
Edith Cowan University Edith Cowan University

Research Online Research Online

Theses: Doctorates and Masters Theses

1-1-2004

A generalised feedforward neural network architecture and its A generalised feedforward neural network architecture and its

applications to classification and regression applications to classification and regression

Ganesh Arulampalam
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Arulampalam, G. (2004). A generalised feedforward neural network architecture and its applications to
classification and regression. https://ro.ecu.edu.au/theses/789

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses/789

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses?utm_source=ro.ecu.edu.au%2Ftheses%2F789&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ro.ecu.edu.au%2Ftheses%2F789&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses/789

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons
who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement. Where the reproduction of such material is

done without attribution of authorship, with false attribution of

authorship or the authorship is treated in a derogatory manner,

this may be a breach of the author’s moral rights contained in Part

IX of the Copyright Act 1968 (Cth).

 Courts have the power to impose a wide range of civil and criminal

sanctions for infringement of copyright, infringement of moral

rights and other offences under the Copyright Act 1968 (Cth).

Higher penalties may apply, and higher damages may be awarded,

for offences and infringements involving the conversion of material

into digital or electronic form.

A Generalised Feedforward Neural Network

Architecture and its Applications to

Classification and Regression

by

Ganesh Arulampalam

B.Eng. (Hons.)

Thesis submitted for the degree of

Doctor of Philosophy (Engineering)

School of Engineering and Mathematics

Faculty of Computing, Health and Science

Edith Cowan University

Perth

WESTERN AUSTRALIA

Supervisor: Associate Professor Abdesselam Bouzerdoum

Associate Supervisor: Dr. Ganesh Kothapalll

In 9vtemory

of

9.1.y 'Fatner

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

Abstract

Shunting inhibition is a powerful computational mechanism that plays an imponant

role in sensory neural information processing systems. It has been extensively used
to model some important visual and cognitive functions. It equips neurons with a

gain control mechanism that allows them to operate as adaptive non-linear filters.

S/11m1/11g Inhibilory Artificial Neural Nenmrks (SIANNs) arc biologically inspired
networks where the basic synaptic computations arc based on shunting inhibition.

SlANNs were designed lo soll'c difficult machine learning problems by exploiting

the inherent non-linearity mediated by shunting inhibition. The aim was to develop

powerful, trainable networks, with non-linear decision surfaces, for classification and
non-linear regression msks.

This work enhances and extends the original SIANN architecture to a more

general fonn called the Gc11cru/iscd Feedflm,w·d Ne11ml Nelll'ork (GFNN)

architecture, which contains as subsets both SIANN and !he conventional Mu/tlfoycr

Pcn:eplnm (MLP) urcbilcetures.

The original SlANN structure has the number of shunting neurons in the hidden

layers equal to the number of inputs, due to the neuron model thn! is used having a

single direct excitatory input. This was found to be too restrictive, ollcn resulting in

inudcquutely small or inordinately large network structures.

Enhancements to SIANNs lmvc been developed in this thesis thnt allow the

number of shunting neurons to be varied arbitrarily. Experimental results showed

tlmt adding more shunting neurons generally improves pcrfommnce, whereas

reducing the number of shunting neurons often results in a degradation of

performance. Furthemmre, when the number of shunting neurons is reduced, it is not

clear whnt subset of inputs should be used as direct excita!ory inputs.

To overcome this limitation, an excitatory signal is derived from the weighted

sum of all input signals and used as the direct input to the shunting neuron. The result

is u new neuron model, where all inputs arc used to derive the excitatory nnd

inhibitory signals, named the Generalised Sl111111i11g Neuron (GSN). The GSN has the

ability to generate complex decision boundaries by simply varying the synaptic

wcigh!s. Consequently, a single GSN is able to solve complex machine learning

problems much more readily; for example, a single neuron achieves perfect

classification on some benchmark problems, like the 3·bit parity and Wisconsin

Breast Cancer problems.

vii

Furthcnnore, a new Generalised Feedfonl'ard Ne11ral Network {GFNN)

architecture has been developed and presented here, based on the GSN neuron. This

GFNN architecture is more flexible and includes the original SIANN and the

multilrryer perccp11·011 as special cases.

A number of different types of supervised training algorithms have been

developed for SIANNs and GFNNs. These include several fir:st- and second-order

algorithms based on backpropagation, stochnstic algorithms, and a hybrid algorithm

combining direct solution using least-squares minimisation with gradient descent.

Additionally, a novel second order training algorithm, called the Quadrmic
Nm1ml Ne/work (QNN) algorithm, has been developed based on a recurrent neural

network for bound-constraint quadratic minimisation.

These training algorithms have been successfully used to train SIANNs and

GFNNs, and MLPs for compari~on, on a number of standard benchmark

classification and regression problems. Extensive experiments have been conducted,

which show that the GFNNs achieve accuracy levels that arc comparable or bc11er

than results reported elsewhere in the literature, using smaller networks in most

cases.

viii

Declaration

I certify !hat this thesis does not, to the best ofmy knowledge and belief:

(i) incmpora!e without acknowledgement any material previously submitti:d

for a degree or diploma in any institution of higher education;

(ii) contain any material previously published or written by ano1h~r person

except where due reference is made in the text; or

(iii) contain any defamatory material.

Signature Date

', .. -

,,

Acknowledgements

I would like to thank my supervisor, Professor Abdcsselam (Salim) Bouzcrdoum.
am deeply grateful for his guidance, encouragement and suppon throughout these

years of research. His insights have inspired most of the ideas expounded in this

thesis. He has been a patient guide and friend, offering advice and tangible assistance·
as needed, helping me overcome the many hurdles and challenges faced.

To Dr. Ganesh Kothapalli, (am grateful for the encouragement and suppon
shown during the course o'i· research.

My tlmuks to Dr. R. Chandrnsckhar for his invaluable 'Guide to Writing a Thesis',
and his insightful and encouraging review comments.

My gratitude goes to the School of Engineering and Mathematics, Edith Cowan

University, for providing the equipment and resources to carry out this research. My
thanks also to· Greg Yu, Computer Systems Administrator, for his endeavours in

keeping the computing resources timctioning properly, and his friendly assistance
when they did not.

I would like to thank all my friends and fomily who have contributed, directly and
indirectly, tu the success ofthis endeavour.

I am deeply indebted to my brother-in-lnw, Dr. Shunmugam, and sister, Mnlnr, for
their unreserved financial and moral support. I would not have been able to complete
my rcsearclJ without their backing.

To my parents, l am eternally grateful for their support and encouragement, and
the vnlues they have instilled in me. 1 hnvc dedicated this work to my father, recently
departed. His work ethic, attention to dc1ail, an,1 love of learning, have provided me

with a rote model that has stood me in good stead in completing this work.

Hcnrtfclt thanks to my wife Unnilla, for her unwavering and loving support
through these years of study, despite all the sacrifices that my student life has

required of her. I am also grateful to my daughters, for their laughter has helped me
111ai111ain my perspective on life during the many stressful periods these past years.

Finally, J would like to express my deepest grntitude to my Godfather, my
spiritual guide nnd mentor, at whose suggestion I embarked on !his journey of

discovery. He has inspired ond susrnincd me i11 all ways throughout this adventure.

,,

GANESH ARULAMPALAM

Penh, Western Au.1/ralia

Octuher 20()4

(

:di

Table of Contents

ABSTRACT , .. vii

ACKNOWLEl?GEMENTS : ... 11

TABLE OF CONTENTS .. ., llil

LIST OF FIGURES ;: ·:.· ... 111

LIST OFT ABLES .. nlll

LIST OF ABBREVIATIONS ... ,nvll

CHAPTER I INTRODUCTION AND OVERVIEW .. , I

1.1 BACKGROUND ... ,.,,.,,., .. ··••••••••••••••·•••• ... •· ... · J
1.2 RE!SE!llRCJIOl!JE!CTIVES .. 1

1.3 M/1.IORCONTRIBIJTIONS................................• J
1.4 01JTLINE!OFTl!HT1ms1s ... 4

'.,
J.J.I
1.5.2

RE!LllTEOPUDLICllTIONS

Refereed Jm1r11al Papers
R,ferccd Cm,Jerc11cc l'"J!ers

. ,•.. 6

....................• 6

CHAPTERl ARTIFICIAL NEURAL NETWORKS-A REVIEW ... 7

2.1 !ltrRODUCTION ... 7

2.2 Tim BIOLOOIC/1.L NE!URON /I.ND BMIN ... 9

2.2./ Sy11apses..................................... 10
2.2.2 Aclia111m1e111/a/ am/spike /rains .. :: 10

2.3 ARTlflC!ALNrnRALNEITWORKS., ... 12
2.1.I n,eA.rtlf/c/ul Neurmi Mo.M..................• 12
2.1.2 T;pes of ac1iw11io11fimcllm, .. 11
2.1.1 NonmrkArch11ec111res .. :.' .. l5

2.4 KNOWLEDGfi /I.NO l.EllRN!NO PROCESS ...]6

2.4.l L<'am/ng Paradigms , 17
2.4.2 Leaming R11/e, ... 17
2.4.3 Gc11cral mclhodalogy for 11e11rol nern-orl: /eoffllng ... , .. 22

2,S CLASSIFICATION /I.ND REGRESSION , ... 23

2.5.1 Cl=!/ical/011 .. 21

2.5.2 F,111cllm1Approxlmat/011 andRegr=/011 :··••·············· 26
2.6 MULTILIIYE!R PE!RClll'TllONS .. 27

xiii

2.fi.l

2.fi.2

1.fi.3
2.6.4

2.6.S
2.fi.6

2.6.7

2.7
2.7./

2.7.2 , ..
2.8.I

2.8.2
2.8,J

2.8.4

2.8.5 , ..
2.10

Tlw Porccptro11
Tl,c M11/tlluyer Pcl'Cl'plron ••
Error B<1ckpropaga1ia!I Algoritllm
lllitiali.,otlon

Ge11orali,ario<1 am/ w1/idal/un •..
Error sr,rfoce 011d /0,,11/ m/11/mo •.

•• 27

" " ..JI
... JI

... JI
.... 12

RBF NETWORKS ANO surroRT V~CTOR MACl!INES Jl

Radial-Bos is F1mc1/o11 Nem-orks
S11pJMrl Vector Machines , ..

TRAINING ALGORITIIMS FOR FEEOFORWARO NIITWORKS ..

First Order Metlwds.
Sccuml Order Metlwds
llybrid Metliod,
Direct Methods
Stnclwsllc Methods

ADAl'TIVll STRUCTURES

CONCLUSION

.... 11

............ 34
.)6

.......... 36

......................... 38
.... 41J

....... 42

...... 42
..43

... 44

CHAPTER3 SHUNTING INHIBITORY ARTIFICIAL NEUR,\(~[TWORKS 45

,., ,., ,.,
H ,., ,.. ,., , .•

INTRODUCTION

SIIUNTINO INHIBITION IN BIOLOGICAL svsrnMS

.. 45

............. 47
DEVELOrMEITTOF nm SIIUNTINO lNIIIBITORY Moor,t .. 48

SIJUITTINO INHIBITORY CELLULAR NEURAL NIITWORKS ... , SO

FEEPFORWARD SIIUITTINO !NlllarTORV NEURON MODEL .. 52

FEEOl'ORWARO NETWORK STRUCl1lRE , •• , , ...• SJ

or,c1SIONllOUNOAR!ES 54

CONCLUSION , .•.• . .. 56

CHAPTER 4 DEVELOPMENT OF TRAINING ALGORITHMS ... 57

,., ,.,
4.2.1
4.2.2

4.2.3
4.2.4

4.2.5
4.2.6 ,.,

4A
4.4.1

4.4.2 ,.,
4.S.I
4.5.2

4.5.3
4.5.4

4.5.5

INTRODUCTION ,

Gradient De,cent

.. 57

... 58

.... 59

Gradiell/ Descent w/ri, Mome11111m ••••..• , 61
Gradient Descent wit/, Adaptive loarnl11g 11ale a11d Mome11111m 6/
lol!<"11hcrg-Marquard1 (LM) algorithm............. •• 62
lenmberg·Marquardl will1 Adap1/ve Momonmm (LMAM) .. • 62
Optimised lew:11bcrg-Marq11ard1 wit/, Adoptive Momenh1111 (OU/AM) •.••... 63

DIR~CT SOLUTION ALGORITTlMS 64

STOCIIASTIC ALOORITIIMS ••.• , .•.. , 65

.......................... 65

Exte11s/on lo /he Random Op1/ml,alion Method (ROM2)., 6fi

EXPERIMfiNTAL METJIOOS , .•.. ,.,., .. ,:: ••• 67

Ne1workStn1ct11n:, , , e 67

;:;:~:;::;'~::~;~::i:\::::::::::::::::
Dala

0

par////air{1Jg.,... , 68
AcllWJt!o1Jfimct/an, '" 68

xiv

4.5.6 T;-.:,/nlng Termination Criteria
4.5.7 T,w Performance Metric,;
4.5.8 Bc11chmark Tcs/s

............... 69

............ 69
.•.• 11

4.6 EXrERIMEIITAL TESTRESVLTS....... • ... 73

4.6.J Effect of limiting ll1e decay term a during /rolnlng 73
4.6.2 B,mchmark Tc.i Rcs11/1s 78
4.6.J

4.7
A11aly,i,ofros11ll, 87

CONCLUSION ... 92

CHAPTERS THE QUADRATIC NEURAL NETWORK ALGORITHM 9J

S.l llITllOOUCTION 93

5.2 DEVELOrMENTOFTIIEQNN ALOORITIIM .. 94
5.2.I Algorithm Fom111/atio11... 94
5.2.2 Slm11/ming 1/1e Rec,irrem Nei,ral Network 96
5.2.J Appf;·lng 1/1e QNN Algorllhm to 11eural nctll'ork /raining ... 97
5.2.4 Dc1cn11l11/11g "nptlmr1m • paramct"r,jDr the QNN algorithm........ 97

5.3 ADIIPT!Vll DETERMINATION OFTIIE PIIRIIMfiTERS FOR TllE ALGORITHM 99

5.3.J Adaptfrc dctcrmfr1alia11 0Jt/1e1111111bcrn/llcrat/Dn•. !......... 99
5.3.2 Adaprlw,dc1crmlna1/o11 of the discrete 1/mc·slcp,l:c, d.................. /01

5.4 CONSTRAINING TIIEiQNN UPOATr:.. 105

5.S llENCJIM/IRK TESTltllSVLTS /\NO ANALYSIS 106

5.5.1
5.5.2
5.5.3
5.5.4
5.5.5

Re.rn/1Jfor1/,c W/scmtJin Broas/ Cancer dolrucl ..
Rcsi,11•/w Pima l1Jdiun< Dlabe/e, data<el
Tire 1·Mt p11ri1y problem n,:,11/1<

Res11//,Jor artl/lcial 11111/ll·c/ruJ problem
Rcsi,11•/or 11,e S11mpa1 lime series

5.5.15 An11/ysisa11dDismssion

.. •.••••• 107

......... /OJ

......... /10

.......... 112
......... 112

...... 1/J

5.6 CONCLUSION 118

CHAPTER 6 FURTHER OEVELOPMENTOF SHUNTING INHIBITORY ARTIFICIAL
NEURAL NETWORKS .. 119

6.1 MOTIVATION ... , .• , 119

6.2 TIIE ENHANCED SJANN STRUCTURE .. 120

6.2.1 Red11ccdSUNN strucl11rc......................... 120
6.2.2 Expanding the SUNN stmchlre /20
6.2.3 Tlie generic Enl,anced SUNN slmc/urc.. I 22

6.l BENCIIM/IRKT~STRllSULTSANOAN~LYSIS, , 123

6.3.I Wlscoois/11Breas1Cancer•. JU
6.3.2 126
6.3.J T/1eJ.hltparl1ypmblem....... 121
6.3.4 Art!fidal Mi,//l·Clrus Prablem.•.•. 130
6.3.5 Sunspul Time Serles................... 132
6.3.15 Analy,iso/Ru11/1s.. 134
6.3.7 Resr,/IJ obtal11ed by re-,mlerlng lnpllls I 3.!

6.4 CONCLUSION .. , 136

CHAPTER 7 A GENERALISED FEED FORWARD NEURAL NETWORK

ARClUTECTURE ... 137 ,., INTRODUCTION 137
7.2 DEVELOrMENTOf TIIE GENERAL!SED FEEDFORWARD NEURAL NETWORK.... .. 138

7.2.I n,e S1at/c S/11mtlng Nc11ro11 a11d SUNNs / JI/
7.2.2 The GenerollscdS/11mri11g Nm,ron Model
7.2.J The GFNNAreh//ecmre

7.3 BENCHMARK TEST RESULTS AND ANALYSIS ...

7.3.1 W/scuns/11 Brc,ut Canc.Jrda//uct nm,//.,

7.3.2 Pima lndiam Dlabe1es dalwcl res,./1,
7.3.J Rcs11/t,for 1/,c J-bit Parity prob/cm

'" ..142
,43

.. 144
.. 146

.. 146
7.3.4 Res11/ts fur tl,e Arli/icial M"/1/..:/ass problem, 149
7.1.5 S,m,pol Time Series re,11/ts 151
7.J.6 The 'Optlm1JI' Lowcr-Boundofs /51

7.4 DISCUSSION. 156
7.5 CONCLUSION .. 157,,._ __

"CIIAPTER8 EXTENDED BENCHMARK TESTS .. 159 .. , .. ,
8.2.1
8.2.2

INTRODUCTION 159
T~ST RESULTS AND COMPARISON 160

W/scuns/11 Brcasl Cancer Dma,e/ ' ... 16/

8.2.J The J·hll Pllrity Problem

8.2.4 Aniflc/a/ Mu//1-c/a,s Problem ,: .. 1611
8.2.5 Sim,potTimeSerles. 172

8.2.6 Tlij•roid Disease Dataset 175
8.3 Pr.RFORMhNCECOMMRISONWITTl MATLAB TOOLDOXMLPS • 180

8.1.l Bcnd,marlc /Cst, 11s/11g MT·MLPs 180
8.J.2 Analysis af efficiency lest re,1111, ... 189

8.4 DISCUSSION .. , , 191
8.4.1 Trc11rls /11 Trai11i11gA/gori1/JmPe,forn,a11ce.................. /91
8.4.2 Trc11ds /11Ne1warkPerfon,1ancc 192

8.5 CONCLUSION ... 193

CHAPTER 9 CONCLUSION .. 195

9.1 TlmJmlRNEYOFDISCOV~RY .. 195

9.2 SUMMARY OP RESEARCH OUTcoMES ... , .. , 197

9.2.I Developmentaf1m/11/ng algcr/t/mu ... 197
9.2.2 £11l,a11d11g tl,cSM.NN archltecrnrc .. 197
9.2.1

9.3
0i,ervlewo/Res11!1,............................... . 199

fUTURERl!SF.ARCH D!RECT!ONS .. 199

Al'PENDIXA DERIVATION OF TRAINING EQUATIONS FOR SIANNS 203

A.J INTRODUCTION ... ,, .. , .. 203

A.2 SIANN EQUATIONSANDPIIRAMETERS ... , 203

A.3 ERROR FUNCTION ... 204

AA TRAININOEQUATJOHS .. 205

xvi

APPENDIX B DETAILS OF EXPERIMENTAL RESULTS .. 209

B.I EXr!iR1MENTAtRllSULTSFORC!!APHR4 ... 210

8.2 EXNlR!MENTAtRllSULTS FORC!!APT6R5 ... 215

B.J EXPnRlMHNTAtRllSULTS FORC!!APT6R6 · ,. 221

B.4 EXNlR!M6NTALRllSULTS FORC!!APT6R 7 ... 223

8.5 EXP6RlMENTALRllSULTS FORC!1APTr:R8 ... 227

BIBLIOGRAPHY .. 229

xvii

.
'

.,

List of Figures

Fig. 2.1: Generic biological neuron structure .. 9

Fig. 2.2: Typical action potential spike ... 11

Fig. 2.3: A basic artificial neuron model.. ... 13

Fig. 2.4: Types of activation functions: (n) threshold, (b) piecewise-linear, (c) logistic
sigmoid and (d) hyperbolic tangent ... 14

Fig. 2.5: An example ofn 2-dimensional hyperplane separating two classes 24

Fig. 2.6: The Multi-Layer Pcrccptron (MLP) architecture .. 28

Fig. 3.1: Electrical equivalent circuit ofa cell .. 49

Fig. 3.2: Shunting Inhibitory Cellular Neural Network structure SI

Fig. 3.3: Steady-state model ofa shunting ncuron .. 52

Fig. 3.4: Fecdforward Shunting Inhibitory Artificial Neural Network structure 53

Fig. 3.5: Examples of decision boundaries formed by single shunting inhibitory neuron
solving XOR problem .. 55

Fig. 3.6: Decision boundary formed by single shunting inhibitory neuron trained on
Ripley's synthetic 2·class problem .. SS

Fig, 4. \: Distribution plot for the Multi-clnss problem ... 72

Fig. 4.2. Plot of Sunspots activity for the years l 700 · 2002 .. 73

Fig. 4.3: Evolution of MSE during training using different vnlues of Slim· Plots in (a) and
(b) use different initial values .. 74

Fig. 4.4: Mean test classification error and average number of training epochs for vnrious
s11m for 3-bit parity dataset using a 3·3·1 SIANN ... 75

Fig. 4.5: Mean test classification error and nverage number of training epochs for various
Slim for Wisconsin Breast Cancer dataset using a 9·9·1 SIANN 75

Fig. 4.6: Mean test classification error and average number of training epochs for various
s1;m for Pima Indians Diabetes dataset using an 8·8·1 SIANN 76

Fig. 4.7: Mean test classification error and average number of training epochs for various
Slim for lhc Multi-class dataset using a 2·2·3 SJANN ... 76

Fig, 4.8: Mean and median test classification error and mean training time for 3-bit parity
problem using J.J.J SIANN with various training algorithms 79

xix

Fig. 4.9; Mean and median classification error for test set and mean training time for

Breast Cancer dataset using 9-9-1 SIANN with various training algorithms 81

Fig. 4.10: Best case, mean and median classification error for test set and mean training
time for Diabetes dataset using 8-8-1 SIANN with various training algorithms .

........... 83

Fig. 4.11: Best case, mean and median test classification error and mean training time for

Multi-class dataset using 2-2-3 SIANN with various training algorithms 84

Fig. 4.12: Best case, mean and median test ARV and mean training time for various

training algorithms for Sunspots dataset. .. 86

Fig. 4.13: Actual and SIANN predicted sunspots values for the test set. 87

Fig. 5.1: Percentage error and average training time vs. discrete time-step d for SIANNs

trained on Breast Cancer (a,c) and Diabetes (b,d) datasets 98

Fig. 5.2: Percentage error and average training time vs. iterations for SIANNs trained on

Breast Cancer (a,c) and Diabetes (b,d) datasets ... 98

Fig. 5.3 : Percentage error and average training time vs. 611.,, the lower limit for ~1(k),

for SIANNs trained on Breast Cancer (a,c) and Diabetes (b,d) datasets 100

Fig. 5.4: Mean test error and training time for Breast Cancer dataset using SJANNs

trained with QNN algorithm variants ... 103

Fig. 5.5: Mean test error and training time for Diabetes dataset using SIANNs trained

with QNN algorithm variants ... 104

Fig. 5.6: Mean test error and training time for Breast Cancer dataset using SIANNs

trained with QNN algorithm variants ... 108

Fig. 5.7: Best case and mean test error and meau training time for Diabetes dataset using

SIANNs trained with QNN algorithm variants .. 109

Fig. 5.8: Mean test error and training time for 3-hit parity dataset using SIANNs trained

with QNN algorithm variants. . .. l l l

Fig. 5.9: Best case and mean test error and mean training time for Multi-class dataset

using SlANNs trained with QNN algorithm variants 113

Fig. 5.10: Best case and mean test error and mean training time for Sunspots dataset using
SIANNs trained with QNN algorithm variants.. 114

Fig. 6.1: The 'Reduced' SIANN structure .. 121

Fig. 6.2: The 'Expanded' SIANN structure 121

Fig. 6.3: The Multi-layer SIANN structure ... 122

Fig. 6.4: The genetic Enhanced SIANN structure .. 123

Fig. 6.5: Mean and median test error and mean training time for tl1e Wisconsin Breast
Cancer dataset using Enhanced SJANNs ... 125

Fig. 6.6: Best, mcnn and median test error and mean training time for the Diabetes dataset
using Enhanced SJANNs .. 128

Fig. 6.7: Mean and median test error and mean training time for 3-bit parity dataset using
Enhanced SJANN~ ... 129

Fig. 6.8: Best, mean, median test error and mean training time for Multi-class dataset
using Enhanced SIANNs .. 131

Fig. 6.9: Decision boundary formed by a 2-3-3 Enhanced SIANN for Multi-class
problem.............. 132

Fig. 6.10: Best, mean and median test error and mean training time for Sunspots data
using Enhanced SIANNs .. 133

Fig. 7.1: The structure of the static shunting neuron model... ... 139

Fig. 7.2: The Generalised Shunting Neuron model. .. 140

Fig. 7.3: Input-output transfer characteristics of a 2-input generalised shunting neuron
obtained with the same/ and g functions, but different wand c weight vectors .
.. 141

Fig. 7.4: The Generalised Feedforward Neural Network architecture 142

Fig. 7.5: Examples ofGFNN structures: (a) G 3-1 network and (b) Gr 3-2-1 network.143

Fig. 7.6: Mean and median test error and mean training time for the Wisconsin Breast
Cancer dataset using GFNNs ... 145

Fig. 7.7: Best, mean and median test error and mean training time for the Diabetes dataset
using GFNNs .. 147

Fig. 7.8: Mean and median test error and mean training time for 3-bit parity dataset using
GFNNs ... 148

Fig. 7.9: Best, mean, median test error and mean training time for Multi·class dataset
using GFNNs .. 150

Fig. 7.10: Decision boundary formed by a GFNN for the Multi-class problem 151

Fig. 7.11: Best, mean and median test error and mean training time for Sunspots data
using GFNNs .. 152

Fig. 7.12: Mean error and training time for Breast Caneer dataset using GFNNs with

various Slim··············· .. •••••••••• ... ••••• .. ••••• .. 154

Fig. 7.13: Mean error and training time for Diabetes dataset using GFNNs with various

Stim•••••••••••••••••••••••••••• .. •••••••••••••••••• .. •••• .. •••••••••••••••••••••••••••••••• .. ••••••••••• 154

Fig. 7.14: Mean error and training time for 3-bit Parity problem using GFNNs with

various Slim••••••••••••••• .. ••••••••• .. ••• .. •• .. ••• .. •••••• ... ••••••••••••••••••••••• .. ••••••••••• .. •••••••• .. ••••• 155

xxi

Fig. 7.15: Mean error and training time for Multi-Class problem using GFNNs with

various .l"lim· 155

Fig. 8.1: Mean and median test error and mean training time for the Wisconsin Breast
Cancer dataset using MLPs, GFNNs and SIANNs .. 162

Fig. 8.2: Best, mean and median test error and mean training time for the Diabetes dataset
using MLPs, GFNNs and SJANNs. 165

Fig. 8.3: Mean and median test error and mean training time for 3-bit parity dataset using
MLPs, GFNNs and SIANNs........................ 169

Fig. 8.4: Best, mean, median test error and mean training time for Multi-class data using
MLPs, GFNNs and SIANNs .. 170

Fig. 8.5: Decision boundary for the Multi-class problem formed by an MLP l 71

Fig. 8.6: Best, mean and median test ARV and mean training time for Sunspots data
using MLPs, GFNNs and SIANNs .. l 73

Fig. 8.7: Best, mean and median test error and mean training time for Thyroid dataset
using MLPs, GFNNs and SIANNs. l 77

Fig. 8.8: Comparison of mean and median error and mean training time for the Breast
Cancer dataset using 'generalised' and MATLAB Neural Network Toolbox
MLPs.. 183

Fig. 8.9: Comparison of best, mean and median error and mean training time for the
Diabetes dataset using 'generalised' and MATLAB Neural Network Toolbox
MLPs .. 184

Fig. 8.!0: Comparison of mean and median error and mean training time for 3-bit Parity
using 'generalised' and MATLAB Neural Network Toolbox MLPs 185

Fig. 8.11: Comparison of best, mean and median error and mean training time for the
Multi-Class problem using G-MLPs and MT-MLPs 186

Fig. 8.12: Comparison of best, mean and median error and mean training time for the
Thyroid problem using G-MLPs and MT-MLPs ... 187

Fig. 8.13: Comparison of best, mean and median test ARV and meau training time for
Sunspots prediction problem using G-MLPs und MT-MLPs 188

Fig. 9.1: A map of the 'Journey of Discovery' ... 196

Fig. 9.2: The GFNN architecture superset with SIANN and MLP subsets !98

xxii

List of Tables

Table 4.1 Best results for 3-bit Parity problem using 3-3-1 SIANN 79

Table 4.2 Best results for Wisconsin Breast Caneer dataset using 9-9-1 SJANNs 81

Table 4.3 Best results for Pima Indians Diabetes dataset using 8-8-1 SIANNs 83

Tabl!l 4.4 Best results for Multi-Class dataset using 2-2-3 SIANN 84

Table 4.5 Best results for Sunspots dataset using 10-10-1 SIANN 86

Table 4.6 The h values calculated for all benchmark tests .. 90

Table 4.7 Overall ranking of training algorithms for SIANNs .. 91

Table 4.8 Overall ranking of activation functions for SJANNs ... 91

Table 5.1 Summary of dupdnte methods for QNN algorithm varionts 102

Table 5.2 Results for QNN variant comparison using Breast Cancer dataset 103

Table 5.3 Results for QNN variant comparison using Diabetes dataset 104

Table 5.4 Best case results for SIANNs trained using original QNN·C algorithm 106

Table 5.5 Best results for Wisconsin Breast Cancer dataset using 9-9·1 SIANNs trained

with QNN algorithm variants ... 108

Table 5.6 Best results for Pima Indians Diabetes dataset using 8-8-1 SIANNs trained with

QNN algorithm variants•...•........•.. 109

Table 5.7 Best results for 3-bit Parity problem using 3.3.J SIANNs trained with QNN

algorithm variants .. 111

Table 5.8 Best results for Multi-Class dataset using 2-2·3 SIANNs trained with QNN
algorithm variants ... 113

Table5.9 Best results for Sunspots dataset using 10-10·1 SIANNs trained with QNN
algorithm variants ... 114

Table S.10 The h values calculated for all benchmark tests using QNN algorithm 116

Table 5.11 Overall ranking ofQNN training algorithm variants 116

Table 6.1 Best results for Wisconsin Breast Cancer dataset using Enhanced SlANNs ... 125

Table 6.2 Results for Pima Indians Diabetes dataset using Enh3nced SJANNs 128

Table 6.3 Best results for the 3·bit Parity problem using Enhanced SIANNs 129

Table 6.4 Best results for Multi-Class dataset using Enhanced SIANNs 131

xxiii

Table 6.5 Results for Sunspots dataset using Enhanced SIANNs 133

Table 6.6 Results for Wisconsin Breast Cancer dataset using the 9-4-1 Reduced SJANN,

with re-ordered inputs .. 135

Table6.7 Results for Pima Indians Diabetes dataset using the 8-3-1 Reduced SIANN,

with re-ordered inputs ... 136

Table 7.1 Best results for Wisconsin Breast Cancer dataset using GFNNs 145

Table 7.2 Best results for Pima Indians Diabetes dataset using GFNNs 147

Table 7.3 Best results for 3-bit Parity dataset using GFNNs : 148

Table 7.4 Best results for Multi-Class dataset using GFNNs ... !50

Table 7.5 Best results for Sunspots dataset using GFNNs ... 152

Table 8.1 Results for Breast Cancer dataset using MLP, GFNNs nnd SIANNs 162

Table 8.2 Comparison of mean test error for Wisconsin Breast Cancer dataset with results

from other literature .. 164

Table 8.3 Results for Pima Indians Diabetes dataset using MLP, GFNNs and SIANNs 165

Table 8.4 Comparison of mean test error for Pima Indians Diabetes dataset with results

from other literature................... 167

Table 8.5 Best results for 3-bit Parity dataset using MLP, GFNNs and SIANNs 169

Table 8.6 Results for Multi-Class dataset using MLP, GFNNs and SIANNs 170

Table 8.7 Results for Sunspots dataset using MLP, GFNNs and SIANNs 173

Table 8.8 Results for the Thyroid disease classification dataset using MLPs, GFNNs and

SIANNs .. 177

Table 8.9 Comparison of mean test error for Thyroid datuset with other results from

literature ... 179

Table 8.10 Comparison of G-MLPs and MT-MLPs trained on (a) Breast Cancer (b)

Diabetes, (c) 3-bit Parity, (d) Multi-class and (e) Thyroid datasets 182

Tab!e 8.11 Comparison ofG-MLPs and MT·MLPs trained on Sunspots dataset. 188

Table 8.12 Comparison of average training time per epoch for G-MLPs and MT-MLPs for

nil datasets .. 190

Table B.1 Mean test classification error for 3-bit Parity dataset using 3-3-1 SIANNs 2l0

Table 8.2 Menn test classification error for Breast Cancer dataset using 9·9·1 SIANN. 2l0

Table B.3 Mean test classification error for Diabetes dataset using 8-8-! SIANNs 211

Table 8.4 Mean test classification error for Multi-class dataset using 2·2·3 SIANN 21 l

Table 8.5 Mean test ARV for Sunspots dataset using 10-l0-1 SIANNs 21 l

xxiv

Table B.6 Rankings for 3-bit Parity dataset results using SIANNs 212

Table B.7 Rankings for Breast Cancer dataset results using S[ANNs 212

Table 8.8 Rankings for Diabetes dataset results using SIANNs 213

Table B.9 Rankings for Multi-class dataset results using SIANNs 213

Table B.10 Rankings for Sunspots dataset results using SIANNs 213

Table B.11 Sum of ranks across all five benchmarks datasets ... 214

Table B.12 Rankings for Overall perfonnance across all datasets 214

Table B.13 Mean test classification error for Breast Cancer dataset using SIANNs trained
with QNN algorithm variants ... 215

Table 8.14 Mean test classification error for Diabetes dataset using SIANNs trained with
QNN algorhhm variants ... 215

Table 8.15 Mean test cla.;sification error for 3-bit Parity dataset using SIANNs trained with
QNN algorithm variants ... 216

Table 8.16 Mean test classification error for Multi-class dataset using SIANNs trained with
QNN algorithm variants ... 216

Table B.17 Mean test ARV for Sunspots dataset using SIANNs trained with QNN
algorithm variants ...••.•........................... 216

Table B.18 Results for QNN algorithm with different dvalues applied to Wisconsin Breast
Cancer dataset .. 217

Table B.19 Results using QNN algorithm with different d values applied to Pima Indians
Diabetes dataset...... . .. 217

Table 8.20 Rankings for Breast Cancer dataset results using QNN algorithm 218

Tah!e B.21 Rankings for Diabetes dataset results using QNN algorithm 218

Table 8.22 Rankings for 3-bit Parity dataset results using QNN algorithm 219

Table B.23 Rankings for Multi-class dataset results using QNN algorithm 219

Table 8.24 Rankings for Sunspots dataset results using QNN algorithm 219

Table B.25 Sum of ranks across all five benchmarks datasets using QNN algorithm 220

Table B.26 Rankings for Overall perfonnance across all datasets using QNN algorithm. 220

Table B.27 Mean test classification error for Wisconsin Breast Cancer dataset using
Enhanced SIANNs ... 221

Table B.28 Mean test classification error for Diabetes dataset using Enhanced SIANNs. 221

Table B.29 Mean test error for 3-bit Parity dataset using Enhanced SIANNs 222

Table B.30 Mean test error for Multi-Class dataset using Enhanced SIANNs 222

Table B.31 Mean test ARV for Sunspot dataset using Enhanced SJANNs 222

Table B.32 Mean test error for Wisconsin Breast Cancer dataset using GFNNs 223

Table 8.33 Mean test error for Pima Indians Diabetes dataset using GFNNs 223

'"

Table 8.34 Mean test classification error for 3-bit Parity dalllsct using GFNNs 224

Table B.35 Menn test classification error for Multi-Class dataset using GFNNs 224

Table 8.36 Mean test ARV for Sunspot dataset using GFNNs ... 225

Table 8.37 Results for Breast Cancer dataset using GFNNs with various s11m , 225

Table B.38 Results for Diabetes dataset using GFNNs with various s1;m 225

Table 8.39 Results for 3-bit Parity using GFNNs with various s11m 226

Table B.40 Results for Multi-Class problem using GFNNs with various Slim······ 226

Table B.41 Menn test classification error for Breast Cancer dataset using MLPs 227

Table 8.42 Mean test classification error for Diabetes dataset using MLPs 227

Table B.43 Mean test classification error for 3-bit Parity dataset using MLPs 227

Table B.44 Mean test classification error for Multi-Class dataset using MLPs 228

Table B.45 Mean test classification error for Thyroid dataset using MLPs 228

Table B.46 Mean test ARV for Sunspot dataset using MLPs .. 228

xxvi

List of Abbreviations

ANN

ARV

BP

CG

DS

DS-GDM

DS-GDX

~,
GDM

GDX

GF-init

GFNN

G-MLP

GSN

lgs, lagsig

/in

LM

LMAM

MLP

MSE

MT-MLP

NW-init

Artificial neural network

Average relative variance

Backpropagation algorithm

Conjugate Gradient algorithms

Direct solution

Direct-solution - Gradient descent with momentum hybrid
algorithm

Direct-solution - Gradient descent with adaptive learning rate
and momentum hybrid algorithm

Exponential activation function

Gradient descent with momentum algorithm

Gradient descent with adaptive learning rate and momentum

algorithm

GFNN dcfoult initialisation scheme

Generalised Feedforward Neural Network

GFNN-codc based MLP

Generalised Shunting Neuron

Logistic sigmoid activation function

Linear activation function

Lcvenberg-Marquardt algorithm

Leven berg-Marquardt with Adaptive Momentum algorithm

Multilayer Perceptron

Mean squared error

MATLAB Toolbo1' MLP

Nguyen-Widow initialisation scheme

);)(Vii

OLMAM

QNN

RBF

ROM

SI ANN

SI CNN

SSE

SVM

t11h, /a11/1, lamig

WTA

Optimised Levenberg-Marquardt with Adaptive Momentum
algorithm

Quadratic Neural Network algorithm

Rndia\ Basis Function

Random Optimisation Method algorithm

Shunting Inhibitory Artificial Neural Network

Shunting Inhibitory Cellular Neural Network

Sum of squares error

Support Vector Machine

Hyperbolic tangent sigmoid activation function

Winner-takes-all

xxviii

Chapter 1

Introduction and Overview

1.1 Background

Artificial ne11ra/ networks (ANNs) are inspired by the massively parallel processing

capability of the biological brain. The biological neural network, or brain, is an
intricate web of billions of interconnected ce!ls, called neurons. These simple

computing units interact through tiny electrical impulses via a massive number of
interconnection points called synapses. The brain learns and stores its sensory

infonnation in the patterns formed by these interconnections and the 'strength' of
these connections. A vivid memory is indeed more deeply 'etched' in your brain. The

distributed nature of stored information aids in the linking of various experiences, as
well as providing robustness and fault tolerance. This means you won't forget your

name by losing a couple of neurons!

The computational paradigm of the brain is massive parallelism; it is the
concurrent operation of large numbers of interconnected neurons that enables it to
perfonn the complex: information processing tasks involved in human behaviour.
This biological computing mechanism is the physical controller of all human
activity, be it a 'simple' everyday action like catching a ball or picking your mother
out of her high school class photograph, or acknowledged challenging tasks like
fonnulating the theory of relativity or writing a sonnet.

Artificial neural networks are based on models of this biological 'supercomputer',
with the aim of creating artificial computing structures that can perfonn a wide
variety of tasks. They are abstractions that aim to reproduce some of the functionality

INTRODUCTION ANO On':RY/EW

of biological networks- at the moment - at a veiy much simpler and smaller scale.
ANNs have been applied to a rge number of diverse problems, from medical
diagnosis to t e redicf sunspot activity, data mining and clustering to facial
recognition. These networks can learn from a human expert in a supervised manner,
in areas like medical diagnosis, or in an urumpervised manner, forming patterns from
the veiy data presented, in applications such as data mining .

. The power of parallel computing is evident from the fact- that the world's most
powerful supercomputers arc comprised of thousands of processors operating in
parallel, with massive interconnections (Pullcyb!ank, 2004). ANNs use the same
concept of large numbers of computing units working together to fonn powerful
tools for a variety of problems. The difference lies in the model of the 'node' in the
parallel structure. The supercomputers of today use powerful processors, essentially
sequential machines in their own right, as the basic 'unit'. ANNs take the opposite
end of the spectrum, using extremely simple computing units. The form and function
of these computation units, or neuron models, may vaiy widely depending on the
particular biological behaviour it is modelled on, or the practical function that it is
trying to implement.

It is this idea of proposing and developing a neuron model, and subsequently
applying and testing networks based on this neuron model, that forms the thrust and
contribution of this thesis. In this investigation, we have taken the biological
phenomenon of shunting inhibition as the function that we wish to incorporate into
the neuron model.

Shunting inhibition is a powerful computational mechanism that plays an
important role in sensory information processing systems. It was proposed as a
plausible physiological model in the early 1960's (Furman, 1965; Lettvin, 1962), and
shunting inhibition has since been extensively used to mode[some important visual
and cognitive functions. Shunting inhibitory networks have primarily been part of
adaptive (self-organising) systems that use competitive learning. They have been
widely used in modelling psychophysical, neurophysiological and cognitive
phenomena. To the best of our knowledge, shunting inhibitory networks have not
been used in supervised pattern classification or function approximation, other than
in the oeocognitron (Fukushima et al., 1983) and ART networks (Carpenter &

Grossberg, 1988), until recently (see next section).

The application of shunting inhibition to supervised feedfoward neural networks
in particular has been emphasised, in order to keep the scope of work manageable.
The reasearch has focussed in depth within this scope, in the anticipation of breaking
new ground that will open up new areas of research.

2

lNTRODUCT/aN AND on,Rntw

1.2 Research Objectives

Recently Bouzcrdoum (Bouzerdoum, 1999, 2000) proposed an artificial neural
network architecture, based on shunting inhibition, that can be trained to perfonn
pattern classification or function approximation; he named it shunting Inhibitory
artificial neural nelwark (SIANN). S[ANNs are fcedforward networks that operate
using tho steady-state solution of tho sot of ordinary differential equations that
govern the dynamics of the shunting networks, thereby avoiding the need to obtain a
numerical solution for these differential equations. This allows the network to
operate in a static mode, like most artificial neural networks.

The main thrust of this research is to investigate the ability of shunting inhibition­
based fecdforward networks, particularly SIANNS, when applied to practical

problems.

The initial hypothesis is that shunting inhibitory feedforward neural networks are
able to fonn a new class of powerful networks for classification and non-linear
regression tasks. The idea is to exploit the inherent non-linearity of shunting
inhibition tn develop powerful, trainable networks, with non-linear decision surfaces.

The thrust of the research can therefore be broken down into two main objectives:

To develop efficient training algorithms for the class of shunting inhibitory
artificial neural networks, and test the developed algorithms on some
benchmark problems in machine learning and pattern recognition.

To enhance the structure of shunting inhibitory artificial neural networks, and
develop a generalised framework for pattern clasoification and regression
using feed forward artificial neural networks.

1.3 Major Contributions

The main contributions to the body of knowledge made in this thesis are listed

below.

I. Training algorithms have been developed for the standard SIANN, nod tested
on a number of benchmark problems. The resul!.'1 of the tests prove that
SIANNs are a viable class oftminoblc neural networks thnt can be applied to
classification and non-linear regression problems.

2. The standard SIANN structure has been enhanced to a more flexible
architecture.

3. A Genera!iS'ed Sh11nt/11g Neuron (GSN) model hns be.:n formulated, which
allows multiple excitatory and inhibitory inputs, and encompasses both the

3

INTl!DDliCTIDN AND 0VERP/£W

standard shunting inhibitory n;uron and the perceptron neuron as special
cases. The GSN is capable of producing complex non-linear decision
boundaries, with a single neuron able to solve real world classification
problems.

4. A new neural network architecture based on the GSN has been defined, called
the Generalised Feedfonvard Neural Network (GFNN) architecture. This
architecture provides a broad framework that also contains SIANNs and
MLPs as subsel.'l.

5. GFNNs have been applied to a variety of tasks and demonstrated to be a
useful and powerful class of neural_ .network, capable of perfonning well
using networks with a very small number of neurons.

6. A variety of training algorithms have been developed for the shunting
inhibitory networks, implemented in a manner that allows SIANNs, GFNNs
and MLPs to be trained by this common set of algorithms.

7. A novel neural network training algorithm based on bound-constrained
quadratic optimisation has been developed, calted the Quadratic Neural

Nelwork (QNN) algorithm, along with a number of its variants .

.1.4 Outline or the Thesis

Following is a chapter-by-chapter outline of the thesis that provides a _general
overview of the strucrurc and content of this thesis.

Chapter 2 is a review of artificial neural networks !hat aims to explain the relevant
tet1Tl3 and concepts. It describes ANNs in general, covering the biological neuron
models as well as artificial neural network struclllres. It also introduces briefly the
various learning paradigms, training algorithms, and the types of problems that can
be solved using neural networks.

Chapter 3 presents the development of the Shunting Inhibitory Artific/ol Neural

Ne/work (SIANN), from its biological roots to tho development of tho feedforward
shunting inhibitory neuron model and the SIANN architecrurc. The derivation of the
differential equation governing the shunting inhibition dynamics is also presented.

Chapter 4 describes the development and testing of a number of gradient-based,
direct solution and stochastic training algorithms for SIANNs. It describes the details
of the various algorithms and relevant update equations. The chapter then describes
the experimental methods and procedures employed throughout the thesis, for
assessing the perfonnnncc of the networks under investigation. They include network
structures, initialisation methods, training and testing parameters and criterin. A set

4

.
'

lNTROOUCTIO,V ANO OVERVIEW

of live benchmark problems, consisting of two synthetic and three real-world
problems, are also described. The benchmarks were selected to incorporate a variety
of problems, including time series prediction and multi-class classification. The
performance ofSIANNs on these benchmark problems is tested and analysed here.

Chapter 5 presents the development of a novel training algorithm, ca!led the
Quadratic Neural Network (QNN) algorithm, and a number of its variants. The
algorithm, based on hound-constrained optimisation using recurrent neural networks,
is readily able lo incorporate constraints on synaptic weights during the weight
update phase. Implementation issues such as the practical application to neural
networks and adaptive determination of parameters are also addressed. SIANNs have
hcen trained on the benchmark problems using the QNN algorithm and its variants.
A quantitative analysis of the performance of these algorithms is presented along
with the results.

Chapter 6 presents enhancements to the standard SIANN structure. The original
standard structure has the number of neurons determined by the number of input data
attributes and class labels. This sometimes results in structures that are too small, or
inordinately large, for the particular problem. In this chapter, enhancements are
proposed and developed that al!ow the size of the shunting layer to be reduced or
expanded as required. The enhanced SIANN structures have been trained on the
benchmark problems. The performance of these enhanced structures is compared to
that of the standard SIANN.

The results obtained in Chapter 6 highlight a certain restriction imposed on the
shunting neuron model used in the standard SIANN, namely that it can only have a
single excitatory input. In Chapter 7, the shunting neuron model is expanded to cater
for multiple excitatory inputs. The result is a new neuron model named the
generalised shwlling ne11ro11 (GSN). The GSN includes the previous shunting neuron
model and the traditional pcrceptron model us special eases. This 'generalised'
shunting neuron is used in a new fcedfotward architecture, called the Generalised

Feedfomard Neural Network (GFNN), Training algorithms have been extended to
the GFNN architecture, which includes both SIANNs and MLPs as subsets. The
developed GFNN networks have been tested on benchmark problems, and their
performance is compared to that ofSIANNs.

Chapter 8 compares the performance of shunting inl1ihition-based oetworks with
the Multi-layer Perceptron (MLP), as well as results from other methods found in the
literature. For each benchmark problem, an MLP structure with approximately the
same number of synaptic weights as one of the tested GFNN was trained and tested;
the obtained results arc compared with those of the GFNN and SJ ANN. Wherever
possible, comparisons are also made with other results presented in the literature.
The efficiency of the code developed for this thesis is evnluMed by comparing it with
MLP~ generated, initialised and trained using standard MATLAB Neural Network

5

INTRODUCTION ANfJ OVERVIEW

Toolbox. The chapter ends with a discussion of the overall results obtained across all
benchmark problems and network architectures.

Chapter 9 recapitulates the work presented in the earlier chapters and summarises
the results of the research, including a discussion on the full scope of the proposed

generalised feedforward neural network architecture. It ends with suggestions for
future work based on outcomes of the research presented in this thesis.

1,5 Related Publications

1,5.1 Refereed Journal Papers

I. G. Arulampalam and A. Bouzerdoum, "Training Shunting Inhibitory
Artificial Neural Networks as Classifiers," Neural Ne/Wark World, vol. 10,
pp. 333-350, 2000.

2. G. Arulnmpalam and A. Bouzerdoum, "Recurrent Neural Network-based
Quadratic Optimisation Training Algorithm for Feedforward Neural

Networks," Jntemational Joumal ofComplllers, Systems and Signals, vol. 3,
pp. 65-75, 2002.

3. G. Arulampalam and A. Bouzerdoum, "A generalized feedfoward neural
network architecture for classification and regression," Neural Networks, vol.
!6, pp. 561-568, 2003.

1.5.2 Refereed Conference Papers

4. G. Arulampa[am and A. Bouzerdoum, "Novel Training Algorithm Based on

Quadratic Optimisation Using Neural Networks," in Bio-Inspired
Applications ofConneclionism, vol. 1, J. Mira and A. Prieto, Eds. Berlin:
Springer-Verlag, 2001, pp. 410-417.

5. G. Arulampalam and A. Bouzerdoum, "Application of Shunting Inhibitory

Artificial Neural Networks to Medical Diagnosis," in Proc. 7th Ar1stra/ion
and New Zealand Intelligent lnfonnation Systems Conference (ANZ/IS 2001),
pp. 89-94, 200 I.

6. G. Arulampalam and A. Bouzerdoum, "Expanding the Structure of Shunting

Inhibitory Artificial Neural Network Classifiers,'' in Proc. Jnrern. Joint CanJ
an Neural Networks (JJCNN '02), pp. 2855-2860, 2002.

7. G. Arulnmpnlnm and A. Bouzerdoum, "A Generalized Feedforward Neural
Network Classifier,'' in Proc. Intern. Joint Conj on Neural Networks (JJCNN
2003), pp. 1429-1434, 2003.

6

Chapter2

Artificial Neural Networks -A Review

2.1 Introduction

Artificial neural networki; employ massive interconnection of sirnp!e computing

cells, called neurons, to perform complex information processing tasks. They are
inspired by the massively parallel processing capability of the biological brain.

The biological brain consists of billions of biological neurons, each haviug

thousands of connections to other neurons, forming an intricate web. The connection

points between the neural pathways are known as synapses. Sensory information

causes tiny electrical impulses to be generated and transmitted through the neural
pathways, via the synaptic junctions, resulting in patterns of activity in the brain. The
pattern of the neuronal connections determines the meaning of the electrical signals

(Nicholls et al., 1992). The brain learns and stores its sensory infonnation varying

the 'strength' of the synaptic connections, thereby changing the patterns fonned.

"A neural nerwork Is a massively parallel distributed processor that has a nalural
propensity for storing experiential knowledge and making ii available for use. It
resembles rhe brain in two respects;

1. Knowledge is acq11ired by the network thro11gh a learning process (learning
algorithm).

2. lnterneuran connection strengths known as synoptic weights are rised to store
the knowledge." (Hay kin, 1999)

7

ARTIFICIALNiiUIUL NETWORKS• A REVIEW

The definition above outlines the method of operation of an artificial neural

network. From its 'observations' of the environment, the network learns about the

environment it is 'placed in'. The experiential knowledge is stored in a distributed

manner within its very structure. Subsequently, when a set of inputs is received, the

network is able to produce a response consistent with the environment it has

'observed'.

In practical applications, 'placing a network in an environment' involves

presenting the network with sufficient examples related to the required task. The

network is then trained to produce th!l desired out~omes, even when presented with

previously unseen examples.

Neural networks have b~n used in a wide variety of applications, such as

financial prediction (Bowen & Bowen, 1990; Giles et al., 1997), control of nuclear

power plants (Boroushaki et al., 2003; Na et al., 2004), medical diagnosis

(Arulampalam & Bouzerdoum, 2001a; Dickhaus, 2001; Kordylewski et al., 2001;

Mcesad & Yen, 2001), face recognition (Er ct al., 2002; Tivive & Bouzerdoum,

2003), signal classification (Arulnmpalam et al., 1999; McConaghy et al., 2003) and

even the classification of odour levels in n piggery (Hanumanthamya et al., 1999)!

They offer improved performance over conventional technologies in many areas,

including robust pattern detection, signal filtering, data segmentation, data

compression, database mining, adaptive control, optimisation and scheduling, and

complex mapping.

A comprehensive treatment of the vast field ofartificial neural networks is beyond

th!l scope of this chapter. The aim of the chapter is to explain the relevant terms and

concepts, described within the context of the general body of knowledge about

artificial neural networks. It describes artificial neural networks in general, starting

with the biological neuron model and finishing with various artificial neural network

structures. It also introduces briefly the various learning paradigms, training

algorithms, and the types of problems that can be solved using neural networks.

The next section discusses the biological neuron and biological neural networks.

This is followed by two sections devoted to the general concepts of artificial neural

networks, including the different classes of neural networks and their structures. and

learning paradigms and algorithms. The kinds of problems being tackled is then

presented in Section 2.5. Section 2.6 introduces the popular foedfoiward neural

network architecture, namely multilayer perceptrons (MLPs), and the error

backpropagation algorithm, while Section 2.7 describes radial basisfimc/ions (RBF)

and support vector machines (SVMs). This is followed by a section on common

training algorithms for feedforward neural networks. The chapter ends with an

overview of adaptive network structures followed by the conclusion.

8

ARTIFICIALNWIIAl Nf:TWORKS • A /1.EPJBW

2,2,1 Synapses

Information is passed from one neuron to another via a specialised junction point

called a sy11upse. A typical neuron may have between 1,000 and 10,000 synapses.

Plasticity is the ability to adapt the network to its surrounding environment (Haykin,

1999). This is achieved by creating new synaptic connections, varying the strength of

existing conne-:tions, and removing {pruning) unne-:essary connections, and is key to

the brain's ability to learn and to retain memories.

The most common type of synapse is a chemical synapse (Gerstner & Kistler,

2002). At synapses, the axon usually enlarges to form a terminal button, which is the

information delivering part of the junction. The terminal button contains tiny

stmctures, caHed synaptic vesicles, which hold chemical neurotransmitters. At this

point the axon is very close to the postsynaptic neuron, leaving a tiny gap between

th,J pre- and post-synaptic cell membrane, called the synaptic cleft. Nerve impulses

(action potentials) at the synapse cause neurotransmitters to be released into the

synaptic cleft. When the neurotransmitter molecules reach the postsynaptic

membrane, they are detected by specialised chemical receptors that cause an

electrical response at the postsynaptic membrane, called the postsynaptic potential. If

the potential change is positive, it helps to generate nerve impulses: thus, it is known

as the excilalary postsynapric potemial (EPSP). If the potential change is negative, it

opposes the production of nerve impulses; thus, it is termed the inhibitory
pas/synaptic pole11/ial (IPSP) (Stevens, 1994). Accordingly, synapses are classified

as excitatory or inhibitory, depending on the type ofpostsynaptic potential generated.

One type of inhibitory synapses works by increasing the conductivity of the cell

membrane, thereby 'shunting' the effect of other input potentials and 'clamping' the

cell potential to its resting potential. This effect, known as shunting inhibition, forms

the biological basis for the work presented in this thesis; it is described in greater

detail in Chapter 3.

2,2,2 Aellon potential and spike trains

The basic process describing the 'firing' ofa neuron is that if the sum ofpostsynnptic

potentials exceeds a threshold voltage, the soma generates an action potential, a

voltage spike, that propagates down the axon, sending the signal to all neurons with

synapses connected to it. This action potential spike typically has an amplitude of

about !00 mV and a duration of I to 2 milliseconds. The spike is followed by a

refractory period during which the neuron cannot fire again. Fig. 2.2 shows a typical

action potential spike.

Given that the amplitude of an action potential spike of a neuron is always the

same, the question arises "How is a 'strong' signal differentiated from a 'weak'

signal?" The answer is that a neuron will nonnally generate a number of action

10

ARl11'/CIAL NEURAL NITWORKS; A Rt!l1EW '
2.3 Artlflcial Neural Networks

Artificial neural networks (ANNs) mimic the function of biological neural networks.
The workings of the biological neuron are modelled mathematically - to varying

degrees of complexity - and then simulated, either in software or hardware. These
'artificial' neurons are then combined to fonn artificial neural networks. This section

describes one of the most popular neuron. Each synapse has associated with it a
weight or strength, w. The input neuron models, and outlines the ways in which

neurons are combined together to form artificial neural networks.

2.3,1 The Artlflclal Neuron Model

The most common artificial neuron model is presented in Fig. 2.J. This model has
three basic elements to reflect the functions of the biological neuron presented in the

previous section:

I) Synapses or connecting links

These correspond to the synapses of the biological neuron. The signal x,at the

input of synapsej connected to neuron k is mullipfledby the synoptic weight
w,.

2) AnAdder

The adder is a linear combin~r for summing the weighted input signals, W1,fCj,

and its output Uk is given by

(2.1)

It represents the integration of signals at tho soma.

3) Activation function

The 'firing' of the biological neuron to produce an output signal is modelled

by an activation function. The activation function, q,(x), is the relationship

between the adder output and final output of the neuron. It is often a non­

linear fimc//on, thereby limiting the amplitude of the neuron output. Non­

linearity also helps in feature extraction. Normally a constant threshold or

bias value (OJ is also added, resulting in the following equation:

(2.2)

12

ARTIFIC/Al NliU/Ul NliTWORKS-A REVIEW

2,3,3 NetworkArchifectures

As the name suggests, neural networks consist of co\leetions of neurons linked

together tn form a network. The manner in which the neurons are structured in a
network is closely linked to the learning algorithm used to train the network. There

are three general classes of network architectures: single-layer feedforward networks,
multilayer feedfoward networks and recurrent networks (Haykin, 1999, pp21-23). A

brief description of each, along with some of the standard terminology that will be
used from now on, is given below.

2,3,3,1 Single-fayer Feedfonvard Networks

These networks have neurons (computation nodes) organised in the fonn of a single
layer that fonn the 011/pul layer of the network. The inplll layer is simply a set of
input sources linked by synaptic connections to the computation nodes. All signals

propagate in one direction only, from the inputs to the computation layer neurons
that in tum produce the outputs. The term feedfanvard means that there are no
feedback loops anywhere in the network.

2,3,3,2 Multilayer Feedforward Networks

Multilayer networks have the same form of layered architeeture as the single-layer

networks, but with one or more hidden layers of computation nodes that are placed
between the input layer and the output layer. The neurons in the hidden layers arc

called hidden neurons or hidden units. The hidden !ayers extract higher order
statistics, enabling the networks to produce more complex input-output mappings.

The layers can be fully or partially connected. Afalfy connected network is taken
here to mean a network where every node in a layer is connected to evety node in the

odjocent forward layer. If there are missing connections, the layer is called por/ial/y

connected. Shor/cl/I connec//ons are connections from a node to a non-adjacent

forward layer, for example from the input !ayer directly to the output layer. Shortcut
connections shall not be considered part ofa fully connected structure here, though it

is considered so in some literature. The structure ofa network is represented in short
by the number of nodes in each layer. For example, a 10-4-3 network is one that has
[0 input nodes, a single hidden layer of4 neurons, and an output layer of3 neurons.

2,3,3,3 Recurrent Networks

Recurrent networks differ from feedforward networks in that they have at least one
feedback loop. They may be with or without hidden neurons. Self-feedback refers to

the case where the output ofa neuron is fed back as an input to itself. These networks
nonnally have unit delay elements in the feedback loops, resulting in nonlinear
dynamical behaviour.

15

ARTIF/CIALNEURALNETWORl(S-A R£VIEW

2.4 Knowledge and Learning Process

"Knowledge refers to stored information or models used by o person or

machine to imerpret, predict or approximately respond lo the au/side world"

(Fischler & Firschein, 1987).

The above is a generic definition ofknow[e<lge by Fischler and Firschein. Haykin

gives the following definition of learning in the context of neural networks (Haykin,
1999, p50):

"Learning is a process by which the free parameters of a neural network are

adapted through a continuing process of stimulation by the environment in

which the ne/Work is embedded. The type of learning is determined by the

manner in which the parameter changes take place"

The two definitions reinforce the definition of a neural network given in the

introduction, which says that neural networks acquire knowledge through a learning
process. That definition also says that knowledge is stored in the form of synaptic

weights, which is why the learning process is defined above as one of adapting these
free parameters. The other point to note is that the definitions refer to 'the outside
world' and 'the environment'. Neural networks function by adapting themselves to

some external stimulus in order to learn some pattern or trend that can then be used
at some other point in time as required.

The /earning process for neural networks can thus be [aid out as follows (Haykin,
1999, p50):

I. The neural network is stimulated by the environment.

2. The neural network undergoes changes in its free parameters as a result
ofstimufotion.

3. The neural network responds in a new way to the environment because of

the changes that have occurred in its internal structure.

The changes made to the network are in terms of changes to the synaptic weights
in the form:

(2.7)

The calculation of t.wlf is obtained from the learning rule used, which is n set of

rules for adapting the weights to solve the problem at hand. The learning paradigm

refers to tbe manner in which the neural network (learning machine) relates to its
environment.

16

AR77FICIALNEURALNITWORKS - ,{ REntw

2.4.l Learning P11radlgms

The learning paradigm refers to a model of the environment in which the neural

network operates. There are three learning paradigms for the training of neural

networks: supervised learning, reinforcement learning and unsupervised learning.

2.4.1.1 Supervised learning

In supervised learning, there exists an external 'teacher' with knowledge of the

environment, in the form of input-output examples. The difference between the

desired output and the actual system output is the error signal that is used to modify

the system in order to make the system emulate the teacher. Examples of supervised

!earning are the least-mean square (LMS) algorithm (Widrow & Hoff, 1960) and

back-propagation (BP) algorithm (Rumelhnrt et al., 1986).

2.4.1.2 Reinforcement learning

In this paradigm, the system receives a reinforcement signal (scalar) based on the

actions taken. If positive reinforcemeni is received, then probability of same action

being taken is strengthened or reinforced. Otherwise, the tendency to produce that

action is weakened (Sutton et al., 1991). However, the scalar value doesn't indicate if
further improvement is possible, or how behaviour should be changed. There is also

conflict between the use of existing information and the desire to explore new

avenues for improvement. A critic may be used to generate the reinforcement signal.

2.4.J,3 Unsupervised learning

In unsupervised or self-organised systems, there are no external teachers or examples

to be learned. Instead, the system learns from the input data presented to it and

organises itself accordingly (Becker, 1991). A competitive !earning rule or clustering

procedure is normally used. It becomes very useful when the size/depth of the

network grows large and pure supervised learning becomes unacceptably slow

(Jacobs & Jordan, 1991).

2.4.2 Learning Rules

The learning rule describes how network 'learns' from its environment i.e. the rule

by which the weights of the network a.re adapted. The term training algor//hm, on the

other hand, is used here to mean the specific set of steps used to update the synaptic

weights, and this will fall under the umbrella of one of the learning mies. The

learnirg mies covered here are error correction learning, Hebbian [earning,

competitive learning, stochastic !earning, evolutionary learning and information­

theoretic learning. Training algorithms are covered in Section 2.8.

17

ARTTFICIALN£UMLN1':Tll'ORKS- ,I RUIEW

2.4.2.J Error Correct/rm Learning! Delta Rule

The error correction learning nile, also known as the delta rule, assumes that during

the !earning process the network is presented with n set of examp!nrs from which to

learn. These examplars consist ofa set of inputs along with the corresponding set of

desired outputs. The 'error' is the difference between the actual output of the

network and the desired output. This difference is used to work out the changes that

need to be made to the weights in order to produce the desired outputs.

For a given input stimulus x(n), the error signal of neuron k at the n'h step, e1(n), is

the difference between the desired response, d1(n), and the actual response,n(n):

e.1(n) = d.1(n) -y;(n) (2.8)

The idea is to minimise some cost function based on e,(11), with respect to the

synaptic weights of the network. The error term is sometimes denoted as r5
(Wasserman, 1989, p. 41), hence the name delta rule. According to the error­

correction learning rule (or delta rule), the weight adjustment li.w1;{n) is given by

(Widrow & Hoff, 1960)

li.w,1(n) = 11 e,,_(n) Xin) "'I/ 81 (n) x1(n) (2.9)

where 11 is the rate of learning and 61"' e1;.

The choice of 1l is vel)I important to ensure stability because it acts as a feedback

term. For small r,, the learning process is smooth but takes a long time, whereas for

large 11, learning is foster but process may diverge and becomes unstable.

The plot of cost function vs. synaptic weights consists of a multi-dimensionBl

surface called the error surface. For a linear neural network, the error surface is a

quadratic function of weights, i.e. bowl-shaped with a unique minimum. For a

network with non-linear neurons, surface has one or more global minima as well as

loco/ minima. The objective is to start anywhere on the error surface and end up at

the global minimum without getting trapped in local minima.

The work presented in this thesis uses error-correction learning almost

exclusively. The other methods are only relevant to other referenced works.

2,4.1.2 Hebbian Learning

Hebb 's postulate o/leorn/11g {Hebb, 1949) can be re-presented as follows:

J. 1f 1 11c11rons 011 either side of o synapse (co1111ectim~ are activated

simultaneously (synchronously), then the strength of thal sy!lapse is
selectively increased.

2. 1/ 1 /le/Irons on either side of a synapse are activated asynchronously,
then the synapse is selectively weake11ed or climinalcd.

18

ARnFICIAL NEURAL NETWORKS. ,I REVIEW

In Hebbian learning, also known as corre/atlrm learning, the change in weight is
n function of pre· and post-synaptic activities (x1andyt) (Kohoncn, 1988)

li.wl}{11) = 1J Y1(n) X;(n) • ay1(n) Wtj{n)

where a is a positive constant forgetting factor

(2.10)

The second "forgetting" tenn is to avoid exponential growth and saturation of
wl}{n). li.w1,r{n) can also be seen statistically as a function of the covariance of pre-
and post-synaptic activities.

1,4.1.3 Canipelitive Learning

In competitive learning only one of the output neurons of the network is allowed to
be active. The output neurons compete among themselves for being the one to be
active (fired) - the winner-takes-all neuron. The network may have lateral
connections that perfonn lateral inhibition for the competition to work. Only the
winning neuron has its weights adjusted, according to input pattern that made it win.

The basic weight update will be of the fonn

{
11 (x, - w,,) ifneuronj wins

li.w =
1' 0 ifncuronjloses

(2.11)

where x1 is Ith component of input pattern, from input node I. The overa!l effect is to
move the weight vector w1 of winning ncuronj towards input pattern l. Individual
neurons learn to specialize on sets of similar patterns and thereby become feature
detectors.

Competitive learning plnys an important part in self-organising systems. It is used
in Grossberg's Adaptive Pattern Classification (Grossberg, 1973, 1976) and ART
networks (Carpenter & Grossberg, 1987, 1988) and Kohonen's Self-Organising
Maps (SOM) (Kohonen, 1982).

1.4.1.4 Stocl,aslic and E~olulionary Learn/rig

Stochastic [earning rules contain elements that use probabilistic or 'random' events
ns part of their fonnulation. Evolutionary algorithms are n separate class, but
incorporate some clement of randomness in their operation. These non-detenninistic
methods tend to take longer than dctenninistic methods, but allow greater coverage
of the 'solution space'. The inherent randomness occasionally results in the 'inspired
step' that lends to better results.

19

ARTIFICUl Nf:U!Ul Nr;nroRKS. ,! Rf:VlfW

2.4.2.4.1 Boltzmann !earning

The Boltzmailll learning rule is a stochastic algorithm derived from information­

theoretic and thermodynamic considerations (Hinton & Sejnowski, 1983). In a

Boltzmann machine, neurons are in a recurrent structure and operate in a binary

fashion: +I for 'on' state and -1 for 'of!' state; none of the neurons has self.

feedback. The Boltzmailll machine has two modes of operation:

Clamped condition, in which all the visible neurons are clamped to specific

states determined by the environment

Free nmning condition, in which all the neurons (visible and hidden) are

allowed to operate freely

The learning algorithm works by randomly flipping the state of one of the

neurons. The probability of flipping is based on the states and weights of all neurons,

and a pseudo-'temperature'. The weight update according to the Boltzmann learning

rule is given by

(2.12)

where p;, is the correlation between states of neurons I andj, conditional on the

network being in its clamped condition andpjl is the unconditional correlation

between states of neurons; andj (i.e. network in free-running condition).

2.4.2.4.2 Stochastic optimisation

Stochastic optimisation methods update the weight vector of the network, w, using

w(n+I) =W(n)+!;(n) (2.13)

where !;(n) is a randomly generated perturbation. The error function E{w{n+l)) is

compared with E(w(n)) in order to determine if the new direction in weight space is

to be explored {Schalkoff, 1997, p. 294).

2.4.2.4.3 Evolutionary Computation

Evolutionary computation has been widely used to evolve neural network

architectures and weights. Evolutionary computing can be divided into three broad

categories: genefic algorithms, evolmionory programming and e1J0/11/ionary

strategies (Back, 1997). The firnt two are commonly used with neural networks.

Gcnetie algorithms (GA) are defined as algorithms that transform populations of

mathematical objects (Schalkoff, 1997). The objects codify the real objects to be

manipulated (phenome) in a manner independent of the problem, usually a string of

bits (genome). Afimessfimcrirm has to be defined that can give an evaluation score

to the object.

20

ARTIFIClALNEURALNErwORKS -A REVIEW

The first step is to randomly generate an initial population of individuals and
evaluate the fitness of each object. The algorithm selects probabilistica!ly a
subpopulation from the current population, based on the fitness scores. Then some of

the individuals are paired up to create a new generation. Here parts of the 'genetic
code' from the parents are exchanged using the crossover operator to produce the

offspring. Some of the individuals in the new generation have a random part of their
'code' inverted as part of the mutation process. The fitness of each individual in the

new population is then evaluated. The process is repeated until at least one of the
individuals in the population has a fitness that exceeds the fitness threshold level, or
the number of generations reaches a maximum.

Note that the selection, crossover and mutution processes arc non-dctenninistic.

Genetic algorithms,just like the stochastic updates, do not tend to become trapped in
local minima. GAs, however, are slow when used for weight adaptation (Schalkoff,

1997, p. 212) and only viable for small structures of less than 50 neurons
(Schiffmann et al., \992b). They show more promise when used for structure

adaptation (Schalkoff, 1997; Yao & Liu, 1997), as discussed in Section 2.9.

Evolutionary pragramming (EP) (D. B. Fogel, 1992; L. J. Fogel ct al., 1966), on

the other hand, uses a 'natural' representation of the problem, and once chosen
mutation operators specific to the scheme are defined. It avoids the need to encode
the object in an abstract genomic representation. The other difference between EP

and GA is that the mutation operation, the primary operation, changes aspects of the

solution according to a statistical distribution that makes miuor variations highly
probable and substantial variations increasingly unlikely. EP uses stochastic selection
via a tournament. Each trial solution competes against a fixed number of opponents,

aud those with the least 'wins' are eliminated. EP does uot explicitly use a crossover
operator, though it is argued that this is a matter of philosophy (Back, 1997}. EP is

apparently the most suited paradigm of evolutionary computing for evolving
artificial neural networks (Garcia-Pedrajas et al., 2003), better than GA (Yao & Liu,
1997).

2.4,1.S Informatlrm-theoretic learning

In the last decade, there has been an explosion of information theoretic approaches in

neural networks and machine learning (Principe et al., 2004). Descriptors used to
quantify infonnation, such as entropy and divergence (or its special case mutual
information), arc replacing the mean-squared error criteria. The process of learning

or adaptation with these new cost functions is named Information theorelic /earning.

The foundations of infonnation theory lie in the work of Shannon (Shannon,

1948). It attempts to quantify the amount of infonnation obtained from the
occurrence of any event or message.

21

ARTIFICIAL NEURAL NETWORl(.S -A REVIEW

The amount of infonnation gained after observing a discrete event x = x1 that has
probability p1 is given by

I(x1) = lo{)~,)=-logp1 (2.14)

From this, /(x1) = 0 if p; = I; that is, if it is known for certain that some event is

going to happen, the occurrence of that event doesn't add any infonnation to what is
already kno~. However l(xi) can never be less than zero, so information cannot be

lost through the occurrence of some event (Hay kin, 1999).

The entropy H(x) ofa discrete random variablex, given by

(2.15)

is a measure of the average amount of information conveyed per message. It is alsa a

measure of the prior uncertainty about x. If xis the input of a system with outputy,
the uncertainty resolved by observing the output, otherwise known as the average
m11111al i11formatio11 between x andy, is given by

I(x,y) = H(x)- H(x I y) (2.16)

where H(x IY) is the conditional entropy.

In Linsker's principle of maximum information preservation, self-organised
learning is achieved by maximising the mutual information between the input-output

vectors of the model (Linsker, 1988). This principle, also known as infomax, can he
used to produce topologically ordered input-output mappings like the SOFM. The

idea of maximising mutual infonnntion in the unsupervised processing of the image
ofa natural scene has been used in (Becker & Hinton, 1992).

Renyi proposed a generalised definition of entropy, or infonnation content, that
includes Shannon's entropy as a spCl.:ial case (Renyi, 1970). Renyi's entropy has

been used as the basis for alternative optimality criterin for supervised neural
network training (Erdogmus & Principe, 2000, 2001, 2002; Morejon & Principe,

2004), as wel! as for clustering of data (Jens sen et al., 2003). A stochastic entropy
estimator has also been proposed (Erdogmus et al., 2003).

2.4.3 General methodology for neural network learning

The main task of a neural network is to learn a model of its environment ond store
that information. The objective is that, for any given set of inputs, the network is able

to produce a set of outputs consistent with the environment it is modelling.

22

ARTIFICl~LNEURAL NETWORKS -A. Rf:VICW I
The knowledge of the 'world' may be divided into two kinds_ (Haykin, 1999, p24):

Prior in/rmnatirm, facts about the known state of the world

Observations (meas11rements). These observations of the world are

inherently noisy. Th,,y form the pool of information from which
exemplars are selected lo train the network

The general methodology by which a neural network is applied to a given
problem can be given as fo!lows:

I. A neural network architecture is selected (ci.:,:.,, based on prior information
of system).

2. A subset ofexamplars it used to train r.,~twor.'. by means ofa suitable training
algorithm, depending mi the architP.clUrr'.

3. The network is tested with input data not presented to the network before and
the output compared to the acrua\ environment or 'world state'. This is a test

of the generalisal/or, nbility of the network, which is an important capability
when a network is applied to a problem.

2.5 Classification and Regression

Neural networks can be applied to a variety of problems, the majority of which fall

under the category of classification or regression. This section presents definitions of
classification and regression tasks and related terms, including a brief introduction to

Bayesian classification.

2.5.1 Classification

Classification is the task of classifying input samples (patterns) into one ofa discrete
set of possible categories (Mitchell, 1997). The input patterns with d inputs can be

represented as points in a d-dimensionnl Euclidean space E!1, called the input space.
A pattern classifier is a device that maps the points of E!1 into the category numbers,

effectively dividing the input space into a number of murunlly exclusive subspaces
representing the various categories. All input sample points that He in a particular

subspace, or point set, are said to belong to that cntegory. The various subspaces are
separnted by decision boundaries or decision smfaces (Nilsson, 1990). Patterns are
said to be //nearly separable if the classes they represent can be separnted by s

hyperplane, or a set ofhyPerplanes (Duda ct al., 2001).

23

ARTtf"ICMl NWRAL NE:nroRKS -A RE:V/EW

(2.18)

where P(w 1) is the a priori probability of group j, p(x I w J) is its conditional

probability density function, and the probability density functionp(x) is given by

p(x) = z;;,p(xlw1)P(w1) (2.19)

In order to minimise the misclassification rate, the widely used Bayesian

classification rule is

Decide Wk for x if P(w, I :i:) =_max P(w, J x) •• ,.2-. .. r.t (2.20)

This simple rule is the basis for many statistical classifiers. One problem in

applying the simple Bayes rule in (2.20) is that, in most practical situations, the

density functions are not known or cannot be assumed to be nonnal, hence the

posterior probabilities cannot be determined directly.

2.5,l,2 Advantages of Neural Networks/or C/ussijication

Neural networks offer a number of advantages when applied to classification (Zhang,

2000). Firstly, neural networks are data-driven self-adaptive methods, able to adjust

to the data without needing an explicit specification of the underlying model.

Second, they are universal function approximators and therefore able to map any

functional relationships (Hornik et al., 1989). Third, neural networks are non-linear

models, making them capable of modelling complex real world relationships. The

fourth advantage is that neural networks are able to estimate the posterior

probabilities, which provides the basis for establishing classification rules and

performing statistical analysis (Richard & Lippmann, 1991).

2.5.1.3 Other Types of Clanijiers

Some popular types of non-neural network classifiers referred to are linear

discriminant fimction.i, decision trees and k-neorest neighbour classifiers. Fisher's

method of !inear discrimination (Fisher, 1936) is one of the oldest classification

procedures. The idea is to divide the sample space by a series of lines in two

dimensions, planes in 3-D and, generally hyperplanes in many dimensions. Decision

trees classify instances by sorting them down the tree from the root to the !eafnode,

which provides the classification for the instance (Mitche!l, 1997). The k-Nearest

Neighbour (k-NN) method is a non-parametric method thnt simply remembers all the

training examples and classifies a new observation as the most frequent clnss ofthe k

nearest stored examples. A more detailed coverage of these nnd other classification

techniques can be found in (Dudn et al., 2001; Ripley, 1996)

25

ARrlF/CMl NEURAL NETWORKS- ,l RUIEW

2.5.2 Function Approximation and Regression

Regression analysis concerns the study of relationships between variables, based on
random observations (Vapnik, 1998). The estimated relationship can then be used to
predict one variable from another (Johnson & Bhattacharya, 1996). Common
statistical methods of regression include linear and polynomial regression.

Nonparametric regression addresses the problem of trying to fit a model for a
variable Yon a set of possible explanatory variables X1, ... ,Xp, where the relationship
between X and Y may be more complicated than a simple linear relationship. Neural
network regression is a special case of nonparametric regression (H. K. H. Lee,
2000). The idea of nonparametric regression is to use models of the form

(2.21)

where f E F , some class of regression functions, and c· is i.i.d. (independent

identically distributed) additive error with mean zero and constant variance.
Sometimes normality of e is assumed. The main distinction between the competing
nonparametric methods is the class of functions, F, to which/is assumed to belong.
In nil cases, F is taken to be some class rich enough to be able to sufficiently
approximate a very large set of possible regression functions. In other words,
nonparametric regression is simply a function approximation task, with added noise.
Neural networks are well suited for non-linear regression, recalling that neural
networks can be universal function approximators (Hornik et al., 1989).

If the variable or variables to be estimated relate output variables to input
variables, then the regression function can be used to model the process of the
system. If the variables to be estimated are future values then the function is a
predictor (Specht, 1991). For time-series prediction tasks, temporal information can
be presented spatially to the network by a time-lagged vector, also called a tapped
delay line (Gershenfeld & Weigend, 1993; Schalkoff, 1997). An alternative is to use
recurrent neural networks, since their feedback loops make them well suited to
handle such tasks. Recurrent networks have been shown to perfonn better than
feedforward networks on time series predi~,;on tasks (Connor et al., 1994). Neural
networks have also been successfully used to track time-varying regression functions
(Rutkowski, 2004).

Various types of neural networks have been used for regression tasks, from MLPs
(Lawrence et al., 1996; Park et al., 1996; Yao & Liu, 1997) and SVMs (Gunn, 1998;

Musicant & Feinberg, 2004) to network ensembles (Jslam et al., 2003; Naftaly et al.,
1997) and even networks with special types of neurons (Nikolaev & Iba, 2003;
Rutkowski, 2004).

26

ART!Flr.:!AlNEU/1,!L NETWORl!S -A REl'IEW

2.6 Multilayer Perceptrons

2.6.1 The Perceptron

The perceptron consists of a single neuron with adjustable synaptic weights and a

threshold. First introduced by Rosenblatt (Rosenblatt, 1958), it is the simplest form

of neural network used for classification of linearly separable patterns. The neuron

uses a hard-limiter activation function (McCulloch-Pitts model, refer Section 2.3.2).

The input to the hard-limiter, u, is:

(2.22)

wherep is the number of inputs.

The perccptron is therefore nble to define two decision regions separated by the
hyperplane

(2.23)

The pereeptron inspired Widrow's Adaline (Adaptive Linear E,lement), used for

adaptive switching circuits and trained using the LMS algorithm (Widrow & Hoff,

1960). This was followed later by the Madaline (multiple adaline), which used a

layer ofperceptrons (Widrow, 1962).

Minsky and Papert showed that perceptron training is guaranteed to converge

provided the examples are linearly separable (Minsky & Papert, 1969). However,

they also highlighted the limitations of the perceptrons in handling linearly non­

separable problems, dampening research in this area for more than a decade.

It has been shown that even if the activation function is changed from a hard­

Iimiter to another non-linearity such as a sigmoid function, the single-layer

perecptron can only properly classify linenr!y separable patterns (Shynk, 1990;

Shynk & Bershad, 1991, 1992).

2.6.2 The Multilayer Perceplnm

Although the perceptron may have a nonlinear activation function, the decision

surface it represents is still a hyperplane, which is inadequate in most practical

situations. This is the weakness of the perceptron. The solution is to usc many

neurons, arranged in layers, to represent complex: nonlinear decision surfaces, i.e. a

Mufti/ayer Perceptron (MLP). The MLP is a multilayer feedforward network (see

Section 2.3.3), where the output signals from one layer are directly fed in as inputs to

27

A!ITIFICULNEURALNETWO/IK~'-A REYltW

In classification problems, the function of the hidden layers is to nonlinearly map
the input patterns into linearly separable features in the hidden unit space, orfeoture
space (Duda et al., 200t, pp. 299-301). The practical goal of training the network is
to adapt the synaptic weights so as to transform a linearly non-separable problem in
input space into a linearly separable one in feature space.

The capacity of the hidden layer to map the input patterns into a linearly separable
form is dependant on the number of hidden units. Increasing the number of hidden
neurons increases the dimensionality of the feature space. According to Cover's

theorem on the separability of patterns, a complex pattern-classification problem is
more likely to be linearly separable if nonlinearly cast in high-dimensional space
(Cover, 1965). The number of hidden layer neurons is not limited by the problem
definition, so it would seem the number of neurons can be increased ad injinltr1m
until perfect classification is obtained. In practise, however, there is a limit to number
of hidden-layer neurons that can be used, as increasing the number of weights will
eventually lead to aver.fitting (refer Section 2.6.6).

It has been shown that an MLP with a single hidden layer can function as a
universal approximator, i.e., it can approximate any arbitrary continuous function
(Hornik et al., 1989). This is a theoretical analysis, but may not be practical to
implement for all functions, as the number nfhidden layer neurons required may be
too large. On the other hand a two-hidden layer network is able to perform this in a
more manageable two-stage fashion (Funahashi, 1989). The first hidden layer
extracts local features, whereas the second hidden layer extracts global features from
the outputs of the first hidden layer.

The use nf multilayer networks did not really take off, due to the lack of proper
training algorithms, until the advent of the error bac:kpropaga1ion algorithm
(Rumelhart et al., !986). This algorithm is based on the error-correction learning
rule and is a generalisation of the LMS rule. It provides an elegant solution to the
credit assignment problem, i.e. determining how much each hidden neuron
contributed to the output error. Next, the backpropagation algorithm is explained
further.

2,6.3 Error Backpropogation Algurlthm

Backpropagation is a specific technique for implementing gradient descent in weight
space for a multilayer feedforward networks (Haykin, 1999). The error back­
propagation process is made up of two passes through the network:

J, Farwardpa.Ts

The input signal is applied to the network, and its effect (lune/ion signal) is
propagated through the network, layer by layer

29

ARTIFICIAL NEU/l,ll NETWG!IKS -A REnrw

2. Backward pass

The difference between the desired and actual response (error signal) is
calculated and propagated backward through the neural network The synaptic
weights are adjusted to Illllke the actual response move closer to the desired
response usiug the delta learning rule.

The update for weight W;1 connected to neuron} at iteration n, liw1,{n), is given by

(2.26)

where 'I is the !earning rate parameter, oj(n) the error sensitivity andy,{n) the output
signal ofneuronj

The sensitivity, oj{n), depends on whether the neuron is an output or hidden node.
For the case where neuronj is an output node, the error sensitivity is given by

(2.27)

where \I(.) is the activation function of the neuron and e;{n) is the error signal given
by the difference between the desired and actual outputs

For the case where neuron} is a hidden node, the sensitivity is given by

61(n) = ip~{v,(n)) L61 (n) w,;(n)
•

(2.28)

(2.29)

where 4is the 6term from the forward layerneuron k, which is then weighted by the
synaptic weight w.\l between neuron j and k. In other words, the error term for a
hidden neuron is the weighted sum of the error terms of all the neurons it is
connected to in the forward layer.

The net effect is that the error signals (o) propagate backwards, weighted by the
synaptic weights, hence the name ofbackpropagation algorithm. An important point

to note here is that the calculation of the 6term, as given in Eq. (2.27) and (2.29),

requires the calculation of the differential ofactivation function (\I''). This means that

the activation function (ti needs to be differentiable everywhere, like the sigmoidal
function. Conversely, the hard-limiter or threshold function cannot be used be,muse
of the step (discontinuity) in the function. Further details of this algorithm and
improvements to it arc covered along with other training algorithms in Section 2.8.

30

tlRTIFICIAL Ni':U/UL NIITWORKS -A REn£W "/l'

2.6.4 Inltlallsatlon

l11itialisatian refers to the setting of the starting weights and biases before training

starts. The weights are normally initialised to a set of random values within a small

range. This is so that the netw~rks start from different 'points' in the :weight space,

increasing the chaiice of finding the global minimum. The weights are kept small

initially, as large weights inay result in the neuron outputs going into their saturation

regions early in the training phase. This phenomenon, called premature saturat/011,
can lead to longer training times (Y. Lee et al., 1991).

A common practise is to have the set of random values uniformly distributed in

the range [-r, r]. The value of r may be fixed globally or varied from neuron to

neuron depending on factors such as the number of inputs to the neuron. Other

distributions of weights, such as the Gaussian distribution, can also be used. A good

review of initialisation methods for MLPs, including experimental results, is giveu in

(Thimm & Fiesler, 1997).

2.6.5 Training modes: pattern mode vs. hatch mode

The error back-propagation algorithm is an error correction algorithm, falling under

the supeivised learning paradigm. A set "of examplars, ca!led the training set, is

presented to the network. One complete presentatiOn of the whole training set is

called an epoch. The process of presenting the training examples and updating the

synaptic weights is" repeated until the mean error over the whole training set falls

below a particular value, or some other stopping criterion is met. The frequency of

the weight update depends on the mode oftraining,pollem mode or batch mode.

In pattern mode, the synaptic weights are updated after each training example is

presented. This mode is also referred to as training by sample or rmline training. A

degree of randomness con be added to the weight updates by randomly changing the

order in which the examples are presented at each epoch. This makes it less likely for

the training algorithm to be trapped io a local minimum.

In batch mode training, the weight update is perfonned once an epoch, after all

training examples in the set are presented. T~is is an accumulated co11ection that

represents a smoothing of the weight correction, and avoids mutual interference of

weight updates from different examples (Battiti, 1992).

2.6.6 Generalisation and validation

Generalisation is the ability of the neural network to correctly compute the input­

output relationship for data not seen during training. As mentioned earlier, the ability

to generalise well is crucial in practical applications. Overjitting happens when the

31

ART1FICMl NEUIIAl NrnroRKS-A REVIEW

network is given "too much" infonnation either in the fonn of too many neurons for
the given problem or excessive training of the network. It tends to represent the
input-output relationship for the training examples almost exactly, but doesn't
interpolate or extrapolate well. This reduces the generalisation perfonnance of the
network. The generalisation perfonnance of the network is tested using II set of
sample data uot used at any point in the training process, called the /es/ set.

In order to improve the final generalisation ability of the network, a third set of
sample data is brought into play, called the validation set. The validation set is
nonnally a small subset of the training data, but is no/ used in detennining the weight
updates, i.e., not part of the actual training set. At the end of every epoch of training,
the validation data is presented to the network and the error across the whole set
worked out. This provides an estimate of the generalisation ability of the network. If
the validation error indicates that the network is over-fitting, the training is stopped.
This is called early stopping. T11c criteria for stopping can be that the validation error
continues to grow for a certain number of epochs, or that it exce<:ds a certain level
above the minimum validation error a~hieved up to that point. In some
implementations the network state that produces the minimum validation error is
saved and used as the final network, if training is stopped early.

Detennining the 'optimum' network structure for a given application is not an
easy task. A structure that is too large will tend to overfit, whereas a structure that is
too small may not be able to represent the input-output re!ationship accurately. Prior
knowledge is used where applicable; otherwise trial-and-error is commonly used.
Construction and pruning algorithms that modify the network structure as part of the
training process are discussed in Section 2.9.

2,6,7 Error surface and local minima

The error value used to detennine the perfonnance of the network is a function of the
weights of the network. For a fixed structure network, these error values can be
visualised as forming on error surface in multi-dimensional space. The objective is
to modify the network weights until the global minimum of this error surface is
reached. For o multilayer network this error surface can be quite complex, and may
contain multiple focal minima. The training algorithms need to be able to ovoid
getting stuck in the local minima, in order to be able to reach the global minimum -
if it con find it. This task is easier said than done. It can be likened to a blind mun
searching a mountainous lnndscape for the lowest point, with nothing more than what
he can feel around him - in this case gradient infonnation - and where he has been,
provided he doesn't forge)! Methods of getting out of local minima and improving
the speed oftrainiog ore covered in Section 2.8.

32

ARnf/CIAL NWl<AL NnwaRK!i. ,l REYIEW

2.7 RBF networks and Support Vector Machines

Radin] Basis Function (RBF) networks ond Support Vector Machines (SVMs) are
two other classes of neural networks that use the concept of non-linear
transfonnntions that attempt to convert the input patterns into linearly separable
classes, as discussed in the preceding section. While this process is implicit in MLPs,
it is explicit in these networks as they are designed with this process in mind. rn this
section, the basic concepts and modes of operation RBF networks and SVMs arc

presented, with comparisons to MLPs where appropriate.

2.7.1 Rodiol-Basls Funclion Networks

Radial-Basis Function (RBF) netwo,; ·. use the viewpoint that learning is equivalent
to finding a surfoce in multi-dimensions[space that provides a "best fit" to the
training data. A radial-basis function network in its most hasic fonn consists of three
different layers:

l. Input layer of sensory nodes

2. Hidden layer of non-linear nodes of high enough dimension.

3. Output layer that is linear.

The purpose of the hidden layer nodes is to nonlinearly !ransfonn the input space
to a higher dimensional feature space, for reasons described in the previous section.
The hidden units provide n set of"functions" that constitute an arbitrary "basis" for
the input vectors when they arc expanded into hiddcn·unit space, called radial-basis

fimr:tions (Powell, 1987). The output ofan RBF network can be described by

Y1 (x) = f W1,1(tl(X) + W. ,., (2.30)

where \i'(l) is the basis function. This is similar in fonn to the linear discriminant
function in (2.17).

Rodia I functions ore a special class of function. Their characteristic fearure is that
their response decreases monotonically with distance from a centml point. A typical
radial function is the Gaussian, which is given by

(2.3 !)

where c is the centre oft he distribution function and uis the spread (radius).

The nrgumcnt of the activation function is the Euclidean norm (dl.itanr:e) between
the input vector nnd the centre ofthnt unit. The closer the input vector is to the centre

33

ARnFICMlNEiUIULNJ:Tll'ORKS-A REP/Ell'

of the function, the larger the output of the function is, with the maximum being
when the two are identical.

The RBF network produces local approximations to non-linear input-output

mapping. This results in faster learning, and a reduced sensitivity to the order of

presentation of training data. However, to represent the mapping smoothly, the

number of RBFs required to span the input space may be large. This contrasts with

the MLP, which does global approximations and is therefore able to generalise in

regions of input space with little or no training data.

In an RBF network, the hidden layer activation functions evolve slowly in

accordance with a nonlinear optimisation strategy, whereas the output layer weights

change rapidly following a linear optimisation strategy. The layers perform different

tasks, so it is reasonable for them to have different optimisation techniques working

on different time scales. Different learning strategies may be followed, depending on

how the centres of the RBFs are specified. There can be randomly generated fixed

centres, supervised selection of centres where the centre positions are trained with

the other parameters, or a hybrid learning process where the centres are self­

organising. In all cases, however, the linear output weights are trained using a

supervised training rule. In summary, radial basis function networks provide a global

approximation to the target function, represented by a linear combination of local

kernel functions (Mitchell, 1997).

2.7.2 Support Vector Machines

Support Vee/or Machines (SVM) are a relatively new technique for solving pattern

recognition problems, bnsed on statistical learning theory, that contain polynomial

classifiers and RBF networks as special cases (Scholkopf et al., 1997). Traditional

techniques for pattern recognition are based on minimising the empirical risk (such

as the mean squared error), which optimises performance on the training set. SVMs

011 the other hand, attempt to minimise the stroctural risk, that is the possibility of

misclassifying yet-tu-be-seen patterns for a fixed but unknown probability

distribution of data (Ponti] & Verri, 1998).

The key idea of SVMs can be explained as follows (Vapnik, 1998). Given n

training set S that contains points of either of two classes, an SVM separates the

classes through a hyperplane determined by certain points of S, termed support
vectors. In separable cases, the hyperplane maximises the margin, or twice the

minimum distance of either class from the hyperplane, ~nd all support vectors lie at

the same minimum distance from the hyperplane (thus termed margin vectors). Ju

cases where the classes are not separable, both the hyperplane and support vectors

nre obtained by solving n constrained optimisation problem where the solution is a

trade-off between the largest margin and the lowest number of errors. To improve the

34

ARTIFICIAL NEURAL NiifWORKS -A R£Vl€W

separability of the input patterns, they are mapped nonlinearly to a higher­

dimcnsional space by use of kernel functions (such as a Gaussian function), similar
to RBF networks.

SVMs are attractive because of their ability to condense the information in the

training set and their use of families of decision surfaces of relatively [ow VC

dimension. The Vapnik-Chervonenkis (VC) dimension (Vapnik, 1998; Vapnik &

Chervoncnkis, 1971) is used in statistical learning theory (a.k.a. VC Theory) as a
measure of complexity (capacity) of a set of approximating functions. For binary

classification, the VC dimension is the maximum number of points, h, that can be

'shattered' (classified in a!l 2• ways) by the family of dichotomies (binary

classification functions or decision rules).

To allow for more general nonlinear decision surfaces, the set of input vectors is

nonlinearly mapped into a high-dimensional space by a suitable kernel function K

before linear separation is perfonned. This leads to a decision function of the fonn
(Vapnik, 1998)

/(x) =sign[L y,a,.K(x,x1) +b]
'"""'""'""'

(2.32)

Once again the decision function is similar in form to the linear discriminant function

givep in (2.17).

Examples of kernel functions are

Gaussian (REF)

Polynomial

The performance of SVMs with Gaussian kernels has been compared to classical

RBF classifiers and shown to have lower error rates (Scholkopf et al., 1997). The

main reason for this is that the classicol RBF method of centre selection is based on

the concept of clustering of training data, as opposed to SVMs that attempt to

minimise the structural risk thereby resulting in better generalisation. The support

vector method hns also been modified to train MLPs (Suykens & Vandewalle, 1999).

35

ARTIF/CUL NiiUR,tLNEITWORKS. A ilEVliiW

2.8 Training algorithms for Fee~forward Networks ,.. .

The objective of neural network lrainilig, using error correction learning, is to

minimise some predefined error function such as the sum squared error (SSE). The

error function is viewed as an optimisation or minimisation problem in v-dimensioD3l

weight space (IR'), where v is the number of free parameters (weights) to be

determined from training (van der Smagt, 1994). The state of the network can then

be visualised as taking a "walk" through this weight space nntil some optimal point

is reached where the error function is at a minimum. Ideally the minimum reached is

a global minimum, not just a local minimum. Various training algorithms have been

developed for training feedforward networks based on different approximations and

assumptions regarding the error function. The primary consideration has been to

determine the direction and size of the "step" to be taken at each iteration of the

training. A genera! description of some common types of training algorithms follows.

2.8.1 First Order Methods

In first-order methods only the first two (constant and linear) terms of the Taylor­

scries expansion of the error term are considered. These methods, where the local

gradient alone determines the dire1:tion of minimisation u, arc known as steepest

descent or gradient descent methods. For feedforward network training, it is known

as error backpropagation (BP), as described in section 2.6.3.

2,8.J,J Steepest Descent /Standard Backpropagat/011

When the network is in a state with weight vector w(n), the gradient of the error

function £with respect tow is computed as

aE
g(n)=--

8w(n)

A minimisation step in the direction u(n) = -g(n) is perfonned.

(2.33)

In normal steepest descent minimisation techniques, a one-directional

minimisation in the direction u(n) is performed such that a point w(n) is reached

where the new gradient g(n+l) is perpendicular to :1(11). The learning rule is then

w(n+l) = w(n) + T/(.n) u(n) (2.34)

and the new search direction is

u(n+l)=-g(n+l) (2.35)

However in standard BP, the line minimisation is replaced by a fixed step-size

(learning rate) 'I in order to reduce the number of function evaluations.

36

AR11F/CIALNEUIIAl NETWORKS-A REPJEW

2.8.J.2 Buckpropagation with momentum

The BP search direction is often augmented with a momentum tenn (Rumelhart et

al., 1986)

u(n+l) =-g(n+I)+au(n) (2.36)

A fraction of the previous update is included in the current update, keeping the

update going in the same general 'direction'. This extra term is generally interpreted

as avoiding oscillations as well as preventing the algorithm from getting stuck in

local minima.

2,8.1.3 Back propagation with voriable Ieorning rate

If the learning rate, 17, is too small, the number of iterations to arrive at a solution

may be very large. On the other hand having 17 too large may result in the weights

oscillating during iterations. A dynamic learning rate, 171, that varies at each iteration

can overcome the need for trial-and-error methods for selecting the learning rate.

One method of varying the learning rate is to use the direction cosine of the error

derivative vector to obtain infonnation on error surface curvature (Hsin ct al., 1992).

The change in the weight vector, t.w, between two successive iterations follows the

steepest descent direction for minimising the error function. Ifthc direction is almost

the same ns the previous direction, this implies the local shape of the error function is

relatively unchanged: therefore, a large value of 7/(.n) may be used to speed up the

process of minimisation. If the current direction is quite different from the previous

direction, it implies that the local shape is rather complex and that a smaller 1/i value

should be applied to avoid overshooting.

A simple method is to use only current and previous direction cosines (Franzini,

1987). An alternative is to use a weighted average ofa number of previous directions

since they also contain some information about the local error surface (Hsin et al.,

1992). In this method, the modified dynamic learning rate, 7/(.n), is a weighted

average ofL+l successive weight vectors and is given by

t.w(n).t.w(n -1) Aw(n - L).t.w(n- L- l)
17(n) = a. llt.w(n)rnlt.w(n- l)j + ···+ai jt.w(n- L)!mt.w(n -L- lJII

(2.37)

where a0 +a1 +a2 + ... +ai"'l

and a 0 2:a1 2:a, 2: .•. 2:ai

Another 'quick and dirty' method is the "Bold Driving" method (Battiti, 1989).

The method increases the learning rate at successive iterations ns long as the error

decreases. If the error increases the learning rate is reduced.

37

ARTIFICMLNEUR,IL NETWORKS· A REYIEW

11(n)=lp17(n-l)
u17(n-l)

if E(n) < E(n-1)

if E(n) ~ E(n-1)

where typical values of the constants arep = I.I and 11= 0.5.

(2.38)

The inefficiency of steepest descent is due to the fact that the minimisation

direction and step size are often poorly chosen; unless the first step leads directly to

the minimum, steepest descent wi!l zig-zag with many small steps. While

backpropagation of error gradients has proven useful, the convergence tends to be

slow, particularly when the number of weights in the network are large (Johansson et

al., 1992; van der Smagt, 1994).

2.8.2 Second Order Methods

Other numerical methods make use of the second derivntive of the function. In this

case the quadratic term of the Taylor expansion is also taken into account.

This error equation has the form

where

AE(w) = E(w + Aw)- E(w) = gT Aw+ tAw'HAw

g - aE I is the gradient vector and - ow ~.

a'E
H • --1 is the Hessian matrix awi "·

(2.39)

Minima are located at points where the gradient to equation (2.39) is 0, i.e.

Ht.w+g=O.

Therefore the optimal change in the weight matrix, Aw op1 =-ff"1g. However, the

calculation of the Hessian ff and its inverse is computationally prohibitive, thereby

leading to approximation methods being investigated. The above is the basis of

Newton 's mellwd and its variants.

1,8,1,J Quasi-Newton methods

Newton's method is one of the more successful algorithms for optimisation and, ifit

converges, has at least a quadratic order of convergence. However, for a general

nonlinear objective function, convergence to a solution cannot be guaranteed from an

arbitrary initial point. The aim of quasi-Newton (secant) methods such as the BFGS

(Broyden-Fletcher-Goldforb-Shnnno) and DFP (Davidon-Fletcher-Powell) methods

(Chong & Zak, 1996, pp 147-165; van der Smagt, 1994) is to avoid the computation

of the inverse matrill ff 1 by iteratively computing the matrices Q(n) such that

38

ARTIFICIAL N£U!UL N£TWORKS • A R£V/~W

(2.40)

The term quasi-Newton applies if

Q(n + l)(g(n + 1)- g(n)) = w(n -1)- w(n) (2.41)

is satisfied. The resulting Q(n) can be used to find

w(n + 1) = w(n)-Q(n)g(n) (2.42)

until a minimum is reached.

The disadvantage of these methods is that the storage requirements of Q(n) is
proportional to the square of the number Of weights being trained (Hagan & Menhaj,

1994; Johansson et al., 1992; van der Smagt, 1994).

1,8,1.1 Conjugate Gradient Methods

In conjugate gradient (CG) optimisation, the direction of the minimisation is always

chosen such that the minimisation steps in nil previous directions are not spoiled.
When a direction 0(11) is chosen and line minimisation is perfonned in this direction

leading to a point w(n+l), the gradient g(n+l) at w(11+J) must be orthogonal to g(n),
g(11-l), ... gG, hence the name. The weights and direction updates are given by

w(11 + !) = w(11)+a(11)u(n) (2.43)

u(n+ I)= -g(11 +I)+ P(n)u(n) (2.44)

The algorithm requires the Hessian of the function to evaluate two constants, a(n)

and An). In order to avoid the computation of this matrix, a line search is used to

evaluate a(11), whereas for /J._11} there are a number of formulas that compute it from
the gradient and direction vectors such as the Heslenes-Steifelfarmufa, Pafak-Ribiere

formula and Ffetcher-Reevesformrtla (Chong & Zak, 1996, pp 132-145).

Hes1enes-S1eife/farm11/a: P(11) = gr (n + l)[g(n + l)-g(n)]
ur (n)[g(n + 1)-g(n)]

Pa/ak-Rlblere farm11la: p(n) = gr (n + l)[g(n+ 1)-g(n)]
g7 (11)g(n)

g7 (n + J)g(n+ l)
Fletcher-Reeves formula: P(n) = ~'-'c,==~

g (n)g(n)

(2.45)

(2.46)

(2.47)

For quadratic functions with v degrees of freedom, only v iterations are required to

arrive at a solution. However, since the error functions are not exactly quadratic, as
well as a result of round-off errors, this does not normally happen in neural network

39

ARTIP/cui N£Ul!Al NETWO!IKS - ,I R£YIEW

training. The comm or. practise is to reinitialise the direction vector to the negative of

the gradient vector every v steps. An improvem,mt to this is the Powell restarr
procedure, which uses the second order information in resetting the direction vector
(Powell, ! 977).

The CG algorithm is well suited for large-scale problems due to the simplicity of
the computations involved and the extremely moderate storage requirements.

Unfortunately the CG algorithm is on!y applicable to functions with positive definite
Hessians; it is highly unstable when applied to functions with Hessians that are not

positive definite (Madyastha & Aazhang, 1994).

2.8.3 Hybrid Methods

Second order methods are far superior in terms of learning time when compared to

standard backpropagation, but they are more likely to get stuck in local minima.
Hybrid methods such as /rust-region methods try to combine both these approaches

in a single algorithm. A trust-region is a region within which we can "trust" the
quadratic approximation to the objective function.

2.8,3,1 Lel'Cnberg-Marq11adt Algorithm

The Levenberg-Marquadt algorithm is an approximation to Newton's method (Hagan
& Menhaj, 1994). Suppose we have a function E(w) which we want to minimise with
respect to the vector w, then Newton's method gives a weight update

(2.48)

where H is the Hessian matrix and g is the gradient.

Ifwe assume that E(w) is the sum ofsqunres function, then it can be shown that

'i/J::(w)" Jr{w) e(w) (2.49)

'i/1 E(w)., Jr(w) J(w) + S(w) {2.50)

where J(w) is the Jacobian matrix

&,(w) ae,(w) &,(w)
aw, aw, aw,

Bei(w) &,{w) ae,(w)
J(w)"'

mr·
aw, ~·

tJeN(W) aeN'(w) aeN'(w)

(2.51)

aw, aw, aw,

"''
40

ARTIFICIALN£UIUL N£TWDRKS -A REVIEW

" S(w)= Le,(w)V2e1(w) ,_, (252)

For the Gauss-Newlan method, it is assumed that S(w) "' 0, and the update (2.48)
becomes

(2.53)

The Levenberg-Marquadt modification to the Gauss-Newton method is

(2.54)

where I is the v xv identity matrix andµ is a variable parameter.

The parameterµ is multiplied by some factor(/]) whenever a step would result in

an increased E(w). When a step reduces E(w), µ is divided by p. Whenµ is large the

algorithm becomes steepest descent (with step l/µ), while for smallµ the algorithm

reduces to the Gauss-Newton (second order) update in (2.53). The Levenberg­

Marquadt algorithm can be considered a trost-region modification to Gauss-Newton

(Hagan & Menhaj, 1994; van der Smagt, 1994). For neural networks, the terms in the

Jacobian matrix cao be computed by a simple modification to the BP algorithm.

Summary of Levenberg-Mnrquadt algorithm

1. Present all inputs to the network and compute the corresponding network

outputs and errors. Compute the sum of squares oferrorn (E(w)).

2. Compute the Jacobian matrix.

3. Solve (2.54) to obtain Aw.

4. Recompute the sum of squares oferrorn using w + Aw.

If this sum of squares is smnllertbat computed in step I, then reduce µby P,
let w = w + Aw, and go back to step I. If the sum of squares is not reduced,

then increase µby p, and go back to step 3.

5. The algorithm is assumed to have converged when the norm of the gradient is

Jess than some predetermined value, or when the sum of squares has been

reduced to some error goal.

41

ART/f"/CUL NEURAL N£TWORKS • A REVIEW

2.8.4 Direct Methods

Another approach is based on n direct detennination of the matrices of weights, by
solving in a classical or in the !cast-squares sense a set of systems oflinear equations.

The main advantages of this approach are that there is no risk of getting lnlpped in
local minima during training and that the weights adapt quickly. The fundamental

idea of these "direct methods" lies in an extension and a generalisation of the
singular-value decomposition (SVD) algorithm for the "one-shot" evaluation ofthe
matrix of weights.

Examples of direct methods arc FBFBK (Bammnn & Biegler-Konig, 1992),

named after the authors, iterative conjugate gradient singular-value decomposition
(JCGSVD) {Di Martino et al., 1993) and least-squares backpropagation (LSB)
(Bannann & Biegler-Konig, 1993).

Analysis of these various methods has shown that for middle-size networks

(several hundred neurons) these methods arc competitive in terms of computation
time with the best BP methods for MLP networks. For larger networks these methods
are generally too expensive (Di Martino et al., 1996).

Verma uses hybrid algorithms that combine direct solution with other methods,
where the output layer weights are directly solved using the modified Gram-Schmidt

algorithm {Verma, 1997). He proposes three different ways of training the hidden
layer weights, including using standard backpropagation (BP). The direct solution of

the outputs was able to speed up training considerably and avoid getting stuck in
local minima, even with BP training of the hidden weights.

2.8.S Stochastic Method!!

As mentioned previously, stochastic methods update the weight vector with a
random vector as given in Eq. (2.13). An example is the stochastic Random

Optimisation Method {ROM) algorithm given in (Schalkoff, 1997, p.208). The
weight update is given by

l
w(n)+l; if E(w{n)+l;) < E(w(n))

w{11 +I)= w(n)-l; if E(w(n) +l;);:., E{w(n)) and E(w(n)-l;) < E(w(n)) (2.55)

w(n) otherwise

42

ARflf'ICUL NF.UIIAL NEnrDRKS - ,I REPJEW

2.9 Adaptive Structures

Up to this point, it has been assumed that the neural network being trained has a

fixed structure. The question then arises "What is the optimum size of the network?".

As mentioned in Section 2.6.6, having too many neurons can result in overfitting,

whereas too few may not allow the network to reach the desired performance level.

Designers have to use prior knowledge on the problem, their experience, or just trial­

and-error, in order to find a structure that performs well, let alone an 'optimal'

structure. "The exhaustive search over the space of network architectures is

computationally infeasible even for networks of modest size" and hence "the use of

heuristic strategies that dramatically reduce the search complexity" (Karampiperis et

al., 2002).

There are two opposing approaches for adaptive strategies: Constructive and

destruclive. Constructive methods start with a minimal network, even a single

neuron, then "grow" the network as needed by adding new connections, nodes or

layers. Destructive methods, also known as pnmi11g algorithms, on the other hand,

start with a complex structure and remove unnecessary connections, nodes and layers

during training (Mitchell, 1997; Yao & Liu, 1997). A frequently used constructive

algorithm is the Cascade-Correlation algorithm (Fahlman & Lcbiere, !990), while

well known pruning algorithms include Optimal Brain Damage (OBD)(LeCun et al.,

1990) and Optimal Brain Surgeon (OBS) (Hassibi & Stork, 1993). A partial review

of constructive algorithms is given in {Fiesler, 1994), while one of pruning

algorithms is given in (Reed, 1993).

Investigating methods for adaptively determining network structures is an active

area of research, with researchers combining constructive and pruning algorithms or

creating new variations (Islam et al., 2000; Islam et al., 2003; Karampiperis et al.,

2002; Rivals & Personnaz, 2003; Thivierge et al., 2003; Tsai & Lee, 2004).

Evolutionary computation, which includes genetic algorithms and evolutionary

programming, has also been commonly used for this purpose {Garcia-Pedrajas ct al.,

2003; Leung ct al., 2003; Nikolaev & Iba, 2003; Yao & Liu, 1997).

Adaptive structures arc not nsed in this thesis, but the work presented here

provides scope for future work in this area. The concept has therefore been

introduced here with a brief overview. Relevant references have been included for

the interested reader.

43

ARTIF/CIAL#EU/1,tl N£mVRKS • A REV/CW

2.10 Conclusion

An overview of artificial neural networks has been presented in this chapter, starting

from the biological roots to various artificial neural network structures, applications

and training algorithms.

The infonnation presented here shows that the massive parallel processing

demonstrated by biological brains has inspired the creation of a versatile and

powerful computational tool. The field of artificial neural networks is a diverse one,

both in tenns of the kinds of networks and algorithms as well as their numerous

applications. In such a large and growing field, there is still room for much work in

exploring new models and paradigms, and such work is ongoing. The work presented

in this thesis represents one such exploration, and it is hoped that it will not only

yield interesting results and discoveries, but also open new areas of continued

research.

In order to maintain focus, the emphasis has been on feedforward networks,

supervised training techniques and other topics relevant to the subsequent chapters.

Brief descriptions and overviews of cognate areas have been presented where

appropriate.

The biophysical mechanism of shunting inhibition, in biological neurons, has been

introduced briefly, but the use of shunting inhibition in artificial neural networks has

been deferred to the next chapter, where it will be developed in greater detail.

44

Chapter3

Shunting Inhibitory Artificial Neural Networks

3.1 Introduction

Shunting inhibition is a powerful computational mechanism that plays an important
role in sensory information processing systems. Since it was proposed as a plausible
physiological model in the early 1960's (Furman, 1965; Lcttvin, 1962), shunting

inhibition has been extensively used to model some important visual and cognitive
functions. For example, Grossberg used it to model long-tenn and short-term

memory mechanisms, feature detection, and other cognitive functions (Grossberg,
1973, 1976, 1988). Fukushima employed it for local feature detection as part of the

neocognilron (Fukushima et al., 1983). Pinter used it to model the adaptation
phenomena in receptive field organization and modulation transfer function (Pinter,

1983, 1984, 1985). Bouzerdoum and Pinter proposed a model of motion detection in
insects based on shunting inhibition (Bouzerdoum, 1993; Bouzerdoum & Pinter,

1989, 1992). They also introduced a slinnling inhibitory cellular neural netwark and
used it to model receptive field profiles of neurons in the early parts of the visual

system (Bouzerdoum & Pinter, 1993). Other researchers have also used shunting
inhibition, including some of its VLSI implementations (Darling & Dietze, 1993;

Moini et al., 1997; Nabet, 1992; Nilson et al., 1994; Wolpert & Micheli-Tzannkou,
1993).

Despite their widespread use in modelling psychophysical, neurophysiological

and cognitive phenomena, to our knowledge, shunting inhibitol)' networks have not
been used in supervised pattern classification or function approximation, other than

45

SI/UIITING /Nl//8/fVRY ARrtf"/CUlNEUtul NETWORKS

in the neocognitron (Fukushima e.t al., 1913) and ART networks (Ca!penter &
Grossberg, 1988). Other thEU1 these, shunting networks lmve primarily been part of

adaptive (self-organising) systems that use competitive learning. Cellular neural

networks based on shunting inhibition have shown great promise as info1111ation

processors in vision and image processing tasks (Beare & Bouzerdoum, 1999;
Cheung et al., 1999; Pontecorvo & Bouzerdoum, 1995, 1997), but they have not been

used for classification and regression tasks before 1999, One of the main reasons for

this hos been the Jack of proper training algorithms. The expert knowledge of the

designer has had to be used to choose the connection weights based on the task at

hand. This does not allow complex pattern recognition problems to be handled,

resulting in limited applications. Another reason is that the operation of n shunting

inhibitory cellular neural network (SICNN) is governed by a system of nonlinear

differential equations, which must bu solved in order to obtain thu outpnt of the

network for a given input pattern.

It is only recently that Bouzurdoum proposed an artificial neural network

architecture, based on shunting inhibition, that can be trained to perfomt pattern

classification or function approximation; he named it shunting i11hibilory artificial
11e111·1.ll 11e/Work (SJANN) (Bouzerdoum, 1999, 2000). Derived from SJCNNs,

SIANNs are fecdforward networks that operate using the steady-state solution of the

set of ordinary differential equations governing the dynamics of the shunting

networks, thereby avoiding the need to obtain a numerical solution for the

differential equations. This allows the network to operate in a static mode like

multilayer perceptrons (MLPs). The idea was to exploit the inherent nonlinearity of

shunting inhibition to develop powerful, trainable networks, with nonlinear decision

surfaces, for classification, nonlinear regression and pattern association.

This chapter presents the development ofSIANNs from its biological roots to the

shunting neuron model and SIANN architecture. The next "section explains the

biological roots of shunting inhibition. The third section presents the electrical circuit

approximation of a patch of dendritic membrane and the derivation of the differential

equations that govern thu shunting inhibition model. The fourth section describes the

precursor to S!ANNs, Shunting Inhibitory Cellular Neural Networks. This is

followed by the development of the fecdforwnrd shunting inhibitory neuron model

and the SIANN architecture in Sections 3.5 and 3.6, respectively. Section 3.7

il!ustrates the non-linear decision boundaries of the shunting inhibitory neuron

model. This is followed by the conclusion,

46

SIIUNTJ,\'Q /N//1/ltTORY ARTIFIC/AtNWRAlN£TWORK!/

3.2 Shunting lnhlblllon In Blological Systems

In a biological neuron, lhe eel! ot rest has o potential difference across the cell
membrane due to the difference in ionic concentrations on either side of the
membrane. The cell membrane consists of a thin, semi·penneable bilayer of lipids
and is a near perfect electrical insulator. At equilibrium, the concentration of sodium
(No•) ions is higher in the extracellular fluid compared to within the cell and this
difference in concentration causes o Ncmst potential (or reversal potential) £11, of
about +SO mV (Gerstner & Kistler, 2002). The concentration of potassium (K+) ions,
on the other hand, is higher inside the cell than outside with a reversal potential EK of
approximately -77 mV. Both these and other ion types arc simultaneously present
and contribute to the resting potential across the membrane, V,., ofapproximatcly-65
mV. Since Ei. < V, < E.vo, at the resting potential potassium ions flow out of the cell
ond sodium ions flow into it. Active ion pumps in the cell membrane pump these
ions in the reverse direction in order to maintain a dynamic equilibrium.

An input ot an excitatory synapse reduces the negative polarisation of the
membrane, also called a depolarising potential. Conversely, an input at 110 inhibitory
synnpsc increases the negative polarisation of the membrane, called hyperpolarizing
potential, caused by positive ions (usually potassium) moving out of the cell
{Stevens, 1994). If the sum ofpostsynaptic potentials causes the membrane voltage
to cross a threshold value, the cell body produces an action potentinl that propagates
down the axon of the neuron. 1l1c inhibitory mechanism described here therefore is
additive (subtractive) inhibition.

Inhibition can be mediated by both pre- and post-synaptic contacts. Post-synaptic
inhibition functions to reduce the excitability of the target cell by increasing the
permeability of the post-synaptic membrane to chloride (Cr) and potassium (K')
ions, thereby increasing the ionic conductance of their respective channels (Nicholls
et al., l 992). In shunting inhibition, where the synaptic activity opens mostly er
channels, the reversal potential of the inhibitory synapses is equal or very close to the
membrane resting potential (Faber & Korn, 1982). These inhibitory inputs therefore
have hardly ony effect on the membrane potential if the neuron is at rest. The effect
of the shunting inhibitory inputs is to increase the local conductivity of the cell,
allowing the ions to flow in or out of the cell, depending on the state of the neuron. If
the neuron is depolarised, then the inhibitory inputs result in inhibitory postsynaptic
potentials. If the neuron is hypcrpolarised, however, the inhibitory input results in II
depo]mising potential. The net effect is to 'clamp' the mcmbmne potential to the
resting potcn1iu1 by 'shunting' the effects of other synaptic potentials. Inhibitory
synapses me ollcn located on the soma or the shall of the dendritic tree. This
slratcgic positioning allows a few inhibitory spikes to 'shunt' the whole input
gathered by the dcndritic tree from all the synaptic inputs (Gerstner & Kistler, 2002).

47

SHUNTING fNIIIBITORY ARnFIC/Al NW/I.AL NETWORKS

3.3 Development of the Shunting Inhibitory Model

Shunting inhibitory neural networks are based on a neuron model that is inspired by

human and animal visual systems. The equivalent circuit is derived from a lumped

parametric approximation ofa unifonn patch ofdendritic membrane as shown in Fig.

3.1 (Bouzerdoum & Pinter, 1993). The circuit consists of the ordinary or nonsynaptic

membrane in parallel with the excitatory and inhibitory pathways. The resting

potentials and conductances of the different ionic channels arc lumped together in the

resting potential V, and the resting conductance g,.. These two, in parallel with the

membrane capacitance Cm, represent the nonsynaptic membrane. Each synaptic

pathway, excitatory or shunting inhibitory, consists of a synaptic potential (battery),

V, and V,, in series with a synaptic conductance, g, and g,, respectively. V., is the

total membrane potential; i,, i., i, and i0 represent the ionic currents, and R is the

receptorregion feeding the excitatory synaptic inputs.

The conductances of the excitatory and inhibitory ionic channels arc zero at rest

under this representation. The excitatory input synapses control the conductance g,.

with a reversal potential V, > V,. On the other hand, the inhibitory input synapses ore

assumed to be of the shunting type. As dccribed in previous section, in shunting

inhibition the synaptic activity opens mostly Cl' channels whose rcver:sa\ potential is

equal or very close t'J the membrane resting potential; the role of shunting inhibition

being to "clamp" the cell to its resting potential. Here it is assumed that shuntiqg

inhibition is mediated by modulating the conductance g,, with equilibrium poten~ial

equal to the resting potential, i.e. V. = V,.

The node equation of the equivalent circuit shown in Fig. 3.! is

C.,, d;• + g,(V, + V.,)- g,(V, -Vm}- g,(V, -V,.} = 0 (3.1}

Rearranging the tenns, this cnn be written as

(3.2)

If the deviation of the membrane voltage Vm from the resting potential V, is

designated t.V (ie. t.V = V, - V.,} then, by using the fact that V, = V,, the equation

describing the change in memhmne potential Vm relative to the resting potential V, is

given by

dt.V = J&..(V,. + V.,)-..k(t.V)-..&.(t.V}
di c., c,. c,,, (3.3}

48

SHUl{f/NG lNH/8/1VRY ART/f"ICJAlNEURAlNETWORKS

Therefore, we can write

(3.4)

where f is some kind of non-linear saturating characteristic which limits the total

shunting conductance.

In contrast tog,, the conductance g, is controlled by the excitatory input synapses

which work to increase the membrane conductance to sodium (Na+) and potassium

(K') ions. !fit is postulated that the current produced in the excitatory channels, i., is

proportional to t{1), the input from the receptors feeding the excitatory synaptic

inputs in thejth compartment, then

(3.5)

Furthermore, identifying the remaining constant tenn in the right hand side of (3.3)

"'
(3.6)

then Equation (3.3) becomes

dx;
-==l/1)-a1x1 - J('[.cJ/x1)x1,
d, '

i == 1,2, .•• ,11 (3.7)

The system of coupled nonlinear differential equations given by (3.7) describes

the activity of recurrent neural network.

3.4 Shunting Inhibitory Cellular Neural Networks

In sl111111ing inhibitory cellular neural net!Vorks (SICNNs), the neurous (or cells) are

arranged in a two-dimensional grid as shown in Fig. 3.2. Each neuron has n single

external excitatory input, which is not shown in the figure but can be assumed to be

comiog perpendicular to the page. The weighted outputs of the neurons in a

predefined neighbourhood are fed back as shunting inhibitory input, and passed

through the nonlinear activation function. Let Cy represent the cell (neuron) at

position (iJ) in the lattice. The activity of a cell is governed by the non-linear

differential equation:

dxij "" 11 -oclit)-agXq-/(L,CqX11)Xq+b"
dt Cu•N,U,JI

(3.8)

50

SHUNTING /1/HIBITORY ARrJFICIALNEURAlNIITWORKS

In most problems, however, the number of outputs is different from the nnmber of

inputs. In order to crente a structure that would result in the correct number of

outputs, the output layer was set to consist of the required number of linear or

sigmoidal (perceptron-type) neurons. The output neurons are able to sum the outputs

of the shunting neurons to produce the final output of the network.

This network structure of a layer (or layers) of shunting inhibitory neurons with a

layer of output neurons is called a Shrmting Inhibitory Artificial Neural Network
(SIANN). Fig. 3.4 shows a SJANN with a single layer of 3 shnnting inhibitory

neurons connected to 2 output neurons.

The output of the kth output neuron is given by

y, =g(fwiJx1) "g(v;) (3.12) ,.,
where g is the output lnycr activation function: WkJ is the connection weight fromjth

shunting neuron to the kth output neuron; ww is the bias of the output neuron

connected to a fi>:ed 'input', xo = I, and vk is the net input to the activation function ,,
(3.13)

The output layer activation function can be a simple linear function that just sums

the inputs, or a sigmoid function. This stmcture can now be applied to problems with

any combination of number of inputs and required outputs.

3.7 Decision boundaries

As mentioned in Chapter 2, n pattern classifier divides the input space into a number

of mutually exclusive subspaces representing the various categories. The various

subspaces are separated by decision boundaries or decision smfaces (Nilsson, 1990).

A single linear or sigmoidal neuron can only represent linear or hyperplane decision

boundaries (Haykin, 1999). On the other hand, a shunting neuron can represent

nonlinear boundaries (Arulnmpalam & Bouzerdoum, 2000; Bouzerdoum, 1999).

One of the classic linearly non-separable problems is the 11-bit parity problem,

where nn 11-bit input is meant to produce an even or odd parity output. The simplest

of these is the 2-bit parity problem, otherwise known as the XOR problem. The

inputs can be visualised as the vertices of the unit square, and the vertices on

opposite sides of the square belong to the same -class. A single pereeptron cannot

54

SHUNflNO IIIHl/lJTORr ARTIF!CULNliUII.ILNliTWORK!i

Despite the fact that a perceptron is only nble to represent hyperplnne decision

boundaries, MLPs with a single hidden layer can approximate any given continuous

function on any compact subset to any degree of accuracy, provided that a sufficient

number of hidden layer neurons are used (Hornik et al., 1989). As explained in

Chapter 2, this is because of the non-linear tmnsfonnations perfonned by the hidden

layer neurons. SIANNs should therefore be able to represent complex nonlinear

decision surfaces more efficiently than MLP networks, by leveraging the inherent

non-linear capability of shunting neurons demonstrated here. This is the major

motivating factor for introducing the shunting inhibitory neuron.

3.8 Conclusion

This chapter outlines the development ofSJANNs, right from the biological roots to

the final fonn of the network to be investigated. The shunting neuron model is

described along with the derivation of the equations that define it. Shunting neurons

have demonstrated the ability to produce complex decision boundaries from a single

neuron. This compares favourably with the perceptron, which can only produce

linear decision boundaries. This in tum indicates that SIANNs should be able to

represent complex nonlinear decision surfaces more efficiently than MLP networks.

The motivation behind the investigation of SIANNs was to use the ability of

shunting neurons to produce non·linear decision boundaries to creole a new class of

high-order neural networks for classification and regression (Bouzerdoum, 1999). In

order to achieve this, training algorithms ncOO to be developed for these networks.

The fol!owing chapters present the development of various training algorithms for

SIANNs, and their application to a number of benchmark classification and

regression problems.

56

Chapter4

Development of Training Algorithms

4.1 Introduction

The previous chapter outlines the motivation and development of the SIANN
architecture. As mentioned in the previous chapter, one of the limitations faced by

the cellular form, SICNN, was the Jack of training algorithms. In order to apply

SIANNs to classification and regression problems, training algorithms needed to be
developed. This chapter describes the development of a number of training
algorithms for SIANNs.

The training algorithms developed are broadly divided into gradient-based, direct

.w/111/on and stochastic methods. The gradient-based algorithms are described in the
next section. The third and fourth sections describe the direct solution and stochastic

algorithms, respectively. Section 4.5 describes the experimental methods used to test
the performance of networks trained using the developed algorithms, covering
network structures, initialisation methods, and evaluation criteria. It also describes
the various benchmark problems on which SJANNs are trained and tested. This is
followed by experimentnl results, presented in Section 4.6. This section contains nn
investigntioo into th!l effect the shunting term has on training performance, as well as
the actual test results. The final section contains the conclusion. The derivation of
the training equations for the gradient-based algorithms is shown in Appendix A and
selected tables of results are presented in Appendix 8.

57

DliVElOl'MENT(}F T!WN/N(} AwaRJTHMS

4.2 Gradient-based Algorithms

This section describes the various trnining algorithms developed for SIANNs that use

the gradient of the objective function to update the weights. All the algorithms
developed in this thesis are based on supervised learning using the error-correction

learning rule (c.f. Chapter 2).

The network is presented with a set of exemplars in the form of pairs (l(q), d(q))

where l(q) is the input vector and d(q) is the corresponding vector of desired values.
The difference between the desired and the actual output of the network is the error

vector, given by

e(q) = y(q)- d(q) (4.1)

where y(q)is the output vector due to the input l(q).

The algorithms developed operate in batch mode, where the whole set of

exemplars is presented to the network before the weights are updated. The training
algorithm seeks to minimise an objective function,£, which may be the sum squared

error (SSE)

E = }Q)(q/ e(q)

'
or the mean squared error (MSE)

I
£=-~)(q}'e(q)

2N,

where N is the number of exemplars in the training set.

(4.2)

(4.3)

The gradient-based training algorithms developed here can be divided into two

categories: the first-order gradient descent algorithm and its variants; and the

Levenberg-Marquardt algorithm and its variants.

The Conjugate Gradient algorithm described in Chapter 2 was not implemented.
The reason is that the shunting neuron decay parameter a has a lower bound imposed

on it during training, in order to avoid division by zero (see equation (4.6)). The
conjugate gradient algorithm requires the weight updates to be performed such that

the current gradient update direction is always orthogonal to the previous gradients.
Adjustments to the weight update of parameter a by the lower bound mny violate this

requirement, hence this algorithm was not implemented.

The following sub-sections describe the training algorithms implemented in more

detail.

58

•

DiiVElOPMENTOf" TIWI/INGALGORITHMS

4.2.J Gradient Descent

All the gradient descent-based algorithms implemented for SIANNs are based on the

error-backpropagation {BP) algorithm (Rumelhnrt et al., 1986), described in Section
2.6.3. The standard gradient descent (GD) algorithm is a first-order algorithm that

uses a fixed !earning rate as in standard BP (refer Section 2.8.1). At then'' training
step the weight update is given by

L\w(n) = -17g(n)

where 1f is the learning rnte and g(n) is the gradient given by

aE
g(n)=-­

OW(n)

(4.4)

(4.5)

The backpropagation algorithm requires the partial derivatives of the objective
error function, E, with respect to each of the parameters (weights) being updated to
calculate the grndient.

The 'standard' SIANN is a feedforward neural network with a hidden layer of
shunting neurons and an output layer of linear or sigmoid neurons. For the sake of

clarity, the equations describing the operation of the SIANN, defined in Chapter 3,
are presented again in Eqs. (4.6) to (4.8) below.

The output of the /h shunting neuron, Xj, is given by

11 +bl , "'--",--, 1
al+,.('i:.C111,)

J L-o
(4.6)

where lj is the/h input; a1 is the 'decay tenn'; b1is the bias; 91 is the synaptic weight

connecting the/"' neuron to the i'' input; CjfJ is the bias for the shunting activation
function connected to a fixed 'input', lo"' I: andfis a non-decreasing activation
function.

The output of the kth output neuron is given by

Y• = g(f w,1x1) (4.7) ,.,
where g is the output layer activation function; w,1 is the connection weight from/'
shunting neuron to the k'~ output neuron and ww is the bias of the output neuron
connected to a fixed 'input', xo= l.

The denominator in (4.6) is defined as the shunting term forthejth neuron, s1

(4,8)

59

DEV£LOl'MENTOF TIIAINl,VG AwoRJnms

This shunting term is constrained to be always positive, achieved by imposing a
lower bound on the parameter a1 during the initialization and training phases.

The parameters to be trained in a standard SIANN, therefore, are the weights and
biases of the output neurons (wiJ), the decay and bias tenns r,fthe shunting neurons
(a1 and b1) and the inhibitory weights of the input signals and shunting bias (c11), The
partial derivativeu of the error function with respect to these SIANN parameters are
given in Eqs. (4.9) to (4.14) below (Refer to Appendix A for the full derivation of

these equations).

The partial derivative of the error function, E, with respect to the synaptic weight
connecting the ~i, output neuron to the/" shunting neuron, WIJ, is given by

(4.9)

where .So,1;, known as the un-normalized error sensitivity, is given by

3..t" e,(q)g'(v,) (4.10)

and e.1; (q) is the output error for the qth training point, g is the 01 put layer activation
function and v, is the net input to the activation function. For the bias tenn, W.lfl, the

input, xo, is assumed fixed at I.

The partial derivative with respect to the decay term of the/" shunting neuron, a1,

is given by

(4.l I)

with 31, the backpropagated error sensitivity for thejth shunting neuron, de lined ns

(4.12)

and SJ the shunting !ayer denominator as defineU in equation (4.8).

The partial derivative with respect to the bias of the/" shunting neuron, bi, is

fJE 01

f)bl "-;;
(4.13)

The pnrtin! derivative with respect to the shunting synaptic weight from the ,,i,

input lo the/h shunting neuron, c11, is given by

(4.14)

The shunting nctivntion function bias, CjO, is assumed to have a constant 'input' of I.

60

D1:1·,:t/ll'M/;,\7(Jf T/IAl.\'ISGAtGCJ~/T/IMS

4.2.2 Gradient Dcscent with Momentum

The gradient descent with momentum (GDM) is the OD algorithm with on additional

momentum tenn, ns described in Section 2.8.1. The weight update, dw(n), is given

by

dw(11) = -111:(11) +al1w(11- l) (4.15)

where a is the momentum constant.

,U.J Gradient Descent with Adaptive Leorning Rate and Momeni nm

The speed of con\·crgcncc and success rate of the gradient-descent based algorithms
ha\'C prc\·iou~ly been shown to depend heavily on the learning rntc (Mngoulns ct al.,

1999). To avoid the trial-and-error method of detennining the optimal learning rnte,
an odapth·e learning rate strategy was developed, called Gradiellf Descr.'111 with

Ad<1p1/1i• Imming 1·11/e (ODA). The method used increases the learning rntc at
sueccs1i\'e iterations unless the error grows beyond a certain ratio to previous step,

an adaptation of the "Bold Driving" method (Battiti, 1989; Demuth & Beale, 1992)
described in Section 2.8. l. The next step was to incorporate u momentum tenn,

resulting in the Grmlit:111 Vc.,ccm with Adoptive learni11g Rate a11d Mome11/11m
(GDX) algori1hm (Demuth & Beale, l 992). The only difference in the algorithms is

that the ODA weight updme uses (4.4), whereas GDX uses (4.15).

Summary or lhc GDNGDX 11lgorlthm

l. Dc1ennine ini1ial squared error, EQ

2. Select ini1inl learning rate, ,,,~ nnd calculate u new weights using (4.4) f (4.15)

3. Cnlculale the new squared error,£.,.

11. If I,.'.,.. I l:.',~J 5 ,'iE,..,,
(&'...,, is usually 5ct slightly above I (e.g. 1.04) to allow training to

get ou1 o!'sha!low local minima)

i. If E,... I f:u1J< I, set 1/.,,. ~ P1/u1J where P> I (typically I .OS)

ii. Calculate the weight change using (4.4) I (4.15), and update

b. Jr£.,.. f Ea1J> ,\'£,..,..,

i. Set ,,.,. = r l/u1J, where yless than I {typically 0.7)

ii. Set 1hc weight change, t.w" ·I/.,.•· g and upd.ate weights

4, Go back to 3.

The wdsht up!la1c .1 Step 3!b)(ii) ii the imme for both alg11rithms, meaning that if
the error increases more thun the limi1, the algorithm discards ull momen1um

infomiation and up!la1cs lhc weights using only lhe gr~dicn1 at that point.

61

DEVEWPMl:IVTOP TRAINING AlGOl!/TJIMS

4.2.4 Levenberg-Marquardl {LM) algorithm

The Levcnberg·Mnrquadt (LM) algorithm is a second-order trust-region algorithm,

described in Section 2.8.J. In !he standard LM algorithm, at the ,i'h step the gradient,

g(11), and Hessian matrix, H(11), are approximated from the Jacobian J(11)

g(n) = VE(w) "'Jr(w(n))e(w(11J) (4.16)

11(,i) = V'E(w) = JT(w(nJ)J{w(11))+ µI (4.17)

where I is the identity matrix andµ is a variable parameter.

The standard LM weight update is then given by

.:l.w = [J'{w(11J)J{w(11))+ µI]
1 J'{w(n))e(w(11)) (4.18)

The parameterµ is multiplied by some factor (/JJ whenever a step results in an

increased error £(w(11)). When a step reduces E(w(n)), µ is divided by p. Typically,

p = !O. When fl is large the algorithm becomes steepest descent (with step lip),

while for small fl the algorithm becomes Gauss-Newton (second order).

4.2.5 Levenberg-Marquardl with Adaptive Momentum (LMAM)

The LM algorithm is acknowledged as one of the fastest training algorithms with

quadratic rate of convergence as it approaches a solution. One disadvantage of the

LM algorithm is that if it converges to a local minimum there is no way to escape it,
resulting in a suboptimal solution.

The Lcvenberg-Marquadt with Adaptive Momentum (LMAM) provides a

momentum tenn that can help overshoot II local minimiser. It is based 011 the

algorithm for MLPs presented in (Ampazis & Perantonis, 2000, 2002). This

particular algorithm has two free parameters that have to be dctennined at the start of

trnining, OP and ;. The first parameter, oP, defines the trust region in weight space

arounJ the current state of the network within which the new optimum point will be

restricted. The second parameter, ;, detcnnines the contribution oF the momentum

tcnn to the weight update. A large S indicates the update is closer lo the standard LM

step, whereas a small S indicates a greater contribution by the momentum tcnn.

As in the standard LM algorithm, at step II thc gradient, 1:(11), and lfossfon matrix,

11(11), arc opproximatcJ from the Jacobian, J{11), as given in (4.16) and (4.17). The

srnndard LM weight upda1c given in (4.18), is denoted in this n!gorilhm ns llwi.11.

In lhc LM with Adap1ivc Momcnlum algorithm, the weight update is restricted 10

a trust region defined by 01'. To solve this constrained optimisation problem, two

Lagrange muhiplicrs, .l1 and A.,, arc iutrudoccd, given respectively by

62

D£PCWPM£~T0f TRAINING AWOH/THMS

where

Ji c.-2(~dQ+IGF)
I,,

I ff = gr (n) H(n) g(n)

dQ=-{6P~

The final weight update is then given by

,\ I
.t.w(n) = --.t.w LM +-.t.w(n -1)

2,1.l 2).l

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25}

The fonn of the weight update is similar to the update for gradient descent with
momentum. The first tenn contains the standard LM weight update, .t.wu.1, and the
second contains the previous weight update, akin to the momentum tenn. It should be

noted that llwu., is a!so used implicitly in calculating the multipliers A111nd ,h

4.2.6 Optimised Levenbcrg-Marqunrdt with Adaptive Momentum (OLMAM)

The LMAM algorithm described in the previous section has two free parameters, r5P

and ~. that need to be e.~tcmally detcnnincd. The Optimised Levcnbcrg-Marqunrdt
with Adaptive Momentum (OLMAM) algorithm is a mOOitication of the LMAM
algorithm, proposed in (Ampnzis & Pcran1onis, 2002), to achieve independence from
externally provided paramcler vn!ues. The optimal values for these parameters are
dctennined adaptively at each epoch:

fl;,. , __ _
l,:;cl ff

(4.26)

OP».JT;;: (4.27)

Ampazis and Perantonis have also used .[i;; /64 < oP < .[i;; /s in their

experiments, achieving similar pcrfonnnncc, Initial tests with SIANNs indicate that
bcucr accuracy and srced is achieved using the 'optimal' vnlue us delini:tl in (4.27),

and this has been usi:tl in subsequent experiments,

6)

DF.l'F.WPMliNT'OP TRAIN/NO ALGORITHMS

4.3 Direct Solution Algorithms

The initial ancmpts to implement Direct Solution (DS) methods for SIANNs were
based on the FBFBK and LSB algorithms developed in (Barmann & Biegler-Konig,

1992, 1993), as described in Section 2.8.4. These attempts were not successful. The
algorith1ns were uns!ablc, probably due to the complexity of the shunting layer. The

shunting inhibitory neuron equation does not lend itself easily to a direct solution.

For MLPs, the algorithm takes the desired output of the neuron, works out the

desired input to the activation function by using the inverse of the function, then
works out the new synaptic weights by directly solving for them from the given

inputs in a least-squares sense. In the case of SIANNs the process is much more
complicated because the activation function is just one term in the denominator, with

the u and b tcnns to be solved for as well. Additionally, the u term is constrained by
the limit placed on the denominator.

!n order to overcome this problem, an alternative hybrid approach was used,
similar to that described in (Verma, 1997). Direct solution for the output perceptron
!ayer is combined with Gradient Descent with Momentum (GDM) for the shunting

layer. At each epoch, the optima[output layer weights and bioses arc "solved"

directly: the target (optimal) values for the outputs of the shunting neurons are
cnleulatcd; and these then become the tnrget values for the GDM-based update of the

shunting layer parameters. This hybrid scheme, named DS-GDM, was implemented
successfully.

The natural progression was then to combine the Direct Solution method with the

GDX algorithm for the Shunting Inhibitory layer. The resulting algorithm (DS·GDX)

performed better than DS-GDM.

Summary of Che DS-GDM and DS-GDX algorithms

l. Cnlculate the outputs ofshuming [ayer neurons {x) from !he inputs.

2. Cnlculatc desired inputs to the output [ayer activo1ion function (v,"'l<",) by

passing target values through inverse of output activation function.

3. Directly solve for the output !ayer weights and bioses using x and .,.,~, in II

!cast squares sense, from the set ofequo1ions w.x = v,.,,,,~,.

4. Calculate 'new' target values for the shunting Jnycr (x,.,..,...,) by
backpropng11ting ,·,.,,,,,, through the updated output layer weights .

.S. Use backpropagatiun based algorithms (GDM or GDX) to update shuming

layer wciyhts. using the dilTcrcncc between x,"'11" and x as lhc error vector.

6. Go back to s1cp J.

64

DEl'ElOl'.IIEIVrOF Tlu/NINGAWOl!JTJIMS

4.4 Stochastic algorithms

Stochastic algorithms involve a search for weights using random techniques. The

motivation behind stochastic algorithms is to find solutions that may not otherwise
be found. While a lot of effort may be wasted in "blind alleys", the computational

simplicity may compensate for the apparent inefficiency of the search. This concept
is used by most initialisation schemes. By randomly initialising the networks, each

network starts at a different point in the weight space, thereby covering n greater
portion of the search space. The following algorithms use a random update to search
the weight space.

4,4,1 Random Oplimhation Method {ROM)

The Random Optimisation Method (ROM) is based on the stochastic algorithm given
in (Schalkoff, 1997, p.208). The error, E(w), is defined as the objective function and

X as the region over which to search for the value of w that minimises E(w). The
basic formulation of the random optimisation method is as follows:

l. Select weX;set11=0.

Let Mbe the total number of steps or iterations allowed.

2. Generate a Gaussian random vector 1;(11).

If w(11) +1;(11) e X, go to step 3.

Otherwise go to step 4.

3. If E(w(11) +1;(11))< E(w(11)),

then w(11+l)scw(11)+i;(11).

Else, check the 'reverse' side:

• If E(w(11)-l;(11))<£(w(11)),

then w(11 +I)= w(11)-l;(11)

• Otherwise w(11+l)=w(11),

4. If 11 " fl,(, stop (limit on number of iterations has been reached).
0111crwisc, let 11 ~ 11 + I and go to step 2.

The ROM algorithm implements "rel'Crse side chctking", The idea is that ifa step
takes E 'uphill', then the reverse step is likely to take it 'downhill'. If E does not

decrease then continue with n new mndom vector.

"

DEVELOPMENT OF TRAINING AlGORlfHMS

4.4.2 Extension to the Random Optimisation Method {ROM2)

An extension to ROM was implemented based on (Solis & Wets, 1981), as given in
(Schalkoff, 1997, p.208). The extension inco!porotes a statistical bias into the weight
adjustment procedure by allowing tbc mean of ~ to be non-zero. The mean of ~ at

iteration n is denoted by b(n). The only modification involves step 3:

3a. If E(w(n) +~{n)) < E(w(11J), then

w(n +I)" w{11) +~{11)

b(11 +I)" k1~{11}+k1b(11). (Typical values are k1 = 0.4 and k2 = 0.2.)

Otherwise, check the 'reverse' side:

i) If E(w(11)-~{n))< E(w(11)), then

w{11+ I)" w(11)-~(n)

b(n+ I)" h(11)-ki~(11). (Typical k1ue is ki" 0.4.)

ii) Otherwise,

w(11+l)"w(11)

b(11 + \)"' k.b(11). (Typical value is k4 = 0.5.)

Note: ho-' 0

The adjustment of the mean of ~(n+ l), namely b(11 + l), is updated using the values

of ~{11) and b(11) that have been successful in reducing£. This could be viewed as a

form of momentum, in a statistical sense. When the el1'0rdoes not d~rcase, the mean
b(11) decays toward 0.

"

DiiViiWPMiiNTOf' TIIA/11/NGAlGORlmMS

4.5 Experimental Methods

This section describes the network structures, training and testing procedures,
evaluation metrics, and benchmark test problems, used 10 train and evaluate the
perfonnance ofSIANNs.

4.5.1 Network Structures

An 111-dimensional input vector is presented to the network and is used to produce an
11-dimensional output vector, the values of m and n being determined by the
panicular problem. By definition, the standard SIANN structure therefore consists of
an m-ncuron shunting layer and n-neuron output layer (refer Section 3.6).

For binary classification problems only one output neuron is required to give the
classification r,:sult. The mid-point of the neurons output range is taken as the
threshold value. Any output above the threshold is taken as a one class, and values
below taken as the other. For multi-class problems, the number of output neurons is
set to be equal to the number of classes, wher,: each output neuron corresponds to
one class. The 'winning' class is the neuron with the highest output, otherwise
known as winner-takes-all (WTA) configuration. This is in accordance with the
'benchmarking rules' laid out in (rrechelt, 1994). For time-series prediction, the
number ofoutput neurons will be equal lo the number of predicted variables.

4.5.2 Weight lnitioll!atlon

In order eliminate any bias due to initial conditions, as well as to increase the
coverage of the input space, fifty networks with randomly generated initial weights
wer,: teMed for each problem. The weights c and w were initialised using a random
number generator that generates uniformly distributed values in !he range !·r, r].

Thimm and Fiesler have compared initialisation schemes for pcrccptrons and
found that schemes of this form perform well over a variety of problems (Thimm &

Fieslcr, 19117). Initial tests on SIANNs used r =l, but subsequent results indicated
that the scheme used in (Smicjn, 19111) perfonncd well over the different range of
problems. In this scheme, the ranger is defined by

'
, __ _

Iii
{4.28)

where N is the number of inputs of Che pnnkular neuron (fan·in), This initinlisalion
scheme ensures that the sigmoid activation functions start in their linear regions and
not in snturotion, thm:by improving training performance (Y, Lee ct al., 1991).

67

DJ::l'EWPMENTOF TIUIN!NG AWOlllf/fMS

The shunting neuron bias b was initialised with r = l as it does not affect the
activation functions. The decay parameter a was initialised to a random value
between O and I, then offset with n constant. The offset constant, a1;m, is sot so that
the constant added with the lower bound of the denominator activation function will
not be smaller than the predefined limit value for the denominator, Slim (refer (4.3 l)).
For example, the hyperbolic tangent (tansig) activation function has a lower bound of
-!; therefore, for .11;m = 0.1, the constant offset would bo I.I. This lower limit for a

and its effects on training perfonnance arc discussed in greater detail in Section
4.6.1.

4.5.3 Input pre-processing

The input attributes to a loaming problem can have magnitudes and distributions that
vary widely. There are some common methods to represent these attributes when
applying such problems to neural networks (Preche!t, 1994). Tho real- and integer­
valucd inputs have generally been scaled and offset to tho range [-l, I) in the
experiments. One exception is with time series prediction, sucb as tho Sunspots
problem, where tbe inputs in some exemplars are the output targets in others. ln
order to enable tho sigmoid output activation functions to produce the required
output values, the data hns been scaled to the rnnge (0, l).

4.5.4 Data partitioning

Each dataset was partitioned into training, validation and test sets; unless otherwise
stated, the general strategy is to partition the datnsct into 50% as training set, 25% as
vnlidation set, and the remainder 25% as a test set. A well-trnined neural network
should be able to correctly classify previously unseen inputs (good generalisation).
The networks were trained using the training set data nnd their perfonnanec
measured using the test set, which generally conlains data not seen during training.
l11e validation set is used for early stopping so that the networks arc not ovenmined
and are able to generalise well. All the results presented in this chap!cr are based on
the test set, except where the algorithm training perfomrnncc is evaluated.

4.S.S Activation functions

Thrtc different nctivntion functions were used wilh lhe shunting neurons: tbe
1,ypcrba/ir: t,mgc11/ (t,msii:, tn/,), lai:istlr: sigmah/ (fags/;:, /gs) and the expa,1em/u/
(exp) functions. For the ou1put neurons, the tansig, logsig and linear (/ii,) nclivntion
functions were tested. ,\11 possible combinations were tested to observe their effect
on pcrfonn:mcc.

68

Di;1•norMfNTOf' TRA/111,\'UALUOR/TIIMS

4.5.6 Training Termination Criteria

The training is stopped if the target objective function value or 'elT!lr goal' is
achieved. It is quite possible that the neural network being trained cannot achieve the
error goal. Therefore, the maximum number of training epochs is set to lOOO in these
tests. Initial investigations revealed that, in most cases, this is sufficient and it was
only non-converging networks that trained beyond this limit, consuming processing
time with no significant improvement in perfonnance. This limit also allowed
training times to be kept within reasonable limits.

In order to achieve good generalisation, a validation set is normally used for early
stopping so that the networks arc not over-trained. If a va!Jdation set is used during
training, the network weights that result in the minimum validation set error nre
saved. If the validation set error is not reduced for 50 consecutive epochs, the
training is stopped and the final network weights used for testing ore those that
resulted in the minimum validation set error.

4,5,"1 Test Performance Metrics

In order to compare the perfonnance of the trained neural networks, perfonnance
metrics have to be used. The perfonnance measure used during training is the mean
squared error (MSE). The test set pcrfonnance can similarly be evaluated using the
MSE. The MSE, however, c11n vary depending on the problem nnd the way it is
i1nplcmentcd, particularly the magnitude of the target and actual output values. It is
not ck11r from the MSE whether it represents a 'good' or 'poor' perfonnance.
Intuitively appealing metrics should not only be relatively independent of the
implementation of the problem, but also ideally should easily differentiate 'good'
from 'bad' perfonnance.

For the classification problems, the test classification error rate is used, where tl1e
error rate is simply the percentage of the test set that is misclassified. 1l1c tests are
carried out with a batch of randomly initialised networks trained on the same
problem. The general pcrfonnance for the set of networks is represented by the mean
nnd median of the test error rates for the whole batch.

The 95% confidence in1crvnl (Cl) on the mean error rate is olso calculated and
presented. As each batch consis1s of50 networks, th~ number of samples in the batch
is large enough to nssumc nonnal distribulion using the Cenlml Limit theorem
(Johnson & Blmuach11rya, 1996: Walpole ct al., 1998). The 95% Cl giv~ the range
of values wilhin which 1hc true mean error lies with 95% probability. It is calculated

from the sample mean ond somplc standard deviation, }I ands, ncconling to

' Jt±l.961:

"

(4.29)

DEV!;LOl'MEll'TOf" T!WN//IUALG0/1/TIIMS

where n is the number of samples (Mitchell, 1997).

The best case error rate is also presented to give an indication of the performance
level that can be achieved by a single network. The performance of a batch of
networks is also given by the percentage of networks in the batch achieving a
particular perfonnance target such as the error goal, 0% clasaification error (perfect
test classification) or less than 20% clas.ification errors.

For time series predication, the actual network output values need to be analysed.
The perfonnance metrics used arc the MSE and the average relative variance (ARV)
measure (Nlkolaev & Iba, 2003; Weigend et al., 1990), given by

(4.30)

where YI is the true outcome of the ;•h example, P(xl) is the estimated outcome with
the l'' input vector X1 in the same example, and ji is the mean of the true outcomes.

The ARV is essentially the MSE divid~d by the variance of the target values. This
scales the error value down if 1he series is highly variable, so the network is not
unduly punished.

In order to compare the computational power and time required to train the neural
networks, the mean CPU time, in seconds, required to train one network was
measured and recorded. This training time wns measured using on internal Matlab
function nnd wns set up to measure only the time spent on \mining the network and
not the time spent on other tasks such as setting up the data nnd saving the results.
The simulations were run on MATLAB v6.S on Sun workstations. The Sun Blade
1000 was used as the 'standard' for measuring the training time, nnd ony
measurements made on other systems were scaled based on comparative test
measurements. Despite these precautions, it should be noted that there could be some
variation~ in measurement due to varying load factors on these multi-user systems.

70

DEVEWPMENTOF' TRAININGA.LG0/1/THMS

4,5,8 Benchmark Tesh

A number of benchmark problems were used to test the learning capabilities of
SIANNs. The benchmarks used were the 3-bit parity problem, Wisconsin Breast
Cancer dataset, the Pima Indians Diabetes dataset, an artificial multi-class problem
and the Sunspot time series. They form the standard set of benchmark problems used
throughout the rest of this thesis. These benchmarks consist of four classification
problems, including one multi-class problem, and one time-series prediction
problem. The parity and multi-class problems are synthetic, while the remaining
three are real-word problems. The benchmark problems are described below.

4,5,8. I The 3·bit parity problem

The 3-bit parity problem is a popular artificial classification problem where the
network has to generate the appropriate binary output for n 3-bit binary input so that
there is always an even (or odd) number of ones. This 3-dimensional problem is not
linearly separable and is one level of complexity higher than the 2-dimcnsiona! XOR
problem. The 8 input combinations can be visualised as the vertices of n unit cube,
where no two adjacent vertices are of the same class. The problem can also be
described as a 3-input modulo-2 addition. For this problem, since there are only 8
possible input patterns, all 8 were nsed for both training and test sets.

4.S.B.2 The Wiscondn Breast Cancer problem

The Wisconsin Breast Cancer dataset is a real-world medical diagnosis dataset
obtained from the UC! Machine Learning Repository (Blake & Merz, 1998). The
breast cancer dataset has 699 samples with 9 integer inputs and two ou1put classes
(benign and malignant). The data has missing values that were replaced by zeros
before scaling. Obviously, this is not the best approach for estimating the missing
values, but was chosen for the sake of simplicity (Hathaway & Be:ulek, 2001).

4.5.8,J The Pima Indians Diabetes problem

The Pima Indians Diabetes dataset is a real-world mc<lical diagnosis dataset obtained
from the UC[Machine Leaming Repository (Bloke & Merz, 1998). The dataset has
768 samples with 8 real-valued inputs and two ou1put classes. The diabetes diagnosis
problem is supposed to be a lot harder for the neural networks compared lo the breast
enn~r problem. In previously reported results for this problem (Prcchelt, 1994:
Shcrrnh, I 998; Waschulzik ct al., 2000), the bes1 case error rates were around 20%.

The diabetes d11tosct is said not to ha~e any missing \'alues, but Chere ore o number
of zero-value entries that appear 10 have simply been inscncd lo replace missing
values. The effect or 1hcse zero-value en1ries as well a~ the effect or removing the
cwo inputs with large numbers of zero \'olues, has been invcs1igo1cd using both MLPs

11

D EVELOPMENT OF TRAINING ALGORJTHMS

In order to find an (approximate) optimum value for Slim to be used in subsequent

experiments tests were carried out using S1im values of 0.0 l, 0.02, 0.05 0.1 , 0.2, 0.5 ,

1.0 and 2.0 on some of the benchmark prob1ems. The networks were trained using

both the Levenberg-Marquadt (LM) and gradient-descent with adaptive learning rate

and momentum (GDX) algorithms. All the different combinations of shunting and

output layer activation functions were tested for S1im = 0.1 and 1. Only the best

performing networks for each case were then tested for the other values of Slim· If the

same network pe1fom1ed best for both values, the second best combination was also

tested. The variation in perfonnance of these networks for different SJim are shown in

Figs. 4.4 to 4. 7.

20 - ---
$
- 15
i
fo

s

0
10

15

Cl
10

Effocl ol ~ ... : l-bk Parity

..
10

..
10 10

Fig. 4.4: Mean test classification error and mean training time for various SJim for 3-

bit parity dataset using a 3-3-1 SIANN.

12

!o.,
b
i; 0 6

j o.,
~ oJ

0
10

120 ,

100
~

I 80

c 60 i
c •O .
t

20

0
10

Ell•ct at _. • ., : w .. consin Br .. st Caneor

I

•
..

IC1

.. ..

10

10

.. - .
•
10

• ?

•

r

Fig. 4.5: Mean test classification error and mean training time for various S1i 111 for

Wisconsin Breast Cancer dataset using a 9-9-1 SIANN.

75

DF.l'H/.OP.<lt'NrorTIW.W,l'<J :11.GIJRITIIMS

from (4.32), it can be seen that if the shunting tenn (denominator) becomes small,

the output of the neuron becomes large. In particu!nr, if the denominator approaches

zero, then we have instability as the output becomes too large. The limit on the

shunting tenn is to prevent this situation from occurring.

The denominator acts as an adaptive gain-control mechanism for the shunting

neuron. If this shunting tenn is less than one, it serves to 'amplify' the numcmtor

(excitatory input plus bias); conversely, if it is greater than one, it serves to

"attenuate" the excitatory signal. This gain control teml consists of two parts: the

activation function output, which is a function of the inhibitory inputs, and the decay

term 11, which is constant during nonnal operation (not being trained). A small value

for the decay tcnn, a, allows a greater rnngc for the 'gain factor' dctennincd by the

inhibitory inputs. Small changes in the output of the activation function, due to the

inhibitory inputs, can then result in large changes in the neuron output On the other

hand, a large value for a reduces the variation in the shunting tenn, also reducing the

range of the gain. In other words, the decay parameter II has a 'dampening' effect on

the shunting gain control mcclmnism, thereby making the neuron output more stable.

T11e drawback of increasing the value of a is that it reduces the effectiveness of the

neuron nnd its ability to !enm. A value of a that is much lnrgcr than the range of the

activation function can 'drown out' the effect of the inhibitory inputs. In the extreme,

this will reduce the function of the shunting neuron to just scaling and biasing the

excitatory input.

The limit value si;m comes into p!ay <luring training, ns it de lines the lower bound

on the decny tcnn, as given in (4.31). A small s1;,,, value mcmis that u could become

very small during training. This woul<l result in large 'gain factor', and therefore

possibly large variations in the neuron output. This could result in instability, as was

observed experimentally. It should be noted, however, that the limit value may not

even come into play, if the training process keeps the value of11 away from its lower

limit.

From this discussion, it becomes npparcnt that the selected value of ~l,m should

reduce the risk of instability, but at the same time should not overly restrict the

function of the shunting neuron. T11e value chosen should attempt to bnlancc these

conflicting requirements. Setting the value of.1·1,m to 0.5 allows the shunting inputs to

'amplify' the output to a reasonable]eve], up to a maximum factor of 2. On the other

hand, setting the value of s11m to I restricts the effect of the shunting tenn to a

'dampening' or 'attenuating' effect. This effect would appear to be more in line with

the name 'shunting inhibition', The 'amplification' effect, if any, will depend on the

synaptic weights connecting the shunting neurons to the output layer.

Given the expcrimentnl results and the above discussion, it was decided that for

the remaining experiments the value ofsi;m is I, unless otherwise stated.

77

Dlil'/ilOl'Ml:t;rOf TIUINING .HGURITH.lfS

4,6,2 Benchmark Test Resulls

In this sub-section, the results for the live different benchmark tests arc presented.

The results shown here arc for the best performing activation function combination

for each of the training alllorithms used. TI1e full set of mean test error rates and

mean test ARV for the live benchmnrk tests arc Given in Tables B.J to B.5 in

Appendix B.

4,6,1.1 Results/or the 3-bit paril)' problem

A set of 50 randomly generated)-input, !-output SJANNs, as described in Section

4.5.l, was trained on the 3-bit Parity problem. The 3-bit parity problem has only 8

binary input combinations and all these input patterns were used for !mining und

testing, with no validation. The networks were trained for a maximum of l,000

epochs with an error goal of 0.01. All nine activation function combinations,

described in Section 4.5.5, were trnined using eight different training algorithms.

The results for the best pcrfonninll uctivution function for each of the algorithms

nre shown in Table 4.1. The first column of the table shows all the algorithms ,_,sed to

train the networks und the second and third columns show the best perfom1ing

activation function contigurntion for the respective algorithms. The rest of the table

shows the performnncc metrics for the given set of networks. Columns 4 to 6 show

the percentage of the networks achieving the following: the objective function (mean

squared error) goal; zero clnssification errors for the test set; und less than 20%

clnssificution errors. Columns 7 to 9 give the average number of training epochs for

the following: all networks; networks that achieved the objective function goal; and

networks that achieve all correct tcst set classiticntion. This is followed in Columns

10 to 14 by the test set clussificution error: best case; mean; 95% confidence interval

(Cl) on the mean; ond median. The last column gives the mean training time per

network based on CPU time usage in seconds. The menn and median test error and

mean training time for ench case arc shown gmphicnlly in Fig. 4.8. Note that since

the median is O in most cases, it is not visible on the plot.

The results prove that SIANNs arc ublc to correctly solve the 3-bit parity problem

consistently. Most of the alJlori!hms had a median error of 0% and over 85% of the

networks achieve l00% correct classification, except for GDM and the stochastic

algorithms (ROM and ROM2). Even these three algorithms were able to achieve

l00% correct clussification for more than one third of the networks. These

algorithms ure actually able to achieve better accuracy if nm for lonJler, e.g. l0,000

epochs. However, for the sake of consistency and to be able to make fair
comparisons between algorithms, the training was restricted to 1,000 epochs for all

algorithms.

78

DEVELOPMENT OF TRAINING ALGORITHMS

Table 4.1 Best results for 3-bit Parity problem using 3-3-1 SIANN

Training Activation Perfonnance Avg. Epochs Test Set Classification Error Mean

Algorithm functions (% of runs) Training
CPU

Shunt Out ~ 0% < All ~ 0% Best Mean 95% CI Median time
goal err 20% runs goa l Errors (%) (%) (%) (s)

err

GDM Tnh Tnh 36 44 50 880 667 727 0.00 22.50 ± 6.26 18.75 5.5

GDX Tnh Lgs 94 94 96 352 31 l 31 I 0.00 1.25 ± 1.44 0.00 2.3

LM Exp Lin 96 96 100 84 46 46 0.00 0.50 ± 0.69 0.00 1.7

LMAM Exp Lin 86 86 88 169 33 33 0.00 4.25 ± 3.18 0.00 3.3

OLM AM Exp Lin 92 92 96 138 63 63 0.00 1.50 ± 1.51 0.00 2.8

DSGDX Tnh Lin 94 94 100 169 116 116 0.00 0.75 ± 0.83 0.00 1.3

ROM Exp Lgs 16 34 74 942 636 829 0.00 12.25 ± 3.17 12.50 7.4

ROM2 Tnh Lgs 2 42 78 987 359 969 0.00 10.50 ± 3 .00 12.50 8.1

3-olt Parity
ll .. -,---·---·-·--··-.. -·- "'""""""-""""'"" .. - ____ ,, _ ,, ___ ,,,,,, .. -·---·-·•-""'

7 -------------------

GDM GDX LM LMAM OLMM1 DSGDX ROM ROM2

Algorithm

Fig. 4.8: Mean and median test classification error and mean training time for 3-bit

parity problem using 3-3-1 SIANN with various training algorithms.

79

Df:l'F.Wl'Mf:~TOf' THAIN/NG :l~GORIT/1.US

The LM algorithm was the most accurate wi!h 96% of networks achieving perfect

classification and 0.5% mean error, and also required the fewest epochs to train the

networks. However, it was not the fastest in terms of time as it is a second order

algorithm that requires more computation per epoch. The fastest algorithm in tcnns

of computation time was the DS·GDX algori1hm, 5 limes faster than LM. DS-GDX

was also the second best in terms of accuracy with 94% of networks producing

perfect classification and mean error of 0.75%. Next, in terms of accuracy, is the

GDX algorithm followed by the LM variants, LMAM and OLMAM, tha1 had lower

accuracy and longer training times tlrnn the standard LM. The longest to train were

the GDM and ROM algorithms.

There docs not appear to he single 'optimal' selection of activation function as the

di!Terent algorithms have different 'best' combinations, though LM and its variants

all had the same best combination.

4.6.2.2 Rc.mlt.1·fi1r tltc Wi.mmsi11 Brea.ti Car.:r,· data.fct

TI1e 'standard' S!ANN structure trained on the Breast Cancer dataset was a 9-9-I

SIANN as the problem has 9 input parumctcrs and requires a single binary output for

clussification. The results of the best performing configurations for each algorithm

arc given in Table 4.2 and presented in Figure 4.9.

For this problem, the LM and GDX algorithms performed bcia with mean test

errors of0.20%. Even though none of the networks was able to achieve the objccti1•c

function goal of lff", more than two-thirds of the networks were able to achieve

perfect classification on the test set for these nlgorithms. All the non-stochnotic

algorithms were able to achieve mcnn error of less thnn 1.0% and even the stochastic

olgorithms (ROM and ROM2) had mean error of!ess than l.5%.

GDX was also the second fastest algorithm, behind only DS-GDX, whereas LM took

more than 3 times longer for the same nccurncy. By comparison GDM and OLM AM

took 6 to 7 times longer to train only to nchieve a lower accuracy. The ROM and

ROM2 ulgorilhms trained fast but had comparatively poor accuracy.

80

DEVELOPMENT OF TRAJNTNG ALGORJTHMS

Table 4.2 Best results for Wisconsin Breast Cancer dataset using 9-9-1 SIANNs

Training

Algorithm

GDM

GDX

LM

LMAM

OLMAM

DSGDX

ROM

ROM2

Activation
functions

Shunt Out

Tnh

Lgs

Lgs

Lgs

Lgs

Tnh

Lgs

Lgs

Lgs

Lgs

Tnh

Lin

Tnh

Lgs

Lgs

Lgs

16

_ 12

~
~
0
t:. I
w
i
t- 08

04

02

0

Pcrfonnance

(% of runs)

"7 0% <
goal err 20%

0 42 100

0 66 100

0 74 JOO

0 28 100

0 56 JOO

0 36 100

0 6 100

0 IO 100

GDM GDX

eo _. __

70

60

20 .

10

GOM GOX

Avg Epochs Test Error Mean
Training

CPU
All "7 0% Best Mean 95%Cl Median time
runs goal Errors (%) (%) (%) (s)

978 • 967 0.00 0.36 ± 0.09 0.56 61.8

161 * 160 0.00 0.20 ± 0.08 0.00 10.3

181 * 119 0.00 0.20 ± 0.10 0.00 34.8

98 * 97 0.00 0.76 ± 0.19 0.56 24.1

297 • 263 0.00 0.37 ± 0.14 0.00 71.0

96 * 100 0.00 0.54 ± 0.14 0.56 6.4

1000 • 1000 0.00 1.38 ± 0.27 1.13 14.7

1000 * 1000 0.00 1.30 ± 0.22 l.13 14.7

Wisconsin Breast Cancer

LM OLMM1 DSG DX ROM RDM2

-=-1
LM OLM AM OSGOX ROM ROM2

AJgortthm

Fig. 4.9: Mean and median classification enor forte t set and mean training time for

Breast Cancer dataset using 9-9-1 SIANN with various training algorithms.

81

DEnil.0/'.\ll!NTOf TRAININOALGORIT/1,\IS

,f,6,2.J Results/or Pima lndlan.T Diabetes datasel

The 'standard' 8·8·1 SIANNs were used for the Diabe!es dataset and the results arc

shown in Table 4.3 and Figure 4.lO. As mentioned in sub-section 4.5.8, it docs not

appear possible to achieve perfect classification for this dataset; error rates below

20% are con_sidercd 'good'. The results obtained eonfonn to these expectations, with

none achieving perfect classificalion and the average ranging from 19% to 22%. The

best. case results have test error rates of around 18%. Surprisingly, the best

perfonning algorithm was the first-order GDM algorithm that had the lowest mean

error of 19.05% and had 94% of networks achieving below 20% error. The GDM

algorithm achieved this despite being 'only' a first-order algorithm. The time taken

to train, however, was one of the highest as the number of epochs required was high.

111 contrast, the GDX algorithm, which is GDM with variable Jcamirig rate, had a

meon training time almost four times shorter but had n mean error rate of 21%. This

is the worst mean error of the gradient-based algorithms.

The LM and DS-GDX algorithms also had mean error rates below 20%, with DS­

G DX also being the fastest overall in terms of training time. Comparing the LM

variants, the LMAM algorithm was twice as fast as the standard LM algorithm, with

only mnrginally higher error. The OLMAM algorithm on the other hand took nearly

50% longer than LM, and had an even higher error rate. Once again the ROM

algorit.hms had the highest average error rates, even though trained for the maKimum

number of epochs allowed (in this case l,000 epochs). Training times were short

though, since the algorithm is computationally simple. The best case perfonnance for

the stochastic algorithms is comparable to that of the o1her algorithms.

4.6.2.4 Re.vt1/t.1·fi1r artificial mulli-r:/ass problem

The SJANN structure use<l for the mu!ti-class problem wns n 2-2-3 structure. Three

output neurons were required for the three output classes as the networks were tested

using u winner-take-nil method as described in Section 4.5.1. The results obtained arc

presented in Table 4.4 and the best, mean and median error rates, as well ns mean

training time, shown in Fig. 4.1 !.

The classes overlap, as shown in Fig. 4.1, therefore perfect clnssificatio11 is not

possible for this problem. The lowest test set error achieved was 4.0% with median

error in the range 5% to 7% and mean error between 5% and 10%. Most of the

algorithms had all networks converging (less than 20% error), with the worst having

90% of networks converging. The best mean accuracy of 5.47% was achieved by

GDX, which wns also among the fastest in tcnns of training time. The algorithms

1hnt were faster than GDX, namely DS-GDX, ROM and ROM2, nil had much higher

error rates, with mean error more than 7.5%.

82

DEVELOPMENT OF TRAJNJNG A LGORJTHMS

Table 4.3 Best results for Pima loclians Diabetes data et using 8-8-1 SIANN

Training Activation Perfonnance

Algorithm functions (% of runs)

Shunt Out 7 0% 20%
goal err <

GDM Lgs Tnh 0 0 94

GDX Tnh Lgs 0 0 14

LM Lgs Tnh 0 0 58

LMAM Lgs Tnh 0 0 54

OLM AM Lgs Tnb 0 0 44

DSG DX Lgs lgs 0 0 68

ROM Lgs Lgs 0 0 12

ROM2 Lgs Lgs 0 0 22

23 -

71

g
:.
t: 19 w
::

18

17

16

15
GDM GDl<

10

60

so

~ .
E •D I= ..
c
·;;
'i!
.... 10
li
~

:E

Avg Epochs

All 7 0% Best
runs goal EtTors (%)

710 * * 17.71

195 * * 17.71

182 17.71

80 ... * 17.71

238 • * 18.23

94 • * 18.75

1000 • • 17.71

1000 ... • 18.75

Pima Indians Diabetes

LM OLIAAM OSGDX

Algorithm

Test Error

Mean

(%)

19.05

21 .03

19.88

20.22

20.34

19.82

21 .50

21.69

ROM

95%CI

± 0.20

± 0.29

± 0.32

± 0.36

± 0.34

± 0.29

± 0.43

± 0.53

DBest
• Mean
aMoooan

ROM2

Mean
Training

CPU
Median time

(%) (s)

19.27 48.1

21.35 13.2

19.79 38.9

19.79 19.9

20.31 58.0

19.79 6.4

21.35 14.7

21.61 14.7

Fig. 4.10: Best case, mean and median classification error for test set and mean

training time for Diabetes dataset u ing 8-8-1 SIANN with various

training algorithms.

83

DEVELOPMENT OF TRAINING ALGORJTHMS

Table 4.4 Best results for Multi-Class dataset using 2-2-3 SIANN

Training

Algorithm

GDM

GDX

LM

LMAM

OLM AM

DSG DX

ROM

ROM2

Activation
function

Sh

Exp

Exp

Exp

Exp

Lgs

Exp

Exp

Exp

~

E
i: ..

Out

Lgs

Lgs

Lgs

Lgs

Lgs

Lin

Lgs

Lgs

12

10

lOO

-~ 150
·e
t­
c
:I
:!:

0

Perfonnance

(% of runs)

7 0% 20%
goa l err <

0 0 100

0 0 100

0 0 100

0 0 100

0 0 100

0 0 90

0 0 98

0 0 96

GOM GDX

GOM GDX

Avg Epochs Test Error

All 7 0% Best Mean 95%CI
runs goal Errors (%) (%)

999 * • 4.67 5.73 ± 0.23

377 * * 4.00 5.47 ± 0.16

228 ... * 4.00 5.69 ± 0.26

163 • * 4.67 6.13 ± 0.28

560 * • 4.00 5.81 ± 0.20

206 • • 5.33 9.39 ± 2.24

1000 * "' 4.67 7.49 ± 1.23

1000 • * 4.00 8.33 ± 1.68

Multi Class

01.MAM DSG OX ROM ROM2

LM Cl.MAM DSG DX ROM ROM2
Algorithm

Mean
Training

Median
CPU
time

(%) (s)

5.67 51.2

5.33 19.4

5.33 103.0

6.00 74.7

6.00 251.6

6.67 10.9

6.67 1 I. I

6.33 11.3

Fig. 4.11: Best case, mean and median test classification error and mean training

time for Multi-class dataset using 2-2-3 SIANN with various training

algorithms.

84

DEl'f.WP)rh'NTOF TMININGAtGORITI/MS

From Fig. 4.11 it can be seen that there is not much difference between the

accuracy of the GDX and the GDM, LM, LMAM and OLMAM algorithms, though

the training times are between 2.5 and 13 times longer than GDX for the latter

algorithms. GDX and GDM had the best overall pcrfonnancc when factoring the

training time on top of the accuracy.

For the Multi-class problem there appears to be a trend in the activation functions

achieving the best results, as 7 out of 8 had the exponential function as the shunting

layer activation function. Similarly, 7 out of 8 algorithms had a logistic sigmoid

output layer activation function. The exceptions were the OLMAM and DSGDX

algorithms that had log sigmoid shunting and linear output activation functions,

respectively.

4.6.2,S The Sllnspot time .~er/es

The Sunspot time series was used to train a set of 10-10-1 SIANNs, using the scaled

sunspot counts of 10 consecutive years to predict the number for the next year. The

Sunspots data was partitioned using the subserics for the years ! 700 to 1920 to train

the networks, and the subserics 1921 to 1965 for testing and 1966 to 1989 for

validation. This was done to facilitate comparison with published results (Nikolaev

& Iba, 2003; Park ct al., 1996; Weigend ct al., 1990). The perfonnance metrics used

arc the mean square error (MSE) and the average relative variance (ARV), defined

in Section 4.5.7 by (4.30). The best perfonning activation function results arc shown

in Table 4.5. Columns 4 to 6 in this case are the percentage of networks achieving

the training goal; percentage networks where all test results arc within tolerance and

networks for which at least 80% oftest points are within tolernncc. The tolerance in

this case is± 0.1 (scaled). Column 7 gives the overage number of epochs for all

networks. Columns 8 to l l give the lowest and median values for MSE and ARV for

the test points while colnmns 12 and 13 give the mean nod 95% CJ for the ARV for

test points. The last column gives the mean training time per network. Fig. 4.12

shows the best, mean and median test ARV and the mean training time for the

various algorithms. A plot of the actual Sunspot numbers for the test set range, along

with the values predicted by one SIANN network is shown in Fig. 4.!3.

The results show that practically all the networks have 80% of the test points

within tolerance, whereas the number of networks with all test points within

tolerance varies from 8% for LM to 42% for GDM. The LM algorithm got the best

median test MSE and median and mean test ARV. The GDX was the fastest of all the

algorithms but the worst accuracy, bar the ROM algorithms. The DS-GDX algorithm

and the LM algorithm with its variants, LMAM and OLMAM, all achieved similar

test ARV.

85

DEVELOPMENT OF TRAJNJNG ALGORJTHMS

Table 4.5 Best results for Sunspots dataset using 10-10-1 SIANN

Training

Algorithm

GDM

GDX

LM

LMAM

OLM AM

DSG DX

ROM

ROM2

Act-fns Performance
(% of runs)

Shunt Out ~ all in 80%
goal tol tol

Tnh Lin 0 42 94

Tnh Lin 0 14 98

Lgs Lin 0 8 100

Lgs Lin 0 26 98

Lgs Lin 0 22 100

Lgs Lin 0 40 100

Lgs Lgs 0 18 98

Lgs Lgs 0 28 100

0.35 ·

0.2S i---

> 020
a:
<(

ii
,- 0 15

0.05

000
GDM

40 --

35

E25 ..
E
;:: ..
.!: 20

~ ...
~
~ ,s

GOM

GDX

GDX

Avg Test MSE Test ARV
Epochs

Best Median Best Median Mean 95%Cl

886 0.0094 0.0117 0.113 0.140 0.161 ± O.D25

147 0.0085 0.0134 0.102 0.161 0.174 ± 0.020

54 0.0075 0.0093 0.090 0.111 0.112 ± 0.003

207 0.0075 0.0101 0.090 0.121 0.125 ± 0,006

89 0.0072 0.0095 0.086 0.114 0.117 ± 0.005

161 0.0077 0.0097 0.096 0.121 0.119 ± 0.002

1000 0.0105 0.0208 0.126 0.250 0.286 ±0.034

1000 0.0105 0.0214 0.126 0.256 0.271 ± 0.027

Sunspots

lM LMAM OLMAM DSGOX ROM ROM2

LM 01.MAM DSGDX ROM ROM2
Algorithm

Mean
Train

CPU time
(s)

37.3

6.8

9.8

36.2

15.6

7.6

12.8

12.8

Fig. 4.12: Best case, mean and median test ARV and mean training time for variou

training algorithms for Sunspots dataset.

86

DEVELOPMENT OF TRAINING ALGOIUTHMS

Ill
0
a.
Ill
§
(/J

200

150

100

50

Sunspots Test Results

- Actual
o Predicted

0

o~--~---~--~---~--~---~--~
1930 1935 1940 1945 1950 1955 1960 1965

Year

Fig. 4.13: Actual and SIANN predicted sunspots values for the test set.

In tem1s of peed of training for this problem, the DS-GDX algorithm was second

best to GDX, and the LM was third. The LM variants had longer training times

compared to the standard LM, OLMAM 50% longer while LMAM took almost four

time as long. The ROM algorithms had significantly higher test ARV, but the

number of points within the tolerance was close to the others. Overall, the ARV

figures obtained are comparable to those given in (Nikolaev & Iba 2003) who

reported test ARV values ranging from 0.086 to 0.229.

4.6.3 Analysis of results

The benchmark tests were chosen to give a variety of problems in tenns of

dimensionality, difficulty and type of problem. In all cases the SIANNs could be

trained to 'solve' the problem; either achieving perfect classification, or achieving

results comparable to that repo1ied in other literature using different type of neural

networks.

Comparing the different training algorithms from the preceding re ult , certain

general trends appear. The LM-h·ained networks are consistently among the mo t

accurate. The time taken to train with the LM algorithm tend to be average to high,

though it was never the longest. The LM variants LMAM and OLMAM, had

comparable or wor e accuracy than the 'standard LM algorithm. In tenn of training

87

DEVElOPMEN/'OF TRAINING ,iWOfllTHM!i

time, the results are mb1:ed. The LMAM was better than LM and OLMAM worst in

some tests, and the order reversed in other tests. Overall ii would appear that the

'standard' LM would be a better choice than the two variants.

The' first-order GDX algorithm was faster than the LM algorithm in almost all

cases. While th,:. GDX had similar or better accuracy than LM for the Breast Cancer

and Multi-class problems, it did not do as we.pin the other tests. The GDM algorithm

surprisingly. got the best mean error raie for the Diabetes problem and was

comparable to GDX and other algorithms for the other tests except the Parity

problem, where the accuracy was very low. However, it should be noted that the

average number of epochs for the GDM algorithm was always close to the maximum

of 1000 epochs. This indicates that the training runs are being tenninated because the

maximum number of epochs is reached and the algorithm is not able to complete the

training. Other tests performed have indicated that GDM requires about an order of

magnitude more epochs (limit of 10,000 epochs) in order to consistently reach

accuracy levels comparable to GDX. The results also indicate that GDM requires

significantly longer time to training compared to GDX.

The direct-solution based DS-GDX algorithm was consistently one of the fastest

algorithms in tenns of cotq)utation time. In terms of accuracy, it was comparable to

the LM algorithm, except for the Breast Cancer and Multi-c]llss problems. The

stochastic algorithms ROM and ROM2 had the worst error rates in the majority of

tests. The exceptions arc the 3-bit Parity test, where GDM come out worst, and the

Multi-Class problem, where DS-GDX had a higher error rate. The ROM algorithms

trained for the full 1000 epochs allowed in all cases, except for a few networks that

reached the error goal with the 3-bit Parity problem. Further tests showed that these

algorithms would go on for 10,000 epochs, if allowed, with no significant

improvement in error rates, except for the 3-bit Parity problem.

In tenns of training time, the ROM and ROM2 training time varies from the

longest for the 3-bit parity to air.ms! the fastest for the Sunspots problem. There

appears to be a trend that the comparative training time improves as the number of

training examples increases. This is probably due to the fact that, fo~ the stochastic

algorithms, only the objective function is calculated from the training examples, not

the actual weight update. This would give th_e stochastic algorithms an advaniage in

terms of training time as the number of training examples incrr~ses, though not in

tenns of accuracy.

From the 'best-case' results showi:, there do not appear to be any clear trends in·

the choice of activation function across till various !est problems and algorithms,

except in the case of the Multi-Class problem. Tables B.I to 8.5 in Appendix B show

the mean test classification error (or mean test ARV for Sunspots) for all

combinations of activntion functions and training algorithm. These results show that

there are lai-ge differences in tenns of accuracy, even f~r the same problem and

88

Dl':Vl':WPMENTOF' TIIA/11/NGALGORfTHMS

training algorithm using different activation functions. This means that though the
'best-perfonning' activation function combinations may be achieving similar results,
these combiuations need to be determined e:,;perimentally.

The previous analysis of training algorithm performance was also based on these
'best-perfonning' combinations. The average error rates across a!l activation
functions for a given training algorithm and problem, shown in Appendix B, also
indicate that there arc differences in the perfonnancc of various training algorithms

for a given problem.

The question theu is whether these differences can be considered significant, and
how to compare performance across the various tests. In order to detennine if there
arc statistically significant differences iu perfonnance across the activation fuuctions
aud trainiug algorithms over all the tests, statistical analysis was perfonned on the
full set of results obtained.

The statistical method for showing.that significant differences do exist across a
number of samples is to test the null hypothesis Ho that the k independeut samples
have equal means (or are from identical populations). The alternative hypothesis H1
is that they have different means or are from different populations. The k

independent samples in this case would be the nine different activation function
combinations tested or, alternatively, the eight different training algorithms. The
statistical test choseu was the Kruskal-Walli~ H test (Walpole et al., 1998). This test
is a non-parametric procedure for testing the equality of means while avoiding the
assumption that the samples were selected from normal populations. The distribution
of means across the va1ious functions, algorithms and benchmarks may not be
nonnal, hence the selection ofa test that avoids that assumption.

The procedure for applying the test is as fo!lows. For each of the benchmarks
tests, the mean errors ns shown in Appendi:,; B were ranked from 1 to 72 in ascending
order. For cases where there is more than one sample with the same value, the rank
will be the average of the rank positions. For c:,;ample if there are two samples in
equal 5•h position, they will both be ranked 5.5 and 3 ~amples in equal \31h position
will be ranked 14 (average of 13, 14 and !5}.

The I, statistic for the particular benchmark is calculated using the formula

where

12 • r.1·
11=--L.L-J(n+1)

n(n+l) ,.1 n1

nJ is the number of observations in the ith sample (i = 1,2, ... ,k)

r1 is the sum of the ranks of the 111 observations in the ith sample

n ~ 111 + 112+ •• + nt is the total number of observations.

89

(4.33)

DEVEWPMElfrOF TRAINING AWORITHMS

The statistic his approximated very well by a chi-squared distribution with k-l

degrees of freedom when Ho is true and if each sample consists of at least S

observations (Walpole et al., 1998). The null hypothesis Ho is therefore rejected with

95% confidence if the calculated value of h is greater than the value for z;,, with

degrees of freedom v = 8 when comparing the nine different activation function

combinations used.

The tables of rankings for the various benchmarks are shown in Tables B.6 to

B.10 in Appendix B, along with a ranking of the activation function combinations

based on the sum of rankings across the rows. The calculated h values for each

benchmark are given in Table 4.6, along with the critical :/ value and no overall h

statistic. The h values that are larger than the critical value are shown in bold. The

'overall' h value was obtained by summing the rankings across all the benchmarks

(shown in Table B.11), then ranking the sums from l to 72 {as shown in Table B.12

in Appendix B) and finally calculating Ii.

From Table 4.6, it can be seen that the null hypothesis quite clearly holds true for

all the benchmarks except for the Multi-Class problem. In the case of the Multi-Class

problem, H~ is rejected with greater than 95% confidence, indicating that there is a

significant difference between the means. This bears out the observation that the

combination of exponential shunting and log sigmoid output activation functions

gives the best performance with most of the algorithms for the Multi-Class problem.

For all the other benchmark tests there is no statistically significant difference in

perfom1ance across the various activation function combinations.

The next ~tep was to use Tables B.12, and sum down along the columos to

compare the means for the various training algorithms using the same procedure.

This time the critical chi-squared value is ;c;., with v = 7 since there are eight

algorithms being compared. Tnble 4.6 shows that the null hypothesis Ho is rejected

with greater than 95% confidence for the overall ranking as well as for all the

individual benchmark tests. These results confirm the conclusion, obtained by visual

observation of the graphs and tables, that there are significant differences in the

accuracy achieved by the various training algorithms.

Table46 The h values calculated for all benchmark tests

Bonchmark Test Comparison across activation Compari;on ncros$ training algorithms
function,

It Calculated Cri1ical value h Cnlculntod Critical value

J-bit Paritv 8.572 31.716

Breast Cancer 7.922 40.670

Diabetes 2.235 15.507 30.099 14.067

Multi-Closs 28.857 17.689

Sun,...,.t, 6.669 54.102

OVERALL 2.218 Sl.023

90

Df.l'f.Wl'Mf.1/T(Jf T/IA/NING AwaR/WMS

Table 4.7 Overall ranking of

training algorithms for SIANNs

Training Com(>Ositc
Rank At •ori1hms Sum ofr.inks

' CM 864.5 , OLM AM 1039

' LMAM [412.5

' DS-GDX 1578.5

' '°' 1543

• GDM 1732

1 RDM2 2474

• SOM 2496.5

Table4.8 Overall ranking of

activation functions for SIANNs

Activation Functions
Composilc

Rank Shuntinn Out Ul Sum ofrnnks

' "" ""' 1275.5 , ""' L~s 1293

' '"" "" 1302

' " ' Lin 1496

' "" Lin 1474.5

• '"" Lin 1493.S

1 ,,
'"" 1538

" '"" '"" 1628

• ""' '"' 1639.5

Tables 4.7 and 4.8 shows the 'overall' rankings for the trnining algorithms and the

activation functions obtained by summing the ranks across all benchmarks and then

rnnking the sums, as given in Table B.12. The composite sum of ranks across all

benchmarks tests, as shown in Table B.11, is also presented, to give an indication of

how 'far apart' the rnnkings are.

It should be noted that the rnnkings for the activation functions are given as an

indication only, as the preceding tests show that the overall differences in

perfonnance due to the activation functions are not statistically significant. The

composite sum of rankings bears this out, as the sums arc quite close to each other,

with the biggest gap being between the third and fourth ranked combinations. Also,

the fourth ranked Lgs-Lin combination has a larger sum than the sixth ranked Tnh­

Lin combination. This means that the ranking as done using Table B.12 gives a

different order of ranking than the ranking given in Tab!e B.11 that was based purely

on the sum of the individual benchmark ranks. This is due to the fact that the results

are actually too close to clearly differentiate and rank them. An interesting point to

note, however, is that there appears to be a trend with the output activation functions.

The combinations with the logistic sigmoid (lg.1) output function perform the best

followed by the linear output combinations, and the hyperbolic tangent sigmoid (111'1)

combinations coming in last. There is no such trend apparent when looking at the

'best-perfonning' combinations though, with a number of combinations the ton

sigmoid output coming out best for different algorithms and problems.

For the training algorithms, the LM algorithm is the highest ranked algorithm

followed by its variants the OLMAM and LMAM algorithms. The direct solution

DS-GDX algorithm comes in next followed by the first order GDX and GDM

algorithms, with the adaptive learning rate GDX algorithm ahead of the simpler

91

DEVEWPMENTOF TMl/'11/IGALGORffHMS

GDM algorithm. Not surprisingly the stochastic ROM and ROM2 algorithms are

ranked the lowest. This ranking follows the same pattern as the general trends

observed using the 'best perfonning' activation functions. Looking at the sum of

ranks, there is a distinct difference between the algorithms, except between DS·GDX

and GDX and between ROM and ROM2. In fact GDX has a lower sum than DS·

GDX, but, as with the activation functions, when there is nn significant difference

the various ranking mechanisms sometimes produce different orderings.

The rankings here are based on the accuracy of the networks on the test set, but

other factors such as the time required for training and computational comple1'ity

also need to be considered when selecting a training algorithm for a given problem.

4. 7 Conclusion

This chapter describes the development of a number of training algorithms for

SIANNs, including the derivation of the appropriate equations. The test methodology

has been presented and a number of benchmarks tests described. SJANNs have been

applied to these benchmark problems, trained using the algorithms derived, and the

experimental results presented. The results obtained are comparable to those obtained

by other types of neural networks, showing that the SIANNs can be trained

successfully on a variety of problems.

The effect of the limit on the shunting neuron denominator during training has

been investigated and analysed. Inferences have also been drawn, from these results,

011 the effect of the combination of nctivation functions and perfonnance of training

algorithms. It can be concluded that the choice of activation functions has a

significant effect on the accuracy of the trained network, but there is 110 single

combination that works best across all the training algorithms and problems. TI1e

optimum combination for a particular problem and training algorithm therefore has

to be determined c)(pcrimentnlly. The differences in training algorithm performance,

on the other hund, arc statistically significant, and an overall ranking hnsed on the

accuracy has been produced. It should be noted, however, that there is often a trade­

off between accuracy and training time, and that the relative performance of the

algorithms is still problem dependent.

In genera!, the e1'perimenta1 results show that SIANNS can be applied

successfully to classification and prediction problems using the training algorithms

developed. This means that SIANNs are a viable class of neural networks that can be

applied to various types of problems.

92

Chapters

The Quadratic Neural Network Algorithm

S.1 Introduction

The training of feedforward neural networks is based on the minimisation of an
objective function related to the output error. The general strategy for supervised
!earning is based on combining a quickly convergent local method with a globally
convergent one (Battiti, 1992). The local methods arc based 011 local models of the
generally complex error surface. Most algorithms are based on a linear (first order)

model or quadratic (second order) model. Quadratic methods tend to have faster
convergence, though they occasionally get trapped in local minima.

Second order methods rely on minimising a quadratic approximation to the error
function, E(w), that uses the first three terms of the Taylor-series expansion about the
current point, w., given by

(5.1)

where 8w is the weight chwtge, g is the gradient vector and H is the Hessian matrix.

Solving this equation yields the optimal change in the weight matrix, given by

/Jwop, ,. ff 1g. However, the calculation of the Hessian II and its inverse is
computatio_nally prohibitive, thereby leading to approximation methods being
investigated. There arc also problems where the Hessian is not positive definite, is
singul¥, or ill-conditioned (Bnttiti, l 992). The matter is further complicated if
constraints arc imposed on the solution, as is the case for Shunting Inhibitory
Artificial Neural Networks (SIANNs), where certain weights need to be constrained.

93

Tm: QUADJUTIC NEURAi, Nl.7WOIIKAWOR/TH)f

The Quadratic Ne11ral Network (QNN) algorithm is II novel second order method

that uses a recurrent "neural network" to detennine the minimum point of the

objective function to be minimised. It is based on work using recurrent neural

networks for bound constrained quadratic minimisation proposed by Bouzerdoum

and Pattison (Bouzerdoum & Pattison, 199311, l993b).

This chapter presents the development of the Quadratic Neural Network training

algorithm and a number ofvnriants, and their implementation in training SIANNs on

II number of benchmark problems. The following section outlines the development of

the algorithm and its implementation for training fecdforwnrd neural networks. The

third section covers the adaptive determination of parameters, followed by the

section on constraining the QNN update. Section 5.5 presents experimental results

comparing the performance of the various QNN-bascd algorithms with other

algorithms and analysis of the results obtained. Conclusions are provided in Section

5.6.

5.2 Development of the QNN Algorithm

This section firstly outlines the development of the method of using recurrent neural

networks for bound constrained quadratic minimisation upon which the QNN

algorithm is based (Bouzerdoum & Pattison, 1993b). This is followed by sub­

sections on the recursive equations used to model the recurrent neural network, and

the method of applying this to the practical training of neural networks in general,

and SlANNs in particular.

5,Z,l Algorithm Formulnllon

Bouzerdoum and Pattison's method (Bouzerdoum & Pattison, \993a, !993b) uses n

recurrent neural network to solve the bound constrained quadratic optimisation

problem

min{E(w. +Aw):µ :::Aw :::u} ••
(5.2)

with µ,ue R' for w ER•.

In order to ensure the constraints arc always satisfied, let

Aw= p(u) .. Br(u) (S.3)

where r:R• R' is a piecewise-linear function defined as

94

TIIE QUADIIAT/C NEUIIAl NETWORK ALGORrrHM

UJ <!,1

ll1E~J,{1]

111 >{1

(S.4)

The 11-dimcnsionnl vector u is permitted to vary without constraint, B is an n-by-n

positive diagonal matrix that serves as o preco11di1io11er, and !,,{ e R" arc the

constraintsp,uon t,.w mapped onto corresponding values of u such that !, "'8"1 µ

and {"' e-1u. By identifying p(u) such that t,.w is confined to the constraint region,

the problem now becomes an 1mconsrrai11ed minimisation of the objective function

M(u) over u where

M(u)"' 1{ p(u) +!p(u)7 Hp(u) (5.S)

Consider now the single-layered recurrent neural network whose state vector is
defined by the differential equation

"" _,._g-Au-Cf(u)
d,

(5.6)

where g is the external input, f(u) is the network output, C is the lateral feedback
matrix with zero diagonal entries, and A is a positive diagonal matrix representing
the passive decay rate of the state vector.

To map the constrained quadratic problem onto the neural network, we set

A "'diag(HB) (5.7)

C"'HB-A (5.8)

where diag(.) selects the diagonal elements of its matrix argument.

The desired output t..w"' Bf(u) is obtained from the network output f(u) through
multiplication with the diagonal preconditioncr B. Bouzerdoum & Pattison
(Bouzerdoum & Pattison, \993a) showed that, provided the matrix H is positive

definite, the neural network defined by (5.6) lrns a unique equilibrium point u' which

is mapped by p onto t..w', the optimnl constrained weight update to the minimum of
E(w). They have also shown that the network is globally convergent to this

equilibrium point.

Tiie spectral condition number ofa matrix is defined as the ratio of the maximum
to the minimum singular values of the matrix. If the state-feedback matrix has a large
condition number, then numerical computations are susceptible to round·off errors
and errors in the weights of the state-feedback matrix. Preconditioning is used to
keep the condition number small. It has also been shown that preconditioning speeds
up convergence (Bouzerdcum & Pattison, 1993b).

95

THE QUADR..ITIC N£1JR..lt N£TWD/IK ,f~GDRITHM

For the system in question, a simple choice for the prcconditioner matrix Bis

bu=~
h,,

a>O (5.9)

where b11 nnd hu arc the diagonal elements of B and H respectively. The choice of

preconditioniog has the added advantage of simplifying the eKpression for matrix A,
which then simply becomes

A=al (5.10)

where I is the identity matrix.

The matrix C = HB-A can then be defined by

i'F-j
i,j e l, ... ,n (5.1 l)

i=j

5,2,2 Slmulatlng the Recurrent Neural Network

In this training algorithm, the operation of the recurrent network for the quadratic

minimisation is approximated by a discrete time recursive equation. At each training
epoch, a recurrent neural network is 'constructed' with constraints based on tho stnto

of the network being trained at that point. The "recurrent network" modelled by the

recursive equation will return the optimal weight update for that epoch and the
network being trained will have its parameters updated using (5.3).

The differential equation (5.6) can he approximated by

u(k + l)-u(k) = -g-Au(k)-Cf(u(k))
d

:. u(k +I)= u(kJ-d(g+ Au(k) + Cf(u(kJ))

where dis the discrete 'time-step'.

(5.12)

(5.13)

The recursive equntion (5.13) is iterated a finite number of times to obtain an

approximate optimal value of u, then the update of the weights, i'l.w, is calculated

from (5,3). The recursive equation can be iterated a fixed number oftimc.1, because
even if the weight update is sub-optimal, the overall effect of any error is not critical

since the process will be repented for a number of epochs.

96

THE QUADRATIC NEURAL NETWORK ALGORITHM

5.2.J Applying lhe QNN Algorithm to neural network training

The recursive equations as they stand require the evalua!ion of the Hessian matrix to

detennine C, as given in (5.8). In practical implementations, the computational cost

of calculating the Hessian matrix is too high, so approximations of the Hessian are

used. The QNN algorithm has been implemented for MLPs (Arolampalam &

Bouzcrdoum, 2001b, 2002b) based on the Levenberg-Marquardt (LM)

approximation (Hagan & Menhaj, 1994): that is, the same approximations for the

gradient and Hessian based on the Jacobian as in LM have been used'.

g "'J 7 (w)e(w)

H,.,Jr(w)J(w)+µI

(5.14)

(5.15)

where J{w) is the Jacobian matrix, e(w) is the vector of residuals (errors) for the

training set, I is the identity matrix andµ is a variable parameter that dctennines the

trost region.

This approximation of the Hessian has been used instead of the Gauss-Newton

approximation (If a, J T(w)J(w)) to overcome the problems of rank deficiency, since

neural network training problems are intrinsically ill-conditioned (Haykin, 1999, p.

235), as well as the requirement of the QNN algorithm that the Hessian be positive

definite. Tests with the Gauss-Newton approximation for the QNN nlgorithm

resulted in non-convergence due to the above-mentioned problems.

The only difference between the implementation of the LM and QNN algorithms

is that the step where the change in weights is calculated with the matrix inversion in

LM (refer to Section 2.8.3) has been replaced with the ''recurrent neural network",

i.e. the recursive equation given in (5.13).

5,2,4 Determining 'optimum' parameters for the QNN algorithm

The parameters that affect the QNN nlgorithm nre the constant for the preconditioner

matrix, a, the discrete timc·step, d, and i, the number of iterations to update the

recursive equation. One important observation that was made during these

experiments was that the product ad could be taken ns one parameter for the

algorithm since the parameters a and d had inverse effects, For example, setting a=
I and d = 0.1 produces exactly the same results as a= 2 and d = 0.05. As such, the

tcnn a was fixed at I and only the d and i parameters were varied.

In order to find an approximate 'optimum' value for these parameters, SIANNs

were trained on the Wisccnsin Breast Cancer and Pima Indians Diabetes datasets

using the QNN algorithm with varying d and i values. Fig. 5. l shows the mean error

and mean training time as the time-step, d, is increased from 0.01 to 2.0. Fig. 5.2

97

THE QUADRATIC NEURAL NETWORK ALGORJTHM

shows the same as the number of iterations, i, is increased from 5 to 100. The

minimum en-or achieved is also shown for the Diabetes problem, as it i non-zero.

Details of the results are given in Tables B.18 and B.19 in Appendix B.

(a) Breast Cancer
0.8 ,---~--;:::::======I::::~

~
i 0.4
t:

UJ

0.2 d =0.2

0
10 2 10 1 10°

d
(c)

25

~20
~

"' ..§ 15 .
c: ·;;;
~ 10

"' "' ::E 5

0
10-' 10 ; 10°

(b)

21

~ 20
!:,
iE 19

18 o
•• • .. <J

17
10·2

(d)

150

E
cu 100
E
:c
c:

~
c: 50 "' cu

::E

0
10·2

Diabetes

<>.

10·'
d

10·'

__,._. Mean error
<> Min. error

I
I
I
I
I
I
I . .. (I.
~ .. -····· ·· ... <>

I

10°

100

Fig. 5.1: Percentage error and average training time vs. discrete time-step d for

SIANNs trained on Breast Cancer (a c) and Diabetes (b d) datasets

(a)

(c)

Breast Cancer
1.5 r--~-~--;:::::======:;-,

Mean error I

i
g
w 0.5

25
~
"'20
,§
E 15
_g:

; 10
~

5

\

i
I
I ,
I

v/=20
I
I

,r- I
I
I

:
20 40 60 80 100

o~~~~~~~~~~~~

0 20 40 60 80 100

(b)

21

18
<> <>

(d)

E 1so
cu
E
:c g 100

1a
~ 50

Diabetes

-><- Mean error
<>·· Min. error

,-...--..--------..--------"-*
I
I
I
I
I
, O·· 0 ""
I

100000
I

20 40 60 80 100

20 40 60 80 100

Fig. 5.2: Percentage error and average training time vs. iterations for SIANNs trained

on Breast Cancer (a,c) and Diabetes (b,d) datasets

98

THE QUADRATIC Nt:URAlNliTlfORJ: ALGORITHM

Fig. S.l shows that increasing the parameter d above 1.0 results in the algorithm

'blowing-up', with mean error values over 40% ford= 2.0. These error values were

allowed to go off the graph in order to clearly show the variations for the other

values. Fig. 5.2 shows that there is no significant improvement in accuracy for i

greater than IO, but training time increases as i is increased. From these results, the

'optimum' values chosen were d = 0.2 and i = 20, shown by dashed vertical lines in

the figures. These values were chosen to balance accuracy with training time, as well

as avoiding possible instabilities. These values have been used for all subsequent

tests, unless otherwise stated.

5.3 Adaptive Determination of the Parameters for the Algorithm

In the previous section the 'optimum' values for the discrete time-step, d, and the

number of iterations, i, were determined experimentally. These values were based on

tests using two different benchmark datasets. The results indicate, however, that

there is no clear-cut optimum value and that the 'optimum' value may vary

depending on the problem at hand. In order to reduce the number of parameters to be

determined and to allow the algorithms to be more general, these parameters should

ideally be determined adaptively. Methods for adaptively determining these

parameters arc presented in the following sub-sections.

5.3.J Adnplive determinntlon of the number of iterations, i

To reduce the number of free parameters, a method was developed to adaptively

determine i, the number of iterations for u(k). The rationale is that the iterations can

be stopped when the percentage change in u(k) drops below a certain limit. The

change, 6u(k), is given by

Oll(k) = norm(u(k + 1)- u(k))
norm(u(k+ I))

(5.16)

In order to determine a 'good' lower limit for ,Su(k), 611,., the QNN algorithm was

used to train SJANNs on selected classification problems with vnrying limit values.

Fig. 5.3 shows how !lie mean error and mean training time chnnge as llu., is increased

from 0.001 to 0,5. The maximum number of iterations I was set at JOO to provide a

reasonable upper bound to the number of iterations performed per update.

99

THE Q UADRA T!C N EURALNETWORK A LGORJTHM

(a)

(c)

Breast Cancer
0.8 ,------:=========::i I ---...- Mean error I
0.6

0.2
l!

1
,m = 0.01

o~--~---......_ __ _,
10·3 10·2 10 , 10°

e 1s
II)

&
~ 10

c
GI

~ 5

o~~-~-~~~~-~

10'3 10·2 10 1 10°

(b)

(d)

.;;-

Diabetes
22 r-~~~~;========:::;i

I_ Mean error I
o Min. error 21

0

I
I
I
I
I

0 ~

-,,.

0 0 0

0

-; 100
§
c

~

o~-~~-~~~~-~

,~ 1a2 1~ ,if

Fig. 5.3 : Percentage enor and average training time vs. 8u111 , the lower limit for

5u(k), for SIANNs trained on Breast Cancer (a c) and Diabetes (b d)

datasets

The results indicate that there is no significant variation in accuracy as Dtim is

varied. However, there is a decrease in the training time for the Diabetes problem as

the limit is lowered until D!im = 0.002, after which it increases again . From these

result , the chosen lower limit is 8/im = 0.01 (1 %) a conservative limit that balances

training time with accuracy, while avoiding a very small limit that could potentially

lead to excessive iterations with different problems.

Tbis stopping criterion was incorporated into the algorithm primarily as a method

of reducing the training time by stopping the iteration of the recursive equation if

u(k) was not changing significantly. The maxi.mum number of iterations was set to

20, which is the ' optimum' value determined in the previous section and the

iterations stopped earlier if 8u(k) < 0.01 , i.e. if the nonn of u(k) changed less than

1 %. This would reduce the training time without significantly impacting the weight

update. This method has been incorporated into all subsequent tests performed.

100

THE QUADMTIC N£UMlN5TWOl!K AlGOR/THM

5.3.2 Adaptive determination of the discrete time-step size, d

The neuml network training implementation of the QNN algorithm contains the

parameterµ, which can be used as a measure of how close to quadratic the objective

function is during training. This can be used to adaptively vary the 'time-step' term

for each epoch, d. Ifµ decreases, the quadratic approximation is improving, therefore

dis increased, othcnvise it is decreased. The value ofµ changes by a factor of 10

within the range 10·10 to 1010, hence the value of dis varied according to

d(current epoch) = d(previous epoch)• (l -(1~~.ot)) (5.11)

which results in a multiplicative factor of between 2 and O.l approximately.

This method has been found to work well for a variety of problems when the

algorithm was applied to MLPs, but does have a drawback when applied to complex

problems where the value ofµ remains large for long periods. In these cases the

value of d becomes tiny, sometimes in the order of 10·100
, resulting in long training

times without any significant improvement in performance (Arulampalam &

Bouzerdoum, 2001b, 2002b).

An alternative method formulated was thus to vary d only when the final value of

µ changes compared to previous epoch. The step size would be increased by a

constant factor when µdecreases and vice versa, for example

l
d(previous epoch)• 1.1

d(currentcpoch) = d(previousepoch)

d(previousepoch)• 0.9

µ(current)< µ(previous)

µ(current)= µ(previous) {5.18)

µ(current)> µ(previous)

Another alternative is to increase the frequency of the d value update from once

every epoch to every timeµ is updated. The value ofµ is increased by a factor of 10

until the objective function is equal to or lower thElll previous epoch and then it is

decreased by a factor of 10 {refer Section 2.8.3 on LM algorithm).

Other variants include combining the different update times (both once an epoch

and every µ update) and varying the update factors. The various combinations of

update frequency and update fomrnlne tested are summarised in Table 5.1.

The various methods of varying d were tested on the Wisconsin Breast Cancer

and Pima Indians Diabetes benchmark problems. The main objective of these

algorithm variants is to minimise the dependence of the results on the initial value of

d chosen. To test this, the same sets of networks were trained using the different

algorithms with the initial value d~ set to 0.05, 0.2 and I. The values were chosen

~F.iund 0.2 because the 'optimum' value ford as detennincd in the previous section

was0.2.

IOI

THE QU&lll!,mC NEURAl NETWOMALGORITHM

Table S·I Summary of d update methods for QNN algorithm variants

Algorithm Update frequency Update formula

Q!"N d.fix.ed

QNN2 Every epoch
d= d·(,-C~~-

0:J).
QNN3 Every !!update r•LI µ(current)< µ(previous)

d=c d µ(current)= µ(previous)

d/1.1 µ(current)> µ(pre'vious)

QNNS i) Every epoch . i) QNN2 update

ii) Everyµ update ii) QNNJ update

QNN6 i) Every epoch i)_d=d'"l.l

r•LI µ(current)< µ(previous)

ii) Every µ update
ii) d"' d µ(current)= µ(previous)

d*0.1 µ(current)> µ(previous)

QNN7 i) Every epoch i) d=d*l.l

ii) d={:. 0_9

µ(current):<, µ(previous)
ii) Everyµ update µ(current)> µ(previom)

QNNB Every epoch
d=t·I.I

µ(current):<, µ(previous)

d*O.B µ(current)> µ(previous)

QNN9 Every epoch r·u µ(currrmt) < µ(previous)

d"' d µ(current)= µ(previous)

d•0.9 µ(current)> µ(previous)

The results obtained are shown in Tables 5.2 and S.3 and in Figs. S.4 and 5.5. The
tables show each variant in the first column, the best performing activation
combination for thnt algorithm, followed by the mean classification error for the
three do values in columns 4 to 6. Columns 7 and 8 show the percentage variation of
the means for do "'0.05 and dn = 1.0 from that of the 'basic' do of0.2. The last three
columns show the mean training time for each of the starting do values.

l02

THE Q UADRATIC NEURAL NETWORK ALGORITHM

Table 5.2

Training

Algorithm

QNN

QNN2

QNN3

QNN5

QNN6

QNN7

QNN8

QNN9

Results for QNN variant comparison using Brea t Cancer dataset

Activation
functions

Shunt Out

Exp Lgs

Tnh Lgs

Tnh Lgs

Lgs Lgs

Lgs Lgs

Ex-p Lgs

Tnh Lgs

Lgs Lgs

14

17

IO

l
g oe
w
ll ..
~ 06
• • ::i:

04

02

00
Of'IN

Ell

70

60

E so ..
e
F ..
! AO

e
: 31
:le

Mean Classification Error Change in error
(%) from d = 0.2 (%)

dn= 0.05 dn= 0.2 do= 1.0 d,F 0.05 do= 1.0

0.70 0.26 0.29 169.2% 11.5%

0.49 0.43 10.09 14.0% 2246.5%

0.58 0.33 0.41 75.8% 24.2%

0.36 0.24 0.42 50.0% 75.0%

0.37 0.36 0.34 2.8% -5 .6%

0.67 0.35 0.32 91.4% -8.6%

0.66 0.42 0.85 57.1% 102.4%

0.53 0.32 0.17 65 .6% -46.9%

Wisconsin Brust Cancer

Avg. CPU time (s)

dn= 0.05 d11 = 0.2

15.5

13 .1

27.5

43 . 1

24.4

15.3

24.9

25.6

21 d;() 05

• d=02

Eld=1

15.7

10.4

17.4

49.0

20.0

15.6

15.9

19.4

dn = 1.0

19.6

17.4

23.0

253.6

20.3

21.2

26.2

20.4

0NN2 ONN3 ONN5 ONN6 ONN7 ONN8 ONN9

Algorithm

Fig. 5.4: Mean test e1Tor and training time for Brea t Cancer dataset using SIANNs

trained with QNN algorithm variants.

103

THE QUADRAT!C NEURAL NETWORK ALGORITHM

Table 5.3

Training

Algorithm

QNN

ONN2

QNN3

ONN5

QNN6

QNN7

QNN8

QNN9

Results for QNN va1iant comparison using Diabetes dataset

Activation Mean Clas ification Error Change in error Avg. CPU time s)
functions (%) from d=0.2 (%)

Shunt Out do= 0.05 d0 =0.2 dn = 1.0 drF 0.05 do= 1.0 do= 0.05 do= 0.2

Lgs Tnh 20.82 19.88 19.43 -2.3% 4.7% 121.7 76.7

Exp Lin 20.36 19.95 23.52 17.9% 2. 1% 219.l 203.8

Exp Tnh 20.66]9.80 19.67 -0.7% 4.3% 86.8 44.6

L~s Lin 20.54 19.96 20.76 4.0% 2.9% 245.5 198.6

Lgs Tnh 20.57 20.02 20.17 0.7% 2.7% 28.9 23.3

Exp Tnh 20.50 20.05 19.90 -0.7% 2.2% 66. 1 40.0

Exp Tnh 20.42 19.91 20.14 1.2% 2.6% 76.6 34.2

Lgs Tnh 20.42 19.57 19.85 1.4% 4.3% 63.0 69.4

Diabetes
24 ··- --·-- __ .. _____ .. _______ -- -

22

~
~ 21
w

i
~

j 20
:!

19

10

200 --

:E
.. 150 ---
1:
;:::

"' c c
~
: 100
:"!

50

CNN

___ .. ---··-.. ----------·---

ONN2 QNN3 ONN5 QNl\6 QNN7 ONN!I
Algorithm

__ __,

2l d=O 05

• d=0.2

130=1

ONN9

do= 1.0

36.3

18.5

25.3

75 .7

28.0

23.3

24.4

41.2

Fig. 5.5: Mean te terror and training time for Diabetes dataset using SIANNs trained

with QNN algorithm variants.

104

TH£ QUAD!IATIC N£UllALN£TWORKAWO/UrHM

The percentage variation, in Columns 7 and 8 of the tables above, show that the

QNN2 algorithm perfonnance is sti\! highly dependent on the starting va!ue of d.
There is a large variation in the means as do is changed, even larger than for the

'standard' QNN with fixed d. This defeats the purpose of varying the d value in the

first place. QNNB also showed a fairly significant variation for the Breast Cancer

dataset, as did QNN7. The QNN5 algorithm had long training times and moderate

variation in mean error, but had low error rates for do = 0.2. The QNN6 variation

appears to have the most stable perfonnance across the various d values with no

more than 6% variation.

The decision was taken to evaluate a subset of these variants in the subsequent

sections along with the standard QNN algorithm, namely QNN3, QNNS, QNN6 and

QNN9. The other variants were dropped either because they didn't perfonn well

(QNN2) or were similar to better performing variants (QNN7 similar to QNN6,

QNNS similar to QNN9). This selection maintains a broad comparison of the

methods while reducing the number of tests to be perfonned and reported.

5.4 Constraining the QNN Update

One enhancement made to the QNN algorithm was to use the ability of the algorithm

to handle constraints by imposing a constraint on u such that it is bounded by the

function f to the hypercube defined by 100 times the components of the gradient

vector. The rationale is that it would keep the updates in the general gradient descent

quadrant, thereby reducing the possibility of instability. This eo11strained QNN

algorithm (QNN-C) has bee11 applied to MLPs, with results indicati11g that the

constraint improves the accuracy of the classifiers at the cost of lo11ger training time

(Arulampalam & Bouzerdoum, 2002b). It was found that as the complexity of the

problem i11creases the performa11ce of the constrained algorithm drops, sometimes

quite dramaticn!ly. The probable reason for this is that the simple constraint

co11ditio11 actually works agai11st the minimisation of the error when the error surface

is too complex.

The QNN-C algorithm was used to train SIANNs on the full set of five

benchmark problems in order to gauge the effect of the constraint on a variety of

problems. The results presented in Table 5.4 clearly show that the simple constraint

results in extremely poor performance.

In order to improve the performance of the constrained QNN algorithm, an

alternative constraint function was proposed. The alternative update constraint

eo11sists of merging the original hypercube, formed by the components of the

gradient multiplied by 50, with a smaJler hypercube centred on the origin with

105

THIIQ!.IADIUTICNE!!IUlNETWO/IK ALGO!IITHM

boundary value calculated from the nonn of the previous update (norm(t..w)) and the

value ofµ as follows

boundary value= nonn {t..w{previousepoch))•(1-(1~~.'()) (5.19)

The smaller hypercube serves to free the weight update tn 'move' in directions

other than that of the gradient. The size of the 'freeing' hypercube is detennined by

the previous step size as well as the quadracity of the update (µ). If the

approximation is more linear (large µ) the size of the second hypercube is smaller

resulting in the constraint to be closer to the gradient. If the update is closer to
quadratic, the size of the hypercube is expanded allowing update in other directions.

The algorithm variant using this second hypercube in the constraint is referred to as
QNN-C2.

The effects of this second constraint can be seen in the results that follow, where
both the constrained and various unconstrained versions of the QNN algorithm are

compared.

Table 5.4 Best case results for SJANNs trained using original QNN-C algorithm

Benchmark Tei! l'crccntnee error
Best Mcon 95%C!

3-bit pnrity 25.0 48.5 ± l.93
Brea,! Cnnccr 0.56 20.4 ±3.SS
OiolXltcs 30.7 39.5 ±2.11
Multi-class 26.0 67.6 ±5.32

AVR
Sunspols 0133 1.480 .-±0.294

5.5 Benchmark Test Results and Analysis

The QNN algorithm and selected variants of it were tested on the s11tue set of
benchmarks problems, with the same training and test conditions as the other

algorithms tested in Chapter 4. The results obtained are presented in this section. The
previously presented results obtained for the Gradient Descent with momentum and

adaptive learning rate (GDX) and Levenberg-Marquardt (LM) algorithms are also
presented for comparison, representing the best first- and second-order algorithms

previously tested.

I06

THE QU~DILmC NEUMi NETWORK ALGORITHM

S,S,I Results for the Wisconsin Breast Cancer dataset

The results obtained by testing the 9-9-1 SIANNs trained using the various QNN
algorithms are presented in Table 5.5 and Fig. 5.6. Note that the median error in all
cases was zero and so is not visible in the figure. The results indicate that there is no
significant difference in the accuracy of the classifiers trained using the different
algorithms. The mean error rates range between 0.24% to 0.36% and the percentage
of networks achieving 100% accuracy between 56% and 68%, for the QNN
algorithm and its variants. This is fairly close to the results of the GDX and LM
algorithms: 66% networks with no error achieved by GDX, 74% with LM, and
0.20% mean error achieved by both. In fact, comparing the QNN results with the
other algorithms tested in Chapter4, it can be seen that QNN outperfonns the rest of
them in tenns of accuracy.

The training times, on the other hand, show more variation. Most of the QNN
variants tested took a similar amount of time to train the set of networks. The
exception was QNN5, which took a much longer time to train in the preliminary
tests. QNN5 was retained for this section for two reasons: firstly, it was capable of
producing good results; and second, to highlight the effect on training time the
'wrong' selection of the d update method could have. It fulfilled both requirements,
achieving a meao error of0.24%, the !owes! mean error among all the QNN variants,
and having the longest mean training time. The QNN5 training time was more than
double all the other algorithms except LM. The other QNN variants had training
times one and n half to two times longer than GDX, but about halfthc time ofLM.

Overall, the standard QNN algorithm appears to be the 'best' of the QNN variants
for this test, with the second best accuracy and fastest traioiog time. There does not
appear to be any significant differences in perfonnance between the variants, except
for the training time ofQNN5.

S.S.2 Resulh for Pima Indians Diabetes dataset

The rc~uhs for this test, presented in Table 5.6 and Fig. 5.7, show a similar trend to
the results of the Breast Cancer. All the QNN variants achieved good accuracy with
mean errors at 20% or below, which is a good result for this problem. The error rate
achieved is between 19.6 and 20.0 %, similar to or better than the 19.88% reached
using LM and better than GDX, which averaged 21.03%. Two of the variants, QNN9
and the constrained QNN (QNN-C2), were able to average close to 19.6% with the
upper 95% Confidence limit below 20%. All of the QNN algorithms were able to get
more thao 50% of networks with error rates less than 20%, the best being QNN-C2
with 70%. The QNN6 variant was able to produce the best perfonning network with
an error rate of only 15.63%, which is significantly lower than the best case
performance of 17. 71 % achieved by most of the other variants.

107

THE QUADRATIC NEURAL NETWORK ALGORJTHM

Table 5.5 Best results for Wisconsin Breast Cancer dataset using 9-9-1 SIANNs

trained with QNN algorithm variants.

Training Actlvai-,on Perfonnance Avg Epochs Test Error Mean

Algorithm functions (% of runs) Train

Sh Out 7 7 95% CI
time

0% 20% All 0% Best Mean Median (s)
goal err < runs goal Errors (%) (%) (%)

QNN Exp Lgs 0 68 100 70 • 64 0.00 0.26 ± 0.13 0.00 15.7

QNN3 Tnh Lgs 0 56 100 78 • 70 0.00 0.33 ± 0.12 0.00 17.4

QNN5 Lgs Lgs 0 60 100 201 • 201 0.00 0.24 ± 0.08 0.00 49.0

QNN6 Lgs Lgs 0 60 100 109
,..

86 0.00 0.36 ± 0.14 0.00 20.0

QNN9 Lgs Lgs 0 64 100 87 * 75 0.00 0.32 ± 0. 15 0.00 19.4

QNN-C2 Tnh Lgs 0 62 100 77 * 74 0.00 0.29 ± 0.12 0.00 17.1

GDX Lgs Lgs 0 66 100 161 * 160 0.00 0.20 ± 0.08 0.00 10.3

LM Lgs Tnh 0 74 100 181 • 119 0.00 0.20 ± 0.10 0.00 34.8

Wisconsin Breast Cancer
06

05

04

02

o,

ONN QNl'otl CNN6 QN"6 CNl'S QNN-c:2 GOX LM

ONN QNl'otl ONN5 ONN6 QNN9 ONN-C2 GOX LM

Al9orlthm

Fig. 5.6: Mean test e1Tor and training time for Breast Cancer dataset using SIANNs

trained with QNN algorithm variants.

108

THE QUADRATIC NEURAL NETWORK ALGORITHM

Table 5.6 Best results for Pima Indian Diabetes dataset u ing -8-1 SIANNs trained

Training

Algorithm

QNN

QNN3

QNN5

QNN6

QNN9

QNN-C2

GDX

LM

with Q algorithm va1iants

Activation
functions

Shunt Out

Lgs

Exp

Lgs

Lgs

Lgs

Lgs

Tnh

Lgs

Tnh

Tnb

Lin

Tnh

Tnh

Tnh

Lgs

Tnh

i! 19

~
"' j t8

17

16

15

.e
41 \!ll
E
I= ..
c ·c
'i! ...
l; HD ..
:f

0

Perfonnance

(% of runs)

"?
goal

0

0

0

0

0

0

0

0

i!'JBSSI
•Mean
El Medlen

ONN

0% 20%
err <

0 52

0 60

0 68

0 56

0 66

0 70

0 14

0 58

ONN3

Avg Epochs

All "? 0%
runs goal Errors

311 * *
182 * *
765 * *
117 * *
281 * •
363 * •
195 * *
182 * •

Pima Indians Diabetes

ONN5 ONN6 CNN9
Algorithm

Test Error Mean
Train

95%CT Median
time

Best Mean (s)
(%) (%) (%)

17.71 19.88 ± 0.24 19.79 76.7

17.71 19.80 ± 0.27 19.79 44.6

18.23 19.96 ± 0.42 19.79 198.6

15.63 20.02 ± 0.37 19.79 23.3

17.71 19.57 ± 0.28 19.27 69.4

18.23 19.69 ± 0.22 19.79 83.2

17.71 21 .03 ± 0.29 21.35 13.2

17.71 19.88 ± 0.32 19.79 38.9

QNN,C2 GOX lM

Fig. 5.7: Best case and mean test error and mean training time for Diabetes data et

using SIANNs trained with QNN algorithm variants

109

THE QUADRATIC N1'U/Ul Nli:Tlf'ORl:lllGORITHM

The training time required once again shows significant variation between the
variants of the QNN algorithm. As in the previous test, the QNN5 variant required
more than double tbe time required by any of the others, but for this problem the
mean error rate was not the best, 'only' just under 20%. The QNN9 and QNN-C2

variants required around the same time as the standard QNN algorithm but achieved
the best mean error rates of 19.6% and 19.?%, respectively. However, these
algorithms took one- and-a-half times to twice as long to train compared to the LM
algorithm. The QNN6 variant took about two-thirds the time of LM and about one­
third the time of the standard QNN. It was still slower than the first order GOX
algorithm, but achieved much belier accuracy. Overall, tbe QNN6 would be the best
QNN variant for this problem, with good mean accuracy, short training time and the
best individual network perfonnance by far.

S.S.3 The 3-blt parity problem results

TI1e results for the parity problem using QNN and its variants, given in Table 5.? and
Fig. 5.8, do not look good compared to the earlier results for the other algorithms.
The mean error for most of the QNN variants was in the 3% to 6% range, with
QNN6 having an error rate of 16% and QNNS even worse with 31 %, compared to
GDX and LM with 1.3% and 0.5% error respectively. A closer look reveals that
around 80% of the networks actually achieved perfect classification (0% error),
QNN5 and QNN6 excepted. The mean was driven up by the runs that did not
converge, as they ended up with very lnrge errors. It should be noted that the median
classification error for all the variants was 0%, again QNN5 and QNN6 excepted.

The trai11ing time for the parity problem using QNN5 was an order of magnitude
larger than the GOX nnd LM algorithms. Tbe reason for this is that in most cases the
runs did not tenninate until reaching the maximum allowed number of epochs (i11 tbis
case 1,000). It would appear that this variant of QNN requires more than 1000

epochs to solve this problem, since no11e of the networks was able to reach the
training goal, and the networks that did achieve 100% correct classification required

the maximum 1000 epochs.

The other QNN algorithm variants performed reasonably well on this test with
about 80% of the networks achieving perfect classification accuracy, but could not
match the GOX and LM algorithms, in terms of both accuracy and training time. Of
these algorithms (standard QNN, QNN3, QNN9 and the constrained QNN-C2), the
constrained QNN-C2 algorithm achieved the best accuracy, with a mean error of
3.5% and 92% of network achieving perfect classification, ai;id also had the shortest
average training time of about 7 seconds. This was still more than double both error
rate and training time of the GDX algorithm.

110

THE QUADRATIC NEURAL NETWORK ALGORJTHM

Table 5.7 Best results for 3-bit Parity problem using 3-3-1 SIANN trained with

QNN algorithm variants

Training Activation Perfom1ance Avg. Epochs Te L Set Classification Error Mean

Algoritl1m functions (% ofrnns) Train
time

Shunt Out 7 0% <20% All 7 0% Bet Mean 95%CI Median (s)
goal err orr runs goal Errors (%) (%) (%)

QNN Lgs Lin 72 80 84 413 184 266 0.00 5.00 ± 2.97 0.00 8.0

QNN3 Lgs Lgs 72 80 88 436 216 295 0.00 4.75 ± 3 .04 0.00 9.4

QNN5 Tnh Lin 0 14 30 981 • 1000 0.00 31.00 ± 5.30 31 .25 34. 1

QNN6 Exp Lin 14 24 62 270 156 263 0.00 15.75 ± 3.42 12.50 5.4

QJ\1N9 Lgs Lgs 74 78 84 370 189 231 0.00 5.75 ± 3.37 0.00 9. 1

QNN-C2 Lgs Lgs 78 82 92 376 200 239 0.00 3.50 ± 2.33 0.00 7.0

GDX Tnh Lgs 94 94 96 352 311 311 0.00 1.25 ± 1.44 0.00 2.3

LM Exp Lin 96 96 100 84 46 46 0.00 0.50 ± 0.69 0.00 1.7

3-blt Parity
40

36

12

Fig. 5.8: Mean test error and training time for 3-bit parity data et u ing SlANNs

trained with QNN alg01ithm variants.

11 l

THE QUJDIUT/C NEII/IAL NETlVORXALCrJRITHM

It was observed during training that, for some of the networks, the QNN6

algorithm was tenninating prematurely because the value ofµ was reaching the

maximum allowed during training, hence the low training time and large averagc

error rate.

5.5.4 Results for artlflclal multl-elass problem

The results for the Multi-class benchmark problem using SJANNs trained with QNN­

based algorithms are presented in Table 5.8 and Fig. 5.9. The results show that most

of the QNN variants achieved mean classification error rates in the 5.7% to 6.1 %

range, which is similar to that achieved by GDX and LM. The exception is QNN5

algorithm with a mean error of7.05%. The standard QNN algorithm achieved 6.05%

error, with the other variants getting better results, QNN6 being the best with 5.72%.

The best case error achieved was 4.00% for all algorithms, with the exception of

QNN5 with 4.67%.

As in the previous tests, the variation lies in the training time. Once again QNN5

sticks out with a disproportionately large training time, more than double that of any

of the other algorithms including LM. AU the other variants were able to train the

networks faster than the LM algorithm, with QNN6 being the fastest of all and

standard QNN the second fastest. However, GDX was more than 2.5 times faster

than the fastest QNN algorithm. The GDX algorithm also achieved the lowest

average error of 5.47%. The QNN6 algorithm had the best performance of the QNN

variants, with both the lowest error and shortest training time. Its accuracy was

similar to that achieved by LM, but in half the training time.

5.5.5 Resulls for the Sunspot time series

The results for the Sunspots time series ore presented in Table 5.9, showing both the

performance metrics used: the mean squE1Te error (MSE) and the average relative

variance (ARV) defined in Chapter 4. Fig. 5.10 shows the best, mean and median test

ARV as well as the mean training time.

Tho results show that tho perfonnance of the networks trained by the QNN

variants are similar, with mean test ARV of around 0.130, except for QNN5 with

0.202 and QNN6 with the best mean of 0.100. This means that the majority of the

QNN variants had a better mean test ARV than GDX with 0.174, and not much

higher than LM with 0.112. TI1e performance of QNN6 is better than that of LM,

with lower test ARV and lower MSE.

112

THE QUADRATIC NEURAL NETWORK ALGORJTHM

Table 5.8 Be t results for Multi-Class dataset using 2-2-3 SIANNs trained with

QNN algo1ithm variants

Training Activation Pcrfonnance

Algorithm functions (% of runs)

Sh Out 7 0% 20%
goal err <

QNN Exp Lgs 0 0 100

QNN3 Exp Lgs 0 0 100

QNN5 Lgs Lgs 0 0 98

QNN6 Exp Lgs 0 0 100

QNN9 Exp Lgs 0 0 100

QNN-C2 Exp Lgs 0 0 100

GDX Exp Lgs 0 0 100

LM Exp Lgs 0 0 100

250

200

.!!-
" 150 E
I= ..
.5
c
~ ...
~ 100
~

50

Avg Epochs

All 7 0% Best
runs goal Errors (%)

239 • • 4.00

166 • • 4.00

472 • • 4.67

158 * • 4.00

207 • • 4.00

269 • • 4.00

377 • • 4.00

228 • * 4.00

Mufti Class

Te t Error

Mean

(%)

6.05

5.79

7.05

5.72

5.83

5.83

5.47

5.69

95%CT

± 0.27

± 0.23

± 1.22

± 0.21

± 0.26

± 0.19

± 0.16

± 0.26

l!lBest
•Mean
eMed1an

Median
(%)

6.00

6.00

6.33

5.33

5.33

6.00

5.33

5.33

j

Mean
Tram
lime
()

61.2

74.7

220.8

55.4

95.6

72.5

19.4

103.0

Fig. 5.9: Best ca e and mean te t e1Tor and mean training time for Multi-class data et

using SlANNs trained with QNN algorithm variants.

113

THE QUADRATIC NEURAL NETWORKALGORJTHM

Table 5.9 Best results for Sunspots dataset using 10-10-1 SIANNs trained with

QNN algorithm variants

Tmining Aot-fns Performance Avg TestMSE Test ARV Mean

Algorithm (% of runs) Epochs Train

Sh Out 7 all in 80% Best Median Best Median Mean 95% CI time

gonl tol tol (s)

QNN Lgs Lgs 0 70 100 495 0.0077 0.0106 0.092 0. 127 0. 127 ±0.003 86.5

QNN3 Lgs Lgs 0 60 100 472 0.0070 0.0107 0.084 0. 128 0. 126 ± 0.004 82.6

QNN5 Tnh Lin 0 30 96 694 0.0101 0.0142 0.121 0.170 0.202 ± 0.027 134.1

QNN6 Lgs Lgs 0 80 100 337 0.0054 0.0077 0.065 0.093 0. 100 ± 0.009 45 .8

QNN9 Lgs Lgs 0 76 100 373 0.0093 0.0111 0.111 0.133 0.133 ± 0.003 65.5

QNN-C2 Lgs Lgs 0 72 100 535 0.0073 0.0107 0.088 0.128 0.127 ± 0.003 93.7

GDX Tnh Lin 0 14 98 147 0.0085 0.0134 0.102 0.161 0.174 ± 0.020 6.8

LM Lgs Lin 0 8 LOO 54 0.0075 0.0093 0.090 0. 111 0.112 ±0.003 9.8

Sunspots
0250

O'lOJ

0 150

0 100

0050

DOOi
ONN ONNJ ONNS ONt>.6 ONN9 ONN-C2 GOX LM

160

i ,O

120

~100 ..
E
i= ..
E 8J

~
: 60 ::.:

,0

21}

ONN ONNJ QNNS ONI\$ ONN9 ONN·C2 GOX l.M

Algorithm

Fig. 5.10: Best case and mean test enor and mean training time for Sunspots

data et using SIANNs trained with QNN algorithm variants.

114

THE QUAD/IATIC NEUIIALNEiTWOIIK AWORITHM

In terms of training time, the QNN5 algorithm takes the longest by for, as in the

earlier tests. This time, however, the other QNN variants take a lot longer to train

than LM, mostly 8 to 10 times longer. The best is the QNN6 algorithm that still takes

5 times longer than LM (45.8 vs. 9.8 seconds). GDX was even faster than LM, but

this was offset by the significantly lower accuracy. The best performance was by the

QNN6 algorithm, with the best accuracy overall, better than even LM, and the fastest

among all the QNN variants.

S.S.6 Analysls and Discussion

A visual analysis of the 'best case' results, as shown in the previous sections, does

not show any definite trends in accuracy across all the algorithms. The clearest trend

is that the QNN5 algorithm has a much longer training time compared to all the

others. Overall, the QNN algorithm appears to have accuracy close to that achieved

by LM and GDX algorithms, with training time in between the two or even worse

than LM, but there are exceptions in every case. Among the QNN variants, the

QNN6 algorithm achieved the overall best result in three out of the five benchmark

tests, with the standard QNN getting the best results for the Breast Cancer problem

and the constrained QNN-C2 algorithm best for the 3-bit Parity problem. It should

also be noted that these comparisons are being made on the best perfonning

activation function combinations.

In order to perfonn comparison across all combinations of activation functions

and training algorithms, mean error and ARV values ofa!l cases were compiled, and

ranked for each benchmark. Statistical testing using the Kruskal-Wallis H test

(Walpole ct al., 1998) was performed, as done in Chapter 4. The mean error values of

all tests are shown in Tables B.13 to B.17 in Appendix B, and the rankings given in

Tables B.20 to B.24.

The lino] h value ca!cu!ated for each benchmark problem based on comparison

across al! the training algorithms is shown in Table 5.10. The 'overa!l' h value was

obtained by summing the ranks across all the benchmarks (shown in Table B.25 in

Appendix B), then ranking the sums from I to 72 (as shown in Table B.26) and

finally calculating h. The null hypothesis, Ho, is that there is no significant difference

in the means of all algorithms. The results indicate that the null hypothesis is strongly

rejected (with 95% confidence) for the 3-bit Parity, Diabetes and Sunspots

benchmark problems. For the Breast Cancer problem the null hypothesis is accepted,

while for the Multi-class problem, the statistic is below the critical value, but large

enough to show that there is some variation. This result, taken across all possible

activation function combinations, is similar to the 'best case'. results as shown in the

previous section. The overall comparison also indicates that there arc significant

differences in the means.

115

Tm; QUA/JRATIC NEURAL NETWQIU(ALGO/!ITHM

In order to get an idea of the differences in performance and to get an approximate
ranking of the various algorithms, the final 'overall' rank of a!l activation function
combinations for each algorithm was summed, and the algorithms ranked according
to the column sum (refer Table 8.26). This algorithm ranking along with the swn of
ranks for ench algorithm (ns given in Table B.25) is given in Table 5.11.

Table5.10 The h values calculated for all benchmark tests using QNN algorithm

l!onchmsrk Test Comnorison ao,oss tminina al•orithms

I, Coleulatcd Cri1ieal value

3-bit Parit 39.552

Breast Conccr 3.057

Diob<tcs 22.511 14.061

Mu!li-Cllllls l l.889
SunSTIOIS «.on
OVERALL 36.919

Table5.ll Overall ranking ofQNN training algorithm variants

Rank Training Sum of Avg. Training Time
Algorithm Ranks timc(s) Ranking

' DNN, 1362.5 45.1 '
' ONN, 1397 51.8 '
' ONN 1405 49.6 '
' CM ·~· 44.1 '
' £lNN-C2 1391.5 54.7 1

' ONNO 1683 30.0 '
1 GOX 2188.5 10.3 '
" ONNS 2300.5 127.3 "
The results iu Table 5.11 show thnt the QNN3 algorithm came out on top. The

se1:ond to fifth ranked QNN9, QNN, LM and QNN·C2 algorithms have scores that
are very close to each other, and also close to QNN3. In fact'the QNN-C2 algorithm
was ranked fifth but has a sum of ranks lower tl1an the QNN nnd LM nlgorithms, and
only half a 'point' behind QNN9. The difference in the ranking shown, which is
obtained from Table B.26 which ranks the sums obtnined in Table B.25, and"tl1c Sum

' . of ranks obtained directly from Table B.25, is due to the fact that the diffei"ence in
perfonnnnce is not significant. These four algorithms cnn in fact be considered to
have equal ranking. The remaining algorithms had much higher (worse), and
significantly different, scores. The GDX n!gorithm is second from bottom, with only

the QNN5 algorithm coming out worse.

These overall rankings arc quite different from the 'best case' results, where
neither QNN3 nor QNN9 perfonned spectacularly well. Also, the QNN6 algorithm,

116

DIE QUAVIIAT/C NEU/IALNE:TUVl!KALCOR/TlfM

which appeared to be the 'best' in three out of the five tests, was only ranked sixth.

Howevei:, !hese rankings give a better overall picture as they take into account

performance across all possible activation function combinations.

The last two columns of Table 5.11 consist of the average training time of the best

case networks and a ranking of the algorithms based on this average. The average

time here is just to give an indica!ion of the relative speed of the olgorithms. It does

not take into account differences in complexity of the problems and therefore the

weighting given to the problem in working out the average. The time based ranking

shows the GDX to be the fastest, as expected from a first-order algorithm. The

QNN6 algorithm is ranked secOnd, and is the only QNN variant faster than LM. All

other times given are fairly close to that of LM, except for QNNS, which, not

surprisingly, has the worst time performance. The GDX and QNN6 algorithms

appear to compensate for their poor accuracy ranking hy being fast to train. The

QNNS algorithm, however, has no such saving grace, coming out worst on both

counts.

The results obtained lead to a number of conclusions. Firstly, the standard QNN

has been shown to have performance comparable to the LM algorithm. One of the

motivations in fonnulating the QNN algorithm was the hypothesis that using the

recurrent network to replace the Hessian matrix inversion would result in shorter

training times. However, a time saving was only seen in some cases, and not others.

The second conclusion is that the QNNJ has the best method to adaptively

detennine the step size, d. The method used in QNN9, however, comes in a close

second. Looking back at the actual methods used to modify the step size for these

two variants, it can be seen that the methods arc almost identical, except for the fact

that in QNN3 the value of dis updated every timeµ is updated, whereas in QNN9

the step-sized is updated every epoch.

The third conclusion is that the constraint used in the QNN-C2 algorithm works

and can improve performance in some cases. The QNN·C2 algorithm has

performance comparable to that of the stmdard QNN. Even though it has an overall

rank lower than QNN, the sum of ranks indicates that there is no significant

difference in performance. The QNN-C2 is also able to work well when some of the

other QNN variants had difficulty, such as with the Parity benchmark test.

Ovcra!l, the results show that the QNN algorithm and its variants tested are

capable of achieving training performance similar to the second-order LM algorithm,

except for QNNS. They arc also able to train networks to achieve better accuracy

than the first-order GDX algorithm, but have longer training times. This means that

the QNN algorithm is a viable training algorithm for SIANNs.

117

THS QUADRATIC NWRALNETWORK ALGOtfTHM

5.6 Conclusion

In this chapter we have shown how the idea of using a recurrent neural network for
bound constrained quadratic optimisation can be developed into a training algorithm
for feedforward neural network!;. The Quadratic Neural Network (QNN) algorithm is
a second order algorithm that avoids the need to invert the Hessian matrix by using a
recursive equation that simulates a recurrent neural network.

The QNN algorithm has been successfully applied to train SIANNs on a number
of standard benchmark problems, and the results show that this algorithm is able to
train the network!; to achieve results compnmb!e to or better than the LM and GDX
algorithms.

The QNN algorithm has been shown to be a viable training algorithm that is
capable of producing good results. It has the added advantage of being able to readily
incorporate constraints that may need to be imposed during training. A number of
variants have also beeu formulated and tested. These variants were formulated to
reduce the number of free parameters that need to be set, and to incorporate different
constraints on the weight updates. Two variants that adaptively modify the step-size,
QNN3 and QNN9, are able to achieve better performance than the standard QNN.
The QNN·C2 constrained version has also been shown to improve performance in
some cases, and has overall performance comparable to standard QNN.

118

Chapter 6

Further Development of Shunting Inhibitory
Artificial Neural Networks

6.1 Motivation

Originally, the SIANN was proposed as a fully connected structure (Bouzerdoum,
!999); that is, each input is fed directly into one shunting neuron as its excitatory

input, whereas all inputs are weighted and fed ill as inhibitory inputs (refer Section
3.6). Therefore, the fully connected 'standard' SIANN structure has as many
shunting neurons as there are inputs. Using this basic SIANN structure, the size of

the network is actually determined by the dataset. The number of neurons in the
shunting layer(s) is determined by the number of data attributes, whereas the number

of neurons in the output layer is determined by the number of class labels. While this
architecture removes the need for finding an optimal network structure, it was found
to be too restrictive in some problems. In particular, when the data has a large

number of inpnts and outputs, the resulting network structure is inordinately large.

This leads to increased computational complexity and training time.

In this chapter, enhancements to the SIANN structure are proposed that would

remove the restrictions on the size of the network, in particular the number of

shunting neurons. The enhancements allow the size of the network to be reduced for

problems that have a large number of inputs and outputs, resulting in reduced

computational complexity and better generalisation. Conversely, if the number of

inputs is small, then the networks structure can be expanded to have more shunting

neurons than inputs; this provides for additional computational capacity, if required.

119

FURTI/ER DEVELOl'ME/iTOf SHUNf'INU [NH/II/TORY ARTlf/CIALNEUIULNETWORXS

The following section outliues the development of enhancements to the standard

SIANN structure. The third section presents experimental results, comparing the

performance of the enhanced structures with the standard SIANN structure. Finally,

conclusions are given in the fourth section.

6.2 The Enhanced SIANN structure

This section describes the development of the enhanced SIANN structures. The

motivation and implementation of the reduced SIANN structure are prese_nted next.
This is followed by the expanded SIANN structure. The third subsection presents the

Enhanced SIANN structure; it combines the previous two, seemingly contradictory,

structures (expanded and reduced structures) into one generic structure.

6.2.1 Reduced SIANN structure

The first enhancement is to reduce the complexity of the SIANN structure when

there is a large number of inputs. One reason for doing this is that smaller networks
are less likely to over-flt the data and therefore arc more likely to generalise well.

The smaller number of weights would also help reduce the computational complexity
and memory requirements during training, thereby reducing the time to train the

networks.

The 'reduced' SIANN structure has less shunth1g inhibitory neurons than there are

inputs, while the number of output neurons remains equal to the number of outputs
required. All the inputs are fed into the network as inhibitory inputs, whereas only

the first m inputs can be fed in as cxcitator;, inputs, where III is the number of
shunting neurons in the reduced structure. The restriction on the number of excitatory

inputs is due to the fact that each shunting neuron can only have one unweighted

excitatory input. The Reduced SJ ANN structure is shown in Fig. 6.1.

6,2.2 Expanding the SIANN structure

The second case considered is when the problem on which the network is being

trained is too complex for the standard SIANN structure. In this case the network has
insufficient neurons, and therefore insufficient weights, to be able to map the input­

output relationship as required by the problem. This could happen when the number
of inputs b a small, resulting in a small number of neurons in the shunting layer. The
solution would be to provide the required extra 'processing power' in the fonn of

additional neurons.

120

FURTHER DEVELOPMENT OF SHUNTING INHlBITORY ARTfFICIAL NEURAL NETWORKS

Inputs

Shunting
Inhibitory
Neurons

Bias
(excitatory and

Inhibitory)

Ou put
Neurons

(Perceptrons) Outputs

----Y,

Bias
(excitatory only)

- - - - - + Inhibitory synapse

Excitatory synapse

Y,

Fig. 6.1: The 'Reduced' SIANN structure.

Two ways of adding neurons to the SIANN structure have been considered. The

first method is to add extra neurons to the shunting layer. These additional neurons

only have a bias term as the solitary excitatory input but all network inputs are fed in

as inhibitory inputs (refer Fig. 6.2). These additional neurons have been dubbed

'interneurons' based on biological parallels. This method allows neurons to be added

incrementally to provide additional computational capacity as required, without

changing the fundamental methods of operation and training.

Inputs

1,-.

·1nterneuron'
• Inhibitory
inputs only

Shunting
Inhibitory
Neurons

Bias (excitatory
and Inhibitory)

Ou put
Neurons

(Perceptrons) Outputs

t----- Y,

Bias
(excitatory only)

- - - - - + Inhibitory synapse

Excitatory synapse

Fig. 6.2: The 'Expanded' SIANN structure.

121

F URTHER D EVELOPMENT OF SHl!NTJNG JNHJBJTORY ARTJFJCJAL NEURAL NETWORKS

Inputs

Shunting
Inhibitory
Neurons

......

Blas (e)(cltatory
and inhibitory)

........ __ ...,,,.

Shunting
Inhibitory
Neurons

Ou put
Neurons

(Perceptrons) Outputs

i---.. Yt

Bias
(excitatory only)

- - - - - + Inhibitory synapse

Excitatory synapse

Fig. 6.3: The Multi-layer SIANN structure.

The other method of increasing tbe processing power of the network is to add

additional layers of shunting neurons. The result is a Multi-layer SIANN structure, as

shown in Fig. 6.3. This is analogous to MLPs, where the number of hidden layers can

be increased for complex problems. In its simplest form, the number of neurons in

each shunting layer would be the same. Adding layers not only adds additional

weights through the extra neurons, but also allows for more complex input-output

characteristics to be formed due to the multiple layers. This gain comes with an

associated cost in the form of increased computational complexity during training.

The training algorithms would need to be modified or enhanced slightly to be able to

handle the multiple layers of shunting neurons.

6.2.3 The generic Enhanced SIANN structure

In order to be as flexible as possible, and to avoid a proliferation of variation to the

SIANN structure, the reduced and expanded SIANN structures have been combined

into a single framework. The resulting Enhanced SIANN structure caters for one or

more layers of shunting neurons with a single layer of 'standard' perceptron-type

output neurons. The number of shunting neurons in the shunting layers can be varied

arbitrarily, without being restricted by the number of inputs from the previou layer.

As discussed in the preceding sections, networks may have less shunting neurons

than there are inputs from the previous layer. In this case, only some of the inputs are

excitatory (equal to the number of shunting neurons) and the other inputs act only as

inhibitory. For the case where a shunting layer has more neurons than the previous

layer outputs the additional shunting neurons (dubbed 'interneurons ') are fed in with

a constant bias as the only excitatory input, but with the nom1al variable inhibitory

122

FURTHER D EVELOPMENT OF SHUNTING iNHIBITORY ARTIFJC!Al NEURAL NETWORKS

inputs. This gives greater freedom in selecting the optimum network tructure. An

example of the generic Enhanced SIANN is shown in Fig. 6.4.

Inputs

1, -.

Shunting
Inhibitory
Neurons

Blas (excitatory
and inhibitory)

Shunting
Inhibitory
Neurons

l -----+

Ou put
Neuron

(Perceptron)

Blas
(excitatory only)

Inhibitory synapse

Excitatory synapse

Fig. 6.4: The generic Enhanced SIANN tructure.

6.3 Benchmark Test Results and Analysis

Outputs

The Enhanced SI ANN structures were tested on the same set of benchmark problems

as the in the previous two chapter and the results obtained are presented in this

section. For each benchmark problem a 'Reduced' SIANN structure and an

'Expanded' strncture (either multi-layer or single SIANN layer with additional

neurons was tested and compared to the performance of the ' standard' SIANN. For

problems with a small number of inputs, such as the 3-bit Parity and Multi-Class

problems the 'Expanded' structure chosen was a single-layer SIANN with additional

neurons. For the other problems with a relatively large number of inputs, the

expanded structures used were Multi-layer SIANNs that had the same number of

shunting neurons in the first layer as the 'Reduced' SIANN for that problem and a

smaller number of neurons in the second shunting layer. In all ca es there are fewer

shunting neurons and synaptic weights in the multi-layer SIANN structure than in the

' tandard' SIANN.

As in the previous chapters, 50 networks were generated for each structure. The e

network were trained using the Gradient Descent with adaptive learning rate and

momentum (GDX), Levenberg-Marquardt (LM) and Direct Solution combined with

GDX (DS-GDX) algorithms. The initialisation and training parameters used are the

123

Funmr.R Dt,VF./.OPMF.NTOF SHU,VT!h'G INHIBITVRY ARTIF/CULNWRALNETWOHKS

same as given in Chapter 4, for consistency. All possible combinations of activation

functions were tested for each structure. For each benchmark problem, the mean

error values of all combinations of network structures, training algorithms and

activation functions are shown in Tables B.27 to B. 31 in Appendix B. The results of

the best performing activation function combinations for each structure and training

algorithm are presented in the following sections.

6.3.1 Wisconsin Breast Cancer

The results obtained using the 9-4·1 reduced SIANN, tbe 9-4-2-1 multi-layer SI ANN

and the 'standard' 9-9-1 SIANN are shown in Table 6.1 and Fig. 6.5. As in previous

chapters, the graphs are broken into two sections: the top part shows the mean and

median test error percentages achieved by the networks with the best perfonning

activation function combination for the given network structure and training

algorithm, and the second part shows the corresponding mean training times. Note

that the median is often zero, and hence it is not visible on the graph.

ill most cases more than ha!fofthe networks achieved perfect classification result,

resulting in median error rates of 0%. The exceptions are the Reduced SIANN

trained with GDX (16%), the Expanded SIANN trained with GDX (42%) and the

Standard SIANN trained with DS-GDX (36%). The best nppearn to be the Standard

SIANN trained with LM, with 74% of the networks achieving 0% classification

error. The mean error rates range from 0.20% to 0.55%.

Comparing the perfonnanee across the different structures, the trends are different

for the different algorithms. The GDX algorithm achieved best results with the

standard SIANN structure, achieving the lowest mean error (0.20%) jointly with the

LM algorithm; all other structures have mean error., in excess of0.5%. The Reduced

SIANN had the second best accuracy, with the Multi-layer SJANN having the worst

classification accuracy. The training time required for GDX was short, generally the

shortest of the three algorithms. The Reduced SIANN had the shortest training time

for GDX, and the Multi-layer SJANN the longest.

The LM algorithm also achieved the best mean error rate of 0.20% with the

standard SIANN, but the reduced SIANN had only a slightly higher error (0.23%).

However, the time taken to train was about 20% less for the reduced SIANN. The

multi-layer SIANN had the highest error rate (0.31%), among all the networks

trained with LM, and n training time between those of the other two structures.

Using the DS-GDX algorithm, on the other hand, the best perfonnance was

obtained with the reduced SIANN (0.26%), the multi-layer SIANN next and the

standard SI ANN having the worst error (0.54%). In tenns of training time, however,

the standard SIANN was fastest, fo!Iowed by the reduced SIANN, the Multi-layer

SIANN being the slowest.

124

FURTHER DEVELOPMENT OF SHUNTING INHIBITORY ARTIFICIAL NEURAL NETWORKS

Table 6.1 Best results for Wisconsin Breast Cancer dataset using Enhanced

SIANNs

SlANN

Structure

Reduced
9-4-l
(53

weights)

Expanded
9-4-2-1

(65
weights)

Sta11dard
9-9-1
(118

weights)

Training Activation Performance Avg. Epochs

A Igor. ti.motions (% of runs)

Sh Out 7 0% 20% All 7 0% Best
goal err < runs goal Error (%)

GDX Exp Lin 0 16 100 145 * 141 0.00

LM Exp Lin 0 68 100 147 * 136 0.00

DSG DX Exp Lin 0 68 100 193 * 184 0.00

GDX Exp Lin 0 42 JOO 187 * 203 0.00

LM Exp Lin 0 56 100 105 * 85 0.00

DSG DX Exp Lin 0 54 100 196 * 185 0.00

GDX Lgs Lgs 0 66 100 161 * 160 0.00

LM Lgs Tnb 0 74 100 181 * 119 0.00

DSGDX Tnh Lgs 0 36 JOO 96 * LOO 0.00

Wisconsin Breast cancer

07 Rodueed SIANH: 9-4·1 r.tultl ·ltyer SIANN: ;-4. ·1

I

01 1
GDl<

40

:E

~ '25---
~

E
I= ..
·E 20 s
: 15

:::E

10

GDX

l.M O'J(.'t)< GI),

LM OSGOX GOX LM OSGOX GDX
Algorithm

Test Error Avg.
CPU

95%Cl Med.
time

Mean (s)
(%) (%)

0.55 ± 0.09 0.56 9.0

0.23 ± 0.10 0.00 28.6

0.26 ± 0.13 0.00 11.7

0.51 ± 0.17 0.56 14.7

0.31 ± O. l l 0.00 30.8

0.47 ± 0.23 0.00 17.7

0.20 ± 0.08 0.00 10.3

0.20 ± 0.10 0.00 34.8

0.54 ± 0.14 0.56 6.4

LM DSG OX

Fig. 6.5: Mean and median test error and mean training time for the Wisconsin

Breast Cancer dataset using Enhanced SIANNs.

125

FUR11/EII DEVELOP ME/ff OF' SHUMT/NG INH/8fTOI/Y ARrlF'/CIALNEUIW NETWOI/KS

Overall, the standard SIANN perfonned best, the exception being with the DS­

GDX algorithm. This is not SU!Jlrising given that this is the largest structure tested,

both in terms of number of neurons as well as nwnber of synaptic weights.

Additiona!ly, the standard SIANN has all inputs serving as excitatory and inhibitory,

while the other networks have only the first few inputs fed as excitatory, with the

remaining inputs serving as inhibitory only. The drawback of longer training times

due to more complex computation was only seen with the second-order LM

algorithm. The reduced SIANN had the benefit of reducing the training time required

by the LM algorithm, without significantly changing the accuracy; it also got the best

results with the DS-GDX algorithm. The Multi-layer SIANN, though having more

neurons than the reduced SIANN, had lower overall accuracy when compared to the

Reduced SlANN. It also had the longest training times for the GDX and DS-GDX

algorithms, thereby ending up as the 'worst' overall.

6.3.2 Pima Indians Diabetes

The results for this test, using the 8-3-l reduced SIANN, the 8-3-2-1 multi-layer

SIANN and the 'standard' 8-8-1 SIANN, are shown in Table 6.2 and Fig. 6.6,

presented in the same fonnat as in the previous test.

The GDX performed the worst, with the highest mean error rates overall.

Additional!y, at best only 20% of the networks were able to achieve less than 20%

error, which is the marker for a 'good' resu!t with this benchmark problem. Both the

standard SIANN and the Reduced SIANN had similar pcrfonnance when trained

using GDX, both in tenns of accuracy and training time; the multi-lnyer SIANN

perfonncd the worst.

The LM algorithm had the best overall accuracy and the same trend of reducing

training time as the size of the network reduced, from the standard SIANN to the

Multi-layer down to the Reduced SIANN. The accuracy also followed the same trend

as the Breast Cancer benchmark, with the standard SIANN having the best accuracy

followed by the Reduced SIANN. The Multi-layer SI ANN had the worst mean error,

as was the case for each of the three algorithms.

The best mean perfonnance WEIS obtained using the DS-GDX on the standard

SIANN, with a mean error of 19.82%, and the fastest training time by far. The only

other combination to achieve a mean error under 20% was the LM algorithm on the

standard SIANN, but that took more thau 6 times longer to train. The speed

advantage of the DS-GDX was only with the standard SIANN; it had similar training

times to GDX with the other two network stroctures.

Overall, the standard SIANN again appears to achieve the best performance in

tenns of accuracy, but the Reduced SI ANN helps to shorten the training time for the

LM and GDX algorithms. The probable reasons for why the standard SIANN

126

FURTHER /JiiViiWPMIINrOF SHU/IT/NG INH/8/1'0RY ARTIF/CULNEU/UL NETWORKS

achieves the best accuracy are the same as for the Breast Cancer problem. Firstly, it
is the largest structure in terms of neurons and synaptic weights. Second, all eight
inputs are fed in as both excitatory and inhibitory, whereas for the other structures
only three inputs serve as excitatory inputs, with the rest being inhibitory only.

6.J.3 The 3-blt parity problem

The results for the parity problem, prllllented in Table 6.J and Fig. 6.7, are for a 3·
2-1 Reduced SIANN, a 3-4-1 Expanded SIANN, and 'the standard' 3-J-l SIANN.
Note that in all cases the median is zero, and so is the mean in two cases, hence these
graphs are not visible on the plot.

The results show significant variations in performance, as the number of neurons
is decreased or increased. Reducing the size of the network, by just removing one
shunting neuron, results in significantly higher error rates. The mean error rate jumps
from between 0.50% and l.25% to between 8.50% and 11.50%, and the percentage
of networks achieving 0% error drops from around 95% to between 48% and 60%.
Conversely, just adding one additional shunting neuron (without an excitatory input)
yields 'perfect' mults when trained with the LM and DS-ODX algorithms, i.e.,
100% of networks achieving I 00% correct classification.

In terms of training time, the Reduced SIANN took longer to train: between 2 and
8 times longer than the standard SIANN. The Expanded SIANN training times, on
the other hand, were shorter. The Expanded SIANN is able to increase accuracy as
well as reduce training time.

The sensitivity to the size of the network can probably be attributed to the fact that
there is only a small number of inputs (three) and small number of training ei,:amples
(eight). Reducing the size of the structure resulted in only 2 out of3 inputs being
excitatory as well as cutting the numberofweights by a third, for what is essentially
a fairly complex problem for neural networks. The addition ofa spare shunting
neuron (with only inhibitory inputs) would seem to provide the extra computational
power to easily solve this problem. These results show the advantage of expanding
the standard SIANN structure on some problems, particularly when the number of
inputs is small, resulting in a small number of shunting neurons in the standard

structure.

127

FURTHER DEVELOPMENT OF SHUNTING INHIBITORY ARTIFICIAL NEURAL NETWORKS

Table 6.2 Results for Pima Indians Diabetes dataset using Enhanced SIANNs

STANN

Structure

Reduced
8-3-1
(37

weights)

Expanded
8-3-2-1

(48)

Standard
8-8-1
(97)

Training

Algor.

GDX

LM

DSG DX

GDX

LM

DSG DX

GDX

LM

DSG DX

g l5 ..
E
i= ..
·E 10

'i! ...
li 15
:I

10

Activation Performance Avg Epochs
functions (% of runs)

Sb Out 7 0% 20% All 7 0%
goa l err < nms goal Error

Tnh Tnh 0 0 20 192 • *
Exp Toh 0 0 56 58 * *
Exp Lia 0 0 42 189 * *
Tnh Tnh 0 0 14 178 * *
Exp Tnh 0 0 46 80 * •
Toh Lin 0 0 30 178 * *
Tnh Lgs 0 0 14 195 * *
Lgs Tnh 0 0 58 182 * *
Lgs Lgs 0 0 68 94 * *

Pima Indians Olabete.s

f!oduaed SIANN: 8·3·1 ulti·layer SIANNl 8·3·2·1

oox osoox 00)< LM
Algorithm

osoox

Test Error Avg.
CPU
time

Best Mean 95%CI Med. (s)
(%) (%) (%)

18.23 20.96 ± 0.3l 21.35 I l.9

16.67 20.18 ± 0.36 19.79 11.9

18.23 20.62 ± 0.38 20.57 11.8

18.75 21.55 ± 0.42 21.35 16.9

17.71 20.43 ± 0.45 20.31 24.8

17.19 20.59 ± 0.38 20.83 17.0

17.71 21.03 ± 0.29 21.35 13.2

I 7.7l 19.88 ± 0.32 19.79 38.9

18.75 19.82 ± 0.29 19.79 6.4

oox LM 0800)(

Fig. 6.6: Best, mean and median test error and mean training time for the Diabetes

dataset using Enhanced SIANNs

128

FURTHER DEVELOPMENT OF SHUNT!NG INH!B!TORY ARTIFICIAL NEURAL NETWORKS

Table 6.3 Best results for the 3-bit Parity problem using Enhanced SIANNs

!ANN Training
Structure Algor.
and no. of
weights

Reduced GDX
3-2-l LM
(15

weights) DSGDX

Expanded GDX
3-4-1 LM
(29)

DSGDX

Standard GDX
3-3-1 LM
(22)

DSG DX

Activation Performance Avg. Epoch Test Error
functions (% of nins)

Sh Out '"? 0% 20% All '"? O'Yo Best Meaa 95%CI
goal err < runs goal Error (%) (%)

Tnh Tnh 46 48 88 756 512 579 0.00 8.50 ± 3.16

Lgs Tnh 50 60 76 700 399 500 0.00 8.75 ± 3.38

Tnh Lin 52 52 68 596 223 223 0.00 I I.SO ± 3.82

Tnh Lgs 96 96 100 30 1 271 271 0.00 0.50 ± 0.69

Exp Tnh 100 100 100 48 48 48 0.00 0.00 ± 0.00

Tnh Lin 100 100 JOO 48 48 48 0.00 0.00 ± 0.00

Tnh Lgs 94 94 96 352 311 311 0.00 1.25 ± 1.44

Exp Lin 96 96 JOO 84 46 46 0.00 0.50 ± 0.69

Tnh Lin 94 94 100 169 116 116 0.00 0.75 ± 0.83

3-0II P;,r ry .,.

Roducoo SIAN'4, 3·2·1 Eapandod SIANN· 3-4-1 Sl:andard SIANN: l ·l-1

0

16.U ----

00
GI))(I.M OSGOlC GOX LM

Algorithm
OSOOX GDX LM OSGOX

Med.
(%)

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Avg.
CPU
ttme
(s)

4.9

13.8

4.1

2.0

I. I

0.5

2.3

t.7

1.3

Fig. 6.7: Mean and median test error and mean training time for 3-bit parity dataset

using Enhanced SIANNs

129

FURWER DEP€WPMEl(f0F SHUIITING [//HIE/TORY ARTIFICIAL NEURAL NErWORKS

6.3.4 Artiflclal Multi-Class Problem

The networks used for the multi-class problem were the Reduced SIANN (2-1-3), the
Expanded SIANN (2-3-3) and the standard SIANN (2-2-3). The results are shown in
Tab!e 6.4 and Fig. 6.8. Note that the error rates of the Reduced SIANN trained with
DS-GDX are around 34%, which exceeds the range of the ordinate in Fig. 6.8; this
was done deliberately so as to make the other variations clearer.

The results show that the mean error rate tends to decrease as the size of the
network is increased, with the most pronounced change being for the DS-GDX
algorithm (from 34.76% down to 5.57%). For all algorithms, the Reduced SIANN
gave the lowest classification accuracy, whereas the Expanded SIANN gave the
highest accuracy. This dependency on size is not surprising given the small network
sizes (19 weights for the standard SIANN and only 11 for the Reduced SIANN) and
the relative complexity of the problem having overlapping classes. The Reduced
SIANN has only one shunting neuron, yet it has comparable performance to those of
larger structures when trained with GDX and LM; this is a testimony to the power of
the shooting neuron.

The GDX algorithm, surprisingly, achieved the best mean error results for each of
the structures tested. The perfomiance of the networks trained using LM were close
to those trained with GDX, with the ~rror rate difference being less than 1%. The
DS-GDX algorithm was much more dependent on the variations of size, but achieved
the error level of LM for the Expanded SIANN. The Expanded SIANN structure,
trained with the LM and DS-GDX algorithms, achieved the best individual network

performance of3.33% error.

In terms of training time, the DS-GDX aliorithm was consistently the fastest,
followed by GDX, then LM. The GDX algorithm not only achieved lower error rates
than LM, but it was 5 to 13 times foster. The mean tf(l.ining times for GDX and DS­
GDX algorithms were relatively consistent across the network structures. However,
the LM training time increased for the Reduced SIANN, with the average training
time more than 3 times that of the standard SIANN; due to the fact that the average
number of training epochs was more than 3 times greater. This indicates a greater
effort to achieve the results with the smaller structure.

The Multi-Class problem is one of the 'classic' problems that highlight the need
to expand the SIANN structure. It is a moderately complcx problem with a very
smal! number of inputs. Even though the standard SIANN does well to achieve the
results it does, gi\len the relatively small size of the network, the advantage of being
able to use a larger structure with more weights is shown, in tenns ofuccuracy. Fig.
6.9 shows the decisiiin boundary formed by a 2-3-3 enhanced SIANN.

130

.,

FURTHER DEVELOPMENT OF SHUNTING INHIBITORY ARTIFICIAL NEURAL NETWORKS

Table 6.4 Best results for Multi-Class dataset using Enhanced SIANNs

Sf ANN Training Activation

Structure A Igor. functions

Sh Out

Reduced GDX Exp Lgs
2-1-3 LM Exp Lgs
(11

weights) DSGDX Exp Lgs

Expanded ODX Exp Tnh
2-3-3 LM Lgs Tnh
(27)

DSG DX Exp Lin

Standard GDX Exp Lgs
2-2-3 LM Exp Lgs
(19)

DSODX Exp Lin

,;

350

100

50

GDX

Perfonnance Avg Epochs Test Error

(% of runs)

~ 0% 20% All ~ 0% Best Mean 95%Cl
goal err < runs goal ElTor (%) (%)

0 0 100 552 * * 4.67 5.89 ±0.25

0 0 96 776 * * 4.00 6.69 ± 1.70

0 0 0 173 * * 34.67 34.76 ±0.06

0 0 100 552 * * 4.00 5.00 ±0.18

0 0 100 201 * * 3.33 5.60 ± 0.23

0 0 100 189 * * 3.33 5.57 ± 0.19

0 0 100 377 * * 4.00 5.47 ± 0.16

0 0 100 228 * * 4.00 5.69 ±0.26

0 0 90 206 * * 5.33 9.39 ±2.24

Multi Class

E1pandod SIANH: 2·3-3 Stand"'<! SlANN: 2·2.J

GOX GDX

DSG DX GDX LM
Algorithm

DSG DX GDX LM DSG DX

Med.
(%)

6.00

5.33

34.67

5.33

6.00

6.00

5.33

5.33

6.67

Avg.
CPU
time
(s)

26.6

341.7

8.9

29.2

149.0

10.1

19.4

103 .0

10.9

Fig. 6.8: Best, mean, median test error and mean training time for Multi-class dataset

using Enhanced SIANNs.

131

FURTHER D EVELOPMENT OF SHUNTING INHIBITORY A RTIFJCIAL NEURAL NETWORKS

MU111-dass ded l!Oo bound6,y by I 2-3-J Enhe~ced SIANN nei-..'Oli<

6

0

·2

·6

· 15 -10 -5 0 10 15

Fig. 6.9: Decision boundary formed by a 2-3-3 Enhanced SIANN for Multi-class

problem.

6.3.5 Sunspot Time Series

The 10-5-1 Reduced SIANN, the 10-5-3-1 Multi-layer SIANN and the standard 10-

10-1 SIANN were trained and tested on the Sunspots time se1ies problem. The

results are shown in Table 6.5 and Fig. 6.10. The figure shows the best, mean and

median error rates of the test set ARV metric, defined in Chapter 4 as well as the

average training times.

The general trend, for all training algorithms, is that the standard SIANN sttucture

has the best accuracy followed by the Reduced SIANN, with the Multi-layer SIANN

coming out worst. The trend is most pronounced for the GDX algorithm with the

mean test ARV for the Multi-layer SIANN 2 to 3 times that of the other structures.

The training time results show that the Reduced SIANN takes only marginally

less time than the Standard SIANN to train, despite having half the number of

synaptic weights . On the other band, even though the multi-layer SIANN has fewer

weights than the standard SIANN the time taken to train was higher for all three

algorithms_, as the number of epochs required was higher. This is most pronounced

with the LM algorithm, with the Multi-layer SIANN taking 9 times longer to train

compared to the standard SIANN. The small saving in tt·aining time with the

Reduced SIANN comes at the cost of a decrease in accuracy compared to the

standard SIANN. It is this potential saving in training time that motivated the

development of the Reduced SIANN structure but the cost in accuracy does not

always justify the saving.

The Multi-layer SIANN did not perform well, coming out worst both in terms of

accuracy and training time, with all three training algorithms.

132

FURTHER DEVELOPMENT OF SHUNTTNG INHIBITORY ARTJPJC!AL NEURAL NETWORKS

Table 6.5 ResuJts for Sunspots dataset using Enhanced SIANNs

SlANN Truining

Struct.
Algor.

Reduc. GDX
10-5-1 LM

(71
DSGDX wts)

Expand GDX
l 0-5-3- LM

I
(93 w .) DSG DX

Stand. GDX
10-10-1 LM
(141 w)

DSGDX

Act-fns Performance
(% of runs)

Sh Out ~ all in 80%
gl tol to!

Tnh Tnh 0 30 98

Lgs Tnh 0 2 100

Tnh Lin 0 16 100

Tnh Tnh 0 4 68

Lgs Lgs 0 62 98

Exp Lin 0 32 100

Tnh Lin 0 14 98

Lgs Lin 0 8 100

Lgs Lin 0 40 100

Ro<1ucod SIAMN: 10·5-1

1000

900

BlO

70 0

..
• 600
E
;:: ..
'f SO O

~ ...
~ ,oo
f

100

00

Avg TestMSE Test ARV
Epoc

hs Best Median Best Median Mean

164 0.0089 0.0158 0.106 0.189 0.213

60 0.0073 0.0104 0.087 0.125 0.127

163 0.0082 0.0101 0.098 0.122 0. 123

165 0.0122 0.0311 0.147 0.373 0.515

504 0.0080 0.0107 0.096 0.128 0.133

169 0.0084 0.0101 0.100 0.121 0.133

147 0.0085 0.0134 0.102 0.161 0.174

54 0.0075 0.0093 0.090 0.1 LI 0.112

161 0.0077 0.0097 0.096 0.121 0.119

sunspots

1"1ulll4ayo, SIANN: 10,6·3·1 SUnd~rd SIANN: 10·10·1

GOX LM OSGOX GOX LM
Algorithm

OSGOX GO)(LM OSGOlt

Avg.
CPU

95% CI time
(s)

± 0.028 6.7

± 0.004 8.4

± 0.005 6.9

± 0.097 10.2

± 0.006 90.6

± 0.016 10.5

± 0.020 6.8

± 0.003 9.8

± 0.002 7.6

Fig. 6.10: Best, mean and median test error and mean training time for Sunspots

data using Enhanced SIANNs.

133

FURT/IER DEV£lOPMENTOF SHUl{l'JNO /NH/Ell()Rf ART/f1CML NEUl!AlNETWORKS

6.3.6 Analysis of Results

From the results presented in the preceding subsections, the cases where the number

of inputs is small clearly highlight the advantage ofbeiog able to expand the SJANN

structure. The Expanded SJANNs have higher accuracy and most of them also have

shorter training times. Conversely, reducing the number of shunting neurons results

in lower performance, sometimes dramatically lower, as the network becomes too

small to handle the problem. Either the error rate or the training time goes up

significantly, or both. However, the reduced SIANN structure can still produce good

results when the number of inputs is large; for example, the 8-3-1 reduced SlANN

structure achieved the lowest "best-case" error of 16.67% on the Diabetes problem.

In any case, these results justify the use of the 'intemeurons' in the single-layer

Expanded SIANNs.

The benchmarks tests with a relatively large number of inputs were tested with

Reduced SIANNs r...id Multi-layer SIANNs with fewer shunting neurons than system

inputs. The overall results show that the Reduced SIANNs arc able to reduce the

training time required, especially for the second-order LM algorithm, but with some

Joss in accuracy. The standard SIANN networks had the best accuracy in most cases,

while the Multi-layer SIANNs generally had the worst accuracy even though they

had !urger structures than the Reduced SIANNs. The poor perfonnance of the Multi­

layer SlANNs could possibly be due to the error surface becoming too complex with

the additional shunting layer, thereby making it harder to train.

The reduction in training time may justify the use of the Reduced SIANNs in

some cases, but the time saving does not always justify the loss in accuracy. This is

more so for the 'simpler' algorithms such as GDX and DS-GDX, where the time cost

savings are not very great, if any, but the loss in accuracy tends to be high. The loss

of accuracy may not be due to only the reduction in the number of weights, but also

due to the fact that only a subset of the inputs are fed in as excitatory.

The choice of inputs that are fed in as excitatory is quite arbitrary. ln all the

benchmark tests perfonned so far, it was the 'first' few inputs that were fed in as

excitatory; the remaining inputs are fed in as inhibitory inputs only. This was done

for the sake of simplicity; furthennore, in real-life situations the role of each input is

not known beforehand, unless the problem definition itself gives an indication of

which inputs should carry more weight. An example of the problem definition

providing a clue is the Sunspots problem. The 'first' input is the 'latest' observation

i.e. the point that is temporally closest to the predicted output, and inputs arc sorted

accordingly. This means that a Reduced SIANN should have the 'closest'

observation inputs used as excitatory and the earlier values as inhibitory only. For

other problems, it may not be possible to arrive at such an 'ordering' of the inputs

without some pre-processing and analysis, ifat all.

134

FURTHER DEVEWPMENTOF" SHUNTING lHHIBITORr ARnrJCIALNEURAL NETWORKS

6.J,7 Results obtained by re-ordering Inputs

In order to got a fee! of the effect of changing the excitatory inputs, the best

perfonning Reduced SIANNs for the Breast Cancer and Diabetes problems were

tested with different input permutations so that different inputs could serve as

excitatory. For both datasets, the inputs used previously as excitatory were changed

to inhibitory only and the succeeding inputs were fed as both excitatory and

inhibitory. Tables 6.6 and 6.7 compare the results before and after input-reordering.

For the Br~ast Cancer dataset, the change in excitatory inputs resulted in an

obvious degradation in performance of all algorithms. It is especially clear for the

LM and DS-GDX algorithms, with the mean error rate up from 0.2% to 0.7% and the

percentage of networks achieving perfect results down from 68% to 30% or less. For

the Diabetes problem, !lie change shows a similar trend, with the mean error rate

increasing between 0.1% and 1.3% and the number of networks achieving under

20% error df(Jpping by one-third or more.

These differences were the result of what amounts to arbitrary changes in tho

selection of excitatory inputs. Without analysis of the data or experimental results, it

is gencra!ly not possible to decide which inputs should be used as excitatory. There is

also the possibility of errors or missing values resulting in some inputs being

redundant or causing spurious connections, as is the case with the Pima Indians

Diabetes dataset (Arulampalam & Bouzerdoum, 2002a; Waschulzik et aL, 2000).

To find the 'optimal' network would require not only the selection of a network

structure, but also testing nil possible combinations of excitatory inputs for that

structure in order to find the optimal combination; this is not a practical option.

Ideally, there should be a method that allows all the inputs to the network to serve

both as excitatory and inhibitory. A generalised. foedforward architecture that caters

for this is presented in the next chapter.

Table 6.6 Results for Wisconsin Breast Cancer dataset using the 9-4-1 Reduced

SIANN with re-ordered inputs '
SIANN Troining Aetivotion Pcrforrnonoe Avg Epoch., T<stEmir '"" Structure Algor. function, 1% of runs' time

'" '"' .. ., '"' "' .. "" Bcsl Meon 95%CJ Moo, "' ,., '" < ruo, ,., ·~· "' I'%' (%)

Reduced "' I:,p Lin " " "' '" • '" " o.ss ± 0.09 0.56 '·" 9-4-1 CM ~. Lin " '" '"' '" • '" " 0,23 ± 0.10 " 28.6

OSGOX fuo Lin " '" "' '" • >M " 0.26 ± 0.13 " ll.7

Reduced "' fuo Lin " " '"' '" • m " 0.72 i D,12 0.56 ll.6
9-4-1 CM E,p Lin ' '" '"' "' • "' " 0.79 i D.20 O.S6 26.0

(n:·or~,:;•d
innuls DSGOX E,p Lin " " "" "' • '" " 0.72 i 0.16 0.56 11.6

135

FURTHER D£ffWPM£NTOF SIIUNTINO lllll/8fTQRY ARTIFICIAL N£Ut11.LNETWOIIKS

Table6.7 Results for Pima Indians Diabetes dataset using the 8·3·1 Reduced

SIANN, with re-ordered inputs

SIANN Training Acllv•tion Pcrform,n,o Avs Epoch, TostError "" Stnoorure AIQor. functions (%afrunsl 1im,

'" ~, • w, ,w, "' • "" .. , Mean 95%CJ Moo
,,,

'"' '" < ""' ""' ·~, (%)

'"
(%)

Roduocd "' '"' '"' • • '" '" . . 18.23 20.96 ± 0.31 21.lS ll.9
8-l-1

'" ••• '"' • • " " • . 16.67 20.18 ± 0.36 19.79 11.9
DSGDX Exp Lin • • " '"'

. . 18.23 20.62 ± 0.38 20.51 11.8
Reduced "' '"' '"' • • .. '"' • • 19.27 22.27 ± a.so 21.88 11.8

8-J-I

'" Exp '"' • • '" 17.19 20.74 ± 0.39 20.S7 l2.6 l(«·ardored
innulSl DSGDX "• Lin • • ,.

'"' • • 17.71 20.76 ±o.41 20.57 ll.9

6.4 Conclusion

The motivation behind the enhancement of the standard SIANN network structure

has been outlined in this chapter. The proposed enhancements allow the network size

to be expanded or reduced as required. Details of the structures and the experimental

results obtained using such structures on benchmarks problems have also been

presented along with those of the standard SIANN

The experimental results show that expanding the SIANN structure, by adding

additional shunting neurons, improves the results when tackling complex problems

with a sma!l number of inputs; it helps improve accuracy and reduce the time

required to train the network.

The reduced SI ANN structure was obtained by reducing the number of shunting

neurons to less than the number of inputs when working on problems with large

number of inputs; this requires some inputs to be used us inhibitory only. The re~ults

show that the Reduced SIANN structure is able to shorten the training time in some

cases, particularly when using the Levenberg·Marquardt (LM) algorithm. This

reduction generally also results in a reduction in accuracy, as there are fewer weights

to be trained and only a subset of the inputs can be used as e)[citatory. The selection

of the excitatory inputs was arbitrary and it was shown to have an impact on the

results.

In conclusion, the expanded fonn of the SIANN has been shown to improve

performance where applicable, but the reduced fonn has limitations because not all

inputs serve as excitatory. The solution would be to find some method that would

enable tl1e S!ANN structure to be reduced without having to make a choice of which

inputs should serve as excitatory and which should serve as inhibitory only; instead,

all inputs should serve as excitatory and inhibitory simultaneously. The next chapter

expands the shunting neuron structure to explore this option.

)36

Chapter 7

A Generalised Feedforward Neural Network

Architecture

7.1 Introduction

In the preceding chapter, we saw that reducing the standard SIANN structure so that

there are fewer shunting neurons than inputs can lead to savings in tenns of training

time. In some cases, this reduced structure can perform as well as the standard

SIANN, but more often it is less accurate. This is in part due to the fact that only a
subset of the inputs, equal to the number of shunting neurons, can be used as
excitatory input; the other inputs can only exert inhibitory influences on the activity
of the network. Furthermore, there is no simple way of using prior knowledge to

determine which inputs should serve as excitatory and which should not. This

limitation arose from the fact that th!l shunting neuron used was allowed to have one

excitatory input only. It was concluded in the previous chapter that one way to solve

this dilemma would be to modify the structure of the shunting neuron to allow more

than one e:,;citatory input.

In this chapter, the shunting neuron model used in SIANNs is expanded to allow

greater flexibility in the network structure. The result is a new neuron model that

combines the shunting neuron model with the traditional perceptron model. We use

this 'generalised' shunting neuron model in a foedforward architecture, which

henceforth is referred to as the generalised feedfonvard neural network (GFNN).

The ne:,;t section describes the genera/i.sed shunting neuron (GSN) model and the

structure of the GFNN. :"'.e third section presents e:,;perimental results obtained by

137

A GENE/IAUSEDFEEDFOHW~RDNEUIIAi NETWDRI: ARCHITECTURE

applying GFNNs to the selected benchmark problems. Finally, the discussion and the

conclusion are presented in Sections 7.4 and 7.5, respectively.

7,2 Development of the Generalised Feed forward Neural Network

In this section, the general/sed/eed/onvard ner1rol network (GFNN} architecture is

developed os an extension of S[ANNs. The basic computing element of the SIANN

architecture, the static shunting neuron, is recapped next, followed by the

development of the generalised shunting neuron model, then the GFNN arehitecrure.

7.2.1 The Stalk Shunting Neuron and SIANNs

The starting point of the development of the new generalised shunting neuron model

is the static shunting neuron model presented in Chapter 3. This model is shown here

agnin for convenience. The static shunting neuron is defined by the equation

(7.i)

where x1 represents the activity (output) of thejth neuron; 11 is the input to thejth

neuron; DJ is the passive decay rate of the neuron (positive constant); b1 represents the

bias for the neuron; CJ! is the connection weight from the ith input to thejth neuron,

with Cj~ being the bias for the activation function; and/ is an activation function

bounded from below.

We define the denominator in (7.1) as the shunting tenn for thejth neuron, sJ,

given by

(7.2)

The term SJ is constrained to be positive definite so as not encounter n divide by zero

error (Le. SJ > OJ. This is achieved by imposing a lower bound on the parameter DJ

during the initialization and training phases (refer Chapter 4).

The static shunting neuron model is shown diagrammntica!ly in Fig. 7.1. All

inhibitory (shunting) inputs are weighted and fed into an activation function.

However, as mentioned previously, the shunting neuron has only one unweighted

excitatory input, which is the limitation to be addressed. To alleviate this inherent

!imitation, agenero/ised shunting neuron model is proposed next.

138

A GENERALISED FEl;DFORWARDNEURAL NETWORK ARCHITECTURE

c I --­
.if I

/ I
c I _____ _ ./ I
J iii m

cjlJ

Acliva1ion
Function

I
I

a.
J

x .
/

·xcitat ry input

- - - - -• lnhibi10I) input

Fig. 7 .1: The structure of the static shunting neuron model.

7.2.2 The Generalised Shunting Neuron Model

One of the shortcomings of the shunting neuron model described above was the fact

that each neuron can only have one unweighted excitatory input. This means that

either the network needs to have at least as many neurons as there are inputs, or only

a subset of inputs can serve as excitatory. One way out of thj is to have multiple

excitatory inputs weighted, summed and passed through an activation function, as

done with the perceptron neuron. In fact, the proposed new neuron model combines

the perceptron neuron model with the shunting neuron model. The output of this

"generalised" shunting neuron can be described by

(7.3)

It should be noted that both the perceptron neuron and the shunting neuron are

special cases of this new model. The perceptron neuron is a special case of the

generalised shunting neuron where the denominator weights Cji are fixed at O and a is

set to a constant that makes the denominator equal to 1, depending on the activation

function f Furthermore, (7 .3) reduces to (7.1), which models the normal shunting

neuron, when Wjj = 1, all other weights Wj; are 0, and g is the linear activation

function. We have therefore named this new model the Generalised Shunting Neuron

(GSN) model. The Generalised Shunting Neuron model is shown diagrammatically

in Fig. 7.2.

139

A GENERA USED FEEDFORWARD NEURAL NETWORK ARCHITECTURE

l1 . , ,,
.I

II I
Jiii Ill

I

I

I

c
1

I __ __ __ /
Ill Ill

w.,1

I
I
l c,,

functi on \ -------+ x
D.:nc minotor)

1

SClivatiOll :
I __ .ey ~

:,/ ___.. ,
a . -----..

J

: ch to input

Inhibitory mpul

Fig. 7.2: The Generalised Shunting Neuron model.

More importantly, the input-output transfer characteristic of a generalised

shunting neuron is adaptive; that is even when the activation functions f and g, in
7.3) are fixed, the type of input-output transfer characteristic each computing

element can have varies depending on its synaptic weights. Fig. 7.3 shows some

input-output transfer characteristics of a generalised shunting neuron having the

logarithmic sigmoid activation function for both/ and g; these transfer characteristics

are obtained by imply changing the synaptic weights. More complex cbaracteri tic

can be obtained by mixing different activation functions together. This i in contrast

to traditional artificial neural model , such as the RBF (radial basis function) and the

perceptron neurons, which have input-output transfer characteristics of fixed type,

bell-shaped or sigmoid- haped. This we believe place an artificial constraint on the

type of decision surfaces a particular neuron can produce.

Jankowski & Duch have investigated the role of activation functions in neural

network performance, and have used a number of transfer characteristic, such as

bicentric and extended conic functions that can produce complex decision

boundaries, thus allowing the number of adaptive units in the network to be reduced

(Duch & Jankowski, 2001; Jankowski, 1999; Jankowski & Duch, 2001). Neurons

with these activation ftmctions have been used in ontogenic and heterogenou neural

networks. The GSN neuron is able to produce similar transfer characteristics with

the added advantage that it require only 2N+4 parameters per neuron instead of 3N

or 4N parameters as given by Jankowski & Duch.

140

A GENERALISED FEEDFORWARD NEURAL NETWORK ARCHITECTURE

Fig. 7.3: Input-output transfer characteristics of a 2-input generalised shunting

neuron obtained with the same f and g functions, but different w and c

weight vectors.

141

A G ENERALJSED FEEDFORWARD NEURAL NETWORK ARCHITECTURE

7.2.3 The GFNN Architecture

The GFNN is a multilayer feedforward neural network architecture consisting of one

or more layers of generalised shunting neurons. In the tests perfonned here, the

output layer may consist of generalised, sigmoidal or linear neurons. Neurons in each

layer receive inputs only from the preceding layer, calculate their outputs according

to (7.3), and transmit the resulting signals to the next layer, see Fig. 7.4. The GFNN

architecture as defined does not have any restrictions on the number of neurons per

layer or number of layers. The only effect the problem definition has on the network

structure is on the number of output neurons, which corresponds to the number of

outputs required by the problem.

It should be noted that GFNNs may also contain shunting or perceptron-type

neurons in their bidden layers, as they are special cases of the Generalised Shunting

Neuron. In other words the GFNN is a hybtid architecture combining shunting-type

and perceptron-type neurons. In this chapter on1y the two simplest GFNN structures

are considered. The first is a single layer of one or more generalised shunting

neurons, the simplest of which is a single GSN. The second snuchtre consists of one

bidden-layer, containing one or more GSNs and an output layer of linear or sigmoid

neurons. These two network structures are denoted by the prefix 'G' for the single

layer network, and by ' GP' for the 2-layer network, followed by the size of the

layers. The letters indicate the type of neuron in each layer 'G' for GSN, and 'P' for

perceptron-type neurons. For example, G 9-1 denotes a single GSN neuron with 9

inputs, whereas GP 8-2-1 denotes a two-layer network with 8 inputs, 2 GSN neurons

in the hidden layer, and one output neuron. The ability of the GSN to produce

complex decision boundaries means that these simple struchires are capable of

handling most problems as shall be shown experimentally in the following section.

Inputs

Generalised
Shunting
Neurons

Bias (excitatory
and inhibitory)

Ou put
Neurons

(Perceptrons) Outputs

t----+ Y,

___ + Excitatory and
Inhibitory synapses

Excitatory synapse
only

Fig. 7.4: The Generalised Feedforward Neural Network architecture.

142

A GENERALISEDFEEDFORWARDNEURALNETWORKARCHITECTURE

7.3 Benchmark Test Results and AnaJysis

The GFNNs were tested and compared to SIANNs on the same set of benchmarks

problems used in the previous chapters and the obtained results are presented in this

section. For each benchmark problem two types of GFNNs were tested. The first is a

single layer of GSNs, with the number of neurons equal to the number of outputs

required. For most of the problems this means a single GS neuron, with the exception

of the Multi-class problem that has 3 GSNs. The second GFNN structure tested is the

simplest two-layer GFNN structure - a GP n-2-1 structure (2 GSNs and a perceptron

output), or in the case of the Multi-class problem a GP 2-2-3. Examples of these

network structures are shown in Fig. 7.5.

Tbese GFNN structures were trained and tested and their performance compared

to the standard' SIANN. As in the previous chapters, 50 networks were generated

for each structure, and these were trained using the Gradient Descent with

momentum and adaptive learning rate (GDX) and the Levenberg-Marquardt (LM)

algorithms. The multi-layer GFNNs and SIANNs were also trained using the Direct

Solution-GDX (DS-GDX) algorithm. The single-layer GSN networks could not be

trained using the DS-GDX algorithm as the algorithm requires an output layer of

linear or sigmoid neurons to work. The initialisation and training parameters used are

the same as described in Chapter 4.

The GSN nemons were tested with various combinations of activation functions

in the numerator and denominator. Linear (lin), hyperbolic tangent sigmoid (tnh),

logarithmic sigmoid (lgs) and exponential (exp) activation functions were used for

the numerator. The constraint on the shunting term given in (7 .3) requires the

denominator activation function to have a lower bound. Therefore the linear

activation function could not be used in the denominator. The output perceptron

neurons used had linear, logarithmic sigmoid or hyperbolic tangent activation

functions. The results of the 'best performing' activation function combinations are

shown in the following sections. The full set of mean error values, for all possible

combinations of activation functions is given in Tables B.32 to B.36 in Appendix B.

lnpuls

'·- __ Generalised
Shunting
Neuron Outpul Inputs

General1Sed
Shunting
Neurons

a) G 3-1 GFNN b) GP 3-2-1 GFNN

Oupul
Neuron

(Perceptron) Output

Y,

-- - + E><OIDIOry 91'0
lnhlt>l()(}'

---- E•Cller0<y a,~y

Fig. 7.5: Examples of GFNN structures: (a) G 3-1 network and (b) GP 3-2-1 network

143

A GENEMl/SED FEiiiDFORWARDNEU/1,!l NETWORK ARCHITECTURE

7,3,1 Wisconsin Breast C1mcer dataset results

The results obtained using a single GSN ((; 9-1), n GP 9-2-1 OFNN and the

'standard' 9-9-1 SIANN trained on the Wisconsin Breast Cancer problem are

presented in Table 7.1 and Fig. 7.6. As in previous chapters, the graphs are broken

into two sections: the top part shows the mean and median test error percentages for

the best performing activation function combination for the given network strocture

and training algorithm, and the second part shows the corresponding menu training

times. Note that the median is often zero, and hence it is not visible on tb!l graph.

The G 9-1 network, consisting of a single generalised shunting neuron, trained

using the GDX algorithm, had the lowest averag!l error (0.16%) with 84% of

networks (neurons) able to achieve perfect classification, i.e. 0% error. This simple

structure was also the second fastest to train, next to the SIANN trained with DS­

GDX. The single neurons trained using the LM algorithm did not work that well,

with an average error of 0.44% and 'only' 22% of them achieving perfect

classification.

The GP 9-2-1 GFNN trained with GDX did not do as well as tl1e single neuron. It
had the second best avcrng!l error, but also the second longest training time. The GP

9-2-l OFNN trained with LM had one of the highest mean error rates (0.49%), but

still had almost half the networks achieving perfect classification. It could also be

trained fast, more than twice as fast as a SIANN trained with LM. When trained with

DS-GDX, the GP 9-2-1 GFNN did better than the corresponding SIANN networks;

the average error rate was cut by almost half, and two thirds of the networks

achieved perfect classification (compared to 36% for the SJANNs). However the

average training time was twice as long despite the fact that tl1c GFNN network had

less than halfthe number of weights to train compared to SIANN.

Overall the OFNNs did better than the SIANNs when trained using GDX and DS­

G DX algorithms. With the LM algorithm, the accuracy was not as good for the

GFNNs, but there were significant reductions in training times. In reality, the average

error rates achieved were not vastly different, with all achieving 99.5% accuracy or

higher. The most impressive result was the fact that a single generalised shunting

neuron could achieve the best performance of all, having the lowest mean error, with

84% of trials nchi!lving perfect classification (100% accuracy).

144

A GENERALISEDFEEDFORWARD NEURAL NETWORK ARCHITECTURE

Table 7.1 Best results for Wisconsin Breast Cancer dataset using GFNN s

Network Training Activation Performance Avg Epochs Test Error CPU

Structure A Igor. functions (% of runs) time

Shunting Out 7 0% 20% All 7 0% Best Mean 95% Med.
(s)

Nu Den goal err < runs goal Error (%) (%) Cl (%)

Single GDX Lin Lgs 0 84 100 134 * 141 0 0. 16 ± 0. ll 0.00 7.0
GSN 9-1 LM Lin Lgs 0 22 100 56 * 54 0 0.44 ± O.Q7 0.56 9.4

(22
weights)

GFNN GDX Lin Exp Tnl1 0 70 100 279 * 304 0 0.19 ±0.09 0.00 22.6
GP 9-2-1 LM Exp Exp Tnh 0 48 100 57 * 57 0 0.49 ±0.16 0.56 15.7

(47
* 0.28 0.00 13.4 weights) DSGDX Lgs Exp Lin 0 62 100 162 145 0 ±0.13

SIANN GDX Lgs Lgs 0 66 100 161 * 160 0 0.20 ±0.08 0.00 10.3
9-9-1 LM Lgs Tn11 0 74 100 18 1 * 119 0 0.20 ± 0. 10 0.00 34.8
(I 18

* 0.54 0.56 6.4 weights) DSGDX Tnh Lgs 0 36 100 96 100 0 ± 0.14

Wisconsfn Breast Cancer

o:
Slnol• GS nour0<1: 9· 1 GF!I~: GP 9·2·1 St:and:ird SIANN: !1·9·

Oto

02

Ol

,o

l5

l D

:g_ 15 .
~
l 10 c

~
c I ,s

Ill

Algorithm

Fig. 7.6: Mean and median test e1Tor and mean training time for the Wisconsin

Breast Cancer dataset using GFNNs.

145

A Gii!.li/1,!l/SliDFli~Dl'(JRWARD NliUR,!LNfiTWOHI(AHCIIITliCTUHli

7,3,2 Pima Indian, Diabetes dataset results

The results obtained for this dataset, using a single GSN (G 8-1), a GP 8-2-1 GFNN

and the 'standard' 8-8-l SlANN, are shown in Table 7.2 and Fig. 7.7. The figure

here shows the lowest error achieved by a single network for each case, in addition to

the mean and median test !lrror, since the 'best case' error is not zero for this

problem.

Both the G 8-1 and the GP 8-2-l GFNNs trained with GDX were able to achieve

better results than the SIANN trained with the same algorithm, with a mean error of

20.6% as opposed to 21.0% for SIANNs and more than double the number of

networks having error below 20%.

The 8-2-1 GFNN trained with DS-GDX was able to achieve a mean error rate

below 20%, with 56% of networks achieving rates be!ow 20%. However, this was

not as good as the SIANN trained with DS-GDX, and the training time required was

also double that ofSIANNs.

The accuracy achieved by both the single GSN and the 8-2-1 GFNN when trained

with LM was 'average', with the exception of one GFNN that achieved the lowest

'best case' error of 16.15%. The big difference lies in the average training time for

the LM algorithm across the different types of network. The 8-2-1 GFNN trained

with LM took approximately half the time to train compared to SIANN, and the

single GSN training time was less than a quarter of the SIANN training time. In fact,

the GSN trained with LM was the fastest combination of all and took an average of

only 22 epochs. As with th!l Enlianced SJANNs, there is a clear trend linking the

training time for the LM algorithm with the number of weights in the network. Here

again the single generalised shunting neuron was able to achieve accuracy rates

comparable to larger networks, with the advantage of faster training times.

7.3.3 Results for the 3-blt Parity problem

The results for the parity problem, presented in Table 7.3 and Fig. 7.8, arc for a

single GSN, a GP 3-2-1 GFNN and a 'standard' 3-3-1 SIANN. It should be noted

that most cases of the median error rate is zero, and so is the mean in one cas!l;

hence, these arc not visible on the graph.

Looking at the average error rates, the 3-2-1 GFNN trained with LM was

undoubtedly the best, achieving 'perfect' results - 100% correct for all networks.

The training time for this combination was also the best of all, twice as fast as

S!ANNs trained with LM. The same 3-2-1 GFNN networks trained with GDX and

DS-GDX did not achieve such good results, with average errors in tl1e region of

2.5%, but still maMgcd to get 80% and 90% of networks achieving perfect

classification respectively.

146

A GENERALISED FEED FOR WA RD NEURAL NETWORK ARCHfTECTURE

Table 7 2 Best results for Pima Indians Diabetes dataset usino GFNNs .,..,
Network Training Activation Perfonnance Avg Epochs Test Error CPU

Structw-e A Igor. functions (% of runs) time

Shunting Out 7 0% 20% All 7 0% Best Mean 95% Med.
(s)

Nu Den goal err < runs goal Error (%) (%) CI (%)

Single GDX Tab Exp 0 0 38 173 * * 18.23 20.58 ±0.26 20.83 9.7
GSN 8-1 LM Tnh Lgs 0 0 34 22 * * 18.75 20.56 ± 0.27 20.31 5.2
(20 wt.)

GFNN GDX Toh Tnh Toh 0 0 34 175 * * 18.23 20.58 ±0.34 20.57 15.7
GP 8-2-1 LM Exp Lgs Lgs 0 0 42 58 * * 16.15 20.36 ± 0.33 20.31 17,8

(43
weights) DSGDX Lin Lgs Lin 0 0 56 150 * * 17.71 19.94 ±0.27 19.79 13.5

SlANN GDX Toh Lgs 0 0 14 195 * * 17.71 21.03 ±0.29 21.35 13.2
8-8-1 LM Lgs Tnh 0 0 58 182 * * 17.71 19.88 ±0.32 19.79 38.9
(97

weights) DSG DX Lgs Lgs 0 0 68 94 * * 18.75 19.82 ±0.29 19.79 6.4

Pima Indians Diabetes
I,

GFNN: GP 8·2·1

St,,Mard SIANN: '8-8·1

11

••

GOX LM GOX lM OSGOX GOX LM OSGOX
Algori thm

Fig. 7.7: Best, mean and median test error and mean training time for the Diabetes

dataset using OFNNs.

147

A GENERA USED FEEDFORWARD NEURAL NETWORK ARCHITECTURE

Table 7.3 Best results for 3-bit Parity dataset using GFNNs

Network Trafning Activation Performance Avg Epochs Test E1Tor CPU

Structure A Igor. functions (% of runs) time

Shunting Out 7 0% 20% All 7 0% Best Mean 95% Med.
(s)

Nu Den goal err < runs goal Error (%) (%) Cl (%)

Single GDX Lin Toh 0 40 48 1000 .. 1000 0.00 16.00 ±4.26 25.00 5.5
GSN 3-1 LM Exp Lgs 64 66 72
(10 wt.)

343 153 178 0.00 11.00 ± 5.03 0.00 4.5

GFNN GDX Lin Exp Lgs 80 80 100 454 318 318 0.00 2.50 ± 1.40 0.00 3.2
GP 3-2-1 LM Lin Lgs Lin 98 100 100 30 22 30 0.00 0.00 ±0.00 0.00 0.8

(23
DSGDX 344 weights) Lin Lgs Lin 76 90 92 467 408 0.00 2.75 ± 2.45 0.00 3.2

STANN GDX Tnh Lgs 94 94 96 352 311 311 0.00 1.25 ± 1.44 0.00 2.3
3-3- 1 LM Exp Lin 96 96 100 84 46 46 0.00 0.50 ±0.69 0.00 1.7
(22

weights) DSGDX Tnh Lin 94 94 100 169 116 116 0.00 0.75 ± 0.83 0.00 1.3

3-blt Parity

Singlo GS nouron: ,3.1

GFNN: GP 3·2·1 Stond>rd SIANN: l-3·1

LM

ODX LM GD!(l M OSGO~ 00>< LM OSGOl<
Algorlthm

Fig. 7.8: Mean and median test error and mean training time for 3-bit parity dataset

using GFNNs

148

The performance of the single generalised shunting neuron doesn't look good,

with average error rates above 10% and no real advantage in training time. It should

be noted, however, that that a single neuron is still able to solve correctly the 3-bit

parity problem, in 40% and 66% of the cases when trained with the GDX and LM

algorithms, respectively, This is quite an achievement when compared to a single

perceptron neuron, which cannot solve problems that are not linearly separable.

Overall, the GFNNs were able to perfonn as well as SIANNs with a simpler

structure, with the added advantage of savings in training time for the LM algorithm.

For this problem, having simpler structures does not always mean less synaptic

weights because of the small number of inputs. The GP 3-2-1 GFNN has 3 neurons

and 23 weights compared to the STANN with 4 neurons but only 22 weights. The

comple1:ity of the GSN in tenns of number of weights, in this case, offsets the

savings in terms ofnumber of neurons.

7,3,4 Results for the Artificial Multi-class problem

The test for this problem was designed as a wlnner-take-all type output with 3

possible outcomes. Therefore a single neuron could not be used, as 3 separate outputs

are required. Instead, a single layer of 3 generalised shunting neurons with 2 inputs

(G 2-3 GFNN) was used. Table 7.4 and Fig. 7.9 show the results for the G 2-3

GFNN, the GP 2-2-3 GFNN and the 'standard' 2-2-3 SIANN.

With both the GDX and LM algorithms, the classification results for the 2-2-3

GFNN are similar to those of SIANN (with marginally higher error), but training

times are about 30% shorter. The 2-2-3 GFNN trained with the DS-GDX algorithm,

achieved a reduction in both mean error rate and training time, compared to SIANN.

The average error rate achieved by the single layer of GSNs was between 6.5%

and 7%, which is higher than the 5.5% to 6% achieved by the 2-2-3 GFNN and the

SIANN. The training time required, on the other hand, was significantly lower. The

single-layer GFNN can be trained with LM twice as fast as the 2-2-3 GFNN and 3

times as fast the SIANN with the same algorithm. For this problem, it should be

noted that both the GFNN atructures have almost the same number of weights (24

and 25), which is more than the SJANN structure (19 weights). Despite the fact they

have more weights to train, the GFNNs con be trained foster as they require less

epochs to achieve the target.

Overall, the trend is the same as with the other benchmarks. The GFNNs achieved

comparable results in tcnns of accuracy but with shorter training times. Looking at

the training times for each algorithm, there is a clear trend of increasing training

times, as one goes from the G 2-3, to the GP 2-2-3 GFNN nnd finally to the SIANN.

This is most pronounced for the LM algorithm. An example of the decision boundary

fonned by the GFNN is shown in Fig. 7.!0.

149

A GENERALISED FEEDFORWARD NEURAL NETWORK ARCHITECTURE

Table 7.4 Best results for Multi-Class dataset using GFNNs

Network Training Activation Perfonnance Avg Epochs Test Error CPU

Strncture A Igor. functions (% of runs) time

Shunting Out 7 0% 20% All 7 0% Best Mean 95% Med.
(s)

Nu Den goal err < rnns goal Error (%) (%) CJ (%)

GFNN GDX Lgs Exp 0 0 100 173 * * 4.67 6.81 ± 0.43 6.67 9.0
G 2-3

(24 wt.)
LM Lin Exp 0 0 98 58 * * 5.33 6.65 ± 1.19 6.00 28.1

GFNN GDX Lin Lgs Lgs 0 0 100 180 * * 4.00 5.61 ±0.17 5.33 13.2
GP 2-2-3 LM Lin Lgs Toh 0 0 100 99 * * 4.00 5.79 ± 0.17 6.00 65.4

(25
weights) DSGDX Lgs Exp Lgs 0 0 100 110 * * 4.67 7.21 ± 0.77 6.00 8.5

STANN GDX Exp Lgs 0 0 100 377 * * 4.00 5.47 ± 0.16 5.33 19.4
2-2-3 LM Exp Lgs 0 0 JOO 228 * * 4.00 5.69 ± 0.26 5.33 103 .0
(19

weights) DSGDX Exp Lin 0 0 90 206 * * 5.33 9.39 ±2.24 6.67 10.9

Multi Class ,. -

j Sln11le layor GFNN: G 2·3

,o I GFNN: GP 2·2~ Slllndud SIANN: 2·2-3

GOX LM GDX LM DSG OX GDX LM DSG OX
Algorithm

Fig. 7.9: Best, mean, median test error and mean training time for Multi-class dataset

using GFNNs.

150

A GENERALJSED FEEDFORWARD NEURAL NETWORK ARCHITECTURE

Muli-class deCISlO!l boundary bya OP 2-i-3 GFNN

8 Cl&S'S i I
I
f•

I
6 ctass2

Cius 3

2

0

·2

-4

·6

.g

-15 -1 0 .5 0 10 15

Fig. 7.10: Decision boundary formed by a GFNN for the Multi-class problem.

7.3.5 Sunspot Time Series results

The results for the single GSN (G 10-1), the 10-2-1 GFNN and the 'standard' 10-10-

1 SIANN trained on tbe Sunspots problem are shown in Table 7.5 and Fig. 7.11. The

figure illustrates the best, mean and median of the test Average Relative Variance

(ARV), defined in Eq. (4.30) as well as mean training time.

The mean test ARV of the 10-2-1 GFNN is better than that of the standard

SIANN, for both the GDX and the LM algorithms. With the LM algorithm, the

GFNN achieved the lowest mean test ARV overall .

The single GS neuron trained with LM did not achieve the same level of accuracy

as the other types trained with the same algorithm but was faster to train. The single

neuron achieved better accuracy when trained using GDX getting the best result

using GDX. Furthennore, this was the second fastest combination to train, with only

the 10-2-1 GFNN trained with DS-GDX being faster.

Once again the GFNNs, in particular the single generalised shunting neuron have

demonstrated their ability to achieve results comparable to other more complex

networks, with the advantages of simpler structures and, in many cases, reduced

training times.

151

A GENERAUSEDFEEDFORWARDNEURALNETWORKARCHITECTURE

Table 7.5

Network Training

Strnct.
A Igor.

Single GDX
GSN LM
10-1

(24 wt.)

GFNN GDX
GP LM

10-2-1
(51 wt.) DSG DX

ST ANN GDX
10-10-1 LM

(141
weights) DSGDX

Best results for Sunspots dataset using GFNNs

E .
E
;:: ..
-= c
1! ..
i

Act-fns Performance
(% of runs)

Shunting Out "7 all 80%

Nu Den gl in tol
tol

Lin Lgs 0 0 100

Exp Tnh 0 10 100

Lin Lgs Lin 0 6 100

Lin Lgs Lin 0 8 100

Lin Lgs Lin 0 0 100

Tnh Lin 0 14 98

Lgs Lin 0 8 100

Lgs Lin 0 40 100

()l$

ti
I

SIIIQIO GS neuron: 10-1

12

Avg Test MSE Test ARV
Epochs

Best Median Best Median Mean

159 0.0088 0.0099 0.105 0.119 0.120

64 0.0071 0.0107 0.085 0.129 0.140

146 0.0095 0.0122 0. 113 0.147 0.146

61 0.0065 0.0083 0.078 0.100 0.100

106 0.0083 0.0095 0.118 0.135 0.138

147 0.0085 0.0134 0.102 0.161 0.174

54 0.0075 0.0093 0.090 0.111 0.112

161 0.0077 0.0097 0.096 0.121 0.119

Sunspots

gJ,I~ •

GFNN: GP 10·2-1 Standard SIANN: 11).10-1

Algortthm

CPU
time

95% CI

± 0.002 5.5

± 0.019 7.3

±0.004 8.0

±0.004 10.9

± 0.004 4.4

± 0.020 6.8

± 0.003 9.8

±0.002 7.6

Fig. 7 .11: Best, mean and median test error and mean training time for Sunspots data

11sing GFNNs.

152

A GlillliRAUSUIFiiti:DFrJRWARDNliUML NETWDRKARCHITliCTURli

7,3,6 The 'Optimal' Lower-Bound of s

As discussed in Chapter 4, the denominatorofthe shunting neuron (or shunting tenn)

s, given in (7.2), is constrained to be positive definite so as to avoid II divide by zero

condition. By definition, the GSN contains the same shunting tenn, with the same

constraints. During the training oftlie GFNNs, as with SIANNs, a lower limit for the

s term, s11m, is set. The limit s1;m correspondingly detennines the lower bound for the

purnmeter a during training, depending on the lower bound of the denominator

activation function.

Previously in Chapter 4, it has been shown that changing the value of Slim used

during training affects the stability and duration of training for SIANNs, as well as

the accuracy of the trained network. Tests were conducted on SIANNS using II

number of combinations of problems, training algorithms, network structures and

activation functions. The value of Slim during training was varied over a range of

values (from 0.01 to 2.0) for each of these cases aod the performance in terms of

accuracy and training times were noted. This was an attempt to find a limit va]ne that

worked best over a range of problems, t'llining algorithms and networks. It was

concluded that a limit value between 0.5 and 1.0 would be 'best' for SIANNs, and

subsequently s1;m was set to 1.0 as u 'standard' across nil the benchmarks tests

conducted so far.

The same limit of Slim = 1.0 was used in the GFNN experiments, to maintain

consistency across the different network structures. This limit value, however, may

not be the 'best' value for GFNNs since they have their own transfer characteristics.

One method of finding such an 'optimal' vnlnc for s1;m, within the practical

constraints of time and resources, would be to conduct similar tests as were done in

Chapter 4, for the GFNNs.

Experiments were ca11ied out on the Wisconsin Breast Cancer, Pima Indians

Diabetes, 3-bit Parity, and Multi-Class problems, using both GDX and LM

algorithms. The GFNN structures used were the same as in the previous sections. For

each combination of benchmark problem, training algorithm and network structure,

the best performing activation function combination was used. For each network

structure and benchmark problem, the same SO initialised networks used previously

were trained. Each network training case was repented with the lower limit SJ Im set to

the values O.Ol, 0.02, 0.05, 0.1, 0.2, 0.5, l.O and 2.0.

The results obtained, as Slim is changed, are shown in Figs. 7, l 2 to 7 .15. Details of

results are given in Tables B.37 to B.40, presented in Appendix B. The results show

that there is minimal variation in the performance, in terms of both classification

accuracy and training time. There is II consistent and significant effect on the results

only when s1;m becomes greater than I. The results show a drop in performance,

marked by nn increase in the e11or rate and sometimes also an increase in training

153

A GENERALISED FEEDFORWARD NEURAL NETWORK ARCHITECTURE

time in the cases that are affected. The pattern that emerges is that only the GDX

trained networks appear to be affected by changing Slim· All the networks trained with

LM have remarkably constant performance across the range of values of Slim tested.

For the Breast Cancer and Diabetes problems, the networks trained using GDX

show an increase in the error rate for siim greater than 1. The two single-layer GSN

networks, G 3-1 trained on the 3-bit parity problem and G 2-3 trained on the Multi­

Class problem, are the only networks that buck this trend. Their performances vary

significantly as the value of SJim is varied; actually improving as SJim increases.

Effllcl of s1orn : Wlsconm Btaast Cancer

0 . I

10' 10 111

25

• •
~ 20

1 <,<
.!. 15

• ..,
r 1

s ,

0
10 · 10 ' 10 . ..,,

Fig. 7.12: Mean enor and training time for Breast Cancer dataset using GFNNs with

vanous Slim·

t
i
i
~

EIJoct ol s 11m : Pima Indians 013b9tes

22 ---'--..,.....,--'--- -'-, -,-
• G 8·1 GOX Tan Exp

_,, G 8-1 LM T.in l09
21 .5 >,

21 •

20.S

• GP S.~1 GDX Tan Tar,. Till
GP &-Z·1 LM &plco,Loo

t== =i==.::.;;;;;·::;;.· ;.;•.;-;.;.;;···;;.;·· = i~ = ;i:;:;..::;;,;...;;;;;-......... , • . - - .. !'-';_"~---__. __________ .._ __ ..,_~--------i

?O ••I I
10 ' 10

25

20
"' .f ,~. •
I,

~ 10. • • • "' i s •
0
10· 10

Fig. 7.13: Mean error and training time for Diabetes dataset using GFNNs with

vanous SJim·

154

A G ENERALISED FEED FOR WA RD N EURAL N ETWORK A RCHJTECTURE

Elfoct ot • ,.., : 3 -1>• Po,ky

--...._.. __
..

• • 0 ..
10 1

6 • •
5

- ·~-- • •

~o ' 10 '

Fig. 7.14: Mean error and training time for 3-bit Parity problem using GFNNs with

vanous Slim·

"'

Effect of · ~m : M<Jlll -etass

,2 ,--~~~~~~~~~~~~--;:::==;::;:::;:;:;:::;:;==;;::===:::;i
+ G2-3GDXlogExp

4
10 10''

80

-.- G 2-3 LM Lin Exp
• GP 2-2-3 GOX Llnlog-Log

..,,_ GP 2·.2-3 LM Unl.09-T an

· ... - w..- ···-···=

• I

10
1
'

-,

~ 20 c ·----· .. _. __ •. _ ...

• • ·- --· ­··•·-·----·
·- .. _. _.,.-.. ·-·--o--.... _ ____ .. ,., ~.-........ , -.----.1. ________ .. ___________ ... _ 1.,.

10 10 10•

Fig. 7.15: Mean error and training time for Multi-Class problem using GFNNs with

vanous Slim ·

These results would indicate that the value of s1im used during training of GFNNs

does not affect the results as much as it does SIANNs. Setting s1im to a value of 1 or

less (but more than 0, by definition), would not affect results in most cases. Taking

into consideration the exceptions mentioned above, this would make s 1im = 1.0 a

used in the benchmarks tests, the 'optimal' setting.

155

A GE/1£/Ul./SED FEEDl'ORWAIW NEU/UlNEnroRK ARCHITECWHE

7.4 Discussion

The results of the benchmark tests conducted, when taken as a whole, show that !lie

simple GFNN structures tested are able to achieve similar or better results than the

larger SIANN structures in terms of accuracy. There is also a consistent pattern of

faster training times when comparing results for the same training algorithm. This

saving is most apparent when using the LM algorithm.

The GFNN structures tested were the simplest possible structures: either a single

generalised shunting neuron (G n-1) or a hidden layer of two GS neurons with a

perceptron output (GP n-2-l). The only exception is the Multi-Class problem that

requires multiple outputs; for this the single GSN was replaced by a single layer of

GS neurons, and in the other case the output perceptron replaced by a layer of

perccptrons. These small structures generally resulted in less synaptic weights,

provided the number of inputs is greater than 2. This was one of the motivating

factors in enhancing the SIANN structure that ultimately led to the formulation of the

GFNN. For large problems, it was reasoned that smaller structures would lead to

saving in terms of memory requirements and computational complexity, hence a

reduction in training time. This has been borne out by the results obtained. It should

be noted that this reduction in synaptic weights becomes more prominent as the

number of inputs to the network increases. For problems that have a small number of

inputs, the complexity and number of weights in a single GS neuron tends to offset

the gains obtained by reducing the number of neurons.

The 'complexity' of the generalised shunting neuron, however, is what gives it its
power. lt has enabled a single Generalised shunting neuron to be used to solve four

out of the five benchmark problems considered in this chapter- the exception being

the Multi-class problem that requires three outputs. Out of these, three are real world

problems. The fact that a single neuron could achieve 100% correct classification for

the Wisconsin Breast Cancer nnd 3-bit Parity problems is a noteworthy point.

Another advantage ofGFNNs is that it can reduce the time taken to find the 'best'

network structure for the problem. A network that is too small may not be able to

'solve' the problem, whereas too large a network will result in overfitting. With the

GFNNs, the search starts with just a single neuron, and it appears that the size of the

network required will normally be small, thereby reducing the number of network

structures that need to be tested. This search for an optimal structure is a hidden time

and effort - a cost that does not show up on training time results.

The results obtained when attempting to find the optimal value for the lower

bound of the shunting term, s11m, show that the limit hardly has any impact on the

results, particularly if it is kept at or below l. This means that the shunting term (or

denominator) would not be going below the limit value of one, in most cases.

Looking at this from another perspective, the effect of the shunting term, which is

156

A GENEIIALISEO FEEDFORWARDNEUl!ALNETWORK ARCHITF:CTURE

controlled by the inhibitory synapses, would therefore be to reduce the magnitude of

the output of the numerator that is driven by the excitatory synapses. This is

intuitively appealing, as the function of inhibition is to lower the output of the neuron

ornetwork, and the opposite for excitation. This would not be the case if the shunting

t~nn were to go below ooe, as it then would be amplifying the output of the

numerator. Put simply, the GSNs operate such that the excitatory and inhibitory

inputs affect the output in the expected manner.

While the results presented here show good perfonnance by the GFNNs,

Arulampalam and Bouzcrdoum have obtained somewhat better results using some

different initialisation and training conditions (Arulampalam & Bouzerdoum, 2003a,

2003b). The first difference is that the value of S1im used was 0.1, instead of LO.

Secondly, the network initial weights were generated using a nonnal distribution,

instead ofa unifonn distribution.

With these alternate conditions, the single generalised shunting neuron (G 9-1)

trained with GDX and LM algorithms on the Breast Cancer was able to achieved

94% and 90%, respectively, of networks having 0% error. This is an improvement on

the 84% and 22% achieved ush1g the standard conditions used in this thesis. For the

3-bit Parity problem, the single shunting neuron was able to get 94% of neurons

achieving 0% error when trained with LM, compared to 66% with standard

conditions. The mean error also dropped from 11.0% to 1.5%. It has been shown that

the value of SJim hEIS minimal impact on GFNNs, particularly when trained with LM.

This would indicate that this perfonnancc improvement is due to the initialisation

scheme. The improvements arc problem dependent, however, as the results for the

Diabetes problem were worse using these alternate conditions.

An alternative method tried out was not to use the bias tenn, b, in the numerator,

by setting b to O and not varying it during training. A single shunting neuron trained

with GDX in this manner was able to achieve 'perfect' results on the Wisconsin

Breast Cancer dataset - all 50 'networks' achieving 100% correct classification.

These results reinforce the conclusion that GFNNs are a powerful class of networks,

able to achieve good classification results, even with a single neuron.

7.5 Conclusion

In this chapter we have presented the motivation behind the development of the

Generalised Feedforword Neural Network (GFNN) nrchitecture, initiated by the need

to overcome some of the limitations ofSIANNs. The development of the Generalised

Feedforward Neural Network (GFNN) architecture and structure of its bask bttilding

block, the Generalised Shunting Neuron (GSN) model, have been presented.

157

A GEl/£/IAUSEDFE£fJFORIVA/IDNEUR,1LNE11l'ORK A~CHITECTURS

The Generalised Shunting Neuron model presented here includes both the

shunting inhibitory neuron and the perceptron neuron as special cases. The ability of

the GSN depends on the combination of numerator and denominator activation

functions used. It has been shown that a particular combination of activation

functions can produce various types of transfer characteristics by simply varying the

synaptic weights.

Details of experimental results obtained using GFNNs on benchmarks problems

have been presented. Investigations were also canied out to detennine the 'best'

lower bound for the shunting tenn, Slim· The results obtained show that the GFNNs

rn:e able to achieve comparable or better results than S[ANNs for the benchmarks

problems, using smaller, simpler network structures. There is also generally a Saving

in tenns of training time, especially when using the LM algorithm. The most striking

fact was that a single neuron could actually be used as a viable 'network' for these

problems.

The Generalised Shunting Neuron is capable of producing complex decision

boundaries, and hence it is able to solve some real word classification and regression

problems. This is exemplified by the perfect solutions of the 3-bit parity and Breast

Cancer problems using a single GSN. Furthennore, using the GSN avoids the

problem of having to c\rnose an arbitrary subset of excitatory inputs, a problem faced

when reducing the size of SIANN structure. This was one of the prime motivating

factors in the development ofthe GSN model.

In conclusion, GFNNs show the ability to fonn the basis of a class of powerful

new classifiers. Further investigations needed to compare their performance with

other types of networks, particularly on more complex problems. The next step

would therefore be to compare the perfonnanee of GFNNs to thnt of MLPs and

SIANNs for n variety of problems.

158

Chapter 8

Extended Benchmark Tests

8.1 Introduction

In the previous chapters, the perfonnances of 'standard' SfANNs, 'enhanced'

SJANNs and GFNNs were compared on a set of benchmarks problems. This

comparison between various shun1ing inhibition based networks begs the question
"How do shun1ing inhibition based networks compare with other types of networks?"
In this chapter, lhe issue is addressed by comparing the shunting inhibition-based
nccworks with what is arguably the most commonly used artificial neural network for
these 1ypcs of problems, the Multilayer Pcrceptron (MLP). Moll.!over, whenever
possible, comparisons are also made with other results presented in the liternture.

T11c GFNN architecture contains MLPs as a subset. TI1c code uscli for the

simulations has been written in II manner that allows the same code to be used for
gcncm1ing 11nd I raining SIANNs, GFNNs and MLPs, For each of the live benchmark
rrob!cms used in previous chapters, MLI' structures with similar number of weights
as the GFNN s!ructurcs were generated, tmined mid tested. The objective was to
invcstignlc dHTcrcnccs due to the types of network 11rchi1ccrures; therefore, the same
co<lc was u~cd for iuitialisalion and training, with n!I rammctcrs being the same. An
additional benchmark noblcm has been considered, namely the Thyroid dis~asc
classification rrobkm, .. , order to provide an insight into the c11r11bilitics of shunting
nclwork5 with larger problems,

'"

EXTENDF.D f!f:NCIIMARK TESr.;

It should be noted that the MATLAB code developed so far for training SIANNs,

GFNNs and MLP has not been optimised for speed of execution. Code optimisa!ion

would havCl significant impact on the time taken to train the networks. In order to

provide a reference for comparison with other experimental results, 'MATLAB

Toolbox MLPs' (MT·MLPs), generated and trained using the MATLAB Neural

Network Toolbox, have also been trained on the same set of benchmark problems.

These 'MT-MLPs' differ from the earlier MLPs, which we hereafter refer to as G­

MLPs, only in the method of initialisation and the Clfficiency of the training

algorithms, including the method of representing and storing infonnation in memory.

The next section presents the results obtained by training MLPs on the benchmark

problems and compares them to earlier results obtained using GFNNs and SIANNs,

as well as making comparisons with other published results. The third section

presents a comparison of the MLP results obtained using G-MLPs with those

obtnined using the MATLAB Neural Network Toolbox code. A discussion is

presented in Section 8.4, followed by lhc conclusion in Section 8.5.

8.2 Test Results and Comparison

The next five sub-sections present results of MLPs trained and tested on the five

benchmark problems used in the previous chapters and compares them to results

obtained with SJANNs and GFNNs. For each benchmark problem, one of the two

GFNN networks presented in Chapter 7 was chosen for comparison with an MLP

having similar number of weights. As in the previous chapters, 50 networks were

generated, and these were trained using GDX (Gradient Descent with momentum

and adaptive learning rate) and LM (Levenbcrg-Marquardt) algorithms. Additionally,

both the GFNN and MLP were trained on the QNN variant that achieved the best

perfonnance using SlANNs for the particular benchmark problem. The DS-GDX

algorithm was not compared, ns it can't be used for single layer networks. The

initialisation 1md training parameters used arc the same as described in Clmptcr 4.

As mentioned in the introduction, the MLPs were generated, initialised, trained

nnd tested using the snme MATLAB code used to train SIANNs and GFNNs. The

objective is to VOi)' only the type of neuron used, so thnt a fair comparison can be

mnde on the relntive effectiveness of the two architectures. This is also the reason

why the tested MLP structure was not one with the same number of neurons as the

GFNN structure, but instead one tha! had similar number of synaptic weights. This

would give the MLP network the same 'capacity' to lenm ns the GFNN network,

making the comparison foirer. It would also make the sizes of the gradient vectors

and Hcssinn mn1riccs comparable, making the time comparisons fairer as well. The

results for the 'S!andard' SIANNs are prescn!cd for comparison.

160

EXTENDED BENCmURK TESrs

An additional 'real world' problem, the Thyroid disease classification problem,

has been added to the set of benchmark tests to compare the different network types.

Appropriate GFNN, SIANN and MLP networks were trained and tested on this

problem. The description of this dataset and the test results are presented in

Subsection 8.2.6.

Comparisons with results for the benchmark tests from the literature have also

been canied out where available and appropriate.

8,2,I Wisconsin Breiut Cancer Dataset

The results obtained using a 9-2·1 MLP, a single generalised shunting neuron (GSN)

and the 'standard' 9-9-1 SIANN, trained on the Wisconsin Breast Cancer problem,

are presented in Table 8.1 and Fig. 8.1. As in previous chapters, the figure contains

two graphs: the top graph shows the mean and median test error rates for the best

perfonning activation function combination, and the bottom graph illustrates the

corresponding mean training times. Note that the median test error is often zero, ond

hence is not visible on the graph.

The 9-2-1 MLP network trained using the GDX algorithm had the lowest average

error (0.08%) with 86% of networks able to achieve perfect classification, i.e., 0.00%

error. This network structure was also the second fastest In train, next to the GFNN

trained with GDX. The MLP trained using the LM algorithm, on the other hand, had

the highest error rate, with a mean error of 0.51%. When trained with the QNNJ

algorithm, the MLP achieved an 'average' error of0.24%.

The MLP took marginally longer to troin than the GFNN for both the GDX and

LM algorithms. The GFNN was the slowest to train with QNN. The mean trnining

times for the LM and GDX algorithms aro quite similar, with the exception of the

SIANN trained with LM.

Overall, the first-order GDX algorithm surprisingly produced the best set of

results, both in tenns of accuracy and speed of training. The LM algorithm had the

highest average error mies, except for the SlANN architecture. The MLP results

were the extremes - the best of the best (GDX), worst of the wnrnt (LM), and middle

with the QNN algorithm!

Herc it has to be highlighted once again that, in reality, the average error rates

achieved were not very different. All cases achieved error rates of less than 0.5%, in

other words, mean accuracy of 99.5% or belt er, nnd over half the networks achieved

perfect classificntion.

161

EXTENDED BENCHMARK TESTS

Table 8.1 Results for Wisconsin Breast Cancer dataset using MLP GFNNs and

SIANNs

Network Training Activation Performance Avg Epochs Test Error Mean

Structure A Igor. functions (% of runs) time

Shunting Out 7 20% All 7 0% Best 95%
to

0% Mean Med. train
Nu Den goal err < runs goal Error (%) (%) CI (%) (s)

MLP GDX Lgs Lin 0 86 100 158 * 159 0.00 0.08 ± 0.05 0.00 8.6
9-2-1 LM Lgs Tnh 0 44 [00 57 * 56 0.00 0.51 ± 0.15 0.56 9.9
(23

weights) QNN3 Lgs Tnh 0 70 100 80 * 67 0.00 0.24 ± 0.12 0.00 13.2

Single GDX Lin Lgs 0 84 100 134 * 141 0.00 0. 16 ±0. 11 0.00 7.0
GSN 9-1 LM Lin Lgs 0 22 100 56 • 54 0.00 0.44 ± 0.07 0.56 9.4

(22
weights) QNN3 Lin Lgs 0 68 100 194 * 204 0.00 0. 19 ± 0.08 0.00 30.9

SIANN GDX Lgs Lgs 0 66 100 161 .. 160 0.00 0.20 ± 0.08 0.00 10.3
9-9-1 LM Lgs Tnh 0 74 100 181 .. 119 0.00 0.20 ± 0.10 0.00 34.8
(118

weights) QNN3 Tnh Lgs 0 56 100 78 • 70 0.00 0.33 ± 0.12 0.00 17.4

Wisconsin Breast Cancer
n,

[:·";J
Trained u&lng GO)(Trained u&lng LM Tr• lnod u•in_g QNN

[t•

i
] c •

I I I ::ii_
...._p

,o --

35

'.JO

~ 1,
E
i= ..
.5- 2a -·-rn--
~

'i! ...
i 15
~

10

'"-" OfNN M.LP OfNN S~ N

Notworl< Typo

Fig. 8.1: Mean and median test error and mean training time for the Wisconsin

Breast Cancer dataset using MLPs, GFNNs and SIANNs.

162

li,\TfiNDED BENCHMARK Tf.STS

To get an idea of what these benchmark test results mean in the broader context of

pattern classification, comparisons have to be made with other results published in

the literature. The results obtained by Preehelt, with the Probenl set of benchmark

problems (Prccbelt, 1994), provide a good reference for comparison for a number of

reasons. Firstly, the results arc well documented witb good descriptions of the

datasets, architectures and training parameters, as this study attempts to set the

standard for benchmark testing and reporting. Secondly, the Probenl set contains

three out of the six datasets used here, namely the Wisconsin Breast Cancer, Pima

Indians Diabetes and Thyroid datasets. The third reason is that the guidelines and

'standards' laid out by Prechelt have been followed fairly closely in lhe benchmark

tests carried out in this investigation, which allows meaningful comparisons to be

made. Finally, the Probenl datasets and the results given by Prechelt arc referenced

fairly frequently, fonuing a common reference point for comparison.

Prechelt divides the datasets into training, validation and test sets using 1he same

50%-25%-25% proportion ns used here, but he has three versions of each dataset,

where the only difference is the ordering of the samples, resulting in different

partitioning of the data. The networks were trained using the RPROP algorithm, a

fast backpropngation variant that operates in batch mode (Ricdmiller & Braun,

1993). He presents results for a number of different architectures: purely linear

networks; selected multi-layer structures with sigmoid neurons for finding the 'best

pcrfonning' structure; and 'pivot architectures' with and without shortcut

connections (relates to the best perfonning network structures, sec (Prcchelt, 1994}

for details}. The most appropriate structure for comparison would be the 'pivot

architecture' networks without shortcut connections. Resulls for this structure trained

on all three partitions will be used for comparison, a!ong with selected results from

other sources using different types of classifiers.

Prcchelt used 'pivot architectures' of 9-4-2-2, 9-8-4-2 and 9-16-8-2, with no

shortcut connections, for the three different data partitions of the Breast Cancer

problem (labelled Cancer/, Canccr2 and CrmcerJ). The networks used arc MLPs

with sigmoid neurons in the two hidden layers and linear output neurons, with one

output for each class, 1md have 56, 126 and 314 weights, respectively (no shortcuts).

TI1ese networks achieved mean test error rates of 1.32%, 3.47% and 2.60%,

respectively. These results arc presented in Table 8.2, along with results from a

variety of cln~sificrs such as MLl's evolved using evolutionary programming

(EPNel)(Yao & Liu, 1997), k-Ncnrcst Neighbour classifiers (kNN} (Jankowski,

2003), Support Vector Machines (Sl'M)(Shin & Cho, 2003}, lest feature classifiers

(Lashkia & Alcshin, 2001), fu1.1.y neural networks (Mccsad & Yen, 2001), cascade

neural networks created using cons1ructivc nlgori1hms - wilh pruning (CNNDA -
Cnse I) and without pruning (CNNDA - C<l•c If) (ls!mn ct ul., 2000) nnd neurnl

network commiuccs (Cr1mmill<'C) (Verikns ct al., 2002).

16)

Exn:NfJ£tJ B£NCHMAIIK T£STS

Table 8.2 shows the results from the other literature, with mean error rates ranging
from 1.16% to 6.70%. It is fairly obvious that GFNNs and SIANNS, with mean error
rates between 0.16% ond 0.44%, outperform these other classifiers by a significant
margin. Who! makes it more notable is the fact that the shunting network results have
been obtained with very small structures, including a single neuron GFNN.

Tab!e 8.2 Comparison of mean test error for Wisconsin Breast Cancer d~tnset with
resnlts from other literature.

lns1a<1<0 Source Meo~;.<;,•
Error%

lml:ln<o Source McaoTo,t
Error 'II'

GFNN-GDX Ch,", 718 0.16 Canoorl Prnbonl l.ll

GFNN-LM Ch,- 718 0.44 Conoorl Prnbonl "' GFNN-"NNl Ch,- 718 0,19 Ctu1«rl Probcnl ,.oo
SIANN·GDX Cho•. 418 0.20 EPNcl '"' l.l8
SIANN·LM °"'"·418 0.20 ~, Jookowslci 2.9S
SIANN-"NN) Ch,-.4/8 0.)) S,M Shin '" MLP-GDX Cho·. 8 0.08 Testfealllre Lllski, 4.00

MLP-LM Cho•. 8 O.SI '" " Moo,ad 1.15
MLP-nNNl Ch,·, 8 0.24 CNNDA - ai,c l 1,1,m l.27

CNNDA-Cn,oll lslom l.16

Commiltoc - All Vo,iku 3.10
Commi1tec - 2 Features Vcrihs 2.JS

8,2,l Pima Indians Diabetes Dataset

Tiie results obtained for the Diabetes dataset, using nn 8-2-1 MLP, 11 single
generalised shunting neuron (G 8-J) nnd the 'standard' S!ANN (8·8·1), are presented
in Table 8.3 and Fig. 8.2. Since the 'best case' error is not zero for this problem, here
Fig. 8.2 shows the lowest error rate achieved by II single network in ench case, in
nddition to the mc~n and median test error rates.

The MLP was nblc to achieve a mean error rate between 20.45% nnd 20.75%,
which is comparable to the results obtained using the GFNN. Compured on the basis
of !mining algorithm, the MLr achieved the best result for the GDX algorithm,
followed by the GFNN and SIANN, whcrc11s for tbc LM nnd QNN 11lgorithms the
order was reversed, with SJANN doing best and MLP worst. Tiie SlANN was the
only network structure here able to achieve average error rates below 20%, (19.88%
with LM and 19.80% with QNN3 algorithm). An error rate below 20.0% is
~onsidcrcd very good for the Diabetes dat11set, ns most test results tend co be above
th!s level (Michie ct al., 1994; Prccheh, 1994). It should be noted chat the GP 8-2-1
GFNN trained wi1h DS-GDX wos able to nchicvc 19.94%, see Tublc 7.2. The best
average error ofoll was with a SIANN trnincd using the first-order GDM algorithm -
n remarkable 19.05% (sec Table 4.3).

164

EXTENDED BENCHMARK TESTS

Table 8.3 Results for Pima Indians Diabetes dataset using MLP, GFNNs and

SIANNs

Network

Structure

MLP
8-2-1

(21 wt.)

Single
GSN 8-1
(20 wt.)

SlANN
8-8-1
(97

weights)

Training Activation Performance Avg Epochs Test Error

Algor. functions (% of runs)

Shunting Out 7 0% 20% All 7 0% Best Mean 95%

Nu Den goal err < runs goal Error (%) (%) CI

GDX

LM

QNN3

GDX

LM

QNN3

GDX

LM

QNN3

Tnh Tnh 0

Lgs Tnh 0

Lgs Lin 0

Toh Exp 0

Tnh Lgs 0

Tnh Lgs 0

Tnh Lgs 0

Lgs Tnh 0

Exp Tnh 0

»

ffllntd usli,g GOX

,1

.. !) •

I

"

..

9J ---

45

...
~"I)

~ ..
{ 25

1! ..

0 30 188 *
0 26 58 *
0 34 144 *
0 38 173 *
0 34 22 *
0 46 94 *
0 14 195 *
0 58 182 *
0 60 182 *

Pima lndlans Diabetes

Tr•tn•d using UJI

1i 20<--------------
:i

IS

MlP GFNN SIANN MlP OFNN SIANN
Nttwork Type

* 18.75 20.45 ± 0.22

* 18. 75 20.75 ± 0.31

* 18.23 20.48 ±0.28

* 18.23 20.58 ± 0.26

* 18.75 20.56 ±0.27

* 18.23 20.05 ±0.24

* 17.71 21.03 ±0.29

* 17.71 19.88 ± 0.32

* 17.7[19.80 ± 0.27

Tra Md using CNN

MLP GFNN SIANN

Mean
time

Med.
to

train
(%) (s)

20.31 I I.I

20.83 10.8

20.31 26.2

20.83 9.7

20.31 5.2

20.31 17.0

21.35 13 .2

19.79 38.9

19.79 44.6

Fig. 8.2: Best, mean and median test error and mean training time for the Diabetes

dataset using MLPs, GFNNs and SIANNs.

165

EXI'EN/JW BENCIIM,iHK r=

The SIANN has the advantage of more synaptic weights, 97 versus 21 and 20

weights for the MLP and GFNN structures, respectively, hence providing it with a

larger 'learning capacity'. On the other hand, the increased network size has the

disadvantage of more complex computation, as reflected by the longest training

times for SIANNs, particularly for the second-order LM and QNN algorithms. One

notable fact is that the single GSN was the fastest to train for all three algorithms.

Furthcnnore, it achieved better results than the MLP when trained using the second­

order algorithms, LM and QNN. For the first-order GDX algorithm, the MLP

achieved the best average error rate, but its best case error is still worse than that of

the single GSN. Finally, it should be point out that the lowest error achieved by a

single GFNN was 16.15%, a GP 8-2-1 network trained using LM, while the best

single network overall was the standard 8-8-1 SIANN trained using the QNN6

algorithm which achieved an outstanding 15.63% (see Tables 7.2 and 5.6
respectively).

Table 8.4 presents the mean test error rates from the MLPs, GFNNs and SIANNs

obtained here for comparison with results published in the literature. The Probenl

benchmark tests conducted by Prechclt have three different partitions (labelled

diabetes/, diaberesl and diabetes 3) (Prechelt, 1994). The diaberes/ and diabrres3

partitions end up having ns their 'pivot architecture' a single hidden-layer network

(8-32-2, with 354 weights), while di,1be1esl has a two hidden-layer network (8-16-8-

2, with 298 weights), all with no shortcut weights. Compare this to the GSN used,

which has 20 weights, and even the 'full' SIANN with 97 weights. The mean test

error of the Probe11J networks, with sigmoid hidden layer neurons and linear output

neurons and trained using the RPROP algorithm, arc presented in Table 8.4.

The Sia/log project tests a variety of statistical, machine learning and neural

network methods on twenty classification problems, one of which is the Diabetes

problem; details of the various classification methods used can be found in {Michie

ct al., !994). The results achieved by these clas,ification methods on the Diabetes
problem are presented on the right hand side of Table 8.4.

Other results presented in Table 8.4 include fecdforwnrd networks constructed

using a number ofmclhods: evolutionary programming (EPNcl) (Yao & Liu, 1997};

cascade correlation-based construction with weight pruning {Thivierge ct al., 2003);

correlation neural network design nlgoritl11n with pruning (CNNDA - Crue /) and

without pruning (CNNDA - Case JI) (Islam ct al., 2000). The other compared

classifiers nre a Functional Link Network with Gaussian functions trained using

Gcnclic Leaming (GlFLN) (Dhumircddy & Chen, 2003), support vec1or machines

(SVM) (Shin & Cho, 2003), and ncum! network committees where the members are

trained on nil features (Ca111mi11,·c -All) or, nltcmativcly, committee members are

tmir.cd on selected features (Cammi/lee - lfi•r1/11res) (Vcrikas ct al., 2002).

166

I

EXTENDW BENCll,\URK TUTS

The GFNN, SIANN and MLP network results presented here range from 19.1% to

21.0% error, which are better than all the results reported in Stat/ag and Proben/,
and most of the others as well. The only instances from other sources with mean

error rates below 21% are CNN DA Case II, GLFLN and Cammi/lee - 2/eamres. The

CNNDA Case JI is the on!y instance with an average error below 20%; it has an

average error rate (l 9.9%), whirh is comparable to that of SIANN trained with LM

(19.88%) and QNN3 (19.80%), but not as good as the S!ANN trnined with QNN9

(19.57%) and GDM (!9.05%). This means that the results achieved by the shunting

inhibition based networks arc better than most of the other surveyed classification

methods, including many that use networks that are for larger in terms of number of

neurons and weights.

Table 8.4 Comparison of mean test error for Pima Indians Diabetes dataset with

results from other literature

ln,1an,o ··~ Mo•~;;,.~t rnsionoo ··~ MoonTo,t
Error % li1Tor<%\ ...

GFNN-GDX Cha-.1/8 20.6 Lo•di,o Slatl"" ll.l

GFNN·LM Ch,-.118 20.6 OIPOL92 Slatl-- '" GFNN-nNNJ Chan,7/8 20.l Di•ction Smlo 22.J
S!IINN·GDX Chan.4/8 21.0 SMART St>tlo "' S!IINN·LM Cha-418 19.9 m St>tlo 24.l

StilNN-nNNJ Ch,·.418 19.8 ITrulo Stiulo 24.S

MLP·GDX Chan.8 20.S o,ok•ro• SlilllD 24.8

MLP-LM Chan,8 20.8 C11S s1111Toe 25.0

MLP-"NNl Ch,- 8 20.5 CART SIOllo 25.S

GFNN GP 8-2-1 - DS·GDX Ch," 7 19.9 c11snE S1111to 2H

Sli\NN-nNN9 Chan.S 19.6 u,di..: s1a,10, 26.1

SIIINN·GDM =~' 19.1 Noi,·oBa·· S1atlo- 26.2

Diobotosl Prob<nl 24.1 C4.~ S1atl- 27.0

Diobms2 Prob<nl 26.4 lodCART s .. 110• 27.1

Oi,botosl Probcnl 22.6 Do•lfeO Sl:ltl"" 27.1

EPN<1 ,,, 22.4 "" Stodo- 27.2

Ca,cado Com,l,iion Thivior•o 21.l Kohonon Stotlon 27.l

CNNDII-Ca,el 111,m 22.l AC' St1tlo• 17.6

CNNDII-Ca,oll l.t,m 19.9 Nc1<!0 51111!0• 21.9

GLFLN Dh"mifNd" 20.l m S1>1lo• 2U

SVM Shin 29.9 i\LLOC80 Slallo• 10.1

Commiuco-1111 Verik" 21.7 l,NN Slatlo• l2.4

Comrninco - 2 Feoture1 Verik11 l0.8

167

EXTElll!W 81:NCHM.!.RK TliSTS

8.2.3 The 3-bit Parity Problem

The results for the parity problem, presented in Table 8.5 and Fig. 8.3, are obtained
with a 3-3-1 MLP, a GP 3-2-1 GFNN and the 3-3-l 'standard' SIANN. It should be
noted that in all cases the median error rate is zero, and so is the mean in two cases;
these are, therefore, not visible on the graph.

The 3-3-1 MLP trained with LM was able to achieve 'perfect' results - 100%
correct for all networks - just like the GFNN network, but in a shorter time. The
MLP achieved the best result obtained using the GDX algorithm, with a mean error
rate of only 0.5%. However when trained using QNN, the MLP did not perfonn as
well, with the second highest overall error rate of 3.0%. Overall, the MLP always
outperfonned the SIANN in tenns of accuracy, but had mixed results compared to
the GFNN. The MLP was, however, the fastest to train for all the three algorithms
tested.

T11is is a fairly simple problem for the neural networks, with all the network types
achieving !00% correct classification with more than three quarters of the trained
networks. In this case, the simplicity of the MLP neuron structure has resulted in
foster training times while still achieving similar accuracy compared to the other
network types.

Comparison with other literature has not been mmle for this problem for a couple
of reasons. Firstly, most of the literature where parity-type problems have been used
refer to the simple XOR, or 2-hit parity, problem, while others jump to the more
complex 5-bit or higher parity cnses. Secondly, even in cases where the 3-bit parity
problem has been used, the results are generally not in a fonn that allows nny
meaningful comparisons to be made. For example, some results are in the fonn of the
number of epochs or number of operations required to achieve n particular error goal,
and in most cases the error goal is different to that used in the tests perfonned in this
work.

8,2,4 Artinclal Mulll-class Problem

Since this problem hns two input features and three classes, all trained networks had
two inputs and three output neurons: the GFNN was a 2·2-3 structure, with two
GSNs in 1he hidden layer and three pcrccptron-typc output neurons; the MLP wns a
2-4·3 structure, with four hidden neurons; and the 'standard' SlANN had a 2-2-3
structure. Among these neuron network structures, the MLP hns the most synaptic
weights with 27, the SlANN has the least number of weights for once with 19, and
lhc GFNN has 25 weights.

168

EXTENDED BENCHMARK TESTS

Table 8.5 Best results for 3-bit Parity dataset using MLP, GFNNs and SIANNs

Network Training Activation Perfonnance Avg Epochs Test Error Mean

Structure A Igor. functions (% of runs) time

7
to

Shunting Out 7 0% 20% All 0% Best Mean 95% Med. train
Nu Den goal err < runs goal Error {%) (%) Cl {%) (s)

GMLP GDX Lgs Lgs 96 96 100 224 192 192 0.00 0.50 ±0.69 0.00 1.0
3-3-1 LM Lgs Lin 100 100 100 11 11 11 0.00 0.00 ±0.00 0.00 0.2

(16wt.)
QNN3 Lgs Lgs 78 78 98 333 145 145 0.00 3.00 ± 1.65 0.00 5.4

GFNN GDX Lin Exp Lgs 80 80 100 454 318 318 0.00 2.50 ± 1.40 0.00 3.2
GP 3-2-1 LM Lin Lgs Lin 98 100 100 30 22 30 0.00 0.00 ± 0.00 0.00 0.8

(23
weights) QNN3 Exp Tnh Lin 84 84 100 283 160 160 0.00 2.00 ± 1.28 0.00 7.6

SIANN GDX Tnh Lgs 94 94 96 352 311 311 0.00 1.25 ± 1.44 0.00 2.3
3-3-1 LM Exp Lin 96 96 100 84 46 46 0.00 0.50 ±0.69 0.00 1.7
(22

weights) QNN3 Lgs Lgs 72 80 88 436 216 295 0.00 4.75 ± 3.04 0.00 9.4

3-blt Parity

10
Trained using GDX Tt1lnod using LM Tfllned using ONN

1

:: J.---------------•---------------

MLP GFNN SIANN MLP GFNN SIANN MLP GfNN SIANN

N•twork Type

Fig. 8.3: Mean and median test error and mean training time for 3-bit parity dataset

using MLPs, GFNNs and SIANNs.

169

EXTENDED BENCHMARK TESTS

Table 8.6 Results for Multi-Class dataset using MLP, GFNNs and SIANNs

Network

Strucrure

MLP
2-4-3
(27

weights)

GFNN
GP 2-2-3

(25
weights)

SIANN
2-2-3
(19

weights)

Training Activation Performance

A Igor. functions (% of runs)

Shunting Out 7 0% 20%

Nu Den goal err <

GDX Lgs Lgs 0 0 100

LM Tnh Tnb 0 0 JOO

QNN6 Lgs Lgs 0 0 100

GDX Lin Lgs Lgs 0 0 JOO

LM Lin Lgs Tnb 0 0 100

QNN6 Lin Tnh Lgs 0 0 100

GDX Exp Lgs 0 0 100

LM Exp Lgs 0 0 100

QNN6 Exp Lgs 0 0 100

70

Trolned u1lng GOX

bO

140

100

! ff)
c

Avg Epochs

All 7 0%
runs goal Error

225 * *
67 * *

I 19 * ..
180 * *
99 * *

232 * *
377 * *
228 * *
158 * ..

Mufti Class

! ro ~-~~~~~~~~~~
li .
lE

MLP GF NN S\MIN MLP GFNN SWIN
Network Typa

Test Error

Best Mean 95% Med.
(%) (%) CI (%)

4.00 5.37 ± 0.22 5.33

4.00 5.83 ± 0.16 6.00

4.00 5.43 ±0.22 5.33

4.00 5.61 ± 0.17 5.33

4.00 5.79 ± 0.17 6.00

4.00 5.76 ±0.24 6.00

4.00 5.47 ± 0.16 5.33

4.00 5.69 ±0.26 5.33

4.00 5.72 ± 0.21 5.33

MLP GfNN SIANN

Mean
time

to
train
(s)

11.5

29.9

39.5

13.2

65.4

116.5

19.4

103 .0

55.4

Fig. 8.4: Best, mean, median test error and mean training time for Multi-class data

using MLPs, GFNNs and SIANNs.

170

EXTENDED B ENCHMA RK TESTS

MUlt•-cia~ decision boundary by a 2-4·3 MLP ttelntd with LM

8 \

6

Cla!!is 2

4
Clas 3

2

0

·2

-~

·6

-8

·15 -10 0 5 10 15

Fig. 8.5 : Decision boundary for the Multi-class problem formed by an MLP.

Table 8.6 and Fig. 8.4 present the results obtained by training these network

structures with the GDX, LM and QNN6 algorithms. The MLP achieved mean error

rates comparable to those of the GFNN and SIANN between 5.37% and 5.83%. For

any given algorithm the largest difference in mean error rates was only 0.33%, with

the MLP achieving the lowest error rates with the GDX and QNN algorithms and the

highest with LM. The lowest error rate achieved by a single network in all cases was

4.00%, and the median was between 5.33% and 6.00% across the board. Essentially,

this means that there is no significant difference between the accuracy of the three

architectures: MLPs, GFNNs and SIANNs.

On the other hand, there are large variations in the time taken to train these

networks as can be seen from the bottom graph in Fig. 8.4. The GDX algorithm is

approximately three to five times faster than the LM and QNN algorithms, and in all

cases the MLP was the fastest to train. The SIANN took significantly longer to train

using the GDX and LM algorithms, despite being the smallest network in this case,

as it required a greater number of epochs to train. The QNN6 algorithm, however,

was able to train the SIANN almost twice as fast as LM and it was twice as fast as

when it trained the GFNN. Thi is the only anomaly in the otherwise regular pattern

in the time graph. This could possibly be due to the fact that the QNN algorithm is

able to factor in the constraint on the decay parameter, a, for SIANNs while working

out the optimum weight update.

For this problem, the main difference in the results achieved is in the training

time. The MLP has the simplest neuron structure, and hence it is the simplest to train

giving it the edge in performance. There are no results in other literature available for

comparison for this artificially generated dataset. It should be noted that the

171

£XTEiNDED BENCIIMA~K TESTS

Expanded 2-3-3 SIANN trained with GDX achieved the best reported mean eiror of
5.00%, and the best individual network pcrfomrnncc of 3.33% was achieved by the
same network trained with the LM and DSGDX algorithms (sec Table 6.4). The
decision boundary fonned by an MLP is shown in Fig. 8.5.

8.2.S Sunspot Time Series

A 10-4-l MLP structure, which has 49 synaptic weights, was trained on the Sunspots
problem and compared to the GP 10-2-1 GFNN, having 51 weights, and the 10-10-1
standard SIANN, having 141 weights. The results are presented in Table 8.7 and Fig.
8.6. Figure E.6 illustrates the best-case, mean and median Average Relative Variance
(ARV), Eq. (4.30), as well as the mean training time (bottom graph).

The 10-2-1 GFNN achieved the best mean test ARV for each of the three
algorithms used, while the MLP had the worst test ARV for the LM and QNN
algorithms and second best for GDX. The difference between the mean test ARV of
the MLP and GFNN ranges from approximately 10% (when trained wilh GDX) to
50% (when trained with QNN). This shows that the GFNN is able to perfonn
significantly better compared to the MLP, despite the fact that the MLP has similar
number of weights and more neurons. The test ARV achieved by the standard
SIANN was also helter than that of the MLP when trained with the LM and QNN
algorithms, but worse when using the GDX nlgorithm. In terms of training time, !he
MLP trained the fastest with GDX and LM, SIANN next and GFNN the slowest;
with the QNN algorithm, GFNN trained the fastest and SIANN the slowest.

Comparing the performances of the training algorithms, the GDX had the worst
accuracy, with QNN best, slightly better than LM. The training time trend was the
other way around, with GDX fastest, LM slightly slower and QNN taking 2 to 6
times longer. TI1is is to be expected, as the 'price' for the improved accuracy is the
longer training time - the 'no free lunch' concept. The amount of ndditionnl time
required by the QNN algorithm for the marginal improvement in nccuracy, however,
mnkes it seem 'expensive', though that is a subjective conclusion.

Overnl! the GFNN trainc<l with QNN wns the most accurate, both in terms oftest
ARV and test MSE. The GFNN trained with LM wos only sligh1!y less accurate, but
trained fn less than half the time. Tho GP 10-2-1 GFNN clearly outperformed lhe
MLP in terms of accuracy. Referring back to Chapter 7, we see that a single
generalised shunting neuron, with half tho number of weights, is nble to match the
perfonnanee of the MLP network. 1110 single GSN achieved mean lest ARV of0.120
nnd 0.140 with the GOX nnd LM algorithms, respectively. The best pcrfonning
neuron has 11 test ARV of only 0.085 (see Tobie 7,S). This reinforces the fact tlmt
GFJ\'Ns are able to achieve good results with extremely simple structures.

172

EXTENDED BENCHMARK TESTS

Table 8.7 Results for Sunspots dataset using MLP, GFNNs and SIANNs

Network Training Act-tns Performance Avg TestMSE Test ARV Mean

Struct.
A Igor, (% of runs) Epoc time to

Shunlin!l. Out 7 all in 80% hs Bet Median Best Median Mean 95%CT train

Nu Den gl to) to) (s)

MLP GDX Tnh Lin 0 14 98 151 0.0094 0.0129 0.113 0.155 0.162 ± 0.024 5.8
10-4-1 LM Lgs Lin 0 22 JOO 57 0.0079 0.0113 0.095 0.136 0.138 ±0.006 7.0

(49 wt.)
QNN6 Tnh 0.0115 0.085 0.138 0.139 25.3 Lin 0 24 100 279 0.0071 ± 0.007

GFNN GDX Lin Lgs Lin 0 6 100 146 0.0095 0.0122 0.113 0.147 0.146 ±0.004 8,0
GP LM Lin Lgs Lin 0 8 100

I 0-2-1
61 0.0065 0.0083 O.D78 0.100 0.100 ±0.004 10.9

(5 I wt.) QNN6 Lin Lgs Lgs 0 48 100 170 0.0063 0.0076 O.D75 0.091 0.092 ± 0.003 23.4

STANN GDX Tnh Lin 0 14 98 147 0.0085 0.0134 0.102 0.161 0.174 ± 0.020 6.8
I 0-10-l LM Lgs Lin 0 8 JOO 54 0.0075 0.0093 0.090 0.111 0.112 ± 0.003 9.8

(141
QNN6 Lgs Lgs 0 80 JOO 337 0.0054 0.0077 0.065 0.093 0.100 ± 0.009 45.8 weights)

Sunspots

Trlln<J<I using GDX

Tr~fnod Usif10 LM Trained tnlng ONN

l ll

00.

&) ,------ ------·

IS !-----------------

MlP GFNN SIANN MlP GfNN SIANN MtP GFNN SWIN

Network TVP•

Fig. 8.6: Best mean and median test ARV and mean training time for Sunspots data

using MLPs, GFNNs and SIANNs.

173

EXTlill/JF.I! BF.NCI/MARK TF.slS

The experiments on the sunspots time series prediction problem reported in the
literature have been carried out using various parameters and measures. For example,

some use a different number of inputs to what has been used here (Lawrence ct al.,

1996; Natlaly ct al., l 997; Park ct al., 1996; Weigcnd et al., 1990). Some do not use

a complete set of consecutive previous time samples as inputs, but instcod use a

selected subset of non-consecutive samples points, based on previous analysis of the

data (Natlaly ct al., 1997). This nmkes any comparison questionoble as the networks

are being given different infonnation on which to make the prediction.

Tlie task is made even more difficult by the fact that the pcrfonnance measures

differ, unlike for classification tasks where the test error rate or success rate is used

in most cases. For time-series prediction, criteria other than the test ARV me often

used, such as 1he mean squared error (MSE) (Park ct al., 1996). However, the MSE is

not a normalised parameter; thus, differences in scaling prior to training can render

this measurement meaningless.

Bearing these constraints in mind, some results using !est ARV as the

performance measure arc presented here for comparison purposes. The GFNNs and

SIANNs achieved meon test AR Vs in the rnnge 0.092 to 0.174, with best case ns low

us 0.065. In {Nikolaev & Iba, 2003), polynomial fccdforword neural networks

{PFNNs) were trained with 10 inputs, the same number as used to train the S!ANNs

and GFNNs, and with the same range of points for training, validation and testing.

The geocralization or test ARV reported by them ranged from 0.077 to 0.442, which

is comparable to the results obtained here. It should noted that the better perfonning

networks in (Nikolacv & Iba, 2003) all had th<'ir 'optimum' structure detem1ined by

genetic programming.

In (Natlaly ct al., 1997), 12 inputs were fed into a 12·4·1 MLP structure. The

networks were then enlarged with feedback loops from the hidden layer to the input

layer to fom1 a recurrent neural network structure. These recurrent networks were

tested singly and us ensembles. The best results reported were test AR Vs of0.073 for

u single network and 0.070 for n network ensemble. The same type of networks

trnined using a subset of six non-consecutive points results in test ARV of0.070 and

0.067, respectively. Weigand and his colleagues use u standard 12·8·1 MLP, with

weight decay to address the issue of possible overfitting, nnd achieved a best case

test ARV of0.086 (reported in (Natlnly et al., 1997)). Nowlan and Hinton impose a

mixture ofGaussians prior on the weights, which they called "Soll Weight Sharing",

to get a test ARV of0.072 {reported in (Nntlaly et nl., 1997)).

The general conclusion is that shunting inhibitory networks nre nble to achieve

performance levels comparnblc to the other results reported here, with the best

shunting network achieving the lowest test ARV of0.065.

174

f:ATF.NDF.D BF.l~CI/AllHI! T,;sr;

8.2,6 Thyroid Disuse Dataset

In order to provide an insight into the capabilities of shunting networks with larger

problems, an additional benchmark test has nlso been included in this chapter. The

thyroid problem chosen has more than seven thousand samples with 21 input

parameters nnd three output classes. The thyroid dataset was chosen as it is a "hard

practical classification task" that could provide n good test for the algorithms and

networks being evnlun1cd (Schiffmann ct al., l 992a).

8.1.6.J Dc.fcriptitm 0/1/,c Thyr,1id datasct

The Thyroid disease dataset is another real-world medical diagnosis da111se1 obtained

from the UC] Machine Leaming Repository {Blake & Merz, 1998). The rcpositoiy

hits n number of dutasc1s pertaining to the Thyroid disease and the dataset chosen is

the "ANN" version, deemed the most amenable to artificial neural networks. It is in a

fonn that can be used for neural networks without need for pre-processing and !ms

been used fairly commonly in the literature (Abe ct uL, l 999; Jankowski, 2003;

Koshiba & Abe, 2003; Prechclt, 1994; Schiffmann ct al., 1992a, l992b, 1993;

Tsujinishi & Abe, 2003; Yuo & Liu, 1997). The thyroid dataset hus 21 attributes, of

which 15 arc binary and 6 continuous real-valued inputs, and three output classes.

The problem is to dctenninc the patient's thyroid function based on the input

attributes, with the three output classes being normal, hyper-functional, nnd

subnormul. The class probabilities for the test set are 92.6%, 5.1% and 2.3%

respectively. The nonnal patients make up the vast majority of cases, therefore a

good clussifier needs to have success rate much higher than 92.6% (Schiffmann et

al., l 992a), Le., an error rate significantly lower than 7.4%.

The dataset is divided into a tmining set containing 3772 samples, and test datu

with 3428 samples. While the whole training set was used to train the networks, the

test data was divided in two subsets: one half used as a vulidntion set for curly

stopping of training, and the other half used os a test set. This is in line with the 50%-

25%-25% division of the dataset used for the other problems.

8.2.6.2 Rc.mltsfor tlte Tl,yroid problem

The TI1yroid problem results presented in Table 8.8 and Fig. 8.7 arc for one SIANN,

one GFNN and an MLP network that were trained with GDX, LM and QNN6

algorithms. The GFNN structure consists of two generalised shunting neurons and

three sigmoid output neurons (GP 2!-2-3). We should note that the chosen GFNN

structure is small, compared to most structures that have been reported in the

literature ns 'optimum'. The MLP structure used was n single hidden-layer 21-4-3

MLP, selected because it has almost the same number of weights as \he GFNN

network, 103 compnn'd to IOI for the GFNN. The SIANN structure used was the

l7S

'standard' one, with the number of shunting neurons in the hidden layer being equal

to the number of input attributes, i.e., a 21-21-3 structure with a total of 570 weights.

The results presented in Table 8.8 and Fig. 8.7 show that all three types of

networks trained with the first-order GDX algorithm have mean error rates of around

6%, wilh the best result achieved by a single network of 5.60%. This result is not

practically useful as the 'default' error rate is 7.4%. However, the results arc much

better for networks trained wi!h the LM and QNN algorithms.

When trained with the LM algorilhm, the MLr achieved a mean error rate of

1.72%, the lowest mean error ra1e obtained here; the best single MLr network

achieved an error ra1c of 1.17%. The GFNN performance was not as good, with a

mean test error of 3.34% and best error rate of 1.98%. The LM-traincd S!ANN

overall perfonnance was poor, with a mean error of 5.40%, but the best case

perfonnnnce was an acceptable 2.16%.

The MLrs trained with the QNN6 algorithm did not perform as well as the LM­

traincd ones, having a mean test error rate of only 2.18% and best error rate of

1.69%. The GFNN perfonnancc was only slightly worse with a mean error rate of

2.62%, but belier than when trained with LM. The best single QNN-traincd GFNN

network achieved a good 1.81% error rate, better than the best SIANN network with

1.87%. The SIANNs trained with QNN hud a better mean error rate though, 2.19%,

almost the same us that of the MLrs.

An overall comparison of accuracy by algorithm would have QNN better than

LM, with GDX the worst by far. This is not surprising as both LM and QNN arc

sccond·or<lcr algorithms while GDX i~ first order. From a network 'type'

perspective, there is a marked difference when trained with LM: MLP best, GFNN

next and S!ANN worst. The results nre close for ull three types trained using the

GDX and QNN algorithms, with SIANN slightly worse than the other two for GDX,

and GFNN slightly worse for QNN.

The trend for mean !mining time is that MLP is fastest, GFNN next and SIANN

takes the longest to train. The GDX algorithm was the fastest, an order of magnitude

faster in most cases, as it is the simplest algorithm. This is negated by the foci that it

is unable to produce any useful results with this dataset. The variation in training

time across the different types of network was only about 10% with GDX. The LM

algorilhm took much longer than GDX, as expected, and the QNN even longer in

most cases. MLPs took more than three times longer to train with LM compared to

GDX, and more than twice as long again with QNN. The GFNNs took 2 to 3 times

longer to train tlrnn MLPs for these second order algorithms. The SIANNs took the

longest to train by for, more than 3 times longer to train than the GFNNs with QNN,

nnd almost 8 times longer than GFNNs with the LM algorithm.

176

EXTENDED BENCHMARK TESTS

Table 8.8 Results for the Thyroid disease classification dataset using MLPs

GFNNs and SIANNs

Network Training Activation Perfom1anee Avg Epochs Test Error Mean

Structure Algor. functions (% of runs) CPU
Shunting Out 7 0% 20% All 7 0% Best Mean 95% Med. time (s)

Nu Den goal err < runs goal Error (%) (%) CI (%)

MLP ODX Tnh Lgs 0 0 100 419 * * 5.60 5.96 ± 0.04 6.01 254.0
21-4-3 LM Lgs Lgs 0 0 100 119 * * l.l7 1.72 ± 0.08 1.69 882.2
(103

QNN6 0 100 384 * * 1.69 2.18 2.16 2162.6 weights) Lgs Lgs 0 ±0.06

OFNN GDX Lin Lgs Lgs 0 0 100 348 * * 5.83 6.00 ± 0.02 6.01 275.4
OP LM Lin Tnh Tnh 0 0 100

21-2-3
300 * * L.98 3.34 ± 0.27 3.73 2799.7

(101 QNN6 Lin Tnh Lgs 0 0 100 582 * * l.81 2.62 ± 0.33 2.33 4585.9

weights)

SIANN GDX Exp Lgs 0 0 100 373 * * 5.66 6.32 ± 0.15 6.01 292.5
21-21-3 LM Exp Lgs 0 0 100 703 * * 2.16 5.40 ± 0.30 5.83 36403.2

(570
QNN6 Tnh Lin 0 0 100 559 * * 1.87 2.19 2.16 15844.3 weights) ± 0.06

IQ
Thyroid

Tr, nod using GDJ< Tra ntd u1lng LM

Tr>lntd u•lng CNN

lDll -1------

Hl Xl'.l - ··-·--·-

MLP GFNN SIANN MLP GFNN SIANN MLP GFNN SIANN

Networl<· Type

Fig. 8.7: Best, mean and median test error and mean training time for Thyroid dataset

using MLPs, GFNNs and SIANNs.

177

£.ITf:N/JW Bl:Nrn.\tANK Tl!Sr.;

Overall, the LM-traincd MLP was best with the lowest error rate, and the shortest

training time umong the 'useful' networks. The SJANN with LM on the other hand

was the worst, with high error rate and the longest training time by far.

Table 8.9 presents the mean test error rate from the MLPs, GFNNs nnd SIANNs

obtained here, nlong with results from other literature for comparison. Tiic

documentation for this dataset, provided by the UC] Repository, refers to work by

Schiffmann ct al., where the thyroid dataset has been used to evaluate the

performance of tile baekpropngalion algorithm and a number of improvements 10 it

(Schiffmann ct al., !992a, !993), as well as evaluating 'optimal' MLP structures

determined by genetic algorithms (Schiffmann ct al., 1992b). They use a fully

interconnec1ed 21-10-3 MJ.P, trained by a number of different algorithms. The mean

test error rates achieved, given in (Schiffmann ct al., l 99~). arc presented in the right

hand side ofTnble 8.9.

As with the previous benchmark problems, the Prvbcnl dataset has three different

partitions (fobclkd lhyroidl, 1/iyroidl and 1/Jyroid 3) {Prcchc!t, 1994). The thyroid!
and th)•roidJ partitions have as their 'pivot architecture' a 21-16-8-3 two-hidden­

luyer network, with SIS weights, and the tl\1•roidJ partition a 2 l-8-4-3 structure, with

227 weights, with no shortcuts. These networks arc made up of sigmoid hidden layer

neurons and linear output neurons, ond were trained using the RPROP algorithm, as

previously. The mean test error rates achieved nrc presented in Table 8.9.

Other results presented include feedforward networks constructed using

evolutionary programming {t:PNe1) {Yao & Liu, 1997); support vector machines

using LI und L2 SVMs (Koshiba & Abe, 2003) and fuu:y least squares SVMs

(Tsujinishi & Abe, 2003), and k nearest neighbour (kNN) and wcigh1cd kNN (WkN!\~

methods (Junkowski, 2003).

As can be seen from table, the mean test error rmm other results rnngcs from

l.44% to 7.29%. The mean test error rates obtuined here range from \. 72% to 6.32%.

From that perspective, the results obtained here nre comparable, falling within the

spread of previously reported results. There are also a number Df points to tnkc into

consideration when making the compmisons.

Firstly, Schiffmann ct al. found that they could not train any useful MLP networks

for this problem using bntch mode updates. Bo1h instances where batch mode wus

used resulted in test error rates above 7% (refer Table 8.9), in other words the trained

networks were useless, as this is the default error for the dutasct. This is not just due

to the complexity of the problem, but also because of the extremely uneven

distribution of c!nsses in the dataset. For the other instances, they used onlinc

training, which updates the weights after each exemplar is presented.

178

£.ITENDED BE.\'C/1.\URt,; Tli.ITT

Table 8.9 Comparison of mean test error for Thyroid dataset wi!h other results

from literature

ln'1anoo Source MconTc,;1 ln,t:uwo Source Moan T<!I
Error'"·' Error'%'

GFNN-GDX 0.00 B,oknn,n Schiffmann 2.42

GFNN • LM J.34 B,cknn,o I hatch n,od,l S,h;trm,nn 7.IS

GFNN-QNN 2.62 B,ckpn,p (b.ldo mo<lc} + Ea,on Schiffmann 7.29
,nd Olim

SlANN-GDX 6.32 lboknn,n + D,ul«n and Mood·· Schiffmann 2.IO

SIANN-LM SAO I. Schmidhuhc, Schiffmann 2.77

SlANN-nNN 2.\9 R. SalomD!l Schiffmann S.N6

MLP·GDX S.% Chan and fall,i,k Schiffmonn S.83

MLP-LM l.7l Pol•k·Ribicro + line soan:h Schiffrt>:1nn S.83
MLP-nNN 2.1g Con·. •radicnl + lino ,oan:h Schiffnunn 6.16

Th'ruidl Pmbonl 2.l~ Sil,-a and Almeida Schiffmonn us
Th 'ruid2 Pmbcn1 (.91 SuncrSAB Schiffnunn I.SK

Thvroidl Probcn1 2.27 O.lta-0,r-Ddta Schiffnunn 1.61

m•Not ,. 2.ll RPROP Schiffmann 1.9~

LI SVM Ko,hiba 1.SI I Ouic1'n,on Schiffmann l.7S

L2SVM Ko,hiba 2.65 Ca,oado cotn:IOlion 10 uniu Schiffmann us
Fun:v LS-S\'M T,u·;ni,hl 2.4l Cmado cnm:lotion 20 unit, Schiffmann 1.52

\:NN l,nl.ow,1'i l.70

WkNN Jankuw,ki l.44

The results obtained here, on the olher hnnd, are all using batch mode updates.

The GDX algorithm is compurnhlc to the ba1ch-mode Backprop algorithms and its

results nrc around 6% error, a little better thnn that achieved by Schiffmann, but just

1U1 useless. The LM and QNN algorithms however achieved much better results

dcspile using hutch mode updates, just ns Prechclt did wilh his butch-mode RPRDP

algorithm in the Probcnl tests.

The other puinl to nu1c is that in most cases the network structures used in the

!ileruturc were much larger than the MLP and GFNN structures used here. Only, lhe

SIANN structure is of comparable size to the others. Despite their size, the GFNN

(lOl weights) and MLP (103 weights) networks were able to achieve comparable

results to the much [urger networks. Our 21·4·3 MLP trained with lhc LM algorithm

achieved u mean error rate below 2%. Schiffmann cl ul managed to get a number of

instances where the error was under 2%, but using a much forger, fully

interconnected 21·10·3 MLP. Only two of the other reported instances managed to

reach this level of uccuracy, Prechclt rcpo11cd 1.91% with the Probcnl tliyroid2
dataset using n 21·16·8-3 two-hidden-layer network nnd Jankowski achieved l .44%

with a weighted k-neurcst neighbour classifier with k = 3 and 3-fold cross-vnlidntion.

T11c third point is the maximum number of training epochs. Schiffmann trained

the networks for n maximum of 5000 epochs, Prechelt set the mn~imum at 3000

epochs, while here it was set to JOOO epochs for consistency with all the other

179

Exu:,,m:v Bi.vclf.\fARK Tun;

benchmark problems. In ull three investigations, a validation set was used for early

stopping. Even though early stopping was used, a number of runs trained for 1he

maximum number of epochs, particubrly for !he GDX and QNN algorithm.

However, it is debatable whether increasing the maximum number of epochs would

actually result in an improvement in perfonnance.

These three points indicate areas that can be investigated in the future, particularly

for thi~ problem; that ;s, training these networks using on-line mode trnining, using

larger structures, and training fur u greater number of epochs.

!n the final analysis, what has been demonstrated is that the networks under

investigation here were able to achieve results comparable 10 the previously reported

results by other investigators, and, in the case of GFNNs and MLPs, they were able

to do this wilh much simpler network structures.

8.3 Performance Comparison with MATLAB Toolbox MLPs

8.J,l Benchmark tests using MT·MLPs

The results shown in the previous sections were obtained using the sam_~ .~ATLAB

code for GFNNs, SIANNs and MLPs. The code was written to take advantage of the

fact that SIANNs nnd MLPs arc subsets of GFNNs. The majority of the code and

data structures used arc generic, with relevant sections of code branching out to ca!cr

for the differences in neuron type. While the code has been based loosely on the

standard MATLAB Neural Network Toolbox code, it has 'evolved' as the research

progressed, with emphasis on achieving results rather than speed of execution. The

code has not been optimised for memory or computational efficiency, and therefore

the time taken to train the networks would probably be much longer than it should.

In this section, the performance of the 'Generalised' MLPs, or G-Mll's, used in

the previous section is compared to that of MLPs using the MATLAB Neural

Netwok toolbox code, dubbed "MATLAB Toolbox MLPs" or MT-MlPs. The

purpose oflhis comparison is to quantify the 'inefficiency' of the 'generalised' code,

at least appro:dnmtcly, so that valid comparisons of the training time could be made

with other results in the literature. Additionally, the comparisons would give an idea

of differences in performance between the G-MLPs and the 'off-the-shclr MT·

MLPs.

For each of the benchmnrk tests, the snme MLP network structures used

previously were generated and trained using the default MATLAB data structures

and code. The networks were trained using the MATLAB Toolbox implementation

of the GDX and LM algorithms. All the training parameters were kept the same, the

only difference being the weight initialisation scheme. The MT-MLPs were

180

£~71:11/JW fJ/:NC/1.\!ARK TliSIS

initialised using MATLAB's default weight initialisation scheme, the Nguyen­

Widrow initialisation scheme {Demuth & Beale, 1992; Nguyen & Widrow, 1990),

instead of the scaled uniform weight distribution scheme described in Section 4.5.2.

The mean test error and test ARV for the six benchmarks tests are presented in

Tables 8.41 to B.46 in Appendix B. The results obtained showed definite difference

in performance between the G-MLPs and the MT-MLPs, with the G-MLPs generally

achieving better performance. The difference in accuracy can be attributed to one or

two possible sources: the difference in initialisation schemes and the dilTcrence in the

implementations of the training algorithms. ln order to remove the differences due to

initialisation from the equation, tests were conducted with MT-MLPs with initial

weights set to ex<1ct!)' the same weights as the G-MLPs. The MT-MLPs had their

initial wcigh!s copied across from the 0-MLPs, and activation functions set the same

as the best perfonning G-MLPs for each algorithm.

Tables 8.10 nod 8. l 1 present the results obtained using these three sets of MLPs

and Figs. 8.8 to 8. 13 show n comparison of the mean, median and minimum error

and mean training times. The results for the standard structures, initialisation and

training algorithms, as given in Chapter 4, arc denoted as G-MLP. Tiie standard

MATLAB Neural Network Toolbox networks and training algorithms arc denoted

MT-MLP, with two sets of results based on initialisation scheme. The MT-MLPs

initialised with the defoult Nguyen-Widrow initialisation scheme arc labelled 'NW­

init' while those with initial weights copied across from the 0-MLPs arc labelled

'GF-init'. The GF-init MT-MLP results arc for the same activation function

combination as the corresponding 0-MLP, so that differences in results can only be

due to differences in the implementation of the algorithms.

Comparison of the results for the Wisconsin Breast Cancer dataset shows that the

NW-init MT-MLPs hd a higher error rate than the G-MLPs for both trnining

algorithms, though the actual difference between the means is less than 0.3%. The

NW-init MT-MLPs had 54% and 28% of networks achieving perfect cl~ssilication

wi:h the GDX and LM algorithms, respectively-compared to 86% and 44% for the

0-MLPs. The GF initialised MT-MLPs results indicate that the reasons for these

differences arc not the same for bo!h training algorithms. When trained with GDX,

there is hardly any difference in accuracy between the G-MLPs and the GF-init MT­

MLPs, indicating that the initialisation scheme is the cause for the difference in

pcrfonnance. The LM-tmined networks, on the other hand, have both MT-MLPs

producing similar results and G-MLPs with better accuracy. This would indicate that

the difference in results between G-MLPs and MT-MLPs in Ibis case is not due to

the initial weights, but due to differences in the implementation of the algorithm.

181

£>.TENDED BENCHMARK TESTS

Table 8.10 Comparison of G-MLPs and MT-MLPs trained on (a) Breast Cancer

(b) Diabetes, (c) 3-bit Parity, (d) Multi-class and (e) Thyroid datasets.

Network Train Activation Performance Avg Epochs Test Error Mean

Structure Algor. functions (% of runs) train

Hidden Out 7 0% 20% Al l 7 0% Best Mean 95% Med. time

goal err < runs goal Err (%) (%) CI (%) (s)

a) Wisconsin Breast Cancer

G-MLP GDX Lgs Lin 0 86 100 158 * 159 0.00 0.08 ± 0.05 0.00 8.6

LM Lgs Tnh 0 44 JOO 57 * 56 0.00 0.51 ± 0.15 0.56 9.9

MT-MLP GDX Lgs Lin 0 88 100 191 * 192 0.00 0.07 ± 0.05 0.00 2.2
(GF-init) LM Lgs Tnh 0 28 100 60 * 58 0.00 0.75 ± 0.18 0.56 l.4

MT-MLP GDX Lgs Lin 0 54 100 232 * 255 0.00 0.37 ±0.14 0.00 2.8
(NW-init) LM Lgs Lin 0 28 100 63 * 61 0.00 0.72 ± 0.22 0.56 l.4

b) Pima Indians Diabetes
G-MLP GDX Tnh Tnh 0 0 30 188 * * 18.75 20.45 ± 0.22 20.31 11.1

LM Lgs Tnh 0 0 26 58 * * 18.75 20.75 ± 0.31 20.83 10.8

MT-MLP GDX Tnh Toh 0 0 16 188 * * 19.79 20.95 ± 0.64 20.57 2.3
(GF-init) LM Lgs Tnh 0 0 34 61 * * 17.71 20.88 ±0.52 20.83 1.3

MT-MLP GDX Tnh Lgs 0 0 12 191 ... * 19.27 21.48 ± 0.88 20.83 2.4
(NW-ioit) LM Lgs Lin 0 0 30 61 * ... 18.23 21.1 I ± 0.4 1 21.35 1.3

c) 3-bit Parity

G-MLP GDX Lgs Lgs 96 96 100 224 192 192 0.00 0.50 ± 0.69 0.00 1.0

LM Lgs Lin 100 100 100 11 11 I 1 0.00 0.00 ± 0.00 0.00 0.2

MT-MLP GDX Lgs Lgs 96 96 100 266 235 235 0.00 0.50 ±0.69 0.00 2.1
(GF-init) LM Lgs Lio 96 96 98 28 12 12 0.00 1.50 ± 2.49 0.00 0.4

MT-MLP GDX Lgs Lgs 70 72 94 500 286 306 0.00 4.25 ± 2.05 0.00 4.1
(NW-init) LM Lgs Lgs 92 92 96 27 22 22 0.00 2.00 ± 2.25 0.00 0.4

d) MuJti-Class
G-MLP GDX Lgs Lgs 0 0 JOO 225 * • 4.00 5.37 ±0.22 5.33 11.5

LM Tnh Tnh 0 0 JOO 67 * • 4.00 5.83 ± 0.16 6.00 29.9

MT-MLP GDX Lgs Lgs 0 0 100 278 * • 4.00 6.01 ± 0.21 6.00 3.5
(GF-init) LM Tnh Tnh 0 0 100 94 * • 6.00 12.84 ± 5.04 7.33 2.5

MT-MLP GDX Lgs Lgs 0 0 100 294 * * 3.33 5.53 ± 0.27 5.33 4.0
(NW-init) LM Lgs Lin 0 0 100 81 * * 5.33 5.99 ±0.14 6.00 2.4

e) Thyroid

G-MLP GDX Lgs Lgs 0 0 100 419 * * 5.60 5.96 ±0.04 6.01 254.0

LM Lgs Lgs 0 0 100 ll 9 * * 1.17 l.72 ±0.08 1.69 882.2

MT-MLP GDX Lgs Lgs 0 0 JOO 457 * ... 5.83 6.04 ±0.02 6.07 20.9
(GF-init) LM Lgs Lgs 0 0 100 102 * * 1.23 1.97 ±0.24 1.87 180.1

MT-MLP GDX Lgs Lin 0 0 100 396 * ... 5.89 6.59 ± 0.17 6.65 18.4
(NW-init) LM Lgs Lin 0 0 100 189 ... * 1.8 l 2.49 ±0.18 2,28 185.8

182

EXTENDED B ENCHMARK TESTS

Wtscons n Breast Cancer

T,alnod using OPX lraiood u,lng LM

o ,

Od

01

Vl

• _II
12 -----

10

O·Mt.l' IIT·MI.P, Ortoll MT·~LP, NW Iott G 1141.1'
N•Nlort(Type

Fig. 8.8: Comparison of mean and median error and mean training time for the

Breast Cancer dataset using 'generalised' and MATLAB Neural Network

Toolbox MLPs.

The big difference in perfonnance lies in the training time. The MT-MLPs

actually needed more epochs to train, but were still 3 times faster in actual execution

time for the GDX and 7 times faster for the LM algorithm. This means that the

MATLAB Toolbox code has been optimised to a point where it can train the

networks in a fraction of the time. The MATLAB Toolbox MLP implementation is

in the order of 4 to 8 times faster than the GFNN implementation, taking into account

the additional epochs.

The results for the Diabetes dataset show similar trends with the NW-init MT-MLPs

having higher mean and median error rates for botb algorithms· the average error

rates for both algorithms were more than 21 %, compared to under 21 % for the G-

183

EXTENDED BENCHMARK TESTS

MLPs. The actual difference between means is about 1.0% for the GDX algorithm

and less than 0.4% for the LM algorithm. The GF-init MT-MLP performance, in this

case, was in between the other two types of MLP for both training algorithms. This

indicates that the difference in performance is partly due to implementation

differences. The number of epochs to train was most the same, the maximum

difference being only 3 epochs in each case, but the MATLAB code was more than 4

times faster for the GDX algorithm and more than 8 times faster for LM.

Pima lndlaos Diabetes
2l

Tra ine(I USlf19 GOX Tra1no<1 u51ng LM

12 -------

G-MLP MT-MLP , GF lntt MT·MLP, NWlni1 G-MLP MT-MLP, GF r,1l MT·MLP. riW 1rnl

Nttwork Type

Fig. 8.9: Comparison of best, mean and median error and mean training time for the

Diabetes dataset using 'generalised' and MATLAB Neural Network

Toolbox MLPs.

184

E XTENDED BENCHMARK TESTS

E .
E

,u

)'J

.0

I()

0,1

F 25 ..
c c
~ 2.0

= ::;;:
15

I O

0 5

00

3-blt Partly

Tr1ln1d utlng GDX Trained using L.M

G-ML.P MT.MLP. Gf !nll MT·MLP, NW ir,11 0-MLP MT-MLP, GF mil MT-MLP, NWl1' rt

Network Type

Fig. 8.10: Comparison of mean and median error and mean training time for 3-bit

Parity using 'generalised' and MATLAB Neural Network Toolbox MLPs.

The NW-init MT-MLP accuracy for the 3-bitparity problem was a lot worse, with

mean enor rates of 4.2% and 2.0% with GDX and LM respectively, compared to the

G-MLP with 0.5% for GDX and perfect (0.0% error) results with the LM algorithm.

The NW-init MT-MLP trained on GDX only had about 70% of networks achieving

all correct classification, compared to more than 90% for all other cases . The GF-init

MT-MLP trained with GDX had the same results as the G-MLP except for taking

about 20% more epochs. When trained with LM, on the other hand, the GF-init MT­

MLP perfonnance was in between the others two. Again the initialisation seems to

have a bigger effect with the GDX algorithm. The Parity problem is the only one

where the G-MLPs were faster to train than the MT-MLPs twice as fast for LM and

up to 4 times faster for GDX. After factoring in the greater number of epochs

required, the training speed was almost equal for the LM algorithm, but the GDX

was still twice as fast as the MATLAB Toolbox implementation.

185

EXTENDED BENCHMARK TESTS

Multl Class

T,.Jned u.llng GOX Tr• noo u•1ng L"4

160

")

G.MLP MT-MLP, GF Inn MT,MLP, tffl •nil G·MLP MT~MLP, GF 11"111 MT,MLP , N'N tMFI

Nttwork Typ•

Fig. 8.11: Comparison of best, mean and median error and mean training time for the

Multi-Class problem using G-MLPs and MT-MLPs.

For the Multi-Class problem, the NW-init MT-MLPs had error rates exactly

0.16% higher than the G-MLPs for each of the training algorithms, and took 20% to

30% more epochs to train. The GF-init MT-MLPs bad higher error rates than both

the other types of MLP for this case. When trained with LM, the GF-init MT-MLP

had an error rate more than double the other two. The most probable explanation is

that this is due to the activation function. Looking at the overall results in Appendix

B, it can be observed that the MATLAB implementation does poorly when the

output activation is the hyperbolic tangent function. It is especially bad when trained

with LM, the trend observed across all the benchmark tests. However, it is not clear

why thi is so. In terms of training time, the trend is similar to most of the other tests .

The MT-MLPs are about 3 times faster to train using the GDX algorithm and 12

times faster using the LM algorithm in terms of actual computation time, despite

requiring more epochs.

186

E XTENDED BENCHMARK TESTS

80
Thyroid

70 T111l nt d using GOX

um

IJlll

700

~
~ 6001-----------
E
F ..
-~ 500

i
~ ,001--------­

::E

100

Traint d using LM

G·MLP MT·MLP, GF inil MT·MLP I t-NI lnit G·MLP MT·MlP, GF !nit MT-MLP, NW mit
N•twor1t Typ•

Fig. 8.12: Comparison of best, mean and median en-or and mean training time for the

Thyroid problem using G-MLPs and MT-MLPs.

The results on the Thyroid dataset show the same trends as most of the earlier

classification problems. The mean error rates of the NW-init MT-MLPs were slightly

higher than that of the G-MLPs with a difference in mean error rates of 0.65% and

0.77% for GDX and LM, respectively. The GF-init MLP error rate was within 0.1%

of the G-MLP when trained with GDX. When trained with LM, it achieved error

rates midway between the other two. The G-MLPs took more than 12 times longer to

train with GDX, and more than 4 times longer with LM.

The Sunspots time-series prediction results show the mean test ARV achieved by

all three types of MLPs, when trained with GDX, to be almost exactly the same.

When trained with LM, the 'usual' trend is observed with G-MLP being best and the

NW-init MT-MLP worst, and the GF-init MT-MLP in between. The NW-init MT­

MLPs ' required almost 3 times as many epochs as the G-MLPs when trained with

the GDX algorithm, but still took about 15% less time. When trained with the LM

187

EXTENDED BENCHMARK TESTS

algorithm, the number of epochs required was almost the same for all three types but

the MT-MLPs were more than 5 times faster.

Table 8.11

Network Train·

Struct.
iog

Algor·
ithm

G-MLP GDX
LM

MT-MLP GDX
(GF-init) LM

MT-MLP GDX
(NW-init) LM

Comparison of G-MLPs and MT-MLPs trained on Sunspots dataset.

Act-ms

Hidden

Tnh

Lgs

Tnh

Lgs

Lgs

Lgs

O ll)

o .

..
g
.E •

~ ...
5
f 3

Out

Lin

Lin

Lin

Lin

Lin

Lgs

G-MLP

Perfom1ance Avg TesLMSE
(% of runs) Epoc

~ all 80% hs Best Median
gl io Loi

to!

0 14 98 151 0.0094 0.0129

0 22 100 57 0.0079 0.0113

0 0 100 255 0.0087 0.0112

0 6 100 60 0.0091 0.0138

0 6 100 434 0.0091 0.0109

0 8 100 59 0.0114 0.0161

Sunspots

Trained u•lng GO)(

MT-MU,, GF lrul MT,MLP, rNJ in1I G-MLP

Ne""orl< lVP•

Test ARV Mean
time

Best Median Mean 95%CI to
train
(s)

0.113 0.155 0.162 ± 0.024 5.8

0.095 0.136 0.138 ± 0.006 7.0

0.123 0.160 0.158 ± 0.005 2.8

0.129 0.196 0.200 ± 0.012 1.2

0.130 0.155 0.163 ± 0.008 4.9

0.162 0.229 0.231 ± 0.012 1.3

ror;;;-·1 a,.t,.<t1.

'~

Tulncd usl1111 Lill

MT-MLP, GF m~ MT-MLP I riNJ mit

Fig. 8.13: Comparison of best, mean and median test ARV and mean training time

for Sunspots prediction problem using G-MLPs and MT-MLPs.

188

EAT/iN/Jf./J /Jf~VC/IMARI! Tf.SJS

8.3.2 Analysis oremdeney cest results

The overall trend was that the NW-init MT-MLPs generally had lower accuracy than

the G-MLPs. This is reinforced by the results obtained across all the different

activation functions. Looking at the Tables 8.41 to 8.46 in Appendix B, it can be

seen that the avernge error across all the activation functions is always lower for the

G-MLPs, with the exception of GDX with the Sunpots problem. The results for the

GF-init MT-MLPs indicate that. the difference in accuracy, for networks trained

using the GDX algorithm, is mainly due to the initialisation scheme. For the LM­

trained networks, on the other hand,: only about half of the difference can be

attributed to initialisation, the Othc"r ha.If arising from implementation of the

algorithms. These results, though problem-dependent, can be viewed as an

endorsement of the scaled uniform weight distribution initialisation scheme used

with G-MLPs (GF-init). This, however, is only an interesting aside.

The main focus of these comparisons is the differences in 'efficiency' of

implementations, where the results arc more clear-cut. In terms of computation time,

MT-MLPs often required more epochs but were still foster to train, with the

exception of the J-bit Parity problem. When factoring in the difference in the number

of epochs trained, it would appear that the MATLAB Toolbox implementation of the

GDX algorithm is about 3 (o 4 times foster than the implementation used in our

experiments, while the LM algoriLhm implementation is between 5 and 16 times

faster. The difference in the speed of the algorithms can be attributed to two factors.

Firstly, the 'generalised' implementation is a generic implementation that is written

to handle not only MLPs, but also SIANNs and GFNNs. More importantly, the

actual code for these algorithms has not been optimised for execution perfonnancc.

For a more detailed analysis, Table 8.12 presents the average training time per

epoch for the various benchmarks tests, obtained by dividing the mean training time

by the average number of epochs for each case. The ratio of this average for the

GFNN and MATLAB Toolbox implementation of each algorithm gives an idea of

the difference in speed.

For the GDX algorithm, the training time per epoch rntio between the G-MLP and

MT-MLPs is relatively similar, ranging from 3.5 to 4.9, except for the 3-bit Parity

where the ratio is much lower at 0.59 and the Thyroid problem with a much higher

ratio of more than 13. One possible reason for this is the number of training samples

used for each problem, with the Parity having only 8 samples, Thyroid having 3772

and the rest between 220 and 384. The relationship between the average training time

per epoch and the number of samples is almost linear for G-MLPs. The only

exception being tht Purity problem, where the number of samples is very small. In

this case, the time taken for 'overhead' activities, that could nonnal!y be ignored as

negligible compared to the actual training time, would come into play.

189

EJ.TENDW BENCHMARK TEiSl1i

Table 8.12 Comparison of average training time per epoch for G-MLPs and MT­

MLPs for a!\ datasets

Dcnohn111tk No.of Vol· ,,. Aveni•• Tminin limo ore och ,,, ,., Train· ldal- ,,
"' CM

ing ion OUl•
MT-MLP Ratio Rotio Sam lo, """

G-MLP G·MLP MT-MLP

Brca>t Con,cr "" '" ' 0.0S5 0.012 4.72 0.174 0.02] , ..
Diabocos '"' '" ' O.OS9 0.012 4.86 O.lk6 0.02! 8.71

l·hit Poritv "
,, ' D.OOS 0.008 0.59 0.020 O.O!S l.l7

Mulli·Clnss ,. '" ' O.OSI 0.013 4.0i 0.446 0.027 16.RI

Sun,-IS m '" ' O.oJS O.oll l.SS 0.122 0.020 6.10

Th ,old 3772 '" ' ··~ 0.046 13.26 7.413 1.766 4.20

MEAN j,/8 7.48

The larger the number of training samples, the larger the rutio, indicating that the

MATLAB Toolbox implementation is ab!e to process large numbers of samples
more efficiently. The average time per epoch docs not vary that much for the

MATLAB implementation ofGDX, with the longest time about 6 times longer than
the shortest. The GFNN implementation, on the other hand, has the longest, more

than IOO times longer then the shortest. The MATLAB code has been optimised for
large array computation, thereby making the training time per epoch much less

sensitive to the size of the training set.

The trend for the LM algorithm is similar to the GDX algorithm. The Parity

problem has a ratio of l.37, indicating that the GFNN implementation is only slightly
less efficient than the MATLAB Toolbox implementation for the small number of

samples. TI1e 'mcdium'-sized datasets have ratios in the region of 6.1 to 8.8. except
for the Multi-class problem, which has a ratio of 16.8. This is most likely due to the

use of three outputs neurons in this problem, which increases the size of the Hessian
matrix used in the LM algorithm, and hence increasing the computation time. The

average training time per epoch for the GFNN implementation is in fact proportional
to the product of the sample size and the number of outputs. The exception is again

the Parity problem because the sample size is extremely small.

The increased Hessian size affects both implementations of the LM algorithm, but

the MATLAB Toolbox is not impacted as much. The only anomaly is thyroid

problem, with a ratio of only 4.2. For all the other problems, the average time per
epoch for the MATLAB Toolbox implementation is between 0.015 to 0.030 seconds,

but this jumps to l.77 seconds for the thyroid problem. The GFNN implementation
of the algorithm shows its sensitivity to such factors as dataset size and number of

outputs, ranging from 0.02 to 7.41 se1:onds.

On average, the MATLAB Toolbox is around 5 times faster than the GFNN
implementation for the GDX algorithm, and more than 7 times faster for the LM

algorithm.

190

£xr'ENDED BENCIIAURK TEsn;

While on the topic of efficiency, the QNN algorithm and its variants have not

been optimised for speed either. Unfortunately, there is no implementation of the

QNN algorithm in the MATLAB Toolbox to compare with! There will definitely be

room for fine tuning and improving the efficiency of the code, as it is based on the

same structures and principles as the implementations of the GDX and LM

algorithms for GFNNs.

The implementation of the QNN algorithm for 'pure' MLP networks can in fact

be improved quite simply by using the fact that the weights of an MLP are

unconstrained. Removing all constraints simplifies the 'recurrent network' equation

considerably. TI1is simplification has been implemented successfully, and details of

the changes to the equations along with some benchmark results can be found in

(Arulampalam & Bouzcrdoum, 200\b, 2002b). This unconstrained version has not

been used in these tests, however. The same generic code that can handle MLJ>s,

SIANNs and GFNNs has been used so that it is clear that the differences in results

arc due to the different network structures and not due to changes to the algorithm.

8.4 Discussion

In order to link the various results obtained in this chapter, the genera! trends across

all the benchmark tests arc now discussed. This will provide on overview of the

relative merits of the networks and algorithms used.

8.4.1 Trends In Training Algorithm Performante

In tenns of accuracy, the QNN algorithm variants were able to train the various

network types In achieve good accuracy, particularly with the SIANNs and GFNNs

that have constraints on some weights. An interesting point to note is that the QNN

algorithm appears to come out best for the 'harder' problems, such as the Diabetes,

Sunspots and Thyroid datasets. The best results for the GFNNs and SIANNs trained

on these three problems were achieved with the QNN algorithm, as wcl! as the best

overall results for the Diabetes nod Sunspots problems. This is probably due to the

fact that the QNN algorithm is able to incorporate the constraint on the decay

parameter a while working out the 'oplimal' weight update. The other algorithms

update the weights, then impose the constraint nn the parameter. This may result in a

sub-optima! weight update if the constraint changes the weights.

The only disadvantage of the QNN algorithm is the long training time required,

hence the need to improve the efficiency of this algorithm. Additionally, it should be

remembered tho! the QNN variants used were selected based on tests on SIANNs

191

£XTl::NDW 81::NCHMARK Tf.STS

only. This could have skewed the choice of variants, and possibly even their
formulation, in favour ofSIANNs.

The second-order LM algorithm results in good accuracy as expected, coming out
as the best by for in some problems, such ns the 3-bit Parity problem. In most cases,
thll LM worked best with the MLPs, and resulted in slightly higher error rates
compared to the QNN algorithm for thCl SIANNs and GFNNs. However, thll LM
algoritltm was generally much foster than the QNN, with a couple of exceptions. It
has lived up to its reputation of being one of thll most powerful neural network
algorithms, but the disadvantage of the LM algorithm has always been the
requirement to calculate and invert the Hessian matrix. The resultant memory and
computation requirements tend to offset the fact that the LM algorithm generally
requires fewer epochs to train the networks compared to other algorithms. As
discussed in Section 8.3, the problem becomes more apparent as the number of
samples in the training set and the number of outputs increase. As can be seen from
Table 8.12, the MATLAB implementation of the LM algorithm also gets affected by
these increases, but not as badly as the GFNN implementation since the MATLAB
code is more efficient.

The GDX algorithm, being a first-order algorithm, is generally the fastest
algorithm in terms of actual computation time because of the relative simplicity of
the algorithm. This simplicity, however, means that the GDX algorithm generally
docs not perform as well as the second-order algorithms in terms of the pcrfonnance
of the trained networks, particularly for the so-culled 'harder' problems.

8,4,2 Trends In Network Performonce

This brings us to the topic of accuracy of various types of networks over the
benchmnrk problems. Overall, the results obtained here compare well with results
reported in the literature. What is noteworthy is thnt these results were obtained using
much smaller networks in most cases. The GFNN structures used have only one, or a
maximum of two, generalised shunting neurons plus one or three linear or sigmoid
output neurons, depending on the number of outputs required. In some cases, such as
the Breast Cancer ond Diabetes problems, a single GS neuron has been used as the
'network'. Amazingly, this single-neuron network was able to achieve 100% correct
classification for the Breast Cancer problem fo1· the majority of the test runs. Even
the MLP structures used here were smaller than in thll majority of those reported in
the literature; the MLP structures were chnsen to have approximately the same
number ofweights as the GFNN networks to which they were being compared.

The 'best' network type tends to vary from problem to problem. The best overage
nnd individual network perfonnance for the Diabetes problem was obtained by
SIANN. For the Parity and Sunspots problems, on the other hand, the GFNN had the

192

f:XTENDW BENC/U£1RK TtiSrs

best mean error, though the SJANN had the best individual network perfonnance for
Sunspots. For the other three problems, namely the Breast Cancer, Multi-class and
Thyroid problems, the MLP produced the best results. While this is not the
resounding endorsement of the shunting inhibition-based networks hoped for, it is
not altogether surprising, indicating why MLPs have been the most popular type of
neural network used for these kinds ofprob!ems over the last couple ofdceadcs.

It should be noted that the three types of artificial neural networks compared hero
arc not rea!ly three different types of networks, but all actually fall within the
umbrella of GFNNs. As presented in Chapter 7, the generalised shunting neuron
(GSN) has the 'plain' static shunting neuron and perceptron-type sigmoid and linear
neurons as special cases, therefore SIANNs and MLPs are just subsets of GFNNs.
From this point of view, GFNNs were the best pcrfonning networks in all cases!

8.5 Conclusion

The performance of SIANNs, GFNNs and MLPs, tested across a number of
benchmark problems, has been evaluated and compared. The perfonnance of the
training algorithms developed for them, has also been invcstiga!cd, including
comparisons of efficiency of code with commercially available implementations. The
results obtained here have also been compared to work done by other researchers,
putting this work in perspective of the general body ofknowledge in this area.

The results arc promising. The shunting inhibition networks arc ab!e to perfonn
well with very small network structures. The GFNN networks used in the benchmark
tests had only one or two GSNs, plus an output layer of linear or sigmoid neurons
where needed. Two of the six benchmark tests used only a single GS neuron, the
simplest possible network structure. The overall results are comparable to or better
1han other reported results. This is despite the fact that, in most cases, the networks

used in the other literature are much larger.

From a training algorithm perspective, the first-order GDX algorithm has proven
to be a fast and effective training algorithm, though sometimes not able 10 achieve
the desired accuracy levels with the more complex problems. The second-order LM
algorithm was able to achieve better accuracy, though taking longer due to its
relative complexity. The QNN algorithm was also able to achieve good results, quite
often even better than LM, but nt the cost of longer training time.

Comparisons with the MATLAB Toolbox code show that the training algorithms
implemented for GFNNs could be optimised to improve efficiency nnd reduce
computation time. These tests also showed that the initialisation scheme used with

193

EXTENDUI BENCHIURK TESTS

the GFNNs tends to produce better results than the MATLAB default initialisation
scheme.

The question posed nt the beginning of this chapter, "How do shunting inhibition
based networks compare with other types of networks?", can now be answered. The
answer is that shunting inhibitory networks compare well. They are capable of
achieving accuracy levels comparable to or better thnn other types of networks, and
they are able to do so with simple structures.

194

Chapter 9

Conclusion

9.1 The Journey of Discovery

This chapter brings together the various threads of the research conducted thus for.
We can think of the work presented here as a '.journey of discovery', one result

\cading into the next exploration, with detours along the way to investigate some
interesting prospects. The structure of this thesis reflects this journey, fanning the
'travelogue'. A 'map' of thls journey is provided in Fig. 9.1, showing the path
travelled and the 'discoveries' made.

The starting point was the investigation of SIANNs, motivated by the ability of
shunting neurons to produce non-linear decision boundaries. The objective was to
create shunting inhibition-based feedforward ncurnl networks that could be trained
for classification and regression. Applying SIANNs to problems of this kind required
training algorithms to be developed. A number of different types of training
algorithms have been developed, from the basic gradient descent to hybrid and novel
algorithms. An interesting detour has been the development ofa novel algorithm: the
Quadmtic Neural Network (QNN) algorithm; it uses a recurrence equation to
simulate a recurrent neural network perfonning bound-constmined quadratic
optimisMion.

SIANNs have been successfully applied to a number of problems, but the standard
SIANN network structure is restricted in terms of size of the layers. This sometimes
results iu structures that arc too small, or inordinately large, for the particular
problem at hand. Consequently, enhancements have been made to allow the network

195

CONCLUSION

size to be expanded or reduced as required. Problems faced when reducing the

SIANN layer size highlighted one major deficiency: since the shunting neuron is

allowed only one excitatory input, it is not clear what subset of inputs can be used as

excitatory inputs. The solution was to create a shunting neuron model that allows

multiple excitatory, as well as inhibitory, inputs, resulting in the Generalised

Shunting Neuron model. This then led to the creation of the Generalised Feedforward

Neural Network (GFNN) architecture.

In order to prove the worth of the neural networks developed, SIANNs GFNNs

and MLPs have been tested across a number of benchmark problems, and their

performance evaluated and compared, including comparisons with results reported

by other authors in the literature.

Now that the end of this particular journey has been reached, it is time to

reminisce, savour the highlights, and look to the journeys ahead. The next section is a

summary of the results that fonn the highlights and link the various strands of the

work done so far. The final section discusses future research directions that have

emerged from the research presented here.

Fig. 9.1: A map of the 'Journey ofDiscovery'

196

COIICWSION

9.2 Summary of Research Outcomes

The initial thrust of this research was to inl'estigate the suitability of shunting

inhibition-based feedfotward networks, particularly SIANNS, for classification and

non·linear regression tasks. The aim was to create powerful, trainable networks, with

non-linear decision surfaces. The contribution of this thesis can be divided into two

main parts:
a) Development of training algorithms for SIANNs.

b) Enhancement of the SIANN architecture to improve pcrfonnance.

9,2,1 Development or training algorithms

The training algorithm part of the research has resulted in the development and

implementation of a number of algorithms for shunting inhibitory networks. The

algorithms can be divided into five main types, with a number of variants for each:

a) Gradient descent (4 variants). The Gradient Descent with adaptive learning

rate and momentum (GDX) has been the main variant used as it has the

best performance among the gradient descent algorithms.

b) Leven berg-Marquardt (LM) (3 variants)

c) Direct Solution-GDX hybrid (DS-GDX)

d) Random Optimisation Method (ROM) stochastic algorithm (2 variants)

e) Novel algorithms based on Quadratic Neural Network (QNN) (9 variants).

The 'bonus' in this pllrl was the development of the novel QNN algorithm and its
variants. This algorithm is able to produce good results, particularly with the

shunting networks that require certain parameters to be constrained while training.

Overall, the ROM algorithm was the only one that didn't meet expectations. It

was fast to ron, but the trained networks were not able to achieve the desired levels

of accuracy. All the other algorithms were able to yie!d good results overall, and

some excellent results in particular tests.

9,2,2 E:nhancing the SIANN architecture

SIANNs have been shown to be a viable class of neural network, with results

obtained comparable to other types of networks. SlANNs were even able to produce

the best results in some of the final benchmark tests. The original SIANN structure,

however, had the size of its layers detennined by the number of inputs and outputs of

the problem. The enhanced structure, described in Chapter 6, enabled greater

f]lll(ibility in the size of\ayers. Adding extra shunting neurons for problems that had

a small number of inputs generally resulted in improved accuracy. Problems with

197

CONCLUSION

large number of inputs tend to end up with inordinately large SIANN structures.

However, reducing the number of shunting layer neurons normally resulted in

reduced accuracy, as only a subset of the inputs could be used as excitatory inputs.

This is due to the restiiction imposed on the shunting neuron model used, allowing it

to have only a single excitatory input.

Addressing this restriction resulted in the creation of the Generalised Shunting

Neuron (GSN) model. A GSN can have multiple, weighted excitatory and inhibitory

inputs, with a transfer function for each type of input. It has been shown that a GSN

can produce various types of transfer characteristjcs by simply varying the synaptic

weights. The GSN has the static shunting neuron and perceptron-type sigmoid and

linear neurons as special cases, where certain weights have been removed or fixed to

constant values. This has been a key 'discovery' of this work. It has led to the

definition of the Generalised Feedforward Neural Network (GFNN) architecture.

The broad definition of the GFNN architecture encompasses a variety of

structures, including SIANNs, MLPs, and 'plain' GFNNs as investigated in this

work. The term 'plain' GFNNs has been used for the networks with a single layer of

generalised shunting neurons (denoted G) and networks with a hidden layer of GSNs

and an output layer of perceptron-type neurons (denoted GP).

Fig. 9.2 illustrates the point diagrammatically. It shows MLPs, SIANNs and

'plain' GFNNs as subsets within the GFNN architecture, with points to highlight the

differences between the three. It also has a brief description of the types of networks

that are outside these three subsets, but still fall within the broad definition of

GFNNs.

GFNN Architecture

SIANNs

One or more !eyers of
llhunttng neurons

• weighltd shuntmg
onh,bltory inputs

• <a s111gle unweighted
excitatory input

An output layer ol slgrno d
or 1lnear neurons

One or more 1ayer& of
generaliled shunhng
neurons

• weighted e~c,tatory and
1nh1bltory ,npuls

• two achvabon lunchons
An ovtpvt layer of Sigmoid
or U11e<ar neurons (GP)
or none (G}

GFNNs ~ structures not tested

MLPs

Two or more layer& of

sigmoid or linear
neurons

(a) Mixtures or layer.1 • of GSN&. Shunting neutons
and peroeptron• • not eovered 11, other oategortes

(b) Layel'$ with mtX of neurons
(c) Networks with taye,. NOT fully connected
(d) Networks w,th shortcut connections

Fig. 9.2: The GFNN architecture superset with SIANN and MLP sub ets.

198

COl«:LUSWN

!l,2,3 Overview of Results

SIANN and 'plain' GFNN ~has been The performance of MLP,

evaluated across a number of benchmark problems. The results have been compared

to each other, as wel! as with results using a wide variety of network types and

algorithms obtained from the literature.

''The proof of the pudding is in the eating" goes the saying. The proof of this work

is in the application to various problems and the results obtaine~. And the proof

appears quite positive, for the shunting inhibitory networks were able to achieve

good results across a variety of problems. The networks using the generalised

shunting neuron had the added advantage of being able to perform well with very

small network structures. The GFNN networks used in the benchmark tests all had a

maximum of two generalised shunting neurons, some only om:, plus an output layer

of linear or sigmoid neurons, where needed. A single-neuron was able to achieve

100% correct classification for the Breast Cancer and 3-bit Parity problems for the

majority of the test runs. In the final comparison tests, a single GS neuron has been

used as the 'network' for the Breast Cancer and Diabetes problems. This is the

ultimate in structural simplicity. The overall results obtained compare well with other

reported results, in many cases better than those achieved by much more complex

networks.

The initial hypothesis was that shunting inhibition allows neurons to produce non­

linear decision boundaries, therefore shunting inhibition-based foedforward neural

networks can form a new class of powerful networks for classification and

regression. From the c:vidence presented in this thesis, it can be concluded that this

hypothesis ho!ds true.

9.3 Future Research Directions

This section discusses possibilities for future directions arising from the work

presented in this thesis. A number of research issues pertaining to the work presented

remain unexplored:

a) Work CElll be done on comparing lnilialisarion schemes for the GFNNs.

b) On-line /raining algorithms can be developed, which will be particularly

useful for large datasets with unbalanced population distributions like the

Thyroid problem.

c) The efficiency of the code used to implement the GFNN stmctures and

training algorithms can be improved significantly.

199

CONO.USJON

Another area of promising future investigation is tho network structure. From Fig.

9.2, it can be seen that the network 'types' investigated here are distinct subsets of

the broader definition of a 'Generalised Fcedforward Neural Network'. Tho grey

areas in-between, both literally and figuratively, represent the largely unexplored

area ofGFNN structures not tested here. It includes several categories of networks:

n) Networks contafoing mixtures of layers of neurons (GSN, standard

shunting neuron, perceptron) not previously tested. For example,

networks with both GSN and static shunting neuron layers, or with

perceptron layers in between shunting layers.

b) Networks with botcrogeneous layers. Layers can contain more than one

type of neuron, unlike current implementations where it is assumed that a

layer contains only one type of neuron.

c) Neiworks with layers not fu!ly connected. Some of the inter-layer

synaptic weights are removed (fixed at 0), as would happen when using

pruning algorithms.

d) Networks with shortcut connections, where there are synaptic. connections

between non-adjacent layers. Current implementations assume

connections only exist between adjacent !ayers.

The categories listed above are not mutually exclusive, but are listed to give a

clear picture of the variety of possibilities that can be explored in future work. At the

time of writing, the current implementation of GFNNs and their training algorithms

is only able to handle networks of type (a).

In the work presented here, the training of networks has been based on adjusting

the weights of a fixed neural network structure. In a partial attempt to find 'good'

structures, a few structures have been trained, with various combinations of

activation functions. As mentioned in Chapter 2, investigating heuristic methods of

architecture selection is an active area of research, with researchers combining

constructive and pruning algorithms, or using evolutionary computation, which

includes genetic algorithms and evolutionary programming.

TI1e research done here has been able to 'broaden the horizons' of shunting

inhibition-based neural networks. The expanded framework offered by the GFNN

structure would allow for many more possibilities in the dynamic modification of

network structures, resulting in networks of the types listed above. A. single

generalised shunting neuron has been shown to be a viable 'network' in solving

problems, thereby providing a good starting point. Alternatively, it is possible to start

from a purely excitatory 'MLP·type' network, then go to a shunting inhibition-based

network, or back, seamlessly, as GFNNs have both excitatory and inhibitory

synapses.

. '.;'
200

COIICWSJON

The scope of constructive and pruning algorithms and other 'evolutionaty'·type
algorithms that aim to find an optima! neural network structure now literally have a
whole new dimension opened up. Employing such methods would lead to a myriad
of possibilities in terms of network structures that could be used for classification and
regression problems.

201

•

Appendix A

Derivation of Training Equations for SIANNs

A.I Introduction

The backpropagation algorithm requires the partial derivatives of the objective

(error) function with respect to each of the trainable parameters (synaptic weights)
being updated to calculate the gradient. This appendix shows the derivation of the

partial differential equations and error sensitivity functions used in the gradient·

based training algorithms, as presented in Chapter 4. The next section recaps the
SIANN equations and parameter definitions, followed by tbu definition of the error
function. The final section presents the actual derivation of the training equations.

A.2 SIANN Equations and Parameters

The 'standard' SIANN is a feedforward neural network with a hidden layer of

shunting neurons and an output layer of linear or sigmoid neurons. For the sake of
clarity, the equations describing the operation of the SIANN, defined in Chapter 3,
ore presented again in Eqs. (4.6) to (4.8) below.

The output ofthe/h shunting neuron, x1, is given by

11 +h1
(9.4)

203

APPF.NDIX A • DERll'ATION OFTIWNING EQUATIONS FOR SIANNs

where Ji is the/h input; a1 is the 'decay term'; b1 is the bias; CJ! is the synaptic weight
connecting the j'h neuron to the i'h input; C.,1) is the bias for the shunting activation
function connected ton fixed 'input', lo= l; and/is a non-decreasing activation
function.

The output of the kth output neuron is given by

Y1 =g(fw"x1) (9.5) , ..
where g is the output layer activation function; w~ is the connection weight from/h
shunting neuron to the k'h output neuron and ww is the bias of the output neuron
connected to a fixed 'input',xo= I.

The denominator in (4.6) is defined as the shunting tenn for thejth neuron, s1

SJ "'UJ + 1(fcj,Jll ..• (9.6)

This shunting term is constrained to be always positive, achieved by imposing a

lower bound on the parameter a; during the initialization and training phases.

The parameters to be trained in a standard SIANN, therefore, arc the weights and
biases of the output neurons (w11), the decay and bias tenns of the shunting neurons
(a1 and h1) and the inl1ibitory weights of the input signals and shunting bias (cj!). The
following sections derive the training equations for these parameters.

A.3 Error Function

The gradient-based training algorithms developed are based on the standard
backpropagation algorithm. The network is trained with training pairs (I(q), d(q))
where l(q)is the input vector and d(q) is the corresponding desired target value.
(Note: Since the network may have multiple output neurons, d(q)is a vector). The
difference between the desired and actual output of the network is the error, given by

e(q) = y(q)- d(q) (9.7)

where y(q)is output vector for input l(q).

The training algorithm seeks to minimise the objective function, which is the sum
of squares of the error term:

E = Y,re(q)' e(q) (9.8)

To get avoid having to consider the summation, consider the simple case where
the parameter updates are performed on a pattern-by-pattern basis. The objective

function can then be given by E = fie(q(e(q) (Haykin, 1999, ppl44-147).

204

Al'fEIIDIX ,I • DERJPATW/WF TIWN/1113 EQUATIO.~S fO~ S/ANNs

A.4 Training Equations

This section gives the nctual derivation of the partial differential equations and error
sensitivity functions used in the gradient-based trnining algorithms. These equations
were presented in Chapter 4, as equations (4.9) to {4.14), corresponding to the boxed
equations below. The change made to any parameter is alwnys in the direction of the
negative gradient, in order to minimise the objective function. For the activation
function bias tenns, w.o and c!'l, the corresponding 'inputs', xo ,o,1 /0, are assumed
fixed at I.

A,4,1 Equation for weight of the ll'h output neuron, wi1 and error sensilivlty

fundlon,6.,..

The update to the weight, t.w11, is proportional to the gradient aFJmiv

DJ!Tercntiating (9.8) with respect to W*J, and using (9.7), (4.7) and (3.13),

~= ...!§..._ Bei(q) ay, .5....
Ow,1 Be, (q) ay, av, aw11

(Chain Rule)

=c,(q). l .g'(v1) x1

(9.9)

where

(9.10)

The tenn Oatis defined as the error sensitivity function for the k'" output.

A,4,2 The error sensitivity function for thejth shunting neuron, 61,

The change in the objective function E with respect to the output of each individual

shunting neuron XJ, BEffJ:9 is given by

aE = f ...!§..._. ae1 (q). ay, . av.
ax1 ,.1 ae,(q) ay, av, ax1

= i;e,(q).l.g'(v1).wlJ
•••

8E • -=L0,1.wiJ
ax1 •·•

205

Ai'i'EIIDIXA - DERJV,IT/DN DFT/1,11/i/NG EQUATIONS FDR S!ANNS

(9.11)

where we define

(9.12)

The tenn 61 is the backpropagated error sensitivity function for the jth shunting
neuron.

A.4.3 Equation for the decay parameter ofthe/h shunting neuron, a1

The same procedure used in !he derivation of 8El8w1J is applied for the gradient

fJEffJry. Differentiating (4.6) with respect to a1, we get

ax,,, -{I1 +b1)

'", [•,+t(~>,.i.JJ'
(9.13)

The denominator in (9.13) contains the shunting tenn for the1)h neuron, SJ, as given
in (4.8), therefore

ox,,, -Vi +b1J

& 1 s/
or alternatively, substituting (4.6) and (4.8) into (9.13), we get

ax,,, -x,
aa1 s,

Using the Chain rule and equations (9.12) and (9.14/9.15),

BE BE OX1
aa, "ox1 oa1

-V1+b,)
=81 , ,,

206

(9.14)

(9.15)

(9.16)

Al'l'ii/lDIX ,I • DERJVATI0/1 OF TRA!/11/IG EQUATIONS FOR S/ANNs

A.4.4 Equation for the bias parameter of the)'~ ,hunting neuron, b1

The same procedure is applied for the gradient OE!Ob1. Differentiating (4.6) with

respect to b1, we get

Using the Chain rule and equations (9.12) and (9.17),

OE OE ax1

ab
1

=ax,· ab
1

OE 01 .·.-·-

(9.17)

(9.18)

A.4.5 Equation for the connection weight between Input / 1 and the/1 shunllng

neuron, c11

The same procedure used in the derivation of OE!Oa; is applied for the gradient

OE!ac,1.

Let

"'
where/is the activation function of the neuron.

The output of the shunting neuron,x1, can then be re-written as

Ji +bJ
X1=---

0; + P1

Differentiating (9.21) with re.ipect to CJ/ using the Chain rule, we get

ax, ax, Op1 fN1 --·---acj, Op1 av1 ac1,
11 +bl , =-r /f(v1)l,

L"J + P1

207

(9.19)

(9.20)

(9.21)

APPENOIX A - Dl!HWATWNOP TIIAINING EQUATIONS FOR SIANNS

Using the Chain rule and eqs (9,\2) and (9.22),

~= OE iJx1
&:1, &1 &:1,

-x
=01- 1 f'(v1)11 ,,

208

(9.22)

(9.23)

Appendix B

Details of Experimental Results

209

APP£NDIX 8 • D£r,11LSOF EXP£RJM£NT,ILl/£sULr.;

B.l Experimental Results for Chapter 4

This section presents tables containing the details of the experimental results

obtained in Chapter 4, 'Development ofTraining Algorithms'.

8.1.1 Mean Error Results

This sub-section presents the mean test error (or test ARV) for all combinations of

activation functions and training algorithms obtained using SIANNs, for each of the

benchmark tests. The average for eacb activation function combination (row) and

training algorithm (co!umn) are also presented.

Table 8.1 Mean test classification error for 3-bit Parity dataset using 3-3-1 SIANNs

Aotiv,,tion Training Algorithm,
Fundion, Avoragc

Shunt °"'
COM CDX '" LMAM OLMAM DSODX ROM ROM2

'"" Lin 27.SO 24.7S 8.00 9.00 10.SO O.JS 29.SO :!otOO 16.15

'"" " 28.75 1.25 6.7S 7.00 l0.7S 6.lS IS.SO 10.SO 10.84

'"" '"" 22.SO 2.00 8.25 9.00 9.JS 43.15 2l.2S 22.lS 17.41

'" "" 53.00 49.75 0.50 21.75 10.25 "" 40.50 4l.2S 17.88 ,_
'"" 49.50 29.00 ,.oo 2!.75 3.25 49.7l 22.25 21.25 24.12

'"' '"" 51.25 48.25 5.75 30.00 7.75 4S.7l 19.00 38.00 JJ.22

''" Lin 38.00 38.00 0.50 4.25 I.SO "" JO.SO J0.25 Jll.06

''" '"" 48.50 1.2s ,.oo 4.50 J.2S 28.25 12.25 11.00 IJ.88

''" 'M 38.00 3.2S ,.oo 8.7S 4.00 45.75 23.JS 23.JS 18.78

Avern•o J9,67 2/,94 J,97 12.89 6.78 25.0J 211.17 24.92

TableB.2 Mean test classification error for Breast Cancer dataset using 9-9-l

SIANN

Aoti,ation Training Algorithm,
Function, A"ragc

Shum ""' "" oox '" LMAM OLMAM OSGDX '"" ROM2

'"" "" 0.5l O.l6 0.71 1.18 0.15 0.66 S.71 !.Sl l.9J

'"" '' O.l6 0.60 1.22 1.29 0.86 0.54 1.40 I.S4 "" '"" '"" 1.69 0.82 0.85 1.14 0,98 2.69 J.ll l.Sl "' '. Lin 0,79 0.98 OM 0.76 0.49 O.JJ S.IS S.15 1.89

" ''" "" 0.20 0.66 !.24 0.61 0.69 l.l8 I.JO "' " Tnh 1.ll 0.84 0.20 0.76 O.l7 l.28 l.11 l.18 l.6J

"' "" 0.52 0.2~ 0.88 1.95 '" 0.98 6.29 S.15 1.U

"" '"" 0.43 0.45 1.21 1.63 0.76 "' 1.46 l.!S ,.oo

"" '"" 1.2) 0.54 0.79 1,86 1.36 '" 2,10 J.63 /.92

Avm•• 0.8Q Q . .56 0.71 I.JI "' 1.48 J.J9 J.JJ

210

APP€NDIX B - D~wu Of EXP/,/1/MENT,ILR/iSUl~

Table B.3 Mean test classification error for Diabetes dataset using 8-8-l SIANNs

Aotivacion Troining Algori1hm:s
Funciions Averag•

Shunt '"'
COM '" CM LMAM OLMAM DSGDX ,OM ""'

Tnh Lin 20.03 22.14 21.30 2255 21.34 20.23 26.62 27.68 22.74

'"" c,, 22,01 21.03 20,96 21.96 21.10 20.17 22,81 2183 11.61

'"" "" 19.70 21.16 21.09 21.65 20.52 40.64 27,76 26.81 14.92

C·, Lin 19.48 22.27 20,61 20,98 20.96 20.02 26.52 26.01 22./1
c,, c, .. 25.80 21.09 20.88 21.06 20.7) 19.82 21.50 21.69 21.57

c" '"a 19.0S 22.03 19.88 20.22 20.34 41.24 25.71 24.35 24./0

Exo Lin 19.47 22,07 20.60 24.39 22.41 20.20 29.62 28.83 2).45

Ex• C•• 27.20 21.76 20.58 21.40 21.00 20.27 22.67 22.05 22./2

Ex• '"a 19.28 21.IS 20.31 22.37 20.56 39.72 26.09 27.17 24.58
Avera, 2U4 21.6J 20.69 21.84 21.00 26.92 25.48 25.18

Table B.4 Mean test classification error for Multi-class dataset using 2-2-3 SIANN

Aclivation Training Algorilhm:s
Function, Mmgo

Shunt '"'
COM '" CM LMAM OLMAM DSGDX ,OM ROM2

Toa Lin 32.48 23.79 9.60 10.91 12.84 23.67 407 43.03 2J.IJ

Toa c,, 6,72 6.0S 7.4S 6,76 9.9] 33.59 10.47 !1.83 11.60

Toa '"" 29,Sl 21.0S 9,12 10.08 !8.ll 32.20 42.07 41.29 25.4]

Ces Lin 33.08 32.25 16.SS JS.OJ 17.88 23.57 46.08 42.S9 2838
C·, C·, 8.ll 7.0S 6.83 6.IS S.81 32.65 IJ.93 12.99 11.69
c,, '"" 33.23 32.76 17.80 lS.27 21.37 31.00 41.33 39.27 29.00

''" "" I0.23 ID.SJ 6.42 7.87 6.31 9.39 43.79 44.95 17,44

Exo Ces S.73 S.47 5.69 6.13 6.79 24,91 7.49 8.33 8.82

''" "" 11.80 9,84 9,27 7.39 7.29 19.80 JS.25 38.76 17.4j

Avera c /R.99 /6.H 9.86 9.SI II.BJ 25.64)1.70)/.45

Table B.5 Mean test ARV for Sunspots dataset using 10-10-1 SIANNs

Ao1ivo1ion TroiningAlgorilhm•
Flmolions Average

Sh"nl '"'
COM '" CM LMAM IOLMAM DSGDX ,OM ROM2

Tnh Lin 0.161 0,174 0.111 0.1401 0.128 0.130 l.22l 0.877 O.J71

'"" C·· l.008 0.987 0.143 O.lSI 0.132 0.190 o.m 0.3l4 0.4/Q

'"" '"" 0.226 0.20! 0.129 0.147 0.129 0.137 0.790 0.742 O,J/J

c .. Lin 0.223 0.188 0.112 0.125 0.117 0.119 0.614 0.670 0.211 ,.
"' l.007 1.006 0.!43 O.IS2 o.no 0.194 0,286 0.271 O.J99

C•• '"a 0.274 0.212 0.126 0.135 0.122 O.lll 0.622 0.551 0.271

Ex• Lin 0.274 0.191 0,134 O,lfi7 0.143 0.135 0.773 0.912 O.J4l

Exn c. l.009 1.008 0.!46 0,150 0.176 0.195 0.324 O.l61 o.m

"" '"" 0.314 0.213 0.133 0.151 0.134 0.13~ 0.762 0.743 0313

Avcroe• 0.500 D.464 O,JJ) 0./46 0./35 0.152 0.6M 0.607

211

APPWD/X B - DUA/LS OF EXPERJMElfT,llRESUlTS

B,1,2 Rankings of E:cperlmental Results

This sub-section presents the Kmskal-Wallis rnnkings of the mean test errors for all
combinations of activation functions and training algorithms using SIANNs, for each
of th!l benchmark tests. Tables B.6 to B.10 contain the ranking of the means
presented in the corresponding table in sub-section B.1.1. The sum of rankings for

each activation function combination (row) and training algorithm (column) is also

presented, along with a relative ranking of the functions and training algorithms

based on this total. Table B. l l presents the sum of all ranks over the five different
benchmark tests. Table B.12 ranks the sums presented in Table B.11 from l to 72,

and is used to calculate the overall h statistic, as well as the 'overall' ranking.

Table B6 Rankings for 3-bit Parity dataset results using SIANNs

Aclivalion Tr:iining Algorithms
fllnclfons Toto! ~·

Shum '"'
COM co, CM C"-'M OLMAM OSODX <OM ROM2

'"" Lin " " " ns 31.5 ' " .. "' •
'"'

c,,
"

,., " " " '" " 31.5 "' '
'"'' '"' "

,., " 27.S " 62.S " " 178.5 •
Cu Lin " 69.S '' 38.S ,. JS.S " 62.S JJO.J •
c. " .. " ' 38.S " 69.S " " m ' c. '"' " " " " " .. , .. 57.S "' •
"' Lin 57.S Si.J ' ' "

,., ,., " " 2J7.J '
"' c. " J.S· ,.,

" " " " " m '
"" '"' 57.5 " " " lS.S "·' 44.J "·' 276.J '

Tolnl "' JUJ 116.S "' /9J.5 "' 415.5 ,w

~"' • ' ' ' ' • ' •
Table B 7 Rankings for Breast Cancer dataset results using SJANNs

Aclivotion Training Al_gorilhms
fllnolion, Tollll ~·

Shunt °"'
COM '°' CM C""M OLMAM DSODX <OM '°"'

'"' Lin " ' " " " 19.S 259.S '
'"' '. ' " " 44.S " " " " 157.S '
""' '"' "

,.
" '" " " "

.,
"' •

'" Lin 2R.5 " • " " " " 70.S "' •
'"' '. ' '' 19.S " " " " " "' '
'" '"' " "

,., " ' " .. " 196.5 •
fan Lin " ' " " 44.S " n 70.S "' ' ,,, '" • .. '" " " " " " m '
''" '"' " " 28.S " " " " " 376.S •

Tot,! 2/J.J /48,5 117.S 383.J 247.S J/Z.S "' m ·~ ' ' ' • • ' ' •

212

APPENDIX B • DET,l/lS aF EXPERJMfNrAt REsutrs

Table B.8 Rankings for Diabetes dataset results using SIANNs

Aotivallon Tralning Algorilhm,
Funolinn, Total Ronk

Shunt '"'
COM '" CM ''"M OLM AM DSGDX ,OM ROM2

'"" Lin ' " " " " " " " "' '
'"" C•• " " 24.S .,

" " " " 286.S •
'"" '"" ' " 30.S " " " " " 316.S ' c .. Lin ' .. " " 24.5 • " " 151.5 '
C•, C•• " lO.S " " " ' " " 246.5 •
C•, '"" ' " ' " " " " " '" ' •• Lin ' " '" " '" " " " "' •
•• C·, " " " " " " " " ,oo ' •• •M ' " " " " '" " " "' •

To!lll ''" m.5 '" "' 242.5 "' "' "' Ronk • ' ' ' ' • • '
Table B 9 Rankings for Multi-class data.set results using SIANNs

Aotiv,llon Tl'lininc Algorilhms
Funclioo, To!lll ''"' Shunt '"

O,M "' CM ""'M OLMAM DSGDX SOM ROM2

'"" Lin " " " " " .. '" " "' '
'"" c .. " ' " " " " '" " '" '
'"" '"' " " " " " " " " m •
C•, Lin " " '" " " " " " "' •
C•, C•• '" " " ' ' " " " "' ' c .. '"" " " " " " " " " m ' ... Lin " " ' " • " " " "' • •• C•• ' ' ' ' " '" " " "' • .. '"" " " " " " " " " ''" '

Totol "' "' "' '" "' "' "' "' Rank ' ' ' ' ' ' • '
Table B.10 Rankings for Sunspots dataset results using SIANNs

Activation . Tl'lining Algorithms
Fun,tioo, Total ~·· Shunt '"

COM "' CM LMAM OLMAM DSGDX ,OM ROM2

'"' Lin " " 12.S " ' 10.S " M "' '
'"' Co 69.S '" " 29.S " " " " "' "
'"' '"" " "

,.,
"

,.,
" " .. m •

C•• Li, " " ' ' ' ' '" '" "' ' c. Cs, '" " " " 10.S " " " 314.5 '
C•• '"" 41,5 " ' " ' 12.S " " "' '
" Lin 47.S '" 16.S " " " " " "' ' ,, c .. " @.S " '" " " " " '374.5 ' ... '"" .. " " 29.S '" " " '" "' '

Tola\ 474.5 Wl.J /JJ.J "' 121.S "' "' '" ""' ' ' ' ' ' ' ·, '

213

APPENDIX B • DET,lll$0f ExPERJ/.IEIVT&L RESuLr.;

Table B 11 Sum ofrnnk.s across ali five benchmarks datasets
Activation Training Algorithm,
Function, Tola\ ...

Shun! '"'
COM co, CM LMAM ow= DSGDX SOM RDM2 •

'"' Lin "' '"' .118.,'i]7].< lll.5 .. "' "' /49J., '
'"' ,- ins 121J m:s '" -m '" "' 224.5 /J02 '
'"' '"' , .. 159.5 118 •)159.j: ·,. b·.,. 265.S '"' "' 1628 " , .. 'Lin 206.5 1243.S 72.S 'l:ii.5.· ·• IJJ!l.t:·. ,96.5 "' "' 1496 • , .. L•s ' "' '" ,.,· .. ·: .. · 48.S

.
' 61.5 191.S "' '"' 1291 ' , ..

'"' 225.S .. , 74.S' "" "' '" '"' 291.S 1619.J 0

&· Lin '" 115.S "' '"' '" 97.5 "' 328.S 1474.J '
"" ,.,

"' "' 96.5 '" "' '" '"' '"' 1275.J ' &- '"' l!U.S ,,. 92.5 176.J '" 259.S 285.S 296.5 ma ' Towl 1712 "" 864.J 1412.S /019 1578.S 2496.J 2474
IWnk • • ' ' ' ' " '

Table B 12 Rankings for Overall perfonnnnce across al! datasets
Ac1ivation Training Algorithm,
Funo!ion, Towl

Shunt '"'
COM co, CM LMAM OLMAM DSGDX SOM so~

'"' Lin " 41.S '" " " ' '" " 292.S •
'"'

, ..
'" " " " " " " " '" '

'"' '"' " JJ.J " 33.S " • "' " ,., Lin " " ' " "
,., 68.5 68.S 286.S • , .. , .. "' " ' '" ' .. S0.5 " 261.S ' , ..

'"' " " ' '" " '" " "' "" " fan Lin " '" ' "' " " " " 291.S ' fan , .. so.s '" ... " 13.S '" 48.J 48.J 251.J" ' E,- '"' " '" • " ll.S " " M JOI.J ' Tot,! J94,S ,,. 79.S "" "' J/0.J SSH "' • • ' ' ' • " '

> ,;.
214

:<• ·.' .

Ai'i'EIIDIX B • DIITAILSDf" ExPERIMEI\TAl RESUlT.S

8.2 Experimental Results for Chapter 5

This section presents tables containing the details of the e:itperimental results

obtained in Chapter 5, 'The Quadratic Neural Network Algorithm'.

8.2,1 Mean Error Results

This sub-section presents details of experimental results obtained. Tables B.13 to

B.17 show the mean test error for all combinations of activation functions and

training algorithms, for each of the benclunark tests, using SIANNs trained ou QNN

algorithm variants. The avernge for each activation function combination (row) and

training algorithm (column) are also presented. Tables B.18 and B.19 show results

obtained wheu varying the step-size, d, for the standard QNN algorithm.

Table B.13 Mean test classification error for Breast Cancer dataset using SIANNs

trained with QNN algorithm variants

Activation Training Algorithms
Fw,e1ion, Morago

Shunt '"' '"' '"'' '"''
,,,..

'"'' QNN·C2 "' CM

"" Lin 0.46 0.54 ••• 0.56 050 OAS 0.36 0.71 O.JJ

'"" , ..
"" O.ll 0.31 Ml 0.41 0.29 0.60 1.22 0.4~

'"" '"" "' "' 4.08 3.7) "' "' 0.82 0.85 , ..
'"' "" 0.55 o.ro 0,86 0.55 O.l4 O.S4 0.98 0.44 0.61

"' '"' 0.40 "" 0.24 O.l6 O.l2 O.JS 0.20 0.66 O.J6 ,.,
'"" 0.47 o.so 0.18 0.62 0.70 0.46 0.84 0.20 0.57

"" Lin 0.66 o.e O.Sl o.e 0.56 0.66 0.29 0.88 MO

"" '"' 0.26 O.l5 0.27 "'" 0.40 O.Jl 0.45 l.21 0.48

"" '"" ,.oo 1.86 2.ll 1.86 0.82 l.06 O.S4 0.79 I.J2

Avcrae< 0.9J 0.97 I.II I.OJ 0.8J 0.96 0.56 0.77

Table B.!4 Menn test classification error for Diabetes dataset using SIANNs

trained with QNN algorithm variants

Aoiivoilon Tminins Algorllhm,
FUI1C1ions Avorase

Shunt '"' ''" '"'' '"'' QNN6 '"'' QNN-C2 "' '"
'"" "" 20.72 20.71 20,10 2!.24 20.SI 2054 22.14 21.lO 20.91

'""
,., l0,6S 20.56 2l.48 20.80 20.69 20.67 21.0l 20.96 21.11

'"" "" 20.08 20,01 20.IS 20.66 20.17 20.IR 21.16 21.09 20.44 , .. Lin 20.09 20.lO 19.96 20.lS 20.!I 20.16 22.27 20.61 10.48 , .. ,., 20.74 20.73 25,21 20.66 20.61 20.60 21.09 20.88 21.J}

'"' '"" 19.88 19.95 19.91 20.0l 19.57 19.69 22.0J 19.88 20.I}

fua "" 20,79 20.62 20.08 20.88 20.59 20.79 22.07 20.60 20.80

fuo "' 20.69 20.77 23.68 21.09 20.S4 20.79 21.76 20.58 21.24

fa~ '"'' 19.92 19.80 20.ll 20.22 19.96 20.0S 21.15 20.Jl 20.21

Avon••)0,40 20.38 2U} W.66 20.JI 20.J9 21.6] 20.69

215

APPWf)fX B - DITAIU/ OF £Xp£RJM!lffAL RESULTS

Table B.15 Mc:an test classification error for 3-bit Parity dataset using SJANNs

trained with QNN algorithm variants

Aclivalion Training Algorithm,
F!ll1clions Avoragc

Shunt om ,~ ,~, ,~, ,~· ,~, Q~-0 GOX OM

'"" Lin I I.SO 9.SO 31.00 21.25 10.25 11.75 24.75 ,.oo "00

'"" O•• 8.50 9.00 36.75 Z0.25 12.SO 10.25 \.25 6.15 13.16

'"" '"" 10.00 12.50 JJ.00 19.00 JO.SO 10.25 2.00 8.25 13.19

O··· Lin S.00 6.00 47.00 28.50 6,00 4.25 ~9.75 0.50 18.]8

O•• o•, S.25 4.75 47.00 3050 S.15 ,,, 29.00 1.00 15.84

0•• '"" 7.2S 6.SO 46.SO J0,25 8.75 10,25 48.25 5.75 20.44

~" Lin 9.00 7.75 36.50 15.75 6.15 9.50 38.00 0.50 1SA7 ,, O·· 9.25 8.00 32.00 20.00 7.00 9.25 1.25 2.00 11.09 ,,
'"" 9.00 9.SO JJ.75 15.75 ,,, 9.00 3.25 3.00 11.47

Avero•o 8.31 8./7]8.11 22.36 8.44 8,67 21.94 J.97

Table B.16 Mean test elassification error for Multi-class dataset using SIANNs

trained with QNN algorithm variants

Activotion Training Algorithm,
Fune1kms Average

Shunt Om ,~ ,~, QNN5 ,~· "'"' QNN·C2 "' OM

''" Lin B.87 B.l6 23.55 8.79 B.85 8.72 23.79 ,.oo 12.J7

Tnh O•, 6.\1 6.BJ 8.03 6.24 6.88 6.80 6.05 7.45 6.80

'fob '"" 8.96 8.80 25.95 9.41 10.61! B.60 21.05 9.12 12.82

o·, Lin 9.57 9.33 JO.BB 19.29 11.85 10.32 32.25 \6.55 17.51

O•• O•• 6,60 6.51 7.05 6.28 6.71 6.49 7.05 6.83 6.69

O•, Tnh 1 l.57 ll.17 32.09 16.21 12.32 "" 32.76 17.80 17.92

Exn Lin 7.40 ,.oo 14.57 7.05 7.a9 "' 10.53 6.42 8.54

Ex· O·· 6.05 s:19 7.87 5.72 '·" 5.83 5.47 S.G9 6.0]

Ex• '"" 7.0l .., Ll.29 ,.oo 6.73 6.91 '·" 9.27 8.:i?

Avera•c 8.02 7.81 18.36 9.JJ 8.64 7.84 16.53 9.86

Table B.17 Mean test ARV for Sunspots dataset using SIANNs trained with QNN

algorithm variants

Aolivotion Training Algorilhm,
fllnctions Avcrogc

Shunt om Q>N '"'' """ ,~. ,~, QNN·C2 oox CM

'"" "" 0.132 0.133 0.202 0,124 0.133 0.(34 0.174 0.131 0,/45

'""
,., o.m 0.136 0.506 0.116 O.ll5 O.!JB 0.987 0.143 0.287

'"" '"" 0,144 0.147 0.269 0.136 0.149 0.144 0.201 0.129 0.165

" Lin 0,13l 0.131 0.315 0.105 0.134 0.131 0.188 0,112 0.156

O••• 0' 0.127 0.126 0.604 0.100 O.!Jl 0.127 !.006 0.143 0.2%

,-. '"" 0.149 0,148 0.)36 0.134 0.149 0.147 0.212 0.126 0./75

&• Lin 0.134 0.135 0.)17 0,127 0.135 0.134 0.191 0.134 0.161

Ex" 0•• 0.145 0.144 0.589 0.150 0.139 0.14l 1.008 0,146 0.308

E,n '"' 0.148 0.\48 0.120 0.138 0.147 0.147 0.213 0.133 0.174

Avera•• O,IJ9 O.IJ9 0.]84 0.126 0.119 0.118 0.464 0,111

216

APPENDIX ll - DITA/IS(}F ExPERlMf:NTAL RESUtr.i

Table B,18 Results for QNN algorithm with different dvalues applied to Wisconsin

Breast Cancer data.let

Oiscret• Acli•otion Porformonoe Avg Epochs TmEm,r """ •lt!>-•izc,d functions %ofnms' Train

'" • 0% '"" A" • "" BcSI 95%Cl Modion
lime

°"' Moan ,,,
goal '" < "" .. , ""'" (%) ''% (%)

o.oi "" '"' " " '" '" • JOO 0.00 0.6l ±0.16 0.S6 14.4

0,02 Exp '"' " " '" "
.

"' 0.00 ... ±0.18 0.56 12.7

0.05 ,,.
'"' " '" '" "

. '" 0.00 0.70 ±0.22 0.56 '" ,., ,,.
'"' " " '" 00 .

'" 0.00 0.54 ±0.18 0.56 15.S

"·' ''"
,,,

" " '" '"
. " 0.00 0,26 ±0.13 0.00 15.7

o.s '" '"' " " '" " • " 0,00 0.28 ±0.11 0.00 16.J ,., ~xp '"' " JO '" .. • "' 0.00 0.29 ±0.12 0.00 19.6

'" ''" '"' " " • "
.

" 6.78 S2.0I ±8.n 64.69 12.1

Table B.19 Results for QNN algorithm with different dvalues applied Pima Indians

Diabetes dataset

Discrete Activation Performance Avg Epochs Test Error Mean
51op-slzc,d funotions '%ofnin•' Tmin'

'" ,. • 0% '"" "' • 0% '"' Me,n 9So/,CI Median
tim•

goal '" < ""' goal ""'" {%) ''% (%)
(•(

O.Ql '"' '"" " " " m . . 17.71 21.05 ±0.4] 20.83 100.S

O.Q2 ,,,
'"' " " " "' • • 18.23 20.73 ±0.JS 20.BJ S2.B

o.os ,,,
'"" " 0 " "' • • 17.71 20.82 ±0.JS 20.83 35.9

"' '"' '"" " 0 " "' • . 18.75 20.22 ±0.24 20.31 65.0

"'
,,,

'"" " 0 " "' • . 17.71 19.BB ±0.24 19.79 75.8

o.s "' '"" 0 " " m . . 18.23 19.79 ±0.34 19.27 86.6 , .. '"' '"" " " " "'
. . 17.71 19.41 ±0.JS 19.27 119.7

'" '" '"" " " " ' • • JJ.33 41.37 ±2.91 36.46 ,.o

217

APPENDIX B - DETAILS 01' EXPERIMENTAL RESULTS

B.2.2 Rankings of Experimental Results

This subsection presents the Kroska\-Wallis rankings of the mean test errors for all
combinations of activation functions aod training algorithms, for each of the
benchmark tests using SIANNs trained on QNN algorithm variants. Tables B.20 to
B.24 contain the ranking of the means presented in the corresponding table in B.2.1.
The sum of rankings for each activation function combination (row) and training
algorithm (column) is also preseuted, along with a relative ranking of the functions
and training algorithms based on this total. Table B.25 presents the sum of all ranks
over the five different benchmark tests. Table B.26 ranks the sums presented in Table
B.25 from I to 72, and is used to calculate the overall h statistic, as well as the
'overall' ranking.

Table B.20 Rankings for Breast Cancer dataset results using QNN algorithm
AcliVRlion Troining Algorithm,
Function, Tolill .. ,

Shunt '"' Q,W Q>NO Q,W; Q>N, Q>N> QNN,C2 "' w
,., Lin 26,S " .. " 29.5 24.5 " " 163.J •
'""

, ..
" " '' 21.s 21.S ,., 40.S " /87,S ' ,.,

'"" " '" " " " " SJ.S " $26,S •
J,o, Lin 35.S 40.S " JS.S !2.S " " " '" '
'"' '"' 19.S '" ' " '" 14.S " " "' ' ,.,

'"'' " 29.S " " .. 26.S ;; ,., 181.S ; ,, Lin " 43.S " 4J,S " " '' " 314.S ' ,,
'"' • 14.S ' " 19.S ,., 24.5 " "' '

" '"" M 62.S " 62.S SJ.S " " " 4S8.S • .
To!al 3/0.S "' 338.5 "' 30&.S 193.5 290.5 "" .. , • ' ' ' ' ' • •

Table 8.21 Rankings for Diabetes dataset results using QNN algorithm
Activation Toiiniag Algori~,ms
F"n,lioo, Tolill Ronk

Shum o, Q>N Q,WO Q,W; '"'' Q>N, Q,W.C, "' CM

'"" Lin .. " " " " 29.S .. M 360.j '
'"'

,.,
" " '" " 4J.S " " " 391.S '

'"' '"' 14.S " " 40.S " ll .,
" "' •

'"' Lin " "
,.,

" " '" .. l6.S "' ' ,.,
'' .. " n '"' 36.S 34.S " .. , "' •

'' To> '' • ' "
, ' " ,.,

'"' • ... Lin " " !4.S 54.S " " " 34.S 343.S ' Ex• " 4J.S .. " " 29.l " " " ,oo ' Ex• Tnh ' ' " "
,.,

" " " 166.S '
fotat 269.S m '"' J72.J "" "' '" '" '"' • ' ' ' • ' • '

218

APPEIID/X B - Da-AIU DF EXPERIM~NTAL RESULTS

Table B.22 Rankings for 3-bit Patitv dataset results using QNN algorithm
Activation Trala,lng Algorithms
Functions Toi,! ~"'

Shunt °"' '"' '"'' '"'' '"'' '"'' QNN-C2 "' CM

'"' Lin " " " " 42.S " " zs.s "' •
'"' C•, 28.S 32.S .. " 4U 42.S ,., zo.s "' '
'"' '"' .. 48.S " " " 42.$ ·<J,< " 124.S ' c .. Lin " 11.S 69.S " 11.S "

,. ,.,
"' ' c•, C·• " " 69.S '" lS.S '" • i8 ' "' ' C•• '"' " " .. " '"

,. " -~- '.,71 IS.S "' •
" "" 32.S "

., s~.s lO.S " . · '67 ,., ,w ' Exo c .. 3S.S zs.s " " " !.S.{ ,' ,., ,., 244.S ' ,,
'"' ns " " s.- .s 28.S' ns • • '" •

Tolal "' "' , .. "' 270, JGI.J 348.5 '"' Ronk ' ' • ' ' ' ' '
Table B.23 Rankings for Multi-ciass dataset results using QNN algorithm

Activotion . Troinlns Alsorilh""'
Functions Totnl '""' Shunt '"' QW, '"'' QNNS' '"'' '"'' QNN-CZ '"' CM

'"' "" " " .. " " " " " "' '
'"' Los • 20.S " '" " "

,., " "' '
'"' Tnh " " " " .. "' ' C·, Lin .. " " " " " " " "" •
c .. C•• " " " " " " " 20.S 149.S ' c .. '"' " " '" " "

.,
" " "' •

"" "" '" 24.5 " " .. " " " 272.S '
"" , ...

'' • " ' '' '' ' ' 61.S •
"" '"' " " '" 24.S '" " " " 260.S '

Total 278.S "' ... 288.5 306.J 267.J 415.S 329.S

Ronk ' • • ' ' ' ' '
Table B.24 Rankings for Sunspots dataset results using QNN algorithm

Activation Troining Atgorilhms
Fune1lon, Toiol Ronk

Shuat '"' QW, '"'' "'" QW,O QW,, QNN·C2 "' CM

'"' Lin " " " ' " ZJ.S " " 206.5 ' Tnh '" " 30.S " ' " " '" " JOl.5 ' Tab Tnh .. 4S.S " 30.S " " "' '
'"' Lin " " " ' "' " " ' /9/.S ' ,,,

'"' • ,., .. ' " • " " 220.S '
'" '"' " "' " 4S.S '" '' JS4.S ' ,,. Lin 23.S " M • " "' " 23.5 256.J ' Esn ,,.

" M " " " " "' •
"" '"' " " 45.5 45.S " '" "' •

To1al 281.S m.s "' '" "" "" "" "' ,..,,
' • • , ' ' ' '

219

APPW/JIK 8 - DETAILS OP ExPERIM~/VT.ll RESULTS

Table B.25 Sum of ranks across all five benchmarks datasets using QNN algorithm
Ac1ivation Train in~ Algorilhm,
Function, Total ~,,

Shunt '"' ONN ONN> O'"' ONNO ONN• QNN.Cl '" CM

"' u, 115.S ''"
,., ,oo '" 162.S '" 202.S 1$80.5 • ,,, c .. !26.S l2B 246.5 142.S 163.S ,., 179.S 205.S /JJJ.S ' ,,, "' 206.S "' '" "' "' 209.S ,.,

'" /8JB •
C•• Lin l3U '" , .. 185.S 128.S '" m '" UJ7.5 •
c .. Ce, 106.S " 241.S 129.S " "' 217.S ,., /129 •
c .. "' 163.S 160.S "' 197.S '" 163.S "' " /JJI ' ~- Lin '"' "" 233.S 185.S m.s 191.S 250.S 129.S 1486 • , .. c,, m.s "' "' '"' 111.S 137.S ,., 14l.S 1271 ' , .. ,,, 178.S 16:i.S ,w 19l.5 '" "' "' ... 15/H •

Total /405 /J61.S]J00.5 /68j 1397 /j97,j 1188.5 NOO

Ronk • • • • ' ' ' •
Table B.26 Rankings for Overall performance across all datasets results using QNN

algorithm
Aoliv•lion Toiinins Algorilhm•
Funclioru Total Rank

Shunt Out QNN 0'"' 0'"' 0'"' ONNO QNN·Cl '" CM

Tnh Lin " " " .. " "
.,

" "' •
Tnh c .. • ' .,

" " '" " '" "' '
'"' "' " S4.S '" " 58.S " "' .. "' •
Coo Lin " '" .. 41.S '" " n • 241,S •
"" "" ' ' .. 12.S • • " " /69.5 •
C·• "' " " "

., .,
" " '

,,, •
E•• Lin " " " 41.S " • " 12.S ,oo ' E,n Ces " " '"' " • " " " 119.5 '
''" '"' " " 00 "

,.
" 54.S " J2Z.5 '

Tola! "' 218.S 515.5 J67.S 215.5 '" 520.5 138.5

Rank ' ' " • ' • ' •

220

APPENDIX [I • DEWLS OF EXPERIW:lfTALRESULTS

8.3 Experimental Resulls for Chapter 6

This section presents the details of the C)[perimental results obtained in Chapter 6,
'Further Development of Shunting lnhibitoiy Artificial Neural Networks'. The mean
test error for each of the benchmark tests, obtained using Enhanced SJANNs, for all
combinations of activation functions and training algorithms, is presented in Tables
B.27 to 8.3 !. The average for each activation function combination (row) and
training algorithm (column) arc also presented.

Table 8.27 Mean test classification error for Wisconsin Breast Cancer dataset using
Enhanced SIANNs

Aclivotion Trainin• Al•ori1hms / Struotun,
Funolions

RO<luood 9-t-1 Ex ,ndod9-t-2-l Stondord 9-9-1 "'
'" Om co, CM OSGDX co, CM DSG DX 00, CM D!\GDX

'"" Lin 0.15 0.76 O.S2 0.90 0.69 0.63 0.36 0.71 0.66 O.M

''" c 0.88 0.90 LOS l.14 1.2! 1.1 0 0.60 l.22 0.54 0.96

''" '"" 0.86 0.35 5.81 l.08 0.71 5.92 0.82 0.85 2.69 2.12

c•, u, 0.98 0.52 0.47 Lil 0.58 0.62 0.98 0,44 0,7J 0.71

C·, c 0.94 0.84 0.58 I.SJ 0.77 l.22 0.20 0.66 0.69 0.83

"' '"" L22 0.50 6.70 2.15 0.29 9.22 0.84 0.20 '" 2.71

" Lin 0.55 0.23 0.26 0.51 0.31 0.47 0.29 0.88 0.98 0.50

" c .. 0.81 0.79 0.84 2.27 0.90 0,96 0.45 '"' 0.54 0.97 ,,
''" 0.70 0.61 7.62 l.Ol 0.41 12.44 0.54 0.79 3.25 3.04

Avcmgc 0.85 o.61 2.65 I.JO 0.65 J.62 0.56 0.77 1.48

Table B.28 Menn test classification error for Pima Indians Diabetes dataset using
Enhanced SIANNs

Aclivo1ion Trninin~AI orithmo/Slruclurc
1'1,notion,

Rcduoed 8-3·1 Ex .,,a,a s.3.2.1 Slondard s.a.1 '"'
'" o", '" ~, DSGDX co, CM DSGDX '°' CM OSGDX

"" Lin 21.77 21.30 20,89 22,26 21.36 20.59 22.14 21.30 20.23 2/.32

''" C·, 21.01 20.64 21.23 22.86 21.14 21.SO 21.03 20,96 20.17 21.17

''" Toh 20.96 20.53 43.48 21.55 20.81 45.66 21.16 21.09 40.64 28.4J

c .. "' 22.84 21.22 20.96 23.57 21.15 20,58 22.27 20.61 20.02 21.47

c .. Ce, 22.05 20.76 2l.l3 25.55 20.67 21.54 21.09 20.88 19.82 21.50

c .. "" 21.94 20.35 41.96 22.47 20,76 45.31 22.03 19.88 41.24 28.44 ,. Lin 21.78 21.24 20.62 25.56 20.95 20.72 22.07 20.60 20,20 21.53 ,, c,, 21.38 20.52 21.23 27.61 20.90 21.46 21.76 20.58 20.27 21.75

" ''" 21.34 20.18 42.26 25.95 20.43 44.34 21.15 20.31 39,72 28.41

Average 21.67 20.75 28.20 24.15 20.91 29.08 21.61 20.69 26.92

221

Al'l'ENDIX 8 • DETA/1,SOF EXP£R/11£NTALR£SUl'IS

Table 8,29 Mean test error for 3·bit Parity dataset using Enhanced SIANNs

Acliva!ion Trainin· Al orilhm, I Suucture
Functioos

Rodu"d J-2-1 fan•ndod 341 St,ndud J.J,l Avg.

'" ""' "" '" DSGDX "' '" DSGDX GOX CM DSGDX

'"" Lin 19.25 19.75 !I.SO 17.00 ,.oo 0.00 24.75 8.00 0.75 11.44

'"" , .. 12.50 17.75 30.00 0.50 LOO 3.75 1.25 6.75 6.25 8.86

'"" '"" 8.50 23.75 49.00 0.15 3.50 35.25 2.00 8.25 43.25 /9.16

Coo Lin 50.00 9.15 14.25 40.00 0.00 0.00 49.75 0.50 4.00 /8.69 ,., , .. 39.50 10.25 49.25 21.25 0.25 l.50 29.00 l.00 49.75 21.42

c .. '"" 49.50 8.75 so.oo 26.50 4.50 28.50 48.25 5.15 45.75 29.72

"" Lin 43.SO IS.SO 19.00 42.25 0.25 0.00 38.00 0.50 l.50 17.83

" c 12.50 17.00 41.25 0.50 0.25 2.75 1.25 2.00 28.25 11.75

" '"" 13.75 11.75 49.75 l.15 0.00 40.00 3.25 3.00 45.15 18.78

AV<n,go 27.67 14.92 j4,89 16.72 1.31 12.42 21.94 3.97 25.03

Table B.30 Mean test error for Multi-Class dataset using Enhanced SIANNs

Ac1iva1ion Trainin Al lll1tl=I S!racture
Fune1ion,

Reduced l· 1-3 Ex •ndcd2,J,J Sl"'1dml 2,l,J
Avg.

'" ""' "' CM DSG DX @X CM DSG DX "' CM DSGDX

'"" Lin 34.64 34.99 34.67 7.45 6.64 8.39 23.79 9.60 23.67 20.43

'"" ' 8.21 7.13 34.67 S.51 9.69 7.80 6.05 1.45 33.59 11.34

'"" '"" 34.96 35.4 J 34.67 6.32 ,,, 9.24 21.05 9.12 32.20 21.0J

' Lin 34.33 34.93 34.67 ll.04 6.11 5.96 32.25 16.SS 23.57 Zl.16

'" c' 6.71 7.77 34.67 S.64 7.72 9.09 7.05 6.83 32.65 13./3

'' '"" 34.51 35.24 34.67 9.49 S.60 9.53 32.76 17.80 Jl.00 2HO

" Lin 34.36 JS.36 34.67 5.52 5.79 5.51 JO.SJ 6.42 9.39 16.40 ,,
' 5.89 6.69 34.67 5.39 6.24 6.51 5.47 5.69 24.91 11.n ,,.
'"" 35.27 35.93 3S.33 5.00 8.15 6.56 9.84 9.27 19.80 18.35

Average 25.43 25.94 34.74 6.82 6.92 7.61 16.53 9.86 25.64

Table B 3 ! Mean test ARV for Sunspot dataset using Enhanced SIANNs

,\,;tivolion Troinin• Al 0M1hms I S1ru,turc
Fune1ions

Reduced 10·5·1 Ex ,ndccl 10·5·2·1 S1andord 10,IO-I
Avg.

'" ""' "' CM DSG DX "' CM DSG DX cox CM osaox

'"" Lin 0.220 0.134 O.l2J 0.536 0.132 0,148 0.161 O.ll9 0.126 0./89

'"" ' l.030 0.256 1.380 1.020 0.160 1.340 0.970 O.ll9 l.JIO 0,845 ,.
'"" 0.213 0.195 0.151 0.515 0.137 0.223 O.l85 0.117 0.133 0.108 , .. Lin 0.306 0.147 0.124 0.858 0.127 0.144 0.169 0.108 0.121 0.214

c' " !.020 O.l67 l.JSO l.020 0.133 l.340 0.976 0.!16 l.330 0.828

" '"" 0.317 0.127 0.153 0.888 0.147 0.322 0.200 0.116 0.129 0.267 ,,.
"" 0.271 0.142 0.133 1.000 0.134 O.lll 0.!75 O.IJS O.lll 0.250

E,o '"' 1.020 0.161 1.350 J.020 0.155 l.350 0.992 0.140 1.350 0.838

E,n '"" 0.303 0.132 0.147 1.030 0,134 0.2ll 0.194 0.133 O.IJJ 0.2M

Avcr:,gc 0.511 0./62 0.546 0.876 0.140 0.579 0.44? 0./15 0.529

222

tlf'l'END/11 B • DErAILSOP EIIPER/MENTAL/USULT$

8.4 Experimental Results for Chapter 7

This section presents the expcrimcmtal results obtained in Chapter 7, 'A Generalised
Fcedforward Neural Network Architecture'. For each benchmnrk test, the mean test
error, obtnined using GFNNs, for alt combinations of activation functions and
training algorithms are presented in Tables B.32 to B.36. Tables B.37 to B.40 give
the detniled results for the various values ofs1;m with the different benchmarks tests.

Table B.32 Mean test error for Wisconsin Breast Cancer dataset usin- GFNNs.

Aoliv•tion
Troinin AJ-arilhm, I Slruolurc

Fune1ian, 09·1 GP9·2·1 Avg.

Output Nono Lincor Lag ,igrnald {Lg,) Tan •ill!11oid (Tllh)

OSN oo, CM '°' CM DS- '°' CM DS· '°' CM DS-

N~ °'" '°' '°' '°'
Lin c 0,16 0.44 0.37 0.46 0.34 "'' 0.75 0.7J 0.82 0.62 4,61 0.81

C•• c 0.5J 0.54 I.SO 2.25 0.82 5.67 J.55 1.29 1.91 J.51 7,67].66 ,. C•, 0.35 l.36 0.96 0.89 1.06 1.19 l.06 0.63 0.29 0.58 J.15 1.05

•• c .. 4.61 0.66 2.18 0.58 0.61 0.87 I.OJ 3.11 0,)8 0.79 18.0S].99

Lin '"" 0.47 0.47 0.40 0.49 0.46 1.08 1.28 0.86 0.81 1.12 4.JS 1.01

C•• '"" I.OS 1.14 1.41 1.41 0.53 l.60 3.47 l.01 l.Sl 2.09 10.SS],J6

"" '"" o.ro 1.25 0.36 0.73 0.62 l.98 J.21 0.86 0.46 I.OJ 2.15 1.08

•• '"" 3.RO 0.55 l.68 0.60 Ml 0.73 l.6l 3.20 0.38 0.66 14.SO].58

Lin •• 0.50 0.58 0.31 0.87 O.J6 O.l7 1.12 0.88 0.19 0,77 2.93 0.81

C•• ,, 0.15 1.82 0.61 LSI 0.28 4.15 1.05 1.16 0.7! 1.49 8.29 J.9J

'""
,, 0.56 0.73 0.75 0.4S 0.68 0.96 1.15 0.79 0.27 0.70 2.40 0.86

•• ,, 3.0l 0.66 a.92 0,56 0.45 0.85 ,,, 3.lS 0.59 0.49 lS.62 2.51

Avorooo }.3] 0.85 0.95 0.90 0.51 1.66 1.55 1.47 0.69 I.JS 1.91

Table B.33 Mean test error for Pima Indians Diabetes dataset usin° GFNNs

Aotivnllon
Trainin" Al 0 orilhnLol Structure

Function, Ci8·1 GP8·2·1 Avg.

OUtpUl Nono Linear Log sigmoid (Lg,) Tan sigmoid (Tnh)

OSN '°' CM cox CM OS- '" CM DS· '°' CM D3·

>om "'" '" ODX '"
Lin C•• 21.43 23.20 22,01 21.53 19.94 21.04 20,82 24.05 22.53 20.68 42.73 2J.6j

c .. , .. 20.70 23.JO 29.12 22.8] 21.26 J0.87 23.70 27.17 30.23 22.41 44.0J 26.93

'"" Co, 20.76 20.56 21.05 20.61 20.21 21.45 21.JS 26.78 20.66 20.47 43.68 2JA]

"" C·· 23.25 21.SO 2l.S3 21.20 21.05 21.08 20.36 26.95 22.75 20.88 46.99 24.SO

Lin '"" 22.05 22.31 22.05 21.72 20.60 20.99 20.89 25.18 21.93 2!.07 41.59 2J.67

Ces '"" 21.55 23.76 23.36 21.51 21.27 26.54 23.40 27.65 23.l2 21.59 45.28 2$39

'"" '"" 20.83 2Ul 20.79 21.32 20.0S 20.69 21.82 27.83 20.58 21.06 43.26 2161 ... '"" 23.ll 21.52 2l.29 21.66 20.95 20,85 20.86 27.42 22.72 20.51 47.52 24.58

"" .. 22.IS 22.46 21.70 21.40 20.54 21.2J 21.ll 26.05 21.27 20.72 42.17]HJ

c .. •• 21.0l 21.92 26.78 21.JS 20.73 27.6li 20.94 26,SJ 27.&4 20.52 4l.66 25.J9

'""
,, 20.58 21.45 20.79 21.24 20.00 21.49 21.98 26,89 20.67 20.55 4l.12)J,52

''"
,, 22.81 21.49 23.15 21.16 21.02 21.06 20.85 26.27 22.47 21.11 45.92 24,JO

A>ero c]J.69 11.08 2J.J9 Jl.47 20.M 21.9/ 21.SJ 26.59 23.08 10.96 44.16

223

Af'f'EHDIX B • DETA/lSDF Exf'ERlMElll&LRESULTS

Table B.34 Mean test classification error for 3-bit Parity dataset using GFNNs

Ao1iv01ion Trainin• Al•orithms / S1racture
Function, Ol·I GP3-2·1 Avg.

Output None Lino,r Los ,igmoid (Lgs) T1111,igmoid(Tnh)

"" "' CM ""' CM OS· "' CM ,s. "' CM ,s.

N= ~" cm cc, "'
Lin Co, 16.00 ll.2S SO.Oil o.oo 2,75 22.50 s.so 41.75 JO.SO ,.oo 48.75 21.09

'. c .. !9.25 14.25 15.15 22.25 16.75 20.00 26.25 27.25 22.50 22.00 45.00 24.66 ,. C·· 31.25 •• 28.25 29.25 21.25 24.75 27.00 22.00 25.50 2).50 46.25 27.9J

fu• c .. 15.75 11.0U 39.00 l.00 6.1S 7.15 7.15 15.25 ll.50 s.so 44.SO IJ.61

Lin '"" 16.00 17.50 4l.50 0.75 4.00 J.75 10.00 12.25 4.75 3.15 47.25 14.86

" '"" 26.50 16.75 14,25 20.25 5.lO 20.00 25.00 12.SO ll.75 ll.SO M.00 20./8

'"" '"" 34.75 25.25 12.50 21.25 6.25 12.50 26.25 22.00 8.SO 25.00 43.00 21.57

lli" '"" 26.00 17,75 24.50 0.00 3.50 5.25 8.SO 13,75 5.SO S.25 42.50 IJ.86

Lin '" 22.25 16.00 46,25 0.50 3.25 2.50 2,75 21.75 2.75 2.25 45.25 IJ.OJ

'"' Exn 29.25 26,SO 3B.SO 14,75 6.25 6.15 !7.SO 21.50 8.25 16.00 45.00 20.9J

'"" •• 32.50 34.00 18.00 19.50 7.75 7.00 17.00 17.25 9.75 19.75 4S.50 20.7J

'"" .. 15.00 13.50 38.00 ,.oo 7.75 8.00 3.50 16.25 12.25 1.75 M.00 14.64
Aver., e 2J,7/ 19.JS 32.38 11.01 7.6J ll.7J u.n 2(1.29 IJ.29 12.60 45.1111

Table 8.35 Mean test classification error for Multi-Class dataset using GFNNs

Ao1ivo1jon
Troinino Aloorithms I Siracture

Funcuon, 02-J GP2·2·3 Avg,

OUll"'t None Line,r Log ,igmoid (Lg,) T,n,igmol~(Tnh)

cs, @X CM "' CM "' "' CM ,s. "' CM ,s.

N"' ''" "' "' "'
"" c 11,95 7.11 36.73 S.83 9.61 5,61 5.91 1J.8S 11.71 ,.w 16.44 11.81

C•• c 9,57 12.95 ,OM 1S.2l 14.47 18.36 19.85 16.52 17.20 21,95 18.19 16.1~

'"" c JI.OS 12.37 23.08 1 l.3l 17.JI 13.19 14.72 8.67 22.16 17.91 22.85 17.70

Exo L 6l.JS l7.S6 66.17 8.76 65.87 16.24 11.76 47.45 15.27 MS 46.85 JJ.S2

Lin '"" 7.56 8.SJ 49.l5 5.92 8.76 6.52 6.61 8.69 8.21 6.61 15.69 11.01

" '"" 7.29 12.59 12.45 12.92 II.SJ 6.8l 14,92 IS.47 11.32 18.49 14.99 12.62 ,. '"" 19.67 10.88 11.01 13.19 14.9) 7.99 11.27 11.00 12.l7 18.57 2l.4l 14.0J

fu• '"" 62.61 16.20 65.Sl 10.21 6S.9l 17.24 9.27 47.87 19.ll •• 44.88 JJ.46

Lin fu 7.69 6.65 11.71 6,2l 8.37 6.47 S.92 8.28 11.17 7,19 10.21 8.17

'. ~ 6,81 8.89 7.71 9.7l 8.25 5.95 l 1.32 7.21 6.11 11.08 12.3l 8.67 ,. ,. 1.95 7.25 10.29 7.11 10.79 6.27 7.48 9.61 9.29 8.79 16.61 9.22 ~- '" 61.51 13.11 64.ll 7.09 64.tl 32.15 7.17 47,20 41.48 6.ll S0.59 J6.0/

Avera= 24.81 11.17 JJ.S9 9.41 24.99 11.90 10.69 20./S IS.47 11.74 24.26

224

APPENDIX B - DliIA/1.S rJF EXPERIMENT Al RESULTS

Table B.36 Mean test ARV for Sunspot dataset using GFNNs

Aotivalion Traloino Al orilhms I Struolure

F"'1ction, 0 10.1 GP lo.2·1 "•
Output None Linear Log sigmoid (Lg,) Ton ,igmoid (Toh)

'" cox CM cox CM DS· co, CM DS- co, CM OS-

""" De, ODX ODX on,
Lin Ce, 0.120 0.158 0.146 0.100 0.138 1.010 o.m 0.220 o.m 0.106 o.m 0.220

C•• C•, 0.827 0,253 0.987 0.257 0.204 l.020 0.316 0,439 0.982 0.280 0.277 O.SJ/

'"' c., O.S44 1.430 0.306 o.m 0.158 1.010 0.249 0.317 0.3S7 0.212 o.m OA48 ,, Ce, 0.367 0.145 o.m 0.121 0.163 0.830 0.161 0.264 0.226 0.125 O.lil 0.159

Lin '"" 0.141 0.144 0.173 0.106 0.148 0.921 0.127 0.229 0.166 0.137 0.164 0.12.J

c-, "' 0.604 0.322 O.!ro!J 0.173 0.173 0.999 0.2!14 0.486 0.799 0.207 0.239 0.467

'"' "' 0.298 0.229 0.248 0.138 0.165 1.020 0.201 0.300 0.253 0.157 0.186 0.190

E,n '"' 0.316 0.140 0.256 0.139 0.173 0.811 0.168 0.290 0.233 0.110 0.185 0.258

Lin & O.lH o.m 0.162 0.138 0.153 1.010 0,161 o.m 0.(76 0.119 0.167 0.244

C•, & 0.506 0.201 o.908 0.201 0,182 1.020 0.167 O.JBS 0,9JJ 0,192 0.225 0.447

'"'
,, 0.164 0.162 0.366 0.148 0.171 I.OlO 0.193 0.320 0.433 0.166 0.204 O.J04

''" ''" 0.271 0.151 0.271 o.m 0.167 0.844 0.162 0.270 0.226 0.127 0.168 0.154

/lvorae• 0.357 0.196 0.4/1 0,/jJ 0.166 0,960 O,J9J O,J/.J 0.411 0,/65 0./93

Table B.37 Results for Breast Cancer dntaset using GFNNs with variouss1im
Network al Linlg, G I Linlg, GP2-1 LlnExp.Tnh GP2·1 E,pE•p·Tnh

Trained "•ino GDX Trained 11Sin• LM Tralood "'in GDX Traino.! usinll LM

•limit Mean Em>r "" Mo,n "" Mean "" Moon "" '" Time Isl Errorf%1 Time Isl farnr/%1 Timol•I Em>r/%1 Time Isl

0.01 0.16 6.96 0.44 9.39 0.19 22.60 0.49 l'-69

0.02 0.16 6.96 ••• 9.45 0.19 22.62 0.49 IS.69

o.os 0.16 6.96 ••• ••• 0.19 22.6) 0.49 IS.69

o., 0.16 6,96 ••• •• 0,19 22.61 0.49 IS.70

o., 0.16 6.96 ••• '" 0.19 22.62 0.49 lS.69

•• 0,16 6.96 ••• 9.42 0.19 22.64 0.49 lS.70 , .. 0.16 6.96 0.44 9.41 0.19 22.6l 0.49 lS.69

,.o 0.20 6.71 ••• 9.43 0.27 21.30 0.49 lS.70

Table B 38 Results for Diabetes dataset using GFNNs with various S1im

Network G 1 Tohl:,cp G I TohLg, GP2-1 TnhTnh·Tnh GP 2-11:,cpl.gS·Lg,
Traino.! 11Sin• GDX Tminod usioe LM Traino.! 11Sino GDX TminodusiTioLM

slimil Moan Error "" Moon "" M•• "" Moan "" " T;m,r,, Error<%\ Timolo\ Error%\ Time I,\ Error I%\ Time Isl

0.01 2D.S8 9,71 20.56 5.2S 20.6S IS.JO 20.36 l7.8l

0.02 20.SB 9,73 20.56 5.26 20.65 IS.JO 20.36 17.82

0.05 2D.S8 9.73 20.S6 5.14 20.67 15.18 20.36 17.Bl ,., 20.58 9.73 20.!6 S.14 20.~ lS.26 20.36 17.Bl

"' 20.58 9.72 20.!6 5.24 20.66 IS.JS 20.36 17.Bl

••• 20.SS 9,73 20.56 S.26 20.60 IS.44 20.36 17.Bl

,.o 20.SB 9.73 20.56 S.21 20.S8 IS.67 20.36 17.82

,.o 20.78 9.46 20.56 5.19 21.98 22.40 20.36 17.81

225

APPENDIX B • DETA//.SOF £xPER!MENTAL RESULTS

Table B.39 Results for 3-bit Parity using GFNNs with various Slim

Nelwllrk GJ-l LinToh O J-l Exptg, GP 3-2-1 UnEl<p-Lgs OPl-2-l LinLgs-Lin
Tninedusin ODX Trained u,in• LM Tmined u,in• GDX Tralnedusln LM

slimil Mc,nl1m,r "" Mom "" Mean "" """ "" '%> TimoM Errorf%l Timo(sl Er,or 1% Tim•'•' ,~, Time ,
O,OI 2~:,s S.56 11.00 4.50 2.75 ,.w 0.00 0.80

0.02 25.25 5.56 11.00 4.50 2.75 H7 0.00 0.79

o.os 25.00 5.56 11.00 4.50 2.75 , .. o.oo 0.79

o., 25.15 S.S6 11.00 4.SO 2.75 '" 0,00 0,79

o, 25.25 S.56 11.00 4.50 2.50 3.34 0.00 0.79

o, 17.00 S.56 11.00 4.SO 3.50 3.17 0.00 0.79

,o 16.00 5.56 11.00 4.50 2.SO 3.14 0.00 0.79

,o !l.50 S.S9 11.00 4.48 2.25 3.94 0.00 0.79

Table B.40 Results for Multi-Class problem using GFNNs with various Elim

Ncl'llork G2-J Lg,El<p a 2-3 Unlli<p OP2-2·3 LinLg,-Lg, GP2·2·3 UnLi;s-Toh
Trainodu,in GDX Trained u,in• LM Trolncd win· GDX Tuinedusln LM

slimlt Moon Em>r "" Mcon "" Mean "" M•• ''" '" Timor,1 Em>r"'·' Timef,l Em>r""1 Timers\ Crrorr%' Tim•'•
0.01 8.16 8.15 li.6S 28.!0 S.88 14.26 5.79 65.40

o.m 8.16 8.15 6.65 28.10 S.85 !J.97 5.19 6S.40

0.05 8.16 8.20 6.65 28.10 S.87 13.49 5.19 6S.40

o, 7.96 9.10 6.65 28,10 S.77 14.80 S.79 6S.40 .. , 7.92 8.95 6.65 28.10 S.72 lS.47 S.79 65.40 .. , 7.92 8.65 6.65 28.10 S.61 14.60 S.19 65,40 , .. 6.81 0.00 6.65 28.10 S.61 lJ,20 5.19 65.40 , .. 6.27 9.SO 6.6S 28.10 S.61 16.63 S.19 65.40

226

APPENDIX B • DETAILS OP EXP5flJM5NTAlllESULTS

8.5 Experimental Results for ~hapter 8

This section presents the experimental resf!lts obtained in Chapter 8, 'A Generalised
Feedforward Neural Network•Architecture': For each b~nchmark test, the mean test
error, obtained using MLPs, for all combinations of activation functions and trairiing
algorithms are presented.ill Tables B.41 to 8.46. The average for each activation
function combination (row) and training alg~rlthm (column) are also shown.

Table B 41 Mean test classification error for Breast Cancer dataset using MLPs

Acli>a!ion Funollons
Network ""' I Trainin• Al•orichms
G-MLP MT· MLP, NW inil Avorago

Hiddon Output GD.I: CM Q>m cox CM

C•, Lin ••• 0.61 0.36 0.37 0.72 0.4]

'"" Lin ••• D.GO 0.24 0.73 0.72 0.48

c-, C·· 0.33 0.17 0.9S 0.46 0.92 0.69

'"" C•• 0.56 1.07 l.14 0.86 '" /,00

c .. , '"" 0.12 0.51 "·" l.74 ~.9S j,J/

'"" '"" O.l2 o.n 0.51 l.28 Jl.02 6.Jl

Avoraoe "" 0.71 O.S? 0.91 9.78
.

Table B 42 Mean test classification error for Diabetes dataset using MLPs
N,nvork /Trainln Al 0 "rilhms

Aolivolion Function•
MT-MLP NWinlt Average G-MLP

Hi<ldon OU!j>Ul @X CM Q>m '" CM

C·· Lin 22.85 21.38 20.48 22.45 22.45 11.91

'"" Lin 21.42 21.42 20.95 25.14 25.14 11.81

C•• c .. • 25.32 21.70 21.57 21.66 21.66 11.JB

'"" c-, 20.88 21.71 21.l5 21.48 21.48 11.42

C·· '"" 22.14 20.75 21.35 21.68 21.68 11.52

'"" '"" 20.45 21.09 20.77 29.24 29.24 24.16

Avcm c 11.18 2U4 21.11 13.61 2HI

Table B 43 Mean test classifi~ation error for 3-bit Parity dataset using MLPs ,

Network"" o / Tminln Al·orilhm,
Acllvation Fi,notion,

G-MLP MT-MLP, NW init Avcros,

Hidden Ou1put '" CM Q>m '" CM

c .. "" ,.oo 0.00 l.00 6.25 l.50 2,9j

'"" Un 2.SO 1.2S 10.25 13.75 4.25 6.40 , .. c,, o.so 0.00 7.75 4.25 2.00 2.90

'"" c .. ,.oo 1.25 13.75 11.75 6.75 7.W

c .. '"" 0.50 1.00 700 4.75 ll.50 5.35

• Toh '"" 2.00 J,50 11.25 11.25 19.00 9.40

Avera• 1.58 1.17 8.8J . w 8.17

227

APPt,NDJXB - DETA/lSOF EXPfi/1/MENT'ALRESULTS

Table B.44 Mean test classification error for Multi-Class dataset using MLPs

Network /Tm;n;n, Al orithm,
Acljvo,;on Function,

G·MLP MT-MLP,NWlnil Asetag<

Hidden OUtpul cox CM QW, cox CM

c' Lin '"' 5.95 S.73 •M 5.99 5.97

To> Lin S.77 ,.% ,.w 6.4] 6.12 ,oo
c' c' S.J7 6.52 S.4] 5.SJ 12.24 7.01

'"' " S.48 6.56 , .. 10.39 7.37 ·1.10

c' 'M S.85 12.64 7.36 30.21 28.80 IH7
To> "' 5.16 '" , .• 22.65 IJ.59 10.70

Avera"• 5.65 7.50 '"' 15.04 IJ.61

Table B.45 Mean test classification error.for Thyroid dataset using MLPs ,_.
/Troinin Al orilhms

Aclivallon "('unctions
G·MLP MT·MLP NWinh Average

Hidden OU1pu1 cox CM QW, °'' CM

c' Lin 6.15 "' '·" 6.59 2.49 4./0

'"' u, 6.47 "' , .. " 2.69 4.11

" c .. 5.97 ,.n 2.18 6.59 7.89 4.87

'"' c' 5.96 '" l.68 13.85 7.45 6.55

c' To> 7,17 ,ru ,.n 21.14 40.66 14.64

To> To> 6.25 2.07 2.47 28.36 29.17 /J.66

Averaoo 6,J6 ,.ru '·" /5.JJ /?,57

Table B 46 Mean test ARV for Sunspot dataset using MLPs ,_.
/Tuinin Al orilhm,

Ac1;vo1;on Function,
G·MLP MT-MLP NWinit Average

Hidden OUtpul cox CM QW, °'' CM

" Lin 0.363 0.138 0.164 0.163 0.234 0.111

'"' Lin 0.162 0.144 0.139 0.222 0.326 0.199

c' c' l.023 0.157 o:m 0.181 0.231 O.J62

To> " 0.496 0.151 0.420 O.l9S 0.235 0.299

c' "' 0.406 0.139 O.IBJ 0.186 1.124 0.408

To> "' 0.177 0,142 0.157 0.214 1.243 O.J87

Avcra•c O.OJ Q./47 ll21J 0.]0ll 0.612

Bibliography

Abe, S., Thawonmas, R., & Kayama, M. (1999). A Fuzzy Classifier with ellipsoidal
regions for diagnosis problems. JEEE Transactirms on Sys/ems, Man and
Cybernetics: Part C: Applicarion and Reviews, 19(l), 140-149.

Ampazis, N., & Pernntonis, S. J., 2000. Levcnbcrg-Marquadt Algorithm with

Adaptive Momentum for the Efficient Training of Feedfoward Networks, in
Proc. /11/em. Joi/II Can/ on Ne11ral Networks (JJCNN 2000), pp. 126-131.

Ampazis, N., & Pernntonis, S. J. (2002). Two Highly Efficient Second-Order

Algotithms for Training Fccdfoward Networks. IEEE Trans. on Neural

Networks, 13(5), 1064-1074.

Arulampalam, G., & Bouzerdoum, A. (2000). Training Shunting Inhibitory Artificial
Neural Networks as Cfassifiers. Neural Network World, 10(3), 333-350.

Arulampalam, G., & Bouzerdoum, A., 2001a. Application of Shunting Inhibitory

Artificial N~ural Networks to Medical Diagnosis, in Proc. 7th Australian and
New Zealand Intelligent !iiformat/011 Sys rems Conference (ANZllS 2001), pp.

89-94.

Arulampalam, G., & Bouzerdoum, A. (200lb). Novel Training Algorithm Based on

Quadratic Optimisation Using Neural Networks. In J. Mira & A. Prieto
(Eds.), DirJ./nspircd Applicorions of Conneclio11ism (Vol. I, pp. 410-417).

Berlin: Springer-Verlag.

Arulampalam, G., & Bouzerdoum, A., 2002a. Expanding the Structure of Shunting

Inhibitory Anificinl Neural Network Clnssifiers, in Proc. Jntem. Joint Conj

011 Ne11ral Network.I (JJCNN '02), pp. 2855-2860.

Arulampalom, G., & Bouzerdoum, A. (2002b). Recurrent Neural Network-based
Quadratic: Optimisotion Training Algorithm for Fcedforward Neural

Networks. /nternalio11al Journal of Computers, Systems and Signals (JJCSS),

3(2),65-75.

Arulampolam, G., & Bouzerdoum, A. (200311). A Generalized fccdforward Neural
Network architecture for classification and regression. Neural Networks, 16,

561-568.

BIBLJOG/l,IPHY

Arulampalam, G., & Bouzerdoum, A., 2003b. A Generalized Feedfoward Neural

Network Clnssifier, in Proc. intern. Joint Conj an Neural Network<i (JJCNN

2003), pp. 1429-1434.

Arulnmpalnm, G., Ramakonar, V., Bouzerdoum, A., & Habibi, D., 1999.
Classification of Digital Modulation Schemes using Neural Networks, in
Proc. 5th Jn/ernational Symposium on Signal Processing and ils

Applications, pp. 649-652.

Back, T. (1997). Evolutionary Computation: Comments on the History and Current
State. JEEE Trans. rm Eva/mionary Computation, /(I), 3-17.

Bammon, F., & Biegler-Konig, F. (1992). On a class of efficient learning algorithms

for neural networks. Neural Networb, 5, 139-144.

Bannann, F., & Biegler-Konig, F. (1993). A learning algorithm for multilayered
neural networks based on linear least squares problems. Ne11rol Networks, 6,

127-131.

Bnttiti, R. (1989). Accelerated bnckpropagation learning: Two optimization methods.

Comp/ex Systems, 3,331-342.

Battiti, R. (1992). First- and Second-Order Methods for Leaming: Between Steepest

Descent and Newton's Method. Neural Computation, 4(2), 141-166.

Beare, R., & Bouzerdoum, A. (1999). Biologically inspired local motion detector

architccture.J. Opt. Soc. Am. A, 16(9), 2059-2068.

Becker, S. (1991). Unsupervised !earning procedures for neural networks.

International Journal of Neural Systems, 2, 17-33.

Becker, S., & Hinton, G. E. (1992). A self-organising neural network that discovers

surfaces in random-dot stcrcograms. Nature, 355(161-163).

Bhumireddy, C., & Chen, C. L. P., 2003. Genetic learning of functional link

networks, in Proc. Intern. Joint Conj 011 Neural Netwark<i (JJCNN 2003), pp.

432-437.

Blake, C. L., & Mera, C. J, ([998). UC! Repository of machine learning databases,
from http:l/www.ics.uci.edu/-mleam/MLrepository.html

Boroushaki, M., Ghofrani, M. B., Lucas, C., & Yazdanpanah, M. J. (2003).
ldentification and control of a nuclear reactor core (VVER) using rccummt
neural networks and fuzzy systems. Nuclear Science, JEEE Transactions on,

50(1), 159-174.

Bouzerdoum, A. (1992). Convergence of symmetric shunting competitive neural
networks. In D. Green & T. Bossomaicr (Eds.), Complex Systems: From
Biology to Comp11la1ion (pp. 301-312). Amsterdam; !OS Press.

230

Bt8l!OG/IAPHY

Bouzerdoum, A. (1993). The elementary movement detection mechanism in insect

vision. Phil. Trans. R. Soc. lond, B-339, 375-384.

Bouzerdoum, A., 1999. A new class of high-order neural networks with nonlinear

decision boundaries, in Proc. Jnr. Conference on Neural Information

Proces)'/1/g (ICONIP '99), pp. 1004-1009.

Bouzerdoum, A., 2000. Classification and function approximation using feed­

forwnrd shunting inhibitory artificial neural networks, in Proc. Intern. Joint

Con/ 011 Neural Networks (IJCNN 2000), pp. 613-618.

Bouzerdoum, A., & Pattison, T. R., 1993a. Constrained Quadratic Optimisation

using Neural Networks, in Proc. 4th ACNN, pp. 10-13.

Bouzerdoum, A., & Pattison, T. R. (1993b). Neural Network for Quadratic

Optimization with Bound Constraints. IEEE Transactions on Neural
Networks, 4(2), 293-304.

Bouzerdoum, A., & Pinter, R. B., 1989. Image motion processing in biological and

computer vision systems, in Proc. Proc. of SPIE, pp. 1229-1240.

Bouzerdoum, A., & Pinter, R. B. (1992). Nonlinear lateral inhibition applied to

motion detection in the fly visual system. In R. B. Pinter & B. Na bet (Eds.),

Nonlinear Vision {pp. 423-450). Boca Raton: CRC Press.

Bouzcrdoum, A., & Pinter, R. B. (1993). Shunting Inhibitory Cellular Neural

Networks: Derivation and Stability Analysis. IEEE Transaclions on Circuits
a11d Systems I: F1111dame11tal Theory a11d Applications, 40(3), 215 - 221.

Bowen, J.E., & Bowen, W. E., 1990. Neural nets vs. expert systems: predicting in

the financial field, in Proc. Artificial lntel/ige11ce for Applications, 1990.,

Sixth Conference on, pp. 72-77 vol.71.

Carpenter, G. A., & Grossberg, S. {!987). A massively parallel architecture for a

self-organising neural pattern recognition machine. Computer Vision,
Grophfrs, and Image Processing, 37, 54-l 15.

Carpenter, G. A., & Grossberg, S. (1988). The ART of Adaptive Pattern Recognition

by a Self-Organising Neural Network. IEEE Computer, 21(3).

Cheung, H. N., Bouzerdoum, A., & Newland, W., 1999. Properties of Shunting

Inhibitory Cellular Neural Networks for Colour Image Enhancement, in Proc.

6th Int. Coll/ on Neural Info. Proce.<isillg (ICONIP '99), pp. 1219-1223.

Chong, E. K. P., & Zuk, S. H. (1996). An lntrod11c1/on to Optimization. New York:

Wilcy-Interscience.

2Jl

8/Dl/OUIIAPHY

Connor, J. T., Martin, R. D., & Atlas, L. E. (1994). Recurrent Neural Networks and
Robust Time Series Prediction. IEEE Trans. on Neural Networks, 5(2), 240-
254.

Cover, T. M. (1965). Geometrical and statistical properties of systems of linear
inequalities with applications in pattern reccgnition. IEEE Transactions on
Electronic Computers, 14, 326·334.

Cugnon, P., & team, S. (2003). Online catalogue/or rhe sunspot index, 2003, from
http:f/sidc.oma.be/html/sunspot.html

Darling, R. B., & Dietze, W. T. (19513). Implementation of multiplicative lateral

inhibition in a GaAs sensory neural network photodetector array. IEEE J.

Quantum Electronics, 29(2), 645-654.

Demuth, H., & Beale, M. (1992). Neural Network Toolbox User's Guide (Version 3 ,,
ed.): The MathWorks Inc.

Di Martino, M., Fanelli, S., & Protasi, M., 1993. An efficient algorithm for the
binary classification of patterns using MLP networks, in Proc. 2nd IEEE int.
Con/ 011 Neural Networks, pp. 936 · 943.

Di Martino, M., Fanelli, S., & Protasi, M. (1996). Exploring and Comparing the Best

"Direct Methods" for the Efficient Training of MLP-Networks. IEEE
Transactions 011 Neural Networks, 7(6), 1497-1502.

Dickhaus, H., 2001. Wavelet neural networks for clinical diagnosis, in Proc.
Engineering in Medicine ond Biology Society, 2001. Proceedings of the 23rd

A11m1al lnternotional Conference of the IEEE, pp. 4095 vol.4094.

Duch, W., & Jankowski, N., 2001. Transfer functions: hidden possibilities for better
neural networks, in Proc. 9th European Sympos/,im on Artificial Neural
Networks (ESANN), pp. 81-94.

Duda, P. 0., & Hart, P. E. (1973). Patlern Clossification a11d Scene Analysis. New
York: Wiley.

Duda, P. 0., Hart, P. E., & Stork, D. G. (2001). Pat/em Cl ossification (2nd ed.). New
York: Wiley.

Er, M. 1., Wu, S., Lu, J., & Toh, H. L. (2002). Face recognition with radial basis
function (REF) neural networks. Neural Nerworks, IEEE Transactions 0,1,

13(3), 697-710.

Erdogmus, D., K.E. Hild, !., & Principe, J. C. (2003). Online Entropy Manipulation:
S•,,dmstic Jnfonnation Gradient. JEEE Signal Processing Lellers, 10(8), 242·
2<,5.

232

BJBIJOG/UPHY

Erdogmus, D., & Principe, 1. C., 2000. Comparison of Entropy and Mean Square

Error Criteria in Adaptive System Training Using Higher Order Statistics, in

Proc. Independent Companent Analysis 2000.

Erdogmus, D., & Principe, J. C., 200!. Entropy minimization algorithm for

multilayer perceptrons, in Proc. International Joint Conference 011 Neural

Networks (JJCNN 2001), pp. 3003-3008.

Erdogmus, D., & Principe, J. C. (2002). Generalized Infonnation Potential Criterion

for Adaptive System Training. IEEE Trons. on Neural Networks, 13(5),

1035-1043.

Faber, D. S., & Korn, H. (1982). Transmission at a Central Inhibitory Synapse. I.
Magnitude of unitary postsynaptic conductance change and kinetics of

channel activation. Journal of Neurophysiology, 48(3), 654-678.

Fahlman, S. E., & Lebiere, C. (1990). The Cascade-Correlar/011 Leaming

Architecture (No. CMU-CS-90-100). Pittsburgh, PA.: School of Computer

Science, Carnegie Mellon University.

Fiesler, E., 1994. Comparative Bibliography ofOntogenic Neural Networks, in Proc.
International Conference an Artificial Neural Networks (!CANN 94), pp. 793-

796.

Fischler, M.A., & Firschein, 0. (1987). Intelligence: The Eye, the Brain, and the

Computer. Reading, MA: Addison-Wesley.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems.

Annals of Eugenics, 7, 179-188.

Fogel, D. B. (191}2). Evolving artificial intelligence. Unpublished Ph.D., Univ. of

California, SEltl Diego, CA.

Fogel, L. J., Owens, A. J., & Walsh, M. J. (1%6). Artificial lntel/ige11ce Through
Simulated Evobirion. New York: Wiley.

Franzini, M.A., 1987. Speech Recognition with Back Propagation", in Proc. IEEE
Ninrh Annual Conference 011 E1ig/11eeri11g in Medicine and Biology, pp.

1702-1703.

Fukushima, K., Miyake, S., & Ito, T. (1983). Neocognitron: A neural network model

for a mechanism of visual pattern recognition. IEEE Trans. Systems, Man &

Cybernetics, 13, 826-834.

Funahashi, K. (11}89). On the approximate realization of continuous mappings by

neural networks. Neural Netivorks, 2, 183-192.

Furman, G. G. (1965). Comparison of models for subtractive and shunting]atera\­

inhibition in receptor-neuron fields. Kybernelik, 2, 257-274.

233

8/BLJOGRAPIIY

Garcia-Pedrajas, N., Hervas-Martinez, C., & Munoz-Perez, J. (2003). COVNET: A

Cooperative Coevolutiomuy Model for Evolving Artificial Neural Networks.

IEEE Trans. on Neuro/ Networks, /4(3), 575-596.

Gershenfeld, N. A., & Weigend, A. S. (1993). The Future of Time Series: Leaming

and Understanding. In A. S. Weigend & N. A. Gershenfeld (Eds.), Time
Series Prediction: Forecas1/11g the fi1ture and underslanding the past.

Reading, Mass.: Addison-Wesley.

Gerstner, W., & Kistler, W. M. (2002). Spiking Neuron Models: Single Neurons,

Populations, Plasticity: Cambridge University Press.

Giles, C. L., Lawrence, S., & Tsoi, A. C., 1997. Rule inference for financial

prediction using recurrent neural networks, in Proc. Comp11ta1ional

Intelligence for Financial Engineering (CIFEr), 1997., Proceedings of the

IEEEIIAFE 1997, pp. 253-259.

Grossberg, S. (1973). Contour enhancement, short term memory, and constancies iu

reverberating neural networks. Studies in Applied Mafhemarics, 52(3), 213-

257.

Grossberg, S. (1976). Adaptive Pattern Classification and Universal Recoding: I.
Parallel Development and Coding of Neural Feature Detectors. Biol.

Cybernetics, 23, 121-134.

Grossberg, S. (Ed.). (1988). Neural Ne/lvorks and Na111ral Intelligence. Cambridge,

Mass.: MIT Press.

Gunn, S. (1998). Support Vector Madiines for Classification and Regression (No.

Technical ReportIS!S-1-98): Image Speech & Intelligent Systems Group,

University of Southampton.

Hagan, M. T., & Menhaj, M. B. (1994}. Training Feedforward Networks with the

Marquadt Algorithm. IEEE Transactions on Ne11ral Networks, 5(6), 989 •

993.

Hanumantharnya, U., Leis, J., & Hancock, N., 1999. Quantitative Odour Modelling

using Electronic Nose Information, in Proc. 5th lnternariona/ Sympasir1m on
Signal Processing and its App/ica1io11s, pp. 163-166.

Hnssibi, B., & Stork, D. G. (1993). Second Order Derivatives for Network Pruning:

Optimal Brain Surgeon. In S. J. Hanson, 1. D. Cowan & C. L. Giles (Eds.),

Advances in Neural /11formalian Processing Systems (Vol. 5, pp. 164-171).

San Mateo, CA: Morgan Kaufmann.

234

BIDLJOG/W'HY

Hathaway, R., & Bezdek, J. C. (2001). Fuzzy c-Means Clustering of Incomplete
Data. IEEE Trans. on Systems, Man and Cybernelics, Part B: Cybernetics,

31(5), 735-744.

Haykin, S. (1999). Neural Network,;: A Comprehensive F01111dation (2nd ed.). New

York: Prentice-Hall.

Hebb, D. 0. (1949). The Organization of Behaviour: A Neuroplycha/ogical Theory.

New York: Wiley.

Henery, R. J. (1994). Classification. In D. Michie, D. J. Spiegelhalter & C. C. Taylor
(Eds.), Machine Leaming, Neural and Statistical Classification. London,

U.K.: Ellis Horwood.

Hinton, G. E., & Sejnowski, T. J., 1983. Optimal Perceptual Inference, in Proc. IEEE

Conj. on Computer Vision and Pallern Recognilion, pp. 448-453.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer fecdforward neural

networks arc universal approximators. Neural NeMorks, 2, 359-366.

Hsin, H.-C., Li, C.-C., Sun, M., & Sclabassi, R. J. (1992). An Adaptive Training

Algorithm for Back-Propagation Neural Networks. 1049 - 1052.

lslam, M. M., Shahjalrnn, M., & Murase, K., 2000. An Algorithm for Automatic

Design of Two Hidden Layered Artificial Neural Networks, in Proc. Intern.
Joint Conj. 011 Neural Networks (JJCNN 2000), pp. 467 - 472.

]slam, M. M., Yao, X., & Murase, K. (2003). A Constructive Algorithm for Training
Neural Network Ensembles. IEEE Trans. 011 Neural Networks, 14(4), 820-

834.

Jacobs, R. A., & Jordan, M. I. (1991). A competitive modular conncctionist
architecture. In R. P. Lippmann, J. E. Moody & D. S. Touretzky (Eds.),
Advanccs in Neriral Inforlllation Pr.Jcessing Systems 3 (pp. 767-773). San

Mateo, CA: Morgan Kauffman.

Jankowski, N. (1999). Flexible transfer fi111ct/o11s with antogenic neural networks.

Torun, Poland: Computntional Intelligence Lab, DCM NCU.

Jankowski, N., 2003. Discrete feature weighting & selection algorithm, in Proc.
Intern. Joint Co11f. 011 Neural Networks (IJCNN 2003), pp. 636-641.

Jankowski, N., & Duch, W., 2001. Optimal transfer function neural networks, in
Proc. 9th Europeon Symposir1m on Artificial Neurol Networks (ESANN), pp.

101-106.

Jenssen, R., K.E. Hild, I., Erdogmus, D., Principe, J. C., & Eltoft, T., 2003.
Clustering using Renyi's Entropy, in Proc. In/em. Joint Conj. on Neural

Network,; (/JCNN 2003), pp. 523-528.

235

Johansson, E. M., Dow!o, F. U., & Goodman, D. M. (1992). Bockpropagation

Leaming for Multilayer Feed-forward Neural Networks Using the Conjugate
Gradient Mcthod. lnternationai Journal of Neural Systems, 2(4), 291-301.

Johnson, R. A., & Bhattacharya, G. K. (1996). Star/sties: principles and methods

(3rd ed.). New York: John Wiley & Sons.

Karampiperis, P., Manouselis, N., & Trafalis, T. B., 2002. Architecture selection for
neural networks, in Proc. Intern. Joint Con/ on Neurol Nerworks (!JCNN

20(}2),pp.1115-!119.

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps.

Bioiagica/ Cybernetics, 43, 59-69.

Kohonen, T. (1988). SelfOrga11iwlio11 and Associative Memory (3rd ed.). New

York: Springer-Verlag.

Kordylewski, H., Graupe, D., & Liu, K. (2001). A novel large-memory neural
network as an aid in medical diagnosis applications. Jnformotion Technalogy

in Biomedicine, IEEE Tra11sactio11s on, 5(3), 202-209.

Koshiba, Y., & Abe, S., 2003. Comparison of LI and L2 Support Vector Machines,

in Proc. Intern. Joint Con/ rm Neural Networks (JJCNN 2003), pp. 2054·

2059.

Lashkia, V., & Aleshin, S. (2001). Test Feature Classifiers: Performance (ltld
Applications. IEEE Transactions on Systemi;, Man and Cybernetics: Part B:

Cybernetics, 31(4), 643-650.

Lawrence, S., Tsoi, A. C., & Back, A. D., 1996. Function approximation with neural
networks and local methods: bias, variance and smoothness, in Proc.

Australian Conj on Neural Nerworks (ACNN '96), pp. 16-21.

LeCun, Y., Denker, J., Solla, S., Howard, R. E., & Jackel, L. D. (1990). Optimal
Brain Damage. In D. S. Touretzky (Ed.), Advances in Neural Information

Processing Systems II (pp. 598-605). San Mateo, CA: Morgan Kauffman.

Lee, H. K. H., 2000. A Framework for Nonparametric Regression Using Neural

Networks, in Prac. Pacific Rim international Conference on Artiftcial

lnte/1/gence, pp. 617-626.

Lee, Y., Oh, S., & Kim, M., 1991. The effect of initial weights on premature
saturation in back-propagation learning, in Proc. Jntemational Joint

Cm!ference on Neural Networks, pp. 765-770.

Lettvin, J. Y. (1962). Form-F11nc//011 Re/a/inns in Neurons (Res. Quart. Prog.

Report): MIT.

236

BIIIUOGRAPHY

Leung, F. H. F., Lam, H. K., Ling, S. H., & K.S., T. P. (2003). Tuning of the

Structure and Parameters of a Neural Network Using an Improved Genetic

Algorithm. IEEE Trims. 011 Neural Networks, /4(1), 79-88.

Linsker, R. (1988). Self-organization in a perceptual network. Computer, 21, 105-

117.

Madyastha, R. K., & Aazhang, 8. (1994). An Algorithm for Training Multilayer

Perceptrons for Data Classification and Function Interpolation. IEEE

Transactions on Circuits and Systems-1:Fzmdamental Theories and

Appllcatioru, 41(12), 866-875.

Magoulas, G. D., Vrahatis, M. N., & Androulakis, G. S. (1999). Improving the

Convergence of the Backpropagation Algorithm Using Leaming Rate

Adaptation Methods. Neural Comp11tarion, 11(7), 1769-1796.

McConaghy, T., Leung, H., Bosse, E., & Varadan, V. (2003). Classification of audio

rudar signals using radial basis function neural networks. Instrumentation and

Mea~wrement, lEEE Transacliom on, 52(6), 1771-1779.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in

nervous activity. Bulletin of Mathematical Biophysics, 5, I 15-133.

Meesnd, P., & Yen, G. G., 2001. A Hybrid Intelligent System for medical diagnosis,

in Proc. lnlern. Joint Conf on Neural Networks (lJCNN 2001), pp. 2558-

2563.

Michie, D., Spiegelhalter, D. J., & Taylor, C. C. (Eds.). (!994). Machine Learning,

Neural and Statistical Classification. London, U.K.: Ellis Horwood.

Minsky, M. L., & Paper!, S. A. (1969). Perceptrons. Cambridge MA: MIT Press.

Mitchell, T. M. (1997). Machine Learning. New York: McGraw-Hill.

Moini, A., Bouzerdoum, A., & Eshraginn, K., 1997. A current mode implementation

of Shunting Inhibition, in Proc. International Symposfom on Circuits and

Systems, pp. 557-560.

Morejon, R. A., & Principe, J. C. (2004). Advanced Search Algorithms for

Infonnation-Theoretic Leaming With Keruel-Based Estimators. /EE£ Trans.

011 Neural Networks, 15(4), 874-884.

Musicant, D. R., & Feinberg, A. (2004). Active Set Support Vector Regression.

IEEE Trans. on Neural Networks, 15(2), 268-275.

Na, M. G., Shin, S. H., Lee, S. M., Jung, D. W., Kim, S. P., Jeong, J. H., et nl.

(2004). Prediction ofmnjor transient scenarios for severe accidents of nuclear

power plants. Nuclear Science, lEEE Traruactions on, 5/(2), 313-321.

237

BIBUOUIUPHr

Nab~t, B. (1992). Electronic hardware for vision mode.Hing. In R. B. Pinter & B.

Nabet (Eds.), Nonlinear VJ.1/011 (pp. 463-474). Boca Raton: CRC Press.

Nafta!y, U., Intrator, N., & Hom, D. (1997). Optimal Ensemble Averaging of Neural

Networks. Network: Comput. Neural Sys/., 8(3), 283-296.

Nguyen, D., & Widrow, B., 1990. Improving the4eaming speed of 2-layer neural

networks by choosing initial values of the adaptive weights, in Proc. Ill/em.

Jaillt Conj 011 Neriral Networks, pp. 21-26.

Nicholls, J. 0., Martin, A. R., & Wallace, B. 0. (!992.). From Neuron to Brain: A

Cellr,lar Approach lo the Function af the Nervous System (3rd ed.).

Sunderland, Massachussetts: Sinauer Associates Inc.

Nikolaev, N. Y., & Iba, H. (2003). Leaming polynomial feedforward neural

networks by genetic programming and backpropagation. IEEE Trans. on

Neural Networks, /4(2), 337-350.

Nilson, C. D., Darling, R. B., & Pinter, R. B. (1994). Shunting neural network

phutodetector arrays in analog CMOS. IEEE J. Sa/id Stale Electronics,

29{!0), 1291-1296.

Nilsson, N. J. (1990). The Mathematical Formdatians of Learning Machines. San

Mateo, CA: Morgan Kaufmann Publishers.

Park, Y. R., Murray, T. J., & Chen, C. (1996). Predicting sun spots using a layered

perceptron neural network. IEEE Trans. on Neural Networks, 7(2), 501-505.

Pinter, R. B. (1983). Product term nonlinear lateral inhibition enhances visual

selectivity for small objects or edges. J. Theor. Bia/., /00, 525-531.

Pinter, R. B. (1984). Adaptation of receptive field organization by multiplicative

lateral inhibition. J. Theor. Bia/., 110, 435-444.

Pinter, R. B. (1985). Adaptation of spatial modulation transfer function via nonlinear

lateral inhibition. Biological Cybernetics, 51, 285-291.

Pontecorvo, C., & Bouzerdoum, A., 1995. Edge detection using a ce!lular neural

network, ln Proc. 3rd Conference on Digital Image Computing Techniques

and Applications (DICT'95), pp. 637-642.

Pontecorvo, C., & Bouzerdoum, A., 1997. Edge detection in mu!tip!icative noise

using the shunting inhibitory cellular neural network, in Proc. Engineering

Applicatia11s of Neural Networks (EANN'97), pp. 281-285.

Ponti!, M., & Verri, A. (1998). Properties of Support Vector Machines. Neural

Camp11tatlan, 10, 955-974.

238

/JI/IIJOG/IAPHY

Powell, M. J. D. (1977). Restart procedures for conjugate gradient method.

Mathematica/ Programming, 12, 241-254.

Powell, M. J. D. (1987). Radial basis functions for multivariable interpolation : a

review. In J.C. Mason & M. G. Cox (Eds.), Algorilhmsfor Approxima//on of

Functions and Data (pp. 143-167). Oxford: Clarendon Press.

Prechelt, L. (1994). PROBEN I -A Set of Neural Network Benchmark Problems and
Benchmarking Rules (No. Tech. Rep. 21/94). Karlsruhe, Gennany: Fakultat

fur Infonnatik, Universitat Karlsruhe.

Principe, J.C., Oja, E., Xu, L., Cichocki, A., & Erdogmus, D. (2004). Guest Editorial

: Special Issue on lnfonnation Theoretic Learning. IEEE Trans. on Neural

Ne/works, 15(4), 789.

Pulleyblank, W. (2004). How to build a supercomputer. IEE Review, 50(1), 48-52.

Reed, R. (1993). Pruning Algorithms -A Survey. IEEE Tram. on Neural Networks,

4, 740-747.

Renyi, A. (1970). Prabobility Theory. Amsterdam: North-Holland.

Richard, M. D., & Lippmann, R. P. (1991). Ncurnl network classifiers estimate

Bayesian a posteriori probabilities. Neural Computation, 3, 461-483.

Riedmiller, M., & Braun, H., 1993. A direct adaptive method for faster

backpropagation learning: the RPROP algorithm, in Prac. IEEE lnlemolional

Co11fere11ce 011 Neural Networks, pp. 586 - 591.

Ripley, B. D. (1996). Pollern Recagnitio11 and Neural Networks. Cambridge:

Cambridge University Press.

Rivals, I., & Personnaz, I.. (2003). Neural-Network Construction and Selection in

Nonlinear Modeling. IEEE Trons. on Neural Network!, 14(4), 804-819.

Rosenblatt, F. (1958). The Perceptron: A probabilistic model for infonnation storage

and organization in the brain. Psychological Review, 65, 386-408.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations

by back-propagating errors. Nature(323), 533-536.

Rutkowski, L. (2004). Generalized Regression Neural Networks in Time-Varying

Environment. IEEE Trans. 011 Neural Ne/Works, /5(3), 576-596.

Schalkoff, R. J. (1997). Artificial Neural Networks. New York: McGraw-Hill.

Schiffmann, W., loost, M., & Werner, R. (J992a). Optimization of the
Backpropagalio11 Algorithm for Training Multilayer Perceptrans. Koblenz,

Gennany: University ofKoblcnz.

239

B/8/JOG/UfHY

Schiffmann, W., Joost, M., & Werner, R. (1992b). Synthesis and Performance

Analysis of Multilayer Neural Network Architectures. Koblenz, Germany:

University ofKob\en:i:.

Schiffmann, W., Joos!, M., & Werner, R., 1993. Comparison of optimized

backpropagation algorithms, in Proc. European Symposium 011 Artificial

Neural Networks, ESANN '93, pp. 97-104.

Scholkopf, B., Sung, K.-K., Burges, C. J.C., Girosi, F., Niyogi, P., Poggio, T., et al.

(1997). Comparing Support Vector Machines with Gaussian Kernels to

Radial Basis Function Classifiers. IEEE Trans. 011 Signal Processing, 45(1 l),

2758-2765.

Shannon, C. E. (1948}. A mathematical theory of communication. Bell System

Technical Journal, 27, pp 379-423, 623-656.

Sherrah, J. (1998}. Automatic Feature Extraction far Pal/em Recagnilion.

Unpublished PhD, University of Adelaide, Adelaide.

Shin, H., & Cho, S., 2003. How many neighbours to consider in pattern pre-selection

for Support Vector classifiers?, in Proc. Intern. Joint Can/ an Ne11ral

Networks (IJCNN 2003), pp. 565-570.

Shynk, J. J. (1990). Performance surfaces of a single-layer p,erceptron. IEEE

Transactions on Neural Networks, I, 268-274.

Sbynk, J. J., & Bershad, N. J. (!991). Steady-state analysis of a single-layer

perceptroo based on a system identification model with bias tenns. IEEE

Transac1io11s on Circuits and Systems, 38, 1030-1042.

Shynk, J. J., & Bershad, N. J., 1992. Stationary points and perfonnance surfaces ofa

perceptron learning model for a nonstationary data model, in Proc.

International Joint Canfererence an Neural Networks, pp. 133-139.

Smiejn, F. J. (199!). Hyperplane 'spin' dynamics, network plasticity and

backpropagation learning. St Augustin, Gennany: GMO.

Solis, F. J., & Wets, J. B. (1981). Minimization by random search techniques.

Mathematics of Operations Research, 9, 19-30.

Specht, D. F. (1991). A General Regression Neural Network. IEEE Trans. on Neural

Nerworlrs, 2(6}, 568-576.

Stevens, C. F. (1994). The Neuron. In M. M. Gupta & D. H. Rao (Eds.), Neura­

Control Systems: Theary & Applications (pp. 101-l l 1}: IEEE Press.

Sutton, R. S., Barto, A. G., & Williams, R. J., 1991. Reinforcement Leaming is

Direct Adaptive Optimal Control, in Proc. 1991 American Camrol

Conference, pp. 2143-2146.

240

8/8/JOGIIAPHf

Suykens, J. A. K., & Vandewalle, J. (1999). Training Multilayer Perceptron

Classifiers Based on Modified Support Vector Method. IEEE Trans. on

Neural Networks, /0{4), 907-911.

Thimm, G., & Fiesler, E. (1997). High-Order and Multilayer Perceptron

Initialization. IEEE Trans. on Neural Networks, 8(2), 349-359.

Thivierge, J. P., Rivest, F., & Shultz, T. R., 2003. A dual-phase technique for

pruning constructive networks, in Proc. Intern. Joint Conf on Neural
Ne/Works (IJCNN 2003), pp. 559-564.

Tivive, F. H. C., & Bouzerdoum, A., 2003. A new class of convo\utional neural

networks (SICoNNcts) and their application of face detection, in Proc.

Neural Networks, 2003. Proceedings of the International Joint Conference
on, pp. 2157-2162 vol.2153.

Tsai, H.-L., & Lee, S.-J. (2004). Entropy-Based Generation of Supervised Neural

Networks for Classification of Structured Patterns. IEEE Trans. an Ner1ral

Networks, /5(2), 283-297.

Tsujinishi, D., & Abe, S., 2003. Fuzzy least squares Support Vector Machines, in

Proc. Intern. Joint Conf on Neural Networks (IJCNN 2003), pp. 1599-1604.

van der Smagt, P. P. (1994). Minimisation Methods for Training Feedforward Neural

Networks. Neural Networks, 7(1), 1-11.

Vapnik, V. N. (1998). Statislica/ Learning Theory. New York: Wiley-lntcrscience.

Vapnik, V. N., & Chervoncnkis, A. Y. (1971). On the uniform convergence of

relative frequencies of events to their probabilities. Theoretical Probability

and fls Applications, 17, 264-280.

Verikas, A., Baeauskiene, M., & Malmqvist, K., 2002. Selecting features for neural

network committees, in Proc. Intern. Join/ Conf on Neural Netwa,rks (IJCNN

'02), pp. 215-220.

Venna, B. (1997). Fast Training of Multilayer Perccptrons. IEEE Trans. an Neural

Networks, 8(6), 1314-1320.

Walpole, R. E., Myers, R.H., & Myers, S. L. (1998). Probability and Stalisticsfar
Engineers and Scientists (6th ed.). New Jersey: Prentice Hall.

Waschulzik, T., Braner, W., Castedel\o, T., & Henery, B., 2000. Quality Assured

Efficient Engineering of Feedforwnrd Neural Networks with Supervised

Leami,1g (QUEEN) Evaluated with "Pima Indians Diabetes Database", in

Proc. Intern. Joint Ccmf. on Neural Networks (IJCNN 2000), pp. 97-102.

Wasserman, P. D. (1989). Neural Computing: Theory and Practice. New York: Van

Nostrand Reinhold.

241

BIBLl(}rJRAPHY

Weigend, A, S., Huberman, B. A., & Rumelhart. D. E. (1990). Predicting the future:

A connectionist approach. lnremalional Journal of Neural Systems, 1(3),

193-209.

Widrow, B. (1962). Generalization ond information storage ·in networks of adaline

'neurons'. In M. C. Yovitts, G. T. 1ocobi & G. D. Goldstein (Eds.), Self­

Organiz/ng Syslems (pp. 435-461). Washington DC: Sparta.

Widrow, B., & Hoff, M. E. (1960). Adoptive switching circuits. IRE WESCON
Canvention Record, 96-!04.

Wolpert, S., & Mlcheli-Tzanakou, E. (1993). Silicon models of lateral inhibition.

IEEE Trans. an Neural Netwarks, 4(6), 955-961'.

Yoo, X., & Liu, Y. (1997). A New Evolutionary_ System for Evolving Artificial

Neural Networks. IEEE Trans. on Neural Networks, 8(3), 694-713.

Zhang, G. P. (2000). Neural Networks for Classification: A Survey. IEEE
Transactions on Systems, Man and Cybernefics: Part C: Application and
Reviews, 30(4), 451-462.

242

	A generalised feedforward neural network architecture and its applications to classification and regression
	Recommended Citation

