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Abstract

Shunting inhibition is a powerful computational mechanism that plays an important
role in sensory neural information progessing systems, [t has been extensively used
to mode) some important visual and cognitive functions. 1t equips neurons with a
gain contrel mechanism that allows them to operate as adaptive non-lincar filters.
Shumting Inhibitory Artificial Newral Nemvorks (SIANNs) are biologically inspired
networks where the basie synnptic computations are based on shunting inhibition.
SIANNs were designed 10 solve difficult machine learning problems by exploiting
the inherent non-lincarity mediated by shunting inhibition. The aim was to develop
powerful, trainable networks, with non-linear deeision surfaces, for elassification and
non-lincar regression rasks,

This work ¢nhances and extends the original SIANN archilecture to a more
general form called the Generalised Fecedforward Newral Nesvork (GENN)
archilecture, which contains as subsets both SIANN and the conventional Muftilaver
Perceptron (MLP) architectures.

The original STANN structure has the number of shunting neurons in the hidden
layers equal 10 the number of inputs, duc to the neuron medel that is used having a
single dircct excitatory input. This was found 10 be too restrictive, often resulting in
inadequately small or inordinately Jarge network structures,

Enhancements to SIANNs have been developed in this thesis that allow the
number of shunting nzurons to be varicd arbitrarily. Experimental results showed
that adding more shunting ncurons gencrally improves perfonnance, whereas
reducing the bumber of shunting ncurons eften results in a degradation of
performance, Furthenmore, when the nimber of shunting neurons is reduced, it is not
clear what subset of inputs should be used as direct excitatory inputs,

To overcome this limitation, an excitatory signal is derived from the weighted
sum of all input signals and uscd as the direct input to the shunting neuron. The result
is & new neuron model, where all inputs are used to derive the excitatory and
inhibitory signals, named the Generalised Shunting Newron (GSN}. The GSN has the
ability to penerate complex decision boundaries by simply varying the synaptic
weights. Consequently, a single GSN is able to solve complex machine learning
problems much more readily; for example, a single ncuron achieves perfect
classification on some benchmark problems, like the 3-bit parity and Wisconsin
Breast Cancer problems.

vid



Furthermore, a new Gencralised Feedforward Newral Network (GFNN)
architecture has been developed and presented here, based on the GSN neuron, This
GFNN architecture is more flexible and includes the original SIANN and the
multilaver percepivon as speeial cases,

A number of different types of supervised training algorilhms have been
developed for SIANNs and GFNNs, These include several first- and second-order
algorithms based on backpropagation, stochastic algorithms, and a hybrid algorithm
combining direct solution using least-squares minimisation with gradient descent.

Additionally, a novel second order training algorithm, called the Qundraric
Newral Network (QNN) algorithm, has been developed based on a recurrent neural
nelwork for bound-constraint quadratic minimisation.

These training algerithms have been successfully used to train SIANNs and
GFNNs, and MLPs for comparison, on a number of standard benelomark
classification and repression problems. Extensive experiments have been conducted,
which show that the GFNNs achieve accuracy levels that are compurable or betier
than results reported elsewhere in the literaure, using smaller networks in most
CAasCs.
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Chapter 1

Introduction and Overview

1.1 Background

Artificial neural networks (ANNs) are inspired by the massively parallel processing
capability of the bielogical brain. The biclogical neutal network, or brain, is an
intricate web of billions of interconnected cells, called rewrans. These simple
computing units interact through tiny electrical impulses via a massive number of
interconnection points called synmapses. The brain leams and stores its sensory
information in the patterns formed by these interconnections and the ‘strength’ of
these connections. A vivid memory is indeed more deeply ‘etched’ in your brain. The
distributed nature of stored information aids in the linking of various experiences, as
well as providing robustness and fault tolerance. This means you won't forget your
name by losing a couple of neurons!

The computational paradigm of the brain is massive parallelism; it is the
concurrent operation of large numbers af interconnected neurons that enables it to
perfonn the complex information processing tasks involved in human behavicur,
This biological computing mechanism is the physical controller of all human
activity, be it a ‘simple’ everyday action like catching a ball or picking your mother
out of her high scheol class photograph, or acknowledped challenging tasks like
formulating the theory of relativity or writing a sonnet.

Artificial neural networks are based on models of this biolepical ‘supercomputer’,
with the aim of creating artificial computing structures that can perform a wide
variety of tasks, They are abstractions that aim to reproduce some of the functionality
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of biological networks — at the moment — at a very much simpler and smaller scale,
ANNs have been applied to a Jafge number of diverse problems, from medical
diagnesis to thwed/ictiunef%ipot activity, data mining and clustering to facia)
recognition. These networks can learn from a human expert in a supervised manner,
in areas like medical diagnosis, or in an unsupervised manner, forming pattems from
the very data presented, in applications such as data mining.

.The power of parallel computing is evident from the fact- that the world's most
powerful supercomputers are comprised of thavsands of processers operating in
parallel, with massive interconnections {Pulleyblank, 2004), ANNs use the same
concept of large numbers of computing units working tegether to form powerful
tools for a variety of problems. The difference lies in the model of the ‘node’ in the
parallel structure. The supercomputers of taday use powerful processars, essentially
sequential machines in their own right, as the basic ‘unit', ANNs take the opposite
end of the spectrum, using extremely simple computing units. The form and function
of these computation units, or newron models, may vary widely depending on the
particular biclogical behaviour it is modelled on, or the practical function that it is
trying to implement.

It is this idea of proposing and developing a neuron model, and subsequently
applying and testing tietworks based on this neuron model, that forms the thrust and
coniribution of this thesis, In this investigation, we have taken the biological
phenomenon of shunting inkibition as the function that we wish to incorporate into
the neurprs medel,

Shunting inhibition is a powerful computational mechanistn that plays an
important role in sensory information precessing systems, It was proposed as a
plausible physiological model in the early 1960s (Furman, 1965; Lettvin, 1962), and
shunting inhibition has since been extensively used to model some important visual
and cognitive functions. Shunting inhibitory networks have primarily been part of
adaptive (self-organising) systems that use competitive leaming. They have been
widely used in modelling psychophysical, neurophysiological and cognitive
phenomena. To the best of our knowledge, shunting inhibitory networks have not
been used in supervised pattern classification or function approximation, other than
in the neocognitron (Fukuoshima et al,, 1983} and ART networks (Carpenter &
Grossberg, 1988), until recently (see next section).

The application of shunting inhibition to supervised feedfoward neurnl networks
in particular has been emphasised, in order to keep the scope of work manageable.
The reasearch has focussed in depth within this scope, in the anticipation of breaking
new ground that will open up new areas of research.
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1.2 Research Objectives

Recently Bouzerdoum {Bonzerdaum, 1999, 2000} proposed an artificial neural
network architecture, based on shunting ivhibition, that can be trained to perform
pattern classification or function approximation; he named it shunting inkibitory
artificial neural network (SIANN). STANNs are fecdforward networks that operate
using the steady-state sclution of the set of ordinary differential equations that
govern the dynamics of the shunting networks, therchy avoiding the need to obtain a
mumerical sclution for these differential equations. This allows the network to
operate in a static mode, like most artificial neural networks,

The main thrust of this research is to investigate the ability of shunting inhibition-
based feedforward networks, particularly SLANNS, when applied to practical
problems.

The initial hypothesis is that shunting inhibitory feedforward neural networks are
gble to form a new class of powerful networks for classification and non-linear
regression tasks. The idea is to exploit the inherent non-lincarity of shunting
inthibition to develop powerful, trainable networks, with non-linear decision surfaces.

The thrust of the research can therefore be broken down inta two main objectives:

» To develop efficient training algorithms for the class of shunting inhibitory
artificial neural networks, and test the developed algorithms on some
benchmark preblems in machine leaming and pattern recognition,

» To enhance the structure of shunting inhibitory artificial neural networks, and
develop a generalised framework for pattern classification and regression
vsing feedforward artificial neural networks,

1.3 Major Contributions

The main contributions to the body of knowledge made in this thesis are listed
below.

1. Training algorithms have been developed for the standard STANN, and tested
on a mumber of benchmark problems. The results of the tests prove that
SIANNS are a viable class of trainable neura! networks that can be spplied to
classification and non-linear regression problems.

2, The standard SIANN strocture has been enhanced to a more flexible
architecture,

3. A Generalised Shunting Newron (GSN) model has been formulated, which
tllows multiple excitatory and inhibitory inputs, and encompasses both the
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- standard shunting inhibitory neuron and the perceptron neuron as special
cages. The GSN is capable of producing complex nen-linear decision
boundaries, with a single newron able to solve real world classification
problems. '

4, A new neural network architecture based on the GSN has been defined, called
the Generalised Feedforward Nenral Network (GFNNj architecture, This
architecture provides a broad framework that also contains SIANNs and
MLPs as subsets, '

5. GFNNs have been applied to & variety of fasks and demonsirated to be a
uscfu! and powerful class of neural network, capable of performing well
using networks with a very small number of nenrons. :

6. A variety of training algorithms have been developed for the shunting
inhibitory netwerks, implemented in a manner that allows STANNs, GFNNs
and MLPs to be trained by this common set of algorithms.

7. A novel neural network training algorithm based on bound-constrained
guadratic optimisation has been developed, called the Quadratic Newral
Network (QINN) algorithm, along with 2 number of its variants,

1.4 Outline of the Thesis

Following is a chapter-by-chapter outline of the thesis that provides a general
overview of the structure and content of this thesis. )

Chapter 2 is a review of artificial neural networks that aims to explain the relevant
terms and concepts, 1t describes ANNs in peneral, covering the biological neuron
models as well a5 artificial neural network structures, It afso intraduces briefly the
various learning paradigms, training algarithms, and the types of problems that can
be solved using neural networks,

Chapter 3 presents the development of the Shunting Inhibitory Artificlal Neural
Network (SIANN), from its biological roots to the development of the feedforward
shunting inhibitory neuron model and the STANN architecture. The derivation of the
differential equation goveming the shunting inhibition dynamics is also presented,

Chapter 4 describes the development and testing of a number of pradient-based,
direct solution and stochastic training algorithms for SLANNS, It describes the details
of the various algorithms and relevant update equations. The chapter then describes
the experimental methods and procedures employed throughout the thesis, for
assessing the performance of the networks under investigation. They include network
structures, initialisation methads, training and testing parameters and criterin, A set

4
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of five benchmark problems, consisting of two synthetic and three real-world
problems, are also described. The benchmarks were selected to incotporate a variety
of problems, including time seties prediction and multi-class classification. The
performance of SIANNSs on these benchmark problems is tested and analysed here.

Chapter 5 presents the development of a novel training algorithm, called the
Quadratic Neural Network (QNM) algorithm, and a number of its variants. The
algorithm, based on bound-constrained optimisation using recurrent neural networks,
is readily able to incorporate constraints on synaptic weights during the weight
update phase. Implementation issues such as the practical application to neural
networks and adaptive determination of parameters are alse addressed. SIANNs have
been trained on the benchmark problems using the QNN algorithm and its variants,
A guantitative analysis of the performance of these algorithms is presented along
with the results,

Chapter 6 presents enhancements to the standard SIANN structure. The original
standard structure has the number of neurons determined by the number of input data
attributes and closs Jabels, This sometimes results in structures that are too small, or
inordinately large, for the particular problem, In this chapter, enhancements are
preposed and developed that allow the size of the shunting layer to be reduced or
expanded as required. The enhanced SIANN structures have been trained on the
benchmark problems. The performance af these enhanced structures is compared to
that of the standard SIANN.

The results obtained in Chapter & highlight a certain restriction imposed on the
shunting neuron mode! used in the standard SIANN, namely that it can only have a
single excilatory input. In Chapter 7, the shunting neurot: model is expanded to cater
for multiple excitatory inputs., The result is a new neuron medel named the
generalised shunting newron (GSN). The GSN includes the previous shunting netron
mode] and the traditiona! perceptron model as special cases. This ‘generalised’
shunting neuron is used in a new feedforward architecture, called the Generalised
Feedforward Newral Network (GFNN), Training alpgorithms have been extended to
the GFNN architecture, which includes both SIANNs and MLPs as subsets. The
developed GFNN networks have been tested on benchmark problems, and their
performance is compared to that of SIANNs.

Chapter 8 compares the performance of shunting inhibition-based networks with
the bMulti-layer Perceptron (MLP), as wel! as results from other methods found in the
literoture, For ench benchmark problem, an MLP structure with approximately the
same number of synaptic weights as one of the tested GFNN was trained and tested;
the obtoined results are compared with those of the GFNN and SIANN, Wherever
possible, comparisens are also made with other results presented in the literature.
The efficiency of the code developed for this thesis is evaluated by comparing it with
MLPs generated, initialised and trained using standsrd MATLAB Neural Network

5
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Toolbox. The chapter ends with a discussion of the overall results obtained across all
benchmark problems and network architectures.

Chapter 9 recapitulates the work presented in the earlier chapters and summarises
the results of the research, including a discussicn on the full scope of the propesed
generalised feedforward neural network acchitecture, It ends with suggestions for
future work based on outcomnes of the research presented in this thesis,
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Chapter 2

Artificial Neural Networks - A Review

2.1 Introduction

Artificial neural networks employ massive interconnection of simple computing
cells, called neurons, to perform complex information processing tasks. They are
inspired by the massively parallel processing capability of the biological brain.

The biological brain consists of billions of biclogical neurons, each having
thousands of connections to other neurons, forming an intricste web, The connection
points between the neura] pathways are known as synapses. Sensory information
causes tiny electrical impulses to be generated and transmitted through the neural
pathways, via the synaptic junctions, resulting in patterns of activity in the brain. The
pattern of the neuronal connections determines the meaning of the electrical signals
(Nicholls et al,, 1992), The brain leams and stores its sensory information varying
the *strength’ of the synaptic connections, thereby changing the patierns formed.

"4 newral network Is a massively parailel distributed processor that has a ratural
propensity for storing experiential knowledge and making it available for use. It
resembles the brain in two respects:
1. Knowledge is acquired by the network through a learning process (fearning
algorithm).
2. Internenran conneciion sivengths knawn as synaptic weights are used to store
the knowiedge. ' (Haykin, 1999)
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The definition above outlines the method of operstion of an artificial neural
network.. From its *observations' of the environment, the network leams about the
environment it is ‘placed in’. The expericntial knowledge is stored in a distributed
manner within its very structurg. Subsequently, when a set of inputs is received, the
network is able to produce a response consistent with the cnvircnment it has
‘observed”.

In practical applications, ‘placing a network in an environment’ involves
presenting the network with sufficient examples related to the required task. The
network is then trained to produce the desired cutcomes, even when presented with
previously unseen examples.

Neural vetworks have been used in a wide variety of applications, such as
financial prediction (Bowen & Bewen, 1990; Giles et al., 1997), control of nuclear
power plants (Boroushaki et al, 2003; Na et al, 2004), medical diagnosis
{Arulampalam & Bouzerdoum, 2001a; Dickhaus, 2001; Kordylewski et al., 2001;
Meesad & Yen, 2001), face recognition (Er et al,, 2002; Tivive & Bouzerdoum,
2003), signal classification (Arulampalam et al., 1999; McConaghy et al., 2003) and
even the classification of odour levels in n piggery (Hanumantharaya et al., 19990
They offer improved performance over conventional technologies in many areas,
incloding vobust pattern detection, signal fillering, data sepmentation, data
compression, database mining, adaptive control, cptimisation and scheduling, and
complex mapping.

A comprehensive treatment of the vast ficld of artificial neura! networks is beyond
the scope of this chapter. The aim of the chapter is to explain the relevant terms and
concepts, described within the context of the general body of knowledge about
artificial neural networks, It describes artificial nevral networks in general, starting
with the biclogical neuron model and finishing with varicus artificial neural network
structures, It also introduces briefly the various leaming paradigms, training
algorithms, and the types of problems that can be solved using neural networks.

The next section discusses the biological neuron and biclopical neura] netwerks,
This is followed by two sections devoted to the general concepts of artificial neural
networks, including the different classes of neural netwoerks and their structures, and
learning paradigms and algorithms. The kinds of problems being tackled is then
presented in Section 2.5. Section 2.6 introduces the popular fecdforward neural
network  architecture, namely mmiltilayer perceptrons (MLPs), and the error
backpropagation algorithm, while Section 2.7 describes radial basis finctions (RBF)
and support vector machines (SVMs). This is followed by a section on common
training alporithms for feedforward neural networks, The chapter ends with an
overview of adaptive network structures followed by the conclusion,
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2.2.1 Synapses

Information is passed from one neuron to another via a specialised junction point
called a syrapse. A typical neuron may have between 1,000 and 10,000 synapses.
Plasticity is the ability to adapt the network to its surrounding environment (Haykin,
1999). This is achieved by creating new synaptic connections, varying the strength of
existing connections, and removing {pruning) unnecessary connections, and is key to
the brain’s ability to learn and to retain memoties.

The most common type of synapse is a chemical synapse (Gerstner & Kistler,
2002). At synapses, the axon usually enlarges to form a terminal button, which is the
information delivering part of the junction. The terminal button contains tiny
structures, called synaptic vesicles, which hold chemical neurotransmitters. At this
paint the axon js very ¢lose ta the postsynaptic neuron, Jeaving a tiny gap between
th: pre- and post-synaptic cell membrane, catled the synaptic cleft. Nerve impulses
(action potentials) at the synapse cause neurotransmitiers to be released inte the
synaptic cleft. When the neurotransmitter malecules reach the postsynaptic
membrane, they are detected by specialised chemical receptors that cause an
electrical respense at the postsynaptic membrane, called the postsynaptic potential. If
the potential change is positive, it helps to generate nerve impulses; thus, it is known
as the excitatory posisynapiic potential (EPSP). If the potential change is negative, it
opposes the production of nerve impulses; thus, it is termed the inhibitory
postsynaptic potential (1IPSP) (Stevens, 19%4). Accordingly, synapses are classified
as exeitatory or inhibitory, depending on the type of postsynaptic potemtial generated.

One type of inhibitory synapses works by increasing the conductivity of the cell
membrang, thereby *shunting’ the effect of other input potentials end *clamping’ the
cell potential to its resting potential, This effect, known as shunting inhibition, forms
the biological basis for the work presented in this thesis; it is described in greater
detail in Chapter 3,

232 Actlon potential and spike trains

The basic process describing the *firing® of a neuron is that if the sum of postsynaptic
potentials cxceeds a threshold voltage, the soma generates an action potential, a
voltage spike, that propagates down the axon, sending the signal to all neurons with
synapses connected to it. This action potential spike typically has an amplitude of
about {00 mV and a duration of 1 to 2 milliseconds. The spike iz followed by a
refractory period during which the neuron cannot fire again. Fig. 2.2 shows a typical
action potential spike.

Given that the amplitude of an action potential spike of a neuron is always the
same, the question arises “How is a ‘strong® sipnal differentiated from a ‘weak’
signal?' The answer is that & neuron will normally generate o number of action

10
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2.3 Artificial Neural Networks

Artificial neural networks (ANNs) mimic the function of biclogical neural networks.
The workings of the biological nevron are modelled mathematically — to varying
degrees of complexity — and then simulated, either in software or bardware. These
‘artificial” neurons are then combined to form artificial neural networks. This section
describes one of the most popular neuron. Each synapse has associated with it a
weight ar strength, w. The input neuron models, and outlines the ways in which
neurons are combined together to form artificial nevral networks.

2.3.1 The Artificlal Nenron Model

The most common artificial neuron model is presented in Fig. 2.3. This model has
three basic elements to reflect the functions of the biologjcal neuron presented in the
previous section;

1} Synapses or connecting links
These correspond to the synapses of the biological neuron. The signal x; at the
input of synapse j connected to neuron & is mudtiplied by the synapiic weight
Wi

2) An Adder
The adder is a linear combiner for summing the weighted input signals, wyx;,
and its output 1y is piven by

w =3 w0, @

=l
It represents the integration of signals at the soma,

3} Activation funetion

The ‘firing’ of the biolagical nevuron to produce an output signal is madelled
by an activation function, The activaticn function, @x), is the relationship
between the adder output and final output of the neurcn. It is often a ron-
{inear funcifon, thereby limiting the amplitude of the neuron cutput. Non-
linearity alse helps in feature extraction. Normally a constant threshold or
bias value {8 is also added, resulting in the following equation:

»n= @u- &) (2.2)
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2.3.3 Network Architectures

As the name suggests, neural networks consist of collections of neurons linked
together to form a network. The manner in which the neurons are structured in a
network is closely linked to the leaming algorithm used to train the network. There
are three general classes of network architectures; single-layer feedforward networks,
multilayer feedfoward networks and recurrent networks (Haykin, 1999, pp21-23). A
brief description of each, along with some of the standard terminology that will be
used from now on, is given below,

23.3.1 Single-layer Feedforward Networks

These networks have neurons (computation nodes) organised in the form of a single
layer that form the omiput layer of the network, The inpur layer is simply a set of
input sources linked by synaptic connections to the computation nodes. All signals
propagate in one direction only, from the inputs to the computation layer neurons
that in turn produce the cutputs. The term jeedforward means that there are no
feedback loops anywhere in the network.

2.3.3.2 Multilayer Feedforward Networis

Multilayer networks have the same form of layered architecture as the single-layer
networks, but with one or more hidden layers of computation nodes that are placed
between the input layer and the output layer, The neurons in the hidden layers are
called Aidden newroms or hidden wnits, The hidden layers extract higher crder
statistics, enabling the networks to produce more complex input-output mappings.
The layers can be fully or partially connected, A filly connected network is taken
here to mean a network where every node in a layer is connected to every node in the
adiacent forward layer. If there are missing connections, the layer is called pariially
connacled. Shoricut connections ate connections from a node to a non-adjacent
forward layer, for example from the input layer directly to the output layer. Shortcut
connections shall not be considered part of a fully connected structure here, though it
is considered so in some literature. The structure of a netwaork is represented in short
by the number of nodes in each layer, For example, 2 10-4-3 network is one that has
(0 input nodes, a single hidden layer of 4 neurons, and an output layer of 3 neurons.

23,33 Recurrent Netvorks

Recurrent networks differ from feedforward networks in that they have at least ong
feedback loop, They may be with or without hidden neurons. Self-feedback refers to
the case where the output of a neuron is fed back as an input to tself. These networks
normally have unit delay elements in the feedback loops, resulting in nonlinear
dynamical behaviour,
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2.4 Knowledge and Learning Process

"Knowledge refers to siored information ar models used by a person or
machine to inferpret, predict or approximately respond (o the outside world”
(Fischler & Firschein, 1987).

The above is a generic definition of knowledge by Fischler and Firschein, Haykin
gives the following definition of Jearning in the context of neural networks (Haykin,
1999, p50):

"Learning is a process by which the free parameters gf a neural network are
adapted through a continuing process of stimulation By the environment in
which the network is embedded. The type of learning is determined by the
manner in which the parameter changes take place”

The two definitions reinforce the definition of a neural network given in the
introduction, which says that neural networks acquire knowledge through a learning
precess, That definition also says that knowledge is stored in the form of synaptic
weights, which is why the Iearning process is defined above as one of adapting these
free parameters. The other point to note is that the definitions refer to “the outside
world’ and ‘the environment’. Neural networks function by adapting themselves to
some external stimulus it order to leam some pattern or trend that can then be used
at some other point in time as required,

The fearning process for neural networks can thus be laid out as fallows (Haykin,
1999, ps0):
1. The neural network is stimulared by the environment.
2. The neural network tindergoes changes in its free parameters as a result
of stimulation.
3. The neural network responds in a new way to the environment because of
the changes that have occurred in its internal structure.

The changes made to the network ate in terms of changes to the synaptic weights
in the form:

wy (rtl) = wyln) + Awg{n) 20
The calculation of Awy is cbtained from the learning rufe used, which is a set of
rules for adapting the weights to solve the problem at hand. The learning paradigm

refers to the manner in which the neural network (lestning maching) relates to its
environment.
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2.4 Learning Paradigms

The learning paradigm refers to a model of the environment in which the neural
network operates. There are three leaming paradigms for the fraining of neural
networks; supervised leaming, reinforcement [eaming and unsupervised leaming.

2411 Sapervised learning

In supervised leamning, there exists an cxternal “teacher’ with knowledge of the
envirenment, in the form of input-output examples. The difference between the
desired output and the actual system output is the error signal that is used to modify
the system in order to make the system emulate the teacher. Examples of supervised
learning are the least-mean square (LMS) algorithm (Widrow & Hoff, 1960) and
back-propagation (BP) algorithm (Rumelhart et al,, 1986).

2.4.1.2 Reinforcement learning

In this paradigm, the system receives a reinforcement signal (scalar) based on the
actions taken. If positive reinforcement is received, then probability of same action
being taken is strengthened or reinforced. Otherwise, the tendency to produce that
action is weakened (Sutton et al., 1991), However, the scalar value doesn’t indicate if
further improvement js possible, or how behaviour should be changed. There is alse
conflict between the use of existing information and the desire to explore new
avenues for improvement. A critic may be used to penerate the reinforcement signal.

24.1L3 Unsupervised learning

In unsupervised or self-crganised systems, there are no external teachers or examples
to be leamned. Instead, the system learns from the input data presented to it and
organises itself accordingly (Becker, 1991). A competitive learning rule or clustering
procedure is normally used, It becomes very useful when the size/depth of the
network prows large and pure supervised leaming becomes unscceptably slow
(Jacobs & Jordan, 1991).

2.4.2 Learning Rules

The learning rule describes how networrk ‘learns’ from its environment i.c. the rule
by which the weights of the network are adapted. The term training afgaritim, on the
other hand, is used here to mean the specific set of steps used to update the synaptic
weights, and this will fali under the umbrella of one of the leaming rules, The
leamning Tules covered hers are error comection leaming, Hebbian [earning,
competitive learning, stochastic learning, evolutionary learning and information-
theoretic leaming. Training algorithms are covered in Section 2.8,
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2421 Error Correction Learning/ Delta Rule

The error correction fearning rule, alse known as the defta rufe, assumes that during
the Jearning process the network is presented with a set of examplars from whick to
learn. These examplars consist of a set of inputs along with the corresponding sct of
desired outputs. The ‘error® is the difference between the actual output of the
network and the desired output, This difference is used to work out the changes that
need to be made to the weights in order to produce the desired outputs.

For a given input stimulus x(#), the error signal of ncuron & at the #™ step, ey(r), is
the difference between the desired response, di(n), and the actual response, y(n):

() = diln) « () (2.8)

The idea is to minimise some cost finction based on eyn), with respect to the
synaptic weights of the network. The error term is sometimes dencted as &
(Wasserman, 1989, p. 41), hence the name delta rule. Accerding to the error-
correction leaming rule (or delta rule), the weight adjustment Awg{n) is given by
(Widrow & Hoff, 1960)

B, () = 17 2, () %, ) =21 8, () x, () @9
where 77 is the rate of leaming and 6 = &,

The choice of # is very importan to ensure stability because it acts as a feedback
term, For small #, the leaming process is smeoth but takes a long time, whereas for
large #, learning is faster but pracess may diverge and becomes unstable,

The plat of cost function vs, synaptic weights consists of a multi-dimensional
surface called the error surface. For a linear neural network, the error surface is a
quadratic function of weights, i.e. bowl-shaped with a unique minimum, For a
network with non-linear neurons, surface has one or more global minima as well as
local minima, The objective is to start anywhere on the error surface and end up at
the global minimum without getting trapped in local minima.

The work presented in this thesis uses error-correction leaming almost
exclusively. The other tmethods are only relevant to other referenced works.

2.4.2.2 Hebbian Learning

Hebb's postilate of learning {(Hebb, 1949) can be re-presented as follows:

1. If 2 newrons on either side of a synapse (connection) are activated
simultaneously (synchronously), then the strength of that synapse is
selectively increased. :

2. If 2 nenrons on either side of a synapse are activated asynchronously,
then the synapse is selectively weakened or eliminated.
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In Hebbian learning, alse known as correlation learning, the chanpe in weight is
n function of pre- and post-synaptic activities (x; and yy) (Kchoner, 1988)

dwidn) = nafn) xifnn} - ayfn} wyfn) {2.10)

where & is a positive constant forgetting factor

The second “forgetting” term is to avoid exponential growth and saturation of
wy{rm). Awy(n) can also be secn statistically as a function of the covariance of pre-
and post-synaptic activities,

2.4.2.3 Competitive Learning

In competitive learning only one of the output neurons of the network is allowed to
be active, The output neurons compete among themselves for being the one to be
active (fired) ~ the winner-takes-all reuron, The network may have lateral
connections that perform faferal inkibition for the competition to work, Only the
winning neuron has its weights adjusted, according to input pattem that made it win.

The basic weight update will be of the form

Awy = 7 (x, —w,) .if neuron j wins @11
H if neuron j loses

where x; is ith component of input pattern, from input node /, The averall effect is to
move the weight vector w; of winning neuron  towards input pattern x. Individual
neurens learn to specialize on sets of similar pattems and thereby become feature
detectors.

Competitive learning plays an important part in self-organising systems. It is used
in Grossberg's Adaptive Pattern Classification (Grossberg, 1973, 1976} and ART
networks (Carpenter & Grossberg, 1987, 1988) and Kohonen’s Self-Organising
Maps (SOM) (Kohonen, [982).

2.4.24 Stochastic and Evolutionary Learning

Stochastic [caming rules contain elements that use probabilistic or *randomy’ events
as part of their formulation, Evolutionary algorithins are o separate class, but
incorporate some element of ratdomness in their operation, These non-deterministic
methods tend to take longer than deterministic methods, but allow greater coverage
of the *solution space’. The inherent randomness occasionally results in the *inspired
step* that leads to better results,
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2.4.24.1 Boltzmann {earning
The Boltzmann learning rule is a stochastic algerithm derived from information-
theoretic and thermodynamic considerations {Hinton & Sejnowski, 1983). In a
Boltzmann machine, neurons are in a recutrent structure and cperate in a binary
fashion: +1 for *on’ state and ~1 for ‘off” state; none of the neurcns has self-
feedback. The Boltzmann machine has two modes of operation:
= Clamped condition, in which all the visible neurons are clamped to specific
states determined by the environment
s Free vurming condition, in which al! the neurons (visible and hidden) are
allowed to operate freely

The leaming algorithm works by randomly flipping the state of one of the
neurons, The probability of flipping is based on the states and weights of all neurons,
and a psende-‘temperature’. The weight update according to the Boltzmann learning
rule is given by

dwy =nlpy-p,) (2.12)
where o is the comelation between states of neurons / and § , conditional or the

netwerk being in its clamped condition and o, is the unconditional correlation

between states of nenrons f and f (i.e. network in free-running condition).

2.4.24.2 Stochastic optimisation

Stochastic optimisation methods update the weight vector of the network, w, using
win+1) = w(m +E(n) 2.13)

where &(r) is a randomly generated perturbation. The error function E{w(n+1)) is
compared with E(w(n)} in order te determine if the new direction in weight space is
to be explored {Schalkoff, 1997, p, 294),

2.4.24.3 Evplutionary Computation

Evolntionary computation has been widely used to evolve neural network
architectures and weights. Evolutionary computing can be divided into three broad
calegories: genefic algorithins, evolutionary programming and  evolwtionary
strategles (Back, 1997). The first two are commonly used with neural networks.

Genetic algarithms (GA) are defined as algorithms that transform populations of
mathematical objects (SchalkofT, 1997). The objects codify the rea! objects to be
manipulated (pherome) in 2 manner independent of the problem, usually a string of
bits (genome). A fitness fimction has to be defined that can give an evalvation score
to the object.
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The fitst step is to randomly generate an initial pepulation of individuals and
evaluate the fitness of each object. The alporithm selects probabilistically a
subpopulation from the current population, based on the fitness scores, Then some of
the individuals are paircd up to create a new generation. Here parts of the ‘genctic
code’ from the parents are exchanged using the crossever operator to produce the
offspring. Some of the individuals in the new peneration have a random part of their
‘cade’ inverted as part of the mutation process. The fitness of each individual in the
new population is then evaluated. The process is repeated until at least one of the
individuals in the population has a fitness that exceeds the fitness thrashold level, or
the number of generations reaches a maximum,

Note that the selection, crossover and mutation processes are non-deterministic.
Genetie algorithms, just like the stochastic updates, do not tend to become trapped in
local minima. GAs, however, are slow when used for weight adaptation (Schalkoff,
1997, p. 212) and only viable for small structures of less than 50 neurcns
{(Schiffmann et al, 1992b). They show more promise when used for structure
adaptation {Schalkoff, 1997; Yao & Liu, 1997), as discussed in Section 2.9,

Evolutionary programming (EF) (D, B. Fogel, 1992; L. ). Fogel et al,, 1966), on
the other hand, uses a ‘natural’ representation of the problem, and once chosen
mutation operators specific to the scheme are defined. It avoids the need to encode
the object in an abstract genomic representation. The other difference between EP
and GA is that the mutation operaticn, the primary operation, changes aspecis of the
solution according to a statistical distribution that makes minor vatiations highly
probable and substantial variations increasingly unlikely. EP uses stochastic selection
via a tournament. Each trial solution competes against a fixed number of opponents,
aond those with the least *wins' are eliminated, EP does not explicitly use a crossover
operator, though it is argued that this is a matter of philosophy (Back, 1997}, EP is
appatently the most suited paradigm of evolutionary computing for evolving
artificial neural networks (Garcia-Pedrajas et al., 2003), better than GA (Yao & Liv,
1697},

24,25 Information-theoretic learning

In the last decade, there has been an explosion of information theoretic approaches in
neural networks and machine leaming {Principe et al., 2004), Descripters used to
quantify information, such as entropy and divergence (or its special case mutual
information), are replacing the mean-squared error criteria. The process of leaming
or adaptation with these new cost functions is named information theoretic tearning.

The foundations of information theory lic in the work of Shannon (Shannon,
1248). It attempts to quantify the amount of information obtained from the
accurrence of any event or message.
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‘The amount of infermation gained afier observing a discrete event x = x; that has
probability py is given by

) =1og }f, |=-log, @.14)

From this, f(xs) = 0if p; = 1; that is, if it is known for certain that some event is
going to happen, the accurrence of that event doesn't add any information to what is
already known. However Xx;) can never b less than zero, so information cannat be
lost thmugh‘the occurrence of some event (Haykin, 1999),

The entropy H(x) of & discrete random variable x, given by

K X
Hx) = E[l(x)]= 3 pd(x) == 2 pi log 7, (2.15)
Py f
is a measure of the average amount of information conveyed per message. It is also a
measure of the prior uncertainty about x. If x is the input of a system with output y,
the uncertainty resolved by cbserving the output, otherwise known as the average
wititnal information between x and y, is piven by

I(xy)=Hx)-H(x|y) S @19

where H(x | ) is the conditional entropy,

In Linsker's principle of maximum information preservation, self-organised
leamning is achieved by maximising the mutual information between the input-output
vectors of the model! {Linsker, 1988). This principle, also known as infomax, can be
used to produce topelogically erdered input-output mappings like the SOFM. The
idea of maximising mutual information in the unsupervised processing of the image
of a natural scene has been used in {Becker & Hinton, 1992). -

Renyi proposed a generalised definition of entropy, or information content, that
includes Shannon's entropy as a special case (Renyi, 1970). Renyi’s entropy has
been used as the basis for alternative optimality criterin for supervised neural
network training (Erdogmus & Principe, 2006, 2001, 2002; Morejon & Principe,
2004), as well as for clustering of data (Jenssen et al., 2003). A stochastic entropy
estimator has also been proposed (Erdogmus et al,, 2003),

2.4.3 General methodelogy for neural network learning

The main task of a neural network is to leamn a model of its environment and store
that information, The objective is that, for any given set of inputs, the netwotk is able
to produce a set of outputs consistent with the environment it is modelling.
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The knowledge of the ‘world® may be divided into twﬁ kinds (Haykin, 1999, p24):
- Prior information, facts shout the known state of the world

- Observations (measvrements). These observations of the world are
inherently noisy. They form the pool of information from which
examplars are selected to train the network

The general methodology by which a neural network is aj:plied to a given
problem can be given as follows:

1. A neural network architecture is selected (éb{." ‘c based on prior information
of system). T

2. A subset of examplars it used to train r.atwork f:y means of a suitable training
algorithm, depending on: the architecture,

3. The netwark is tested with input data not presented to the network before and
the cutput compared to the actual cnvironment or *world state”. This is a test
of the generalisatior ability of the network, which is an important capability
when a network is applied to a problem,

2.5 Classification and Regression

Neural networks can be applied to a variety of problems, the majority of which fall
under the category of classification or regression. This section presents definitions of
classification and regression tasks and related terms, including a brief introduction to
Bayesian classification.

2,5.1 Classification

Classification is the task of classifying input samples (patterns) into one of a discrete
set of possible categories (Mitchell, 1997). The input patterns with 4 inputs can be
tepresented as points in a d-dimensiona] Euclidean space £, called the input space,
A pattern classificr is a device that maps the points of £ into the category numbers,
elfectively dividing the input space into a number of mutually exclusive subspaces
representing the various categories. All input sample points that lie in a particular
subspace, or point set, are said to belong to that category. The various subspaces ars
separated by decision boundaries or decision surfaces {Nilsson, 1990), Patterns are
said to be linearly separable if the classes they represent can be separated by a
hyperplane, or a set of hyperplanes (Duda et al,, 2001),
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pix|w (o))

2.18
px) @18)

P (ﬂ’; |l) =
where P(es 1} is the a priori probability of group j, p(x | w ;) is its conditional
probability density function, and the probability density function p{x) is given by

P =X plx]o))Ple,) (2.19)

In order to minimise the misclassification rate, the widely used Bayesian
classification rule is

Decide wy forx if Plw, |1} = max P{w, |x) {2.20)

This simple tule is the basis for many statistical classifiers. One problem in
applying the simple Bayes rule in {2.20) is that, in most practical situations, the
density functions are not known or cannot be assumed to be normal, hence the
posteriar probabilities cannot be determined directly.

2512 Advantages of Neural Networks for Classification

Neural networks offer a number of advantages when applied to classification (Zhang,
2000). Firstly, neural networks are data-driven self-adaptive methods, able to adjust
to the data without needing an explicit specification of the underlying model.
Second, they are universal function approximators and therefore able to map any
functional relationships (Horik et al., [989), Third, neural networks are non-linsar
medels, making thern capable of modelling complex real world relationships, The
fourth advantage is that neural networks are able to estimate the posterior
probabilities, which provides the basis for establishing classification rules and
performing statistical analysis {Richard & Lippmann, 1991),

2.5.1.3 Other Types of Classifiers

Some popular types of non-neural network classifiers referred to are finear
discriminant functions, decision trees and k-nearest neighbour classifiers. Fisher's
method of linear discrimination (Fisher, 1936) is one of the oldest classification
procedures. The idea is to divide the sample space by a series of lines in two
dimensions, planes in 3-D and, generally hyperplanes in many dimensions. Decision
trees classify instances by sorting them down the tree from the root to the Jeaf node,
which provides the classification for the instance (Mitchell, 1997), The &-Nearest
Neighbour (4-NN) method is 2 non-parametric method that simply remembers all the
training examples and classifies a new observation as the most fraquent class of the &
nearest stored examples. A more detailed coverage of these and other classification
techniques can be found in (Duda et al., 2001; Ripley, 1996)
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2352 Function Approximation and Regression

Regression analysis concems the study of relationships between variables, based on
random ebservations (Vapnik, 1998). The estimated relationship can then be used to
predict one variable from another (Johnson & Bhattacharya, 1996). Common
statistical methods of regression include linear and polynomial regression.

Nonparametric regression addresses the problem of trying to fit a model for a
variable ¥ on a set of possible explanatory variables X,,..., X, where the relationship
between X and ¥ may be more complicated than a simple linear relationship. Neural
network regression js a special case of nonparametric regression (H, K. H. Lee,
2000), The idea of nonparametric regression is to use models of the form

Y= f(X,)+e .21

where feF, some class of regression functions, and ¢ is iid {independent
identically disttibuted} additive crror with mean zero and constant variance.
Sometimes normality of £ is assumed. The main distinction between the competing
nonparametric methods is the class of functions, &, to which f'is assumed to belong.
In all cases, F is taken to be some class rich enough to be able to sufficiently
approximate a very large set of possible regression functions. In other words,
nonparametric regression is simply a function approximation task, with added noise,
Neural networks are well suited for non-linear regression, recalling that neural
networks can be universal finction approximators (Hornik et al., 1989).

If the variable or variables to be estimated relate output variables to input
variables, then the regression function can be used to model the process of the
system, If the variables to be estimated are future values then the function is a
predictor (Specht, 1991), For time-series prediction tasks, temporal information can
be presented spatially to the network by a time-lagged vector, also called a tapped
delay line (Gershenfeld & Weigend, 1993; Schalkoff, 1997). An alternative is to use
recurrent neural networks, since their feedback loops make them well suited to
handle such tasks. Recurrent networks have been shown to perform better than
feedforward netwarks on time series predicuon tasks (Connor et al,, 1994), Neural
networks have alse been successfully used to teack time-varying regression functions
(Rutkowski, 2004),

Various types of neural networks have been used for regression tasks, from MLPs
(Lawrence et al,, 1996; Park et al., 19%6; Yao & Liu, 1997) and SVMs (Gunn, 1998;
Musicant & Feinberg, 2004) to network ensembles (Islam et al., 2003; Naftaly et al.,
1997) and even networks with special types of neurons (Nikolaev & [ba, 2003;
Rutkowski, 2004).
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2.6 Multilayer Perceptrons

2.6.1 ‘The Perceptron

" The perceptron consists of a single neuron with adjustable synaptic weights and a
threshold, First introduced by Rosenblatt (Rosenblatt, 1958), it is the simplest form
of nevral network used for classification of {inearly separable patterns, The neuron
uses a hard-limiter activation function (McCulloch-Pitts model, refer Section 2.3.2),
The input to the hard-limiter, », is:

[ =iw!x,, -8 (2.22)
I

where p is the number of inputs.

The perceptron is therefore able to define two decision regions separated by the
hyperplane

S, -6=0 2.23)
Iz

The perceptron inspired Widrow's Adaline (Adaptive Linear Element), used for
adaptive switching circuits and trained using the LM$ algorithm (Widrow & Hoff,
1960}. This was followed later by the Medaline (multiple adaline), which used a
layer of perceptrons (Widrow, 1962).

Minsky and Papert showed that perceptron training is guaranteed to converge
provided the examples are linearly separable (Minsky & Papert, 1969}, However,
they also highlighted the limitations of the perceptrons in handling linearly non-
separable problems, dampening rescarch in this area for more than a decade.

It has been shown that even if the activation function is changed from a hard-
limiter to another non-lincarity such as a sigmoid function, the single-layer
perceptron can only properly classify linearly separable patterns (Shynk, 1990;
Shyuk & Bershad, 1991, 1992).

2.6.2 The Multilayer Perceptron

Although the perceptron may have a nonlinear activation function, the decision
surface it represents is still a hyperplane, which js inadequate in most practical
situations, This is the weakness of the perceptron. The solution is to use many
neurons, arranged in layers, to represent complex nonlinear decision surfaces, ie. a
Multilayer Pereeptron (MLP). The MLF is a multilayer feedforward network (see
Section 2.3.3}, where the output signals from one layer are directly fed in as inputs to
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In classification problems, the function of the hidden layers is to nonlinearly map
the input patterns into linearly separable features in the hidden unit space, or feature
space (Duda et al., 2001, pp. 299-301). The practical goa! of training the network is
to adapt the synaptic weights so as to transform a linearly non-separable problem in
input space into a lincarly separable one in feature space.

The capacity of the hidden layer to map the input patterns into a linearly separable
form is dependant on the number of hidden units. Increasing the number of hidden
neurons increases the dimensionality of the feature space. According to Cover's
theorem on the separability of patterns, a complex pattern-classification problem is
more likely to be linearly separable if nonlinearly cast in high-dimensional space
(Cover, 1965). The number of hidden layer neurons is not limited by the problem
definition, so it would seem the number of neurons can be increased ad infinitim
until perfect classification is obtained. In practise, however, there is a limit to number
of hidden-layer neurons that can be used, as increasing the number of weights will
eventually lead to overfitting (refer Section 2,6.6),

It has been shown that an MLP with a single hidden layer can function as a
universal approximator, i.e., it can approximate any arbitrary continuous function
{(Homik ct al, 1989), This is a theoretical analysis, but may not be practical to
implement for all functions, as the number of hidden layer neurons required may be
too large, On the other hand a two-hidden layer network is able to perform this in a
more manageable two-stage fashion (Funahashi, 1989). The first hidden layer
extracts local features, whereas the second hidden layer extracts global features from
the outputs of the first hidden layer.

The use of multilayer networks did not really take off, due to the lack of proper
training algorithms, until the advent of the errar backpropagation algorithm
{Rumelhart et al,, |986), This algorithim is based on the error-correction learning
rule and is a generalisation of the LMS rule. It provides an elegant solution to the
credit assignment problem, ie. determining how much each hidden neuron
contributed to the output error. Next, the backpropagation alporithm is explained
further.

2,6.3 Error Backpropagation Alger{thm

Backpropagation is a specific technique for implementing gradient descent jn weight
space for a multilayer feedforward networks (Haykin, 1999). The error back-
propagation process is made up of two passes through the network:

1, Forward pass

The input signal is applied to the network, and its effect (finction signal) is

propagated through the netwark, layer by layer
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2. Bachward pass

The difference between the desired and actual response (error signal) is
calculated and propagated backward through the neural network. The synaptic
weights are adjusted to make the actual response move closer to the desired
response using the delta learning rule,

The update for weight w; connected to nenron f at iteration r, Awy(), is given by
Aw,(m)=n &,(n) y,(n) (2.26)

wherte 1 is the learning rate pavameter, {n} the error sensitivity and y{r) the output
signal of nevron ;

The sensitivity, §{n), depends on whether the neuron is an output or hidden node.
For the case where neuron J is an ouiput node, the errer sensitivity is given by

8,(ny =, v, () ,(m) @2

where .} is the activation finction of the neuron and ef) is the error signal given
by the difference between the desired and actual cutputs

ej("}=dj(n)_ y,i(n] (2.28}
For the case where neurcnf is a hidden node, the sensitivity is given by

8,y =g;{v,(m) 38, wy(m) 229)

where & is the &term from the forward layer neuren &, which is then weighted by the
synaptic weight wy; between neuron j and & In other words, the eror term for a
hidden neuron is the weighted sum of the error terms of all the neurons it is
connected to in the forward layer,

The net effect is that the ervor signals (&) propagate backwards, weighted by the
synaptic weights, hence the name of backpropagation algorithm. An important point
to note hete is that the calculation of the & term, as given in Eq. (2.27} and (2.29),
requires the calculation of the differential of activation function (@'). This means that
the activation function p needs to be differentiable everywhere, like the sigmoidal
function, Conversely, the hard-limiter or threshold function cannot be used because
of the step (discontinuity) in the function. Further details of this algorithm and
improvements to it are covered along with other training algorithuns in Section 2.8,
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2.6.4 Initislisation

Initialisation refers to the setting of the starting weights and biases before taining
starts. The weights are normally initialised to a set of random values within a small
rangge. This is 5o that the _netwc;rks start from different ‘points’ in the weight space,
increasing the charice of f'mdiﬁg the global minimum. The weights are kept smalt
initially, as large weights may result in the neuron outputs going into their saturation
regions early in the training phase. This phenomenon, called premafure saturation, )
can lead to longer training times (Y. Lee et al,, 1991).

A common practise is to have the set of random values uniformly distributed in
the range [-r, r]. The value of » may be fixed globally or varied from neuron to
neuren depending on factors such as the number of inputs to the neuron. Other
distributions of weights, such as the Gaussian distribution, can also be used, A pood
review of initialisation methods for MLPs, inciuding experimental results, is given in
(Ehimm & Fiesler, 1997).

2.6.5 Training modes: pattern mode vs. batch mode

The error back-propagation algorithm is an error correction algorithm, falling under
the shpervised leaming paradigm. A set 'of examplars, called the fraining set, is
presented to the network. One complete presentation of the whole training sct is
called an epoch. The process of presenting the training examples and updating the
synaptic weights is'repeated until the mean ermor over the whele training set falls
below a particular value, or some other stopping criterion is met. The frequency of
the weight update depends on the mode of teaining, patters made or batch mode.

In pattern mode, the synaptic weights are updated after each training example is
presented. This mode is also referred to as training by sample or online training. A
degree of randomness can be added to the weight updates by randomly changing the
arder in which the examples are presented at each epoch. This makes it less likely for
the training algorithm to be trapped in a local minimum.

In batch mode truining, the weight update is performed once an epoch, after all
training examples in the set ate presented. This is an accumulated correction that
represents a smoothing of the weight cnnccﬁc;n. and avoids mutnal interference of
weight updates from different examples (Battiti, 1992).

2.6.6 Generalisation and validation

Generalisation is the ability of the neural network to correctly compute the input-
outpuit relationship for data not seen during training. As mentioned earlier, the ability
to generatise well is crucial in practical applications. Overfitting happens when the
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network is given “too much" information either in the form of too many nevrans for
the given problem or excessive training of the network. It tends to represent the
input-ontput relationship for the training examples almost exactly, but doesn’t
interpolate or extrapolate well. This reduces the generalisation performance of the
nefwork. The generalisation petformance of the network is tested wsing a set of
sample data not used at any point in the training process, called the rest set.

In order to improve the final generalisation ability of the network, a third set of
sample data is brought into play, called the validation set. The validation set is
normally a small subset of the training data, but is nof used in determining the weight
updates, j.e., not part of the actual training ser. At the end of every epoch of training,
the validation data is presented to the network and the error across the whole set
worked out, This provides an estimate of the generalisation ability of the network. If
the validation error indicates that the network is over-fitting, the training is stopped.
‘This is called early stopping. The criteria for stopping can be that the validation error
continues to grow for a certain number of epochs, or that it exceeds a centain lavel
sbove the minimum validation crror achjeved up to that point. In some
implementations the network state that produces the minimum validation emor is
saved and used as the final network, if training is stopped early.

Determining the ‘optimum’ network structure for a giver application is not an
easy task. A structure that is too large will tend to overfit, whereas a structure that is
too small may not be able to represent the input-output relationship accurately, Prior
knowledge is used where applicable; otherwise trial-and-etror is commonly used,
Construction and pruning algorithms that modify the network structure as part of the
training process are discussed in Secticn 2.9,

2.6.7 Error surface and local minima

The error value used te determine the performance of the network is a fuuction of the
weights of the network. For a fixed structure network, these emor values can be
visualised as forming an error swrfice in multi-dimensional space. The objective is
to madify the network weights until the global minimum of this error surface is
reached. For a multilayer network this error surface can be quite complex, and may
contain multiple focal minima. The training algerithms need to be able to avoid
getting stuck in the local minima, in arder to be able to reach the global minimum —
if it can find it. This task is easicr said than done, It can be likened to a blind man
searching a mountainous landscape for the lowest point, with nothing more than what
he can feel around him — in this case gradient information — and where he has bewn,
provided he doesn’t forget! Methods of petting out of local minima and improving
the speed of traininp are covered in Section 2.8,

32



ARTIFICIAL NEURAL NETWORKS - A REVIEW

2.7 RBF networks and Support Vector Machines

Radial Basis Function (RBF) networks and Support Vector Machines (SVMs) are
twa other classes of ncural networks that use the concept of non-linear
transforinations that attenupt to convert the input pattems into linearly sepatable
classes, as diseussed in the preceding section. While this process is implicit in MLPs,
it is explicit in these networks as they are designed with this process in mind. In this
section, the basic concepts and modes of operation RBF networks and SYMs are
presented, with comparisons to MLPs where appropriate.

2.7.1 Radial-Basls Function Networks

Radial-Basis Function (RBF) netwa.i.- use the viewpoint that learning is equivalent
te finding a surface in multi-dimensional space that provides & “best fit” to the
training data. A radial-basis function network in its most basic form consists of three
different layers:

L. Input layer of sensory nodes

2. Hidden layer of non-linear nades of high enough dimension.

3. OQutput layer that is linear,

The purpose of the hidden layer nodes is to nonlinearly transform the input space
to & higher dimensional feature space, for reasons described in the previous section,
The hidden units provide a set of “functions” that constitute an arbitrary “basis” for
the input vecters when they are expanded into hidden-unit space, called radial-basis
Junctions (Powell, [987). The output of an RBF network can be deseribed by

»nx)= i wy@{x) + 1w, (2.30}
=

where p(x) is the basis function, This is similar in form to the linear diseriminant
function in (2.17).

Radial functions are a speciat class of function. Their characteristic featurs is that
their response decreases monotonically with distance from a central point, A typical
radial function is the Gaussian, which is given by

wtx}=exp[u} 231)

X
2o
where ¢ is the centre of the distribution function and &is the spread (radius),

The nrgument of the activation function is the Euclidean norm (distance) between
the input veetor and the centre of that unit. 'The claser the input vector is to the centre
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of the function, the larger the cutput of the function is, with the maximum being
when the two are identical.

The RBF network produces local approximations to non-linear input-output
mapping. This results in faster Jearning, and a reduced sensitivity to the order of
presentaticn of training data. However, to represent the mapping smoothly, the
number of RBFs required to span the input space may be large, This conirasts with
the MLP, which does global approximations and is therefore able to generalise in
regions of input space with little or no training data.

In an RBF network, the hidden layer activation functions evolve slowly in
accordance with a nenlinear optimisation strategy, whereas the output layer weights
change rapidly following a linear optimisation strategy. The layers perform different
tasks, so it is reasonable for them to have different optimisation techniques working
on different time scales, Different {eaming strategies may be followed, depending on
how the centres of the RBFs are specified. There can be randomly generated fixed
cenires, supervised selection of centres where the centre positions are trained with
the other parameters, or a hybrid learning process where the centres are self-
organising. In all cases, however, the linear output weights are trained using a
supervised training rule, In summary, radial basis function networks provide 2 global
approximation to the target fanction, represented by a linear combination of local
kerne] functions (Mitchell, 1997).

172 Support Vector Machines

Support Vector Machines (S8VM) are a relatively new technique for solving pattem
recognition problems, based on statistical leaming theory, that contain polynomial
classifiers and RBF networks as special cases (Scholkopf et al,, 1997). Traditional
techniques for pattern recognition are based on minimising the empirical risk (such
as the mean squared error), which optimises performance on the training set. SYMs
on the other hand, attempt to minimise the structural risk, that is the possibility of
misclassifying yet-to-be-seen pattems for a fixed but unknown probability
distribution of data (Pontil & Verri, 1998).

The key idea of SVMs can be explained as follows (Vapnik, 1998). Given n
training set S that contains points of either of two classes, an SVM separates the
classes threugh a hyperplane determined by certain poinis of S, termed support
vectors. In separable cases, the hyperplane maximises the margin, or twice the
miniolum distance of either class from the hyperplane, und all support vectors lie at
the same minimum distance from the hyperplane {thus termed margin vectors). In
cases where the classes are not separable, both the hyperplane and support vectors
are obtained by selving a constrained optimisation problem where the selution is a
trade-off between the largest margin and the lowest number of errors. To improve the
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separability of the input patterns, they are mapped nonlinenrly to a higher-
dimensional space by use of kernel functions (such as a Gaussian finction), similar
to RBF networks.

SVMs are attractive because of their ability to condense the information in the
training set and their use of families of decision surfaces of refatively low VC
dimension. The Vapuik-Chervenenkis (VC) dimension (Vapnik, 1998; Vapuik &
Chervoncnkis, 1971) is used in statistical Jearning theory (a.k.a. FC Theory) as a
measure of complexity (capacity) of a set of approximating functions. For binary
classification, the VC dimension is the maximum number of points, A, that can be
‘shattered’ (classified in all 2" ways) by the family of dichotomies {binary
classification functions or decision rules).

To aliow for more general nonlinear decision surfaces, the set of input vectors is
nonlinearly mapped into a high-dimensional space by a suitable kernel function &
before linear separation is performed. This leads te a decision function of the form
(Vapnik, 1998)

F0 =sign[ > yeKx) +b] (2.32)
SUPQAIET YL
Once again the decision function is similar in form to the lincar discriminant function
given in (2.17).
Examples of kernel functions are
1
~fx-x]

Kx,x)= exp{—-——c—] Gaussian {RBF)

K(xx)=[x-x,)+1] Polynomial

The performance of SVMs with Gaussian kernels has been compared to classical
RAF classifiers and shown to have lower error rates (Scholkopf et al., 1997), The
main reason for this is that the classical RBF method of centre selection is based on
the concept of clustering of training data, as opposed fo SVMs that attempt to
minimise the structural risk thereby resulting in better generalisaticn, The support
vector method has also been modified to train MLPs (Suykens & Vandewalle, 1999),
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2.8 Training algorithms for Féedforward Networks

The objective of neural network training, using eror correction leaming, is to
minimise some predefined error function such as the sum squared error (SSE). The
error function is viewed as an optimisation or minimisation problem in v-dimensional

weight space (R"), where v is the number of free parameters {weights) to be
determined from training (van der Smagt, 1994). The state of the network can then
be visualised as taking a “walk” through this weight space until some optimal point
is reached where the error function is at a minimum. Ideally the minimum reached is
a global minioum, not just a local minimom. Varjous training algorithms have been
developed for training feedforward networks based on different approximations and
assumptiens regarding the emror function. The primary consideration has been to
determine the direction and size of the “step™ 1o be taken at each iteration of the
training. A general description of some common types of training alporithms follows.

2.8.1 First Order Methads

In first-order methods only the first two {constant and linear) terms of the Taylor-
series expansion of the error term are considered, These methods, where the Jocal
pradient alone determines the direction of minimisation n, are known as sfeepest
descent or gradient descent methods. For feedforward network training, it is known
as etror backpropagation (BF), as described in section 2.6.3.

28.L1 Steepest Descent /Standard Backpropagation
. When the network is in & state with weight vector w(n}, the gradient of the error
function £ with respect to w is computed as
8E
= 2,33
B =50 (233)
A minimisation step in the divection u(x) = -g(#) is performed.
In normal steepest descent minimisation techriques, a one-directional
minimisation in the direction u(s} is performed such that a point w(x) is reached
where the new gradient g(n+1) is perpendicular to %{n). The learning rule is then

WirF1} = w(n) + 00 u(n) (2.34)
and the new search direction is
u(n¥l1) = -g(n+1) (2.35)

However in standard BP, the line minimisation is replaced by a fixed step-size
{learning rate) 7 in order to reduce the number of function evaluations,

36



ARTIFICIAL NEURAL NETWORKS - A REVIEW

2.8,1.2 Backpropagarion with momentun

The BP search direction is often augmented with a momentum term (Rumelhart et
al., 1986)

u(ntl) =-glnt+1)+ aulm {2.36)

A fraction of the previous update is included in the current update, keeping the
update poing in the same general ‘direction’. This extra term is generally interpreted
as avoiding oscillations as well as preventing the algorithn from getting stuck in
lacal minima.

2.8.1.3 Backpropagation with variable learning rate

If the learning rate, 7, is too small, the number of iterations to arrive at a solution
may be very large. On the other hand having # too large may result in the weights
oscillating during iterations, A dynamic leaming rate, 77, that varies at each iteration
can overcome the need for trial-and-error methods for selecting the leaming rate,

One method of varying the leaming rate is to use the direction cosine of the emor
derivative vector to obtain information on error surface curvature {Hsin et al., 1992),
The change in the weight vector, Aw, between two successive iterations follows the
steepest descent direction for minimising the error function. If the direction is almost
the same ns the previous direction, this implies the local shape of the ervor function is
relatively unchanged; therefore, a large value of 7{n} may be used to speed up the
process of minimisation. If the current direction is quite different from the previous
direction, it implies that the local shape is rather complex ard that & smaller 7; value
should be applied to avoid overshooting,

A simple method is to use only current and previous direction cosines (Franzini,
1987). An alternative is to use a weighted average of a number of previous directions
since they also contain some information about the local error surface {Hsin et al.,
1992). In this method, the modified dynamic learning rate, z{n), is a weighted
averape of L+1 successive weight vectors and is given by :
Aw(r).Awin=1) Aw(n —~ LyAw(n—L—1)

lewealawer—n] % faw(a - L)[Awte—L -] 237

Hm=a,

where o, +a +a, +..+a, =1

md  a,ze za,z..2a,

Another ‘quick and dirty’ method is the “Bold Driving" methed (Battiti, 1989).
The methed increases the leamning rate at successive iterations as lang as the error
decrenses. If the error increases the leaming rate is reduced.
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prn-1} if E(n) < E(n-1)

onn-1) if EmzE@-1 (2.38)

|

where typical values of the constants are p = 1.1 and £=0.5.

The inefficiency of steepest descent is due to the fact that the minimisation
direction and step size are often poorly chosen; unless the first step leads directly to
the minimum, steepest descent will zip-zag with many small steps, While
backpropagation of error gradients has proven useful, the convergence tends to be
slow, particularly when the number of weights in the network are large (Jehansson et
al,, 1992; van der Smagt, 1994).

282 Second Order Methods

Other numerical methods make use of the second derivative of the function. In this
case the quadratic term of the Taylor expansion is also taken into account,

This error equation has the form
AE{w)= E(w + Aw)— E(w)~g"Aw + L Aw” HAw (2.39)
where

oE . .
g= gi w, isthe gradient vector and

F]
u=2£
awz W
Minima are located at points where the gradient to equation (2,39) is 0, ie.
HAw +g=0.

is the Hessian matrix

Thersfore 1he optimal change in the weight matrix, Aw =-H"g. However, the

caleulation of the Hessian H and its inverse is computationally prohibitive, thereby
leading to approximation methods being investigated. The above is the basis of
Newton's method and its variants.

2421 Quasi-Newton methods

Newten's method is one of the more successfvl algorithms for optimisation and, if it
converges, has at least a quadratic order of convergence. However, for a general
nonlinear objective function, convergence to a sclution cannot be guaranteed from an
arbitrary initial point. The aim of quasi-Newton (secant) methods such as the BFGS
(Broyden-Fletcher-Goldfarb-Shanno) and DFP (Davidon-Fletcher-Powell) methods
(Chong & Zak, 1998, pp 147-165 ; van der Smapt, 1524) is to avoid the computation
of the inverse mateix H'' by iteratively computing the matrices Q(z) such that
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limQ() = H! (2.40)

The term quasi-Newton applies if

Q(n+1)(gln+1y-g(m)) =win-1)-win) (2.41)
is satisfied. The resulting Q(r?) can be used to find
win+1) = w(m—Qlms) (2.42)

until a minimum is reached,

The disadvantage of these methods is that the storage requirements of Q(#) is
proportional to the square of the number of weights being trained (Hagan & Menhaj,
1994; Johansson et al., 1992; van der Smagt, 1994).

L

2.8.2.2 Conjupate Gradient Methods

In conjupate gradient (CG) optimisation, the direction of the minimisation is always
chosen such that the minimisation steps in all previous directions are not speiled.
When a direction u{n) is chosen and line minimisation is performed in this direction
leading to a point w(nrt1), the gradient g{m+1} at w{n+1) must be orthogenal to g{x),
g(n-1), ... g5, hence the name. The weights and direction updates are given by

win+1) =w(n)+a{muln) (2.43)
u(n+1) = —g(n + 1)+ g(n)uin) {2.44)

The algorithm requires the Hessian of the function to evaluate two constants, a(n}
and An). In order to avoid the computation of this matrix, a line search is used to
evaluate a(n), whereas for &n} there are a number of formulas that compute it from
the gradient and direction vectors such as the Hestenes-Steifel formula, Polak-Ribiere
Sormuta and Fletcher-Reeves formula (Chong & Zak, 1996 , pp 132-145).

g (r+ Dgln + 1) -g(m)] (2.4%)

Hestengs-Stelfel formmla: f(n) = o (e D —gin)]

Polak-Ribiere formula:  fi(n) = g (nt ”Eg(" +D-g(m)] (2.46)
g’ (meln)
Fletcher-Reeves formuia: f{n) = w (2.47)
g’ (me(m

For quadratic functions with v degrees of freedom, only v iterations are required to
arrive at a solution. However, since the error fanctions are not exactly quadratic, as
well as a result of round-off errors, this does not normally happen in neural network
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training. The commen practise is to reinitialise the direction vector to the negative of
the gradient vector every v steps. An improvement to this is the Powell restart
procedure, which uses the second order information in resetting the direction vector
{Powell, 1977).

The CG algorithm is well suited for large-scale problems due to the simplicity of
the computations involved and the extremely moderate storage requirements.
Unfortunately the CG algorithm is anly applicable to functions with positive definite
Hessians; it is highly unstable when applied to functions with Hessians that are not
positive definite (Madyastha & Aazhang, 1994).

2.8.3 Hybrid Methods

Second order methods are far superior in terms of leaming time when compared to
standard backpropagation, but they are more likely to get stuck in local minima.
Hybrid methods such as frusr-region methods try to combine both these approaches
in a single algorithm, A trust-region is a region within which we can “trust” the
quadratic approximation to the objective function.

2.8.3.1 Levenberg-Margquadt Algorithm

The Levenberg-Marquadt algorithm is an approximation to Newton’s method (Hagan
& Menhaj, 1994}, Suppose we have a function E{w) which we want to minimise with
respect to the vector w, then Newton's method gives a weight update

Aw=-H"g (2.48)

where H is the Hessian matrix and g is the gradient,
If we assume that £fw) is the sum of squares function, then it can be shown that

VE(w)= J(w) e(w) (249)
_ V2 Efw) = JT(w) J(w) + S(w) (2.50)
where J(w) is the Jacobizan matrix

Be(w) de(w)  Be(w)

dw, &y Bw,
e, (w) Bey (W)  Bey(w)
Iw)=| o, Wy oW, (2.31)

dey (W) Gey (W) R
EY™ aw,

and
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S(w}=ie,(w)v’e,{w} 2.52)

¥l

For the Gauss-Newton method, it is assumed that S{w) = 0, and the update (2.48}
becomes

Aw=[1T (wpI )] 97 (w)e(w) (2.53)
The Levenberg-Marquadt medification to the Gauss-Newton method is
aw =07 (w)dw) + [ I (whe(w) @.54)

where I is the v X v identity matrix and g is a variable parameter,

The parameter x is multiplied by some factor () whenever a step would result in
an increased £(w). When a step reduces E(w), u is divided by A When g is large the
alporithm becomes steepest descent {with step 1729, while for small 4 the algerithm
reduces to the Gauss-Newton (second order) update in (2,53). The Levenberg-
Marquadt algorithm can be considered a trust-region modification to Gauss-Newton
{Hagan & Menhaj, 1994; van der Smagt, 1994). For neural networks, the terms in the
Jacobian matrix can be computed by a simple modification to the BP algorithin.

Summary of Levenberg-Marquadt algorithm

1. Present all inputs to the network and compute the corresponding network
outputs and errors. Compute the sum of squares of errors (E(w)).

2. Compute the Jacobian matrix.
3. Solve (2.54) to obtain Aw.

4, Recompute the sum of squares of errors using w + Aw,
If this sum of squares is smaller that computed in step 1, then reduce zby 8,
Cletw =w+ Aw, and go back to step 1. If the sum of squares is not reduced,
then increase 2 by & and go back to step 3.

5. The algorithm is assumed to have converged when the norm of the gradient is
less than some predetermined value, or when the sum of squares has been
reduced to some error goal.
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2.84 Direct Methods

Another approach is based on a direct determination of the matrices of weights, by
solving in a classical or in the least-squares sense a set of systems of linear equations.
The main advantages of this approach are that there is no risk of getting trapped in
local minima during training and that the weights adapt quickly. The fundamental
idea of these “direct methods™ lies in an extension and a generalisation of the
singular-value decomposition (SVD} atgorithm for the “cne-shot” evaluation of the
matrix of weights,

Examples of direct methods are FBFBK (Barmann & Biegler-Konig, 1992),
named after the authors, iterative conjugate gradient singular-value decomposition
(ICGSVD) {Di Martino et al., 1993) and least-squares backpropagation (LSB)
(Barmann & Biegler-Konig, 1993).

Analysis of these various methods has shown that for middle-size networks
(several hundred neurons) these methods are competitive in terms of computation
time with the best BP methods for MLP networks, For larger networks these methods
are gencrally too expensive {Di Martine et al., 1994).

Verma uses hybrid algorithms that combine direct solution with other methods,
where the cutput layer weights are directly solved using the modified Gram-Schmidt
alporithm (Verma, 1997). He proposes three different ways of training the hidden
layer weiphts, including using standard backpropagation (BP). The direct solution of
the outputs was able to speed up training considerably and avoid petting stuck in
local minima, even with BP training of the hidden weights.

2.8.5 Stochastic Methods

As menticned previously, stochastic methods update the weight vector with a
randem veeter as given in Eq. {2.13}. An example is the stochastic Random
Optimisation Method (ROM) algorithm given in  (Schalkoff, 1997, p.208). The
weight update is given by

wimy+&  if E(win)+E) < E(w(n)
win+li=1 win—& if E(w(n) +&) = E(w(n)) and E{w(n) —&) < E{w(n)) (2.55)
w(n) otherwise
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2.9 Adaptive Structures

Up to this point, it has been assumed that the neural network being trained has a
fixed structure. The question then atises “What is the optimum size of the network?”,
" As mentioned in Section 2.6.6, having too many neurons can result in overfitting,
whereas too few may not allow the network to reach the desired performance level.
Designers have to use prior knowledge on the problem, their expetience, or just trial-
and-errer, in order to find a structure that performs well, Jet alone an ‘optimal’
structure, “The exhaustive search over the space of network atchitectures is
computationally infeasible even for networks of modest size™ and hence “the use of
heuristic strategies that dramatically reduce the search complexity” (Karampiperis et
al,, 2002},

There are two opposing approaches for adaptive strategies: Constructive and
destructive. Constructive methods start with a minimal network, even a single
neurcn, then “grow"” the network as needed by adding new connections, nades or
layers. Destructive methods, also known as pruning algorithms, on the other hand,
start with a complex structure and remove unnecessary connections, nodes and layers
during training {Mitchell, 1997, Yao & Liu, 1997}, A frequently used constructive
algorithm is the Caseade-Correlation algorithm {Fahlman & Lebiere, 1990), while
well known pruning algorithms include Optimal Brain Damage (OBD){LeCun et al.,
1990) and Optimal Brain Surgeon (OBS) (Hassibi & Stork, 1993), A partial review
of constructive algorithms is given in {Ficsler, 1994), while one of pruning
algorithms is given in (Reed, 1993),

Investigating methods for adaptively determining network structures is an active
area of research, with researchers combining constructive and pruning algerithms or
creating new variations (Islam et al., 2000; Islam et al,, 2003; Karampiperis =t al.,
2002; Rivals & Personnaz, 2003; Thivierge et al, 2003; Tsai & Lee, 2004).
Evolutionary computation, which includes genetic algorithms and evolutionary
programming, has also been commonly used for this purpose {Garcia-Pedrajas et al,,
2003; Leung et al,, 2003; Nikolaev & Iba, 2003; Yao & Liu, 1957),

Adaptive structures are not used in this thesis, but the work presented here
provides scope for future work in this area. The concept has therefore been
introduced here with a brief overview, Relevant references have been included for
the interested reader.
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2.10 Conclusion

An overview of artificial neural networks has been presented in this chapter, starting
fram the biological roots to various artificial neural network structures, applications
and training algorithms,

The information presented herc shows that the massive paralle] processing
demonstrated by biological brains has inspired the creation of a versatile and
pewerful compuwtational tool, The field of artificial neural networks is a diverse one,
both in terms of the kinds of networks and algorithins as well as their numerous
applications. In such a large and growing field, there is still room for much work in
explering new medels and paradigms, and such work is ongoing. The work presented
in this thesis represents one such exploration, and it is hoped that it will not only
yield interesting results and discoveries, but alse open new areas of continued
research,

In order to maintain focus, the emphasis has besn an feedforward networks,
supervised training techniques and other topics relevant to the subsequent chapters.
Brief descriptions and overviews of cognate argas have been presented where
appropriate.

The biophysical mechanism of shunting inhibition, in biological neurons, has been
introduced briefly, but the use of shunting inhibition in artificial neural networks has
been deferred to the next chapter, where it will be developed in greater detail,
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Chapter 3

Shunting Inhibitory Artificial Neural Networks

3.1 Introduction

Shunting inhibition is a powerful computational mechanism that plays an impertant
role in sensory information processing systems. Since it was proposed as a plausible
physiological model in the early 1960°s {Furman, 1965; Lettvin, 1962), shunting
inhibition has been extensively used to model some important visual and cognitive
functions. For example, Grossberg used it to mode! long-tenn and shortterm
memory mechanisms, feature detection, and other cognitive functions (Grossberg,
1973, 1976, 1988). Fukushima employed it for local feature detection as part of the
neocognitron (Fukushima et al,, 1983). Pinter used it to model the adaptation
phenomena in receptive field organization and modulation transfer function (Pinter,
1983, 1984, 1985}, Bouzerdoum and Pinter proposed a model of motion detection in
insects based on shunting inhibition (Bouzerdoum, 1593; Bouzerdoum & Pinter,
1989, 1992). They alse intreduced a shunting inhibitory celtular neural network and
used it to mode! receptive field profiles of neurons in the early parts of the visual
system (Bouzerdoum & Pinter, 1993). Other researchers have also used shunting
inhibition, including some of its VLSI implementations {Datling & Dietze, 1993;
Moini et al., 1997; Nabet, 1992; Nilson et al., 1994; Wolpert & Micheli~Tzanakou,
1593),

Despite their widespread use in modelling psychopliysical, neurophysiological
and cegnitive phenomena, to our knowledge, shunting inhibitory networks have not
been used in supervised pattem classification or function approximation, other than
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in the neocognitron (Fukushima et al, 1913) and ART networks {Carpenter &
Grossherg, 1988). Other than these, shunting nehworks have primarily been part of
adaptive (self-organising) systems that usc competitive leamning, Cellular neural
networks based on shuating inhibition have shown great promise as information
processors in vision and image processing tasks (Beare & Bouzerdoum, 199%;
Cheung et al,, 199%; Pontecorvo & Bouzerdoum, 1995, 1997), but they have not been
used for classification and regression tasks before 1999, One of the main reasons for
this has been the Jack of proper training algorithms. The expert knowledge of the
designer has had to be used to choose the connection weights based on the task at
hand, This does not allow complex pattzrn recognition problems to be handled,
resulting in limited applications. Another reason is that the operatien of & shunting
inhibitary ceflular neural network (SICNN) is governed by a system of nonlinear
differential equations, which must be solved in order to obtain the output of the
network for a given input pattem.

It is only recently that Bouzerdoum proposed an artificial newral network
architecture, based on shunting inhibition, that can be trained to perform pattern
classification or function approximation; he named it shunting inkibitory artificial
newral network (SIANN) (Bouzerdoum, 1999, 2000). Derived from SICNNs,
SIANNS are feedforward networks that operate using the steady-state solution of the
set of ordinary differential equations poverning the dynamics of the shunting
networks, thereby avoiding the need to obtain a numerical solution for the
differential equations. This allows the network to operate in a static mode like
multilayer perceptrons (MLPs). The idea was to exploit the inherent nonlinearity of
shunting inhibition to develop powerful, trainable networks, with nonlinear decision
surfaces, for classification, nonlinear regression and pattern associstion.

This chapter presents the development of SIANNs fram its biological reots to the
shunting neuron model snd SIANN architecture, The next ‘section explains the
biclogical reots of shunting inhibition, The third section presents the elecirical circuit
approximation of a patch of dendritic membrane and the derivation of the differential
equations that govem the shonting inhibition model. The fourth section describes the
precursor ta SEANNs, Shunting Inhibitory Cellular Neural Networks. This is
followed by the development of the feedforward shunting inhibitory neuron model
and the SIANN architecture in Sections 3.5 and 3.6, respectively. Section 3.7
illustrates the non-linear decision boundaties of the shunting inhibitory neuron
model. This is followed by the conclusion,
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3.2 Shunting Inhibition in Blological Systems

In a biological ncuron, the celt at rest has a potential difference across the cell
membrane due to the difference in ionic concentrations on either side of the
membrane. The cell membrane consists of a thin, semi-permeable bilayer of lipids
and is o near perfect electrical insulator, At cquilibrium, the concentration of sodium
{No') iens is higher in the extrocellular fluid compared to within the cell and this
difference in concentration causes a Nernst potential {or reversal potential) Ey, of
about +50 mV (Gersiner & Kistler, 2002). The concenteation of potassium (K*) fons,
on the ether hand, is higher inside the cell than outside with a reversal potential B of
opproximately <77 mV. Both these and other jon types are simultanecusly present
and contribute 10 the resting potential acrozs the membrane, F, of approximately -65
mV. Since Ex < V, < Ey,, at the resting potential potassium ions flow out of the cell
and sedium ions flow into it. Active ion pumps in the cell membrane pump these
ions in the reverse direction in order to maintain a dynamic equilibrium.

An input at an excitatory synapse reduces the negative polarisation of the
membrane, alse called a depolarising potential. Conversely, an input at an inhibitory
synapse increases the negative polarisation of the membrane, called hyperpolarizing
potential, caused by positive fons (usually potassium) moving out of the cell
{Stevens, 1994). If the sum of postsynaptic potentials causes the membrane voltage
10 cross a threshold value, the cell body produces an action potentinl that propagates
down the axon of the neuron, The inhibitory mechanism described here therefore is
additive {subiractive) inhibition.

Inhibition can be mediated by both pre- and post-synaptic contacts. Post-synaptic
inhibition functions to reduce the excitability of the target cell by increasing the
permeability of the post-synaptic membrane to chloride {CI) and potassivm (K"
ions, therchy increasing the jonic conductance of their respective channels (Nicholls
et al,, 1992). In shunting inhibition, where the synaptic activity opens mostly CT°
channels, the reversal potential of the inhibitory synapses is equal or very close to the
membrane resting potential (Faber & Kaorn, 1982). These inhibitory inputs therefore
have hardly any effect on the membrane potential if the neuron is at rest, The effect
of the shunting inhibitery inputs is to increase the local conductivity of the cell,
sllowing the ions to flow in or out of the cell, depending on the state of the neuron. If
the neuron is depolarised, then the inhibitory inputs result in inhibitory postsynaptic
potentials. If the neuron is hyperpolarised, however, the inhibitory input results in a
depolarising potential, ‘The net effect is to ‘clamp' the membrane potential to the
festing potentinl by 'shunting’ the effects of other synaptic potentials. Inhibitory
synapses are oRen located on the soma or the shaft of the dendritic tree. This
sirategic positioning allows o fow inhibitory spikes to ‘shunt’ the whole input
gathiered by the dendritic tree from all the synaptic inputs {Gerstner & Kistler, 2002},
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3.3 Development of the Shunting Inhibitory Model

Shunting inhibitory neural networks are based on a neuron model that is inspired by
hutmnan and animal visual systems. The equivalent circuit is derived from a lumped
parametric approximation of a uniform patch of dendritic membrane as shown in Fig.
3.1 (Bouzerdoum & Pinter, 1593), The circuit consists of the ordinary or nonsynaptic
membrane in parallel with the excitatory and inhibitory pathways. The resting
potentiais and conductances of the different ionic channels are lumped together in the
resting potential ¥, and the resting conductance g These two, in parallel with the
membrane capacitance Cp, represent the nonsynaptic membrane. Each synaptic
pathway, excitatory or shunting inhibitory, consists of a synaptic potential (battery),
V. and V¥, in series with a synaptic conductance, g. and g;, respectively. ¥, is the
total membrane potential; i, i f, and i represent the jonic currents, and R is the
receptar region feeding the excitatory synaptic inputs.

The conductances of the excitatory and inhibitory ionic channels are zero at rest
under this representation. The excitatory input synapses control the conductance g,
with a reversal potential ¥, > F,. On the other hand, the inhibitory input synapses are
assumed to be of the shunting type, As decribed in previous section, in shunting
inhibition the synaptic activity opens mostly CI channels whose reversal potential is
equal or very close to the membrane resting potential; the role of shunting inhibition
being to “clamp” the cell to its resting potential. Here it is assumed that shunting
inhibition is mediated by modulating the conductance g,, with equilibrium potential
equal to the resting potentizl, i.e, ¥;= V. '

The node equation of the equivalent circuit shown in Fig, 3.1 is
dV

di

Cm i +g¢(yy'i"ym)_gr(yr_ym}_g:(ys_Vm):o (3'1)

Rearranging the terms, this can be written as

% - (V +V,, )+g' . V)-t- (V -¥,} 652

If the deviation of the membrane voltage V,, from the resting potential V, is
desipnated AV (ie. AV = V.- ¥,) then, by using the fact that ¥, = V., the equation
deseribing the change in membrane potential ¥, relative to the resting potential ¥, is
given by

dav g,
& C

R

(v. +V."J-g—;(a?>—§—;w) (3.3)
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Therefore, we can write

Lo p (3 eum) )
Cm =l
where f is some kind of non-linear saturating characteristic which limits the total
shunting conductance, )

In contrast to g;, the conductance g. is controlled by the excitatory input synapses
which work to increase the membrane conductance to sedium (Na®) and potassium
(K"} ions. I it is postulated that the current produced in the excitatory channels, &, is
proportional to }{r), the input from the receptors feeding the excitatory synaptic
inputs in the fth compartment, then

g—*(nwm) == 1,(0) (3.5)

5l

Furthermore, identifying the remaining constant term in the right hand side of (3.3} -
as

Er _
é =a; . | (3.6)
then Equation (3.3) becomes
d; .
-‘}r=lj(f)—ajxj —f{z,:cﬂx,)xj, i=12uun {3.7)

The system of coupled nonlinear differential equations given by (3.7) describes
the activity of recurrent neural network.

3.4 Shunting Inhibitory Cellular Neural Networks

In shinnting inhibitory celiutar newral networks (SICNNs), the neurons (or cells) are
amanged in a two-dimensional grid as shown in Fig. 3.2, Each neuron has a single
external excitatory input, which is not shown in the figure but can be assumed to be
comipg perpendicular to the page. The weighted outputs of the neurons in a
predefined neighbourhood are fed back as shunting inhibitery inputs and passed
through the nonlinear activation function. Let Cy represent the cell (neuren) at
position {i,f} in the lattice. The activity of a cell is governed by the non-linear
differsntial equation: .

d, '
27“- =10 -au - 1O Yeixnds +b (3.8
' [y
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In most problems, however, the number of outputs is different from the number of
inputs. In order to create a structure that would result in the correct number of
outputs, the output layer was set to consist of the required number of linear or
sigmoidal {perceptron-type) neurons. The output neurons are able to sum the outputs
of the shunting neurons to produce the final output of the network.

This network structure of a layer (or layers) of shunting inhibitory neurens with a
layer of cutput neurons is called a Shunting Inhibitory Artificial Neural Network
(SIANN). Fig. 3.4 shows a SIANN with a sinple layer of 3 shunting inhibitory
neurons connected to 2 output neurons.

The output of the kth output neuren is given by

Vi = g(i‘ wyx, ) =gw) (3.12)
Juik

where g is the output layer activation function; wy is the connection weight from jth
" shunting reuron to the Ath output neuron; wyo is the bias of the output neuron
connected to a fixed ‘input’, xo = 1, and v; is the net input to the activation funetion

o

o= Y WX, (3.13)
Jut
The output layer activation function can be a simple linear function that just sums
the inputs, or a sigmoid function. This structure can now be applied to problems with
any combination of number of inputs and required outputs.

3.7 Decision boundaries

As mentioned in Chapter 2, a pattern classifier divides the input space into a number
of mutvally exclusive subspaces representing the various categories, The various
subspaces are separated by decision boundaries or decision surfaces (Nilssen, 1990},
A single linear or sigmoidal neuron can only represent linear or hyperplane decision
boundaries {Haykin, 1999). On the other hand, a shunting neuron can represent
nenlinear boundaries (Arulampalam & Bovzerdoum, 2000; Bouzerdoum, 1999),

One of the classic linearly non-separable problems is the #-bit parity problem,
where an #-bit input is meant to produce an even ar odd parity output. The simplest
of these is the 2-bit parity problem, otherwise known as the XOR problem, The
inputs can be visualised as the vertices of the unit square, and the vertices on
opposite sides of the square belong to the same class. A single perceptron caunot
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Despite the fact that a perceptron is only able to represent hyperplane decision
boundaries, MLPs with a single hidden layer can approximate any given continuous
function on any compact subset to any degree of accuracy, provided that a sufficient
number of hidden layer neurons are used (Homnik et al, 198%). As explained in
Chapter 2, this is because of the non-linear transformations performed by the hidden
layer neurons. SIANNs should therefore be able to represent complex nonlinear
decision surfaces more efficiently than MLP networks, by levetaging the inherent
non-linear capability of shunting neurons demonstrated here. This is the major
meotivating factor for introducing the shunting inhibitory neuron.

3.8 Conclusion

This chapter outlines the development of STANNS, right from the biolegical rocts to
the final form of the network to be investigated. The shunting neuron model is
described along with the derjvation of the equations that define it. Shunting neurons
have demonstrated the ability to produce complex decision boundaries from a single
neuren. This compares favourably with the perceptron, which can only produce
linear decision boundaries. This in turn indicates that SLANNs should be able to
represent complex nonlinear decision surfaces more efficiently than MLP networks,

The motivation behind the investigation of SIANNs was to use the ability of
shunting neurons to produce non-lincar decision boundaries to create a new class of
high-order neural networks for classification and regression (Bouzerdoutn, 1999). In
order to achieve this, training algorithms need to be developed for these networks.
The following chapters present the development of various training algerithms for
SIANNs, and their application to a number of benchmark classification and
regression problems.
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Chapter 4

Development of Training Algorithms

4.1 Introduction

The previous chapter outlines the motivation and development of the SIANN
architecture. As mentioned in the previous chapter, one of the limitations faced by
the cellular form, SICNN, was the lack of training algorithms. In order to apply
SIANNs to classification and regression problems, training algorithms needed to be
developed. This chapter describes the development of a number of training
algorithins for SIANNS.

The training algorithms developed are broadly divided into gradient-based, divect
soltition and stochastic methods. The gradient-based algorithms ate described in the
next section. The third and fourth sections deseribe the direct solution and stochastic
algorithms, respectively. Section 4.5 describes the experimental methods used to test
the performance of networks trained vsing the developed algorithms, covering
netwark structures, initialisation methods, and evaluation criteria. It also describes
the various benchmark preblems oh which SIANNs are trained and tested, This is
followed by experimental results, presented in Section 4.6, This section contains an
investigation info the effect the shunting term has on training performance, as well as
the zctual test results. The final section contains the conclusion. The derivation of
the training equations for the gradient-based algorithims is shown in Appendix A and
selected tables of results are presented in Appendix B.
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4.2 Gradient-based Algorithms

This section describes the vatious training algorithms developed for SIANNs that use
the gradient of the objective function to update the weights. All the alporithms
developed in this thesis are based on supervised learning using the error-correction
leamning rutle {e.f. Chapter 2}.

The network is presented with a set of exemplars in the form of pairs (I{g), di{g))
where I{g) is the input vector and d{g) is the corresponding vector of desired values,
The difference between the desired and the actual output of the network is the error
vector, given by

¢(q) = ¥(g)- d) “.1
where y(g)is the output vector due to the input I{g).

The algorithms developed operate in batch mode, where the whole set of
exemplars is presented to the network before the weights are updated. The training
algorithm secks to minimise an objective function, E, which may be the sum squared
error (SSE)

E =} elq) e{q) @2
N
or the mean squared error (MSE)
1 r
E= W e(g) e(q} (4.3)

where & is the number of exemplars in the training set.

The gradient-based training algorithms developed here can be divided into two

categories; the first-order gradient descent algorithin and its variants; and the
" Levenberg-Marquardt algorithm and its variants. '

The Conjugate Gradient algorithm described in Chapter 2 was not implemented.
The reason is that the shunting neuron decay parameter g has a lower bound imposed
on it during training, in order to avoid division by zere (see equation (4.6)). The
conjugate gradient algorithm requires the weight updates to be performed such that
the current gradient update direction is always orthogonal to the previous gradients,
Adjustments to the weight update of parameter @ by the lower bound may violate this
requirement, hence this algorithm was not implemented.

The following sub-sections describe the training slgorithms implemented it more
detail.
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4.2.i Gradient Descent

All the gradient descent-based algorithms implemented for SIANNS are based on the
error-backpropagation (BP) algorithm (Rumelhart st al., 1986), described in Section
2.6.3. The standard gradient descent {GD) algorithm is a first-order algorithm that
uses a fixed learning rate as in standard BP (refer Section 2.8.1). At the #™ training
step the weight update is given by "'

Aw{n) = —iyg(n) {4.4)
where #7is the learning rate and g{n) is the gradient given by

aE
g(n) = ey (4.5)

The backpropagation algorithm requires the partial derivatives of the objective
error function, £, with respect to each of the parameters (weights} being updated to
calculate the gradient.

The ‘standard’ SIANN is a feedforward neural network with a hidden layer of
shunting neurons and an cutput layer of linear or sigmoid neurons. For the sake of
clarity, the equations describing the operation of the SIANN, defined in Chapter 3,
are presented again in Eqs. (4.6} to (4.8) below.

The output of the /* shunting neuron, x;, is given by

£ +b,

xyme— (.6)

a; +I(ECJ,I,J
1=

where J; s the M input; 4 1is the “decay term'; bis the bias; ¢ is the synaptic weight
connecting the ;™ neuron to the M input; ¢y is the bias for the shunting activation
function connected to a fixed ‘input’, 4y = 1; and f is a non-decreasing activation
function. :

The output of the Ath output neuron is given by

Y =8 wyx) “n
=

where g is the output layer activation function; wy is the connection weight from
shunting nevron to the #™ output neuron and v is the bias of the output neuron
connected to a fixed ‘input’, xp= L.

The denominator in (4.6) is defined as the shunting term for the fth neuron, 5

5, Eaj+f[icﬂl'] o (4.8}
e
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This shunting term js constrained to be always positive, achieved by imposing a
lower bound on the parameter a; during the initialization and training phases.

The parameters to be trained in a standard SIANN, therefore, are the weights and
biases of the cutput neurans {iwy), the decay and bias terms of the shunting neurons
(a; and &) and the inhibitory weights of the input signals and shunting bias (¢u). The
partial derivatives of the error function with respect to these SIANN parameters are
given in Eqs. (4.9) to (4.14) below (Refer to Appendix A for the full derivation of
these cguations).

The partial derivative of the error fanction, £, with respect to the synaptic weight
connecting the £ output neuron to the ;™ shunting neuron, wy, is given by

=8, @9

where 8¢, known as the un-normalized error sensitivity, is given by

Bat = e l{g) 81w .10

and ¢ (g) is the output error for the gth training point, g is the or-put layer activation
function and vy is the net input to the activation function. For the bins term, i, the
input, xq, is assumed fixed at 1.

The partial derivative with respect to the decay ferm of the ™ shunting neuron, 4y,
is given by

=5, =L @10

with &, the backpropagated eror sensitivity for the jth shunting neuron, defined as

4, =i5ﬂ‘"u 412}

kel

and 5; the shunting layer denominator as defined in equation {4.8).
The partial derivative with respect to the bins of the ™ shunting neuron, &, is

=L @.13)

The pattial derivative with respect to the shunting synaptic weight {rom the B
input to the /" shunting neuron, cp, is given by

o X,
ac—ﬂ=—5j -é SACAIR (4.14)

The shunting activation function bins, gp, is assumed to have a constant *input’ of 1,
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4.2.2 Gradient Descent with Momentum

The gradient descent with momentuen (GDM) is the GD algorithm with an additional
momentum term, as described in Section 2.8.1. The weight update, Aw(n), is given
by

Aw{n) = ~np(m) + ahwin =1) _ {4.15)

where & is the mementum constant.

4,23  Gradient Descent with Adaptive Learning Rate and Momentum

The speed of convergence amd success rate of the gradient-descent based algorithms
have previously been shown to depend heavily on the leaming rate (Magoulas et al.,
1999}, To avold the trial-and-error method of determining the optimal leaming rate,
an adaptive leaming rate stralepy was developed, called Gradient Descent with
Addaptive learning rate (GBA). The method used increnses the leaming rate at
successive iterations unless the error grows beyond a certain ratio to previous step,
an adaptation of the “Bold Driving” method (Battili, 1989; Demuth & Beale, 1992)
described in Section 2.8.1. The next step was to incorporate a momentum term,
resulting in the Gradient Descent with Adaptive Learning Rate  and Momentum
{GDX) algorithm {Demuth & Beale, 1992}, The only difference in the algorithms is
that the GDA weight update uses (4.4), whereas GDX uses (4.15).

Summary of the GDA/GDX nlporithm
l. Deicrmine initial squared error, o
2. Select initial learning rate, #, and ealculate a new weights using (4.4) 7 (4.15)
3. Calculale the new squared emor, e
n WEan ! Eatd &
{0Ema is usually set slightly above 1 (¢.g. 1.04} to allow training to
get out of shallow local minima)
i 16 Enen £ Eutr< 1, 501 e ™ Frpag where 2> | {typically 1.05)
ii. Calculate the weight change using (4.4} / (4.15), and update
b, IF Enee f Eatd® SEmans
i, Se1 feen = ¥ fus, where yless than t {typically 0.7)
i, Setbe weight change, Aw = < g g and updale weights
"4, Gobackio3.
The weight uptate 2 Siep Jb)ii) is the same for both algarithms, meaning that i

the emror increases more than the limit, the algorithm discards ull momentum
information and updates the weights using only the gradient at that point,
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424 Levenberg-Marquardt {(LM) algorithm

The Levenberg-Marquadt (LM} algorithm is a second-order trust-region algorithm,
described in Section 2,8.3, In the standard LM algorithm, ot the #™ step the geadient,
g(m), and Hessian matrix, H{n), are approximated from the Jacobian J(i)

glm) = VE(w) = " (w(m)e(w(m) {4.16)

H{m) = V2 E(w) = I {(w(mM{w(n)+ g1 .17

where L is the identity matrix and # is a variable parameter,

The standard LM weight update is then given by
aw = 3w (w(e)+ ] ¥ (wim) e(w(m)) {4.18)

The parameter # is multiplied by some factor () whenever a step results in an
increased error E(w(n)). When a step reduces E(w(n)), # is divided by 5. Typically,
A= 10. When g is large the alporithm becomes steepest descent (with step 1ia),
while for small 4 the algorithm becomes Gauss-Newton (secend order).

425 Levenberg-Marquardt with Adaptive Momentum (LMAM)

The LM algorithm js acknowledged as onc of the fastest training algorithms with
quadratic rate of convergence as it approaches a solution. One disadvantage of the
LM algorithm is that if it converges to a local minimum there is no way 1o escape it,
resulting in a suboptimal solution.

The Levenberg-Marquadt with Adaptive Momentum (LMAM) provides a
momentum term that can help overshoot a local minimiser. 1t is based on the
algorithm for MLPs presented in {Ampozis & Perantonis, 2000, 2002). This
particular algorithm has two free parameters that bave to be determined at the start of
training, &P and §. The first parameter, &P, defines the trust region in weight space
around the current state of the network within which the new optimum point will be
westricted. The second parameter, E, determines the contribution of the momentum
term ta the weight updale. A large & indicates the updoie is closer to the stondord LM
step, whereas o small € indicates a greater contribution by the momentury term.

As in the standard LM algorithm, at step o the pradient, g{m), and Hessian matrix,
H{n}, are approximated from the Jacobian, J{n}, as given in (4.16) and {3.17). The
standard LM weight update given in (4.18), is denoted in this nlgorilhm as Awgy.

In the LM with Adaptive Mementum algorithm, the weight update is restricled 10
u trust region defined by 8P, To solve this constrained oplimisation problem, two
Lagrange multipliers, A; and 4y, are inttaduced, given respectively by
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/112_2('11dg+"cr} (4.19)
"GG
2 2, T#
2 =l[ fogr (14 Z] @.20)
2 Lepdag ~Tor
where
Ier =g’ (M H{n) g(m) “21)
Ior =87 (M) AW(n-1) (4.22)
Tog =g (1) AW,y (4.23)
dQ =¢8P [Tog @.24)
The final weight update is then given by
l
Awln) =—§%ﬁwm +EAW("H]] {4.25)

The form of the weight update is similar to the update for gradient descent with
momentum. The first term contains the standard LM weight update, Awgy, ond the
second contains the previous weight update, akin to the momentum term, It should be
noted that Awgy is also used implicitly in calculating the multipliers 2; and A,

4.2.6 Optimised Levenberg-Marquardi wlth Adaptive Momentum (OLMAM)

The LMAM algorithm deseribed in the previous section has two free parameters, &P
and &, that need to be extemally determined. The Optimised Levenberg-Marquardi
with Adaptive Momentum (OLMAM) algorithm is a modification of the LMAM
algorithm, proposed in (Ampazis & Perantonis, 2002), to achieve independence from
externally provided parameier values. The optimal values for these paurameters are
detenmined adaptively at each cpoch:

I
e (|- 4.26
d fgglpr @29

8P = I (4.27)

Ampazis and Perantanis have zlso used me 64 <P < Jioq /8 in their

experiments, achieving similar perfarmance, [nitia) tests with SIANNs fndicate that
better accuracy and speed is achicved using the ‘optimal' value os defined in (4,27},
ard 1his has been used in subsequent experiments,
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4.3 Direet Solution Alporithms

The initial attempts to implement Direct Solution (DS) methods for SIANNS were
bascd on the FBFBK and LEB algorithms developed in (Barmann & Biegler-Konig,
1992, 1993), as described in Scction 2.8.4. These attempts were not successful. The
algorithms were unstable, probably due to the complexity of the shunting layer. The
shunting inhibitory neuron cquation dogs not lend itself easily to a direct solution.

For MLPs, the algorithm takes the desired output of the neuron, works out the
desired input to the activation function by using the inverse of the function, then
works out the new synaptic weights by directly solving for them from the given
inputs in & least-squares scnse. In the case of SIANNs the process is much more
complicated because the activation function is just one term in the denominator, with
the & and b terms to be solved for as well. Additienally, the o term is constrained by
the limit placed on the denominator.

In order to overcome this problem, an altermative hybrid approach was used,
similar to that described in (Verma, 1997). Direct solution for the output perceptron
layer is combined with Gradient Descent with Momentum (GDM} for the shunting
layer. At each epoch, the optimal culput layer weights and biases are “solved”
directly; the target {optimal) values for the outputs of the shunting neurons are
caleulated; and these then become the target values for the GDM-based update of the
shunting layer parameters. This hybrid scheme, named DS-GDM, was implemened
successfully.

The natural progressjon was then to combing the Direct Solution method with the
GDX algorithm for the Shunting Inhibitory layer, The resulting algorithm (DS-GDX)
performed better than DS-GDM.

Summary of the DS-GDM and DS-GDX algorithms

l. Caleulate the outputs of shunting layer nevrons {x) from the inputs,

2, Caleulate desired inputs to the output layer activation function {(¥ug) by
passing target values through inverse of output aclivation function.

3. Directly solve for the cutput layer weights and bioses using X and Yy in 8
least squates sense, from the set of equations w.X = Verper

4, Caolculate ‘*new’ targer valwes for the shunting layer (Xugw) by
backpropagting Yoy through the updated ourput layer weights,

5. Usc backpropagation based algorithims (GDM or GDX) 10 update shunting
layer weights, using the difference between Xy, and x as the error vector,

6. Goback 1o step 1.
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4.4 Stochastic algorithms

Stochastic algorithms involve a search for weights using random techniques, The
mativation behind stochastic algorithms is to find salutions that may not otherwise
be found. While a lot of effort may be wasted in “blind alleys™, the computational
simplicity may compensate for the apparcnt inefficiency of the search. This concept
is used by most initialisation schemes. By randomly initialising the networks, each
network starts at a different point in the weight space, thereby covering n greater
portion of the search space. The following algorithms use a random update to search
the weight space.

44.1 Random Optimisation Methoed (ROM)

The Random Optimisation Method (ROM) is based on the stochastic algorithm given
in {Schalkoff, 1997, p.208). The error, E(w), is defined as the objective function and
X as the region over which to search for the value of w that minimises E(w). The
basic fermulation of the mndom optimisation methed is as fellaws:

l. Select we X;setn=10.
Let Af be the total number of steps or itcrations allowed,

2. Generate a Gaussian random vector E{n).
If wim+&(n)e X', potostep 3.
Otherwise go to step 4.

3. I E(w(m +&(m)< Ewim),
then win+ 1) = w{n) +E(x).
Else, check the *reverse® side:
o IF E(win~E&m) < E(win),
then wiz+1) = win)-E(m)
= Otherwise win +1) = w(n),

4, If # = M, stop (limit on number of iterations has been reached).
Otherwise, let # = n+1 and go 1o step 2.

The ROM algorithm implemnents “reverse side checking™, The idea is that if a step
takes £ ‘uphill®, then the reverse step is likely to take it ‘downhill*, If E does not
decrease then continue with a new random vector.
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4.4.2 Extension to the Random Optimlsation Method (ROM2)

An extension to ROM was implemenied based on (Solis & Wets, 1981}, as piven in
{Schalkoff, 1997, p.208}. The extension incorporates a statistical bias inte the weight
adjustment procedure by allowing the mean of & to be non-zero. The mean of £ at

iteration » is denoted by b{n). The only medification involves step 3:

Ja.  If E(w{n)+E&(n)) < Elw(m), then
win+1)=w(n)+E(n)
b{n +1) = k,E(m)+ k,b{#). (Typical values are & = 0.4 and & = 0.2.)
Otherwise, check the ‘reverse’ side: .
i) If E{win)-&(n)) < E(w(n)), then
win+1) = wim -E(n)
b(#+ 1} =b{n) - k,&(n). (Typical lﬁlue isk;=04.)
ii} Otherwise,
win+1)=win)
b(n + 1} =k b{n). (Typical value is &y = 0.5.)
Note: bg=0

The adjustment of the mean of E(rr+ 1), namely b{x + 1}, is updated using the values
of E(n)and b(n) that have been successful in reducing £. This could be viewed asa

forin of momentum, in a statistical sense, When the errot does not decrease, the mean
b} decays toward O,
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4.5 Experimental Methods

This section describes the network structures, training and festing procedures,
evaluation metrics, and benchmark fest problems, used to train and evaluate the
performance of SIANNSs.

4.5.1 Network Structures

An m-dimensional input vector is prescated to the network and is used to produce an
n-dimensional output vector, the values of m and n being determined by the
particular problem. By definition, the standard SIANN structure therefore consists of
an m-neuron shunting layer and n-neuron cutput layer (refer Section 3.6),

For binary classification problems only cne output neuron is required to give the
classification result. The mid-point of the neurons output range is taken as the
threshold value. Any output above the threshold is taken as a one class, and values
below taken as the other. For multi-class prablems, the number of output neurens is
set to be equal to the number of classes, where cach output ncuron corresponds to
one class, The *winning' class i3 the neuron with the highest output, otherwise
known as winmer-takes-all (WTA) configuration. This is in accordance with the
‘benchmarking rules' laid out in (Prechelt, 1994). For time-serics prediction, the
number of output neurons will be equal to the number of predicted variables.

4.5.2 Welght Initialisation

[n ordet climinate any bias dug to initial conditions, as well as to increase the
coverage of the input space, fifty nctworks with randomly gencrated initial weights
were tested for each problem. The weights ¢ and w were initialised using a random
number generator that generates uniformly distributed values in the range fr, r].

Thimm and Fiesler have compared initialisation schemes for perceptrans and
found that schemes of this form perform well over a varicty of problems (Thimm &
Fieslez, 1997). Initial tests on SIANNs used r =1, but subsequent results indicated
that the scheme used in (Smicja, 1991) performed well over the different range of
problems. [n this scheme, the range r is defined by

o
r=— (4.28)
N
where ¥ is the number of inputs of the panticular neuron {fan-in), This initialisation
schetne ensures that the sigmaid activation functions start in their linear regions snd
not in saturation, thereby impreving training performance (Y, Lee et al, 1991).
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The shunting neurcn bias b was initialised with » = | as it does not affect the
activation functions. The decay paramecter g was initialised to a random vahe
between 0 and 1, then offset with a constant. The offset constant, aym is sct so that
the constant added with the Jower bound of the denominator activation function will
not be smaller than the predefined limit value for the denominator, sy, (refer (4.31)),
For example, the hyperbolic tangent (tansig) activation function has a lower bound of
~-1; therefore, for gm = 0.1, the constant offset would be 1.1, This lower limit for @
and its effects on training performance are discussed in greater detail in Section
4.6.1.

4.5.3 Input pre-processing

The input attributes to a learning problem can have magnitudes and distributions that
vary widely, There are some comman methods to represent these attributes when
applying such problems to neural networks (Prechelt, 1994). The real- and integer-
valued inputs have generally been scaled and offset to the range [~1, 1) in the
experiments. One exception is with time series prediction, such as the Sunspots
problem, where the inputs in some exemplars are the oufput targets in others. In
order to enable the sigmoid output activation functions te produce the required
cufput vatues, the data has been scaled to the range (0, 1).

4.54 Data partltioning

Each dataset was partitioned into training, validation and test sets; unless otherwise
stated, the general strategy is to partition the dataset into 50% as training set, 25% as
validation: sct, and the remainder 25% as a test set. A well-tmined neural network
should be able to comectly classify previously unseen inputs (good generalisation),
The networks were irained using the training sct data and their performance
measured using the test sct, which generally contains data not seen during training,
The validation set is used for carly stopping sa that the networks arg not overtrained
and are able to gencralise well. All the results presented in this chapter are based on
the test set, excepi where the algorithm training performance js evaluated.

4.5.5 Activation functions

Three different activation functions were used with the shunting neurons: the
hyperbolic tongent (tansiy, th), logistic sigmold (logsiy, Igs) nnd the exponentiof
(exp) functions, For the output neurons, the tansig, logsig and kinear (/i) activation
functions were tested. All possible contbinations were tested to observe their effect
on perfonmance.
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456 Tralning Termination Criteria

The training is stopped if the target objective function value or ‘error goal® is
achieved, It is quite possible that the neural netwark being trained connet achicve the
error goal. Thercfore, the maximum nimber of training epochs is set to 1009 in these
tests. Initial investigations revealed that, in most cases, this is sufficient and it was
only non-cenverging networks that trained beyond this limit, consuming processing
time with no significant improvement in performance. This limit alse allowed
training times to be kept within reasonable limits.

In order to achieve good generalisation, a validation set is normally used for early
stopping so that the networks are not over-trained. If a validation set is used during
training, the network weights that result in the minimum validation set error are
saved. If the validation set error is not reduced for 50 consecutive epachs, the
training is stopped and the final network weights used for testing are those that
resulied in the minimum validation set error.

4,5.7 Test Performance Metrics

In order to compare the performance of the trained neural networks, performance
metrics have to be used. The performance measure used during training is the mean
squared error {MSE). The test set performance can similarly be evaluated using the
MSE. The MSE, however, con vary depending on the problem snd the way it is
implemented, particularly the magnitude of the target and actual output values. It is
not clear from the MSE whether it represents a ‘good’ or *poor’ performance.
Intitively appealing metrics should not only be relatively independent of the
implementation of the problem, but also idenlly should easily differentiate *good*
from *bad" performance,

For the classification problems, the test classification error rate is used, where the
errar rate is simply the percemage of the test set that is misclassified, The tests arc
carried out with a bateh of randomly initinlised networks trained on the same
prablem. The general performance for the set of networks is represented by the mean
and median of the test error rates for the whole batch.

The 95% confidence inmtetval (Cl} on the mean cror mie is also calculated and
presented. As cach bateh consists of 50 networks, the number of samples in the batch
is large enough to assume normal distribulion using the Central Limit theotem
(fohnson & Bhautacharyn, (996; Walpolc ct al., 1998). The 95% CI gives the range
of values within which the frue mean error lies with 95% probability. It s calculated
from the sample mesn and sample standard deviation, 4 and 5, acconling 1o

;::1.957‘: (4.29)
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where # is the number of samples {Mitchell, 1997).

The best case error rate is also presented to give an indication of the petformance
level that can be achicved by n single network. The performance of a batch of
networks is also given by the percentage of networks in the batch achieving a
particular performance target such as the error goal, 0% classification error (perfect
test classification) or less than 20% classification errors,

For time series predication, the actual network cutput values need to be analysed,
The performance metrics used are the MSE and the average relative variance (ARY)
measuse (Nikolaev & [ba, 2003; Weipend et al., 1990), given by

i ()’i —P(X,])!

2n-7F

fml
where y; is the true oulcome of the i example, P(x,) is the estimated outcome with
the ™ ingut vector x; in the same example, and Fis the mean of the true outcomes.

The ARV is essentially the MSE divided by the variance of the target values, This
scales the error value down if the serics is highly variable, so the netwaork is not
unduly punished.

In order to compare the computational power and time required to train the neura!
netwarks, the mean CPU time, in seconds, required to train one network was
measured and recorded, This training time was measured wsing an internal Matlab
function and was set up to messure only the time spent on training the network and
not the fime spent on other tasks such as setting up the data and saving the results,
The simulations were run on MATLAB v6.5 on Sun workstations. The Sun Blade
1000 was used as the ‘standard” for measuring the tmining time, and any
measurements made on other systems were scaled based on comparative test
measurements. Despite these precautions, it should be noted that there could be some
variations in measurement due to varying load factors on these multi-user systems.
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4,58 Benchmark Tests

A number of benchmark problems were used to test the learning capsbilities of
SIANNs. The benchmarks used were the 3-bit parity problem, Wisconsin Breast
Cancer dataset, the Pima Indians Diabetes dataset, an artificial multi-class problem
and the Bunspot time series, They form the standard set of benchmark problems used
throughout the rest of this thesis. These benchmarks consist of four classification
preblems, including onc multi-class preblem, and one time-series prediction
problem. The parity and multi-class problems are synthetic, while the remaining
three are real-word problems, The benchmark problems are described below.

4.58.1 The 3-bit parity problem

The 3-bit parity problem is a popular artificia! classification problem where the
network has to generate the appropriate binary output for a 3-bit binary input so that
there is always an even (or odd) number of anes. This 3-dimensiona problem is not
linearly separable and Is one level of complexity higher than the 2-dimensional XOR
problem. The B input corbinations ¢an be visualised as the vertices of a unit cube,
where no two adjacent vertices sre of the same class, The problem can also be
described as a 3-input modulo-2 addition. For this problem, since there are only 8
possible input pattemns, all 8 were used for both training and test sets.

4.5.8.2 The Wisconsin Breast Cancer problem

The Wisconsin Breast Cancer dataset is a real-world medicol diagnosis dataset
obfained from the UCI Machine Learning Repository (Blake & Merz, 1998). The
breast cancer dataset has 699 samples with 9 integer inputs and two cutput classes
(benign and malignant). The data has missing values that were replaced by zeros
before scaling. Obviously, this is not the best approach for estimating the missing
valugs, but was chosen for the sake of simplicity (Hathaway & Bezdek, 2001),

4.5.83 The Pima Indians Diabetes probiem

The Pima Indians Diabetes dataset is a real-world medical dingnosis datasct obiained
fram the UCI Machine Leaming Repository (Blake & Merz, 1998). The dutaset has
768 samples with 8 real-valued inputs and two oulput classes. The diabetes dingnosis
prablem is supposed ta be a fot harder for the nevral netwerks compared to the breast
cancer problem. In previously reported results for this problem (Prechelt, 1994;
Sherrh, 1998; Waschulzik et al., 2000), the best case error rates were around 20%.
The diabetes dutaset is said not to have any missing values, but there are o number
of zere-value entrics that appear 10 have simply been inserted to replace missing
values. The effect of these zero-value emries as well as the effect of removing the
two inputs wilh farge numbers of zero values, has been investigated using both MLI's
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In order to find an (approximate) optimum value for sy, to be used in subsequent
experiments, tests were carried out using s, values of 0.01, 0.02, 0.05, 0.1, 0.2, 0.5,
1.0 and 2.0 on some of the benchmark problems. The networks were trained using
both the Levenberg-Marquadt (LM) and gradient-descent with adaptive learning rate
and momentum (GDX) algorithms. All the different combinations of shunting and
output layer activation functions were tested for sim = 0.1 and 1. Only the best
performing networks for each case were then tested for the other values of sjjm. If the
same network performed best for both values, the second best combination was also
tested. The variation in performance of these networks for different siin are shown in
Figs. 4.4 to 4.7.

Eﬁoctols'n:mPlrlv

25‘ e 1
| [o-cmwu.og
| - v LMEpLn
204~ * GOL YanTan
7 1 | - LMoy
= 15
|
gao@ -
st ----- L = ¢
@ __‘G —
e e o d—_—
10 10 10°
Fem
15
=
g‘)o
§ \
§ o e |
2 v - v e 3 - oy »
| e e T |
ol s Sinsadtiacimiel il - RISy bk
10 10’ 10
T

Fig. 4.4: Mean test classification error and mean training time for various sjim for 3-
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Frem {4.32), it can be seen that if the shunting term {denominator) becomes small,
the output of the neuron becomes large. [n particular, if the denominator approaches
zcero, then we hove instability as the output becomes too large. The limit on the
shunting term is to prevent this situation from occurring.

The denominator acts as an adaptive gain-control mechanism for the shunting
ncuron, If this shuming tenn is less than ong, it strves to “amplify’ the numerator
(excitatory input plus bias); conversely, if’ it is greater than one, it serves o
“attcnuate™ the excitatory signal, This gain control term consists of lwo parts: the
activation function output, which is a function of the inhibitory inputs, and the decay
" term «, which is constant during normal operation (not being trained), A small value

for the decay term, a, allows a greater range for the ‘gain factor’ determined by the
inhibitory inputs. Small changes in the output of the activation function, due to the
inhibitory inputs, can then result in large changes in the neuron output, On the other
hand, a large value for o reduces the variation in the shunting term, wlso reducing the
range of the gain. [n other words, the decay parameler ¢ has a ‘dampening’ effect on
the shunting gain control mechanism, thereby making the ncuron output more stable,
The drawback of increasing the value of a is that it reduces the effectivencss of the
neuron and its ability to learn. A value of g that is nwch larger than the range of the
activation function ean ‘drown out’ the effect of the inhibitory inputs. [n the extreme,
this will reduce the function of the shunting neuron to just scaling and biasing the
excitatory input.

The: limit value s, comes into play during training, as it defines the lower bound
an the decay term, us given in (4.31). A small sy, value means that # could become
very small during training. This would result in large ‘gain fuctor’, and therefore
possibly large variations in the neuron output. This could result in instability, as was
observed experimentally. It should be noted, however, that the limit value may not
even come into play, if the training process keeps the value of a away from its lower
linzit. '

From this discussion, it becomes apparent that the selecied value of sy, should
reduce the risk of instability, but at the same time should not overly restrict the

" function of the shunting neuron. The value chosen should attempt to balance these
conflicting requirements, Setting the value af sy to 0.5 allows the shunting inputs to
‘amplify’ the output to a reasonable level, up to a maximum facter of 2, On the other
hand, setting the value of 5 to 1 resiricts the effect of the shunting term to a
‘dampening’ or ‘attcnuating' effect. This effect would appear to be more in lire with
the name *shunting inhibition®, The ‘amplificaion” effect, if any, will depend on the
synaptic weights connecting the shunting neurons to the output layer,

Given the experimental results and the abave discussion, it was decided that for
the remaining experiments the value of sy is 1, unless otherwise stated.
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4,62 Benchmark Test Results

In this sub-secticn, the results for the five different benchmark tests are presented.
The results shown here are for the best performing activation function combination
for cach of the training algorithms used. The full set of mean test error rates and
mean test ARV For the five benchinark fests are given in Tables B, to B.S in
Appendix B,

4621 Resalts for the 3-bit parity problem

A sct of 50 randomly generated 3-input, L-output SIANNs, as described in Section
4.5.1, was trained on the 3-bit Parity problem. The 3-bit parity problem bas only 8
binary input combinations and all these input patterns were used for training and
testing, with no validation. The networks were trained for a maximum af 1,000
epochs with an error goal of 0.01. All nine activation function combinations,
deseribed in Scction 4.5.5, were trained using eight diffirent training algorithms.

The results for the best performing activation function tor euch of the algerithms
are shown in Table 4.1. The first column of the table shows afl the algorithms nsed to
train the nchworks and the second ond third columns show the best performing
activation function contiguration for the respective algorithms, The rest of the table
shows the performance metrics for the given set of networks. Columns 4 to 6 show
the percentage of the networks achieving the tollowing: the objective function (mean
squared error} goal; zero classification errors for the test set; and less than 20%
classification errors, Colunms 7 to 9 give the average number of training epochs for
the following: all networks; networks that achicved the objective function goal; and
networks that achieve all comrect test set classification. This is followed in Columns
10 to 14 by the test set classification crror: best ease; mean; $5% confidence interval
(CI) on the mesn; and median. The last column gives the mean training time per
network based on CPU time usage in scconds. The mean and median test error and
mean training time for each ease are shown graphically in Fig, 4.8, Note that since
the median is O in most cases, it is not visible on the plot.

The results prove that SIANNSs are able to carrectly solve the 3-bit parity problem
consistently, Most of the algorithms had a median error of 0% and over 85% of the
networks achicve 100% correct classification, except for GDM and the stochastic
algorithms (ROM and ROM2). Even these three algorithms were sble to achieve
100% correct clussification for more than one third of the nelworks. These
algorithms are actually able to achieve better accuracy if run for longer, e.g. 10,000
epachs, However, for the sake of consistency and to be able to make fair
comparisons between algorithms, the training was restricted to 1,000 epochs for all
algorithms.
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Table 4.1 Best results for 3-bit Parity problem using 3-3-1 SIANN

Training | Activation Performance Avg. Epochs Test Set Classification Error Mean
Algorithm | functions (% of runs) T"ég‘é"g

Shunt| Qut | = | 0% | < | All | > 0% Best | Mean | 95% CI | Median | o

goal | err |20% | runs | goal | Errors | (%) (%) (%) (s)

err

GDM | Tnh | Tnh | 36| 44| 50| 880 | 667 727 | 0.00[22.50 | + 6.26 | 18.75 85
GDX Tnh | Lgs | 94| 94| 96| 352 | 311 311 000 1.25| + 144 0.00 2.3
LM Exp | Lin | 96| 96| 100 84| 46 46| 0.00| 0.50| + 0.69 0.00 1.7
LMAM | Exp | Lin | 86| 86| 88| 169| 33 33| 0.00| 425| + 3.18 0.00 3.3
OLMAM | Exp [ Lin | 92| 92| 96| 138 63 63| 000| 1.50| + 1.51 0.00 2.8
DSGDX | Tnh | Lin | 94| 94| 100| 169 | 116 116 | 0.00| 0.75| + 0.83 0.00 1.3
ROM Exp | Lgs | 16| 34| 74| 942 | 636 829 | 0.00]12.25| £ 3.17| 12.50 7.4
ROM2 | Tnh | Lgs 2| 42| 78| 987 | 359 969 | 0.00]10.50| + 3.00 | 12.50 8.1

3-bit Parity

& Mean
Meoian
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Test Error (%)
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OLMAM DSGOX ROM ROM2

Mean Training Time (s)

GOM GDX M LMAM OLMAM DSGO® ROM ROM2
Algorithm

Fig. 4.8: Mean and median test classification error and mean training time for 3-bit
parity problem using 3-3-1 SIANN with various training algorithms.
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The LM algorithtn was the most accurate with 96% of networks achieving perfect
classification and 0.5% mean crror, and also required the fewest epochs to train the
networks. However, it was not the fastest in terms of time as it is a second order
algorithm that requires more computation per epoch. The fastest algorithm in tenns
of computation time was the DS-GDX algorithm, 5 times faster than LM. D3-GDX
was also the sccond best in terms of accuracy with 93% of nctworks producing
perfect classification and mean error of 0.75%. Next, in terms of accuracy, is the
GDX algorithm followed by the LM variants, LMAM and OLMAM, that had lower
accuracy and longer training times than the standard LM, The longest to train were
the GDM and ROM algorithins.

There does not appear ta be single *optimal’ selection of activation function as the
difTerent algorithms have different *best' combinations, though LM and its variants
all had the same best combination.

4.6.2.2 Results for the Wiscousin Breast Car.r dataset

The *standard' SIANN structure trained on the Breast Concer dataset was a 9-9-1
SIANN ns the problem has 9 input parameters and requires a single binary output for
clussification, The results of the best performing configurations for cach algerithm
are given in Table 4.2 and presented in Figure 4.9,

For this prablem, the LM and GDX algorithms performed best with mean test

errors of 0,20%. Even though none of the netwerks was able to achieve the objective
function goal of 107, more than two-thirds of the networks were able to achicve
perfect classification on the test set for these algorithms, All the non-stochastic
algorithms were able to achieve mean error of less than 1.0% and even the stochastic
algorithms (ROM and ROM2) had mean error of less than 1.5%.
GDX was also the second fastest algorithm, behind enly DS-GDX, whereas LM took
more than 3 times longer for the same accuracy. By comparison GDM and OLMAM
teok G to 7 times longer to train only to achieve a lower accuracy, The ROM and
ROM2 algarithms trained fast but had comparatively poor sccuracy,
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Table 4.2 Best results for Wisconsin Breast Cancer dataset using 9-9-1 STANNs
Training | Activation Performance Avg Epochs Test Error Mean
Algorithm functions (% of runs) Training

Shunt{ Out | = | 0% | < | All | = 0% Best | Mean | 95% CI | Median ﬁ;‘:

goal | err |20% | runs | goal | Errors | (%) (%) (%) (s)

GDM | Tnh | Lgs 0| 42[100| 978 | * 967 | 0.00| 0.36| + 0.09 0.56 61.8
GDX | Lgs | Lgs 0| 66[100| 161 | * 160 | 0.00| 0.20| + 0.08 0.00 10.3
LM Lgs | Tnh 0| 74(100| 181 | * 119 0.00| 0.20]| + 0.10 0.00 34.8
LMAM | Lgs | Lin 0| 28] 100 o8 |l * 97| 0.00(| 0.76 | + 0.19 0.56 24.1
OLMAM | Lgs | Tnh § ] 36] 100} 207, * 263 | 0.00| 037]| + 0.14 0.00 71.0
DSGDX | Tnh | Lgs 0| 36| 100 9% | * 100 0.00| 0.54] + 0.14 0.56 6.4
ROM | Lgs | Lgs 0 6| 100 | 1000 | * 1000 | 0.00| 138 + 0.27 1.13 14.7
ROM2 | Lgs | Lgs 0| 10| 1001000 | * 1000 [ 0.00| 130 | + 022 1.13 14.7

: Wisconsin Breast Cancer
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Fig. 4.9: Mean and median classification error for test set and mean training time for

Breast Cancer dataset using 9-9-1 SIANN with various training algorithms.
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4.6.2.3 Results for Pima Indians Diabetes dataset

The *standard® 8-8-1 SIANNs were used for the Dinbetes dataset and the results are
shown it Table 4.3 and Figure 4.10. As mentioned in sub-section 4.5.8, it does not
appear possible to achieve perfect classification for this dataset; error rates below
20% are considered ‘good’. The results obtained conform to these expectations, with
none achieving perfect classification and the average ranging from 19% to 22%, The
best. case results have test error rates of around 18%. Surprisingly, the best
performing algorithm was the first-order GDM algorithm that had the lawest mean
error of 19.05% and had 94% of networks achieving below 20% error. The GDM
algorithm achieved this despite being ‘enly” a firsi-order algorithm. The time taken
to train, owever, was one of the highest us the number of epachs required was high.
In contrast, the GDX algerithm, which is GDM with variable leaming rate, had a
mean traiping time almost four times shorter but had a mean error rate of 21%, This
is the worst mean error of the gradient-based algorithms. '

The LM and DS-GDX algorithms also had mean error rates below 20%, with DS-
GDX also being the fastest overall in terms of training time, Compuring the LM
variznts, the LMAM alpotithm was twice as fast as the standard LM algorithm, with
only marginally higher error. The OLMAM aigorithm on the other hand touk nearly
50% longer than LM, and had an even higher error rate. Once again the ROM
algorithms had the highest average eror rates, even though trained for the maximum
number of epochs allowed (in this case |,000 cpochs). Training times were short
though, since the algorithm is computationally simple. The best case performance For
the stochastic algorithms is comparable to that of the ofher algorithms.

4.6.2.4 Resuits for arificial muiti-class problem

The SIANN structurc used for the multi-class problem was n 2-2-3 structure, Three
output neurons were required for the three output closses as the networks were tested
using a winner-take-all method 25 described in Section 4.5.1. The results obtained are
presented in Table 4.4 and the best, mean and median error rates, as well #s mean
training time, shown in Fig. 4.11.

The classes overtap, as shown in Fig. 4.1, therefore perfiect classification is not
possible for this problem. The lowest test set error achieved was 4.0% with median
crror in the range 5% to 7% and mean error between 5% and 10%. Most of the
algorithms had all networks converging (less than 20% crror), with the worst having
90% of networks converging, The best mean accuracy of 5.47% was achieved by
GDX, which was also among the fastest in terms of training time. The algorithms
that were fster than GDX, namely DS-GDX, ROM and ROM2, all had much higher
error rates, with mean error more than 7.5%.
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Table 4.3 Best results for Pima Indians Diabetes dataset using 8-8-1 STANNs

Training | Activation Performance Avg Epochs Test Error Mean
Algorithm | functions (% of runs) Trcag‘{]“g
Shunt| Out | = | 0% |20%| All 2> 0% Best | Mean |95% CI|Median time

goal | err | < | runs | goal |Errors (%) (%) (%) (s)

GDM Lgs | Tnh | O 9. O * * 17.71 | 19.05 0.20 [ 19.27 48.1

GDX Tnh | Lgs 14| 195 i * 17.71 | 21.03 0.29 | 21.35 13.2

H |H |+

LM Lgs | Toh ] e % 17.71 | 19.88 032 19.79 38.9

LMAM | Lgs | Tnh 54 80| * . 17.71 | 20.22 0.36 | 19.79 19.9

OLMAM | Lgs | Tnh 44 | 238 * 2 18.23 | 20.34 |+ 034 | 2031 58.0

DSGDX | Lgs | Lgs 68 94| * ¥ 18.75 | 19.82 0.29 | 19.79 6.4

H [H W W

ROM Lgs | Lgs 12| 1000 * 2 17,71 | 21.50 |+ 043 | 21.35 14.7

C |o |0 |0 |0 |C|e
(=3 f=10 =3 K1 K K= fo L=}

ROM2 | Lgs | Lgs 22| 1000 * - 18.75 | 21.69 |+ 0.53 | 21.6] 14.7

Pima Indians Diabetes
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21

20 =

Test Error (%)
@
1
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Fig. 4.10: Best case, mean and median classification error for test set and mean
training time for Diabetes dataset using 8-8-1 SIANN with various
training algorithms.
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Table 4.4 Best results for Multi-Class dataset using 2-2-3 SIANN

Training | Activation | Performance Avg Epochs Test Error Mean
Algorithm functions (% of runs) Training
Sh | Out | = | 0% |20% | All 2> 0% Best | Mean |95% CI|Median S:i
goal | err | < | runs | goal |Errors| (%) (%) (%) (s)
GDM | Exp | Lgs| 0 Dolito0 ] 1909 | * * 4,67 = 5.73 |£:0.234| 3.67 51.2
GDX Exp | Lgs | 0 R RS v | # 400| 547 |+ 0.16| 5.33 19.4
LM Exp | Lgs | 0 0100 =228 | £* * 400 5.69 |+ 026| 533| 103.0
LMAM | Exp | Lgs | O 0.].300'1 163} * » 467 | 6.13 |+ 028 6.00 74.7
OLMAM | Lgs | Lgs | 0 0 | 100 560| * % 400] 5.81|+020| 6.00| 251.6
DSGDX | Exp | Lin | O 0 901 206" ¥ i 533 939|+224| 6.67 10.9
ROM | Exp | Lgs | 0O 0 98 | 1000 | * ¥ 467 749 |+ 123 6.67 11.1
ROM2 | Exp | Lgs | 0O 0 96 | 1000 | * a 400| 833 |+ 1.68| 633 11.3

Multi Class

O Best
= Mearn
2 Medlan

Test Error (%)
om

R

Mean Training Time (s)
& a 8 g 8 ¥

. B
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Fig. 4.11: Best case, mean and median test classification error and mean training
time for Multi-class dataset using 2-2-3 SIANN with various training
algorithms.
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Frem Fig. 4.11 it can be seen that there is not much difference between the
accuracy of the GDX and the GDM, LM, LMAM and OLMAM algorithms, though
the training times are between 2.5 and 13 times fonger than GDX for the [atter
alporithms, GDX and GDM had the best overall performance when factoring the
training time on top of the accuracy.,

For the Multi-class problem there appears to be a trend in the activation functions
achieving the best results, as 7 out of B had the exponential function a5 the shunting
layer activation function. Similarly, 7 out of § algorithms had a logistic sigmoid
output layer activation function. The exceptions were the OLMAM and D3GDX
algorithms that had Jog sigmoid shunting ond linear output activation functions,
respectively.

4625 The Sunspot time series

The Sunspot time series was used to train a set of 10-10-1 SIANNS, using the scaled
sunspot counts of 10 consecutive years to predict the number for the next year. The
Sunspots dats was partitioned using the subseries for the years 1700 to 1920 to train
the networks, and the subseries 1921 to 1965 for testing and 1966 to 1989 for
validation. This was done to facilitate comparison with published results (Nikolaey
& Tba, 2003; Park ct al., 1596; Weigend et al,, 1990). The performance mefrics used
are the mean square error (MSE) and the average relative variance (ARY), defined
in Section 4.5.7 by (4.30). The best performing activation function results are shown
in Table 4.5, Columns 4 to 6 in this case are the percentage of networks achieving
the training goal; percentage networks where all test results are within tolerance and
networks for which at least 80% of test points are within tolerance. The folerance in
this case is + 0.1 (scaled). Column 7 gives the average number of epochs for all
networks. Columns 8 to |1 give the lowest and median values for MSE and ARV for
the test points while columns 12 and 13 pive the mean and 95% CI for the ARV for
test points. The last column gives the mean training time per network. Fig. 4.12
shows the best, mean and median test ARV and the mean training time for the
various algorithms. A plot of the actual Sunspot numbers for the test set range, along
with the values predicted by one SIANN network s shown in Fig. 4.13,

The results show that practically afl the networks have 80% of the test points
within tolerance, whereas the number of networks with all test points within
telerance varies from 8% for LM to 42% for GDM. The LM algorithm get the best
median test MSE and median and mean test ARV, The GDX was the fastest of ail the
algorithms but the worst accuracy, bar the ROM algorithms, The DS-GDX algorithm
and the LM algorithm with its varionts, LMAM and OLMAM, all achieved similar
test ARV,
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Table 4.5 Best results for Sunspots dataset using 10-10-1 SIANN

Training Act-fns Performance Avg Test MSE Test ARV Mean
Algorithm (% of runs) | Epochs Train
Shunt| Out | = [allin|80% Best | Median | Best |Median| Mean | 95% 1 |[CPU time
goal | tol | tol (s)

GDM | Tnh | Lin
GDX | Tnh | Lin
LM Lgs | Lin
LMAM | Lgs | Lin
OLMAM | Lgs | Lin
DSGDX | Lgs | Lin
ROM | Lgs | Lgs
ROM2 | Lgs | Lgs

42| 94| 886 0.0094| 0.0117] 0.113] 0.140| 0.161 | +0.025 S
14| 98| 147| 0.0085| 0.0134| 0.102| 0.161| 0.174| + 0.020 6.8
8| 100 54| 0.0075| 0.0093| 0.090| 0.111] 0.112| +0.003 9.8
26| 98| 207 0.0075] 0.0101] 0.090| 0.121 | 0.125| £ 0.006 36.2
22| 100 89( 0.0072| 0.0095| 0.086| 0.114| 0.117 | + 0.005 15.6
40| 100 161 0.0077| 0.0097| 0.096| 0.121| 0.119| +0.002 7.6
18 98| 1000| 0.0105| 0.0208 | 0.126 | 0.250| 0.286 | + 0.034 12.8
28| 100| 1000| 0.0105| 0.0214| 0.126 | 0.256 | 0.271 | £+ 0,027 12.8
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Fig. 4.12: Best case, mean and median test ARV and mean training time for various
training algorithms for Sunspots dataset.
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Sunspots Test Results
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Fig. 4.13: Actual and SIANN predicted sunspots values for the test set.

In terms of speed of training for this problem, the DS-GDX algorithm was second
best to GDX, and the LM was third. The LM variants had longer training times
compared to the standard LM, OLMAM 50% longer while LMAM took almost four
times as long. The ROM algorithms had significantly higher test ARV, but the
number of points within the tolerance was close to the others. Overall, the ARV
figures obtained are comparable to those given in (Nikolaev & Iba, 2003), who
reported test ARV values ranging from 0.086 to 0.229.

4.6.3 Analysis of results

The benchmarks tests were chosen to give a variety of problems in terms of
dimensionality, difficulty and type of problem. In all cases the SIANNs could be
trained to ‘solve’ the problem; either achieving perfect classification, or achieving
results comparable to that reported in other literature using different types of neural
networks.

Comparing the different training algorithms from the preceding results, certain
general trends appear. The LM-trained networks are consistently among the most
accurate, The time taken to train with the LM algorithm tends to be average to high,
though it was never the longest. The LM variants, LMAM and OLMAM, had
comparable or worse accuracy than the ‘standard’ LM algorithm. In terms of training
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time, the results are mixed. The LMAM was betfter than LM and OLMAM worst in
some lests, and the order reversed in other tests. Overall it would appear that the
*standard’ LM would be a better choice than the two variants.

The’ first-order GDX algorithm was faster than the LM algorithm in almost al)
cases, While the GDX had similar or better accuracy than LM for the Breast Cancer
and Multi-class problems, it did not do as well in the other tests. The GDM algorithm
surprisingly, got the best mean error tate for the Diabetes problem and was
comparable 10 GDX and other algorithms for the other tests except the Parity
problem, where the accuracy was very low. However, it should be noted that the
average number of epochs for the GDM algorithm was always close 1o the maximum
of 1000 epochs. This indicates that the training runs are being terminated because the
maximum number of epochs is reached and the algorithm is not able to complete the
training. Other tests performed have indicated that GDM requires about an order of
mapnitude more epochs (limit of 10,000 gpochs) in order to consistently reach
accutacy levels comparable to GDX. The results also indicate that GDM requires
significantly longer time to training compared to GDX.

The direct-solution based DS-GDX algorithm was consistently one of the fastest
algorithms in terms of computation time. In terms of accuracy, it was comparable 1o
the LM algorithm, except for the Breast Cancer and Multi-class problems. The
stochastic algorithms ROM and ROM2 had the worst error rates in the majority of
tests, The exceptions are the 3-bit Parity test, where GDM come out werst, and the
Multi-Class problem, where DS-GDX had a higher error rate. The ROM algotithms
trained for the full 1000 epochs allowed in all cases, except for a few networks that
reached the error goal with the 3-bit Parity problem. Further tests showed that these
algorithms would go on for 10,000 epochs, if allowed, with no significant
improvement in error rates, except for the 3-bit Parity probletn.

In terms of training time, the ROM and ROM2 training time varies from the
longest for the 3-bit parity to almost the fastest for the Sunspots problem. There
appears to be a trend that the comparative trainiag time improves as the number of
training examples increases. This is probably due to the fact that, for the stochastic
algorithms, only the objective function is calculated from the training examples, not
the actual weight update. This would give the stochastic algorithms an advantage in
terms of training time as the number of training examples increases, though not in
terms of accuracy. '

From the ‘best-case’ results shown, there do not appear to be any clear trends in”
the choice of activation function across the varions test problems and algorithms,
except in the case of the Multi-Class problem, Tables B.] to B.5 in Appendix B show
the mean test classification error {or mean test ARV for Sunspots) for all
combinations of activation functions and training algotithm, These results show that
there are latge differences in terms of accuracy, even for the same problem and
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training alporithm using different activation functions. This means that though the
‘best-performing’ activation function combinations may be achieving similar results,
these combinations need to be determined experimentally.

The previous analysis of training algorithm performance was also based on these
‘best-performing’ combinations. The average error rafes across all activation

funciions for a given training algorithm and problem, shown in Appendix B, also
indicate that there are differences in the performance of various training algorithms
for a given problem.

The question then is whether these differences can be considered significant, and
how to compare perfortmance across the varions tests, In order to determine if there
are statistically significant differcnces in performance across the activation functions
and training algorithms over all the tests, statistical analysis was performed on the
full set of results abtained.

The statistical method for showing that significant differences do exist actoss a
number of samples is to test the null hypothesis Hg that the & independent samples
have equal means (or are from identical populations}. The altemative hypothesis Hy
is that they have different means or are from different populations. The %
independent samples in this case would be the nine different activation function
combinations tested or, alternatively, the eight different training algorithms. The
statistical test chosen was the Kruskal-Wallis & test (Walpole et al,, 1998), This test
is a non-parametric procedure for testing the equality of means while avoiding the
assumption that the samples were selected from normal populations. The distribution
of means across the vaitous functions, algorithms and benchmarks may not be
normal, hence the selection of a test that avoids that assumption.

The procedure for applying the test is as follows, For each of the benchmarks
tests, the mean errors as shown in Appendix B were ranked from 1 to 72 in ascending
order, For cases where there is more than one sample with the same value, the rank
will be the average of the rank positions. For example if there are two satnples in
equal 5™ position, they wil} both be ranked 5.5 and 3 samples in equal 13" paosition
will be ranked [4 (average of 13, 14 and 15},

The 4 statistic for the particular benchmark is caleulated using the formula

- E 341y @.33)

an+1)T A

where
#m is the number of observations in the ith sample (i = 1,2,...,%)
#;is the sum of the ranks of the #, observations in the jth sample
n=p +nat.+ne is the toi] number of observations.

89



DEVELOPMENT OF TRAINING ALGORITHMS

The stitistic / is approximated very well by a chi-squared distribution with -1
deprees of freedom when Ay is true and if each sample consists of at least 5
cbservations (Walpole et al.,, 1998). The null hypothesis Hy is therefore refected with
95% confidence if the caleulated value of 4 is greater than the value for z2, with
degrees of freedom v = 8 when comparing the nine different activation functipn
combinations used.

The tables of rankings for the various benchmartks are shown in Tables B.6 to
B.10 in Appendix B, along with a ranking of the activation function combinations
based on the sum of rankings across the rows. The calculated » values for each
benchmark are given in Table 4.6, along with the critical 22 value and an overall 4
statistic, The / values that are larger than the critical value are shown in bold. The
‘overall' &t value was obtained by summing the rankings across all the benchmarks
{shown in Table B.11}, then ranking the sums from | to 72 {as shown in Table B.12
in Appendix B) and finally caleulating A.

From Table 4.6, it can be seen that the null hypothesis quite clearly holds true for
all the benchimarks except for the Multi-Class problem. In the case of the Multi-Class
problem, Ay is rejected with greater than 95% confidence, indicating that there is a
significant difference between the means, This bears out the observation that the
combination of exponential shunting and log sigmoid output activation functions
gives the best performance with most of the algorithins for the Multi-Class problem.
For all the other benchmark tests there is no statistically significant difference in
performance across the various activation function combinations,

The next step was to use Tables B.12, and sum down along the columns to
compare the means for the various training algorithms using the same procedure,
This time the critical chi-squated valve is yJ,, with v = 7 since there are eight
algorithms being compared, Table 4.6 shows that the null hypothesis My is rejected
with preater than 95% confidence for the overall ranking as well as for all the
individual benchmark tests. These results confirm the conclusion, obtained by visual
observation of the praphs and tables, that there sre significant differences in the
accuracy achieved by the vatious training algorithms.

Table 4.6 The 1 values calculated for all benchmark tests

Henchmark Test Comparison zcross activation Comparizon across training algorithms
functions
fi Calculated Criticat valug h Caleulated Critical value
3-bit Parily 8.572 ILTI6
Breast Concer 7922 40,670
Dlabeles 2.235 15.507 30.099 14,067
dulti-Clnss 28.857 1T.689
Sunspots 6.66% 54,142

OVERALL 2218 51.023
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Table 4.7 Overall ranking of Table 4.8 Overall ranking of
training algarithms for SIANNs activation functions for SIANNs
Teaining Composite | Activation Punctions Composile
Rank Algorithms Sum of rinks Ronk | Shunting | Ouwtpyt | Sumolranks

1 LM 864.5 1 Exp Lgs 1275.5

2 OLMAM 1039 2 Lgs Ligs 12593

3 LMAM 1412.5 3 Tnh Lgs 1302

4 DS-GDX 1578.5 4 Lgs Lin 1486

5 GDX 1543 5 Exp Lin 1474.5

& GDM 1732 4 Tah Lin 1493.5

7 ROM2 2474 7 Exp Tnh 1538

g ROM 2496.5 ] Toh Tnh 1628

2 Lps Troh 1628.5

Tables 4.7 and 4.8 shows the ‘overall’ rankings for the training algorithms and the
activation functions obtained by summing the ranks across all benchmarks and then
ronking the sums, as given in Table B.12. The composite sum of ranks across all
benchmarks tests, as shown in Toable B.11, is also prescoted, to give an indication of
how *far apart’ the rankings are.

Tt should be noted that the rankings for the activation functions are given as an
indication only, as the preceding tests show that the overall differences in
performance due to the activation functions are mot statistically significant. The
composite sum of rankings bears this out, as the sums are quite close to cach other,
with the biggest gap being between the third and fourth ranked combinations. Also,
the fourth ranked Lgs-Lin combination has a larger sum than the sixth ranked Tnh-
Lin combination. This means that the ranking as done using Table B.12 gives o
different order of mnking than the ranking given in Table B.11 that was based purely
an the sum of the individual benchmark ranks, This is due to the fact that the results
are actually too close to clearly differentiate and rank them. An interesting point to
note, however, is that there appears to be a trend with the output activation functions.
The combinations with the logistic sigmoid (/gs) output function perform the best
followed by the linear cutput combinations, and the hyperbolic tangent sigmoid (¢4)
combinations coming in last. There is no such trend apparent when looking at the
“best-performing’ combinations though, with a number of combinations the tan
sigmoid output coming out best for differcnt algorithms and problems,

For the training algorithms, the LM algorithm is the highest ranked algorithm
followed by its variants the OLMAM and LMAM algerithms. The direct salution
DS-GDX algorithm comes in next followed by the first order GDX and GDM
algorithms, with the adaptive learning rate GDX algorithm ahead of the simpler
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GDM algorithm. Not surprisingly the stochastic ROM and ROM2 algorithms are
ranked the lowest. This ranking follows the same pattern as the general trends
observed using the ‘best performing’ activation functions. Looking at the sum of
ranks, there is a distinct difference between the algorithms, except between DS-GDX
and GDX and between ROM and ROM2. In fact GDX has a lower sum than DS-
GDX, but, as with the activation functions, when there is no significant difference
the various ranking mechanisms sometimes produce different orderings.

The rankings here are based on the accuracy of the networks on the test set, but
other factors such as the time required for training and computational complexity
also need to be considered when selecting a training algorithm for a given problem.

4.7 Conclusion

This chapter describes the development of a number of training algorithms for
SIANNS, including the derivation of the appropriate equations, The test methodology
has been presented and a number of benchmarks tests deseribed. SIANNS have been
applied to these benchmark problems, trained using the algorithms derived, and the
experimental results presented. The results obtained are comparable to those ebtained
by othes types of neural networks, showing that the SIANNs can be trained
successfully on a varicty of problems.

The effect of the fimit on the shunting neuron denominator during training has
been investigated and analysed. Inferences have also been drawn, from these resuits,
on the effect of the combination of activation functions and performance of training
algorithms. It can be concluded that the choice of activation functions has a
significant effect on the accuracy of the trained network, but there is no single
combination that works best across ail the training algorithms and problems. The
optimum combination for a particular problem and training algerithm therefore has
fo be determined experimentally, The differences in training algorithm performance,
on the other hand, are statistically significant, and an overall ranking based on the
accuracy has been produced. It should be noted, however, that there is often a trade-
off between accuracy and training time, and that the relative performance of the
alporithms is still problem dependent.

In gencral, the experimental results show that SIANNS can be applied
successfully to classification and prediction problems using the training algorithms
developed. This means that SIANNs are a viable class of neural networks that can be
applied to varicus types of problems.
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Chapter 3

The Quadratic Neural Network Algorithm

5.1 Introduction

The training of feedforward neural networks is based on the minimisation of an
objective function related to the output error. The general strategy for sopervised
learning is based on combining a quickly convergent local method with a globally
convergent one {Bahiti, 1992), The local methods are based on focal models of the
penerally complex error surface. Most algorithms are based on a Jinear (first erder)
model or quadratic (second order) medel, Quadmtic methods tend to have faster
convergence, though they occasionally get trapped in local minima,

Second order methods rely on minimising a quadratic approximation to the error
function, E{w), that uses the first three terms of the Taylor-series expansion about the
current point, Wy, given by

Etw+Aw) e E(W)+g Aw + }Aw‘"m_\w {5.1)

where Aw is the weight change, g is the gradicnt vector and H is the Hessian matrix,

Solving thizs cquation yields the optimal change in the weight matrix, given by
Awgy = H'g. However, the calculation of the Hessian H and its inverse is
computationally prohibitive, thereby leading to approximation methods being
investigated. There are also problems where the Hessian is not positive definite, is
singulas, or ill-conditioned (Battiti, 1992), The matter is further complicated if
constraints are imposed on the solution, as is the case for Shunting Inhibitory
Artificial Neural Networks (SIANNs), where certain weights need to be constrained.
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The Quadratic Nenral Netwark (QNN) algorithm is a novel second order method
that uses a recurrcot “neural netwark™ to determine the minimum point of the
objective function to be minimised. It is based on work using recurrent newral
networks for bound constrained gquadratic minimisation proposed by Bouzerdoum
and Pattison (Bouzerdoum & Pattison, 19%3a, 1993b).

This chapter presents the development of the Quadratic Neural Network training
algorithm and a number of variants, and their implementation in training SIANNSs on
o number of benchmark problems. The following section outlines the develepment of
the algorithm and its implementation for training feedforward neural networks. The
third section covers the adaptive determination of parameters, followed by the
section on constraining the QNN update. Section 3.5 presents experimental resulls
comparing the performance of the various QNN-based algorithms with other
algorithms and analysis of the results obtained. Cenclusions are provided in Section
5.6.

5.2 Development of the QNN Algorithm

This section firstly outlines the development of the method of using recurrent neural
networks for bound constrained quadratic minimisation upon which the QNN
algorithm is based (Bouzerdoum & Pattison, 1993b). This is followed by sub-
sections on the recursive equations used to mode] the recurrent neural network, and
the method of applying this to the practica! training of neural networks in general,
and SIANNS in particular,

521 Algorithm Formulailon

Bouzerdoum and Pattison’s method (Bouzerdoum & Pattison, 1993a, 1993b} uses a
recurrent neural network to solve the bound constrained quadratic optimisation
problem

rgsn{stw, +AW): 4 SAW S ) {5.2)

with gpveR for weR".
Inn order to ensure the constraints are always satisfied, let
Aw = p(u) = Bl{u) : ' {3.3)

wlhere [:R* —R"is a piecewise-linear function defined as
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oy LRl
L= fie)={y el &) (54
& > &

The n-dimensional vector u is permitted to vary without constraint, B is an #-by-»
positive diagonal matrix that serves as a preconditioner, and ¢,£eR" are the

constraints &, yon Aw mapped onto corresponding values of u such that ¢ = By

and £ = B™'w. By identifying p(u) such that Aw is confined to the constraint region,
the problem now becomes an unconsirairied minimisation of the objective function
M(u) over u where

M(u)=g7p) +Lp(u)” Hplu) (5.5)

Consider now the single-layered recurrent neural network whose state vector is
defined by the differential equation

ﬂ{:—g—)\u —Ci(u) (5.6}

where g is the extemnal input, f{u) is the network output, C is the lateral fredback
matrix with zero diagonal entries, and A is a positive diagonal matrix representing
the passive decay rate of the state veetar.

To map the constrained guadratic problem onto the neural network, we set

A = diag(HB) 6.7
C=HB-A (5.8)

where diap(.) selects the diagonal elements of its matrix argument.

The desired outpus Aw = BI{u) is obtained from the network cutput fu) through
multiplication with the dingonal preconditioner B, Bouzerdourn & Pattison
{Bouvzerdouny & Pattison, 1993a) showed that, provided the matrix H is positive
definite, the neural network defined by (3.6) has o unique equilibrium point u’ which
is mapped by p onto Aw’, the optimal constrained weight update to the minimum of
E(w). They bave also shown that the network is globally convergent to this
equilibrium point.

The spectral condition nmber of a matrix is defined as the ratio of the maximum
to the minimum singular values of the matrix, 17 the state-feedback matrix has a large
condition number, then numerical computations are suseeptible to round-off errors
and errors in the weights of the state-feedback matrix. Preconditioning is used to
keep the condition number small, It has also been shown that preconditioning speeds
up convergence {Bouzerdoum & Pattison, 1993b),
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For the system in question, a simple choice for the preconditioner matrix B is

by = Z"‘- a>0 (5.9)
i’}

where by and Jiy are the diagonal elements of B and H respectively. The choice of
preconditioning has the added advantape of simplifying the expression for matrix A,
which then sitply becomes

A=dl {5.10)
where 1 is the identity matyix,
The matrix C = HB — A can then be defined by

)'r_y L
ey ={"n, 17 b€t .10
0 i=j

5.2 Slmulating the Recurrent Neural Network

In this training algorithm, the operation of the recurrent network for the quadratic
minimisation is approximated by a discrete time recursive equation, At each training
epoch, a recurtent neural network is “constructed’ with constraints based on the state
of the network being trained at that point. The “recurrent network™ modelled by the
recursive equation will return the optimal weight update for that epoch end the
network being trained wil) have its parameters updated using (5.3},

The differential equation {(5.6) can be approximated by

u{f + l:r-ll(k) =—g- Au{k)—Cf(ll(k)) (3.12)
< ufk +1) = u{k) - g + Au(k) + CH{u(h))) (5.13)

where 4 is the discrete 'time-step’.

The recursive cquation (5.13) is iterated a finjite number of times to obtain an
approximate optimal value of u, then the update of the weights, Aw, is calculated
from (5.3). The recursive eguation can be iterated a fixed number of times, because
even if the weight update is sub-aptimal, the overall effect of any error is not critical
since the process will be repeated for a number of epochs.
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523 Applying the QNN Algorithm to nenral network training

The recursive equations as they stand require the evaluation of the Hessian matrix to
defermine €, as given in {5.8). In practical implementations, the computational cost
of calculating the Hessian matrix is too high, so approximations of the Hessian are
used. The QNN algorithm has been implemented for MLPs (Arulampalam &
Bouzerdoum, 2001b, 2002b) based on the Levenberg-Marquardt (LM)
approximation (Hagan & Menhaj, 1994); that is, the same approximations for the
_ gradient and Hessian based on the Jacobian as in LM have been used:

g d7 (we(w) (5.14)
H = J7 (w)d(w)+ 2 (5.15)

where J{w) is the Jacobian matrix, e(w) is the vector of residuals {errors) for the
training set, 1 is the identity matrix and 4 is a variable parameter that determines the
trust region.

This approximation of the Hessian has been used instend of the Gauss-Newton
approximation (H = J(w)J(w)) to avercome the problems of rank deficiency, since
neural network training problems are intrinsically ill-conditioned (Haykin, 1999, p.
235}, as well as the requirement of the QNN algorithm that the Hessian be positive
definite. Tests with the Gauss-Newton appreximation for the QNN algorithm
resulted in non-convergence due to the above-mentioned problems,

The only difference between the implementation of the LM and QNN algorithms
is that the step where the change in weights is calculated with the matrix inversion in
LM (refer to Section 2.8.3) has been replaced with the “recurrent neural network”,
i.e, the recursive equation given in (5.13),

524 Determining ‘optimum® parameters for the QNN algorithm

The parameters that affect the QNN algorithm are the canstant for the preconditioner
matrix, a, the discrete time-step, d, and i, the number of iterations to update the
recursive equation. Ope important observation that was made during these
experiments was that the product ad could be taken as one parameter for the
algorithm since the parameters o and o hnd inverse effects, For example, setting o =
1 and & = G.] produces exactly the same results as & = 2 and d = 0.05. As such, the
term o was fixed at 1 and only the d and i parameters were varied,

In arder ta find an approximate *optimum® value for these parameters, STANNg
were trained on the Wisconsin Breast Cancer and Pima Indians Diabetes datasets
using the QNN algorithm with varying & and 7 values. Fig. 5.1 shows the mean error
and mean training time as the time-step, d, is increased from 0,01 to 2.0, Fig 5.2
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shows the same as the number of iterations, i, is increased from 5 to 100. The

minimum error achieved is also shown for the Diabetes problem, as it is non-zero.
Details of the results are given in Tables B.18 and B.19 in Appendix B.
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Fig. 5.1: Percentage error and average training time vs. discrete time-step d for
STANNS trained on Breast Cancer (a,c) and Diabetes (b,d) datasets
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Fig. 5.1 shows that increasing the parameter & above 1.0 results in the algorithm
‘blowing-up®, with mean error values over 40% for o = 2.0. These error values were
allowed to go off the graph in order to clearly show the variations for the other
values. Fig. 5.2 shows that there is no significant improvement in accuracy for /
greater than 10, but training time increases as § is increased. From these results, the
‘optimum” values chosen were o = 0.2 and i = 20, shown by dashed vertical lines in
the figures. These values were chosen to balance accuracy with training time, as well
as avoiding possible instabilities. These values have been used for all subsequent
tests, unless otherwise stated.

5.3 Adaptive Determination of the Parameters for the Algorithm

In the previous section the ‘optimum® values for the discrete time-step, 4, and the
number of iterations, §, were determined experimentally. These values were based on
tests using two different benchmark datasets, The results indicate, however, that
there is no clear-cut optimum value and that the ‘optimum’ value may vary
depending on the problem at hand. In order to reduce the number of parameters to be
determined and to allow the algorithms to be more general, these parameters should
ideally be determined adaptively. Methods for adaptively determining these
parameters are presented in the following sub-sections.

5.3.1 Adaptive determination of the number of iterations,

To reduce the number of free parameters, a method was developed to adaptively
determine , the number of iterations for ufk). The rationale is that the iterations can
be stopped when the percentage change in u(k) drops below a certain limit, The
change, duf), is given by
Su(k) = nomfu(k + 1) —u(k))

norm{u(k + 1)) .16

In order to determine a ‘good’ lower limit for §ulk), &um, the QNN algorithm was
used to train STANNs on selected classification problems with varying limit values.
Fig. 5.3 shows how the mean error and mean training time change as 8y is increased
from 0.001 to 0.5. The maximum number of iterations / was set at 100 to provide a
reasonable upper bound to the number of iterations performed per update,
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Fig. 5.3 : Percentage error and average training time vs. &z, , the lower limit for

ou(k), for SIANNs trained on Breast Cancer (a,c) and Diabetes (b,d)
datasets

The results indicate that there is no significant variation in accuracy as &, 1S
varied. However, there is a decrease in the training time for the Diabetes problem as
the limit is lowered until &;, = 0.002, after which it increases again. From these
results, the chosen lower limit 1s 8, = 0.01 (1%), a conservative limit that balances
training time with accuracy, while avoiding a very small limit that could potentially
lead to excessive iterations with different problems.

This stopping criterion was incorporated into the algorithm primarily as a method
of reducing the training time by stopping the iteration of the recursive equation if
u(k) was not changing significantly. The maximum number of iterations was set to
20, which is the ‘optimum’ value determined in the previous section, and the
iterations stopped earlier if du(k) < 0.01, i.e. if the norm of u(k) changed less than
1%. This would reduce the training time without significantly impacting the weight
update. This method has been incorporated into all subsequent tests performed.
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532 Adaptive determination of the discrete time-step size, 4

The neural network training implementation of the QNN algorithm contains the
parameter g, which can be used as a measure of how close to quadratic the objective
function is during training, This can be used to adaptively vary the “time-step’ term
for each epoch, 4. If z decreases, the quadratic approxitnation is improving, therefore
d is increased, otherwise it is decreased. The value of & changes by a factor of 16
within the range 107'° to 10'°, hence the value of  is varied according to

d{current epoch) = d{previous epoch}* (l - [%&D (5.17
which results in a multiplicative factor of between 2 and 0.1 approxitnately.

This method has been found to work well for a variety of problems when the
algarithm was applied to MLPs, but does have a drawback when applied to complex
problems where the value of u remains large for long perieds. In these cases the
value of & becomes tiny, sometimes in the order of 107'®, resulting in long training
times without any significant improvement in performance (Arvlampalam &
Bouzerdoum, 2001b, 2002b).

An alternative method formulated was thus to vary & only when the final value of
4 changes compared to previous epoch. The step size would be increased by a
constant factor when g decreases and vice versa, for example

d{previousepoch}*1.1  plcurvent) < u{ previous)
dicurrent epoch) = { d{previous epoch) pelcurrent) = p{ previous) (5.18)
d{previousepoch)* 0.9 p{current) > u{previous)

Another alternative is to increase the frequency of the o value update from once
every epoch to every time u is updated, The value of u is increased by a factor of 10
unti! the chjective function is equal to or fower than previous epoch and then it is
decreased by a factor of 10 (refer Section 2.8.3 on LM algorithm),

Other variants include combining the different update times (both once an epoch
and every # update) and varying the update factors. The various combinations of
update frequency and update formulae tested are summarised in Table 5.1,

The various methods of varying & were tested on the Wisconsin Breast Cancer
and Pima Indians Diabetes benchmark problems. The main objective of these
algorithm variants is to minimise the dependence of the results on the initial value of
o chosen. To test this, the same sets of networks were traned using the different
alporithms with the initial value &y set to 0.05, 0.2 and 1. The valugs were chosen
around 0,2 because the ‘optimum® value for 4 as determined in the previous section
was (.2,
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Table 5.1  Sumemary of 4 update methods for QNN algorithm variants

Algorithm | Update frequency | Update formula

QNN ) dfixed
QNN2 Every epoch d=afi- log,g ﬂ)
1.l )y
QNN3 Every j update d*1.1  ulewrrent) < p(prevfous)
d=44d pleurrent) = pu( previous)

dfl.l  plcurrenty > p{ previous)

QN1;~I5 i) Everyepoch  [1i) QNN2 update
ii) Every gupdate | if) QNN3 update

QNN6 i) Every epoch i)y d=d*l.1
’ d*1.1  ulewrrent) < u( previous)
iiyd=1d plcurrent) = y( previous)

1) E\_Jer}f 4 update d*0.7 Hlcurrent) > pl previous)

QNN7 i} Every epoch ) d=d*1.1
‘ . i) d= d plourrent) £ yl previous)
if) Bvery 4 update T\d*0.9  plcurrent) > p( previous)

QNNE Every epoch de d*1.1  ulcurrens) S y( previcus)
d*0.8  u(current) > u( previous)

QNN% Every epoch d*Ll  pleurrent) < H( previous)
d=xd plcurrent) = p{ previous)

d*0.9  ufcurrent) > pl previons)

The results obtained are shown in Tables 5.2 and 5.3 and in Figs. 5.4 and 3.3, The
tables show each variant in the first column, the best performing activation
combination. for that algorithm, followed by the tmean classification error for the
three 4 values in columns 4 to 6. Columns 7 and & show the percentage variation of
the means for o5 =0.05 and dp = 1.0 from that of the ‘basic’ dp of 0.2, The last three
columns show the mean training time for cach of the starting dj values.
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Table 5.2 Results for QNN variant comparison using Breast Cancer dataset
Training Activation Mean Classification Error Change in error Avg, CPU time (s)
Algorithm functions (%) fromd=0.2 (%)
Shunt | Out |d=0.05| d,=02 | d=1.0 | d=0.05 | dp=1.0 |dy=0.05| d=0.2 | dy=1.0
QNN | Exp | Lgs 0.70 026 029 1692%| 11.5% 15.5 15.7 19.6
QNN2 | Tnh | Lgs 0.49 043| 10.09| 14.0% | 2246.5% 13.1 10.4 174

QNN3 Tnh | Lgs 0.58 0.33 0.41 758% | 24.2% 27.5 17.4 23.0

QNNS Lgs | Lgs 0.36 0.24 0.42 50.0% | 75.0% 43.1 49.0 253.6

QNN6 Lgs | Lgs 0.37 0.36 0.34 2.8% -5.6% 24.4 20.0 20.3

QNN7 Exp | Lgs 0.67 0.35 032 91.4% -8.6% 153 15.6 21.2

QNNS Tnh | Lgs 0.66 0.42 0.85 57.1% | 102.4% 24.9 15.9 26.2

QNN9 | Lgs | Lgs 053] 032 017| 656%| -469%| 256 194| 204
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Fig. 5.4: Mean test error and training time for Breast Cancer dataset using SIANNs
trained with QNN algorithm variants.
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Table 5.3 Results for QNN variant comparison using Diabetes dataset
Training | Activation Mean Classification Error Change in error Avg, CPU time (s)
Algorithm functions (%) fromd=0.2 (%)

Shunt | Out |dy=005| dp=02 | dy=1.0 | d=0.05 | dp=1.0 [dy=0.05]| d=0.2 | dy=1.0

_QNN Lgs | Tnh 20.82 19.88 19.43 -2.3% 4.7% 121.7 76.7 36.3

QNN2 Exp | Lin 20.36 19.95 23.52 17.9% 2.1% 219.1 203.8 18.5

QNN3 Exp | Tnh 20.66 19.80 19.67 -0.7% 4.3% 86.8 44.6 253

QNNS Lgs | Lin 20.54 19.96 20.76 4.0% 2.9% 245.5 198.6 157

QNN6 Lgs | Tnh 20.57 20.02 20.17 0.7% 2.7% 28.9 233 28.0

QNN7 Exp | Tnh 20.50 20.05 19.90 -0.7% 2.2% 66.1 40.0 233

QNNS Exp | Tnh 20.42 19.91 20.14 1.2% 2.6% 76.6 342 24.4

QNN9 Lgs | Tnh 20.42 19.57 19.85 1.4% 4.3% 63.0 69.4 412
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Fig. 5.5: Mean test error and training time for Diabetes dataset using SIANNS trained
with QNN algorithm variants.
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The percentage variation, in Columns 7 and 8 of the tables above, show that the
QNN2 algerithm performance is still highly dependent on the starting value of 4.
There is a large variation in the means as dp is changed, even larger than for the
‘standard’ QNN with fixed 4. This defeats the purpose of varying the  value in the
first place. QNNE also showed a fairly significant variation for the Breast Cancer
dataset, as did QNN7. The QNNS algorithm had long training times and moderate
variation in mean crror, but had low error rates for dp = 0.2. The QNN6 variation
appears to have the most stable performance across the various 4 values with no
more than 6% variation.

The decision was taken to evaluate a subset of these varfants in the subsequent
sections along with the standard QNN algorithmn, namely QNN3, QNNS, QNNG and
QINN9Y. The other variants were dropped cither because they didn't perform well
{QNN2) or were similar to better performing variants (QNN7 similar to QNN6,
QNNS similar to QNNB). This selection maintains a broad comparisen of the
methods while reducing the number of tests to be performed and reported.

5.4 Constraining the QNN Update

One enhancement made to the QNN algorithm was to use the ability of the algorithm
to handle constraints by imposing 2 constraint on u such that it is bounded by the
functicn f to the hypercube defined by 100 times the components of the gradient
vector, The rationale is that it would keep the updates in the general gradient descent
guadrant, thereby reducing the possibility of instability. This constrained QNN
algorithm (QNN-C) has been applied to MLPs, with results indicating that the
constraint improves the accuracy of the classifiers at the cost of longer training time
(Arulampalam & Bouzerdoum, 2002b). It was found that as the complexity of the
problem increases the performance of the constrained algorithm drops, sometimes
quite dramatically. The probable reason for this is that the simple constraint
condition actually works against the minimisation of the error when the error surface
is tco complex,

The QNN-C algorithm was used to train SIANNs on the full set of five
benchmark problems in order 1o gauge the effect of the constraint on a variety of
problems. The results presented in Table 5.4 clearly show that the simple constraint
results in extremely poor performance.

In order to improve the performance of the constrained QNN algorithm, an
alternative constraint function was propesed. The altemative update constraint
consists of merging the original hypercube, formed by the components of the
gradient multiplied by 50, with & smaller hypercube centred on the origin with
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boundary value calculated frotn the norm of the previous update (norm{Aw)) and the
value of 4 as follows

boundary value = norm {Aw{previous epoch))* [[ - [][;T;AI‘”)] (5.19)
The smaller hypercube serves to free the weight update to ‘move’ in directions
other than that of the gradient, The size of the ‘freeing” hypercube is determined by
the previous step size as well as the quadracity of the update (4). If the
approximation is tnore linear (large &) the size of the second hypercube is smaller
resulting in the constraint to be closer to the gradient, If the update is closer to
quadratic, the size of the hypercube is expanded allowing update in other directions.
The algorithm variant using this second hypercube in the constraint is referred to as
QNN-C2,
The effects of this second constraint can be seen in the results that follow, where
both the constrained and various unconstrained versions of the QNN algorithm are
compared.

Table 5.4  Best case results for SIANNs trained using criginal QNN-C algorithm

Benchmark Test Percentage ermor

: Best Mean 95% Cl
3-hit parity 258 48.5 + 193
Breast Concer 0.56 20,4 + .55
Dinbetes . 0.7 39.5 211
Multi-class 260 -67.6 + 532

AVR

Sunsy 0213 1480 TE£0294

5.5 Benchmark Test Results and Analysis

The QNN algorithm and selected variznts of it were tested on the same set of
benchmarks problems, with the same training and test coaditions as the other
algorithms tested in Chapter 4. The results obtained are presented in this section, The
previously presented results obtained for the Gradient Descent with momentutn and
adaptive leamning rate (GDX) and Levenberg-Marquardt (LM} algorithms are also
presented for comparison, representing the best first- and second-order algorithms
previously tested.
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551 Results for the Wisconsin Breast Cancer dataset

The results obtained by testing the 9-9-1 SIANNs trained using the various QNN
algotithms are presented in Table 5.5 and Fig, 5.6, Note that the median eror in all
cases was zero and so is not visible in the figure. The results indicate that there is no
significant difference in the accuracy of the classifiers trained using the different
algorithms, The mean crror rates range between 0.24% to 0.36% and the percentage
of networks achieving 100% accuracy between 36% and 68%, for the QNN
alporithm and its variants. This is fairly close to the results of the GDX and LM
algorithms: 66% networks with no etror achieved by GDX, 74% with LM, and
0.20% mean error achieved by both, In fact, comparing the QNN results with the
other alporthms tested in Chapter 4 , it can be seen that QNN outperforms the rest of
them in terms of accuracy.

The training times, on the other hand, show more variation. Most of the QNN
variants tested took a similar amount of time to train the set of networks. The
exception was QNNS, which took a much longer time to train in the preliminary
tests, QNNS was retained for this section for two reasons: firstly, it was capable of
producing pood results; and second, to highlight the effect on training time the
‘wrong® selection of the & vpdate method could have, 11 fulfilled both requirements,
achieving a mean error of 0.24%, the lowest mean error among all the QNN variants,
and having the longest mean training time. The QNNS training time was more than
double all the other algerithms except LM. The other QNN variants had training
times one and a half to 1wo times longer than GDX, but about half the time of LM.

Overall, the standard QNN algorithm appears to be the *best” of the QNN variants
for this test, with the second best accuracy and fastest training time, There does not
appear to be any sipnificant differences in performance between the variants, except
for the training time of QNN3.

5,52 Resalts for Pima [ndians Diabetes dataset

The results for this test, presented in Table 5.6 and Fig, 5.7, show a similar trend to
the results of the Breast Cancer. All the QNN variants achieved good nccuracy with
mean errors 6t 20% or below, which is a pood result for this problem, The error rate
achicved js between 19.6 and 20.0 %, similar to or better than the 19.88% reached
using LM and better than GDX, which averaged 21.03%, Two of the variants, QNN9
and the constrained QNN (QNN-C2), were able to averape close to 15.6% with the
upper 95% Confidence limit below 20%. All of the QNN algorithms were able to pet
more than 50% of networks with ercor rates less than 20%, the best being QNN-C2
with 70%. The QNNG variant was able to produce the best performing network with
an crror rate of only 15.63%, which is significantly lower than the best case
performance of 17.71% achieved by most of the other variants.
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Table 5.5 Best results for Wisconsin Breast Cancer dataset using 9-9-1 SIANNs
trained with QNN algorithm variants.

Training | Activation Performance Avg Epochs Test Error Mean
Algorithm | functions (% of runs) Train
sh [ Out [ > [ 0% [20%] An [ > | 0% [ Best |Mean[95%C1[Median| ‘o
goal | err | < | runs | goal | Errors | (%) (%) (%)
QNN Exp | Lgs 0| 68] 100f 70| * 64 0.00] 0.26] + 0.13 0.00 15.7
QNN3 | Tnh | Lgs 0] 56| 100 78| * 70 0.00] 033]| + 0.12 0.00 17.4
QNNS | Lgs | Lgs 0| 60| 100[ 201 | * 201 0.00] 0.24| + 0.08 0.00] 49.0
QNN6 | Lgs | Lgs 0| 60] 100f 109 | * 86 0.00] 0.36] + 0.14 0.00f  20.0
QNN9 | Lgs | Lgs 0| 64| 100 87| * 75 0.00] 032| + 0.15 0.00 19.4
QNN-C2 | Tnh | Lgs 0} 62| 100{ FF[ * 74 0.00f 029 + 0.12 0.00 17.1
GDX Lgs | Lgs 0| 66/ 100 161 | * 160 0.00] 0.20| + 0.08 0.00 10.3
LM Lgs | Tnh 0] 74| 100] 181 | * 119 0.00| 0.20f + 0.10 0.00 34.8
Wisconsin Breast Cancer
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Fig. 5.6: Mean test error and training time for Breast Cancer dataset using SIANNs
trained with QNN algorithm variants.
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Table 5.6 Best results for Pima Indians Diabetes dataset using 8-8-1 SIANNS trained

with QNN algorithm variants
Training | Activation | Performance Avg Epochs Test Error Mean
Algorithm | functions (% of runs) Tm“
Shunt| Out [ > | 0% [20%| All [ > | 0% | Best | Mean [95%CI|Median | '
goal | err | < | runs | goal | Errors (%) (%) (%)

QNN Lgs | Tnh | O
QNN3 | Exp | Tnh | O
QNN5S | Lgs| Lin| O
QNN6 | Lgs | Tnh | 0
QNN9 ([ Lgs [ Tnh | O
0
0
0

FATEY Vi . 17.71 | 19.88 | + 0.24| 19.79 76.7
60| 182 | * ¥ 17.71 1 1980 | + 0.27] 19.79 44.6
68 765 | * X 18.23 | 1996 | + 0.42| 19.79 198.6
SOl DTS ™ * 15.63 [ 20.02 | + 037 19.79 23.3
66/ 281 | * * 17.71 | 19.57 | + 0.28] 19.27 69.4
7O 363%) " ® * 18.23 | 19.69 | + 0.22| 19.79 83.2
14/ 195| * * 17.71 121,03 | + 0.29| 21.35 13.2
58| 182 * * 17.71 | 19.88 | + 0.32] 19.79 38.9

QNN-C2 | Lgs | Tnh
GDX Tnh | Lgs
LM Lgs | Tnh

O |1 |0 |0 |C |0 |o|o
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Fig. 5.7: Best case and mean test error and mean training time for Diabetes dataset
using SIANNS trained with QNN algorithm variants
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The training time required once again shows significant variation between the
variants of the QNN algorithm. As in the previous test, the QNN3 variant required
more than double the time required by any of the others, but for this problem the
mean error tate wes not the best, *only” just under 20%. The QNNS and QNN-C2
variants required around the same time as the standatd QNN algorithm bt achieved
the best tmean error rates of 19.6% and 19.7%, respectively. However, these
algorithms took onc- and-a-half times to twice as long to train compared to the LM
algorithm. The QNNG6 variant took about two-thirds the time of LM and about one-
third the time of the standard QNN. It was still stower than the first order GDX
algorithm, but achieved much belter accuracy, Overall, the QNNG would be the best
QNN variant for this problem, with good mean aceuracy, short training time and the
best individual network performance by far.

553 The 3-bit parity problem results

The results for the parity problem using QNN and its variants, given in Table 5.7 and
Fig. 5.8, do uot look good compared to the earlier results for the ather algorithms,
The mean error for most of the QNN variants was in the 3% to 6% range, with
QNNG6 having an error rate of 16% and QNN3 even worse with 31%, compared to
GDX and LM with 1.3% and ©.5% error respectively. A closer look reveals that
around 80%% of the networks actually achieved perfect classification (0% ermor),
QNNS5 and QNNG excepted. The mean was driven up by the runs that did not
converge, as they ended up with very large errors. It should be noted that the median
classification ervor for all the variants was 0%, again QNN3 and QNN6 excepted.

The training time for the parity problem using QNN3 was an order of magnitude
larger than the GDX and LM algorithms. The rcason for this is that in most cases the
runs did not terminate unti! reaching the maximum allowed number of epochs (in this
vase 1,000, It would appear that this variant of QNN requires more than 1000
epochs to solve this problem, since none of the networks was able to reach the
training goal, and the networks that did achieve 100% correct classification required
the maximum 1000 epochs.

The other QNN algorithm variants performed reasonably well on this test with
about 80% of the networks achieving perfect classification accuracy, but could not
match the GDX and LM algorithms, in terms of both accuracy and training time. Of
these algorithms (standard QNN, QNN3, QNN9 and the constrained QNN-C2), the
constrained QNN-C2 algorithm achieved the best accuracy, with a mean error of
3.5% and 92% of network achieving perfect classification, and also had the shortest
avernge training time of about 7 seconds, This was still more than double both ervor
rate and training time of the GDX algorithm.
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Table 5.7 Best results for 3-bit Parity problem using 3-3-1 SIANNs trained with

QNN algorithm variants
Training | Activation Performance Avg. Epochs Test Set Classification Error | Mean
Algorithm | functions (% of runs) Train
t
Shunt| Out | > [ 0% [<20%| Al | > | 0% | Best | Mean | 95% CI | Median | (o)
goal | err err | runs | goal |Errors| (%) (%) (%)

QNN Lgs | Lin 72| 80 84| 413 | 184 | 266| 0.00( 5.00 297 0.00| 8.0

QNN3 | Lgs | Lgs 72| 80 88| 436 | 216| 295( 0.00{ 4.75 3.04 0.00 94

QNNS5 | Tnh | Lin 0| 14 30| 981 * 1 1000 | 0.00{ 31.00 5.30] 31.25] 34.1

QNN6 | Exp | Lin 14| 24 62| 270 | 156 263 | 0.00] 1575 342| 1250 54

L5 1 L

QNN9 | Lgs | Lgs 74| 78 84/ 370| 189 231| 0.00f 5.75 3.37 0.00] 9.1

QNN-C2 | Lgs | Lgs 78| 82 92| 376| 200 239 | 0.00] 3.50{ + 2.33 0.00 7.0
GDX Tnh | Lgs 94| 94 96| 352| 311 | 311] 0.00f 1.25] + 144 0.00f 23
LM Exp | Lin 96/ 96| 100 84 46 46 | 0.00{ 050 + 0.69 0.00] 1.7
3-bit Parity
40 |
IMun!
= nM-mmi
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Fig. 5.8: Mean test error and training time for 3-bit parity dataset using SIANNs
trained with QNN algorithm variants.
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It was observed during training that, for some of the networks, the QNN6&
algorithm was terminating prematurely because the valuz of g was reaching the
maximum allowed during training, hence the low training time and large average
ErTor rate,

5.54 Results for artificial multi-class problem

The results for the Multi-class benchmark problem using SIANNSs trained with QNN-
based algorithms are presented in Table 5.8 and Fig. 5.9. The results show that most
of the QNN variants achieved mean classification errer rates in the 5.7% to 6.1%
range, which is similar to that achieved by GDX and LM. The exception is QNN3
algorithm with a mean error of 7.05%. The standard QNN algorithm achieved 6.05%
errar, with the other variants getting better results, QINNG being the best with 3.72%.
The best case error achieved was 4.00% for all algorithms, with the exception of
QNN3S with 4.67%.

As in the previous tests, the variation lies in the training time, Once again QNNS
sticks out with a disproportionately large training time, more than double that of any
of the other algorithms including LM. All the other varjants were able to train the
networks faster than the LM algorithm, with QNN6 being the fastest of all and
standard QNN the second fastest. However, GDX was move than 2.5 times faster
than the fastest QNN algorithm. The GDX algorithm also achieved the lowest
average error of 5.47%. The QNNG algorithm had the best performance of the QNN
variants, with both the lowest error and shortest training time. Its accuracy was
similar to that achieved by LM, but in half the training time,

5.5.5 Resulis for the Sunspot time series

The results for the Sunspots time series are presented in Table 5.9, showing both the
performance metrics used: the mean square error (MSE) and the average relative
variance (ARV) defined in Chapter 4, Fig. 5.10 shows the best, mean and median test
ARV as well as the mean training time.

The results show that the performance of the networks trained by the QNN
variants are similar, with mean test ARV of around 0.130, except for QNNS with
0.202 and QNN6 with the bast mean of 0,100. This means that the majority of the
QNN vanants had a better mean test ARV than GDX with 0,174, and not much
higher than LM with 0.112. The performance of QNN§ is better than that of LM,
with lower test ARV and lower MSE,
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Table 5.8 Best results for Multi-Class dataset using 2-2-3 SIANNSs trained with
QNN algorithm variants

Training | Activation | Performance Avg Epochs Test Error Mean
Algorithm | functions (% of runs) Train
sh [ out | > [o% [20%] Au [ > T 0% [ Best [Mean [95% Cr | Median | ‘5
goal | err | < | runs | goal |Errors| (%) (%) (%)
QNN |Exp|[Lgs| O 0 | 100] 239| * ’ 4.00( 6.05| + 0.27 6.00 61.2
QNN3 | Exp | Lgs| 0O 0 | 100] 166] * " 4.00] 579 + 0.23 6.00 747
QNNS | Lgs | Lgs| 0 0 Q81 473 . * » 4.67| 7.05| + 1.22 633 2208
QNN6 | Exp | Lgs| 0 0 1 .100]. 58] .o* g 4.00| 572 + 0.21 5.33)| 554
QNN9 | Exp [ Lgs | 0 0 [ 100 207 * & 4.00f S5.83] + 0.26 5.33| 95.6
QNN-C2 | Exp | Lgs | 0 0 [ 100{ 269 * g 400( 583 + 0.19 6.00] 725
GDX Exp | Lgs | 0 0 [ 100{ 377 * o 4.00( 547 + 0.16 5.33 194
LM Exp [ Lgs | O 0" | 100] 238] * » 4.00f 5.69| + 0.26 5.33| 103.0
Multi Class
’ S = — . 7589;1
mMean
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Fig. 5.9: Best case and mean test error and mean training time for Multi-class dataset
using SIANNS trained with QNN algorithm variants.
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Table 5.9 Best results for Sunspots dataset using 10-10-1 SIANNSs trained with

QNN algorithm variants
Training Act-fns Performance Avg Test MSE Test ARV Mean
Algorithm (% of runs) Epochs Train
Sh | Out | = |allin|80% Best |Median| Best |Median| Mean | 95%C1 | Ume
goal | tol | tol (s)

QNN | Lgs | Lgs 0| 70[100| 495 |0.0077|0.0106/ 0.092| 0.127| 0.127| +0.003 86.5
QNN3 | Lgs | Lgs 0| 60[100| 472 |0.0070|0.0107| 0.084| 0.128| 0.126| +0.004 82.6
QNNS | Tnh | Lin 0] 30| 96| 694|0.0101|0.0142( 0.121| 0.170| 0.202| +0.027| 134.1
QNN6 | Lgs | Lgs 0| 800|100 | 337 |0.0054|0.0077| 0.065| 0.093| 0.100| + 0,009 45.8
QNN9 | Lgs | Lgs 0| 76[100( 373 |0.0093|0.0111f 0.111f 0.133| 0.133| + 0,003 65.5
QNN-C2 | Lgs | Lgs 0| 72 (100 | 535|0.0073]|0.0107| 0.088| 0.128| 0.127| +0.003 93.7
GDX | Tnh | Lin 0| 14| 98| 147 |0.0085|0.0134| 0.102] 0.161| 0.174| +0.020 6.8
LM Lgs | Lin 0 8 [ 100 54 | 0.0075]| 0.0093| 0.090{ 0.111] 0.112| +0.003 9.8
Sunspots
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Fig. 5.10: Best case and mean test error and mean training time for Sunspots
dataset using STANNS trained with QNN algorithm variants.
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In terms of (raining time, the QNNS algorithm takes the longest by far, as in the
carlier tests. This time, however, the other QNN variants take a lot longer to train
than LM, mostly 8 ta 10 times longer. The best is the QNNG algorithm that still takes
5 times longer than LM (45.8 vs. 9.8 seconds). GDX was even faster than LM, but
this was offset by the significantly lower accuracy. The best performance was by the
QNNG6 algarithmn, with the best accuracy overall, better than even LM, and the fastest
among all the QNN variants.

5.5.6 Analysis and Discussion

A visual analysis of the *best case’ results, as shown in the previous sections, does
niot show any definite trends in accuracy across zll the algorithms, The clearest trend
is that the QNNS5 algorithm has a much longer training time compared to all the
others, Overall, the QNN algorithm appears t¢ have accuracy close to that achieved
by LM and GDX algorithms, with training time in between the two or even worse
than LM, but there are exceptions in every case. Among the QNN variants, the
QNN6 zlporithm achieved the overall best result in three out of the five benchmark
tests, with the standard QNN getting the best results for the Breast Cancer problem
and the constrained QNN-C2 algorithm best for the 3-bit Parity problem. It should
also be noted that these comparisons are being made on the best performing
activation function combinations.

In order to perform comparison across all combinations of activation functions
and training algorithms, mean error and ARV values of all cases were compiled, and
ranked for cach benchmark. Statistical testing using the Kruskal-Wallis H test
(Walpole et al., 1998) was performed, as done in Chapter 4. The mean error values of
all tests are shown in Tables B.13 to B.17 in Appendix B, and the rankings given in
Tables B.20 to B.24, E

The final / value calculated for each benchmark problem based on comparison
across al! the training algorithms is shown in Table 5,10, The *overall’ i value was
obtained by summing the ranks across all the benchmarks (shown in Table B.25 in
Appendix B), then ranking the sums from 1 to 72 (as shown in Table B.26) and
finally calculating /. The null hypothesis, Hy, is that there is no significant difference
in the means of al] algorithms. The results indicate that the null hypothesis is strongly
rejected (with 95% confidence) for the 3-bit Parity, Diabetes and Sunspots
benchmark problems. For the Breast Canicer problem the null hypothesis is accepted,
while for the Multi-class problem, the statistic is below the critical value, but large
enough to show that there is some variation, This result, taken across all possible
activation furction combinations, is similar to the ‘best case’ results as shown in the
previous section. The overall comparison also indicates that there are significant
differences in the means. -

115



THE QUADRATIC NEURAL NETWORK ALGORITHM

In order to get an idea of the differences in performance and to get an approximate
rarking of the various algorithms, the final ‘overall’ rank of ail activation function
combinations for each algorithm was summed, and the alporithms ranked according
to the column sum (refer Table B.26). This algorithm ranking along with the sun: of
ranks for each algotithm (as given in Table B.25) is given in Table 5.11.

Table 5.10  The A values calculated for all benchmark tests using QNN algorithm

Benchmark Test | Comparison scross training algorithms
& Calewlatled Crilical value
5-hit Parity 39.552
Breasl Concer 3.057
Diabetes 22.511 14,057
Mulli-Clags 11.889
| sunspors 44028
OVERALL J6.91%

Table 5.11  Overall ranking of QNN training algorithm variants

Rank Training Sumof | Avg. Tmining Time
Alporithm Ranks time (&) Ranking
1 ONN3 1362.5 45.7 4
2 ONN9 1397 51.8 6
3 QNN 1405 45.6 5
4 LM 1406 44.1 k]
5 QNN-C2 1297.5 4.7 7
& QONNG 1683 30.0 2
1 GDX 2188.5 14.3 1
g QNNS 2300.5 1273 ]

The results in Table 5.11 show that the QNN3 algerithm came out on top. The
second to fifth ranked QNN9, QNN, LM and QNN-C2 algorithms have scores that
are very close to each other, and also close to QNN3, In fact the QNN-C2 algorithm
was ranked fifth but has a sum of ranks lower than the QNN and LM algorithms, and
only half a ‘point’ behind QNN9. The difference in the rankinp shown, which is
obtaitied from Table B.26 which ranks the sums obtained in Table B.25, and the Sum
of ranks obtained directly from Table B.25, is due to the fact that the diffefence in
performance is not significant. These four algorithms can in fact be considered to
have equal ranking. The remaining algorithms had much higher {worse), and
sipnificantly different, scores, The GDX algorithm is second from bottom, with only
the QNN3 algorithin coming out worse,

_ These overall rankings are quite different from the ‘best case’ results, where
neither QNN3 nor QNNS performed spectacularly well. Also, the QNNG6 alporithm,
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which appeared to be the 'best’ in three out of the five tests, was only ranked sixth,
However, these rankings pive a better overall picture as they take into account
perfermance across all possible activation function combinations.

The last two coluinns of Table 3.11 consist of the average training time of the best
case networks and a ranking of the algorithms based on this average. The average
time here js just to give an indicstion of the relative speed of the algorithms. It does
net take into account differences in complexity of the problems and therefore the
weighting given to the problen: in working out the average. The time based ranking
shows the GDX to be the fastest, as expected from a first-order algorithm. The
QNNG atgorithm is ranked second, and is the only QNN variant faster than LM, All
other times piven are fairly close to that of LM, except for QNN3, which, not
surprisingly, has the worst time performance, The GDX and QNN6 algorithms
appear to compensate for their poor accuracy ranking by being fast to train. The
QNNS algorithm, however, has no such saving grace, coming out worst on both
counts,

The results obtained lead to  number of conclusions. Firstly, the standard QNN
has been shown to have performance comparable to the LM algorithm. One of the
motivations in formulating the QNN algorithm was the hypothesis that using the
recurrent network to replace the Hessinn matrix inversion would result in shorter
training times. However, o time saving was only scen in some cases, and not others.

The secend conclusion is that the QNN3 has the best method to adaptively
determine the step size, d. The method used in QNN9, however, comes in a close
second. Leoking back at the actual methods used to modify the step size for these
two variants, it can be seen that the methods are almost identical, except for the fact
that in QNN3 the value of d is updated every time u is updated, whereas i QNN9
the step-size d is updated every epoch.

The third conclusion is that the constraint wsed in the QNN-C2 algorithm works
and can improve performance in some cases. The QNN-CZ algorithm has
perfermance comparable to that of the standard QNN, Even though it has an overall
rank lower than QNN, the sum of ranks indicates that there is no significant
difference in performance, The QNN-C2 is also able to work well when some of the
other QNN variznts had difficulty, such as with the Parity benchmark test.

Overall, the results show that the QNN algorithm and its variants tested are
capable of achieving training performance similar to the second-order LM algorithm,
except for QNNS, They are also able to train networks to achieve better accurscy
than the first-order GDX algerithm, but have longer training times, This means that
the QNN algorithm is a viable training algorithm for SIANNs,
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5.6 Conclusion

In this chapter we have shown how the idea of using & recurrent neural network for
bound constrained quadratic optimisation can be developed into a training algorithm
for feedforward neural networks. The Quadratic Neural Network (QIWNN) algarithm is
a second order alporithm that avoids the need to invert the Hessian matrix by using a
recursive equation that simulates a recurrent neural network.

The QNN elgorithm has been successfully applied to train SIANNS on a number
of standard benchmark problems, and the results show that this algorithm is able to
train the networks to achieve results comparable to or better than the LM and GDX
algorithms. )

The QNN algorithm has been shown to be a viable training algorithm that is
capable of producing good results. It has the added advantage of being able to readily
incorporate constrints that may need to be imposed during training. A number of
variants have also been formulated and tested. These variants were formulated to
reduce the number of free patameters that need to be set, and to incorporate different
constraints on the weight updates, Two variants that adaptively modify the step-size,
QNN3 and (NND, are able to achieve better performance than the standard QNN.
The QNN-C2 constrained version has also been shown to improve performance in
some cases, and has overal{ performance comparable to standard QNN.
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Chapter 6

Further Development of Shunting Inhibitory
Artificial Neural Networks

6.1 Motivation

Originally, the SEANN was proposed as a fully connected structure (Bouzerdoum,
1999); that is, each input is fed directly inte one shunting neuron as its excitatory
input, whereas afl inputs are weighted and fed in as inhibitory inputs (refer Section
3.6). Therefore, the fully connected ‘standard’ SIANN structure has as many
shunting neurons as there are inputs. Using this basic SIANN structure, the size of
the network is actvally determined by the dataset, The number of neurons in the
shunting layer(s} is determined by the number of data attributes, whereas the number
of neurons in the output layer is determined by the number of class labels, While this
architecture removes the need for finding an optimal netwoerk structure, it was found
to be too restrictive in some problems. In particular, when the data has a farge
number of inputs and outputs, the resulting netwark structure is inordinately large.
This leads to increased cornputational complexity and training time.

In this chapter, enhancements to the SIANN structure are proposed that would
remove the restrictions on the size of the network, in particular the number of
shunting nevrons. The enhancements allow the size of the network to be reduced for
problems that have a large number of inputs and outputs, resulting in reduced
computational complexity and better generalisation, Conversely, if the number of
inputs is small, then the networks structure can be expanded to have more shunting
neurens than inputs; this provides for additional computational capacity, if required.
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The following section cutlines the development of enhancements to the standard
SIANN structure. The third section presents experimental results, comparing the
performance of the enhanced structures with the standard SIANN structure, Finally,
conclusions are given in the fourth section,

6.2 The Enhanced SIANN structure

This section describes the development of the enhanced SIANN structures. The
metivation and implementation of the reduced SIANN structure are presented next.
This is followed by the cxpanded SIANN structure. The third subsection pl:esents the
Enhanced SIANN structure; it combines the previous two, seemingly contradictory,
structures (expanded and reduced structures) inte one generic structure,

6.2.1 Reduced SIANN siructure

The first enhancement is to reduce the complexity of the SIANN structure when
there is a large number of inputs. One reason for doing this is that smaller networks
are less likely to over-fit the data and therefore are more likely to generalise well,
The smaller number of weights would zlso help reduce the computational complexity
and memory requirements during training, thereby reducing the time to train the
networks.

The *reduced® SIANN structure has less shunting inhibitory neurons than there are
inputs, while the number of output neurons remeins equal te the number of outputs
requited. All the inputs are fed inta the network as inhibitory inputs, whereas only
the first m inputs can be fed in as excitatory inputs, where m is the number of
shunting neurcns in the reduced structure. The restriction on the number of excitatory
inputs is due to the fact that each shunting neuron can enly have cne unweighted
excitatory input, The Reduced STANN structure is shown in Fig. 6.1.

6.2.2 Expanding the SIANN structure

The second case considered is when the problem on which the network is being
trained is too complex for the standard SLANN structure, In this case the network has
insufficient neurons, and therefore insufficient weights, to be able to map the input-
output relationship as required by the problem. This could happen when the number
of inputs is a small, resulting in a small number of neurons in the shunting layer. The
solution would be to provide the required extra ‘processing power’ in the form of
additional neurons.
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Fig. 6.1: The ‘Reduced’ SIANN structure.

Two ways of adding neurons to the SIANN structure have been considered. The
first method is to add extra neurons to the shunting layer. These additional neurons
only have a bias term as the solitary excitatory input, but all network inputs are fed in
as inhibitory inputs (refer Fig. 6.2). These additional neurons have been dubbed
‘interneurons’ based on biological parallels. This method allows neurons to be added
incrementally to provide additional computational capacity as required, without
changing the fundamental methods of operation and training.
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Fig. 6.2: The ‘Expanded’ SIANN structure.
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Fig. 6.3: The Multi-layer SIANN structure.

The other method of increasing the processing power of the network is to add
additional layers of shunting neurons. The result is a Multi-layer SIANN structure, as
shown in Fig. 6.3. This is analogous to MLPs, where the number of hidden layers can
be increased for complex problems. In its simplest form, the number of neurons in
each shunting layer would be the same. Adding layers not only adds additional
weights through the extra neurons, but also allows for more complex input—output
characteristics to be formed due to the multiple layers. This gain comes with an
associated cost in the form of increased computational complexity during training.
The training algorithms would need to be modified or enhanced slightly to be able to
handle the multiple layers of shunting neurons.

6.2.3 The generic Enhanced SIANN structure

In order to be as flexible as possible, and to avoid a proliferation of variations to the
SIANN structure, the reduced and expanded SIANN structures have been combined
into a single framework. The resulting Enhanced SIANN structure caters for one or
more layers of shunting neurons with a single layer of ‘standard’ perceptron-type
output neurons. The number of shunting neurons in the shunting layers can be varied
arbitrarily, without being restricted by the number of inputs from the previous layer.

As discussed in the preceding sections, networks may have less shunting neurons
than there are inputs from the previous layer. In this case, only some of the inputs are
excitatory (equal to the number of shunting neurons) and the other inputs act only as
inhibitory. For the case where a shunting layer has more neurons than the previous
layer outputs, the additional shunting neurons (dubbed ‘interneurons”) are fed in with
a constant bias as the only excitatory input, but with the normal variable inhibitory
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inputs. This gives greater freedom in selecting the optimum network structure. An
example of the generic Enhanced SIANN is shown in Fig. 6.4.
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Fig. 6.4: The generic Enhanced SIANN structure.

6.3 Benchmark Test Results and Analysis

The Enhanced SIANN structures were tested on the same set of benchmark problems
as the in the previous two chapters, and the results obtained are presented in this
section. For each benchmark problem, a ‘Reduced’ SIANN structure and an
‘Expanded’ structure (either multi-layer or single SIANN layer with additional
neurons) was tested and compared to the performance of the ‘standard’ SIANN. For
problems with a small number of inputs, such as the 3-bit Parity and Multi-Class
problems, the ‘Expanded’ structure chosen was a single-layer SIANN with additional
neurons. For the other problems, with a relatively large number of inputs, the
expanded structures used were Multi-layer SIANNs that had the same number of
shunting neurons in the first layer as the ‘Reduced’ SIANN for that problem, and a
smaller number of neurons in the second shunting layer. In all cases, there are fewer
shunting neurons and synaptic weights in the multi-layer SIANN structure than in the
‘standard’ STANN.

As in the previous chapters, 50 networks were generated for each structure. These
networks were trained using the Gradient Descent with adaptive learning rate and
momentum (GDX), Levenberg-Marquardt (LM) and Direct Solution combined with
GDX (DS-GDX) algorithms. The initialisation and training parameters used are the
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same as given in Chapter 4, for consistency. All possible combinations of activation
functions were tested for each structure. For each benchmark problem, the mean
error values of all combinations of network structures, training algorithms and
activation functions are shown in Tables B.27 to B. 31 in Appendix B. The results of
the best performing activation function combinations for each structure and training
algorithm are presented in the following sections.

6.3.1 Wisconsin Breast Cancer

The results obtained using the 9-4-1 reduced SIANN, the 9-4-2-1 multi-layer SITANN
and the *standard® 9-9-1 SIANN are shown in Table 6.1 and Fig. 6.5. As in previous
chapters, the graphs are broken into two sections: the top part shows the mean and
median test error percentages achicved by the networks with the best performing
activation function combination for the given network structure and training
algorithm, and the second part shows the corresponding mean training times. Note
that the median is ofteh zero, and hence it is not visible on the graph.

Ity most cases more than half of the networks achieved perfect classification result,
resulting in median error rates of 0%. The exceptions are the Reduced SIANN
trained with GDX (16%), the Expanded SIANN trained with GDX (42%) and the
Standard SIANN trained with DS-GDX (36%). The best appears to be the Standard
SIANN trained with LM, with 74% of the networks achieving 0% classification
error. The mean error rates range from 0.20% to 0.55%.

Comparing the performance across the different structures, the trends are different
for the different algorithms. The GDX algorithm achieved best results with the
standard SIANN structute, achieving the lowest mean error (0.20%) jointly with the
LM algorithm; all other structures have mean errors in excess of 0.5%. The Reduced
SIANN had the second best accuracy, with the Multi-layer STANN having the worst
classification accuracy. The training time required for GDX was short, generally the
shortest of the three algorithms. The Reduced SIANN had the shortest training time
for GDX, and the Multi-layer SIANN the longest.

The LM algorithm also achieved the best mean error rate of 0.20% with the
standard SIANN, but the reduced SIANN had only a slightly higher error ((1.23%).
However, the time taken to train was about 20% less for the reduced SIANN. The
mulii-layer SIANN had the highest error rate (0.3}%), among all the networks
trained with LM, and a training time between those of the other two structures.

Using the DS-GDX algorithm, on the other hand, the best performance was
obtained with the reduced SIANN (0.26%), the multi-layer SIANN next and the
standard SIANN having the worst errer {0.54%). In terms of training time, however,
the standard SIANN was fastest, followed by the reduced SIANN, the Multi-layer
SIANN being the slowest.
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Table 6.1 Best results for Wisconsin Breast Cancer dataset using Enhanced

SIANNs
SIANN | Training |Activation| Performance Avg. Epochs Test Error Avg.
Structure | Algor. functions (% of runs) gz}i
Sh |Out| = | 0% [20%| Al | = | 0% | Best | Mean | 95% CI | Med. (s)
goal | err | < | runs | goal | Error| (%) (%) (%)
Reduced | GDX |Exp|Lin| 0 161100 | 145 | * 1411 0.00 | 0.55 | £ 0.09] 056 | 9.0
9;;;‘ LM |[Exp|Lin| 0 | 68]100] 147| * | 136|0.00 | 0.23 |+ 0.10 | 0.00 | 28.6
| weights) | DSGDX | Exp|Lin| 0 | 68|100| 193 | * 184 | 0.00 | 0.26 |+ 0.13 [ 0.00 | 11.7
Expanded| GDX |Exp|Lin| O | 42(100| 187 | * 203 | 0.00 | 0.51 [+ 0.17 | 0.56 | 14.7
9“&;3'1 LM |Exp|Lin| 0 | 56|100| 105| * 85| 0.00 | 0.31 |+ 0.11]0.00 | 30.8
weights) | DSGDX |Exp|Lin | 0 | 54]100] 196 | * 185(0.00 | 047 |+ 0.23 | 0.00 | 17.7
Standard | GDX |Lgs|Lgs| 0 | 66100 | 161 | * 160 | 0.00 | 0.20 | + 0.08 | 0.00 | 10.3
?19131 LM [Lgs|Tnh| 0 | 74]100| 181 | * | 119]0.00 | 0.20 | + 0.10 | 0.00 | 34.8
| weights) | DSGDX [Tnh |Lgs| 0 | 36100 96| * 100 | 0.00 | 0.54 | £ 0.14 | 0.56 | 6.4
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Fig. 6.5: Mean and median test error and mean training time for the Wisconsin
Breast Cancer dataset using Enhanced STANNS .
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Overall, the standard SIANN performed best, the exception being with the DS-
GDX algorithm, This is not surprising given that this is the largest structure tested,
both in terms of number of neutons as well as number of synaptic weights.
Additionally, the standard SIANN has all inputs serving as excitatory and inhibitory,
while the other networks have only the first few inputs fed as excitatery, with the
remaining inputs serving as inhibitory only. The drawback of longer training times
due to more complex computation was only seen with the second-order LM
ulgotithm, The reduced SIANN had the benefit of reducing the training time required
by the LM algorithm, without significantly changing the accuracy; it also pot the best
results with the DS-GDX algorithm. The Multi-layer SIANN, though having more
neurons than the reduced SIANN, had lower overall accuracy when cotnpared to the
Reduced SIANN. It also had the lengest training times for the GDX and DS-GDX
algorithms, thereby ending up as the *worst’ overall.

6.3.2 Plma Indians Diabetes

The rasults for this test, using the 8-3-1 reduced SIANN, the 8-3-2-1 nwlti-layer
SIANN and the ‘standard’ 8-8-1 SIANN, are shown in Table 6.2 and Fig. 6.6,
presented in the same format as in the previous test.

The GDX performed the worst, with the highest mean emor rates overall
Additionally, at best only 20% of the networks were able to achieve less than 20%
error, which is the marker for a *good’ result with this benchmark problem. Both the
standard SIANN and the Reduced SIANN had similar performance when trained
using GDX, both in terms of accuracy and training time; the multi-layer SIANN
performed the worst.

The LM algorithm had the best everall accuracy and the same trend of reducing
training time as the size of the network reduced, from the standard SIANN te the
Multi-layer down to the Reduced SIANN. The accuracy also followed the same trend
as the Breast Cancer benchmark, with the standard SEANN having the best accuracy
followed by the Reduced SIANN, The Multi-layer STANN had the worst mean error,
as was the case for each of the three algorithms.

The best mean performance was cbtained using the DS-GDX on the standard
SIANN, with a mean error of 19.82%, and the fastest training time by far. The only
other combination to achieve a mean error under 20%% was the LM algorithm on the
standard SIANN, but that took more than 6 times longer te train. The speed
advantage of the DS-GDX was only with the standard SIANN; it had similar training
titnes to GDX with the other two network structures,

Overall, the standard SIANN again appears to achieve the best performance in
terms of aceuracy, but the Reduced STANN helps to shorten the training time for the
LM and GDX alporithms. The probable reasons for why the standard SIANN
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achieves the best accuracy ave the same as for the Breast Cancer problem. Firstly, it
is the largest structure in terms of neurons and synaptic weights. Second, all eight
inputs are fed in a5 both excitatory and inhibitory, whereas for the other structures
only three inputs serve as excitatory inputs, with the rest being inhibitory only.

6.3.3 The 3-bit parity problem

The results for the parity problem, presented in Table 6.3 and Fig. 6.7, are fora 3-
2-1 Reduced SIANN, a 3-4-1 Expanded SIANN, and ‘the standard’ 3-3-1 SIANN.
Nate that in g1l cases the median is zero, and so is the mean in two cases, hence these
graphs are not visible on the plot.

The results show significant variations in performance, as the number of neurons
is dacreased or increased. Reducing the size of the network, by just removing cne
shunting neuron, results in significantly higher error rates. The mean error rate jumps
from between 0.50% and [.25% to between 8.50% and 11.50%, and the percentage
of networks achieving 0% ervor drops from around 95% to between 48% and 60%.
Conversely, just adding one additional shunting neuron {without an excitatory input)
yields *perfect’ results when frained with the LM and DS-GDX algorithms, i.e.,
100% of networks achieving 100% correct classification.

In terms of training time, the Reduced SIANN took longer to train: between 2 and
8 times longer than the standard SIANN. The Expanded SIANN fraining times, on
the other hand, were shorter. The Expanded SIANN is able to increase accuracy as
well as reduce training time.

The sensitivity to the size of the network can probably be attributed to the fact that
there is only a stmall number of inputs (three) and small numnber of training examples
(eight). Reducing the size of the structure resulted in only 2 out of 3 inpwts being
excitatory as well a5 cutting the number of weights by a third, for what is essentiatly
a fairly complex problem for neural networks. The addition of a spare shunting
neuron {with enly inhibitory inputs) would seem to provide the extra computational
power to easily solve this problem, These resuits show the advantage of expanding
the standard SIANN structure on some problems, particularly when the number of
inputs is small, resulting in a small number of shunting neurons in the standard
struciure.
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Table 6.2 Results for Pima Indians Diabetes dataset using Enhanced SIANNs

SIANN | Training |Activation| Performance Avg Epochs Test Error Avg.
Structure | Algor. | fUnctions | oz of runs) CPU
Sh [oOut| 2 [ 0% |20%| Al | > | 0% | Best | Mean | 95% CI | Med. "('Se
goal | err | < | runs | goal | Error | (%) (%) (%)

Reduced | GDX |Tnh|Toh| 0 | 0 | 20| 192| * | * |1823|2096/|+ 031 |2135] 119
8(';_',‘ LM |Exp|Toh| 0 | 0 | 56| 58| = | * [1667]2018]+ 036 (1979 11.9
weights) | DSGDX |Exp|Lin| 0 | 0 | 42| 189 * | * |1823|2062 |+ 038 [20.57] 118
Expanded| GDX |Tnh|Toh| 0 | 0 | 14| 178| * | * |1875|21.55| + 042 |2135] 169
8‘34'5)“ LM |Exp|Toh| 0 | 0 | 46| 80| * | * |17.71[2043 | + 0452031 | 248
DSGDX |Tnh|Lin| 0 | 0 | 30| 178] = | * |17.19]20.59 | + 0.38 | 2083 | 17.0
Standard | GDX |Tnh|Lgs| 0 | 0 | 14| 195 * | * [17.71]21.03 | + 029 2135 132
8(‘987')‘ LM |Lgs|Tnh| 0 | 0 | 58| 182] * | * |17.71]|19.88] + 032 [19.79] 389
DSGDX |Lgs|Lgs| 0 | 0 | 68| 94| * | * [1875]1982 |+ 029[1979| 6.4
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Fig. 6.6: Best, mean and median test error and mean training time for the Diabetes
dataset using Enhanced SIANNs
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Table 6.3 Best results for the 3-bit Parity problem using Enhanced SIANNs

SIANN | Training |Activation| Performance Avg. Epochs Test Error Avg.
Structure [ A gor. functions (% of runs) CPU
d no. off i
aI\:veing(:n;) Sh [Out| < | 0% |20%| All | = | 0% | Best | Mean | 95% CI | Med. (x;e
goal| err | < | runs | goal | Error| (%) (%) (%)

Reduced | GDX |[Tnh|Tnh| 46| 48| 88| 756 | 512 | 579 | 0.00| 850 + 3.16| 0.00| 49

3('1251 LM |Lgs|Tnh| so| 60| 76| 700| 399 | 500 | o0.00| 875| + 338 | 0.00| 13.8

weights) | DSGDX | Tnh | Lin | sa| 52| 68| 59| 223 | 223| 0.00[11.50 | + 3.82| 0.00| 4.1

Expanded| GDX |Tnh|Lgs| 96/ 96[100] 301 | 271 | 271 | 0.00| 0.50| + 0.69| 0.00| 2.0

34-1 1 1M |Exp|Toh| 100/ 100 [100] 48| 48| 48| 000| 000+ 000| 000] 1.1

(29)
DSGDX | Tnh | Lin | 100{ 100 [100| 48| 48| 48| 0.00| 0.00| + 0.00| 000| 0.5

Standard | GDX |Tnh|Lgs| 94| 94| 96| 352 | 311 | 311 | 0.00| 125| + 1.44| 0.00| 23

3-3-1 LM |Exp|Lin| 96| 96|100| 84| 46| 46| 000| 0.50| + 069] 0.00| 17

(22)
DSGDX |Tnh | Lin [ 94| 94100 169 | 116 | 116 | 0.00| 0.75| + 0.83 | 0.00| 13
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Fig. 6.7: Mean and median test error and mean training time for 3-bit parity dataset
using Enhanced SIANNs
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6.3.4 Artificial Multi-Class Problem

The networks used for the multi-class problem were the Reduced SIANN (2-1-3), the
Expanded SIANN (2-3-3) and the standérd SIANN (2-2-3). The results are shown in
Table 6.4 and Fig. 6.3. Note that the error rates of the Reduced SIANN trained with
D&-GDX are around 34%, which exceeds the range of the ordinate in Fig. 6.8; this
was done deliberately so as to make the other variations clearer.

‘The results show that the mean error rate tends to decrease as the size of the
network is increased, with the most pronounced change being for the DS-GDX
algorithm (from 34.76% down to 5.57%). For all algorithms, the Reduced SIANN
gave the lowest classification accuracy, whereas the Expanded SIANN gave the
highest accuracy. This dependency on size is not surprising given the small network
sizes (19 weights for the standard SIANN and only 11 for the Reduced STANN) and
the relative complexity of the problem having overlapping classes. The Reduced
SIANN has only one shunting neuron, yet it has comparable performance to those of
larger structures when trained with GDX and LM; this Is a testimony to the power of
the shunting neuron.

The GDX algorithm, surprisingly, achieved the best mean error results for each of
the structures tested. The performance of the networks trained using LM were close
to those trained with GDX, with the error rate difference being less than 1%, The
DS-GDX algorithm was much more dependent on the variations of size, but achieved
the error level of LM for the Expanded SIANN. The Expanded SIANN structure,
trained with the LM and DS-GDX algorithms, achieved the best individual network
performance of 3.33% emor.

In terms of training time, the DS-GDX algorithm was consistently the fastest,
followed by GDX, then LM. The GDX algerithm not only achieved lower emor rates
than LM, but it was 5 to 13 times faster, The mean training times for GDX and DS-
GDX algorithms were relatively consistent across the network structures. However,
the LM training time increased for the Reduced SIANN, with the average training
time more than 3 times that of the standard SIANN; due to the fact that the average
number of training epochs was more than 3 times greater, This indicates a greater
effort to achieve the results with the smaller structure.

_ The Multi-Cless problem is one of the ‘classic’ problems that highlight the need

to expand the SIANN structure. It is a moderately complex problem with a very
small number of inptts. Even though the standard SIANN does well to achieve the
results it does, given the relatively small size of the network, the advantage of being
able to use a larger structure with more weights is shown, in terms of accuracy, Fig.
6.9 shows the decisicn boundary formed by a 2-3-3 enhanced SIANN.
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Table 6.4 Best results for Multi-Class dataset using Enhanced SIANNs

SIANN | Training |Activation| Performance Avg Epochs Test Error Avg.
Structure | Algor. | functions | og of rung) CPU
Sh |Out| > | 0% |20%| Al | > | 0% | Best | Mean | 95% CI | Med. t'(';;e
goal | err | < | runs | goal | Error | (%) (%) (%)

Reduced | GDX |Exp|Lgs| 0 | 0 [100| 552 * | * | 467| 589|+025 | 600| 266
2('11;3 LM |Exp|Lgs| 0 |0 | 96| 776 * | * | 400| 669|+170 | 533 341.7
weights) | DSGDX |Exp|Lgs| 0 [ 0 | of 173| * | * |3467]3476|+006 |3467| 89
Expanded| GDX |Exp|Tnh| 0 | 0 |100| 552 * | * | 400| 500|+018 | 533| 292
2(237)3 LM |Lgs|Tnh| 0 | 0 [100] 200| * | * | 333| 560|+023 | 6.00]| 149.0
DSGDX |Exp|Lin| 0 | 0 |100| 189 * | * | 333| 557|+019 | 600] 10.1
Standard | GDX |Exp|Lgs| 0 | O [100| 377 | * * 4.00| 547|+0.16 | 533| 194
2(']25):" LM |Exp|Les| 0 | 0 [100| 228 * | * | 400| 569|+026 | 533| 103.0
DSGDX |Exp|Lin| 0 | 0 | 90| 206| * | * | 533| 939|+224 | 667 109
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Fig. 6.8: Best, mean, median test error and mean training time for Multi-class dataset
using Enhanced STANNs.
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Multi-class decision boundary by 8 2-3-3 Enhanced SIANN network
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Fig. 6.9: Decision boundary formed by a 2-3-3 Enhanced SIANN for Multi-class
problem.

6.3.5 Sunspot Time Series

The 10-5-1 Reduced SIANN, the 10-5-3-1 Multi-layer STANN and the standard 10-
10-1 SIANN were trained and tested on the Sunspots time series problem. The
results are shown in Table 6.5 and Fig. 6.10. The figure shows the best, mean and
median error rates of the test set ARV metric, defined in Chapter 4, as well as the
average training times.

The general trend, for all training algorithms, is that the standard SIANN structure
has the best accuracy followed by the Reduced SIANN, with the Multi-layer SIANN
coming out worst. The trend is most pronounced for the GDX algorithm, with the
mean test ARV for the Multi-layer SIANN 2 to 3 times that of the other structures.

The training time results show that the Reduced SIANN takes only marginally
less time than the Standard SIANN to train, despite having half the number of
synaptic weights. On the other hand, even though the multi-layer SIANN has fewer
weights than the standard SIANN, the time taken to train was higher for all three
algorithms, as the number of epochs required was higher. This is most pronounced
with the LM algorithm, with the Multi-layer SIANN taking 9 times longer to train
compared to the standard SIANN. The small saving in training time with the
Reduced SIANN comes at the cost of a decrease in accuracy compared to the
standard SIANN. It is this potential saving in training time that motivated the
development of the Reduced SIANN structure, but the cost in accuracy does not
always justify the saving.

The Multi-layer SIANN did not perform well, coming out worst both in terms of
accuracy and training time, with all three training algorithms.
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Table 6.5 Results for Sunspots dataset using Enhanced STANNs

SIANN | Training | Act-fns Performance | Avg Test MSE Test ARV Avg.
Strict Algor. (% of runs) | Epoc CPU
Sh | Out | = [allin| 80% hs Best | Median [ Best |Median| Mean | 95%CI | time

gl| tol | tol (s)

Reduc. | GDX |Tnh|Tnh
”2'75]" LM |Lgs|Tnh
wts) | DSGDX | Tnh | Lin

Expand| GDX | Tnh | Tnh
10'3'3' LM Lgs | Lgs
(93 w.) | DSGDX | Exp | Lin
Stand. | GDX | Tnh| Lin

10-10-1
(141 w) Lo

30| 98| l64| 0.0089| 0.0158| 0.106| 0.189| 0.213| +0.028] 6.7
2 100 60| 0.0073| 0.0104| 0.087| 0.125| 0.127| +0.004| 8.4
16| 100| 163| 0.0082( 0.0101| 0.098( 0.122| 0.123| £0.005| 6.9
4| 68| 165( 0.0122| 0.0311| 0.147] 0.373| 0.515| £0.097| 10.2
98| 504| 0.0080| 0.0107| 0.096| 0.128] 0.133| +0.006 90.6
32| 100| 169 0.0084| 0.0101 0.100| 0.121| 0.133| £0.016( 10.5
14| 98| 147| 0.0085( 0.0134| 0.102| 0.161] 0.174] +0.020| 6.8
8| 100 54| 0.0075( 0.0093| 0.090{ 0.111| 0.112] £0.003| 9.8
40| 100| 161| 0.0077] 0.0097| 0.096] 0.121| 0.119] +0.002| 7.6

Lgs | Lin
DSGDX | Lgs | Lin
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Fig. 6.10: Best, mean and median test error and mean training time for Sunspots
data using Enhanced SIANNS.
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6.3.6 Analysis of Resulis

From the results presented in the preceding subsections, the cases where the number
of inputs is small clearly highlight the advantage of being able to expand the SIANN
structure. The Expanded SIANNs have higher accuracy and most of them also have
shorter training times. Conversely, reducing the number of shunting neurons results
in lower performance, sometimes dramatically lower, as the netwotk becomes too
small to handle the problem. Either the error rate or the training time goss up
significantly, or both. However, the reduced SIANN structure can still produce good
results when the number of inputs is large; for example, the 8-3-1 reduced SIANN
structure achieved the lowest “best-case” error of 16.67% on the Diabetes problem,
In any case, these results justify the use of the ‘interncurons’ in the single-layer
Expanded SIANNs,

The benchmarks tests with a relatively large number of inputs were tested with
Reduced SIANNS oad Multi-layer SIANNs with fewer shunting neurons than system
inputs, The overall results show that the Reduced SIANNs are able to reduce the
training time required, especially for the second-order LM algorithm, but with some
loss in accuracy. The standard SIANN networks had the best accuracy in most cases,
while the Multi-layer SIANNs generally had the worst accuracy even thongh they
had larger structures than the Reduced SIANNs, The poor performance of the Multi-
layer SIANNs could possibly be due to the error surface becoming too complex with
the additiona! shunting layer, thereby making it harder to train.

The reduction in training time may justify the use of the Reduced SIANNs in
some cases, but the time saving does not always justify the loss in accuracy. This is
more so for the *simpler’ algorithms such as GDX and DS-GDX, where the time cost
savings are not very great, if any, but the loss in accuracy tends to be high, The Joss
of accuracy may not be due to only the reduction in the number of weights, but also
due to the fact that only a subset of the inputs are fed in as excitatory,

The choice of inputs that are fed in as excitatory is quite arbitrary. In all the
benchmark tests performed so far, it was the “first’ few inputs that were fed in as
excitatory; the remaining inputs are fed in as inhibitory inputs only. This was done
for the sake of simplicity; furthermore, in real-life situations the role of each input is
not known beforehand, unless the problem definition itself gives an indication of
which inputs should carry more weight, An example of the problem definition
providing a clue is the Sunspots problem. The *first’ input is the *latest’ observation
i.e. the point that js temporally closest to the predicted cutput, and inputs are sorted
accerdingly. This means that a Reduced SIANN should have the ‘closest’
observation inputs used as excitatory and the earlier values as inhibitory only. For
other problems, it may not be possible to arrive at such an ‘ordering’ of the inputs
without some pre-processing and analysis, if at all.
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6.3.7 Results obtained by re-ordering inputs

In order to get a feel of the effect of changing the excitatory inputs, the best
performing Reduced SIANNs for the Breast Cancer and Diabetes problems were
tested with different input permutations so that different inputs could serve as
cxcitatory. For both datasets, the inputs used previously as excitatory were changed
to inhibitory only and the succeeding inputs were fed as both excitatory and
inhibitory. Tables 6.6 and 6.7 compare the results before and after input-reordering.

For the Breast Cancer dataset, the change in excitatory inputs resulted in an
obvious degradation in performance of all algorithims. It is especially clear for the
LM and DS-GDX algorithms, with the mean error rate up from 0.2% to 0.7% and the
percentage of networks achieving perfect results down from 68% to 30% or less. For
the Diabetes problem, the change shaws a similar trend, with the mean error rate
increasing between 0,1% and 1.3% and the number of networks achieving under
20% ervor drupping by one-third or mare.

These differences were the result of what amounts to arbitrary changes in the
selection of excitatory inputs. Without analysis of the data or experimental results, it
is generally not possible to decide which inputs should be used as excitatory, There is
ulso the possibility of errors or missing values resulting in some inputs being
redundant or causing spurious connections, as is the case with the Pima Indians
Diabetes dataset (Arulampalam & Bowzerdoum, 2002a; Waschulzik et al,, 2000).

To find the *optimal’ network would require not only the selection of a network
structure, but also testing all possible combinations of excitatory inputs for that
structure in order to find the optimal combination; this is not a practical option.
Ideally, there should be a methed that allows all the inputs to the network to serve
both as excitatory and inhibitory. A generalised feedforward architecture that caters
for this is presented in the next chapter,

Table 6.6 Results for Wisconsin Breast Cancer dataset using the 9-4-1 Reduced
SIANN, with re-ordered inputs

SIANN | Training|Activation| Performanee Avg Epochs Test Bror CFrU
Structure | Algor, fimctions (% of ung) time
sh [out| > [0% [20%] Al | > | 0% | Best | Mean | 95% C1 | e, | &
gonl| e | < | wuns | goal | Emwor] (24) (%) {%)

Reduced | GDX |Exp|Lin| 0 | 16]100] 145] * | 141| 0 |0.55|+009]056]| 9.0
941 1 1w |pxp|Lin| o [ esfroo] 1a7] * | 136] 0 |o23is0l0] 0 | 286
psobX|Fxp|Lin| o | 68100f 193] ¢ |1aa] 0 lo2s x003] 0 | 117

Reduced | GDX |Exp|Lin| 0 { 10lw0] 191 = | 132] o lo72 042|056 116
¢ 94-l [Tyng TEw|Lin| 0 | 30]100] 13| * J131] o 0792 020]0.56 | 260
inpots) |DSGOX | ExplLin| © | 22[100]195( + | 187 © | 072 [+ 0160056 | 116
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Table 6.7 Results for Pima Indians Diabetes dataset using the 8-3-1 Reduced
STANN, with re-ordered inputs )

SIAWMN | Training|Actvation| Performance Avg Epochs Test Errar CFl
. Algor. Functions {% of runs) lme
Sh |Oul] 3 | 0% [20%] All | > | 0% | Best | Mean | 95% C1 | Med.|

goal | e | < | runs | goal [Emer| (3) | oo (%)
Reduced | GDX [Toh|Tat| 0 [0 [ 20] 102| » [ « [1m23]2006] + 031 [2135] 110
8301 v fesp|mon] 0 [0 [ 56| ss| * | = [1667|2008]x 0361979 110
DSGDX [ Exp | Lin | 0 {0 [ 42| 189] * | = [i823]2062] 2 032 [2057] 11.8
Reduced | GDX |Toh |Tah| o | o | 10 184] = | * |1927]2227 |2 050 |2088) 118
¢ BN oM [enp[Toh[ 0 [0 | 28] so * | ¢ {1719 2074 2 039 {2057 (2.6
inpuis) |DSGDX |Exp|Lin| o | 0 | 3e] 23| = | » [in71]2076 | + 041 |2057] 11s

6.4 Conclusion

The motivation behind the enhancement of the standard SIANN network strocture
tias been outlined in this chapter. The propesed enhancements allow the network size
to be expanded or reduced as required. Details of the structures and the experimental
results obtained using such structures on benchmarks problems have also been
presented along with fhose of the standard SIANN

The experimental results show that expanding the SIANN structure, by adding
additional shunting neurens, improves the results when tackling complex problems
with a small number of inputs; it helps improve accuracy and reduce the time
required to train the network.

The reduced SIANN structure was obtained by reducing the number of shunting
neurons to less than the nunber of inputs when working on problems with large
number of inputs; this requires some inputs to be used as inhibitory only. The results
show that the Reduced SIANN structure is able to shorten the training time in some
cases, particulatly when using the Levenberp-Marquardt (LM) algorithm, This
reduction generally also results in a reduction in accuracy, as there are fewer weights
to be trained and only & subset of the inputs can be used as excitatory, The selection
of the excitatory inputs was arbitrary and it was shown to have an impact on the
results,

In conclusion, the expanded form of the SIANN has been shown to improve
performance where applicable, but the reduced form has limitations because not all
inputs serve as excitatory. The solution would be to find some method that wonld
enable the SIANNM structure to be reduced without having to make a choice of which
mputs should serve as excitatory and which should serve as inhibitory only; instead,
all inputs should serve as excitatory and inhibitory simultuneously. The next chapter
expands the shunting neuron structure to explore this option.
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Chapter 7

A Generalised Feedforward Neuiral Network
Architecture

7.1 Introduction

In the preceding chapter, we saw that reducing the standard SIANN structure so that
there are fewer shunting neurons than inputs can lead to savings in terms of training
time, In some cases, this reduced structure can perform as well as the standard
SIANN, but more often it is less accurate, This is in part due to the fact that only a
subset of the inputs, cqual to the number of shunting neurons, can be used as
excitatory input; the other inputs can caly exert inhibitory influences on the activity
of the network. Furthermore, there is no simple way of using prior knowledge to
determine which inputs should serve as excitatory and which should not. This
limitation arose from the fact that the shunting neurcn used was allowed to have one
excitatory input enly. It was concluded in the previcus chapter that one way to solve
this dileama weuld be to modify the structure of the shunting neuron to allow more
than one excitatory input.

In this chapter, the shunting neuron model used in SIANNs is expanded to allow
greater flexibility in the network structure, The result is a new neuron model that
combines the shunting neuron model with the traditional perceptron model. We use
this ‘generalized' shunting neuron model in a feedforward architecture, which
henceforth is referred to as the generalised feedforward newral nerwork (GFNN).
The next section describes the generalised shunting revron (GSN) model and the
stracture of the GFNN., The third section presents experimental results cbtained by
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applying GFNNGs to the selected benchmark problems. Finally, the discussion and the
conclusion are presented in Sections 7.4 and 7.5, respectively.

7.2 Development of the Generalised Feedforward Neural Network

In this section, the generalised feedforward nenral network (GFNN} architecture is
developed as an extension of SIANNs. The basic computing element of the SIANN
architecture, the static shunting neuron, is recapped next, followed by the
developiment of the generalised shunting neuron model, then the GFNN architecture.

7.2.1 The Static Shunting Neuron and SIANNs

The starting, point of the development of the new peneralised shunting neuron model
is the static shunting neuron model presented in Chapter 3. This model is shown here
again for convenience. The static shunting neuron is defined by the equation

i +b
¥ = 1 h i
& +f(;zncﬂn]

where x; represents the activity (output) of the jth nevron; J is the input fo the jth
neuron; o s the passive decay rate of the neuron (positive constant); & represents the
bias for the neuron; ey is the connection weight from the ith input to the jth neuran, '
with ¢ being the bias for the activation function; and £ is an activation function
bounded from below.

We define the denominator in (7.1) as the shunting term: for the jth neuron, s,
given by

.0

sp=a;+ f [‘z:':cﬂl,] {1.2)

The term 5 is eonstrained to be pasitive definite so as not encounter a divide by zero
eror (L.e. 8 > 0). This is achieved by imposing a lower bound on the parameter ¢
during the initialization and training phases (refer Chapter 4).

The static shunting neuron model is shown diagrammatically in Fig. 7.1. All
inibitory (shunting) inputs are weighted and fed into an activation function.
However, as mentioned previously, the shunting neuron has only one unweighted
excitatory input, which is the limitation to be addressed. To alleviate this inherent
limitation, a generalised shunting nevuron model is proposed next.
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Activation
Function

— Excitatory input

————— » Inhibitory input

Fig. 7.1: The structure of the static shunting neuron model.

7.2.2 The Generalised Shunting Neuron Model

One of the shortcomings of the shunting neuron model described above was the fact
that each neuron can only have one unweighted excitatory input. This means that
either the network needs to have at least as many neurons as there are inputs, or only
a subset of inputs can serve as excitatory. One way out of this is to have multiple
excitatory inputs weighted, summed and passed through an activation function, as
done with the perceptron neuron. In fact, the proposed new neuron model combines
the perceptron neuron model with the shunting neuron model. The output of this
“generalised” shunting neuron can be described by

(7.3)

It should be noted that both the perceptron neuron and the shunting neuron are
special cases of this new model. The perceptron neuron is a special case of the
generalised shunting neuron where the denominator weights ¢;; are fixed at 0 and a is
set to a constant that makes the denominator equal to 1, depending on the activation
function . Furthermore, (7.3) reduces to (7.1), which models the normal shunting
neuron, when wj; = 1, all other weights w;; are 0, and g is the linear activation
function. We have therefore named this new model the Generalised Shunting Neuron
(GSN) model. The Generalised Shunting Neuron model is shown diagrammatically
in Fig. 7.2.
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Fig. 7.2: The Generalised Shunting Neuron model.

More importantly, the input-output transfer characteristic of a generalised
shunting neuron is adaptive; that is, even when the activation functions f and g, in
(7.3), are fixed, the type of input-output transfer characteristic each computing
element can have varies depending on its synaptic weights. Fig. 7.3 shows some
input-output transfer characteristics of a generalised shunting neuron, having the
logarithmic sigmoid activation function for both fand g; these transfer characteristics
are obtained by simply changing the synaptic weights. More complex characteristics
can be obtained by mixing different activation functions together. This is in contrast
to traditional artificial neural models, such as the RBF (radial basis function) and the
perceptron neurons, which have input-output transfer characteristics of fixed type,
bell-shaped or sigmoid-shaped. This we believe places an artificial constraint on the
type of decision surfaces a particular neuron can produce.

Jankowski & Duch have investigated the role of activation functions in neural
network performance, and have used a number of transfer characteristic, such as
bicentric and extended conic functions, that can produce complex decision
boundaries, thus allowing the number of adaptive units in the network to be reduced
(Duch & Jankowski, 2001; Jankowski, 1999; Jankowski & Duch, 2001). Neurons
with these activation functions have been used in ontogenic and heterogenous neural
networks. The GSN neuron is able to produce similar transfer characteristics, with
the added advantage that it requires only 2N+4 parameters per neuron instead of 3N
or 4N parameters as given by Jankowski & Duch.
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Fig. 7.3: Input-output transfer characteristics of a 2-input generalised shunting
neuron obtained with the same f and g functions, but different w and ¢

weight vectors.
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7.2.3 The GFNN Architecture

The GFNN is a multilayer feedforward neural network architecture consisting of one
or more layers of generalised shunting neurons. In the tests performed here, the
output layer may consist of generalised, sigmoidal or linear neurons. Neurons in each
layer receive inputs only from the preceding layer, calculate their outputs according
to (7.3), and transmit the resulting signals to the next layer, see Fig. 7.4. The GFNN
architecture as defined does not have any restrictions on the number of neurons per
layer or number of layers. The only effect the problem definition has on the network
structure is on the number of output neurons, which corresponds to the number of
outputs required by the problem.

It should be noted that GFNNs may also contain shunting or perceptron-type
neurons in their hidden layers, as they are special cases of the Generalised Shunting
Neuron. In other words, the GFNN is a hybrid architecture combining shunting-type
and perceptron-type neurons. In this chapter, only the two simplest GENN structures
are considered. The first is a single layer of one or more generalised shunting
neurons, the simplest of which is a single GSN. The second structure consists of one
hidden-layer, containing one or more GSNs, and an output layer of linear or sigmoid
neurons. These two network structures are denoted by the prefix ‘G’ for the single
layer network, and by ‘GP’ for the 2-layer network, followed by the size of the
layers. The letters indicate the type of neuron in each layer; ‘G’ for GSN, and ‘P’ for
perceptron-type neurons. For example, G 9-1 denotes a single GSN neuron with 9
inputs, whereas GP 8-2-1 denotes a two-layer network with 8 inputs, 2 GSN neurons
in the hidden layer, and one output neuron. The ability of the GSN to produce
complex decision boundaries means that these simple structures are capable of
handling most problems, as shall be shown experimentally in the following section.

Generalised Ouput
Shunting Neurons
Inputs Neurons (Perceptrons) Outputs

Yy

Yz

Bias

/ (excitatory only)
Iy / — s -

Excitatory and

- sy
s Bias (excitatory lnhu!?otory synapses
i and inhibitory) ) Exc:tato%;ynapse
X o

Fig. 7.4: The Generalised Feedforward Neural Network architecture.

142



A GENERALISED FEEDFORWARD NEURAL NETWORK ARCHITECTURE

7.3 Benchmark Test Results and Analysis

The GFNNs were tested and compared to SIANNs on the same set of benchmarks
problems used in the previous chapters and the obtained results are presented in this
section. For each benchmark problem, two types of GFNNs were tested. The first is a
single layer of GSNs, with the number of neurons equal to the number of outputs
required. For most of the problems this means a single GS neuron, with the exception
of the Multi-class problem that has 3 GSNs. The second GFNN structure tested is the
simplest two-layer GFNN structure - a GP n-2-1 structure (2 GSNs and a perceptron
output), or in the case of the Multi-class problem a GP 2-2-3. Examples of these
network structures are shown in Fig. 7.5.

These GFNN structures were trained and tested and their performance compared
to the ‘standard’ SIANN. As in the previous chapters, 50 networks were generated
for each structure, and these were trained using the Gradient Descent with
momentum and adaptive learning rate (GDX) and the Levenberg-Marquardt (LM)
algorithms. The multi-layer GFNNs and SIANNs were also trained using the Direct
Solution-GDX (DS-GDX) algorithm. The single-layer GSN networks could not be
trained using the DS-GDX algorithm as the algorithm requires an output layer of
linear or sigmoid neurons to work. The initialisation and training parameters used are
the same as described in Chapter 4.

The GSN neurons were tested with various combinations of activation functions
in the numerator and denominator. Linear (/in), hyperbolic tangent sigmoid (inh),
logarithmic sigmoid (/gs) and exponential (exp) activation functions were used for
the numerator. The constraint on the shunting term given in (7.3) requires the
denominator activation function to have a lower bound. Therefore the linear
activation function could not be used in the denominator. The output perceptron
neurons used had linear, logarithmic sigmoid or hyperbolic tangent activation
functions. The results of the ‘*best performing” activation function combinations are
shown in the following sections. The full set of mean error values, for all possible
combinations of activation functions, is given in Tables B.32 to B.36 in Appendix B.

Generalised Generalised Quput
Shunting Shunting Neuron
Inputs Neuron Output Inputs Neurons (Perceptron)  Output
(8 + w—‘ Y, 1, ——’.T -/ ¥
> / Bios

(excaateey oniy)

7
/ Buss (excitstory
| / and Inhibitory)
: —#.‘ I, -
/ / /

/ Bias (excitatory —_— — - Exatatory ano
} and inhibitory) Inhibitory
1 'y ————p Excitatory oty

a) G 3-1 GFNN b) GP 3-2-1 GFNN
Fig. 7.5: Examples of GFNN structures: (a) G 3-1 network and (b) GP 3-2-1 network
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7301 Wisconsin Breast Cancer dataset results

The results obtained using a single GSN (G 9-1), a GP 9-2-1 GFNN and the
‘standard' 9-9-1 SIANN trained on the Wisconsin Breast Cancer problem are
presented in Table 7.1 and Fig. 7.6. As in previous chapters, the praphs are broken
into two sections: the top part shows the mean and median test etror percentages for
the best performing activation function combination for the given network structure
end training algorithm, and the second part shows the cotresponding mean training
times, Note that the median is often zero, and hence it is not visible on the graph,

The G 9-1 network, consisting of a single generalised shunting neuron, trained
using the GDX algorithm, had the lowest average emor (0.16%) with 84% of
networks (neurons) able fo achigve perfect classification, i.e. 0% error. This simple
structure was also the second fastest to train, next to the SIANN trained with DS-
GDX. The single neurons trained using the LM algorithm did not work that well,
with an average error of 0.44% and ‘only’ 22% of them achieving perfect
classification.

The GP 9-2-1 GFNN trained with GDX did not do as well as the single neuron, It
had the second best average error, but also the second longest training time. The GP
9-2-1 GFNN trained with LM had one of the highest mean error rates {0.49%), but
still had almost half the networks achieving perfect classification. It could also be
trained fast, more than twice as fast as a SIANN trained with LM, When trained with
DS-GDX, the GP 9-2-1 GFNN did better than the corresponding SIANN networks;
the averape error rate was cut by almost half, and two thirds of the networks
achieved perfect classification (compared to 36% for the SIANNs), However the
average training time was twice as long despite the fact that the GFNN network had
less than half the number of weights to train compared to SIANN,

Overall the GFNNs did better than the SIANNs when trained using GIJX and D$-
GDX algorithms. With the LM algorithm, the accuracy was not as good for the
GFNNs, but there were significant reductions in training times. In reality, the average
error rates achieved were not vastly different, with all achieving 99.5% aceuracy or
higher, The most impressive result was the fact that a single generalised shunting
neuron could achieve the best performance of atl, having the lowest mean error, with
84% of trials achieving perfect classification (100% accuracy).
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Table 7.1 Best results for Wisconsin Breast Cancer dataset using GFNNs
Network | Training|  Activation Performance Avg Epochs Test Error CPU
Structure| Algor. functions (% of runs) “(me
Shunting | Out | = | 0% |20%| All | = | 0% | Best |Mean| 95% | Med. %)
R | e goal [ err | < | runs | goal | Error| (%) (%) CI (%)
Single GDX | Lin | Lgs 0 841100 | 134 | * 141 0 [0.16]+0.11] 0.00 7.0
ng,?" LM |Lin|Lgs 0 | 22|100] s6| * 54| 0 |044|+007| 056| 94
weights)
GFNN | GDX |Lin |Exp|Tnh| O 701100 | 279 | * 304 0 [0.19|+0.09{ 0.00]| 22.6
GP(Z;z-l LM |Exp|Exp|Toh| 0 | 48 100] s7] * [ 57| o [049]+0.16] 056] 157
weights) | DSGDX | Lgs | Exp | Lin | 0 | 62100 162 * | 145| 0 |028|+0.13| 0.00| 134
SIANN | GDX Lgs|Lgs| O 66 | 100 | 161 | * 160 0 |[0.20]|+0.08 0.00| 10.3
9(1918‘ LM Lgs |Toh| 0 | 74|100| 181 * | 119 o |020|+0.10] 0.00| 34.8
weights) | DSGDX Toh|Lgs| 0 | 36|100| 96| * | 100 0 |054|+014] 056| 64
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Fig. 7.6: Mean and median test error and mean training time for the Wisconsin
Breast Cancer dataset using GFNNs.

145




A GENERALISED FE!"-.'DFUR WARD NEURAL NETWORK ARCHITECTURE

7.3.2 Pima Indians Diabetes dataset results

The results obtained for this dataset, using a single GSN (G 8-1}, a GP 8-2-1 GFNN
and the “standard® 5-8-1 S1ANN, are shown in Table 7.2 and Fig. 7.7. The figure
here shows the lowest error achieved by a single network for each case, in addition to
the mean and median test error, since the ‘*best case’ error is not zero for this
problem.

Both the G 8-1 and the GP 8-2-1 GFNNs trained with GDX were able to achieve
better results than the SIANN trained with the same algorithim, with a mean ermror of
20.6% as opposed to 21.0% for SIANNs and more than double the number of
networks having error below 20%.

The 8-2-1 GFNN trained with DS-GDX was able to achieve a mean error rate
below 20%, with 56% of networks achieving rates below 20%, However, this was
not as good as the SIANN trained with DS-GDX, and the training time required was
also double that of STANNs,

The accuracy achieved by both the single GSN and the 8-2-1 GFNN when trained
with LM was ‘average’, with the exception of one GFNN that achieved the lowest
‘best case® error of 16.15%. The big difference lies in the average training time for
the LM algorithm across the different types of network, The 8-2-1 GFNN trained
with LM took approximately haif the time to train compared to SIANN, and the
single GSN training time was less than a quarter of the SIANN training time. In fact,
the GSN trained with LM was the fastest combination of all and took an average of
only 22 epochs. As with the Enhanced SIANNs, there is a clear trend linking the
training time for the LM algorithm with the number of weights in the network. Here
apgain the single peneralised shunting neuron was able to achieve accuracy rates
comparable to farger networks, with the advantage of faster training times.

7.3.3 Results for the 3-blt Parity problem

The results for the parity problem, presented in Table 7.3 and Fig. 7.8, are for 2
single GSN, a GP 3-2-1 GFNN and a ‘standard’ 3-3-1 SIANN. 1t should be noted
that most cases of the median error rate is zere, and so is the mean in one case;
hence, these are not visible on the graph.

Looking at the average crror rates, the 3-2-1 GFNN trained with LM was
undoubtedly the best, achieving ‘perfect’ results — 100% corect for all networks.
The training time for this combination was also the best of all, twice as fast as
SIANNs trained with LM, The same 3-2-1 GFNN networks trained with GDX and
DS-GDX did not achieve such good results, with average errors in the region of
2.5%, but still mansged to get 80% and 90% of networks achieving perfect
classification respectively.
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Table 7.2 Best results for Pima Indians Diabetes dataset using GFNNs

Network | Training|  Activation Performance Avg Epochs Test Error CPU
Structure| Algor. functions (% of runs) me
Shunting | Out | = | 0% (20%| All | = [ 0% | Best | Mean | 95% | Med. )
Nu | Den goal| err | < |runs | goal |Error| (%) (%) CI (%)
Single | GDX | Tnh | Exp 010 S gl I o * 18.23 | 20.58 | +0.26] 20.83 9.7
GSN8-11 1\ [ Tnh | Lgs oo |34 22| * | * 1875|2056 |+027/2031| 52
(20 wt.)
GFNN | GDX |Tnh|Tnh|[Tnh| 0 | O S D ] ¥ 18.23 | 20.58 | + 0.34| 20.57 | 15.7
GP(E;Z" LM |Exp|Les|Les| 0 [0 | 42| s8] * | * |16.15]2036|+033/2031| 178
weights) [DSGDX | Lin [Lgs [ Lin| 0 | 0 | 56[ 150 * | * [17.71[19.94|+027/19.79 | 135
SIANN | GDX Tnh|Lgs| 0 | O 14| 195 | * * 17.71 | 21.03 | £0.29] 21.35 | 13.2
3('35' LM Les|Toh| 0 |0 | s8] 182 * | * |1771]19.88 |+032/19.79] 389
weights) | DSGDX Lgs|[Lgs| 0 | 0 | 68| 94| * | * [1875|19.82|+029]19.79| 6.4
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Fig. 7.7: Best, mean and median test error and mean training time for the Diabetes
dataset using GFNNs.
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Table 7.3 Best results for 3-bit Parity dataset using GFNNs

Network | Training|  Activation Performance Avg Epochs Test Error CPU
Structure| Algor. functions (% of runs) time
Shunting | Out | > | 0% |20%| All | > | 0% | Best | Mean | 95% | Med. |
Nu | Den goal | err | < | runs | goal | Error | (%) %) | CI | (%)
Single | GDX | Lin | Tnh 0| 40| 48 |1000| * 1000 | 0.00 | 16.00 | +4.26/ 25.00 | 5.5
((;]SON w3t)‘ LM |Exp|Lgs 64| 66| 72| 343| 153 178 | 0.00|11.00 |+503| 0.00] 45

GFNN | GDX |Lin |Exp|Lgs| 80| 80 |100| 454 | 318 | 318 | 0.00| 250 |+1.40| 0.00 | 3.2

Gp(gf" LM | Lin|Lgs|Lin| 98[100]100] 30| 22| 30| 000 0.00|+000| 0.00] 08
weights) |DSGDX | Lin | Lgs | Lin | 76| 90| 92| 467 | 344 | 408 | 0.00 | 2.75 [+245| 0.00] 3.2

SIANN | GDX Tnh|Lgs| 94| 94| 96| 352| 311 311 | 0.00| 1.25[+1.44| 0.00| 23

3('3; LM Exp|Lin| 96| 96[100| 84| 46| 46| 0.00| 0.50 |+0.69| 0.00| 1.7

weights) | DSGDX Tnh| Lin| 94| 94|100| 169| 116| 116| 0.00| 0.75|+083| 0.00| 1.3
3-bit Parity

. Nan
1@ Metia

Single GS nouron: 34

GFNN: GP 3.2+1 Standard SIANN: 3-3-1

liﬁ.ﬁ.-.__

GOX LM GOx i s e GO¥ L&) DGO

Y

E

-

o

£ N — == L
&

£

=

e

g

| I

(L0} DSGOX GOx M DSGDX
Algorithm

Fig. 7.8: Mean and median test error and mean training time for 3-bit parity dataset
using GFNNs
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The performance of the single generalised shunting neuron doesn’t look good,
with average error rates above 10% and no real advantage in training time. It should
be noted, however, that that a single neuron is still able to solve correctly the 3-bit
parity problem, in 40% and 66% of the cases when trained with the GDX and LM
algorithms, respectively, This is quite an achievement when compared to a single
perceptron neuron, which cannot solve problems that are not linearly separable.

Overall, the GFNNs were able te perform as well as SIANNs with a simpler
structure, with the added advantage of savings in training time for the LM algorithm.
For this problem, having simpler siructures does not always mean less synaptic
weights because of the small number of inputs, The GP 3-2-1 GFNN has 3 neurons
and 23 weights compared to the STANN with 4 neurons but only 22 weights, The
complexity of the GSN in terms of oumber of weights, in this case, offsets the
savings in terms of number of neurons.

7.34 Results for the Artificial Multi-class problem

The test for this problem was designed as & winner-take-all type output with 3
possible putcomes. Therefore a single neuron could not be used, as 3 separate outputs
are required. Instead, o single layer of 3 gencralised shunting neurons with 2 inputs
(G 2-3 GFNN} was used. Table 7.4 and Fig. 7.9 show the results for the G 2-3
GFNN, the GP 2-2-3 GFNN and the *standard’ 2-2-3 SIANN,

With both the GDX and LM algorithms, the classification results for the 2-2-3
GFNN are similar to those of SIANN (with marginally higher error}, but training
times are about 30% shorter. The 2-2-3 GFNN trained with the DS-GDX algorithm,
achieved a reduction in both mean error rate and training time, compared to STANN,

The average error rate achieved by the single layer of GSNs was between 6.5%
and 7%, which is higher than the 5.5% to 6% achieved by the 2-2-3 GFNN and the
SIANN. The training time required, on the other hand, was significantly lower. The
single-layer GFNN can be trained with LM twice as fast as the 2-2-3 GFNN and 3
times as fast the SIANN with the same algorithm. For this problem, it should be
noted that both the GFNN structures have almost the same number of weights (24
and 25), which is more than the STANN structure {19 weights)., Despite the fact they
have more weights to train, the GFNNs can be trained faster as they require less
“epochs to achieve the target.

Overall, the trend is the same as with the other benchmarks. The GFNNs achieved
comparable results in terms of accuracy but with shorter training times. Looking at
the training times for each algorithm, there is a clear trend of increasing training
times, as one goes from the G 2-3, to the GP 2-2-3 GFNN and finally to the STANN,
This is most pronounced for the LM algorithm. An example of the decision boundary
formed by the GFNN is shown in Fig. 7.10.
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Table 7.4 Best results for Multi-Class dataset using GFNNs

Network | Training|  Activation Performance Avg Epochs Test Error CPU
Structure| Algor. functions (% of runs) time
Shunting | Out | = | 0% [20%| All | = | 0% | Best | Mean | 95% | Med. (®)
Nu. | Den goal | err | < |runs | goal |Error| (%) (%) CI (%)
GFNN | GDX |Lgs |Exp 0100 100 ) 173 * * 4.67 | 6.81 |+£043] 6.67| 9.0
G2-3 .
LM Lin [E 2 ® 1 : d 6.00 | 28.1
Q4 wt) in | Exp 0 |0 | 98| 58 533 | 6.65|+1.19
GFNN | GDX |Lin|Lgs|Lgs| O [ O [100(| 180 | * * 4.00 | 561 )+017| 533| 13.2
GP(%;“ LM |Lin|Lgs|Toh| 0 | 0 |100| 99| * | * | 400| 579 |+0.17| 6.00| 654
weights) [ DSGDX | Lgs [Exp|Lgs| 0 | 0 |100] 110| * d 4.67 | 7.21|£0.77| 6.00| 85
SIANN | GDX Exp|Lgs| O [ O [100( 377 | * > 4.00| 547 |+0.16] 5.33| 194
2('39;3 LM Exp|Lgs| 0 | 0 [100|228] * | * | 400 569|+026| 5331030
weights) | DPSGDX Exp|Lin[ O [ O | 90| 206]| * ¥ 533 | 939 |+2.24| 6.67| 109
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Fig. 7.9: Best, mean, median test error and mean training time for Multi-class dataset
using GFNNSs.
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Muki-class decision boundary by a GP 2-2-3 GFNN

i
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Fig. 7.10: Decision boundary formed by a GFNN for the Multi-class problem.

7.3.5 Sunspot Time Series results

The results for the single GSN (G 10-1), the 10-2-1 GFNN and the ‘standard’ 10-10-
1 SIANN trained on the Sunspots problem are shown in Table 7.5 and Fig. 7.11. The
figure illustrates the best, mean and median of the test Average Relative Variance
(ARYV), defined in Eq. (4.30), as well as mean training time.

The mean test ARV of the 10-2-1 GFNN is better than that of the standard
SIANN, for both the GDX and the LM algorithms. With the LM algorithm, the
GFNN achieved the lowest mean test ARV overall.

The single GS neuron trained with LM did not achieve the same level of accuracy
as the other types trained with the same algorithm but was faster to train. The single
neuron achieved better accuracy when trained using GDX, getting the best result
using GDX. Furthermore, this was the second fastest combination to train, with only
the 10-2-1 GFNN trained with DS-GDX being faster.

Once again the GFNNSs, in particular the single generalised shunting neuron, have
demonstrated their ability to achieve results comparable to other more complex
networks, with the advantages of simpler structures and, in many cases, reduced
training times.
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Table 7.5 Best results for Sunspots dataset using GFNNs

Network| Training Act-fns Performance | Avg Test MSE Test ARV CPU
Struct Algor. (% of runs) | Epochs time
. Shunting | Out |=> | all [80% Best [Median| Best |Median| Mean | 95% CI
Wi | Des gl{ mn | tol
tol
Single | GDX | Lin | Lgs ol ol100] 159]0.0088]0.0099| 0.105| 0.119] 0.120| +0.002| 5.5
?51;1 LM |Exp|Tnh ol 10[100] 64]0.0071/0.0107| 0.085| 0.129| 0.140| +0.019] 7.3
(24 wt))
GFNN | GDX |Lin|Lgs|Lin| 0| 6[100| 146/0.0095/0.0122] 0.113| 0.147| 0.146] +0.004| 8.0
] 0(‘;’1 LM |Lin|Lgs|Lin| 0| 8[100| 61]0.00650.0083| 0.078 0.100| 0.100| +0.004| 10.9
(51 wt.) |[DSGDX | Lin | Lgs | Lin | 0] 0[100| 106]0.0083]0.0095| 0.118] 0.135] 0.138] +0.004| 4.4
SIANN | GDX Toh | Lin | 0 14] 98| 147]0.0085[0.0134 0.102| 0.161| 0.174| +0.020| 6.8
“2'1‘401" LM Les |Lin| 0| 8[100]  54|0.00750.0093| 0.090] 0.111] 0.112| +0.003| 9.8
weights)| DSGDX Lgs | Lin | 0| 40{100| 161{0.0077/0.0097| 0.096| 0.121| 0.119| +0.002| 7.6
Sunspots
ox
F R

Single GS nouron: 10-1 GFNN: GP 10-21 Standard SIANN: 10-10-1
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Fig. 7.11: Best, mean and median test error and mean training time for Sunspots data
using GFNNs.

152



A GENERALISED FEEDFORWARD NEURAL NETWORK ARCHITECTURE

7.3.6 The “Optimal* Lower-Bound of 5

As discussed in Chapter 4, the denominator of the shunting neuron {or shusting term)
5, given in (7.2), is constrained to be positive definite so as to avoid a divide by zero
condition. By definition, the GSN contains the same shunting term, with the same
constraints. During the training of the GFNNs, as with SIANNS, a lower limit for the
5 term, 8w, {8 set. The limit sy, correspondingly determines the lower bound for the
purameter & during training, depending on the lower bound of the denvminator
activation function.

Previously in Chapter 4, it has been shown that changing the valve of s, used
during training affects the stability and duration of training for SIANNs, as well as
the accuracy of the trained network. Tests were conducted on SIANNS using a
number of combinations of problems, training algorithms, network structures and
activation functions. The value of s, during training was varied over a range of
values (from 0.01 to 2.0) for cach of these cases and the performance in terms of
accuracy and training times were noted. This was an attempt to find a limit value that
worked best over a range of problems, training algorithms and networks. It was
concluded that a limit value between 0.5 and 1.0 would be ‘best’ for SIANNSs, and
subsequently sim was sct to 1.0 as a *standard’ across all the benchmarks tests
conducted so far.

The same Himit of sijm = 1.0 was uset in the GFNN experiments, to maintain
consistency across the different network structures. This limit value, however, may
not be the *best’ value for GFNNs since they have their own transfer characteristics.
One method of finding such an ‘optimal® value for sum, within the practical
constraints of time and resources, would be to conduct similar tests as were done in
Chapter 4, for the GFNNs,

Experiments were carried out o the Wisconsin Breast Cancer, Pima Indians
Digbetes, 3-bit Parity, and Multi-Class problems, using both GDX and LM
algorithms, The GFNN structures used were the same as in the previous sections, For
each combination of benchmark problem, training algorithm and network structure,
the best performing activation function combination was used. Fer each network
structure and benchmark problem, the same 50 initialised networks used previously
were trained. Each network training case was repeated with the lower limit sy, set to
the values 0.0(, 0.02, 0.05, 0.1, 0.2, 0.5, .0 and 2.0.

The resulis obtained, as sy, is changed, are shown in Figs. 7,12 to 7.15. Detnils of
results are given in Tables B.37 to B.40, presented in Appendix B. The results show
that there is minimal varjation in the performance, in terms of both classification
accuracy and training time. There is a consistent and significant effect on the results
only when &y, becomes greater than 1, The results show a drop in performance,
marked by en increase in the error rate and sometimes also an increase in trajning,
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time, in the cases that are affected. The pattern that emerges is that only the GDX
trained networks appear to be affected by changing sii,. All the networks trained with
LM have remarkably constant performance across the range of values of sy, tested.
For the Breast Cancer and Diabetes problems, the networks trained using GDX
show an increase in the error rate for sy, greater than 1. The two single-layer GSN
networks, G 3-1 trained on the 3-bit parity problem and G 2-3 trained on the Multi-
Class problem, are the only networks that buck this trend. Their performances vary
significantly as the value of s, 1s varied; actually improving as sy, increases.

Effect ot Sim * Wisconsin Breast Cancer
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These results would indicate that the value of s}, used during training of GFNNs
does not affect the results as much as it does SIANNS. Setting sji, to a value of 1 or
less (but more than 0, by definition), would not affect results in most cases. Taking
into consideration the exceptions mentioned above, this would make si, = 1.0, as
used in the benchmarks tests, the ‘optimal’ setting.
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7.4 Discussion

" The results of the benchmark tests conducted, when taken as a whole, show that the
simple GFNN structures tested are able to achieve similar or better results than the
larger SIANN structures in terms of accuracy. There is also a consistent pattern of
faster training times when comparing results for the same training algorithny, This
saving is most apparent when using the LM algorithm.

The GFNN structures tested were the simplest possible stmctures: either a single
gencralised shunting neuron {G #-1) or a hidden layer of two GS neurons with a
perceptron cutput {GP #-2-1} The only exception is the Multi-Class problem that
requires multiple outputs; for this the single GSN was replaced by a single layer of
GS newrons, and in the other case the output perceptron replaced by a layer of
perceptrons. These small structures generally resulted in Jess synaptic weights,
provided the number of inputs is preater than 2, This was one of the motivating
factors in enhancing the SIANN strueture that ultimately led to the fortmulation of the
GFNN. For large problems, it was reasoned that smaller structures would lead to
saving in terms of memory requirerents and computational complexity, hence a
reduction in fraining time, This has been borne out by the results obtained. It should
be noted that this reduction in synaptic weights becomes more prominent as the
number of inputs to the network increases. For problems that have a small number of
inputs, the complexity and mumber of weights in a sinple GS neuron tends to offset
the gains obtained by reducing the mimber of neurons,

The ‘complexity” of the generalised shunting neuron, however, is what gives it its
power. 1t has enabled a single Generalised shunting neuron to be used to solve four
out of the five benchmark problems considered in this chapter — the exception being
the Multi-class problem that requires three outputs. Out of these, three are real world
problems. The fact that a single neuron could achieve 100% comrect classification for
the Wisconsin Breast Cancer and 3-bit Parity problems is a noteworthy point.

Anather advantage of GFNNs is that it can reduce the time taken to find the ‘best’
network structure for the problemn. A network that is toe small may not be able fo
‘solve’ the problem, whereas too large a network will result in overfitting, With the
GFNNs, the search starts with just a single neuron, and it appears that the size of the
network required will normally be small, thereby reducing the number of network
structures that need to be tested. This search for an optimal structure is a hidden time
and effort — a cost that does not show up on training time results.

The results obtained when attempting to find the optimal value for the lower
bound of the shunting term, 5jiy, show that the limit hardly has any impact on the
resnlts, particularly if it is kept at or below |, This means that the shunting term (or
denominator} would not be going below the limit value of one, in most cases,
Looking at this from another perspective, the effect of the shunting term, which is
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controlled by the inhibitory synapses, would therefore be to reduce the magnitude of
the output of the numerator that is driven by the excitatory synapses. This is
intuitively appealing, as the function of inhibition is to lower the output of the neuron
or network, and the opposite for excitation, This would not be the case if the shunting
term were to go below one, as it then would be amplifying the output of the
numerator. Put simply, the GSNs operate such that the excitatory and inhibitory
inputs affect the output in the expected manner.

While the results presented herc show good performance by the GFNNs,
Arulampalam and Bouzerdoum have obtained somewhat better results using some
differcnt initialisation and training conditions (Arulampalam & Bouzerdourn, 2003a,
2003b), The first differcnce is that the value of i used was 0.1, instead of 1.0,
Secondly, the network initial weights were generated using a normal distribution,
instead of a uniform distribution,

With these aliemate conditions, the single generalised shunting neuron {G 9-1}
trained with GDX and LM algorithms on the Breast Cancer was able to achieved
94%; and 90%, respectively, of networks having 0% error, This is an improvement on
the 84% and 22% achieved using the standard conditions used in this thesis. For the
3-bit Parity problem, the single shunting neuron was able to get 94% of neurons
achieving 0% emror when ftreined with LM, compared to 66% with standard
conditions. The mean error also dropped from 11.0% to 1.5%. Tt has been shown that
the value of s1im has minimal impact on GFNNs, particularly when trained with LM.
This would indicate that this performance improvement is due to the initialisation
scheme. The improvements are problem dependent, however, as the results for the
Diabetes problem were worse using these altemate conditions,

An alternative method tried out was not to use the bias term, b, in the numerator,
by setting & to 0 and not varying it during training. A single shunting neuron trained
with GDX in this manner was able to achieve ‘perfect’ resulis on the Wisconsin
Breast Cancer dataset ~ all 50 *networks’ achieving 100% cormrect classification.
These results reinforce the conclusion that GFNNs are a powerful class of networks,
able to achieve good classification results, even with a single neuron.

7.5 Conclusion

In this chapter we have presented the motivation behind the development of the
Generalised Feedforward Neural Network (GFNIN) architecture, initiated by the need
to overcome seme of the limitations of SIANNs, The development of the Generalised
Feedforward Neural Network (GFNN) architecture and structure of its basie building
block, the Generalised Shunting Neuron (GSN) madel, have been presented,
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The Generalised Shunting Neuron model presented here includes both the
shunting inhibitory neuron and the perceptron ncuron as special cases. The ability of
the GSN depends on the combination of numerator and denominator activation
functions used. It has been shown that a particular combination of activation
functions can produce various types of ranster characteristics by simply varying the
synaptic weights.

Details of experimental results obtained using GFNNs on benchmarks problems
have been presented. Investigations were also carried out to determine the best’
lower bound for the shunting tertn, stim. The results obtained show that the GFNNs
are sble to achieve comparable or better results than SEANNs for the benchmarks
problems, using smaller, simpler network siructures. There is also gencrally a saving
in terms of training time, especially when using the LM algorithm. The most striking
fact was that a single neuron could actually be used as a viable ‘network’ for these
problems.

The Generalised Shunting Neuron is capable of producing complex decision
boundaries, and benee it is able to solve some real word classification and regression
problems. This is exemplified by the perfect solutions of the 3-bit parity and Breast
Cancer problems using a single GSN. Furthermore, using the GSN avoids the
problem of having to chicose an arbitrary subset of excitatory inputs, a problem faced
when reducing the size of SIANN structure. This was one of the prime motivating
factors in the development of the GSN model.

In conclusion, GFNNs show the ability to form the basis of a class of pawerful
new classifiers, Further investigations needed to compare their performance with
other types of netwarks, parficularly on more complex problems. The next siep
would therefore be to compare the performance of GFNNs to that of MLPs and
SIANNGS for o variety of problems.

158



Chapter 8

Extended Benchmark Tests

8.1 Introduction

In the previous chapters, the performances of ‘standard’ STANNSs, ‘enhanced’
SIANNs and GFNNs were compared on a set of benchmarks problems. This
comparison between various shunting inhibition based networks begs the question
“How do shunting inhibition based networks compare with other types of networks?"
In this chapter, the jssue is addressed by comparing the shunting inhibition-based
networks with what is arguably the most commonly used artificial neura! network for
these types of problems, the Multilayer Pereeptron (MLP), Moreover, whenever
possible, comparisons are also made with other results presented in the literature,

The GFWN architecture contains MLPs as & subset, The code used for the
simulations bas been written in 8 manner that allows the same code 1o be used for
generating and raining SIANNs, GFNNs and MLPs, For each of the five benchmark
problems vsed in previous chapters, MLI® structures with similar number of weights
s the GFNN structures were pencrated, trained and tested, The objective was to
investignte differcnces due to the types of network architeerures; therefore, the same
cude was used for initialisation and training, with all parameters being the same. An
additional benclmark reoblem has been considered, namely the Thyroid disease
¢lassification problem, ) order to provide an insight into the capabilities of shunting
networks with larger problems,
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It sheuld be noted that the MATLAB code developed so far for training SIANNs,
GFNNs and MLP has not been optimised for speed of exeemtion. Code optimisation
would have significant impact on the time taken to train the networks. In order to
provide a reference for comparison with other experimental results, ‘MATLAB
Toolbox MLPs' (MT-MLPs), penerated and trained using the MATLAB Neural
Network Toolbox, have also been trained on the same sct of benchmark problems.
These ‘MT-MLPs” differ from the earlier MLPs, which we hercafier refer to as G-
MLPs, only in the method of initialisation and the cfficiency of the training
tlgorithms, including the method of representing and storing information in memory.

The next section presents the results obtained by training MLPs on the benchmark
problems and compares them to earlier results obtained vsing GFNNs and SIANNSs,
#s well as making comparisons with other published results, The third section
presents a comparison of the MLP results obtained using G-MLPs with those
obtained using the MATLAB Neural Network Toolbox code. A discussion is
presented in Section 8.4, followed by the conclusion in Section 8.5,

8.2 Test Results and Comparison

The next five sub-scctions present results of MLUPs trained and tested on the five
benchmark problems used in the previous chapters aud compares them to results
obtained with SIANNs and GFNNs, For each benchmark problem, one of the two
GFNN networks presented in Chapter 7 was chosen for comparison with an MLP
having similar number of weights, As in the previous chapters, 50 networks were
generated, and these were trained using GDX (Gradient Descent with momentum
and ndaptive leaming ratc) and LM (Levenberg-Marquardt) algorithms, Additionally,
both the GFNN and ML were trained on the QNN variant that achieved the best
performance using SIANNs for the particular benchmark problem. The DS-GDX
algorithm was not compared, as it can’t be uscd for single layer notworks. The
initialisation and training parameters used are he same as described in Chapter 4.

As memtioned in the introduction, the MLPs were pencrated, initialised, trained
ond tested using the same MATLAB code used to troin SIANNs and GFNNs, The
objective is to vary enly \he type of neuron used, so that a fair comparison can be
made on the relntive effectivencess of the two architectures. This is also the reason
why the tested MLP structure was not one with the same number of neurons as the
GFNN structure, but instead one that had similar number of synaptic weights, This
would give the MLP netwark the same ‘capacity’ to leam as the GFNN network,
making the comparison fairer. [t would also make the sizes of the gradient vectors
and Hessinn mnirices comparable, making the time comparisons fairer as well. The
resulis for the *Standurd' SIANNs nre presented for comparison.
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An additional ‘real world’ problem, the Thyroid disease classification problem,
has been added to the set of benchmark tests to compare the different network types.
Appropriate GFNN, SIANN and MLP networks were trained and tested on this
problem, The description of this dataset and the test results are presented in
Subsection §.2.6.

Comparisons with results for the benchmark tests from the literature have also
been carried out where available and appropriate.

8.2,1 Wisconsin Breast Cancer Dataset

The results obtained using a §-2-1 MLP, a single generalised shunting neuron (GSN)
and the *standard’ 9-9-1 SIANN, trained on the Wiscansin Breast Cancer problem,
are presented in Table 8.1 and Fig. 8.1, As in previous chapters, the figure contains
twa graphs: the top graph shows the mean and median test error rates for the best
performing activation function combination, and the bottom graph jllustrates the
corresponding mean training times. Note that the median test error is often Zero, and
hence is not visible on the graph.

The 9-2-1 MLP network trained using the GDX algorithm had the lowest average
error (0.08%) with 86% of networks able to achieve perfect classification, i.e., 0.00%
errar. This network structure was also the second fastest to train, next to the GFNN
trained wilh GDX. The MLP trained using the LM algorithm, on the other hand, had
the highest error rate, with a mean crror of 0.51%. When trained with the QNN3
algorithm, the MLP achieved an “average’ error of 0.24%.

The MLP took marginally longer ta train than the GFNN for both the GDX and
LM algorithms, The GENN was the slowest to train with QNN. The mean training
times for the LM and GDX algorithms are quite similar, with the exception of the
SIANN trained with LM,

Overall, the first-order GDX nigarithm surprisingly produced the best set of
results, both in terms of accuracy and speed of training. The LM algerithm had the
highest average crror rates, except for the SIANN architecture. The MLP restilts
were the extremes ~ the best of the best (GDX), worst of the worst (LM), and middle
with the QNN algorithm!

Here it has to be highlighted once again that, in reality, the average error rates
achieved were not very different. All cases achieved error rates of less than 0.5%, in
other words, mean aceutacy of 99,5% or beiter, and over half the networks achieved
perfect classification.

161



EXTENDED BENCHMARK TESTS

Table 8.1  Results for Wisconsin Breast Cancer dataset using MLP, GFNNs and

SIANNs
Network | Training|  Activation Performance Avg Epochs Test Error Mean
Structure| Algor. functions (% of runs) time
t
Shunting [ Out | = | 0% |20%| All | = | 0% | Best [Mean| 95% | Med. tr;n
Nu | Des goal| err | < | runs | goal | Error | (%) (%) CI (%) (s)
MLP GDX | Lgs Lin| 0 86100 | 158| * 159 | 0.00 | 0.08 |+ 0.05| 0.00 8.6
9(‘5;‘ LM |Lgs Toh| 0 | 44]100] 57| * 56 | 0.00 | 0.51 |+0.15| 056 9.9
weights) | QNN3 | Lgs Tnh| O [ 70(100| 80| * 67 | 0.00 | 0.24 |+ 0.12( 0.00| 132
Single | GDX | Lin | Lgs 0 84 | 100 | 134 | * 141 ( 0.00 | 0.16 | +0.11| 0.00 7.0
05329" LM | Lin|Lgs 0| 22]100] s6| * 54000 | 044 |+007| 056| 94
weights) | QNN3 | Lin | Lgs 0 | 6sl100] 194] * | 204|000/ 0.19 |+008| 000 309
SIANN | GDX Lgs|Lgs| 0 66100 | 161 | * 160 | 0.00 | 0.20 [+ 0.08| 0.00| 103
9“918‘ LM Legs|Toh| 0 | 74|100| 181 * | 119]0.00] 020 [+0.10| 0.00]| 348
weights) | QNN3 Toh|Lgs| 0 | sel1o0| 78| * 70 [ 0.00 | 0.33 [£0.12| 0.00| 174
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Fig. 8.1: Mean and median test error and mean training time for the Wisconsin
Breast Cancer dataset using MLPs, GFNNs and SIANNS.
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Ta get an idea of what these benchmark test results mean in the broader context of
pattern classification, comparisons have fo be made with other results published in
the literature, The results obtained by Prechelt, with the Proben! set of benchmark
problems (Prechelt, 1994), provide a good reference for comparison for a number of
reasons. Firstly, the results are well documented with good descriptiens of the
datasets, architectures and training parameters, as this study attempts to sct the
standard for benchmark testing and reporting. Secondly, the Proben! set containg
three out of the six datasets used here, namely the Wisconsin Breast Cancer, Fima
Indians Diabetes and Thyroid datasets. The third reason is that the guidelines and
*standards' laid out by Prechelt have been followed fairly closely in the benchmark
tests corried out in this investigation, which allows meaningful comparisons to be
made. Finally, the Proben! datasets and the results given by Prechelt are referenced
fairly frequently, forming a cammen reference point for comparison.

Prechelt divides the datasets into training, validation and test sets using the same
50%-25%-25% proportion as used here, but he has three versions of each dataset,
where the only difference is the ordering of the samples, resulting in different
partitioning of the dats. The networks were trained using the RPROP algerithm, a
fast backpropagation variant that operates in batch mode (Riedmiller & Braun,
1993). He presents results for a number of different architectures: purely linear
networks; selected multi-layer structures with sigmoid neurons for finding the ‘best
performing” structure; and  ‘pivot architectures’ with and without shorteut
connections (relates to the best performing network structures, see (Prechelt, 1994)
for details). The most appropriate structure for comparison would be the “pivot
architecture' networks without shortcut connections. Resulis for this structure trained
on all three partitions will be usedl for comparison, along with selected results from
other sources using different types of classifiers.

Prechelt used *pivot architectures’ of 9-4-2-2, 9-8-4-2 and 9-16-8-2, with no
shortcut connections, for the three different data partitions of the Breast Cancer
problem (labelled Cancer!, Canicer2 and Cancerd), The networks used are MLPs
with sigmoid neurons in the two hidden layers and linear output neurons, with one
cutput for each class, and have 56, 126 and 314 weights, respectively (no shortcuts).
These networks achicved mican test error rates of 1.32%, 3.47% and 2.60%,
respectively. These resulls are presented in Table 8.2, along with results from a
variety of classifiers such as MLPs evolved using cvolutionary progmmeming
(EPNet)(Yao & Liu, 1997), k-Nearest Neighbour classifiers (kW) (Jankowski,
2003), Support Vector Machines (SPAf)(Shin & Cho, 2003}, test feature classifiers
{Lashkin & Aleshin, 2001), fuzzy neural networks (Meesad & Yen, 2001), cascade
neura] networks created using constructive algerithms - with pruning (CNNDA -
Case ) ond withowt pruning (CNNDA ~ Cuse H) (Istam et ul,, 2000) and neurn)
network commitiees {Commiitee) (Verikns et al, 2002},
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Table 8.2 shows the results from the other literature, with mean error rates ranging
from 1.16% to 6.70%. It is fairly obvicus that GFNNs and SIANNS, with mean error
rates between 0.16% and 0.44%, outperform these other classifiers by a significant
margin. What makes it more notuble is the fact that the shunting network results have
been obtained with very small structures, including a single neuron GFNN.,

Table 8.2  Comparison of mean test error for Wisconsin Breast Cancer dataset with
results from other literature,

Instance Source Mean Tesl Instance Source | Mean Test

Error (%%) Error (%}
GFWN - GDX Chap, 778 0.16 Cancerl Pruben] 1.12
OFMM - LM Chap. 7/8 044 Caneer2 Probenl 347
GFNN - QNN3 Chap. 748 0.19 | Concerd Probenl 2,60
SIANN - GDX Chap.4/8 0.20 EPNel Yoo 1.38
SIANN - LM Chap. 448 0.20 kNN Jenkowski 298
SIANN - QNM3 Chap. 4/8 .33 S¥YM Shin 6.0
MLP - GDX Chap. 8 .08 Test feanure Laskia 4.00
MLP - LM Chap. & 051 |_Fuzzy WM Mezsad 1.75
MLP ~ QNN3 Chap, & 0.24 LNNDA — Casel Islam 1.27
CNNDA - Case 11 lslam L16
Commiltee = All Verikas 3.10
Commiltee — 2 Featupes | Verikas 228

8.2.2 Plma Indians Diabetes Datoset

The results obtained for the Diabetes dataset, using an 8-2-1 MLP, a single
peneralised shunting nevron {G 8-1) and the *standard” SIANN (8-8-1), ate presented
in Table 8.3 and Fig. 8.2. Since the ‘best case’ error is not zero for this problem, here
Fig. 8.2 shows the lowest emror rate achicved by & single network in each case, in
addition to the mean and median test error rates.

The MLP was able to achicve & mean error rate between 20.45% and 20.75%,
which is comparable to the results obtained using the GFNN, Compared on the basis
of training algorithm, the MLP achieved the best result for the GDX algorithm,
followed by the GFNN and SIANN, whereas for the LM and QNN algarithms the
order was reversed, wilth STANN doing best and MLP worst, The SIANN was the
only netwerk structure here able to achieve sverage error rates below 20%, (19.88%
with LM and 19.80% with QNN3 algorithm). An emor mte below 20.0% is
vonsidered very good for the Diabetes datoset, ns most test results tend to be above
this level {(Michic et al,, [994; Prechelt, £993). [t should be noted that the GP 8-2-1
GFNN trained with DS-GDX was able to achieve 19.94%, see Tuble 7.2, The best
average error of all was with a SJANN trincd using the first-order GBPM algerithm -
o rematkable 19.05% (scc Tuble 4.3),

164



EXTENDED BENCHMARK TESTS

Table 8.3 Results for Pima Indians Diabetes dataset using MLP, GFNNs and
SIANNSs

Network | Training|  Activation Performance Avg Epochs Test Error Mean
Structure| Algor. functions (% of runs) time
Shunting | Out | = | 0% [20%| All | = | 0% | Best | Mean | 95% | Med. tr[aoin

Nu [ Den goal | err | < |runs | goal |Error| (%) (%) CI (%) (s)

MLP GDX | Tnh Tnh| 0 0 30| 188 | * . 18.75 | 20.45 | +0.22| 2031 | 11.1

(281'2‘;4'.) LM |Lgs Tah| 0 | 0 | 26| s8| * | * [1875(2075|+031|20.83] 108
QNN3 | Lgs Lin| 0 0 34| 144 | * * 18.23 | 20.48 | £ 0.28] 20.31 | 26.2

Single | GDX | Tnh | Exp 0 0 R v [ T g * 18.23 | 20.58 | +0.26| 20.83 9.7
?zs(f’wi)‘ LM |Tnh|Lgs oo |34 22| = | * |1875[2056|+027[2031| 52
QNN3 | Tnh | Lgs 0 0 46| 94| * * 18.23 | 20.05 | +0.24| 20.31 | 17.0

SIANN | GDX Tnh|Lgs| O 0 14| 195 * * 17.71 | 21.03 | £0,29| 21.35 | 13.2
3('3;‘ LM Les|Toh| 0 | 0 | 58182 | * | * |17.71(19.88 | +032{1979 | 389

weights) | QNN3 Exp|Toh| 0 | 0 | 60| 182| * | * [17.71]19.80|+027|19.79 | 446

Pima Indians Diabetes

Trained using L4

2

Test Eror (%)

#

B

Mean Training Time (s)
<] ¥

&

10 4

MLP GFNN SIANN MLP GFNN SIANN MLP GFNN SIANN
Network Type

Fig. 8.2: Best, mean and median test error and mean training time for the Diabetes
dataset using MLPs, GFNNs and SIANNS.
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The STANN has the advantage of mere synaptic weights, 97 versus 21 and 20
weights for the MLP and GFNN structures, respectively, hence providing it with a
larger *learning capacity’. On the other hand, the increased network size has the
disadvantage of more complex computation, as reflected by the longest training
times for SIANNS, patticularly for the second-order LM and QNN algorithms. One
notable fact is that the single GSN was the fastest to train for all three alzorithms,
Furthermore, it achieved better results than the MLP when trained using the second-
order algorithms, LM and QNN. For the first-order GDX algorithm, the MLE
wchieved the best average crror rate, but its best case crror §s still worse than that of
the single GSN. Finally, it should be point out that the lowest error achieved by a
single GFNN twas 16,15%, a GP 8-2-1 network trained using LM, whilc the best
single netwerk overall was the slandard 8-8-1 SIANN trained using the QNN6
algorithm which achjeved an owtstanding 15.63% (sce Tables 7.2 and 5.6
respectively),

Table 8.4 presents the mean test error rates from the MLPs, GFNNs and SIANNs
obtained here for comparison with results published in the literature, The Probenf
benchmark tests conducted by Prechelt have three different partitions (labelled
diabetesi, diabetes? and diabetes 3} (Prechelt, 1994). The diabetes! and digbetesd
partitions end up having as their ‘pivot architecture’ a single hidden-layer network
(8-32-2, with 354 weights), while diabetesZ has a two hidden-layer network (8-16-8-
2, with 298 weights), al) with no shortcut weights. Compare this 1o the GSN used,
which has 20 weights, and even the *full' SIANN with 97 weights. The mean fest
error of the Proben networks, with sigmoid hidden layer neurens and linear output
neurens and trained using the RPROP algorithm, are presented in Tablc 8.4,

The Statlog project tests a variety of statistical, machine learing and neural
network methods on twenty classification problems, one of which is the Diabetes
problem; details of the various classification methods used can be found in {Michie
et al,, 1994). The results achieved by these classification methods on the Diabetes
problem are presented on the right band side of Table 8.4,

Other results presented in Table 8.4 include feedforward nctworks constructed
using 2 number of methods: evolutionary programming (EPNer) (Yao & Liu, 1997);
cascade correlation-based construetion with weight pruning (Thivierge et al,, 2003);
corcelation neural network design algorithm with pruning (CHNDA — Case f) and
without pruning (CANDA - Case 1) (Islam et al,, 2000). The other compared
classifiers are a Functional Link Network with Gaussion functions trained using
Genelic Leamning (GLFLN) (Bhuraireddy & Chen, 2003), support veclor machines
{S¥Af) (Shin & Cho, 2003), and neura} network committees where the members are
tmined on el features (Commistee — A} or, ahematively, committee members are
trained on selected features (Commitiee — 2 feamres) (Verikas et al,, 2002),
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The GFNN, SIANM and MLP network results presented here range from 19,1% to
21.0% error, which are better than all the results reported in Starfog and Probenl,
and most of the others as well. The only instances from other sources with mean
error rates below 21% are CNNDA Case i, GLFLN and Committee - 2 features, The
CNNDA Case Il is the only instance with an average error belaw 26%; it has an
average emor rate (19.9%), which is comparable 1o that of SIANN trained with LM
(19.88%) and QNN3 (19.80%), but not as good as the SIANN 1rained with QNN9
(19.57%) and GDM (19.05%). This means that the results achieved by the shunting
inhibition based networks are better than most of the other surveyed clussification
methods, including many that use networks that are far larger in tens of number of
neurons and weights.

Table 84  Comparison of mean test error for Fima Indjans Diabetes dataset with

results from other literature

Instance Source Mean Test Instance Soutee | Mean Test

. Crror (%) Errot (%}
GFNN - GDX Chap. 7/8 206 Logdise Statloy 23
GFNN « LM Chap. 7 /8 0.6 CiroL92 Statloy 224
GFNN ~ QNN3 Chap.7/8 20, Discrim Statlog prd ]
SIANN - GDX Chap. 478 21.0 SMART Statleg 33
SIANN + LM Chap. 4/ 8 19.8 REF Suulog 4.3
SIANN - QNN | Chap.4/8 19.8 MTrule Statlog .5
MLP - GDX Chap. 8 205 Dackprop Staitog 248
MLP - LM Chap, & 0.8 a1 Staltop 25.0
MLP - QNN3 Chap. 8 20.5 CART Statlog 255
GFNN GF 8-2-1 - D5-GDX | Chap. 7 19.9 CASTLE Startog pLE ]
SIANN — QNNG Chap. § 19.6 Quadisc Siatlog 6.
SIANN . GDM Chap. 4 19.1 NaiveBay Siztleg 262
Dizbetes) Probenl 24.1 C4.5 Siatleg 2.0
Dizhetes? Proken| 264 IdCART Statlog P |
Dizbetes) Probenl 26 | Doytree Statloy 271
EPNet Yoo 24 LV Statlog 273
Cascade Correlation Thivierge 213 | Kohonen Stotlog k]
CNNDA -~ Case ] lslam 2.1 A Stzttog 276
CNNDA - Case [T Istam 199 Hew D Suallog 289
GLFLN Ohumireddy 20.} Chl Swilog | 289
SVM Shin 29.9 ALLOCBE Statlog 0.t
Cemmittee - All Merikas 7 NN Statlog 324
C ittee - 2 Fratures Verikas 0.8
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8,23 The 3-bit Parity Problem

‘The results for the parity problem, presented in Table 8.5 and Fig. 8.3, are obtained
with a 3-3-1 MLP, a GP 3-2-1 GFNN and the 3-3-1 'standard® SIANN. It should be
noted that in all cases the median ervor rate is zero, and so is the mean in two cases;
these are, thercfore, not visible on the graph,

The 3-3-1 MLP trajned with LM was able to achieve ‘perfect’ results — 100%%
cotrect for all networks — just like the GFNN network, but in a shorter time. The
MLP achieved the best result obtained using the GDX algorithm, with a mean error
rate of only 0.5%. However when trained using QNN, the MLF did not perfiorm as
well, with the second highest overall error rate of 3.0%. Overall, the MLP always
cutperformed the SIANN in terns of accuracy, but had mixed tesults compared to
the GFNN, The MLP was, however, the fastest to train for all the three alporithms
tested.

‘This is a fairly simple problem for the neural networks, with all the network types
zchieving [00% correct classification with more than three quarters of the trained
networks. In this case, the simplicity of the MLP neuron structure has resulted in
faster training times while still achieving similar accuracy compared to the cther
network types,

Comparison with other literature has not been made for this problem for a couple
of reasons. Firstly, most of the literature where parity-type problems have been used
refer to the simple XOR, or 2-bit parity, problem, while others jump to the more
complex 5-bit or higher parity cases. Secondly, even in cases where the 3-bit parity
problem has been used, the results are generally not in a form that allows any
meaningful comparisons to be made. For example, some results are in the form of the
number of epochs or number of operations required to schieve a particular error geal,
and in most cases the error goal is different to that used in the tests performed in this
work,

8.2.4 Artificial Multl-class Problem

Since this problem has nwo input features and three classes, alf trained networks had
two inputs and three output neurons: the GFNN was a 2-2-3 structure, with two
GSNs in the hidden [ayer and three perceptronstype outpot neurans; the MLP was a
2-4-3 structure, with four hidden neurons; and the ‘standard’ SIANN had a 2-2-3
structure, Among these neuren network structures, the MLEP has the most synaptic
weighls with 27, the SIANN has the least number of weights for once with 19, and
the GFNN has 25 weights,
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Table 8.5  Best results for 3-bit Parity dataset using MLP, GFNNs and SIANNs
Network | Training|  Activation Performance Avg Epochs Test Error Mean
Structure| Algor. functions (% of runs) time
I
Shunting | Out | = | 0% |20%| All | = | 0% | Best |Mean| 95% | Med. tr:in
0. 1T goal | err | < | runs | goal | Error | (%) (%) CI (%) (s)
GMLP | GDX |Lgs Lgs| 96| 96|100| 224 | 192| 192 0.00| 0.50 |+ 0.69| 0.00| 1.0
(]36'3‘;1) LM |Lgs Lin|100 [100 {100 11| 11| 11]0.00]0.00|+000 000| 02
" | QNN3 | Lgs Legs| 78| 78| 98| 333 | 145| 145|0.00| 3.00 [+1.65| 000| 54
GFNN | GDX | Lin |Exp|Lgs| 80| 80|100| 454 | 318| 318 0.00|2.50 | + 1.40| 0.00| 3.2
GP(;?“ LM |Lin|Les|Lin| 98 |100]100| 30| 22| 30]0.00]/0.00|+000] 000| 08
weights)| QNN3 [Exp|Tnh | Lin | 84| 84100 | 283 | 160 | 160 [ 0.00 | 2.00 |+ 128 000| 76
SIANN | GDX Tnh|Lgs| 94| 94| 96| 352 | 311| 311|000/ 1.25 |+144| 000| 23
3('3; LM Exp|Lin| 96| 96[100| 84| 46| 46|0.00]0.50|+069| 0.00| 1.7
weights) | QNN3 Lgs|Lgs| 72| 80| 88| 436| 216| 295|0.00 | 4.75 | +3.04| 0.00| 9.4
it Parity
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Fig. 8.3: Mean and median test error and mean training time for 3-bit parity dataset
using MLPs, GFNNs and SIANNs.
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Table 8.6  Results for Multi-Class dataset using MLP, GFNNs and SIANNs

Network | Training|  Activation Performance Avg Epochs Test Error Mean
Structure| Algor. functions (% of runs) time

Shunting | Out | > | 0% [20%| Al [ > [ 0% | Best [Mean [ 95% [ Med. | o

Nu | Den goal | err | < |runs | goal |Error| (%) (%) CI (%) (s)
MLP | GDX |Lgs Les| 0 | 0 [100]225] * | * | 400 537|+022| 533] 115
2“2‘;3 LM | Tnh Toh| 0 | 0 |100| 67| * | * | 400| 583 [+0.16| 600| 299
we(ights) QNNG | Lgs Les| 0 [0 |100] 119 * | * | 4.00| 543 |+022| 533| 395
GFNN | GDX |Lin|Lgs|Les| 0 | 0 |100|180] * | * | 400]| 561 [+0.17] 533] 132
GP(§;2'3 LM |Lin|Lgs|{Toh| 0 | 0 [100| 99| * | * | 400| 579|+017| 6.00| 654
weights)| QNN6 | Lin [Tnh|Lgs| 0 | 0 |100]232] * | * | 400| 576 |+0.24] 6.00 1165
SIANN | GDX Exp|Les| 0 | 0 [100]377] * | * | 400| 547 |+0.16| 533| 194
2('12;‘ LM Exp|Lgs| 0 | 0 [100]228| * | * | 400 569|026/ 5331030
weights) | QNN6 Exp|Lgs| 0 | 0 [100]| 158| = | * | 400| 572 |+021] 533 | 554

o

Trained using GDX
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Lest Error (]
=

i
o
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Fig. 8.4: Best, mean, median test error and mean training time for Multi-class data
using MLPs, GFNNs and SIANNS.
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Multi-class decision boundary by a 2-4-3 MLP trained with LM

Class 1 |
|
8
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4
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Fig. 8.5: Decision boundary for the Multi-class problem formed by an MLP.

Table 8.6 and Fig. 8.4 present the results obtained by training these network
structures with the GDX, LM and QNN&6 algorithms. The MLP achieved mean error
rates comparable to those of the GFNN and SIANN, between 5.37% and 5.83%. For
any given algorithm, the largest difference in mean error rates was only 0.33%, with
the MLP achieving the lowest error rates with the GDX and QNN algorithms and the
highest with LM. The lowest error rate achieved by a single network in all cases was
4.00%, and the median was between 5.33% and 6.00% across the board. Essentially,
this means that there is no significant difference between the accuracy of the three
architectures: MLPs, GFNNs and STANNSs.

On the other hand, there are large variations in the time taken to train these
networks, as can be seen from the bottom graph in Fig. 8.4. The GDX algorithm is
approximately three to five times faster than the LM and QNN algorithms, and in all
cases the MLP was the fastest to train. The SIANN took significantly longer to train
using the GDX and LM algorithms, despite being the smallest network in this case,
as it required a greater number of epochs to train. The QNN6 algorithm, however,
was able to train the SIANN almost twice as fast as LM, and it was twice as fast as
when it trained the GFNN. This is the only anomaly in the otherwise regular pattern
in the time graph. This could possibly be due to the fact that the QNN algorithm is
able to factor in the constraint on the decay parameter, a, for SIANNs while working
out the optimum weight update.

For this problem, the main difference in the results achieved is in the training
time. The MLP has the simplest neuron structure, and hence it is the simplest to train,
giving it the edge in performance. There are no results in other literature available for
comparison for this artificially generated dataset. It should be noted that the
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Expanded 2-3-3 SIANN trained with GDX achieved the best reported mean emor of
5.00%, and the best individual network performance of 3.33% was achicved by the
same network trained with the LM and DSGDX algorithms (sce Table 6.4). The
decision boundary formed by an MLP is shown in Fig. 8.5.

8.2.5 Sunspot Time Series

A 10-4-1 MLP structure, which has 49 syaaptic weights, was trained on the Sunspols
problem and compared to the GP 10-2-1 GFNN, having 51 weights, and the 10-10-1
standard SIANN, having 141 weights. The results are presented in Table 8.7 and Fig.
8.6. Figure B.6 illustrates the best-case, mean and median Average Relative Variance
{ARV), Eq. (4.30), as well as the mean training time (bottom graph).

The 10-2-1 GFNN achicved the best mean test ARV for each of the three
algorithms used, while the MLP had the worst test ARV for the LM and QNN
algorithms and second best for GDX. The difference between the mean test ARV of
the MLP and GFNN ranges from approximately 10% (when trained with GDX) to
50% (when trained with QNN}, This shows that the GFNN is able to perform
significantly better compared 1o the MLP, despite the fact that the MLP has similar
number of weights and more neurons. The test ARV achieved by the standard
SIANN was also belter than that of the MLP when trained with the LM and QNN
alporithms, but worse when using the GDX nlporithm, In terms of training time, the
MLP trained the fastest with GDX and LM, SIANN next and GFNN the slowest;
with the QNN algorithm, GFNN trained the fastest and SIANN the slowest.

Comparing the performances of the training algorithms, the GDX had the worst
accuracy, with QNN best, slightly better than LM, The training time trend was the
other way around, with GDX fastest, LM slightly slower and QNN taking 2 to 6
times longer. This is to be expected, as the “price’ for the improved accuracy is the
longer tmining time ~ the *no free lunch® concept. The amount of additional time
required by the QNN algotithm for the marginal improvement in accuracy, however,
makes it seem ‘expensive’, though that is a subjective conclusion.

Overall the GFNN trained with QNN was the moest accurate, both in terms of test
ARV and test MSE. The GFNN traincd with LM was only slightly less accurate, but
trained in less than half the time. The GP* 10-2-1 GFNN clearly outperformed the
MLP in terms of accuracy. Referring back to Chapter 7, we sce that o single
generalised shunting neurcn, with half the number of weights, is able to match the
performance of the MLP network. The single GSN achieved mean test ARV 0f 0,120
and 0,140 with the GDX and LM salgorithms, respectively. The best performing
neuron hos o test ARY of only 0,085 (sce Table 7.5). This reinforces the fact that
GFINNs are able to nchieve good results with extremely simple structures.
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Table 8.7  Results for Sunspots dataset using MLP, GFNNs and SIANNs
Network| Training Act-fns Performance | Avg Test MSE Test ARV Mean
Stroct Algor. (% of runs) | Epoc time to
' Shunting | Out | > |allin[80% | B | Best |Median| Best |Median| Mean | 95% C1 | T30
Nu | Den gl| tol | tol (s)
MLP | GDX |[Tnh Lin| 0| 14| 98| 151]0.0094/0.0129| 0.113] 0.155| 0.162| +0.024| 5.8
(;g‘i:t‘) LM |Lgs Lin| 0| 22| 100| 57/0.0079]0.0113]0.095|0.136| 0.138 +0.006] 7.0
“ | QNN6 |Tnh Lin| 0| 24| 100| 279/0.0071|0.0115] 0.085| 0.138( 0.139| +0.007| 25.3
GFNN | GDX |Lin|Lgs|Lin| 0] 6/ 100 146/0.0095{0.0122| 0.113| 0.147| 0.146| +0.004| 8.0
\ OG; [ |_IM_|Lin|Lgs|Lin| 0 100| 61[0.0065(0.0083] 0.078] 0.100] 0.100| +0.004| 109
(51 wt.)| QNNG |Lin |Lgs|Lgs| 0| 48| 100 170/0.00630.0076] 0.075 0.091| 0.092| +0.003| 234
SIANN | GDX Tonh|Lin| 0| 14| 98| 147 |0.0085/0.0134| 0.102| 0.161] 0.174| +0.020| 6.8
1(2-11101-1 LM Les|Lin| 0 8| 100] 54 0.0075/0.0093] 0.090] 0.111] 0.112| +0.003] 9.8
weights)| QNN6 Lgs|Lgs| 0 80| 100| 337]0.0054/0.0077| 0.065| 0.093| 0.100| +0.009| 45.8
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Fig. 8.6: Best, mean and median test ARV and mean training time for Sunspots data
using MLPs, GFNNs and STANNS.

173



EXTERDED BENCHMARK TESTS

The experiments on the sunspots time series prediction problem repaorted in the
literature have been carried out using various parameters and measures. For example,
some use a different number of inputs to what has been used here (Lawrence et al,,
1996; Naftaly et al., 1997; Park et al., 1996; Weigend et al., 1990). Some do not use
a complete set of consecmive previous time szmples as inputs, but instead vse o
selected subset of non-consecutive samples points, based on previous analysis of the
data (Naftaly ct al., 1997), This makes any comparison questionable as the networks
are being given different information en which to make the prediction,

The task is made even more difficult by the fact that the performance measures
differ, unlike for classification tasks where the test error rate or success rate is used
in most cases. For time-serics prediction, criteria other than the test ARY are ofign
used, such as the mean squared crror (MSE) (Park ct al., 1996). However, the MSE is
not a normalised parameter; thus, differences in scaling prior to training can render
this measurement meaningless.

Bearing these constraints in mind, some results using test ARV as the
performance measure are presented here for comparison purposes. The GFNNs and
SIANNSs achieved mean test ARVs in the vange 0,092 to 0,174, with best case as low
ns 0.065. In (Nikolasy & Iba, 2003), polynomial feedforward neural networks
{PFNNs) were trained with 10 inputs, the same number as used to train the SEANNs
and GFNNs, and with the same range of points for training, validntion and testing.
The generalization or test ARV reported by them canged from 0.077 1o 0.442, which
is comparable to the resulis obtained here. It should noted that the better performing
networks in (Nikolaev & lba, 2003) all had their *optimun’ structure determined by
genelic programming,

In (Maftaly ct al., 1997), 12 inputs were fed into n 12-4-1 MLP structure, The
networks were then enlarged with feedback loops from the hidden layer to the input
layer to form a recurrent neural network structure. These recurrent networks were
tested singly and as ensembles. The best results reported were test ARVs of 0.073 for
a single network and 0.070 for a network ensemble. The same type of networks
trained using o subset of six non-consecutive points results in test ARV of 0.070 and
0.067, respectively, Weigand and his colleagues usc a standard 12.8+1 MLP, with
weight decay to address the issue of possible overfitting, and achieved a best case
test ARV of 0.086 (reported in (Naftaly et al., 1997)). Nowlan and Hinton impose a
mixture of Gaussians prior on the weights, which they colled “Soft Weight Sharing”,
ta getatest ARV of 0,072 (reported in (Naftaly et al., 1957)).

The general conclusion is that shunting inhibitory networks are able to achieve
performance levels comparable to the other results reported here, with the best
shimting network achieving the lowest test ARY of 0,065,
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82,6 Thyrold Disease Dataset

In order to provide an insight inte the capabilities of shunting networtks with larger
problems, an additional benchmark 1est has also been included in this chapter. The
thyroid problem chosen has more than seven thousand samples with 21 input
parameters and three output classes, The thyroid dataset was chosen as it is a “*hard
practical classification task™ that could provide n gooed 1est for the algorithms and
networks being evaluated (Schiffmann et al,, 1992a),

8.2.6.1 Descriptivn of the Thyraid dataser

The Thyroid discase dataset is another real-world medical diagnosis dutaset obtained
from the UC] Machine Learning Repository {Blake & Merz, 1998}, The repository
tins a number of datasets pertaining to the Thyroid discase and the dataset chosen is
the “ANN" version, deemed the most amenable to artificial neursl networks, [1 s in a
form that can be uscd for neural networks without need for pre-processing and has
been used fairly commonly in the literalure (Abe et al, 1999; Jankowski, 2003;
Koshiba & Abe, 2003; Prechelt, 1994; Schiffinann et al, 1992a, 1992b, 1993;
Tsujinishi & Abe, 2003; Yoo & Liu, 1997). The thyroid dataset has 21 auributes, of
which 15 are binary and 6 continuous real-valued inputs, and three autput classes.
The problem is to determine the patient's thyroid function based on the input
attributes, with the three cutput classes being normal, hyper-funclienal, and
subnormal. The class probabilitics for the test set are 92.6%, 5.0% ond 2.3%
respectively, The normal patients make up the vast majority of cases, thercfore a
good classifier needs to have success rate much higher than 92.6% (Schiffmann ot
al,, 1992a), i.c., an crror rate significantly lower than 7.4%,

The datasct is divided into a training set containing 3772 samples, and test data
with 3428 samples. While the whele training set was used te train the nelwoerks, the
test data was divided in two subsets: one half used as a validation set for early
stopping of training, and the other balfused ns a test set. This is in line with the 50%-
25%-25% division of the dataset used for the other problems.

8.2.6.2 Results for the Thyroid problem

The Thyroid prablem results presented in Table 8.8 and Fig. 8.7 are for one SIANN,
onc GFNN and an MLTP network that were trained with GDX, LM and QNNG6
algorithms. The GFNN structure consists of two peneralised shunting neurens and
three sigmoid output neurons (GP 21-2-3). We should note that the chosen GFNN
siructure is small, compared to most structurgs that have been reported in the
litcrature as “optimum’. The MLP structurc used was a single hidden-layer 21-4-3
MLP, sclected because it has almost the same number of weights as the GFNN
network, 103 compared to 101 for the GFNN. The SIANN structure used was the
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*standard" one, with the number of shunting neurons in the hidden layer being equal
to the number of input attributes, i.e., a 21-21-3 structure with a total of 570 weights.

The results prescnted in Table 8.8 and Fig. 8.7 show that all three types of
networks trained with the firsi-order GDX algoritlnn have mean error rates of around
6%, with the best result achicved by a single network of 5.60%. This result is not
practically useful as the *default’ error tate is 7.4%. However, the results are much
better for networks trained with the LM and QNN algorithing,

When trained with the LM algorithm, the MLP achicvel a mean error rate of
1.72%, the Jowest mean error rale obtained here; the best single MLP network -
achieved an error rate of 1.17%. The GFNN perfarmance was not as geod, with a
miean test error of 3.34% and best errar rate of 1.98%. The LM-traincd SIANN
overall performance was poor, with a mean crror of 5.40%, but the best case
performance was an acceptable 2.16%. :

The MLPs trained with the QNNG6 algorithm did not perform as well as the LM-
traincd ones, having a mean test emor rate of only 2.18% and best error rate of
1.65%. The GFNN performance was only slightly worse with o mean etror rate of
2.62%, but better 1han when trained with LM, The best single QNN-trained GFNN
network achieved o good 1.81% error rate, better than the best SIANN network with
1.87%. The SIANNs trained with QNN had a better mean errer rate though, 2.19%,
almost the same as that of the MLPs,

An overall comparison of accuracy by algorithm wauld have QNN better than
LM, with GDX the worst by far. This is net surprising as both LM and QNN are
second-order algorithms while GDX is first arder, From a network ‘type’
perspective, there is a marked difference when trained with LM: MLP best, GFNN
next and SIANN worst. The results are close for all three types trained using the
GDX and QNN algorithms, with SIANN slightly worse than the other two for GDX,
and GFNN slightly worse for QNN.

The trend for mean training time is that MLP is fastest, GENN next and SIANN
takes the longest 10 train, The GDX algerithm was the fastest, on order of magnitude
faster jn most cases, as it is the simplest algotithm. This is negated by the fact thot it
is unable to produce any useful results with this datasct. The variation in training
time across the different types of network was only about 10% with GDX. The LM
algorithm tock much longer than GDX, as expected, and the QNN even longer in
most ¢ases. MLPs took more thun three times longer 1o train with LM compared to
GDX, and more than twice as long again with QNN. The GFNNs took 2 ta 3 times
longer to train than MLPs for these second order alporithms. The SIANNs took the
longest to trait by far, more than 3 times longer to train than the GFNNs with QNN,
and almost 8 times longer than GFNNs with the LM algorithm.
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Table 8.8  Results for the Thyroid disease classification dataset using MLPs,

GFNNs and SIANNs
Network | Training|  Activation Performance Avg Epochs Test Error Mean
Structure| Algor. functions (% of runs) CPU
Shunting | Out | = | 0% |20%| All | = | 0% | Best |Mean | 95% | Med. | time (s)
Nu | Den goal | err | < |runs | goal |Error| (%) (%) CI | (%)
MLP GDX | Tnh Lgs| O 0 |100| 419 | * ~ 5.60 | 5.96 |+0.04] 6.01 254.0
2(117)‘;3 LM |Lgs Les| 0 | o 100 119] * | * | 117] 172 |+ 0.08] 1.69] 8822
weights) | QNN6 | Lgs Les| 0 | 0 |100]384] * | * | 1.69] 2.18 |+0.06] 2.16 | 21626
GFNN | GDX |Lin|Lgs|Lgs| O 0 [100| 348 | * L 5.83 | 6.00 |+0.02| 6.01 275.4
21G2P3 LM |Lin|Tnh|Tnh| O 0 [100| 300 | * . 1.98 | 3.34 [+0.27| 3.73 | 2799.7
(101 | QNN6 | Lin |Tnoh|Lgs| 0 | 0 [100] 382 * | * | 1.81| 2.62 |+033] 233 | 45859
weights)
SIANN | GDX Exp | Lgs 0 LIDOL3TS * * 5.66 | 6.32 [+0.15| 6.01 292.5
2‘(;27‘0'3 LM Exp|Lgs| 0 | 0 [100|703| * | * | 2.16| 5.40 |+ 0.30| 5.83 | 36403.2
weights)| QNN6 Toh|Lin| 0 | 0 |100]559| * | * | 1.87| 2.19 |+ 0.06| 2.16 | 15844.3
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Fig. 8.7: Best, mean and median test error and mean training time for Thyroid dataset
using MLPs, GFNNs and SIANNSs.
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Overall, the L. M-traincd MLP was best with the lowest error rate, and the shortest
training time ameng the *useful® networks. The STANN with LM on the other hand
was the worst, with high error rate and the longest training time by far,

Table 8.9 presents the mean test esror rate from the MLPs, GFNNs and SIANNs
obtained here, along with results from other literature for comparison. The
documentation for this dataset, provided by the UCI Repository, refers to work by
Schiffmann et al, where the thyroid dataset has been uscd to evaluate the
performance of the backpropagation algorithm and a number of improvements to it
{Schiffmann et al., 1992a, 1993), as well a5 cvaluating "optimal’ MLD structures
determined by genetic algorithms (Schiffmann ot al., 1992b). They use a fully
intercermecied 21-10-3 MLP, trained by a number of different algorithms. The mean
test error rates achieved, given in (Schiffmann et al,, 1992}). are presented in the right
hand side of Table 8.9.

As with the previous benchmark problems, the Probeni dataset has three different
partitions {labelled thyroid!, tyroid? and thyreid 3) (Prechelt, 1994). The siyrofd]
and thyroid3 pattitions have as their *pivot architecture’ u 21-16-8-3 twao-hidden-
lnyer network, with $15 weights, and the thyraidd partition o 21-8-4-3 structure, with
227 weights, with no shorteuts. These networks are made up of sigmoid hidden layer
neurons and linear output neurons, and were wrained using the RPROP algorithm, as
previously. The mean 1est error rates achicved are presented in Table 8.9.

Other results presested include  feedforward newworks constructed  using
evolutionary programming {£PNer) {Yao & Liu, 1997); supporl vecior machines
using L1 snd L2 SVMs (Koshiba & Abe, 2003) and fuzzy least squares SVMs
(Tsujinishi & Abe, 2003), and & nearest neighbour (AMN) and weighied kNN (IVENA)
methods (Jankowski, 2003).

As can be seen from toble, the mean test error from other results ranges from

1.44% to 7.29%. The menn 1est error rates oblained here range from 1.72% 10 6,32%.
From that perspective, the results abtained here arc compatable, falling within the
spread of previously reported results. There ate also a number of points to take into
consideration when making the comparisons,
Firstly, Schiffmann et al. Tound that they could not train any uscful MLP networks
for this problem using batch mode updates, Both instances where batch mode was
used resulted in test error rates above 7% (refer Table 8.9), in other words the trained
networks were useless, as this is the default error for the dutaset, This is not just due
ta the complexity of the problem, but also because of the extremely uneven
distribution of clnsses in the daaset, For the other instances, they used online
training, which updates the weights after each exemplar is presented.
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Table 8.9  Comparison of mean fest error for Thyroid dataset with other resnlis
frem literature

Instance Source Mean Test Tnstance Suuree Mean Test
Error (% Error (%4)
OFNN - GDX 6.00 Backprop Schiflmann .42
GOFKN - LM ) 334 Baekprup (hateh mode) Schiffmann .15
GFNN - QNN 262 Backprop (balch mode) + Eaton | SehifTmann 729
: and Oliver
STANN - GDX 6.32 Backprop + Darken and Moody | Schiffmann 2.10
SIANN - LM 540 1. Schimidhuber Schifmann 277
SIAMNM - QNN 2.1% R. 52l Schiffmant 386
MLP-GDX 596 Chan and Fallside Schiffmann 5.8
MLP - LM 1.7 Polak-Ribiepe + line scarch Schiflmann 5.83
MLP - QNN .14 Conj. pradient + line scarch SchiMfinann 6,16
Thyraid | Proben| ) Silva and Almeida Schiflmann 1.55
Thyroidd Prabenl 1.91 SuperSAB Schiffimann 1.5%
|_Thyroid3 Proben] .27 Dela-Bar-Delta Schiffinaun 1.63
ElNet Yao 212 RPROP SchiMinaun .98
L1 SV Rushiba 151 Cruickprop Schiffinann 1.75
L3 3VM Kuoshiba 1.65 Cascade correlation 10 unite Schiflinann 1.58
Fuzzy L8-SVM Tsujinishi 242 Caseade correlntion 20 wpity Schilfinann 1.52
kNN Tankowski 170
WENN Jankowski 144

The results obtained here, on the other band, are all vsing batch mode updates.
The GDX algorithm is comparable to the baich-mode Backprop algorithms and its
resulls are around 6% errer, a little better than that achicved by SchifTimann, but just
us useless, The LM und QNN algorithms however achieved mueh better results
despitc using batch mode updates, just as Prechelt did with his batch-mode RPROP
algotithm in the Probenl tests.

The other point to note is that in most cases the network structures used in the
literature were much larger than the MLP snd GFNN structures used here, Only, the
SIANN structure is of comparable size to the others, Despite their size, the GFNN
(181 weightsy and MLP (103 weights) networks were able to achieve comparable
results to the much [arger networks, Our 21-4-3 MLP trained with the LM anlgorithm
achieved n mean crror rate below 2%, Schiffmann ct al managed to get a number of
instances where the emor was under 2%, but using o much larger, fully
interconnected 21-10-3 MLP. Only twe of the other reported instances managed to
reach this level of accuracy, Prechelt reported 1.91% with the Probenl thyroid?
dataset using a 21-16-8-3 two-hidden-layer network and Jankowski achicved |.44%
will o weighted £-nearcst neighbour classificr with ¥ = 3 and 3-fold cross-validation.

The third point is the maximum number of training epochs. Schiffmann trained
the networks for a muximum of 5000 epochs, Prechelt set the maximum at 3000
epachs, while here it was sct to 1000 epechs for consisiency with all the ather
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benchmark problems. In all three investigations, a validation set was used for early
stopping. Even though carly stopping was used, 2 number of runs trained for the
maximum number of epochs, panticularly for the GDX and QNN algorithm,
However, it is debatable whether increasing the maximum number of epochs would
actually result in an improvement in performance.

These three points indicate areas that can be investigated in the future, particularly
for this problem; that s, training these networks using on-line mode training, using
larger structures, and training for a greater number of cpochs.

In the final analysis, what has been demonstrated is that the networks under
investigation here were able ta achieve resulis comparable to the previeusly reported
restlts by other investigators, and, in the case of GFNNs and MLPs, they were able
to do this wilh much simpler network struclures.

8.3 Performance Comparison with MATLAB Toolbox MLPs

8.3.1 Benchmark tests using MT-MLPs

The results shown in the previous sections were obtained vsing the same MATLAB
code for GFNNs, SIANNs and MLDPs. The code was written to take advantage of the
fuct that SIANNs and MLPs are subsets of GFNNs. The majority of the code and
data structures used are gencric, with relevant sections of code branching out to cater
for the differences in neuron type, While the code has been based loosely on the
standard MATLAB Neurat Network Toolbox code, it has “evolved' as the research
propressed, with emphasis on achieving results ruther than speed of execution. The
code has not been optimised for memory or computational efficiency, and therefore
the time taken to train the networks would probably be much longer than it should.

In this section, the perfermance of the ‘Generalised* MLTs, or G-MLPs, used in
the previous section is compared to that of MLPs using the MATLAB Neural
Netwok toolbex code, dubbed “MATLAB Toolbex MLPs" or MT-MLPs. The
purpose of this comparison is to quantify the *inefficiency’ of the *gencralised’ code,
at least approximately, sa that valid comparisons of the training time could be made
with other results in the literature. Additionally, the comparisons would give an idea
of differences in performance between the G-MLPs and the ‘off-the-shelf® MT-
MLPs.

For each of the benchmark tests, the same MLP network structures used
previously were generated and trained using the default MATLAB data siructures
and code, The networks were teained using the MATLAB Toolbox implementation
of the GDX and LM algorithms. All the training parameters were kept the same, the
only difference being the weight initialisation scheme. The MT-MLPs were
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inftialised using MATLAB's default weight initialisation scheme, the Npuyen-
Widrow initialisation scheme {Demuth & Beale, 1992; Nguyen & Widrow, 1990},
instead of the scaled uniform weight distribution scheme described in Section 4.5.2.

The mean test error and test ARV for the six benchmarks tests are presented in
Tables B.41 to B.46 in Appendix B. The results obrained showed definite difference
in performance between the G-MLPs and the MT-MLPs, with the G-MLPs generally
achieving better performance. The difference in accuracy ¢an be attributed to one or
two possible sources: the difference in initialisation schemes and the difference in the
implementations of the training algorithms. Lo order to remove the differences due 1o
initialisation from the cquation, tests were conducted with MT-MLPs with initinl
weights set 10 evacdy the same weights as the G-MLPs. The MT-MLPs had their
initial weights copied scross from the G-MLPs, and activation functions set the same
a5 the best performing G-MLPs for each algorithm.

Tables 8.10 and 8.11 present the results obrained using these three sets of MLPs
and Figs. 8.8 to 8,13 show a comparison of the mean, median and minimum error
and mean training times, The results for the standard structures, initialisation and
training nlgorithms, as given in Chapter 4, are denoted as G-MLP, The standard
MATLAB Neural Network Toolbox networks and training algorithms are denoted
MT-MLP, with twe sets of results based on injtialisation scheme. The MT-MLPs
initialised with the defoult Nguyen-Widrow initialisation scheme are Jabelled *NW-
init’ while those with initial weights copied across from the G-MLPs arc labelled
‘GF-init". The GF-init MT-MLP resulis are for the same activation function
combination as the corresponding G-MLP, so that differences in results can only be
due to differcnces in the implementation of the algorithms.

Comparison of the results for the Wisconsin Breast Cancer dataset shows that the
NW-init MT-MLPs kad a higher crror rate than the G-MLPs for both training
wlgorithms, though the actual difference between the means is less than 0.3%. The
NW-init MT-MLPs had 54% and 28% of networks achieving perfect classification
with the GDX and LM algotithms, respectively—compared to 36% aod 44% for the
G-MLPs, The GF initialised MT-MLPs results indicate that the reasons for these
differences ate not the same for both irining algorithms, When trained with GDX,
there is hardly any differcnce in accuraey between the G-MLPs and the GF-init MT-
MLPs, indicating that the initialisation scheme is the cause for the difference in
performance. The LM-trained networks, on the other hand, have both MT-MLPs
producing similar resulis and G-MLPs with better accuracy. This would indjcate that
the difference in results between G-MLPs and MT-MLPs in this casc is not due to
the initial weights, but due ta differences in the implementation of the algorithm,
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Table 8.10  Comparison of G-MLPs and MT-MLPs trained on (a) Breast Cancer
(b) Diabetes, (c) 3-bit Parity, (d) Multi-class and (e) Thyroid datasets.

Network | Train | Activation Performance Avg Epochs Test Error Mean
Structure |Algor. functions (% of runs) train

Hidden | Out | > | 0% [20%| All | & | 0% | Best | Mean | 95% | Med. | time
goal| err | < |runs|goal | Err [ (%) | (o) | CI | (%) ()

a) Wisconsin Breast Cancer
G-MLP | GDX | Lgs | Lin
LM | Lgs | Tnh

86 |100| 158 | * 159 0.00]| 008 | +0.05] 0.00 8.6
44 |100| 57| * 56| 000| 051 +0.15 056| 99

MT-MLP | GDX | Lgs | Lin
(GF-init) | 1 Lgs | Tnh

88 | 100 191 | * 192] 000 0.07]| £0.05) 000f 22
100 60| * 58] 000 0.75| £0.18] 0.56 1.4

MT-MLP | GDX | Lgs | Lin
(NW-init) | yn | Lgs | Lin

541100 232 | * |255| 000]| 037|+0.14] 0.00| 28
28 |100| 63| * 61| 0.00| 0.72]+022] 0.56 1.4

o |0 |IS |C |C|o
2
oe

b) Pima Indians Diabetes

G-MLP | GDX | Tnh | Tnh
IM | Lgs | Tnh

30| 188 | * g 18.75 | 2045 | +£0.22( 20.31 | 11.1
26/ S8 * . 18.75 ] 20.75 | £0.31f 20.83 | 10.8

MT-MLP | GDX | Tnh | Tnh
(GF-init) | ynr | Lgs | Toh

16| 188 | * * 19.79 | 20.95 | £ 0.64| 20.57 22
34, 61 ¥ 17.71 | 20.88 | +0.52| 20.83 13

MT-MLP | GDX | Tnh | Lgs
(NW-init) | 1n | Lgs | Lin

12191 * ¥ 19.27 | 21.48 | + 0.88| 20.83 24
Q6L < * 18.23 | 21.11 | + 041 21.35 1.3

(=2 k=0 f=1 =Y RN [ <}
(=1 = f=1N i =1 =1 { =]

¢) 3-bit Parity

G-MLP |GDX | Lgs | Lgs | 96| 96|100| 224 | 192 | 192| 0.00| 0.50| £0.69| 0.00 1.0
LM | Lgs | Lin (100100100 11| 11| 11| 0.00| 0.00| +0.00f 0.00]| 02

MT-MLP | GDX | Lgs | Lgs | 96| 96| 100 266 | 235 | 235 | 0.00| 0.50| +069] 000| 2.1
(GF-init) | 1 [ Lgs | Lin | 96| 96| 98| 28| 12| 12| 000| 1.50|+249] 0.00| 04

MT-MLP | GDX | Lgs | Lgs | 70| 72| 94| 500 | 286 | 306 | 0.00| 4.25[+205] 000| 4.1
(NW-init) | g | pgs | Lgs | 92| 92| 96| 27| 22| 22| o0w00| 200]+225] 000| 04

d) Multi-Class

G-MLP |GDX | Lgs | Les | 0| ofw0f 225 * | = | 400| 537|+022| 533| 115
IM | Toh [ Toh | o] of100| 67] = | * | 400| 583|+0.16] 6.00]| 299
MT-MLP | GDX | Lgs | Lgs | 0| o[100]|278| * | * | 400| 601|+021] 600| 35
(GF-init) | yn | Toh | Ton | 0] of100] 94| * | *» | 600 12.84| +504| 733| 25
MT-MLP | GDX | Lgs | Lgs | o] of100]204a| * | * | 333 553|+027] 533| 40
(NW-init) | 13 | pgs | Lin | 0 of100| 81| * | * | 533| 599|+014] 600| 24
e) Thyroid
G-MLP |GDX | Lgs | Les | 0] of1oo|at9] » | = | se0| 596|+004] 6012540
LM | Lgs | Les | 0] ofroo| 119] * | * | 117| 1.72| +0.08| 1.69 8822
MT-MLP | GDX | Lgs | Lgs | 0| of100|457] * | * | s583| 604|002 607| 209
(GF-init) | 1 | pgs | Legs | o] oft00]|102| * | * | 123| 1.97| +024| 1.87]180.
MT-MLP | GDX | Lgs | Lin | 0| o0|100]396| * | * | 58| 659]+0.17] 665| 184
(NW-init) | 1 | Lgs | Lin | o] of1oof189| * | * | 181] 249|+0.18] 228]1858
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Wisconsin Breast Cancer
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Fig. 8.8: Comparison of mean and median error and mean training time for the
Breast Cancer dataset using ‘generalised” and MATLAB Neural Network
Toolbox MLPs.

The big difference in performance lies in the training time. The MT-MLPs
actually needed more epochs to train, but were still 3 times faster in actual execution
time for the GDX and 7 times faster for the LM algorithm. This means that the
MATLAB Toolbox code has been optimised to a point where it can train the
networks in a fraction of the time. The MATLAB Toolbox MLP implementation is
in the order of 4 to 8 times faster than the GFNN implementation, taking into account
the additional epochs.

The results for the Diabetes dataset show similar trends, with the NW-init MT-MLPs
having higher mean and median error rates for both algorithms; the average error
rates for both algorithms were more than 21%, compared to under 21% for the G-
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MLPs. The actual difference between means is about 1.0% for the GDX algorithm
and less than 0.4% for the LM algorithm. The GF-init MT-MLP performance, in this
case, was in between the other two types of MLP for both training algorithms. This
indicates that the difference in performance is partly due to implementation
differences. The number of epochs to train was most the same, the maximum
difference being only 3 epochs in each case, but the MATLAB code was more than 4
times faster for the GDX algorithm and more than 8 times faster for LM.

Pima indians Diabetes

Trained using GDX Trained using LM

I

Test Ervor (%)

MEMLP GF i MTMLP, MW st GMLE

Mean Tralning Time (s)

G-MLP MT-MLP, GF init ~ MT-MLP, NW init G-MLP MT-MLP, GF inll ~ MT-MLP, NW il
Network Type

Fig. 8.9: Comparison of best, mean and median error and mean training time for the
Diabetes dataset using ‘generalised” and MATLAB Neural Network
Toolbox MLPs.
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3-bit Parity
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Fig. 8.10: Comparison of mean and median error and mean training time for 3-bit
Parity using ‘generalised’ and MATLAB Neural Network Toolbox MLPs.

The NW-init MT-MLP accuracy for the 3-bit parity problem was a lot worse, with
mean error rates of 4.2% and 2.0% with GDX and LM respectively, compared to the
G-MLP with 0.5% for GDX and perfect (0.0% error) results with the LM algorithm.
The NW-init MT-MLP trained on GDX only had about 70% of networks achieving
all correct classification, compared to more than 90% for all other cases. The GF-init
MT-MLP trained with GDX had the same results as the G-MLP, except for taking
about 20% more epochs. When trained with LM, on the other hand, the GF-init MT-
MLP performance was in between the others two. Again, the initialisation seems to
have a bigger effect with the GDX algorithm. The Parity problem is the only one
where the G-MLPs were faster to train than the MT-MLPs, twice as fast for LM and
up to 4 times faster for GDX. After factoring in the greater number of epochs
required, the training speed was almost equal for the LM algorithm, but the GDX
was still twice as fast as the MATLAB Toolbox implementation.
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Fig. 8.11: Comparison of best, mean and median error and mean training time for the
Multi-Class problem using G-MLPs and MT-MLPs.

For the Multi-Class problem, the NW-init MT-MLPs had error rates exactly
0.16% higher than the G-MLPs for each of the training algorithms, and took 20% to
30% more epochs to train. The GF-init MT-MLPs had higher error rates than both
the other types of MLP for this case. When trained with LM, the GF-init MT-MLP
had an error rate more than double the other two. The most probable explanation is
that this is due to the activation function. Looking at the overall results in Appendix
B, it can be observed that the MATLAB implementation does poorly when the
output activation is the hyperbolic tangent function. It is especially bad when trained
with LM, the trend observed across all the benchmark tests. However, it is not clear
why this is so. In terms of training time, the trend is similar to most of the other tests.
The MT-MLPs are about 3 times faster to train using the GDX algorithm and 12
times faster using the LM algorithm, in terms of actual computation time, despite
requiring more epochs.
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Fig. 8.12: Comparison of best, mean and median error and mean training time for the
Thyroid problem using G-MLPs and MT-MLPs.

The results on the Thyroid dataset show the same trends as most of the earlier
classification problems. The mean error rates of the NW-init MT-MLPs were slightly
higher than that of the G-MLPs, with a difference in mean error rates of 0.65% and
0.77% for GDX and LM, respectively. The GF-init MLP error rate was within 0.1%
of the G-MLP when trained with GDX. When trained with LM, it achieved error
rates midway between the other two. The G-MLPs took more than 12 times longer to
train with GDX, and more than 4 times longer with LM.

The Sunspots time-series prediction results show the mean test ARV achieved by
all three types of MLPs, when trained with GDX, to be almost exactly the same.
When trained with LM, the ‘usual’ trend is observed with G-MLP being best and the
NW-init MT-MLP worst, and the GF-init MT-MLP in between. The NW-init MT-
MLPs’ required almost 3 times as many epochs as the G-MLPs when trained with
the GDX algorithm, but still took about 15% less time. When trained with the LM
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algorithm, the number of epochs required was almost the same for all three types, but
the MT-MLPs were more than 5 times faster.

Table 8.11 Comparison of G-MLPs and MT-MLPs trained on Sunspots dataset.
Network | Train- Act-fns Performance | Avg Test MSE Test ARV Mean
S ing (% of runs) | Epoc time
Huct. Algor- | 14: hs . :
MEOT | Hidden| Out | = | all [80% Best |Median| Best |Median| Mean [95%CI| to
ithm gl in tol train
tol (s)
G-MLP |GDX | Tnh |Lin| 0| 14| 98| 151{0.0094|0.0129| 0.113| 0.155| 0.162[+0.024| 58
LM | Lgs |[Lin| 0| 22/100| 57/0.0079[0.0113| 0.095| 0.136| 0.138|+0.006] 7.0
MT-MLP | GDX | Tnh [Lin| 0| 0]100| 255(0.0087(0.0112| 0.123| 0.160| 0.158/+0.005| 2.8
(GF-init) | 7 | 1gs [Lin| o] 6/100] 60]/0.0091]0.0138| 0.129] 0.196| 0.200l+0012] 1.2
MT-MLP | GDX | Lgs |Lin| 0| 6[100| 434]/0.0091{0.0109| 0.130| 0.155| 0.163/+0.008 4.9
(NW-init) | yng | Lgs |Lgs| o] 8[100] s9]0.0114/0.0161] 0.162] 0.229] 0.231|:0012] 1.3
sSunspots
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Fig. 8.13: Comparison of best, mean and median test ARV and mean training time
for Sunspots prediction problem using G-MLPs and MT-MLPs.
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8,32 Analysls of effliciency test resulls

The overall trend was that the NW-init MT-MLPs generally bad lower accuracy than
the G-MLPs. This is reinforced by the results obtained across all the different
activation functions, Looking at the Tables B.41 to B.46 in Appendix B, it can be
scen that the average crror seross all the activation functions is always lower for the
G-MLPs, with the exception of GDX with the Sunpots problem. The results for the
GF-init MT-MLPs indicate that the difference in accuracy, for networks trained
using the GDX algorithm, is mainly due to the initialisation scheme. For the LM-
trained networks, on the other hand,:only abowt half of the difference can be
attributed to initinfisation, the other half arising from implementation of the
algorithms, These results, though problem-dependent, can be viewed as an
endorsement of the sealed uniform weight distribution initialisation scheme used
with G-MLPs (GF-init). This, however, is only an interesting aside,

The main focus of these comparisons is the differences in ‘efficiency’ of
implementations, where the results are more ¢lear-cut. In terms of computation time,
MT-MLPs often required more epachs but were still faster to train, with the
exception of the 3-bit Parity problem. When factoring in the difference in the number
of epochs trained, it would appear that the MATLAB Toolbox implementation of the
GDX algorithm is about 3 {o 4 times faster than the implementation used in our
experiments, while the LM algoritivn implementation is between 5 and 16 times
faster. The difference in the speed of the algorithms can be attributed to two factors.
Firstly, the “generalised’ implementation is a gencric implementation that is written
to handle oot only MLPs, but also SIANNs and GFNNs. More importantly, the
actual code for these algorithms has not been optimised for execution performance.

For a more detailed analysis, Table 8.12 presents the average training time per
epoch for the various benchmarks tests, obtained by dividing the mean training time
by the average number of tpochs for cach case. The ratio of this average for the
GFNN and MATLAB Toolbox implementation of each algorithm gives an idea of
the difference in speed.

For the GDX algorithm, the training time per epoch ratio between the G-MLP and
MT-MLPs is relatively similar, ranging from 3.5 to 4.9, except for the 3-bit Parity
where the ratie is much lower at 0.59 and the Thyroid problem with a much higher
ratio of more than 13, One possible reason for this is the number of training samples
used for each problem, with the Parity having only 8 samples, Thyroid having 3772
and the rest between 220 and 384, The relationship between the average training time
per epach and the number of samples is almost linear for G-MLPs. The only
exception being the Parity problem, where the number of samples is very small. In
this case, the time taken for ‘overhead" activities, that could normally be ignored as
negligible compared to the actual training time, would come into play,
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Table 8.12 Comparison of average iraining time per epoch for G-MLPs and MT-
MLPs for all datasets

Benchmatk Mo.of | Val- | No. Avcrage Training lime per epoch (s} :
Test T{ain- Eflal- of GOX LM

Sumites | buty | GMLE [ MT-MLE | Rotio | G-MLP [ MT-MLP [ Ratia
Breast Concer 348 | Yes 1 0055 0.012 4.72 0174 0.023 7.64
Diaberes 384 | Yes 1 005G 0012 446 0184 0.021 8.77
3-bit Parity 8| No 1 B.005 0.008 .59 0.020 0.015 1.37
Multi-Class 300 | Yes 3 0051 0.013 408 0.446 0.027 16.81
Sunspots 21| Yes } 0.038 0.011 1] 0,122 0.6320 6,10
Thyrald 3N ] Yes 3 0.606 0.046 13.26 7413 1.766 4.20

MEAN 548 .48

The larger the number of training samples, the larger the ratio, indicating that the
MATLAB Toolbox implementation is able to process large numbers of samples
more efficiently. The average time per epoch does not vary that much for the
MATLAB implementation of GDX, with the longest time about 6 times longer than
the shortest. The GFNN implementation, en the other hand, has the longest, more
than 100 times longer then the shortest. The MATLAB code has been aptimised for
large array computation, thereby making the training time per epoch much less
sensitive to the size of the training set.

The trend for the LM algorithm is similar to the GDX algorithm. The Parity
problem has a ratio of 1.37, indicating that the GFNN implementation is only slightly
less efficient than the MATLAB Toolbox implementation for the small number of
samples, The ‘medium’-sized datasets have ratios in the tegion of 6.1 to 8.8, except
for the Multi-class problem, which has a ratio of 16.8. This is most likely due to the
use of three outputs neurons in this prablem, which increases the size of the Hessian
matrix used in the LM algorithm, and hence increasing the computation time. The
average training time per epoch for the GFNN implementation is in fact proportional
to the product of the sample size and the number of outputs. The exception is again
the Parity problem because the sample size is extremely small,

The increased Hessian size affects both implementations of the LM algorithm, but
the MATLAB Teolbox is not impacted as much. The only anomaly is thyroid
problem, with a ratio of only 4.2. For all the other problems, the average time per
epoch for the MATLAB Toalbex implementation is between 0.015 to 0,030 seconds,
but this jumps te 1,77 seconds for the thyroid problem, The GFNN implementation
of the algorithm shows its sensitivity to such factors as dataset size and number of
outputs, ranging from 0,02 to 7.41 seconds.

On average, the MATLAB Toolbox is around 3 times faster than the GFNN
implementation for the GDX alporithm, and mote than 7 times faster for the LM
alporithm.
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While on the topic of efficiency, the QNN algorithm and its variants have not
been optimised for speed either, Unfortunately, there is no implementation of the
QNN algorithm in the MATLAB Toolbox to compare with! There will definitely be
room for fine tuning and improving the efficiency of the code, as it is based on the
same structures and principles as the implementations of the GPX and LM
algorithms for GFNNs.

The implementation of the QNN algorithm for ‘pure’ MLP networks can in fact
be improved quite simply by using the fact that the weights of an MLP are
unconstrained. Removing all constraints simplifies the 'recurrent network® equation
considerably, This simplification has been implemented suceessfully, and details of
the changes to the equations along with some benchmark results can be found in
{Arulampalam & Bouzerdoum, 2001b, 2002b). This unconstrained version has not
been used in these tests, however. The same generic code that can handle MLPs,
SIANNs and GFNNs has been used so that it is clear that the differences in results
are due to the different netwotk stmctures and not due to changes to the algorithm.

8.4 Discussion

la order to link the varicus results obtained in this chapter, the genera! trends across
all the benchmark tests are now discussed. This will provide an overview of the
relative merits of the networks and algorithms used.

8.4.1 Trends in Tralning Algorithm Performance

In terms of accuracy, the QNN algorithm variants were able to train the various
network types to achieve good accuracy, particularly with the SIANNs and GFNNs
that have constraints on some weights. An interesting point to note is that the QNN
algorithm appears to come out best for the *harder’ problems, such as the Dinbetes,
Sunspots and Thyroid datasets. The best results for the GFNNs and SIANNS trained
on these three problems were achieved with the QNN algerithm, as well as the best
overall results for the Diabetes and Sunspots problems, This is probably due to the
fact that the QNN algerithm is able fo incorperate the constraint on the decay
parameter g while working out the “optimal' weight update. The other algorithms
update the weights, then impose the constraint on the parameter, This may result in a
sub-optima! weight vpdate if the constraint changes the weights.

The only disadvantage of the QNN algorithm is the long teaining time required,
hence the need to improve the efficiency of this algorithm. Additionally, it should be
remembered that the QNN variants used were selected based on tests on SIANNs
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only. This could bave skewed the choice of variants, and possibly even their
formulation, in favour of SIANNS.

The second-order LM algorithm results in good accuracy as expecied, coming out
as the best by far in some problems, such as the 3-bit Parity problem, In most cases,
the LM worked best with the MLPs, and resulted in slightly higher error rates
compared to the QNN algorithm for the SIANNs and GFNNs, However, the LM
algorithm was generally much faster than the QNN, with a couple of exceptions. It
has lived up to its reputation of being one of the most powerful neural netwerk
algorithms, but the disadvantage of the LM algorithm has always been the
requirement to calculate and invert the Hessian matrix. The resultant memory and
computation requirements tend to offset the fact that the LM algorithm generally
requires fewer cpochs to train the networks compared to other algerithms. As
discussed in Section 8.3, the problem becomes more apparent as the number of
samples in the training set and the number of outputs increase. As can be seen from
Table 8.12, the MATLAB implememation of the LM algorithm also gets affected by
these increases, but not as badly as the GFNN implementation since the MATLAB
code is more cfficient.

The GDX algorithm, being a first-order algerithm, is penerally the fastest
alporithm in terms of actual computation time beeause of the relative simplicity of
the algorithm, This simplicity, bowever, means that the GDX algorithm generally
does not perform as well as the second-order algorithms in terms of the performance

" of the trained networks, particularly for the so-called *harder” problems,

8.4.2 ‘Trends in Network Performonce

This brings us to the topic of accuracy of various types of nctworks over the
benchmark problems. Overall, the results obtained here compare well with results
reported in the liternture, What is noteworthy is that these results were obtained using
much smaller networks in most cases. The GENN structures used have only one, or a
maximum of twa, generalised shunting neurons plus one or three linear or sigmoid
output neurons, depending on the number of outputs required. ln some cases, such as
the Breast Cancer and Diabetes problems, a single GS neuren has been used as the
‘network’. Amazingly, this single-neuron network was able to achieve 100% comect
classification Tor the Breast Cancer problem for the majority of the test runs. Even
the MLP structures used here were smaller than in the majority of those reporied in
the literature; the MLP structures were chosen to have approximately the same
number of weights as the GFNN networks to which they were being compared.

The *best’ network type tends to vary from problem to problem. The best average
and individun] nerwork performance for the Diabetes problem was obtained by
SIANN, For the Parity and Sunspots problems, on the other hand, the GENN had the
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best mean error, though the SIANN had the best individual netwaork performance for
Sunspots. For the other three problems, namely the Breast Cancer, Multi-class and
Thyraid problems, the MLP produced the best results. While this is not the
resounding endorsement of the shuating inhibition-based networks hoped for, it is
not altogether surprising, indicating why MLPs have been the most popular type of
neural network used for these kinds of problems over the last couple of decades.

[t should be nated that the three types of artificial neural networks compared here
arc not really three different types of networks, but all actually fall within the
umbrella of GFNNs, As presented in Chapter 7, the generalised shunting neuron
(GSN) has the “plain’® static shunting neuron and perceptron-type sigmoid and linear
neurans as special cases, therefore SIANNs and MLPs are just subsets of GFNNs,
From: this point of view, GFNNs were the best performing networks in all cases!

8.5 Conclusion

The performance of SIANNs, GFNNs and MLPs, tested across a number of
benchmark problems, has been evaluated and compared, The performance of the
training algorithms developed for them, has also been investigated, including
comparisons of efficiency of code wilh commercially available implementations. The
results obtained here have alse been compared to work done by other tesearchers,
putting this work in perspective of the general body of knowledge in this area,

The results are promising. The shunting inhibition networks are able to perform
well with very smalf network structures, The GFNN networks used in the benchmark
tests lind only one or two GSNs, plus an output layer of linear or sigmoid neurons
where needed. Two of the six benchmark fests used only a single GS neuron, the
simplest possible network structure, The overall results are comparable to or better
than other reported results. This is despite the fact that, in most cases, the networks
nsed in the other literature are much larger.

From » fraining algorithm perspective, the first-order GDX algorithm hag proven
to be a fast and effective training slgorithm, though sometimes not able 1o achieve
the desired nccuracy levels with the more complex problems. The second-erder LM
algorithm was able to achicve befter accuracy, though taking longer due to its
relative complexity. The QNN algorithm was also able to achieve good results, quite
often even better than LM, but at the cost of lenger training time.

Compatisens with the MATLAB Toolbox code show that the training algorithms
implemented for GFNNs could be optimised to improve efficiency and reduce
computation time. These tests also showed that the initialisation scheme used with
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the GFNNs tends to produce better results than the MATLAB default initialisation
scheme.

The question posed at the beginning of this chapter, *How do shunting inhibition
based networks compare with other types of networks?”, can now be answered. The
answer is that shunting inhibitory networks compare well. They are capable of
achieving accuracy levels comparable to or better than other types of networks, and
they are able to do so with simple structures.
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Chapter 9

Conclusion

9.1 The Journey of Discovery

This chapter brings together the various threads of the research conducted thus far,
We can think of the work presented here as a ‘joumney of discovery’, one result
leading into the next exploration, with detours slong the way to investipate some
interesting prospects. The structure of this thesis reflects this journey, forming the
‘ravelogue’. A ‘map’ of this journey is provided in Fig. 9.1, showing the path
travelled and the ‘discoveries’ made.

The starting point was the investigation of SIANNs, motivated by the ability of
shunting neurons to produce non-linear decision boundaries. The objective was to
create shunting inhibition-based feedforward neural networks that could be trained
for classification and regression. Applying SIANNSs to problems of this kind required
training algorithms to be developed. A number of different types of training
algorithms have been developed, frotn the basic gradient descent to hybrid and novel
alporithms. An interesting detonr has been the development of a novel algorithm: the
Quadratic Neural Network (QNN) algorithm; it uses a recurrcnce equation to
simulate a recurrent neural network performing bound-constrained quadratic
optimisation.

SIANNs have been successfully applied to a number of problems, but the standard
SIANN network structure is restricted in terms of size of the layers. This sometimes
results in sttuctures that are too small, or inordinately large, for the particular
problem at hand, Consequently, enhancements have been made to allow the network
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size to be expanded or reduced as required. Problems faced when reducing the
SIANN layer size highlighted one major deficiency: since the shunting neuron is
allowed only one excitatory input, it is not clear what subset of inputs can be used as
excitatory inputs. The solution was to create a shunting neuron model that allows
multiple excitatory, as well as inhibitory, inputs, resulting in the Generalised
Shunting Neuron model. This then led to the creation of the Generalised Feedforward
Neural Network (GFNN) architecture.

In order to prove the worth of the neural networks developed, SIANNs, GFNNs
and MLPs have been tested across a number of benchmark problems, and their
performance evaluated and compared, including comparisons with results reported
by other authors in the literature.

Now that the end of this particular journey has been reached, it is time to
reminisce, savour the highlights, and look to the journeys ahead. The next section is a
summary of the results that form the highlights and link the various strands of the
work done so far. The final section discusses future research directions that have

emerged from the research presented here.

START
Reviewed known facts

about ANNs and SIANNS Developed the ONN
(Chap 28 3) novel training algerithm
{Chap 5)

Developed training
algorithms for SIANNS.
Tested SIANNS on
benchmark problems.
(Chap. 4)

Enhanced the Devgbped the
SIANN structure generalised shunling
(Chap 6) newon model and
GFNN architecture,

(Chap 7)

Compared shunting
inhibitary networks
performance 10
other lypes of ANNs
(Chap &)

END

Review and plan for
next jourmney
(Chap 9

Fig. 9.1: A map of the ‘Journey of Discovery’
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9.2 Summary of Research Outcomes

The initial thrust of this research was to itivestigate the suitability of shunting
inhibition-based feedforward networks, particularly SIANNS, for classification and
non-linear repression tasks. The aim was to create powerful, trainable networks, with
non-linear decision surfaces. The contribution of this thesis can be divided into two
main parts:

a) Development of training algorithms for STANNSs.

b) Enhancement of the SIANN architccture to improve performance.

9,2,1 Devetopment of training algorithms

The taining algorithr part of the research has resulted in the development and
implementation. of a number of algorithms for shunting inhibitory networks. The
algerithms can be divided into five main types, with a number of variants for each:

a) Gradient descent (4 variants), The Gradient Descent with adaptive learning
rate and momentum (GDX) has been the main variant used as it has the
best performance among the gradient descent algorithms.

b) Levenberg-Marquardt {LM) {3 variants)

¢) Direct Solution-GDX hybrid {DS-GDX)

d) Random Optimisation Method (ROM) stochastic algorithmm (2 variants)

€) Novel algorithms based on Quadratic Neural Network (QNN) (2 variants).

The ‘bonus’ in this part was the development of the novel QNN algorithm and its
variants. This algotithm is able to produce pood results, particularly with the
shunting networks that requite certain parameters to be constrained while training.

Overall, the ROM algorithm was the only one that didn’t meet expectations. It
was fast to im, but the kained networks were not able to achieve the desired levels
of accuracy. All the other algerithms were able to yield good results overall, and
some excellent results in particular tests.

922 Enhancing the SLANN architecture

SIANNs have been shown to be a viable class of neural network, with results
abtained comparable to other types of networks, SLANNs were even able to produce
the best results in some of the final benchmark tests, The original STANN structure,
however, had the size of its layers determined by the number of inputs and outputs of
the problem. The enhunced structure, described in Chapter 6, enabled greater
flexibility in the size of layers. Adding exira shunting neurons for problems that had
a small number of inputs generally resulted in improved accuracy. Problems with
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large number of inputs tend to end up with inordinately large SIANN structures.
However, reducing the number of shunting layer neurons normally resulted in
reduced accuracy, as only a subset of the inputs could be used as excitatory inputs.
This is due to the restriction imposed on the shunting neuron model used, allowing it
to have only a single excitatory input.

Addressing this restriction resulted in the creation of the Generalised Shunting
Neuron (GSN) model. A GSN can have multiple, weighted excitatory and inhibitory
inputs, with a transfer function for each type of input. It has been shown that a GSN
can produce various types of transfer characteristics by simply varying the synaptic
weights. The GSN has the static shunting neuron and perceptron-type sigmoid and
linear neurons as special cases, where certain weights have been removed or fixed to
constant values. This has been a key ‘discovery’ of this work. It has led to the
definition of the Generalised Feedforward Neural Network (GFNN) architecture.

The broad definition of the GFNN architecture encompasses a variety of
structures, including SIANNs, MLPs, and ‘plain® GFNNs as investigated in this
work. The term ‘plain’ GFNNs has been used for the networks with a single layer of
generalised shunting neurons (denoted G) and networks with a hidden layer of GSNs
and an output layer of perceptron-type neurons (denoted GP).

Fig. 9.2 illustrates the point diagrammatically. It shows MLPs, SIANNs and
‘plain” GFNNSs as subsets within the GFNN architecture, with points to highlight the
differences between the three. It also has a brief description of the types of networks
that are outside these three subsets, but still fall within the broad definition of
GFNNs.

‘Plain' GFNNs <
tested G and GP structures \

One or more layers of

SIANNs
One or more layers of \

shunting neurons
- weighted shunting

Fig. 9.2: The GFNN architecture superset with SIANN and MLP subsets.
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9.2.3 Overview of Results

The performance of MLF, SIANN and ‘plain’ GFNN netwotks—has been
evaluated across a number of benchmark problems. The results have been compared
to each other, as well as with results using a wide variety of network types and
algorithms obtained from the literature.

“The preof of the pudding is in the eating” goes the saying. The proof of this wark
is in the application to various problems and the results obtained. And the proof
appears quite positive, for the shunting inhibitory networks were able to achieve
good results across a variety of problems. The networks using the generalised
shunting neuron had the added advantage of being able to perform well with very
small network structures. The GFNN networks used in the benchmark tests al! had a
maximum of two generalised shunting neurons, some only one, plus an output layer
of linear or sigmoid neurons, where needed. A single-neuron was able to achieve
100% correct classification for the Breast Cancer and 3-bit Parity problems for the
majarity of the test runs. In the final comparison tests, a single GS neuron has been
used as the ‘network’ for the Breast Cancer and Diabetes problems. This is the
ultimate in stractural simplicity. The overall results obtained compare well with other
reported results, in many cases better than those achieved by much more complex
networks.

The initial hypothesis was that shunting inthibition allows neurons to produce non-
linzar decision boundaries, therefore shunting inhibition-based feedforward nevral
networks can form a new class of powerful networks for classification and
regression. From the cvidence presented in this thesis, it can be concluded that this
hypothesis holds true.

9.3 Future Research Directions

This section discusses possibilities for future directions arising from the work
presented in this thesis. A number of research issues pertaining te the work presented
remain unexplored:
a) Wark can be done on comparing fnitialisation schentes for the GFNNs.
b} On-line training algorithms can be developed, which will be particularly
useful for large datasets with unbalanced population distributions like the
Thyroid problem.
¢) The efficiency of the cade used to implement the GFNN structures and
training algorithms can be improved significantly.
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Another area of promising future investigation is the refwork structure. From i"ig.
9.2, it can be seen that the network ‘types’ investigated herg are distinet subsats of
the broader definition of a “Generalised Feedforward Neural Network’. The grey
areas in-between, both literally and figuratively, represent the largely vnexplored
area of GFNN structures not tested here. It includes several categories of networks:

8) Networks containing mixtures of layers of neurons (GSN, standard
shunting  neuron, perceptron) not previously tested. For example,
networks with both GSN and static shunting neuron layers, or with
perceptron layers in between shunting layers.

B) Networks with heterogencous layers. Layers can: contain more than one
type of neuron, unlike current implementations where it is assumed thata
layer contains only one type of neuron.

¢) Nefworks with layers not fully copnected. Some of the inter-layer
synaptic weights are removed (fixed at 0), as would happen when using
pruning algorithms.

d)} Networks with shorteut connections, where thete are synaptic conngctions
between non-adjacent layers. Cument implementations assume
connections only exist between adjacent [ayers. ’

The categories listed above are siof mutually exclusive, but are listed to give a
clear picture of the variety of possibilities that can be explored in future wark, At the
time of writing, the current implementation of GFNNs and their training algorithms
is only able to handle networks of type (a). '

In the work presented here, the training of networks has been based on adjusting
the weights of a fixed neural network structure. In a partial attempt to find *good’
structures, 8 few structures have been trained, with various combinations of
activation functions. As mentioned in Chapter 2, investigating heuristic methods of
architecture selection is an active area of research, with researchers combining
constructive and pruning algorithms, or using evolutionary computation, which
includes genetic algorithms and evolutionary programming.

The research done here has been able to ‘broaden the horizons' of shunting
inhibition-based neural networks. The expanded framework offered by the GFNN
structure would allow for many more possibilities in the dynamic modification of
network structures, resulting in networks of the types listed above. A single
generalised shunting nevron has been shown ta be a viable “network’ in éolving
problems, thereby providing a good starting point. Alternatively, it is possible to start
from a purely excitatory *MLP-type’ network, then po to a shunting inhibition-based
nefwork, or back, seamlessly, as GFNNs have both excitatory and inhibitory
SYAPSES.
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The scope of constructive and pruning algorithms and other *evalutionary’-type
algorithms that aim to find an optima! neural network structure now literally have a
whole new dimension opened up. Employing such methods would Jead fo o myriad
of possibilities in terms of network structures that could be used for classification and

- regression problems,
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Appendix A

Derivation of Training Equations for SIANNs

A.l Introduction

The backpropapation algorithm requires the partial derivatives of the objective
(etror) function with respect to each of the trainable parameters (synaptic weights)
being updated to calculate the gradient. This appendix shows the derivation of the
partial differential cquations and error sensitivity functions used in the gradient-
based training algorithms, as presented in Chapter 4. The next section recaps the
SIANN equations and parameter definitions, followed by the definition of the error
function, The final section presents the actual detivation of the training equations.

A.2 SIANN Equations and Parameters

The ‘standard® SIANN is a feedforward neural network with a hidden layer of
shunting neurons and an cutput layer of linear or sigmeid neurons. For the sake of
clarity, the equations describing the operation of the SIANN, defined in Chapter 3,
are presented again in Eqs. (4.6} to (4.8) belaw.

The cutput of the /* shunting neuron, x, is given by

1,44,

a; +f[in:c_,,!,]

(94

x',=
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where J; is the /™ input; ayis the "decay term’; b;is the bins; ¢y js the synaptic weight
connecting the ;™ neuron to the M input; cp is the bias for the shunting activation
function connected to a fixed ‘input', /o = L; and f is 2 non-decreasing activation
function,

The output of the 4th cutput neuron is given by

e =2 wpr) ©3)
J=i

where g is the output layer activation function; wy is the connection weight from j*

shunting neuron to the 4" cutput neuron and wyg is the bias of the output neuton
connected to a fixed ‘input’, xp= 1.
The denominator in (4.6} is defined as the shunting term for the jth neuron,

5 =a, +f(icﬁ1,J (9.6)

This shunting term is constrained to be always positive, achieved by imposing a
lower beund on the parameter g; during the initialization and training phases.

The parameters to be trained in a standard SIANN, therefore, are the weights and
biases of the output neurons {wy), the decay and bias terms of the shunting neurons
(ay and &) and the inhibitory weights of the input signals and shunting bias (c;). The
following sections derive the training equations for these parameters.

A.3 Error Function

The gradient-based training algorithms developed are based on the standard
backpropagation algorithm, The netwark is trained with training pairs (I(g), d(g))
where 1(g}is the input vector and dg) is the comesponding desired tarpet value.
{Note: Since the network may have multiple output neurons, d{g)is a vector), The
difference between the desired and actual output of the network is the emor, given by

e(g) = ¥(q)- d(q) .7
where (g} is output vector for input I{g).

The training algorithm seeks to minimise the objective function, which is the sum
of squares of the error term:

E=}3e(g) elg) (9.8)

Ta get avoid having to consider the summation, consider the simple case where
the parameter updates are performed on a pattern-by-pattern basis, The objective

function can then be given by £ = ¥e(q) e(q) (Haykin, 1999, ppldd-147),
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A4 Training Equations

This section gives the actual derivation of the partial differential equations and crrer
sensitivity functions used in the gradient-based training algorithms. These equations
were presented in Chapter 4, as equations (4.9) ta (4. |4}, coresponding to the boxed
equations below, The change made to any parametet is always in the direction of the
negative pradient, in order to minimise the objective function. For the activation
function bias terms, wio and ¢y, the comresponding  *inputs”, %o oo /o, are assumed
fixed ot 1.

A1 Equation for welght of the & output neuron, wy and error sensitivity
function, §.

The update to the weight, Awy, is proportional to the gradient SE/dwy,.
Differentiating (9.8) with respect to wyy, and using (3.7), (4.7) and (3.13),

8E _ OFE Oedq) dy, O

an_v,;_ e (d) v, Oy, Bw, {Chain Rule}
=¢,{g).1.2'(w) x,
%EJ =6y %, : 9.9)
where
8y =g lglg’v) ' (9.10)

The term 5,4 is defined as the error sensitivity function for the &7 output.

A4.2 The error sensitivity function for the jih shunting neuron, &.

The change in the objective function £ with respect to the output of each individua)
shunting neuron x;, BEf8x; is given by

BE & O da(d) & o

a-“; anl ae,,(q)' a.lr'n ‘a";‘a";

=¥ e, (g)1g' ),

L]

BE &
—= Zé'“ Wy
axa‘

irml

205




AFPENBIX A - DERIVATION OF TRAINING EQUATIONS FOR STANNS

oE
== 9.11
i, ! . G0
where we define . _
8,23 6,m, ©.12)

|

The term & is the backpropagated error sensitivity function for the jth shunting
neuren.

A43 Equation for the decay parameter of the j* shunting neuron,

The same procedure used in the derivation of 8E/Gwy is applied for the gradient
£E/Ba;. Differcntiating (4.6) with respect to a), we get

i_ _[I.J+b.f} (9.13)

" [odes]

The denominator in {9.13} contains the shunting term for the jth neuron, $, as given

in (4.8), therefore
1, +b
&y UJ:' ) (9.14)
8a, 5y

or alternatively, substituting {4.6) and (4.8) inte (9.13), we get

o, -x
L. 9.15
2,5, (9:15)

Using the Chain rule and equations (9.12) and (9.14/9.15),
8E OE o,

Oa, 0x, da,

o=l +h
s, 20
i

) X
n—=6, T =5L
aa"... 4 S}: . ij

(9.16)
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Ad44 Equation for the bigs parameter of the j” shunting neuron, 5

The same procedure is applied for the pradient AE/8b,. Differentiating (4.6) with
respect to by, we get

i P S (9.17)

PR ) (9.18)

A4S Equation for the connection weight beiween input f; and the J* shunting
neuron, i

The same procedure used in the derivation of 8E/2a; is applied for the gradient
BEchﬂ. -
Let

v, =Zcﬂl, (9.!9)
!
and

2, =f[z':cﬂ!,]=f(v‘.) (9.20)

whete f'is the activation function of the nenron.
The output of the shunting neuron, x;, can then be re-written as

ﬁ1,+bj

= ©@.21)
! a+p

Differentiating (9.21) with respect to ¢ using the Chain rule, we get
&x, ax; p; B,
il APl B of Bt
&, &p, dv, ic,

I, +b
==t~ f'(v )
[“J*‘PJ]
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& X
oL ey 9.22
ac,, s, ' (V;} I . . 922

Using the Chain rule and eqs (9.12) and (9.22),

OE _OF Ox,
.acﬂ ax,i ac_n

-X
?%T;ﬂ(";)!}

E % ' S -
n—==8,=L v, .. - (923
%, '__‘s,’_{(_v‘.’-}'-i'f PR 223 |

208



Appendix B

Details of Experimental Results
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B.1 Experimental Results for Chapter 4

This section presents tables containing the details of the experimental results
obtained in Chapter 4, *Development of Tiaining Algorithms’,

B.1.1 Mean Error Resulls

This sub-section presents the mean test crror {or test ARV) for all combinations of
activation fimctions and training algorithms obtained using SIANNSs, for each of the
benchmark tests. The average for each activation function combination (row) and
training algorithm (column) are alse presented.

Table B.1 Mean test classification error for 3-bit Parity dataset using 3-3-1 SIANNs

210

Aclivation Training Algorithms
Funelions Average
Shunt | Out GOM | GBX LM | LMAM |OLMAM | DSGDX | ROM ROM2
Tnh_| Lin 27.50| 24.75 800 500 10.50 0.75 20.50 24.00 1625
Tnh | Lgs | 2835 .25 6.75 7.00 10.75 6.25 15.50 10.50 10.84
Toh_| Tih 22.50 2.00 825 .00 9.75 43.2% 2325 2125 1744
Lgs | Lin 53.00) 40.75 0.50 2175 19.25 400 40.50 43.25 27.88
Lps | Lps | 49.5¢] 29.00 1.00 2175 325 43,75 pril] 2128 472
Lgs | Toh 5125 4825 535 30.00 1.5 4515 39.00 R0 322
Exp | Lin lg.o0] ko0 0.50 428 1.50 1.50 30,50 10,28 18.06
Exp | Lps § 42350 1.25 2.00 4.50 .25 2825 1225 11,080 11.88
|_Exp | Toh | 38.00 115 3.00 B.75 4.00 43,75 2115 2335 1878
| Aveespe J0.67| 2104 3,97 1289 &.78 25.03 2817 24.92
Table B.2 Mean test classification error for Breast Cancer dataset using 9-9-1
SIANN
Activation Training Algorithms
Functlong Average
shune | ow | GOM | GDX | LM | LMAM |oLmaM| psDx [ RoM | ROM2
Tnh | Lin 0.53 036 071 1.18 Q.75 066 71 551 1.92
Tnh | lgs 0.36 0.60 1.22 1.29 Q.86 0.54 140 154 .98
Tnh_| Tnh 1,69 0.82 0.85 1.4 Q.98 259 3.3 3.5 L&8
Lge | Lin 0,79 0,98 044 .76 049 073 5.15 575 180
Lgs | Lus 036 0.20 0.65 1.24 0.62 0.69 1.28 1.20 .84
Lgs | Tnh 1.31 0.84 0.20 0.76 0.37 1.8 311 318 .63
Exp | Lin 0.52 0.29 088 1.95 129 058 620 5.78 224
Exp | Lus 043 0.45 1.21 1.61 Q.76 044 146 1.4% 1.00
Cxp | Tnh 1,23 (.54 0,79 1.86 1.36 125 2,10 3.61 .92
Average 0.89 .58 077 L3 .43 148 339 333



APPENDIX B - DETANS OF EXPERIMENTAL RESULTS

Table B.3  Mean test classification error for Diabetes dateset using 8-8-1 SIANNs

Activation Training Algorithms
Funclions Average

shunt | oue | 60M | 60X [ v [ imam [oumam|psoox | rom | Romz

Tnh | Lin 20.03) 14| 21.30 22,55 21,34 20.23 26.62 2768 2874

Tnh_f Lgs 2201y 21031 2096 21.96 21.10 20.17 2301 2183 21.61

Tnh_| Tnh 19700 20.16) 2109 21,65 20.52 40.64 2776 2681 2402
Lgs | Lin 19.48) 2327 2041 20,98 20.96 20.02 26.52 2607 PRy
Lps | Lps 25.80| 21.09) 20.88 21.06 20.73 19.82 21.58 21.69 2157
Lgs | Tnh 19.05] 2203} 19.88 20.22 20.34 4124 2571 24.35 24.10
Exp | Lin 12.47] 2207 2060 24.39 2241 2020 29.62 28.83 2345
Exp
Exp

Las 27.20] 2176 20.58 21.40 21.00 2027 22.67 2205 22.12
Tnh 19.28] 21.15| 20.31 22.37 20.56 39,72 26.09 17 2458
Avcrmpe L34 2163 a9 2184 21.00 26.92 25.48 25.28

Table B4 Mean test classification error for Multi-class dataset using 2-2-3 SIANN

Aclivation Training Algorithms
Functions Average
Shunt | out | GPM | GDX [ LM | LMAM |OLMAM| DSGDX | ROM [ ROM2

Trh | Lin 3248) 1379 960 1091 12.84 21.67 44,87 4103 3515

Tob | lgs 6,72 605 745 6,76 9.51 33.59 1047 1183 160
Teoh | Toh [ 20.5%| 210§ 312 10.08 18.13 32.20 42.07 4129 2343
Lps | Lin 32.08| 32.25| 1655 15.03 17.88 23.57 46.08 4259 28,38
| Lgs 8.11 .05 .83 615 5.81 32.65 13.93 12.5¢ 11.69
Tuh 3323 32.76| 1780 15.27 21.37 3100 41.33 3927 20.60
Lin 10.23] 10.53 642 187 65.31 9.39 LEN D] 44,95 1744
|_Lgs 573 547 5.69 6.13 6,79 24.91 749 8.33 832

FEFEE

Toh 11,80 9.84 027 7.39 7.29 19.80 35.25 38.76 1743
e - _18.99| 1433 2.84 2.31 11.8f 25.64 .70 3145

z
=

Table B,5 Mean test ARV for Sunspots dataset using 10-10-1 SIANNs

Activation Troining Algorithms
Funetions A

GDOM | GDX LM | LMAM OLMAM | DSGDX | ROM | ROM2

Shunt | Oul

Tnh | Llin 0.161] 0074 0.131 0.140 0128 0.130 1.223 08377 2371
Toh | Lps 1.00B| 0987 0.143 0.151 0.132 0.190 4.331 0.334 o4ig
Toh_| Toh 0226] D201 0.129 Q.147 0.129 0.137 0.790 0.742 032
Lin 0223] DIAB| 0.112 Q.125 0.7 0.119 Q.614 G670 027
| Lgs 1.007] 1.006]| 0.143 0.152 2130 0,194 0,286 0.271 0.39¢
Th 0.274] 0.212] 0.126 0.135 122 0.131 0.622 0.551 0272
Lin 0271 0191] 68134 0,167 0143 0.135 0.773 0212 0341
| Les 1.009] loog! 0.146 0,158 L1786 0.195 0.324 0.161 0421
Tnh 0.314] 02131 B.133 0.151 (.134 0.13% 0.762 0.743 0.323
Average 0.500] 0484] 0433 0148 0.135 0.152 636 0.467

aadddd
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B.1.2 Rankings of Experimental Results

This sub-section presents the Kruskal-Wallis rankings of the mean test erors for all
combinations of activation functions and training algorithms using SIANN, for each
of the benchmark tests. Tables B.6 to B.10 contain the ranking of the means
presented in the corresponding table in sub-section B.1.1. The sum of rankings for
each sctivation function combination (row) and training algorithm (column) is also
presented, along with a relative ranking of the functions and training algorithms
based on this total, Table B.1| presents the sum of all ranks over the five different
benchmark tests, Table B.12 ranks the sums presented in Table B.11 from | to 72,
and i used to calculate the overall & statistic, as well as the ‘overall’ ranking.

Table B6  Rankings for 3-bit Parity dataset results using SIANNs

Activalion Training Algorithms .
Funciions Total | Rank
Stunt | Ow | GDM | GDX | LM | LMAM [ OLMAM [DSGDX| ROM | ROM2
Toh_| Lin | 48 47 4 [ .ns 15 k| 52 46 |20 ]
Toh | Lps | 50 5.5 2 23 33 20 36 3.5 219 t
Tob | Toh | 43 9.5 25 | s 2 62.5 41 a4 Jzss| s
Les | Lin | 72 | 695 L5 | 3us 0 155 81 625 |350.5| 8
Legs | Lus | 68 5l 4 385 13 69.5 11 3 |a2 7
Lgs | Tob | 78 66 19 53 pX] 61.5 60 575 |4id 9
Exp | Lin | 575 | 525 15 17 2.5 1.5 55 54 |zs7s| 3
Exp | Lps | 67 55 | 958 18 13 49 s 4 | 2
Exp | Toh | 875 13 11 26 15.5 645 | 445 | aas |26s| 4
Tolal 534 | 3245 | H6s5 | 2ef 195.5 156 4255 408 )
Rank 8 4 1 3 ) 5 7 6
Table B.7 Rankings for Breast Cancer dataset results using SIANNs
Activation Tralting Algorithms .
1 Funclions ' Total | Rank
shunt | o | GOM | GDX | LM |LMAM| OLMAM |DSGDX] ROM | ROM2
Teoh | Lin | 13 3 22 39 24 19.5 69 68 |259.5| 4
toh | Lps | 5 17 41 | 435 13 15 50 52 |2575] 3
Toh | Toh | 55 10 32 kL] 36 58 &4 65 |37 |- »
Lgs | Lin | 285 6 9 2 1 px} 67 105 J27! 5
Lgs | Las | s 15 19.5 | 43 18 21 19 46 | 203 1
Lgs | Toh | 47 3l L5 i 1 63 ] 61 _|2965| &
Exp | Lin | 12 3 34 57 44.5 36 72 705|329 7
Bxp | les | 8 10 10 54 26 15 5l 53 |57 2
Exp | Toh | 42 15 | 285 | 56 48 62 59 66 l3ss| 8
Tetal 2155 | Jem5 | 2273 | 3835 | M5 | 25 | 40 552
Rank z 1 3 6 d 5 ? 8
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Table B.B Rankings for Diabetes dataset results using SIANNs
Activaron ‘Training Algorithms
Funciions Total | Rank
St | gw | GBM | GDX | LM [LMAM | OLMAM | DSGDX | ROM .| ROM2
Toh | Lin | 9 [L 35 H]| 3% 13 62 66 |3 | 17
Tnh | Lgs | 43 % | M5 | 90 32 10 53 s4 |265| 4
Tnh | Toh | § 4 |05 | 39 17 7l 61 63 |35 9
Lgs | Lin | 4 48 2 2 24.5 B 81 59 |25r5] 2
| Lgs | tps | 58 | 305 | 23 29 22 [ 38 40 |2d65] 1
| Lgs |Toh | 1 4 7 12 16 72 57 55 |264 | 3
Exp-| Lin | 3 46 20 56 50 1 69 58 |323 ]
Exp | Lgs | 65 41 19 37 21 14 52 45 s | s
Exp [ Toh | 2 33 15 49 18 - 0 50 54 |3t 6
Tot! 190 | 3305 | 195 | 34 2425 5 319 | 54
Rank 1 [ 2 5 3 4 (] 7
Table B.9 Rankings for Multi-class dataset results using SIANNs
Activatlon . Training Algorithms .
Funcliong . ol | Rank
st | ou | GDM | GDX | LM |LMAM| OLMAM | DSGDX | ROM | ROM2
Toh | Lin | 55 49 25 2 | 38 48 70 68 | a2 | 7
Toh | L 18 5 17 11 27 ] 3n 1 || 3
Toh | Toh | 8¢ 45 2 28 43 53 6§ s |72 ] 6
Legs | Lin | 38 54 40 38 42 47 7 62 | 48] B
| Lgs |lgs | 20 14 13 7 4 i6 37 % | 7] 2
| Lgs | Tnh | 59 57 41 39 46 52 65 63 |42 ]| 9
Exp | Lin | 29 3l 9 19 8 24 68 | .1 20| 4
Exp | Lgs | 3 1 2 6 12 50 18 20 i3]
Esp | Tnh | 33 26 23 16 15 4 51 52 | 230 | 3
Total 378 | 262 | yor | yes 232 434 448 486
Rank 5 4 1 2 a 6 ] 1
Table B.10  Rankings for Sunspots dataset results using SIANNs
Activation - Training Algorithms
Functions - Total | Rank
ghunt |- 0w | GOM [ GDX [ LM [IMAM [OLMAM|DSGDX | ROM | ROM2
Tt | Lin | 32 M | 125 | 22 7 0.5 72 64 la5¢ | 3
Toh | Lgs | 69.5 | 66 24 | 295 14 7 52 51 |345 3
Toh | Toh | 45 4l 85 | 27 8.5 2| 63 9 | | 4
Lgs | Lin | a4 35 1 5 2 3 56 s8 _|208 1
Lgs | Lgs | 68 67 Pl ! al 10.5 9 49 46 l3345| 7
Lgs' | Toh | 475 | 4 [ 19 4 12.5 57 55 |24 2
Exp | Lin | 47.5 | 38 165 | 33 |- 24 | 19 62 65 105 | 6
Bxp | Lgs | 71 6.5 | 26 28 35 40 .51 54 fims| w
Exp | Toh | S0 43 15 ] 295 | 165 19 §1 g0 jao4 | 3
Tolal 4745 | 4385 | 4335 | 324 | s25 | om 523 Sid
Rank [ 5 H 4 1 3 ‘8 ?
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Sum of ranks across all five benchmarks datasets

Table B.11

Activation Truining Algorithms

Funcriops Tol | Ran
Shure | ow | GOM | GDX | LM |LMaM| OLMAM |DSGDX| ROM | ROM:2 k

5

Teh | Lin | 157 | 182 [.1185 [ 1715 1335 94 325 M2 |45 | 8
Toh | tgn | 1725 | 1208 [ aoys | iae | <130 142 21 | 2245 [z |3
Toh | Tnh | 199 | 1595 | 18 )59 [ 93350 | 2655 | 301 202 |i628 |
Lgs | Lin | 2065 |"243.5 g St | ses | mz | 317 |ses | 6
Lgs | Lgs | 319 | 164 y 2615 |1ons | 214 05 Jr203 |2
Lgs | Toh | 2255 | w240 | 745"} 140 96 264 299 | 2915 |re395 [ 9
Exp | Lin | 149 | 17355 | m 182 134 o015 37 | 3385 |M245 | 4
Exp | Lgs | 214 | 127 | 965 | 143 13| 168 207 07 |58 |1
| Exp | Toh | 1845 | 130 | 925 | 1765 113 250.5 | 3855 | 2065 [i4538 | 7

Total 1732 | 1543 | 864.5 | 1125 | . q039 | s57ms | 24065 | 24n

Itank 6 4 1 3 2 5 ] 7
Table B.12  Rankings for Overall performance across all datasets

Activation Troining Algorithms .

Functions Total | Rank
Shunt | ou | GOM | GDX | LM |LMAM] OLMAM |DSGDX| ROM | ROMz

Tnh | Lin | 32 | 415 16 kY bl 7 70 67 |225| &
Toh | Lgs | 40 17 19 0 25 % 53 54 264 | 3
Teh | Toh | 45 | 315 15| 335 2 60 66 63 |as | 8
Les [ Lin 47 57 2 22 12 9.5 [:%3 685 12865 4
Lgs | Lps | 52 3 5 28 1 44 50.5 46 lzars| 2
Lgs | Toh | 35 56 3 30 3 58 55 62 s | 8
Exp | Lin [_ 30 k[ 4 a5 I 11 71 72 |ms| s
Exp | Lps | 505 18 95 2 13.5 k[ 485 | aps |ases)
Exp | Toh | 43 20 ] 39 13.5 58 1] 54 Jines| 7

Tatnl s | oas | 705 | 28 Mt 05 | 5535 | 545

Rank 6 [ 1 3 2 4 8 7

Ed
- 1
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B.2 Experimental Results for Chapter 5

This section presents tables containing the details of the experimental results
obtained in Chapter 5, “The Quadratic Neural Network Algorithm’.

B.2.1 Mean Error Resulis

This sub-section presents details of experimental results obtained. Tables B.13 to
B.17 show the tmean test ervor for all combinations of activation functicns and
training algorithms, for each of the benchmark tests, using SIANNS trained on QNN
algorithm variants. The average for each activation fonction combination (row) and
training algorithm (column} are also presented. Tables B.18 and B.19 show results
obtained when varying the step-size, d, for the standard QNN alporithm.

Table B.13 Mean test classification error for Breast Cancer dataset using STANNs
trained with QNN algorithm variants

Aclivation Training Algorithms
Functions Averag
Shunt | Cu | ONM | ONM3 [ ONNS : QNME | QNN | QWNN-C2 | GDX LM
Trh Lin 046 0.54 0.64 02.56 0.50 045 f.36 .71 053
Toh | Lps 036 0.3 031 041 041 0.28 0.60 1.22 049
Toh | Toh kR 148 4,08 A7 343 348 0.82 085 2.94
Lgs | Lin 0.5% 0.60 0.86 Q.55 0.34 034 0.98 044 o.6!
Loy | Lps 040 0,34 0.24 0.38 0,32 0.35 {.20 B.66 a.34
Les | Tnh 047 0,50 0.78 0.62 0.70 0.46 0,84 0.20 857
Exp Lin 0.66 0.63 0.51 0.63 056 0.68 0.29 0.R8 f.40
Exp | Lps 0.26 035 0.27 0.56 840 0.4 043 1.21 0.48
Exp | Tnh | .90 1.Bf 2.31 1,86 0.82 208 (.54 0.79 1.52
Avera &85 a0.97 1.1/ 1.4 53 .96 .58 077
Table B.14 Mean test classifieation error for Disbetes dataset using SIANNs
trained with QNN algorithm variants
Activation Training Algarithms
Functions Average
Shunt | Out | QNN | QNNI [ QNNS | QNM6 § QNNS | QNN-CZ| GDX LM
Tnh Lin 200020 W 20100 21.24 20.51 20.54 2214 aL.30 20.94
Toh | Lps 2068)  2056| 2148 20.80 20.69 20.67 20.03 2096 2L
Tob [ Toh | 20.08) 2001 2015 2066 2047 218 21.16 21.09 20.44
| Lgs [ Lin | 2000} 2030) 19.96 2035 20.11 20.15 22.27 20.61 2048
Lgy [ lps 2074 207 230 20,66 20.61 20.60 2149 20.88 2432
Lgs | Tih 19.88] 1998 13.91 20.02 10.57 15.69 2203 19.88 20.42
Exp | Lin 20,79)  20.62| 20.08 20.86 20.59 20.19 2307 20.60 20.80
Exp | Lgs | 20.69] 2077 31468 21.0% 20.54 20.79 2L.76 20.58 2124
ExE ‘Trly 19.92] 19.80; 2023 20,2_2 19.96 20.05 21.15 20.31 2621
Average 240] 20387 2L42 2066 2031 2039 2163 20.69
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Table B.15 Mean test classification error for 3-bit Parity dataset using STANNs
trained with QNN algorithm varianis

Aclivation Tralning Algorithms
Funetions Average
Shunt | Dut | QNN | QNN3 | ONNS | ONN6 | QNNg [QNN-C2| GDX LM
Toh | Lin | 1150] eso] aoo|  2125) 1o2s| 1175|2475 g.00] 1400
Toh | Lgs 850 00| 3673] zees| 1250|1035 1.25 635  13.16
Toh | Toh | 1000| 1250] 3300) 1s.00| tosol 1035 200 835} 1349
Lys | Lin spu|  6o00| 4700| 28.50 6,00 425|  49.75 oso] 1838
Lgs | Lgs 525 4751 47.00|  30.50 575 50| 20.0 Lo0] {584
Lgs | Tnh 725|650l 46350 3025 235l 1025 4835 575] 2044
| Exp | Lin 9.00  7.75| 3658 1575 675 2.50|_ 38.00 osn] 1547
Exp | Lps 9.25| 800 3200 2000 7.00 9.5 1.25 zo0] 1o
| Exp | Toh 5.00| 550 33.75| 1535 .50 9.00 3.25 so0]  1er
Averge 831  g47| 3847|2238 844 8487 2094 197
Table B.16 Mean test classification error for Multi-class dataset using SIANNs
trained with QNN algerithm variants
Activation Training Algarithms
| Functlons Average
shunt | Owt | oNN | onNa | guns | oNws | g | QNN-C2| GDX LM
Trh_|_Lin B.87|  8a5] 2355 279 885 B72| 2319 9.60| 1257
Toh | Lps 4.11 6,83 8.03 6.24 6.R8 6,80 605 745 £.80
Toh | Toh 3.96] 8.80) 25.95 941| 1068 g60] 2105 paz] 12482
Lgs { Lin 957|  933] 3oss| 1920l  nies|  ioael  3225] ess] st
Lgs | Lgs 660) 651 105 6.28 6.1 649 7.08 6,83 6.69
Lgs | Teh | 1157 1107 3209|1621 1232 940 3276] 1h80f  1ner
Exp | Lin 740|  7.00| 1457 7.05 1.8% 747| 1053 642 .54
| Exp | Lgs 605, s579| 787 572 5,63 5.83 541 5.69 603
Cxp | Toh | 7.03] 647] 1529 7.00 6.7 651 9.4 9.27 8357
| Average o 78| a3 9.55 864 784|163 .86
Table B.17 Mean test ARV for Sunspots dataset using SIANNs trained with QNN
alporithm variants
Aclivation Treining Algarithms
Functions Avernge
Shunt | Cut | QNN | QNN | QNNS | QNN6 | QNN | QNN-C2| GDX LM
Tah | Lin | 0a32] 0033] oz02] 0124] 0433] o0434) 017} 0.1M] 0445
Toh | Lgs | 0J38| 0.36] 0sos| ol16] o043s| od3g] 0987] o43) 0287
Tot | Toh | 0044} oa47] 0260| 0136 048]  0044| 0201 0929) @F6S
| Lgs | Lin | ©033] oun| oais| oaosj  oamM| oimi|  gass|  oat2}  erss
| Los [ 1ps | ouz7| ou26| osoel oaop]| wasa oa27]  4006]  0.043f 0296
Lgs | Toh | 0.049| o48] 033s] 0034] 0ad9) o47|  0212] 0426] 0475
Exp | Lin | 03] oa3s| omz| ea27]  0a3s| 04M| 01911 0134]  6.J63
Gep | Lps | 0.045] 0.44] os89| oasol oas9l od43f i.008| 0.146F  0.368
Exp | Trh | 0148 0.148] 03200 038l 0147) oae7l o3|  0.033) 6in
Average 0:30| 0439| 0384|0126 0138  odsd| 0433
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Table B.I® Results for QNN algorithm with different 4 values applied to Wisconsin

Breast Cancer dataset :
Discrete | Activation | Performance Avg Epochs Test Brror Mean
step-size, d| functions (% 0f runs) T‘min
sh [ou | > o |zon| an [ > ] % | Best | Mean | 95% ot | Median "(T)’
goal| em | < | runs | goal | Emoms | (%) | g (%)

001 |Exp[tgs| of 16 sol 1oa| + | io0{ 000 o63] so1s] os6] 144
002 |Dxp|Llgs| of 17 so] saf * 6] o000 oes| rois| ose[ 127
005 | Bxp|Les| o 20 sl 7| * s0] o000] o070 zoza| nse| 1ss
o0 |msp|res| of 2af so| so] - 6ol o000] os4 soas| o056 155
02 |Exp|ies| o 34| so| 7] -+ 64] 000] o026] soa3l ooo] 157
0.5 |Exp|Llgs| o] 35| so| 72| = 72| oo0] o268 xon| ooo] 183
1.0 |owp|tes| of 30| so| ss| » 87| o000 oz29] soaz] ooo] 19
20 Jexp|res| o of of 42] - o| 6l s201] xa77| edse] 1

Table B.19 Results for QNN algorithm with different 4 values applied Pima Indians
Diabetes dataset

Discrete | Activation | Performance Avg Epochs Test Ermror Mean
step-size, | functions (% of mns) ‘l'_rain ;
sh [ ou| > o [200] an | > o% [ Best | Mean ] 95% €1 | Medion "(':)’
goal] e | < | runs | goa! | Brmers | {%4) (%) (%)

00f |tes|mon| of ol nl sa| | ¢ | 1an] 2108 sear| 2083] 1005

002 |Les{man| of ol uzl 22| * | ¢ | 1823] 2073 +o3s| 2083 58

005 |vtes|Toh| ol o wal uss| + | o | 177 2083] ross| 2083 ss

ol fres |moh| of of 2 as7| + | o | 1835 2022] some| 2031] ss0

0z |res|Tan| ol of 26| aul = | « | 177] 1988 so24] 1979 78

05 |rgs|mn| o o o] asa| < | « | is2n] 1999] iesa| 1927 sse

10 |igs|Tob| of of 3ol am| [« ([ 1em] 1043] soss| 1027 1197

20 Jres|Ton| of o ol il | o [ 3333 0137 za51| 3646 20
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B.2.2 Rankings of Experimental Results

This subsection presents the Kruskal-Waltis rankings of the mean test errors for all
combinations of activation functions and training algorithms, for each of the
benchmark tests using SIANNs trained on QNN algorithm variants. Tables B.20 to
B.24 contain the ranking of the means presented in the corresponding table in B.2.1.
The sum of rankings for cach activation function combination (row) and training
algerithm {columny) is also preseated, along with a relative ranking of the functions
and training algorithms based on this total, Table B.25 presents the sum of all ranks
over the five different benchmark tests, Table B.26 ranks the sums presented in Table
B.25 from | to 72, and is used to calculate the overall & statistic, as well as the
‘overall’ ranking.

Table B.20 Rankings for Breast Cancer dataset results using QNN algerithm

Activation Truining Algorithms
Functions Tatal Rank
Shunt | Ow | QNN | QNN3 | QWNS | ONNG | QNI | QNN.C2 | GDX | LM
Tnh | Lin | 265 Ex} 45 kL] 26.5 bR 17 50 ) 26335 | 4
Tnh | Lgs 17 11 8.5 21.5 21.5 &5 40,5 &l 1873 3
Toh | Toh 9 70 72 71 67 68 5.5 56 8.3 L]
Lgs | Lin 35.5 40.5 57 355 12.5 Kkl 39 23 296 6
Les f Lps 19.5 12.5 3 17 10 14.5 1.5 47 125 1
Lpz | Tnh 28 9.5 5l 42 4% 26.5 35 1.3 2825 5
Exp | Lin 47 435 k]| 415 k1] &7 6.4 58 | eS| 72
Exp | Lps 4 14.5 5 Az 19.5 85 4.5 60 | IM H
Exp | Toh | 64 | 625 | 66 | 625 | 85 65 3 52 ) 4585 | 8
Total EN AN A 360.5 2935 2005 | 4085
Rank 4 5 ] 7 3 2 i ]
Table B.21 Rankings for Diabetes dataset results using QNN algorithm
Activation Training Algoridims
Funclions Tanal Ronk
Shunt | Out | ONM | ONMN3 | ONNS | QNNG | QMN9 | QMNC2 | GDX | TM
Toh Lin 48 45 17 63 28 29.5 68 & d6d. §
Th | Lgs 39 3l 0 53 415 42 57 56 I9L5 1
Tuh | Tnh 14.5 11 12 0.5 21 22 62 50 249 4
Lgs Lin 16 25 5.5 27 18 20 59 6.5 | 22 3
Lps | Lge 48 47 T2 405 36.5 M5 59 5.5 | Iw2 B
Les | Toh | 4.5 8 & 12 1 ? 66 a5 | e 1
Exp | Lin 51 kS 14.5 54.5 3 51 47 Ms | 1435 5
Exp | Lgs 43.5 49 71 59 20.5 51 63 32 400 9
E:&E ﬂ 7 3 pL 23 9.5 13 Gl 26 166.5 2
Tatal 2605 2357 Elil] 3725 220 263 324 J67
Rank 4 2 5 7 1 3 -] [
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Table B.22 Rankings for 3-bit Paritv dataset results vsing QNN algorithm

Activation Trahing Algorithms
Functigns Total Rank
Shunt | Qut | QNN | QNN3 | QNN5 | QNG | ONND | QNN-CZ | GDX | LM
Teh | Lin | 46 38 51 55 42.5 47 s6 | 255 | 3 9
Toh | Lps | 285 2.5 1] 54 48.5 42.5 4.5 205 | 297 5
Toh | Toh | 40 | 48s | 63 | sz 45 az5s | ogs | oor Jams| 7
Lgs | Lin 13 1.5 | €55 57 175 1 : 15 | 259 3
Lgs | Llgs | 14 12 695 | 60 15.5 10- 3| 2z 1
Lgs | Toh | 23 19 68 59 | 30 2 155 | 328 3
Exp | Lin | 325 | 24 65 | sns | 05 | 38 l-Te7 15 | 299 6
Exp | Lgs | 355 | 255 | & 511 2 55| 45 65 | 245 | 2
Gxp | Toh | 325 | 38 64 | 5.5 | 85| s 9 8| 63 4
Tolal 265 | 255 | ss@ | 4o 270 |- 3ms | 3483 | 109
Rank 3 2 E] 7 Ll ] [ 1
Table B.23 Rankings for Multi-ctass dataset results nsing QNN algorithm
Activation - Training Algoriibms
Functions - Total Rank
stum | om | QN | onws | o] oane | oawe | ez | Gbx | LM
Toh | Lin | 42 35 56 39 4l kL 57 su | 39 | 6
Toh | 1gs | @ 205 | 3 10 n 19 1.5 | 54 3
Tnh | Tnh L] W | 68 48 54 k1 fix] 44 Rl T
Lgs | Lin 4% 46 69 &4 57 52 7l 62 470 8
Lps | lgs | 18 1S 28 11 17 14 28 | 205 | 1405 | 2
Lgs | Toh | s 55 0 61 58 a7 72 63 | 482 [
Exp | Lin | 30 | 245 | 59 28 34 32 53 12 | 27251 5
Exp | Lys | 7.5 4 33 k] 55 55 1 2 |as |
Exp | Tnh | 26 13 60 | 245 13 23 H| a5 | 2605 | 4
Total 2785 | 254 | 488 | 2885 | 30s5 | 2625 | 4155 | 3295
Rank 3 1 (] 4 5 2 T &
Table B.24 Rankings for Sunspots dataset results using QNN algorithm
Activation Training Algorithms
|__Funcifons Teoial | Renk
Shunt | Qut | QNN | QNN3I | QNNS | QNN6 | QNNS | QNN.C2| GDX LM
‘Tnh_| Lin 15 18 59 3 18 3.5 55 13 2.5 2
Tnl: | Lgs kk| 30.5 67 4 8 33 0 37 302.5 5
Tnh | Tnh 40 455 62 30.5 52 40 58 11 3¢ ]
Lgs | Lin | 18 13 3] 2 233 13 56 3 | s |
Lps | lps | © 65 69 1 18 9 71 37 bamsi 3
Lgs [ Toh | 52 49 66 | 235 52 45.5 60 65 [ 545| 7
Gxp | Lin | 233 2B 64 9 23 25 51 215 | 2988 4
Gxp | Lpe 42 4¢ 68 5 35 37 72 41 Eil) 9
Exp | Toh | 49 49 65 3| 455 45,5 gl 18 |66 | 8
Talal 2815 | 2798 343 162 Jog 278 3ol 192
Rank £ 4 8 1 ] 3 7 2
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Table B.25 Sum of ranks across all five benchmarks datasets using QNN algorithm

Activation Training Algerithms
Functiong Tatal | Rank
Stunt | 0wt | QN | Qs | onns | onvs | onne | onncz | GDX | LM
Toh | Lin | 1755 | 170 | 248 | 200 159 1625 | 261 | 2025 | ssq05| 8
Toh | Lgs | 1265 | 1258 | 2965 | 1425 | 1638 143 179.5 | 2085 | 41325 3
Toh | Tob | 2065 | 215 | 284 | 242 2% 2005 | 25 | 197 | o8 | 9
Lgs | Lin | 1305 | 142 | 268 | 1855 | 1285 129 17 | 126 | M3zs| 4
Lgs | Lps | 1065 | 53 2415 [ 1295 | 97 82 2175 | 162 Jp2g | 1
Lgs | Toh | 163.5 | 1605 | 261 [ 1975 | 190 163.5 3 o st |1
Exp | Lin | 184 | 158 | 2335 | 1858 | 1525 | 1915 | 2505 [ 1205 | rd86 | 3
Exp | Llpe | 1325 | 133 | 239 | 207 | 115 | 1375 167 | 1435 | 127 2
Exp | Toh | 1785 | 1655 | 299 | 1;5 | 155 179 215 | 149 | ssrasl o6
Total 1405_| 1362.5 | 23005 |_ye33 | yae7 | 3975 | 20885 | 1408
Ronk 4 1 8 6 2 3 3 5
Table B.26 Rankings for Overall performance across all datasets results using QNN
tlgorithm
Activation Training Algorithms
| Functions Total | Rank
Shunt | Out | QNN | QNN | QNS | QNNG | QM9 | QNN-c2 | GDX | LM
Toh | Lin |38 35 61 48 26 29 67 29 | 54 B
Toh | Lgs |9 7 63 19 3l 20 kD] s0 | 238 3
Toh | Toh | 51 545 | W sl 58.5 53 [i7] a5 | 436 ]
Lps | Lin | 14 18 68| dl5 10 11 72 8 | 23] 4
Les | Lgs | 5 3 60 | 125 4 1 56 28 | tes]
Lgs | Tub | 3 ¥, 66 41 1 31 7l 2 | am 5
Exp § Lin | 4p 25 51 | A5 pi) 4 &5 125 | 308 5
Exp { Las | 18 16 | 85 | s2 [ 17 M a | zwes| 2
Exp | b | 37 33 69 45 2 38 545 | 22 |am2s| 7
Totat 238 { 265 | s235 | sezs | 2253 244 | 52035 | 2385
Rank 3 1 ] 6 2 s 7 4
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B.3 Experimental Results for Chapter 6

This scction presents the details of the experimental results obtained in Chapter 6,
*Further Development of Shunting Inhibitery Artificial Neural Netwotks'. The mean
test error for each of the benchmark tests, obtained using Enhanced SIANNs, for all
combinations of activation functions and training algorithms, is presented in Tables
B.27 to B.31. The average for each activation function combination {row) and
training algorithm (column) are also presented.

Table B.27 Mean test classification error for Wisconsin Breast Cancer dataset using

Enhanced SIANNs
Acti Training Algorithms f Structure
Fuactions Reduecd 94-1 Bxpanded 9-4-2.1 Standard 9-9-1 Ave
| sh {ow| gpx | M [psopx| opx | M |psapx| opx | M |psgpx
Trh |Lin| 0.75; o076 o0s2] o090 o069 o063 036 071] 0.66] ned
Toh |Lgs| ©88) o050 1es| 1a4f 121 1ol oso] 122|054 096
Toh |[Toh| 086 035 581) 108] o071 592 o8] oss] 269 212
| Lgsrin] 098] 052 047] 11| 038] 062 098 044| 073 67
Les |Lps] 094 o0.84| o058 153 077 122] o020) 066] 069] 0.83
| Lgs [Teh] 122|050 670) 205| 020) 922] 084 020t 328 274
ExpLinf 055 023 o0z26] o051] 0311 047 023 088} 098] 850
[ Exp [Lgs| 081 079 o084) 227[ o090] 096 04| 121| 054 0.97
Exp [Tab| 0700 0.61] 762] Loi] o041l 1244] o054] o8] 325] 304
Avernge 085 o061 265 30| assl 362 o036 oz 148
Table B.28 Mean test classification error for Pima Indians Diabetes dataset using
Enhanced SIANNs
Al Training Algorithms / Struclure
Functions Reduced 8-3-1 Expanded 8-3-2-1 Standard 8.1 Ave.
Sh |owt| Gox | 1M |psGpX| oDX | IM_|DSoDX| GDX | M |DscDX
| Tob |Lin | 2077] 20,30 2085| 2236| 2136| 20.59) 2214 21.30| 2023|2132
| Tnb |Lps| 20.01] 2064 2123 22.86| 21.14| 21.50| 2103 2096| 20.17[2..47
| Tnb |Tob| 20.96| 20.53 4348| 21.55| 30.81| 45.66| 21.16] 21.08| 40.64[28.43
|Lgs |Lini 22.84| 21.22] 20.96| 23.57| 21.15| 20,58 2227 20.61| 20.02[24.47
Lgs [Lgs| 22.05| 20.76] 21.13| 25.55| 20.67] 21.54| 21.09| 20.88| 19.82[24.50
| Lgs [Tab| 2194 2035] 4186| 22.47| 2076] 4531 2203 19.88| 41.24|28.44
|Exp | Linl 2078| 21.24] 2062| 25.56] 2095| 20.72] 2207 20.60| 2020[2/.53
| Exp |Lps| 2038 2052 2123 27.61] 2000] 21.46) 2176 20.58| 20.27|21.75
|Exp | Toh| 20.34] 20.18] 42.26] 2595] 2043] d44.34] 21.5] 2031] 39.72)28.4¢
Avemge | 2167 20.75| 2820) 24450 2091| 2008 2163 20.69| 2692
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Table B,29 Mean test error for 3-bit Parity dataset using Enhanced SIANNs

Funictions

Training Algerithms { Structure

Reduced 3-2-1 Exptded 3:4-1 Standard 3.3 g

sh jow; obx | M _|psoDx| Gox | tm |psopx| gox | LM [bsanx
| Toh [Lin | 19.25] 19,75 11.50] 1200 200| 0.00) 2435] 800! 075|7Ld4
Toh |Lgs| 12,500 17.75] 30.00|  o0s0] ool 3.75] 1251 675 6.25| 8.8
TobilTah| 8.50) 2375 49.00{ 075 350l 3s2s| 200 835) 4325|19.36
| Lgs [Lin| 5000, 9.75| 1425| 40.00] 0.00]  0.00] 49.75] 0.50] 4.00[/8.69
| Lps |Lgs| 39.50| 10.25) 49.25| 21.25) 025) 150l 2000 1.00] 4975|2242
|Lgs |Toh| 49.50|  R.25] s0.00| 2650 4.50] 28501 4m3s|  5395| 4535|272
|Exp | Lin| 43.50| 1550 15.00] 4225| p25) 000 3800 0.50| 150|17.83
Exp |1 12,501 17.000 41.25] 0501 025) 275 1.25{ 2.00] 28250475
[ Bxp |Tah| 1375 1175 49.75) 1.75] 0.00[ 40.00) 325 3.00] 45757878
Avemge | 27.67) 1492 40| rez2| rar| 242 2194) 397 2503
Table B.30 Mean test ervor for Multi-Class dataset using Enhanced SIANNs

Acli Training Algorithms f Structure

Functions Reduced 3-13 Expanded 2-3-3 Standard 2.2.3 hve.
sh Jowm| oD% | 1M |psobx| opx | v |psapx| opx | LM |psapx
| Toh | Lin | 34.64| 3499] 34.67] 745| 664 839| 23.79) 9.60] 23.67]2043
Trh L. 821l 2a3| 47| s51] 969 7.80] 605 745| 33.59[i334
| Toh |Tan| 34961 3541] 3467| 632| 633) 924| 2005 913] 3220|2003
| Las |in| 24.33] 34931 67| 104) 611| 596 32250 16355 23572216
| Lgs |1gs]_ 671 7.77] 3467 564 772 9.09] 7.05] 683 326504343
| Lgs |Toh| 34.51| 3524} 34.67) 949) 560 9.53] 3276 17.80| 3L.00)23.40
| Exp | Lin | 34.36| 3536] 3467 5352 579 5571 jos3| 642] 9.39|l640
| Exp L 5.89)  6e69| 67| 539] 624 651) 547 5.60| 24914827
Bxp [Tnn| 3527 3593( 3533 5.00)  B15[  6.56] 0.84) 9.27( 19.80§18.35
jﬂmse 25.43) 2304] 3474|682 693 63| 1653l ss] 2564
Table B.3! Mean test ARV for Sunspot dataset using Enhanced SIANNs

Acti Training Algorithins f Siructure

Fuhetions Roduced 10-5-] Expanded 10-5-2:1 Sundard 10000 OV
sh lowt| opx | v |psepx| 6px | 1M |pscpX| Gbx | LM_|psopx

Toh ) Lin] 0220] 0434] 0023] 0536 0.132] 0048] ou6l] 0.119] o026)0.780
| Trh | Lys| 1.030] 0256 1.380] 1.020| 0960| 1340| 0.570] 0.139 1.310{0.845
ot ol 0213 0.195]_ 0.151] 0515 0.137] 02230 0.48s| ©.017| 0.33|0.208
| £ps |Lin | 0306} 0.147] 0.124| 0.858] 0.127| 0.144] 0.169| 0.108] 0.121§0.23¢
[ 1gs lLps| 1.020] ©.067] 1350) 1.020| ©.133] 1340) 0.976] 0.116] 1.330]0.828
| Lgs {Toh| ©317] 0.127) 053] 0.888] 0.147] ©322] 0200 0.115] 0.129]G.247
| Eap [Lin| 0271] 0042 0.033) 1.000] 0.34] 0133 0175 0135] 0.131]6.250
| Expjlgs] 1020 0.611 1.350) 1.020] ©0.155) 13501 0992| 0.140] 1.350|0.838
Exp |Toh| 0303 0.132] 0.147] 1.030] 0,134) 0211 ©.194] 0.133] 0.133}0.269
Avesge | 0.522] 0.462 0546 0.876) 048] 0578 0447] 0.0128] 052
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B.4 Experimental Resulis for Chapter 7

This section presents the experimental results obtained in Chapter 7, *A Generalised
Feedforward Neural Network Architecture’, For each benchmark test, the mean test
error, obtained using GFNNs, for all combinations of activation functions and
training algorithms are presented in Tables B.32 to B.36. Tables B.37 to B.40 give
the detailed results for the variouns values of sy with the different benchmarks tests.

Table B.32 Mean test error for Wisconsin Breast Cancer dataset using GFNNs,

Activation Training Algorithms / Struclure
Functions G91 GP 9:2.1 Avg
Qutput None Lincor Lag sigmotd {Lys) ‘Tan sigmoid {Tni)
GSN gox | LM |GDX | LM D5- {GDX | LM Ds- | GDX | LM DE-
N | Den GDX GDX GDX
Lin | Lgs 016 0.44] 037 o46| 034 032 075 73] 082 oe2] 461] 087
| Los | Lps 053] 0.54] 1500 225 082 567] 3.55 1.29] 1Lod] 3.51|  7.47| 246
| Toh | Lps 0.35 1.36] 0.96] 0.8% 1.66| 1.19] 1.06) @63 029] O0.5B| 3.15] 705
Exp | Lps 4.61 r66] 2.18( 058 061 087 1.03| 3.01] 038] 079 1805] 299
Lin | Toh] o047| 0a47] 040| 049| 046) 108| 1.28| O8&| 081] 1.12] 435} Lo7
| Lgs | Toh 1.05 114] 141 1.41 053] 1.B0| 347} .01 L.51| 2.09] 10.55F 2.6
Tah | Tnh 060 1.25] 036] 073 062 198 1210 OB6| 046| 1.03] 2.75] L8
| Exp | Toh 3480| 0.55] 168] 060| 063 033] 1.63] 320| 0.38| 066]| 1450) 258
Lin | Exp 050 0.58] 031 0%7| 036 037] 1.12] 083 0.09] 077| 293) G.8F
| 1gs | Exp Q.15 1.82| 0.6l 151 028| 4.5 1.05] 116l 0.7 1.49] B.29] .93
Tah ) Exp 056 073 0.5 nes| O68| 0861 LIS| 079y 0.27] 0701 240] 04.86
Exp |Exp| 3.03 0661 052 056| 045) 085] 137|305 0.55) 0491 1562 251
Average 122 o851 o095 od9pl 657] Las| L55| 147 069 LISy A
Table B.33 Mean test error for Pima Indians Diabetes dataset using GFNNs
P Training Algotithms / Structure
F G- ap 821 Avg.
Ourput None Lincar Log sigmaid (Lgs} Tan sigmoid {Tnh)
GSH GDX | LM |(ODX| LM DS- |GDX | LM | DS. | GDX | LM D5-
Nam | Den apX GDX aDX
Lin |Lgs] 21.43] 32.20| 2207] 2.53) 19.94 21.04| 20.82| 24.05| 22.53| 20.68| 42.13] 2163
| Les |Lgs] 20.70] 32.30| 29.72] 22.83 2126 30.87| 23.70] 27.17| 30.23| 2241| 44.03] 2695
Trh | Lgs| 20.76| 20.56| 21.05] 20.61 2021 21.45] 21.35| 26.78| 20.66| 2047| 43.68] 23.42
| Gap | Lps| 23.25) 21.50} 23.53] 2 120§ 25.06] 21.08] 20.36] 26.55| 22.75| 20.88| 46.994 2430
Lin |Tob] 2205 z231) 22.05| 20.92] 2060] 2099] 2089 2598| 2103 21.07| 41.59] 2167
Logs | Toh| 21.55] 23.76] 23.36] 2057 21.27] 3654 2340) 27.65) 23.32; 21.50| 4528 2339
| Toh | Toh] 20.83) 21.53] 30.79] 2132 20.05 20.69| 21.82] 27.83| 20.58| 21.06| 43.26| 2361
| Exp | Toh] 23.13| 21.53) 23.29] 21.66| 20.35 2085 20.86| 27.42) 22.72| .51 47.52| 24.58
Lin |Expl 22.15| 22.46] 21.707 21.40 2054 | 21.23| 21.33| 26.05| 21.27| 20.92] 42.17] 23.73
 Lps | Eapy 20103 21.92 26781 21.35| 20,73 27.66| 20.84| 2581| 27.84] 20.52] 43.66] 2539
Toh |Exp] 20.58| 21.45] 20.79) 201.24| 20.00| 21.49] 21.98| 2689) 20.67] 20.55] 43.12 2152
Exp (Eap| 3281 21.49] 23,15 il.16] 21.02 21.06] 2085 26.37] 2247| 21.11] 4592 2430
Avernge | 20.69| 22.08| 2309 M47| 2064|229 2057 26.59| 231.08] 20.96] 44.16

221



AFPENDIX B « DETAILS OF EXPERIMENTAL RESULTS

Table B.34 Mean test classification error for 3-bit Parity dataset using GFNNs

Aciivati Training Algotithens / Structurs
| Functions G 3«1 GP 3-2-1 Avg.
Outpue None Linear Log sigmoid (Lgs) Tan sigmaid (Trh}
QsN GDX LM |GDX | LM DS. |GDX | LM | DS. | GDX | LM D5~
Num | Den GDX anx GDX
Lin |Las] 1600 11,25 50.00) Q00| 273 32.50| 5507 41.75; 30.50] 3.00| 4875) 2009
Les |Las| 1925) 1435 15750 22.25| 16.75) 20.00| 26.25| 27.25| 22.50| 22.00| 45.00] 24.66
| Trh |Les) 31.25) 7 50| 3835| 20.25| 21.25| 34.75| 27.00) 22.00| 2550) 21.50) 46.25) 27.95
| Bxp |Lgs) 1575 1100) 39.00) 3.00) 675 7.75] 7.75| 15.25]| 1550f 550 44.50) 1567
| Lin | Tnh] 16.00] 17.50] 43.50) 0.75 4.00( 3.75) 10.00| 12.25] 475| A95| 47.25) 14.86
| Lps | Toh|) 26.50) 16.75) 1435 2028 5.50( 20.00| 25.00| 12.50] 13.75%| 21.50i 44.00] 20./8
| Trh |Teh] 34.75] 2525] 12.50| 21.25 6.25( 12.50| 26.25| 22.00| B.50| 25.00| 43.00) 24467
| Exp |Teh] 26.00) 17.795) 34.50) 000) 3.50| 528) 850) 1375| 550| 5.25] 42.50) 73.86
Lin |Exp) 32.25] 1600] 4625 050| 3.25| 250 275 21.75) 2.75) 2.23] 45.25| F5.05
| Lgs {Exp] 29.25| 2650) 38501 1475 625 495 17.50] 21.50) R25| 1600 45.00] aeged
Toh |Exp| 32.50| 34.00! 18.00] 19.50] 7.75]1 7.00[ 13000 12.25] 9.75] 19.75] 45.50] 20.73
| Exp |Exp] 15.00) 13.50] 38.00 Lo 7.75| B.00| 3.500 16250 1225 1,75 44.00] f4.64
Averape | 237/ 19.35| 3238| lL04 765| 1173 M7 20.29) 13.29] 12.60| 4504

Table B.35 Mean test classification error for Multi-Class dataset using GFNNs

P Traiting Algotithims / Siructure
“Functi G2 GP 222 Avg,
Quipat Wane Linear Log sigmoid (Lgs) Tan sigmald (Tnk}
GEN GDX | LM {GDX| LM DS |GDX| LM | DS | GDX | LM DS~
Num | Den GDX GDX GDX

Lgs{ 1195| 11y 3633] S8y 961 561] S507) 1385| 1L.71| 5.79) 1644] 1187
| Lgs ILgs| 9.57| 1295]| 2040) 1523) 14.47| 1836] 19.85] 1652 | 17.2G) 21.95| 18.19] /679

 Lgs

 Lgs

05| 12.37] 23.08| 11.33) 1731] 13.19 14.32| B.67| 22.14| 17.9%| 22.85] /A 76
53,35 | 17.56] £6.17] 8.76] &5.87] 16.24| 11.76) 47457 15.27] 945| 46.85] 33.52
Lin JTnh|_ 7.56| 8.53|49.35] s5.92| 876] 652 663) 8.69) 8§23| 661| 15.69) /204

| Lgs ITnh) 7.20) 12.39) 1245) 1292| 1L5Y) 6.8} 14.52] 1547] 11.32) 1849) 14.99] f2.62
| Toh |Tnh) 19.67) T088] 1100 1309 1493 7.99) 13.27) 1).00] 12.37| 18.57) 21433 /4.09
| Exp [Tnb| 62601 16.20] 65.83) 10.27| 6591) 17.24] 927| 47.87) 1931 8.63| 44.88) 374
Lin |Ewxp] 7.69] 663 (1.71] 623 837 647 592| R28| 1.17) 7.19| 10213 &/7
| Las |Exp| 681 889 771§ 073 825 595 $1.32] .20 601] UL.08] 1233] 367
| Tnh [Exp] 7.05) 7.38) 1028) 10| 1079 627) 748| G.61| 39| &79) 16610 222
Exp |Exp) 62.51] 13.11| 64.33] 709 64.11] 32.15) 717 4420] 4l48| 633] S0.59) 34.0/
Averape | MAF] irdr| 30.59) Q47| 2408| FIOG) 5060 2005| 154F| (LM 2428
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Table B.36

Mean test ARV for Sunspot dataset using GFNNs

E

G 10-1

Tralning Algerithms / Struciure

GP 10-2-1

Ave.

Ctpul

None

Lingar Log

sigmoid {Lgs)

‘T'an sigmoid (Tnh}

GEN

2]

Num | Den

GDX | 1M |GDX

LM | DS-

GDX

GDX

LM | DS- | GDX

GDOX

LM | DS-

GDX

Lin | Les

0.120) 0.158] G146

0.100] 0.138] 1.0

G.it5| 0220] G.158

0.106| 0.153) 0220

| Lgs

g

G.837| 0253} 0.987

0.257] 0.204] 1.02¢

G316| 0439] 0.982

0.280) 02771 G.53f

5
&

Lps

0.544| 1.430| 0.306

0.172] 0.)58] 1.010

0.249) 0317] 0.357

0.212] 0.177] 5448

| Lps

l?

0.367]| 0.145] 0.275

0.121] 0.163] 0.830

0.161] 0.264| 0.226

0125 0.171] 8.25¢

£
=]

Tnh

0041 0144 0.173

0.106] 0.148] 0.921

0.27] 0.22%] 0.l66

0137 0.164] 0.223

Lgs | Tuh

;

0.604] 0.322] 0.843

Q.173] 0.173| D899

0.294] 0.486] 0.799

0.207] 0.239] 0447

Toh ) Tuh

0.298] 0.229] 0.248

0.138] 0.165| 1020

0.201] 0.300| 0.253

0.157] 0.186] 0.290

Tnh

|51

0.316] €.140| 0.256

0.139] 0.173] 0.801

0.168) ©.290| 0.233

0.130] 0.1RS] 00258

Lin | Exp

0.124] ¢.221] 0.162

0.138] 0.153] 1,010

0.161) 0238 0176

0.138) 0.167) 0.244

Exp

5

0.506] 0.201) 0908

0.201] o0.182] 1020

0.157] 0.385| 0933

0,]92] 0.225) 447

Toh | Exp

0.164] 0.162] 0366

0.148] 0.171) 1020

Exp | Exp

031 0.151] 0271

0.138| 0.167] 0.844

0.193] 0.320] 0.433
o.162| 0.270f 0226

0.166] 0.204

0.168

2304
0.254

0.127

Average

6357t 0296 6412

0453 @.166] 6,960

gie3] 0.33] 0442

0765|6193

Table B.37 Results for Breast Cancer dataset using GFNNs with various s,

Newwork G 1 Lintgs G | LinLgs GP2-1 LinExp-Trh | GF 2-1 ExpExpTnh
Trained using GOX Trained using Lh{ Tralned using GDX Tratned using LM
slimit | Mean Brmor CPU Mean cPu Mean CFU Mean CPY
(%) Time {s) | Brror (3} | Time (s} | Enor{%:} | Time (s} | Eroc{%s) | Time {5
.01 018 6.96 0.44 5,30 019 22.60 049 15.69
.02 0.16 6.96 0.44 945 0.1% 2342 049 15.69
0.05 016 6.96 0.44 944 619 2263 0.49 15.69
0.l 016 6,96 .44 9.44 0,19 22.61 049 15.70
0.2 018 5.06 0,44 9.42 .19 21.62 .49 15.69
0.5 016 5,98 .44 9.42 0.19 22.64 .43 15.70
14 016 5.96 0.44 941 0.19 22.63 04 15.6%
24 0.20 6.71 .44 943 0.27 21.30 049 1570

Table B.38 Results for Diab

ctes dataset using GFNNs with various siim

Network G 1 TohEsp G | Trhlgs GP 2-1 TohTeh-Toh | GP 2-1 ExpLgs-Lgs
Traingd using GDX Troined using LM Trained using GDX Trained using LM
slimit | Meon Cror | CPL Mean TP Mean ceu bfean CPU
(%5} Time {s) | Error(%) | Time{s) | Error(%s) | Time{s) | Error (%) | Time (s
0.01 058 9,72 20.56 5.25 20.65 15.10 20.36 17.83
002 20,58 9.7 20.56 5.26 20.65 15.10 20.36 17.82
.05 20.58 9.73 20.56 524 20.67 15.18 20.36 17.81
0.1 20.58 9.73 20.56 54 20,68 15.26 20,36 17.81
02 20.58 972 20,56 524 20,66 15.35 20.36 17.81
2.5 20,58 9.7 20.56 5.26 20.60 15.44 20.36 17.51
1.0 20,58 9.7 20.56 5.21 20.58 15.67 20.36 17.82
20 20.78 945 20.56 519 21.98 2240 20,35 17.81
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Table B39 Results for 3-bit Parity using GFNNs with varicus siim

Network G 3-1 LinTrh G 3-1 Bxplgs GP 3-2-1 LinExp-Lgs | GP 3-2-1 LinLgs-Lin
Trained using GDX Trained wsing LM Trained using GDX Trained using LM
5limit | Memn mor | CPU Mean chu Mean CPU Mean CPU
(e} Timeds) | Bror(%) | Time(s) | Eror(%) | Time(s) | Ermor (%) | Time (s)
001 26,15 5.56 | 1.0d 4.50 218 194 0.06 Q.80
0.02 25.25 5.56 1100 4.50 2.5 .87 8.00 279
0.05 25.00 5.56 11.0% 4.50 2.15 1,80 9.00 0.79
0.1 25.75 5.56 11.00 4.50 2.5 3153 000 079
0.2 23.25 5.56 11.00 4.50 2.50 14 .00 0,79
0.5 1%.00 5.56 11.00 A4.50 350 L7 0.00 0.79
1.0 16.00 5.56 .00 4.50 2.50 3.14 .00 079
20 13.5% §.59 .08 4.48 2.25 3.94 0.00 019

Table B.40 Results for Multi-Class problem using GFNNs with various sy,

Nerwork G 2-3 LgsExp 0 2-3 LinBxp GP 2-2.3 LinLgs-Lgs | GP2-2-3 LinLps-Tnh
Trained using GDX Trained using LM Trained using GDX Trained wsing LM
slimlt | Mean Emot CFu Mean CPU Meon crU Mean CPU
(%) Time {s) | Ermoe Time (s} | Errot Time{s} | Errorf%) | Time (s)
0.0l 8.16 B.15 6.65 28.10 588 14.26 5.79 6540
0.02 8.16 B.1%5 6.65 28.10 5,85 13.57 579 65.40
.05 3.16 .20 6.65 2810 5,87 13.49 579 65.40
0.1 196 .10 665 28.10 5.77 14.80 579 65.40
0.2 7.92 8,95 6.65 28.10 572 1547 579 G540
05 7.92 8.65 6.65 28.10 5.67 14.60 579 65,40
1.0 6.81 0.00 6.65 28.10 5.6l 13.20 578 6540
2.0 627 9.50 6.65 258.10 5.67 L6.63 578 6540
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B.5 Experimental Results for Chapter 8

This section presents the experimental results obtained in Chapter 8, *A Generalised
Feedforward Nenral Network: Architecture’. For each benchmark test, the mean test
error, obtained using MLPs for ail combinations of activation functions and training
algorithms are presented.in Tables B.41 to B.46. The average for cach activation
filnetion combination (row) and training algor:thm {column) are also shown,

Table B.41 Mean test classification error for Breast Cancer dataset using MLPs

N Netwock type / Training Algorithms )
: i i G-MLP MT- MLP. NW init_| Average
Hidden Crutput GDX LM QNN GDX LM
Lgs Lin 008 | - Dsl 0.36 037 072 043
* Toh Lin 0.09 0,60 0.24 073 0.72 048
Lgs Lgs 0.3 "t 097 0.93 046 0.92 0.69
Toh Lgs 0.56 1.07 L4 0.86 136 1,00
Lys Tih 0.12 0.51 024 1.74 2395 RES]
Tnh Trh 0.2 0.72 0,51 1.28 1,02 677
Average 05 072 |~ os7 0.91 2.7

Table B.42 Mean test classification error for Diabetes dataset using MLPs

e Metwork type ¢ Training Algorithms

! i G- MLE MT- MLP, NW init Average

Hidden | Outpul aDX LM QNN GDX LM
Lgs Lin 22.85 21.38 2048 22.45 22,45 2192
Toh Lin 20.42 21.42 20.95 25.14 25,14 2281
Lgs Lgs + 2532 21,70 21.57 21.66 21.66 2238
‘Tnh Lgs 20,88 ki) | 21.55 21,48 21.48 2142
Lgs Toh 2214 0.75 21,35 21,68 21.68 2452
Tnh Tn_h 20.45 2[.0_9 20,77 _2_9_.24 2_9‘24 2416

Averge 2218 2534 AT 2361 - 2361

Table B.43 Mean test classification error for 3-bit Parity dataset using MLPs
Metwark type / Training Algorithms

Acthvation T ) G- MLF MT-MLP, NW init_ | Aversge
Hidden | Oufput GDX LM QNN GDX M
Lgs Lin 2.00 0.00 3.00 625 350 2,08
Trh Lin 2.50 1.2% 1025 13.75 425 6.48
Lys Lgs 050 0.00 135 4.25 200 2.90
Trh Lgs 2.00 1.28 1335 11,75 6.75 A
Lgs Tnh 050 100 | 700 475 13.50 5,33
“Toh | Toh 2.00 1,50 11,25 11,25 15.00 940t
Avesage 158 17 88i | - 887 8.47
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Table B.44 Mean test classification error for Multi-Class dataset using MLPs

PO Network type f Troining Algorithms
b G MLF MT-MLE, NWinit | Averge
Hidden | Outpur GDX LM QNN GDX LM
| Lgs Lin 607 595 5.7 6.09 5.99 597
Tnh Lin 5.717 5.96 6.04 643 .12 [ X
| Lgs Lgps 5.37 6.52 5.4 5.5 12.24 702
Tnh Lps 5.48 £.56 5.69 10.39 1.37 "1l
Lps ‘Trh 5.85 12.64 136 3021 28.80 16.97
Th Tith 5,76 5,81 5,60 22.65 13.59 10,20
Averape 5.65 750 6.04 15.04 11.62

Table B.45 Mean test classification eror for Thyroid dataset using ML

PO WNetwark type / Troining Algorithms
’ B G- MLP MT- MLP, NW init Average
Hidden | Output GDX LM | QNN apx LM .
| Los Lin 6.75 4 233 5.59 249 440
Toh Lin 647 252 269 67 2.69 421
| Lgs Lgs 597 1712 2.18 6.59 .89 4.87
Th Lgs 5.96 ‘LB3 1.68 13.85 245 £.55
Lgs Toh 7.17 202" ] 2114 40.66 14.64
| Tob Toh 6.25 207 247 236 | 297 11.66
. Average 5,36 205 2.65 15,31 17.57
Teble B.46 Mean test ARV for Sunspot dataset using MLPs
Lo Network type / Training Algorithms _ * |
Activation F G-MLF . MT-MLP, NW init | Average
Hidden | Output GDX 1M QNN anx LM
| Lus Lin 0,363 0.138 0.154 0.i63 0234 0.212
Trh Lin 0.162 0.144 0.13¢ 0222 0.326 0.199
| Lgs Lgs 1.023 0.157 0218, 0181 0.231 10.362
Toh Lgs 0.486 0.151 0,420 0.195 0.235 0298
| Lgs Tnh 0406 0,139 0.183 0.186 1.124 0408
Toh Trh 0.1%7 0,142 0.157 0.214 1.243 0.387
Average 0.453 o7 | 0223 0.200 0.632
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