 
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 11BInforming species management in a fragmented landscape; a case 4

study of the koomal (Trichosurus vulpecula hypoleucus 

(Phlangeridae)). 

 

4.1 29BIntroduction 

In this chapter I demonstrate a means by field studies can provide data on a target species 

which can used to facilitate and enhance species specific spatial models. The amount and 

type of datum gathered in this exercise was therefore limited to that deemed suitable for 

that purpose. 

Climate change presents a major threat to global biodiversity with significant impacts 

predicted in south-western Australia (Sgrò et al. 2011; Adams‐Hosking et al. 2012; 

Crossman et al. 2012; Prober et al. 2012). As global warming progresses, it is envisaged 

that these impacts will continue to increase in both magnitude and frequency throughout 

the current century (CSIRO & BOM 2007; IPCC 2007; Hughes 2011; Richardson et al. 

2011).  

Climate change has long been considered a driver of evolution in that species are forced 

to either adapt to their new and altered environment or become extinct (Hopper 2009; 

McInerny et al. 2009; Castro et al. 2010; Gross 2011; Gilman et al. 2012; Shoo et al. 

2013). Therefore, to persist in a rapidly changing climate, species must; adapt to their  

altered environment (if species plasticity allows), migrate to a suitable climate or find a 

refuge affording the opportunity of adaptation(Watson et al. 2005; Beaumont et al. 2007; 

Carnaval & Moritz 2008; Dunlop & Brown 2008; Fitzpatrick et al. 2008; Fordham et al. 

2012).  

In a highly fragmented landscape, both movement and habitat values can be significantly 

impaired (Fahrig 2003; Hobbs & Yates 2003; Lindenmayer & Fischer 2006; Fischer & 

Lindenmayer 2007; Holland & Bennett 2009). Patches in fragmented landscapes have a 

tendency to be both fragile (i.e. susceptible to environmental impacts) and, as a 

consequence, degraded. This is because they lack the resources to support viable 

populations of a full suite of species and because movement between them is, to varying 

degrees, impaired (Hobbs & Yates 2003; Pryor 2003; Moore & Swihart 2005; 

Lindenmayer et al. 2008; Collinge 2009; Robertson & Radford 2009; Davis et al. 2013). 
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Consequently, the habitat value of apparently similar patches (and their ability to meet a 

species’ requirements) may vary significantly, and by extension, conservation 

management in a fragmented landscape relies on the manager’s ability to quantify habitat 

for a target species (Pryor 2003; Moore & Swihart 2005; Lindenmayer et al. 2008). 

Inherent in the fragmentation process is the establishment of gaps between patches of 

habitat and the creation of infrastructure, all of which can impede the movements of 

wildlife (Hobbs & Yates 2003; Collinge 2009; Robertson & Radford 2009). The degree to 

which these obstacles restrict the movement of a species is defined by the individual 

characteristics and requirements of that species (Tischendorf & Fahrig 2000a; 

Amarasekare & Possingham 2001; Hanski & Ovaskainen 2003; Holland & Bennett 2009; 

Robertson & Radford 2009). For example, a gap between patches which may be a near 

impenetrable barrier to a small passerine bird, might not present any difficulty to a larger 

raptor. Therefore, the management of a species in a fragmented landscape largely requires 

the capacity to identify and quantify a barrier to movement for a target species (Belisle & 

Desrochers 2002; Fischer et al. 2004; Klausmeyer & Shaw 2009; Robertson & Radford 

2009).  

Although habitat fragmentation is inherently focussed on patches and has received much 

attention in the literature, it is now generally accepted that species in fragmented habitats 

often respond to management at a landscape scale. McIntyre and Hobbs (1999) propose a 

move away from considerations of individual fragments and urge consideration of the 

intactness of landscapes, or landscape fragmentation. As most species respond at the 

landscape scale, as defined by Tischendorf & Fahrig (2000), it may be the overall amount 

of vegetation in the landscape that is important, rather than the nature of the fragments 

themselves. This is particularly so for species which are dispersive or form 

metapopulations. This approach has been adopted by others and shown to produce 

realistic outcomes for managing species in both urban and rural landscapes (Davis et al. 

2013). For the purposes of the rest of this chapter, landscape fragmentation refers to the 

intactness of a defined focal landscape, rather than a focus on individual remnants per se. 

Although landscape fragmentation has a detrimental impact on most species, the 

combined impacts of climate change and landscape fragmentation have the potential to be 

catastrophic for many species throughout the world (Pearson 2004; Pearson & Dawson 
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2005; Vos et al. 2008; Yates et al. 2010b; Ramachandra & Uttam 2011; Sgrò et al. 2011; 

Cormont et al. 2012; Lawson et al. 2012; Shoo et al. 2013). To manage and ameliorate 

these impacts, biodiversity managers must be able to quantify the metapopulation 

requirements of species and the degree to which fragmentation impacts on these 

requirements (Lambeck 1999; Tischendorf & Fahrig 2000a; Fischer et al. 2004; Watson 

et al. 2005; Beier et al. 2008; Holland & Bennett 2009). 

Endemic to south-western Australia, the koomal (Trichosurus vulpecula hypoleucus 

Phlangeridae), is a geographically isolated and distinct sub-species of the common 

brushtail possum, an arboreal marsupial (Kerle et al. 1991). It is a morphologically 

distinct sub-species of T. vulpecula, being considerably smaller in size, having a more 

omnivorous diet and denser fur than other sub-species (Kerle et al. 1991; How & Hillcox 

2000; Wayne et al. 2005b). Since European settlement, the koomal has undergone a 

significant decline in both distribution and population size, now occupying less than 50% 

of its original distribution (How & Hillcox 2000; Jones 2004) (Figure 11). The reason for 

this reduction has largely been attributed to habitat loss and landscape fragmentation, 

habitat alteration/degradation and predation from the European red fox (Vulpes vulpes) 

and feral cats (Felis catus) (How & Hillcox 2000; Jones 2004). Historically, disease and 

commercial hunting have also taken their toll (Shortridge 1909). Consequently, the 

koomal has a conservation listing of “Lower Risk” (near threatened) (Maxwell et al. 

1996). Although the koomal has been studied in relatively contiguous landscapes 

(Sampson 1971; Jones & Hillcox 1995; How & Hillcox 2000; Wayne et al. 2005b; 

Grimm & De Tores 2009), much of its habitat lies within highly fragmented landscapes 

(Sampson 1971; How & Hillcox 2000; Jones 2004). Furthermore, much of the koomal’s 

current distribution occurs in fragmented landscapes which are already subject to the 

initial impacts of climate change (Burbidge 2010; CSIRO & BOM 2012).  

Studies on populations of other sub-species of the common brushtail possum and other 

species of brushtail possum, which have been impacted by fragmentation, show changes 

in: demography (Stow et al. 2006); resource availability and utilisation (Harper 2005; 

Harper et al. 2008); and restriction of movement, thereby restricting metapopulation 

movements, access to resources and exposing individuals to an increased risk of predation 

(May & Norton 1996; Lindenmayer & Fischer 2006).  
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Although no similar studies have been undertaken on koomal populations resident in 

fragmented landscapes, studies have been undertaken in relatively contiguous habitats 

(Sampson 1971; How & Hillcox 2000; Wayne et al. 2005b; Grimm & De Tores 2009).  

This provides an excellent opportunity to compare findings and draw conclusions on the 

impacts of fragmentation on this taxon. 

Facing the dual threat of fragmentation and climate change, persistence for the koomal 

relies on its capacity to find and exploit suitable refuges. To do this, koomal must have 

landscapes which provide it with suitable habitat and the capacity to access that habitat.  

The effects of landscape fragmentation on the koomal are poorly understood. This 

research tests the hypothesis; that fewer koomal will be found in more fragmented 

landscapes with less movement between more isolated patches. This is done by 

investigating: a) how landscape fragmentation impacts on population demographics; b) 

which variables define a patch as suitable koomal habitat in a fragmented landscape; and 

c) the capacity of the koomal to move through a fragmented landscape. Effective 

management of this taxon, like many others facing the same threats throughout the world, 

is reliant on the ability to determine these three factors (Tischendorf & Fahrig 2000b; 

Paull 2003; Robertson & Radford 2009; Ramachandra & Uttam 2011; Schooley & 

Branch 2011; Sgrò et al. 2011).  

To achieve our objective, a year-long study of a population of koomal in a pre-defined 

fragmented landscape was undertaken in the Margaret River region of south-western 

Australia. Activities undertaken in this focal landscape were: trapping (catch mark and 

release), radio tracking of individuals and observations on vegetation type, condition, 

extent and structure. Although I did not have a control in a contiguous landscape due to 

logistical constraints, demographic data were compared with koomal studies in a number 

of contiguous landscapes to assess the degree to which landscape fragmentation impacts 

on koomal demographics. Trapping and radio tracking data were compared with 

landscape observations to determine predictive habitat variables. Trapping and radio 

tracking data were also used to plot landscape movements and gap crossing behaviour. 



75 

 

 

Figure 11: Koomal distribution at multiple timeframes. 

 

4.2 30BMethodology 

4.2.1 67BStudy area 

The study area, or focal landscape, was selected as being representative of the fragmented 

landscapes which comprise much of the koomal’s habitat. It is comprised of a number of 

patches of remnant vegetation situated on four adjoining private properties in the Bramley 

Catchment, approximately 7 km NW of the township of Margaret River, Western 

Australia (Figure 12). The property owners state that all of these properties have been 

partially cleared for agricultural purposes since the early 1930s (although only one is 

currently in agricultural production). All native vegetation in this area has been subject to 

commercial timber harvesting (up until the late 1970s). Foxes and feral cats, major 

predators of koomal (Jones et al. 1994; de Tores et al. 2004; Possingham et al. 2004; 

Wayne et al. 2006), were regularly encountered during the course of this fieldwork and 

are assumed to be abundant. The only control for these predators undertaken within the 

study area was irregular shooting undertaken by one of the property owners.  
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Figure 12: Study landscape 

 

The study area is within the southern Jarrah Forest biogeographic subregion of south-

western Australia (Thackway & Cresswell 1995). It has a Mediterranean climate of mild, 

wet winters and hot, dry summers. Annual average rainfall for this area is approximately 

1100 mm, nearly all of which falls between May and November (Hearn et al. 2003; BOM 

2012). Vegetation is largely dry, sclerophyll forests and woodlands dominated by jarrah 

(Eucalyptus marginata) and marri (Corymbia calophylla) over landforms that are gently 

undulating to incised over a granite basement  with numerous weathered granite outcrops 

and lateritic cap-rock formations common on higher ground. Soils range from highly 

lateritic in higher ground through to sandy duplexes in lower ground with heavy, clay 

podzols in low lying areas (Figure 13) (Dell et al. 1989; Havel & Mattiske 2000; Hearn et 

al. 2003).  
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Figure 13: A map of the vegetation complexes for the study landscape (above) and a topographic 

representation of those vegetation complexes from Havel and Mattiske (2000) (below). 

¯
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4.2.2 68BVegetation Mapping 

Successful conservation of the koomal relies on the ability to quantify habitat values. To 

that end, vegetation type, condition and canopy characteristics were mapped in the project 

area, and the results compared with koomal dispersal and occupancy data from trapping 

and tracking studies. Vegetation is described by canopy plant species, structure, condition 

and fire history using the methods and definitions described in Molloy et al. (2007). The 

results of this exercise are shown in Figure 14 and described in Table 14.  

 

Figure 14: Vegetation mapping. Vegetation descriptions in Table 14. 

 

Koomal are predominantly a folivore (Kerle et al. 1991; Grimm & De Tores 2009). 

Persistence was therefore assumed to be linked to habitat characteristics such as canopy 

cover, foliage cover, and consequently, leaf area index (LAI). LAI, an often used 

environmental parameter in habitat assessment, is defined as one-sided leaf area cover 

over ground and is given as an area of cover over a unit of ground area, or as a ratio 

(Coops et al. 2004; Macfarlane et al. 2007). To test if there is a link between LAI and 

koomal abundance, an average LAI was calculated for each mapped vegetation type by 

adapting the methodology described by Macfarlane et al. (2007). To do this, five 
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photographs were taken of the canopy for each vegetation type at 10 m intervals at 1.2 m 

in height along a transect using a tripod mounted digital SLR camera. Photographs were 

taken using time delay to avoid shudder and were taken in morning light against a 

cloudless or uniformly grey sky to prevent excessive glare and to enable good canopy 

definition. Photographs were not taken directly beneath mid-level shrubs. Canopy cover 

(Fc), foliage cover (Ff) and LAI are then calculated for each photograph. Calculations are 

given as LAI=FcInv(1-Ff/Fc)/k, (k is assumed to be 0.5), Fc =1-Gl/Pixt, Ff =1-Gt/Pixt. 

Pixt refers to the total number of pixels in a photograph. GI refers to the total number of 

pixels in large gaps in canopy (greater than 1%) and Gt figures to the number of pixels in 

all gaps in canopy cover. Pixel counts are obtained using Photoshop CS6 ® software. 

Outputs are included in vegetation descriptions (Table 14). 

4.2.3 69BTrapping and Tracking 

Mark capture and release trapping occurred over a twelve month period. To investigate 

dispersal, radio tracking was undertaken concurrently using a representative group of 

trapped individuals (Lindenmayer et al. 1997; Lindenmayer et al. 2004; Harper 2005). 

A series of 36 trap sites were established across the study area (Figure 15). Patches for the 

study were selected in a typical landscape for this area in regard to landscape metrics 

(Herzog et al. 2001; Cunningham & Johnson 2011; Kupfer 2012), land use, structural 

heterogeneity and management practices. Trap sites were then chosen by overlaying a 

100 m square grid over patches with one trap placed in each grid square at a site selected 

as representative of that square’s vegetation and at a minimum distance of 100 meters 

apart. Traps were not set in shrublands as these are not recognised koomal habitat (Kerle 

et al. 1991; How & Hillcox 2000; Jones 2004). Trapping was conducted on a seasonal 

basis with an average of three trapping periods per season with trapping being conducted 

over three to five consecutive nights for each period for a total of 52 nights. This gave a 

total of 1,872 trap nights. Trapping periods were originally intended to be conducted over 

a single 4 night period per month; however this had to be varied because of severe 

weather events and logistical problems. Traps were of the medium Sheffield wire cage 

type, i.e. of a small wire cage traps, and these were baited with a 60/40 mixture of peanut 

butter and rolled oats. 
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Figure 15: Trap sites. 

 

A total of 11 animals had radio tracking devices fitted at various stages throughout the 

project ranging in periods from several weeks to the full length of the project (Table 18). 

Collared animals were tracked one day per week by triangulation to a daylight nesting 

site, over the full term of the project. Positions were taken with a hand held GPS to the 

northern side of the trunk of tree within which the subject was located. GPS analysis of 

error was normally <5m however this was sometimes exceeded. Readings with an 

analysis of error >10 m were not used. Tracking equipment was supplied by Sirtrack 

International. Animals fitted with “C” type collars (Table 9) were fitted with VSC 162D 

VHF transmitter collars. Animals fitted with “T” type collars were fitted with cable tie 

collars incorporating ZV1G 118 glue on VHF transmitters. The receiver used was a 

R1000 unit fitted to a yagi folding antenna. 

4.2.4 70BAnimal Handling and Data Collection 

All traps were cleared as soon as daylight permitted. All koomal were micro-chipped 

using Global-ident FDX-B transponders and weighed on initial capture. Sex was also 

determined and pouches were examined in all females to determine if pouched young 

were present or if pouch condition indicated detached young. Comments were also made 
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on the general condition of the animal and any observations deemed relevant. All animals 

were processed at the capture site and immediately released after processing. To minimise 

stress, animals were only processed in this manner once per season. Any animals 

recaptured within the same season were immediately released once they were identified 

and their capture recorded. All non-target species captured, other than quenda (Isoodon 

obesulus fusciventer), were immediately released without processing. Quenda datum was 

gathered concurrently for another study. All data was recorded onto pro forma sheets in 

the field and entered into an electronic database immediately on completion of daily 

fieldwork. 

4.2.5 71BNesting Trees 

For koomal to persist they require trees within which they can nest or den (Bennett et al. 

1994). Nesting hollows were not counted as individuals were observed using hollows less 

than 10 cm in diameter and it was felt that an accurate count of hollows could not be 

obtained. Furthermore, previous studies had shown that the documentation tree 

characteristics can be used as metrics in modelling brushtail possum habitat (Ji et al. 

2003; le Mar & McArthur 2005). To better understand what characteristics a tree must 

have for a koomal to nest in them, the nesting trees of radio tracked individuals were 

photographed; tree species were recorded, as was trunk girth at a height of 1.5m above 

ground. This data was then compared with a baseline tree sample. To obtain this baseline 

sample, five 50m random transects (chosen as being representative of the described 

vegetation type) were walked, along each of which the species and girth of ten trees were 

recorded. Roosting, or denning, behaviour was only observed for radio-tracked 

individuals. 

4.2.6 72BHome Range Estimates 

Home ranges were estimated for all individuals that were radio tracked or captured five or 

more times. Koomal captured less than five times were not included in this exercise 

because the high number of transient individuals in this group were seen as a potential 

source of bias. Home ranges were estimated using a kernel density analysis using the 

Hawth’s Tools (Beyer 2004) application in a GIS environment, with home range 

nominated as being within the 95% probability isopleth. Both likelihood and least squares 

cross-validation methods were trialled in setting smoothing factors (Horne & Garton 
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2006) but these resulted in over-smoothing. A smoothing factor of 0.75, as used by 

Grimm and De Tores (2009), was found to provide more appropriate results and therefore 

was adopted for this exercise. Home range isohyets, with movements overlaid were then 

compiled as maps for individual animals to demonstrate the relationship between 

movements and modelled home ranges (Appendices ch.4,1-26). Home range isohyets 

were then clipped to the remnant vegetation shapefile (Figure 14) to remove cleared areas 

from the kernel analyses, on the assumption that these areas (although traversed by 

koomal) do not contribute to habitat. 

4.2.7 73BData Analysis 

To determine the habitat value of individual vegetation types (Table 14), average 

numbers of captures and the number of individual koomal were calculated for traps in 

each vegetation type (Table 15) (vegetation types without traps were not included in this 

exercise). These averages were then tested against probable habitat parameters by plotting 

relationships and obtaining regression (R
2
) values. These values were obtained through 

standard linear regressions between trap results and potential habitat parameters. The 

purpose of these values is to provide an indication on the influence of each parameter on 

koomal presence. To test for variability in home range size relative to vegetation type a 

Kolmogorov-Smirnov test was undertaken (Melles et al. 2009). Attempts at defining 

vegetation preference within home range using a permutation test (Potvin et al. 2001) 

failed as the test landscape is too metrically uniform in terms of spatial features: i.e. the 

fragstat analyses did not provide a diverse enough sample. 

It is noted that although density alone may not be a good indicator of habitat value (Van 

Horne 1983) the weights, high fecundity rate and generally good condition of this 

population, indicate that density is a valid indicator of habitat value for koomal in the 

context of the subject landscape. 

All GIS data was analysed using ArcMap 9.3®. Kernel movements and ranges were 

analysed using Hawth’s Tools (Beyer 2004). Populations were analysed using the Popan 

Jolly-Seber model contained in the Programme Mark software package (White & 

Burnham 1999). Population densities were calculated simply as remnant vegetation area 

(ha.) across the whole target landscape divided by average population. Data was 
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contained and manipulated in a Microsoft Access® database. Additional statistical 

analyses were undertaken with SPSS 20®. 

 

4.3 31BResults 

4.3.1 74BKoomal surveys 

In the focal fragmented landscape, 61 koomal were captured and micro-chipped (pouched 

young were not micro-chipped or counted) with a total of 360 captures. Of the animals 

captured; 31 were males of which 19 were adult, 11 sub-adult and 1 juvenile, and 30 were 

females of which 27 were adult, 1 sub adult and 2 juvenile. Sub adults were classified as 

animals whose weight was less than 1,200g (Wayne et al. 2005b) at the time of their first 

capture, and juveniles classified as those who were still with their mother at the time of 

first capture. Mean number of captures per trap night was 6.3 for males and 5.1 for 

females (Table 10). 

 

Table 10: Mean number of captures per night for females and males 

  Females Males 

Mean 5.07 6.32 

S.E. ± 1.04 1.03 

Median 2 4 

StDev. ± 5.67 5.73 

Minimum 1 1 

Maximum 18 23 

Sum 152 196 

Count 30 31 

  

The first four trapping periods produced low numbers of individuals with comparatively 

low recapture rates (Table 11). Observations of koomal in the field indicated that 

populations were much higher than capture rates suggested. It was hypothesised that this 

may be because both Jarrah and Marri were flowering heavily, and as koomal are known 

to feed on nectar and flowers in the summer and early autumn months (Cruz et al. 2012), 

it was decided to suspend trapping until the flowering event had subsided. When trapping 

was resumed (period 5), capture and recapture rates were much higher and remained 

relatively consistent for the rest of the study.  
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Table 11: Capture by trapping period, showing number of captures (Capt.), number of individuals (Ind.) 

captured during that capture period and demographics for those individuals. 

     Male Female 

Period From To Capt. Ind. Adult Sub.  Juv. Adult Sub. Juv. 

1 1/12/2011 5/12/2011 9 9 2 1 0 5 0 1 

2 16/12/2011 18/12/2011 9 7 4 1 0 2 0 0 

3 3/01/2012 5/01/2012 7 6 2 2 0 2 0 0 

4 23/01/2012 26/01/2012 10 7 2 2 1 2 0 0 

5 11/04/2012 15/04/2012 34 23 7 5 0 10 1 0 

6 26/04/2012 29/04/2012 26 16 7 2 0 6 1 0 

7 17/05/2012 20/05/2012 28 17 6 3 0 8 0 0 

8 21/06/2012 24/06/2012 44 35 7 7 9 11 1 0 

9 10/07/2012 13/07/2012 45 24 7 7 0 7 3 0 

10 28/08/2012 31/08/2012 43 25 6 6 0 11 2 0 

11 18/09/2012 21/09/2012 37 19 4 6 0 7 2 0 

12 8/10/2012 11/10/2012 32 20 6 4 0 9 1 0 

13 6/11/2012 9/11/2012 36 23 7 4 0 9 2 1 

 

Average weight for an adult male was 1,623 g and 1,663 g for an adult female (Table 12). 

These figures varied seasonally although this variation was not significant (Figure 16). 

Male weights peaked in autumn with a mean of 1,728 g, while female weights peaked in 

winter/spring with mean weights of 1,683 g and 1,657 g respectively.  

 

 

Figure 16: Adult weights by gender and season shown in quartiles. 
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Table 12: Weight (in grams) by gender and season 

  Total 

M 

Total F Summer 

M 

Summer  

F 

Autumn 

M 

Autumn 

F 

Winter 

M 

Winter 

F 

Spring 

M 

Spring 

F 

Mean 1630 1664 1600 1677 1728 1638 1546 1683 1599 1657 

Standard 

Error ± 

33 26 63 41 60 29 59 49 65 69 

Median 1690 1650 1580 1680 1735 1610 1570 1750 1620 1690 

S.D. 223 191 126 122 224 106 228 204 226 267 

Min. 1220 1290 1480 1490 1220 1490 1220 1330 1320 1290 

Max. 2040 2160 1760 1890 2040 1840 1910 2100 1890 2160 

Count 45 54 4 9 14 13 15 17 12 15 

 

All but three adult females were known to have had young during the trapping period, in 

that they were at some stage found to have had young (pouched or carried) or to be 

lactating. Of the three with no indication of young, two were small dispersers which both 

weighed at less than 1,400 g during the spring period and the third was a large but thin 

adult female weighing 1,720 g which was caught only once in the final trapping period. 

Most joeys were born in winter although some were born in late autumn and early spring 

(Figure 17). All females known to have had young over this period were still carrying 

young or were lactating at the end of fieldwork in November. No multiple births were 

encountered during this study. 

 

 

Figure 17: Known births by month. 
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A series of Jolly-Seber population models were run using the Popan population analysis 

tool in the Programme Mark software package (White 1999). The most successful model 

proving to be the P(*)Phi(*)Pent(t) model, i.e. the model where the probability of 

birth/entry (Pent) varied with each trapping event and the probability of capture (P) and 

the probability of survival (Phi) remained constant (Table 4). This model is statistically 

sound and estimates a total population of 69 individuals with a mean population of 27.75 

(a population density of .28 per ha. for the study area). Variable population estimates for 

each trapping session from this model are shown in Figure 8. This model supports 

observations of low summer capture rates indicating a population averaging 13 

individuals for that season while the more reliable data for autumn, winter and spring, 

shows a relatively static population of between 29 and 34 individuals. Parameter 

estimates for this model give constant survival rate of .996 (±.002 S.E.) for each capture 

event (estimating a total mortality of ≈ 21%) and a capture/recapture probability as of 

.255 (±.002 S.E.). It should be noted that all population estimates only refer to adult, sub 

adult and independent juveniles as pouched and carried joeys are not included in these 

analyses. 

 

Table 13: Results of model test for Popan analyses. 

Model AICc Delta 

AICc 

AICc 

Weight 

Model 

Likeli- 

hood 

Num. 

Par. 

Deviance Est. total 

individuals 

(N Hat) 

S.E. 95% 

C.I 

Lower 

95% 

C.I 

Upper 

P(*)Phi(*)Pent(t) 1562 0 1 1 23 1020 69 4 62 77 

P(*)Phi(t)Pent(t) 1675 113 0 0 76 986 72 5 61 82 

P(t)Phi(*)Pent(t) 1718 157 0 0 105 922 74 6 62 85 

P(t)Phi(t)Pent(t) 1758 196 0 0 121 889 72 7 58 86 

 



87 

 

 

Figure 18: Popan analysis results for model P(*)Phi(*)Pent(t). Population estimates per trapping session. 

 

4.3.2 75BDefining koomal habitat 

On comparing individual vegetation types (Table 14), with trapping records for each 

vegetation type (Table 15) (vegetation types without traps were not included in this 

exercise), no significant indication of a link between canopy characteristics or fire history 

and koomal presence were found. However, the presence of dieback may be a significant 

parameter in defining koomal habitat. These findings should be treated with some caution 

as, other than in vegetation types 1 and 12, trap numbers were very small and therefore 

subject to skewing. 

 

Table 14: Vegetation descriptions with (mean) canopy characteristics. Condition (Cond.) is given as a scale 

where 0 is parkland cleared, 1 poor and 5 excellent. 

   Veg 

# 

Vegetation Description Total m
2
 % 

Total 

area
 

Cond.  ̅ Fc  ̅  

Ff 

 ̅  

LAI 

1 Jarrah, Sheoak, Excellent Condition, not burned 15 

years plus, excellent canopy, sparse understory. 

404,070 40.24 5 0.9 0.7 10.2 

2 Jarrah, Marri, Peppermint, Good Condition, not 

burned 15 years plus, good canopy, medium 

understory. 

36,703 3.65 3 0.8 0.6 6.7 

3 Jarrah, Marri, Good Condition, not burned 15 years 

plus, open understory, some grassy weeds. 

28,439 2.83 3 1.0 0.6 7.2 

4 Jarrah, Marri, Good Condition, not burned 15 years 

plus, herbaceous understory, some grassy weeds 

9,563 0.95 3 0.7 0.4 4.2 
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By virtue of the relatively uniform size, shape and distribution of patches in the study 

area, the application of patch metrics (McGarigal et al. 2000), other than home range as 

defined through kernel analysis (Horne & Garton 2006), has proven to be impractical. 

 

  

(<20%). 

5 Jarrah, Marri, Fair Condition, not burned 15 years 

plus, open understory, some grassy weeds, 

Dieback. 

14,611 1.45 2 0.6 0.5 6.7 

6 Riparian, Jarrah, Marri, Peppermint, and Bullich. 

Excellent Condition, with a tall and dense shrub 

layer over reeds and other herbaceous growth, not 

burned for 5 years. 

24,150 2.4 5 0.6 0.4 6.7 

7 Shrubland, perched wetland, shallow soil over 

granite outcrops, light understory, degraded, and 

light dieback (Phytophthora cinnamomi) 

infestation. 

16,543 1.65 2 N/A N/A N/A 

8 Jarrah Marri, poor condition, traffic damage. 1,328 0.13 1 0.9 0.7 7.4 

9 Jarrah, Marri, good condition, not burned 5 years, 

VG canopy, herbaceous understory, some grassy 

weeds. 

41,259 4.11 3 0.7 0.6 9.0 

10 Jarrah, Marri, good condition, not burned 5 years, 

open canopy, dense herbaceous understory, 

dieback present. 

66,189 6.59 3 0.8 0.6 9.9 

11 Jarrah, Marri, poor condition, 2 years since burn, 

very open canopy, weedy (>40%), heavily 

impacted by dieback. 

31,929 3.18 1 0.5 0.2 3.7 

12 Jarrah, Sheoak, very good condition 5 years since 

burned, more open canopy, herbaceous understory. 

98,530 9.81 4 0.8 0.7 11.6 

13 Jarrah, Sheoak, good condition 2 years since 

burned, more open canopy, open understory, 

grazed. 

42,933 4.28 3 0.9 0.8 16.3 

14 Jarrah, Sheoak, fair condition, 2 years since 

burned, relatively open canopy, open understory, 

grazed. 

19,837 1.98 2 0.6 0.4 6.4 

15 Jarrah, Marri, very good condition, not burned 2 

years, herbaceous understory, relatively open 

canopy. 

42,664 4.25 3 0.6 0.4 4.2 

16 Perched wetland, Xanthorrhoea, Spearwood and 

grasses over shallow soils, fair condition, heavily 

grazed by rabbits and kangaroos, canopy decline, 

possibly symptomatic of early dieback infestation. 

106,390 10.59 2 N/A N/A N/A 

17 Jarrah, Sheoak, very good condition, not burned 15 

years plus, excellent canopy, sparse understory, 

some grassy weeds. 

19,099 1.9 4 0.6 0.5 7.5 



89 

 

Table 15: Captures by vegetation type (as described in Table 14); number of traps within that veg. type 

(Veg. #), traps per hectare, captures and individuals, average number of captures and individuals per trap 

and vegetation characteristics. Fire is number of years since last known fire. P/c refers to level of dieback 

infestation, where 0 is no indication and 5 is total (or imminent) loss of all susceptible species. R
2  

values 

were obtained through standard linear regressions between trap results and potential habitat parameters. 

Veg

. # 

Trap

s 

Traps 

per 

ha. 

Capts

. 

 Ind.  

 

Capts. 

per 

trap 

Indivs. 

per 

trap 

   ̅ 

Fc 

 

  ̅ 

Ff 

 ̅ 

LAI 

Con

d. 

Fire  P/c Vegetation 

Type 

1 14 3.46 193 66 13.79 4.71 0.9 0.7 10.2 5 15 0 Jarrah, Sheoak, 

woodland 

2 2 5.45 1 1 0.50 0.50 0.8 0.6 6.7 3 10 1 Jarrah, Marri, 

Peppermint, 

woodland 

3 1 3.52 3 2 3.00 2.00 1 0.6 7.2 3 15 1 Jarrah, Marri, 

woodland 

4 1 10.46 10 4 10.00 4.00 0.7 0.4 4.2 3 15 0 Jarrah, Marri, 

woodland 

5 1 6.84 16 4 16.00 4.00 0.6 0.5 6.7 2 15 1 Jarrah, Marri, 

woodland 

6 2 8.28 0 0 0.00 0.00 0.6 0.4 6.7 5 5 0 Riparian 

woodland 

9 1 2.42 6 3 6.00 3.00 0.7 0.6 9 3 5 0 Jarrah, Marri, 

woodland 

10 3 4.53 3 3 1.00 1.00 0.8 0.6 9.9 3 5 3 Jarrah, Marri, 

woodland 

11 1 3.13 0 0 0.00 0.00 0.5 0.2 3.7 1 2 5 Jarrah, Marri, 

woodland 

12 7 7.10 65 21 9.29 3.00 0.8 0.7 11.6 4 5 0 Jarrah, Sheoak, 

woodland 

13 1 2.33 0 0 0.00 0.00 0.9 0.8 16.3 3 1 1 Jarrah, Sheoak, 

woodland 

(Grazed) 

15 2 4.69 46 14 23.00 7.00 0.6 0.4 4.2 3 2 0 Jarrah, Marri, 

woodland 

R2 Captures per trap 0.04 0.01 0.07 0.01 0.06 0.22  

R2 Individuals per trap 0.01 0.00 0.07 0.02 0.10 0.27  

 

Home range estimates, total and by area of veg. type, for all subject animals with 5 or 

more presences are given below (Table 16) with accumulative area plots for males and 

females provided (Figure 19). Areas refer to areas of remnant vegetation only. Pastoral 

areas have been clipped from this analysis on the assumption that these areas do not 

contribute to koomal habitat. Diam., refers to diameter of the 95% home range, as defined 

by kernel analysis. Gap, refers to the shortest distance between patches that the subject 

was known to have crossed, taken from the movements depicted in the Appendices 

(ch.4,1-26). To determine if some vegetation types were preferred over others, a use 

versus availability plot was prepared comparing the area of each vegetation type with the 

area used by all individuals for each kernel value (Figure 20). To support this, a 

comparison between total areas of each vegetation type and the average use of vegetation 
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types by all individuals at both 95% and 50% kernel densities show that although 

preferences remain strongly linked to the extent of that vegetation type at the 95% density 

(both Kolmogorov-Smirnov and Shapiro Wilkinson tests give a significance of <0.01) 

differences become more pronounced at the finer scale 50% density (both Kolmogorov-

Smirnov and Shapiro Wilkinson tests show a small but significant difference at 0.08 and 

0.12 respectively). The results of these exercises indicate a preference for vegetation 

types 9, 12 and 1, and that vegetation types 2, 13 and 16 are significantly less utilised.  

 

 

Figure 19: Accumulative home range area plots for remnant vegetation within the 95% kernel analyses for 

both male and female as given in Table 16. 

 

Table 16: Estimated 95% home ranges of individuals. Trap = number of times captured. Track=number of 

times position recorded through radio location. Diam. = diameter of 95% home range. Gap= largest gap in 

home range crossed. In meters. 

Males        

Collar Chip# Trap Track Area m2 Veg#/Area m2 Diam. 

m 

Gap m 

C1 11539 4 7 51362 1/46094 3/5268 372 0 

C2 10000 15 14 58744 1/57785  2/959 524 73 

C5 24328 8 15 106009 1/12361 7/8803 10/41631 15/40351 16/2863 921 380 

T1 8648 2 4 148450 1/148450 620 127 

T2 28836 18 16 79452 1/65681 10/5281 16/8091 17/399 446 10 

T4 10340 10 20 105628 1/65785 3/10131 4/5578 5/10796 6/5466 

7/5963 8/586 10/1323  

612 10 

 2287  9 94552 1/95552 697 201 

 9591  12 107955 1/17980 6/2675 12/72296 13/7457 16/7547 490 20 

 11691  6 58385 1/27548 2/4096 4/9131 5/3871 6/7636 

7/6103 

369 32 
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 14884  7 70268 1/70268 604 146 

 24169  5 71563 6/5501 9/28340 10/17563 11/12196 12/7963 

13/1137 

338 0 

 24878  5 152407 1/63885 10/9575 12/33054 16/45893 705 10 

 25673  13 80031 1/7333 3/7927 4/2062 5/14231 6/10931 

7/6635 8/1328 9/48 10/25072 12/4464 

338 0 

 28403  14 80457 1/20134 12/45544 16/14779 415 5 

 47088  7 72114 1/67323 2/799 16/3269 17/723 725 180 

 51171  11 65738 1/65738 410 10 

   Mean 

SE 

StDev 

87695 

± 7494 

29024 

 537 

± 42 

 

Females        

C3 27762 13 40 61967 1/52008 3/9959 423 0 

C4 14162 9 30 52364 1/1506 7/8803 12/4750 15/37305 948 399 

C6 29371 16 34 145719 1/19768 2/3730 12/69264 13/1424 15/39598 

16/11935  

959 399 

C7 1004 18 10 59277 1/59277 447 73 

T3 442 7 19 79605 1/33991 2/395 3/8249 4/9563 5/9737 

6/9757 7/7667 8/246 

404 10 

 10624  8 60557 1/48811 3/11746 432 0 

 10626  15 44116 1/35835 2/8281 419 72 

 11669  17 118052 1/60484 10/9744 16/38854 17/8970 406 10 

 14577  7 82462 1/9074 12/68697 13/4383 16/308 348 5 

 6394  10 86368 6/7568 9/6072 10/11434 11/7 12/49069 

13/12218 

341 5 

   Mean 

SE 

StDev 

79045 

± 9994 

29981 

 512 

± 74 

 

 

Examination of the kernel analyses for all subjects (Appendices ch.4) showed that the 

number of captures or tracks did not greatly influence home range estimates once n ≥ 5. 

Factors such as period of engagement (longer time between first and last record) and age 

of subject (the dispersal movements of some younger subjects) could provide indications 

of larger 90 and 95% kernels. However, 50% kernel areas showed much less variation 

and with links to vegetation type becoming more prominent. 
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Figure 20: Vegetation type use versus availability analyses. Total available areas for each vegetation type 

along with total areas used in 95, 90 and 50% kernel analyses as depicted in Appendices ch.4 (below) and 

proportional use chart (above). 

 

All recorded nesting was in living trees (Table 17). These trees were usually Jarrah or 

Marri, and less frequently, forest sheoak (Allocasuarina fraseriana). Individuals were 

observed to have 3 to 12 denning trees (Figure 21; Appendices ch.4,1-26 ). Where many 

trees were used, most activity would centre on three or four large trees with well above 

average girth (Table 17). In all tree species the mean girth of nesting trees was greater 

than that of background trees. Species proportion of background trees was marri 42%, 
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jarrah 36% and sheoak 22% while koomal nesting trees were marri 61%, jarrah 30% and 

sheoak 9%. As shown in Table 17, individuals displayed a preference for marri over 

jarrah, however marri were generally of greater girth reflecting the fact that, until 

recently, jarrah, unlike marri was the subject of widespread commercial timber harvesting 

(Dell et al. 1989). Therefore, there is no indication of a preference between these two 

species other than physical characteristics of individual trees such as girth. By 

comparison, sheoak was infrequently used for nesting purposes and appears much less 

preferred species for nesting purposes. 

 

Table 17: Girths (m) of nesting and background trees by species.  

 Marri Jarrah Sheoak 

  Nesting Background Nesting Background Nesting Background 

Mean 3.29 2.29 2.69 1.77 2.23 1.92 

Standard Error 

± 

0.24 0.30 0.26 0.23 0.12 0.09 

Median 2.9 2.1 2.5 1.32 2.1 1.85 

Range 4.7 4.95 3.55 3.03 0.8 0.88 

Minimum 1.2 0.45 1 0.77 1.95 1.52 

Maximum 5.9 5.4 4.55 3.8 2.75 2.4 

Count 40 21 20 18 6 11 

 

4.3.3 76BDispersal capacity 

The crossing of gaps (the minimum distance between neighbouring patches of vegetation 

regardless of paddock trees) by koomal between patches of remnant vegetation was 

frequently observed (Figure 21; Appendices ch.4,1-26). Of the 26 individuals with ≥5 

records (Table 16), gap crossing behaviour was observed in 20, three individuals were 

seen to have crossed gaps of ≥ 380 m, two of which were seen to return over the same 

gap, a further four regularly crossed gaps >100 m and 13 repeatedly crossed gaps of <100 

m. In Figure 21a it can be seen that gaps of between 80 and 200 m are regularly crossed. 

It should be noted that movements across ±200 m gaps by tracked subject T1 and trapped 

subjects with micro-chip numbers 2287, 14884 and 47088 are depicted as straight 

movements across gaps, in reality these movements may have been less direct and 

covered a matrix of smaller gaps. Nonetheless, the matrix remains highly permeable to 

koomal. This is best exemplified by individuals C2 and C7 who shared territories 
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comprised of at least three patches within which they crossed gaps of <100 m with 

impunity. Figure 21b shows the movements of three radio tracked koomal, all of which 

crossed a gap >400 m. C4 having crossed and returned back across the same gap some 

weeks later. Unlike the examples in Figure 21a, there are few options for crossing this 

gap via a landscape matrix as there have been no indications of koomal activity in these 

areas particularly in the shrublands directly to the north east.  

Maps portraying capture/track records, movements and home range estimates (kernel 

density analysis) for all subjects with greater than five records (Table 16) have been 

supplied as appendices for this chapter (Appendices ch.4,1-26). 

4.3.4 77BComparison 

In comparison with other koomal studies (Table 18), the population density within this 

study area is considerably lower than all but the Tutanning study (Sampson 1971), and 

extremely low in comparison to the Perth Zoo study (Patt 1995). As the Tutanning 

population is situated in the Western Australian Wheatbelt (where koomal have suffered 

the greatest decline (Jones 2004) and where rainfall, vegetation structure and composition 

vary greatly from all other study sites), and the Perth Zoo population situated in a 

metropolitan area (where koomal numbers are highly inflated because of an abundance of 

food (Patt 1995)), these population densities are not readily comparable with those of the 

Bramley catchment. However, climate and vegetation similarities between Bramley, 

Abba River (How & Hillcox 2000), Tuart Forest (Grimm & De Tores 2009) and 

particularly Chariup (a study also conducted in the southern jarrah forest (Wayne et al. 

2005b), enable a reasonable comparison of results with those of this study.  

Note: In making this comparison it should be noted that there are only five peer reviewed 

studies made on koomal movement prior to this study, all of which have differing 

methodologies which may in turn influence their findings. However, given this small 

number of studies available for comparison, the fact that they have passed a peer review 

process and that the findings of all studies remain comparable, their use in this exercise is 

considered appropriate. 
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Figure 21:  Movements of individual koomal demonstrating gap crossing activity. Note, movements are 

shown as direct lines between points. Actual movements may vary from these paths significantly. 
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The population density of the study area is considerably less than those of Abba and 

Chariup. This is also reflected in the larger mean home range area of individuals in the 

area. This mirrors the findings of le Mar and McArthur (2005), Ji et al. (2003) and 

Grimm and De Tores (2009) who all found that, for common brushtail possums, less 

suitable habitat resulted in expanded home ranges. Although, the removal of areas not 

found to be habitat in this study, i.e. the removal of 23.5 ha of riparian, shrubland and 

dieback infested areas from the 100.4 ha study area would increase the population density 

from 0.28 to 0.36 (n 
ha-1

), this population density would still be significantly lower than 

those of the Chariup and Abba River studies.  

 

Table 18: Comparison of findings between this study and other koomal studies. Sexual dimorphism = mean 

male body mass/mean female body mass. It should also be noted that the mean home ranges calculated for 

Grimm and De Tores (2009) are based on a 90% gradient whereas this study uses a 95% gradient 

Variable Tutanning 

(Sampson 

1971) 

Perth Zoo 

(Patt 

1995) 

Abba 

River 

(How & 

Hillcox 

2000) 

Chariup 

(Wayne et 

al. 2005b) 

Tuart Forest 

(Grimm & 

De Tores 

2009) 

Bramley 

(present 

study) 

Population density (n ha-1) 0.07 3.83 1.77 1.7 n/a 0.28 

Mean male home range area 

(ha) 

n/a n/a 2.21 n/a 6.17 8.77 

Mean female home range 

area (ha) 

n/a n/a 1.26 n/a 4.39 7.72 

% Breeding peak 2 months 59 59 79 69 n/a 64% 

Breeding, peak 2 months Apr/Oct Mar/Apr May/Jun Apr/May n/a Apr(Aug)/Jun 

Adult sex ration (M/F) 1.35 1.21 0.84 1.32 n/a 0.97 

Sexual dimorphism n/a 1.06 1.17 1.1 n/a 0.98 

Mean male weight (g)± s.d. n/a 1619 ± 346 1764 ± 

215 

1616 ± 166 n/a 1630 ± 223 

Mean female weight (g)± s.d. n/a 1523 ± 382 1509 ± 

171 

1470 ± 243 n/a 1664 ± 191 

 

4.4 32BDiscussion 

4.4.1 78BPopulation demographics. 

It was considered that this lower population density might be the result of predation by 

foxes and feral cats. All other study areas in this comparison are subject to regular feral 

predator controls. As previously stated, the only feral animal control undertaken in the 

study area is irregular shooting by one property owner. However, the Popan analysis 
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predicted a 12 month mortality rate of 21% for the study population this gives an 

estimated average lifespan of 4.76 years. This is directly comparable with estimated 

average lifespan of 4.5 years given for the Chariup study (Wayne et al. 2005b). 

Therefore, there is no evidence of increased predation of koomal despite different feral 

predator control programmes and no evidence that increased home range is a consequence 

of feral predation.  

Part of the difference in population densities and home ranges between studies may also 

be explained by the different methodologies used. Both this and the Tuart Forest studies 

have used similar radio tracking and kernel analysis methods to determine home ranges, 

whereas all other studies have used trap data alone. This may partially explain why home 

ranges in both of these studies remain comparable to each other and not to any other 

studies. It also points to the hazards of relying only on trapping data in models. An 

indication of this is the disparity of home ranges between the Tuart Forest and Abba 

River studies despite their largely shared study areas and similar management regimes. 

Breeding months remain comparable between all studies although a peak breeding month 

of October for Tutanning is considerably later than for all other studies, this too may be 

explained by bioclimatic differences between the WA Wheatbelt’s Tutanning site and the 

other study sites which are generally similar in climate and vegetation structure. 

The male/female ratio remains comparable in all studies although sexual dimorphism 

(mean male weight/mean female weight) varies marginally between this study and all 

others. This is a direct result of higher average female weights in this study than any 

other. This is also the only study in which average female weights exceed those of males. 

Whether this is the result of weighing females with pouched joeys attached, an accurate 

reflection of greater weight in females, or a statistical anomaly, cannot be properly 

ascertained from the available data. It should be noted that mean male weights remain 

highly comparable between all studies.  

4.4.2 79BDefining koomal habitat 

All koomal, both trapped and tracked, were found in woodland/forest areas (no animals 

were found in shrublands, wetlands or riparian areas); no koomal were found, or 

observed, in areas heavily affected by dieback. This is consistent with observations from 

other studies. No koomal were trapped or observed in a particular patch (vegetation types 
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13/14) that appeared to be very suitable and was adjacent to a remnant with a relatively 

large koomal population. There was some suspicion that this patch was not used as it was 

unfenced and was the only patch to be grazed by cattle. However, one individual (C4) 

regularly nested in a very substantial paddock tree (whose canopy reached into that of an 

adjoining patch) under which cattle often rested, indicating that the presence of cattle may 

not influence koomal nesting behaviour. Another possible reason for koomal not entering 

this patch may relate to the nutritional and chemical content of leaves. It has been 

demonstrated that the foraging activities of common brushtail possums are linked to leaf 

chemistry, in particular, the influence of turpenes, nitrogen and moisture content in 

defining the nutrient value of myrtaceous leaves (Wallis et al. 2002; Moore et al. 2004; 

Scrivener et al. 2004; Foley & Moore 2005). There has, to date, been no similar study 

made investigating the link between koomal habitat and leaf presence. This represents a 

serious shortfall in the ability to define and quantify habitat for this taxon. 

By viewing capture data and comparing home ranges as defined by Hawth’s tools with 

movements overlaid (Appendices ch.4), it can be seen that territorial overlap between 

males and females was common, as was overlap between adults and sub-adults. Although 

overlap between adult females occurred regularly, territories for established adult males 

appeared to have marginal overlaps with regular intrusion by sub adults and transients. 

Overall, home ranges for adults appeared to be quite fluid. During the course of fieldwork 

it was often noted that, as individuals moved around their territories small individuals 

would quickly move into vacated areas only to leave when the larger animal returned. It 

appeared that sub adults and less dominant animals could, in this way, carve out an 

existence on the territorial margins of dominant and established individuals. This 

behaviour reflects denning and territory sharing behaviour exhibited by common brushtail 

possums in both Australia and New Zealand (Ball et al. 2005; Nersesian et al. 2012). 

In forest and woodland areas, common brushtail possums require tree hollows to nest/den 

in (Harper et al. 2005). Tree hollows need to be large enough to meet the possum’s 

requirements and there needs to be enough of them dispersed around a territory to enable 

an individuals to meet their autecological needs (Lindenmayer et al. 1997; Ji et al. 2003; 

Wormington et al. 2005; Nersesian et al. 2012). As tree girth is directly related to the 

number and size of hollows available for nesting (Bennett et al. 1994; Ji et al. 2003), this 

behaviour was expected. Hollows were not counted as the height and complexity of the 
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canopy, along with the small hollows used by some individuals (individuals were seen 

using hollows <10 cm in diameter) meant that this could not be done with a reasonable 

accurately. As observed by Ji et al. (2003), larger individuals, tend to dominate larger 

trees and possessed territories with a greater proportion of large trees. The koomal in this 

study have demonstrated a nesting preference for trees of an above average girth greater 

than 1m at breast height (which are more likely to have suitable nesting hollows 

(Williams et al. 2008)) dispersed throughout their home ranges. This indicates that, like 

other sub-species of the common brushtail possum, a requisite number of suitable trees 

need to be retained in a landscape for koomal to persist. However, studies of common 

brushtail possums indicate that a lack of suitable nesting trees may be partially mitigated 

through the use of nesting boxes (Harper et al. 2005). 

4.4.3 80BDispersal capacity 

Gap crossing by individuals was common place with overnight movements across gaps of 

100- 400 m commonly observed (Table 16; Figure 20; Appendices ch.4,1-26). For 

example, of the 26 resident, or non-transient, individuals 3 (15%) crossed gaps covered 

distances ≥380 m, and 2 of these individuals recrossed these gaps. A further 4 individuals 

crossed gaps in excess of 100 m, 3 of which repeatedly recrossed these gaps. Of the other 

13 individuals who were observed to cross gaps of <100 m, gap crossing was generally 

frequent with gaps of this size providing no discernible impediment to movement. These 

observed movements are, by and large, home range movements, with animals moving 

within a patch or group of patches which they utilise to meet their autecological 

requirements. Of the 26 subject koomal, only two individuals displayed a relocation of 

home range, i.e. dispersal behaviour. This indicates that once home ranges are well 

established, individuals are very reluctant to leave them. 

By removing, from a total estimated population of 69.3 (100%), an average estimated 

population of 27.75 (40%) and an indicated mortality rate of 21%, there remains a 

minimum population of 27 (39%) transients, i.e. those who have effectively moved 

through the test landscape. This supports our earlier assumption that this is an open 

population. This indicates that this landscape (with 41% remnant vegetation cover within 

a 1 km radius) was highly permeable from a koomal perspective, i.e. the movement of 

individuals was not prevented by this degree of fragmentation and individuals could move 

freely between patches enabling them to utilise multiple patches as home range. The high 
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number of transients in the study population strongly indicated that this population 

formed part of a much greater meta-population at the landscape level. Although there was 

no evidence of crossing of obstacles such as water courses and major roads in this study, 

such behaviour has been often observed by the author. The presence of foxes, feral cats 

and cattle did not deter gap crossing activity although the presence of introduced 

predators would certainly increase the risk of predation for koomal moving over open 

paddocks. 

The gap crossing limit of the koomal, i.e. the maximum gap in vegetation cover that a 

koomal may cross was not determined in this study. All gaps within the study landscape 

proved permeable where there was suitable habitat at each end of the gap and that this 

destination was visible from the point of embarkation. This supports a landscape matrix 

approach to planning (Fischer et al. 2004; Watson et al. 2005; Lindenmayer & Fischer 

2006; Fahrig 2007; Robertson & Radford 2009; Saura & Rubio 2010; Fahrig & Triantis 

2013) for this taxon in that it is neither the patches or the gaps which define habitat, but 

the spatial arrangements of suitable patches of habitat within the landscape which appears 

to define habitat for this taxon in the context of a fragmented landscape.  

4.5 33BConclusions 

Existing in a southern jarrah forest landscape with a heterogeneous 41% remnant 

vegetation cover and access to source-sink populations, as defined by Amarasekare & 

Possingham (2001), the koomal of the Bramley catchment appears to be currently stable 

(although further studies are required to confirm this). Source-sink populations are 

assumed because the population models predicted that individuals were constantly 

entering and leaving the test landscape and the surrounding patch matrix was capable of 

supporting this sort of movement. Although the population density is not as high as some 

other studies, it remains comparable. The weights, birth rates and estimated survival rate 

of this population are comparable with koomal populations found in relatively 

contiguous, conservation managed landscapes. This indicates that that the demographic 

characteristics of populations in a fragmented landscape, with adequate resources, may 

not be negatively impacted. It appears that the greatest constraint on these populations is 

the amount of suitable vegetation available to them, and access to hollow bearing trees. 

The greatest question therefore becomes, what is suitable vegetation? This study has 
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shown that shrublands, dieback infested areas and riparian areas appear to not be habitat 

(although they do not impede movement) and many areas of the test landscape which 

appeared to be suitable habitat, were not utilised. This may be the result of variations in 

leaf chemistry and moisture content. The relationship between koomal browsing 

preferences and the chemical properties of the species upon which they feed remains 

largely assumed. 

The long term viability of this population in the face of a rapidly changing climate is still 

not well understood. Although this landscape currently appears to be suitable habitat, 

repeat studies are required to obtain population trend data. This will enable the long term 

viability of this population and the impacts of climate change on it to be better 

understood. The patch matrix remains permeable to koomal, allowing ready migration. 

How the woodlands upon which the koomal depend will respond to climate change 

remains poorly understood. What is known is that leaf toxin levels increase when trees 

are stressed through heat and drought (Ramakrishna & Ravishankar 2011) and by 

changing the habitat value of patches within the matrix, landscape permeability will also 

be impacted (Luque, Saura & Fortin 2012). How koomal will respond to this potential 

threat remains a major knowledge gap in the management of this taxon and many others 

facing similar threats throughout the world. 

Data obtained through this study can be used to inform conservation planning through 

spatial modelling applications. Models can focus on conservation of the koomal in its 

own right and also improve general conservation by enabling the koomal to be used as 

one of a suite of indicator species. This will be the focus of ch.6.  
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 12BSpecies distribution modelling using bioclimatic variables to 5

determine the impacts of a changing climate on the western ringtail 

possum (Pseudocheirus occidentals (Pseudocheiridae) 

 

5.1 34BIntroduction 

This exercise uses a combination of spatial models and climate change scenarios to 

determine the impacts of climate change on this species, thereby enabling the 

development of management actions for a species which is highly vulnerable to the 

impacts of global warming.  

At the regional scale, most species and ecological communities exist within a definable 

bioclimatic niche, where habitat value is largely controlled by a set of variable climate 

parameters including precipitation and temperature (Hutchinson 1957). When there are 

changes in these variables, the habitat value for that area will also change (Beaumont et 

al. 2005). 

Climate change presents a major threat to biodiversity around the world (IPCC 2007); 

these impacts are expected to increase in both magnitude and frequency throughout the 

21st century (Richardson et al. 2011). The task of understanding how species and 

communities respond to changes in climate is made particularly difficult by the non-linear 

nature of impacts, which means that not all areas will be affected to the same degree. 

Climate impacts may vary dramatically between landscapes and in response to a species’ 

or community’s sensitivity to that change (Perkins et al. 2007; Opdam et al. 2009; Yates 

et al. 2010a; Richardson et al. 2011). 

The Australian continent may be highly vulnerable to global warming (CSIRO & BOM 

2007; CSIRO & BOM 2012) with predicted impacts of climate change on Australian 

biodiversity ranging from mild to severe, depending on the ecology of subject species and 

communities (Hughes 2003). 

South-western Australia (Figure 22) is recognized as a global biodiversity hotspot (Myers 

et al. 2000). Threats such as land clearing, inappropriate fire regimes, exotic species, 

pathogens and demands for expanded infrastructure have contributed to a decline in the 

extent and condition of native vegetation throughout the region (Environmental 
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Protection Authority 2007). South-western Australia has been nominated as a region 

vulnerable to climate change (Hughes 2003; Klausmeyer & Shaw 2009) and has already 

been affected by global warming in that there has already been a generally significant fall 

in rainfall, changes in the intensity and frequency of severe weather events and a trend 

towards increasing mean temperatures across much of this region (Burbidge 2010; Indian 

Ocean Climate Initiative 2012; Prober et al. 2012). Global climate models (GCMs) 

predict that by the end of the 21st century, in comparison to averages prior to the 1980s, 

global warming will bring about: a 3–4 °C increase in mean temperature, a 30–40% 

decrease in rainfall, significant changes in seasonality, a rise in sea levels and more 

frequent severe weather events relative to pre 1980s records (CSIRO & BOM 2007; IPCC 

2007; Burbidge 2010; Hughes 2011; CSIRO & BOM 2012; Indian Ocean Climate 

Initiative 2012; Prober et al. 2012). Climate variations of this magnitude are likely to 

have significant detrimental impacts on regional biodiversity (Gritti et al. 2006; Cowled 

2009; Hughes 2011; Ziska et al. 2011; Crossman et al. 2012). 

 

 

Figure 22: The South-west Australian Floristic Region and sub regions. Ngwayir (Pseudocheirus 

occidentalis) presence records and modelled area for this project are overlaid. 

 

Australian protected areas have nevertheless largely been selected without consideration 

of the impacts of climate change on the reserves themselves or on the needs of species 
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and communities outside of reserves (Dunlop & Brown 2008). Consequently, reserve 

systems urgently require review to better understand their capacity to withstand the 

impacts of climate change and to facilitate biodiversity conservation at the landscape 

scale. 

The ngwayir (pronounced ‘n-wa-ear’) or western ringtail possum (Pseudocheirus 

occidentalis), a small (0.8–1.3 kg) arboreal marsupial, endemic to the forests of south-

western Australia, provides an ideal candidate to model range shifts in response to the 

predicted impacts of climate change. This species is listed as vulnerable (Morris et al. 

2008) and, because of this and its public popularity, is a regional conservation icon (Jones 

et al. 2007; de Tores 2008). The ngwayir is a strict folivore, feeding on a few myrtaceous 

tree species that meet nearly all of its food and water requirements, and is highly 

susceptible to extremes of temperature, especially when combined with low moisture 

levels in leaves (Jones 2004; Yin 2006).  

The ngwayir had a pre-European distribution from north of Perth to east of Albany, 

extending into the Western Australian agricultural region, where populations were 

recorded in Casuarina spp. woodlands until the 1970s (Jones 2004). Local extinction has 

been extensive in the inland and northern parts of its pre-European range, and the current 

distribution both patchy and c. 10% of the original. The ngwayir now occurs most 

commonly in coastal or near-coastal forests and woodlands of the southern Swan Coastal 

Plain, where the peppermint tree (Agonis flexuosa) is a major component of local 

vegetation (Jones & Hillcox 1995). 

Habitat loss, modification and fragmentation have caused significant negative impacts on 

ngwayir populations (Wayne et al. 2006; Wilson 2009). Much of the coastal area where 

ngwayir population densities are at their highest is subject to large-scale development 

pressure from the rapidly-growing human population (Environmental Protection 

Authority 2007; Jones et al. 2007; Molloy et al. 2007).  

The ngwayir is vulnerable to high temperatures and dehydration (Yin 2006), changes in 

diet, changes in fire regimes (Wayne et al. 2006), landscape fragmentation (Jones 2004), 

feral predators (de Tores et al. 2004) and introduced pathogens (Wayne 2009). These 

vulnerabilities, combined with its rarity, specialized habitat preferences, and low capacity 

to migrate and disperse, indicate that the ngwayir is likely to be highly sensitive to the 
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predicted impacts of climate change (de Tores 2009). For these reasons, the ngwayir is an 

ideal candidate to test how effective species distribution models are for determining 

impacts of anthropogenic global warming on vulnerable species.  

Species distribution models (SDMs) are effective in determining current and potential 

distributions when using climate data alone (Hijmans & Graham 2006; Beaumont et al. 

2007; Elith et al. 2011) allowing historical distributions to be modelled against climate 

records to form high quality baseline models, which can then be overlaid with GCMs to 

demonstrate how predicted changes in climate may affect species distributions (Green et 

al. 2008; Yates et al. 2010b; Adams-Hosking et al. 2011; Fordham et al. 2012; Guerin & 

Lowe 2012; Prober et al. 2012). SDMs have become popular in response to increased 

availability and quality of relevant data (Marcial & Hemminger 2010) and corresponding 

increases in the availability and complexity of SDMs (Beaumont et al. 2005; Guo & Liu 

2010; Marcial & Hemminger 2010).  

I investigated potential range shifts of this sedentary, specialist endemic, habitat-restricted 

vertebrate, in response to the potential impacts of global warming. My hypothesis is that 

the ngwayir will be at high risk from climate change. Specifically, I predict that, based on 

climate change models for south-western Australia, this species will lose much of its core 

range, and this will further threaten the viability of future populations. I also sought to 

evaluate the idea that a broader understanding of the impacts of global warming on target 

species can be obtained by seeking congruence between predictions from multiple spatial 

distribution models each using multiple climate change scenarios. 

5.2 35BMethods 

5.2.1 81BModel selection 

Three SDMs were chosen to examine the impacts of three IPCC IV, scenario A2A, 

GCMs (Worldclim 2012) on the potential distribution of ngwayir. I used multiple models 

because our aim was to obtain a broader understanding of the potential impacts of climate 

change, and to identify and investigate misleading results arising from anomalies in the 

application of any one particular model. I selected SDMs that have been shown 

previously to be successful in predicting species distributions from presence-only data, 

each employing a different methodology to do so (Guo & Liu 2010; Elith et al. 2011). By 
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comparing such diverse SDMs, and applying them to the three most accurate GCMs 

available, I sought to gain a more robust understanding of the potential impacts of global 

warming on this species. I sought congruence between predictions from the different 

models as evidence for the most likely response of the species to climate change.  

I also performed MaxEnt (Phillips et al. 2006; Elith et al. 2011) analyses on the three tree 

species most commonly associated with ngwayir habitat: jarrah (Eucalyptus marginata), 

marri (Corymbia calophylla) and peppermint (Agonis flexuosa). These tree species 

provide the bulk of the ngwayir’s dietary intake and they are keystone species in the 

ecological assemblages most commonly recognized as ngwayir habitat (Jones et al. 1994; 

Jones 2004; Wayne et al. 2005a; Yin 2006; de Tores 2008). I conducted the tree 

distribution models using the same method and bioclimatic variables as those undertaken 

for the ngwayir. Because areas identified as being bioclimatically suitable for the ngwayir 

may not be suitable for the trees upon which it depends, I sought insight into the potential 

impacts of global warming on ngwayir habitat as distinct from impacts on the animal 

itself. I present these analyses in the absence of more detailed modelling on the impacts of 

global warming on the three tree species (Yates et al. 2010b; Fordham et al. 2012). 

I used MaxEnt (Phillips et al. 2006) as the principal SDM. Some drawbacks have been 

noted with MaxEnt, notably the tendency for it to underperform where there is a spatial 

bias within datasets (Bystriakova et al. 2012). However, it remains a well-supported and 

popular application with land managers, and has the capacity to link fine-scale 

bioclimatic data to species distributions and produce probability-based outputs (Hijmans 

& Graham 2006; Guo & Liu 2010; Elith et al. 2011; Vasconcelos et al. 2012). MaxEnt 

has been successfully used in similar species modelling applications (Green et al. 2008; 

Yates et al. 2010b; Adams-Hosking et al. 2011; Guerin & Lowe 2012; Prober et al. 

2012). The two other SDMs I used were Domain (Carpenter et al. 1993; Hijmans & 

Graham 2006) and Two Class Support Vector Machine (SVM-TC) (Vapnik 1995; 

Cristianini & Scholkopf 2002), both of which generally lack the accuracy and 

probabilistic capacity of MaxEnt. However, I used these SDMs because the results of the 

MaxEnt analyses might be further supported and validated by congruence with other 

models. 
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MaxEnt (application of a machine learning technique called ‘maximum-entropy’) 

explores the relationships between presence data and relevant habitat variables, thereby 

enabling it to calculate the probability of presence of the target species within a GIS grid 

square using habitat values (Hijmans & Graham 2006; Phillips et al. 2006; Elith et al. 

2011). MaxEnt v.3.3.3 for Windows was used in these analyses. Our model settings were 

500 maximum iterations with a convergence threshold = 0.00001, prevalence = 0.5 

(default) and a 10% training presence. I used a full presence data set for these analyses. 

Input data were prepared using Diva-GIS 7.5 (Hijmans et al. 2012) and output display 

and analysis for all SDMs were prepared and analysed with ESRI ArcMap 10.1. 

SVM-TCs are supervised learning models that analyse data and recognize patterns, which 

are then used for classification and regression analyses. They take a training sample to 

build a model used to determine presence or absence in response to variable parameters 

(Vapnik 1995). SVM-TCs require both presence and absence (or assumed absence) 

species data. In this study, absence datum was not available and assumed absence datum 

was developed at a rate of five absences for every presence using ModEco (Guo & Liu 

2010). This was the highest available ratio and was chosen because of the relatively small 

number of ngwayir presences in the modelled area. SVM-TC was part of the ModEco 

3.02 software package (UCMERCED 2011). Our model settings for the SVM-TC 

analyses were 10% hold out for testing, degree = 3, Nu = 0.05 and cost = 1. 

Domain assigns a classification value to an unknown site based on the distance to its 

closest similar site in environmental space (Carpenter et al. 1993) using presence-only 

data (Tognelli et al. 2009; Hawkes 2010; Monk et al. 2010; Jimenez-Valverde et al. 

2011; Khatchikian et al. 2011; Navarro-Cerrillo et al. 2011). I used Domain in both 

ModEco and Diva-GIS software packages; the outputs I selected for use in this analysis 

being those developed using the ModEco software package. Domain outputs can be 

highly biased by outliers (i.e., where P<0.01) in the presence data, whereas both MaxEnt 

and SVM-TC have the capacity to recognize and limit the influence of outliers in species 

presences. Consequently, outliers had to be removed manually when using Domain 

(Hijmans 2012). I then produced a separate species database with outliers removed using 

Diva-GIS and used the resultant ‘extract’ database in the Domain analyses. Our model 

settings for the Domain analyses were 10% withheld for testing and 95% similarity 

threshold.  
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I only used bioclimatic variables in the predictive modelling because I assumed that 

global warming is the predominant threat to the ngwayir and that this threat will 

foreseeably increase in intensity during the first half of the twenty-first century and occur 

throughout its current and potential distribution. IPCC IV (IPCC 2007) GCMs were 

downloaded from the International Centre for Tropical Agriculture (CCAFS 2008), and 

were already downscaled to a 1 km grid spatial resolution using the delta method 

(Ramirez & Jarvis 2008). I selected the MIROC-m, CSIRO mk3 and ECHO-G models 

from the IPCC IV group of models, as these three were the most accurate for Australia 

(Perkins et al. 2007). Furthermore, each model represents a different methodology, 

reflecting the diverse interests, perspectives and objectives of the organizations that 

developed them (IPCC 2007). The model scenario chosen for all GCMs was the A2A 

scenario, which was the ‘conservative scenario’ for both CO2 emissions and future energy 

requirements, on the assumption that extreme predictions might be avoided. Since CO2 

emissions will, most probably, be higher than predicted in this scenario (Allison et al. 

2009), range contractions indicated in this paper are consequently likely to be 

conservative in nature. These data were also cut and processed into bioclimatic variables 

using Diva-GIS, and the same altitude (topographic) data set used to produce the baseline 

data. All GCMs were based on 2050 scenarios. As GCMs are constantly being reviewed 

and improved (IPCC 2007), I considered it appropriate that models for post-2050 

scenarios be based on more current climate change models as they become available.  

I modelled a rectangular section of the South-west Australian Floristic Region (Figure 

22), large enough to encompass all recorded ngwayir occurrences, but not so large as to 

imbue models with an inflated appearance of accuracy (Elith et al. 2011). Natural 

migration of ngwayir beyond this area was considered to be highly improbable given the 

highly fragmented nature of the Western Australian Wheatbelt (Smith 2008; Lawes & 

Dodd 2009). Given the highly variable nature of the project area (Hopper & Gioia 2004), 

I decided that it was appropriate to model data at the highest available resolution (grid 

cells of 1 km
2
) (Hijmans et al. 2005). 

5.2.2 82BData 

I obtained presence data for ngwayir, jarrah, marri and peppermint from the Western 

Australian Department of Environment and Conservation’s NatureMap database V 

1.5.0.10 (Department of Environment and Conservation 2007-2013). There were 510 
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ngwayir presences recorded in this database, which, after disregarding duplicate records 

and those with erroneous coordinates, resulted in a database of 392 presences. Similarly, 

506 presences were used to model jarrah, 344 marri and 374 peppermint; these represent 

the entire range for each species. These corrected presences were used in both the 

MaxEnt and SVM-TC analyses. Further correction was undertaken for the Domain 

analyses. As this data is sourced heavily from extensive surveys across many reserves and 

remnants, I assumed that sampling bias (such as favouring roadsides or particular regions) 

was minimal. 

Baseline climate data were sourced from the WorldClim 1.4 (release 3) database 

(WorldClim 2012) of Hijmans et al. (2005), developed as interpolated climate surfaces 

for global land areas other than Antarctica at a 1 km grid cell spatial resolution using 

1950–2000 climate data. The WorldClim data were provided in the form of average 

monthly precipitation, maximum temperature, minimum temperature, mean temperature 

and topography data that were then cut to the size of the project area and converted into 

19 bioclimatic variables (Table 19) using Diva-GIS. 

 

Table 19: Variable use in SDMs showing the contribution of each variable in the MaxEnt and the variables 

used in the Domain and SVM-TC SDMs 

Variable  Description MaxEnt 

(%) 

Domain SVM-

TC 

BIO1 Annual mean temperature 5.4   

BIO2 Mean diurnal range (max temp – min temp) (monthly average)  1.1  1 

BIO3 Isothermality (BIO1/BIO7) * 100  0.6  1 

BIO4 Temperature seasonality (coefficient of variation)  12 1 1 

BIO5 Max temperature of warmest period  0.3 1 1 

BIO6  Min temperature of coldest period  0.3   

BIO7 Temperature annual range (BIO5-BIO6)  0.3 1 1 

BIO8  Mean temperature of wettest quarter  0   

BIO9  Mean temperature of driest quarter  0.3   

BIO10  Mean temperature of warmest quarter  0.6   

BIO11  Mean temperature of coldest quarter  0.9   

BIO12  Annual precipitation  67.1 1 1 

BIO13 Precipitation of wettest period  1.1 1 1 

BIO14  Precipitation of driest period  1   
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BIO15  Precipitation seasonality (coefficient of variation)  3.9  1 

BIO16  Precipitation of wettest quarter  1.6 1 1 

BIO17  Precipitation of driest quarter  0.1   

BIO18  Precipitation of warmest quarter  0.1   

BIO19  Precipitation of coldest quarter 3.4 1 1 

 

5.2.3 83BVariable selection  

As each SDM uses different algorithms and species inputs, they also require the use of 

differing sets of variables in their respective analyses (Guo & Liu 2010; Fordham et al. 

2012). To obtain optimum efficiency, minimize multicollinearity and prevent overfitting 

(Beaumont et al. 2005; Elith et al. 2011; Hijmans et al. 2012), I first tested the variables 

to establish the most appropriate set for inclusion in each SDM analysis. All 19 

bioclimatic variables were used in the MaxEnt analyses, as this SDM calculated and 

implicitly incorporated the percentage contribution of each variable to the final solution 

(Table 19) (Elith et al. 2011). Because the contribution of many variables was negligible 

and tested sub-sets did not improve on and, in some cases, produced highly unlikely 

results, I decided that, for the sake of accuracy and consistency, all 19 variables be 

applied to all MaxEnt models (Phillips & Dudík 2008).  

For the SVM-TC and Domain models, the proportionate contribution of variables was not 

an option. In these situations, variables were either included or rejected based on the 

results of a kappa analysis, which determined variable contribution. I undertook Kappa 

analyses using ModEco (Table 20). For both SDMs, the cut-off for inclusion (0.2) 

delivered the best results based on trial and error. 

 

Table 20: Kappa analyses of variable suitability for both SVM-TC and Domain 

TC SVM -- Based on WRP (2_class) Domain—Based on WRP (extract) 

Variable With only 

variable: Kappa  

Without variable: 

Kappa   

With only variable: 

Kappa  

Without 

variable: 

Kappa   

Bio 1 0.143769 0.710622 0.084754 0.970691 

Bio 2 0.276338 0.652922 0.044331 0.923615 

Bio 3 0.257780 0.672743 0.000000 0.925690 

Bio 4 0.276158 0.631778 0.512489 0.762014 

Bio 5 0.337488 0.638824 0.298348 0.770207 
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Bio 6 0.018493 0.640919 0.000000 0.771858 

Bio 7 0.314547 0.612912 0.255751 0.763644 

Bio 8 0.006408 0.622398 0.008333 0.766917 

Bio 9 0.070975 0.630227 0.016401 0.768560 

Bio 10 0.279917 0.742019 0.193038 0.972905 

Bio 11 0.004758 0.725412 0.003612 0.970691 

Bio 12 0.399418 0.652334 0.733373 0.959721 

Bio 13 0.502570 0.678986 0.583136 0.964089 

Bio 14 0.002498 0.723176 0.001799 0.966283 

Bio 15 0.364282 0.716788 0.206059 0.959721 

Bio 16 0.520031 0.760190 0.621643 0.942505 

Bio 17 -0.000834 0.690658 0.007013 0.942505 

Bio 18 0.009255 0.721611 0.004653 0.942505 

Bio 19 0.454846 0.692416 0.621643 0.915378 

 

I applied landscape metrics, such as vegetation association, patch size and isolation, in 

early SDM trials; however these did not improve on the use of bioclimatic variables 

alone, and modelling results became erratic in a manner symptomatic of overfitting 

(Welsh et al. 2013). Consequently, their use was abandoned. 

Core areas were used to display results (Figure 23). I determined core areas by applying 

the 10% training presence threshold (0.387); only those areas with bioclimatic parameters 

within which 90% of presences were recorded were designated as habitat. Those areas 

where I assigned a lesser value were considered marginal habitat, and thus disregarded. 

This enables conservation managers to focus on those areas that are likely to more 

important for the conservation of the target species or community (Phillips et al. 2006; 

Hijmans et al. 2012). 

5.3 36BResults 

The MaxEnt modelling of ngwayir distribution using baseline WorldClim 1950-2000 

averages (Hijmans et al. 2005) and 2050 model scenarios for CSIRO Mk3, MIROC-m 

and Echo-G IPCC IV models (IPCC 2007) are shown in Figure 23. All three GCMs 

demonstrated a marked and similar contraction of ngwayir distribution towards the south-

west, as compared to the total baseline bioclimatic envelope for this species. Figure 23a, 

b, c and d show modelled probability of presence for each scenario. Figure 23e, f, g and h 

display core habitat areas; i.e. a cut off training value which shows only those bioclimatic 

values within which 90% of presences are found is applied. Figure 23i, shows an overlay 
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of core habitat areas. The core area count reflects the number of times each pixel appears 

as core habitat. 

 

Figure 23: MaxEnt predictions of ngwayir distribution from baseline averages and 2050 GCM scenarios for 

CSIRO Mk3, MIROC-m and Echo-G IPCC IV models. The core area reflects the number of times each 

pixel appears as core habitat. 

 

For habitat parameters within which 90% of presences occurred, the contraction in the 

potential core distribution became much more pronounced for all three GCMs. Potential 

distribution predictions were remarkably similar for all GCMs, indicating that the 

modelled GCM scenarios were robust. The MaxEnt area under curve (AUC) goodness of 

fit value for this model was 0.973, indicating a good model in terms of predictive ability 

(Phillips et al. 2006), further supported by a high 10% training presence value of 0.387.  
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Figure 24: A comparison of ngwayir predictions using baseline climate data and three GCM 2050 scenarios 

as undertaken with the three SDMs. Data is given as presence-absence in that pixels with a probability 

value of less than 5% are not displayed. 

 



115 

 

Table 21: Areas (km
2
) selected as habitat for projections shown in Figure 24.  Total modelled area = 

561 059 km
2
. 

Model MaxEnt 

area 

% 

Total  

area 

Domain 

area 

% 

Total 

area  

SVM-

TC 

area 

% 

Total  

area 

Mean 

area 

% 

Total 

area 

Worldclim 

(baseline) 

59 341 10.58 61 133 10.90 55 106 9.82 58 527 10.43 

CSIRO Mk III 44 278 7.89 39 797 7.09 39 007 6.95 41 027 7.31 

ECHO-G 35 870 6.39 27 024 4.82 29 948 5.34 30 947 5.52 

MIROC-m 44 375 7.91 33 934 6.05 38 780 6.91 39 029 6.96 

Mean 2050 41 508 7.40 33 585 5.99 35 912 6.40 37 001 6.59 

Mean area 

reduction 

17 833 3.18 27 548 4.91 19 194 3.42 21 526 3.84 

 

Each of the SDMs predicted broadly similar baseline patterns of ngwayir distribution and 

resulted in similar predicted distributions for all three climate change scenarios for 2050 

(Figure 24). These predictions show only predicted presences, in that pixels with a 

probability value of < 5% are not displayed. All models gave a marked and similar 

contraction in ngwayir potential distribution towards the south-west. Overall, MaxEnt 

appeared to have a marginally greater sensitivity to topographic variation, selecting low-

lying areas in the northern Darling Range and parts of the lower Blackwood River Basin 

that were not highlighted in the Domain and SVM-TC models. MaxEnt predicted larger 

areas of potential distribution (that is, MaxEnt predicted the smallest reduction in core 

distributions). Domain predicted the greatest reduction in area, although the difference 

between the mean areas was < 2% (Table 21). The AUC and kappa values for both the 

Domain and SVM-TC analyses indicate that these models are strong (Table 22). 

 

Table 22: Kappa index and AUC values for Domain and SVM-TC models along with sample number used 

in each model. 

 SVM-TC Domain 

AUC .924 .977 

Kappa .7314 .7193 

Number 392 261 

 

The contraction in the potential distribution of ngwayir to the south-west became 

significantly more severe when the 10% training presence was applied to demonstrate 

core habitat (Figure 23e–h). When these projections were overlaid (Figure 23i), the 
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similarities between them were clear and indicated potentially important landscapes for 

the conservation of the ngwayir.  

Most 2050 projections in this exercise identified highly complementary potential 

distributions for the ngwayir, with the majority of grid cells identified as potential 

distribution being the same in all projections. There was a mean baseline area of potential 

distribution of 10.4% of the total modelled area of 561 059 km
2
, with a maximum area of 

10.9% and a minimum of 9.8% (Table 21). All projections showed a significant 

contraction in area by 2050, to an average 6.6% of total modelled area ranging from a 

high of 7.8% (MaxEnt/CSIRO) to a low of 4.8% (Domain/ECHO). For all SDMs, the 

ECHO GCM showed the greatest impact on the ngwayir, with an average 2050 

distribution of 5.5%; the MIROC-m and CSIRO models were very similar, with averages 

of 7.0% and 7.3%, respectively. Of the SDMs, MaxEnt was the most optimistic, with a 

mean 2050 area of 7.4% compared to an area of 6.4% for SVM-TC and 6.0% for Domain. 

The similarities between all modelled scenarios, both baseline and predicted, for all three 

SDMs across all GCMs indicated strongly that the MaxEnt modelling exercise produced a 

highly plausible scenario. 

MaxEnt modelling of the three tree species showed the potential distribution of all three 

species contracted strongly towards the south-west (Figure 25). For all species, but 

particularly for jarrah and marri, there was a tendency for distribution to be split into 

northern and southern populations, with the southern populations appearing to be more 

robust. The CSIRO/Marri projection, and, to a lesser extent, the ECHO/Marri projection, 

indicated large inland areas becoming suitable for marri; although the reasons for this are 

not currently understood, these areas were outside the ngwayir dispersal range and not 

relevant to this analysis.  
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Figure 25: MaxEnt models comparing baseline distribution of jarrah, marri and peppermint with the three 

IPCC IV 2050 climate scenarios. 
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Figure 26: Core area count (the number of times each pixel appears as core habitat) for tree species with 

ngwayir core area count (Figure 23i) overlaid. 

 

When I compared predicted ngwayir core habitat with that of the three tree species 

(Figure 26) and with conservation and forestry land tenure (Figure 27), extensive stands 

of either jarrah/marri and/or peppermint stands persisted alongside all projected potential 

model distributions of ngwayir, with much of these vegetation types continuing to occur 
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on conservation/forestry land. It is expected that relictual populations of all of these 

species will persist beyond 2050, outside of these parameters (Table 23). Statistical tests 

show that all models in these analyses are good, although models for each species 

differed markedly in the variable contributions used (Table 24). 

 

Figure 27: Conservation/Forestry vested estate with ngwayir core area count (Figure 23i) overlaid. 

 

Table 23: Areas from ngwayir core area overlay (Figure 22i) with corresponding total core areas for each 

tree species (Figure 25) both individually and merged, and areas of conservation/forestry vested lands 

(Figure 26) in hectares. 

Ngwayir 

count  

Total 

area 

Cons. Forestry Peppe- 

rmint 

Marri Jarrah Tree sp. 

merged 

1 283,385 89,556 133,602 44,088 106,773 68,941 219,803 

3 217,748 28,537 60,203 28,420 91,542 17,971 137,933 

3 475,669 38,349 150,268 295,179 82,248 100 377,526 

Totals 976,802 156,442 344,073 367,687 280,563 87,012 735,262 
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Table 24: Variable contributions, 10% training presence and number of training presences for the model 

projections for habitat trees (Figure 25) 

Variable Description Jarrah Marri Peppermint 

BIO1 Annual mean temperature 3.5 1.9 0.3 

BIO2 Mean diurnal range (max temp – min temp) (monthly 

average) 

0.1 0 3.6 

BIO3 Isothermality (BIO1/BIO7) * 100 0.9 0.9 2.0 

BIO4 Temperature Seasonality (Coefficient of Variation) 0.9 1.6 14.7 

BIO5 Max Temperature of Warmest Period 1.5 0.3 1.9 

BIO6 Min Temperature of Coldest Period 0.1 0.5 6.9 

BIO7 Temperature Annual Range (BIO5-BIO6) 0.1 0.1 0.1 

BIO8 Mean Temperature of Wettest Quarter 0.4 1.0 0.1 

BIO9 Mean Temperature of Driest Quarter 1.3 1.8 0 

BIO10 Mean Temperature of Warmest Quarter 3.9 2.6 0.2 

BIO11 Mean Temperature of Coldest Quarter 0.2 1.3 4.1 

BIO12 Annual Precipitation 47.3 32.8 55.1 

BIO13 Precipitation of Wettest Period 14.3 8.1 2.0 

BIO14 Precipitation of Driest Period 0.6 0.5 0.7 

BIO15 Precipitation Seasonality (Coefficient of Variation) 4.8 4.0 1.2 

BIO16 Precipitation of Wettest Quarter 2.5 15.1 3.2 

BIO17 Precipitation of Driest Quarter 0.1 0.2 0.5 

BIO18 Precipitation of Warmest Quarter 1.1 0.7 0.8 

BIO19 Precipitation of Coldest Quarter 16.4 26.6 2.7 

10% 10% Training presence .288 .359 .291 

N Number of training presences 506 345 375 

 

5.4 37BDiscussion 

In modelling the potential distribution of ngwayir, all three SDMs, although differing in 

type and sets of predictor variables, predicted similar binary distributions for the species, 

both for their current distributions and in the projections for 2050. Although there were 

some differences between the three climate change scenarios for 2050, all nine 

predictions demonstrated strong support for a significantly reduced ngwayir distribution, 

with a strong contraction towards the south-west. MaxEnt modelling showed that areas of 

core habitat within predicted potential distribution areas may suffer greater contractions 

than the binary outputs indicate. The contraction to the higher rainfall coastal areas of the 

south-west is consistent with other predictions of species-level climate change impacts 

within the region (Yates et al. 2010a; Yates et al. 2010b).  
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Although climatic envelope modelling predictions of species contractions due to climate 

change are now relatively common, it is widely recognized that modellers need to 

consider habitat preference or quality and potential interactions with other species to more 

accurately predict future climate change impacts (Williams et al. 2008). In this study, I 

used predicted contractions in the preferred tree species (for feeding and nesting) to 

further explore potential impacts of climate change on the ngwayir. MaxEnt modelling 

shows that, although the preferred tree species of ngwayir will also be strongly impacted 

by climate change, at least one of the core tree species will persist through much of the 

ngwayir’s future predicted distribution. Such severe tree species range contractions are 

supported by many studies on the observed and predicted impacts of anthropogenic global 

warming on woodland and forest species throughout the world (Williams et al. 2008; 

Allen et al. 2010; Littell et al. 2010; Chaturvedi et al. 2011; Milad et al. 2011; Prober et 

al. 2012). Of the three tree species modelled, the contraction in core peppermint habitat 

appears to be the most significant and is of most concern, as ngwayir is most common in 

the dense vegetation dominated by this species (Jones et al. 1994; Jones 2004). For two 

climate change scenarios in particular, core peppermint habitat is predicted to contract to 

the extreme south-west corner of the landscape. This prediction has important 

conservation implications, as many reserves with peppermint that currently support 

healthy populations of ngwayir may not be within the predicted future range of 

peppermint, highlighting the problems associated with maintaining a static reserve system 

in the face of climate-induced shifts in species distributions (Williams et al. 2008). 

Although the bioclimatic modelling of the preferred tree species is preliminary, it helps 

improve understanding of the vulnerability of ngwayir to climate change. In similar 

fashion, Bateman et al. (2012) improved predictions and understandings of climate 

change impacts on northern bettong in the tropical rainforests of Queensland by 

combining this with bioclimatic modelling of its major food species.  

Unless anthropogenic greenhouse gas emissions decline dramatically, the question 

becomes one of how to manage a vulnerable species in the face of an almost certain 

reduction in habitat quantity and quality. This will require further recognition of what 

landscape parameters actually define habitat for this species at more local scales (Pearson 

& Dawson 2003; Guisan & Thuiller 2005). 
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Other factors potentially contributing to the habitat of ngwayir at finer scales are the feed 

quality of foliage (which is influenced by the nutrient status of trees) and the quantity and 

type of volatile oils. As a cecum ruminant, it is probable that ngwayir’s habitat choice is 

influenced by the secondary metabolite content of the plants upon which it feeds (Wallis 

et al. 2002; Moore et al. 2004; Scrivener et al. 2004; Foley et al. 2008). Secondary 

metabolite levels vary significantly in response to genotypic and phenotypic factors even 

within plants of the same species, and habitat for many cecum ruminants is often defined 

by the density of plants, with similarly low levels of secondary metabolites (DeGabriel et 

al. 2008). Areas of suitable foliage can be readily identified through remote sensing 

techniques, which can also quantify other relevant habitat parameters such as nutrient and 

moisture levels (Ebbers et al. 2002; Malenovský et al. 2009). Thus it is possible to 

remotely identify areas of prime habitat and, by applying bioclimatic modelling 

techniques, obtain a strong indication as to which of these habitats will persist into the 

foreseeable future. Such areas should be given a high priority for conservation acquisition 

and management.  

It is important to recognize that neither ngwayir movement nor metapopulation 

requirements have been modelled in this study. This is because no literature defining 

ngwayir metapopulation requirements exists, and because those areas identified as future 

potential distribution for the ngwayir are generally contiguous, enabling good landscape 

permeability. Outside of these contiguous landscapes, there are areas recognized as 

potential future habitat that are not currently occupied by ngwayir, and to which they 

cannot naturally migrate. This presents a potential opportunity for ngwayir populations to 

be established through translocation. However, before doing so, a great many factors 

would need to be investigated, and any potential translocations should be evaluated on a 

case-by-case basis using an adaptive management approach (Williams et al. 2008). 

5.5 38BConclusion 

My prediction of a significant reduction in the range of the ngwayir and its supporting 

vegetation as a result of anthropogenic global warming concurs with much research on 

the adverse impacts of changing climate on forest and woodland ecosystems around the 

world. The frequency and intensity of such negative effects will increase if greenhouse 

gas emissions are not reduced (IPCC 2007). 
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 13BIncorporating the outcomes of fieldwork into species distribution 6

and climate change modelling on the koomal (Trichosurus vulpecula 

hypoleucus (Phlangeridae)). 

 

6.1 39BIntroduction 

6.1.1 85BBackground 

The taxon-specific data referred to (ch.4), describes the findings of a year-long field study 

of a koomal population in the Margaret River region of south-western Australia. The 

purpose of this chapter was to investigate the ecology of this sub-species of the common 

brushtail possum, which is facing the combined threats of climate change and landscape 

fragmentation, thereby enabling the development of informed and effective conservation 

management strategies for this taxon.  

This study (ch.4), conducted over a 100 ha landscape with 41% remnant vegetation cover, 

found a mean population of 27.75 individuals present at any given trapping event with a 

total estimated population of 69 individuals having resided in this landscape during the 

study period. It was found that koomal distribution was patchy with no animals caught in 

some habitat remnants. Gaps between remnants of up to 100 m presented no discernible 

barrier to movement and gaps of approximately 400 m were crossed regularly. Weights, 

sexual dimorphism and breeding data, remained comparable with populations in 

contiguous, conservation-managed landscapes. Kernel density estimates (at 95% 

probability) gave mean home ranges for males of 8.77ha of remnant vegetation and 7.9 ha 

for females which varied from 300 m to 1.1 km in length (as demonstrated in Appendices 

ch.4). Although subjects probably passed through areas infected with dieback 

(Phytophthora cinnamomi), none were observed or captured in infected areas indicating 

that infected areas were not habitat for this taxon. 

The modelling example referred to (ch.5), demonstrated that MaxEnt (Phillips & Dudík 

2008), an SDM software package which, when used with a full acknowledgment of its 

limitations and appropriate input data (Elith et al. 2011; Navarro-Cerrillo et al. 2011), has 

the capacity to inform conservation planning by providing consistent and useful species 

distribution data and to demonstrate the consequences of predicted impacts on a species 
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or community (Hijmans & Graham 2006; Carnaval & Moritz 2008; Gibson et al. 2010; 

Evangelista et al. 2011).  

In ch.5, potential impacts arising from global warming on the PD of the ngwayir or 

western ringtail possum (Pseudocheirus occidentalis) were predicted using a range of 

global warming scenarios applied to a selection of SDMs. All modelled scenarios 

predicted a reduction of up to 60% in the PD of the ngwayir, as a result of global 

warming, towards the south-west of the project area. Models applied to key habitat trees, 

namely, jarrah (Eucalyptus marginata), marri (Corymbia calophylla) and peppermint 

(Agonis flexuosa) revealed that these are also predicted to experience similar contractions 

in range and distribution shifts, throughout most of the predicted ngwayir range. It was 

also found that populations of ngwayir persisting outside predicted core habitat areas still 

present major conservation opportunities. 

6.1.2 86BContextual consideration 

The development of habitat variable data sets suitable for SDM applications entails 

addressing the following considerations: 

 For a variable to be suitable for inclusion into an SDM it must be relevant to 

the modelled taxon and be able to be represented in a Geographic 

Information System (GIS) format (Ferrier 2002; Skidmore 2002): Data must 

be available for the full extent of the modelled area, it must be quantifiable in 

nature and its application must enhance the predictive capacity of the model: i.e., a 

change in the value of a predictive variable will reflect a corresponding and 

quantifiable change in the value of the target or response variable (Peeters et al. 

1998; Gougeon 2009; Santika & Hutchinson 2009; Duchesne et al. 2010; 

Stankowski & Parker 2010). For example, a reduction in the area of habitat, a 

predictive variable, may bring about a fall in the population of species x, a 

response variable. However, such a relationship between response and predictor 

variables need not be linear or causal to be effective (Mac Nally 2000).  

 Many of the factors observed during the koomal field study cannot be 

represented in format suitable for incorporation into a SDM: Data accurately 

directly depicting relevant variables such as: remnant vegetation type, the 
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availability of suitable nesting trees, leaf chemistry and vegetation condition, do 

not exist. However, this study has shown that a fragmented landscape with 41% of 

remnant vegetation can support a large and apparently stable metapopulation 

which, through the constant movement of individuals to and from the study area, 

interacts with a greater overall population at a larger landscape scale 

(Amarasekare & Possingham 2001; Hanski & Ovaskainen 2003; Fischer & 

Lindenmayer 2007; Cassini 2011). The link between the presence of the common 

brushtail possum and patch matrices in fragmented landscapes has previously 

been recognised (Ji et al. 2003; Ball et al. 2005; Harper 2005; le Mar & McArthur 

2005). The Western Australian Department of Agriculture and Food’s remnant 

vegetation extent data set allows the investigation of relationships between 

koomal presence and patch matrices. Furthermore, field study indicated a strong 

negative relationship between koomal presence and dieback. Project Dieback’s 

dieback extent mapping, both current and potential, enables the incorporation of 

this variable into an SDM. 

 How can predictive variables suitable for modelling purposes be derived 

from general observations on habitat requirements? It was shown in the 

koomal habitat kernel densities (Appendices ch.4), that koomal home ranges could 

to be up to, and in some cases exceed, 1 km in breadth. It was also shown that 

these home ranges should encompass 5-9ha of remnant vegetation, not all of 

which needs to be suitable, and gaps between patches of vegetation of up to, and 

probably beyond, 500 m could be crossed by individuals of either gender. It was 

therefore hypothesised, as an application of landscape metric theory (Herzog et al. 

2001; Kindlmann & Burel 2008; Ramachandra & Uttam 2011; Kupfer 2012), that 

koomal habitat can largely be defined as a percentage of remnant vegetation cover 

when examined at scale/perspective relevant to koomal habitat requirements. For 

example, the ch.4 study demonstrated that koomal can persist in a landscape with 

41% of remnant vegetation cover as measured within a 1 km radius.  However, it 

is not known if that 41% parameter could be applied using a 10 km radius, where 

patches and/or gaps between patches may considerably larger, or a 100 m radius 

where gaps and patches would naturally be much smaller. This highlights the 

question of which scale, or perspective, is the most appropriate for quantifying the 
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koomal’s response to the proportion of remnant vegetation cover in a landscape, 

as the development of a predictive variable suitable for incorporation into a SDM 

requires that this question must be addressed. 

6.1.3 Objectives 

This chapter will demonstrate a means by which taxon specific observations, gathered 

through fieldwork, can be used to add resolution and robustness to species distribution 

models (SDMs) when defining potential distributions (PD). This will be done by 

developing appropriate model inputs, based on observed habitat preferences, and using 

those inputs to enhance models which, as demonstrated in the previous chapter (ch.5), are 

often solely reliant on generic species presence and bioclimatic data.  

In this chapter, taxon-specific ecological variables will be used in conjunction with 

generic bioclimatic data to produce a PD model for the koomal (the south-western sub-

species of the common brushtail possum (Trichosurus vulpecula hypoleucus) and to 

demonstrate means by which the modelling of climate change impacts on the koomal PD 

can be made more accurate. This will be done by combining MaxEnt (Phillips et al. 2006; 

Elith et al. 2011) and basic Geographic Information Systems (GIS) modelling techniques. 

To achieve this, MaxEnt will be used to combine koomal presence data with remnant 

vegetation and bioclimatic data to ascertain the current PD for the koomal and the 

predicted 2050 impacts of climate change on that distribution resulting from the 

application of selected Global Climate Models (GCMs). GIS overlays will then be used 

demonstrate how dieback might impact on those distributions. 

6.2 40BMethodology 

To produce a predictive variable suitable for use in a SDM and derived from general 

observations on habitat requirements three GIS raster data sets were constructed based on 

the same Department of Food and Agriculture Western Australia (DAFWA) remnant 

vegetation mapping used in previous chapters. These were used to calculate the 

percentage of remnant vegetation from three different scales/perspectives, i.e.: 

1. The percentage of remnant vegetation cover within each pixel, with a pixel size of 

1 km
2
 (this scale directly reflects observations on home range movements). 
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2. 1 km
2 

buffered, i.e. the percentage of remnant vegetation cover within each pixel 

and within a 1 km radius of that pixel, with a pixel size of 1 km
2
 (this scale is 

potentially relevant to home range movements beyond the grid square). 

3. The percentage of remnant vegetation cover within each pixel, with a pixel size of 

5 km x 5 km or 25 km
2
 (this scale is potentially relevant to metapopulation 

movements). 

Initial trials using grid squares greater than 5 x 5 km provided unacceptable resolution in 

initial test models and consequently was not continued. 

All data sets covered the full extent of the bioclimatic data sets used in the ch.5 modelling 

exercise. This landscape was considered appropriate for modelling koomal PD because all 

recorded presences fell within its boundaries and contains enough excess area to 

demonstrate a possible increase in distribution. 

As a response variable for this exercise, 1,114 records of koomal presences were obtained 

from the Department of Environment and Conservation’s NatureMap database 

(Department of Environment and Conservation 2007-2013). For this exercise all pre-1980 

records were removed as extensive land clearing throughout much of the koomal 

distribution during this period (Saunders 1990; Hobbs 1993a; Rijavec et al. 2002) means 

that many of the woodlands from which presences were recorded have now been cleared. 

Therefore, remnant vegetation cover for these recorded presences cannot be ascertained. 

This is also a risk for post-1980 records, but as land clearing has significantly slowed post 

1980 (Hobbs 1993a; Rijavec et al. 2002) and as nearly all koomal records for this period 

can be attributed to existing native vegetation extent, the impact of clearing on these 

records is considered by the author to be, comparatively, marginal and offset by the rigour 

provided by a robust sample size of 918 presences.  

On examination, koomal presence records were shown to be heavily biased by ongoing 

trapping programs. For example, of the 918 presences approximately 300 originated from 

the research undertaken in ch.4. To mitigate this bias in testing the effectiveness of the 

three test perspectives a low-bias sample was created (Phillips & Dudík 2008; Giovanelli 

et al. 2010; Hijmans 2012). To do this, presences were put into a 1 km
2 

grid raster using 

the same scale as the bioclimatic variable data sets. In this way presence was represented 
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as either present or absent in each 1 km
2 

grid square, thereby providing a representation of 

koomal distribution based on 167 grid squares with greatly diminished trapping bias 

(Giovanelli et al. 2010). This raster data set was then overlaid on all three perspective 

data sets in a GIS environment and the results analysed using histograms, summary 

statistics and MaxEnt modelling to determine which data set best suited to incorporating 

into a MaxEnt model. The full presence only data set was retained for use in all MaxEnt 

models as the MaxEnt software automatically sorts presence data into presence by grid 

squares as part of the modelling process. 

For the MaxEnt modelling, the bioclimatic data used was the same as that used in ch.5: 

i.e., the CSIRO MkIII, MIROC-m and ECHO-G GCMs. As in ch.5, these three GCMs 

were chosen as they have been shown to be the most reliable, to date, of the IPCC IV 

models in predicting the impacts of global warming in south-western Australia (Perkins et 

al. 2007; Hughes 2011). All GCMs, selected at the A2A medium emission scenario, were 

downloaded from the International Centre for Tropical Agriculture (CCAFS 2008). 

As there is a strong possibility that the use of any of the remnant vegetation data sets 

along with the full suite of bioclimatic variables may lead to “over-fitting” (Fitzpatrick et 

al. 2008; Benito et al. 2009; Elith et al. 2011; Hijmans 2012) it was decided to use the 

minimum number of bioclimatic variables required to give an Area Under Curve (AUC) 

value (Hijmans 2012) greater than .955 before the inclusion of the remnant vegetation 

data. This figure was selected as any value above this indicates a very high level of model 

accuracy in comparison to the .50 null model result. Bioclimatic variables will be 

removed from the SDM by conducting multiple model runs and removing the worst 

performing variables, according to “jacknife” analysis and % contribution in each run. 

The model produced using final suite of selected variables, was compared with the 

original, 19 variable, model to ensure that model integrity had not been compromised. 

When running the model a 10 % training presence threshold will be set, all other MaxEnt 

settings will be left at default. 

To model the potential impacts of dieback on koomal PD a dieback extent data set was 

required. Sub-regional dieback extent GIS shapefiles for the Northern, Southern, South-

West and Swan NRM regions (Strelein et al. 2007) were sourced from Project Dieback  

and adapted for inclusion in a MaxEnt model by merging these data sets, simplifying 
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outputs to “probably present, probably absent and unknown,” and converting the resulting 

shapefile to an ascII format. Although initial trials found that the broad scale 

(>1:250,000) and the fragmented and categorical nature of this data made it unsuitable for 

this form of modelling, overlaying this data set over MaxEnt outputs in a GIS format 

provided an insight into the potential impacts of this pathogen on koomal distribution. 

6.3 41BResults 

6.3.1 87BModelling PD using bioclimatic data only 

By running a MaxEnt model against the post-1980 koomal presence records using all 19 

bioclimatic variables, removing variables with a contribution less than 1%, and repeating 

the process twice more, a final group of 5 bioclimatic variables was selected for use in 

this exercise (Table 25). Although this resulted in a very small reduction in the AUC 

value, from .97 to .965, the AUC value remains very high, the difference in the PD was 

negligible (Figure 27) and potential problems associated with over-fitting in further 

modelling scenarios greatly reduced. 

 

Table 25: Contribution of variables to the koomal PD model. 

Variable  Description % Contribution 

all variables 

% Contribution 

selected variables 

BIO1 Annual mean temperature 1.4  

BIO2 Mean diurnal range  2.8  

BIO3 Isothermality (BIO1/BIO7) * 100  0.1  

BIO4 Temperature Seasonality (Coefficient of Variation)  3.5 6 

BIO5 Max Temperature of Warmest Period  0.7  

BIO6  Min Temperature of Coldest Period  0.3  

BIO7 Temperature Annual Range (BIO5-BIO6)  1.3  

BIO8  Mean Temperature of Wettest Quarter  1.8  

BIO9  Mean Temperature of Driest Quarter  0.0  

BIO10  Mean Temperature of Warmest Quarter  3.2 4.7 

BIO11  Mean Temperature of Coldest Quarter  0.2  

BIO12  Annual Precipitation  37.1 46.0 

BIO13 Precipitation of Wettest Period  4.1  

BIO14  Precipitation of Driest Period  3.0 8.2 

BIO15  Precipitation Seasonality (Coefficient of Variation)  4.1  

BIO16  Precipitation of Wettest Quarter  1.3  

BIO17  Precipitation of Driest Quarter  1.0  

BIO18  Precipitation of Warmest Quarter  0.1  

BIO19  Precipitation of Coldest Quarter 34.0 35.1 
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Figure 28: Comparison between MaxEnt koomal SDMs using full suite of 19 bioclimatic variables (a) and 

selected suite of 5 most significant variables (b). 

 

6.3.2 88BIncorporating future climate scenarios 

Having selected an appropriate suite of five bioclimatic variables, these variables were 

run against the three selected GCMs using the post-1980 koomal presences. Current core 

koomal PD (core PD is produced by using a 10% threshold cut off to display SDM 

variable parameters within which 90% of training presences occur) were overlaid with 

core PD for each of the 2050 GCM scenarios and all 2050 scenario core distributions 

overlaid to produce a sum value which shows the number of times each pixel has been 

identified as core PD (Figure 28). The difference in area between post 1980 PD and 2050 

PD for all modelled GCMs was then quantified (Table 26). 
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Figure 29: MaxEnt outputs using 5 bioclimatic variables. Post-1980 PD overlaid with 2050 GCM PDs 

overlaid (displayed as core areas) and GCM PDs overlaid to produce a summary count (The number of 

times each pixel appears as core habitat). 

 

Table 26: Change in core PD for each GCM and areas for sum values from 2050 overlays, as displayed in 

Figure 28. 

Model Post 1980 MIROC-m ECHO-G CSIRO 

MKIII 

Area (ha) 2,928,894 489,001 388,947 1,257,784 

Change in PD 

at 2050 (%)  

0 -83.3 -86.7 -57.1 

Sum value 1 2 3 Total 

Area (ha) 1,432,605 297,901 36,003 1,766,509 

% 81.1 16.9 2.0 100.0 

 

6.3.3 89BSelection of remnant vegetation perspective 

Having overlaid the low bias sample of post-1980 koomal presences were overlaid over 

each the proportion of remnant vegetation from each perspective was be attributed to each 

presence in the sample. Resulting histograms showed a preference for: a) full vegetation 

cover in the 1 km
2
 perspective, b) a relatively flat response with a small preference for 

approximately 40% of remnant vegetation cover for the 5 km perspective and c) a less 
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pronounced preference for full vegetation cover with a 40% spike for the 1 km buffered 

perspective (Figure 30). 

 

 

Figure 30: Histograms representing the response of koomal to the proportion of remnant vegetation cover as 

calculated from three perspectives. 

 

Although summary statistics (Table 27) showed no significant difference between the 

three perspectives, in the categories of mean, standard deviation, and median 1 km scored 

highest, 5 km, lowest and 1 km buffered providing the median value. However, as 

demonstrated in Figure 30, the 1 km buffered perspective was shown to be much less 

skewed. 
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Table 27: Summary statistics for 3 perspectives. 

  1 km 5 km 1 km 

Buffer 

Mean 60.19 50.65 55.53 

Standard Error 2.58 2.14 2.27 

Median 65.69 45.98 56.95 

Standard Deviation 33.08 27.48 29.3 

Sample Variance 1094.14 754.91 858.29 

Kurtosis -1.26 -1.07 -1.3 

Skewness -0.34 0.288 -0.06 

Range 100 94.38 99.9 

Minimum 0 4.65 0.1 

Maximum 100 99.02 100 

Sum 9932.02 8356.99 9218.05 

Count 165 165 166 

Confidence Level 

(95.0%) 

5.08 4.22 4.49 

 

When incorporated into the MaxEnt SDMs there was little difference in statistical tests of 

model accuracy between the model with no added perspectives and those with the 

remnant vegetation perspective data sets added (Table 28). In this exercise it was shown 

that AUC values for the models run with the 5 km and the 1 km buffered data sets were 

marginally superior to the model run without any perspective and the rankings, 

contribution and 10 % threshold values of these two models being superior to model run 

with the 1 km perspective. In all values the 5 km and 1k m buffered perspectives 

remained very similar with the 5 km perspective scoring slightly higher in all indicators. 

 

Table 28: Model accuracy indicators with remnant vegetation perspective data sets added 

Perspective AUC Ranking (1- 6) Contribution (%) 10 % Threshold 

None 0.965   0.229 

1 km 0.965 5 5.3 0.182 

1 km buffered 0.967 3 8.5 0.221 

5 km 0.967 3 10.3 0.226 

 

The 1 km buffered and the 5 km perspectives were to be significantly superior to the 1 km 

perspective in all tests. Although the 5 km perspective has been shown to slightly superior 
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to the 1 km buffered in some regards the latter’s significantly lower skewing value, while 

still reflecting both the 40 % spike demonstrated by the 5 km perspective and the full 

cover preference demonstrated by the 1 km perspective, and a greater inherent capacity 

for model definition, enabling more precise interpretation in highly fragmented 

landscapes, have led to the selection of this perspective for incorporation in further 

modelling. 

6.3.4 90BIncorporation of remnant vegetation perspective. 

When comparing the results of the MaxEnt model with five selected bioclimatic variables 

to those of the model which incorporated the 1 km buffered remnant vegetation 

perspective (Figure 31) it appears that PDs remain generally similar in both probability of 

presence and extent. The most observable difference is the greatly increased detail in 1 

km buffered model which reflects the percentage of remnant vegetation within and 

surrounding each pixel, and by extension the level of landscape fragmentation, and the 

koomal’s predicted response to that variable.  
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Figure 31: a) Post-1980 koomal PD using 5 selected bioclimatic variables alone and b) with 1 km buffered 

“koomal perspective” GIS layer included into the model as a predictive variable. 

MaxEnt models using the five selected bioclimatic and the 1 km buffered variables were 

then run against the 3 selected GCMs. Core PD for each of the 2050 GCM scenarios were 

overlaid on Post 1980 core koomal PD and all 2050 scenario core distributions overlaid to 

produce a sum value given which shows the number of times each pixel has been 

identified as core PD (Figure 32). The difference in area between post-1980 PD and 2050 

PD for all modelled GCMs was then quantified (Table 29). Each GCM scenario 

predicted, in comparison to the post 1980 PD, a reduction in koomal core PD of 56-86 % 

by 2050.  
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Figure 32: MaxEnt outputs incorporating 1 km buffered perspective. Post-1980 PD overlaid with 2050 

GCM PDs overlaid (displayed as core areas) and a summary count (The number of times each pixel appears 

as core area). 

 

Table 29: Change in core PD for each GCM and areas for sum values from 2050 overlays, as displayed in 

Figure 31. 

Model Post 1980 MIROC-m ECHO-G CSIRO 

MKIII 

Area (ha.) 2,640,333 524,398 375,899 1,171,211 

Change in PD 

at 2050 (%)  

0.0 -80.1 -85.8 -55.6 

Sum output 1 2 3 Total 

Area (ha.) 1,467,985 239,042 42,084 1,749,111 

 

6.3.5 91BDieback overlay 

Areas where dieback is, or is expected to be present, were overlaid over both the post-

1980 model and 2050 sum overlay (Figure 33) and comparisons made to demonstrate the 

reductions in PD likely to arise from the application of this data (Table 30). This exercise 

shows that dieback significantly limits PD in the post 1980 model, its impact by 2050 

GCMs, even at current level of infestation, will continue to increase and impacts will be 
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much greater in those areas selected as potential distribution by the application of 

multiple GCMs. 

 

 

Figure 33: a) Post 1980 core PD and b) 2050 core PD sum overlay with dieback infested areas removed. 

 

Table 30: Reduction in Post 1980 core PD and 2050 core PD sum overlay after the removal of dieback 

infested areas. 

  Core PD 2050 

Model Total post 

1980 

1 2 3 Total (2050) 

Total area 2,640,333 1,467,985 239,042 42,084 1,749,111 

Dieback present 481,735 385,928 85,530 21,622 493,080 

Change 2050 (%) -18 -26 -36 -51 -28 
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6.4 42BDiscussion 

6.4.1 92BBioclimatic models 

The MaxEnt koomal model using bioclimatic variables alone demonstrates a similar 

response in the contraction of PD as was predicted using the ngwayir model (ch.5). This 

is to be expected as both taxa share a common distribution and because both models are 

highly reliant on precipitation variables and share a landscape with a Mediterranean 

climate with a highly seasonal winter rainfall (Hearn et al. 2003; Gibson et al. 2010; 

Yates et al. 2010a). The 2050 GCM models show that koomal PD will be split into two 

distinct, northern and southern, populations, mirroring those predicted for marri 

Corymbia calophylla and jarrah Eucalyptus marginata in the previous chapter. This 

reflects the modelled reliance of all of these taxa on annual precipitation, a relatively low 

band of annual precipitation dividing the predicted PDs (Figure 34), and all of the GCMs 

predicting that precipitation in this low rainfall band will drop below habitat parameters. 

 

 

Figure 34: 2050 Sum PD (Figure 33b) with annual average precipitation (mm) overlaid. 
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6.4.2 93BUsing a minimal set of bioclimatic variables 

In ch.5 a full suite of 19 bioclimatic predictive variables were used and the MaxEnt SDM 

was allowed to calculate the level of contribution of all of these variables even though 

this represented a small danger of over-fitting (Fitzpatrick et al. 2008; Benito et al. 2009; 

Elith et al. 2011; Hijmans 2012). This was done because, in that exercise, the capacity of 

MaxEnt itself was being tested and because this model was being used to test the 

response of other species all of which may have had different bioclimatic requirements. In 

this exercise only one taxon was being modelled and the addition of habitat variables to 

the SDM model increased the probability of overfitting. The selection of the a suite of 5 

bioclimatic variables by undertaking multiple model runs and removing the worst 

performing variables produced a koomal post-1980 PD model with very little visual or 

statistical difference from the model output where all 19 bioclimatic variables were used. 

Given the minimisation of potential over-fitting problems and the clarity arising from 

being able to better identify which variables are defining PD, the use of a minimal suite of 

bioclimatic variables was shown to be the more effective option in this exercise. 

6.4.3 94BIncluding remnant vegetation data at the appropriate perspective 

In ch.4 it was observed that koomal presence relied largely on remnant vegetation extent 

and that the gap crossing capacity of this taxon allowed it to persist within a fragmented 

landscape. 

By applying remnant vegetation mapping at an effective scale/perspective to produce a 

predictive variable data set and incorporating it into the SDM, it was possible to take 

broad bioclimatic PDs and apply those onto actual landscape attributes. To do this, two 

issues had to be solved. The first required finding a quantifiable landscape parameter that 

reflected a koomal habitat preference, in this case remnant vegetation cover. The second 

was finding an appropriate perspective from which to view that habitat parameter. To do 

this, field observations were used to hypothesise a group of probable perspectives which 

could then be tested to determine which was the most suitable.  

The 1 km buffered perspective proven to be the most useful within the context of defining 

habitat for this taxon in this landscape. Although, statistically, it appeared in some criteria 

to be marginally less effective than the 5 km x 5 km perspective it better addressed 2 of 

the criteria developed in ch.2, in that it did quantify a habitat value (Guisan & Thuiller 
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2005; Gontier et al. 2010) and, through providing better resolution, the model’s utility 

value is enhanced (Broennimann et al. 2012; Šímová & Gdulová 2012). 

The results of this exercise did not in any way detract from the bioclimatic modelling; 

instead it focussed bioclimatic parameters on landscapes where remnant vegetation cover 

met the koomal’s habitat preferences. In so doing PDs was better defined and 

consequently, the potential for targeted application of model findings to management 

actions greatly enhanced.  

6.4.4 95BIncluding dieback variables 

In ch.4 it was observed that areas infested with dieback were not koomal habitat. By 

overlaying the dieback extent data set it was possible to eliminate areas that were, or 

probably were, not habitat from model outputs. This also helps to inform the delivery of 

targeted conservation management activities. 

Of note in this exercise was the finding that dieback reduces the post 1980 core PD by 

18% and the 2050 core PD by 28% (at current extent) and that areas highlighted  as 2050 

core PD twice will are reduced by 36% and areas identified as core PD  by all three 

GCMs by 51%. This example shows how those areas most likely to provide core PD for 

the koomal in the future are the same areas at greatest risk from dieback. This suggests 

that these areas should not only be maintained as koomal habitat, but also that dieback 

management action planning be undertaken in these areas as a matter of priority. 

6.4.5 96BLimitations 

There is no available data predicting remnant vegetation extent or the potential extent of 

dieback circa 2050 for the modelled landscape. For this reason, post 1980 and 2050 

models will run using the current data. Although this allows the benefits of including 

taxon specific data in PD models to be demonstrated, it does present a potential problem 

in applying the findings of this modelling exercise to conservation management. 

Therefore, it is recommended that the outputs of this exercise be viewed with this 

limitation acknowledged and that models be rerun with updated data as it comes to hand. 

The impacts of climate change on dieback are also poorly understood. Given that the 

distribution, rate of dispersal and impact of this fungal pathogen are related to bioclimatic 

variables in general and precipitation in particular (Strelein et al. 2007; Anderson et al. 
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2010), it could be hypothesised that the changes predicted in many GCMs (Gibson et al. 

2010; Yates et al. 2010b; Fordham et al. 2012; Prober et al. 2012), climate change may 

bring about a change in dispersal, or even a range contraction, for this pathogen. 

6.5 43BConclusions 

This chapter demonstrates a means by which taxon specific observations, gathered 

through fieldwork, can be used to add resolution and robustness to a SDM. To achieve 

this, data obtained in the field for ch.4 has, with the aid of GIS software and statistical 

analyses techniques, been used to enhance the climate change modelling techniques 

trialled in ch.5. This exercise demonstrates how spatial modelling can be used to model a 

future PD for a taxon which has been shown to be vulnerable to the impacts of landscape 

fragmentation, a rapidly changing climate and dieback, a virulent plant pathogen which 

impacts negatively on koomal habitat.  

In comparison to the simple bioclimatic model developed in ch.5, the incorporation of 

landscape data has enabled the development of a much more realistic PD as, by 

combining the habitat preferences of the koomal with bioclimatic parameters, areas which 

are not likely to be considered habitat by virtue of an unsuitable landscape matrix, or 

because of dieback infestation, are removed from the PD whilst largely retaining the 

habitat values of the bioclimatic-only model unchanged. A comparison between these two 

outputs will help to inform those areas where management activities such as dieback 

control, a change in tenure or revegetation could best be undertaken to help assure the 

persistence of this taxon. It also highlights those areas which, although not currently 

koomal habitat, may become so in the future. 
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 14BDiscussion 7

 

The purpose of this thesis was to study how spatial modelling has been applied to 

conservation management in the fragmented landscapes of south-western Australia and to 

demonstrate means by which these tools and methodologies could be used more 

effectively. Given the broad and complicated nature of spatial modelling, its myriad 

potential applications and in seeking to develop practical outcomes from this study, a 

perspective on spatial modelling had to be made enabling spatial modelling to be put into 

the context of regional conservation management needs. It was therefore assumed that, 

for the purpose of this thesis, the objective of the spatial modelling exercise is to gather 

relevant data to inform and, where appropriate, drive conservation planning processes, 

identify and prioritise effective management actions and, in turn, deliver good 

conservation management outcomes. 

Having set an objective for this study and given it context, it became necessary to find a 

way to compare and evaluate spatial modelling applications, thereby allowing a 

quantifiable means by which various methodologies can be evaluated and compared, in 

light of the degree to which they meet the needs of conservation managers. This required 

the development of a set of criteria, reflecting the needs of conservation managers, which 

could then be used as a yardstick by which the efficacy of various tools and 

methodologies could be measured. 

A set of eight criteria were developed and applied to the five major spatial modelling 

tools which, at that time or writing, were being used by regional conservation managers 

and planners. In applying these criteria to these spatial modelling applications it was 

found that: although none of the spatial modelling tools used met all the criteria, the use 

of multiple tools in combination could meet manager’s needs; tools were often used for 

purposes for which they were neither designed nor suited; and there was very low 

awareness of the existence and efficacy of the tools and methodologies that are available. 

Therefore the few tools employed were often used for applications for which they were 

not well suited, if used at all. To apply an appropriate axiom, “When the only tool you’ve 

got is a hammer everything around you starts to look like a nail.” Consequently, much of 

the decision making in this region’s environmental management has, and continues to be, 
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based on assumption and inappropriate modelling. Having made this statement, I must 

also acknowledge that recent research within this region has provided some excellent 

examples of spatial modelling, particularly in regard to the potential impacts of climate 

change (Gibson et al. 2010; Yates et al. 2010a; Yates et al. 2010b; Fordham et al. 2012; 

Prober et al. 2012). However, there still seems to be a chasm between research findings 

and management actions, insomuch as it appears that the former have had little, if any, 

influence on the latter. 

In setting criteria it became necessary to consider: firstly, the type and quality of 

information required by the conservation manager; secondly, the resources limitations of 

the conservation manager; and finally the capacity of the conservation manager to 

adequately comprehend and apply the outputs of the spatial modelling process through 

the development and delivery of effective management actions. The criteria of a 

successful spatial model and the means by which have been addressed in this thesis are 

listed below: 

1. Barriers to movement should be quantifiable: In ch.4 it was shown that, 

through targeted fieldwork in a fragmented landscape, it was possible to broadly 

determine how gaps in habitat and landscape attributes impact or facilitate 

movement. Although this methodology can easily be adapted to examine how a 

target community reacts to a specific obstacle, this is of little use when looking at 

how fragmentation impacts on habitat value at the landscape scale. This is 

because, as the ch.4 exercise shows, habitat can be made up of a series of patches 

with varying gaps or obstacles between them. In this context habitat becomes 

defined by the individual’s capacity to use a group of patches for its own 

autecological requirements. Therefore, in regard to modelling the impacts of 

fragmentation, the landscape matrix, i.e. the manner in which patches of various 

sizes and shapes are positioned in the landscape, becomes a more useful 

perspective than that of modelling the single barrier impact. Furthermore, because 

of factors of scale, the larger the target landscape becomes, the less important the 

impact of a single barrier. Conversely, the larger the landscape the more important 

the matrix becomes to distribution models. 
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The ch.4 exercise did demonstrate how a taxon utilised resources within the 

landscape matrix. It thereby enabled some of the impacts of fragmentation, and 

hence barriers to movement, to be explicitly quantified in the form of population 

demographics, metapopulation movements, and responses to specific features 

within the landscape. Information of this type can then be useful in the 

development of mixed methods species distribution models, ch.6, and 

metapopulation modelling. 

Incorporating barriers to movement through a variety of landscape matrices was 

also used in ch.3 which showed how predictive variables based on landscape 

matrices could be used to develop explicit models capable of quantifying the 

consequences of impacts or management actions on target species and 

communities. 

In addressing this criterion, it was demonstrated that modelling the impacts of 

barriers to movement it is necessary to choose a perspective that will enable 

modelling at the required scale. By changing the modelling perspective from a 

simple response to an obstacle, or barrier to movement, to quantifying barriers to 

movement as a feature of the landscape matrix enables a more suitable input for 

modelling the impacts of fragmentation on a taxon or community. 

2. Habitat should be quantifiable: In ch.3 the habitat perspective was taken from 

the patch and, like barriers to movement, put into the context of a landscape 

matrix. In this context habitat value became, like barriers to movement, 

quantifiable from a landscape perspective.  

In ch.5, landscape perspective was, temporarily, abandoned for a different 

perspective on habitat, that of potential distribution. This was a broad perspective 

relying solely on the application of bioclimatic variables which were used to 

implicitly identify and quantify a broad spatial envelope within which a taxon or 

community persist. This was done to show the potential impacts of climate change 

alone. As such this was another example of choosing a scale, or perspective, on 

habitat suitable for modelling a nominated impact on a specific taxon or 

community. 
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ch.4 exercise did lend itself to the development of some explicitly The 

quantifiable habitat parameters in that it found that dieback infected areas and 

shrublands were not habitat for the koomal, that trees with specific characteristics 

were required for nesting and that a home range could incorporate a patch matrix. 

Many of these observations were later applied in the mixed methods model, ch.6. 

To achieve this, a landscape fragmentation matrix was included into a bioclimatic 

potential distribution model and the resultant data set combined with simple 

explicit data to give a more effective species distribution model. 

In addressing this criterion, as in modelling barriers to movement, it became 

necessary to choose a perspective, or group of perspectives, which will best enable 

the modeller to apply the best available, and most suitable, data to the task at 

hand.  

3. The response of species and communities to disturbance scenarios should be 

predictable: The modelling exercises in chapters 3, 5 and 6 all demonstrated a 

means by which a target’s response to a nominated disturbance could be 

predicted. In ch.3, a modelling tool was developed, which used logistic regression 

outputs based on existing survey data, which could predict the individual and 

collective responses of a group of indicator bird species to changes in vesting or 

vegetation extent. In ch.5, a series of species distribution models and global 

climate models were used to give an implicit insight into the possible impacts of 

climate change on the potential distribution of the ngwayir. In ch.6 a similar 

potential distribution model was combined with relevant data and landscape 

matrix perspectives chosen in response to field observations, ch.4, to provide a 

much more explicit potential distribution model for the koomal. 

For each of these examples a modelling methodology was selected to address a 

realistic conservation management. In each example, tools were selected, or 

developed, with the capacity to predict how a species or community will respond 

to a future disturbance scenario in a quantifiable manner. It should be noted that in 

each case tools were selected on the basis of their capacity to meet a modelling 

requirement, and requirements were not developed to meet the capacity of a given 

tool. 
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4. Models should be able to demonstrate how change will happen over differing 

time frames, i.e. they have a multivariate capacity: The modelling exercises in 

chapters 3, 5 and 6 all had a multivariate capacity as a central requirement of their 

selection. In each of these test scenarios, data taken from a historical baseline is 

compared with future scenarios with little limitation on the future scenarios used. 

5. Models should be able to make valid predictions based on data that is either 

currently held or can be obtained within a project’s capacity, i.e. they can 

compensate for expected knowledge gaps: All GIS data used in this thesis, 

along with all species data, was all made freely available upon approaching the 

appropriate custodians. During the course of this thesis the only data that was not 

freely available was the species specific data obtained in ch.4. As species specific 

data of this type is often not available, the ch.4 exercise was undertaken as an 

example of how data of this nature can be obtained while in ch.6 an example was 

given of how data obtained in this manner can enhance the spatial modelling 

process. 

6. The outputs of the model must be easily understood by a variety of 

stakeholders: Although understanding many of the readouts of modelling 

exercises require a rudimentary understanding of statistics, this level of 

understanding is well within that expected of a graduate in a relevant discipline. 

Other than these basic statistical analyses, nearly all readouts are provided as 

simple graphics which can easily be understood by those with a rudimentary 

understanding of the nature of probabilities and, even where this is lacking, can be 

followed intuitively. 

7. Skill levels required to use the model effectively are accessible:  All modelling 

applications in this exercise required a basic understanding of GIS and statistical 

software operation. However, these standards too were of a level commensurate 

with those of a graduate in a relevant discipline. In the use of other modelling 

tools, those used, as are many more like them, are readily available online, as are 

tutorials on their use and, in most cases, online support networks and contacts.  

To test this criterion, all modelling tools used in this thesis, other than GIS and 

statistical software, were sourced online and used with no prior experience or 
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training other than downloaded tutorials and literature. In so doing, it was found 

that required skill levels were also within those expected of a graduate in a 

relevant discipline. 

8. The model should be within a project’s budget and resource constraints: All 

data used in this project was obtained free of charge. Other than ArcMap® and 

SPSS® software, all other software used in this exercise were downloaded free of 

charge. Many other spatial modelling packages are also available online and free 

of charge.  

Although ArcMap® and SPSS® were purchased software, software packages of 

this type are usually in use with research, education and conservation management 

organisations and therefore, in most instances, do not represent an addition cost to 

the conservation manager. However, ESRI does offer heavily discounted 

ArcMap® to students and community organisations if required and there are GIS 

and statistical analysis software packages available freely online which will meet 

many spatial modelling requirements. 

As software and data costs for most spatial modelling applications are minimal, 

the resource cost then becomes one of person-hours. Without knowing the nature 

of a spatial modelling application or the skill levels available, no real guideline 

can be given as to how this cost will impact on a project. To best assess the true 

cost of a spatial modelling application one might ask, what is the potential cost of 

not adopting a spatial modelling application? In answer to this question I would 

put this is a case by case decision in which the following points should always be 

considered: 

 Undertaking effective spatial modelling builds skills and capacity within an 

organisation which, in turn, will make subsequent spatial modelling 

exercises easier to conduct, more effective and cheaper. 

 The cost of a failed project, e.g. revegetating a patch with plant species that 

will not survive in a changing climate, reintroducing a species into an area 

that does not meet its autecological needs, or establishing a linkage project 
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that does not facilitate the movement of target species, will, over the long 

term represent a far greater cost in time, money and resources. 

In summary, this thesis has demonstrated that spatial modelling is a proven and effective 

means of informing conservation planning and management processes. It has many 

applications and the ongoing development of tools and methodologies means that it will 

continue to grow in terms of potential applications, efficacy and amenity for the 

foreseeable future.  

Through this thesis I have demonstrated the efficacy of spatial modelling in dealing with 

the conservation management requirements in south-western Australia. Exercises 

included: informing management activities, filling knowledge gaps and modelling the 

potential impacts of climate change within the context of a highly fragmented landscape, 

a set of circumstances confronting conservation managers in many regions throughout the 

world. All of this was done using data, tools and skills currently available to conservation 

managers. With this in mind I would assert that the use of assumption and the pleading of 

ignorance in conservation planning and management practices is becoming increasingly 

difficult to justify and even more difficult to accept. 
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