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ABSTRACT 

There have been a number of studies that have examined the Eucalyptus spp. for their 

salt and waterlogging tolerance, but they have done so using conventional methods. A 

wide range of plants are known to produce greater amounts of pro line when stressed, be 

it salt, temperature, drought or several other types if stress. This study looked at 

production of proline in salt stressed eucalypts to determine whether it can be used to 

differentiate between individuals and species. A range of Eucalyptus species and salt 

tolerant clones of E. camaldulensis were grown to investigate their proline response to 

salt stress. 

In tissue culture, shoots of three clones of E. camaldulensis, two salt tolerant (C066 and 

C502) and one salt sensitive (C919), were grown on salt media. Proline was measured 

weekly over four weeks and at week four there was a significant increase in proline 

levels for the salt tolerant clones, but not for the salt sensitive. Clone C919 had between 

3.2 ± 0.4 (control media) and 2.3 ± 0.3 (100 mM NaCl media) µmol pro g-1fwt, clone 

C502 had between 1.4 ± 0.2 and 4.6 ± 0.4 µmol pro g-1fwt and clone C066 had between 

2.0 ± 0.4 and 4.3 ± 0.5 µmol pro g-1fwt. In addition, for the salt tolerant clones, proline 

levels increased the longer the shoots remained on salt medium. It was not possible to 

differentiate between the salt tolerant clones on the basis of proline concentration. The 

role of ABA in eliciting proline production was investigated by its addition to media, 

causing increased proline production for all clones. 

In glasshouse trials, both clones and seedlings from different species were examined. 

For genotypically different species, it was found that proline responses differed both 

within species and between species. Seedlings of the species E. camaldulensis 

consistently produced significantly higher levels of pro line when salt stressed, as did a 

salt tolerant clone of this species, while other species returned variable results. A trial 

investigating the effect of salt on proline production using clones in hydroponic culture 

produced expected results, with salt tolerant clones producing significantly more proline 

when stressed (C066 - 4.6 ± 1.0 µmol pro g-1fwt (control), 14.1 ± 1.7 µmol pro g-1fwt 

200 mM NaCl; C502 - 1.1 ± 0.2 µmol pro g-1fwt, 5.3 ± 1.0 µmol pro g-1fwt). Salt 

sensitive clones did not show a significant increase (C903 - 2.8 ± 0.3 µmol pro g-1fwt, 

3.6 ± 0.6 µmol pro g-1fwt; C919 - 10.9 ± 3.6 µmol pro g-1fwt, 14.2 ± 2.5 µmol pro g-

1fwt). It was found that some species accumulated more proline in roots than in shoots 
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(E. camaldulensis, E. rudis), but this was not consistent across trials. Differences 

between species were to be expected as there is known to be a wide range of intra

specific variation between Eucalyptus species. 

A number of significant outcomes were achieved in this study: Clones previously 

identified as being salt tolerant using conventional methods produced significantly more 

proline when salt stressed. Proline can be used to differentiate between individuals 

when salt stressed, but not from background levels. Proline should not be used to 

differentiate or "rank" species, as there is too much variation within species. 
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CHAPTER 1 - INTRODUCTION 

Seventy percent of salt affected land in Australia occurs in Western Australia, and it has 

been estimated that this could double in the next 15 - 25 years (Salinity, 1996). These 

figures indicate a substantial increase in the amount of land becoming unusable due to 

salinity. A more recent report (Frost et al, 2001) into salinity gives current and 

estimated figures about the assets at risk through increasing salinity in Western 

Australia (Table 1.1). In addition to the major economic and social costs of reduced 

agriculture, this increasing salinity also threatens drinking water, biological diversity 

and infrastructure. 

Tab le 1.1. Assets at risk from dry land salinity in Western Australia 

Assets 2000 2050 

Agricultural land (ha) 3,600,000 6,500,000 

Perennial vegetation (ha) 600,000 1,800,000 

Important wetlands (ha) 72,000 80,000 

Highways (km) 720 1,500 

Primary roads (km) 680 1,200 

Secondary roads (km) 1,200 2,300 

Minor roads (km) 12,000 23,000 

Rail (km) 1,400 2,200 

Stream length (km) 1,500 2,800 

Towns (number) 20 29 

Important wetlands 21 21 

(number) 

* Predictions based on groundwater trends and 'best guess' future land use. 

From: (Frost et al, 2001) 

The increase in dryland salinity is primarily due to replacement of deep rooted perennial 

native vegetation with annual crops (Wood, 1924; Mulcahy, 1978; Salinity, 1996; Frost 

et al, 2001). These crops do not consume as much of the rainfall and incoming water as 

native trees, and it subsequently becomes groundwater. As the water table rises it brings 

with it accumulated salts from below the soil surface. These salts are present because 

the Australian continent was under the ocean a long time ago, and more recently, 
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because of prevailing winds carrying spray from the ocean, and dust, onshore. These 

small amounts have accumulated over many thousands of years, and today there is 

between 100 and 10 000 tonnes of salt beneath each hectare of land in southwest 

Western Australia (Frost et al, 2001). The best way to halt, if not reverse this, is to 

replace native vegetation in conjunction with more appropriate land management 

strategies. There are two categories of methods that can be used to reduce salinity, 

mechanical/physical and biological. 

Mechanical methods used to control or reduce the amount of land salinisation include 

shallow drainage and pumping. Shallow drainage for surface water management is 

being used throughout agricultural regions of Western Australia, as it is cheaper to 

prevent rainwater reaching the groundwater than to extract it from the groundwater 

(Mcfarlane and Cox, 1990; Frost et al, 2001). As well as reducing long-term salinity, 

this approach can also reduce water logging. Furthermore, if waters leaving an area are 

mainly surface waters, they are less likely to salinise water resources and other assets 

downstream. However, there is evidence that shallow drainage can cause an increase in 

salinity (Mcfarlane et al, 1990). 

The use of deep drainage in valleys is being increasingly used by farmers to protect or 

reclaim areas. However, there are differing views about the effectiveness and likely 

causes of observed effects, and concerns about the downstream impacts of saline 

discharge waters from deep drains (Frost et al, 2001). 

In cases where assets (such as towns or environmental areas) downstream will be 

affected by water being directed at them, pumping is probably the only strategy 

available with the technical capacity to protect the asset (Campbell et al, 2000). 

Pumping can be effective in locations where it is possible to access water from a 

paleochannel. These are permeable zones from which groundwater can be extracted 

more readily than elsewhere. 

One example where pumping is used is at Lake Toolibin, one of the last remaining fresh 

water lakes in the wheat-belt of Western Australia. This lake provides an important 

habitat for native flora and fauna, and is under threat from both salinity and 

waterlogging (Froend et al, 1987). There is also a paleochannel at this location which is 
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being pumped in an attempt to reduce the effects of excess groundwater (Frost et al, 

2001). 

Biological methods involve planting salt tolerant woody plants, herbaceous plants or 

grasses. The woody plants include such genera as Eucalyptus and Casuarina (van der 

Moezel et al, 1988; van der Moezel et al, 1991). Other plants include Atriplex spp. 

(saltbush) (Casas et al, 1991) and Frankenia spp. (Bennett et al, 1998), while grasses 

include the halophytic species Distichlis spicata (Daines & Gould, 1985). 

Water recharge needs to be reduced in high salinity areas if the current increase in 

salinity is to be reduced. Strategically placed trees will not only use rainwater, but will 

also use stored water deposits. Locations at which water enters the water table are 

termed recharge zones, and discharge zones are where water leaves the ground. Planting 

trees in discharge zones has been shown to be less effective in reducing the salinity 

problem than planting trees on recharge zones (Marshall et al, 1997). Recharge planting 

reduces the amount of water going into the water table, thus reducing excess water in 

discharge areas. Revegetation of recharge areas is easier than discharge because 

discharge zones are often waterlogged and very saline (Akilan et al, 1997). The amount 

of land needed to be reafforested to restore balance in the water table will vary, and is 

dependent upon annual rainfall (Schofield and Ruprecht, 1989). 

Eucalypt species are those most commonly found in the areas that have been cleared 

(Froend et al, 1987), and therefore it is reasonable that these be used for revegetation. 

Several species of eucalypts are being increasingly used to rehabilitate salt affected land 

in Australia and overseas (Sands, 1981; Bell et al, 1993; Marcar, 1993; Chen et al, 

1998). There is also an increasing importance being placed on biodiversity, which can 

be partly addressed by revegetating with regionally endemic species. As much of the 

land now requiring revegetation is salt affected, any eucalypt species intended for such 

use must have some degree of salt tolerance. 

There have been several studies conducted to investigate and identify species of 

Eucalyptus, and individuals within a species, that are salt tolerant (Blake, 1981; Sands, 

1981; van der Moezel, & Bell, 1987; van der Moezel et al, 1988; van der Moezel et al, 

1991; Marcar & Termaat, 1990; Marcar, 1993). While most of these reports suggest that 

one species of eucalypt is the most salt tolerant (Fox et al, 1990; Sun & Dickinson, 
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1993), another may state that a different species is the most tolerant (Pepper & Craig, 

1986). It has long been recognised that there is considerable genetic variation within a 

species and this probably accounts for the differences that occur in ranking of species 

for tolerance (van der Moezel & Bell, 1987; Bell, 1999). 

Of considerable use for the process of identifying salt tolerant species or individuals 

would be a screening technique that could identify a seedling as salt tolerant, without 

having to grow it under saline conditions in a glasshouse or field trial. This could be 

done by looking at the levels of chemical indicators that accumulate in greater 

concentrations in plants exposed to salt. Such indicators could be a plant growth 

substance such as abscisic acid (ABA), or the amino acid proline, or the sugar alcohol, 

mannitol. 

Plants that are water or salt stressed produce proline. This stress is due to an increase in 

the plants' water potential relative to that of the soil. To lower its water potential, thus 

enabling it to increase its water uptake, proline is produced in greater quantities in some 

stressed plants. This imino acid is not toxic to the cell, and can be present in large 

amounts without affecting cell metabolism (Stoop et al, 1996). Abscisic acid (ABA) is 

likely to be the chemical messenger (hormone) responsible for triggering this increase in 

proline production (Downton & Loveys, 1981; Cachorro et al, 1995). It also has the 

effect of causing the stomata to close, reducing water loss through transpiration, which 

also aids in lowering water potential (Creelman, 1989; Davies et al, 1993). 

By growing seedlings under stressed conditions and measuring the levels of these 

chemicals, salt tolerant plants might be identified. 

1.2 THE EFFECTS OF SALT STRESS ON PLANTS 

Plants take up essential and non-essential ions through the roots. If an imbalance in this 

supply of ions occurs, the plant may not be able to take up the nutrients it requires 

(Levitt, 1980; Fitter & Hay, 1990). Either root malfunction due to ion toxicity, or 

competition between ions can cause this imbalance to occur. Essential ions may become 

toxic or cause damage to membranes as a result of salt toxicity. Soluble enzymes show 
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sensitivities to electrolytes and reduced plant growth may result if a plant takes up 

excess ions (Greenaway & Munns, 1980). Where plants are dependent upon symbionts 

for essential nutrient supply, reduction in the activity of these organisms may lead to a 

reduced supply of essential nutrients, such as phosphorus and nitrogen (Fitter & Hay, 

1990). 

Plants growing on soils containing excess levels of ions also face water availability 

problems. Acquisition of water is affected due to the low water potential in soil 

containing a high concentration of electrolytes. The resultant osmotic imbalance means 

that the plant is no longer able to take up water through the roots. The high ionic level in 

the soil can also reduce nutrient uptake through ion competition. All of these factors in 

combination lead to the inhibition of cell division, a decrease in root growth, and if 

severe enough, death of the plant. 

One of the problems in dealing with salt stress is in separating the effects of water 

deficit and excess solutes; one basically causes the other. That is, a reduction in the soil 

water reduces the amount of water available to the plant, or an increase in the amount of 

solutes in the soil effectively leads to a decrease in available water, as it lowers soil 

water potential (becomes more negative). There have been attempts to separate these 

two intertwined variables by using compounds such as polyethylene glycol (PEG) to 

simulate water stress (Shalhevet, 1993). While the use of such compounds may help in 

examining one part of the problem, that of a lower water potential, it does not help with 

assessing the effects of ion toxicity. It is nearly impossible to separate the effects of the 

two, and also questionable to do so, as the plant is unlikely to be exposed to one and not 

the other in the field. 

Salts of various forms, including chlorides, carbohydrates and sulfates of sodium, 

calcium, magnesium and potassium affect plants in different ways. The predominant 

salt causing soil salinity is sodium chloride (NaCl). An investigation into barley 

seedlings (Hordeum vulgare) by Peuke & Jeschke (1999) found that nitrate uptake was 

affected by the osmotic action of salts, rather than ion toxicity. Marcar and Termaat 

(1990) examined the effects of different combinations of salts on eucalypts and 

concluded that while specific er ions in isolation do have a negative effect on growth, 

this was not the case when Na+ ions were present. Also, treatment with concentrated 

macronutrient solution resulted in similar growth reductions to that of NaCl. A study by 
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Kinraide (1999) into wheat seedlings (Triticum aestivum) found similar results, stating 

that the Ca2+ displacement hypothesis (Zidan et al, 1991) was correct but of minor 

importance. Further, Kinraide (1999) also stated that the K+ depletion and er toxicity 

hypotheses (Marschner, 1995; Niu et al, 1995) were false. 

One of the more specific toxicity effects of excess NaCl salts on plants, as well as for all 

organisms in general, is that of supercoiling of the DNA helix. In order for the processes 

of transcription and replication to occur, some part or the entire DNA strand must 

uncoil. This is to allow for RNA to carry out the process of transcription, and for 

doubling of genetic material during the process of mitosis. It has been found that high 

levels of NaCl prevents this destabilisation or unwinding (Rybenkov et al, 1997; Yagil 

et al, 1998), and thus prohibits the cell from being able to produce proteins and other 

compounds, or from being able to replicate. 

It has been found that elevated levels of both magnesium and sodium salts in solution 

can cause the DNA helix to become supercoiled (Gebe et al, 1996; Rybenkov et al, 

1997). The supercoiling is though to be a result of the neutralisation of the electrostatic 

repulsion between connected DNA segments, resulting in a tightening of the helix (Xu 

& Bremer, 1997). Whilst MgClz has a more significant effect on the degree to which the 

supercoiling occurs, NaCl still has a significant effect (Xu & Bremer, 1997). In addition 

to shielding negatively charged DNA to a greater degree than does NaCl, MgClz has 

been found to create an attraction between DNA segments (Shaw & Wang, 1993). 

Another effect of increased NaCl in the cell is that the melting point of the DNA helix is 

increased (Bowater et al, 1994; Kumar, 1998). The significance of this is that a higher 

temperature is then required if the DNA helix is to melt to allow for normal cell 

processes. An increase in temperature is not an environmental variable that plants have 

control over, and thus an increase in salt will have a significant effect of the plants 

normal functioning. 

1.2.1 Categories of salt tolerance 

It is possible to separate species by their tolerance to salt; euhalophytes (physiologically 

specialised, eg Sa/icornia spp.), miohalophytes (relatively high tolerances eg barley) 

and glycophytes (low tolerances, eg rice). 
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Halophytes 

In order to grow in a saline environment, a plant must be able to take up water and 

reduce the toxic effects of high Na+ and er ions. Plants that are able to survive in 

environments containing high concentrations of electrolytes are termed halophytes, with 

some of these plants requiring some degree of salinity for optimum growth (Flowers et 

al, 1977; Malcolm, 1993). These plants have an optimal external salt requirement of 

between 20 - 500 mM concentration (usually between 100 -200), and a lethal salt 

concentration at usually greater than 300 mM (Flowers et al, 1977). The halophytic 

grass Distichlis spicata was reported to as showing no observable difference in growth 

in solution of 200 mM NaCl (Daines & Gould, 1985). However, salt tolerance is not a 

discrete variable and is affected by factors such as: light intensity, light period, 

temperature, humidity, growth stage (Ashraf, 1994), prior acclimation, and 

physiological adjustments to very small changes in ion concentrations. 

All halophytes respond well to external salts but there is no evidence that they require a 

higher level of salt than that found in soil in order for optimum growth. Some species of 

the genus Salicornia may be an exception to this, with a lower lethal salt rate, and a 

higher survival rate of cell suspension cultures in a salt free environment (Flowers et al, 

1977). Examination of experiments conducted into this class of salt tolerant plants 

shows a higher tolerance to NaCl salts than to CaCh salts (Flowers et al, 1977). 

Additionally, the mechanisms of salt tolerance for halophytes appear to be a 

combination of both cellular and whole plant characteristics (Adams et al, 1992). 

These plants contain a high level of electrolytes in their cells, concentrated in the 

vacuole of the cell rather than the cytoplasm, to avoid toxicity effects, and to maintain 

cell turgor (Glenn et al, 1999). By maintaining and tolerating a high level of salts in the 

cells, they are able to overcome the other problem of high salt, which is low water 

uptake. Groups of plants termed halophytes include mangroves and salt bush. 

The use of mangroves as a remediation tool is limited because it is a tree that grows in 

tidal regions of estuarine and coastal areas. Obviously these plants are not a viable 

option in the vast inland areas of Australia. Saltbush (Atriplex spp.) is also of limited 

use because it is a shrub rather than a tree, and water uptake by these plants is not 

sufficient to have a significant impact on the water table. 
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Glycophytes (Non-halophytes) 

All plants that do not fall into the category of a halophyte, that is, they are not able to 

tolerate a high concentration of salt, are termed glycophytes, or non-halophytes. The 

majority of plant species fall into this category. Where the halophytes take up and 

maintain high concentrations of ions to overcome low external water potential, the non

halophytes employ avoidance strategies. One such strategy is the exclusion of excess 

ions, where levels are kept low in leaves, and instead accumulating them in the roots 

and stems (Greenaway and Munns, 1980). In order to overcome the problem of high 

internal water potential, some non-halophytes employ osmoregulation as a further 

avoidance strategy. This involves the synthesis of compatible solutes, such as pro line or 

glycine betaine, in the cells to lower the water potential of the plant (Greenaway & 

Munns, 1980; Marcar & Termaat, 1990). 

1.3 THE ROLE OF COMPATIBLE SOLUTES IN SALT STRESSED PLANTS 

There are many organisms that are capable of synthesizing low molecular weight, 

soluble compounds in response to salt and water stress. These include marine algae 

(Kirst, 1989), yeast (Brown & Simpson, 1972), fungi (Jennings & Burke, 1990) and 

vascular plants (Stoop & Pharr, 1994). These compounds are called compatible solutes 

as they can accumulate in the cytosol at high concentrations without affecting cell 

metabolism (Stoop et al, 1996). They include sugar alcohols (mannitol), proline, glycine 

betaine, quaternary ammonia compounds and tertiary sulfonic compounds and are 

highly soluble in water and tend to be uncharged at a neutral pH (Samaras et al, 1995). 

Osmoprotectants are mostly confined to the cytoplasm of the cell, with very little found 

in the vacuole, even though this organelle can occupy up to 90% of the cell volume 

(McNeil et al, 1999). 

They are thought to be accumulated in order to lower the water potential of the cell, 

either to a level similar to, or lower than, that of the water potential of the soil. This 

allows water to move into the plant due to the change in water potential. Mannitol has 

been shown to be produced by many plants (Keller & Matile, 1989; Tarczynski et al, 

1993; Stoop et al, 1996; Guichard et al, 1997; Karakas et al, 1997) in response to 

environmental stresses. 
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The compatible solute glycine betaine has also been found in elevated levels in plants 

that are stressed (Paleg et al, 1984; Hare et al, 1998; Weretilnyk et al, 2001; Sakamoto 

& Murata, 2002; Reddy et al, 2004). 

There have been many reports in the literature (Gaff & Loveys, 1984; Weimberg et al, 

1984; Fedina et al, 1994) that proline is produced as a response to salt stress. It is 

produced by Vitis vinifera L. (grapevine) plants when stressed by salt, with higher levels 

being recorded at greater salt concentrations (Downton & Loveys, 1981 ). It was 

established that proline was produced by Phaseolus vulgaris L. in response to increased 

salt levels (Cachorro et al, 1995). Pea plants (Pisum sativum L.) were found to 

accumulate proline when exposed to 192mM NaCl (Hasson & Poljakoff-Mayber, 

1983). Tobacco (Nicotiana sylvestris L.) was found to accumulate proline in response to 

both salt stress and heat stress (Kuznetsov and Shevyakova, 1997). More recently, citrus 

roots Carrizo citrange were found to have increasing proline content with increasing 

soil salinity (Arbona et al, 2003). 

1.3.1 Glycine Betaine 

It is found in a wide variety of organisms, ranging from micro organisms through to 

higher plants, including a number of flowering plant families (Chenopodiaceae, 

Amaranthaceae & Gramineae) (Rhodes & Hanson, 1993). Glycine betaine (GB), an 

amphoteric quaternary amine, is produced by plants due to various environmental 

stresses, including salinity and temperature. It is electrically neutral over a wide range 

of pH values, is extremely soluble in water, and its molecular makeup allows it to 

interact with both proteins and enzymes (Sakamoto & Murata, 2002). There are two 

theories as to the specific effects of GB in stabilising molecular structures. One model is 

that GB is excluded from actual contact with proteins, but forms a bonded layer of 

water around them, stabilising the native structure of the protein (Arakawa & 

Timasheff, 1983). The opposing theory (Schobert, 1977) is that the hydrophobic part of 

GB bonds with the hydrophobic part of the protein, allowing for water to be released 

when there is a water deficit. This action is though to prevent denaturation of the protein 

which would result from dehydration. It is produced from one of two pathways, 

involving two different substrates, which are choline and glycine. 
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Glycine betaine has been found to have benefit to plants in salt tolerance, cold tolerance, 

heat tolerance and freezing tolerance (Sakamoto & Murata, 2002), and it is produced by 

some, but not all higher plants (Reddy et al, 2004). Mansour (1998) found that 

exogenous application of GB to onion cells in 150 mM NaCl protected the plasma 

membrane from the negative effects of Na+ that would have otherwise been observed. It 

was noted that GB had a protective action regardless of whether it was added before 

during or after exposure to NaCl. Other plants that produce GB when salt stressed 

include spinach (Di Martino et al, 2003), sugar beet (Matsuzaki et al, 2003), poplars 

(Zhang et al, 2004), as well as a number of halophyte species (Moghaeib et al, 2004). 

While glycine betaine has been noted to be of benefit to some plants when stressed, it is 

proline in particular that is most often produced as an osmoticum by plants that are salt 

stressed (Samaras et al, 1995) and therefore this research will concentrate on its 

production. 

1.3.2 Proline 

Proline is a secondary amino acid ( also called an imino acid) which is known to be 

produced in greater quantities by some plants when they are stressed. Sources of stress 

capable of inducing this proline response include: salinization, water deprivation, high 

or low temperature, pathogen infection, heavy metal toxicity, nutrient deficiency, UV 

irradiation and atmospheric pollution (Hare and Cress, 1997; Schat et al, 1997). 

Proline accumulation is brought about by both an increase in synthesis of proline, and 

by a decrease in its oxidation. Proline can be synthesised both from glutamate and 

omithine. The same intermediates, glutamic y-semialdehyde (GSA) and L'.l1-pyrroline-5-

carboxylate (P5C), are involved in both the synthesis and catabolism of proline. The 

final stage of proline biosynthesis and the first stage of its oxidation involve different 

enzymes, as does the formation and catabolism of its intermediates. Although there are 

two different pathways for the production of P5C, being synthesised in either the 

mitochondria or the cytosol, the choice of pathway is dependent upon the nitrogen 

status of the plant. However, in plants, the oxidation of proline is restricted to the 

mitochondria (Sells & Koeppe, 1981 ), and it has recently been shown that proline plays 
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a direct role in the protection of the complex II electron transport chain of the 

mitochondria in maize, even at low concentrations (Hamilton and Heckathorn, 2001). 

It appears that proline is produced in preference to other amino acids because its 

production pathway is relatively short, and highly regulated. Its accumulation affects 

fewer metabolic reactions than would the accumulation of other substances that can be 

involved in other production pathways. Although the biosynthesis of proline is 

relatively short, it consumes a high rate of reductants, and on its degradation makes 

available a high amount of energy, making proline an excellent store of energy. The role 

of proline in recovery from stress is supported by the observation that proline levels 

rapidly decrease upon relief from stress (Trotel et al, 1996; Jeffries et al, 1999; Trotal

Aziz et al, 2000). However, in trials where glycine betaine was used as an 

osmoregulator, levels did not fall after stress was relieved (Naidu et al, 1990). 

Proline plays an important role in the normal functioning of the cell and is involved in 

several aspects of plant function. There is considerable evidence that proline plays an 

important role in regulating cell morphology and differentiation (Nanjo et al, 1999) as 

well as important developmental processes when the plant is not stressed (Hare and 

Cress, 1997). Normal function of the oxidative pentose phosphate pathway (OPPP) is 

dependent upon the synthesis of proline (Hare and Cress, 1997), and the OPPP is 

responsible for several plant processes including seed germination (Botha et al, 1992; 

Hare et al, 2003), and cell division and differentiation (Hare et al, 2001). In fact, 

application of exogenous proline to Arabidopsis thaliana hypocotyl explants in tissue 

culture resulted in increased shoot organogenesis (Hare et al, 2001). 

Proline accumulation may prime oxidative respiration to provide energy needed for 

recovery, or reduce stress-induced cellular acidification (Kurkdjian and Guem, 1989). 

High levels of proline synthesis when a plant is stressed may maintain NAD(Pt I 

NAD(P)H ratios similar to those found in the plant when not stressed. This increased 

ratio enhances the activity of the OPPP, providing support for secondary metabolite 

production, and for increased cell division upon relief from stress (Hare et al, 2001 ). 

As well as acting as osmoticum, proline itself may also act as a substrate for the TCA 

cycle during recovery from stress. Additionally, the interconversions between proline 
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and its precursors may be involved in the regulation of cellular pH and redox potential 

(Hare and Cress, 1997). 

Proline is thought to have several possible protective roles in a stressed plant other than 

as a compatible solute to lower water potential. It may: act as a store of carbon and 

nitrogen to allow the plant to recover after a stress episode (Singh et al, 1973), stabilise 

macromolecules and membranes during stress (Treichel, 1975; Schobert and Tschesche, 

1978), and reduce the amount of free radicals present in the cytosol by forming long

lived, relatively inert compounds with them (Smirnoff & Cumbes, 1989). It is less 

inhibitory than equivalent concentrations of NaCl to enzymes and to protein synthesis 

(Brady et al, 1984), and may also protect proteins against heat denaturation (Samaras et 

al, 1995). 

The DNA helix is found to become more stable, in terms of its reactivity with 

compounds in the nucleus, when exposed to NaCl (Rajendrakumar et al, 1997). The 

addition of proline to a cell that has NaCl present destabilises the DNA helix, a reversal 

of the salts' effect of stabilisation or supercoiling of the helix (Rybenkov et al, 1997). 

The importance of this observation is that increased stabilisation of the DNA helix can 

reduce the cells ability to undergo transcription, and thus affect normal plant function. 

The osmoprotectant glycine betaine has also been reported to have this effect, but no 

other amino acid tested had a similar effect. Little follow up work was present in the 

literature with regard to further investigation of this interaction. 

1.3.2 The role of ABA in proline production 

The plant hormone abscisic acid (ABA) is known to have a wide range of effects on a 

plant including maintaining bud and seed dormancy, inhibiting auxin-promoted cell 

wall acidification loosening, and slowing cell elongation (Gaspar et al, 1996). ABA is 

also known as a plant stress hormone, triggering a range of physiological processes 

when the plant becomes stressed. Sources of stress include drought, salinity, freezing, 

chilling, wounding, hypoxia, light and sometimes pathogens (Bray, 1997). 

Responses as a result of increased ABA due to stress include stomatal closure, reduction 

in flowering (Westgate et al, 1996), ion homeostasis (Borsani et al, 2003) and the 
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production of a range of osmoprotectant compounds such as betaine, sugar alcohols 

(pinnitol and mannitol) and amino acids. 

It is known that ABA triggers proline production in a plant in response to environmental 

stress (Downton & Loveys, 1981; Stewart and Voetberg, 1985; Cachorro et al, 1995; 

Campalans et al, 1999). Several investigations have concluded that in addition to 

increasing proline, elevated levels of ABA in a stressed plant also lead to a reduction in 

shoot growth (Montero et al, 1997), with little reduction in root growth. A study by Jia 

et al (2002) found that application of NaCl  to maize plants led to a ten-fold increase in 

the roots with only a one-fold increase in leaves. 

1.4 SALT TOLERANCE IN EUCALYPTUS SPECIES 

There has been much work on eucalypts grown in salt conditions to identify those 

species that are salt tolerant (Blake, 1981; Sands, 1981; Pepper & Craig, 1986; Bell et 

al, 1993; Marcar, 1993; Bell et al, 1994; Grieve et al, 1999) or to determine the effects 

of high salinity on shoot and root growth. However, little work has centred on the 

physiological processes of this group in relation to salt tolerance (Marcar & Termaat, 

1990; Grieve & Shannon, 1999). Although it is unlikely that the methods by which 

eucalypts tolerate high salt levels are any different from that of other non-halophytic 

species, this needs to be investigated in order to more accurately identify those species, 

or individuals within a species, that are salt tolerant. 

Eucalyptus camaldulensis Dehnh (river red gum), the most widely distributed of all the 

eucalyp t species, has been identified in several studies (Blake, 1981; van der Moezel et 

al, 1988; Marcar, 1993) as being the most salt tolerant (Sands, 1981; Fox et al, 1990; 

Bell et al, 1993) of a range of species tested. This is not always the case with Pepper & 

Craig (1986) ranking E. camaldulensis as salt sensitive. This difference in reports is due 

to the wide variety of locations in which each species grows, particularly Eucalyptus 

camaldulensis, and the genetic differences that exist in plants between these sites (Heth 

and McRae, 1993). If an individual of a species is growing in a particularly saline area, 

then it is likely that this individual will be genetically predisposed to be more salt 

tolerant than another individual from the same species growing in soil with a high water 

potential (van der Moezel et al, 1987). It is perhaps unreasonable to state that one 
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particular species is most salt tolerant when only a small number of individuals from a 

few provenances are investigated. 

Clones of both E. camaldulensis and E. rudis were examined in a glasshouse study by 

Grieve et al (1999) and ranked for their tolerance to sodium sulfate (Na2S04) by 

measuring a number of morphological characteristics. Based on biomass measurements, 

clones from both species were found that were able to tolerate high levels of salinity. 

This examination was performed to test the tolerance of these clones to sodium sulfate 

salts as found in the San Joaquin Valley of California. The ionic relations of these 

clones were also investigated, and it was found that clones could further be separated 

into two groups based upon ion accumulation (Grieve and Shannon, 1999). 

Florence (1996) concluded, from a survey of a range of investigations, that there is 

considerable variation in E. camaldulensis due to provenance. The review described 

provenance effects on the morphology of those individuals. For example, seed from 

individuals found in areas of higher rainfall had greater seed water use efficiency than 

those found in a dry area. Individuals in Lake Albacutya in Victoria are subject to long 

periods of drought and salinity, and hence are slow growing. However, when water is 

available they grow rapidly. This has lead to the selection of variants from this 

provenance that grow very rapidly when grown under favourable conditions, 

particularly throughout the Mediterranean. 

1.4.1 Compatible solutes in stressed eucalypts 

van der Moezel et al (1988) acknowledged that the exclusion of Na+ and er ions by 

eucalypts maintained a low water potential and indicated the synthesis of some 

osmoregulatory compound. They also suggested that this must be an energy requiring 

process, since those plants being most salt tolerant demonstrated reduced growth. Based 

on this observation, it seems reasonable to suggest that those species showing reduced 

growth in the short term may be those that survive over a longer period of time. One of 

the effects of the plant stress hormone, ABA, is to reduce shoot growth while having no 

major effect on root growth (Saab et al, 1990). This process could account for reduced 

growth observed in some trees. It is also possible that trees producing more of this 

compound possess a greater salt tolerance. 
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For the purposes of this study, E. camaldulensis was treated as the most salt tolerant, 

and was compared to other Eucalyptus species, e.g. E. platypus Hook. var. heterophylla 

Blakely (coastal moort), and E. diversicolor F. Muell. (karri), to investigate salt 

tolerance. E. platypus is reported to have intermediate to high salt tolerance (Pepper & 

Craig, 1986), with E. diversicolor having low salt tolerance 

1.4.2 Proline and eucalypts 

Little has been done in linking proline production and salt tolerance in eucalypts. 

Proline production in the species E. microtheca has been examined in the glasshouse 

with promising results (Prat and Fathi-Ettai, 1990; Morabito et al, 1996). The effect of 

salt on a number of physiological parameters, including proline, on shoot cultures of E. 

microcorys has also been investigated (Chen et al, 1998; Keiper et al, 1998). 

It is proposed that Eucalyptus species will be grown in salt at varying concentrations 

and analysed to determine proline levels. As proline is thought to be accumulated in 

order to decrease water potential (Weimberg et al, 1 984), then it seems likely that any 

plant that is able to readily produce large quantities of this compound will be more salt 

tolerant. For example, Van Rensburg and Kruger (1994) reported that Nicotiana 

tabacum cultivars that were more drought tolerant than others also produced higher 

levels of proline. 

By establishing proline content at background levels as well as levels found in stressed 

plants, it is hoped that a screening test can be developed. If plants that are salt tolerant 

have a higher than normal level of proline when grown under normal conditions, then 

salt tolerance in plants might be identified by growing them under salt stressed 

conditions. However, if the reverse is true, that plants with low tolerance produce more 

proline, then this could also be useful. 

15 



1.5 AIMS 

This research aimed to determine whether proline can be used to distinguish salt tolerant 

characteristics between individuals and species in eucalypts. Particular research 

questions were: 

• Do eucalypts produce more proline when subjected to salt stress? 

• Do salt tolerant clones identified using conventional means produce more proline 

than salt sensitive when stressed? 

• Can background levels of proline be used to differentiate between species I 
individuals? 

• Can proline accumulation be used to distinguish between species when salt stressed? 

• Can proline be used to distinguish individuals within a species when salt stressed? 

• Can species be ranked for their salt tolerance based on proline production? 

• Does the exogenous application of ABA influence proline production for eucalypts? 

• Can proline be linked to growth parameters and other physiological indicators in 

stressed eucalypts? 

• Are growth parameters a useful measure of salt tolerance? 

• Should proline be measured in the roots or leaves of a plant to give a better 

indication of salt tolerance? 
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CHAPTER 2 - MATERIALS AND METHODS 

2.1 PLANT MATERIAL 

Several species of Eucalyptus were used in the experiments including E. camaldulensis, 

E. diversicolor, E. globulus, E. platypus var heterophy//a, E. spathulata, E. lesoeufii, E. 

rudis, E. wandoo, and E. loxophleba. These seedlings were raised in specific seed lots 

obtained from a commercial supplier (KimSeed, Osborne Park, WA). Clones developed 

from other research projects (Bell et al, 1993), of salt tolerant and salt sensitive E. 

camaldulensis were obtained from Murdoch University in Perth, Western Australia. 

This material was used for both glasshouse trials and tissue culture experiments. 

2.1.1 Design 

A range of experiments were performed in both the glasshouse and in tissue culture to 

determine proline levels at various salt concentrations from plants in tissue culture, in 

soil, and in hydroponic solution culture. Each experiment was performed on a given 

number of seedlings or clones and with an appropriate number of replicates (see below). 

In the case of tissue culture (in vitro) experiments, shoot clumps were placed onto 

experimental and control media, four or five to a tub, and maintained at normal in vitro 

conditions (as described in 2.4 .2). Ten tubs for each clone and treatment was the 

standard number of replicates for these experiments. The clones used were salt tolerant 

or salt sensitive E. camaldulensis. 

Glasshouse experiments involved either seedlings of different Eucalyptus spp. , or 

clones of E. camaldulensis, varying in their salt tolerance. Plants were grown either in 

soil, or in a hydroponic solution (Hoaglands No.2 Basal salt mixture, Hoagland and 

Amon (1950)). Trials were designed so that there was sufficient experimental leaf or 

root material available for proline analysis to be performed weekly or at completion. 
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2.2 PROCEDURES 

General procedures used for the project included plant tissue culture techniques, 

glasshouse experimentation, plant extraction methods, UV NIS spectrophotometry and 

capillary electrophoresis (CE). 

2.2.1 Tissue Culture 

Tissue culture involves growing plants under a defined set of conditions and in an 

aseptic environment. Any materials for handling, growing and storing these cultured 

plants were first sterilised. Sterile conditions were achieved by autoclaving any 

materials to be used on or coming into contact with the plants or media containers ( eg. 

instruments, plastic cutting plates, media containers, media, rinsing water) at 121 ° C for 

20 minutes. Plant material was handled aseptically in a laminar flow cabinet which was 

exposed to ultra-violet radiation for approximately 20 minutes prior to use, and then 

swabbed with 70% ethanol. Instruments were regularly re-sterilised using a heat 

sterilising unit (Sigma-Aldrich, Castle Hill NSW). 

2.2.1.1 Culture Media 

Stock solutions 

Stock solutions of the plant growth substances napthalene acetic acid (NAA) and benzyl 

amino purine (BAP) were used in media preparation. These were prepared by dissolving 

powdered auxins and cytokinins (Sigma-Aldrich, Castle Hill NSW) in analytical grade 

ethanol or l M  NaOH respectively, and made up to the required volume with ultra-pure 

water (ion-exchange filtered to 15 MQ electrical resistance). Stock solutions were 

stored at 4°C, with auxins being kept in dark bottles to reduce possible deactivation by 

light. 

Media composition 

Culture media were prepared using Murashige and Skoog 1962 (MS) Basal Medium 

Powder (Sigma Aldrich, Castle Hill NSW; Product number M5519), containing macro

and micronutrients, vitamins and organics. Agar (High Purity Agar, Coast 

Biochemicals, Auckland NZ), gellan gum (Phytagel™, Sigma-Aldrich, Castle Hill 
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NSW), plant growth substances and sucrose (CSR Ltd, North Sydney, NSW) were also 

added. Table 2.1 gives the composition of the media used for maintenance of the shoot 

cultures, for trials involving proline investigation, NaCl was added to the medium to 

obtain the required molarity. 

Media Preparation 

Media were prepared using analytical grade reagents and ultra-pure water. Glassware 

and culture vessels were washed in phosphate-free detergent and hot water, rinsed twice 

in tap water and given two rinses in deionised water before being oven dried at 60°C. 

Media components were weighed and dissolved in ultra-pure water. Stock solutions of 

hormones, and the MS Basal medium powder were added to the medium, the solution 

made up to final volume, and pH adjusted to 5.8 with KOH. Powdered gelling agents 

were added to the media and dissolved by heating in a microwave oven on high for 

approximately 10 min L- 1 • Media was dispensed into culture containers while hot, then 

autoclaved. Media was stored at 4 °C and in the dark until used. 

Shoot culture - maintenance 

Cultures were grown in 250 mL screw top polycarbonate containers containing 50 mL 

of solid medium. Shoots of selected clones were subcultured onto standard media every 

four to six weeks, depending on growth. Cultures were grown in a growth cabinet at 25 

± 1 °C, with a 16 h photoperiod. Light was provided by cool white fluorescent tubes, 

and irradiance at the culture surface was approximately 90 µmol.s-1 .m-2 in growth 

cabinets. 

Shoot culture - experimental 

For experiments on shoot growth, shoots were transferred to the experimental media, 

and allowed to grow for a period of four weeks in the above conditions. In some cases, 

the shoots were subcultured onto the same type of media for a further four weeks. Basal 

medium used was MS with an appropriate amount of sodium chloride or ABA added 

for experimental purposes. Shoots of approximately 1 - 2 cm in length and containing 2 

- 3 leaves were cut and placed upright, 5 per vessel, into culture containers. Shoot 

material cut from stock cultures were randomly distributed into experimental media. 
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Table 2. 1: Composition ofMurashige and Skoog (1962) Media 

COMPONENTS 

Macronutrients: 

Ammonium Nitrate 

Potassium Nitrate 

Calcium Chloride.2H20 

Magnesium Sulphate.7H20 

Potassium DiHydrogen Orthophosphate 

EDTA-lron(III) Sodium Salt.H20 

Micronutrients 

Boric Acid 

Manganese Sulphate.4H20 

Zinc Sulphate. 7H20 

Potassium Iodide 

Sodium Molybdate.2H20 

Cupric Sulphate.5H20 

Cobalt Chloride.6H20 

Vitamins 

Nicotinic Acid (free acid) 

Thiamine HCl 

Pyridoxine HCl 

Glycine (free base) 

Organics 

Inositol 

Sucrose 

Gelling Agents 

Agar 

Gelrite 

Hormones 

Shoot growth 

Benzyl amino purine (BAP) 

Napthalene acetic acid (NAA) 

Callus growth 

Benzyl amino purine (BAP) 

2,4-Dichlorophenyoxyacetic acid (2,4-D) 

CONCENTRATION (mg.L- 1) 

1 650.0 

1 900.0 

440.0 

370.0 

170.0 

36.7 

6.2 

22.3 

8.6 

0.830 

0.250 

0.0250 

0.0250 

0.50 

0.10 

0.50 

2.0 

100.0 

20 000.0 

(g.L-1 ) 

2.5 

2.5 

(µM) 

2.5 

0. 1 

5 .0 

5.0 
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C allus induction medium 

To initiate callus from shoot cultures, explants from all available clones were 

subcultured onto media containing 2,4-Dichlorophenyoxyacetic acid (2,4-D) and BAP. 

For callus experiments, callus was subcultured onto experimental media containing 

differing amounts of NaCl for a period of four weeks at 25°C in the dark. 

2.2.2 Glasshouse Trials 

For experiments using whole plants, two methods were used: soil and hydroponics. Soil 

investigations used 4L pails with a hole drilled in the side just above the base for 

drainage. These were filled with 4. 5 kg of 1: 1 (vv) mixture (pasteurised 2 x 60°C for 

3hrs) fine white and coarse white sand, with three seedlings per pot, and four pots per 

treatment. Pots were maintained in the glasshouse at 25 ± 5°C.  Salt levels were 

increased at regular intervals by filling the pot with the required solution until the 

conductivity of the water draining out of the pot equalled that of the solution being 

poured in. The level of ions in the emerging solution was measured with a conductivity 

meter. Plants were fertilised with a 50% concentration of Thrive™ (Arthur Yates & Co. 

Limited, Milperra NSW) (Table 2. 2), added to the solution containing the experimental 

salt concentration. 

For hydroponic trials, 4 L pails with lids were placed into a black pot to exclude light. 

The lids had three holes, drilled so that T4 (50 mm diameter) pots (Arthur Yates & Co. 

L imited, Milperra NSW), could be placed into the holes. Each T4 pot was filled with 

Perlite and contained one seedling. The pails were filled with hydroponic solution so as 

to cover the base of the inserted T4 pots. A further hole drilled into the lid allowed for 

the insertion of an air hose with an air stone at the terminal end, ensuring adequate 

aeration of the solution. This solution was maintained at a pH of 5. 5 and was changed 

bi-weekly. 
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Table 2.2: Composition of Thrive™ nutrients 

Compound w/w 

Total Nitrogen 27.0 % 

Total Phosphorous as water soluble 5.5 % 

Total Potassium as Nitrate 9.0 % 

Sulphur as Sulphate 0.22 % 

Iron as Chelated Iron 0. 1 8  % 

Magnesium as Sulphate 0.5 % 

Manganese as Manganese Sulphate 0.04 % 

Zinc as Zinc Sulphate 0.02 % 

Boron as Sodium Borate 0.005 % 

Copper as Copper Sulphate 0.005 % 

Molybdenum as Sodium Molybdate 0.002 % 

2.3 ASSESSMENT AND ANALYSIS 

2.3.1 Tissue Culture Specific Assessment 

Relative growth, for both shoot and callus experiments was determined by weighing 

each shoot or callus. For shoot cultures, chlorophyll content was also measured. 

Total chlorophyll was determined by the method of Moran & Porath (1980). This 

involved leaving the shoot in 5 mL of N,N-dimethyl formamide (DMF) overnight then 

reading in a spectrophotometer at the wavelengths of 647 and 664 nm. Using the fresh 

weight and chlorophyll values, the micrograms (µg) of chlorophyll per gram of fresh 

weight was then calculated according to the following formula: 

((ABS664 X 7.04) + (ABS641 x 20.27))x (5 + sampleweight) = µg chlorophyll g"1 f.wt 

22 



2.3.2 Proline 

Proline was measured usmg the method of Bates et al (1973), and capillary 

electrophoresis. 

Extraction. Plant material was collected and a known amount (approximately 0.5g) 

ground in a mortar and pestle with liquid nitrogen and extracted into 10 mL of 3% 

aqueous sulfosalicylic acid. This extract was centrifuged for 20 mins at 4° C, the 

supernatant removed for proline determination. 

Acid ninhydrin analysis. Two millilitres of plant extract was reacted with 2 mL of acid 

ninhydrin (5 mL acid ninhydrin contains 125 mg ninhydrin, 3mL glacial acetic acid and 

2 mL a-phosphoric acid (6M)) and 2mL glacial acetic acid in a test tube and allowed to 

react for 1 hour at 100 ° C. The reaction was terminated in an ice bath and allowed to 

equilibrate to room temperature. Four mL of toluene was added to the tube and vortexed 

for 10 sec. The contents were allowed to separate and the top layer (toluene) was read in 

a UV NIS spectrophotometer at 520 nm using toluene as a blank. Standards were made 

up in 3% aqueous sulfosalicylic acid. Proline concentration is determined from a 

standard curve and calculated on a fresh weight basis as follows: 

( (µg pro line / mL )x (mL toluene)) 1 1 5 .5 I ole . . 

( µg � 

= 
µ

moles prohne / g f weight 
g samp e 

5 

CE analysis. Three hundred and fifty µL of the plant extract (prepared as for proline 

analysis) was reacted with 150 µL of the derivatising agent, fluorescamine (3 mg mL- 1 

fluorescamine in acetone, containing 20 µL pyridine). This was then run on the CE with 

running conditions of 12 kV, 25 mins run time per sample, 10 s injection time. Running 

buffer was 0.05 M sodium tetraborate, containing 0.025 M LiCl, pH 8. 3. Proline 

standards in the range of 5 - 40 µgmL- 1 are made up in 0. 1 M sodium tetraborate (borax) 

buffer, pH 9.0. 
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The CE was investigated as an alternate means of analysing proline from samples, as 

opposed to the technique most often used, that of the acid-ninhydrin test. It was hoped 

that the CE method of analysis would provide a more sensitive, accurate and 

reproducible result. 

2.4 Data Analysis 

Statistical analysis was conducted by ANOV A using SPSS (version 1 1  ). The effect of 

treatment x clone was tested by2-way ANOV A for proline, chlorophyll content and 

shoot biomass (dry weight). Where there was a significant clonal effect individual 

clones were tested using one-way ANOVA and Tukey's multiple range test was used to 

determine differences between treatments within clones. The effect of time was 

examined by performing a I -way ANOV A for all proline data for all weeks. Where 

variances between treatments were found to be significantly different using Levene's 

test (p = 0.05) a natural log transformation was performed. Replicates for proline 

measurement were from 6 to 8 (per week) and 8 for chlorophyll and biomass 

determination. 
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CHAPTER 3 - THE INFLUENCE OF NaCl AND ABA ON PROLINE 

PRODUCTION IN E. CAMALDULENSIS IN TISSUE CULTURE 

3.1 INTRODUCTION 

A considerable number of attempts have been made to produce salt tolerant plants using 

tissue culture. This has included using a number of systems (i.e. callus, suspension 

culture and shoot culture) to screen for cells and tissues that show variation in their 

ability to tolerate relatively high levels of salt (NaCl) in media. Investigators have 

concentrated on agricultural species with some success ( at least initially) in plants such 

as medics (Smith & McComb, 1981; Smith & McComb, 1983; McCoy, 1987), tobacco 

(Binzel et al, 1988), alfalfa (Johnson & Smith, 1992; Winicov, 1991), tomato (Rus et al, 

2000), and rice (Lutts et al, 2001). Unfortunately, in many cases plants regenerated from 

such systems fail to exhibit their salt tolerance when regenerated into whole plants or 

when grown in soil (Nabors et al, 1980; Stavarek & Rains, 1984; McCoy, 1987; 

Gonzales, 1994). The main reason provided for the unsuccessful cases is that 

mechanisms of salt tolerance in whole plants are different to that of cells (as callus or 

suspension) and that the mechanisms of salt tolerance expressed in the cell culture is/are 

not always expressed in the whole plant. Somaclonal variation is another reason why 

reproduction from cells is unreliable, as regenerated plants tend to suffer mutations, 

such as sterility (Rains et al, 1986). In all of the above examples the investigations have 

focused on either morphology or survival as a means of selection. 

3.1.1 Tissue culture, salt and proline in agricultural plants 

Investigators have examined the role of salt on proline production in agriculturally 

important crop plants such as alfalfa (Petrusa & Winicov, 1997), wheat (Kong et al, 

2001 ), soybean (Liu & van Staden, 2000), rice (Shankhdhar et al, 2000), potato (Heuer 

& Nadler, 1998) and beans (Gadallah, 1999). 

Suspension cultures of salt tolerant and sensitive Nicotiana sylvestris L. were subjected 

to NaCl salt to observe their proline response to this stress (Kuznetsov & Shevyakova, 

1997). It was found that the salt sensitive strain produced very little proline, and that 

this level did not increase with an increase in NaCl concentration. The salt tolerant 
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strain, however, had a greatly increased proline level when salt stressed. In addition, the 

salt tolerant strain had a higher background level of pro line than did the sensitive strain. 

Tissue culture has also been used to investigate proline production in alfalfa callus and 

shoot cultures in response to NaCl, using both salt tolerant and sensitive cell lines 

(Petrusa & Winicov, 1997). It was found that callus cultures accumulated large amounts 

of proline, and were also able to tolerate a reasonably high concentration of salt (171 

mM). In the same investigation, when whole plants were grown, it was found that the 

roots of salt tolerant plants accumulated more proline than the roots of salt sensitive 

plants. 

An investigation into the effect of NaCl on rice (Oryza sativa L.) cultivars in callus 

culture by Shankhdhar et al (2000) found that there was an increase in proline content in 

all cultivars examined when grown in salt medium. In particular, they found that the salt 

tolerant cultivars had a significant increase in proline content, while the salt sensitive 

cultivars had only a slight increase. Another study into the effect of salinity on rice 

callus, both salt sensitive and resistant, found that proline was accumulated to a greater 

degree in the salt tolerant cultivar (Basu et al, 2002). It is worth noting that while 

glycine betaine is known to play a limited role in the salt tolerance of rice (Sakamoto 

and Murata 2000; Sawahel, 2003), it was not examined by either of these papers. 

Broetto et al, (1999) grew callus cultures of different cultivars of beans (Phaseolus 

vulgaris L.) in media containing a range of salt concentrations (0-80 mM). They found 

that all of the cultivars examined had an increase in pro line content, and that two of the 

cultivars examined showed a much greater increase at salt concentrations above 40 mM. 

It was suggested that these two genotypes could potentially have greater salt tolerance; 

this was not tested. 

3.1.2 Tissue culture, salt and physiological responses in woody plants 

Response of woody species to salt exposure in tissue culture has had less attention than 

agricultural species. This area is, however, receiving more attention due to the 

recognition of the role that tree species may play in alleviating some of the soil salinity 

problems throughout the world. Examples that do exist include the examination of 
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Populus species, grapevine cultivars and eucalypts such as E. microcorys and E. 

microtheca. 

Two species of poplar (Populus euphratica, and P. alba cv. Pyramidalis x P. 

tomentosa) were exposed to varying levels of NaCl in shoot culture to investigate its 

effect on a range of physiological aspects, including proline accumulation (Watanabe et 

al, 2000). A significant increase in proline production was observed in both of the 

species when NaCl levels exceeded 150mM. The authors suggested that accumulated 

proline promoted osmoregulation and salt tolerance but made no reference as to how 

this might be used to differentiate between salt tolerant and salt sensitive clones or 

species. 

An investigation into the effect of salinity on shoot cultures of grapevine cultivars also 

found a positive link between exposure to salt and proline production (Singh et al, 

2000). It was found that proline content in both stem and leaf of the cultivars examined 

increased with increasing salinity. The authors suggest that screening for salt tolerance 

in vitro can be used to produce salt tolerant grapevine clones. 

There have been a small number of eucalypt species that have had several aspects of the 

salt tolerance physiology investigated using tissue culture. Shoot cultures of salt tolerant 

E. microcorys were found to be able to withstand higher levels of salinity in vitro than 

salt sensitive shoots (Keiper et al, 1998); the salt tolerant shoots were able to withstand 

up to 150 mM NaCl. Chen et al (1998) investigated the effects of salt on shoot cultures 

of the same species (E. microcorys). In addition to physiological factors such as 

photosynthetic pigment production, growth and multiplication, and water relations, 

several osmolytes, including proline, were also examined. It was found that shoots 

exposed to levels of 150 mM NaCl produced significantly more proline than for 

controls, but that levels of other osmolytes (glycine betaine, choline) were not similarly 

elevated. It was also observed that proline levels increased with increasing salt levels in 

the medium. However, the authors noted that it was not possible to state whether the 

increase in proline levels was due to the NaCl present, or to some other factor. 

Morabito et al (1994) examined the response of E. microtheca clones to salinity in 

tissue culture and its effects on physiology, including proline, and survival. Three 

clones were grown in media with increasing levels of NaCl. In terms of survival and 
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physiology, results were mixed with one clone showing increased survival, while others 

showed a lesser change in water potential. Results for proline were similar, with one 

clone producing significantly more proline than the two salt sensitive clones. 

Based on the work with other Eucalyptus species as reported by Chen et al (1998) and 

Keiper et al (1998), it was decided that the levels of 50 and 100 mM NaCl would be 

used to examine the proline response in tissue culture for salt tolerant and sensitive 

clones of E. camaldulensis. This was based on the observation in these reports that a 

level of 150 mM NaCl in the media caused high mortality rates in salt sensitive plants. 

As the main aim of this research is to examine pro line levels, it was decided that levels 

ofup to 100 mM NaCl in the medium would effect a proline response while keeping the 

plants alive over the 28 day sampling period. 

Another physiological trait that has shown to be potentially useful in screening for salt 

tolerance is chlorophyll content. In addition to finding that proline content increased 

with salinity in shoot culture of grapevine cultivars, Singh et al, (2000) found that 

chlorophyll content decreased with increasing salinity. Similar results were observed 

with callus of sunflower (Helianthus annuus) which showed decreased chlorophyll 

content when exposed to 100 mM KCl (Santos et al, 2001 ). While it has been shown 

that chlorophyll content decreases with salinity, it is unclear as to whether there is a link 

between the amount ofreduction in chlorophyll and salt concentration. 

3.1.3 Application of ABA and determination of salt tolerance 

It has been proposed that ABA is the hormone responsible for inducing proline 

production in stressed plants, and not just for salt stress (Rajagopal and Anderson, 1978; 

Bray, 1997; Savoure et al, 1997; Jia et al, 2002; Makela et al, 2003). There have been 

several studies that have examined the effect of the exogenous application of ABA on 

proline production in a range of plant species including barley (Stewart & Voetberg, 

1985; Pesci, 1989) and rice (Yang et al, 2000). From these studies, it was determined 

that an exogenous application of 1 OµM ABA would be sufficient to induce a pro line 

response in both salt tolerant and sensitive clones used in this investigation. 
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3.1.4 Aims 

Based on the encouraging results of other research into proline production in salt 

stressed plants in vitro, it was felt that the response of E. camaldulensis, a salt tolerant 

species, should be investigated in tissue culture. This investigation focused on the 

ability of clones known to be either salt tolerant or salt sensitive to produce proline 

when grown on salt containing media. The aims for the experiments in this chapter were 

to examine: 

• the capacity of E. camaldulensis clones previously identified (with regard to 

their salt tolerance) using conventional means to produce proline when grown on 

salt containing medium, 

• physiological (i. e. chlorophyll content and proline) parameters that might be 

useful in differentiating between salt tolerant and salt sensitive E cama/dulensis 

clones in tissue culture, 

• whether growth parameters are a useful measure of salt tolerance in tissue 

culture, 

• whether E. cama/dulensis callus responds in a similar way to shoots, 

• whether the exogenous application of ABA can be used as a substitute for salt in 

tissue culture medium in terms of a proline response 

29 



3.2 MATERIALS AND METHODS 

All shoots were grown on MS basal medium with the required level of NaCl, BAP 

(2. 5µM) and NAA (0. l µM) and sucrose added. Shoots were grown for a period of four 

weeks, with proline measured weekly. Additional material was also grown for each 

treatment for the determination of chlorophyll determination, and fresh and dry weights, 

if necessary. 

3.2.1 Experiment 1 

This experiment examined the effect of NaCl on proline production for clones of E. 

camaldulensis in shoot culture. The levels tested were 50 mM and 100 mM with media 

containing no salt used as a control (Chapter 2. 2. 1. 1 ). Three clones were used, C502 and 

C066, both salt tolerant clones, and C919 a salt sensitive clone. Sixteen shoots of each 

clone were used for each treatment ( 4 shoots per clone per treatment harvested weekly) 

for proline determination. 

3.2.2 Experiment 2 

The effect of different levels of NaCl on proline production for two clones was 

investigated. The levels tested were 50 mM and 100 mM with media containing no salt 

used as control (Chapter 2. 2. 1. 1). The two clones used were, C502 (salt tolerant) and 

C919 (salt sensitive), with 24 shoots of each clone used for each treatment (six shoots 

per clone per treatment harvested weekly) for proline determination. Chlorophyll 

content and fresh and dry weight was determined after four weeks. 

3.2.3 Experiment 3 

The effect of different levels of NaCl on proline production for E. camaldulensis clones 

was investigated. The level of 100 mM NaCl was used as the experimental variable, 

with media containing no salt used as control (Chapter 2.2.1. 1). Three clones were 

used; C502, C066 and C919, with 32 shoots of each clone used for each treatment for 

proline determination. Chlorophyll content and fresh and dry weight was determined 

after four weeks. 
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3.2.4 Experiment 4 

The effect of different levels of NaCl and ABA on pro line production was investigated. 

The level of 100 mM NaCl was used as the experimental variable to investigate the 

effect of salt, 10 µM ABA was the concentration used to determine the effect of this 

hormone, with media containing no salt or ABA used as control (Chapter 2.2. 1.1). 

Three clones were used; C502, C066 and C919. Thirty-two shoots of each clone used 

for each treatment for proline determination. Chlorophyll content and fresh and dry 

weight was determined after four weeks. 

3.2.5 Experiment 5 

The effect of different levels of NaCl on proline production on two clones was 

investigated. The levels tested were 50 mM and 100 mM with media containing no salt 

used as control (Chapter 2. 2. 1. 1). Two clones were used; C066 and C919. Twenty-four 

pieces of callus of each clone was used for each treatment ( eight per clone per treatment 

per week) for proline determination. Size of each callus was approximately 25 mm2
• 

Numerous attempts were made to improve the consistency of callus produced from the 

four clones through manipulation of hormones in callus media. This concentrated on 

using different levels of auxin, particularly 2,4-D .  Despite this it was not possible to 

produce consistent callus growth for all of the clones. 
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3.3 RESULTS 

3.3.1 Experiment 1 

There was neither an increase in shoot proline levels nor a difference between clones in 

proline concentration for the first three weeks of culture (Fig. 3.1). However, after four 

weeks the proline significantly increased, with values varying for each clone. Clone 

C919 had between 3.2 ± 0.4 and 2.3 ± 0. 3 µmol proline g-1 fresh weight (µmol pro g-
1fwt), clone C502 had between 1. 4 ± 0. 2 and 4.6 ± 0. 4 µmol pro g-1fwt and clone C066 

had between 2.0 ± 0.4 and 4. 3 ± 0.5 µmol pro g-1 fwt. 

There was no significant difference between the control (3. 2 ± 0.4 µmol pro g-1fwt) and 

the 50 (2.1 ± 0.7 µ mol pro g-1 fwt) or 100 mM (2. 3 ± 0.3 µ mol pro g-1fwt) salt treatments 

for the salt sensitive clone (C919; Fig. 3.1 a). For the two salt tolerant clones, shoot 

clumps from both the 50 mM and 100 mM salt treatments had significantly higher 

amounts of proline than the control treatment after four weeks. Clone C502 produced 

1. 4 ± 0.2 in the control treatment and 3.6 ± 0.7 and 4.6 ± 0.4 µmol pro g-1fwt in the 50 

mM and 100 mM salt treatments respectively (Fig. 3.1 b ). Similarly, clone C066 

produced 2.0 ± 0.4 in the control treatment and 3. 7 ± 0. 3 and 4. 3 ± 0.5 µmol pro g-1fwt 

at the 50 mM and 100 mM salt treatments respectively (Fig. 3. l c). 

3.3.2 Experiment 2 

Proline Production 

There was a significant difference in proline production between the two clones 

examined in this experiment. Clone C919 produced more proline with time with a 

significant difference between weeks one to three and week four (between 2.3 ± 0. 7 and 

3.4 ± 0. 6 µmol pro g-1fwt). There was, however, no difference due to the salt treatments 

with shoot clumps grown on the control medium producing 3. 4 ± 0. 6, shoot clumps on 

50 mM NaCl producing 2.3 ± 0. 7 and shoot clumps on the 100 mM NaCl treatment 

producing 2.4 ± 0. 4 µmol pro g-1fwt (Fig. 3. 2a). 
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Figure 3.1: The effect of NaCl on proline accumulation over time for a) one salt 

sensitive (C919) and two salt tolerant clones b) C502 and c) C066 of E. camaldulensis 

in tissue culture. Vertical bars are standard errors. Values at week four followed by the 

same letter are not statistically different from each other (p < 0.05). 
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For clone C502, there was a significant increase in the amount of proline in the shoot 

clumps in the 100 mM NaCl treatment (6.0 ± 1 .0 µmol pro g-1fwt) compared to the 

control but no difference compared to the 50 mM NaCl treatment. There was, however, 

no significant difference between the 50 mM NaCl treatment (4.1 ± 0.7 µmol pro g-

1fwt) and the control (3.0 ± 0.3 µmol pro g-1fwt; Fig. 3.2a). 

Chlorophyll content 

The chlorophyll content of the two clones was the same when grown on control medium 

with clone C919 containing 387 ± 35 and clone C502 having 396 ± 39 µg chlorophyll g-

1fresh weight (µg chi g-1 fwt; Fig. 3.2b). Similarly, there was no difference between the 

clones in the amount of chlorophyll in shoot clumps grown on the 50 or 100 mM NaCl 

media (Fig. 3.2b). However, there was a significant reduction in chlorophyll content, 

compared to the control medium for both clones when grown on the salt treatment 

media. 

Dry weight 

The mean weight of shoot clumps of clone C91 9  ranged from 31 ± 6 to 36 ± 3 mg per 

shoot clump (mg sc-1 ) was less than the growth of clone C502 (range 29 ± 5 to 53 ± 2 

mg sc-1 ). There was no effect of treatment on the growth of the shoot clumps for either 

clone (Fig. 3.2c). 

3.3.3 Experiment 3 

There was no effect of 50 mM NaCl on proline production in the previous trials. That is, 

while shoot clumps of the salt tolerant clone did contain more proline than the control at 

the level of 50 mM than did not contain significantly more or less proline than those 

grown on 100 mM NaCl. From this trial , it was decided that only the higher salt level of 

1 OOmM would be used, and that an extra salt tolerant clone, C066 would be introduced. 

Proline Production 

There was a significant difference in proline production between the three clones after 

four weeks on the culture media. Shoot clumps of clone C066 grown on media 

containing 100 mM NaCl produced the most proline (4.0 ± 0.4 µmol pro g-1fwt), 
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Figure 3.2: The effect of NaCl on a) proline accumulation, b) chlorophyll content and c) 

dry weight for two clones, C502 (tolerant) and C919 (sensitive) of E. camaldulensis in 

tissue culture. Vertical bars are standard errors. Values within clones with the same 

superscript letter are not statistically different from each other (p < 0.05). 
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followed by clone C502 with 3.5 ± 0. 6 µmol pro g-1 fwt, and clone C919 with 1. 4 ± 0.2 

µ mol pro g- 1fwt (Fig. 3.3a). For clone C066 there was a significant difference in proline 

accumulation between the control treatment (2.8 ± 0.2 µmol pro g-1 fwt) and the salt 

medium which had 4. 0 ± 0.4 µmol pro g- 1fwt. Shoot clumps of clone C502 grown on 

100 mM NaCl produced 3.5 ± 0.6 µmol pro g-1 fwt which was also significantly higher 

than shoot clumps grown on control media which produced 1.2 ± 0.1 µ mol pro g-1 fwt 

(Fig. 3.3a). Shoot clumps of the salt sensitive clone C919 produced significantly more 

proline on the control medium (2.2 ± 0.2 µmol pro g-1 fwt) than on medium containing 

100 mM NaCl (Fig. 3. 3a). 

Chlorophyll content 

There was a significant difference between clones for chlorophyll content, with C066 

containing more chlorophyll than for the other two clones. The salt sensitive clone 

(C919) contained significantly less chlorophyll when grown on the salt medium (248 ± 

39 µg  chl g- 1 fwt) than on the control medium (429 ± 39 µg chl g-1 fwt). The chlorophyll 

content of the two salt tolerant clones was the same when grown on either control 

medium or 100 mM NaCl. Clone C502 contained 253 ± 23 µg chl g- 1 fwt when grown 

on control medium and 246 ± 13 µg  chl g-1 fwt on 100 mM NaCl (Fig. 3.3b). Similarly, 

clone C066 produced 551 ± 76 µg  chl g-1 fwt on control medium and 487 ± 58 µg  chl g-
1 fwt on 100 mM NaCl. 

D ry Weight 

There was no significant difference in dry weight between clones. Shoot clumps of 

C066 on control media weighed significantly more (51 ± 2 mg) than for salt treatments 

(35 ± 2 mg). There was no effect of the salt treatment on either C502 or C919 (Fig. 

3.3c). 
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3.3.4 Experiment 4 

Proline Production 

Shoot clumps of the salt sensitive clone (C919) grown on control medium (3.7 ± 0.6 

µmol pro i1fwt) had no difference in proline level when compared to shoots grown on 

media containing 100 mM NaCl (4.5 ± 1.2 µmol pro i 1fwt). However, proline did 

increase when shoots were grown on 10 µM ABA medium (11.1 ± 1. 7 µmol pro i 1 fwt; 

Fig. 3.4a). Shoot clumps of both the salt tolerant clones produced more proline when 

grown on 10 µM ABA and 100 mM NaCl. Shoot clumps of C502 produced twice the 

amount of proline on 10 µM ABA (5.2 ± 0.6 µmol pro g-1fwt) and four times the 

amount on 100 mM NaCl (11.2 ± 1.5 µmol pro g-1fwt) than they did when grown on 

control medium (2.5 ± 0.9 µmol pro i 1fwt). However, clone C066 accumulated four 

times the amount of proline on 10 µM ABA (19.7 ± 2.3 µmol pro i 1fwt) but less than 

twice as much on 100 mM NaCl (8.6 ± 0.9 µmol pro i 1fwt) than for shoot clumps on 

control medium (5.6 ± 0.9 µmol pro i 1fwt). 

Chlorophyll content 

There was no significant difference between treatments for chlorophyll content for the 

salt sensitive clone (C919) (Fig. 3.4b). Shoot clumps of the salt tolerant clone (C502) 

contained significantly more chlorophyll when grown on 10 µM ABA (212 ± 33 µg chl 

g-1 fwt) than they did when grown on control medium (139 ± 8 µg chl i1 fwt). 

However, there was no effect of 100 mM NaCl on chlorophyll content (118 ± 13 µg chl 

g-1 fwt) for this clone. Shoot clumps of the other salt tolerant clone (C066) contained 

significantly less chlorophyll when grown on salt medium (265 ± 25 µg chl g- 1 fwt) than 

the control (387 ± 58 µg chl i1 fwt), but there was no effect of 10 µM ABA on 

chlorophyll content (470 ± 40 µg chl g-1 fwt). 

Dry weight 

There was no effect of either 10 µM ABA or 100 mM NaCl on dry weights of the salt 

sensitive clone (C919) (Fig. 3.4c). Dry weights for shoots of the salt tolerant clone 

(C502) were significantly less when grown on 100 mM NaCl (32 ± 4 mg) than when on 
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Figure 3.3: The effect of NaCl on a) proline accumulation, b) chlorophyll content and c) 

dry weights for three clones, C066 and C502 (tolerant) and C919 (sensitive) of E. 

camaldulensis in tissue culture. Vertical bars are standard errors. Values within clones 

with the same superscript letter are not statistically different from each other (p < 0.05). 
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control medium ( 44 ± 3 mg). There was no effect of 10 µM ABA on dry weight for this 

clone (35 ± 6 mg). There was a similar effect for the other salt tolerant clone (C066) 

with shoots of this clone also weighing significantly less on 100 mM NaCl (35 ± 2 mg) 

than on control ( 51 ± 8 mg), and no effect of 10 µM ABA on dry weight ( 40 ± 4 mg). 

Effect of salt on proline over time 

The trend of a significant increase in proline accumulation in week four (Fig. 3.1), and 

sometimes at week three, was observed in all subsequent experiments involving shoot 

clumps. As a result, proline data over time has not been displayed in the above sections. 

3.3.5 Experiment 5 

There was a significant difference in proline production between the two clones, with 

callus of C066, producing more proline than C919. There was no significant difference 

between treatments at weeks one and two for either clone. 

There was a significant difference due to treatment for proline production over the four 

weeks for clone C919, with both salt treatments being different from the control and 

from each other (Fig. 3.5a). Callus grown on the treatment of l OOmM NaCl produced 

the most proline (5.5 ± 0.5 µmol pro t1:twt), followed by 50mM NaCl (3.4 ± 0.2, µmol 

pro t1fwt) and then the control (1.9 ± 0.1 µmol pro t1fwt). There was a significant 

difference in proline production between treatments at weeks three and four. At week 

three, callus grown on 100 mM (7.6 ± 1.7 µmol pro t1:twt) contained significantly more 

proline than both the control (1.7 ± 0.1 µmol pro t1fwt) and 50 mM (2.5 ± 0.3 µmol pro 

i 1fwt). At week four, callus grown on salt media (50 mM 4.5 ± 0.8 µmol pro t1fwt; 

100 mM 5.5 ± 0.8 µmol pro t1fwt) contained significantly more proline than the 

control (2.4 ± 0.1 µmol pro t1:twt), but the salt treatments were not different from each 

other. There was no difference due to time. 

For clone C066, there was a significant difference between treatments, with callus 

grown on the two salt treatment media (50 mM and 100 mM ) containing significantly 

more proline than callus grown on control media (Fig 3.5b ). At week four, callus grown 
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Figure 3.4: The effect of exogenous ABA and NaCl on a) proline accumulation, b) 

chlorophyll content and c) dry weight for three clones, C919 (sensitive) and C502 and 

C066 (tolerant) of E. camaldulensis in tissue culture. Vertical bars are standard errors. 

Values within clones with the same superscript letter are not statistically different from 

each other (p < 0.05). 
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on 100 mM (37.6 ± 9.7 µmol pro t 1fwt) contained significantly more proline than the 

control (18.2 ± 2.7 µmol pro t1fwt), but was not significantly greater than the 50 mM 

NaCl treatment (30.5 ± 4.7 µmol pro t1fwt). There was an effect of time for this clone 

with callus in week four producing significantly more proline than for the other three 

weeks. 
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3.4 DISCUSSION 

Growth Parameters 

It was expected that there would be a decrease in chlorophyll content with an increase in 

salinity in the media, and this was the case. The shoot clumps grown on salt media were 

very pale, almost yellow in appearance when compared to the control shoot clumps, 

with some of the salt sensitive shoot clumps having "browned off' after four weeks. 

The decrease in chlorophyll content and the observed physical appearance of the shoot 

clumps is due to one or more of a number of physiological effects that salinity can 

cause. These include injury to cell membranes, damage to developed tissue, Ca2+ - Na+ 

interaction, hormonal balance in the plant and nutrient deficiencies (Shalhevet et al, 

1995). 

Results for chlorophyll content were not consistent between trials. Shoot clumps of the 

two salt tolerant clones, C066 and C502, had an increase in chlorophyll content when 

grown on ABA media as compared to the control medium. The salt sensitive clone 

(C919) showed no response to either ABA or NaCl. Shoot clumps of clone C066 grown 

on salt medium had significantly less chlorophyll than control shoot clumps. This was 

in opposition to previous trials which showed salinity in the medium having no 

significant effect on chlorophyll content for the two salt tolerant clones (C066 and 

C502), but causing a significant decrease in the amount of chlorophyll produced by the 

salt sensitive clone C919. This at least follows the trend of previous trials where 

signifi cantly less chlorophyll was produced. This result has been observed in other 

species with Singh et al (2000) finding that chlorophyll content decreased with 

increasing salinity in grapevine cultivars and Mitsuya et al (2003) found a similar result 

with rice leaves. Santos et al (2001) found that KCl salts had a similar effect on 

sunflower callus to that of NaCl salts; an increasing reduction in chlorophyll with 

increasing salt stress. 

The inconsistency of results, in terms of chlorophyll content, makes it difficult to 

support its use, in isolation, as a means of identifying salt tolerant individuals. However, 

when used in conjunction with some other morphological or physiological trait, such as 

proline, then it may be a more valuable tool. It is a relatively easy parameter to measure, 
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requiring plant material to by placed into DMF, then read in a spectrophotometer after a 

period of time (Moran & Porath, 1980). 

There was a significant reduction in dry weight for the salt tolerant clones in some 

trials, but this was not consistent. Similarly, the salt sensitive clone always showed an 

apparent increase in dry weight, but this was never significant. If there is some part of 

the salt response mechanism missing in the salt sensitive plant, it would explain why 

there was no reduction in growth, while there was for the salt tolerant. It would be 

useful to see what happened with this clone over a longer period of time, as it appears 

that it has continued to grow regardless of the salt in the medium, and may suffer high 

mortality after longer exposure to salt. 

Proline 

This senes of investigations were conducted in order to determine if the clones 

identified in glasshouse and field trials as salt tolerant would produce proline in tissue 

culture when subjected to salt stress. In all investigations, both of the salt tolerant clones 

(C066 and C502) did respond to the salt stress by producing more proline when stressed 

by the addition of salt to the media. 

There are contradicting theories about the exact role of pro line production and its role in 

salinity tolerance. One possibility is that it simply acts as a store of energy that can be 

rapidly broken down and used when the plant is relieved of stress (Singh et al, 1973). 

Another of the most popular theories is that it acts as an osmolyte and reduces the 

osmotic potential of the cell, thus reducing toxic ion uptake (Bray, 1997). In this case, 

the latter is more likely, with the salt tolerant plants not only producing more proline 

when stressed, but also having no significant drop in the chlorophyll content, indicating 

that the increase in pro line is reducing the physiologically detrimental effects of the salt 

(Delauney & Verma, 1993; Hare & Cress, 1997; Hare & Cress, 2001). 

The effect of salt on proline production produced consistent results over time (1-4 

weeks). There was no effect of salt at weeks one and two, some difference by week 

three, and a greater chance that a significant difference would be found by week four. 
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A marked increase in proline content in the fourth week was observed in most trials, 

and for all clones. It is well known that proline is produced in response to various stress 

factors, including temperature, osmotic potential and ion toxicity. A tissue culture 

vessel is a sealed system, and must be subcultured on a regular basis due to the build up 

of undesirable compounds in the media and a reduction in availability of sucrose and 

other nutrients (George, 1 993). This build-up may have been responsible for the 

increase seen after four weeks. 

There is a clear difference between the two salt tolerant clones used with one having a 

low background level of proline but producing more when stressed (C066), and the 

other having a greater background level, with a lesser increase when stressed (C502). 

Both clones always produced significantly more proline on salt media than for the 

control. In their work with E. microtheca clones in tissue culture, Morabito et al (1 994) 

had a similar finding: clones that had been previously selected for their salt tolerance 

using conventional means produced varied amounts of proline when salt stressed. It 

could be possible that the level of salt in the medium, 1 OOmM, was not sufficient to 

produce such a great increase in proline for C502, but was enough for C066. This could 

indicate that other physiological aspects of clone C502 are reducing the affect that the 

salt has on the plant's physiology, and that it did not need to produce a significant 

amount of proline at higher salt levels to raise its osmotic potential. If this clone 

produces a higher background level when not stressed, this could be an indicator of 

natural tolerance. While the salt tolerant shoot cultures of E. microcorys used by Keiper 

et al (1997) were able to tolerate levels of up to 150 mM NaCl in the medium, the salt 

sensitive could not tolerate 50 mM. This is dissimilar to the findings in this work with 

the salt sensitive shoots used able to survive in levels of up to 100 mM NaCL However, 

E. camaldulensis is acknowledged as highly salt tolerant, and it may be that even a salt 

sensitive clone of this species is more salt tolerant than others. 

It could be argued that although C066 showed a salt tolerant response by producing 

more proline when grown on salt media, it is less salt tolerant than C502 because this 

clone did not need to increase proline content as much. Further field testing of these 

clones using conventional parameters would be needed to determine whether it is a 

higher background level of pro line or the ability to produce more pro line when stress is 

present that gives the plant an increased chance of survival and growth under saline 

conditions. 
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The most significant result from these trials was that all of the clones behaved 

consistently with regard to proline production when stressed by the addition of salt to 

the medium. Specifically, shoot clumps of the salt tolerant clones produced significantly 

more proline than did the control shoot clumps, but the salt sensitive clone did not show 

this effect. From this result, it appears that salt sensitive plants have a lower, or no, 

capacity to increase proline production in response to exposure to salt. 

ABA on proline production 

Exogenous application of ABA to the clones resulted in a significant increase in proline. 

However, the effectiveness of this approach to differentiate between salt tolerant and 

sensitive clones is questionable, with all clones producing significantly more proline. 

The salt sensitive clone C919 did not produce significantly greater amounts of proline 

when grown on media containing 1 OOmM NaCl, while the addition of 1 OµM ABA to 

the medium lead to the production of significantly greater quantities of proline. This 

concentration of salt was sufficient to produce a significant response in the two salt 

tolerant clones. 

There is evidence in the literature, both direct and in-direct, of the link between 

endogenous ABA and pro line. Indirect evidence comes in the form of research showing 

elevated levels of both ABA and proline in stressed plants. Peuke et al (2002), 

investigating drought tolerance in sensitive beech ecotypes, found elevated levels of 

pro line and ABA in leaves of stressed plants, but not in controls. The authors, however, 

drew no conclusions about any link between the two, other than to relate this 

observation to the conclusion of Hare and Cress (1 997) of the relationship between 

ABA and the role of proline. Gomez-Cadenas et al (1998) found a similar response in 

citrus seedlings; with both roots and leaves having elevated levels of ABA, and proline 

in leaves, when subjected to 200 mM NaCL 

Direct evidence has been demonstrated by Trotel-Aziz et al (2000) in an investigation 

into the relationship between abscisic acid and the production and consumption of 

proline in canola leaf discs. They reported that not only was ABA involved in osmo

induced proline accumulation, it was also involved in the mobilisation of proline once 

the stress was alleviated. Trotel-Aziz et al (2003) further investigated this response in 
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canola leaf discs, and found that its synthesis relies on increased transcription of the � 1 -

pyrroline-5-carboxylate synthetase and prevention of its degradation requires 

inactivation of the proline dehydrogenase enzyme. These papers provide evidence to 

support the hypothesis that part of this process may be incomplete in the salt sensitive 

Eucalyptus clone investigated in this work. 

Other studies have looked at the effects of external application of substances to whole 

plants in order to confer salt tolerance. Ragab et al (2001) applied foliar sprays 

consisting of proline and manganese to tomato plants grown under saline conditions, 

leading to increased growth and fruit weight. Shalata & Neumann (2001) found that 

ascorbic acid added to the root medium of tomato seedlings increased a plants ability to 

tolerate saline conditions. Other plants have also been made to produce proline by the 

exogenous application of ABA (Stewart & Voetberg, 1985; van Rensburg & Kruger, 

1994). 

The increased production of proline in response to exogenous application of ABA by 

plants may indicate that the mechanism involved with salinity tolerance is firstly linked 

to the production, or lack, of ABA. With ABA the likely hormone responsible for 

triggering increased proline production, it may be that there is no increase in production 

of this triggering substance in plants that are considered to be salt sensitive (eg C919). It 

could also be the case that there is an increase, but no detection of this increase in salt 

sensitive plants. Or that it is detected, but the pathway responsible for proline 

production unaffected. These alternatives provide an argument for further investigation 

into endogenous ABA levels in eucalypts, and its involvement in the induction of 

proline synthesis. 

Callus 

There were only two clones used in the callus investigation, and there was only one 

investigation conducted. This was due to the recalcitrant nature of the shoot cultures 

available when trying to initiate callus. Of the three clones attempted (C919, C066, and 

C502) only C066 and C919 were able to generate any significant amount of callus. This 

process in itself consumed a large amount of time, with many subcultures needed, and a 

great deal of manipulation of the hormones used. However, the results obtained here 

were encouraging, with the salt tolerant clone (C066) producing significantly greater 
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amounts of proline on salt media, than for control media. Callus of the salt sensitive 

clone (C919) grown on salt media also produced more proline, but the levels were not 

as great as those observed for the salt tolerant clone. The proline response observed for 

these two clones in callus culture is not the same as that observed when grown in shoot 

culture. The cause of this response is uncertain, but could be due to the relatively short 

amount of time for which the callus cultures had been established. 

The levels of proline found in the callus sampled, and in particular for the salt tolerant 

clone, were much greater than for those found for the same clones in shoot cultures. A 

similar result was found in Mesembryanthemum crystallinum cells that had been 

established from callus; cells of this species showed a salt response similar to that of the 

whole plant (Vera-Estrella et al, 1999). 

One implication of this trial is that the salt tolerant clone appears to have a cellular 

mechanism operating at a higher level than the salt sensitive clone. This may enable it 

to withstand higher levels of salt and would appear to be in addition to any whole plant 

mechanisms that it may possess. This finding is based upon this clones ability to 

produce large amounts of proline when salt stressed, as opposed to the salt sensitive, 

which had much lower levels of pro line present. 

Conclusions 

From the investigations carried out here, we can conclude that there is a link between 

previously established salt tolerance and an increase in proline production for these 

particular clones of E. camaldulensis. 

Results for chlorophyll content were too varied to be able to make a valid conclusion 

about the usefulness of this parameter as a determinant of salt tolerance. It needs to be 

used in conjunction with another factor. 

Although there appeared to be some correlation between salt tolerant or sensitive clones 

and dry weight, there were no significant results allowing any reasonable conclusions to 

be drawn about the relationship between them. 
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The callus trial identified a cellular response in both the salt tolerant and salt sensitive 

clones, but there may be other mechanisms at the whole plant level as important in 

adding to the plants ability to tolerate salinity. 

The response of the salt sensitive clone to exogenous application of ABA means that 

ABA cannot be used as a substitute for exposure to salt in screening for salt tolerance. 

The application of ABA was very useful in that it lead us to suspect that plants showing 

no salt tolerance are perhaps missing a step(s) of the pathways that lead to increased 

proline production. It would be useful to examine endogenous levels of ABA in both 

salt tolerant and salt sensitive plants to determine if this is indeed the case. 

Unfortunately the very time consuming nature of measuring endogenous ABA 

prevented its study in this investigation. 
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CHAPTER 4 - THE INFLUENCE OF NaCl ON PROLINE 

PRODUCTION IN EUCALYPTUS SPECIES AND CLONES OF E. 
CAMALDULENSIS IN GLASSHOUSE TRIALS 

4.1 INTRODUCTION 

The ability of whole plants to tolerate salt in their environment has been studied in a 

wide range of species, from crop-plants through to woody species. In particular, the 

non-halophytes, or salt tolerators, have been of interest, due to their ability to live in 

saline conditions even though they have no ability to exclude salt. These plants are of 

particular interest to salt tolerance studies in Australia because most of the native 

vegetation falls into this category. 

4.1.1 Proline production in agricultural plants 

Studies that have examined the effect of salt on proline production in whole plants have 

concentrated on species of agricultural importance. These have included wheat (Sadiqov 

et al, 2002), rice (Chuan & Ching, 1996), soybean (El-Samad & Shaddad, 1997), sugar 

beet (Ghoulam et al, 2002), tomato (Hernandez et al, 2000) and beans (Upreti et al, 

1997). 

Due to its importance as a staple food, wheat has been the focus of many investigations 

into its salt tolerance (El-Shintinawy, 2000; Khatkar & Kuhad, 2000; Sadiqov et al, 

2002; Sawahel & Hassan, 2002). A recent study by Kong et al (2001) found that 

cultivars of wheat resistant to salt had higher levels of proline when stressed than did 

salt sensitive genotypes. Cultivars of both seedlings had an increase in proline when 

exposed to salt, but the salt tolerant seedlings showed a much greater increase than the 

salt sensitive. 

Roots of rice (Oryza sativa) seedlings were examined for the effect of NaCl on proline 

accumulation (Chuan & Ching, 1996). The salinity caused a significant increase in 

proline accumulation, and this was accompanied by an associated decrease in root 

growth. 
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While research into breeding salt tolerant crop plants may provide a short-term solution 

to the salinity problem in agronomy, it is not a long-term solution, as soil salinity is 

increasing (Flowers & Yeo, 1995). However, when used in conjunction with 

appropriate land management practices, salt tolerant plants can be very useful in 

reducing soil salinity, especially those grown to remain permanently, such as woody 

plants. 

4.1.2 Salinity and woody plants 

Kozlowski (1997) discussed some of the physiological responses of woody plants to 

salt. The major effects were listed as being: injury due to osmotic and toxic effects, 

reduced seed germination, reduction in vegetative and reproductive growth, changes in 

morphology, and physiological changes including reduction in photosynthesis, protein 

synthesis and metabolism. Adaptations to salinity include avoidance and tolerance 

. strategies. Tolerance strategies include sequestering salts in the vacuole, and osmotic 

adjustment via synthesis of osmoregulatory compounds such as proline, glycine and 

betaine. Avoidance mechanisms for salinity include exclusion, active extrusion or 

dilution of salts. 

While there are many reviews that have examined the way in which woody species 

respond to salinity, and its effects on their morphology and physiology (Kozlowski, 

1997; Niknam and McComb, 2000), there are relatively few that have reported 

screening woody species to select tolerant individuals. McLeod et al ( l  999) investigated 

the impact of flooding and salinity on photosynthesis and water relations in one-year

old seedlings of oak (Quercus spp.), but made no suggestion as to how the factors 

investigated will aid in selecting for greater salt tolerance. 

There has, however, been some research into the effect of salinity into Australian 

woody species, due to the salt problem faced in that country. The effects of salinity and 

the process of selecting Australian woody plants capable of tolerating elevated levels of 

salts was examined by Niknam and McComb (2000). They reviewed a range literature 

that investigated species including Acacia, Casuarina, Eucalyptus, Melaleuca, and 

discussed both mechanisms of tolerance, and means of selection. They listed a 

considerable number of species that have been examined and ranked for salt tolerance, 

but noted that there was a big difference between reports of tolerance by different 
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authors for the same species. This observation suggests that current conventional means 

of selection could be further refined with the aid of an indicator such as proline. 

An important point noted in the reviews by both Kozlowski (1997) and Niknam and 

McComb (2000), was the wide range of variation in salt tolerance within the woody 

species examined. 

4.1.3 Salinity and eucalypts 

Several species of Eucalyptus have been studied under glasshouse conditions and in the 

field to determine the effect of salt on their growth (Blake, 1981; Sands, 1981; van der 

Moezel et al, 1987; van der Moezel et al, 1988; Marcar and Termaat, 1990; Marcar, 

1993; Sun and Dickinson, 1993; Chen et al, 1998; Keiper et al, 1998; Cramer et al, 

1999; Grieve et al, 1999). Bell et al (1993) examined morphological factors including 

height, leaf and root weight and area, and root/shoot ratio of nine-month-old E. 

camaldulensis clones and seedlings. It was concluded that as a species, there was a wide 

range of variation between individuals from different provenances, and that there was 

far less variation between clones than there was between seedlings. Additionally, a 

study by van der Moezel et al (1987) also suggested that there is much genetic variation 

within a species growing in one location. This was further commented upon in a review 

by Marcar et al (1991) who stated that the degree of difference between individuals 

within species such as E. camaldulensis made it dubious to attempt to classify the 

species for its salinity tolerance. 

There is little evidence in the literature of investigation into the effect of salt on proline 

production in eucalypts. Prat and Fathi-Ettai (1990) investigated the effect of salinity on 

seedlings of E. camaldulensis, E. microtheca and E. alba in soil. A number of 

physiological indicators were measured for all three of these species, with E. microtheca 

also having proline measured. Proline production in this species increased when 

seedlings were grown in 300 mM NaCl. Morabito et al (1996) examined the effect of 

salt on proline production in two salt tolerant clones of E. microtheca, with the more 

salt tolerant of the clones producing more proline when salt stressed. This work 

indicated that particular clones of this species did indeed produce pro line in response to 

salt stress. 
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Conventional screening methods use morphological factors such as relative growth rate, 

leaf morbidity and plant height to determine a plants ability to grow under saline 

conditions (Grieve et al, 1999; Lovato et al, 1999). The process is time consuming, 

usually requiring seedlings to be grown for 3-4 months under carefully controlled 

conditions. In addition there is no way of knowing if variation in tree height was due to 

salinity or other factors not related to salt tolerance. Munns (2002) stated that growth 

reduction due to salt stress was very difficult to quantify, and was time dependent. To 

reduce the factors relating to genetic variation that occurs in E. camaldulensis and keep 

experimental variation to a minimum for glasshouse trials, it was decided that a number 

of available clones of E. camaldulensis would be included for both soil and hydroponic 

salt studies. 

4.1.4 Aims 

A range of species of Eucalyptus and clones of E. camaldulensis, using both soil and 

hydroponic solution were examined to determine the effect of salinity on their 

physiology. Preliminary trials were conducted to determine if there was a difference in 

proline production between species when exposed to different levels of salt. 

In particular, the aims for this work were: 

• to determine whether proline would be a faster indicator of salt tolerance 

than measuring purely morphological characteristics (height and weight) as 

has been previously used, 

• to determine whether proline could be used to determine the salt tolerance of 

a species based on previous findings that used traditional means of 

classification, 

• to determine if a ranking of species for salt tolerance based on proline 

production could be produced, and a comparison of this ranking to other lists 

based on physiological factors would be useful or accurate, 

• to investigate proline levels in roots as well as leaves, and how this may 

affect the classification of an individual or species with regard to salt 

tolerance. 
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4.2 MATERIALS AND METHODS 

4.2.1 Experiment 1 

The effect of different levels of NaCl on proline production, height, fresh weight and 

dry weight was examined for seedlings of E. camaldulensis, E. platypus and E. 

diversicolor. In addition to the control, there were four levels of NaCl used: 50, 100, 

200 and 400 mM. To avoid soil sodicity, MgS04. 7H20 and CaCh were added to the 

flooding solution in the ratio of 10:2:1 (Na: Mg: Ca). Control plants and plants grown 

with solution containing 50 mM NaCl were flushed with these solutions from day 1. For 

higher salt treatments, plants were flushed twice weekly with a solution that contained a 

50 mM increase in NaCl with each watering, until the final concentration was reached. 

At the same time, pots that had reached their experimental concentration were also 

flushed twice weekly with the appropriate solution. Plants were watered to field 

capacity daily using deionised water, and flushed weekly with experimental solution. At 

the completion of eight weeks, p roline was measured in the leaves of surviving plants, 

as were height, fresh and dry weights. 

4.2.2 Experiment 2 

The effect of NaCl on one clone of E. camaldulensis (C066) and seedlings of E. 

camaldulensis, E. wandoo and E. diversicolor was examined. Proline (from leaves) was 

measured weekly for 4 weeks ( control and 200 mM). The effect of rate of application of 

salt on the clone C066 was examined by applying salt in the concentration of 200 mM 

at time zero, while a further treatment involved increasing by 50 mM twice weekly to 

the concentration of 200 mM. The three species were flushed with either control 

solution, or a solution containing 200 mM NaCl. Heights were measured at completion. 

4.2.3 Experiment 3 

Eight species (E. camaldulensis, E. rudis, E. wandoo, E. g/obulus, E. diversicolor, E. 

platypus var heterophylla, E. lesouefii, E. /oxophleba) of eucalypts were exposed to 

either control or a salt concentration of 200 mM. After 3 weeks of these treatments, 

proline was measured in the leaves of all plants, and then in both roots and leaves after 

5 weeks. Heights were measured at 5 weeks. Species were ranked for their salt tolerance 
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using proline data from the roots and the leaves. The ranking value was found by 

dividing the amount of proline in the salt treated plants by the amount of proline in 

control plants. Plants ranked using this method were then compared to species as ranked 

by Pepper and Craig ( 1986) and Marcar et al ( 1991 ). 

4.2.4 Experiment 4 

Two salt tolerant clones C066 and C502 of E. camaldulensis and seven species (E. 

camaldulensis, E. rudis, E. wandoo, E. globulus, E. diversicolor, E. platypus var 

heterophy/la, E. lesouefii) of eucalypt were exposed to either control or a salt 

concentration of 200 mM. After 3 weeks of these treatments, proline was measured in 

both the roots and leaves of all plants. Species were ranked for their salt tolerance using 

proline data from the roots and the leaves. The ranking value was found by dividing the 

amount of proline in the salt treated plants by the amount of proline in control plants. 

Plants ranked using this method were then compared to species as ranked by Pepper and 

Craig ( 1986) and Marcar et al ( 1991 ). 

4.2.5 Experiment 5 

The effect of different levels of NaCl on proline production in four clones of E. 

camaldulensis (C903, C919, C066, C502) was investigated using hydroponic culture. 

Three month old plants of the clones were grown in a hydroponic solution that 

contained 200 mM NaCl for a period of four weeks (Chapter 2.2.2). Proline was 

measured weekly and root and shoot weights were measured at four weeks. 
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4.3 RESULTS 

4.3.1 Experiment 1 

For E. camaldulensis, control seedlings and those grown on the treatment of 50 mM 

NaCl were significantly taller relative to the other treatments (Fig. 4.l a). For E. platypus 

the treatments of 50 and 100 mM NaCl were significantly taller than for 400 mM but 

not from either the control or 200 mM (Fig. 4. l b). For E. diversicolor the treatments of 

50 and 100 mM NaCl were significantly taller than for all other treatments. The 

treatment of 400 mM was significantly shorter than all of the other treatments (Fig. 

4.l c). When seedlings of E. camaldulensis, E. platypus, and E. diversicolor were 

exposed to different levels of NaCl there was a significant difference between 

treatments for heights when expressed as a percentage relative to the control (Fig. 4. 2a). 

For dry weight expressed as a percentage of control, there was a significant difference 

between treatments for all species. Plants of E. camaldulensis grown on control and 50 

mM NaCl were significantly heavier than for all of the other treatments, but were not 

different from each other. Growth of plants of E. platypus on 400 mM NaCl was 

significantly less than for all other treatments or the control. There was no difference 

between the control and the other treatments of 50, 100 and 200 mM NaCl (Fig. 4. 2b ). 

Survival for all species was not reduced for the control and for the treatments of 50, 100 

and 200 mM NaCl. However, at 400 mM NaCl there was reduced survival for all 

species, with E. diversicolor showing survival of 8%, E. platypus showing survival of 

92%, and E. camaldulensis having survival of 83% (Fig. 4. 2c). 

There was no significant difference in proline production between treatments for 

seedlings of E. platypus or E. diversicolor (Fig. 4.3b,c ). E. camaldulensis plants had 

significantly higher levels of pro line than the control when grown on the salt treatments 

of 100 (2x), 200 (3x) and 400 mM NaCl (4x) (Fig. 4.3a). For E. diversicolor although 

there was no effect of salt on proline production, the only survivor at 400 mM had a 

particularly high proline level of 17. 27 µmol pro g-1 :twt. 
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Figure 4.1: The effect of four different concentrations of Na Cl ( 50 mM, 100 mM, 200 

mM and 400 mM) on heights for three species of eucalypt; a) E. cama/dulensis, b) E. 

platypus, and c) E. diversicolor. Vertical bars are standard errors. Superscript letters 

denote significant difference (p < 0.05). 
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Figure 4.2: The effect of four different concentrations of NaCl (50 m.M, 100 m.M, 200 

mM and 400 m.M) on a) height, b) weight and c) survival for three species of eucalypt; 

E. camaldulensis, E. platypus, and E. diversicolor. Vertical bars are standard errors. 

Superscript letters denote significant difference (p < 0.05). 
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Figure 4.3: The effect of four different concentrations of NaCl (50 mM, 100 mM, 200 

mM and 400 mM) on proline production for three species of eucalypt; a) E. 

camaldulensis, b) E. platypus, and c) E. diversicolor. Vertical bars are standard errors. 

Superscript letters denote significant difference (p < 0.05). 
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As there was only one survivor of this species at 400 mM, it was decided that it would 

be inappropriate to draw any conclusions based on one plant, therefore it was not 

included in any statistical comparisons. 

General health, condition of shoots and relative growth for each of the three species 

after growing on different salt levels can be seen in Figure's 4.4 and 4.5 (E. 

camaldulensis), Figure's 4.6 and 4.7 (E. platypus) and Figure's 4.8 and 4.9 (E. 

diversicolor). 

4.3.2 Experiment 2 

For seedling material proline production varied between species and in response to salt 

and over time. E. camaldulensis and clone C066 had a significant increase in proline in 

the salt treatment (Fig. 4.10). The opposite occurred for E. diversicolor with control 

plants producing more proline than salt treated plants and for E. wandoo there was no 

difference between salt treatment and controls. The differences occurred after 3 weeks 

for E. camaldulensis and 4 weeks for E. diversicolor. 

For the clone (C066) there was no difference in proline production between plants 

grown with the immediate application of 200 mM NaCl, and those that had a gradual 

increase to this salt level (Fig. 4.11 ). 

There was an effect of treatment on height for E. camaldulensis, with the salt treated 

plants being significantly taller than the control plants. There was no effect of treatment 

on height for any of the other species (E. platypus, E. wandoo, E. diversicolor, or the 

clone C066) (Fig. 4.12). 
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30cm 

Figure 4.4: The effect of different levels of NaCl on plant growth for E. camaldulensis. 

From left to right: control, 50, 100, 200 and 400 mM NaCl at a) three weeks and b) six 

weeks. 
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10cm 

Figure 4.5: The effect of 400 mM NaCl on seedlings of E. camaldulensis seedlings at 

three weeks. 
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Figure 4.6: The effect of different levels of NaCl on plant growth for E. platypus. From 

left to right: control, 50, 100, 200 and 400 mM NaCl at a) three weeks and b) six weeks. 

63 



10cm 

Figure 4.7: The effect of 400 mM NaCl on seedlings of E. platypus seedlings at three 

weeks. 
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Figure 4.8: The effect of different levels of NaCl on plant growth for E. diversicolor. 

From left to right: control, 50, 100, 200 and 400 mM NaCl at a) three weeks and b) six 

weeks. 
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Figure 4.9: The effect of 400 mM NaCl on seedlings of E. diversicolor seedlings at 

three weeks. 
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Figure 4.10: The effect of 200 mM NaCl on proline production for three species of 

Eucalyptus and one clone of E. camaldulensis (C066) after four weeks. Vertical bars are 

standard errors. Superscript letters denote significant difference (p < 0.05). 
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Figure 4.11: The effect of gradual (2 x 50 mM / week) or total application of 200 mM 

NaCl on proline production over four weeks for E. camaldulensis clone C066. Vertical 

bars are standard errors. Superscript letters denote significant difference (p < 0.05). 
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Figure 4.12: The effect of 200 mM NaCl on height for three species of Eucalyptus and 

one clone of E. camaldulensis (C066) after four weeks. Vertical bars are standard errors. 

Superscript letters denote significant difference (p < 0.05). 
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4.3.3 Experiment 3 

Proline 

After three weeks, the proline in the leaves was significantly higher than controls for E. 

camaldulensis, E. rudis and E. platypus (Fig. 4.13a). After five weeks, there was a 

significant difference between species for the total amount of leaf proline produced, 

with E. platypus and E. wandoo producing the greatest amount of proline, and E. 

camaldulensis, E. rudis and E. globulus producing the least (Fig. 4.13b ). After five 

weeks the roots of E. camaldulensis produced the greatest quantity of proline, and E. 

diversicolor the lowest (Fig. 4.13c ). 

Species have been ranked according to the difference in proline production between 

control pants and for those grown on 200 mM NaCl for both roots and leaves (Table 

4.1 ). Values are given separately for leaves after 3 and 5 weeks, and for roots after 5 

weeks. Species are ranked such that the species with the highest difference in proline 

production between control and salt treatment is at the top. 

Heights 

For heights, there was a significant difference between species and also for treatment. 

All salt treated plants were shorter than the controls, but this difference was not 

significant for E. globulus, E. loxophleba, and E. lesouefii (Fig. 4.14). 

Survival 

There was 100% survival for all species in the controls except for E. lesouefii which had 

89% survival. For salt treatments, there was 100% survival for all species except E. 

globulus (78%), E. wandoo (89%), E. loxophleba (89%) and E. lesouefii (67%) (Fig. 

4.15). 

Weights 

There was no significant difference between species for dry weight of shoots, but there 

was a significant difference between treatments, with E. platypus the only species to 

show a significant reduction in dry weight for plants in salt (Fig. 4.16a). For the roots, 

there was a significant difference between species but not for treatment, with E. wandoo 

showing a significant reduction in dry weight for plants in salt (Fig. 4.16b ). 
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Figure 4.13: The effect of 200 mM NaCl on proline production for 8 species of 

Eucalyptus in a) leaves after 3 weeks b) leaves after 5 weeks and c) roots after five 

weeks. Vertical bars are standard errors. Superscript letters denote significant difference 

(p < 0.05). 
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Table 4. 1 :  Ranking of eight Eucalyptus spp. for their salt tolerance based on proline 

levels in the leaves at a) week 3 and b) week 5 and c) roots at week 5. Values derived 

from the difference in the proline from control plants and salt (200 mM NaCl) treated 

plants (ratio). 

(a) Species Leaves week 3 (ratio) 

E. camaldulensis 2.46 

E. wandoo 1 .86 

E. rudis 1 .73 

E. diversicolor 1 .28 

E. globulus -0.3 1 

E. lesouefii -0.78 

E. platypus var heterophylla - 1 .05 

E. loxophleba - 1 .06 

(b) Species Leaves week 5 (ratio) 

E. diversicolor 1 .08 

E. loxophleba 0.33 

E. wandoo 0.09 

E. globulus 0.06 

E. platypus var heterophylla -0.07 

E. camaldulensis -0. 1 5  

E. rudis -0.22 

E. lesouefii -1 .70 

(c) Species Roots week 5 (ratio) 

E. camaldulensis 1 1 .54 

E. rudis 1 .37 

E. lesouefii 0.82 

E. platypus var heterophylla 0.7 1 

E. loxophleba 0.44 

E. globulus 0.24 

E. wandoo 0.09 

E. diversicolor -0.21 
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Figure 4.14: The effect of 200 mM NaCl on heights for 8 species of Eucalyptus after 

five weeks. Vertical bars are standard errors. Superscript letters denote significant 

difference (p < 0.05). 
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4.3.4 Experiment 4 

This trial investigated the effect of NaCl on two clones of E. camaldulensis and 

seedlings of 7 species. There was a difference between species in the amount of pro line 

produced (Fig. 4. 17). The species that had the highest concentration of proline in the 

leaves was the salt tolerant E. camaldulensis clone C066 (2. 05 µm g fw-1 ), and the 

lowest was E. lesouefii (0. 37 µm g fw-1 ). In the roots, the highest proline was found in 

E. camaldulensis (2.66 µm g fw-1 ), and the lowest in E. globulus (0. 95 µm g fw- 1 ). 

There was no significant difference in proline content between control and treated plants 

for leaf proline, except for the salt tolerant E. camaldulensis clone C066 (Fig. 4. 17a). 

There was, however, greater variation displayed in the root proline content, with a 

significant difference between treatments found for E. camaldulensis, E. rudis, E. 

camaldulensis clone C066 & E. platypus var heterophylla, all of which had increased 

proline in the salted treatments (Fig. 4. 17b). 

The species as ranked for salt tolerance using relative proline values are illustrated in 

Table 4.2. Root proline values differentiate species more clearly than leaf proline 

values. 
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Figure 4.17: The effect of 200 mM NaCl on proline production for 7 species of 
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Table 4.2: Species ranking for salinity tolerance based on proline production in a) 

leaves and b) roots for seven species of eucalypt and two clones of E. camaldulensis 

after three weeks. Negative value indicates greater proline in control. 

(a) Species Leaf proline difference 

E. camaldulensis (C066) 1 .08 

E. diversicolor 0.12 

E. globulus 0.06 

E. camaldulensis (C502) 0.02 

E. camaldulensis 0 

E. wandoo -0.07 

E. rudis -0.22 

E. platypus var heterophylla -0.29 

E. lesouefii -0.69 

(b) Species Root proline difference 

E. camaldulensis 1 .97 

E. rudis 1 .65 

E. camaldulensis (C066) 1 .65 

E. camaldulensis (C502) 0.93 

E. wandoo 0.67 

E. lesouefii 0.60 

E. platypus var heterophylla 0.55 

E. diversicolor 0.51 

E. globulus 0.07 
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4.3.5 Experiment 5 

Proline Production 

There was a significant difference in proline production between clones after four weeks 

with clones C91 9  ( 12.6 ± 0.6 µmol pro g-1 fwt) and C066 (9.4 ± 0.3 µmol pro g-1 fwt) 

producing significantly more proline than for the other two clones (C903 3.2 ± 0.9 µmol 

pro g-1fwt and C502 3.2 ± 1 . 1  µmol pro g- 1fwt). However, the two salt tolerant clones 

(C066 and C502) produced significantly more proline when grown in saline hydroponic 

solution than did the control plants (Fig. 4. 1 8). On 200 mM NaCl hydroponic solution, 

clone C066 produced 14 .1  ± 1 .7 µmol pro g-
1
fwt, and C502 produced 5.3 ± 1 .0 µmol 

pro g-1fwt, while for control they produced 4.6 ± 1 .0 µmol pro g-1 fwt (C066) and 1 . 1  ± 

0.2 µmol pro g-1fwt (C502). There was no effect of treatment at week four for the two 

salt sensitive clones. Clone C919  contained 14.2 ± 2.5 µmol pro g-1fwt on 200 mM 

NaCl and 10.9 ± 3 .6 µmol pro g-1fwt for the control. Clone C903 contained 2.8 ± 0.3 

µmol pro g- 1fwt on 200 mM NaCl and 3.6 ± 0.6 µmol pro g-
1
fwt for the control. 

Weights 

There was a significant decrease in dry weight for plants grown in 200 mM NaCl for 

both of the salt tolerant clones (C066 and C502), but no significant difference in dry 

weight for the salt sensitive clones (C903 and C91 9) (Fig. 4. 1 9). 

77 



20 
• Control • 200 rrM Naa 

18  a 

16  

14 

i 1 2  

10  

,!; 
8 

6 

4 

2 

0 

C919 C903 C066 C502 

Oone 

Figure 4.18: The effect of 200 mM NaCl on proline production at four weeks for two 

salt sensitive (C919 and C903) and two salt tolerant (C066 and C502) clones of E. 

camaldulensis grown in hydroponic culture. Vertical bars are standard errors. 

Superscript letters denote significant difference (p < 0.05). 
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Figure 4.19: The effect of 200 mM NaCl on dry weight at four weeks for two salt 

sensitive (C919 and C903) and two salt tolerant (C066 and C502) clones of E. 

camaldulensis grown in hydroponic culture. Vertical bars are standard errors. 

Superscript letters denote significant difference (p < 0.05). 

78 



4.4 DISCUSSION 

The difference in heights of the species grown on salt could be explained by their 

morphology. A species such as E. platypus had little variation in height values for plants 

grown on a range of treatments, while a species like E. camaldulensis had a significant 

drop in heights with increasing salt concentrations. The species E. platypus var 

heterophylla is a bushy tree, with many spreading lateral branches. E. camaldulensis 

grows fairly straight, with little lateral growth. With the period over which these trials 

were conducted, there was insufficient time for a species like E. platypus to achieve a 

significant height difference, but there is time for taller species such as E. camaldulensis 

and E. diversicolor. As a result, little emphasis is placed on the results obtained for tree 

heights. 

The use of tree height as a factor in determining salt tolerance may be questioned due to 

results found in the first trial in this investigation. Firstly, as explained previously, the 

morphology of some species means they are unlikely to show a significant height 

reduction over the period of a glasshouse trial. Secondly, the use of retardation of tree 

height when subjected to salt stress being used as a determinant could also be 

questioned. Sun & Dickinson (1993) compared 16 species of Eucalyptus for salt 

tolerance by measuring morphological characteristics, including height, and stated that 

in general, species with high salt tolerance show a lesser reduction in growth. The 

results obtained in the first glasshouse trial in this investigation would appear to 

contradict this finding. E. camaldulensis produced significantly higher levels of proline 

than controls, but also showed a significant reduction in height. While the species E. 

diversicolor showed no significant reduction in height when grown on various 

concentrations of salt, and also showed no effect of salt on proline production. 

Additionally, there was 100% survival of this species up to 200 mM NaCl. 

In the first trial, two of the species (E. camaldulensis and E. diversicolor) showed a 

greater growth response at 50 mM than they did for the control. This observation has 

also been reported for other eucalypt species, including E. camaldulensis, in a study by 

Sun and Dickinson (1993). However, the authors made no comment as to how this 

growth effect may have occurred. This effect has also been reported for some Casuarina 

species (El-Lakany and Luard, 1982), and has commonly been reported for crop species 
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for which simulation models have been developed to account for this (van Genutchen & 

Hoffinan, 1984). 

It may be possible that some species are gaining an advantage (particularly if they are 

salt tolerant) from the extra er that is available from such experiments. In light of this, 

the salt tolerance of E. diversico/or may warrant further investigation, as it is generally 

considered to be salt sensitive. However, there is no published information on the salt 

tolerance of this species. 

If the species used in this first trial are classified for salt tolerance according to the 

conclusions of Sun & Dickinson (1993), then E. camaldulensis would be classified as 

salt sensitive, and E. diversico/or would be salt tolerant. Previous studies and findings 

(Blake, 1981; Sands, 1981; Akilan, et al, 1997) have generally agreed that E. 
camaldulensis as a species is highly salt tolerant. There is little available literature on 

the salt tolerance of E. diversicolor, but it is fairly widely believed to be salt sensitive. 

The results obtained in the investigations certainly indicated that this was the case with 

salt levels of 400 mM sufficient to cause 92% mortality after a short period of time. 

A study by van der Moezel & Bell (1987) investigated a range of Eucalyptus species 

and drew conclusions based on both height and survival, with the tallest surviving 

individuals being classified as salt tolerant, and those with a high mortality rate and 

reduced growth as salt sensitive. However, no significance was given to these results in 

terms of their ranking as a species for salt tolerance. Survival was also measured in the 

first trial in this investigation (Experiment 4.3 .1 ), and while it provides more 

information about the salinity tolerance of a species, it would be unwise to draw any 

significant conclusions about the salt tolerance of the species investigated, due to the 

small number of individuals examined. 

This work might lead us to ask how useful are morphological characteristics, and in 

particular height, as a determinant of salt tolerance. Several papers (Sands, 1981; van 

der Moezel & Bell, 1987) have indicated in their conclusions that intraspecific variation 

due to provenance is more likely to be the cause of any unexplained findings about the 

degree of salt tolerance for different species. This work supports the conclusion that 

growth, or lack of, for a particular species could be due to factors other than just soil 

80 



salinity. Any conclusions drawn about the salt tolerance of a particular species based 

solely on a morphological characteristic in isolation might therefore be questionable. 

The inclusion of a physiological measure, such as proline, as an indicator of salt 

tolerance may therefore be useful in conjunction with morphological features. In this 

work a greater proline response to salt was found in the roots than in the leaves for most 

of the species sampled. Hence, a greater differentiation between species was achieved 

using root proline data. If proline is playing the role of osmoticum, as suggested by 

Kavi Kishor et al (1995) and Van Rensburg et al (1993), then a higher proline response 

in the roots could be due to its proximity to the osmotic stress. 

There is evidence that accumulation of pro line plays a role in root growth, rather than in 

adjustment of osmotic potential (Bray, 1997). However, research measuring proline in 

other species (Rodriguez et al, 1997; Petrusa and Winicov, 1997; Lutts et al, 1999), has 

reported higher levels in the leaves than in the roots, this included rice, maize and 

alfalfa. The difference in reports of where proline concentrations were found to be 

greatest means that some preliminary investigations should be conducted to determine 

whether the species in question has a greater response in the roots or the leaves. 

There are some discrepancies between rankings using proline and those produced using 

conventional trials. The rankings in the table (Table 4.3) were based on a calculation 

that divided the proline from the roots of the salt treated plants by the proline from the 

roots of the control plants. This was done to compensate for the high background levels 

of proline produced by some species used in the experimentation. The raw proline 

values alone did not give a very accurate representation of the salt tolerance of the 

various species. 

Any conclusions made about the ranking of species for their salinity tolerance based 

upon work carried out in this investigation must also be carefully considered. The 

differences in the rankings listed in Table 4.3 could be attributed to provenance or other 

environmental factors rather than the salt tolerance of the species tested. As has been 

discussed in several papers that have examined the salinity tolerance of Australian 

native species (van der Moezel & Bell, 1987; Marcar et al, 1991 ; Bell et al, 1993). The 

seed stock used in these trials was purchased from a commercial seed supplier, and was 

not chosen for any particular morphological or physiological traits. It would be incorrect 
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Table 4.3 : A comparison of rankings for salt tolerance. The first two columns are rankings by Pepper and Craig (1 986), Marcar et al ( 1991 )  which 
used conventional means to classify species. The remaining columns are results from this investigation, and used relative proline accumulation. 
Highlights indicate species used in these trials. 

Pepper & Craig (1986) Marcar et al (1991) 

E. spathulata E. camaldulensis 

E. sargentii E. brockwayi 

E. diptera E. astringens 

E. occidentalis E. largiflorens 

E. platypus E. leucoxylon 

E. wandoo E. occidentalis 

E. salmonophloia E. sargentii 

E. kondininensis E. spathulata 

E. loxophleba E. microtheca 

E. rudis 

E. camaldulensis 

E. robusta 

E. kondininensis 

E. cladocalyx 

E. platypus 

E. diptera 

E. wandoo 

E. loxophleba 

E. tetricornis 

E. halophi/a 

E. rudis 

E. incrassate 

E. salicola 

E. myriadena 

E. coolabah var. 

hodoclada 

4.3.3 leaves 3 weeks 

E. camaldulensis 

E. wandoo 

E. rudis 

E. diversicolor 

E. g/obulus 

E. /esouefii 

E. platypus 

E. loxophleba 

4.3.3 leaves 5 weeks 4.3 .3 roots 5 weeks 

E. diversicolor E. camaldulensis 

E. loxophleba E. rudis 

E. wandoo E. lesouefii 

E. globulus E. platypus 

E. platypus E. loxoph/eba 

E. camaldulensis E. g/obulus 

E. rudis E. wandoo 

E. /esouefii E. diversicolor 

4.3 .4 leaves 3 weeks 

E. camaldulensis (C066) 

E. diversicolor 

E. globulus 

E. camaldulensis (C502) 

E. camaldulensis 

E. wandoo 

E. rudis 

E. platypus 

E. lesouefii 

4.3 .4 roots 3 weeks 

E. camaldulensis 

E. rudis 

E. camaldulensis (C066) 

E. camaldulensis (C502) 

E. wandoo 

E. lesouefii 

E. platypus 

E. diversicolor 

E. globulus 



to draw any significant conclusions about the degree of salt tolerance of any species 

when compared to another given the wide range of intra-specific variation that is 

possible, particularly with E. camaldulensis, and the very small percentage of the 

genotype that the seed selection represents. Therefore the rankings only apply to the 

particular seed lots used. 

However, the results of the two trials (Chapter 4.2.3 and 4.2.4) that examined a range of 

species of Eucalyptus support previous findings that show E. camaldulensis as being the 

most salt tolerant when compared to a range of other Eucalyptus species. In particular, 

experiment 3 (Chapter 4.2.3) included two salt tolerant clones of E. camaldulensis 

(C066 and C502), and these also rated very high on the list in terms of salt tolerance. 

Given these results, it seems reasonable to conclude that some determination of salt 

tolerance of a species, and Eucalyptus in particular, can be made with the use of proline 

analysis. 

Ranking species for their salt tolerance was not the major aim of this investigation. The 

focus was on determining whether proline could be used as a determinant of salt 

tolerance. This study indicates that a reasonably accurate measure of the salinity 

tolerance of an individual after a few weeks of growing in saline conditions can be 

obtained. The results of 4.2.3 support the hypothesis that proline can be used as a 

measure of salt tolerance, with these two clones having a clear difference between the 

amount of proline produced when stressed as opposed to control conditions. By 

measuring the proline levels of salt treated plants from a wide range of provenances, it 

may be possible to draw a more significant conclusion about the salinity tolerance 

within various species. 

Recently the use of selected clones is being examined in detail due to their ability to 

overcome the problems of waterlogging and salinity that are common to areas where 

plantings are to occur (Morris & Collopy, 1999; Niknam & McComb, 2000). In 

particular, clones of E. camaldulensis with advantageous characteristics in their 

genotypes, such as the ability to tolerate higher soil salt levels, or to produce 

aerenchyma in waterlogged areas, have been developed (Bell, 1999). These clonal 

plants have potential use for rehabilitation and revegetation of large areas of salt 

affected land, but the question is how these advantageous plants are selected. Whilst 

some work has been conducted into the heritability of salt tolerant traits in Eucalyptus 
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species, little work has been done with regards to identifying genes related to salt 

tolerance in woody species (Niknam & McComb, 2000). There is as yet no DNA 

marker identified that can be used to screen individuals, so conventional selection for 

salt tolerance will likely be used for some time yet. 

Conventional selection methods involve mass plantings in salt affected areas, with the 

survivors being classed as salt tolerant. Further classification may be possible based on 

morphology, but how accurate is this method of distinction? There are a number of 

environmental and genetic factors that may be playing a role in the tolerance of these 

species, and relying on height, weight or some other morphological factor may result in 

selection of an unfit individual. For example, the height of a particular individual may 

be due to some other environmental factor other than the stress being tested. In the case 

of a field trial, an individual may have been subject to poorer soil than another replicate. 

In the case of genetic factors, one individual may have been genetically predisposed to 

being shorter growing than another. Does this lead to the conclusion that this tree is less 

salt tolerant than one which is taller? Proline could be used as a further determinate of 

salt tolerance in such a conventional trial. If a field trial of 1000 individuals was 

conducted, and there were 100 survivors, these individuals could be sampled and 

proline determination used to differentiate between these survivors. Those with higher 

proline levels could then be selected as the most salt tolerant individuals. 

Many plants have demonstrated a significant increase in proline when salt stressed. 

Arabidopsis thaliana had an eight fold increase when grown on 120 mM NaCl (Chiang 

and Dandekar, 1991), soybean (Glycine max L.) an 11 fold increase on 200 mM NaCl 

(Moftah and Michel, 1987) and rice a four fold increase on 50 mM (Chou et al, 1990). 

However, while proline has been shown to have a clear role in osmoprotection in 

bacteria such as Escherichia coli, any conclusions about osmotolerance in higher plants 

are inferences and not direct observations (Delauney and Verma, 1993). However, a 

study into the adaptation of mitochondria to NaCl in maize found that proline has a 

direct role in protecting the Complex II electron transport chain, even when present at 

low levels. 

This work did not focus on the role of proline in a stressed plant, but rather whether 

proline could be used as an indicator of salt tolerance. There is much conjecture in the 

literature about the actual role of proline, ranging from its role as an osmoprotectant 
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(Delauney and Verma, 1 993) to its role in normal cell function (Hare & Cress, 2001 ). 

However, the role that proline plays in the normal growth and development of a plant 

suggests that its role as osmoticum should not be the major consideration (Hare & 

Cress, 1997). 

These investigations into salt tolerance in eucalypts suggest that the role of proline is 

that of maintenance of normal cell function rather than osmoprotectant. In this study, 

apart from a few exceptions, the proline levels in stressed plants were at most only 

twice that of control plants. This level of proline is insufficient to provide an adequate 

decrease in water potential to overcome the negative osmotic effects created by the 

levels of salt used. 

At a fundamental level, this work attempted to investigate whether proline could be 

used to differentiate species when exposed to salt. In every trial in this investigation that 

compared proline levels between species there was a significant difference between 

species. This type of comparison is valid provided that the individuals of the species 

being examined are representative of the variation that exists within that species. 

On a more specific level, a further aim was to determine for each species whether the 

difference in proline production between control plants and those exposed to differing 

levels of salinity could be used to differentiate individuals. Again, this was supported by 

the results, with some plants showing such a reaction, and others having no response. 

Although there may be other factors influencing the production of proline in the plants 

investigated, it is reasonable to conclude that proline may be used to more rapidly 

determine the salt tolerance of individuals. 
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CHAPTER 5 - IMPLICATIONS FOR RESULTS FOUND IN THIS 

WORK 

Screening for salt tolerance in eucalypts 

Conventional methods for selection of salt tolerant clones produces individuals that are 

capable of survival in unfavourable conditions (van der Moezel et al, 1998; Marcar, 

1993; Akilan et al, 1997; Lovato et al, 1999). Problems associated with such selections 

relate to where the selection process takes place (i. e. in the field or in the glasshouse) 

and the lack of understanding of the mechanisms of salt tolerance. In field trials it may 

be unclear as to whether survival is a result of a plants ability to tolerate salt, or some 

other independent factor. Field trials are highly dynamic (compared to glasshouse tests) 

and soil salinity will vary spatially and temporally. There are many factors that can 

change the level of salinity including rainfall, soil type and structure, changes in 

groundwater depth, and any rock that may be present at the surface of sub-surface 

(Niknam and McComb, 2000). Plants may not be exposed to the same level of salinity 

because they may be placed in a position where they can access fresh water, or where 

aspect influences exposure to salt. 

Glasshouse tests to select for desirable individuals also have drawbacks. Usually, it is 

only NaCl that is added to pots in glasshouse trials. In the field it is likely to be other 

salts present that may affect a plant' s tolerance. Plants in glasshouse trials are usually 

grown in either a sand medium or a nutrient solution. When plants are grown in a free 

draining pot, roots of plants in these pots may be subjected to higher levels of salt as 

water is lost to evaporation and transpiration. Another issue is how to apply the salt if a 

high concentration is to be tested. Salt shock may occur and have an adverse affect on 

the plants ability to tolerate salt if it is immediately subjected to a high concentration of 

salt. 

A study by Loewenstein and Pallardy (1998) illustrates the above differences. They 

investigated three deciduous angiosperms (black walnut, sugar maple and white oak) to 

determine the origin of ABA in xylem sap. While they couldn' t draw a clear conclusion 

about ABA origin for these trees, they did find that there was a marked difference in 

ABA production between seedlings in the glasshouse and mature trees, regardless of 
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whether the plants were controls or stressed. This example illustrates the clear 

differences in physiology that can be present between glasshouse and field trials. 

There are advantages and disadvantages to both field and glasshouse trials, and 

selection of tolerant individuals using either approach will produce some plants whose 

tolerance can be questioned. An important question is how do we differentiate between 

those individuals that have been selected if the pedigree of some individuals is suspect? 

The use of proline measurement may assist in this task, with the ability to further 

differentiate between salt tolerant individuals. 

A major aim of this investigation was to determine whether proline production can be 

used to further differentiate between salt tolerant individuals or species. This has been 

examined in several ways by measuring background (unstressed) levels of proline, 

proline production after exposure to salt and the sampling roots or leaves of plants to 

examine the location (roots or leaves) of proline accumulation. From the results, in both 

tissue culture and glasshouse experiments, it is not possible to use background proline 

levels as an indicator of salt tolerance in eucalypts. If classification had been made by 

simply ranking species according to the highest producer of proline, then the salt 

sensitive species or clones would be ranked highly (Table 4.3). Species used in this 

work that had been classified as salt sensitive by conventional screening methods had a 

higher background level of pro line in controls than did salt tolerant species. In addition, 

clones recognised as being salt sensitive and salt tolerant (within a salt tolerant species) 

could not be differentiated on the basis of background levels of proline. 

The measurement of proline after salt stress, however, produced a more useful and 

consistent result. When salt stressed, salt sensitive species or clones showed no 

significant increase in production of proline compared with controls. The salt tolerant 

species or clones, however, consistently produced more proline when salt stressed. This 

indicates that plants need to be salt stressed for any proline indicator to be of use in 

classification of plants for salt tolerance. By ranking species according to this method, it 

is believed that a more accurate representation of relative salt tolerance is achieved. It 

also means that comparisons can readily be made within species, giving the capacity to 

further differentiate cloned individuals that have been recognised as salt tolerant using 

glasshouse screening. 
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Another important observation of this work was that greater amounts of proline were 

found in the roots rather than leaves, and also the greater relative difference in the roots 

when plants were stressed. It seems logical that proline accumulation be greater in roots 

than leaves because it is the roots that are the primary exposure area for the salts 

dissolved in soil. There are two ways that accumulation in this part of the plant would 

be of benefit to a stressed plant. Firstly, if the plant is actively excluding salts from the 

root zone, an energy requiring process, then it would be expected that the plant would 

have reduced growth with higher energy levels in the roots. This type of effect has been 

observed in several plant species that have been subjected to osmotic stress (Hare et al, 

1998). Secondly, if the osmotic potential is not lowered at the root zone then it would be 

difficult for the plant to continue to take up water. There is evidence to support this with 

ABA and proline levels being found in higher concentrations in the roots and leaves for 

some species. For example, Jia et al (2002) found that roots of maize accumulated ABA 

in far greater concentrations than did shoots and attributed this to root tissue having 

osmosensing mechanisms and high tolerance to salt toxicity. They suggested that this 

was the result of adaptation caused by exposure of the roots to salt stress. What is clear 

is that the role of ABA in the production of proline and the site of ABA production 

warrant further investigation. 

Measurement of proline: Advantages and Disadvantages 

One of the drawbacks with the current method used to determine proline, the acid

ninhydrin method (Bates et al, 1973), is that a reasonably large number of samples were 

required per species in order to lower the standard error to an acceptable level. 

However, this may have been due to intra-specific variation rather than some fault with 

the analysis method. This may certainly become a limiting factor when analysing a large 

number of individuals to compare species, but would be less relevant when screening to 

identify individuals. Processing time may also be another limiting factor in the use of 

proline, with both the preparation and analysis procedures being labour intensive. 

An alternative method for proline determination using capillary electrophoresis was 

examined in this work. The early work with analysis of proline standards gave a 

standard curve with an extremely high r (>0.99) value, consistently higher than that 

achieved for the acid-ninhydrin method. Unfortunately, analysis of samples proved to 

be problematic for a number of reasons. Firstly, the small amounts of proline present in 
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the leaf samples were beyond the limit of detection for the available CE instrument. 

More importantly, the high levels of phenolics and other compounds present in the 

leaves of eucalypts made it difficult to identify the proline peak, again due to the 

relatively low amount of pro line present. 

A drawback to any of these methods, however, is that some extra degree of skill is 

required to operate the necessary equipment (spectrophotometer, capillary 

electrophoresis). The more basic measurements, such as survival, height and weight, 

can be performed relatively easily. Despite this, other proposed methods for screening 

for salt tolerance are far more complicated and require a much higher degree of 

expertise. One example is that of Munns et al (2002) who propose the use of marker 

assisted selection of advantageous physiological traits as a means of selecting salt 

tolerant crop plants, as opposed to genetically modifying a plant (Borsani et al, 2003) in 

order to alter its genetic makeup to produce salt tolerant plants. This work proposed the 

screening of potential plants for genetic markers that are indicative of greater salt 

tolerance, but there are a number of drawbacks with such a system. Firstly, the authors 

note that whilst some markers have been identified for a number of crop species, these 

are not robust. Limited genetic diversity of the crop plants in question could also reduce 

the effectiveness of such a system. Lastly, such techniques are more complex than that 

of measuring a compound, such as proline, and would require skills in molecular 

biology. There is also some question as to the effectiveness of using specific genetic 

markers to develop new salt tolerant species. 

Implications of using proline 

One of the outcomes of this study is that pro line can be used to determine salt tolerance 

after exposure to salt for a relatively short period of time (three weeks). It would not be 

possible to differentiate between individuals in this time using conventional means, 

especially within a relatively salt tolerant species (Munns et al, 1995). There are two 

major implications of this finding. Firstly, a screening trial that incorporates the use of 

proline could be conducted with plants exposed to salt for a much shorter period of 

time. Secondly, plants (clones) that have already been screened (and selected as salt 

tolerant) using conventional methods could be further differentiated by using proline. 

However it seems reasonable that more rapid responses could be examined using 

proline to determine how quickly a change can be detected. Some of the clones 
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examined in tissue culture trials indicated a proline response after 1 week, as 

demonstrated by the salt tolerant clone C502 (Figure 3.1). It would certainly be 

worthwhile to conduct further investigations with this and other clones to determine 

whether a proline response after a number of days, rather than weeks, could be used to 

differentiate species or clones. 

The drawback with sampling root material is that it is destructive, and may compromise 

the survival of the plant being sampled. This is especially likely if the plant is already 

subject to salt stress, and disturbance of the root zone is likely to place further pressure 

on the plant. This was not a problem in this work, as the plants were being investigated 

for proline accumulation with no thought of selection, so their survival was not an issue. 

However, if this proline determination was being carried out for the purpose of 

identifying salt tolerant individuals, then it is vital that the plant survives the procedure. 

There is no reason why root proline measurement should cause the plant to die if it is 

done carefully. A further caveat on root sampling is that it may need to be done at the 

conclusion of the trial. If disturbance of the root zone does increase plant stress, then 

there may be an increase in proline production. Any proline results obtained would not 

be an accurate measure of the stress vector being investigated. The further development . 11 

of an appropriate hydroponic system may aid in this regard. 

Hydroponics would be a good solution because collecting roots from a hydroponic 

system is not as destructive as for soil. This is because the roots are in solution, are 

easily accessible, and the few needed for analysis can be harvested with minimal 

damage to the plant. Another reason for using hydroponics over sand culture is that it 

removes any issues with water deficit influencing stress vectors and thus affecting 

pro line values. One of the major problems with growing plants in sand culture is that as 

the plant uses water, the osmotic potential of the solution in the soil is reduced, causing 

the relative concentration of ions in the soil to increase. As this increase occurs, the 

plant is now effectively exposed to a much higher level of salt in the soil than that 

which the investigator(s) had intended, and also a much lower water potential. There are 

now two problems faced by the plant. Firstly, it must deal with a more toxic soil 

solution, and secondly, the lower water potential in the soil makes it more difficult for 

the plant to take up water. In hydroponic culture, the solution is constantly being 

replaced, thus greatly reducing the effects that a decrease in osmotic potential may 

cause. In this method, a small part of the root could be taken from the plant without 
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affecting the whole root system of the plant. This method could be investigated by 

monitoring proline levels in leaves for plants grown in non-salt solution, with one group 

having roots removed and another group as a control. If proline levels were unaffected, 

then it is likely that this sampling process would solve the problem. 

Role of proline in salt tolerance 

There are currently two major hypotheses explaining the role of proline in salt tolerance. 

The first and oldest suggests that proline acts as an osmoticum. The second is that 

proline has a role as an osmoprotectant. Kavi Kishor et al (1995) and Van Rensburg et 

al (1993), suggest that proline is present in high enough concentrations to be of use in 

maintaining osmotic balance. However, several authors suggest that it is not (Delauney 

and Verma, 1993; Hare & Cress 1997; Munns, 2002). Munns (2002) states that proline 

does not have a significant role to play in osmoregulation because it was shown that 

barley seedlings had lower concentrations of proline in the roots than for shoots (Wyn 

Jones and Storey, 1978). At the same time, there is insufficient evidence to suggest that 

this smaller accumulation of pro line in the roots means that it should be dismissed as a 

means of distinguishing salt tolerant individuals, particularly when no valid alternatives 

have been suggested (Munns, 2002). The second hypothesis for the role of proline is 

that is serves as an osmoprotectant, and there is sufficient evidence to support this. 

Delauney and Verma (1993) and Hare and Cress (1997) have demonstrated that proline 

plays an important role as an osmoprotectant. Hare and Cress (1997) stated that proline 

and its precursors play an important role in maintaining the cell and allowing for normal 

metabolic activity to occur. Further, these other roles played by proline in a stressed 

plant are just as important, if not more so, than that of osmoticum. 

The observations of root proline in eucalypts in this thesis warrant further investigation 

into proline accumulation in roots of other species. As mentioned earlier in this chapter, 

proline and other metabolites could be accumulating in greater amounts in roots of 

stressed plants to aid with either ionic exclusion or with adjusting osmotic potential. 

The mechanism by which plants are able to increase the concentration of osmolytes in 

the roots of plants is unclear but there is certainly evidence that it is occurring (Hare et 

al, 1998). However, the levels of proline found in the roots of the plant were not 
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sufficient to suggest that it was acting as an osmoprotectant (Balibrea et al, 1997), but 

instead it is more likely that it is present as a cell protectant (Hare et al, 1998). 

Some speculation could also be made about the cost of this process of accumulation of 

osmolytes to the plant, as opposed to the cost of exclusion of salts. Plants growing in a 

saline environment must be able to exclude salt to some degree, even those that are 

considered salt sensitive. A plant allowing even 10% of salts through to the leaves will 

incur an effective concentration of 400 mM in the shoots (Atwell et al, 1999). It could 

be argued that plants that have been classified as more highly tolerant may simply be 

better salt excluders. However, this work has shown that those previously classified as 

salt tolerant had correspondingly higher levels of proline than for salt sensitive plants. 

Examining the concentrations of Na+ and Cl- ions present in both roots and shoots of 

both salt sensitive and tolerant plants under stress conditions may provide more 

information. If greater amounts of salt are found in the roots, but not leaves of salt 

tolerant plants, this could indicate that the plant is using salts, as well as proline, in the 

roots to increase osmotic adj ustment (Atwell et al, 1999). As one suggested role for 

proline is that of energy source for when the stress is alleviated, then it seems 

reasonable that the plant would put energy into this process by accumulating larger 

amounts of pro line in the roots. The pro line present in the roots of these plants may be 

playing a dual role: to aid in osmotic adjustment, and as an energy source for later 

growth. 

While there is a cost of salt exclusion to the plant, the cost of producing organic solutes 

is considerably greater (Yeo, 1983). The amount of energy required to produce these 

compounds is quite high, and can account for a significant amount of the plants 

available energy. For example, the energy required to produce proline as opposed to 

using NaCl for osmotic adjustment is approximately 10 times greater (Atwell et al, 

1999). Additionally, production of these compounds also places a strain on the nitrogen 

reserves of a plant, with pro line and glycine betaine accounting for 10-30% of total 

shoot nitrogen (Atwell et al, 1999). D iscounting speculation as to its precise role, 

increased proline must be of some benefit to the plant, as the cost of producing it, as 

opposed to using NaCl as an osmotic adj uster, is great. It must be serving some function 

as this study found it present in higher concentrations in salt tolerant plants. It may be 

coincidental, but this seems unlikely. 
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It has been noted for other species that carbohydrates were also accumulated with the 

increased proline, and they may be accumulated in order to provide energy for exclusion 

(Hare et al, 1998). These carbohydrates may very well be present in the Eucalyptus 

plants examined, and it would be of benefit to monitor levels of both pro line and these 

carbohydrates in the roots of these plants. The osmolyte glycine betaine has been found 

in salt stressed E. microcorys shoots (Chen et al, 1998) and it may also be of value to 

examine E. camaldulensis to determine whether this compound is playing a role in the 

salt tolerance or this species. It has been noted that a plant is provided greater protection 

from stress when both proline and glycine betaine are present (Paleg et al, 1984). 

Measurement of all of these indicators and substances may give a more clear indication 

of what is occurring in these salt stressed eucalypts. 

Regardless of the role that proline may play in determining salt tolerance, it would be 

unwise to dismiss its measurement as a means of differentiating salt tolerant species or 

individuals. This is clearly supported by the data collected in this thesis. 
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APPENDIX 1 - Comparison of two methods for determining proline in 

Eucalyptus leaves 

INTRODUCTION 

Many plants have been analysed for proline accumulation in order to determine their 

tolerance to a range of environmental stresses (proline refs) . Free proline in plants is 

most commonly measured using the acid-ninhydrin technique of Troll and Lindsley 

(1955) and Bates et al (1973) . This process involves crushing a known quantity of plant 

material (eg roots or leaves) , reacting it with a mixture of ninhydrin and acetic and 

phosphoric acids, and then adding toluene. This toluene layer is measured in a UV NIS 

spectrophotometer and absorbance read at 520 nm wavelength. These readings are 

compared to a range of standards that are analysed in the same manner. 

Other methods to analyse amino acids include high performance liquid chromatography 

and specific atomic absorption analysis, but these require greater technical skill. 

Advantages of the capillary electrophoresis (CE) method are lower cost of consumables, 

and minimal sample preparation. C apillary electrophoresis has been used successfully in 

E. marginata (jarrah) to identify phenolic compounds (Boyce and Bennett, 1996) . 

This work aimed to determine if an existing method of amino acid determination using 

capillary electrophoresis (CE) could be adapted to analyse proline from Eucalyptus 

species. 

MATERIALS AND METHODS 

Plant Material. 

Seedlings of E. camaldulensis were grown in a glasshouse in 4L pails with a hole 

drilled in the side j ust above the base for drainage. These were filled with 4. 5 kg of 1: 1 

mixture (pasteurised 2 x 60°C for 3hrs) fine white and coarse white sand, with three 

seedlings per pot. Pots were maintained in the glasshouse at 25°C ± 5°C.  Salt was added 

to the nutrient solution in the required concentration to induce proline accumulation 

(Chapter 4. 2. 1) .  
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Extraction. 

Plant material was collected and a known amount (approximately 0.5g) ground in a 

mortar and pestle with liquid nitrogen and extracted into 10 mL of 3% aqueous 

sulfosalicylic acid. This extract was centrifuged for 20 mins at 4°C, the supernatant 

removed for proline determination. 

Acid ninhydrin analysis. 

Two millilitres of plant extract was reacted with 2 mL of acid ninhydrin (5 mL acid 

ninhydrin contains 125 mg ninhydrin, 3mL glacial acetic acid and 2 mL a-phosphoric 

acid ( 6M)) and 2mL glacial acetic acid in a test tube and allowed to react for 1 hour at 

100 °C. The reaction was terminated in an ice bath and allowed to equilibrate to room 

temperature. Four mL of toluene was added to the tube and vortexed for 10 sec. The 

contents were allowed to separate and the top layer (toluene) was read in a UVNIS 

spectrophotometer at 520 nm using toluene as a blank. Standards were made up in 3% 

aqueous sulfosalicylic acid. Proline concentration is determined from a standard curve 

and calculated on a fresh weight basis as follows: 

( (µg pro line / mL )x (mL toluene )J 
1 1 5 .5 I ole . . 

( 
µ

g 

� 

= µmoles prohne / g f wetght 
g samp e 

5 

CE analysis. 

Three hundred and fifty µL of the plant extract was reacted with 150 µL of the 

derivatising agent, fluorescamine (3-mg/ml fluorescamine in acetone, containing 20 µL 

pyridine). This was then run on the CE with running conditions of 12 kV, 25 mins run 

time per sample, 10 sec injection time. Running buffer is 0.05 M sodium tetraborate, 

containing 0.025 M lithium chloride (Li Cl), pH 8.3. Proline standards in the range of 5 -

40 µg mr1 are made up in 0.1 M sodium tetraborate (borax) buffer, pH 9.0. 
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Running conditions were determined by a range of trials to determine optimum 

injection time, running time and voltage. 

Proline elutes after approximately 20 minutes. 

Experiment 1 - Comparison of acid ninhydrin and capillary electrophoresis 

proline determination methods using standards 

A comparison was made of the two methods to determine which gave the most accurate 

standard curve for use in determining proline concentration. 

Experiment 2 - Identification of proline peak in CE 

Samples, both unspiked and spiked with 20 µmol proline, derived from eucalypt leaves 

were analysed in the CE to determine the location of the pro line peak in the leaf 

extraction. 

Experiment 3 - Analysis of proline concentration in leaves of salt stressed plants 

Leaf extracts from E. camaldulensis seedlings grown under salt stress conditions were 

analysed using CE and also using the acid-ninhydrin technique. Each leaf was crushed 

and sufficient material obtained so that analysis of proline for each technique was 

effectively performed on the same leaf sample. 

RESULTS AND DISCUSSION 

Experiment 1 

V alues obtained from running a series of standards using both methods resulted in r 

values approaching one (1 ). The values were graphed and a line of best fit plotted so 

that the r value could be obtained (Figure Al . l a  and Al . l b). 
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Figure Al  .1: Standard curves with line of best fit and "r" values for proline standards 

using two different methods of analysis, a) acid-ninhydrin and b) capillary 

electrophoresis. 
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Experiment 2 

Capillary electrophoresis was not able to clearly separate proline from the surrounding 

peaks. Spiking the sample with proline identified the general area for the peak, but did 

not allow identification of the exact location in the un-spiked sample. Figure A l  .2 

illustrates a leaf sample analysed using CE, and Figure Al  .3 shows the same sample 

spiked with 20 µmol proline. The main reason for not being able to locate the proline 

peak is that the quantity of proline in most samples was beyond the limit of detection 

for the instrument. Another reason was the high concentration of other compounds, such 

as phenolics, that are present in a eucalypt leaf. It seems that these other organic 

compounds are being detected by the instrument, making resolution of the pro line peak 

difficult. It may be that other species could be analysed using this method if the level of 

interfering compounds they contain are not as high. There are a number of ways in 

which this method could become viable for analysis of proline from Eucalyptus 

samples. One would be to use a much larger sample than the currently used level of 500 

mg, making more proline available to be derivatised and possibly giving a larger peak. 

The obvious drawback with this approach is that the levels of interfering compounds are 

also increased. Another way would be to use a CE instrument with a higher resolution / 

lower limit of detection. Probably the best option would be to attempt to remove or 

filter out some of the interfering compounds, such as phenolics. This could most likely 

be done with the use of readily available commercial cartridges such as C 18 reverse 

phase, which work well with water based samples, which the proline samples are. This 

method is favourable as it will not affect the proline concentration in the sample. 

Experiment 3 

Neither technique resulted in a set of values that was able to distinguish between the 

control and 50 mM NaCl treated samples (Fig. A l  .4). However, standard errors for the 

CE technique were lower than those observed for the Acid-ninhydrin method. The CE 

technique resulted in a set of proline concentrations that were significantly lower than 

for those obtained using acid-ninhydrin (Table Al . l ). These results do not support the 

use of CE analysis for proline in Eucalyptus leaves in its current form. However, if the 

changes discussed in Experiment 2 are further investigated, this technique may become 

a useful tool. 
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Figure Al.2: Capillary electrophoresis analysis of an E. camaldulensis leaf to determine 

proline concentration. Proline peak occurs at 20.26 minutes. Sample was injected for 

20s and run at a voltage of 12 kV. 
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Figure Al.3: Capillary electrophoresis analysis of an E. camaldulensis leaf spiked with 

20 µm to determine proline concentration. Proline peak occurs at 1 9.30 minutes. Sample 

was injected for 20s and run at a voltage of 1 2  kV. 
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Figure A l .4: A comparison of two methods for determining proline concentration from 

E. camaldulensis leaves. Vertical bars are standard errors. 

Table Al  . 1: Proline concentrations from E. camaldulensis leaves usmg different 

analysis methods. 

Treatment Acid Ninhydrin Capillary Electrophoresis 

Control 2.40 2.41 

4.98 2.69 

5.42 1.97 

2.63 1.97 

1.88 1.3 1 

50 mM NaCl 3 . 13 1.92 

5.8 1 2.23 

3.69 2.24 

5. 11  2.23 

6.43 2.40 
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One aspect that was not examined by this comparison was the analysis of proline from 

roots of the plants rather than the leaves. There may be less interfering compounds in 

the roots than was found in the leaves of eucalypts. Experiment 4.3.4 in this work 

examined proline from both roots and leaves in a range of salt stressed Eucalyptus 

seedlings. It was found that although proline in the roots was on average lower than that 

found in leaves, it gave a clearer indication of salt tolerance. The conclusion drawn is 

that it should be acceptable to present root proline values as an accurate means of 

determining salt tolerance. Although concentration of root proline is generally lower 

than in the leaves, it is hoped that the level of interfering compounds may be lower, thus 

making it possible to analyse samples using CE. 

The process for preparing samples for measurement in CE is a lot simpler, and involves 

fewer volatile compounds than does the acid-ninhydrin method. The initial preparation 

of leaves was performed identically: leaves were crushed in sulfosalicylic acid and 

centrifuged. At this stage, the CE process simply involves adding the derivatising agent 

to the supernatant, and then analysing in the instrument. The acid-ninhydrin method at 

this point requires the addition of the acid-ninhydrin mixture, then digestion in a heat 

block, then the addition of toluene, then reading the toluene layer in a UV NIS 

spectrophotometer. One drawback with the CE method, however, is the time taken to 

analyse each sample. Proline doesn't come off the column until the 20 minute mark. 

This means that each sample will take at least 20 minutes to analyse, and a large number 

of samples will mean a long time between the first and last samples to be analysed. It is 

unclear as to whether this extended time will have any effect on the derivatising agent, 

and the amount of proline detected. This could very easily be examined by running 

samples with the same known quantity of proline over a long time period and 

examining the values returned. If the proline values found were constant, then it could 

be assumed that there are no detrimental effects of the time delay for analysing samples. 

The CE instrument used for this work was the first of its kind to be commercially 

available. The technology has been developed considerably over recent years and it may 

be worthwhile repeating this work on a newer instrument. These newer advances may 

help to overcome some of the problems associated with this technique. The first, and 

probably most important, is that a newer instrument may have a higher resolution and 

allow is to measure smaller amounts ofproline. The second is that it may be possible to 

reduce the amount of time taken to analyse each sample. 
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