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Abstract 

The video game industry has grown substantially over the last decade and the quality of video 

games has also been advancing rapidly.  In recent years, video games have been advancing to 

a point that the increased time required to manually create their content is making this 

process too costly.  This has made procedural content generation a desirable option for game 

developers due to its speed of generating content, and the variety of content that a single PCG 

method can produced. 

The main purpose of this dissertation is to detail a new approach to procedurally generate 

video game level layouts, and to aid in further research in the area of procedural video game 

content generation.  The new PCG approach investigated and developed in this study 

combined a genetic algorithm with cellular automata and a maze generation technique into a 

method for generating game level layouts with desired maze-like properties.  The GA in this 

approach was utilized to evolve CA rules that, when applied to a maze configuration, would 

produce layouts with desired properties. 

This research discovered that CA rules could be evolved to generate level layouts with 

desired properties, and that there were a number of parameters which could affect the layouts 

these rules produced.  These parameters include the number of cell states used in the CA, as 

well as the CA’s neighbourhood size and the number of times the CA rules were applied to 

their maze configurations.  This research also discovered that the one factor that had the 

largest impact on the visual aspect of the generated layouts was the chosen chromosome 

representation.  
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Definition of Terms 

Attribute Similarity Measure (ASM): A value that is assigned to a generated level layout 

that represents how similar its attributes are to its goal layout’s attributes. 

Cellular Automata (CA): A process that alters a cells state over time using a definite set of 

rules involving the states of surrounding cells. 

Evolutionary Algorithm (EA): A population-based metaheuristic optimization algorithm 

that attempts to mimic the biological process of evolution to achieve an optimal solution to a 

problem. 

Genetic Algorithm (GA): A common form of evolutionary algorithm that uses mutation and 

crossover operators to evolve data. 

Game Level: A defined area of a video game, this is usually the area that is currently loaded 

into memory. 

Game Level Layout: The structure of a game level excluding minor details such as items, 

players and small static objects. 

Procedural Content Generation (PCG): The process of generating media content 

algorithmically. 
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Chapter 1. Introduction 

1.1 Background 

Level design in video games has always been a large part of game development and has 

mostly been accomplished by manual means.  In the early years of game development, video 

games were generally created by a single person who designed and programmed the game as 

well as developed artistic resources. As video games became larger, more people were 

required to develop them.  Lode Runner, a video game developed in 1983, was one of the 

first games that had a separate individual whose sole job was level design.  Until recently, the 

development process time was quite well balanced between programmers and 

artists/designers.  With the rapid advancement in technology, video games have become 

larger and more complex, requiring more work from the artists and designers.  This has led to 

increased costs, due to the extra development time required, and thrown out the balance in 

time between developing resources and programming.  This has increased the motivation to 

employ cost reduction techniques, such as the procedural generation of content. 

Procedural content generation (PCG) is a term commonly used to describe the process of 

generating media content algorithmically rather than manually.  PCG has been used in video 

games in various forms, either to alleviate the burden of the design process or simply to 

increase a game’s replay value.  An early example is the classic 1980 game, Rogue (Toy & 

Wichmann, 1980).  Rogue used PCG to generate new and unlimited levels, in the form of 2D 

“dungeon” environments.  An example is shown in Figure 1.  Since then, many other games 

such as NetHack (NetHack DevTeam, 1987), Moria (Koeneke & Todd, 1994), and Diablo 

(Blizzard North, 1996) have also mimicked Rogue’s use of PCG to generate an unlimited 

number of random dungeons, adding to the game replay value as the players are continuously 

presented with new environments and designs. 
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Figure 1.  Screen shot of 1980’s classic game “Rogue” (Retrieved from the L. Curtis Boyle Website) 

Besides level-map generation, PCG has also been used for numerous other applications in 

game design and development. SpeedTree (2002) is an example of a software package that 

generates realistic looking trees, ranging over 150 species of trees and infinite variants.  This 

makes production of vegetation to populate virtual worlds easier and faster. 

According to Guðlaugsson (2006), the concept of procedural content generation originated 

from fractals (Mandelbrot, 1982), a concept that was discovered by Benoît Mandelbrot in 

1975.  A fractal is a basic shape that when repeated, creates a more complex object.  This 

pattern can be found throughout nature and the concept can be used to procedurally 

reconstruct irregular phenomena. Some PCG approaches use fractals to generate artificial 

representations of natural phenomena, such as mountains, coastlines, lunar landscapes and 

music, although they will not produce exact replicas of particular phenomena and therefore 

titled “fractal forgeries” by Mandelbrot. 
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While PCG has been used in video games for decades it has only recently been paired with 

Cellular Automata (CA) to produce game level layouts (Johnson et al., 2010).  Wolfram 

(1983) describes an "elementary" cellular automaton as a sequence of sites carrying values of 

0 or 1 arranged on a line.  More complex versions involve sites that can take on one of a 

number of states, and may be arranged in higher dimensions.  The value at each site changes 

deterministically with time according to a set of definite rules involving the states of its 

neighbouring sites.  CA were introduced by Von Neumann and Ulam (Von Neumann & 

Burks, 1966) as a simple mathematical model in which to study biological processes, such as 

self-reproduction, and have since been used for physical and computational systems (Chopard 

& DROZ, 1998; Mitchell et al., 1996).  Some computational systems where CAs have been 

applied used genetic algorithms (GA) to discover rule sets that could perform the desired 

task.  GAs are also a common search/optimization technique used in certain PCG methods 

including Ashlock’s (2011) work, where GA was used to evolve level layouts directly with a 

customizable fitness function that could control the paths that the layouts contained. 

The GA concept was introduced by John Holland (1992) in the mid 1960’s and was designed 

to solve problems that humans did not fully understand.  In the late 1950’s and early 1960’s 

the use of evolution in computer science heavily relied on mutation until the introduction of 

GAs.  These algorithms attempted to find optimal solutions to problems by emulating the 

biological process of evolution through natural selection, mutation and reproduction. 

This study developed an approach, combining GA with CA into a PCG method for 

generating game level layouts with desired properties.  This approach uses the GA to evolve 

CA rule sets that are capable of generating 2D maze-like game level layouts. 

1.2 Purpose 

This project focused on generating rule sets for CA, using a GA, so as to produce maze-like 

game level layouts.  The specific aims of this study are stated below. 

 To explore what fitness functions are most useful in finding CA rule sets to produce 

maze-like game level layouts. 

 Explore the effects of different CA rule set parameters for generating maze-like level 

layouts. 

 To develop an approach to finding CA rule sets that can produce video game level 

layouts. 
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1.3 Significance 

This section discusses the significant aspects of the research in this area.  There are three 

significant aspects of this research and they are listed below. 

 To expand knowledge in the growing field of PCG and its use in generating game 

level layouts.  So far there is limited knowledge on using cellular automata with PCG 

to generate game level layouts and this research will add to known PCG methods in 

this area and assist in future research. 

 The ability to automatically find cellular automata rule sets that can produce maze-

like game level layouts with infinite variety, increasing video games replay value. 

 Also to reduce the work load of developers, and therefore development costs. 

1.4 Research Questions 

The main focus of this project is based on the question: 

"How can rule sets for cellular automata be evolved so as to produce maze-like game level 

layouts?" 

To aid in this research, the following sub questions were also considered: 

 What are suitable fitness functions that can evaluate a CA rule sets ability to produce 

maze-like game level layouts? 

 How will different CA rule set parameters affect the generated maze-like game level 

layouts? 

1.5 Contributions of this Study 

This study makes contributions in the area of procedural content generation for video games, 

specifically in the use of cellular automata for generation of maze-like game level layouts.  

The detailed contributions of this research are listed in the following points. 

 Exploration of two chromosome representations for cellular automata rule tables 

for use in developing maze-like game level layouts.  

Evolving CA rules is not a well explored area.  The majority of work done in the area 

use a representation with a direct mapping from genotype to phenotype (Mitchell et 

al., 1996; Piwonska & Seredynski, 2010).  This research experimented with the direct 

representation as well as an indirect representation to explore what effects using each 
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representation had on the level layouts that the chromosomes produced.  This study 

found that chromosome representation had a significant effect on the visual 

appearance of the generated layouts, with indirect representation generally producing 

neater and more structured layouts. 

 

 Experimentation with the idea of “flavours” to explore CA with more than two 

cell states.  

Generally when using CA to generate level layouts, only two cell states are used, one 

to represent traversable areas, and another to represent non-traversable areas.  This 

can be seen in Johnson et al.’s (2010) work, where each cell in the CA was set to 

either the floor state (traversable) or the rock state (non-traversable).  This study 

represented layouts in a similar manner, where each cell represented either a 

traversable area, or a non-traversable area, therefore the cells in the CA were set to 

one of two states, the traversable state, or the non-traversable state.  But to allow for a 

more expressive rule set in the CA, the idea of “flavours” was used.  The principle of 

this idea is that the actual cell state (flavour) is divided into a number of sub states for 

the purpose of rule set application.  In this research two flavours were used, the 

traversable flavour, and the non-traversable flavour.  This idea allowed the CA in this 

research to use more than two cell states while each cell via the idea of flavours is still 

associated with either a traversable or non-traversable area. 

 

 Introduces a unique method of extracting attributes from 2D level layouts.  

As part of the evaluation process used in this research, attributes of 2D level layouts 

were compared to desired attribute values to determine their similarity.  As this area is 

not well covered in the literature, there was no suitable automatic technique to extract 

the level attributes used in this study.  To address this issue, this research developed a 

unique approach, incorporating image analysis techniques, which can automatically 

extract attributes from level layouts.  These attributes include the number of 

traversable areas, their largest and average size, number of passageways and their 

average length, number of rooms and their average size, number of dead-ends, and 

number of culs-de-sac. 
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 An approach combining maze generation with CA and GA to produce level 

layout. 

To date, limited work has been done in the area of 2D maze-like level generation, 

including work by Ashlock et al. (2011) and Johnson et al. (2010).  Ashlock’s (2011) 

approach used GA to evolve level layouts directly.  The drawback to this approach is 

the slow evolutionary process, making this approach less ideal for run time level 

generation.  Johnson’s (2010) approach used manually designed CA rules to generate 

cave-like levels, but manually designing CA rules can be a difficult process especially 

when complex results are desired.  The approach developed in this research used a 

combination of GA and CA, an approach already attempted in other fields but not in 

the area of PCG.  This approach used GA to automatically find CA rules that, when 

applied to maze configurations, result in 2D level layouts with desired properties.  

This approach addresses the issue of manually designing CA rules by using a GA to 

evolve CA rules which, once generated, can produce a number of similar layouts with 

a particular style in a short space of time.  This makes the result of the evolutionary 

process ideal for run time level generation.  This approach involves the use of a 

modified recursive backtracker algorithm to generate a collection of initial maze 

configurations, a unique method of extracting attribute values from 2D level layouts 

for evaluation, and a genetic algorithm to evolve CA rule tables. 

1.6 Structure of the Thesis 

This thesis is divided into a total of 6 chapters and this section briefly summarizes the content 

of each. 

 Chapter 1 introduces the subject of this study, including background information of 

PCG and a brief description of cellular automata and genetic algorithms, before 

outlining its purpose and significance, and then discussing the research questions that 

this study aims to answer.  It also lists the new contributions to knowledge made by 

the study. 

 Chapter 2 presents an extensive literature review that covers all aspects related to this 

study.  It gives a detailed description of PCG and its different types, a description of 

genetic algorithms and how they have been used to evolve cellular automata rules, 

and various PCG methods used to develop video game levels.  Chapter 2 also gives a 

detailed description of existing techniques that were used in this study. 
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 Chapter 3 explains the proposed approach in detail, describing the generation of a 

population of perfect mazes, the chromosome representations that were explored, how 

the chromosomes were evaluated, and the steps of the GA process. 

 Chapter 4 details the results obtained from the proposed approach by performing 

visual comparisons between generated layouts and their goal layout.  This is followed 

by analysis of variance tests to determine which factors associated with the GA and 

CA had a significant impact on the results that this approach achieved. 

 Chapter 5 brings the study and this thesis to a close by providing concluding remarks 

on the work done, discussing possible directions for future research, and providing a 

summary of answers to the research questions posed at the beginning of chapter 1. 

1.7 Summary 

This chapter has provided a basic premise for the study by providing relevant background 

information on procedural content generation, and discussing what this study aims to achieve 

and how this may be significant in the field of PCG.  The research questions that this study 

aims to answer have also been presented here.  To set this study in the context of the existing 

body of knowledge, an extensive review of current PCG techniques and methods of evolving 

CA rules was performed.  This is presented in the next chapter. 
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Chapter 2. Literature Review 

This chapter details the existing literature on procedural content generation and its various 

elements along with a review of the techniques that were used in this research.  The chapter is 

presented in two main sections, the state of play and technical review.  State of play gives a 

broad description of PCG and where it has been used, focusing on its use in game level 

design.  The technical review details genetic algorithms, cellular automata and the recursive 

backtracking maze generation method used in the game level layout generation technique 

developed in this study. 

2.1 State of Play 

PCG has found wide use in game development, including game level generation, and this 

section outlines existing techniques used for this process.  This section is divided into three 

sub-sections.  Section 2.1.1 on procedural content generation describes the main types of 

PCG and the different ways in which PCG is used to generate content.  Section 2.1.2 covers 

previous work that deals with evolving rule sets for cellular automata using genetic 

algorithms (GAs).  Section 2.1.3 details the different attributes that make up a maze 

generation algorithm and a collection of known maze generation algorithms, and section 

2.1.4 describes existing PCG algorithms for generating game levels and layouts. 

2.1.1 Procedural Content Generation 

PCG can be used to generate many different types of content.  In the video game industry it 

has been used to generate 3D models, textures, game levels, rule sets and even the behaviour 

of non-player characters (“SpeedTree”, 2003; Perlin & Hoffert, 1989; Togelius et al, 2010).  

Togelius et al (2011) listed five aspects that should be considered when designing a PCG 

algorithm for a video game so as to tailor the algorithm to specific needs.  These aspects are: 

online vs. Offline content generation, essential vs. non-essential content, random seed vs. 

vector parameters, stochastic vs. deterministic generation and constructive vs. generate and 

test.  They will now be discussed. 

Online content generation defines the process of generating content during runtime of the 

application, whereas offline content generation is the process of generating content outside of 

the application and there are pros and cons to using either.  Online generation has the 

advantage of in-game variation, where infinite variations of content can be generated 

constantly presenting new content to the player.  For example, for a maze game, content that 

may be procedurally generated during runtime could be the maze layout, producing infinite 
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different mazes for the player to solve.  Disadvantages of this approach include the absence 

of human creativity and the computation time of these algorithms.  In most cases, it is faster 

to read content in from a storage medium than to produce it algorithmically.  Offline 

generation is the opposite, its prime advantage is that CPU cycles will not be spent generating 

content as it has already been created and needs only to be read into the game from a storage 

medium.  Also, developers can make artistic alterations to content if it is generated offline.  

The primary drawback to this method is that the player will only experience the limited set of 

content that was produced during development.  An example of offline generation during 

game development could be textures applied to models as developers may prefer this content 

to remain static.   This content may also be enhanced by developers; ensuring developers 

keep control over the appearance of the game. 

Essential content versus non-essential content questions how tightly the requirements for 

generated content must be met.  Essential content is defined as content that must fit some 

criteria otherwise game progress is halted, whereas non-essential content can take on any 

form and still not impede the progress of the game.  Non-essential content can often forego 

the additional processing required to ensure that it will be generated correctly.  In the case of 

the maze example, essential content would be the path from start to finish.  If such a path did 

not exist the player could not complete the maze, meaning the game could not progress.  Wall 

textures on the other hand are not so essential, as their look will not impede game 

progression. 

In the case of random seeds vs. parameter vectors, the type of input to the algorithm is 

questioned. The inputs are the parameters that get passed to the algorithm and ultimately 

affect the generated content.  The type of input affects the level of control over the generated 

content.  There are two common types of input, random seeds and parameter vectors.  

Random seeds provide the algorithm with a seed for a random number generator which it 

uses to obtain unspecified values, which greatly reduces the control over the algorithms 

output.  Parameter vectors are lists of values, which are passed to the algorithm to influence 

generated content and give greater control over the algorithms output.  Parameter vectors 

need not be simple static constants.  PCG can take a player experience model (PEM) as input 

to customize a game based off player experience.  This experience-driven PCG uses a PEM 

to determine what and how content is created.  There are numerous ways to achieve player 

experience modelling, Yannakakis et al (2011) provides several methods on accomplishing 

this, from direct approaches, such as asking players for feedback, to more advanced methods, 
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such as monitoring physiological changes in players during play.  An overview of 

experience-driven PCG for platformer level design is presented in Shaker et al (2010). 

The difference between stochastic generation and deterministic generation is the amount of 

randomness between instances of generated content that were generated using the same 

algorithm with identical input parameters.  Deterministic generation algorithms will always 

produce the exact same content if given the same parameters while stochastic generation 

functions will display some randomness between instances of generated content.  In this case 

random seeds are not considered parameters otherwise all PCG algorithms would be 

deterministic.  The video game “Rogue” used a stochastic PCG algorithm to generate its 

dungeon layouts, so that each dungeon layout was different but followed the same guidelines 

specified by the algorithms input parameters. 

Although there are many types of PCG, each PCG algorithm can be labelled as either 

constructive or generate and test.  The aim of PCG is to generate content that meets required 

criteria.  Content that meets these criteria is known as correct content.  Constructive and 

generate and test methods of PCG differ in their approach to generate correct content.  

Constructive PCG algorithms always terminate after a set number of steps, but must have 

rules in place to ensure that the content is correct while it is being generated.  A generate and 

test PCG algorithm does not necessarily produce correct content every time.  This method of 

PCG will continuously generate new content in an iterative manner and evaluating it by a 

fitness function until it eventually generates correct content.  This form of PCG is often 

enhanced with a search/optimisation technique which is referred to as search-based PCG. 

Fitness functions, also known as evaluation functions, are methods that determine how 

closely the generated content meets the requirements.  According to Togelius et al (2011) 

there are three key classes of a fitness function in PCG for video games.  These three classes 

are direct, simulation-based and interactive.  Direct fitness functions map particular attributes 

of generated content to a fitness value, such as the number of paths that lead to the exit of a 

maze.  Simulation-based fitness functions rely on computer agents to play through the 

generated content and compute the fitness value based on the agents experience.  An example 

would be to use a computer agent to navigate a maze and rate it on how long it took and how 

many dead ends the agent followed.  Interactive fitness functions rate a piece of contents 

fitness based on player interaction such as number of times and the length of time the player 

interacted with the generated content. 
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There are two primary ways that a fitness function is used in generate and test PCG.  In 

standard generate and test PCG methods, fitness functions result in a simple pass or fail.  For 

example, if the generated content is a maze, the fitness function would test if there is an 

existing path from the start point to the end point, and if there is not, the fitness function will 

result in a failure.  Whereas search-based PCG uses its fitness function to grade generated 

content using one or a vector of real numbers.  This form of PCG attempts to produce content 

with higher grades of fitness by using stochastic or metaheuristic search techniques to 

upgrade content, rather than regenerate it. 

Search-based approaches to PCG can use any form of stochastic or metaheuristic search 

techniques but most commonly incorporate genetic algorithms to evolve generated content.  

Genetic algorithms have also been paired with cellular automata to evolve cellular automata 

rule sets, which is detailed in the next section. 

2.1.2 Genetic Algorithms and their use in Evolving Cellular Automata Rule Sets 

A genetic algorithm is a population based search metaheuristic that generates a population of 

chromosomes which it evolves over time.  Chromosomes are data representations of possible 

solutions that go through the selection, mutation and reproduction process.  The process of 

selection in genetic algorithms involves a fitness function, which is used to rank the 

chromosomes so that the best can be selected to contribute to future generations.  The 

selected chromosomes are mutated and ‘mated’ in an attempt to produce greater solutions.  

The process of ‘mating’ chromosomes together is an operation commonly referred to as 

crossover which exchanges genetic material between chromosomes. 

Cellular automata are relatively simple processes that are capable of complicated behaviour.  

A cellular automaton consists of a grid of MxN cells, with each cell being set to one of a 

number of states, and a set of rules that are applied to each cell in the grid synchronously for 

T iterations.  The CA rule set governs the state of a cell, Cmn, within the CA at a given time 

step based on the state of the cell’s neighbourhood at the previous time step.  Starting with an 

initial configuration for the CA grid, the rules are applied iteratively until the final 

configuration is reached.  Although a simple process itself, one of the main bottlenecks when 

using cellular automata is discovering rules that will perform the desired task.  There are 

many ways to do this including the use of genetic algorithms to search for optimal CA rule 

sets for particular tasks.  Two tasks that have used this approach in the past are the density 
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classification task (Mitchell et al., 1996) and the pattern reconstruction task (Piwonska & 

Seredynski, 2010). 

The density classification task involved a one dimensional grid of cells where each cell 

represented one of two values, a 0 or a 1.  The goal of this task was to use cellular automata 

to discover the majority value contained in the grid by using a set of rules that would convert 

each cell to the majority value by the final configuration.  The method used to find an optimal 

rule set that performed this task was initialized by generating two populations, a population 

of chromosomes and a population of initial configurations for the grid values.  The 

population of initial configurations were static while the population of chromosomes, which 

represented rule tables for the cellular automaton, were evolved by the genetic algorithm.  

Each initial configuration was processed with a cellular automaton using each of the 

populated rule sets.  The fitness function graded each rule set based on the percentage of 

correct final configurations it produced.  The most common rule set produced from this 

algorithm was labelled the expanding block rule set.  This rule set yielded accurate results for 

the initial configurations but it did not scale well with larger initial configurations.  Another 

rule set that was discovered was labelled the particle-based rule set which had a higher 

success rate than the expanding block method and degraded less rapidly on larger grid sizes. 

The pattern reconstruction task also used a genetic algorithm to reduce the search for CA rule 

sets that could perform the desired task.  The pattern reconstruction task used a two 

dimensional grid of cells, that were initialized to either state 1 or state 2, to form a pattern as 

the initial configuration.  The initial configuration then had a percentage of its cells set to an 

unknown state labelled as state 0.  The task of the cellular automaton was to reconstruct the 

original pattern by identifying and correctly converting cells in the unknown state back to 

their original state.  The genetic algorithm used in Piwonska and Seredynski’s approach used 

cellular automata rule tables as chromosomes.  The cellular automaton was run on the initial 

configuration using each of the populated rule sets until final configurations were achieved.  

The fitness function graded the final configurations with a value equal to the number correct 

cells in state 1 plus the correct cells in state 2 minus the number of cells in the unknown state.  

Piwonska and Seredynski’s tested their approach on two different pattern types and accurate 

results were found for both.  The resulting rule sets performed the pattern reconstruction task 

with between 89% and 100% accuracy, depending on the percentage of cells in state 0 in the 

initial configuration.  The rule sets discovered in this research performed more accurately on 

larger grid sizes. 
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Cellular automata have been used in various other computer science applications including 

the generation of maze-like level layouts in video games.  Some video game level layouts 

closely resemble mazes and the next section covers different types of mazes and known PCG 

algorithms that generate them. 

2.1.3 Maze Generation 

There are many different types of mazes, and the “Think Labyrinth” (2010) website suggests 

that each maze is made up of seven different attributes, dimension, hyperdimension, 

topology, tessellation, routing, texture and focus.  These attributes are described below.   

 The dimension attribute refers to how many dimensions in space the maze covers.  

The types of this attribute include 2D mazes, 3D mazes, higher dimension mazes, 

which are mazes with more than three dimensions, and weave mazes, which are 2.5D 

mazes that have passages that weave over and under one another. 

 The hyperdimension attribute refers to the dimension of the object that moves 

through the maze.  Generally mazes are non-hypermazes where the object that gets 

moved through it is a point or small object, where-as in a standard hypermaze a line is 

used to traverse it rather than a simple point and is significantly more complex.  A 

hyperhypermaze, also known as a hypermaze of the second order, is more complex 

than a hypermaze and can only exist in four or more dimensions, requiring a plane to 

traverse the maze. 

 The topology attribute defines the geometry of the space that the maze exists in and is 

classified as either normal Euclidean space, or planair, which refers to mazes with 

abnormal topology. 

 The tessellation attribute refers to the geometry of the individual cells that make up a 

maze and include orthogonal, delta, sigma, theta, upsilon, zeta, omega, crack and 

fractal.  Orthogonal tessellation is the most common form and consists of a 

rectangular grid where passageways intersect at right angles; this literature review 

will not cover the rest of the tessellation types as they are more abstract and less 

common. 

 The routing attribute defines the type of maze generated and is probably one of the 

most important aspects of a maze.  These types include perfect mazes, braid mazes, 

partial braid mazes, unicursal mazes and sparse mazes.  Perfect mazes are mazes that 

have no loops, closed circuits and no unreachable areas.  Only one path exists 
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between any two points in a perfect maze.  Braid mazes contain no dead ends and 

therefore consist of looping passageways.  Partial braid mazes consist of both loops 

and dead ends.  Unicursal mazes, also known as labyrinths, are mazes that have no 

junctions and are therefore made up of a single loop.  A sparse maze is one that does 

not carve passageways into every section of the maze, leaving some inaccessible 

areas. 

 The texture attribute defines the style of passageways in a maze.  Types of this 

attribute include bias, run, elitism, symmetry and river factor. 

o Bias - where passageways are more likely to travel is a particular direction. 

o Run - where passageways are less likely to turn causing longer passageways. 

o Elitism – the more elite a maze is, the more direct the passageway from start 

to finish is. 

o Symmetry - where portions of the maze are rotated and flipped around its 

centre. 

o River Factor - where fewer branches are formed but flow to form longer dead 

ends.   

 The focus attribute simply refers to the way in which a maze is created and can either 

be a wall adder, where passageways are formed implicitly by adding walls, or a 

passage carver, where passageways are formed explicitly by carving them out of a 

gird or other area.  Template is another focus type which is generally a combination of 

a wall adder and passage carver. 

Out of the mentioned attributes, routing is usually the most definitive and a maze is usually 

categorized by its routing type.  Perfect mazes are the most common type of maze and many 

algorithms exist that create them.  The other types of mazes, braid, partial braid, unicursal 

and sparse, can all be created from a perfect maze.  By eliminating dead ends, or a percentage 

of dead ends, from a perfect maze, a braid, or partial braid, maze can be formed (Roth et at., 

2010).  Unicursal mazes can be formed from a perfect maze by bisecting each of its 

passageways which creates a loop.  Table 1 displays eleven known algorithms for producing 

perfect mazes and lists three of their texture attributes as well as their focus.  The algorithms 

will now be discussed in terms of algorithm groups that produce mazes with similar 

properties. 
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Algorithm Name Is Biased Elitism River Factor Focus 

Recursive Backtracker No 0.05 High Passage 

Prim’s No 0.43 Low Either 

Kruskal’s No 0.24 Low Either 

Aldous-Broder No 0.22 Low Either 

Wilson’s No 0.22 Low Either 

Hunt and Kill Yes 0.10 High Either 

Growing Tree No - - Either 

Eller’s Yes 0.24 Low Either 

Recursive Division No 0.14 High Wall 

Binary Tree Yes 0.50 High Either 

Sidewinder Yes 0.38 High Either 

Table 1. Three texture attributes and focus for eleven known perfect maze generation algorithms. 

As shown in Table 1 there are three algorithms that produce un-biased mazes with a high 

river factor and low elitist factor. These are the recursive backtracker, hunt and kill and 

recursive division algorithms. The recursive backtracker is the most commonly referenced 

algorithm in the literature and forms perfect mazes using the passage carving focus.  This 

algorithm works by carving passages from a random cell in a grid and branching out from 

previously carved cells once dead ends have been reached.  The hunt and kill algorithm runs 

similar to the recursive backtracker except, when a dead end is found, the algorithm doesn’t 

branch from a previously carved cell but hunts for a random uncarved cell to start a new 

passage that eventually attaches itself to an existing passageway.  The recursive division 

algorithm differs from the previous two as it is exclusively a wall adding algorithm.  This 

method of maze generation creates random walls, either vertical or horizontal, and places 

random openings along them.  This process is repeated until the maze is filled. 

On the other end of the scale, there are three algorithms that produce mazes with a low river 

factor and high elitist factor.  These algorithms are Prim’s, Kruskal’s and Eller’s. Prim’s 

algorithm was originally developed in 1930 by a Czech mathematician named Vojtěch Jarník 

to find a minimum/maximum spanning tree for a graph.  It has since been re-discovered 

twice, first by an American mathematician named Robert Prim in 1957, and again in 1959 by 

Dutch computer scientist Edsger Dijkstra (Mička, 2013).  Prim’s algorithm generates mazes 

in a similar manner to the recursive backtracker except it does not need to hit a dead end 

before it branches its passageways.  Kruskal’s algorithm, developed by Joseph Kruskal 
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(1956), was designed to find a graph’s spanning tree of minimum length but has since been 

used to produce mazes.  Unlike the previously mentioned passage carvering algorithms that 

carve their passages outward like a tree, Kruskal’s algorithm carves passageways between 

cells randomly throughout the grid.  Eller’s algorithm is one of the fastest and most memory 

efficient methods of generating perfect mazes.  This method creates mazes one row at a time 

by randomly joining cells in each row, forming sections.  Each section then merges with at 

least one cell in the next row and the process is repeated on the new row. 

The Aldous-Broder algorithm and Wilson’s algorithm produce mazes with the exact same 

traits.  The Aldous-Broder algorithm is one of the slowest and least intelligent algorithms for 

generating perfect mazes, but mazes it not what this algorithm was originally intended for.  

Two researchers, Aldous (1990) and Broder (1989), developed this algorithm independently 

while investigating uniform spanning trees.  This algorithm works by selecting a random cell 

and moving to a random neighbour, if the neighbour has not been visited yet, then a passage 

is carved between it and the previous cell.  This is quite inefficient because the algorithm can 

move around visited cells while not carving any passages and relies on random chance that 

unvisited cells will be visited.  Wilson’s algorithm was developed by Wilson (1996) as a 

faster method of generating random spanning trees than the Aldous-Broder algorithm.  This 

algorithm works by selecting a random cell that is not part of the maze and moving to random 

neighbours until it finds a cell that is part of the maze, then a passage is carved along the path 

that was traversed. 

The growing tree algorithm is a useful algorithm that can create prefect mazes of different 

textures.  To achieve this, the algorithm adds all carved cells to a list until a carved cell has 

no unvisited neighbours which it is then removed from the list.  Each time the algorithm 

carves into a new cell, it selects a cell from the list to carve from.  The texture of the maze 

depends on how the cell is selected from the list.  If the last cell is always chosen, then the 

algorithm creates mazes the same as the recursive backtracker, other configurations produce 

different results. 

There are two algorithms that produce very biased mazes with high elitist factors, the binary 

tree and sidewinder algorithms.  The binary tree is the simplest and fastest method of 

producing perfect mazes but passageways will only span a single direction.  This algorithm is 

performed one row at a time by iterating over each cell and carving a passage into one of its 

neighbouring cells.  The direction of the chosen neighbour can only be one of two directions 
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including a vertical direction, up or down, and a horizontal direction, left or right.  The 

sidewinder maze generation algorithm is performed one row at a time by iterating over each 

cell and choosing whether to carve horizontally or not.  Once the algorithm has decided not to 

carve any further along its horizontal direction, it will pick a cell from the freshly carved 

passage at random to carve upwards into the previously processed row until the maze is 

complete. 

Although standalone mazes may be used for game level layouts and have been in the past, an 

early example is “Pac-Man”, they can also be used as a basis for more complex level designs.  

The next section “Game Level Generation” details different methods of generating game 

levels and layouts including methods that use forms of maze layouts. 

2.1.4 Game Level Generation 

There are many different types of game levels ranging from 2D platformers, to strategy maps, 

to fully three dimensional open worlds.  Variations of PCG approaches exist that can generate 

each level type.  This section will briefly describe existing methods of game level generation, 

focusing more on methods that involve the use of maze generation and cellular automata. 

One example of a search-based approach to procedurally generating game levels is presented 

in Togelius et al (2010) which proposes a PCG method of generating strategy game maps.  

The presented algorithm provides the ability to place player bases and up to two types of 

resources around a map that it also generates a height map for.  This PCG method has a 

relatively small genotype made up of a collection of four different types of components.  

Each component is represented by a vector of real values that range between 0 and 1.  The 

components are the mountains, stored as an X and Y coordinate and a height weight, the 

player bases, stored as an X and Y coordinate, the resource type 1, stored as an X and Y 

coordinate and the resource type 2 which is also stored as an X and Y coordinate.  This 

algorithm used evolution to produce maps with certain characteristics based off different 

fitness functions.  In the article, five fitness functions were used to grade the generated maps 

on attributes including distance between player bases, ground level of the placed bases, 

elevation difference between symmetrical cells, distance between resources and bases and 

distance between resources and other resources.  Another contribution presented in the article 

was the ability to select up to two possibly conflicting map attributes to grade the content on.   

This was accomplished by using a multiobjective evolutionary algorithm (MOEA) which, 

rather than search for an optimal solution, collects a Pareto front of non-dominated solutions, 
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which are multiple solutions for which there are no other solutions that are better or equal in 

all dimensions.  The collected candidates are then evolved using standard 

recombination/mutation operators. 

Another two search-based PCG algorithms were presented in Ashlock (2010) which 

generated puzzle game levels.  The two algorithms are used to generate two types of puzzles, 

the chess puzzle and the chromatic puzzle.  The chess puzzle algorithm starts by placing 

chess pieces at random on a grid and blocks all grid cells that the chess piece could move to 

in a single turn, rather than move the chess piece during play.  The player is itself a chess 

piece and can only move through the maze-like level using legal moves for that chess piece.  

The chromatic puzzle algorithm starts by setting each cell in a grid to one of the seven 

colours of the rainbow randomly.  The player can only move from one cell to another if the 

colours are the same or next to one another on the colour wheel.  These algorithms used the 

same fitness function which graded content based on the minimum number of moves it would 

take the player to complete the level.  This method of controlling difficulty was not perfect 

due to the fact the fitness function only returned the minimum number of moves required to 

complete the game, assuming that the higher the value the harder the puzzle, which is not 

always the case.  The difficulty of these puzzles decreases as the gap between the minimum 

and maximum number of moves required to complete the puzzle decreases, which is a natural 

side effect of increasing the minimum number of required moves too much. 

Ashlock et al (2011) also proposed another search-based PCG method for generating maze-

like levels but takes a step away from puzzle levels to produce 2D top-down game levels.  

The method proposed used four different types of representation, to produce levels that varied 

visually, and five different fitness functions to control the attributes of the levels.  The four 

types of representation were direct 1, which used a binary gene, direct 2, which used a 

chromatic map, indirect positive, which added walls to a traversable area, and indirect 

negative, which carved rooms out of a non-traversable area.  The direct 1 representation is 

specified as a grid of values that are either 1 or 0, with one value specifying traversable area 

and the other specifying non-traversable area.  Direct representation 2 populates a grid with 

colour values, as described earlier, where passageways are formed by cells of the same colour 

and colours adjacent on the colour wheel.  The indirect positive representation uses an array 

of integer values to specify wall locations, directions and sizes and the indirect negative 

representation uses an array of integers specifying rooms, rather than walls.  Each of the 

representation types uses the same variation operators during the evolution process, uniform 
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crossover, which switches values/cells, and uniform mutation, which regenerates a value/cell.  

The five fitness functions presented in the article controlled the game levels attributes such as 

lengthening the path from start to finish, increasing or decreasing the number of loops and 

culs-de-sac and increasing or decreasing the number of branches along the paths. 

Another method for producing maze-like levels was presented in Johnson et al (2010) which 

used cellular automata to produce infinite game levels that were cave-like in appearance.  

This algorithm randomly initializes a grid of cells to one of two states, either rock state or 

floor state.  Each cell in the grid is then iterated over a set number of times altering the state 

of the cells based off its neighbouring cells.  If enough neighbouring cells are rock cells then 

the cell’s state is set to rock, otherwise it is set to floor.  In this particular implementation, 

each grid of cells was considered a chunk and new chunks were generated as needed during 

gameplay to produce an infinite level.  If two chunks did not connect via traversable areas 

automatically, a tunnel would be generated between the two chunks.  The levels formed by 

this algorithm resemble sparse mazes as not every traversable area is reachable.  

The research detailed in this document is closely related to Ashlock’s and Johnson’s, as it 

aims to produce level layouts, similar to those generated in Ashlock’s approach, using 

cellular automata, as was used in Johnsons approach.  Although there are existing PCG 

techniques that use GA to evolve level layouts, an approach using GA to evolve CA rule sets 

capable of generating game level layouts has not yet been explored. 

2.2 Technical Review 

This section gives comprehensive descriptions of concepts that were briefly described in the 

literature review and were relevant to this research.  It is divided into four sub-sections, the 

first detailing the structure of search-based PCG followed by genetic algorithms, then cellular 

automata, and finally the recursive backtracker maze generation algorithm. 

2.2.1 Search-Based Procedural Content Generation 

Procedural content generation can produce many types of video game content which usually 

has to meet specific requirements.  A few techniques have been developed that address the 

challenge of generating content to meet specified criteria.  One of the most common of these 

techniques is search-based PCG (Togelius et al., 2011).  This section describes the process of 

search-based PCG and the role of the fitness function in this method. 
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Search-based PCG methods differ slightly depending on the form of search/optimization 

technique employed.  This section assumes the use of a genetic algorithm as the search 

technique, as was using in this research, and therefore this process starts by generating a 

population of content candidates.  The next phase of the process assigns each candidate a 

fitness value by testing it with a fitness function to determine how well it meets the specified 

criteria.  If the highest ranking candidate achieves an acceptable fitness value then the 

algorithm terminates.  Otherwise an iterative process of selection and variation is performed 

until an optimal solution is found.  Figure 2 represents this process. 

 

Figure 2. Diagram of the Search-Based Procedural Content Generation Process 

The fitness function in search-based PCG is what specifies the requirements of the content 

that is to be generated.  By altering the fitness function, content with different attributes can 

be created.  An example of how a fitness function governs generated content can be seen 

Figure 3 where each mazes fitness is determined by the length of the path from start to finish.  

In this case, the search-based PCG algorithm will attempt to upgrade the maze to produce 

longer paths from start to finish. 

 

Figure 3. Illustration of a fitness function grading mazes based on the length of the path from start to finish 
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2.2.2 Genetic Algorithms 

One search metaheuristic that is commonly used in search-based PCG is genetic algorithms.  

These are population-based metaheuristic optimisation algorithms that attempt to find optimal 

solutions to ill-defined problems.  This section will describe the terms commonly used in GA, 

chromosome, selection, mutation, and crossover, followed by a description of the process. 

Chromosomes, also known as genotypes, are data representations of possible solutions and 

should not be confused with the solution itself, commonly referred to as the phenotype.  Each 

chromosome must be mapped to the solution it represents.  There are two types of mapping 

process, direct and indirect.  Genotypes used in direct mapping are linearly proportional in 

size to its phenotype, while genotypes used in indirect mapping are not.  Figure 4 shows an 

example of both a direct and indirect representation of a maze.  In the direct representation 

each cell of the maze is represented by either a 1 or a 0.  This representation’s size is linearly 

proportional to the size of the maze.  The indirect representation uses integers to represent 

walls in the maze.  Therefore the indirect representations size is not dependant on the size of 

the maze. 

 

Figure 4. A direct and indirect genotype for a maze 

Selection is the process of selecting the chromosomes with the highest fitness values on 

which to perform mutation and crossover.  Genetic algorithms may employ an elitist scheme 

where a percentage of the fittest chromosomes are kept unchanged each generation.  Elitist 

schemes are used to avoid a loss of good solutions after the evolution process.  The loss of 
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good solutions may be caused by setting parameters, such as the mutation rate, to unsuitable 

values. 

Mutation is the process of altering some genes of a chromosome.  This is typically 

performed by selecting genes of a chromosome and replacing them with new values.  The 

mutation rate determines the probability that a gene in a chromosome will be altered and 

therefore should be tweaked to maximise the performance of the algorithm. 

Crossover is the process of exchanging genes between two chromosomes.  Typically the 

crossover rate determines the probability that a chromosome will undergo this process.  This 

process involves splitting a chromosome into two or more sections and swapping the cut-out 

sections with those from another chromosome.  The crossover rate should also be tweaked to 

maximise performance. 

Genetic algorithms are iterative processes that initially generate a population of chromosomes 

and repeatedly perform selection, mutation and crossover on them until a desired solution is 

found.  The exact steps are listed below and an illustration of the process is displayed in 

Figure 5. 

1. Generates initial population of chromosomes. 

2. Checks if the termination condition is met.  The termination condition can be either that 

an optimal solution was found or that this step has been repeated a maximum number of 

times.  If a condition has been met then the algorithm terminates. 

3. Map genotypes to their phenotypes and assign them fitness values using the fitness 

function. 

4. Select the group of chromosomes with the highest fitness values. 

5. Perform mutation and crossover operations on the chromosomes to create a new 

population of chromosomes. 

6. Repeat from step 2. 
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Figure 5. A diagram of the genetic algorithm process 

2.2.3 Cellular Automata 

Like genetic algorithms, cellular automata are also iterative processes, although these 

processes are relatively simple and easy to define.  There are two main components of a 

cellular automaton, the grid of cells on which the process is performed, and the set of rules 

that is applied to each cell in the grid.  This section defines these two components and the CA 

process. 

The grid of cells used in CA goes through a metamorphosis of states as the state of each cell 

within it changes over time.  There are three key attributes associated with the grid that need 

to be considered during its design, size, dimension and number of cell states.  The grid can be 

of any size and dimension and the cells within it can be set to any of an infinite number of 

states.  However, due to computational limitations it is best to find optimal settings for each 

of these attributes.  The combination of the grids size, dimension and the state of its cells 

form a configuration.  The initial configuration is the state of the grid before the CA process 

starts.  This state constantly changes through this process until the process terminates.  The 

resulting state of the grid is referred to as the final configuration which should ultimately be 

the desired result. 
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The rule set is applied to each cell in the grid synchronously during the CA process and 

alters the state of each cell based on its current state and the state of the cells in its 

neighbourhood.  An example of a rule set is the majority rule, where a cells state is set to 

state shared by the majority of its neighbours.  The neighbourhood is a key factor in this 

process and can greatly alter the effect of a cellular automaton.  There are two commonly 

used neighbourhood types in cellular automata, the Moore neighbourhood and the Von 

Neumann neighbourhood.  The Von Neumann neighbourhood is diamond shaped and with a 

radius of one consists of the centre cell and its four orthogonal cells, commonly referred to as 

4-connected.  The Moore neighbourhood is square shaped and with a radius of one consists of 

the centre cell and its four orthogonal and four diagonal cells, commonly referred to as 8-

connected.  Figure 6 displays both these neighbourhood types with two different radii. 

 

Figure 6. Illustrations of the Moore and Von Neumann neighbourhoods 

Once the initial configuration has been formed and the rule set decided upon, the cellular 

automata process can begin.  The cellular automaton applies the rule set to each cell in the 

initial configuration synchronously, altering the grids state.  This process is applied iteratively 

on the grid for a set number of cycles.  Once the cellular automaton terminates, the final 

configuration is achieved.  Figure 7 shows this process. 



 
25 

 

Figure 7. Diagram of the cellular automata process 

2.2.4 Recursive Backtracker Maze Generation Algorithm 

Like cellular automata, another algorithm that runs on a grid of cells is the recursive 

backtracking maze generation algorithm (Buck, 2011) which is one of the many algorithms 

that generate perfect mazes.  This maze generation algorithm was used in this research to 

produce initial configurations for cellular automata.  Although any maze generation technique 

would be useful for this purpose, the recursive backtracker is among the simplest to 

implement. 

The recursive backtracker is an iterative, stack-based algorithm which applies a process to a 

stack of cells.  The stack of cells starts off empty and the process is listed below. 

1. Select random cell in grid and add it to the stack S. 

2. Checks if S is empty.  If S is empty then terminate the algorithm. 

3. Select the last cell C from S. 

4. Select one of C’s neighbouring cells N that has not been carved into yet and carve a 

passage from C to N.  The Von Neumann neighbourhood is used in this algorithm with a 

radius of 1. 

5. Add N to S. 

6. If C has no more unvisited neighbours, remove it from S. 

7. Repeat from step 2. 

2.3 Summary 

PCG is a family of techniques that have been used in the video game industry to produce 

game content, including level layouts.  Two common types of PCG include constructive PCG 

and generate & test PCG.  Search-based PCG is an enhanced form of generate & test that 

uses search/optimisation techniques, such as genetic algorithms, to improve performance. 
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Search-based PCG has been paired with CA to generate simple game level layouts.  CA may 

be capable of producing more intricate layouts but discovering CA rule sets capable of this 

task can be difficult.  Previously, genetic algorithms have been used to find CA rule sets 

capable of performing particular tasks, such as density classification and pattern 

reconstruction. 

The research that will be detailed in the following chapters developed a technique that 

attempts to find CA rules that produce level layouts with maze-like properties.  This 

technique was produced using a combination of GA, CA and maze generation techniques.  

Although related research has been performed in this area (Ashlock et al., 2011; Johnson et 

al. 2010; Mitchell et al., 1996), the combination of GA, CA, and maze generation is a unique 

approach to level layout generation. 
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Chapter 3. Proposed Approach 

This research developed a method of generating game level layouts with maze-like properties 

by using a genetic algorithm and cellular automata.  The investigation and development in 

this project used an engineering methodology (Basili, 1993) which included four phases, 

study existing solutions, propose a new solution, develop and refine the proposed solution, 

and test and evaluate the solution. 

The proposed approach, as shown in Figure 8, consisted of two phases.  The first phase 

involved generating a collection of perfect mazes to be used in the evaluation step of the 

second phase, which is the GA process.  These phases incorporate techniques which include a 

modified graph traversal algorithm for maze generation, a unique method of maze attribute 

extraction using a series of image processing techniques, and a genetic algorithm used to 

evolve cellular automata rules.  The modified graph traversal algorithm generates mazes to be 

used as input for cellular automata and is described in section 3.1 and is followed by section 

3.2 which details the GA process outlined in Figure 8. 

 

Figure 8. Visual representation of the proposed approach. 
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3.1 Phase 1: Generate a Collection of Perfect Mazes 

Before the GA process could begin, this approach generated a collection of 100 perfect mazes 

which were used as initial configurations and fed as input to CA in the GAs fitness function, 

as described in section 3.2.2.  The figure 100 was selected for the collections size as Mitchell 

et al.’s approach (1996) used a collection of 100 initial configurations in their evaluation 

technique.  The collection of mazes was generated using a modified version of the recursive 

backtracker algorithm (Buck, 2011), a stack-based graph traversal algorithm that is 

commonly used to generate, and solve, perfect mazes.  The implementation used in this 

approach differs slightly from the standard algorithm, which is described in section 2.2.4.  

The modified algorithm was used to produce a maze where walls were defined by blocking 

adjacent cells, rather than defining walls between adjacent cells.  This was important as the 

CA configurations needed to consist of both traversable and non-traversable cells and did not 

support walls to be defined between cells.  The pseudo-code of the modified algorithm is 

shown in Table 2. 

Create a grid of cells, each cell can be set to either blocked or unblocked and can be flagged as either 

visited or unvisited. 

For each cell in the grid. 

 Set cell to blocked. 

 Flag cell as unvisited. 

End loop. 

Create empty stack of cells. 

Select a random cell from the grid and push it onto stack. 

// Make sure that the selected cells X and Y coordinates are both a multiple of 2. 

While stack is not empty. 

 Pop the last cell from the stack. 

 Set the cell as unblocked. 

 Flag the cell as visited. 

 Search for an unvisited neighbouring cell in a random direction, up, down, left, or right. 

 // Make sure that the neighbouring cell is 2 cells away from the current cell. 

 If an unvisited neighbouring cell was found. 

  Push neighbouring cell onto the stack. 

  Set the cell that’s between the current cell and the neighbouring cell to unblocked. 

 End if. 

End loop. 

Table 2. Pseudo-code for the modified recursive backtracker algorithm. 
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Figure 9 displays a maze generated using the standard recursive backtracker algorithm and 

another using the modified version.  As can be seen, the left image which used the standard 

recursive backtracker algorithm is a maze where all the cells are traversable and are blocked 

from one another by walls that run between the cells.  The right image is a maze generated 

using the modified version of the algorithm and forms walls by blocking cells, making them 

non-traversable. 

 

Figure 9. (a): Example of a maze generated using the standard recursive backtracker algorithm.  (b): Example 

of a maze generated using the modified algorithm.  Note that the black areas in the left image are 

traversable while the white areas in the right image are traversable. 

3.2 Phase 2: The GA Process 

Once the collection of perfect mazes had been generated, the GA process commenced, but 

before this process is explained, some issues that needed to be considered are outlined.  These 

considerations include how the CA rules were represented, and how they were evaluated.  

These are explained in sections 3.2.1 and 3.2.2 followed by the steps of the GA process in 

section 3.2.3. 

3.2.1 Chromosome Representation 

The chromosomes, in this approach, represented CA rule tables, which are lookup tables that 

take a neighbourhood configuration as input and returns an associated output state.  The 

output state is the new state of the central cell of the input neighbourhood.  CA rule tables are 

traditionally represented by storing an output state for every possible CA neighbourhood 

configuration.  This is suitable when using simple CA that consists of a small neighbourhood 

and only two cell states.  However, when using more complex CA, the range of possible 
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neighbourhood configurations quickly expands, making the traditional approach infeasible.  

A CA’s complexity is affected by two attributes, S, the number of states each cell in the CA 

can be set to, and N, the size of the neighbourhood.  The number of neighbourhood 

configurations is thus S
N
.  For example, a simple cellular automaton that uses a 3x3 

neighbourhood grid, with each of the neighbourhoods nine cells being set to one of two 

states, the number of neighbourhood configurations equals 2
9
, or 512.  This is not a 

particularly large value and it is easy to accommodate a population of chromosomes that 

contain 512 genes, but when using a 5x5 neighbourhood grid, the number of neighbourhood 

configurations is equal to 2
25

, or 33,554,432.  This becomes a lot less feasible, especially 

when adding an additional cell state where S=3 and N=25 the number of neighbourhood 

configurations increases to 847,288,609,443.  This is a large number of output states to 

accommodate, with space requirements of approximately 200 gigabytes per chromosome.  

This meant that to explore the effects of using more complex CA, a more space efficient 

method of chromosome representation would need to be utilized. 

During this study, two chromosome representations were explored, both with different 

chromosome sizes, search space sizes.  The two representations involved in this study were 

labelled as representation 1, or the direct representation, and representation 2, or the indirect 

representation.  The following sub-sections will describe these representations that were 

explored in detail. 

Representation 1 (Direct) 

The first representation used the traditional method of storing an output state for every 

possible neighbourhood configuration in a list.  Each output state was stored in lexicographic 

order of its corresponding neighbourhood state for lookup purposes.  Each output state was 

stored as a two bit integer which allowed up to four possible output state values to be used.  

This representation was not used with neighbourhood sizes greater than nine due to 

prohibitive chromosome sizes, but allowed for varying ranges of output state values while 

still exploring the entire search space.  Figure 10 demonstrates an example chromosome 

representing a small rule table containing 4 output states.  [] demonstrates how a rule table 

index is calculated from a neighbourhood configuration using a simple example rule table. 
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Figure 10. Illustration demonstrating encoding of rule tables using chromosome the direct representation. 

 

Figure 11. A diagram displaying the process of applying a direct rule table to a single cell in a simple 1D CA.  

The cells neighbourhood is selected and the values of its neighbours are used to create an index.  The index 

is used to access the rule table and the cells state is changed to the output state at that index. 

The flip-bit mutation operator is not a suitable mutation operator for this representation.  

This was because if the range of output state values being used was less than 4, flip-bit 

mutation could result in invalid output state values.  Therefore the uniform mutation 

operator is used for this representation. In uniform mutation, a mutated gene was set to a 

random value in the range of [0, S-1] where S is the range of output state values.  The 

crossover operator used for this representation is the single-point crossover operator. 

Representation 2 (Indirect) 

This representation was more space efficient than representation 1, as it used the sum of 

neighbourhood values to index an output state, rather than storing one output state for each 
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unique neighbourhood configuration.  This reduces the chromosome sizes significantly as the 

range of summed neighbourhood values is equal to (S - 1) * N + 1.  Due to the greatly 

reduced chromosome sizes, more complex CA could be explored which allowed the use of 

larger neighbourhood sizes.  Figure 12 demonstrates how a rule table index is calculated from 

a neighbourhood configuration using a simple example rule table. 

 

Figure 12. A diagram displaying the process of applying an indirect rule table to a single cell in a simple 1D 

CA.  The cells neighbourhood is selected and the values of its neighbours are summed.  The sum is used as 

an index into the rule table.  The cells state is changed to the output state at that index. 

The flip-bit mutation operator is also not a suitable mutation operator for this representation.  

This was because if the range of output state values being used was less than 4, flip-bit 

mutation could result in invalid output state values.  Therefore the uniform mutation 

operator is used for this representation. In uniform mutation, as in representation 1, a 

mutated gene was set to a random value in the range of [0, S-1] where S is the range of 

output state values.  The crossover operator used for this representation is the single-point 

crossover operator. 

3.2.2 Chromosome Evaluation 

Once the chromosome representation had been considered and decided, the issue of how to 

evaluate the chromosomes remained.  Previously, CA rule tables have been evaluated by 
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being run on a collection of initial configurations, and assigned a fitness value based on the 

percentage of final configurations that were in the correct state (Mitchell et al., 1996).  This 

appeared to be a valid approach for this research, but how to evaluate the final configurations 

was still an issue that had to be considered. 

Since the final configurations in this approach aimed to form game level layouts with desired 

maze-like properties, a simple weighted aggregation of attributes was used.  This required the 

desired attributes to be extracted from the level layouts before they could be used in the 

evaluation process.  Due to the lack of existing techniques in the literature, a unique approach 

was developed in this study to extract these attributes from the level layouts using a 

collection of image processing techniques. 

The evaluation process is divided into three steps.  Step 1 describes the process of applying 

the CA rule tables on the collection of perfect mazes that were generated in phase 1 of this 

approach.  Step 2 included descriptions of the level layout attributes that were used and 

details how they were extracted.  Lastly, step 3 explains how the fitness values were 

calculated using the extracted attributes. 

Step 1: Run the CA 

During the evaluation of a rule table, it was applied to the entire collection of perfect mazes 

that were generated in phase 1 of this approach.  This process closely follows the standard 

CA process described in section 2.2.3, where CA rules are applied to an initial configuration, 

in this case, a perfect maze, for a set number of iterations.  The number of iterations that the 

CA rules are applied in the fitness function can be varied. 

The one difference between the standard CA process and the one used in this study was the 

use of flavours.  The idea of flavours is that a single cell state can be divided into a number of 

sub states for the purpose of rule application.  This study used two cell states, the traversable 

state (state 0) and the non-traversable state (state 1).  The traversable state could be divided 

into two sub states (states 1 and 2) or three sub states (states 1, 2, and 3) which, including the 

non-traversable state made a total of either three or four cell states for rule application.  Once 

a final configuration was produced, every cell in the configuration was set to their original 

state of either traversable or non-traversable.  Therefore cells in state 0 would remain in state 

0 and cells in a state of 1 or greater would be set to state 1.  The reason flavours were used in 

this study was to explore the effects of more complex CA, as additional cell states could 
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result in more complex behaviour from the CA and possibly produce better layouts.  Figure 

13 displays an example of a final configuration before and after the application of flavours. 

 

 

Figure 13. (a): Example of CA final configuration before application of flavours.  (b):  Example of CA final 

configuration after application of flavours. 

Step 2: Extract Attributes Using Image Processing Techniques  

Once the CA rules have been applied to the pre-generated mazes, attributes of these resulting 

layouts are extracted for evaluation.  Nine attributes were extracted for evaluation from the 

final configurations.  Each attribute was assigned a desired value, used to determine what 

attribute values the final configurations should have, and a weighting factor that determined 

how important that attribute was.  Not all nine attributes have to be selected to be used in a 

fitness function; the attributes that were not evaluated were given a weighting factor of 0.  

The maze-like attributes that were explored in this research are listed and defined below 

followed by details on the image processing techniques that were used to extract them. 

 Number of disconnected traversable areas. 

 Average size of traversable areas. 

 Size of largest traversable area. 

 Number of passageways. 
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 Average length of passageways. 

 Number of rooms. 

 Average size of rooms. 

 Number of dead-ends. 

 Number of culs-de-sac. 

A traversable area is defined as a complete collection of cells in the traversable state that are 

connected to one another through other cells in the traversable state.  An example is shown in 

Figure 14.  As can be seen in Figure 14, layout (a) is a game level layout that is colour coded 

where rooms are green, passageways are red, junctions are blue, and dead-ends are white.  

Layout (b) is the same level layout as (a) but with each traversable area given a unique 

colour, making it easy to see that layout (b) contains four traversable areas.  The size of each 

traversable area is defined by the number of traversable cells contained within it. 

 

Figure 14. Illustration demonstrating the definition of a traversable area. 

A passageway is defined as a collection of traversable cells that can only be entered from 

two directions (using 4-connectivity).  T-junctions and X-junctions can also belong to a 

passageway but are handled as a special case as they can only belong to 1 passageway, not 

multiple.  The length of a passageway is defined as the number of traversable cells that it 

consists of. 
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Rooms are more implicitly defined.  They are defined as any traversable cell that is not a 

passageway, junction or dead-end.  A room’s size is defined as the number of traversable 

cells that it consists of. 

Dead-ends are defined as traversable cells that are blocked from three or more directions 

(using 4-connectivity).  Dead-ends are usually expected to appear at the end of passageways 

although they can also appear as nooks inside rooms or as a detached traversable area 

consisting of a single cell.  Although dead-ends can appear at the end of passageways, they 

are not considered as part of passageways. 

Culs-de-sac are defined as rooms that only have one passageway leading in or out of them.  

Culs-de-sac are similar to dead-ends as neither of them lead anywhere, except dead-ends are 

not required to be attached to a passageway and can only consist of one cell. 

To extract these attributes from the level layouts, a series of image processing techniques 

including erosion, outlining, and a form of region growing, was used.  These algorithms are 

detailed below followed by a description of how they were used to extract each attribute. 

The Image Processing Techniques 

The erosion method (Russ, 2006) compares a series of structuring elements to the 

neighbourhood of every cell within a grid.  If the neighbourhood is equal to any of the 

structuring elements then the cell is eroded.  Eroded cells are set black.  The structuring 

elements and neighbourhoods are both 3x3 grids that are encoded into binary strings.  The 

binary strings use nine bits with each bit representing a single cell in the 3x3 grid, with 1’s 

being black cells and 0’s being white cells.  The bits in the binary strings are ordered from the 

top-left cell of the 3x3 grid moving down and across to the bottom-right cell, from least 

significant bit to most significant bit.  An example can be seen in Figure 15. 
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Figure 15. Illustration displaying how a 3x3 neighbourhood grid is encoded into a binary string. 

Theoretically, the 3x3 structuring elements also allow cells in the element to be set to a ‘don’t 

care’ state, where the corresponding cells in a 3x3 neighbourhood can be either 1 or 0 and not 

impact the comparison.  To implement this functionality each structuring element was paired 

with an additional binary string which is used as a bit mask.  The bit mask was used to 

specify which cells in a 3x3 neighbourhood the corresponding structuring element is 

interested in.  The binary AND operator was used with the bit mask and the neighbourhood 

binary string to set unimportant bits in the neighbourhood to 0.  Then a standard binary 

comparison was performed between the structuring element and the neighbourhood.  An 

example can be seen in Figure 16. 

As can be seen in Figure 16, when grid (a) is compared with the theoretical structuring 

element (b), it results in a positive identification, meaning (a) is equal to (b).  This is because 

each cell in (a) is set to the same value as its corresponding cell in (b), with the empty cells in 

(b) allowing (a) to contain either a 0 or a 1 without affecting the comparison.  To implement 

this functionality, the binary AND operator is applied to grid (a) and the bit mask (d) which 

sets the unimportant cells, denoted as blank cells in the theoretical structuring element, to 0.  

The result of this operator is (e).  The result (e) is then compared to the binary structuring 

element (c).  This results in a positive identification as the value of each cell in (a) is equal to 

the value of its corresponding cell in (c). 
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Figure 16. An illustrated example of how bit masks are used in conjunction with structuring elements. 

The outlining method simply set all cells to black that were not ‘edge’ cells.  Edge cells were 

defined as any cell that had one or more black cells in its neighbourhood.  This made erosion 

a perfect candidate for this task.  This method was performed by using erosion with a single 

structuring element that eroded all cells that had no black cells in their neighbourhood.  The 

structuring element that was used is shown in Figure 17. 

 

Figure 17. The structuring element used in the outlining image processing technique. 

The region growing technique in this approach was used to find the number of white regions 

in a grid, the average number of white cells contained within them, and the number of white 

cells contained within the largest region.  This method worked by iterating over each cell in 

the grid.  Whenever a white cell was found an expansion process would be performed.  This 

process involved checking each of the cells neighbours and if any of its neighbours were also 

white it would add them to a list of cells that made up the region.  When the region could not 
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expand any further, the expansion process would end and the region growing method would 

continue to iterate over each cell, making sure not to expand cells already belonging to a 

region. 

Using the Techniques 

Now that the required algorithms have been detailed, the extraction process of the layout 

attributes will be described.  Extracting the number of traversable areas, the size of the 

largest traversable area, and the average size of traversable areas was a simple process of 

applying the region growing algorithm to the level layout. 

To extract the room data, the erosion method was used on the layout with a collection of 

structuring elements that eroded all the passageways, junctions, and dead-ends, leaving only 

the rooms.  The different structuring elements that were used to do this are displayed in 

Figure 18. Although this is not the entire collection, the omitted elements consisted of 

varying rotations of those displayed.  The region growing method was then applied to the 

room layout to extract the number of rooms and their average size. 

 

Figure 18. An illustration showing a single rotation of the structuring elements used to erode passageways, 

junctions and dead-ends. 

Extracting the passageway data was a more complex procedure involving applying a series 

of erosion and region growing algorithms to the level layout.  Below is a list of the steps that 

were taken to extract the passageway data. 

 Apply erosion to initial layout to erode all passageways and junctions. 

 Perform a binary XOR operation between the initial level layout and the eroded 

layout produced in step 1.  This will produce a layout with only the passageways and 

junctions. 

 Erode the layout produced in step 2 to produce a layout containing only the 

passageways. 
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 Erode the layout produced in step 2 to produce a layout containing only the junctions. 

 Perform region growing on the layouts produced in both steps 3 and 4 to collect the 

number of junctions, jc, the number of passageways, pc, and the average size of the 

passageways, ps. 

 Calculate the number of passageways, pc’, where pc’ = pc - jc. 

 Calculate the average size, or length, of passageways, ps’, where ps’ = (ps + jc) / pc’. 

The above steps results in the number and average length of passageways where each 

junction belongs to a single passageway.  Figure 19 illustrates this process.  Colour coded 

images were used so that the rooms, dead-ends, passageways, and junctions could be easily 

identified.  These areas are colours green, white, red, and blue respectively. 

 

Figure 19. Illustrated example of how passageway attributes are extracted from a layout using image 

processing. 
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Determining the number of dead-ends was achieved by iterating through each cell in the 

layout and counting the number of white cells that were blocked from three or more 

directions by black cells.  The number of culs-de-sac was calculated performing the outlining 

method to the room layout.  The outlines were then separated into individual regions using 

region growing.  The neighbours of every cell in each region, using 4-connectivity, were then 

compared with the original layout to determine if the neighbouring cell on the original layout 

was a passageway cell or not.  The number of culs-de-sac was equal to the number of regions 

that had only one associated passageway cell. 

Step 3: Evaluate the Attributes 

Once all of the attributes had been extracted from the level layouts, they were each assigned a 

similarity measure, sm, using the formula 

sm = (1.0 - |da - aa| / ma)
3
 * aw       Equation 1 

In Equation 1 da and aw are the desired value of the attribute and its associated weighting 

factor.  The value of the attribute extracted from the layout is denoted as aa, while ma is the 

max possible value that the attribute could be.  The maximum values of the attributes are 

defined below.  Note that gw and gh is the width and height of the level layouts measured in 

cells. 

 Maximum traversable area count = (gw * gh) / 2  

This equals the maximum number of traversable areas and can be represented in the 

scenario of a checkerboard grid where half the cells are traversable and the other half 

are blocking the traversable cells from connecting to one another. 

 Maximum traversable area size = gw * gh  

This equals the maximum size of a traversable area and can be represented in the 

scenario of a grid where every cell is traversable, creating one large traversable area. 

 Maximum passageway count = (gw * gh) / 2  

This equals the maximum number of passageways and can be represented in the 

scenario where each second row of a grid is a passageway and each second column of 

a grid is a passageway.  In this scenario, half the grids cells are passageways, a quarter 

are junctions and the other quarter are non-traversable. 

 Maximum passageway length = (gw * gh) / 2 + max(gw, gh) / 2  

This equals the maximum length of a passageway and can be represented in the 
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scenario of a grid containing a single passageway that travels from the bottom right 

corner of the grid to the bottom left corner.  In this scenario, the passageway then 

moves up two cells and continues horizontally to the right side of the grid, then up 

two cells, and continues in this fashion until the top of the grid has been reached. 

 Maximum room count = (gw * gh) / 4  

This equals the maximum number of rooms as each room must consist of a minimum 

of four traversable cells.  This calculation is a simplification that does not take into 

account non-traversable cells that are needed to separate the rooms. 

 Maximum room size = gw * gh  

This equals the maximum size of a room and can be represented in the scenario of a 

grid where every cell is traversable, creating one large room. 

 Maximum dead-end count = (gw * gh) / 2  

This equals the maximum number of dead-ends and can be represented in the scenario 

of a checkerboard grid where half the cells are traversable and the other half are 

blocking the traversable cells from connecting to one another.  In this scenario, each 

traversable cell is blocked in four directions and is therefore considered a dead-end. 

 Maximum cul-de-sac count = (gw * gh) / 4  

Since a cul-de-sac has the same requirements as a room (except for the number of 

passageways that connect to it), it uses the same calculation as the maximum room 

count. 

The maximum attribute values are scaling factors that ensure each attributes sm, before 

weighting is applied, is in the range of [0.0, 1.0].  Because the maximum attribute values can 

be quite large, the desired attribute values can be quite small in comparison.  This makes the 

difference between the desired attribute value and the extracted attribute value, appear 

insignificant when it is not.  This is reflected in the sm value, as high sm values can be given 

to extracted attributes that are not considered to be similar to the desired value.  For example, 

using a grid size of 16, the maximum passageway count is 128.  If the desired number of 

passageways is 7 and the extracted number of passageways is 14, the sm value, without 

weighting or the exponent, is 0.9453125.  This is a high sm value although there is twice the 

desired number of passageways. Therefore an exponent was used as an additional scaling 

factor to reduce the sm value when the difference between the extracted attribute value and 

the desired attribute value is relatively small to the maximum attribute value. 
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Once a sm value had been assigned to each attribute, the sm values were summed together to 

produce an attribute similarity measure (ASM) for the layout.  After the CA rules have been 

applied to each of the 100 maze configurations, and the resulting layouts have been assigned 

an ASM value, the ASM values are averaged to produce the fitness value assigned to the CA 

rule table. 

3.2.3 The Steps of the GA Process 

Once the issues associated with chromosome representation and fitness evaluations had been 

considered, the next consideration to be addressed is the GA parameter settings.  Due to time 

restrictions, comprehensive parameter tuning was not possible and therefore De Jong’s 

(1975) parameter settings were used.  The mutation probability was the only parameter that 

did not follow De Jong’s guidelines.  De Jong suggests a mutation probability of 0.001, 

however this was assuming a chromosome size of 100 genes.  Since the chromosome sizes in 

this study ranged between 10 and 262,144 genes, a mutation probability of one over the 

length of the chromosome was used instead (Bäck, 1993).  Table 3 displays a complete list of 

GA parameter values that were used in this approach. 

Parameter Name Parameter Value 

Population Size 50 

Selection Type Tournament (tsize = 5) 

Crossover Operation 1-Point Crossover 

Crossover Probability 0.6 

Mutation Operation Uniform Mutation 

Mutation Probability 1/Length of Chromosome 

Maximum Generation 5000 

Table 3. Table of GA parameter values. 

The rest of this section describes to four steps of the GA process.  This starts with the 

initialization of the GA’s population, followed by evaluation of the chromosomes, the 

repopulation process, and the terminating conditions of the GA. 

 

 

Initializing the Population 
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The population of chromosomes used in the GA were initialized to random configurations 

where each gene in each chromosome was set to a value in the range of [0, S-1] where S 

equals the maximum number of cell states.  For example, if the number of cell states being 

used was set to 4, then each gene in the chromosomes was set to a random value between 0 

and 3.  Once the chromosomes in the initial population had been initialized, each 

chromosome in the population would get evaluated. 

Evaluating the Chromosomes 

The fitness evaluation process was described in detail in section 3.2.2.  Each chromosome 

represented a rule table which was run on each of the perfect mazes that were generated in 

phase 1 of this approach.  This produced a number of final configurations for each rule table.  

Each final configuration was evaluated, using a weighted aggregation of attributes, and 

assigned an ASM value.  The overall fitness value assigned to each CA rule table was the 

average of the ASM values given to all the final configurations it produced.  Once the current 

population had been evaluated, chromosomes were selected from it to undergo mutation and 

crossover operators to form new chromosomes to produce the new population. 

Generate New Population 

The replacement scheme used in this GA started with an empty population and included an 

elitist selection scheme where the top five chromosomes from the current population were 

carried over to the empty population.  After the elite chromosomes had been carried over to 

the new population, chromosomes were selected from the current population to have 

crossover and mutation operators applied to them.  The new chromosomes, formed from 

these operators, were placed in the new population.  This process was repeated until the new 

population had been filled.  Below is a description of the selection scheme used in this 

approach, followed by the process of applying the crossover and mutation operators to 

produce the chromosomes for the new population. 

Chromosomes were selected from the current population using tournament selection.  The 

tournament selection mechanism used in this approach selected a tournament group of five 

random individuals from the current population and then selected the best chromosome from 

the group.  The pseudo-code for this technique can be seen below. 

Input: 
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 current_population 

Output: 

 selected_individual 

Steps: 

Set tournament_group to an empty list of chromosomes. 

For each value in the range [1, tournament_size] 

        Set random_individual to a random chromosome from current_population. 

        While random_individual is in tournament_group 

                Set random_individual to a random chromosome from current_population. 

        Add random_individual to tournament_group. 

Set selected_individual to chromosome from tournament_group with highest fitness. 

Return selected_individual. 

 

Table 4. Pseudo-code for the tournament selection operation. 

Once a chromosome had been selected there was a chance that crossover would be applied to 

it.  To determine if crossover should be applied, a random number was generated in the range 

of [0.0, 1.0].  If the value was less than or equal to the crossover probability then a second 

chromosome was selected from the current population and the crossover operator was applied 

to the two chromosomes.  The crossover operator used was single-point crossover where the 

two selected chromosomes were split into two sections at a random gene and the sections 

were swapped between the two chromosomes to form two new chromosomes. 

If crossover was applied, then the two new chromosomes were mutated using uniform 

mutation.  If crossover was not applied, then this process was applied to the original 

chromosome.  During this process, each gene within the chromosome would be subjected to 

mutation based on the mutation probability.  To determine if a gene should be mutated, a 

random number was generated in the range of [0.0, 1.0].  If the generated value was less than 

or equal to the mutation probability, the gene would be mutated.  The uniform mutation 

operator that was used would set the gene to a value in the range of [0, S-1] where S equals 

the maximum number of cell states used in the CA.  The pseudo-code for this operator can be 

seen below. 
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Input: 

 max_cell_state_count 

 mutation_probability 

 origingal_chromosome 

Output: 

 mutated_chromosome 

Steps: 

Set mutated_chromosome to a copy of original_chromosome. 

For each current_gene in mutated_chromosome 

 Set pm_chance to a random value in the range of [0.0, 1.0]. 

 If pm_change is less than or equal to mutation_probability then 

 Set new_gene_value to a random value in the range of [0, max_cell_state_count -  1]. 

 While new_gene_value is equal to current_gene 

 Set new_gene_value to random value in the range of [0, max_cell_state_count - 1]. 

 Set current_gene to new_gene_value. 

Return mutated_chromosome. 

 

Table 5. Pseudo-code for the uniform mutation operator. 

After mutation, the resulting chromosome was added to the new population.  The above steps 

were repeated until the new population had been filled.  It then replaced the original 

population of chromosomes. 

Step 4: The Termination Conditions  

Once the new population was formed, the genetic algorithm checked its termination 

conditions.  There were three terminating conditions, convergence, reaching a maximum 

fitness, and reaching a maximum number of generations.  Convergence was achieved when 

the difference between the highest ranking chromosomes fitness value over the current 

generation and the 100 previous generations was less than a given threshold.  The 

convergence threshold in this research was set to 0.0001 and if the fitness of the best 

chromosome did not improve by this amount over 100 generations then it was assumed 

convergence had been achieved.  The maximum fitness condition would terminate the GA 

when the best chromosome had reached a particular fitness.  In this research the threshold 

was set to 1.0 which was the highest fitness that a chromosome could reach, therefore no 

more improvements could be made.  The GA would also terminate if neither of these 

conditions had been met by the maximum generation. 
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3.3 Summary 

This chapter described the two phases of this approach.  Phase 1 was detailed in section 3.1 

and covered the generation of a collection of perfect mazes using a modified version of the 

recursive backtracker algorithm for use in the GA’s fitness function. 

Section 3.2 detailed the GA process starting with the issues that had to be considered, 

followed by the steps of the process.  The issues included how to represent and evaluate the 

chromosomes.  There were two representations that were explored, representation 1 which 

followed the traditional approach to representing CA rule tables, but could not be used with 

neighbourhood radii greater than 1 due to large storage requirements.  And representation 2 

which had substantially less storage requirements and could be used with neighbourhood 

radii greater than 1 but was limited in which rule tables it could represent. 

The evaluation of chromosomes required running CA on the mazes generated in phase 1, 

extracting their attributes using a collection of image processing techniques, and using a 

weighted aggregation of the extracted attributes to formulate the fitness values of the 

chromosomes.  The four steps of the GA included initializing the population of 

chromosomes, evaluating the chromosomes, replacing the population with modified 

chromosomes, and checking the GA’s termination conditions.  The next Chapter details the 

sets of experiments that were run using this approach and discusses the results and findings.  



 
48 

Chapter 4. Experiments, Results, and Findings 

This chapter details all of the experiments that were performed during this research and 

discusses the results and findings.  Each experiment was performed using five different 

fitness functions with the aim of finding CA rules that could generate different styles of level 

layouts.  Section 4.1 details the fitness functions that were used in this research to guide the 

levels produced towards a particular style.  Section 4.2 details the experiments that were 

performed to evaluate the influence of various GA and CA factors on the resulting levels, 

followed by section 4.3 presenting the results from the experiments. 

4.1 The Fitness Functions 

The fitness function chosen to evaluate levels produced by the CA rule sets governs the 

appearance of those levels.  Based on desired level appearance, the fitness function can, for 

example, be chosen to favour certain sized rooms, lengths of passageways, and the number of 

dead-ends.  During this research five different fitness functions, summarized in Table 6, were 

used, each to explore the possibilities of finding CA rules that could generate level layouts 

with different sets of attributes.  These five fitness functions are labelled f1, f2, f3, f4, and f5.  

Each fitness function was defined by the desired values of the level attributes, detailed in 

Section 3.2.2, along with an importance rating.  Each of the fitness functions (f1 – f5) had 

non-zero weights for eight of the nine attributes (a zero weighting means that attribute is not 

considered).  In this research the number of traversable areas was considered the most 

important attribute as a layout could meet every other criterion yet would not be useful as a 

maze-like game level if all of the passageways and rooms were not connected in a single 

traversable area.  For this reason it was given the highest importance rating.  The 

largest/average traversable size was considered the second most important attribute as the 

general size of the layout contributed greatly to its visual similarity with its goal layout.  

Therefore it was given the second highest importance rating, while all other attributes were 

given equal ratings. 
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 Fitness Functions 

f1 f2 f3 f4 f5 

Grid Size: 16x16 16x16 28x28 24x24 18x18 

Attributes Value Weight Value Weight Value Weight Value Weight Value Weight 

Accessible 

Area 

Count 

1 0.27 1 0.27 1 0.27 4 0.27 2 0.27 

Average 

Area Size 
- 0.0 - 0.0 - 0.0 90 0.18 64.5 0.18 

Largest 

Area Size 
89 0.18 204 0.18 214 0.18 - 0.0 - 0.0 

Passage 

Count 
7 0.09 11 0.09 18 0.09 11 0.09 3 0.09 

Average 

Passage 

Length 

5.71 0.09 4.27 0.09 7.11 0.09 4.9 0.09 1 0.09 

Room 

Count 
4 0.09 7 0.09 9 0.09 5 0.09 5 0.09 

Average 

Room Size 
10.75 0.09 22 0.09 8.88 0.09 58.6 0.09 24.4 0.09 

Dead-End 

Count 
6 0.09 3 0.09 6 0.09 13 0.09 4 0.09 

Cul-de-sac 

Count 
0 0.09 2 0.09 1 0.09 1 0.09 2 0.09 

Table 6. Table of attribute values and weights for each of the five fitness functions. 

Three additional fitness functions were also used which factored in two, four, and six 

attributes, rather than eight, using the same attribute values as f1 for the evaluated attributes.  

These additional fitness functions will be referred to as sub-fitness functions and are labelled 

subf1, subf2 and subf3.  The purpose of these sub-fitness functions was to explore the 

difference in the GA’s performance when evaluating fewer attributes.  Table 7 displays the 

attribute values and weights of the three sub-fitness functions.  
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 Fitness Functions 

f1 subf1 subf2 subf3 

Grid Size: 16x16 16x16 16x16 16x16 

Attributes Value Weight Value Weight Value Weight Value Weight 

Accessible 

Area Count 
1 0.27 1 0.75 1 0.43 1 0.33 

Average Area 

Size 
- 0.0 - 0.0 - 0.0 - 0.0 

Largest Area 

Size 
89 0.18 - 0.0 89 0.29 89 0.22 

Passage 

Count 
7 0.09 - 0.0 - 0.00 7 0.11 

Average 

Passage 

Length 

5.71 0.09 - 0.0 - 0.00 5.71 0.11 

Room Count 4 0.09 4 0.25 4 0.14 4 0.11 

Average 

Room Size 
10.75 0.09 - 0.0 10.75 0.14 10.75 0.11 

Dead-End 

Count 
6 0.09 - 0.0 - 0.00 - 0.0 

Cul-de-sac 

Count 
0 0.09 - 0.0 - 0.00 - 0.0 

Table 7. Table of attributes and their values for the three sub-fitness functions.  Note that f1 is also included.  

This is to demonstrate that the same attribute values were used in the sub-fitness functions and for ease of 

comparison. 

The attribute values that defined each fitness function were determined by extracting the 

attributes of five manually produced level layouts with the aim of finding CA rules capable of 

generating level layouts that would match the style of the manually produced levels.  Because 

level layouts can change in both size and complexity, different CA grid sizes (in terms of 

number of grid squares) were used to accommodate these factors.  The grid sizes were chosen 

based on the manually produced layouts of each fitness function, and are entries in Table 6 

and Table 7.  Each fitness function will now be described in more detail. 

The first fitness function, f1, aimed to produce small level layouts of 89 traversable cells that 

were all connected to form only one traversable area.  For example, looking at f1’s base 

layout in Figure 20, the traversable area is defined by the green, red, blue, and white areas 

that are linked together.  These colours represent the layouts rooms, passageways, junctions, 

and dead-ends respectively.  So looking at the goal layout of f1 in Figure 20, it can be seen 

that it contains four small rooms.  There were no culs-de-sac in f1’s base layout but six dead-

ends.  The values assigned to each of f1’s attributes were listed in Table 6. 
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Figure 20. A colour coded version of f1's base level layout. 

This base level layout was also used to design the three sub-fitness functions.  When selecting 

which attributes to evaluate in the sub-fitness functions, the number of traversable areas was 

considered the most important.  The reason for this is because even if a layout met every 

other criterion, it would not be useful as a maze-like game level if all of the passageways and 

rooms were disconnected.  Rooms were considered the second most important attribute.  This 

was because if all of the areas were connected and the rooms met their criteria, then the 

passageways should be implicitly created.  Passageways were considered the next most 

important aspect of the layouts since they had a greater effect on the layouts than the number 

of dead-ends or culs-de-sac.  Using these as guidelines, it was decided that subf1 would only 

evaluate the accessible area count and the room count, while subf2 additionally evaluated 

largest area size and average room size.  The third sub-fitness function, subf3, evaluated the 

four attributes from subf2 as well as passage count and average passage length. 

The second fitness function, f2, aimed to produce level layouts of a single traversable area 

with more rooms than f1’s goal layout and four more passageways.  The base layout for f2 

contains two culs-de-sac and only three dead-ends.  A colour coded version of the base layout 

for f2 can be seen in Figure 21. 
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Figure 21. A colour coded version of f2's base level layout. 

Figure 22 illustrates a colour-coded version of f3’s base layout.  From this layout it can be 

seen that f3 aimed to produce layouts of a single traversable area with several small rooms 

and many long passageways.  This fitness function also aimed to produce six dead-ends and a 

single cul-de-sac. 

 

Figure 22. A colour coded version of f3's base level layout. 

The base layout for the fourth fitness function, f4, was quite visually distinct in comparison to 

the others and is displayed in Figure 23.  It contains four traversable areas made up of large 

rooms and only a few passageways.  The use of additional traversable areas in this layout was 

to allow for special connections to be made between traversable areas as a post processing 

step in level design.  Such special connections may include ladders in games of the 

platformer genre, and teleportation pads in games of the first person shooter (FPS) genre.  

This base layout also contained the most dead-ends but only a single cul-de-sac. 
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Figure 23. A colour coded version of f4's base level layout. 

The fifth fitness function, f5, aimed to produce level layouts of two traversable areas with 

three passageways of length one, represented by the red sections.  The base layout of f5 

(Figure 24) also had five moderate sized rooms, four dead-ends, and two culs-de-sac. 

 

Figure 24. A colour coded version of f5's base level layout. 

4.2 The Experiments 

Understanding the fitness functions used and their differences, the experiments will now be 

described.  Four sets of experiments were carried out during this research and were labelled 

as set 1A, 1B, 2, and 3.  Each set consisted of 12 experiments and differed from one another 

by three factors that are listed below. 

 The chromosome representation that was used. 

 The neighbourhood radius.  This determined the size of the Moore neighbourhood 

that was used with the CAs. 

 The mutation rate.  This referred to the GA’s mutation probability which affected the 

chance of each gene in a chromosome being mutated. 
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Set 1A and 1B both used the direct representation with a neighbourhood radius of 1 but used 

different mutation rates.  Set 1A used a standard mutation rate of one over the chromosome 

length (Bäck, 1993), while set 1B used a larger mutation rate of 0.01 for exploratory 

purposes.  Set 2 differed from sets 1A and 1B by its chromosome representation.  Set 2 used 

the indirect representation and shared set 1A’s mutation rate of one over the chromosome 

length.  Set 3 is identical to set 2 except that it uses a larger neighbourhood radius of 2.  Table 

8 lists the values of these factors that were used for each set. 

As mentioned earlier, each set consisted of twelve experiments.  These experiments were 

defined by a unique combination of two factors listed below. 

 The number of cell states.  Experiments were carried out with 2, 3, and 4 cell states. 

 The number of CA iterations.  This was the number of times a CA rule set was 

applied to each pre-generated maze in the GA’s fitness function.  The numbers of CA 

iterations that were used in this research were 1, 5, 10, and 25. 

The experiments within each set inherit all of that set’s factor settings and test all twelve 

combinations of different numbers of cell states with different numbers of CA iterations.  

Table 9 lists the cell state and CA iteration factor values used for each experiment within any 

given set. 

 Experiment Sets 

Factors Set 1A Set 1B Set 2 Set 3 

Mutation Rate 1/chromosome 

length 
0.01 

1/chromosome 

length 

1/chromosome 

length 

Chromosome 

Representation 
Direct Direct Indirect Indirect 

Neighbourhood Radius 1 1 1 2 

Table 8. Table of the factor values used in each set of experiments. 

 

 Experiments within a Set 

Factors #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 

Cell State Count 2 2 2 2 3 3 3 3 4 4 4 4 

CA Iterations 1 5 10 25 1 5 10 25 1 5 10 25 

Table 9. Table of the factor values used in each experiment for any given set. 
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As can be seen in Table 9, each experiment has been given an index in the form of a number 

in the range of [1, 12].  Experiments are referred to by this index in the following manner, 

expab, where a is the set that the experiment belongs to and b is the experiment’s index into 

that set.  For example, the fifth experiment in set 1B is expressed as exp1B5. 

Each of the four sets of experiments was run using each of the five fitness functions described 

in section 4.1.  In addition, sets 1B, 2, and 3 were run using each of the three sub-fitness 

functions.  The next section discusses the results from running these experiments. 

4.3 Results and Findings 

This section is divided into two sub-sections that cover visual analysis of layouts that were 

generated using the proposed approach, and an analysis to determine the impact of different 

factors on the fitness values.  Section 4.3.1 details the visual analysis which looks at 

generated layouts that were produced by using each fitness function, in comparison to their 

fitness functions goal layout.  Section 4.3.2 details the analysis of the factors that were varied 

across all of the experiments.  Analysis of variance (ANOVA) was used to determine if the 

factors had a significant effect on the fitness values that were achieved.  For factors that were 

found to have a significant effect on fitness, the least significant difference (LSD) post-hoc 

test was performed to find which levels of these factors had the greatest effect on the fitness 

values. 

4.3.1 Visual Analysis 

The purpose of the visual analysis is to examine whether each fitness function succeeded in 

finding CA rules that were capable of generating layouts with a similar appearance to its goal 

layout.  The comparison is to find layouts that look similar in style to the goal layout as 

though they could be from the same video game.  Finding layouts that are identical to the 

goal layout is not the aim of the visual comparison as level layouts need to differ from one 

another.  Figure 25 displays two levels from the video game “Sonic the Hedgehog” to 

demonstrate this point. 
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Figure 25. An example of how two level layouts from the same game are similar to one another, but not 

identical (Images Retrieved from the Sonic Retro Website). 

To perform these comparisons, CA rule tables generated by the GA process, that were given 

high fitness values, were chosen and applied to ten mazes that were generated by the 

modified recursive back tracker algorithm which was described in section 3.1.  The layouts 

that the CA produced were assigned an ASM, which was calculated by extracting the layout 

attributes and comparing them to the attributes of their goal layout.  This is the same process 

that evaluates level layouts in the fitness function which was described in section 3.2.2.  

However, the ASM is not to be confused with the chromosomes’ fitness.  A chromosome’s 

fitness is the average of all ASMs that are assigned to level layouts that are produced by 

applying the chromosome to a collection of 100 maze configurations.  Layouts with a high 

ASM were chosen to be included in this section to demonstrate the relationship between the 

similarity in visual appearance and the similarity of attribute values.  Determining visual 

similarity is a subjective process.  What may appear visually similar to some may not be 

visually similar to others.  Therefore the criteria that are used to evaluate visual similarity in 

this research are listed below. 

 Size of the traversable areas.  If two layouts are of similar size they are considered 

more visually similar than two layouts of different sizes. 

 The proportion of negative space to positive space.  In the visual comparisons, 

traversable areas are considered positive space while non-traversable areas are 

considered negative space.  If the goal layout’s positive space contains sections of 

negative space within it, then it is ideal that the generated layouts contain a similar 

amount of negative space within its positive space. 
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 Structure of the traversable areas.  During the comparison of the layouts, certain 

structural elements are considered.  These elements include the shape of the layouts 

rooms and whether the layouts passageways run diagonal, orthogonal, or both. 

The rest of this section details the visual analysis for each fitness function.  The analysis 

evaluates whether the generated layouts met their fitness functions criteria, and whether they 

were visually similar to their fitness functions goal layout. 

Fitness Function 1 

The primary goal of f1, as shown in Table 6, was to give good evaluations to CA rule tables 

that produce layouts of a single traversable area (weighting of 0.27), made up of 

approximately 89 cells (weighting of 0.18), similar to its goal layout which is displayed in 

Figure 26.  The other attributes were given less importance, with a weighting of 0.09, and are 

listed in section 4.1. 

 

Figure 26. Goal layout of f1. 

The rest of this section will discuss the results from using f1 with each of the four experiment 

sets.  Sets 1B, 2, and 3 will also include the results from using the three sub-fitness functions 

as they used the same goal layout as f1. 

Set 1A 

Figure 27 displays two level layouts that were generated by chromosomes that were given a 

high fitness by f1.  These layouts were generated by chromosomes using experiments exp1A6 

and exp1A10.  Both of these experiments used five CA iterations, with one using three cell 

states, and the other using four cell states.  These chromosomes were selected as they were 

assigned the highest fitness value by f1.  Also displayed in Figure 27 is the goal layout of f1 

for comparison with the generated layouts.  Each layout is colour coded and has its attributes 

listed underneath it.  The colour code is listed below. 
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 Red areas: Passageways 

 Green areas: Rooms 

 Blue areas: Junctions 

 White areas: Dead-Ends 

 Black areas: Not Traversable 

Underneath each list of attributes is a post processed version of the level layout.  The post 

processed layouts are rendered in black and white and only displays the largest traversable 

area.  These are displayed for a clearer visual comparison to the goal layout. 

 

Figure 27. Two generated layouts evaluated by f1 in comparison with f1’s goal layout based on experiments 

from set 1A.  Each layout is colour coded to visually identify its attributes which are listed beneath each 

layout along with its post processed version. 

As can be seen in Figure 27, the generated layouts (a1) and (b1) have high ASM values.  

However, neither layout shares a particularly close visual resemblance to the goal layout.  

Both of the layouts contain too many traversable areas, which is a contributor to the lack of 

correlation between high ASM and the layouts not being very similar to the goal.  This is 

because disconnected areas can contain some of the rooms, passageways, culs-de-sac, and 
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dead-ends that were desired as part of the main traversable area.  For example, layout (b1) 

produced the correct number of rooms, which contributed to the high ASM, but two of those 

rooms are not connected to the main traversable area.  This means that the main traversable 

area, presented in (b2), does not contain the desired number of rooms which may have 

subtracted from its visual similarity with the goal layout. 

The size of both layouts (a1) and (b1)’s largest traversable area is close to the desired value 

with (a1)’s being two cells larger (91 vs. 89) and (b1)’s being five cells larger (94 vs. 89).  

Comparing the number of passageways contained in the layouts and their average length, (a1) 

was the closest, as it contained the exact number of desired passageways but with a smaller 

average length of 3.85 vs. 5.71.  Layout (b1) produced one less than the desired number of 

passageways and an even shorter average length of 3.66 vs 5.71.  Both layouts (a1) and (b1) 

contained the correct number of rooms but with an average room size over thrice the desired 

value.  Both layouts contained over twice the desired number of dead-ends and the correct 

number of culs-de-sac. 

Comparing the post processed layouts, (a2) and (b2), to the criteria listed in section 4.3.1, 

both layouts have only a slight resemblance the goal layout.  Both layouts are almost the 

same size as the goal layout with some of the rooms consisting of box like shapes and some 

containing short diagonal walls similar to the goal layout.  The passageways in the generated 

layouts are mostly orthogonal, like the goal layouts, but neither layout contains enough 

negative space within the traversable area.  Their negative space, particularly in (a2), is 

sparse and un-concentrated, with small pockets of negative space spread out over the layout. 

Set 1B 

Set 1B used the same parameters as set 1A except it used a higher mutation rate of 0.01.  The 

generated layouts from set 1B are quite visually similar to the goal layout and were both 

generated from a chromosome that was evolved using a single CA iteration with two cell 

states.  Figure 28 displays two colour coded layouts generated from rule tables that were 

produced by the GA process with the parameters of set 1B and using f1 as the objective 

function. 
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Figure 28. Two generated layouts evaluated by f1 in comparison with f1’s goal layout.  Each layout is colour 

coded to visually identify its attributes which are listed beneath each layout along with its post processed 

version. 

Both the layouts (a1) and (b1) contain similar attributes to those of the goal layout.  Looking 

at Figure 28, it can be seen that neither layout contained only a single traversable area.  

Layout (a1)’s largest traversable area was very similar to the goal layouts, being only two 

cells smaller, while layout (b)’s largest traversable area was not as close, being twelve cells 

larger than the goal layout.  When comparing the number of passageways contained in the 

layouts and their average length, (a1) was the closest, as it contained only one less than the 

desired number of passageways and with an average length of 3.66 vs 5.71.  Layout (b1) 

produced two too many passageways and a shorter average length of 2.44 vs 5.71.  Both 

layouts (a1) and (b2) contained the correct number of rooms but with an average room size 

over twice the desired value.  Both layouts contained three too many dead-ends and close to 

the correct number of culs-de-sac, with layout (a1) containing zero and layout (b1) containing 

one. 

Comparing the post processed layouts, (a2) and (b2), to the criteria listed in section 4.3.1, 

both layouts are similar to the goal layout.  Both layouts are almost the same size as the goal 
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layout with the rooms generally consisting of box like shapes while still containing some 

short diagonal walls similar to the goal layout.  The passageways in the generated layouts are 

mostly orthogonal, like the goal layouts, and both layouts almost contain the same amount of 

negative space within the traversable area. 

Figure 29 shows two layouts generated from chromosomes that were assigned low fitness 

values by the GA process where f1 is the objective function.  Both layouts were generated 

from a chromosome that was evolved using four cell states and 25 CA iterations and are 

displayed to give a more complete picture of how layouts with a high ASM differ from 

layouts with a low ASM.  Both the colour coded and post processed versions of the layouts 

are shown with each layouts attributes. 

 

Figure 29. Examples of generated layouts evaluated by f1 with poor fitness values.  Both the colour coded 

and post processed versions of the layouts are displayed, along with their attributes listed beside them. 

From Figure 29 it is clear that the layouts with a low ASM do not visually resemble f1’s goal 

layout.  The traversable areas of the layouts are too large and contain too many small pockets 

of negative space within them, although the shape of their rooms and passageways are similar 

to that of the goal layouts.  Looking at their attributes, the layouts contained too many 

traversable areas with the largest one being approximately twice the desired value.  Neither 

layout contained the correct number of passageways with an average passageway length of 

between 2 and 3 less than the desired value.  Layout (a) contains twice as many rooms as the 

goal layout, while layout (b) contained five which was close to the desired value.  However, 

both layouts average room size is too high.  Both layouts contained too many dead-ends but a 

similar number of culs-de-sac to the goal layout. 
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Set 1B was also run using each of the three sub-fitness functions described in section 4.1.  

Figure 30 displays a single layout generated by CA rules that were evaluated using each of 

the sub-fitness functions.  Beneath each layout is a list of their attributes and their post 

processed version. 

 

Figure 30. Colour coded layouts generated from CA rules that were evaluated using each of the sub-fitness 

functions.  Each layouts attributes are listed beneath them along with their post processed versions. 

From these results it is clear that evaluating two attributes is not enough to give the layouts a 

similar appearance to the goal layout, despite the fact that both attributes matched the goal 

layouts exactly.  However, using four and six attributes produced more visually similar 

results with both layouts (b2) and (c2) being a similar size to the goal layout with a similar 

amount of negative space.  Layout (b2)’s negative space was spread out and formed too many 

pockets of non-traversable areas, detracting from the visual similarity, while (c2)’s spread of 

negative space was more accurate.  Layouts (b2) and (c2) both contain rooms of similar 

shapes to the goal layout, although (c2)’s rooms do not contain any diagonal walls, reducing 

its similarity to the goal layout.  And both layouts contain orthogonal passageways similar to 

the goal layout. 
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Set 2 

Set 2 used the same parameters as set 1A except for the chromosome representation.  Figure 

31 displays two colour coded layouts generated from a rule table that was evolved using three 

cell states and five CA iterations, and was given a high fitness value by the objective function 

f1.  Looking at the layouts in Figure 31 it is clear that the indirect representation made a 

significant difference in visual similarity between the generated layouts and the goal layout 

due to a neater and more structured appearance. 

 

Figure 31. Two generated layouts evaluated by f1 in comparison with f1’s goal layout.  Each layout is colour 

coded to visually identify its attributes which are listed beneath each layout along with its post processed 

version. 

Layouts (a1) and (b1) shared similar attributes to those in sets 1A and 1B.  Layout (a1) 

contains a single traversable area of the approximate size of the goal layout with (b1) 

containing two traversable areas and a larger traversable area size.  Layout (a1) had two less 

passageways than the goal layout but with a very similar average length of 5.2.  Layout (b1) 

contained one too few passageways and a very similar average length of 5.5.  Layout (a1) 

contains only two rooms, as opposed to the desired four, with an average room size three 
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times larger than the goal layout.  Layout (b1) contains the desired number of rooms and has 

an average room size twice as large as the goal layout.  Both layouts contained five dead-

ends, opposed to the desired six, with layout (a1) containing no culs-de-sac while (b1) 

contained one. 

Comparing the post processed layouts, (a2) and (b2), to the criteria listed in section 4.3.1, 

both layouts are similar to the goal layout.  Both layouts are almost the same size as the goal 

layout with the rooms consisting of box like shapes with some containing some short 

diagonal walls similar to the goal layout.  The passageways in the generated layouts are 

orthogonal, like the goal layouts, and both contain a similar spread of negative space. 

Set 2 was also run using each of the three sub-fitness functions described in section 4.1.  

Figure 32 displays a single layout generated by CA rules that were evaluated using each of 

the sub-fitness functions.  Beneath each layout is a list of their attributes and their post 

processed version. 

 

Figure 32. Colour coded layouts generated from CA rules that were evaluated using each of the sub-fitness 

functions.  Each layouts attributes are listed beneath them along with their post processed versions. 

From these results it is clear that evaluating two attributes is not enough to give the layouts a 

similar appearance to the goal layout, despite the fact that both attributes matched the goal 
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layouts exactly.  However, using four and six attributes produced more visually similar 

results with both layouts (b2) and (c2) being a similar size to the goal layout with a similar 

spread of negative space.  Layouts (b2) and (c2) both contain rooms of similar shapes to the 

goal layout.  Layout (b2) contains orthogonal passageways, however most of (c2)’s 

passageways are diagonal, which is not similar to the goal layout. 

Set 3 

Set 3 used the same parameters as set 2 except used a larger neighbourhood radius.  This did 

not appear to have much of an effect on the on the appearance of the generated layouts in 

comparison to those in set 2, although it did seem to produce layouts with more diagonal 

passageways rather than orthogonal ones.  Figure 33 displays two colour coded layouts 

generated from a rule table that was produced by the GA process using two cell states with 

five CA iterations, and using f1 as the objective function. 

 

Figure 33. Two generated layouts evaluated by f1 in comparison with f1’s goal layout.  Each layout is colour 

coded to visually identify its attributes which are listed beneath each layout along with its post processed 

version. 
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From the attributes of the layouts shown in Figure 33, it can be seen that all of the attributes, 

except for the number of traversable areas, are similar to the goal layout.  Both layouts (a1) 

and (b1) contain three too many traversable areas but with a largest traversable area of similar 

size to the goal layout.  Layout (a1) has a similar number of passageways to the goal layout 

while (b1) has the correct number of passageways, but both have a shorter average length.  

Layout (a1) contains the desired number of rooms and a similar average room size, while (b1) 

contains two too many rooms and a larger average room size.  Both layouts (a1) and (b1) 

have a similar number of dead-ends to the goal layout, and contain the correct number of 

culs-de-sac. 

Comparing the post processed layouts, (a2) and (b2), to the criteria listed in section 4.3.1, 

both layouts are similar to the goal layout.  Both layouts are almost the same size as the goal 

layout with the rooms consisting of box like shapes.  Both layouts (a2) and (b2) contain a 

similar spread of negative space to the goal layout, however, the passageways in (a2) and 

(b2) are mostly diagonal, which is unlike the goal layout. 

Set 3 was also run using each of the three sub-fitness functions described in section 4.1.  

Figure 34 displays a single layout generated by CA rules that were evaluated using each of 

the sub-fitness functions.  Beneath each layout is a list of their attributes and their post 

processed version. 
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Figure 34. Colour coded layouts generated from CA rules that were evaluated using each of the sub-fitness 

functions.  Each layouts attributes are listed beneath them along with their post processed versions. 

Once again the evaluation of two attributes failed to produce visually similar layouts to the 

goal layout.  However, using four and six attributes appears to be enough to produce layouts 

with a visual similarity to the goal layout.  Both layouts (b2) and (c2) are a similar size to the 

goal layout with a similar spread of negative space.  But these layouts lose similarity to the 

goal layout by the number of diagonal walls and passageways. 

Results from Fitness Function 2 

The aim of using fitness function 2 was to produce level layouts that were visually similar to 

its goal layout which is displayed in Figure 35.  Unfortunately none of the experiments 

produced visually similar results. 
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Figure 35. Goal layout of f2. 

The layouts produced using f2 did not have any visual similarity to the goal layout, even 

though they have high ASMs.  Figure 36 displays one colour coded layout that was produced 

from each set of experiments along with their attributes and their post processed version. 

 

Figure 36. Four generated layouts, one for each set of experiments, evaluated by f2 in comparison with f2’s 

goal layout.  Each layout is colour coded to visually identify its attributes which are listed beneath each 

layout along with its post processed version. 

As can be seen in Figure 36, the layouts attributes closely match those of the goal layout.  

The reason behind the lack of visual similarity is the grid size of the generated layouts does 

not match the grid size of the goal layout.  This basis of decision was made on the fact that 

the goal layout only covered half of its grid, and rather than use a rectangular grid, a smaller 

square grid was chosen instead.  The hypothesis behind this decision was that a layout of 
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similar size and style would be produced, but in a square space.  However, the newly selected 

grid size was too small to fit a layout of similar size and style, which is evident by viewing 

the largest traversable area attribute of the generated layouts.  All of the largest traversable 

areas were very similar in size to the goal layouts, but the grid was not large enough to form 

the necessary negative space to produce layouts of a similar style to the goal layout. 

Results from Fitness Function 3 

The aim of fitness function 3 was to generate layouts of a single traversable area with small 

rooms and long passageways as shown in Figure 37.  The exact values for these attributes are 

listed in Table 6 in section 4.1. 

 

Figure 37. Goal layout of f3. 

Using f3, both sets 1A and 1B produced similar results to one another but their resemblance 

to the goal layout was not that close.  Figure 38 shows two generated layouts from both sets 

1A and 1B in comparison to their goal layout.  Each layouts attributes are listed beneath them 

along with a post processed version of the layout.  As can be seen, the experiments that used 

a single CA iteration (set1A_a1, set1A_b1, set1B_b1) all produced similar visual results to 

one another, while the experiment that used ten CA iterations (set1B_a1) produced a layout 

with a different visual appearance. 
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Figure 38. Four generated layouts, two from each set 1A and 1B, evaluated by f3 in comparison with f3’s 

goal layout.  Each layout is colour coded to visually identify its attributes which are listed beneath each 

layout along with its post processed version. 

The four layouts displayed in Figure 38 only contained three attributes that were similar to 

the goal layout.  Layouts (set1A_a1), (set1A_b1), (set1B_a1), and (set1B_b1) contain 

between four and ten too many traversable areas, with the largest traversable area ranging 

between forty five and eighty cells larger than the desired size.  The numbers of passageways 

contained within the generated layouts are close to the desired value but their average length 

is much smaller.  Each generated layout contains the desired number of rooms, with the 

exception of (set1A_a1) which contains one extra room, but with a much greater than desired 

average room size.  The generated layouts contain between three and five times the desired 

number of dead-ends, but close to the desired number of culs-de-sac. 

Comparing the post processed layouts to the criteria listed in section 4.3.1, the generated 

layouts are not very similar to the goal layout.  All of the layouts are of similar size to the 

goal layout, with layouts (set1A_a1), (set1A_b1), and (set1B_b1) having similar shaped 

rooms.  The majority of the goal layout consists of negative space, and although layout 

(set1A_a2) has the most similar distribution of negative space, none of the generated layouts 
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contain enough.  The passageways in each of the layouts are too short and detract from their 

visual similarity to the goal layout. 

Sets 2 and 3 used the indirect representation and produced very different results from one 

another.  Figure 39 shows two layouts that were generated from set 2 in comparison to their 

goal layout.  Both layouts were generated by a chromosome that was evolved using four cell 

states and five CA iterations, and each layouts attributes are listed beneath them. 

 

Figure 39. Two generated layouts evaluated by f3 in comparison with f3’s goal layout.  Each layout is colour 

coded to visually identify its attributes which are listed beneath each layout along with its post processed 

version. 

From the attributes of the layouts shown in Figure 39, it can be seen that both generated 

layouts contain too many traversable areas with (a1)’s largest area being larger than desired, 

while (b1)’s largest area was a bit smaller.  Layouts (a1) and (b1) have a similar number of 

passageways to the goal layout but with a shorter average length.  Both layouts contain too 

many rooms with (a1)’s average room size being twice the desired value, although (b1)’s 

average room size is quite close to the goal layout.  Both layouts contain twice as many dead-
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ends as the goal layout, with (a1) not containing any culs-de-sac and (b1) containing the 

desired number of one cul-de-sac. 

Comparing the post processed layouts to the criteria listed in section 4.3.1, the generated 

layouts are quite similar to the goal layout.  Both layouts (a2) and (b2) are of similar size to 

the goal layout, although (a2) is slightly bigger, with both layouts shaped rooms.  Both 

layouts mostly consisted of negative space, very similar to the goal layout.  The passageways 

in (a2) were more similar in appearance to the goal layout than the passageways in (b2).  This 

is because (b2)’s passageways are all orthogonal and form rectangles, while (a2)’s 

passageways are less structured with some running diagonally similar to the goal layout. 

The layouts generated in set 3 were not very similar to the goal layout.  Figure 40 shows two 

layouts that were generated from set 3 in comparison to their goal layout.  Both layouts were 

generated by a chromosome that was evolved using two cell states with five CA iterations, 

and each layout’s attributes are listed beneath them. 

 

Figure 40. Two generated layouts evaluated by f3 in comparison with f3’s goal layout.  Each layout is colour 

coded to visually identify its attributes which are listed beneath each layout along with its post processed 

version. 
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Looking at the attribute values listed in Figure 40 it can be seen that half the attributes were 

similar to the desired values while the other half are not.  Both layouts (a1) and (b1)’s largest 

traversable area is similar in size to the goal layout, and both layouts have close to the desired 

number of passageways, rooms, and culs-de-sac.  Both layouts have too many traversable 

areas, shorter average passageway lengths, and larger average room sizes.  Both layouts also 

contain two to three times the number of dead-ends. 

Comparing the post processed layouts to the criteria listed in section 4.3.1, it can be seen that 

the generated layouts are not very similar to the goal layout.  Both layouts (a2) and (b2) are 

of similar size to the goal layout, but their rooms are too large and complex, whereas the goal 

layouts rooms are small, simple, and box-like.  Neither of the layouts contained a similar 

distribution of negative space, with some large areas and many small areas that were 

scattered.  The passageways in (a2) were more similar in appearance to the goal layout than 

the passageways in (b2).  This is because (a2)’s passageways are mostly orthogonal, while 

(a2)’s passageways are mostly diagonal. 

Results from Fitness Function 4 

The aim of fitness function 4 was to generate layouts containing four traversable areas with 

large rooms that covered the majority of the layout.  The goal layout for f4 is shown in Figure 

41. 

 

Figure 41. Goal layout for f4. 

The layouts that were generated by chromosomes from set 1A and 1B that were given a high 

fitness value by f4 were very similar to one another.  Figure 42 shows two generated layouts 

from both sets 1A and 1B in comparison to their goal layout.  Each layouts attributes are 

listed beneath them along with a post processed version of the layout.  The post processed 
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versions of these layouts include up to four disconnected traversable areas as this was the 

desired number of traversable areas used in this fitness function. 

 

Figure 42. Four generated layouts, two from each set 1A and 1B, evaluated by f4 in comparison with f4’s 

goal layout.  Each layout is colour coded to visually identify its attributes which are listed beneath each 

layout along with its post processed version. 

As can be seen in Figure 42, layout (set1B_a1) had the desired number of traversable areas 

while (set1A_a1) and (set1B_b1) had one less and (set1A_b1) had two more.  The average 

size of (set1B_a1)’s traversable areas was close to the desired value while (set1B_b1) and 

(set1A_a1)’s average area size was too large and (set1B_b1)’s was too small.  Layouts 

(set1A_a1) and (set1B_a1) had a similar number of passageways to the goal layout while 

(set1A_b1) and (set1B_b1) contain too many.  All of the layouts had a shorter than desired 

average passageway length.  Each layout contains close to the desired number of rooms and, 

with the exception of (set1A_a1), had a similar average room size to the goal layout.  All of 

the layouts contained a similar number of dead-ends to the goal layout but only (set1A_a1) 

contained a cul-de-sac. 

Comparing the post processed layouts to the criteria listed in section 4.3.1, it can be seen that 

the generated layouts are not very similar to the goal layout.  All of the layouts are of similar 

size to the goal layout, but their distribution of negative space is erratic.  This is unlike the 
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goal layout as the negative space in the goal layout forms passageways of non-traversable 

areas, enclosing rooms within them.  The layout (set1A_a1) is the most visually similar to the 

goal layout as it contains large open areas, but its negative space is spread out and disjointed. 

Sets 2 and 3 also produced similar results to each other but, unlike sets 1A and 1B, they 

produced some visually similar results.  Figure 43 shows two layouts that were generated 

from set 2 and two layouts that were generated from set 3 in comparison to their goal layout.  

Each layouts attributes are listed beneath them along with their post processed version. 

 

Figure 43. Four generated layouts, two from each set 2 and 3, evaluated by f4 in comparison with f4’s goal 

layout.  Each layout is colour coded to visually identify its attributes which are listed beneath each layout 

along with its post processed version. 

As can be seen in Figure 43, (set2_b1) and (set3_a1) contain close to the desired number of 

traversable areas, while (set2_a1) and (set3_b1) contain close to twice the desired number of 

traversable areas.  All of the layouts, except for (set3_a1), have a smaller than desired 

average traversable area size.  All of the layouts contain either four too many or four too few 

passageways, with the exception of (set3_b1) which contains three too few passageways.  

Layout (set3_b1) was also the only layout that had a similar average passageway length, as 

the other three layouts average passageway length was too short.  Layout (set3_b1) also 

contained the correct number of rooms while the other layouts contained between two and 
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four too many.  Layouts (set2_b1) and (set3_a1) had close to the desired average room size, 

while (set2_a1) had a smaller than desired average room size and (set3_b1) had a larger than 

desired average room size.  Each layout contained close to the correct number of dead-ends, 

with (set2_a1) containing the correct number of culs-de-sac and the other layouts containing 

one too many or one too few culs-de-sac. 

Comparing the post processed layouts to the criteria listed in section 4.3.1, it can be seen that 

the generated layouts are quite similar to the goal layout, specifically layout (set2_b2).  All of 

the layouts consist mostly of positive space with negative space enclosing large areas in a 

similar manner to the goal layout.  However, the goal layouts negative space forms thin 

passageways of non-traversable areas, whereas layout (set2_a2) and (set3_a2) contain several 

larger pockets of negative space that do not form thin passageways.  Layout (set2_b2)’s 

traversable areas are surrounded by mostly orthogonal walls of negative space, very similar to 

the goal layout, while (set3_b2)’s traversable areas are not. 

Results from Fitness Function 5 

The aim of fitness function 5 was to generate layouts containing two traversable areas with 

moderately sized, rectangle rooms.  The goal layout for f5 is shown in Figure 44. 

 

Figure 44. Goal layout of f5. 

The layouts that were generated by chromosomes from set 1A and 1B that were given a high 

fitness value by f5 were very similar to one another, although they were not similar to the 

goal layout.  Figure 45 shows two generated layouts from both sets 1A and 1B in comparison 

to their goal layout.  Each layouts attributes are listed beneath them along with a post 

processed version of the layout.  The post processed versions of these layouts include up to 

four disconnected traversable areas as this was the desired number of traversable areas used 

in this fitness function. 
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Figure 45. Four generated layouts, two from each set 1A and 1B, evaluated by f5 in comparison with f5’s 

goal layout.  Each layout is colour coded to visually identify its attributes which are listed beneath each 

layout along with its post processed version. 

As can be seen in Figure 45, each layout contains too many traversable areas but with an 

average size that is close to the desired value.  All of the generated layouts contain between 

five and nine too many passageways, with only (set1A_a1) having an average passageway 

length that is close to the goal layouts.  The number of rooms in each layout is close to the 

desired value, but only (set1B_a1) has an average room size that is similar to the goal layout.  

All of the layouts contain too many dead-ends with (set1A_a1) being the only layout that 

contains the correct number of culs-de-sac. 

Comparing the post processed layouts to the criteria listed in section 4.3.1, it can be seen that 

the generated layouts are not very similar to the goal layout.  All of the layouts are larger than 

the goal layout and their distribution of negative space is erratic.  The rooms in the goal 

layout are clearly rectangular while the rooms in the generated layouts are not. 

Sets 2 and 3 also produced similar results to each other, and although the generated layouts 

are clearer and better structured, still lack a visual similarity to the goal layout.  Figure 46 

shows two layouts that were generated from set 2 and two layouts that were generated from 
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set 3 in comparison to their goal layout.  Each layouts attributes are listed beneath them along 

with their post processed version. 

 

Figure 46. Four generated layouts, two from each set 2 and 3, evaluated by f5 in comparison with f5’s goal 

layout.  Each layout is colour coded to visually identify its attributes which are listed beneath each layout 

along with its post processed version. 

As can be seen in Figure 46, (set2_a1) contains the desired number of traversable areas, while 

(set2_b1), (set3_a1), and (set3_b1) contain too many.  Layouts (set2_b1) had a similar 

average traversable area size to the goal layout with the other three layouts having an average 

traversable area size that is too small or too large.  Layouts (set1A_b1) and (set1B_b1) 

contain close to the desired number of passageways while (set2_a1) contains too many and 

(set3_a1) contains too few.  All of the layouts, except for (set3_b1), had a similar average 

passageway length.  All layouts contained close to the correct number of rooms with 

(set3_b1) having the most accurate average room size.  None of the layout contained the 

correct number of dead-ends, with (set3_a1) being the only layout that contains the correct 

number of culs-de-sac. 

Comparing the post processed layouts to the criteria listed in section 4.3.1, it can be seen that 

the generated layouts are not particularly similar to the goal layout, mostly due to the rooms 

not being rectangular in shape.  Layout (set2_b2) was the most similar in visual appearance 
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as it is mostly made up of rectangular shapes, but the lack of rooms and their large size 

detract from its visual similarity to the goal layout. 

4.3.2 Analysis of Fitness Values through ANOVA 

To investigate the impact of the interactions of the factors associated with both the GA and 

the CA on the five fitness functions, three-way ANOVA tests were carried out.  Each 

ANOVA test used the chromosomes’ fitness values as the dependent variable, the number of 

cell states and number of CA iterations as two of the independent variables, with the third 

independent variable being one of the following three factors: mutation rate, chromosome 

representation, or neighbourhood radius.  Three ANOVA tests were completed for each of 

the five fitness functions to examine the following. 

ANOVA Test 1: The impact that changes in mutation rate, number of cell states, and number 

of CA iterations had on the fitness values. 

ANOVA Test 2: The impact that changes in the chromosome representation, number of cell 

states, and CA iterations had on the fitness values. 

ANOVA Test 3: The impact that changes in the neighbourhood radius, number of cell states, 

and number of CA iterations had on the fitness values. 

Two of assumptions associated with ANOVA are the assumption of normality and 

homogeneity of variances.  To meet the assumption of normality each of the 12 experiments 

in each of the four sets which were associated with a specific fitness function was run 30 

times.  Because each sample size was equal, the assumption of homogeneity of variances is 

also met.  Results of the ANOVA tests, in order of fitness function, starting with analysis of 

results from using f1 through to f5 are described in the remainder of this section. 

Analysis of Fitness Function 1 

The first ANOVA that was performed for f1 was to examine the impact that changes in the 

mutation rate, number of cell states, and number of CA iterations had on the fitness values, as 

stated in ANOVA Test 1.  To do this, data from sets 1A and 1B were used, where each set 

contained 12 experiments that were each run 30 times giving a total number of 720 data 

points to be used in the analysis.  Table 10 shows the results from a three-way between-

subjects ANOVA test with two levels of mutation rate, three levels of cell states, and four 

levels of CA iterations.  Based on the sig, or p-value, being less than 0.05 for all effects, they 
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were all statistically significant.  The interaction effect between the three factors is, (F (6, 

696) = 181.425, p < 0.05, Partial Eta Squared = 0.610). 

Dependent Variable:   Fitness Value    

Source Type III Sum of 

Squares 

df Mean Square F Sig. Partial Eta 

Squared 

Corrected Model 1.648
a
 23 .072 285.063 .000 .904

a
 

Intercept 472.471 1 472.471 1879253.233 .000 1.000 

MutationRate .083 1 .083 328.211 .000 .320 

CellStates .008 2 .004 15.318 .000 .042 

CAIterations .459 3 .153 608.978 .000 .724 

MutationRate * 

CellStates 

.254 2 .127 505.324 .000 .592 

MutationRate * 

CAIterations 

.404 3 .135 535.652 .000 .698 

CellStates * 

CAIterations 

.167 6 .028 110.753 .000 .488 

MutationRate * 

CellStates * 

CAIterations 

.274 6 .046 181.425 .000 .610 

Error .175 696 .000    

Total 474.295 720     

Corrected Total 1.823 719     

Table 10. ANOVA Test for the fitness values achieved by the experiments in set 1A and 1B. 

As the number of cell states and the number of CA iterations had a significant effect on the 

fitness values, two post hoc tests were performed to see where the significant interactions 

were between pairs of cell states, and pairs of CA iterations.  No post hoc test was performed 

on the mutation rate as it had only two levels, and therefore the significant interaction is 

between those two levels.  To determine where the significant interactions lie, the least 

significant difference (LSD) post hoc test was performed.  Table 11 shows the results from 

the post hoc test performed on the number of cell states, and Table 12 shows the results of the 

post hoc test performed on the number of CA iterations.  As can be seen in Table 11, the p-

value is less than 0.05 for all interactions, which means the effect of using any number of cell 

states is significantly different to the effect when using any other number of cell states.  The 
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same can be seen in Table 12, where the effects of using any number of CA Iterations are 

significantly different to one another due to a p-value that is below 0.05. 

Dependent Variable:   Fitness Value   

(I) Number of Cell States (J) Number of Cell States Mean Difference 

(I-J) 

Std. Error Sig. 

2 3 .0039611583
*
 .00144745281 .006 

4 .0080113583
*
 .00144745281 .000 

3 2 -.0039611583
*
 .00144745281 .006 

4 .0040502000
*
 .00144745281 .005 

4 2 -.0080113583
*
 .00144745281 .000 

3 -.0040502000
*
 .00144745281 .005 

Table 11. LSD Post hoc test results for number of cell states.  Post hoc performed as part of ANOVA for f1 

with results from sets 1A and 1B. 

Dependent Variable:   Fitness Value   

(I) Number of CA Iterations (J) Number of CA Iterations Mean Difference 

(I-J) 

Std. Error Sig. 

1 5 .0353138389
*
 .00167137454 .000 

10 .0523657556
*
 .00167137454 .000 

25 .0679579944
*
 .00167137454 .000 

5 1 -.0353138389
*
 .00167137454 .000 

10 .0170519167
*
 .00167137454 .000 

25 .0326441556
*
 .00167137454 .000 

10 1 -.0523657556
*
 .00167137454 .000 

5 -.0170519167
*
 .00167137454 .000 

25 .0155922389
*
 .00167137454 .000 

25 1 -.0679579944
*
 .00167137454 .000 

5 -.0326441556
*
 .00167137454 .000 

10 -.0155922389
*
 .00167137454 .000 

Table 12. LSD Post hoc test results for number of CA iterations.  Post hoc performed as part of ANOVA for f1 

with results from sets 1A and 1B. 



 
82 

The second ANOVA that was performed for f1 was to examine the impact that changes in the 

chromosome representation, number of cell states, and number of CA iterations had on the 

fitness values, as stated in ANOVA Test 2.  To do this, data from sets 1A and 2 were used, 

where each set contained 12 experiments that were each run 30 times giving a total number of 

720 data points to be used in the analysis.  Table 13 shows the results from a three-way 

between-subjects ANOVA test with two levels of chromosome representation, three levels of 

cell states, and four levels of CA iterations.  All effects were statistically significant.  The 

interaction effect between the three independent variables is, (F (6, 696) = 203.190, p < 0.05, 

Partial Eta Squared = 0.637). 

Dependent Variable:   Fitness Value    

Source Type III Sum of 

Squares 

df Mean Square F Sig. Partial Eta 

Squared 

Corrected Model 1.165
a
 23 .051 306.475 .000 .910

a
 

Intercept 508.306 1 508.306 3075915.740 .000 1.000 

CellStates .038 2 .019 114.566 .000 .248 

CAIterations .189 3 .063 381.738 .000 .622 

Representation .272 1 .272 1648.743 .000 .703 

CellStates * 

CAIterations 

.187 6 .031 189.062 .000 .620 

CellStates * 

Representation 

.061 2 .031 184.856 .000 .347 

CAIterations * 

Representation 

.215 3 .072 434.202 .000 .652 

CellStates * 

CAIterations * 

Representation 

.201 6 .034 203.190 .000 .637 

Error .115 696 .000    

Total 509.586 720     

Corrected Total 1.280 719     

Table 13. ANOVA Test for the fitness values achieved by the experiments in set 1A and 2. 

Once again, the number of cell states and the number of CA iterations had a significant effect 

on the fitness values.  Therefore two post hoc tests were performed to see where the 

significant interactions were between pairs of cell states, and pairs of CA iterations.  No post 
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hoc test was performed on the chromosome representation as it had only two levels.  Table 14 

shows the results from the post hoc test performed on the number of cell states, and Table 15 

shows the results of the post hoc test performed on the number of CA iterations.  As can be 

seen in Table 14, the p-value is less than 0.05 for all interactions, which means the effect of 

using any number of cell states is significantly different to the effect when using any other 

number of cell states.  The same can be seen in Table 15, where the effects of using any 

number of CA iterations are significantly different to one another due to a p-value that is 

below 0.05. 

Dependent Variable:   Fitness Value   

(I) Number of Cell States (J) Number of Cell States Mean Difference 

(I-J) 

Std. Error Sig. 

2 3 -.0174848708
*
 .00117350435 .000 

4 -.0114564292
*
 .00117350435 .000 

3 2 .0174848708
*
 .00117350435 .000 

4 .0060284417
*
 .00117350435 .000 

4 2 .0114564292
*
 .00117350435 .000 

3 -.0060284417
*
 .00117350435 .000 

Table 14. LSD Post hoc test results for number of cell states.  Post hoc performed as part of ANOVA for f1 

with results from sets 1A and 2. 

 

 

 

 

 

 

 

 



 
84 

Dependent Variable:   Fitness Value   

(I) Number of CA Iterations (J) Number of CA Iterations Mean Difference 

(I-J) 

Std. Error Sig. 

1 5 -.0366170167
*
 .00135504610 .000 

10 -.0142856444
*
 .00135504610 .000 

25 .0052495889
*
 .00135504610 .000 

5 1 .0366170167
*
 .00135504610 .000 

10 .0223313722
*
 .00135504610 .000 

25 .0418666056
*
 .00135504610 .000 

10 1 .0142856444
*
 .00135504610 .000 

5 -.0223313722
*
 .00135504610 .000 

25 .0195352333
*
 .00135504610 .000 

25 1 -.0052495889
*
 .00135504610 .000 

5 -.0418666056
*
 .00135504610 .000 

10 -.0195352333
*
 .00135504610 .000 

Table 15. LSD Post hoc test results for number of CA iterations.  Post hoc performed as part of ANOVA for f1 

with results from sets 1A and 2. 

The third ANOVA that was performed for f1 was to examine the impact that changes in the 

neighbourhood radius, number of cell states, and number of CA iterations had on the fitness 

values, as stated in ANOVA Test 3.  To do this, data from sets 2 and 3 were used, where each 

set contained 12 experiments that were each run 30 times giving a total number of 720 data 

points to be used in the analysis.  Table 16 shows the results from a three-way between-

subjects ANOVA test with two levels of neighbourhood radius, three levels of cell states, and 

four levels of CA iterations.  Most of the effects were statistically significant with a p-value 

of less than 0.05.  The interaction pair of cell states and CA iterations did not have a 

significant effect on the fitness values, as it has a p-value of 0.932 which is greater than 0.05.  

The interaction effect between the three independent variables is, (F (6, 696) = 203.190, p < 

0.05, Partial Eta Squared = 0.018). 
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Dependent Variable:   Fitness Value    

Source Type III Sum of 

Squares 

df Mean Square F Sig. Partial Eta 

Squared 

Corrected Model .601
a
 23 .026 143.642 .000 .826

a
 

Intercept 515.593 1 515.593 2835229.377 .000 1.000 

CellStates .032 2 .016 87.428 .000 .201 

CAIterations .405 3 .135 742.628 .000 .762 

NeighbourhoodRadius .130 1 .130 716.443 .000 .507 

CellStates * CAIterations .000 6 5.647E-005 .311 .932 .003 

CellStates * 

NeighbourhoodRadius 

.010 2 .005 27.240 .000 .073 

CAIterations * 

NeighbourhoodRadius 

.021 3 .007 38.491 .000 .142 

CellStates * CAIterations 

* NeighbourhoodRadius 

.002 6 .000 2.128 .048 .018 

Error .127 696 .000    

Total 516.320 720     

Corrected Total .727 719     

Table 16. ANOVA Test for the fitness values achieved by the experiments in set 2 and 3. 

Again, the number of cell states and the number of CA iterations had a significant effect on 

the fitness values.  Therefore two post hoc tests were performed to see where the significant 

interactions were between pairs of cell states, and pairs of CA iterations.  No post hoc test 

was performed on the neighbourhood radius as it had only two levels.  Table 17 shows the 

results from the post hoc test performed on the number of cell states, and Table 18 shows the 

results of the post hoc test performed on the number of CA iterations.  As can be seen in 

Table 17, the p-value is less than 0.05 for all interactions, which means the effect of using 

any number of cell states is significantly different to the effect when using any other number 

of cell states.  Table 18 shows that there is no significant effect on the fitness value when 

changing between 10 and 25 CA iterations, as its p-value of 0.459 is greater than 0.05.  

However, there is a significant effect between all other CA iterations due to a p-value that is 

below 0.05. 
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Dependent Variable:   Fitness Value   

(I) Number of Cell States (J) Number of Cell States Mean Difference 

(I-J) 

Std. Error Sig. 

2 3 .0090590625
*
 .00123102990 .000 

4 .0162422375
*
 .00123102990 .000 

3 2 -.0090590625
*
 .00123102990 .000 

4 .0071831750
*
 .00123102990 .000 

4 2 -.0162422375
*
 .00123102990 .000 

3 -.0071831750
*
 .00123102990 .000 

Table 17. LSD Post hoc test results for number of cell states.  Post hoc performed as part of ANOVA for f1 

with results from sets 2 and 3. 

Dependent Variable:   Fitness Value   

(I) Number of CA Iterations (J) Number of CA Iterations Mean Difference 

(I-J) 

Std. Error Sig. 

1 5 -.0582136056
*
 .00142147089 .000 

10 -.0532099222
*
 .00142147089 .000 

25 -.0521562667
*
 .00142147089 .000 

5 1 .0582136056
*
 .00142147089 .000 

10 .0050036833
*
 .00142147089 .000 

25 .0060573389
*
 .00142147089 .000 

10 1 .0532099222
*
 .00142147089 .000 

5 -.0050036833
*
 .00142147089 .000 

25 .0010536556 .00142147089 .459 

25 1 .0521562667
*
 .00142147089 .000 

5 -.0060573389
*
 .00142147089 .000 

10 -.0010536556 .00142147089 .459 

Table 18. LSD Post hoc test results for number of CA iterations.  Post hoc performed as part of ANOVA for f1 

with results from sets 2 and 3. 
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From the results of the three ANOVA tests described in this section, this research concludes 

that each of the five factors, associated with the GA and CA, significantly affect the fitness 

values achieved in the GA process where f1 is the objective function.  However, when using 

the indirect representation, there was no significant difference when using 10 CA iterations 

compared to using 25 CA iterations.  This means that the majority of the variance of effect on 

the fitness values occurs between 1, 5, and 10 CA iterations when using the indirect 

representation. 

From the results of the visual comparison it was found that altering the factors associated 

with the GA and CA did have significant effects on the layouts that were produced.  The 

chromosomes generated when using the higher mutation rate of 0.01 produced layouts with a 

better spread of negative space than the lower mutation rate of one over the chromosome 

length.  However, the chromosome representation had the greatest effect on the visual 

appearance of the generated layouts, with the indirect representation producing layouts that 

were neater and more structured than those of the direct representation.  The neighbourhood 

radius also had an effect on the layouts, with the larger radius generally producing more 

diagonal passageways than those of the lower neighbourhood radius.  The visual comparisons 

also showed that some combinations of CA iterations and numbers of cell states performed 

better than others, with some combinations producing chromosomes with high fitness and 

other combinations producing chromosomes with lower fitness.  While the majority of 

chromosomes that were assigned high fitness values produced layouts that were visually 

similar to the goal layout, the chromosomes that were assigned low fitness values did not. 

Analysis of Fitness Function 2  

During the visual comparison, it was discovered that the layouts generated from 

chromosomes that were evolved using fitness function 2 were not visually similar to their 

goal layout due to a grid size that was too small.  Therefore no conclusions can be drawn 

between the analysis in this section and the visual results.  However the analysis of variance 

in the fitness values has been included for completeness. 

The first ANOVA that was performed for f2 was to examine the impact that changes in the 

mutation rate, number of cell states, and number of CA iterations had on the fitness values, as 

stated in ANOVA Test 1.  To do this, data from sets 1A and 1B were used, where each set 

contained 12 experiments that were each run 30 times giving a total number of 720 data 

points to be used in the analysis.  Table 19 shows the results from a three-way between-
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subjects ANOVA test with two levels of mutation rate, three levels of cell states, and four 

levels of CA iterations.  All effects were statistically significant.  The main effect that this 

research is interested in is the interaction of the three independent variables.  This interaction 

is, (F (6, 696) = 299.278, p < 0.05, Partial Eta Squared = 0.721). 

Dependent Variable:   Fitness Value    

Source Type III Sum of 

Squares 

df Mean Square F Sig. Partial Eta 

Squared 

Corrected Model 1.316
a
 23 .057 801.475 .000 .964

a
 

Intercept 555.332 1 555.332 7778418.130 .000 1.000 

MutationRate .178 2 .089 1246.967 .000 .782 

CellStates .328 3 .109 1529.957 .000 .868 

CAIterations .122 1 .122 1713.153 .000 .711 

MutationRate * 

CellStates 

.168 6 .028 393.012 .000 .772 

MutationRate * 

CAIterations 

.129 2 .064 902.080 .000 .722 

CellStates * 

CAIterations 

.263 3 .088 1226.352 .000 .841 

MutationRate * 

CellStates * 

CAIterations 

.128 6 .021 299.278 .000 .721 

Error .050 696 7.139E-005    

Total 556.698 720     

Corrected Total 1.366 719     

Table 19. ANOVA Test for the fitness values achieved by the experiments in set 1A and 1B. 

As the number of cell states and the number of CA iterations had a significant effect on the 

fitness values, two post hoc tests were performed to see where the significant interactions 

were between pairs of cell states, and pairs of CA iterations.  No post hoc test is performed on 

the mutation rate as it had only two levels, and therefore the significant interaction is between 

those two levels.  To determine where the significant interactions lie, the LSD post hoc test is 

performed.  Table 20 shows the results from the post hoc test performed on the number of 

cell states, and Table 21 show the results of the post hoc test performed on the number of CA 

iterations.  As can be seen in Table 20, the p-value is less than 0.05 for all effects, meaning 
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the effect of using any number cell states is significantly different to the effect when using 

any other number cell states.  The results displayed in Table 21 show that the effects of using 

any number of CA Iterations is significantly different to the effect of using any other number 

of CA iterations due to a p-value that is below 0.05. 

Dependent Variable:   Fitness Value   

(I) Number of Cell States (J) Number of Cell States Mean Difference 

(I-J) 

Std. Error Sig. 

2 3 .0225104833
*
 .00077132964 .000 

4 -.0158147125
*
 .00077132964 .000 

3 2 -.0225104833
*
 .00077132964 .000 

4 -.0383251958
*
 .00077132964 .000 

4 2 .0158147125
*
 .00077132964 .000 

3 .0383251958
*
 .00077132964 .000 

Table 20. LSD Post hoc test results for number of cell states.  Post hoc performed as part of ANOVA for f2 

with results from sets 1A and 1B. 
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Dependent Variable:   Fitness Value   

(I) Number of CA Iterations (J) Number of CA Iterations Mean Difference 

(I-J) 

Std. Error Sig. 

1 5 .0203621889
*
 .00089065475 .000 

10 .0413642722
*
 .00089065475 .000 

25 .0564442111
*
 .00089065475 .000 

5 1 -.0203621889
*
 .00089065475 .000 

10 .0210020833
*
 .00089065475 .000 

25 .0360820222
*
 .00089065475 .000 

10 1 -.0413642722
*
 .00089065475 .000 

5 -.0210020833
*
 .00089065475 .000 

25 .0150799389
*
 .00089065475 .000 

25 1 -.0564442111
*
 .00089065475 .000 

5 -.0360820222
*
 .00089065475 .000 

10 -.0150799389
*
 .00089065475 .000 

Table 21. LSD Post hoc test results for number of CA iterations.  Post hoc performed as part of ANOVA for f2 

with results from sets 1A and 1B. 

The second ANOVA that was performed for f2 was to examine the impact that changes in the 

chromosome representation, number of cell states, and number of CA iterations had on the 

fitness values, as stated in ANOVA Test 2.  To do this, data from sets 1A and 2 were used, 

where each set contained 12 experiments that were each run 30 times giving a total number of 

720 data points to be used in the analysis.  Table 22 shows the results from a three-way 

between-subjects ANOVA test with two levels of chromosome representation, three levels of 

cell states, and four levels of CA iterations.  All effects were statistically significant.  The 

interaction effect between the three independent variables is, (F (6, 696) = 353.392, p < 0.05, 

Partial Eta Squared = 0.753). 
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Dependent Variable:   Fitness Value    

Source Type III Sum of 

Squares 

df Mean Square F Sig. Partial Eta 

Squared 

Corrected Model .749
a
 23 .033 723.029 .000 .960

a
 

Intercept 
553.597 1 553.597 12298033.76

4 

.000 1.000 

CellStates .096 2 .048 1062.084 .000 .753 

CAIterations .123 3 .041 913.950 .000 .798 

Representation .149 1 .149 3319.719 .000 .827 

CellStates * 

CAIterations 

.129 6 .021 476.330 .000 .804 

CellStates * 

Representation 

.043 2 .021 474.809 .000 .577 

CAIterations * 

Representation 

.113 3 .038 838.659 .000 .783 

CellStates * 

CAIterations * 

Representation 

.095 6 .016 353.392 .000 .753 

Error .031 696 4.502E-005    

Total 554.377 720     

Corrected Total .780 719     

Table 22. ANOVA Test for the fitness values achieved by the experiments in set 1A and 2. 

Once again, the number of cell states and the number of CA iterations had a significant effect 

on the fitness values.  Therefore two post hoc tests were performed to see where the 

significant interactions were between pairs of cell states, and pairs of CA iterations.  No post 

hoc test is performed on the chromosome representation as it had only two levels.  Table 23 

shows the results from the post hoc test performed on the number of cell states, and Table 24 

show the results of the post hoc test performed on the number of CA iterations.  As can be 

seen in Table 23, the p-value is less than 0.05 for all interactions, which means the effects of 

using any number of cell states are significantly different to the effects when using any other 

number of cell states.  The same can be seen in Table 24, where the effects of using any 

number of CA iterations are significantly different to one another due to a p-value that is 

below 0.05. 
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Dependent Variable:   Fitness Value   

(I) Number of Cell States (J) Number of Cell States Mean Difference 

(I-J) 

Std. Error Sig. 

2 3 -.0091942125
*
 .00061247487 .000 

4 -.0277103500
*
 .00061247487 .000 

3 2 .0091942125
*
 .00061247487 .000 

4 -.0185161375
*
 .00061247487 .000 

4 2 .0277103500
*
 .00061247487 .000 

3 .0185161375
*
 .00061247487 .000 

Table 23. LSD Post hoc test results for number of cell states.  Post hoc performed as part of ANOVA for f2 

with results from sets 1A and 2. 

Dependent Variable:   Fitness Value   

(I) Number of CA Iterations (J) Number of CA Iterations Mean Difference 

(I-J) 

Std. Error Sig. 

1 5 -.0149003667
*
 .00070722506 .000 

10 .0050346778
*
 .00070722506 .000 

25 .0217651667
*
 .00070722506 .000 

5 1 .0149003667
*
 .00070722506 .000 

10 .0199350444
*
 .00070722506 .000 

25 .0366655333
*
 .00070722506 .000 

10 1 -.0050346778
*
 .00070722506 .000 

5 -.0199350444
*
 .00070722506 .000 

25 .0167304889
*
 .00070722506 .000 

25 1 -.0217651667
*
 .00070722506 .000 

5 -.0366655333
*
 .00070722506 .000 

10 -.0167304889
*
 .00070722506 .000 

Table 24. LSD Post hoc test results for number of CA iterations.  Post hoc performed as part of ANOVA for f2 

with results from sets 1A and 2. 
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The third ANOVA that was performed for f2 was to examine the impact that changes in the 

neighbourhood radius, number of cell states, and number of CA iterations had on the fitness 

values, as stated in ANOVA Test 3.  To do this, data from sets 2 and 3 were used, where each 

set contained 12 experiments that were each run 30 times giving a total number of 720 data 

points to be used in the analysis.  Table 25 shows the results from a three-way between-

subjects ANOVA test with two levels of neighbourhood radius, three levels of cell states, and 

four levels of CA iterations.  All effects were statistically significant with a p-value of less 

than 0.05.  The interaction effect between the three independent variables is, (F (6, 696) = 

4.426, p < 0.05, Partial Eta Squared = 0.037). 

Dependent Variable:   Fitness Value    

Source Type III Sum of 

Squares 

df Mean Square F Sig. Partial Eta 

Squared 

Corrected Model .026
a
 23 .001 51.329 .000 .629

a
 

Intercept 
539.150 1 539.150 24740442.80

2 

.000 1.000 

CellStates .010 2 .005 223.024 .000 .391 

CAIterations .002 3 .001 24.683 .000 .096 

NeighbourhoodRadius .006 1 .006 275.906 .000 .284 

CellStates * 

CAIterations 

.005 6 .001 34.800 .000 .231 

CellStates * 

NeighbourhoodRadius 

.003 2 .001 65.182 .000 .158 

CAIterations * 

NeighbourhoodRadius 

.000 3 .000 6.281 .000 .026 

CellStates * 

CAIterations * 

NeighbourhoodRadius 

.001 6 9.646E-005 4.426 .000 .037 

Error .015 696 2.179E-005    

Total 539.191 720     

Corrected Total .041 719     

Table 25. ANOVA Test for the fitness values achieved by the experiments in set 2 and 3. 

Again, the number of cell states and the number of CA iterations had a significant effect on 

the fitness values.  Therefore two post hoc tests were performed to see where the significant 
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interactions were between pairs of cell states, and pairs of CA iterations.  No post hoc test is 

performed on the neighbourhood radius as it had only two levels.  Table 26 shows the results 

from the post hoc test performed on the number of cell states, and Table 27 show the results 

of the post hoc test performed on the number of CA iterations.  As can be seen in Table 26, 

the p-value is less than 0.05 for all interactions, which means the effects of using any number 

of cell states is significantly different to the effects when using any other number of cell 

states.  Table 27 shows that there is no significant effect on the fitness value when changing 

between 5 and 10 CA iterations, and 10 and 25 CA iterations, but there is a significant effect 

between all other CA iterations due to a p-value that is below 0.05. 

Dependent Variable:   Fitness Value   

(I) Number of Cell States (J) Number of Cell States Mean Difference 

(I-J) 

Std. Error Sig. 

2 3 -.0074523583
*
 .00042614801 .000 

4 -.0080964458
*
 .00042614801 .000 

3 2 .0074523583
*
 .00042614801 .000 

4 -.0006440875 .00042614801 .131 

4 2 .0080964458
*
 .00042614801 .000 

3 .0006440875 .00042614801 .131 

Table 26. LSD Post hoc test results for number of cell states.  Post hoc performed as part of ANOVA for f2 

with results from sets 2 and 3. 
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Dependent Variable:   Fitness Value   

(I) Number of CA Iterations (J) Number of CA Iterations Mean Difference 

(I-J) 

Std. Error Sig. 

1 5 .0026088889
*
 .00049207334 .000 

10 .0031195889
*
 .00049207334 .000 

25 .0040277333
*
 .00049207334 .000 

5 1 -.0026088889
*
 .00049207334 .000 

10 .0005107000 .00049207334 .300 

25 .0014188444
*
 .00049207334 .004 

10 1 -.0031195889
*
 .00049207334 .000 

5 -.0005107000 .00049207334 .300 

25 .0009081444 .00049207334 .065 

25 1 -.0040277333
*
 .00049207334 .000 

5 -.0014188444
*
 .00049207334 .004 

10 -.0009081444 .00049207334 .065 

Table 27. LSD Post hoc test results for number of CA iterations.  Post hoc performed as part of ANOVA for f2 

with results from sets 2 and 3. 

From the results of the three ANOVA tests described in this section, this research concludes 

that each of the five factors, associated with the GA and CA, significantly affect the fitness 

values achieved in the GA process where f2 is the objective function.  However, when using 

the indirect representation there was no significant difference when using 5 CA iterations 

compared to using 10 CA iterations, or between using 10 CA iterations and 25 CA iterations. 

Analysis of Fitness Function 3 

The first ANOVA that was performed for f3 was to examine the impact that changes in the 

mutation rate, number of cell states, and number of CA iterations had on the fitness values, as 

stated in ANOVA Test 1.  To do this, data from sets 1A and 1B were used, where each set 

contained 12 experiments that were each run 30 times giving a total number of 720 data 

points to be used in the analysis.  Table 28 shows the results from a three-way between-

subjects ANOVA test with two levels of mutation rate, three levels of cell states, and four 
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levels of CA iterations.  All effects were statistically significant.  The main effect that this 

research is interested in is the interaction of the three independent variables.  This interaction 

is, (F (6, 696) = 173. 739, p < 0.05, Partial Eta Squared = 0.600). 

Dependent Variable:   Fitness Value    

Source Type III Sum of 

Squares 

df Mean Square F Sig. Partial Eta 

Squared 

Corrected Model 2.309
a
 23 .100 331.025 .000 .916

a
 

Intercept 465.625 1 465.625 1535405.658 .000 1.000 

MutationRate .401 2 .200 660.615 .000 .655 

CellStates .982 3 .327 1079.342 .000 .823 

CAIterations .045 1 .045 147.879 .000 .175 

MutationRate * 

CellStates 

.129 6 .021 70.774 .000 .379 

MutationRate * 

CAIterations 

.291 2 .145 479.622 .000 .580 

CellStates * 

CAIterations 

.146 3 .049 160.035 .000 .408 

MutationRate * 

CellStates * 

CAIterations 

.316 6 .053 173.739 .000 .600 

Error .211 696 .000    

Total 468.145 720     

Corrected Total 2.520 719     

Table 28. ANOVA Test for the fitness values achieved by the experiments in set 1A and 1B. 

As the number of cell states and the number of CA iterations had a significant effect on the 

fitness values, two post hoc tests were performed to see where the significant interactions 

were between pairs of cell states, and pairs of CA iterations.  No post hoc test is performed on 

the mutation rate as it had only two levels, and therefore the significant interaction is between 

those two levels.  To determine where the significant interactions lie, the LSD post hoc test is 

performed. 
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Dependent Variable:   Fitness Value   

(I) Number of Cell States (J) Number of Cell States Mean Difference 

(I-J) 

Std. Error Sig. 

2 3 .0418823833
*
 .00158970367 .000 

4 .0554174958
*
 .00158970367 .000 

3 2 -.0418823833
*
 .00158970367 .000 

4 .0135351125
*
 .00158970367 .000 

4 2 -.0554174958
*
 .00158970367 .000 

3 -.0135351125
*
 .00158970367 .000 

Table 29. LSD Post hoc test results for number of cell states.  Post hoc performed as part of ANOVA for f3 

with results from sets 1A and 1B. 

Table 29 shows the results from the post hoc test performed on the number of cell states, and 

Table 30 show the results of the post hoc test performed on the number of CA iterations.  As 

can be seen in Table 29, the p-value is less than 0.05 for all effects, meaning the effect of 

using any number of cell states is significantly different to the effect when using any other 

number of cell states.  The results displayed in Table 30 show that the effects of using any 

number of CA Iterations is significantly different to the effect of using any other number of 

CA iterations due to a p-value that is below 0.05. 
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Dependent Variable:   Fitness Value   

(I) Number of CA Iterations (J) Number of CA Iterations Mean Difference 

(I-J) 

Std. Error Sig. 

1 5 .0784378000
*
 .00183563168 .000 

10 .0829825056
*
 .00183563168 .000 

25 .0921431111
*
 .00183563168 .000 

5 1 -.0784378000
*
 .00183563168 .000 

10 .0045447056
*
 .00183563168 .014 

25 .0137053111
*
 .00183563168 .000 

10 1 -.0829825056
*
 .00183563168 .000 

5 -.0045447056
*
 .00183563168 .014 

25 .0091606056
*
 .00183563168 .000 

25 1 -.0921431111
*
 .00183563168 .000 

5 -.0137053111
*
 .00183563168 .000 

10 -.0091606056
*
 .00183563168 .000 

Table 30. LSD Post hoc test results for number of CA iterations.  Post hoc performed as part of ANOVA for f3 

with results from sets 1A and 1B. 

The second ANOVA that was performed for f3 was to examine the impact that changes in the 

chromosome representation, number of cell states, and number of CA iterations had on the 

fitness values, as stated in ANOVA Test 2.  To do this, data from sets 1A and 2 were used, 

where each set contained 12 experiments that were each run 30 times giving a total number of 

720 data points to be used in the analysis.  Table 31 shows the results from a three-way 

between-subjects ANOVA test with two levels of chromosome representation, three levels of 

cell states, and four levels of CA iterations.  All effects were statistically significant.  The 

interaction effect between the three independent variables is, (F (6, 696) = 90.543, p < 0.05, 

Partial Eta Squared = 0.438). 
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Dependent Variable:   Fitness Value    

Source Type III Sum of 

Squares 

df Mean Square F Sig. Partial Eta 

Squared 

Corrected Model 2.459
a
 23 .107 747.458 .000 .961

a
 

Intercept 506.945 1 506.945 3544441.069 .000 1.000 

CellStates .046 2 .023 162.549 .000 .318 

CAIterations .097 3 .032 225.424 .000 .493 

Representation 1.320 1 1.320 9228.080 .000 .930 

CellStates * 

CAIterations 

.126 6 .021 147.382 .000 .560 

CellStates * 

Representation 

.036 2 .018 125.986 .000 .266 

CAIterations * 

Representation 

.756 3 .252 1760.855 .000 .884 

CellStates * 

CAIterations * 

Representation 

.078 6 .013 90.543 .000 .438 

Error .100 696 .000    

Total 509.503 720     

Corrected Total 2.558 719     

Table 31. ANOVA Test for the fitness values achieved by the experiments in set 1A and 2. 

Once again, the number of cell states and the number of CA iterations had a significant effect 

on the fitness values.  Therefore two post hoc tests were performed to see where the 

significant interactions were between pairs of cell states, and pairs of CA iterations.  No post 

hoc test is performed on the chromosome representation as it had only two levels.  Table 32 

shows the results from the post hoc test performed on the number of cell states, and Table 33 

show the results of the post hoc test performed on the number of CA iterations.  As can be 

seen in Table 32, the p-value is less than 0.05 for all interactions, which means the effects of 

using any number of cell states are significantly different to the effects when using any other 

number of cell states.  The same can be seen in Table 33, where the effects of using any 

number of CA iterations are significantly different to one another due to a p-value that is 

below 0.05. 
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Dependent Variable:   Fitness Value   

(I) Number of Cell States (J) Number of Cell States Mean Difference 

(I-J) 

Std. Error Sig. 

2 3 -.0026754667
*
 .00109173153 .015 

4 .0155512708
*
 .00109173153 .000 

3 2 .0026754667
*
 .00109173153 .015 

4 .0182267375
*
 .00109173153 .000 

4 2 -.0155512708
*
 .00109173153 .000 

3 -.0182267375
*
 .00109173153 .000 

Table 32. LSD Post hoc test results for number of cell states.  Post hoc performed as part of ANOVA for f3 

with results from sets 1A and 2. 

Dependent Variable:   Fitness Value   

(I) Number of CA 

Iterations 

(J) Number of CA 

Iterations 

Mean 

Difference (I-J) 

Std. Error Sig. 

1 5 -.0254726667* .00126062298 .000 

10 -.0071374444* .00126062298 .000 

25 .0051311556* .00126062298 .000 

5 1 .0254726667* .00126062298 .000 

10 .0183352222* .00126062298 .000 

25 .0306038222* .00126062298 .000 

10 1 .0071374444* .00126062298 .000 

5 -.0183352222* .00126062298 .000 

25 .0122686000* .00126062298 .000 

25 1 -.0051311556* .00126062298 .000 

5 -.0306038222* .00126062298 .000 

10 -.0122686000* .00126062298 .000 

Table 33. LSD Post hoc test results for number of CA iterations.  Post hoc performed as part of ANOVA for f3 

with results from sets 1A and 2. 
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The third ANOVA that was performed for f3 was to examine the impact that changes in the 

neighbourhood radius, number of cell states, and number of CA iterations had on the fitness 

values, as stated in ANOVA Test 3.  To do this, data from sets 2 and 3 were used, where each 

set contained 12 experiments that were each run 30 times giving a total number of 720 data 

points to be used in the analysis.  Table 34 shows the results from a three-way between-

subjects ANOVA test with two levels of neighbourhood radius, three levels of cell states, and 

four levels of CA iterations.  With the exception of the interaction effect between number of 

cell states and number of CA iterations, all other effects were statistically significant with a p-

value of less than 0.05.  The interaction effect between the three independent variables is, (F 

(6, 696) = 6.969, p < 0.05, Partial Eta Squared = 0.057). 

Dependent Variable:   Fitness Value    

Source Type III Sum of 

Squares 

df Mean Square F Sig. Partial Eta 

Squared 

Corrected Model 1.115
a
 23 .048 211.399 .000 .875

a
 

Intercept 554.120 1 554.120 2417094.309 .000 1.000 

CellStates .014 2 .007 29.612 .000 .078 

CAIterations 1.061 3 .354 1543.395 .000 .869 

NeighbourhoodRadius .016 1 .016 67.654 .000 .089 

CellStates * 

CAIterations 

.003 6 .000 1.830 .091 .016 

CellStates * 

NeighbourhoodRadius 

.007 2 .003 14.258 .000 .039 

CAIterations * 

NeighbourhoodRadius 

.005 3 .002 7.937 .000 .033 

CellStates * 

CAIterations * 

NeighbourhoodRadius 

.010 6 .002 6.969 .000 .057 

Error .160 696 .000    

Total 555.394 720     

Corrected Total 1.274 719     

Table 34. ANOVA Test for the fitness values achieved by the experiments in set 2 and 3. 

Again, the number of cell states and the number of CA iterations had a significant effect on 

the fitness values.  Therefore two post hoc tests were performed to see where the significant 
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interactions were between pairs of cell states, and pairs of CA iterations.  No post hoc test is 

performed on the neighbourhood radius as it had only two levels.  Table 35 shows the results 

from the post hoc test performed on the number of cell states, and Table 36 show the results 

of the post hoc test performed on the number of CA iterations.  As can be seen in Table 35, 

the p-value is less than 0.05 for all interactions, except between 3 and 4 cell states.  Table 36 

shows that the effect of using any number of CA iterations is significantly different than the 

effect when using any other number of CA iterations, due to a p-value that is below 0.05. 

Dependent Variable:   Fitness Value   

(I) Number of Cell States (J) Number of Cell States Mean Difference 

(I-J) 

Std. Error Sig. 

2 3 .0075600417
*
 .00138217912 .000 

4 .0102601417
*
 .00138217912 .000 

3 2 -.0075600417
*
 .00138217912 .000 

4 .0027001000 .00138217912 .051 

4 2 -.0102601417
*
 .00138217912 .000 

3 -.0027001000 .00138217912 .051 

Table 35. LSD Post hoc test results for number of cell states.  Post hoc performed as part of ANOVA for f3 

with results from sets 2 and 3. 
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Dependent Variable:   Fitness Value   

(I) Number of CA Iterations (J) Number of CA Iterations Mean Difference 

(I-J) 

Std. Error Sig. 

1 5 -.0943883889
*
 .00159600297 .000 

10 -.0875975944
*
 .00159600297 .000 

25 -.0823933500
*
 .00159600297 .000 

5 1 .0943883889
*
 .00159600297 .000 

10 .0067907944
*
 .00159600297 .000 

25 .0119950389
*
 .00159600297 .000 

10 1 .0875975944
*
 .00159600297 .000 

5 -.0067907944
*
 .00159600297 .000 

25 .0052042444
*
 .00159600297 .001 

25 1 .0823933500
*
 .00159600297 .000 

5 -.0119950389
*
 .00159600297 .000 

10 -.0052042444
*
 .00159600297 .001 

Table 36. LSD Post hoc test results for number of CA iterations.  Post hoc performed as part of ANOVA for f3 

with results from sets 2 and 3. 

From the results of the three ANOVA tests described in this section, this research concludes 

that each of the five factors, associated with the GA and CA, significantly affect the fitness 

values achieved in the GA process where f3 is the objective function.  However, when using 

the indirect representation, the interaction effect between numbers of cell states and numbers 

of CA iterations, was not significant.  There was also no significant difference to the fitness 

values when using 3 cell states compared to using 4 cell states, meaning the use of 2 cell 

states had the most significant effect on the fitness values. 

When looking at the layouts during the visual comparison, it was discovered that 

chromosomes of the indirect representation produced more accurate layouts when they were 

evolved using a neighbourhood radius of 1 with 4 cell states and 5 CA iterations.  Varying 

these factors greatly affected the visual accuracy of the generated level layouts. 

 



 
104 

Analysis of Fitness Function 4  

The first ANOVA that was performed for f4 was to examine the impact that changes in the 

mutation rate, number of cell states, and number of CA iterations had on the fitness values, as 

stated in ANOVA Test 1.  To do this, data from sets 1A and 1B were used, where each set 

contained 12 experiments that were each run 30 times giving a total number of 720 data 

points to be used in the analysis.  Table 37 shows the results from a three-way between-

subjects ANOVA test with two levels of mutation rate, three levels of cell states, and four 

levels of CA iterations.  All effects were statistically significant.  The main effect that this 

research is interested in is the interaction of the three independent variables.  This interaction 

is, (F (6, 696) = 394.070, p < 0.05, Partial Eta Squared = 0.773). 

Dependent Variable:   Fitness Value    

Source Type III Sum of 

Squares 

df Mean Square F Sig. Partial Eta 

Squared 

Corrected Model .807
a
 23 .035 1181.127 .000 .975

a
 

Intercept 585.288 1 585.288 19712780.782 .000 1.000 

MutationRate .220 2 .110 3700.219 .000 .914 

CellStates .255 3 .085 2867.566 .000 .925 

CAIterations .030 1 .030 1007.011 .000 .591 

MutationRate * 

CellStates 

.078 6 .013 436.038 .000 .790 

MutationRate * 

CAIterations 

.028 2 .014 472.933 .000 .576 

CellStates * 

CAIterations 

.126 3 .042 1409.756 .000 .859 

MutationRate * 

CellStates * 

CAIterations 

.070 6 .012 394.070 .000 .773 

Error .021 696 2.969E-005    

Total 586.115 720     

Corrected Total .827 719     

Table 37. ANOVA Test for the fitness values achieved by the experiments in set 1A and 1B. 
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As the number of cell states and the number of CA iterations had a significant effect on the 

fitness values, two post hoc tests were performed to see where the significant interactions 

were between pairs of cell states, and pairs of CA iterations.  No post hoc test is performed on 

the mutation rate as it had only two levels, and therefore the significant interaction is between 

those two levels.  To determine where the significant interactions lie, the LSD post hoc test is 

performed.  Table 38 shows the results from the post hoc test performed on the number of 

cell states, and Table 39 show the results of the post hoc test performed on the number of CA 

iterations.  As can be seen in Table 38, the p-value is less than 0.05 for all effects except 

between 2 cell states and 4 cell states.  This means the effects of using 2 cell states is not 

significantly different to the effects when using 4 cell states.  The results displayed in Table 

39 show that the effects of using any number of CA Iterations is significantly different to the 

effect of using any other number of CA iterations due to a p-value that is below 0.05. 

Dependent Variable:   Fitness Value   

(I) Number of Cell States (J) Number of Cell States Mean Difference 

(I-J) 

Std. Error Sig. 

2 3 .0375176667
*
 .00049741647 .000 

4 .0009375458 .00049741647 .060 

3 2 -.0375176667
*
 .00049741647 .000 

4 -.0365801208
*
 .00049741647 .000 

4 2 -.0009375458 .00049741647 .060 

3 .0365801208
*
 .00049741647 .000 

Table 38. LSD Post hoc test results for number of cell states.  Post hoc performed as part of ANOVA for f4 

with results from sets 1A and 1B. 
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Dependent Variable:   Fitness Value   

(I) Number of CA Iterations (J) Number of CA Iterations Mean Difference 

(I-J) 

Std. Error Sig. 

1 5 .0247243722
*
 .00057436706 .000 

10 .0383265778
*
 .00057436706 .000 

25 .0507698333
*
 .00057436706 .000 

5 1 -.0247243722
*
 .00057436706 .000 

10 .0136022056
*
 .00057436706 .000 

25 .0260454611
*
 .00057436706 .000 

10 1 -.0383265778
*
 .00057436706 .000 

5 -.0136022056
*
 .00057436706 .000 

25 .0124432556
*
 .00057436706 .000 

25 1 -.0507698333
*
 .00057436706 .000 

5 -.0260454611
*
 .00057436706 .000 

10 -.0124432556
*
 .00057436706 .000 

Table 39. LSD Post hoc test results for number of CA iterations.  Post hoc performed as part of ANOVA for f4 

with results from sets 1A and 1B. 

The second ANOVA that was performed for f4 was to examine the impact that changes in the 

chromosome representation, number of cell states, and number of CA iterations had on the 

fitness values, as stated in ANOVA Test 2.  To do this, data from sets 1A and 2 were used, 

where each set contained 12 experiments that were each run 30 times giving a total number of 

720 data points to be used in the analysis.  Table 40 shows the results from a three-way 

between-subjects ANOVA test with two levels of chromosome representation, three levels of 

cell states, and four levels of CA iterations.  All effects were statistically significant.  The 

interaction effect between the three independent variables is, (F (6, 696) = 277.441, p < 0.05, 

Partial Eta Squared = 0.705). 
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Dependent Variable:   Fitness Value    

Source Type III Sum of 

Squares 

df Mean Square F Sig. Partial Eta 

Squared 

Corrected Model .782
a
 23 .034 885.349 .000 .967

a
 

Intercept 589.926 1 589.926 15370467.094 .000 1.000 

CellStates .021 2 .011 275.638 .000 .442 

CAIterations .228 3 .076 1979.708 .000 .895 

Representation .006 1 .006 155.430 .000 .183 

CellStates * 

CAIterations 

.039 6 .006 168.781 .000 .593 

CellStates * 

Representation 

.058 2 .029 756.787 .000 .685 

CAIterations * 

Representation 

.366 3 .122 3175.432 .000 .932 

CellStates * 

CAIterations * 

Representation 

.064 6 .011 277.441 .000 .705 

Error .027 696 3.838E-005    

Total 590.735 720     

Corrected Total .808 719     

Table 40. ANOVA Test for the fitness values achieved by the experiments in set 1A and 2. 

Once again, the number of cell states and the number of CA iterations had a significant effect 

on the fitness values.  Therefore two post hoc tests were performed to see where the 

significant interactions were between pairs of cell states, and pairs of CA iterations.  No post 

hoc test is performed on the chromosome representation as it had only two levels.  Table 41 

shows the results from the post hoc test performed on the number of cell states, and Table 42 

show the results of the post hoc test performed on the number of CA iterations.  As can be 

seen in Table 41, the p-value is less than 0.05 for all interactions, which means the effects of 

using any number of cell states are significantly different to the effects when using any other 

number of cell states.  The same can be seen in Table 42, where the effects of using any 

number of CA iterations are significantly different to one another due to a p-value that is 

below 0.05. 
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Dependent Variable:   Fitness Value   

(I) Number of Cell States (J) Number of Cell States Mean Difference 

(I-J) 

Std. Error Sig. 

2 3 .0094841708
*
 .00056554181 .000 

4 -.0033063333
*
 .00056554181 .000 

3 2 -.0094841708
*
 .00056554181 .000 

4 -.0127905042
*
 .00056554181 .000 

4 2 .0033063333
*
 .00056554181 .000 

3 .0127905042
*
 .00056554181 .000 

Table 41. LSD Post hoc test results for number of cell states.  Post hoc performed as part of ANOVA for f4 

with results from sets 1A and 2. 

Dependent Variable:   Fitness Value   

(I) Number of CA Iterations (J) Number of CA Iterations Mean Difference 

(I-J) 

Std. Error Sig. 

1 5 -.0486055444
*
 .00065303144 .000 

10 -.0330330889
*
 .00065303144 .000 

25 -.0204494167
*
 .00065303144 .000 

5 1 .0486055444
*
 .00065303144 .000 

10 .0155724556
*
 .00065303144 .000 

25 .0281561278
*
 .00065303144 .000 

10 1 .0330330889
*
 .00065303144 .000 

5 -.0155724556
*
 .00065303144 .000 

25 .0125836722
*
 .00065303144 .000 

25 1 .0204494167
*
 .00065303144 .000 

5 -.0281561278
*
 .00065303144 .000 

10 -.0125836722
*
 .00065303144 .000 

Table 42. LSD Post hoc test results for number of CA iterations.  Post hoc performed as part of ANOVA for f4 

with results from sets 1A and 2. 
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The third ANOVA that was performed for f4 was to examine the impact that changes in the 

neighbourhood radius, number of cell states, and number of CA iterations had on the fitness 

values, as stated in ANOVA Test 3.  To do this, data from sets 2 and 3 were used, where each 

set contained 12 experiments that were each run 30 times giving a total number of 720 data 

points to be used in the analysis.  Table 43 shows the results from a three-way between-

subjects ANOVA test with two levels of neighbourhood radius, three levels of cell states, and 

four levels of CA iterations.  All effects were statistically significant with a p-value of less 

than 0.05.  The interaction effect between the three independent variables is, (F (6, 696) = 

23.243, p < 0.05, Partial Eta Squared = 0.167). 

Dependent Variable:   Fitness Value    

Source Type III Sum of 

Squares 

df Mean Square F Sig. Partial Eta 

Squared 

Corrected Model .627
a
 23 .027 665.021 .000 .956

a
 

Intercept 586.963 1 586.963 14322048.832 .000 1.000 

CellStates .015 2 .007 182.458 .000 .344 

CAIterations .540 3 .180 4395.153 .000 .950 

NeighbourhoodRadius .000 1 .000 6.372 .012 .009 

CellStates * 

CAIterations 

.005 6 .001 22.049 .000 .160 

CellStates * 

NeighbourhoodRadius 

.008 2 .004 92.433 .000 .210 

CAIterations * 

NeighbourhoodRadius 

.053 3 .018 427.373 .000 .648 

CellStates * 

CAIterations * 

NeighbourhoodRadius 

.006 6 .001 23.243 .000 .167 

Error .029 696 4.098E-005    

Total 587.619 720     

Corrected Total .655 719     

Table 43. ANOVA Test for the fitness values achieved by the experiments in set 2 and 3. 

Again, the number of cell states and the number of CA iterations had a significant effect on 

the fitness values.  Therefore two post hoc tests were performed to see where the significant 

interactions were between pairs of cell states, and pairs of CA iterations.  No post hoc test is 



 
110 

performed on the neighbourhood radius as it had only two levels.  Table 44 shows the results 

from the post hoc test performed on the number of cell states, and Table 45 show the results 

of the post hoc test performed on the number of CA iterations.  As can be seen in Table 44, 

the p-value is less than 0.05 for all interactions, which means the effects of using any number 

of cell states is significantly different to the effects when using any other number of cell 

states.  Table 45 shows that there is no significant effect on the fitness value when changing 

between 10 and 25 CA iterations, but there is a significant effect between all other CA 

iterations due to a p-value that is below 0.05. 

Dependent Variable:   Fitness Value   

(I) Number of Cell States (J) Number of Cell States Mean Difference 

(I-J) 

Std. Error Sig. 

2 3 .0029772417
*
 .00058440271 .000 

4 .0108065333
*
 .00058440271 .000 

3 2 -.0029772417
*
 .00058440271 .000 

4 .0078292917
*
 .00058440271 .000 

4 2 -.0108065333
*
 .00058440271 .000 

3 -.0078292917
*
 .00058440271 .000 

Table 44. LSD Post hoc test results for number of cell states.  Post hoc performed as part of ANOVA for f4 

with results from sets 2 and 3. 
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Dependent Variable:   Fitness Value   

(I) Number of CA Iterations (J) Number of CA Iterations Mean Difference 

(I-J) 

Std. Error Sig. 

1 5 -.0658677111
*
 .00067481012 .000 

10 -.0623449611
*
 .00067481012 .000 

25 -.0612188944
*
 .00067481012 .000 

5 1 .0658677111
*
 .00067481012 .000 

10 .0035227500
*
 .00067481012 .000 

25 .0046488167
*
 .00067481012 .000 

10 1 .0623449611
*
 .00067481012 .000 

5 -.0035227500
*
 .00067481012 .000 

25 .0011260667 .00067481012 .096 

25 1 .0612188944
*
 .00067481012 .000 

5 -.0046488167
*
 .00067481012 .000 

10 -.0011260667 .00067481012 .096 

Table 45. LSD Post hoc test results for number of CA iterations.  Post hoc performed as part of ANOVA for f4 

with results from sets 2 and 3. 

From the results of the three ANOVA tests described in this section, this research concludes 

that each of the five factors, associated with the GA and CA, significantly affect the fitness 

values achieved in the GA process where f4 is the objective function.  However, when using 

the direct representation there was no significant difference when using 2 cell states 

compared to using 4 cell states, which means using 3 cell states had the most significant 

effect on the fitness values.  Also, when using the indirect representation, there was no 

significant difference when using 10 CA iterations compared to using 25 CA iterations, 

which means that the majority of the variance of effect on the fitness values occurs between 

1, 5, and 10 CA iterations. 

When looking at the layouts during the visual comparison, it was discovered that 

chromosomes of the indirect representation that were evolved using 10 and 25 CA iterations 

generally produced layouts that were more visually similar to the goal layout than 

chromosomes evolved using less CA iterations.  Comparing this observation to the analysis in 
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this section suggests that the fitness values achieved by the GA process peaked when using 

ten or more CA iterations with the indirect chromosome representation. 

Analysis of Fitness Function 5  

The first ANOVA that was performed for f5 was to examine the impact that changes in the 

mutation rate, number of cell states, and number of CA iterations had on the fitness values, as 

stated in ANOVA Test 1.  To do this, data from sets 1A and 1B were used, where each set 

contained 12 experiments that were each run 30 times giving a total number of 720 data 

points to be used in the analysis.  Table 46 shows the results from a three-way between-

subjects ANOVA test with two levels of mutation rate, three levels of cell states, and four 

levels of CA iterations.  All effects were statistically significant.  The interaction effect 

between the three factors is, (F (6, 696) = 147.295, p < 0.05, Partial Eta Squared = 0.559). 

Dependent Variable:   Fitness Value  

Source Type III Sum of 

Squares 

df Mean Square F Sig. Partial Eta 

Squared 

Corrected Model .502
a
 23 .022 354.188 .000 .921

a
 

Intercept 537.387 1 537.387 8722379.695 .000 1.000 

MutationRate .047 2 .024 384.632 .000 .525 

CellStates .120 3 .040 647.827 .000 .736 

CAIterations .054 1 .054 873.608 .000 .557 

MutationRate * 

CellStates 

.058 6 .010 156.205 .000 .574 

MutationRate * 

CAIterations 

.043 2 .021 345.105 .000 .498 

CellStates * 

CAIterations 

.126 3 .042 682.919 .000 .746 

MutationRate * 

CellStates * 

CAIterations 

.054 6 .009 147.295 .000 .559 

Error .043 696 6.161E-005    

Total 537.932 720     

Corrected Total .545 719     

Table 46. ANOVA Test for the fitness values achieved by the experiments in set 1A and 1B. 
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As the number of cell states and the number of CA iterations had a significant effect on the 

fitness values, two post hoc tests were performed to see where the significant interactions 

were between pairs of cell states, and pairs of CA iterations.  No post hoc test is performed on 

the mutation rate as it had only two levels, and therefore the significant interaction is between 

those two levels.  To determine where the significant interactions lie, the LSD post hoc test is 

performed.  Table 47 shows the results from the post hoc test performed on the number of 

cell states, and Table 48 show the results of the post hoc test performed on the number of CA 

iterations.  As can be seen in Table 47, the p-value is less than 0.05 for all effects, meaning 

the effect of using any number of cell states is significantly different to the effect of using any 

other number cell states.  The results displayed in Table 48 show that the effects of using any 

number of CA Iterations is significantly different to the effect of using any other number of 

CA iterations due to a p-value that is below 0.05. 

Dependent Variable:   Fitness Value   

(I) Number of Cell States (J) Number of Cell States Mean Difference 

(I-J) 

Std. Error Sig. 

2 3 .0139188083
*
 .00071653191 .000 

4 -.0053253667
*
 .00071653191 .000 

3 2 -.0139188083
*
 .00071653191 .000 

4 -.0192441750
*
 .00071653191 .000 

4 2 .0053253667
*
 .00071653191 .000 

3 .0192441750
*
 .00071653191 .000 

Table 47. LSD Post hoc test results for number of cell states.  Post hoc performed as part of ANOVA for f5 

with results from sets 1A and 1B. 
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Dependent Variable:   Fitness Value   

(I) Number of CA Iterations (J) Number of CA Iterations Mean Difference 

(I-J) 

Std. Error Sig. 

1 5 .0132579833
*
 .00082737978 .000 

10 .0250551278
*
 .00082737978 .000 

25 .0344036389
*
 .00082737978 .000 

5 1 -.0132579833
*
 .00082737978 .000 

10 .0117971444
*
 .00082737978 .000 

25 .0211456556
*
 .00082737978 .000 

10 1 -.0250551278
*
 .00082737978 .000 

5 -.0117971444
*
 .00082737978 .000 

25 .0093485111
*
 .00082737978 .000 

25 1 -.0344036389
*
 .00082737978 .000 

5 -.0211456556
*
 .00082737978 .000 

10 -.0093485111
*
 .00082737978 .000 

Table 48. LSD Post hoc test results for number of CA iterations.  Post hoc performed as part of ANOVA for f5 

with results from sets 1A and 1B. 

The second ANOVA that was performed for f5 was to examine the impact that changes in the 

chromosome representation, number of cell states, and number of CA iterations had on the 

fitness values, as stated in ANOVA Test 2.  To do this, data from sets 1A and 2 were used, 

where each set contained 12 experiments that were each run 30 times giving a total number of 

720 data points to be used in the analysis.  Table 49 shows the results from a three-way 

between-subjects ANOVA test with two levels of chromosome representation, three levels of 

cell states, and four levels of CA iterations.  Due to a p-value greater than 0.05, using 

different numbers of cell states did not have a significant impact on the fitness values.  All 

other effects were statistically significant.  The interaction effect between the three 

independent variables is, (F (6, 696) = 115.700, p < 0.05, Partial Eta Squared = 0.499). 
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Dependent Variable:   Fitness Value    

Source Type III Sum of 

Squares 

df Mean Square F Sig. Partial Eta 

Squared 

Corrected Model .451
a
 23 .020 194.825 .000 .866

a
 

Intercept 547.254 1 547.254 5436125.430 .000 1.000 

CellStates .000 2 .000 1.146 .319 .003 

CAIterations .172 3 .057 568.023 .000 .710 

Representation .000 1 .000 4.034 .045 .006 

CellStates * 

CAIterations 

.038 6 .006 62.768 .000 .351 

CellStates * 

Representation 

.053 2 .027 265.271 .000 .433 

CAIterations * 

Representation 

.118 3 .039 389.742 .000 .627 

CellStates * 

CAIterations * 

Representation 

.070 6 .012 115.700 .000 .499 

Error .070 696 .000    

Total 547.775 720     

Corrected Total .521 719     

Table 49. ANOVA Test for the fitness values achieved by the experiments in set 1A and 2. 

In this case only the number of CA iterations had a significant effect on the fitness values.  

Therefore one post hoc test was performed to see where the significant interactions were 

between pairs of CA iterations.  No post hoc test is performed on the chromosome 

representation as it had only two levels.  Table 50 show the results of the post hoc test 

performed on the number of CA iterations, and as can be seen the p-value is less than 0.05 for 

all interactions, which means the effect of using any number of CA iterations is significantly 

different to the effect when using any other number of CA iterations. 
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Dependent Variable:   Fitness Value   

(I) Number of CA Iterations (J) Number of CA Iterations Mean Difference 

(I-J) 

Std. Error Sig. 

1 5 -.0421533667
*
 .00105761708 .000 

10 -.0270906833
*
 .00105761708 .000 

25 -.0157345333
*
 .00105761708 .000 

5 1 .0421533667
*
 .00105761708 .000 

10 .0150626833
*
 .00105761708 .000 

25 .0264188333
*
 .00105761708 .000 

10 1 .0270906833
*
 .00105761708 .000 

5 -.0150626833
*
 .00105761708 .000 

25 .0113561500
*
 .00105761708 .000 

25 1 .0157345333
*
 .00105761708 .000 

5 -.0264188333
*
 .00105761708 .000 

10 -.0113561500
*
 .00105761708 .000 

Table 50. LSD Post hoc test results for number of CA iterations.  Post hoc performed as part of ANOVA for f5 

with results from sets 1A and 2. 

The third ANOVA that was performed for f5 was to examine the impact that changes in the 

neighbourhood radius, number of cell states, and number of CA iterations had on the fitness 

values, as stated in ANOVA Test 3.  To do this, data from sets 2 and 3 were used, where each 

set contained 12 experiments that were each run 30 times giving a total number of 720 data 

points to be used in the analysis.  Table 51 shows the results from a three-way between-

subjects ANOVA test with two levels of neighbourhood radius, three levels of cell states, and 

four levels of CA iterations.  All effects were statistically significant with a p-value of less 

than 0.05.  The interaction effect between the three independent variables is, (F (6, 696) = 

11.652, p < 0.05, Partial Eta Squared = 0.091). 
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Dependent Variable:   Fitness Value    

Source Type III Sum of 

Squares 

df Mean Square F Sig. Partial Eta 

Squared 

Corrected Model .364
a
 23 .016 129.690 .000 .811

a
 

Intercept 539.001 1 539.001 4417756.246 .000 1.000 

CellStates .052 2 .026 211.390 .000 .378 

CAIterations .230 3 .077 627.092 .000 .730 

NeighbourhoodRadius .025 1 .025 201.799 .000 .225 

CellStates * 

CAIterations 

.013 6 .002 17.208 .000 .129 

CellStates * 

NeighbourhoodRadius 

.007 2 .004 29.576 .000 .078 

CAIterations * 

NeighbourhoodRadius 

.030 3 .010 81.572 .000 .260 

CellStates * 

CAIterations * 

NeighbourhoodRadius 

.009 6 .001 11.652 .000 .091 

Error .085 696 .000    

Total 539.450 720     

Corrected Total .449 719     

Table 51. ANOVA Test for the fitness values achieved by the experiments in set 2 and 3. 

Again, the number of cell states and the number of CA iterations had a significant effect on 

the fitness values.  Therefore two post hoc tests were performed to see where the significant 

interactions were between pairs of cell states, and pairs of CA iterations.  No post hoc test is 

performed on the neighbourhood radius as it had only two levels.  Table 52 shows the results 

from the post hoc test performed on the number of cell states, and Table 53 show the results 

of the post hoc test performed on the number of CA iterations.  As can be seen in Table 52, 

the p-value is less than 0.05 for all interactions, which means the effects of using any number 

of cell states is significantly different to the effects when using any other number of cell 

states.  Table 53 shows that there is no significant effect on the fitness value when changing 

between 10 and 25 CA iterations, but there is a significant effect between all other CA 

iterations due to a p-value that is below 0.05. 
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Dependent Variable:   Fitness Value   

(I) Number of Cell States (J) Number of Cell States Mean Difference 

(I-J) 

Std. Error Sig. 

2 3 .0109186792
*
 .00100833145 .000 

4 .0207229583
*
 .00100833145 .000 

3 2 -.0109186792
*
 .00100833145 .000 

4 .0098042792
*
 .00100833145 .000 

4 2 -.0207229583
*
 .00100833145 .000 

3 -.0098042792
*
 .00100833145 .000 

Table 52. LSD Post hoc test results for number of cell states.  Post hoc performed as part of ANOVA for f5 

with results from sets 2 and 3. 

Dependent Variable:   Fitness Value   

(I) Number of CA Iterations (J) Number of CA Iterations Mean Difference 

(I-J) 

Std. Error Sig. 

1 5 -.0456001000
*
 .00116432087 .000 

10 -.0384362556
*
 .00116432087 .000 

25 -.0378433833
*
 .00116432087 .000 

5 1 .0456001000
*
 .00116432087 .000 

10 .0071638444
*
 .00116432087 .000 

25 .0077567167
*
 .00116432087 .000 

10 1 .0384362556
*
 .00116432087 .000 

5 -.0071638444
*
 .00116432087 .000 

25 .0005928722 .00116432087 .611 

25 1 .0378433833
*
 .00116432087 .000 

5 -.0077567167
*
 .00116432087 .000 

10 -.0005928722 .00116432087 .611 

Table 53. LSD Post hoc test results for number of CA iterations.  Post hoc performed as part of ANOVA for f5 

with results from sets 2 and 3. 
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From the results of the three ANOVA tests described in this section, this research concludes 

that each of the five factors, associated with the GA and CA, significantly affect the fitness 

values achieved in the GA process where f5 is the objective function.  However, when 

analysing the results from sets 1A and 2, there was no significant difference when different 

numbers of cell states.  Also, when using the indirect representation, there was no significant 

difference when using 10 CA iterations compared to using 25 CA iterations, a discovery that 

was also made when analysing results from f4. 

When looking at the layouts during the visual comparison, it was discovered that 

chromosomes of the indirect representation that were evolved using 5 CA iterations generally 

produced layouts that were more visually similar to the goal layout than chromosomes 

evolved using other numbers CA iterations.  Comparing this observation to the analysis in 

this section suggests that the fitness values achieved by the GA process peaked when using 5 

CA iterations and then levelled out over 10 and 25 iterations. 

4.4 Summary 

This chapter viewed the results achieved through the proposed approach starting with a visual 

analysis of the layouts produced using this approach, followed by analysis of variance tests 

which details the factors associated with GA and CA which had a significant impact on the 

results.  The visual analysis was performed by comparing generated level layouts to their goal 

layout against a set of criteria.  The majority of these results demonstrated that the chosen 

chromosome representation had a big impact on the appearance of the generated layouts, with 

the indirect representation producing neater and more structured layouts than the direct 

representation.  This comparison also demonstrated that layouts which are assigned high 

ASM values have a stronger visual similarity to their goal layout. 

The analysis of variance tests showed that the five factors, associated with GA and CA, 

which were varied in the experiments that were conducted in this research all had a 

significant effect on the fitness values achieved by the GA process.  However, there were also 

significant interaction effects between these factors, which mean varying one factor may only 

have a significant effect on the fitness values when the other factors were set to specific 

values.  The results attained from this study show promise for future research.  Possible 

future research directions based on these results are discussed in the next chapter.  
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Chapter 5. Conclusion and Future Work 

Content creation is an important process in the development of video games, but also one of 

the most time consuming, which is causing game development companies to spend a large 

portion of their annual revenue on developers who manually create the content.  PCG is the 

process of algorithmically generating media content which can be used in video games.  This 

is a useful tool to game developers as the process of PCG is much faster than the manual 

creation of content, reducing development time, and decreasing development costs. 

A new approach to the procedural generation of maze-like game level layouts through the use 

of evolved cellular automata has been introduced in this thesis.  The approach uses a genetic 

algorithm to evolve CA rules which, when applied to a perfect maze configuration, produce 

level layouts with desired maze-like properties.  Most other PCG methods that use evolution 

employ the evolution to generate the level layout directly.  Such approaches are limited as the 

evolutionary process can be slow.  In contrast CAs are fast and simple, so that once rules for 

generating a desired level style are evolved, many instances of that style can be produced in a 

short space of time, as was demonstrated in section 4.3.1 where rule tables with high fitness 

were selected to produce a number of similar layouts.  This makes CA ideal for run time 

content generation, as was used in Johnson et al.’s (2010) approach.  However, unlike 

Johnson’s approach which generated cave-like levels using simple, manually designed CA 

rules, the approach presented in this study uses a GA to automatically find CA rules that are 

capable of generating level layouts with a number of different styles. 

The results achieved from this research demonstrated that CA are capable of generating game 

level layouts with desired maze-like properties.  These results were attained by running a 

series of experiments, which varied the chromosome representation, GA mutation rate, and 

various CA properties, with eight different objective functions.  The CA properties that were 

varied include the number of cell states, the number of CA iterations, and the radius of the 

CA’s neighbourhood.  During this research it was discovered that the chromosome 

representation had the largest affect on the visual appearance of the generated level layouts, 

while all of the varied factors had a significant effect on the fitness values achieved by the 

GA process. 

The approach developed during this study answered the primary research question, “How can 

rule sets for cellular automata be evolved so as to produce maze-like game level layouts?” 

with the contributions that are summarized below. 
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1) Two chromosome representations for cellular automata rule sets were explored to 

experiment with different CA parameters including number of CA iterations, number 

of cell states, and size of the neighbourhood radius.  This exploration was performed 

to examine how these parameters affected the generated level layouts.  It was 

discovered that all of these parameters had an effect on the visual appearance of the 

generated layouts, although the chromosome representation had the greatest impact.

  

 

2) The level layouts used in this approach were made up of cells that could be in one of 

two states, traversable or non-traversable.  This meant that the number of CA cell 

states could only be two.  To explore using more than two cell states the idea of 

“flavours” was used.  The principle of this idea divides a single cell state into a set of 

sub states for the purpose of rule set application.  This allowed the use of additional 

cell states where each additional state mapped to one of the two original states, 

traversable or non-traversable.  

 

3) In order to evolve the CA rule sets towards producing layouts with desired attributes, 

attributes from generated layouts had to be extracted for the purpose of evaluation.  

Due to a lack of literature in this area, a unique approach was developed to extract 

particular attributes from generated 2D level layouts, using a collection of image 

analysis techniques.  

 

4) Another important aspect of CA that can greatly impact the results that it produces is 

its initial configuration.  This research used a modified graph traversal algorithm to 

generate a collection of perfect mazes, which were used as initial configurations, and 

fed as input into the CA process.  This effectively combined cellular automata, a 

genetic algorithm, and maze generation into a method capable of developing CA rules 

with the ability to produce maze-like game level layouts with desired properties. 

Due to the time constraints that were imposed on this project, its scope was limited to using a 

weighted aggregation of level attributes in the fitness functions and two chromosome 

representations.  There are some key avenues open for future work that build on the concepts 

introduced in this study.  These are given below. 
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1) The fitness functions used in this research evaluated chromosomes by applying them 

to initial configurations to generate a collection of level layouts.  Each layout 

contributed to the chromosomes fitness based on a weighted aggregation of the 

layouts attributes and their similarity to the desired values, which were determined by 

the fitness function.  However, the level attributes that were evaluated can interact 

with one another, and therefore there may be other options to evaluating these 

attributes than a weighted aggregation, such as a multi-objective evaluation using 

Pareto fronts.  

 

2) During this research it was discovered that the chromosome representation had the 

largest effect on visual appearance of the generated level layouts, as the indirect 

representation produced neater and more structured layouts than the direct 

representation.  Therefore experimentation with other chromosome representations 

that use different encoding schemes, or allow exploration of other CA parameters, 

could be performed to further research in this area. 

To conclude, this research aimed to contribute to the increasing need of PCG techniques by 

developing an approach to generating game level layouts with maze-like properties through 

combining GA, CA, and maze generation techniques.  This research proved that it is possible 

to use genetic algorithms to evolve cellular automata rules that are capable of generating 

maze-like game level layouts when applied to an initial configuration in the form of a perfect 

maze.  
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