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Abstract 

Shunting inhibition is a powerful computational mechanism that plays an imponant 

role in sensory neural information processing systems. It has been extensively used 
to model some important visual and cognitive functions. It equips neurons with a 

gain control mechanism that allows them to operate as adaptive non-linear filters. 

S/11m1/11g Inhibilory Artificial Neural Nenmrks (SIANNs) arc biologically inspired 
networks where the basic synaptic computations arc based on shunting inhibition. 

SlANNs were designed lo soll'c difficult machine learning problems by exploiting 

the inherent non-linearity mediated by shunting inhibition. The aim was to develop 

powerful, trainable networks, with non-linear decision surfaces, for classification and 
non-linear regression msks. 

This work enhances and extends the original SIANN architecture to a more 

general fonn called the Gc11cru/iscd Feedflm,w·d Ne11ml Nelll'ork (GFNN) 

architecture, which contains as subsets both SIANN and !he conventional Mu/tlfoycr 

Pcn:eplnm (MLP) urcbilcetures. 

The original SlANN structure has the number of shunting neurons in the hidden 

layers equal to the number of inputs, due to the neuron model thn! is used having a 

single direct excitatory input. This was found to be too restrictive, ollcn resulting in 

inudcquutely small or inordinately large network structures. 

Enhancements to SIANNs lmvc been developed in this thesis thnt allow the 

number of shunting neurons to be varied arbitrarily. Experimental results showed 

tlmt adding more shunting neurons generally improves pcrfommnce, whereas 

reducing the number of shunting neurons often results in a degradation of 

performance. Furthemmre, when the number of shunting neurons is reduced, it is not 

clear whnt subset of inputs should be used as direct excita!ory inputs. 

To overcome this limitation, an excitatory signal is derived from the weighted 

sum of all input signals and used as the direct input to the shunting neuron. The result 

is u new neuron model, where all inputs arc used to derive the excitatory nnd 

inhibitory signals, named the Generalised Sl111111i11g Neuron (GSN). The GSN has the 

ability to generate complex decision boundaries by simply varying the synaptic 

wcigh!s. Consequently, a single GSN is able to solve complex machine learning 

problems much more readily; for example, a single neuron achieves perfect 

classification on some benchmark problems, like the 3·bit parity and Wisconsin 

Breast Cancer problems. 
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Furthcnnore, a new Generalised Feedfonl'ard Ne11ral Network {GFNN) 

architecture has been developed and presented here, based on the GSN neuron. This 

GFNN architecture is more flexible and includes the original SIANN and the 

multilrryer perccp11·011 as special cases. 

A number of different types of supervised training algorithms have been 

developed for SIANNs and GFNNs. These include several fir:st- and second-order 

algorithms based on backpropagation, stochnstic algorithms, and a hybrid algorithm 

combining direct solution using least-squares minimisation with gradient descent. 

Additionally, a novel second order training algorithm, called the Quadrmic 
Nm1ml Ne/work (QNN) algorithm, has been developed based on a recurrent neural 

network for bound-constraint quadratic minimisation. 

These training algorithms have been successfully used to train SIANNs and 

GFNNs, and MLPs for compari~on, on a number of standard benchmark 

classification and regression problems. Extensive experiments have been conducted, 

which show that the GFNNs achieve accuracy levels that arc comparable or bc11er 

than results reported elsewhere in the literature, using smaller networks in most 

cases. 
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Chapter 1 

Introduction and Overview 

1.1 Background 

Artificial ne11ra/ networks (ANNs) are inspired by the massively parallel processing 

capability of the biological brain. The biological neural network, or brain, is an 
intricate web of billions of interconnected ce!ls, called neurons. These simple 

computing units interact through tiny electrical impulses via a massive number of 
interconnection points called synapses. The brain learns and stores its sensory 

infonnation in the patterns formed by these interconnections and the 'strength' of 
these connections. A vivid memory is indeed more deeply 'etched' in your brain. The 

distributed nature of stored information aids in the linking of various experiences, as 
well as providing robustness and fault tolerance. This means you won't forget your 

name by losing a couple of neurons! 

The computational paradigm of the brain is massive parallelism; it is the 
concurrent operation of large numbers of interconnected neurons that enables it to 
perfonn the complex: information processing tasks involved in human behaviour. 
This biological computing mechanism is the physical controller of all human 
activity, be it a 'simple' everyday action like catching a ball or picking your mother 
out of her high school class photograph, or acknowledged challenging tasks like 
fonnulating the theory of relativity or writing a sonnet. 

Artificial neural networks are based on models of this biological 'supercomputer', 
with the aim of creating artificial computing structures that can perfonn a wide 
variety of tasks. They are abstractions that aim to reproduce some of the functionality 
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of biological networks- at the moment - at a veiy much simpler and smaller scale. 
ANNs have been applied to a rge number of diverse problems, from medical 
diagnosis to t e redicf sunspot activity, data mining and clustering to facial 
recognition. These networks can learn from a human expert in a supervised manner, 
in areas like medical diagnosis, or in an urumpervised manner, forming patterns from 
the veiy data presented, in applications such as data mining . 

. The power of parallel computing is evident from the fact- that the world's most 
powerful supercomputers arc comprised of thousands of processors operating in 
parallel, with massive interconnections (Pullcyb!ank, 2004). ANNs use the same 
concept of large numbers of computing units working together to fonn powerful 
tools for a variety of problems. The difference lies in the model of the 'node' in the 
parallel structure. The supercomputers of today use powerful processors, essentially 
sequential machines in their own right, as the basic 'unit'. ANNs take the opposite 
end of the spectrum, using extremely simple computing units. The form and function 
of these computation units, or neuron models, may vaiy widely depending on the 
particular biological behaviour it is modelled on, or the practical function that it is 
trying to implement. 

It is this idea of proposing and developing a neuron model, and subsequently 
applying and testing networks based on this neuron model, that forms the thrust and 
contribution of this thesis. In this investigation, we have taken the biological 
phenomenon of shunting inhibition as the function that we wish to incorporate into 
the neuron model. 

Shunting inhibition is a powerful computational mechanism that plays an 
important role in sensory information processing systems. It was proposed as a 
plausible physiological model in the early 1960's (Furman, 1965; Lettvin, 1962), and 
shunting inhibition has since been extensively used to mode[ some important visual 
and cognitive functions. Shunting inhibitory networks have primarily been part of 
adaptive (self-organising) systems that use competitive learning. They have been 
widely used in modelling psychophysical, neurophysiological and cognitive 
phenomena. To the best of our knowledge, shunting inhibitory networks have not 
been used in supervised pattern classification or function approximation, other than 
in the oeocognitron (Fukushima et al., 1983) and ART networks (Carpenter & 

Grossberg, 1988), until recently (see next section). 

The application of shunting inhibition to supervised feedfoward neural networks 
in particular has been emphasised, in order to keep the scope of work manageable. 
The reasearch has focussed in depth within this scope, in the anticipation of breaking 
new ground that will open up new areas of research. 

2 
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1.2 Research Objectives 

Recently Bouzcrdoum (Bouzerdoum, 1999, 2000) proposed an artificial neural 
network architecture, based on shunting inhibition, that can be trained to perfonn 
pattern classification or function approximation; he named it shunting Inhibitory 
artificial neural nelwark (SIANN). S[ANNs are fcedforward networks that operate 
using tho steady-state solution of tho sot of ordinary differential equations that 
govern the dynamics of the shunting networks, thereby avoiding the need to obtain a 
numerical solution for these differential equations. This allows the network to 
operate in a static mode, like most artificial neural networks. 

The main thrust of this research is to investigate the ability of shunting inhibition
based fecdforward networks, particularly SIANNS, when applied to practical 

problems. 

The initial hypothesis is that shunting inhibitory feedforward neural networks are 
able to fonn a new class of powerful networks for classification and non-linear 
regression tasks. The idea is to exploit the inherent non-linearity of shunting 
inhibition tn develop powerful, trainable networks, with non-linear decision surfaces. 

The thrust of the research can therefore be broken down into two main objectives: 

To develop efficient training algorithms for the class of shunting inhibitory 
artificial neural networks, and test the developed algorithms on some 
benchmark problems in machine learning and pattern recognition. 

To enhance the structure of shunting inhibitory artificial neural networks, and 
develop a generalised framework for pattern clasoification and regression 
using feed forward artificial neural networks. 

1.3 Major Contributions 

The main contributions to the body of knowledge made in this thesis are listed 

below. 

I. Training algorithms have been developed for the standard SIANN, nod tested 
on a number of benchmark problems. The resul!.'1 of the tests prove that 
SIANNs are a viable class oftminoblc neural networks thnt can be applied to 
classification and non-linear regression problems. 

2. The standard SIANN structure has been enhanced to a more flexible 
architecture. 

3. A Genera!iS'ed Sh11nt/11g Neuron (GSN) model hns be.:n formulated, which 
allows multiple excitatory and inhibitory inputs, and encompasses both the 

3 
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standard shunting inhibitory n;uron and the perceptron neuron as special 
cases. The GSN is capable of producing complex non-linear decision 
boundaries, with a single neuron able to solve real world classification 
problems. 

4. A new neural network architecture based on the GSN has been defined, called 
the Generalised Feedfonvard Neural Network (GFNN) architecture. This 
architecture provides a broad framework that also contains SIANNs and 
MLPs as subsel.'l. 

5. GFNNs have been applied to a variety of tasks and demonstrated to be a 
useful and powerful class of neural_ .network, capable of perfonning well 
using networks with a very small number of neurons. 

6. A variety of training algorithms have been developed for the shunting 
inhibitory networks, implemented in a manner that allows SIANNs, GFNNs 
and MLPs to be trained by this common set of algorithms. 

7. A novel neural network training algorithm based on bound-constrained 
quadratic optimisation has been developed, calted the Quadratic Neural 

Nelwork (QNN) algorithm, along with a number of its variants . 

.1.4 Outline or the Thesis 

Following is a chapter-by-chapter outline of the thesis that provides a _general 
overview of the strucrurc and content of this thesis. 

Chapter 2 is a review of artificial neural networks !hat aims to explain the relevant 
tet1Tl3 and concepts. It describes ANNs in general, covering the biological neuron 
models as well as artificial neural network struclllres. It also introduces briefly the 
various learning paradigms, training algorithms, and the types of problems that can 
be solved using neural networks. 

Chapter 3 presents the development of the Shunting Inhibitory Artific/ol Neural 

Ne/work (SIANN), from its biological roots to tho development of tho feedforward 
shunting inhibitory neuron model and the SIANN architecrurc. The derivation of the 
differential equation governing the shunting inhibition dynamics is also presented. 

Chapter 4 describes the development and testing of a number of gradient-based, 
direct solution and stochastic training algorithms for SIANNs. It describes the details 
of the various algorithms and relevant update equations. The chapter then describes 
the experimental methods and procedures employed throughout the thesis, for 
assessing the perfonnnncc of the networks under investigation. They include network 
structures, initialisation methods, training and testing parameters and criterin. A set 

4 
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of live benchmark problems, consisting of two synthetic and three real-world 
problems, are also described. The benchmarks were selected to incorporate a variety 
of problems, including time series prediction and multi-class classification. The 
performance ofSIANNs on these benchmark problems is tested and analysed here. 

Chapter 5 presents the development of a novel training algorithm, ca!led the 
Quadratic Neural Network (QNN) algorithm, and a number of its variants. The 
algorithm, based on hound-constrained optimisation using recurrent neural networks, 
is readily able lo incorporate constraints on synaptic weights during the weight 
update phase. Implementation issues such as the practical application to neural 
networks and adaptive determination of parameters are also addressed. SIANNs have 
hcen trained on the benchmark problems using the QNN algorithm and its variants. 
A quantitative analysis of the performance of these algorithms is presented along 
with the results. 

Chapter 6 presents enhancements to the standard SIANN structure. The original 
standard structure has the number of neurons determined by the number of input data 
attributes and class labels. This sometimes results in structures that are too small, or 
inordinately large, for the particular problem. In this chapter, enhancements are 
proposed and developed that al!ow the size of the shunting layer to be reduced or 
expanded as required. The enhanced SIANN structures have been trained on the 
benchmark problems. The performance of these enhanced structures is compared to 
that of the standard SIANN. 

The results obtained in Chapter 6 highlight a certain restriction imposed on the 
shunting neuron model used in the standard SIANN, namely that it can only have a 
single excitatory input. In Chapter 7, the shunting neuron model is expanded to cater 
for multiple excitatory inputs. The result is a new neuron model named the 
generalised shwlling ne11ro11 (GSN). The GSN includes the previous shunting neuron 
model and the traditional pcrceptron model us special eases. This 'generalised' 
shunting neuron is used in a new fcedfotward architecture, called the Generalised 

Feedfomard Neural Network (GFNN), Training algorithms have been extended to 
the GFNN architecture, which includes both SIANNs and MLPs as subsets. The 
developed GFNN networks have been tested on benchmark problems, and their 
performance is compared to that ofSIANNs. 

Chapter 8 compares the performance of shunting inl1ihition-based oetworks with 
the Multi-layer Perceptron (MLP), as well as results from other methods found in the 
literature. For each benchmark problem, an MLP structure with approximately the 
same number of synaptic weights as one of the tested GFNN was trained and tested; 
the obtained results arc compared with those of the GFNN and SJ ANN. Wherever 
possible, comparisons are also made with other results presented in the literature. 
The efficiency of the code developed for this thesis is evnluMed by comparing it with 
MLP~ generated, initialised and trained using standard MATLAB Neural Network 
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Toolbox. The chapter ends with a discussion of the overall results obtained across all 
benchmark problems and network architectures. 

Chapter 9 recapitulates the work presented in the earlier chapters and summarises 
the results of the research, including a discussion on the full scope of the proposed 

generalised feedforward neural network architecture. It ends with suggestions for 
future work based on outcomes of the research presented in this thesis. 
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Chapter2 

Artificial Neural Networks -A Review 

2.1 Introduction 

Artificial neural networki; employ massive interconnection of sirnp!e computing 

cells, called neurons, to perform complex information processing tasks. They are 
inspired by the massively parallel processing capability of the biological brain. 

The biological brain consists of billions of biological neurons, each haviug 

thousands of connections to other neurons, forming an intricate web. The connection 

points between the neural pathways are known as synapses. Sensory information 

causes tiny electrical impulses to be generated and transmitted through the neural 
pathways, via the synaptic junctions, resulting in patterns of activity in the brain. The 
pattern of the neuronal connections determines the meaning of the electrical signals 

(Nicholls et al., 1992). The brain learns and stores its sensory infonnation varying 

the 'strength' of the synaptic connections, thereby changing the patterns fonned. 

"A neural nerwork Is a massively parallel distributed processor that has a nalural 
propensity for storing experiential knowledge and making ii available for use. It 
resembles rhe brain in two respects; 

1. Knowledge is acq11ired by the network thro11gh a learning process (learning 
algorithm). 

2. lnterneuran connection strengths known as synoptic weights are rised to store 
the knowledge." (Hay kin, 1999) 
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The definition above outlines the method of operation of an artificial neural 

network. From its 'observations' of the environment, the network learns about the 

environment it is 'placed in'. The experiential knowledge is stored in a distributed 

manner within its very structure. Subsequently, when a set of inputs is received, the 

network is able to produce a response consistent with the environment it has 

'observed'. 

In practical applications, 'placing a network in an environment' involves 

presenting the network with sufficient examples related to the required task. The 

network is then trained to produce th!l desired out~omes, even when presented with 

previously unseen examples. 

Neural networks have b~n used in a wide variety of applications, such as 

financial prediction (Bowen & Bowen, 1990; Giles et al., 1997), control of nuclear 

power plants (Boroushaki et al., 2003; Na et al., 2004), medical diagnosis 

(Arulampalam & Bouzerdoum, 2001a; Dickhaus, 2001; Kordylewski et al., 2001; 

Mcesad & Yen, 2001), face recognition (Er ct al., 2002; Tivive & Bouzerdoum, 

2003), signal classification (Arulnmpalam et al., 1999; McConaghy et al., 2003) and 

even the classification of odour levels in n piggery (Hanumanthamya et al., 1999)! 

They offer improved performance over conventional technologies in many areas, 

including robust pattern detection, signal filtering, data segmentation, data 

compression, database mining, adaptive control, optimisation and scheduling, and 

complex mapping. 

A comprehensive treatment of the vast field ofartificial neural networks is beyond 

th!l scope of this chapter. The aim of the chapter is to explain the relevant terms and 

concepts, described within the context of the general body of knowledge about 

artificial neural networks. It describes artificial neural networks in general, starting 

with the biological neuron model and finishing with various artificial neural network 

structures. It also introduces briefly the various learning paradigms, training 

algorithms, and the types of problems that can be solved using neural networks. 

The next section discusses the biological neuron and biological neural networks. 

This is followed by two sections devoted to the general concepts of artificial neural 

networks, including the different classes of neural networks and their structures. and 

learning paradigms and algorithms. The kinds of problems being tackled is then 

presented in Section 2.5. Section 2.6 introduces the popular foedfoiward neural 

network architecture, namely multilayer perceptrons (MLPs), and the error 

backpropagation algorithm, while Section 2.7 describes radial basisfimc/ions (RBF) 

and support vector machines (SVMs). This is followed by a section on common 

training algorithms for feedforward neural networks. The chapter ends with an 

overview of adaptive network structures followed by the conclusion. 
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2,2,1 Synapses 

Information is passed from one neuron to another via a specialised junction point 

called a sy11upse. A typical neuron may have between 1,000 and 10,000 synapses. 

Plasticity is the ability to adapt the network to its surrounding environment (Haykin, 

1999). This is achieved by creating new synaptic connections, varying the strength of 

existing conne-:tions, and removing {pruning) unne-:essary connections, and is key to 

the brain's ability to learn and to retain memories. 

The most common type of synapse is a chemical synapse (Gerstner & Kistler, 

2002). At synapses, the axon usually enlarges to form a terminal button, which is the 

information delivering part of the junction. The terminal button contains tiny 

stmctures, caHed synaptic vesicles, which hold chemical neurotransmitters. At this 

point the axon is very close to the postsynaptic neuron, leaving a tiny gap between 

th,J pre- and post-synaptic cell membrane, called the synaptic cleft. Nerve impulses 

(action potentials) at the synapse cause neurotransmitters to be released into the 

synaptic cleft. When the neurotransmitter molecules reach the postsynaptic 

membrane, they are detected by specialised chemical receptors that cause an 

electrical response at the postsynaptic membrane, called the postsynaptic potential. If 

the potential change is positive, it helps to generate nerve impulses: thus, it is known 

as the excilalary postsynapric potemial (EPSP). If the potential change is negative, it 

opposes the production of nerve impulses; thus, it is termed the inhibitory 
pas/synaptic pole11/ial (IPSP) (Stevens, 1994). Accordingly, synapses are classified 

as excitatory or inhibitory, depending on the type ofpostsynaptic potential generated. 

One type of inhibitory synapses works by increasing the conductivity of the cell 

membrane, thereby 'shunting' the effect of other input potentials and 'clamping' the 

cell potential to its resting potential. This effect, known as shunting inhibition, forms 

the biological basis for the work presented in this thesis; it is described in greater 

detail in Chapter 3. 

2,2,2 Aellon potential and spike trains 

The basic process describing the 'firing' ofa neuron is that if the sum ofpostsynnptic 

potentials exceeds a threshold voltage, the soma generates an action potential, a 

voltage spike, that propagates down the axon, sending the signal to all neurons with 

synapses connected to it. This action potential spike typically has an amplitude of 

about !00 mV and a duration of I to 2 milliseconds. The spike is followed by a 

refractory period during which the neuron cannot fire again. Fig. 2.2 shows a typical 

action potential spike. 

Given that the amplitude of an action potential spike of a neuron is always the 

same, the question arises "How is a 'strong' signal differentiated from a 'weak' 

signal?" The answer is that a neuron will nonnally generate a number of action 
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2.3 Artlflcial Neural Networks 

Artificial neural networks (ANNs) mimic the function of biological neural networks. 
The workings of the biological neuron are modelled mathematically - to varying 

degrees of complexity - and then simulated, either in software or hardware. These 
'artificial' neurons are then combined to fonn artificial neural networks. This section 

describes one of the most popular neuron. Each synapse has associated with it a 
weight or strength, w. The input neuron models, and outlines the ways in which 

neurons are combined together to form artificial neural networks. 

2.3,1 The Artlflclal Neuron Model 

The most common artificial neuron model is presented in Fig. 2.J. This model has 
three basic elements to reflect the functions of the biological neuron presented in the 

previous section: 

I) Synapses or connecting links 

These correspond to the synapses of the biological neuron. The signal x,at the 

input of synapsej connected to neuron k is mullipfledby the synoptic weight 
w,. 

2) AnAdder 

The adder is a linear combin~r for summing the weighted input signals, W1,fCj, 

and its output Uk is given by 

(2.1) 

It represents the integration of signals at tho soma. 

3) Activation function 

The 'firing' of the biological neuron to produce an output signal is modelled 

by an activation function. The activation function, q,(x), is the relationship 

between the adder output and final output of the neuron. It is often a non

linear fimc//on, thereby limiting the amplitude of the neuron output. Non

linearity also helps in feature extraction. Normally a constant threshold or 

bias value (OJ is also added, resulting in the following equation: 

(2.2) 
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2,3,3 NetworkArchifectures 

As the name suggests, neural networks consist of co\leetions of neurons linked 

together tn form a network. The manner in which the neurons are structured in a 
network is closely linked to the learning algorithm used to train the network. There 

are three general classes of network architectures: single-layer feedforward networks, 
multilayer feedfoward networks and recurrent networks (Haykin, 1999, pp21-23). A 

brief description of each, along with some of the standard terminology that will be 
used from now on, is given below. 

2,3,3,1 Single-fayer Feedfonvard Networks 

These networks have neurons (computation nodes) organised in the fonn of a single 
layer that fonn the 011/pul layer of the network. The inplll layer is simply a set of 
input sources linked by synaptic connections to the computation nodes. All signals 

propagate in one direction only, from the inputs to the computation layer neurons 
that in tum produce the outputs. The term feedfanvard means that there are no 
feedback loops anywhere in the network. 

2,3,3,2 Multilayer Feedforward Networks 

Multilayer networks have the same form of layered architeeture as the single-layer 

networks, but with one or more hidden layers of computation nodes that are placed 
between the input layer and the output layer. The neurons in the hidden layers arc 

called hidden neurons or hidden units. The hidden !ayers extract higher order 
statistics, enabling the networks to produce more complex input-output mappings. 

The layers can be fully or partially connected. Afalfy connected network is taken 
here to mean a network where every node in a layer is connected to evety node in the 

odjocent forward layer. If there are missing connections, the layer is called por/ial/y 

connected. Shor/cl/I connec//ons are connections from a node to a non-adjacent 

forward layer, for example from the input !ayer directly to the output layer. Shortcut 
connections shall not be considered part ofa fully connected structure here, though it 

is considered so in some literature. The structure ofa network is represented in short 
by the number of nodes in each layer. For example, a 10-4-3 network is one that has 
[0 input nodes, a single hidden layer of4 neurons, and an output layer of3 neurons. 

2,3,3,3 Recurrent Networks 

Recurrent networks differ from feedforward networks in that they have at least one 
feedback loop. They may be with or without hidden neurons. Self-feedback refers to 

the case where the output ofa neuron is fed back as an input to itself. These networks 
nonnally have unit delay elements in the feedback loops, resulting in nonlinear 
dynamical behaviour. 
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2.4 Knowledge and Learning Process 

"Knowledge refers to stored information or models used by o person or 

machine to imerpret, predict or approximately respond lo the au/side world" 

(Fischler & Firschein, 1987). 

The above is a generic definition ofknow[e<lge by Fischler and Firschein. Haykin 

gives the following definition of learning in the context of neural networks (Haykin, 
1999, p50): 

"Learning is a process by which the free parameters of a neural network are 

adapted through a continuing process of stimulation by the environment in 

which the ne/Work is embedded. The type of learning is determined by the 

manner in which the parameter changes take place" 

The two definitions reinforce the definition of a neural network given in the 

introduction, which says that neural networks acquire knowledge through a learning 
process. That definition also says that knowledge is stored in the form of synaptic 

weights, which is why the learning process is defined above as one of adapting these 
free parameters. The other point to note is that the definitions refer to 'the outside 
world' and 'the environment'. Neural networks function by adapting themselves to 

some external stimulus in order to learn some pattern or trend that can then be used 
at some other point in time as required. 

The /earning process for neural networks can thus be [aid out as follows (Haykin, 
1999, p50): 

I. The neural network is stimulated by the environment. 

2. The neural network undergoes changes in its free parameters as a result 
ofstimufotion. 

3. The neural network responds in a new way to the environment because of 

the changes that have occurred in its internal structure. 

The changes made to the network are in terms of changes to the synaptic weights 
in the form: 

(2.7) 

The calculation of t.wlf is obtained from the learning rule used, which is n set of 

rules for adapting the weights to solve the problem at hand. The learning paradigm 

refers to tbe manner in which the neural network (learning machine) relates to its 
environment. 
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2.4.l Learning P11radlgms 

The learning paradigm refers to a model of the environment in which the neural 

network operates. There are three learning paradigms for the training of neural 

networks: supervised learning, reinforcement learning and unsupervised learning. 

2.4.1.1 Supervised learning 

In supervised learning, there exists an external 'teacher' with knowledge of the 

environment, in the form of input-output examples. The difference between the 

desired output and the actual system output is the error signal that is used to modify 

the system in order to make the system emulate the teacher. Examples of supervised 

!earning are the least-mean square (LMS) algorithm (Widrow & Hoff, 1960) and 

back-propagation (BP) algorithm (Rumelhnrt et al., 1986). 

2.4.1.2 Reinforcement learning 

In this paradigm, the system receives a reinforcement signal (scalar) based on the 

actions taken. If positive reinforcemeni is received, then probability of same action 

being taken is strengthened or reinforced. Otherwise, the tendency to produce that 

action is weakened (Sutton et al., 1991). However, the scalar value doesn't indicate if 
further improvement is possible, or how behaviour should be changed. There is also 

conflict between the use of existing information and the desire to explore new 

avenues for improvement. A critic may be used to generate the reinforcement signal. 

2.4.J,3 Unsupervised learning 

In unsupervised or self-organised systems, there are no external teachers or examples 

to be learned. Instead, the system learns from the input data presented to it and 

organises itself accordingly (Becker, 1991). A competitive !earning rule or clustering 

procedure is normally used. It becomes very useful when the size/depth of the 

network grows large and pure supervised learning becomes unacceptably slow 

(Jacobs & Jordan, 1991). 

2.4.2 Learning Rules 

The learning rule describes how network 'learns' from its environment i.e. the rule 

by which the weights of the network a.re adapted. The term training algor//hm, on the 

other hand, is used here to mean the specific set of steps used to update the synaptic 

weights, and this will fall under the umbrella of one of the learning mies. The 

learnirg mies covered here are error correction learning, Hebbian [earning, 

competitive learning, stochastic !earning, evolutionary learning and information

theoretic learning. Training algorithms are covered in Section 2.8. 
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2.4.2.J Error Correct/rm Learning! Delta Rule 

The error correction learning nile, also known as the delta rule, assumes that during 

the !earning process the network is presented with n set of examp!nrs from which to 

learn. These examplars consist ofa set of inputs along with the corresponding set of 

desired outputs. The 'error' is the difference between the actual output of the 

network and the desired output. This difference is used to work out the changes that 

need to be made to the weights in order to produce the desired outputs. 

For a given input stimulus x(n), the error signal of neuron k at the n'h step, e1(n), is 

the difference between the desired response, d1(n), and the actual response,n(n): 

e.1(n) = d.1(n) -y;(n) (2.8) 

The idea is to minimise some cost function based on e,(11), with respect to the 

synaptic weights of the network. The error term is sometimes denoted as r5 
(Wasserman, 1989, p. 41), hence the name delta rule. According to the error

correction learning rule (or delta rule), the weight adjustment li.w1;{n) is given by 

(Widrow & Hoff, 1960) 

li.w,1(n) = 11 e,,_(n) Xin) "'I/ 81 (n) x1(n) (2.9) 

where 11 is the rate of learning and 61"' e1;. 

The choice of 1l is vel)I important to ensure stability because it acts as a feedback 

term. For small r,, the learning process is smooth but takes a long time, whereas for 

large 11, learning is foster but process may diverge and becomes unstable. 

The plot of cost function vs. synaptic weights consists of a multi-dimensionBl 

surface called the error surface. For a linear neural network, the error surface is a 

quadratic function of weights, i.e. bowl-shaped with a unique minimum. For a 

network with non-linear neurons, surface has one or more global minima as well as 

loco/ minima. The objective is to start anywhere on the error surface and end up at 

the global minimum without getting trapped in local minima. 

The work presented in this thesis uses error-correction learning almost 

exclusively. The other methods are only relevant to other referenced works. 

2,4.1.2 Hebbian Learning 

Hebb 's postulate o/leorn/11g {Hebb, 1949) can be re-presented as follows: 

J. 1f 1 11c11rons 011 either side of o synapse (co1111ectim~ are activated 

simultaneously (synchronously), then the strength of thal sy!lapse is 
selectively increased. 

2. 1/ 1 /le/Irons on either side of a synapse are activated asynchronously, 
then the synapse is selectively weake11ed or climinalcd. 
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In Hebbian learning, also known as corre/atlrm learning, the change in weight is 
n function of pre· and post-synaptic activities (x1andyt) (Kohoncn, 1988) 

li.wl}{11) = 1J Y1(n) X;(n) • ay1(n) Wtj{n) 

where a is a positive constant forgetting factor 

(2.10) 

The second "forgetting" tenn is to avoid exponential growth and saturation of 
wl}{n). li.w1,r{n) can also be seen statistically as a function of the covariance of pre-
and post-synaptic activities. 

1,4.1.3 Canipelitive Learning 

In competitive learning only one of the output neurons of the network is allowed to 
be active. The output neurons compete among themselves for being the one to be 
active (fired) - the winner-takes-all neuron. The network may have lateral 
connections that perfonn lateral inhibition for the competition to work. Only the 
winning neuron has its weights adjusted, according to input pattern that made it win. 

The basic weight update will be of the fonn 

{
11 (x, - w,,) ifneuronj wins 

li.w = 
1' 0 ifncuronjloses 

(2.11) 

where x1 is Ith component of input pattern, from input node I. The overa!l effect is to 
move the weight vector w1 of winning ncuronj towards input pattern l. Individual 
neurons learn to specialize on sets of similar patterns and thereby become feature 
detectors. 

Competitive learning plnys an important part in self-organising systems. It is used 
in Grossberg's Adaptive Pattern Classification (Grossberg, 1973, 1976) and ART 
networks (Carpenter & Grossberg, 1987, 1988) and Kohonen's Self-Organising 
Maps (SOM) (Kohonen, 1982). 

1.4.1.4 Stocl,aslic and E~olulionary Learn/rig 

Stochastic [earning rules contain elements that use probabilistic or 'random' events 
ns part of their fonnulation. Evolutionary algorithms are n separate class, but 
incorporate some clement of randomness in their operation. These non-detenninistic 
methods tend to take longer than dctenninistic methods, but allow greater coverage 
of the 'solution space'. The inherent randomness occasionally results in the 'inspired 
step' that lends to better results. 
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2.4.2.4.1 Boltzmann !earning 

The Boltzmailll learning rule is a stochastic algorithm derived from information

theoretic and thermodynamic considerations (Hinton & Sejnowski, 1983). In a 

Boltzmann machine, neurons are in a recurrent structure and operate in a binary 

fashion: +I for 'on' state and -1 for 'of!' state; none of the neurons has self. 

feedback. The Boltzmailll machine has two modes of operation: 

Clamped condition, in which all the visible neurons are clamped to specific 

states determined by the environment 

Free nmning condition, in which all the neurons (visible and hidden) are 

allowed to operate freely 

The learning algorithm works by randomly flipping the state of one of the 

neurons. The probability of flipping is based on the states and weights of all neurons, 

and a pseudo-'temperature'. The weight update according to the Boltzmann learning 

rule is given by 

(2.12) 

where p;, is the correlation between states of neurons I andj, conditional on the 

network being in its clamped condition andpjl is the unconditional correlation 

between states of neurons; andj (i.e. network in free-running condition). 

2.4.2.4.2 Stochastic optimisation 

Stochastic optimisation methods update the weight vector of the network, w, using 

w(n+I) =W(n)+!;(n) (2.13) 

where !;(n) is a randomly generated perturbation. The error function E{w{n+l)) is 

compared with E(w(n)) in order to determine if the new direction in weight space is 

to be explored {Schalkoff, 1997, p. 294). 

2.4.2.4.3 Evolutionary Computation 

Evolutionary computation has been widely used to evolve neural network 

architectures and weights. Evolutionary computing can be divided into three broad 

categories: genefic algorithms, evolmionory programming and e1J0/11/ionary 

strategies (Back, 1997). The firnt two are commonly used with neural networks. 

Gcnetie algorithms (GA) are defined as algorithms that transform populations of 

mathematical objects (Schalkoff, 1997). The objects codify the real objects to be 

manipulated (phenome) in a manner independent of the problem, usually a string of 

bits (genome). Afimessfimcrirm has to be defined that can give an evaluation score 

to the object. 
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The first step is to randomly generate an initial population of individuals and 
evaluate the fitness of each object. The algorithm selects probabilistica!ly a 
subpopulation from the current population, based on the fitness scores. Then some of 

the individuals are paired up to create a new generation. Here parts of the 'genetic 
code' from the parents are exchanged using the crossover operator to produce the 

offspring. Some of the individuals in the new generation have a random part of their 
'code' inverted as part of the mutation process. The fitness of each individual in the 

new population is then evaluated. The process is repeated until at least one of the 
individuals in the population has a fitness that exceeds the fitness threshold level, or 
the number of generations reaches a maximum. 

Note that the selection, crossover and mutution processes arc non-dctenninistic. 

Genetic algorithms,just like the stochastic updates, do not tend to become trapped in 
local minima. GAs, however, are slow when used for weight adaptation (Schalkoff, 

1997, p. 212) and only viable for small structures of less than 50 neurons 
(Schiffmann et al., \992b). They show more promise when used for structure 

adaptation (Schalkoff, 1997; Yao & Liu, 1997), as discussed in Section 2.9. 

Evolutionary pragramming (EP) (D. B. Fogel, 1992; L. J. Fogel ct al., 1966), on 

the other hand, uses a 'natural' representation of the problem, and once chosen 
mutation operators specific to the scheme are defined. It avoids the need to encode 
the object in an abstract genomic representation. The other difference between EP 

and GA is that the mutation operation, the primary operation, changes aspects of the 

solution according to a statistical distribution that makes miuor variations highly 
probable and substantial variations increasingly unlikely. EP uses stochastic selection 
via a tournament. Each trial solution competes against a fixed number of opponents, 

aud those with the least 'wins' are eliminated. EP does uot explicitly use a crossover 
operator, though it is argued that this is a matter of philosophy (Back, 1997}. EP is 

apparently the most suited paradigm of evolutionary computing for evolving 
artificial neural networks (Garcia-Pedrajas et al., 2003), better than GA (Yao & Liu, 
1997). 

2.4,1.S Informatlrm-theoretic learning 

In the last decade, there has been an explosion of information theoretic approaches in 

neural networks and machine learning (Principe et al., 2004). Descriptors used to 
quantify infonnation, such as entropy and divergence (or its special case mutual 
information), arc replacing the mean-squared error criteria. The process of learning 

or adaptation with these new cost functions is named Information theorelic /earning. 

The foundations of infonnation theory lie in the work of Shannon (Shannon, 

1948). It attempts to quantify the amount of infonnation obtained from the 
occurrence of any event or message. 
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The amount of infonnation gained after observing a discrete event x = x1 that has 
probability p1 is given by 

I(x1 ) = lo{)~,)=-logp1 (2.14) 

From this, /(x1) = 0 if p; = I; that is, if it is known for certain that some event is 

going to happen, the occurrence of that event doesn't add any infonnation to what is 
already kno~. However l(xi) can never be less than zero, so information cannot be 

lost through the occurrence of some event (Hay kin, 1999). 

The entropy H(x) ofa discrete random variablex, given by 

(2.15) 

is a measure of the average amount of information conveyed per message. It is alsa a 

measure of the prior uncertainty about x. If xis the input of a system with outputy, 
the uncertainty resolved by observing the output, otherwise known as the average 
m11111al i11formatio11 between x andy, is given by 

I(x,y) = H(x)- H(x I y) (2.16) 

where H(x IY) is the conditional entropy. 

In Linsker's principle of maximum information preservation, self-organised 
learning is achieved by maximising the mutual information between the input-output 

vectors of the model (Linsker, 1988). This principle, also known as infomax, can he 
used to produce topologically ordered input-output mappings like the SOFM. The 

idea of maximising mutual infonnntion in the unsupervised processing of the image 
ofa natural scene has been used in (Becker & Hinton, 1992). 

Renyi proposed a generalised definition of entropy, or infonnation content, that 
includes Shannon's entropy as a spCl.:ial case (Renyi, 1970). Renyi's entropy has 

been used as the basis for alternative optimality criterin for supervised neural 
network training (Erdogmus & Principe, 2000, 2001, 2002; Morejon & Principe, 

2004), as wel! as for clustering of data (Jens sen et al., 2003). A stochastic entropy 
estimator has also been proposed (Erdogmus et al., 2003). 

2.4.3 General methodology for neural network learning 

The main task of a neural network is to learn a model of its environment ond store 
that information. The objective is that, for any given set of inputs, the network is able 

to produce a set of outputs consistent with the environment it is modelling. 
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The knowledge of the 'world' may be divided into two kinds_ (Haykin, 1999, p24): 

Prior in/rmnatirm, facts about the known state of the world 

Observations (meas11rements). These observations of the world are 

inherently noisy. Th,,y form the pool of information from which 
exemplars are selected lo train the network 

The general methodology by which a neural network is applied to a given 
problem can be given as fo!lows: 

I. A neural network architecture is selected (ci.:,:.,, based on prior information 
of system). 

2. A subset ofexamplars it used to train r.,~twor.'. by means ofa suitable training 
algorithm, depending mi the architP.clUrr'. 

3. The network is tested with input data not presented to the network before and 
the output compared to the acrua\ environment or 'world state'. This is a test 

of the generalisal/or, nbility of the network, which is an important capability 
when a network is applied to a problem. 

2.5 Classification and Regression 

Neural networks can be applied to a variety of problems, the majority of which fall 

under the category of classification or regression. This section presents definitions of 
classification and regression tasks and related terms, including a brief introduction to 

Bayesian classification. 

2.5.1 Classification 

Classification is the task of classifying input samples (patterns) into one ofa discrete 
set of possible categories (Mitchell, 1997). The input patterns with d inputs can be 

represented as points in a d-dimensionnl Euclidean space E!1, called the input space. 
A pattern classifier is a device that maps the points of E!1 into the category numbers, 

effectively dividing the input space into a number of murunlly exclusive subspaces 
representing the various categories. All input sample points that He in a particular 

subspace, or point set, are said to belong to that cntegory. The various subspaces are 
separnted by decision boundaries or decision smfaces (Nilsson, 1990). Patterns are 
said to be //nearly separable if the classes they represent can be separnted by s 

hyperplane, or a set ofhyPerplanes (Duda ct al., 2001). 
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(2.18) 

where P(w 1) is the a priori probability of group j, p(x I w J) is its conditional 

probability density function, and the probability density functionp(x) is given by 

p(x) = z;;,p(xlw1)P(w1) (2.19) 

In order to minimise the misclassification rate, the widely used Bayesian 

classification rule is 

Decide Wk for x if P(w, I :i:) =_max P(w, J x) •• ,.2-. .. r.t (2.20) 

This simple rule is the basis for many statistical classifiers. One problem in 

applying the simple Bayes rule in (2.20) is that, in most practical situations, the 

density functions are not known or cannot be assumed to be nonnal, hence the 

posterior probabilities cannot be determined directly. 

2.5,l,2 Advantages of Neural Networks/or C/ussijication 

Neural networks offer a number of advantages when applied to classification (Zhang, 

2000). Firstly, neural networks are data-driven self-adaptive methods, able to adjust 

to the data without needing an explicit specification of the underlying model. 

Second, they are universal function approximators and therefore able to map any 

functional relationships (Hornik et al., 1989). Third, neural networks are non-linear 

models, making them capable of modelling complex real world relationships. The 

fourth advantage is that neural networks are able to estimate the posterior 

probabilities, which provides the basis for establishing classification rules and 

performing statistical analysis (Richard & Lippmann, 1991). 

2.5.1.3 Other Types of Clanijiers 

Some popular types of non-neural network classifiers referred to are linear 

discriminant fimction.i, decision trees and k-neorest neighbour classifiers. Fisher's 

method of !inear discrimination (Fisher, 1936) is one of the oldest classification 

procedures. The idea is to divide the sample space by a series of lines in two 

dimensions, planes in 3-D and, generally hyperplanes in many dimensions. Decision 

trees classify instances by sorting them down the tree from the root to the !eafnode, 

which provides the classification for the instance (Mitche!l, 1997). The k-Nearest 

Neighbour (k-NN) method is a non-parametric method thnt simply remembers all the 

training examples and classifies a new observation as the most frequent clnss ofthe k 

nearest stored examples. A more detailed coverage of these nnd other classification 

techniques can be found in (Dudn et al., 2001; Ripley, 1996) 
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2.5.2 Function Approximation and Regression 

Regression analysis concerns the study of relationships between variables, based on 
random observations (Vapnik, 1998). The estimated relationship can then be used to 
predict one variable from another (Johnson & Bhattacharya, 1996). Common 
statistical methods of regression include linear and polynomial regression. 

Nonparametric regression addresses the problem of trying to fit a model for a 
variable Yon a set of possible explanatory variables X1, ... ,Xp, where the relationship 
between X and Y may be more complicated than a simple linear relationship. Neural 
network regression is a special case of nonparametric regression (H. K. H. Lee, 
2000). The idea of nonparametric regression is to use models of the form 

(2.21) 

where f E F , some class of regression functions, and c· is i.i.d. (independent 

identically distributed) additive error with mean zero and constant variance. 
Sometimes normality of e is assumed. The main distinction between the competing 
nonparametric methods is the class of functions, F, to which/is assumed to belong. 
In nil cases, F is taken to be some class rich enough to be able to sufficiently 
approximate a very large set of possible regression functions. In other words, 
nonparametric regression is simply a function approximation task, with added noise. 
Neural networks are well suited for non-linear regression, recalling that neural 
networks can be universal function approximators (Hornik et al., 1989). 

If the variable or variables to be estimated relate output variables to input 
variables, then the regression function can be used to model the process of the 
system. If the variables to be estimated are future values then the function is a 
predictor (Specht, 1991). For time-series prediction tasks, temporal information can 
be presented spatially to the network by a time-lagged vector, also called a tapped 
delay line (Gershenfeld & Weigend, 1993; Schalkoff, 1997). An alternative is to use 
recurrent neural networks, since their feedback loops make them well suited to 
handle such tasks. Recurrent networks have been shown to perfonn better than 
feedforward networks on time series predi~,;on tasks (Connor et al., 1994). Neural 
networks have also been successfully used to track time-varying regression functions 
(Rutkowski, 2004). 

Various types of neural networks have been used for regression tasks, from MLPs 
(Lawrence et al., 1996; Park et al., 1996; Yao & Liu, 1997) and SVMs (Gunn, 1998; 

Musicant & Feinberg, 2004) to network ensembles (Jslam et al., 2003; Naftaly et al., 
1997) and even networks with special types of neurons (Nikolaev & Iba, 2003; 
Rutkowski, 2004). 
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2.6 Multilayer Perceptrons 

2.6.1 The Perceptron 

The perceptron consists of a single neuron with adjustable synaptic weights and a 

threshold. First introduced by Rosenblatt (Rosenblatt, 1958), it is the simplest form 

of neural network used for classification of linearly separable patterns. The neuron 

uses a hard-limiter activation function (McCulloch-Pitts model, refer Section 2.3.2). 

The input to the hard-limiter, u, is: 

(2.22) 

wherep is the number of inputs. 

The perccptron is therefore nble to define two decision regions separated by the 
hyperplane 

(2.23) 

The pereeptron inspired Widrow's Adaline (Adaptive Linear E,lement), used for 

adaptive switching circuits and trained using the LMS algorithm (Widrow & Hoff, 

1960). This was followed later by the Madaline (multiple adaline), which used a 

layer ofperceptrons (Widrow, 1962). 

Minsky and Papert showed that perceptron training is guaranteed to converge 

provided the examples are linearly separable (Minsky & Papert, 1969). However, 

they also highlighted the limitations of the perceptrons in handling linearly non

separable problems, dampening research in this area for more than a decade. 

It has been shown that even if the activation function is changed from a hard

Iimiter to another non-linearity such as a sigmoid function, the single-layer 

perecptron can only properly classify linenr!y separable patterns (Shynk, 1990; 

Shynk & Bershad, 1991, 1992). 

2.6.2 The Multilayer Perceplnm 

Although the perceptron may have a nonlinear activation function, the decision 

surface it represents is still a hyperplane, which is inadequate in most practical 

situations. This is the weakness of the perceptron. The solution is to usc many 

neurons, arranged in layers, to represent complex: nonlinear decision surfaces, i.e. a 

Mufti/ayer Perceptron (MLP). The MLP is a multilayer feedforward network (see 

Section 2.3.3), where the output signals from one layer are directly fed in as inputs to 
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In classification problems, the function of the hidden layers is to nonlinearly map 
the input patterns into linearly separable features in the hidden unit space, orfeoture 
space (Duda et al., 200t, pp. 299-301). The practical goal of training the network is 
to adapt the synaptic weights so as to transform a linearly non-separable problem in 
input space into a linearly separable one in feature space. 

The capacity of the hidden layer to map the input patterns into a linearly separable 
form is dependant on the number of hidden units. Increasing the number of hidden 
neurons increases the dimensionality of the feature space. According to Cover's 

theorem on the separability of patterns, a complex pattern-classification problem is 
more likely to be linearly separable if nonlinearly cast in high-dimensional space 
(Cover, 1965). The number of hidden layer neurons is not limited by the problem 
definition, so it would seem the number of neurons can be increased ad injinltr1m 
until perfect classification is obtained. In practise, however, there is a limit to number 
of hidden-layer neurons that can be used, as increasing the number of weights will 
eventually lead to aver.fitting (refer Section 2.6.6). 

It has been shown that an MLP with a single hidden layer can function as a 
universal approximator, i.e., it can approximate any arbitrary continuous function 
(Hornik et al., 1989). This is a theoretical analysis, but may not be practical to 
implement for all functions, as the number nfhidden layer neurons required may be 
too large. On the other hand a two-hidden layer network is able to perform this in a 
more manageable two-stage fashion (Funahashi, 1989). The first hidden layer 
extracts local features, whereas the second hidden layer extracts global features from 
the outputs of the first hidden layer. 

The use nf multilayer networks did not really take off, due to the lack of proper 
training algorithms, until the advent of the error bac:kpropaga1ion algorithm 
(Rumelhart et al., !986). This algorithm is based on the error-correction learning 
rule and is a generalisation of the LMS rule. It provides an elegant solution to the 
credit assignment problem, i.e. determining how much each hidden neuron 
contributed to the output error. Next, the backpropagation algorithm is explained 
further. 

2,6.3 Error Backpropogation Algurlthm 

Backpropagation is a specific technique for implementing gradient descent in weight 
space for a multilayer feedforward networks (Haykin, 1999). The error back
propagation process is made up of two passes through the network: 

J, Farwardpa.Ts 

The input signal is applied to the network, and its effect (lune/ion signal) is 
propagated through the network, layer by layer 
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2. Backward pass 

The difference between the desired and actual response (error signal) is 
calculated and propagated backward through the neural network The synaptic 
weights are adjusted to Illllke the actual response move closer to the desired 
response usiug the delta learning rule. 

The update for weight W;1 connected to neuron} at iteration n, liw1,{n), is given by 

(2.26) 

where 'I is the !earning rate parameter, oj(n) the error sensitivity andy,{n) the output 
signal ofneuronj 

The sensitivity, oj{n), depends on whether the neuron is an output or hidden node. 
For the case where neuronj is an output node, the error sensitivity is given by 

(2.27) 

where \I(.) is the activation function of the neuron and e;{n) is the error signal given 
by the difference between the desired and actual outputs 

For the case where neuron} is a hidden node, the sensitivity is given by 

61(n) = ip~{v,(n)) L61 (n) w,;(n) 
• 

(2.28) 

(2.29) 

where 4is the 6term from the forward layerneuron k, which is then weighted by the 
synaptic weight w.\l between neuron j and k. In other words, the error term for a 
hidden neuron is the weighted sum of the error terms of all the neurons it is 
connected to in the forward layer. 

The net effect is that the error signals (o) propagate backwards, weighted by the 
synaptic weights, hence the name ofbackpropagation algorithm. An important point 

to note here is that the calculation of the 6term, as given in Eq. (2.27) and (2.29), 

requires the calculation of the differential ofactivation function (\I''). This means that 

the activation function (ti needs to be differentiable everywhere, like the sigmoidal 
function. Conversely, the hard-limiter or threshold function cannot be used be,muse 
of the step (discontinuity) in the function. Further details of this algorithm and 
improvements to it arc covered along with other training algorithms in Section 2.8. 
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2.6.4 Inltlallsatlon 

l11itialisatian refers to the setting of the starting weights and biases before training 

starts. The weights are normally initialised to a set of random values within a small 

range. This is so that the netw~rks start from different 'points' in the :weight space, 

increasing the chaiice of finding the global minimum. The weights are kept small 

initially, as large weights inay result in the neuron outputs going into their saturation 

regions early in the training phase. This phenomenon, called premature saturat/011, 
can lead to longer training times (Y. Lee et al., 1991). 

A common practise is to have the set of random values uniformly distributed in 

the range [-r, r]. The value of r may be fixed globally or varied from neuron to 

neuron depending on factors such as the number of inputs to the neuron. Other 

distributions of weights, such as the Gaussian distribution, can also be used. A good 

review of initialisation methods for MLPs, including experimental results, is giveu in 

(Thimm & Fiesler, 1997). 

2.6.5 Training modes: pattern mode vs. hatch mode 

The error back-propagation algorithm is an error correction algorithm, falling under 

the supeivised learning paradigm. A set "of examplars, ca!led the training set, is 

presented to the network. One complete presentatiOn of the whole training set is 

called an epoch. The process of presenting the training examples and updating the 

synaptic weights is" repeated until the mean error over the whole training set falls 

below a particular value, or some other stopping criterion is met. The frequency of 

the weight update depends on the mode oftraining,pollem mode or batch mode. 

In pattern mode, the synaptic weights are updated after each training example is 

presented. This mode is also referred to as training by sample or rmline training. A 

degree of randomness con be added to the weight updates by randomly changing the 

order in which the examples are presented at each epoch. This makes it less likely for 

the training algorithm to be trapped io a local minimum. 

In batch mode training, the weight update is perfonned once an epoch, after all 

training examples in the set are presented. T~is is an accumulated co11ection that 

represents a smoothing of the weight correction, and avoids mutual interference of 

weight updates from different examples (Battiti, 1992). 

2.6.6 Generalisation and validation 

Generalisation is the ability of the neural network to correctly compute the input

output relationship for data not seen during training. As mentioned earlier, the ability 

to generalise well is crucial in practical applications. Overjitting happens when the 
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network is given "too much" infonnation either in the fonn of too many neurons for 
the given problem or excessive training of the network. It tends to represent the 
input-output relationship for the training examples almost exactly, but doesn't 
interpolate or extrapolate well. This reduces the generalisation perfonnance of the 
network. The generalisation perfonnance of the network is tested using II set of 
sample data uot used at any point in the training process, called the /es/ set. 

In order to improve the final generalisation ability of the network, a third set of 
sample data is brought into play, called the validation set. The validation set is 
nonnally a small subset of the training data, but is no/ used in detennining the weight 
updates, i.e., not part of the actual training set. At the end of every epoch of training, 
the validation data is presented to the network and the error across the whole set 
worked out. This provides an estimate of the generalisation ability of the network. If 
the validation error indicates that the network is over-fitting, the training is stopped. 
This is called early stopping. T11c criteria for stopping can be that the validation error 
continues to grow for a certain number of epochs, or that it exce<:ds a certain level 
above the minimum validation error a~hieved up to that point. In some 
implementations the network state that produces the minimum validation error is 
saved and used as the final network, if training is stopped early. 

Detennining the 'optimum' network structure for a given application is not an 
easy task. A structure that is too large will tend to overfit, whereas a structure that is 
too small may not be able to represent the input-output re!ationship accurately. Prior 
knowledge is used where applicable; otherwise trial-and-error is commonly used. 
Construction and pruning algorithms that modify the network structure as part of the 
training process are discussed in Section 2.9. 

2,6,7 Error surface and local minima 

The error value used to detennine the perfonnance of the network is a function of the 
weights of the network. For a fixed structure network, these error values can be 
visualised as forming on error surface in multi-dimensional space. The objective is 
to modify the network weights until the global minimum of this error surface is 
reached. For o multilayer network this error surface can be quite complex, and may 
contain multiple focal minima. The training algorithms need to be able to ovoid 
getting stuck in the local minima, in order to be able to reach the global minimum -
if it con find it. This task is easier said than done. It can be likened to a blind mun 
searching a mountainous lnndscape for the lowest point, with nothing more than what 
he can feel around him - in this case gradient infonnation - and where he has been, 
provided he doesn't forge)! Methods of getting out of local minima and improving 
the speed oftrainiog ore covered in Section 2.8. 
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2.7 RBF networks and Support Vector Machines 

Radin] Basis Function (RBF) networks ond Support Vector Machines (SVMs) are 
two other classes of neural networks that use the concept of non-linear 
transfonnntions that attempt to convert the input patterns into linearly separable 
classes, as discussed in the preceding section. While this process is implicit in MLPs, 
it is explicit in these networks as they are designed with this process in mind. rn this 
section, the basic concepts and modes of operation RBF networks and SVMs arc 

presented, with comparisons to MLPs where appropriate. 

2.7.1 Rodiol-Basls Funclion Networks 

Radial-Basis Function (RBF) netwo,; ·. use the viewpoint that learning is equivalent 
to finding a surfoce in multi-dimensions[ space that provides a "best fit" to the 
training data. A radial-basis function network in its most hasic fonn consists of three 
different layers: 

l. Input layer of sensory nodes 

2. Hidden layer of non-linear nodes of high enough dimension. 

3. Output layer that is linear. 

The purpose of the hidden layer nodes is to nonlinearly !ransfonn the input space 
to a higher dimensional feature space, for reasons described in the previous section. 
The hidden units provide n set of"functions" that constitute an arbitrary "basis" for 
the input vectors when they arc expanded into hiddcn·unit space, called radial-basis 

fimr:tions (Powell, 1987). The output ofan RBF network can be described by 

Y1 (x) = f W1,1(tl(X) + W. ,., (2.30) 

where \i'(l) is the basis function. This is similar in fonn to the linear discriminant 
function in (2.17). 

Rodia I functions ore a special class of function. Their characteristic fearure is that 
their response decreases monotonically with distance from a centml point. A typical 
radial function is the Gaussian, which is given by 

(2.3 !) 

where c is the centre oft he distribution function and uis the spread (radius). 

The nrgumcnt of the activation function is the Euclidean norm (dl.itanr:e) between 
the input vector nnd the centre ofthnt unit. The closer the input vector is to the centre 
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of the function, the larger the output of the function is, with the maximum being 
when the two are identical. 

The RBF network produces local approximations to non-linear input-output 

mapping. This results in faster learning, and a reduced sensitivity to the order of 

presentation of training data. However, to represent the mapping smoothly, the 

number of RBFs required to span the input space may be large. This contrasts with 

the MLP, which does global approximations and is therefore able to generalise in 

regions of input space with little or no training data. 

In an RBF network, the hidden layer activation functions evolve slowly in 

accordance with a nonlinear optimisation strategy, whereas the output layer weights 

change rapidly following a linear optimisation strategy. The layers perform different 

tasks, so it is reasonable for them to have different optimisation techniques working 

on different time scales. Different learning strategies may be followed, depending on 

how the centres of the RBFs are specified. There can be randomly generated fixed 

centres, supervised selection of centres where the centre positions are trained with 

the other parameters, or a hybrid learning process where the centres are self

organising. In all cases, however, the linear output weights are trained using a 

supervised training rule. In summary, radial basis function networks provide a global 

approximation to the target function, represented by a linear combination of local 

kernel functions (Mitchell, 1997). 

2.7.2 Support Vector Machines 

Support Vee/or Machines (SVM) are a relatively new technique for solving pattern 

recognition problems, bnsed on statistical learning theory, that contain polynomial 

classifiers and RBF networks as special cases (Scholkopf et al., 1997). Traditional 

techniques for pattern recognition are based on minimising the empirical risk (such 

as the mean squared error), which optimises performance on the training set. SVMs 

011 the other hand, attempt to minimise the stroctural risk, that is the possibility of 

misclassifying yet-tu-be-seen patterns for a fixed but unknown probability 

distribution of data (Ponti] & Verri, 1998). 

The key idea of SVMs can be explained as follows (Vapnik, 1998). Given n 

training set S that contains points of either of two classes, an SVM separates the 

classes through a hyperplane determined by certain points of S, termed support 
vectors. In separable cases, the hyperplane maximises the margin, or twice the 

minimum distance of either class from the hyperplane, ~nd all support vectors lie at 

the same minimum distance from the hyperplane (thus termed margin vectors). Ju 

cases where the classes are not separable, both the hyperplane and support vectors 

nre obtained by solving n constrained optimisation problem where the solution is a 

trade-off between the largest margin and the lowest number of errors. To improve the 

34 



ARTIFICIAL NEURAL NiifWORKS -A R£Vl€W 

separability of the input patterns, they are mapped nonlinearly to a higher

dimcnsional space by use of kernel functions (such as a Gaussian function), similar 
to RBF networks. 

SVMs are attractive because of their ability to condense the information in the 

training set and their use of families of decision surfaces of relatively [ow VC 

dimension. The Vapnik-Chervonenkis (VC) dimension (Vapnik, 1998; Vapnik & 

Chervoncnkis, 1971) is used in statistical learning theory (a.k.a. VC Theory) as a 
measure of complexity (capacity) of a set of approximating functions. For binary 

classification, the VC dimension is the maximum number of points, h, that can be 

'shattered' (classified in a!l 2• ways) by the family of dichotomies (binary 

classification functions or decision rules). 

To allow for more general nonlinear decision surfaces, the set of input vectors is 

nonlinearly mapped into a high-dimensional space by a suitable kernel function K 

before linear separation is perfonned. This leads to a decision function of the fonn 
(Vapnik, 1998) 

/(x) =sign[ L y,a,.K(x,x1) +b] 
'"""'""'""' 

(2.32) 

Once again the decision function is similar in form to the linear discriminant function 

givep in (2.17). 

Examples of kernel functions are 

Gaussian (REF) 

Polynomial 

The performance of SVMs with Gaussian kernels has been compared to classical 

RBF classifiers and shown to have lower error rates (Scholkopf et al., 1997). The 

main reason for this is that the classicol RBF method of centre selection is based on 

the concept of clustering of training data, as opposed to SVMs that attempt to 

minimise the structural risk thereby resulting in better generalisation. The support 

vector method hns also been modified to train MLPs (Suykens & Vandewalle, 1999). 
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2.8 Training algorithms for Fee~forward Networks ,.. . 

The objective of neural network lrainilig, using error correction learning, is to 

minimise some predefined error function such as the sum squared error (SSE). The 

error function is viewed as an optimisation or minimisation problem in v-dimensioD3l 

weight space (IR'), where v is the number of free parameters (weights) to be 

determined from training (van der Smagt, 1994). The state of the network can then 

be visualised as taking a "walk" through this weight space nntil some optimal point 

is reached where the error function is at a minimum. Ideally the minimum reached is 

a global minimum, not just a local minimum. Various training algorithms have been 

developed for training feedforward networks based on different approximations and 

assumptions regarding the error function. The primary consideration has been to 

determine the direction and size of the "step" to be taken at each iteration of the 

training. A genera! description of some common types of training algorithms follows. 

2.8.1 First Order Methods 

In first-order methods only the first two (constant and linear) terms of the Taylor

scries expansion of the error term are considered. These methods, where the local 

gradient alone determines the dire1:tion of minimisation u, arc known as steepest 

descent or gradient descent methods. For feedforward network training, it is known 

as error backpropagation (BP), as described in section 2.6.3. 

2,8.J,J Steepest Descent /Standard Backpropagat/011 

When the network is in a state with weight vector w(n), the gradient of the error 

function £with respect tow is computed as 

aE 
g(n)=--

8w(n) 

A minimisation step in the direction u(n) = -g(n) is perfonned. 

(2.33) 

In normal steepest descent minimisation techniques, a one-directional 

minimisation in the direction u(n) is performed such that a point w(n) is reached 

where the new gradient g(n+l) is perpendicular to :1(11). The learning rule is then 

w(n+l) = w(n) + T/(.n) u(n) (2.34) 

and the new search direction is 

u(n+l)=-g(n+l) (2.35) 

However in standard BP, the line minimisation is replaced by a fixed step-size 

(learning rate) 'I in order to reduce the number of function evaluations. 
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2.8.J.2 Buckpropagation with momentum 

The BP search direction is often augmented with a momentum tenn (Rumelhart et 

al., 1986) 

u(n+l) =-g(n+I)+au(n) (2.36) 

A fraction of the previous update is included in the current update, keeping the 

update going in the same general 'direction'. This extra term is generally interpreted 

as avoiding oscillations as well as preventing the algorithm from getting stuck in 

local minima. 

2,8.1.3 Back propagation with voriable Ieorning rate 

If the learning rate, 17, is too small, the number of iterations to arrive at a solution 

may be very large. On the other hand having 17 too large may result in the weights 

oscillating during iterations. A dynamic learning rate, 171, that varies at each iteration 

can overcome the need for trial-and-error methods for selecting the learning rate. 

One method of varying the learning rate is to use the direction cosine of the error 

derivative vector to obtain infonnation on error surface curvature (Hsin ct al., 1992). 

The change in the weight vector, t.w, between two successive iterations follows the 

steepest descent direction for minimising the error function. Ifthc direction is almost 

the same ns the previous direction, this implies the local shape of the error function is 

relatively unchanged: therefore, a large value of 7/(.n) may be used to speed up the 

process of minimisation. If the current direction is quite different from the previous 

direction, it implies that the local shape is rather complex and that a smaller 1/i value 

should be applied to avoid overshooting. 

A simple method is to use only current and previous direction cosines (Franzini, 

1987). An alternative is to use a weighted average ofa number of previous directions 

since they also contain some information about the local error surface (Hsin et al., 

1992). In this method, the modified dynamic learning rate, 7/(.n), is a weighted 

average ofL+l successive weight vectors and is given by 

t.w(n).t.w(n -1) Aw(n - L).t.w(n- L- l) 
17(n) = a. llt.w(n)rnlt.w(n- l)j + ···+ai jt.w(n- L)!mt.w(n -L- lJII 

(2.37) 

where a0 +a1 +a2 + ... +ai"'l 

and a 0 2:a1 2:a, 2: .•. 2:ai 

Another 'quick and dirty' method is the "Bold Driving" method (Battiti, 1989). 

The method increases the learning rate at successive iterations ns long as the error 

decreases. If the error increases the learning rate is reduced. 
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11(n)=lp17(n-l) 
u17(n-l) 

if E(n) < E(n-1) 

if E(n) ~ E(n-1) 

where typical values of the constants arep = I.I and 11= 0.5. 

(2.38) 

The inefficiency of steepest descent is due to the fact that the minimisation 

direction and step size are often poorly chosen; unless the first step leads directly to 

the minimum, steepest descent wi!l zig-zag with many small steps. While 

backpropagation of error gradients has proven useful, the convergence tends to be 

slow, particularly when the number of weights in the network are large (Johansson et 

al., 1992; van der Smagt, 1994). 

2.8.2 Second Order Methods 

Other numerical methods make use of the second derivntive of the function. In this 

case the quadratic term of the Taylor expansion is also taken into account. 

This error equation has the form 

where 

AE(w) = E(w + Aw)- E(w) = gT Aw+ tAw'HAw 

g - aE I is the gradient vector and - ow ~. 

a'E 
H • --1 is the Hessian matrix awi "· 

(2.39) 

Minima are located at points where the gradient to equation (2.39) is 0, i.e. 

Ht.w+g=O. 

Therefore the optimal change in the weight matrix, Aw op1 =-ff"1g. However, the 

calculation of the Hessian ff and its inverse is computationally prohibitive, thereby 

leading to approximation methods being investigated. The above is the basis of 

Newton 's mellwd and its variants. 

1,8,1,J Quasi-Newton methods 

Newton's method is one of the more successful algorithms for optimisation and, ifit 

converges, has at least a quadratic order of convergence. However, for a general 

nonlinear objective function, convergence to a solution cannot be guaranteed from an 

arbitrary initial point. The aim of quasi-Newton (secant) methods such as the BFGS 

(Broyden-Fletcher-Goldforb-Shnnno) and DFP (Davidon-Fletcher-Powell) methods 

(Chong & Zak, 1996, pp 147-165; van der Smagt, 1994) is to avoid the computation 

of the inverse matrill ff 1 by iteratively computing the matrices Q(n) such that 
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(2.40) 

The term quasi-Newton applies if 

Q(n + l)(g(n + 1)- g(n)) = w(n -1)- w(n) (2.41) 

is satisfied. The resulting Q(n) can be used to find 

w(n + 1) = w(n)-Q(n)g(n) (2.42) 

until a minimum is reached. 

The disadvantage of these methods is that the storage requirements of Q(n) is 
proportional to the square of the number Of weights being trained (Hagan & Menhaj, 

1994; Johansson et al., 1992; van der Smagt, 1994). 

1,8,1.1 Conjugate Gradient Methods 

In conjugate gradient (CG) optimisation, the direction of the minimisation is always 

chosen such that the minimisation steps in nil previous directions are not spoiled. 
When a direction 0(11) is chosen and line minimisation is perfonned in this direction 

leading to a point w(n+l), the gradient g(n+l) at w(11+J) must be orthogonal to g(n), 
g(11-l), ... gG, hence the name. The weights and direction updates are given by 

w(11 + !) = w(11)+a(11)u(n) (2.43) 

u(n+ I)= -g(11 +I)+ P(n)u(n) (2.44) 

The algorithm requires the Hessian of the function to evaluate two constants, a(n) 

and An). In order to avoid the computation of this matrix, a line search is used to 

evaluate a(11), whereas for /J._11} there are a number of formulas that compute it from 
the gradient and direction vectors such as the Heslenes-Steifelfarmufa, Pafak-Ribiere 

formula and Ffetcher-Reevesformrtla (Chong & Zak, 1996, pp 132-145). 

Hes1enes-S1eife/farm11/a: P(11) = gr (n + l)[g(n + l)-g(n)] 
ur (n)[g(n + 1)-g(n)] 

Pa/ak-Rlblere farm11la: p(n) = gr (n + l)[g(n+ 1)-g(n)] 
g7 (11)g(n) 

g7 (n + J)g(n+ l) 
Fletcher-Reeves formula: P(n) = ~'-'c,==~ 

g (n)g(n) 

(2.45) 

(2.46) 

(2.47) 

For quadratic functions with v degrees of freedom, only v iterations are required to 

arrive at a solution. However, since the error functions are not exactly quadratic, as 
well as a result of round-off errors, this does not normally happen in neural network 
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training. The comm or. practise is to reinitialise the direction vector to the negative of 

the gradient vector every v steps. An improvem,mt to this is the Powell restarr 
procedure, which uses the second order information in resetting the direction vector 
(Powell, ! 977). 

The CG algorithm is well suited for large-scale problems due to the simplicity of 
the computations involved and the extremely moderate storage requirements. 

Unfortunately the CG algorithm is on!y applicable to functions with positive definite 
Hessians; it is highly unstable when applied to functions with Hessians that are not 

positive definite (Madyastha & Aazhang, 1994). 

2.8.3 Hybrid Methods 

Second order methods are far superior in terms of learning time when compared to 

standard backpropagation, but they are more likely to get stuck in local minima. 
Hybrid methods such as /rust-region methods try to combine both these approaches 

in a single algorithm. A trust-region is a region within which we can "trust" the 
quadratic approximation to the objective function. 

2.8,3,1 Lel'Cnberg-Marq11adt Algorithm 

The Levenberg-Marquadt algorithm is an approximation to Newton's method (Hagan 
& Menhaj, 1994). Suppose we have a function E(w) which we want to minimise with 
respect to the vector w, then Newton's method gives a weight update 

(2.48) 

where H is the Hessian matrix and g is the gradient. 

Ifwe assume that E(w) is the sum ofsqunres function, then it can be shown that 

'i/J::(w)" Jr{w) e(w) (2.49) 

'i/1 E(w)., Jr(w) J(w) + S(w) {2.50) 

where J(w) is the Jacobian matrix 

&,(w) ae,(w) &,(w) 
aw, aw, aw, 

Bei(w) &,{w) ae,(w) 
J(w)"' 

mr· 
aw, ~· 

tJeN(W) aeN'(w) aeN'(w) 

(2.51) 

aw, aw, aw, 

"'' 
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" S(w)= Le,(w)V2e1(w) ,_, (252) 

For the Gauss-Newlan method, it is assumed that S(w) "' 0, and the update (2.48) 
becomes 

(2.53) 

The Levenberg-Marquadt modification to the Gauss-Newton method is 

(2.54) 

where I is the v xv identity matrix andµ is a variable parameter. 

The parameterµ is multiplied by some factor(/]) whenever a step would result in 

an increased E(w). When a step reduces E(w), µ is divided by p. Whenµ is large the 

algorithm becomes steepest descent (with step l/µ), while for smallµ the algorithm 

reduces to the Gauss-Newton (second order) update in (2.53). The Levenberg

Marquadt algorithm can be considered a trost-region modification to Gauss-Newton 

(Hagan & Menhaj, 1994; van der Smagt, 1994). For neural networks, the terms in the 

Jacobian matrix cao be computed by a simple modification to the BP algorithm. 

Summary of Levenberg-Mnrquadt algorithm 

1. Present all inputs to the network and compute the corresponding network 

outputs and errors. Compute the sum of squares oferrorn (E(w)). 

2. Compute the Jacobian matrix. 

3. Solve (2.54) to obtain Aw. 

4. Recompute the sum of squares oferrorn using w + Aw. 

If this sum of squares is smnllertbat computed in step I, then reduce µby P, 
let w = w + Aw, and go back to step I. If the sum of squares is not reduced, 

then increase µby p, and go back to step 3. 

5. The algorithm is assumed to have converged when the norm of the gradient is 

Jess than some predetermined value, or when the sum of squares has been 

reduced to some error goal. 
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2.8.4 Direct Methods 

Another approach is based on n direct detennination of the matrices of weights, by 
solving in a classical or in the !cast-squares sense a set of systems oflinear equations. 

The main advantages of this approach are that there is no risk of getting lnlpped in 
local minima during training and that the weights adapt quickly. The fundamental 

idea of these "direct methods" lies in an extension and a generalisation of the 
singular-value decomposition (SVD) algorithm for the "one-shot" evaluation ofthe 
matrix of weights. 

Examples of direct methods arc FBFBK (Bammnn & Biegler-Konig, 1992), 

named after the authors, iterative conjugate gradient singular-value decomposition 
(JCGSVD) {Di Martino et al., 1993) and least-squares backpropagation (LSB) 
(Bannann & Biegler-Konig, 1993). 

Analysis of these various methods has shown that for middle-size networks 

(several hundred neurons) these methods arc competitive in terms of computation 
time with the best BP methods for MLP networks. For larger networks these methods 
are generally too expensive (Di Martino et al., 1996). 

Verma uses hybrid algorithms that combine direct solution with other methods, 
where the output layer weights are directly solved using the modified Gram-Schmidt 

algorithm {Verma, 1997). He proposes three different ways of training the hidden 
layer weights, including using standard backpropagation (BP). The direct solution of 

the outputs was able to speed up training considerably and avoid getting stuck in 
local minima, even with BP training of the hidden weights. 

2.8.S Stochastic Method!! 

As mentioned previously, stochastic methods update the weight vector with a 
random vector as given in Eq. (2.13). An example is the stochastic Random 

Optimisation Method {ROM) algorithm given in (Schalkoff, 1997, p.208). The 
weight update is given by 

l
w(n)+l; if E(w{n)+l;) < E(w(n)) 

w{11 +I)= w(n)-l; if E(w(n) +l;);:., E{w(n)) and E(w(n)-l;) < E(w(n)) (2.55) 

w(n) otherwise 
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2.9 Adaptive Structures 

Up to this point, it has been assumed that the neural network being trained has a 

fixed structure. The question then arises "What is the optimum size of the network?". 

As mentioned in Section 2.6.6, having too many neurons can result in overfitting, 

whereas too few may not allow the network to reach the desired performance level. 

Designers have to use prior knowledge on the problem, their experience, or just trial

and-error, in order to find a structure that performs well, let alone an 'optimal' 

structure. "The exhaustive search over the space of network architectures is 

computationally infeasible even for networks of modest size" and hence "the use of 

heuristic strategies that dramatically reduce the search complexity" (Karampiperis et 

al., 2002). 

There are two opposing approaches for adaptive strategies: Constructive and 

destruclive. Constructive methods start with a minimal network, even a single 

neuron, then "grow" the network as needed by adding new connections, nodes or 

layers. Destructive methods, also known as pnmi11g algorithms, on the other hand, 

start with a complex structure and remove unnecessary connections, nodes and layers 

during training (Mitchell, 1997; Yao & Liu, 1997). A frequently used constructive 

algorithm is the Cascade-Correlation algorithm (Fahlman & Lcbiere, !990), while 

well known pruning algorithms include Optimal Brain Damage (OBD)(LeCun et al., 

1990) and Optimal Brain Surgeon (OBS) (Hassibi & Stork, 1993). A partial review 

of constructive algorithms is given in {Fiesler, 1994), while one of pruning 

algorithms is given in (Reed, 1993). 

Investigating methods for adaptively determining network structures is an active 

area of research, with researchers combining constructive and pruning algorithms or 

creating new variations (Islam et al., 2000; Islam et al., 2003; Karampiperis et al., 

2002; Rivals & Personnaz, 2003; Thivierge et al., 2003; Tsai & Lee, 2004). 

Evolutionary computation, which includes genetic algorithms and evolutionary 

programming, has also been commonly used for this purpose {Garcia-Pedrajas ct al., 

2003; Leung ct al., 2003; Nikolaev & Iba, 2003; Yao & Liu, 1997). 

Adaptive structures arc not nsed in this thesis, but the work presented here 

provides scope for future work in this area. The concept has therefore been 

introduced here with a brief overview. Relevant references have been included for 

the interested reader. 
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2.10 Conclusion 

An overview of artificial neural networks has been presented in this chapter, starting 

from the biological roots to various artificial neural network structures, applications 

and training algorithms. 

The infonnation presented here shows that the massive parallel processing 

demonstrated by biological brains has inspired the creation of a versatile and 

powerful computational tool. The field of artificial neural networks is a diverse one, 

both in tenns of the kinds of networks and algorithms as well as their numerous 

applications. In such a large and growing field, there is still room for much work in 

exploring new models and paradigms, and such work is ongoing. The work presented 

in this thesis represents one such exploration, and it is hoped that it will not only 

yield interesting results and discoveries, but also open new areas of continued 

research. 

In order to maintain focus, the emphasis has been on feedforward networks, 

supervised training techniques and other topics relevant to the subsequent chapters. 

Brief descriptions and overviews of cognate areas have been presented where 

appropriate. 

The biophysical mechanism of shunting inhibition, in biological neurons, has been 

introduced briefly, but the use of shunting inhibition in artificial neural networks has 

been deferred to the next chapter, where it will be developed in greater detail. 
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Chapter3 

Shunting Inhibitory Artificial Neural Networks 

3.1 Introduction 

Shunting inhibition is a powerful computational mechanism that plays an important 
role in sensory information processing systems. Since it was proposed as a plausible 
physiological model in the early 1960's (Furman, 1965; Lcttvin, 1962), shunting 

inhibition has been extensively used to model some important visual and cognitive 
functions. For example, Grossberg used it to model long-tenn and short-term 

memory mechanisms, feature detection, and other cognitive functions (Grossberg, 
1973, 1976, 1988). Fukushima employed it for local feature detection as part of the 

neocognilron (Fukushima et al., 1983). Pinter used it to model the adaptation 
phenomena in receptive field organization and modulation transfer function (Pinter, 

1983, 1984, 1985). Bouzerdoum and Pinter proposed a model of motion detection in 
insects based on shunting inhibition (Bouzerdoum, 1993; Bouzerdoum & Pinter, 

1989, 1992). They also introduced a slinnling inhibitory cellular neural netwark and 
used it to model receptive field profiles of neurons in the early parts of the visual 

system (Bouzerdoum & Pinter, 1993). Other researchers have also used shunting 
inhibition, including some of its VLSI implementations (Darling & Dietze, 1993; 

Moini et al., 1997; Nabet, 1992; Nilson et al., 1994; Wolpert & Micheli-Tzannkou, 
1993). 

Despite their widespread use in modelling psychophysical, neurophysiological 

and cognitive phenomena, to our knowledge, shunting inhibitol)' networks have not 
been used in supervised pattern classification or function approximation, other than 
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in the neocognitron (Fukushima e.t al., 1913) and ART networks (Ca!penter & 
Grossberg, 1988). Other thEU1 these, shunting networks lmve primarily been part of 

adaptive (self-organising) systems that use competitive learning. Cellular neural 

networks based on shunting inhibition have shown great promise as info1111ation 

processors in vision and image processing tasks (Beare & Bouzerdoum, 1999; 
Cheung et al., 1999; Pontecorvo & Bouzerdoum, 1995, 1997), but they have not been 

used for classification and regression tasks before 1999, One of the main reasons for 

this hos been the Jack of proper training algorithms. The expert knowledge of the 

designer has had to be used to choose the connection weights based on the task at 

hand. This does not allow complex pattern recognition problems to be handled, 

resulting in limited applications. Another reason is that the operation of n shunting 

inhibitory cellular neural network (SICNN) is governed by a system of nonlinear 

differential equations, which must bu solved in order to obtain thu outpnt of the 

network for a given input pattern. 

It is only recently that Bouzurdoum proposed an artificial neural network 

architecture, based on shunting inhibition, that can be trained to perfomt pattern 

classification or function approximation; he named it shunting i11hibilory artificial 
11e111·1.ll 11e/Work (SJANN) (Bouzerdoum, 1999, 2000). Derived from SJCNNs, 

SIANNs are fecdforward networks that operate using the steady-state solution of the 

set of ordinary differential equations governing the dynamics of the shunting 

networks, thereby avoiding the need to obtain a numerical solution for the 

differential equations. This allows the network to operate in a static mode like 

multilayer perceptrons (MLPs). The idea was to exploit the inherent nonlinearity of 

shunting inhibition to develop powerful, trainable networks, with nonlinear decision 

surfaces, for classification, nonlinear regression and pattern association. 

This chapter presents the development ofSIANNs from its biological roots to the 

shunting neuron model and SIANN architecture. The next "section explains the 

biological roots of shunting inhibition. The third section presents the electrical circuit 

approximation of a patch of dendritic membrane and the derivation of the differential 

equations that govern thu shunting inhibition model. The fourth section describes the 

precursor to S!ANNs, Shunting Inhibitory Cellular Neural Networks. This is 

followed by the development of the fecdforwnrd shunting inhibitory neuron model 

and the SIANN architecture in Sections 3.5 and 3.6, respectively. Section 3.7 

il!ustrates the non-linear decision boundaries of the shunting inhibitory neuron 

model. This is followed by the conclusion, 
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3.2 Shunting lnhlblllon In Blological Systems 

In a biological neuron, lhe eel! ot rest has o potential difference across the cell 
membrane due to the difference in ionic concentrations on either side of the 
membrane. The cell membrane consists of a thin, semi·penneable bilayer of lipids 
and is a near perfect electrical insulator. At equilibrium, the concentration of sodium 
(No•) ions is higher in the extracellular fluid compared to within the cell and this 
difference in concentration causes o Ncmst potential (or reversal potential) £11, of 
about +SO mV (Gerstner & Kistler, 2002). The concentration of potassium (K+) ions, 
on the other hand, is higher inside the cell than outside with a reversal potential EK of 
approximately -77 mV. Both these and other ion types arc simultaneously present 
and contribute to the resting potential across the membrane, V,., ofapproximatcly-65 
mV. Since Ei. < V, < E.vo, at the resting potential potassium ions flow out of the cell 
ond sodium ions flow into it. Active ion pumps in the cell membrane pump these 
ions in the reverse direction in order to maintain a dynamic equilibrium. 

An input ot an excitatory synapse reduces the negative polarisation of the 
membrane, also called a depolarising potential. Conversely, an input at 110 inhibitory 
synnpsc increases the negative polarisation of the membrane, called hyperpolarizing 
potential, caused by positive ions (usually potassium) moving out of the cell 
{Stevens, 1994). If the sum ofpostsynaptic potentials causes the membrane voltage 
to cross a threshold value, the cell body produces an action potentinl that propagates 
down the axon of the neuron. 1l1c inhibitory mechanism described here therefore is 
additive (subtractive) inhibition. 

Inhibition can be mediated by both pre- and post-synaptic contacts. Post-synaptic 
inhibition functions to reduce the excitability of the target cell by increasing the 
permeability of the post-synaptic membrane to chloride (Cr) and potassium (K') 
ions, thereby increasing the ionic conductance of their respective channels (Nicholls 
et al., l 992). In shunting inhibition, where the synaptic activity opens mostly er 
channels, the reversal potential of the inhibitory synapses is equal or very close to the 
membrane resting potential (Faber & Korn, 1982). These inhibitory inputs therefore 
have hardly ony effect on the membrane potential if the neuron is at rest. The effect 
of the shunting inhibitory inputs is to increase the local conductivity of the cell, 
allowing the ions to flow in or out of the cell, depending on the state of the neuron. If 
the neuron is depolarised, then the inhibitory inputs result in inhibitory postsynaptic 
potentials. If the neuron is hypcrpolarised, however, the inhibitory input results in II 
depo]mising potential. The net effect is to 'clamp' the mcmbmne potential to the 
resting potcn1iu1 by 'shunting' the effects of other synaptic potentials. Inhibitory 
synapses me ollcn located on the soma or the shall of the dendritic tree. This 
slratcgic positioning allows a few inhibitory spikes to 'shunt' the whole input 
gathered by the dcndritic tree from all the synaptic inputs (Gerstner & Kistler, 2002). 
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3.3 Development of the Shunting Inhibitory Model 

Shunting inhibitory neural networks are based on a neuron model that is inspired by 

human and animal visual systems. The equivalent circuit is derived from a lumped 

parametric approximation ofa unifonn patch ofdendritic membrane as shown in Fig. 

3.1 (Bouzerdoum & Pinter, 1993). The circuit consists of the ordinary or nonsynaptic 

membrane in parallel with the excitatory and inhibitory pathways. The resting 

potentials and conductances of the different ionic channels arc lumped together in the 

resting potential V, and the resting conductance g,.. These two, in parallel with the 

membrane capacitance Cm, represent the nonsynaptic membrane. Each synaptic 

pathway, excitatory or shunting inhibitory, consists of a synaptic potential (battery), 

V, and V,, in series with a synaptic conductance, g, and g,, respectively. V., is the 

total membrane potential; i,, i., i, and i0 represent the ionic currents, and R is the 

receptorregion feeding the excitatory synaptic inputs. 

The conductances of the excitatory and inhibitory ionic channels arc zero at rest 

under this representation. The excitatory input synapses control the conductance g,. 

with a reversal potential V, > V,. On the other hand, the inhibitory input synapses ore 

assumed to be of the shunting type. As dccribed in previous section, in shunting 

inhibition the synaptic activity opens mostly Cl' channels whose rcver:sa\ potential is 

equal or very close t'J the membrane resting potential; the role of shunting inhibition 

being to "clamp" the cell to its resting potential. Here it is assumed that shuntiqg 

inhibition is mediated by modulating the conductance g,, with equilibrium poten~ial 

equal to the resting potential, i.e. V. = V,. 

The node equation of the equivalent circuit shown in Fig. 3.! is 

C.,, d;• + g,(V, + V.,)- g,(V, -Vm}- g,(V, -V,.} = 0 (3.1} 

Rearranging the tenns, this cnn be written as 

(3.2) 

If the deviation of the membrane voltage Vm from the resting potential V, is 

designated t.V (ie. t.V = V, - V.,} then, by using the fact that V, = V,, the equation 

describing the change in memhmne potential Vm relative to the resting potential V, is 

given by 

dt.V = J&..(V,. + V.,)-..k(t.V)-..&.(t.V} 
di c., c,. c,,, (3.3} 
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Therefore, we can write 

(3.4) 

where f is some kind of non-linear saturating characteristic which limits the total 

shunting conductance. 

In contrast tog,, the conductance g, is controlled by the excitatory input synapses 

which work to increase the membrane conductance to sodium (Na+) and potassium 

(K') ions. !fit is postulated that the current produced in the excitatory channels, i., is 

proportional to t{1), the input from the receptors feeding the excitatory synaptic 

inputs in thejth compartment, then 

(3.5) 

Furthermore, identifying the remaining constant tenn in the right hand side of (3.3) 

"' 
(3.6) 

then Equation (3.3) becomes 

dx; 
-==l/1)-a1x1 - J('[.cJ/x1)x1, 
d, ' 

i == 1,2, .•• ,11 (3.7) 

The system of coupled nonlinear differential equations given by (3.7) describes 

the activity of recurrent neural network. 

3.4 Shunting Inhibitory Cellular Neural Networks 

In sl111111ing inhibitory cellular neural net!Vorks (SICNNs), the neurous (or cells) are 

arranged in a two-dimensional grid as shown in Fig. 3.2. Each neuron has n single 

external excitatory input, which is not shown in the figure but can be assumed to be 

comiog perpendicular to the page. The weighted outputs of the neurons in a 

predefined neighbourhood are fed back as shunting inhibitory input, and passed 

through the nonlinear activation function. Let Cy represent the cell (neuron) at 

position (iJ) in the lattice. The activity of a cell is governed by the non-linear 

differential equation: 

dxij "" 11 -oclit)-agXq-/( L,CqX11)Xq+b" 
dt Cu•N,U,JI 

(3.8) 
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In most problems, however, the number of outputs is different from the nnmber of 

inputs. In order to crente a structure that would result in the correct number of 

outputs, the output layer was set to consist of the required number of linear or 

sigmoidal (perceptron-type) neurons. The output neurons are able to sum the outputs 

of the shunting neurons to produce the final output of the network. 

This network structure of a layer (or layers) of shunting inhibitory neurons with a 

layer of output neurons is called a Shrmting Inhibitory Artificial Neural Network 
(SIANN). Fig. 3.4 shows a SJANN with a single layer of 3 shnnting inhibitory 

neurons connected to 2 output neurons. 

The output of the kth output neuron is given by 

y, =g(fwiJx1 ) "g(v;) (3.12) ,., 
where g is the output lnycr activation function: WkJ is the connection weight fromjth 

shunting neuron to the kth output neuron; ww is the bias of the output neuron 

connected to a fi>:ed 'input', xo = I, and vk is the net input to the activation function ,, 
(3.13) 

The output layer activation function can be a simple linear function that just sums 

the inputs, or a sigmoid function. This stmcture can now be applied to problems with 

any combination of number of inputs and required outputs. 

3.7 Decision boundaries 

As mentioned in Chapter 2, n pattern classifier divides the input space into a number 

of mutually exclusive subspaces representing the various categories. The various 

subspaces are separated by decision boundaries or decision smfaces (Nilsson, 1990). 

A single linear or sigmoidal neuron can only represent linear or hyperplane decision 

boundaries (Haykin, 1999). On the other hand, a shunting neuron can represent 

nonlinear boundaries (Arulnmpalam & Bouzerdoum, 2000; Bouzerdoum, 1999). 

One of the classic linearly non-separable problems is the 11-bit parity problem, 

where nn 11-bit input is meant to produce an even or odd parity output. The simplest 

of these is the 2-bit parity problem, otherwise known as the XOR problem. The 

inputs can be visualised as the vertices of the unit square, and the vertices on 

opposite sides of the square belong to the same -class. A single pereeptron cannot 
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Despite the fact that a perceptron is only nble to represent hyperplnne decision 

boundaries, MLPs with a single hidden layer can approximate any given continuous 

function on any compact subset to any degree of accuracy, provided that a sufficient 

number of hidden layer neurons are used (Hornik et al., 1989). As explained in 

Chapter 2, this is because of the non-linear tmnsfonnations perfonned by the hidden 

layer neurons. SIANNs should therefore be able to represent complex nonlinear 

decision surfaces more efficiently than MLP networks, by leveraging the inherent 

non-linear capability of shunting neurons demonstrated here. This is the major 

motivating factor for introducing the shunting inhibitory neuron. 

3.8 Conclusion 

This chapter outlines the development ofSJANNs, right from the biological roots to 

the final fonn of the network to be investigated. The shunting neuron model is 

described along with the derivation of the equations that define it. Shunting neurons 

have demonstrated the ability to produce complex decision boundaries from a single 

neuron. This compares favourably with the perceptron, which can only produce 

linear decision boundaries. This in tum indicates that SIANNs should be able to 

represent complex nonlinear decision surfaces more efficiently than MLP networks. 

The motivation behind the investigation of SIANNs was to use the ability of 

shunting neurons to produce non·linear decision boundaries to creole a new class of 

high-order neural networks for classification and regression (Bouzerdoum, 1999). In 

order to achieve this, training algorithms ncOO to be developed for these networks. 

The fol!owing chapters present the development of various training algorithms for 

SIANNs, and their application to a number of benchmark classification and 

regression problems. 
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Chapter4 

Development of Training Algorithms 

4.1 Introduction 

The previous chapter outlines the motivation and development of the SIANN 
architecture. As mentioned in the previous chapter, one of the limitations faced by 

the cellular form, SICNN, was the Jack of training algorithms. In order to apply 

SIANNs to classification and regression problems, training algorithms needed to be 
developed. This chapter describes the development of a number of training 
algorithms for SIANNs. 

The training algorithms developed are broadly divided into gradient-based, direct 

.w/111/on and stochastic methods. The gradient-based algorithms are described in the 
next section. The third and fourth sections describe the direct solution and stochastic 

algorithms, respectively. Section 4.5 describes the experimental methods used to test 
the performance of networks trained using the developed algorithms, covering 
network structures, initialisation methods, and evaluation criteria. It also describes 
the various benchmark problems on which SJANNs are trained and tested. This is 
followed by experimentnl results, presented in Section 4.6. This section contains nn 
investigntioo into th!l effect the shunting term has on training performance, as well as 
the actual test results. The final section contains the conclusion. The derivation of 
the training equations for the gradient-based algorithms is shown in Appendix A and 
selected tables of results are presented in Appendix 8. 
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4.2 Gradient-based Algorithms 

This section describes the various trnining algorithms developed for SIANNs that use 

the gradient of the objective function to update the weights. All the algorithms 
developed in this thesis are based on supervised learning using the error-correction 

learning rule (c.f. Chapter 2). 

The network is presented with a set of exemplars in the form of pairs (l(q), d(q)) 

where l(q) is the input vector and d(q) is the corresponding vector of desired values. 
The difference between the desired and the actual output of the network is the error 

vector, given by 

e(q) = y(q)- d(q) (4.1) 

where y(q)is the output vector due to the input l(q). 

The algorithms developed operate in batch mode, where the whole set of 

exemplars is presented to the network before the weights are updated. The training 
algorithm seeks to minimise an objective function,£, which may be the sum squared 

error (SSE) 

E = }Q)(q/ e(q) 

' 
or the mean squared error (MSE) 

I 
£=-~)(q}'e(q) 

2N, 

where N is the number of exemplars in the training set. 

(4.2) 

(4.3) 

The gradient-based training algorithms developed here can be divided into two 

categories: the first-order gradient descent algorithm and its variants; and the 

Levenberg-Marquardt algorithm and its variants. 

The Conjugate Gradient algorithm described in Chapter 2 was not implemented. 
The reason is that the shunting neuron decay parameter a has a lower bound imposed 

on it during training, in order to avoid division by zero (see equation (4.6)). The 
conjugate gradient algorithm requires the weight updates to be performed such that 

the current gradient update direction is always orthogonal to the previous gradients. 
Adjustments to the weight update of parameter a by the lower bound mny violate this 

requirement, hence this algorithm was not implemented. 

The following sub-sections describe the training algorithms implemented in more 

detail. 
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4.2.J Gradient Descent 

All the gradient descent-based algorithms implemented for SIANNs are based on the 

error-backpropagation {BP) algorithm (Rumelhnrt et al., 1986), described in Section 
2.6.3. The standard gradient descent (GD) algorithm is a first-order algorithm that 

uses a fixed !earning rate as in standard BP (refer Section 2.8.1). At then'' training 
step the weight update is given by 

L\w(n) = -17g(n) 

where 1f is the learning rnte and g(n) is the gradient given by 

aE 
g(n)=-

OW(n) 

(4.4) 

(4.5) 

The backpropagation algorithm requires the partial derivatives of the objective 
error function, E, with respect to each of the parameters (weights) being updated to 
calculate the grndient. 

The 'standard' SIANN is a feedforward neural network with a hidden layer of 
shunting neurons and an output layer of linear or sigmoid neurons. For the sake of 

clarity, the equations describing the operation of the SIANN, defined in Chapter 3, 
are presented again in Eqs. (4.6) to (4.8) below. 

The output of the /h shunting neuron, Xj, is given by 

11 +bl , "'--",--, 1 
al+,.( 'i:.C111,) 

J L-o 
(4.6) 

where lj is the/h input; a1 is the 'decay tenn'; b1is the bias; 91 is the synaptic weight 

connecting the/"' neuron to the i'' input; CjfJ is the bias for the shunting activation 
function connected to a fixed 'input', lo"' I: andfis a non-decreasing activation 
function. 

The output of the kth output neuron is given by 

Y• = g(f w,1x1) (4.7) ,., 
where g is the output layer activation function; w,1 is the connection weight from/' 
shunting neuron to the k'~ output neuron and ww is the bias of the output neuron 
connected to a fixed 'input', xo= l. 

The denominator in (4.6) is defined as the shunting term forthejth neuron, s1 

(4,8) 
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This shunting term is constrained to be always positive, achieved by imposing a 
lower bound on the parameter a1 during the initialization and training phases. 

The parameters to be trained in a standard SIANN, therefore, are the weights and 
biases of the output neurons (wiJ), the decay and bias tenns r,fthe shunting neurons 
(a1 and b1) and the inhibitory weights of the input signals and shunting bias (c11), The 
partial derivativeu of the error function with respect to these SIANN parameters are 
given in Eqs. (4.9) to (4.14) below (Refer to Appendix A for the full derivation of 

these equations). 

The partial derivative of the error function, E, with respect to the synaptic weight 
connecting the ~i, output neuron to the/" shunting neuron, WIJ, is given by 

(4.9) 

where .So,1;, known as the un-normalized error sensitivity, is given by 

3..t" e,(q)g'(v,) (4.10) 

and e.1; (q) is the output error for the qth training point, g is the 01 put layer activation 
function and v, is the net input to the activation function. For the bias tenn, W.lfl, the 

input, xo, is assumed fixed at I. 

The partial derivative with respect to the decay term of the/" shunting neuron, a1, 

is given by 

(4.l I) 

with 31, the backpropagated error sensitivity for thejth shunting neuron, de lined ns 

(4.12) 

and SJ the shunting !ayer denominator as defineU in equation (4.8). 

The partial derivative with respect to the bias of the/" shunting neuron, bi, is 

fJE 01 

f)bl "-;; 
(4.13) 

The pnrtin! derivative with respect to the shunting synaptic weight from the ,,i, 

input lo the/h shunting neuron, c11, is given by 

(4.14) 

The shunting nctivntion function bias, CjO, is assumed to have a constant 'input' of I. 
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4.2.2 Gradient Dcscent with Momentum 

The gradient descent with momentum (GDM) is the OD algorithm with on additional 

momentum tenn, ns described in Section 2.8.1. The weight update, dw(n), is given 

by 

dw(11) = -111:(11) +al1w(11- l) (4.15) 

where a is the momentum constant. 

,U.J Gradient Descent with Adaptive Leorning Rate and Momeni nm 

The speed of con\·crgcncc and success rate of the gradient-descent based algorithms 
ha\'C prc\·iou~ly been shown to depend heavily on the learning rntc (Mngoulns ct al., 

1999). To avoid the trial-and-error method of detennining the optimal learning rnte, 
an odapth·e learning rate strategy was developed, called Gradiellf Descr.'111 with 

Ad<1p1/1i• Imming 1·11/e (ODA). The method used increases the learning rntc at 
sueccs1i\'e iterations unless the error grows beyond a certain ratio to previous step, 

an adaptation of the "Bold Driving" method (Battiti, 1989; Demuth & Beale, 1992) 
described in Section 2.8. l. The next step was to incorporate u momentum tenn, 

resulting in the Grmlit:111 Vc.,ccm with Adoptive learni11g Rate a11d Mome11/11m 
(GDX) algori1hm (Demuth & Beale, l 992). The only difference in the algorithms is 

that the ODA weight updme uses (4.4), whereas GDX uses (4.15). 

Summary or lhc GDNGDX 11lgorlthm 

l. Dc1ennine ini1ial squared error, EQ 

2. Select ini1inl learning rate, ,,,~ nnd calculate u new weights using (4.4) f (4.15) 

3. Cnlculale the new squared error,£.,. 

11. If I,.'.,.. I l:.',~J 5 ,'iE,..,, 
(&'...,, is usually 5ct slightly above I (e.g. 1.04) to allow training to 

get ou1 o!'sha!low local minima) 

i. If E,... I f:u1J< I, set 1/.,,. ~ P1/u1J where P> I (typically I .OS) 

ii. Calculate the weight change using (4.4) I (4.15), and update 

b. Jr£.,.. f Ea1J> ,\'£,..,.., 

i. Set ,,.,. = r l/u1J, where yless than I {typically 0.7) 

ii. Set 1hc weight change, t.w" ·I/.,.•· g and upd.ate weights 

4, Go back to 3. 

The wdsht up!la1c .1 Step 3!b)(ii) ii the imme for both alg11rithms, meaning that if 
the error increases more thun the limi1, the algorithm discards ull momen1um 

infomiation and up!la1cs lhc weights using only lhe gr~dicn1 at that point. 
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4.2.4 Levenberg-Marquardl {LM) algorithm 

The Levcnberg·Mnrquadt (LM) algorithm is a second-order trust-region algorithm, 

described in Section 2.8.J. In !he standard LM algorithm, at the ,i'h step the gradient, 

g(11), and Hessian matrix, H(11), are approximated from the Jacobian J(11) 

g(n) = VE(w) "'Jr(w(n))e(w(11J) (4.16) 

11(,i) = V'E(w) = JT(w(nJ)J{w(11))+ µI (4.17) 

where I is the identity matrix andµ is a variable parameter. 

The standard LM weight update is then given by 

.:l.w = [J'{w(11J)J{w(11))+ µI ]
1 J'{w(n))e(w(11)) (4.18) 

The parameterµ is multiplied by some factor (/JJ whenever a step results in an 

increased error £(w(11)). When a step reduces E(w(n)), µ is divided by p. Typically, 

p = !O. When fl is large the algorithm becomes steepest descent (with step lip), 

while for small fl the algorithm becomes Gauss-Newton (second order). 

4.2.5 Levenberg-Marquardl with Adaptive Momentum (LMAM) 

The LM algorithm is acknowledged as one of the fastest training algorithms with 

quadratic rate of convergence as it approaches a solution. One disadvantage of the 

LM algorithm is that if it converges to a local minimum there is no way to escape it, 
resulting in a suboptimal solution. 

The Lcvenberg-Marquadt with Adaptive Momentum (LMAM) provides a 

momentum tenn that can help overshoot II local minimiser. It is based 011 the 

algorithm for MLPs presented in (Ampazis & Perantonis, 2000, 2002). This 

particular algorithm has two free parameters that have to be dctennined at the start of 

trnining, OP and ;. The first parameter, oP, defines the trust region in weight space 

arounJ the current state of the network within which the new optimum point will be 

restricted. The second parameter, ;, detcnnines the contribution oF the momentum 

tcnn to the weight update. A large S indicates the update is closer lo the standard LM 

step, whereas a small S indicates a greater contribution by the momentum tcnn. 

As in the standard LM algorithm, at step II thc gradient, 1:(11), and lfossfon matrix, 

11(11), arc opproximatcJ from the Jacobian, J{11), as given in (4.16) and (4.17). The 

srnndard LM weight upda1c given in (4.18), is denoted in this n!gorilhm ns llwi.11. 

In lhc LM with Adap1ivc Momcnlum algorithm, the weight update is restricted 10 

a trust region defined by 01'. To solve this constrained optimisation problem, two 

Lagrange muhiplicrs, .l1 and A.,, arc iutrudoccd, given respectively by 
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where 

Ji c.-2(~dQ+IGF) 
I,, 

I ff = gr (n) H(n) g(n) 

dQ=-{6P~ 

The final weight update is then given by 

,\ I 
.t.w(n) = --.t.w LM +-.t.w(n -1) 

2,1.l 2).l 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25} 

The fonn of the weight update is similar to the update for gradient descent with 
momentum. The first tenn contains the standard LM weight update, .t.wu.1, and the 
second contains the previous weight update, akin to the momentum tenn. It should be 

noted that llwu., is a!so used implicitly in calculating the multipliers A111nd ,h 

4.2.6 Optimised Levenbcrg-Marqunrdt with Adaptive Momentum (OLMAM) 

The LMAM algorithm described in the previous section has two free parameters, r5P 

and ~. that need to be e.~tcmally detcnnincd. The Optimised Levcnbcrg-Marqunrdt 
with Adaptive Momentum (OLMAM) algorithm is a mOOitication of the LMAM 
algorithm, proposed in (Ampnzis & Pcran1onis, 2002), to achieve independence from 
externally provided paramcler vn!ues. The optimal values for these parameters are 
dctennined adaptively at each epoch: 

fl;,. , __ _ 
l,:;cl ff 

(4.26) 

OP».JT;;: (4.27) 

Ampazis and Perantonis have also used .[i;; /64 < oP < .[i;; /s in their 

experiments, achieving similar pcrfonnnncc, Initial tests with SIANNs indicate that 
bcucr accuracy and srced is achieved using the 'optimal' vnlue us delini:tl in (4.27), 

and this has been usi:tl in subsequent experiments, 
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4.3 Direct Solution Algorithms 

The initial ancmpts to implement Direct Solution (DS) methods for SIANNs were 
based on the FBFBK and LSB algorithms developed in (Barmann & Biegler-Konig, 

1992, 1993), as described in Section 2.8.4. These attempts were not successful. The 
algorith1ns were uns!ablc, probably due to the complexity of the shunting layer. The 

shunting inhibitory neuron equation does not lend itself easily to a direct solution. 

For MLPs, the algorithm takes the desired output of the neuron, works out the 

desired input to the activation function by using the inverse of the function, then 
works out the new synaptic weights by directly solving for them from the given 

inputs in a least-squares sense. In the case of SIANNs the process is much more 
complicated because the activation function is just one term in the denominator, with 

the u and b tcnns to be solved for as well. Additionally, the u term is constrained by 
the limit placed on the denominator. 

!n order to overcome this problem, an alternative hybrid approach was used, 
similar to that described in (Verma, 1997). Direct solution for the output perceptron 
!ayer is combined with Gradient Descent with Momentum (GDM) for the shunting 

layer. At each epoch, the optima[ output layer weights and bioses arc "solved" 

directly: the target (optimal) values for the outputs of the shunting neurons are 
cnleulatcd; and these then become the tnrget values for the GDM-based update of the 

shunting layer parameters. This hybrid scheme, named DS-GDM, was implemented 
successfully. 

The natural progression was then to combine the Direct Solution method with the 

GDX algorithm for the Shunting Inhibitory layer. The resulting algorithm (DS·GDX) 

performed better than DS-GDM. 

Summary of Che DS-GDM and DS-GDX algorithms 

l. Cnlculate the outputs ofshuming [ayer neurons {x) from !he inputs. 

2. Cnlculatc desired inputs to the output [ayer activo1ion function (v,"'l<",) by 

passing target values through inverse of output activation function. 

3. Directly solve for the output !ayer weights and bioses using x and .,.,~, in II 

!cast squares sense, from the set ofequo1ions w.x = v,.,,,,~,. 

4. Calculate 'new' target values for the shunting Jnycr (x,.,..,...,) by 
backpropng11ting ,·,.,,,,,, through the updated output layer weights . 

.S. Use backpropagatiun based algorithms (GDM or GDX) to update shuming 

layer wciyhts. using the dilTcrcncc between x,"'11" and x as lhc error vector. 

6. Go back to s1cp J. 
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4.4 Stochastic algorithms 

Stochastic algorithms involve a search for weights using random techniques. The 

motivation behind stochastic algorithms is to find solutions that may not otherwise 
be found. While a lot of effort may be wasted in "blind alleys", the computational 

simplicity may compensate for the apparent inefficiency of the search. This concept 
is used by most initialisation schemes. By randomly initialising the networks, each 

network starts at a different point in the weight space, thereby covering n greater 
portion of the search space. The following algorithms use a random update to search 
the weight space. 

4,4,1 Random Oplimhation Method {ROM) 

The Random Optimisation Method (ROM) is based on the stochastic algorithm given 
in (Schalkoff, 1997, p.208). The error, E(w), is defined as the objective function and 

X as the region over which to search for the value of w that minimises E(w). The 
basic formulation of the random optimisation method is as follows: 

l. Select weX;set11=0. 

Let Mbe the total number of steps or iterations allowed. 

2. Generate a Gaussian random vector 1;(11). 

If w(11) +1;(11) e X, go to step 3. 

Otherwise go to step 4. 

3. If E(w(11) +1;(11))< E(w(11)), 

then w(11+l)scw(11)+i;(11). 

Else, check the 'reverse' side: 

• If E(w(11)-l;(11))<£(w(11)), 

then w(11 +I)= w(11)-l;(11) 

• Otherwise w(11+l)=w(11), 

4. If 11 " fl,(, stop (limit on number of iterations has been reached). 
0111crwisc, let 11 ~ 11 + I and go to step 2. 

The ROM algorithm implements "rel'Crse side chctking", The idea is that ifa step 
takes E 'uphill', then the reverse step is likely to take it 'downhill'. If E does not 

decrease then continue with n new mndom vector. 

" 



DEVELOPMENT OF TRAINING AlGORlfHMS 

4.4.2 Extension to the Random Optimisation Method {ROM2) 

An extension to ROM was implemented based on (Solis & Wets, 1981), as given in 
(Schalkoff, 1997, p.208). The extension inco!porotes a statistical bias into the weight 
adjustment procedure by allowing tbc mean of ~ to be non-zero. The mean of ~ at 

iteration n is denoted by b(n). The only modification involves step 3: 

3a. If E(w(n) +~{n)) < E(w(11J), then 

w(n +I)" w{11) +~{11) 

b(11 +I)" k1~{11}+k1b(11). (Typical values are k1 = 0.4 and k2 = 0.2.) 

Otherwise, check the 'reverse' side: 

i) If E(w(11)-~{n))< E(w(11)), then 

w{11+ I)" w(11)-~(n) 

b(n+ I)" h(11)-ki~(11). (Typical k1ue is ki" 0.4.) 

ii) Otherwise, 

w(11+l)"w(11) 

b(11 + \)"' k.b(11). (Typical value is k4 = 0.5.) 

Note: ho-' 0 

The adjustment of the mean of ~(n+ l), namely b(11 + l), is updated using the values 

of ~{11) and b(11) that have been successful in reducing£. This could be viewed as a 

form of momentum, in a statistical sense. When the el1'0rdoes not d~rcase, the mean 
b(11) decays toward 0. 
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4.5 Experimental Methods 

This section describes the network structures, training and testing procedures, 
evaluation metrics, and benchmark test problems, used 10 train and evaluate the 
perfonnance ofSIANNs. 

4.5.1 Network Structures 

An 111-dimensional input vector is presented to the network and is used to produce an 
11-dimensional output vector, the values of m and n being determined by the 
panicular problem. By definition, the standard SIANN structure therefore consists of 
an m-ncuron shunting layer and n-neuron output layer (refer Section 3.6). 

For binary classification problems only one output neuron is required to give the 
classification r,:sult. The mid-point of the neurons output range is taken as the 
threshold value. Any output above the threshold is taken as a one class, and values 
below taken as the other. For multi-class problems, the number of output neurons is 
set to be equal to the number of classes, wher,: each output neuron corresponds to 
one class. The 'winning' class is the neuron with the highest output, otherwise 
known as winner-takes-all (WTA) configuration. This is in accordance with the 
'benchmarking rules' laid out in (rrechelt, 1994). For time-series prediction, the 
number ofoutput neurons will be equal lo the number of predicted variables. 

4.5.2 Weight lnitioll!atlon 

In order eliminate any bias due to initial conditions, as well as to increase the 
coverage of the input space, fifty networks with randomly generated initial weights 
wer,: teMed for each problem. The weights c and w were initialised using a random 
number generator that generates uniformly distributed values in !he range !·r, r]. 

Thimm and Fiesler have compared initialisation schemes for pcrccptrons and 
found that schemes of this form perform well over a variety of problems (Thimm & 

Fieslcr, 19117). Initial tests on SIANNs used r =l, but subsequent results indicated 
that the scheme used in (Smicjn, 19111) perfonncd well over the different range of 
problems. In this scheme, the ranger is defined by 

' 
, __ _ 

Iii 
{4.28) 

where N is the number of inputs of Che pnnkular neuron (fan·in), This initinlisalion 
scheme ensures that the sigmoid activation functions start in their linear regions and 
not in snturotion, thm:by improving training performance (Y, Lee ct al., 1991). 
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The shunting neuron bias b was initialised with r = l as it does not affect the 
activation functions. The decay parameter a was initialised to a random value 
between O and I, then offset with n constant. The offset constant, a1;m, is sot so that 
the constant added with the lower bound of the denominator activation function will 
not be smaller than the predefined limit value for the denominator, Slim (refer (4.3 l)). 
For example, the hyperbolic tangent (tansig) activation function has a lower bound of 
-!; therefore, for .11;m = 0.1, the constant offset would bo I.I. This lower limit for a 

and its effects on training perfonnance arc discussed in greater detail in Section 
4.6.1. 

4.5.3 Input pre-processing 

The input attributes to a loaming problem can have magnitudes and distributions that 
vary widely. There are some common methods to represent these attributes when 
applying such problems to neural networks (Preche!t, 1994). Tho real- and integer
valucd inputs have generally been scaled and offset to tho range [-l, I) in the 
experiments. One exception is with time series prediction, sucb as tho Sunspots 
problem, where tbe inputs in some exemplars are the output targets in others. ln 
order to enable tho sigmoid output activation functions to produce the required 
output values, the data hns been scaled to the rnnge (0, l). 

4.5.4 Data partitioning 

Each dataset was partitioned into training, validation and test sets; unless otherwise 
stated, the general strategy is to partition the datnsct into 50% as training set, 25% as 
vnlidation set, and the remainder 25% as a test set. A well-trnined neural network 
should be able to correctly classify previously unseen inputs (good generalisation). 
The networks were trained using the training set data nnd their perfonnanec 
measured using the test set, which generally conlains data not seen during training. 
l11e validation set is used for early stopping so that the networks arc not ovenmined 
and are able to generalise well. All the results presented in this chap!cr are based on 
the test set, except where the algorithm training perfomrnncc is evaluated. 

4.S.S Activation functions 

Thrtc different nctivntion functions were used wilh lhe shunting neurons: tbe 
1,ypcrba/ir: t,mgc11/ (t,msii:, tn/,), lai:istlr: sigmah/ (fags/;:, /gs) and the expa,1em/u/ 
(exp) functions. For the ou1put neurons, the tansig, logsig and linear (/ii,) nclivntion 
functions were tested. ,\11 possible combinations were tested to observe their effect 
on pcrfonn:mcc. 
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4.5.6 Training Termination Criteria 

The training is stopped if the target objective function value or 'elT!lr goal' is 
achieved. It is quite possible that the neural network being trained cannot achieve the 
error goal. Therefore, the maximum number of training epochs is set to lOOO in these 
tests. Initial investigations revealed that, in most cases, this is sufficient and it was 
only non-converging networks that trained beyond this limit, consuming processing 
time with no significant improvement in perfonnance. This limit also allowed 
training times to be kept within reasonable limits. 

In order to achieve good generalisation, a validation set is normally used for early 
stopping so that the networks arc not over-trained. If a va!Jdation set is used during 
training, the network weights that result in the minimum validation set error nre 
saved. If the validation set error is not reduced for 50 consecutive epochs, the 
training is stopped and the final network weights used for testing ore those that 
resulted in the minimum validation set error. 

4,5,"1 Test Performance Metrics 

In order to compare the perfonnance of the trained neural networks, perfonnance 
metrics have to be used. The perfonnance measure used during training is the mean 
squared error (MSE). The test set pcrfonnance can similarly be evaluated using the 
MSE. The MSE, however, c11n vary depending on the problem nnd the way it is 
i1nplcmentcd, particularly the magnitude of the target and actual output values. It is 
not ck11r from the MSE whether it represents a 'good' or 'poor' perfonnance. 
Intuitively appealing metrics should not only be relatively independent of the 
implementation of the problem, but also ideally should easily differentiate 'good' 
from 'bad' perfonnance. 

For the classification problems, the test classification error rate is used, where tl1e 
error rate is simply the percentage of the test set that is misclassified. 1l1c tests are 
carried out with a batch of randomly initialised networks trained on the same 
problem. The general pcrfonnance for the set of networks is represented by the mean 
nnd median of the test error rates for the whole batch. 

The 95% confidence in1crvnl (Cl) on the mean error rate is olso calculated and 
presented. As each batch consis1s of50 networks, th~ number of samples in the batch 
is large enough to nssumc nonnal distribulion using the Cenlml Limit theorem 
(Johnson & Blmuach11rya, 1996: Walpole ct al., 1998). The 95% Cl giv~ the range 
of values wilhin which 1hc true mean error lies with 95% probability. It is calculated 

from the sample mean ond somplc standard deviation, }I ands, ncconling to 

' Jt±l.961: 

" 

(4.29) 
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where n is the number of samples (Mitchell, 1997). 

The best case error rate is also presented to give an indication of the performance 
level that can be achieved by a single network. The performance of a batch of 
networks is also given by the percentage of networks in the batch achieving a 
particular perfonnance target such as the error goal, 0% clasaification error (perfect 
test classification) or less than 20% clas.ification errors. 

For time series predication, the actual network output values need to be analysed. 
The perfonnance metrics used arc the MSE and the average relative variance (ARV) 
measure (Nlkolaev & Iba, 2003; Weigend et al., 1990), given by 

(4.30) 

where YI is the true outcome of the ;•h example, P(xl) is the estimated outcome with 
the l'' input vector X1 in the same example, and ji is the mean of the true outcomes. 

The ARV is essentially the MSE divid~d by the variance of the target values. This 
scales the error value down if 1he series is highly variable, so the network is not 
unduly punished. 

In order to compare the computational power and time required to train the neural 
networks, the mean CPU time, in seconds, required to train one network was 
measured and recorded. This training time wns measured using on internal Matlab 
function nnd wns set up to measure only the time spent on \mining the network and 
not the time spent on other tasks such as setting up the data nnd saving the results. 
The simulations were run on MATLAB v6.S on Sun workstations. The Sun Blade 
1000 was used as the 'standard' for measuring the training time, nnd ony 
measurements made on other systems were scaled based on comparative test 
measurements. Despite these precautions, it should be noted that there could be some 
variation~ in measurement due to varying load factors on these multi-user systems. 
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4,5,8 Benchmark Tesh 

A number of benchmark problems were used to test the learning capabilities of 
SIANNs. The benchmarks used were the 3-bit parity problem, Wisconsin Breast 
Cancer dataset, the Pima Indians Diabetes dataset, an artificial multi-class problem 
and the Sunspot time series. They form the standard set of benchmark problems used 
throughout the rest of this thesis. These benchmarks consist of four classification 
problems, including one multi-class problem, and one time-series prediction 
problem. The parity and multi-class problems are synthetic, while the remaining 
three are real-word problems. The benchmark problems are described below. 

4,5,8. I The 3·bit parity problem 

The 3-bit parity problem is a popular artificial classification problem where the 
network has to generate the appropriate binary output for n 3-bit binary input so that 
there is always an even (or odd) number of ones. This 3-dimensional problem is not 
linearly separable and is one level of complexity higher than the 2-dimcnsiona! XOR 
problem. The 8 input combinations can be visualised as the vertices of n unit cube, 
where no two adjacent vertices are of the same class. The problem can also be 
described as a 3-input modulo-2 addition. For this problem, since there are only 8 
possible input patterns, all 8 were nsed for both training and test sets. 

4.S.B.2 The Wiscondn Breast Cancer problem 

The Wisconsin Breast Cancer dataset is a real-world medical diagnosis dataset 
obtained from the UC! Machine Learning Repository (Blake & Merz, 1998). The 
breast cancer dataset has 699 samples with 9 integer inputs and two ou1put classes 
(benign and malignant). The data has missing values that were replaced by zeros 
before scaling. Obviously, this is not the best approach for estimating the missing 
values, but was chosen for the sake of simplicity (Hathaway & Be:ulek, 2001). 

4.5.8,J The Pima Indians Diabetes problem 

The Pima Indians Diabetes dataset is a real-world mc<lical diagnosis dataset obtained 
from the UC[ Machine Leaming Repository (Bloke & Merz, 1998). The dataset has 
768 samples with 8 real-valued inputs and two ou1put classes. The diabetes diagnosis 
problem is supposed to be a lot harder for the neural networks compared lo the breast 
enn~r problem. In previously reported results for this problem (Prcchelt, 1994: 
Shcrrnh, I 998; Waschulzik ct al., 2000), the bes1 case error rates were around 20%. 

The diabetes d11tosct is said not to ha~e any missing \'alues, but Chere ore o number 
of zero-value entries that appear 10 have simply been inscncd lo replace missing 
values. The effect or 1hcse zero-value en1ries as well a~ the effect or removing the 
cwo inputs with large numbers of zero \'olues, has been invcs1igo1cd using both MLPs 

11 
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In order to find an (approximate) optimum value for Slim to be used in subsequent 

experiments tests were carried out using S1im values of 0.0 l, 0.02, 0.05 0.1 , 0.2, 0.5 , 

1.0 and 2.0 on some of the benchmark prob1ems. The networks were trained using 

both the Levenberg-Marquadt (LM) and gradient-descent with adaptive learning rate 

and momentum (GDX) algorithms. All the different combinations of shunting and 

output layer activation functions were tested for S1im = 0.1 and 1. Only the best 

performing networks for each case were then tested for the other values of Slim· If the 

same network pe1fom1ed best for both values, the second best combination was also 

tested. The variation in perfonnance of these networks for different SJim are shown in 

Figs. 4.4 to 4. 7. 
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Fig. 4.4: Mean test classification error and mean training time for various SJim for 3-

bit parity dataset using a 3-3-1 SIANN. 
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Fig. 4.5: Mean test classification error and mean training time for various S1i 111 for 

Wisconsin Breast Cancer dataset using a 9-9-1 SIANN. 
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from (4.32), it can be seen that if the shunting tenn (denominator) becomes small, 

the output of the neuron becomes large. In particu!nr, if the denominator approaches 

zero, then we have instability as the output becomes too large. The limit on the 

shunting tenn is to prevent this situation from occurring. 

The denominator acts as an adaptive gain-control mechanism for the shunting 

neuron. If this shunting tenn is less than one, it serves to 'amplify' the numcmtor 

(excitatory input plus bias); conversely, if it is greater than one, it serves to 

"attenuate" the excitatory signal. This gain control teml consists of two parts: the 

activation function output, which is a function of the inhibitory inputs, and the decay 

term 11, which is constant during nonnal operation (not being trained). A small value 

for the decay tcnn, a, allows a greater rnngc for the 'gain factor' dctennincd by the 

inhibitory inputs. Small changes in the output of the activation function, due to the 

inhibitory inputs, can then result in large changes in the neuron output On the other 

hand, a large value for a reduces the variation in the shunting tenn, also reducing the 

range of the gain. In other words, the decay parameter II has a 'dampening' effect on 

the shunting gain control mcclmnism, thereby making the neuron output more stable. 

T11e drawback of increasing the value of a is that it reduces the effectiveness of the 

neuron nnd its ability to !enm. A value of a that is much lnrgcr than the range of the 

activation function can 'drown out' the effect of the inhibitory inputs. In the extreme, 

this will reduce the function of the shunting neuron to just scaling and biasing the 

excitatory input. 

The limit value si;m comes into p!ay <luring training, ns it de lines the lower bound 

on the decny tcnn, as given in (4.31). A small s1;,,, value mcmis that u could become 

very small during training. This woul<l result in large 'gain factor', and therefore 

possibly large variations in the neuron output. This could result in instability, as was 

observed experimentally. It should be noted, however, that the limit value may not 

even come into play, if the training process keeps the value of11 away from its lower 

limit. 

From this discussion, it becomes npparcnt that the selected value of ~l,m should 

reduce the risk of instability, but at the same time should not overly restrict the 

function of the shunting neuron. T11e value chosen should attempt to bnlancc these 

conflicting requirements. Setting the value of.1·1,m to 0.5 allows the shunting inputs to 

'amplify' the output to a reasonable ]eve], up to a maximum factor of 2. On the other 

hand, setting the value of s11m to I restricts the effect of the shunting tenn to a 

'dampening' or 'attenuating' effect. This effect would appear to be more in line with 

the name 'shunting inhibition', The 'amplification' effect, if any, will depend on the 

synaptic weights connecting the shunting neurons to the output layer. 

Given the expcrimentnl results and the above discussion, it was decided that for 

the remaining experiments the value ofsi;m is I, unless otherwise stated. 
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4,6,2 Benchmark Test Resulls 

In this sub-section, the results for the live different benchmark tests arc presented. 

The results shown here arc for the best performing activation function combination 

for each of the training alllorithms used. TI1e full set of mean test error rates and 

mean test ARV for the live benchmnrk tests arc Given in Tables B.J to B.5 in 

Appendix B. 

4,6,1.1 Results/or the 3-bit paril)' problem 

A set of 50 randomly generated )-input, !-output SJANNs, as described in Section 

4.5.l, was trained on the 3-bit Parity problem. The 3-bit parity problem has only 8 

binary input combinations and all these input patterns were used for !mining und 

testing, with no validation. The networks were trained for a maximum of l,000 

epochs with an error goal of 0.01. All nine activation function combinations, 

described in Section 4.5.5, were trnined using eight different training algorithms. 

The results for the best pcrfonninll uctivution function for each of the algorithms 

nre shown in Table 4.1. The first column of the table shows all the algorithms ,_,sed to 

train the networks und the second and third columns show the best perfom1ing 

activation function contigurntion for the respective algorithms. The rest of the table 

shows the performnncc metrics for the given set of networks. Columns 4 to 6 show 

the percentage of the networks achieving the following: the objective function (mean 

squared error) goal; zero clnssification errors for the test set; und less than 20% 

clnssificution errors. Columns 7 to 9 give the average number of training epochs for 

the following: all networks; networks that achieved the objective function goal; and 

networks that achieve all correct tcst set classiticntion. This is followed in Columns 

10 to 14 by the test set clussificution error: best case; mean; 95% confidence interval 

(Cl) on the mean; ond median. The last column gives the mean training time per 

network based on CPU time usage in seconds. The menn and median test error and 

mean training time for ench case arc shown gmphicnlly in Fig. 4.8. Note that since 

the median is O in most cases, it is not visible on the plot. 

The results prove that SIANNs arc ublc to correctly solve the 3-bit parity problem 

consistently. Most of the alJlori!hms had a median error of 0% and over 85% of the 

networks achieve l00% correct classification, except for GDM and the stochastic 

algorithms (ROM and ROM2). Even these three algorithms were able to achieve 

l00% correct clussification for more than one third of the networks. These 

algorithms ure actually able to achieve better accuracy if nm for lonJler, e.g. l0,000 

epochs. However, for the sake of consistency and to be able to make fair 
comparisons between algorithms, the training was restricted to 1,000 epochs for all 

algorithms. 
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Table 4.1 Best results for 3-bit Parity problem using 3-3-1 SIANN 

Training Activation Perfonnance Avg. Epochs Test Set Classification Error Mean 

Algorithm functions (% of runs) Training 
CPU 

Shunt Out ~ 0% < All ~ 0% Best Mean 95% CI Median time 
goal err 20% runs goa l Errors (%) (%) (%) (s) 

err 

GDM Tnh Tnh 36 44 50 880 667 727 0.00 22.50 ± 6.26 18.75 5.5 

GDX Tnh Lgs 94 94 96 352 31 l 31 I 0.00 1.25 ± 1.44 0.00 2.3 

LM Exp Lin 96 96 100 84 46 46 0.00 0.50 ± 0.69 0.00 1.7 

LMAM Exp Lin 86 86 88 169 33 33 0.00 4.25 ± 3.18 0.00 3.3 

OLM AM Exp Lin 92 92 96 138 63 63 0.00 1.50 ± 1.51 0.00 2.8 

DSGDX Tnh Lin 94 94 100 169 116 116 0.00 0.75 ± 0.83 0.00 1.3 

ROM Exp Lgs 16 34 74 942 636 829 0.00 12.25 ± 3.17 12.50 7.4 

ROM2 Tnh Lgs 2 42 78 987 359 969 0.00 10.50 ± 3 .00 12.50 8.1 

3-olt Parity 
ll .. -,---·---·-·--··-.. -·- "'""""""-""""'"" .. - ____ ,, ............. _ ......... ,, ___ ,,,,,, .. -·---·-·•-""' 

7 -------------------

GDM GDX LM LMAM OLMM1 DSGDX ROM ROM2 

Algorithm 

Fig. 4.8: Mean and median test classification error and mean training time for 3-bit 

parity problem using 3-3-1 SIANN with various training algorithms. 

79 



Df:l'F.Wl'Mf:~TOf' THAIN/NG :l~GORIT/1.US 

The LM algorithm was the most accurate wi!h 96% of networks achieving perfect 

classification and 0.5% mean error, and also required the fewest epochs to train the 

networks. However, it was not the fastest in terms of time as it is a second order 

algorithm that requires more computation per epoch. The fastest algorithm in tcnns 

of computation time was the DS·GDX algori1hm, 5 limes faster than LM. DS-GDX 

was also the second best in terms of accuracy with 94% of networks producing 

perfect classification and mean error of 0.75%. Next, in terms of accuracy, is the 

GDX algorithm followed by the LM variants, LMAM and OLMAM, tha1 had lower 

accuracy and longer training times tlrnn the standard LM. The longest to train were 

the GDM and ROM algorithms. 

There docs not appear to he single 'optimal' selection of activation function as the 

di!Terent algorithms have different 'best' combinations, though LM and its variants 

all had the same best combination. 

4.6.2.2 Rc.mlt.1·fi1r tltc Wi.mmsi11 Brea.ti Car.:r,· data.fct 

TI1e 'standard' S!ANN structure trained on the Breast Cancer dataset was a 9-9-I 

SIANN as the problem has 9 input parumctcrs and requires a single binary output for 

clussification. The results of the best performing configurations for each algorithm 

arc given in Table 4.2 and presented in Figure 4.9. 

For this problem, the LM and GDX algorithms performed bcia with mean test 

errors of0.20%. Even though none of the networks was able to achieve the objccti1•c 

function goal of lff", more than two-thirds of the networks were able to achieve 

perfect classification on the test set for these nlgorithms. All the non-stochnotic 

algorithms were able to achieve mcnn error of less thnn 1.0% and even the stochastic 

olgorithms (ROM and ROM2) had mean error of!ess than l.5%. 

GDX was also the second fastest algorithm, behind only DS-GDX, whereas LM took 

more than 3 times longer for the same nccurncy. By comparison GDM and OLM AM 

took 6 to 7 times longer to train only to nchieve a lower accuracy. The ROM and 

ROM2 ulgorilhms trained fast but had comparatively poor accuracy. 
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Table 4.2 Best results for Wisconsin Breast Cancer dataset using 9-9-1 SIANNs 

Training 

Algorithm 

GDM 

GDX 

LM 

LMAM 

OLMAM 

DSGDX 

ROM 

ROM2 

Activation 
functions 

Shunt Out 

Tnh 

Lgs 

Lgs 

Lgs 

Lgs 

Tnh 

Lgs 

Lgs 

Lgs 

Lgs 

Tnh 

Lin 

Tnh 

Lgs 

Lgs 

Lgs 

16 

_ 12 

~ 
~ 
0 
t:. I 
w 
i 
t- 08 

04 

02 

0 

Pcrfonnance 

(% of runs) 

"7 0% < 
goal err 20% 

0 42 100 

0 66 100 

0 74 JOO 

0 28 100 

0 56 JOO 

0 36 100 

0 6 100 

0 IO 100 

GDM GDX 

eo ........ _. __ ............................ . 

70 

60 

20 . 

10 

GOM GOX 

Avg Epochs Test Error Mean 
Training 

CPU 
All "7 0% Best Mean 95%Cl Median time 
runs goal Errors (%) (%) (%) (s) 

978 • 967 0.00 0.36 ± 0.09 0.56 61.8 

161 * 160 0.00 0.20 ± 0.08 0.00 10.3 

181 * 119 0.00 0.20 ± 0.10 0.00 34.8 

98 * 97 0.00 0.76 ± 0.19 0.56 24.1 

297 • 263 0.00 0.37 ± 0.14 0.00 71.0 

96 * 100 0.00 0.54 ± 0.14 0.56 6.4 

1000 • 1000 0.00 1.38 ± 0.27 1.13 14.7 

1000 * 1000 0.00 1.30 ± 0.22 l.13 14.7 

Wisconsin Breast Cancer 

LM OLMM1 DSG DX ROM RDM2 

-=-1 
LM OLM AM OSGOX ROM ROM2 

AJgortthm 

Fig. 4.9: Mean and median classification enor forte t set and mean training time for 

Breast Cancer dataset using 9-9-1 SIANN with various training algorithms. 
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,f,6,2.J Results/or Pima lndlan.T Diabetes datasel 

The 'standard' 8·8·1 SIANNs were used for the Diabe!es dataset and the results arc 

shown in Table 4.3 and Figure 4.lO. As mentioned in sub-section 4.5.8, it docs not 

appear possible to achieve perfect classification for this dataset; error rates below 

20% are con_sidercd 'good'. The results obtained eonfonn to these expectations, with 

none achieving perfect classificalion and the average ranging from 19% to 22%. The 

best. case results have test error rates of around 18%. Surprisingly, the best 

perfonning algorithm was the first-order GDM algorithm that had the lowest mean 

error of 19.05% and had 94% of networks achieving below 20% error. The GDM 

algorithm achieved this despite being 'only' a first-order algorithm. The time taken 

to train, however, was one of the highest as the number of epochs required was high. 

111 contrast, the GDX algorithm, which is GDM with variable Jcamirig rate, had a 

meon training time almost four times shorter but had n mean error rate of 21%. This 

is the worst mean error of the gradient-based algorithms. 

The LM and DS-GDX algorithms also had mean error rates below 20%, with DS

G DX also being the fastest overall in terms of training time. Comparing the LM 

variants, the LMAM algorithm was twice as fast as the standard LM algorithm, with 

only mnrginally higher error. The OLMAM algorithm on the other hand took nearly 

50% longer than LM, and had an even higher error rate. Once again the ROM 

algorit.hms had the highest average error rates, even though trained for the maKimum 

number of epochs allowed (in this case l,000 epochs). Training times were short 

though, since the algorithm is computationally simple. The best case perfonnance for 

the stochastic algorithms is comparable to that of the o1her algorithms. 

4.6.2.4 Re.vt1/t.1·fi1r artificial mulli-r:/ass problem 

The SJANN structure use<l for the mu!ti-class problem wns n 2-2-3 structure. Three 

output neurons were required for the three output classes as the networks were tested 

using u winner-take-nil method as described in Section 4.5.1. The results obtained arc 

presented in Table 4.4 and the best, mean and median error rates, as well ns mean 

training time, shown in Fig. 4.1 !. 

The classes overlap, as shown in Fig. 4.1, therefore perfect clnssificatio11 is not 

possible for this problem. The lowest test set error achieved was 4.0% with median 

error in the range 5% to 7% and mean error between 5% and 10%. Most of the 

algorithms had all networks converging (less than 20% error), with the worst having 

90% of networks converging. The best mean accuracy of 5.47% was achieved by 

GDX, which wns also among the fastest in tcnns of training time. The algorithms 

1hnt were faster than GDX, namely DS-GDX, ROM and ROM2, nil had much higher 

error rates, with mean error more than 7.5%. 
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Table 4.3 Best results for Pima loclians Diabetes data et using 8-8-1 SIANN 

Training Activation Perfonnance 

Algorithm functions (% of runs) 

Shunt Out 7 0% 20% 
goal err < 

GDM Lgs Tnh 0 0 94 

GDX Tnh Lgs 0 0 14 

LM Lgs Tnh 0 0 58 

LMAM Lgs Tnh 0 0 54 

OLM AM Lgs Tnb 0 0 44 

DSG DX Lgs lgs 0 0 68 

ROM Lgs Lgs 0 0 12 

ROM2 Lgs Lgs 0 0 22 

23 -

71 

g 
:. 
t: 19 w 
:: .... 

18 

17 

16 

15 
GDM GDl< 

10 

60 

so 

~ . 
E •D I= .. 
c 
·;; 
'i! 
.... 10 
li 
~ 

:E 

Avg Epochs 

All 7 0% Best 
runs goal EtTors (%) 

710 * * 17.71 

195 * * 17.71 

182 ... ... 17.71 

80 ... * 17.71 

238 • * 18.23 

94 • * 18.75 

1000 • • 17.71 

1000 ... • 18.75 

Pima Indians Diabetes 

LM OLIAAM OSGDX 

Algorithm 

Test Error 

Mean 

(%) 

19.05 

21 .03 

19.88 

20.22 

20.34 

19.82 

21 .50 

21.69 

ROM 

95%CI 

± 0.20 

± 0.29 

± 0.32 

± 0.36 

± 0.34 

± 0.29 

± 0.43 

± 0.53 

DBest 
• Mean 
aMoooan 

ROM2 

Mean 
Training 

CPU 
Median time 

(%) (s) 

19.27 48.1 

21.35 13.2 

19.79 38.9 

19.79 19.9 

20.31 58.0 

19.79 6.4 

21.35 14.7 

21.61 14.7 

Fig. 4.10: Best case, mean and median classification error for test set and mean 

training time for Diabetes dataset u ing 8-8-1 SIANN with various 

training algorithms. 
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Table 4.4 Best results for Multi-Class dataset using 2-2-3 SIANN 

Training 

Algorithm 

GDM 

GDX 

LM 

LMAM 

OLM AM 

DSG DX 

ROM 

ROM2 

Activation 
function 

Sh 

Exp 

Exp 

Exp 

Exp 

Lgs 

Exp 

Exp 

Exp 

~ 

E 
i: .. 

Out 

Lgs 

Lgs 

Lgs 

Lgs 

Lgs 

Lin 

Lgs 

Lgs 

12 

10 

lOO 

-~ 150 
·e 
t
c 
:I 
:!: 

0 

Perfonnance 

(% of runs) 

7 0% 20% 
goa l err < 

0 0 100 

0 0 100 

0 0 100 

0 0 100 

0 0 100 

0 0 90 

0 0 98 

0 0 96 

GOM GDX 

GOM GDX 

Avg Epochs Test Error 

All 7 0% Best Mean 95%CI 
runs goal Errors (%) (%) 

999 * • 4.67 5.73 ± 0.23 

377 * * 4.00 5.47 ± 0.16 

228 ... * 4.00 5.69 ± 0.26 

163 • * 4.67 6.13 ± 0.28 

560 * • 4.00 5.81 ± 0.20 

206 • • 5.33 9.39 ± 2.24 

1000 * "' 4.67 7.49 ± 1.23 

1000 • * 4.00 8.33 ± 1.68 

Multi Class 

01.MAM DSG OX ROM ROM2 

LM Cl.MAM DSG DX ROM ROM2 
Algorithm 

Mean 
Training 

Median 
CPU 
time 

(%) (s) 

5.67 51.2 

5.33 19.4 

5.33 103.0 

6.00 74.7 

6.00 251.6 

6.67 10.9 

6.67 1 I. I 

6.33 11.3 

Fig. 4.11: Best case, mean and median test classification error and mean training 

time for Multi-class dataset using 2-2-3 SIANN with various training 

algorithms. 
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From Fig. 4.11 it can be seen that there is not much difference between the 

accuracy of the GDX and the GDM, LM, LMAM and OLMAM algorithms, though 

the training times are between 2.5 and 13 times longer than GDX for the latter 

algorithms. GDX and GDM had the best overall pcrfonnancc when factoring the 

training time on top of the accuracy. 

For the Multi-class problem there appears to be a trend in the activation functions 

achieving the best results, as 7 out of 8 had the exponential function as the shunting 

layer activation function. Similarly, 7 out of 8 algorithms had a logistic sigmoid 

output layer activation function. The exceptions were the OLMAM and DSGDX 

algorithms that had log sigmoid shunting and linear output activation functions, 

respectively. 

4.6.2,S The Sllnspot time .~er/es 

The Sunspot time series was used to train a set of 10-10-1 SIANNs, using the scaled 

sunspot counts of 10 consecutive years to predict the number for the next year. The 

Sunspots data was partitioned using the subserics for the years ! 700 to 1920 to train 

the networks, and the subserics 1921 to 1965 for testing and 1966 to 1989 for 

validation. This was done to facilitate comparison with published results (Nikolaev 

& Iba, 2003; Park ct al., 1996; Weigend ct al., 1990). The perfonnance metrics used 

arc the mean square error (MSE) and the average relative variance (ARV), defined 

in Section 4.5.7 by (4.30). The best perfonning activation function results arc shown 

in Table 4.5. Columns 4 to 6 in this case are the percentage of networks achieving 

the training goal; percentage networks where all test results arc within tolerance and 

networks for which at least 80% oftest points are within tolernncc. The tolerance in 

this case is± 0.1 (scaled). Column 7 gives the overage number of epochs for all 

networks. Columns 8 to l l give the lowest and median values for MSE and ARV for 

the test points while colnmns 12 and 13 give the mean nod 95% CJ for the ARV for 

test points. The last column gives the mean training time per network. Fig. 4.12 

shows the best, mean and median test ARV and the mean training time for the 

various algorithms. A plot of the actual Sunspot numbers for the test set range, along 

with the values predicted by one SIANN network is shown in Fig. 4.!3. 

The results show that practically all the networks have 80% of the test points 

within tolerance, whereas the number of networks with all test points within 

tolerance varies from 8% for LM to 42% for GDM. The LM algorithm got the best 

median test MSE and median and mean test ARV. The GDX was the fastest of all the 

algorithms but the worst accuracy, bar the ROM algorithms. The DS-GDX algorithm 

and the LM algorithm with its variants, LMAM and OLMAM, all achieved similar 

test ARV. 
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Table 4.5 Best results for Sunspots dataset using 10-10-1 SIANN 

Training 

Algorithm 

GDM 

GDX 

LM 

LMAM 

OLM AM 

DSG DX 

ROM 

ROM2 

Act-fns Performance 
(% of runs) 

Shunt Out ~ all in 80% 
goal tol tol 

Tnh Lin 0 42 94 

Tnh Lin 0 14 98 

Lgs Lin 0 8 100 

Lgs Lin 0 26 98 

Lgs Lin 0 22 100 

Lgs Lin 0 40 100 

Lgs Lgs 0 18 98 

Lgs Lgs 0 28 100 
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E 
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.!: 20 

~ ... 
~ 
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GOM 

GDX 

GDX 

Avg Test MSE Test ARV 
Epochs 

Best Median Best Median Mean 95%Cl 

886 0.0094 0.0117 0.113 0.140 0.161 ± O.D25 

147 0.0085 0.0134 0.102 0.161 0.174 ± 0.020 

54 0.0075 0.0093 0.090 0.111 0.112 ± 0.003 

207 0.0075 0.0101 0.090 0.121 0.125 ± 0,006 

89 0.0072 0.0095 0.086 0.114 0.117 ± 0.005 

161 0.0077 0.0097 0.096 0.121 0.119 ± 0.002 

1000 0.0105 0.0208 0.126 0.250 0.286 ±0.034 

1000 0.0105 0.0214 0.126 0.256 0.271 ± 0.027 

Sunspots 

lM LMAM OLMAM DSGOX ROM ROM2 

LM 01.MAM DSGDX ROM ROM2 
Algorithm 

Mean 
Train 

CPU time 
(s) 

37.3 

6.8 

9.8 

36.2 

15.6 

7.6 

12.8 

12.8 

Fig. 4.12: Best case, mean and median test ARV and mean training time for variou 

training algorithms for Sunspots dataset. 
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Fig. 4.13: Actual and SIANN predicted sunspots values for the test set. 

In tem1s of peed of training for this problem, the DS-GDX algorithm was second 

best to GDX, and the LM was third. The LM variants had longer training times 

compared to the standard LM, OLMAM 50% longer while LMAM took almost four 

time as long. The ROM algorithms had significantly higher test ARV, but the 

number of points within the tolerance was close to the others. Overall, the ARV 

figures obtained are comparable to those given in (Nikolaev & Iba 2003) who 

reported test ARV values ranging from 0.086 to 0.229. 

4.6.3 Analysis of results 

The benchmark tests were chosen to give a variety of problems in tenns of 

dimensionality, difficulty and type of problem. In all cases the SIANNs could be 

trained to 'solve' the problem; either achieving perfect classification, or achieving 

results comparable to that repo1ied in other literature using different type of neural 

networks. 

Comparing the different training algorithms from the preceding re ult , certain 

general trends appear. The LM-h·ained networks are consistently among the mo t 

accurate. The time taken to train with the LM algorithm tend to be average to high, 

though it was never the longest. The LM variants LMAM and OLMAM, had 

comparable or wor e accuracy than the 'standard LM algorithm. In tenn of training 
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time, the results are mb1:ed. The LMAM was better than LM and OLMAM worst in 

some tests, and the order reversed in other tests. Overall ii would appear that the 

'standard' LM would be a better choice than the two variants. 

The' first-order GDX algorithm was faster than the LM algorithm in almost all 

cases. While th,:. GDX had similar or better accuracy than LM for the Breast Cancer 

and Multi-class problems, it did not do as we.pin the other tests. The GDM algorithm 

surprisingly. got the best mean error raie for the Diabetes problem and was 

comparable to GDX and other algorithms for the other tests except the Parity 

problem, where the accuracy was very low. However, it should be noted that the 

average number of epochs for the GDM algorithm was always close to the maximum 

of 1000 epochs. This indicates that the training runs are being tenninated because the 

maximum number of epochs is reached and the algorithm is not able to complete the 

training. Other tests performed have indicated that GDM requires about an order of 

magnitude more epochs (limit of 10,000 epochs) in order to consistently reach 

accuracy levels comparable to GDX. The results also indicate that GDM requires 

significantly longer time to training compared to GDX. 

The direct-solution based DS-GDX algorithm was consistently one of the fastest 

algorithms in tenns of cotq)utation time. In terms of accuracy, it was comparable to 

the LM algorithm, except for the Breast Cancer and Multi-c]llss problems. The 

stochastic algorithms ROM and ROM2 had the worst error rates in the majority of 

tests. The exceptions arc the 3-bit Parity test, where GDM come out worst, and the 

Multi-Class problem, where DS-GDX had a higher error rate. The ROM algorithms 

trained for the full 1000 epochs allowed in all cases, except for a few networks that 

reached the error goal with the 3-bit Parity problem. Further tests showed that these 

algorithms would go on for 10,000 epochs, if allowed, with no significant 

improvement in error rates, except for the 3-bit Parity problem. 

In tenns of training time, the ROM and ROM2 training time varies from the 

longest for the 3-bit parity to air.ms! the fastest for the Sunspots problem. There 

appears to be a trend that the comparative training time improves as the number of 

training examples increases. This is probably due to the fact that, fo~ the stochastic 

algorithms, only the objective function is calculated from the training examples, not 

the actual weight update. This would give th_e stochastic algorithms an advaniage in 

terms of training time as the number of training examples incrr~ses, though not in 

tenns of accuracy. 

From the 'best-case' results showi:, there do not appear to be any clear trends in· 

the choice of activation function across till various !est problems and algorithms, 

except in the case of the Multi-Class problem. Tables B.I to 8.5 in Appendix B show 

the mean test classification error (or mean test ARV for Sunspots) for all 

combinations of activntion functions and training algorithm. These results show that 

there are lai-ge differences in tenns of accuracy, even f~r the same problem and 
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training algorithm using different activation functions. This means that though the 
'best-perfonning' activation function combinations may be achieving similar results, 
these combiuations need to be determined e:,;perimentally. 

The previous analysis of training algorithm performance was also based on these 
'best-perfonning' combinations. The average error rates across a!l activation 
functions for a given training algorithm and problem, shown in Appendix B, also 
indicate that there arc differences in the perfonnancc of various training algorithms 

for a given problem. 

The question theu is whether these differences can be considered significant, and 
how to compare performance across the various tests. In order to detennine if there 
arc statistically significant differences iu perfonnance across the activation fuuctions 
aud trainiug algorithms over all the tests, statistical analysis was perfonned on the 
full set of results obtained. 

The statistical method for showing.that significant differences do exist across a 
number of samples is to test the null hypothesis Ho that the k independeut samples 
have equal means (or are from identical populations). The alternative hypothesis H1 
is that they have different means or are from different populations. The k 

independent samples in this case would be the nine different activation function 
combinations tested or, alternatively, the eight different training algorithms. The 
statistical test choseu was the Kruskal-Walli~ H test (Walpole et al., 1998). This test 
is a non-parametric procedure for testing the equality of means while avoiding the 
assumption that the samples were selected from normal populations. The distribution 
of means across the va1ious functions, algorithms and benchmarks may not be 
nonnal, hence the selection ofa test that avoids that assumption. 

The procedure for applying the test is as fo!lows. For each of the benchmarks 
tests, the mean errors ns shown in Appendi:,; B were ranked from 1 to 72 in ascending 
order. For cases where there is more than one sample with the same value, the rank 
will be the average of the rank positions. For c:,;ample if there are two samples in 
equal 5•h position, they will both be ranked 5.5 and 3 ~amples in equal \31h position 
will be ranked 14 (average of 13, 14 and !5}. 

The I, statistic for the particular benchmark is calculated using the formula 

where 

12 • r.1· 
11=--L.L-J(n+1) 

n(n+l) ,.1 n1 

nJ is the number of observations in the ith sample (i = 1,2, ... ,k) 

r1 is the sum of the ranks of the 111 observations in the ith sample 

n ~ 111 + 112+ •• + nt is the total number of observations. 
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The statistic his approximated very well by a chi-squared distribution with k-l 

degrees of freedom when Ho is true and if each sample consists of at least S 

observations (Walpole et al., 1998). The null hypothesis Ho is therefore rejected with 

95% confidence if the calculated value of h is greater than the value for z;,, with 

degrees of freedom v = 8 when comparing the nine different activation function 

combinations used. 

The tables of rankings for the various benchmarks are shown in Tables B.6 to 

B.10 in Appendix B, along with a ranking of the activation function combinations 

based on the sum of rankings across the rows. The calculated h values for each 

benchmark are given in Table 4.6, along with the critical :/ value and no overall h 

statistic. The h values that are larger than the critical value are shown in bold. The 

'overall' h value was obtained by summing the rankings across all the benchmarks 

(shown in Table B.11), then ranking the sums from l to 72 {as shown in Table B.12 

in Appendix B) and finally calculating Ii. 

From Table 4.6, it can be seen that the null hypothesis quite clearly holds true for 

all the benchmarks except for the Multi-Class problem. In the case of the Multi-Class 

problem, H~ is rejected with greater than 95% confidence, indicating that there is a 

significant difference between the means. This bears out the observation that the 

combination of exponential shunting and log sigmoid output activation functions 

gives the best performance with most of the algorithms for the Multi-Class problem. 

For all the other benchmark tests there is no statistically significant difference in 

perfom1ance across the various activation function combinations. 

The next ~tep was to use Tables B.12, and sum down along the columos to 

compare the means for the various training algorithms using the same procedure. 

This time the critical chi-squared value is ;c;., with v = 7 since there are eight 

algorithms being compared. Tnble 4.6 shows that the null hypothesis Ho is rejected 

with greater than 95% confidence for the overall ranking as well as for all the 

individual benchmark tests. These results confirm the conclusion, obtained by visual 

observation of the graphs and tables, that there are significant differences in the 

accuracy achieved by the various training algorithms. 

Table46 The h values calculated for all benchmark tests 

Bonchmark Test Comparison across activation Compari;on ncros$ training algorithms 
function, 

It Calculated Cri1ical value h Cnlculntod Critical value 

J-bit Paritv 8.572 31.716 

Breast Cancer 7.922 40.670 

Diabetes 2.235 15.507 30.099 14.067 

Multi-Closs 28.857 17.689 

Sun,...,.t, 6.669 54.102 

OVERALL 2.218 Sl.023 
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Table 4.7 Overall ranking of 

training algorithms for SIANNs 

Training Com(>Ositc 
Rank At •ori1hms Sum ofr.inks 

' CM 864.5 , OLM AM 1039 

' LMAM [412.5 

' DS-GDX 1578.5 

' '°' 1543 

• GDM 1732 

1 RDM2 2474 

• SOM 2496.5 

Table4.8 Overall ranking of 

activation functions for SIANNs 

Activation Functions 
Composilc 

Rank Shuntinn Out Ul Sum ofrnnks 

' "" ""' 1275.5 , ""' L~s 1293 

' '"" "" 1302 

' " ' Lin 1496 

' "" Lin 1474.5 

• '"" Lin 1493.S 

1 ,, 
'"" 1538 

" '"" '"" 1628 

• ""' '"' 1639.5 

Tables 4.7 and 4.8 shows the 'overall' rankings for the trnining algorithms and the 

activation functions obtained by summing the ranks across all benchmarks and then 

rnnking the sums, as given in Table B.12. The composite sum of ranks across all 

benchmarks tests, as shown in Table B.11, is also presented, to give an indication of 

how 'far apart' the rnnkings are. 

It should be noted that the rnnkings for the activation functions are given as an 

indication only, as the preceding tests show that the overall differences in 

perfonnance due to the activation functions are not statistically significant. The 

composite sum of rankings bears this out, as the sums arc quite close to each other, 

with the biggest gap being between the third and fourth ranked combinations. Also, 

the fourth ranked Lgs-Lin combination has a larger sum than the sixth ranked Tnh

Lin combination. This means that the ranking as done using Table B.12 gives a 

different order of ranking than the ranking given in Tab!e B.11 that was based purely 

on the sum of the individual benchmark ranks. This is due to the fact that the results 

are actually too close to clearly differentiate and rank them. An interesting point to 

note, however, is that there appears to be a trend with the output activation functions. 

The combinations with the logistic sigmoid (lg.1) output function perform the best 

followed by the linear output combinations, and the hyperbolic tangent sigmoid (111'1) 

combinations coming in last. There is no such trend apparent when looking at the 

'best-perfonning' combinations though, with a number of combinations the ton 

sigmoid output coming out best for different algorithms and problems. 

For the training algorithms, the LM algorithm is the highest ranked algorithm 

followed by its variants the OLMAM and LMAM algorithms. The direct solution 

DS-GDX algorithm comes in next followed by the first order GDX and GDM 

algorithms, with the adaptive learning rate GDX algorithm ahead of the simpler 

91 



DEVEWPMENTOF TMl/'11/IGALGORffHMS 

GDM algorithm. Not surprisingly the stochastic ROM and ROM2 algorithms are 

ranked the lowest. This ranking follows the same pattern as the general trends 

observed using the 'best perfonning' activation functions. Looking at the sum of 

ranks, there is a distinct difference between the algorithms, except between DS·GDX 

and GDX and between ROM and ROM2. In fact GDX has a lower sum than DS· 

GDX, but, as with the activation functions, when there is nn significant difference 

the various ranking mechanisms sometimes produce different orderings. 

The rankings here are based on the accuracy of the networks on the test set, but 

other factors such as the time required for training and computational comple1'ity 

also need to be considered when selecting a training algorithm for a given problem. 

4. 7 Conclusion 

This chapter describes the development of a number of training algorithms for 

SIANNs, including the derivation of the appropriate equations. The test methodology 

has been presented and a number of benchmarks tests described. SJANNs have been 

applied to these benchmark problems, trained using the algorithms derived, and the 

experimental results presented. The results obtained are comparable to those obtained 

by other types of neural networks, showing that the SIANNs can be trained 

successfully on a variety of problems. 

The effect of the limit on the shunting neuron denominator during training has 

been investigated and analysed. Inferences have also been drawn, from these results, 

011 the effect of the combination of nctivation functions and perfonnance of training 

algorithms. It can be concluded that the choice of activation functions has a 

significant effect on the accuracy of the trained network, but there is 110 single 

combination that works best across all the training algorithms and problems. TI1e 

optimum combination for a particular problem and training algorithm therefore has 

to be determined c)(pcrimentnlly. The differences in training algorithm performance, 

on the other hund, arc statistically significant, and an overall ranking hnsed on the 

accuracy has been produced. It should be noted, however, that there is often a trade

off between accuracy and training time, and that the relative performance of the 

algorithms is still problem dependent. 

In genera!, the e1'perimenta1 results show that SIANNS can be applied 

successfully to classification and prediction problems using the training algorithms 

developed. This means that SIANNs are a viable class of neural networks that can be 

applied to various types of problems. 
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Chapters 

The Quadratic Neural Network Algorithm 

S.1 Introduction 

The training of feedforward neural networks is based on the minimisation of an 
objective function related to the output error. The general strategy for supervised 
!earning is based on combining a quickly convergent local method with a globally 
convergent one (Battiti, 1992). The local methods arc based 011 local models of the 
generally complex error surface. Most algorithms are based on a linear (first order) 

model or quadratic (second order) model. Quadratic methods tend to have faster 
convergence, though they occasionally get trapped in local minima. 

Second order methods rely on minimising a quadratic approximation to the error 
function, E(w), that uses the first three terms of the Taylor-series expansion about the 
current point, w., given by 

(5.1) 

where 8w is the weight chwtge, g is the gradient vector and H is the Hessian matrix. 

Solving this equation yields the optimal change in the weight matrix, given by 

/Jwop, ,. ff 1g. However, the calculation of the Hessian II and its inverse is 
computatio_nally prohibitive, thereby leading to approximation methods being 
investigated. There arc also problems where the Hessian is not positive definite, is 
singul¥, or ill-conditioned (Bnttiti, l 992). The matter is further complicated if 
constraints arc imposed on the solution, as is the case for Shunting Inhibitory 
Artificial Neural Networks (SIANNs), where certain weights need to be constrained. 
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The Quadratic Ne11ral Network (QNN) algorithm is II novel second order method 

that uses a recurrent "neural network" to detennine the minimum point of the 

objective function to be minimised. It is based on work using recurrent neural 

networks for bound constrained quadratic minimisation proposed by Bouzerdoum 

and Pattison (Bouzerdoum & Pattison, 199311, l993b). 

This chapter presents the development of the Quadratic Neural Network training 

algorithm and a number ofvnriants, and their implementation in training SIANNs on 

II number of benchmark problems. The following section outlines the development of 

the algorithm and its implementation for training fecdforwnrd neural networks. The 

third section covers the adaptive determination of parameters, followed by the 

section on constraining the QNN update. Section 5.5 presents experimental results 

comparing the performance of the various QNN-bascd algorithms with other 

algorithms and analysis of the results obtained. Conclusions are provided in Section 

5.6. 

5.2 Development of the QNN Algorithm 

This section firstly outlines the development of the method of using recurrent neural 

networks for bound constrained quadratic minimisation upon which the QNN 

algorithm is based (Bouzerdoum & Pattison, 1993b). This is followed by sub

sections on the recursive equations used to model the recurrent neural network, and 

the method of applying this to the practical training of neural networks in general, 

and SlANNs in particular. 

5,Z,l Algorithm Formulnllon 

Bouzerdoum and Pattison's method (Bouzerdoum & Pattison, \993a, !993b) uses n 

recurrent neural network to solve the bound constrained quadratic optimisation 

problem 

min{E(w. +Aw):µ :::Aw :::u} •• 
(5.2) 

with µ,ue R' for w ER•. 

In order to ensure the constraints arc always satisfied, let 

Aw= p(u) .. Br(u) (S.3) 

where r:R• ..... R' is a piecewise-linear function defined as 
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UJ <!,1 

ll1E~J,{1] 

111 >{1 

(S.4) 

The 11-dimcnsionnl vector u is permitted to vary without constraint, B is an n-by-n 

positive diagonal matrix that serves as o preco11di1io11er, and !,,{ e R" arc the 

constraintsp,uon t,.w mapped onto corresponding values of u such that !, "'8"1 µ 

and {"' e-1u. By identifying p(u) such that t,.w is confined to the constraint region, 

the problem now becomes an 1mconsrrai11ed minimisation of the objective function 

M(u) over u where 

M(u)"' 1{ p(u) +!p(u)7 Hp(u) (5.S) 

Consider now the single-layered recurrent neural network whose state vector is 
defined by the differential equation 

"" _,._g-Au-Cf(u) 
d, 

(5.6) 

where g is the external input, f(u) is the network output, C is the lateral feedback 
matrix with zero diagonal entries, and A is a positive diagonal matrix representing 
the passive decay rate of the state vector. 

To map the constrained quadratic problem onto the neural network, we set 

A "'diag(HB) (5.7) 

C"'HB-A (5.8) 

where diag(.) selects the diagonal elements of its matrix argument. 

The desired output t..w"' Bf(u) is obtained from the network output f(u) through 
multiplication with the diagonal preconditioncr B. Bouzerdoum & Pattison 
(Bouzerdoum & Pattison, \993a) showed that, provided the matrix H is positive 

definite, the neural network defined by (5.6) lrns a unique equilibrium point u' which 

is mapped by p onto t..w', the optimnl constrained weight update to the minimum of 
E(w). They have also shown that the network is globally convergent to this 

equilibrium point. 

Tiie spectral condition number ofa matrix is defined as the ratio of the maximum 
to the minimum singular values of the matrix. If the state-feedback matrix has a large 
condition number, then numerical computations are susceptible to round·off errors 
and errors in the weights of the state-feedback matrix. Preconditioning is used to 
keep the condition number small. It has also been shown that preconditioning speeds 
up convergence (Bouzerdcum & Pattison, 1993b). 

95 



THE QUADR..ITIC N£1JR..lt N£TWD/IK ,f~GDRITHM 

For the system in question, a simple choice for the prcconditioner matrix Bis 

bu=~ 
h,, 

a>O (5.9) 

where b11 nnd hu arc the diagonal elements of B and H respectively. The choice of 

preconditioniog has the added advantage of simplifying the eKpression for matrix A, 
which then simply becomes 

A=al (5.10) 

where I is the identity matrix. 

The matrix C = HB-A can then be defined by 

i'F-j 
i,j e l, ... ,n (5.1 l) 

i=j 

5,2,2 Slmulatlng the Recurrent Neural Network 

In this training algorithm, the operation of the recurrent network for the quadratic 

minimisation is approximated by a discrete time recursive equation. At each training 
epoch, a recurrent neural network is 'constructed' with constraints based on tho stnto 

of the network being trained at that point. The "recurrent network" modelled by the 

recursive equation will return the optimal weight update for that epoch and the 
network being trained will have its parameters updated using (5.3). 

The differential equation (5.6) can he approximated by 

u(k + l)-u(k) = -g-Au(k)-Cf(u(k)) 
d 

:. u(k +I)= u(kJ-d(g+ Au(k) + Cf(u(kJ)) 

where dis the discrete 'time-step'. 

(5.12) 

(5.13) 

The recursive equntion (5.13) is iterated a finite number of times to obtain an 

approximate optimal value of u, then the update of the weights, i'l.w, is calculated 

from (5,3). The recursive equation can be iterated a fixed number oftimc.1, because 
even if the weight update is sub-optimal, the overall effect of any error is not critical 

since the process will be repented for a number of epochs. 
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5.2.J Applying lhe QNN Algorithm to neural network training 

The recursive equations as they stand require the evalua!ion of the Hessian matrix to 

detennine C, as given in (5.8). In practical implementations, the computational cost 

of calculating the Hessian matrix is too high, so approximations of the Hessian are 

used. The QNN algorithm has been implemented for MLPs (Arolampalam & 

Bouzcrdoum, 2001b, 2002b) based on the Levenberg-Marquardt (LM) 

approximation (Hagan & Menhaj, 1994): that is, the same approximations for the 

gradient and Hessian based on the Jacobian as in LM have been used'. 

g "'J 7 (w)e(w) 

H,.,Jr(w)J(w)+µI 

(5.14) 

(5.15) 

where J{w) is the Jacobian matrix, e(w) is the vector of residuals (errors) for the 

training set, I is the identity matrix andµ is a variable parameter that dctennines the 

trost region. 

This approximation of the Hessian has been used instead of the Gauss-Newton 

approximation (If a, J T(w)J(w)) to overcome the problems of rank deficiency, since 

neural network training problems are intrinsically ill-conditioned (Haykin, 1999, p. 

235), as well as the requirement of the QNN algorithm that the Hessian be positive 

definite. Tests with the Gauss-Newton approximation for the QNN nlgorithm 

resulted in non-convergence due to the above-mentioned problems. 

The only difference between the implementation of the LM and QNN algorithms 

is that the step where the change in weights is calculated with the matrix inversion in 

LM (refer to Section 2.8.3) has been replaced with the ''recurrent neural network", 

i.e. the recursive equation given in (5.13). 

5,2,4 Determining 'optimum' parameters for the QNN algorithm 

The parameters that affect the QNN nlgorithm nre the constant for the preconditioner 

matrix, a, the discrete timc·step, d, and i, the number of iterations to update the 

recursive equation. One important observation that was made during these 

experiments was that the product ad could be taken ns one parameter for the 

algorithm since the parameters a and d had inverse effects, For example, setting a= 
I and d = 0.1 produces exactly the same results as a= 2 and d = 0.05. As such, the 

tcnn a was fixed at I and only the d and i parameters were varied. 

In order to find an approximate 'optimum' value for these parameters, SIANNs 

were trained on the Wisccnsin Breast Cancer and Pima Indians Diabetes datasets 

using the QNN algorithm with varying d and i values. Fig. 5. l shows the mean error 

and mean training time as the time-step, d, is increased from 0.01 to 2.0. Fig. 5.2 

97 



THE QUADRATIC NEURAL NETWORK ALGORJTHM 

shows the same as the number of iterations, i, is increased from 5 to 100. The 

minimum en-or achieved is also shown for the Diabetes problem, as it i non-zero. 

Details of the results are given in Tables B.18 and B.19 in Appendix B. 
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SIANNs trained on Breast Cancer (a c) and Diabetes (b d) datasets 
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Fig. S.l shows that increasing the parameter d above 1.0 results in the algorithm 

'blowing-up', with mean error values over 40% ford= 2.0. These error values were 

allowed to go off the graph in order to clearly show the variations for the other 

values. Fig. 5.2 shows that there is no significant improvement in accuracy for i 

greater than IO, but training time increases as i is increased. From these results, the 

'optimum' values chosen were d = 0.2 and i = 20, shown by dashed vertical lines in 

the figures. These values were chosen to balance accuracy with training time, as well 

as avoiding possible instabilities. These values have been used for all subsequent 

tests, unless otherwise stated. 

5.3 Adaptive Determination of the Parameters for the Algorithm 

In the previous section the 'optimum' values for the discrete time-step, d, and the 

number of iterations, i, were determined experimentally. These values were based on 

tests using two different benchmark datasets. The results indicate, however, that 

there is no clear-cut optimum value and that the 'optimum' value may vary 

depending on the problem at hand. In order to reduce the number of parameters to be 

determined and to allow the algorithms to be more general, these parameters should 

ideally be determined adaptively. Methods for adaptively determining these 

parameters arc presented in the following sub-sections. 

5.3.J Adnplive determinntlon of the number of iterations, i 

To reduce the number of free parameters, a method was developed to adaptively 

determine i, the number of iterations for u(k). The rationale is that the iterations can 

be stopped when the percentage change in u(k) drops below a certain limit. The 

change, 6u(k), is given by 

Oll(k) = norm(u(k + 1)- u(k)) 
norm(u(k+ I)) 

(5.16) 

In order to determine a 'good' lower limit for ,Su(k), 611,., the QNN algorithm was 

used to train SJANNs on selected classification problems with vnrying limit values. 

Fig. 5.3 shows how !lie mean error and mean training time chnnge as llu., is increased 

from 0.001 to 0,5. The maximum number of iterations I was set at JOO to provide a 

reasonable upper bound to the number of iterations performed per update. 
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Fig. 5.3 : Percentage enor and average training time vs. 8u111 , the lower limit for 

5u(k), for SIANNs trained on Breast Cancer (a c) and Diabetes (b d) 

datasets 

The results indicate that there is no significant variation in accuracy as Dtim is 

varied. However, there is a decrease in the training time for the Diabetes problem as 

the limit is lowered until D!im = 0.002, after which it increases again . From these 

result , the chosen lower limit is 8/im = 0.01 (1 %) a conservative limit that balances 

training time with accuracy, while avoiding a very small limit that could potentially 

lead to excessive iterations with different problems. 

Tbis stopping criterion was incorporated into the algorithm primarily as a method 

of reducing the training time by stopping the iteration of the recursive equation if 

u(k) was not changing significantly. The maxi.mum number of iterations was set to 

20, which is the ' optimum' value determined in the previous section and the 

iterations stopped earlier if 8u(k) < 0.01 , i.e. if the nonn of u(k) changed less than 

1 %. This would reduce the training time without significantly impacting the weight 

update. This method has been incorporated into all subsequent tests performed. 
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5.3.2 Adaptive determination of the discrete time-step size, d 

The neuml network training implementation of the QNN algorithm contains the 

parameterµ, which can be used as a measure of how close to quadratic the objective 

function is during training. This can be used to adaptively vary the 'time-step' term 

for each epoch, d. Ifµ decreases, the quadratic approximation is improving, therefore 

dis increased, othcnvise it is decreased. The value ofµ changes by a factor of 10 

within the range 10·10 to 1010, hence the value of dis varied according to 

d( current epoch) = d(previous epoch)• ( l -(1~~.ot)) (5.11) 

which results in a multiplicative factor of between 2 and O.l approximately. 

This method has been found to work well for a variety of problems when the 

algorithm was applied to MLPs, but does have a drawback when applied to complex 

problems where the value ofµ remains large for long periods. In these cases the 

value of d becomes tiny, sometimes in the order of 10·100
, resulting in long training 

times without any significant improvement in performance (Arulampalam & 

Bouzerdoum, 2001b, 2002b). 

An alternative method formulated was thus to vary d only when the final value of 

µ changes compared to previous epoch. The step size would be increased by a 

constant factor when µdecreases and vice versa, for example 

l
d(previous epoch)• 1.1 

d(currentcpoch) = d(previousepoch) 

d(previousepoch)• 0.9 

µ(current)< µ(previous) 

µ(current)= µ(previous) {5.18) 

µ(current)> µ(previous) 

Another alternative is to increase the frequency of the d value update from once 

every epoch to every timeµ is updated. The value ofµ is increased by a factor of 10 

until the objective function is equal to or lower thElll previous epoch and then it is 

decreased by a factor of 10 {refer Section 2.8.3 on LM algorithm). 

Other variants include combining the different update times (both once an epoch 

and every µ update) and varying the update factors. The various combinations of 

update frequency and update fomrnlne tested are summarised in Table 5.1. 

The various methods of varying d were tested on the Wisconsin Breast Cancer 

and Pima Indians Diabetes benchmark problems. The main objective of these 

algorithm variants is to minimise the dependence of the results on the initial value of 

d chosen. To test this, the same sets of networks were trained using the different 

algorithms with the initial value d~ set to 0.05, 0.2 and I. The values were chosen 

~F.iund 0.2 because the 'optimum' value ford as detennincd in the previous section 

was0.2. 
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Table S·I Summary of d update methods for QNN algorithm variants 

Algorithm Update frequency Update formula 

Q!"N d.fix.ed 

QNN2 Every epoch 
d= d·(,-C~~-

0:J). 
QNN3 Every !!update r•LI µ(current)< µ(previous) 

d=c d µ(current)= µ(previous) 

d/1.1 µ(current)> µ(pre'vious) 

QNNS i) Every epoch . i) QNN2 update 

ii) Everyµ update ii) QNNJ update 

QNN6 i) Every epoch i)_d=d'"l.l 

r•LI µ(current)< µ(previous) 

ii) Every µ update 
ii) d"' d µ(current)= µ(previous) 

d*0.1 µ(current)> µ(previous) 

QNN7 i) Every epoch i) d=d*l.l 

ii) d={:. 0_9 

µ(current):<, µ(previous) 
ii) Everyµ update µ(current)> µ(previom) 

QNNB Every epoch 
d=t·I.I 

µ(current):<, µ(previous) 

d*O.B µ(current)> µ(previous) 

QNN9 Every epoch r·u µ(currrmt) < µ(previous) 

d"' d µ(current)= µ(previous) 

d•0.9 µ(current)> µ(previous) 

The results obtained are shown in Tables 5.2 and S.3 and in Figs. S.4 and 5.5. The 
tables show each variant in the first column, the best performing activation 
combination for thnt algorithm, followed by the mean classification error for the 
three do values in columns 4 to 6. Columns 7 and 8 show the percentage variation of 
the means for do "'0.05 and dn = 1.0 from that of the 'basic' do of0.2. The last three 
columns show the mean training time for each of the starting do values. 
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Table 5.2 

Training 

Algorithm 

QNN 

QNN2 

QNN3 

QNN5 

QNN6 

QNN7 

QNN8 

QNN9 

Results for QNN variant comparison using Brea t Cancer dataset 

Activation 
functions 

Shunt Out 

Exp Lgs 

Tnh Lgs 

Tnh Lgs 

Lgs Lgs 

Lgs Lgs 

Ex-p Lgs 

Tnh Lgs 

Lgs Lgs 

14 

17 

IO 

l 
g oe 
w 
ll .. 
~ 06 
• • ::i: 

04 

02 

00 
Of'IN 

Ell 

70 

60 

E so .. 
e 
F .. 
! AO 

e .... 
: 31 
:le 

Mean Classification Error Change in error 
(%) from d = 0.2 (%) 

dn= 0.05 dn= 0.2 do= 1.0 d,F 0.05 do= 1.0 

0.70 0.26 0.29 169.2% 11.5% 

0.49 0.43 10.09 14.0% 2246.5% 

0.58 0.33 0.41 75.8% 24.2% 

0.36 0.24 0.42 50.0% 75.0% 

0.37 0.36 0.34 2.8% -5 .6% 

0.67 0.35 0.32 91.4% -8.6% 

0.66 0.42 0.85 57.1% 102.4% 

0.53 0.32 0.17 65 .6% -46.9% 

Wisconsin Brust Cancer 

Avg. CPU time (s) 

dn= 0.05 d11 = 0.2 

15.5 

13 .1 

27.5 

43 . 1 

24.4 

15.3 

24.9 

25.6 

21 d;() 05 

• d=02 

Eld=1 

15.7 

10.4 

17.4 

49.0 

20.0 

15.6 

15.9 

19.4 

dn = 1.0 

19.6 

17.4 

23.0 

253.6 

20.3 

21.2 

26.2 

20.4 
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------

Algorithm 

Fig. 5.4: Mean test e1Tor and training time for Brea t Cancer dataset using SIANNs 

trained with QNN algorithm variants. 
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Table 5.3 

Training 

Algorithm 

QNN 

ONN2 

QNN3 

ONN5 

QNN6 

QNN7 

QNN8 

QNN9 

Results for QNN va1iant comparison using Diabetes dataset 

Activation Mean Clas ification Error Change in error Avg. CPU time s) 
functions (%) from d=0.2 (%) 

Shunt Out do= 0.05 d0 =0.2 dn = 1.0 drF 0.05 do= 1.0 do= 0.05 do= 0.2 

Lgs Tnh 20.82 19.88 19.43 -2.3% 4.7% 121.7 76.7 

Exp Lin 20.36 19.95 23.52 17.9% 2. 1% 219.l 203.8 

Exp Tnh 20.66 ]9.80 19.67 -0.7% 4.3% 86.8 44.6 

L~s Lin 20.54 19.96 20.76 4.0% 2.9% 245.5 198.6 

Lgs Tnh 20.57 20.02 20.17 0.7% 2.7% 28.9 23.3 

Exp Tnh 20.50 20.05 19.90 -0.7% 2.2% 66. 1 40.0 

Exp Tnh 20.42 19.91 20.14 1.2% 2.6% 76.6 34.2 

Lgs Tnh 20.42 19.57 19.85 1.4% 4.3% 63.0 69.4 

Diabetes 
24 ··- --·-- __ .. _____ .. _______ -- -

22 

~ 
~ 21 
w 

i 
~ 

j 20 
:! 

19 

10 

200 --

:E 
.. 150 ---
1: 
;::: 

"' c c 
~ 
: 100 
:"! 

50 

CNN 

___ .. ---··-.. ----------·---

ONN2 QNN3 ONN5 QNl\6 QNN7 ONN!I 
Algorithm 

__ __, 

2l d=O 05 

• d=0.2 

130=1 

ONN9 

do= 1.0 

36.3 

18.5 

25.3 

75 .7 

28.0 

23.3 

24.4 

41.2 

Fig. 5.5: Mean te terror and training time for Diabetes dataset using SIANNs trained 

with QNN algorithm variants. 
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The percentage variation, in Columns 7 and 8 of the tables above, show that the 

QNN2 algorithm perfonnance is sti\! highly dependent on the starting va!ue of d. 
There is a large variation in the means as do is changed, even larger than for the 

'standard' QNN with fixed d. This defeats the purpose of varying the d value in the 

first place. QNNB also showed a fairly significant variation for the Breast Cancer 

dataset, as did QNN7. The QNN5 algorithm had long training times and moderate 

variation in mean error, but had low error rates for do = 0.2. The QNN6 variation 

appears to have the most stable perfonnance across the various d values with no 

more than 6% variation. 

The decision was taken to evaluate a subset of these variants in the subsequent 

sections along with the standard QNN algorithm, namely QNN3, QNNS, QNN6 and 

QNN9. The other variants were dropped either because they didn't perfonn well 

(QNN2) or were similar to better performing variants (QNN7 similar to QNN6, 

QNNS similar to QNN9). This selection maintains a broad comparison of the 

methods while reducing the number of tests to be perfonned and reported. 

5.4 Constraining the QNN Update 

One enhancement made to the QNN algorithm was to use the ability of the algorithm 

to handle constraints by imposing a constraint on u such that it is bounded by the 

function f to the hypercube defined by 100 times the components of the gradient 

vector. The rationale is that it would keep the updates in the general gradient descent 

quadrant, thereby reducing the possibility of instability. This eo11strained QNN 

algorithm (QNN-C) has bee11 applied to MLPs, with results indicati11g that the 

constraint improves the accuracy of the classifiers at the cost of lo11ger training time 

(Arulampalam & Bouzerdoum, 2002b). It was found that as the complexity of the 

problem i11creases the performa11ce of the constrained algorithm drops, sometimes 

quite dramaticn!ly. The probable reason for this is that the simple constraint 

co11ditio11 actually works agai11st the minimisation of the error when the error surface 

is too complex. 

The QNN-C algorithm was used to train SIANNs on the full set of five 

benchmark problems in order to gauge the effect of the constraint on a variety of 

problems. The results presented in Table 5.4 clearly show that the simple constraint 

results in extremely poor performance. 

In order to improve the performance of the constrained QNN algorithm, an 

alternative constraint function was proposed. The alternative update constraint 

eo11sists of merging the original hypercube, formed by the components of the 

gradient multiplied by 50, with a smaJler hypercube centred on the origin with 
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boundary value calculated from the nonn of the previous update (norm(t..w)) and the 

value ofµ as follows 

boundary value= nonn {t..w{previousepoch))•( 1-(1~~.'( )) (5.19) 

The smaller hypercube serves to free the weight update tn 'move' in directions 

other than that of the gradient. The size of the 'freeing' hypercube is detennined by 

the previous step size as well as the quadracity of the update (µ). If the 

approximation is more linear (large µ) the size of the second hypercube is smaller 

resulting in the constraint to be closer to the gradient. If the update is closer to 
quadratic, the size of the hypercube is expanded allowing update in other directions. 

The algorithm variant using this second hypercube in the constraint is referred to as 
QNN-C2. 

The effects of this second constraint can be seen in the results that follow, where 
both the constrained and various unconstrained versions of the QNN algorithm are 

compared. 

Table 5.4 Best case results for SJANNs trained using original QNN-C algorithm 

Benchmark Tei! l'crccntnee error 
Best Mcon 95%C! 

3-bit pnrity 25.0 48.5 ± l.93 
Brea,! Cnnccr 0.56 20.4 ±3.SS 
OiolXltcs 30.7 39.5 ±2.11 
Multi-class 26.0 67.6 ±5.32 

AVR 
Sunspols 0133 1.480 .-±0.294 

5.5 Benchmark Test Results and Analysis 

The QNN algorithm and selected variants of it were tested on the s11tue set of 
benchmarks problems, with the same training and test conditions as the other 

algorithms tested in Chapter 4. The results obtained are presented in this section. The 
previously presented results obtained for the Gradient Descent with momentum and 

adaptive learning rate (GDX) and Levenberg-Marquardt (LM) algorithms are also 
presented for comparison, representing the best first- and second-order algorithms 

previously tested. 
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S,S,I Results for the Wisconsin Breast Cancer dataset 

The results obtained by testing the 9-9-1 SIANNs trained using the various QNN 
algorithms are presented in Table 5.5 and Fig. 5.6. Note that the median error in all 
cases was zero and so is not visible in the figure. The results indicate that there is no 
significant difference in the accuracy of the classifiers trained using the different 
algorithms. The mean error rates range between 0.24% to 0.36% and the percentage 
of networks achieving 100% accuracy between 56% and 68%, for the QNN 
algorithm and its variants. This is fairly close to the results of the GDX and LM 
algorithms: 66% networks with no error achieved by GDX, 74% with LM, and 
0.20% mean error achieved by both. In fact, comparing the QNN results with the 
other algorithms tested in Chapter4, it can be seen that QNN outperfonns the rest of 
them in tenns of accuracy. 

The training times, on the other hand, show more variation. Most of the QNN 
variants tested took a similar amount of time to train the set of networks. The 
exception was QNN5, which took a much longer time to train in the preliminary 
tests. QNN5 was retained for this section for two reasons: firstly, it was capable of 
producing good results; and second, to highlight the effect on training time the 
'wrong' selection of the d update method could have. It fulfilled both requirements, 
achieving a meao error of0.24%, the !owes! mean error among all the QNN variants, 
and having the longest mean training time. The QNN5 training time was more than 
double all the other algorithms except LM. The other QNN variants had training 
times one and n half to two times longer than GDX, but about halfthc time ofLM. 

Overall, the standard QNN algorithm appears to be the 'best' of the QNN variants 
for this test, with the second best accuracy and fastest traioiog time. There does not 
appear to be any significant differences in perfonnance between the variants, except 
for the training time ofQNN5. 

S.S.2 Resulh for Pima Indians Diabetes dataset 

The rc~uhs for this test, presented in Table 5.6 and Fig. 5.7, show a similar trend to 
the results of the Breast Cancer. All the QNN variants achieved good accuracy with 
mean errors at 20% or below, which is a good result for this problem. The error rate 
achieved is between 19.6 and 20.0 %, similar to or better than the 19.88% reached 
using LM and better than GDX, which averaged 21.03%. Two of the variants, QNN9 
and the constrained QNN (QNN-C2), were able to average close to 19.6% with the 
upper 95% Confidence limit below 20%. All of the QNN algorithms were able to get 
more thao 50% of networks with error rates less than 20%, the best being QNN-C2 
with 70%. The QNN6 variant was able to produce the best perfonning network with 
an error rate of only 15.63%, which is significantly lower than the best case 
performance of 17. 71 % achieved by most of the other variants. 
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Table 5.5 Best results for Wisconsin Breast Cancer dataset using 9-9-1 SIANNs 

trained with QNN algorithm variants. 

Training Actlvai-,on Perfonnance Avg Epochs Test Error Mean 

Algorithm functions (% of runs) Train 

Sh Out 7 7 95% CI 
time 

0% 20% All 0% Best Mean Median (s) 
goal err < runs goal Errors (%) (%) (%) 

QNN Exp Lgs 0 68 100 70 • 64 0.00 0.26 ± 0.13 0.00 15.7 

QNN3 Tnh Lgs 0 56 100 78 • 70 0.00 0.33 ± 0.12 0.00 17.4 

QNN5 Lgs Lgs 0 60 100 201 • 201 0.00 0.24 ± 0.08 0.00 49.0 

QNN6 Lgs Lgs 0 60 100 109 
,.. 

86 0.00 0.36 ± 0.14 0.00 20.0 

QNN9 Lgs Lgs 0 64 100 87 * 75 0.00 0.32 ± 0. 15 0.00 19.4 

QNN-C2 Tnh Lgs 0 62 100 77 * 74 0.00 0.29 ± 0.12 0.00 17.1 

GDX Lgs Lgs 0 66 100 161 * 160 0.00 0.20 ± 0.08 0.00 10.3 

LM Lgs Tnh 0 74 100 181 • 119 0.00 0.20 ± 0.10 0.00 34.8 

Wisconsin Breast Cancer 
06 

05 
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02 

o, 

ONN QNl'otl CNN6 QN"6 CNl'S QNN-c:2 GOX LM 

ONN QNl'otl ONN5 ONN6 QNN9 ONN-C2 GOX LM 

Al9orlthm 

Fig. 5.6: Mean test e1Tor and training time for Breast Cancer dataset using SIANNs 

trained with QNN algorithm variants. 
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Table 5.6 Best results for Pima Indian Diabetes dataset u ing -8-1 SIANNs trained 

Training 

Algorithm 

QNN 

QNN3 

QNN5 

QNN6 

QNN9 

QNN-C2 

GDX 

LM 

with Q algorithm va1iants 

Activation 
functions 

Shunt Out 

Lgs 

Exp 

Lgs 

Lgs 

Lgs 

Lgs 

Tnh 

Lgs 

Tnh 

Tnb 

Lin 

Tnh 

Tnh 

Tnh 

Lgs 

Tnh 

i! 19 

~ 
"' j t8 

17 

16 

15 

.e 
41 \!ll 
E 
I= .. 
c ·c 
'i! ... 
l; HD .. 
:f 

0 

Perfonnance 

(% of runs) 

"? 
goal 

0 

0 

0 

0 

0 

0 

0 

0 

i!'JBSSI 
•Mean 
El Medlen 

ONN 

0% 20% 
err < 

0 52 

0 60 

0 68 

0 56 

0 66 

0 70 

0 14 

0 58 

ONN3 

Avg Epochs 

All "? 0% 
runs goal Errors 

311 * * 
182 * * 
765 * * 
117 * * 
281 * • 
363 * • 
195 * * 
182 * • 

Pima Indians Diabetes 

ONN5 ONN6 CNN9 
Algorithm 

Test Error Mean 
Train 

95%CT Median 
time 

Best Mean (s) 
(%) (%) (%) 

17.71 19.88 ± 0.24 19.79 76.7 

17.71 19.80 ± 0.27 19.79 44.6 

18.23 19.96 ± 0.42 19.79 198.6 

15.63 20.02 ± 0.37 19.79 23.3 

17.71 19.57 ± 0.28 19.27 69.4 

18.23 19.69 ± 0.22 19.79 83.2 

17.71 21 .03 ± 0.29 21.35 13.2 

17.71 19.88 ± 0.32 19.79 38.9 

QNN,C2 GOX lM 

Fig. 5.7: Best case and mean test error and mean training time for Diabetes data et 

using SIANNs trained with QNN algorithm variants 
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The training time required once again shows significant variation between the 
variants of the QNN algorithm. As in the previous test, the QNN5 variant required 
more than double tbe time required by any of the others, but for this problem the 
mean error rate was not the best, 'only' just under 20%. The QNN9 and QNN-C2 

variants required around the same time as the standard QNN algorithm but achieved 
the best mean error rates of 19.6% and 19.?%, respectively. However, these 
algorithms took one- and-a-half times to twice as long to train compared to the LM 
algorithm. The QNN6 variant took about two-thirds the time of LM and about one
third the time of the standard QNN. It was still slower than the first order GOX 
algorithm, but achieved much belier accuracy. Overall, tbe QNN6 would be the best 
QNN variant for this problem, with good mean accuracy, short training time and the 
best individual network perfonnance by far. 

S.S.3 The 3-blt parity problem results 

TI1e results for the parity problem using QNN and its variants, given in Table 5.? and 
Fig. 5.8, do not look good compared to the earlier results for the other algorithms. 
The mean error for most of the QNN variants was in the 3% to 6% range, with 
QNN6 having an error rate of 16% and QNNS even worse with 31 %, compared to 
GDX and LM with 1.3% and 0.5% error respectively. A closer look reveals that 
around 80% of the networks actually achieved perfect classification (0% error), 
QNN5 and QNN6 excepted. The mean was driven up by the runs that did not 
converge, as they ended up with very lnrge errors. It should be noted that the median 
classification error for all the variants was 0%, again QNN5 and QNN6 excepted. 

The trai11ing time for the parity problem using QNN5 was an order of magnitude 
larger than the GOX nnd LM algorithms. Tbe reason for this is that in most cases the 
runs did not tenninate until reaching the maximum allowed number of epochs (i11 tbis 
case 1,000). It would appear that this variant of QNN requires more than 1000 

epochs to solve this problem, since no11e of the networks was able to reach the 
training goal, and the networks that did achieve 100% correct classification required 

the maximum 1000 epochs. 

The other QNN algorithm variants performed reasonably well on this test with 
about 80% of the networks achieving perfect classification accuracy, but could not 
match the GOX and LM algorithms, in terms of both accuracy and training time. Of 
these algorithms (standard QNN, QNN3, QNN9 and the constrained QNN-C2), the 
constrained QNN-C2 algorithm achieved the best accuracy, with a mean error of 
3.5% and 92% of network achieving perfect classification, ai;id also had the shortest 
average training time of about 7 seconds. This was still more than double both error 
rate and training time of the GDX algorithm. 

110 



THE QUADRATIC NEURAL NETWORK ALGORJTHM 

Table 5.7 Best results for 3-bit Parity problem using 3-3-1 SIANN trained with 

QNN algorithm variants 

Training Activation Perfom1ance Avg. Epochs Te L Set Classification Error Mean 

Algoritl1m functions (% ofrnns) Train 
time 

Shunt Out 7 0% <20% All 7 0% Bet Mean 95%CI Median (s) 
goal err orr runs goal Errors (%) (%) (%) 

QNN Lgs Lin 72 80 84 413 184 266 0.00 5.00 ± 2.97 0.00 8.0 

QNN3 Lgs Lgs 72 80 88 436 216 295 0.00 4.75 ± 3 .04 0.00 9.4 

QNN5 Tnh Lin 0 14 30 981 • 1000 0.00 31.00 ± 5.30 31 .25 34. 1 

QNN6 Exp Lin 14 24 62 270 156 263 0.00 15.75 ± 3.42 12.50 5.4 

QJ\1N9 Lgs Lgs 74 78 84 370 189 231 0.00 5.75 ± 3.37 0.00 9. 1 

QNN-C2 Lgs Lgs 78 82 92 376 200 239 0.00 3.50 ± 2.33 0.00 7.0 

GDX Tnh Lgs 94 94 96 352 311 311 0.00 1.25 ± 1.44 0.00 2.3 

LM Exp Lin 96 96 100 84 46 46 0.00 0.50 ± 0.69 0.00 1.7 

3-blt Parity 
40 

36 

12 

Fig. 5.8: Mean test error and training time for 3-bit parity data et u ing SlANNs 

trained with QNN alg01ithm variants. 
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It was observed during training that, for some of the networks, the QNN6 

algorithm was tenninating prematurely because the value ofµ was reaching the 

maximum allowed during training, hence the low training time and large averagc 

error rate. 

5.5.4 Results for artlflclal multl-elass problem 

The results for the Multi-class benchmark problem using SJANNs trained with QNN

based algorithms are presented in Table 5.8 and Fig. 5.9. The results show that most 

of the QNN variants achieved mean classification error rates in the 5.7% to 6.1 % 

range, which is similar to that achieved by GDX and LM. The exception is QNN5 

algorithm with a mean error of7.05%. The standard QNN algorithm achieved 6.05% 

error, with the other variants getting better results, QNN6 being the best with 5.72%. 

The best case error achieved was 4.00% for all algorithms, with the exception of 

QNN5 with 4.67%. 

As in the previous tests, the variation lies in the training time. Once again QNN5 

sticks out with a disproportionately large training time, more than double that of any 

of the other algorithms including LM. AU the other variants were able to train the 

networks faster than the LM algorithm, with QNN6 being the fastest of all and 

standard QNN the second fastest. However, GDX was more than 2.5 times faster 

than the fastest QNN algorithm. The GDX algorithm also achieved the lowest 

average error of 5.47%. The QNN6 algorithm had the best performance of the QNN 

variants, with both the lowest error and shortest training time. Its accuracy was 

similar to that achieved by LM, but in half the training time. 

5.5.5 Resulls for the Sunspot time series 

The results for the Sunspots time series ore presented in Table 5.9, showing both the 

performance metrics used: the mean squE1Te error (MSE) and the average relative 

variance (ARV) defined in Chapter 4. Fig. 5.10 shows the best, mean and median test 

ARV as well as the mean training time. 

Tho results show that tho perfonnance of the networks trained by the QNN 

variants are similar, with mean test ARV of around 0.130, except for QNN5 with 

0.202 and QNN6 with the best mean of 0.100. This means that the majority of the 

QNN variants had a better mean test ARV than GDX with 0.174, and not much 

higher than LM with 0.112. TI1e performance of QNN6 is better than that of LM, 

with lower test ARV and lower MSE. 
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Table 5.8 Be t results for Multi-Class dataset using 2-2-3 SIANNs trained with 

QNN algo1ithm variants 

Training Activation Pcrfonnance 

Algorithm functions (% of runs) 

Sh Out 7 0% 20% 
goal err < 

QNN Exp Lgs 0 0 100 

QNN3 Exp Lgs 0 0 100 

QNN5 Lgs Lgs 0 0 98 

QNN6 Exp Lgs 0 0 100 

QNN9 Exp Lgs 0 0 100 

QNN-C2 Exp Lgs 0 0 100 

GDX Exp Lgs 0 0 100 

LM Exp Lgs 0 0 100 

250 

200 

.!!-
" 150 E 
I= .. 
.5 
c 
~ ... 
~ 100 
~ 

50 

Avg Epochs 

All 7 0% Best 
runs goal Errors (%) 

239 • • 4.00 

166 • • 4.00 

472 • • 4.67 

158 * • 4.00 

207 • • 4.00 

269 • • 4.00 

377 • • 4.00 

228 • * 4.00 

Mufti Class 

Te t Error 

Mean 

(%) 

6.05 

5.79 

7.05 

5.72 

5.83 

5.83 

5.47 

5.69 

95%CT 

± 0.27 

± 0.23 

± 1.22 

± 0.21 

± 0.26 

± 0.19 

± 0.16 

± 0.26 

l!lBest 
•Mean 
eMed1an 

Median 
(%) 

6.00 

6.00 

6.33 

5.33 

5.33 

6.00 

5.33 

5.33 

j 

Mean 
Tram 
lime 
( ) 

61.2 

74.7 

220.8 

55.4 

95.6 

72.5 

19.4 

103.0 

Fig. 5.9: Best ca e and mean te t e1Tor and mean training time for Multi-class data et 

using SlANNs trained with QNN algorithm variants. 
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Table 5.9 Best results for Sunspots dataset using 10-10-1 SIANNs trained with 

QNN algorithm variants 

Tmining Aot-fns Performance Avg TestMSE Test ARV Mean 

Algorithm (% of runs) Epochs Train 

Sh Out 7 all in 80% Best Median Best Median Mean 95% CI time 

gonl tol tol (s) 

QNN Lgs Lgs 0 70 100 495 0.0077 0.0106 0.092 0. 127 0. 127 ±0.003 86.5 

QNN3 Lgs Lgs 0 60 100 472 0.0070 0.0107 0.084 0. 128 0. 126 ± 0.004 82.6 

QNN5 Tnh Lin 0 30 96 694 0.0101 0.0142 0.121 0.170 0.202 ± 0.027 134.1 

QNN6 Lgs Lgs 0 80 100 337 0.0054 0.0077 0.065 0.093 0. 100 ± 0.009 45 .8 

QNN9 Lgs Lgs 0 76 100 373 0.0093 0.0111 0.111 0.133 0.133 ± 0.003 65.5 

QNN-C2 Lgs Lgs 0 72 100 535 0.0073 0.0107 0.088 0.128 0.127 ± 0.003 93.7 

GDX Tnh Lin 0 14 98 147 0.0085 0.0134 0.102 0.161 0.174 ± 0.020 6.8 

LM Lgs Lin 0 8 LOO 54 0.0075 0.0093 0.090 0. 111 0.112 ±0.003 9.8 

Sunspots 
0250 

O'lOJ 

0 150 

0 100 

0050 

DOOi 
ONN ONNJ ONNS ONt>.6 ONN9 ONN-C2 GOX LM 

160 

i ,O 

120 

~100 .. 
E 
i= .. 
E 8J 

~ 
: 60 ::.: 

,0 

21} 

ONN ONNJ QNNS ONI\$ ONN9 ONN·C2 GOX l.M 

Algorithm 

Fig. 5.10: Best case and mean test enor and mean training time for Sunspots 

data et using SIANNs trained with QNN algorithm variants. 
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In terms of training time, the QNN5 algorithm takes the longest by for, as in the 

earlier tests. This time, however, the other QNN variants take a lot longer to train 

than LM, mostly 8 to 10 times longer. The best is the QNN6 algorithm that still takes 

5 times longer than LM (45.8 vs. 9.8 seconds). GDX was even faster than LM, but 

this was offset by the significantly lower accuracy. The best performance was by the 

QNN6 algorithm, with the best accuracy overall, better than even LM, and the fastest 

among all the QNN variants. 

S.S.6 Analysls and Discussion 

A visual analysis of the 'best case' results, as shown in the previous sections, does 

not show any definite trends in accuracy across all the algorithms. The clearest trend 

is that the QNN5 algorithm has a much longer training time compared to all the 

others. Overall, the QNN algorithm appears to have accuracy close to that achieved 

by LM and GDX algorithms, with training time in between the two or even worse 

than LM, but there are exceptions in every case. Among the QNN variants, the 

QNN6 algorithm achieved the overall best result in three out of the five benchmark 

tests, with the standard QNN getting the best results for the Breast Cancer problem 

and the constrained QNN-C2 algorithm best for the 3-bit Parity problem. It should 

also be noted that these comparisons are being made on the best perfonning 

activation function combinations. 

In order to perfonn comparison across all combinations of activation functions 

and training algorithms, mean error and ARV values ofa!l cases were compiled, and 

ranked for each benchmark. Statistical testing using the Kruskal-Wallis H test 

(Walpole ct al., 1998) was performed, as done in Chapter 4. The mean error values of 

all tests are shown in Tables B.13 to B.17 in Appendix B, and the rankings given in 

Tables B.20 to B.24. 

The lino] h value ca!cu!ated for each benchmark problem based on comparison 

across al! the training algorithms is shown in Table 5.10. The 'overa!l' h value was 

obtained by summing the ranks across all the benchmarks (shown in Table B.25 in 

Appendix B), then ranking the sums from I to 72 (as shown in Table B.26) and 

finally calculating h. The null hypothesis, Ho, is that there is no significant difference 

in the means of all algorithms. The results indicate that the null hypothesis is strongly 

rejected (with 95% confidence) for the 3-bit Parity, Diabetes and Sunspots 

benchmark problems. For the Breast Cancer problem the null hypothesis is accepted, 

while for the Multi-class problem, the statistic is below the critical value, but large 

enough to show that there is some variation. This result, taken across all possible 

activation function combinations, is similar to the 'best case'. results as shown in the 

previous section. The overall comparison also indicates that there arc significant 

differences in the means. 
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In order to get an idea of the differences in performance and to get an approximate 
ranking of the various algorithms, the final 'overall' rank of a!l activation function 
combinations for each algorithm was summed, and the algorithms ranked according 
to the column sum (refer Table 8.26). This algorithm ranking along with the swn of 
ranks for ench algorithm (ns given in Table B.25) is given in Table 5.11. 

Table5.10 The h values calculated for all benchmark tests using QNN algorithm 

l!onchmsrk Test Comnorison ao,oss tminina al•orithms 

I, Coleulatcd Cri1ieal value 

3-bit Parit 39.552 

Breast Conccr 3.057 

Diob<tcs 22.511 14.061 

Mu!li-Cllllls l l.889 
SunSTIOIS «.on 
OVERALL 36.919 

Table5.ll Overall ranking ofQNN training algorithm variants 

Rank Training Sum of Avg. Training Time 
Algorithm Ranks timc(s) Ranking 

' DNN, 1362.5 45.1 ' 
' ONN, 1397 51.8 ' 
' ONN 1405 49.6 ' 
' CM ·~· 44.1 ' 
' £lNN-C2 1391.5 54.7 1 

' ONNO 1683 30.0 ' 
1 GOX 2188.5 10.3 ' 
" ONNS 2300.5 127.3 " 
The results iu Table 5.11 show thnt the QNN3 algorithm came out on top. The 

se1:ond to fifth ranked QNN9, QNN, LM and QNN·C2 algorithms have scores that 
are very close to each other, and also close to QNN3. In fact'the QNN-C2 algorithm 
was ranked fifth but has a sum of ranks lower tl1an the QNN nnd LM nlgorithms, and 
only half a 'point' behind QNN9. The difference in the ranking shown, which is 
obtained from Table B.26 which ranks the sums obtnined in Table B.25, and"tl1c Sum 

' . of ranks obtained directly from Table B.25, is due to the fact that the diffei"ence in 
perfonnnnce is not significant. These four algorithms cnn in fact be considered to 
have equal ranking. The remaining algorithms had much higher (worse), and 
significantly different, scores. The GDX n!gorithm is second from bottom, with only 

the QNN5 algorithm coming out worse. 

These overall rankings arc quite different from the 'best case' results, where 
neither QNN3 nor QNN9 perfonned spectacularly well. Also, the QNN6 algorithm, 
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which appeared to be the 'best' in three out of the five tests, was only ranked sixth. 

Howevei:, !hese rankings give a better overall picture as they take into account 

performance across all possible activation function combinations. 

The last two columns of Table 5.11 consist of the average training time of the best 

case networks and a ranking of the algorithms based on this average. The average 

time here is just to give an indica!ion of the relative speed of the olgorithms. It does 

not take into account differences in complexity of the problems and therefore the 

weighting given to the problem in working out the average. The time based ranking 

shows the GDX to be the fastest, as expected from a first-order algorithm. The 

QNN6 algorithm is ranked secOnd, and is the only QNN variant faster than LM. All 

other times given are fairly close to that of LM, except for QNNS, which, not 

surprisingly, has the worst time performance. The GDX and QNN6 algorithms 

appear to compensate for their poor accuracy ranking hy being fast to train. The 

QNNS algorithm, however, has no such saving grace, coming out worst on both 

counts. 

The results obtained lead to a number of conclusions. Firstly, the standard QNN 

has been shown to have performance comparable to the LM algorithm. One of the 

motivations in fonnulating the QNN algorithm was the hypothesis that using the 

recurrent network to replace the Hessian matrix inversion would result in shorter 

training times. However, a time saving was only seen in some cases, and not others. 

The second conclusion is that the QNNJ has the best method to adaptively 

detennine the step size, d. The method used in QNN9, however, comes in a close 

second. Looking back at the actual methods used to modify the step size for these 

two variants, it can be seen that the methods arc almost identical, except for the fact 

that in QNN3 the value of dis updated every timeµ is updated, whereas in QNN9 

the step-sized is updated every epoch. 

The third conclusion is that the constraint used in the QNN-C2 algorithm works 

and can improve performance in some cases. The QNN·C2 algorithm has 

performance comparable to that of the stmdard QNN. Even though it has an overall 

rank lower than QNN, the sum of ranks indicates that there is no significant 

difference in performance. The QNN-C2 is also able to work well when some of the 

other QNN variants had difficulty, such as with the Parity benchmark test. 

Ovcra!l, the results show that the QNN algorithm and its variants tested are 

capable of achieving training performance similar to the second-order LM algorithm, 

except for QNNS. They arc also able to train networks to achieve better accuracy 

than the first-order GDX algorithm, but have longer training times. This means that 

the QNN algorithm is a viable training algorithm for SIANNs. 
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5.6 Conclusion 

In this chapter we have shown how the idea of using a recurrent neural network for 
bound constrained quadratic optimisation can be developed into a training algorithm 
for feedforward neural network!;. The Quadratic Neural Network (QNN) algorithm is 
a second order algorithm that avoids the need to invert the Hessian matrix by using a 
recursive equation that simulates a recurrent neural network. 

The QNN algorithm has been successfully applied to train SIANNs on a number 
of standard benchmark problems, and the results show that this algorithm is able to 
train the network!; to achieve results compnmb!e to or better than the LM and GDX 
algorithms. 

The QNN algorithm has been shown to be a viable training algorithm that is 
capable of producing good results. It has the added advantage of being able to readily 
incorporate constraints that may need to be imposed during training. A number of 
variants have also beeu formulated and tested. These variants were formulated to 
reduce the number of free parameters that need to be set, and to incorporate different 
constraints on the weight updates. Two variants that adaptively modify the step-size, 
QNN3 and QNN9, are able to achieve better performance than the standard QNN. 
The QNN·C2 constrained version has also been shown to improve performance in 
some cases, and has overall performance comparable to standard QNN. 
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Chapter 6 

Further Development of Shunting Inhibitory 
Artificial Neural Networks 

6.1 Motivation 

Originally, the SIANN was proposed as a fully connected structure (Bouzerdoum, 
!999); that is, each input is fed directly into one shunting neuron as its excitatory 

input, whereas all inputs are weighted and fed ill as inhibitory inputs (refer Section 
3.6). Therefore, the fully connected 'standard' SIANN structure has as many 
shunting neurons as there are inputs. Using this basic SIANN structure, the size of 

the network is actually determined by the dataset. The number of neurons in the 
shunting layer(s) is determined by the number of data attributes, whereas the number 

of neurons in the output layer is determined by the number of class labels. While this 
architecture removes the need for finding an optimal network structure, it was found 
to be too restrictive in some problems. In particular, when the data has a large 

number of inpnts and outputs, the resulting network structure is inordinately large. 

This leads to increased computational complexity and training time. 

In this chapter, enhancements to the SIANN structure are proposed that would 

remove the restrictions on the size of the network, in particular the number of 

shunting neurons. The enhancements allow the size of the network to be reduced for 

problems that have a large number of inputs and outputs, resulting in reduced 

computational complexity and better generalisation. Conversely, if the number of 

inputs is small, then the networks structure can be expanded to have more shunting 

neurons than inputs; this provides for additional computational capacity, if required. 
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The following section outliues the development of enhancements to the standard 

SIANN structure. The third section presents experimental results, comparing the 

performance of the enhanced structures with the standard SIANN structure. Finally, 

conclusions are given in the fourth section. 

6.2 The Enhanced SIANN structure 

This section describes the development of the enhanced SIANN structures. The 

motivation and implementation of the reduced SIANN structure are prese_nted next. 
This is followed by the expanded SIANN structure. The third subsection presents the 

Enhanced SIANN structure; it combines the previous two, seemingly contradictory, 

structures (expanded and reduced structures) into one generic structure. 

6.2.1 Reduced SIANN structure 

The first enhancement is to reduce the complexity of the SIANN structure when 

there is a large number of inputs. One reason for doing this is that smaller networks 
are less likely to over-flt the data and therefore arc more likely to generalise well. 

The smaller number of weights would also help reduce the computational complexity 
and memory requirements during training, thereby reducing the time to train the 

networks. 

The 'reduced' SIANN structure has less shunth1g inhibitory neurons than there are 

inputs, while the number of output neurons remains equal to the number of outputs 
required. All the inputs are fed into the network as inhibitory inputs, whereas only 

the first m inputs can be fed in as cxcitator;, inputs, where III is the number of 
shunting neurons in the reduced structure. The restriction on the number of excitatory 

inputs is due to the fact that each shunting neuron can only have one unweighted 

excitatory input. The Reduced SJ ANN structure is shown in Fig. 6.1. 

6,2.2 Expanding the SIANN structure 

The second case considered is when the problem on which the network is being 

trained is too complex for the standard SIANN structure. In this case the network has 
insufficient neurons, and therefore insufficient weights, to be able to map the input

output relationship as required by the problem. This could happen when the number 
of inputs b a small, resulting in a small number of neurons in the shunting layer. The 
solution would be to provide the required extra 'processing power' in the fonn of 

additional neurons. 
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- - - - - + Inhibitory synapse 
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Y, 

Fig. 6.1: The 'Reduced' SIANN structure. 

Two ways of adding neurons to the SIANN structure have been considered. The 

first method is to add extra neurons to the shunting layer. These additional neurons 

only have a bias term as the solitary excitatory input but all network inputs are fed in 

as inhibitory inputs (refer Fig. 6.2). These additional neurons have been dubbed 

'interneurons' based on biological parallels. This method allows neurons to be added 

incrementally to provide additional computational capacity as required, without 

changing the fundamental methods of operation and training. 

Inputs 
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Ou put 
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Fig. 6.2: The 'Expanded' SIANN structure. 
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Fig. 6.3: The Multi-layer SIANN structure. 

The other method of increasing tbe processing power of the network is to add 

additional layers of shunting neurons. The result is a Multi-layer SIANN structure, as 

shown in Fig. 6.3. This is analogous to MLPs, where the number of hidden layers can 

be increased for complex problems. In its simplest form, the number of neurons in 

each shunting layer would be the same. Adding layers not only adds additional 

weights through the extra neurons, but also allows for more complex input-output 

characteristics to be formed due to the multiple layers. This gain comes with an 

associated cost in the form of increased computational complexity during training. 

The training algorithms would need to be modified or enhanced slightly to be able to 

handle the multiple layers of shunting neurons. 

6.2.3 The generic Enhanced SIANN structure 

In order to be as flexible as possible, and to avoid a proliferation of variation to the 

SIANN structure, the reduced and expanded SIANN structures have been combined 

into a single framework. The resulting Enhanced SIANN structure caters for one or 

more layers of shunting neurons with a single layer of 'standard' perceptron-type 

output neurons. The number of shunting neurons in the shunting layers can be varied 

arbitrarily, without being restricted by the number of inputs from the previou layer. 

As discussed in the preceding sections, networks may have less shunting neurons 

than there are inputs from the previous layer. In this case, only some of the inputs are 

excitatory (equal to the number of shunting neurons) and the other inputs act only as 

inhibitory. For the case where a shunting layer has more neurons than the previous 

layer outputs the additional shunting neurons (dubbed 'interneurons ') are fed in with 

a constant bias as the only excitatory input, but with the nom1al variable inhibitory 
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inputs. This gives greater freedom in selecting the optimum network tructure. An 

example of the generic Enhanced SIANN is shown in Fig. 6.4. 
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Shunting 
Inhibitory 
Neurons 

l -----+ 

Ou put 
Neuron 

(Perceptron) 

Blas 
(excitatory only) 

Inhibitory synapse 

Excitatory synapse 

Fig. 6.4: The generic Enhanced SIANN tructure. 

6.3 Benchmark Test Results and Analysis 

Outputs 

The Enhanced SI ANN structures were tested on the same set of benchmark problems 

as the in the previous two chapter and the results obtained are presented in this 

section. For each benchmark problem a 'Reduced' SIANN structure and an 

'Expanded' strncture (either multi-layer or single SIANN layer with additional 

neurons was tested and compared to the performance of the ' standard' SIANN. For 

problems with a small number of inputs, such as the 3-bit Parity and Multi-Class 

problems the 'Expanded' structure chosen was a single-layer SIANN with additional 

neurons. For the other problems with a relatively large number of inputs, the 

expanded structures used were Multi-layer SIANNs that had the same number of 

shunting neurons in the first layer as the 'Reduced' SIANN for that problem and a 

smaller number of neurons in the second shunting layer. In all ca es there are fewer 

shunting neurons and synaptic weights in the multi-layer SIANN structure than in the 

' tandard' SIANN. 

As in the previous chapters, 50 networks were generated for each structure. The e 

network were trained using the Gradient Descent with adaptive learning rate and 

momentum (GDX), Levenberg-Marquardt (LM) and Direct Solution combined with 

GDX (DS-GDX) algorithms. The initialisation and training parameters used are the 
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same as given in Chapter 4, for consistency. All possible combinations of activation 

functions were tested for each structure. For each benchmark problem, the mean 

error values of all combinations of network structures, training algorithms and 

activation functions are shown in Tables B.27 to B. 31 in Appendix B. The results of 

the best performing activation function combinations for each structure and training 

algorithm are presented in the following sections. 

6.3.1 Wisconsin Breast Cancer 

The results obtained using the 9-4·1 reduced SIANN, tbe 9-4-2-1 multi-layer SI ANN 

and the 'standard' 9-9-1 SIANN are shown in Table 6.1 and Fig. 6.5. As in previous 

chapters, the graphs are broken into two sections: the top part shows the mean and 

median test error percentages achieved by the networks with the best perfonning 

activation function combination for the given network structure and training 

algorithm, and the second part shows the corresponding mean training times. Note 

that the median is often zero, and hence it is not visible on the graph. 

ill most cases more than ha!fofthe networks achieved perfect classification result, 

resulting in median error rates of 0%. The exceptions are the Reduced SIANN 

trained with GDX (16%), the Expanded SIANN trained with GDX (42%) and the 

Standard SIANN trained with DS-GDX (36%). The best nppearn to be the Standard 

SIANN trained with LM, with 74% of the networks achieving 0% classification 

error. The mean error rates range from 0.20% to 0.55%. 

Comparing the perfonnanee across the different structures, the trends are different 

for the different algorithms. The GDX algorithm achieved best results with the 

standard SIANN structure, achieving the lowest mean error (0.20%) jointly with the 

LM algorithm; all other structures have mean error., in excess of0.5%. The Reduced 

SIANN had the second best accuracy, with the Multi-layer SJANN having the worst 

classification accuracy. The training time required for GDX was short, generally the 

shortest of the three algorithms. The Reduced SIANN had the shortest training time 

for GDX, and the Multi-layer SJANN the longest. 

The LM algorithm also achieved the best mean error rate of 0.20% with the 

standard SIANN, but the reduced SIANN had only a slightly higher error (0.23%). 

However, the time taken to train was about 20% less for the reduced SIANN. The 

multi-layer SIANN had the highest error rate (0.31%), among all the networks 

trained with LM, and n training time between those of the other two structures. 

Using the DS-GDX algorithm, on the other hand, the best perfonnance was 

obtained with the reduced SIANN (0.26%), the multi-layer SIANN next and the 

standard SI ANN having the worst error (0.54%). In tenns of training time, however, 

the standard SIANN was fastest, fo!Iowed by the reduced SIANN, the Multi-layer 

SIANN being the slowest. 
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Table 6.1 Best results for Wisconsin Breast Cancer dataset using Enhanced 

SIANNs 

SlANN 

Structure 

Reduced 
9-4-l 
(53 

weights) 

Expanded 
9-4-2-1 

(65 
weights) 

Sta11dard 
9-9-1 
(118 

weights) 

Training Activation Performance Avg. Epochs 

A Igor. ti.motions (% of runs) 

Sh Out 7 0% 20% All 7 0% Best 
goal err < runs goal Error (%) 

GDX Exp Lin 0 16 100 145 * 141 0.00 

LM Exp Lin 0 68 100 147 * 136 0.00 

DSG DX Exp Lin 0 68 100 193 * 184 0.00 

GDX Exp Lin 0 42 JOO 187 * 203 0.00 

LM Exp Lin 0 56 100 105 * 85 0.00 

DSG DX Exp Lin 0 54 100 196 * 185 0.00 

GDX Lgs Lgs 0 66 100 161 * 160 0.00 

LM Lgs Tnb 0 74 100 181 * 119 0.00 

DSGDX Tnh Lgs 0 36 JOO 96 * LOO 0.00 

Wisconsin Breast cancer 

07 Rodueed SIANH: 9-4·1 r.tultl ·ltyer SIANN: ;-4. ·1 

I 

01 1 
GDl< 

40 

:E 

~ '25---
~ 

E 
I= .. 
·E 20 s 
: 15 

:::E 

10 

GDX 

l.M O'J(.'t)< GI), 

LM OSGOX GOX LM OSGOX GDX 
Algorithm 

Test Error Avg. 
CPU 

95%Cl Med. 
time 

Mean (s) 
(%) (%) 

0.55 ± 0.09 0.56 9.0 

0.23 ± 0.10 0.00 28.6 

0.26 ± 0.13 0.00 11.7 

0.51 ± 0.17 0.56 14.7 

0.31 ± O. l l 0.00 30.8 

0.47 ± 0.23 0.00 17.7 

0.20 ± 0.08 0.00 10.3 

0.20 ± 0.10 0.00 34.8 

0.54 ± 0.14 0.56 6.4 

LM DSG OX 

Fig. 6.5: Mean and median test error and mean training time for the Wisconsin 

Breast Cancer dataset using Enhanced SIANNs. 

125 



FUR11/EII DEVELOP ME/ff OF' SHUMT/NG INH/8fTOI/Y ARrlF'/CIALNEUIW NETWOI/KS 

Overall, the standard SIANN perfonned best, the exception being with the DS

GDX algorithm. This is not SU!Jlrising given that this is the largest structure tested, 

both in terms of number of neurons as well as nwnber of synaptic weights. 

Additiona!ly, the standard SIANN has all inputs serving as excitatory and inhibitory, 

while the other networks have only the first few inputs fed as excitatory, with the 

remaining inputs serving as inhibitory only. The drawback of longer training times 

due to more complex computation was only seen with the second-order LM 

algorithm. The reduced SIANN had the benefit of reducing the training time required 

by the LM algorithm, without significantly changing the accuracy; it also got the best 

results with the DS-GDX algorithm. The Multi-layer SIANN, though having more 

neurons than the reduced SIANN, had lower overall accuracy when compared to the 

Reduced SlANN. It also had the longest training times for the GDX and DS-GDX 

algorithms, thereby ending up as the 'worst' overall. 

6.3.2 Pima Indians Diabetes 

The results for this test, using the 8-3-l reduced SIANN, the 8-3-2-1 multi-layer 

SIANN and the 'standard' 8-8-1 SIANN, are shown in Table 6.2 and Fig. 6.6, 

presented in the same fonnat as in the previous test. 

The GDX performed the worst, with the highest mean error rates overall. 

Additional!y, at best only 20% of the networks were able to achieve less than 20% 

error, which is the marker for a 'good' resu!t with this benchmark problem. Both the 

standard SIANN and the Reduced SIANN had similar pcrfonnance when trained 

using GDX, both in tenns of accuracy and training time; the multi-lnyer SIANN 

perfonncd the worst. 

The LM algorithm had the best overall accuracy and the same trend of reducing 

training time as the size of the network reduced, from the standard SIANN to the 

Multi-layer down to the Reduced SIANN. The accuracy also followed the same trend 

as the Breast Cancer benchmark, with the standard SIANN having the best accuracy 

followed by the Reduced SIANN. The Multi-layer SI ANN had the worst mean error, 

as was the case for each of the three algorithms. 

The best mean perfonnance WEIS obtained using the DS-GDX on the standard 

SIANN, with a mean error of 19.82%, and the fastest training time by far. The only 

other combination to achieve a mean error under 20% was the LM algorithm on the 

standard SIANN, but that took more thau 6 times longer to train. The speed 

advantage of the DS-GDX was only with the standard SIANN; it had similar training 

times to GDX with the other two network stroctures. 

Overall, the standard SIANN again appears to achieve the best performance in 

tenns of accuracy, but the Reduced SI ANN helps to shorten the training time for the 

LM and GDX algorithms. The probable reasons for why the standard SIANN 
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achieves the best accuracy are the same as for the Breast Cancer problem. Firstly, it 
is the largest structure in terms of neurons and synaptic weights. Second, all eight 
inputs are fed in as both excitatory and inhibitory, whereas for the other structures 
only three inputs serve as excitatory inputs, with the rest being inhibitory only. 

6.J.3 The 3-blt parity problem 

The results for the parity problem, prllllented in Table 6.J and Fig. 6.7, are for a 3· 
2-1 Reduced SIANN, a 3-4-1 Expanded SIANN, and 'the standard' 3-J-l SIANN. 
Note that in all cases the median is zero, and so is the mean in two cases, hence these 
graphs are not visible on the plot. 

The results show significant variations in performance, as the number of neurons 
is decreased or increased. Reducing the size of the network, by just removing one 
shunting neuron, results in significantly higher error rates. The mean error rate jumps 
from between 0.50% and l.25% to between 8.50% and 11.50%, and the percentage 
of networks achieving 0% error drops from around 95% to between 48% and 60%. 
Conversely, just adding one additional shunting neuron (without an excitatory input) 
yields 'perfect' mults when trained with the LM and DS-ODX algorithms, i.e., 
100% of networks achieving I 00% correct classification. 

In terms of training time, the Reduced SIANN took longer to train: between 2 and 
8 times longer than the standard SIANN. The Expanded SIANN training times, on 
the other hand, were shorter. The Expanded SIANN is able to increase accuracy as 
well as reduce training time. 

The sensitivity to the size of the network can probably be attributed to the fact that 
there is only a small number of inputs (three) and small number of training ei,:amples 
(eight). Reducing the size of the structure resulted in only 2 out of3 inputs being 
excitatory as well as cutting the numberofweights by a third, for what is essentially 
a fairly complex problem for neural networks. The addition ofa spare shunting 
neuron (with only inhibitory inputs) would seem to provide the extra computational 
power to easily solve this problem. These results show the advantage of expanding 
the standard SIANN structure on some problems, particularly when the number of 
inputs is small, resulting in a small number of shunting neurons in the standard 

structure. 
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Table 6.2 Results for Pima Indians Diabetes dataset using Enhanced SIANNs 

STANN 

Structure 

Reduced 
8-3-1 
(37 

weights) 

Expanded 
8-3-2-1 

(48) 

Standard 
8-8-1 
(97) 

Training 

Algor. 

GDX 

LM 

DSG DX 

GDX 

LM 

DSG DX 

GDX 

LM 

DSG DX 

g l5 .. 
E 
i= .. 
·E 10 

'i! ... 
li 15 
:I 

10 

Activation Performance Avg Epochs 
functions (% of runs) 

Sb Out 7 0% 20% All 7 0% 
goa l err < nms goal Error 

Tnh Tnh 0 0 20 192 • * 
Exp Toh 0 0 56 58 * * 
Exp Lia 0 0 42 189 * * 
Tnh Tnh 0 0 14 178 * * 
Exp Tnh 0 0 46 80 * • 
Toh Lin 0 0 30 178 * * 
Tnh Lgs 0 0 14 195 * * 
Lgs Tnh 0 0 58 182 * * 
Lgs Lgs 0 0 68 94 * * 

Pima Indians Olabete.s 

f!oduaed SIANN: 8·3·1 ulti·layer SIANNl 8·3·2·1 

oox osoox 00)< LM 
Algorithm 

osoox 

Test Error Avg. 
CPU 
time 

Best Mean 95%CI Med. (s) 
(%) (%) (%) 

18.23 20.96 ± 0.3l 21.35 I l.9 

16.67 20.18 ± 0.36 19.79 11.9 

18.23 20.62 ± 0.38 20.57 11.8 

18.75 21.55 ± 0.42 21.35 16.9 

17.71 20.43 ± 0.45 20.31 24.8 

17.19 20.59 ± 0.38 20.83 17.0 

17.71 21.03 ± 0.29 21.35 13.2 

I 7.7l 19.88 ± 0.32 19.79 38.9 

18.75 19.82 ± 0.29 19.79 6.4 

oox LM 0800)( 

Fig. 6.6: Best, mean and median test error and mean training time for the Diabetes 

dataset using Enhanced SIANNs 
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Table 6.3 Best results for the 3-bit Parity problem using Enhanced SIANNs 

!ANN Training 
Structure Algor. 
and no. of 
weights 

Reduced GDX 
3-2-l LM 
(15 

weights) DSGDX 

Expanded GDX 
3-4-1 LM 
(29) 

DSGDX 

Standard GDX 
3-3-1 LM 
(22) 

DSG DX 

Activation Performance Avg. Epoch Test Error 
functions (% of nins) 

Sh Out '"? 0% 20% All '"? O'Yo Best Meaa 95%CI 
goal err < runs goal Error (%) (%) 

Tnh Tnh 46 48 88 756 512 579 0.00 8.50 ± 3.16 

Lgs Tnh 50 60 76 700 399 500 0.00 8.75 ± 3.38 

Tnh Lin 52 52 68 596 223 223 0.00 I I.SO ± 3.82 

Tnh Lgs 96 96 100 30 1 271 271 0.00 0.50 ± 0.69 

Exp Tnh 100 100 100 48 48 48 0.00 0.00 ± 0.00 

Tnh Lin 100 100 JOO 48 48 48 0.00 0.00 ± 0.00 

Tnh Lgs 94 94 96 352 311 311 0.00 1.25 ± 1.44 

Exp Lin 96 96 JOO 84 46 46 0.00 0.50 ± 0.69 

Tnh Lin 94 94 100 169 116 116 0.00 0.75 ± 0.83 

3-0II P;,r ry .,. 

Roducoo SIAN'4, 3·2·1 Eapandod SIANN· 3-4-1 Sl:andard SIANN: l ·l-1 

0 

16.U ----

00 
GI))( I.M OSGOlC GOX LM 

Algorithm 
OSOOX GDX LM OSGOX 

Med. 
(%) 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

Avg. 
CPU 
ttme 
(s) 

4.9 

13.8 

4.1 

2.0 

I. I 

0.5 

2.3 

t.7 

1.3 

Fig. 6.7: Mean and median test error and mean training time for 3-bit parity dataset 

using Enhanced SIANNs 
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6.3.4 Artiflclal Multi-Class Problem 

The networks used for the multi-class problem were the Reduced SIANN (2-1-3), the 
Expanded SIANN (2-3-3) and the standard SIANN (2-2-3). The results are shown in 
Tab!e 6.4 and Fig. 6.8. Note that the error rates of the Reduced SIANN trained with 
DS-GDX are around 34%, which exceeds the range of the ordinate in Fig. 6.8; this 
was done deliberately so as to make the other variations clearer. 

The results show that the mean error rate tends to decrease as the size of the 
network is increased, with the most pronounced change being for the DS-GDX 
algorithm (from 34.76% down to 5.57%). For all algorithms, the Reduced SIANN 
gave the lowest classification accuracy, whereas the Expanded SIANN gave the 
highest accuracy. This dependency on size is not surprising given the small network 
sizes (19 weights for the standard SIANN and only 11 for the Reduced SIANN) and 
the relative complexity of the problem having overlapping classes. The Reduced 
SIANN has only one shunting neuron, yet it has comparable performance to those of 
larger structures when trained with GDX and LM; this is a testimony to the power of 
the shooting neuron. 

The GDX algorithm, surprisingly, achieved the best mean error results for each of 
the structures tested. The perfomiance of the networks trained using LM were close 
to those trained with GDX, with the ~rror rate difference being less than 1%. The 
DS-GDX algorithm was much more dependent on the variations of size, but achieved 
the error level of LM for the Expanded SIANN. The Expanded SIANN structure, 
trained with the LM and DS-GDX algorithms, achieved the best individual network 

performance of3.33% error. 

In terms of training time, the DS-GDX aliorithm was consistently the fastest, 
followed by GDX, then LM. The GDX algorithm not only achieved lower error rates 
than LM, but it was 5 to 13 times foster. The mean tf(l.ining times for GDX and DS
GDX algorithms were relatively consistent across the network structures. However, 
the LM training time increased for the Reduced SIANN, with the average training 
time more than 3 times that of the standard SIANN; due to the fact that the average 
number of training epochs was more than 3 times greater. This indicates a greater 
effort to achieve the results with the smaller structure. 

The Multi-Class problem is one of the 'classic' problems that highlight the need 
to expand the SIANN structure. It is a moderately complcx problem with a very 
smal! number of inputs. Even though the standard SIANN does well to achieve the 
results it does, gi\len the relatively small size of the network, the advantage of being 
able to use a larger structure with more weights is shown, in tenns ofuccuracy. Fig. 
6.9 shows the decisiiin boundary formed by a 2-3-3 enhanced SIANN. 
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Table 6.4 Best results for Multi-Class dataset using Enhanced SIANNs 

Sf ANN Training Activation 

Structure A Igor. functions 

Sh Out 

Reduced GDX Exp Lgs 
2-1-3 LM Exp Lgs 
( 11 

weights) DSGDX Exp Lgs 

Expanded ODX Exp Tnh 
2-3-3 LM Lgs Tnh 
(27) 

DSG DX Exp Lin 

Standard GDX Exp Lgs 
2-2-3 LM Exp Lgs 
(19) 

DSODX Exp Lin 

,; 

350 

100 

50 

GDX 

Perfonnance Avg Epochs Test Error 

(% of runs) 

~ 0% 20% All ~ 0% Best Mean 95%Cl 
goal err < runs goal ElTor (%) (%) 

0 0 100 552 * * 4.67 5.89 ±0.25 

0 0 96 776 * * 4.00 6.69 ± 1.70 

0 0 0 173 * * 34.67 34.76 ±0.06 

0 0 100 552 * * 4.00 5.00 ±0.18 

0 0 100 201 * * 3.33 5.60 ± 0.23 

0 0 100 189 * * 3.33 5.57 ± 0.19 

0 0 100 377 * * 4.00 5.47 ± 0.16 

0 0 100 228 * * 4.00 5.69 ±0.26 

0 0 90 206 * * 5.33 9.39 ±2.24 

Multi Class 

E1pandod SIANH: 2·3-3 Stand"'<! SlANN: 2·2.J 

GOX GDX 

DSG DX GDX LM 
Algorithm 

DSG DX GDX LM DSG DX 

Med. 
(%) 

6.00 

5.33 

34.67 

5.33 

6.00 

6.00 

5.33 

5.33 

6.67 

Avg. 
CPU 
time 
(s) 

26.6 

341.7 

8.9 

29.2 

149.0 

10.1 

19.4 

103 .0 

10.9 

Fig. 6.8: Best, mean, median test error and mean training time for Multi-class dataset 

using Enhanced SIANNs. 
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MU111-dass ded l!Oo bound6,y by I 2-3-J Enhe~ced SIANN nei-..'Oli< 

6 

0 

·2 

·6 

· 15 -10 -5 0 10 15 

Fig. 6.9: Decision boundary formed by a 2-3-3 Enhanced SIANN for Multi-class 

problem. 

6.3.5 Sunspot Time Series 

The 10-5-1 Reduced SIANN, the 10-5-3-1 Multi-layer SIANN and the standard 10-

10-1 SIANN were trained and tested on the Sunspots time se1ies problem. The 

results are shown in Table 6.5 and Fig. 6.10. The figure shows the best, mean and 

median error rates of the test set ARV metric, defined in Chapter 4 as well as the 

average training times. 

The general trend, for all training algorithms, is that the standard SIANN sttucture 

has the best accuracy followed by the Reduced SIANN, with the Multi-layer SIANN 

coming out worst. The trend is most pronounced for the GDX algorithm with the 

mean test ARV for the Multi-layer SIANN 2 to 3 times that of the other structures. 

The training time results show that the Reduced SIANN takes only marginally 

less time than the Standard SIANN to train, despite having half the number of 

synaptic weights . On the other band, even though the multi-layer SIANN has fewer 

weights than the standard SIANN the time taken to train was higher for all three 

algorithms_, as the number of epochs required was higher. This is most pronounced 

with the LM algorithm, with the Multi-layer SIANN taking 9 times longer to train 

compared to the standard SIANN. The small saving in tt·aining time with the 

Reduced SIANN comes at the cost of a decrease in accuracy compared to the 

standard SIANN. It is this potential saving in training time that motivated the 

development of the Reduced SIANN structure but the cost in accuracy does not 

always justify the saving. 

The Multi-layer SIANN did not perform well, coming out worst both in terms of 

accuracy and training time, with all three training algorithms. 
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Table 6.5 ResuJts for Sunspots dataset using Enhanced SIANNs 

SlANN Truining 

Struct. 
Algor. 

Reduc. GDX 
10-5-1 LM 

(71 
DSGDX wts) 

Expand GDX 
l 0-5-3- LM 

I 
(93 w .) DSG DX 

Stand. GDX 
10-10-1 LM 
(141 w) 

DSGDX 

Act-fns Performance 
(% of runs) 

Sh Out ~ all in 80% 
gl tol to! 

Tnh Tnh 0 30 98 

Lgs Tnh 0 2 100 

Tnh Lin 0 16 100 

Tnh Tnh 0 4 68 

Lgs Lgs 0 62 98 

Exp Lin 0 32 100 

Tnh Lin 0 14 98 

Lgs Lin 0 8 100 

Lgs Lin 0 40 100 

Ro<1ucod SIAMN: 10·5-1 

1000 

900 

BlO 

70 0 

.. 
• 600 ....... 
E 
;:: .. 
'f SO O 

~ ... 
~ ,oo 
f 

100 

00 

Avg TestMSE Test ARV 
Epoc 

hs Best Median Best Median Mean 

164 0.0089 0.0158 0.106 0.189 0.213 

60 0.0073 0.0104 0.087 0.125 0.127 

163 0.0082 0.0101 0.098 0.122 0. 123 

165 0.0122 0.0311 0.147 0.373 0.515 

504 0.0080 0.0107 0.096 0.128 0.133 

169 0.0084 0.0101 0.100 0.121 0.133 

147 0.0085 0.0134 0.102 0.161 0.174 

54 0.0075 0.0093 0.090 0.1 LI 0.112 

161 0.0077 0.0097 0.096 0.121 0.119 

sunspots 

1"1ulll4ayo, SIANN: 10,6·3·1 SUnd~rd SIANN: 10·10·1 

GOX LM OSGOX GOX LM 
Algorithm 

OSGOX GO)( LM OSGOlt 

Avg. 
CPU 

95% CI time 
(s) 

± 0.028 6.7 

± 0.004 8.4 

± 0.005 6.9 

± 0.097 10.2 

± 0.006 90.6 

± 0.016 10.5 

± 0.020 6.8 

± 0.003 9.8 

± 0.002 7.6 

Fig. 6.10: Best, mean and median test error and mean training time for Sunspots 

data using Enhanced SIANNs. 
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6.3.6 Analysis of Results 

From the results presented in the preceding subsections, the cases where the number 

of inputs is small clearly highlight the advantage ofbeiog able to expand the SJANN 

structure. The Expanded SJANNs have higher accuracy and most of them also have 

shorter training times. Conversely, reducing the number of shunting neurons results 

in lower performance, sometimes dramatically lower, as the network becomes too 

small to handle the problem. Either the error rate or the training time goes up 

significantly, or both. However, the reduced SIANN structure can still produce good 

results when the number of inputs is large; for example, the 8-3-1 reduced SlANN 

structure achieved the lowest "best-case" error of 16.67% on the Diabetes problem. 

In any case, these results justify the use of the 'intemeurons' in the single-layer 

Expanded SIANNs. 

The benchmarks tests with a relatively large number of inputs were tested with 

Reduced SIANNs r...id Multi-layer SIANNs with fewer shunting neurons than system 

inputs. The overall results show that the Reduced SIANNs arc able to reduce the 

training time required, especially for the second-order LM algorithm, but with some 

Joss in accuracy. The standard SIANN networks had the best accuracy in most cases, 

while the Multi-layer SIANNs generally had the worst accuracy even though they 

had !urger structures than the Reduced SIANNs. The poor perfonnance of the Multi

layer SlANNs could possibly be due to the error surface becoming too complex with 

the additional shunting layer, thereby making it harder to train. 

The reduction in training time may justify the use of the Reduced SIANNs in 

some cases, but the time saving does not always justify the loss in accuracy. This is 

more so for the 'simpler' algorithms such as GDX and DS-GDX, where the time cost 

savings are not very great, if any, but the loss in accuracy tends to be high. The loss 

of accuracy may not be due to only the reduction in the number of weights, but also 

due to the fact that only a subset of the inputs are fed in as excitatory. 

The choice of inputs that are fed in as excitatory is quite arbitrary. ln all the 

benchmark tests perfonned so far, it was the 'first' few inputs that were fed in as 

excitatory; the remaining inputs are fed in as inhibitory inputs only. This was done 

for the sake of simplicity; furthennore, in real-life situations the role of each input is 

not known beforehand, unless the problem definition itself gives an indication of 

which inputs should carry more weight. An example of the problem definition 

providing a clue is the Sunspots problem. The 'first' input is the 'latest' observation 

i.e. the point that is temporally closest to the predicted output, and inputs arc sorted 

accordingly. This means that a Reduced SIANN should have the 'closest' 

observation inputs used as excitatory and the earlier values as inhibitory only. For 

other problems, it may not be possible to arrive at such an 'ordering' of the inputs 

without some pre-processing and analysis, ifat all. 
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6.J,7 Results obtained by re-ordering Inputs 

In order to got a fee! of the effect of changing the excitatory inputs, the best 

perfonning Reduced SIANNs for the Breast Cancer and Diabetes problems were 

tested with different input permutations so that different inputs could serve as 

excitatory. For both datasets, the inputs used previously as excitatory were changed 

to inhibitory only and the succeeding inputs were fed as both excitatory and 

inhibitory. Tables 6.6 and 6.7 compare the results before and after input-reordering. 

For the Br~ast Cancer dataset, the change in excitatory inputs resulted in an 

obvious degradation in performance of all algorithms. It is especially clear for the 

LM and DS-GDX algorithms, with the mean error rate up from 0.2% to 0.7% and the 

percentage of networks achieving perfect results down from 68% to 30% or less. For 

the Diabetes problem, !lie change shows a similar trend, with the mean error rate 

increasing between 0.1% and 1.3% and the number of networks achieving under 

20% error df(Jpping by one-third or more. 

These differences were the result of what amounts to arbitrary changes in tho 

selection of excitatory inputs. Without analysis of the data or experimental results, it 

is gencra!ly not possible to decide which inputs should be used as excitatory. There is 

also the possibility of errors or missing values resulting in some inputs being 

redundant or causing spurious connections, as is the case with the Pima Indians 

Diabetes dataset (Arulampalam & Bouzerdoum, 2002a; Waschulzik et aL, 2000). 

To find the 'optimal' network would require not only the selection of a network 

structure, but also testing nil possible combinations of excitatory inputs for that 

structure in order to find the optimal combination; this is not a practical option. 

Ideally, there should be a method that allows all the inputs to the network to serve 

both as excitatory and inhibitory. A generalised. foedforward architecture that caters 

for this is presented in the next chapter. 

Table 6.6 Results for Wisconsin Breast Cancer dataset using the 9-4-1 Reduced 

SIANN with re-ordered inputs ' 
SIANN Troining Aetivotion Pcrforrnonoe Avg Epoch., T<stEmir '"" Structure Algor. function, 1% of runs' time 

'" '"' .. ., '"' "' .. "" Bcsl Meon 95%CJ Moo, "' ,., '" < ruo, ,., ·~· "' I'%' (%) 

Reduced "' I:,p Lin " " "' '" • '" " o.ss ± 0.09 0.56 '·" 9-4-1 CM ~. Lin " '" '"' '" • '" " 0,23 ± 0.10 " 28.6 

OSGOX fuo Lin " '" "' '" • >M " 0.26 ± 0.13 " ll.7 

Reduced "' fuo Lin " " '"' '" • m " 0.72 i D,12 0.56 ll.6 
9-4-1 CM E,p Lin ' '" '"' "' • "' " 0.79 i D.20 O.S6 26.0 

(n:·or~,:;•d 
innuls DSGOX E,p Lin " " "" "' • '" " 0.72 i 0.16 0.56 11.6 
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Table6.7 Results for Pima Indians Diabetes dataset using the 8·3·1 Reduced 

SIANN, with re-ordered inputs 

SIANN Training Acllv•tion Pcrform,n,o Avs Epoch, TostError "" Stnoorure AIQor. functions (%afrunsl 1im, 

'" ~, • w, ,w, "' • "" .. , Mean 95%CJ Moo 
,,, 

'"' '" < ""' ""' ·~, (%) 

'" 
(%) 

Roduocd "' '"' '"' • • '" '" . . 18.23 20.96 ± 0.31 21.lS ll.9 
8-l-1 

'" ••• '"' • • " " • . 16.67 20.18 ± 0.36 19.79 11.9 
DSGDX Exp Lin • • " '"' 

. . 18.23 20.62 ± 0.38 20.51 11.8 
Reduced "' '"' '"' • • .. '"' • • 19.27 22.27 ± a.so 21.88 11.8 

8-J-I 

'" Exp '"' • • '" .. . . 17.19 20.74 ± 0.39 20.S7 l2.6 l(«·ardored 
innulSl DSGDX "• Lin • • ,. 

'"' • • 17.71 20.76 ±o.41 20.57 ll.9 

6.4 Conclusion 

The motivation behind the enhancement of the standard SIANN network structure 

has been outlined in this chapter. The proposed enhancements allow the network size 

to be expanded or reduced as required. Details of the structures and the experimental 

results obtained using such structures on benchmarks problems have also been 

presented along with those of the standard SIANN 

The experimental results show that expanding the SIANN structure, by adding 

additional shunting neurons, improves the results when tackling complex problems 

with a sma!l number of inputs; it helps improve accuracy and reduce the time 

required to train the network. 

The reduced SI ANN structure was obtained by reducing the number of shunting 

neurons to less than the number of inputs when working on problems with large 

number of inputs; this requires some inputs to be used us inhibitory only. The re~ults 

show that the Reduced SIANN structure is able to shorten the training time in some 

cases, particularly when using the Levenberg·Marquardt (LM) algorithm. This 

reduction generally also results in a reduction in accuracy, as there are fewer weights 

to be trained and only a subset of the inputs can be used as e)[citatory. The selection 

of the excitatory inputs was arbitrary and it was shown to have an impact on the 

results. 

In conclusion, the expanded fonn of the SIANN has been shown to improve 

performance where applicable, but the reduced fonn has limitations because not all 

inputs serve as excitatory. The solution would be to find some method that would 

enable tl1e S!ANN structure to be reduced without having to make a choice of which 

inputs should serve as excitatory and which should serve as inhibitory only; instead, 

all inputs should serve as excitatory and inhibitory simultaneously. The next chapter 

expands the shunting neuron structure to explore this option. 
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Chapter 7 

A Generalised Feedforward Neural Network 

Architecture 

7.1 Introduction 

In the preceding chapter, we saw that reducing the standard SIANN structure so that 

there are fewer shunting neurons than inputs can lead to savings in tenns of training 

time. In some cases, this reduced structure can perform as well as the standard 

SIANN, but more often it is less accurate. This is in part due to the fact that only a 
subset of the inputs, equal to the number of shunting neurons, can be used as 
excitatory input; the other inputs can only exert inhibitory influences on the activity 
of the network. Furthermore, there is no simple way of using prior knowledge to 

determine which inputs should serve as excitatory and which should not. This 

limitation arose from the fact that th!l shunting neuron used was allowed to have one 

excitatory input only. It was concluded in the previous chapter that one way to solve 

this dilemma would be to modify the structure of the shunting neuron to allow more 

than one e:,;citatory input. 

In this chapter, the shunting neuron model used in SIANNs is expanded to allow 

greater flexibility in the network structure. The result is a new neuron model that 

combines the shunting neuron model with the traditional perceptron model. We use 

this 'generalised' shunting neuron model in a foedforward architecture, which 

henceforth is referred to as the generalised feedfonvard neural network (GFNN). 

The ne:,;t section describes the genera/i.sed shunting neuron (GSN) model and the 

structure of the GFNN. :"'.e third section presents e:,;perimental results obtained by 
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applying GFNNs to the selected benchmark problems. Finally, the discussion and the 

conclusion are presented in Sections 7.4 and 7.5, respectively. 

7,2 Development of the Generalised Feed forward Neural Network 

In this section, the general/sed/eed/onvard ner1rol network (GFNN} architecture is 

developed os an extension of S[ANNs. The basic computing element of the SIANN 

architecture, the static shunting neuron, is recapped next, followed by the 

development of the generalised shunting neuron model, then the GFNN arehitecrure. 

7.2.1 The Stalk Shunting Neuron and SIANNs 

The starting point of the development of the new generalised shunting neuron model 

is the static shunting neuron model presented in Chapter 3. This model is shown here 

agnin for convenience. The static shunting neuron is defined by the equation 

(7.i) 

where x1 represents the activity (output) of thejth neuron; 11 is the input to thejth 

neuron; DJ is the passive decay rate of the neuron (positive constant); b1 represents the 

bias for the neuron; CJ! is the connection weight from the ith input to thejth neuron, 

with Cj~ being the bias for the activation function; and/ is an activation function 

bounded from below. 

We define the denominator in (7.1) as the shunting tenn for thejth neuron, sJ, 

given by 

(7.2) 

The term SJ is constrained to be positive definite so as not encounter n divide by zero 

error (Le. SJ > OJ. This is achieved by imposing a lower bound on the parameter DJ 

during the initialization and training phases (refer Chapter 4). 

The static shunting neuron model is shown diagrammntica!ly in Fig. 7.1. All 

inhibitory (shunting) inputs are weighted and fed into an activation function. 

However, as mentioned previously, the shunting neuron has only one unweighted 

excitatory input, which is the limitation to be addressed. To alleviate this inherent 

!imitation, agenero/ised shunting neuron model is proposed next. 
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Fig. 7 .1: The structure of the static shunting neuron model. 

7.2.2 The Generalised Shunting Neuron Model 

One of the shortcomings of the shunting neuron model described above was the fact 

that each neuron can only have one unweighted excitatory input. This means that 

either the network needs to have at least as many neurons as there are inputs, or only 

a subset of inputs can serve as excitatory. One way out of thj is to have multiple 

excitatory inputs weighted, summed and passed through an activation function, as 

done with the perceptron neuron. In fact, the proposed new neuron model combines 

the perceptron neuron model with the shunting neuron model. The output of this 

"generalised" shunting neuron can be described by 

(7.3) 

It should be noted that both the perceptron neuron and the shunting neuron are 

special cases of this new model. The perceptron neuron is a special case of the 

generalised shunting neuron where the denominator weights Cji are fixed at O and a is 

set to a constant that makes the denominator equal to 1, depending on the activation 

function f Furthermore, (7 .3) reduces to (7.1), which models the normal shunting 

neuron, when Wjj = 1, all other weights Wj; are 0, and g is the linear activation 

function. We have therefore named this new model the Generalised Shunting Neuron 

(GSN) model. The Generalised Shunting Neuron model is shown diagrammatically 

in Fig. 7.2. 
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Fig. 7.2: The Generalised Shunting Neuron model. 

More importantly, the input-output transfer characteristic of a generalised 

shunting neuron is adaptive; that is even when the activation functions f and g, in 
7.3) are fixed, the type of input-output transfer characteristic each computing 

element can have varies depending on its synaptic weights. Fig. 7.3 shows some 

input-output transfer characteristics of a generalised shunting neuron having the 

logarithmic sigmoid activation function for both/ and g; these transfer characteristics 

are obtained by imply changing the synaptic weights. More complex cbaracteri tic 

can be obtained by mixing different activation functions together. This i in contrast 

to traditional artificial neural model , such as the RBF (radial basis function) and the 

perceptron neurons, which have input-output transfer characteristics of fixed type, 

bell-shaped or sigmoid- haped. This we believe place an artificial constraint on the 

type of decision surfaces a particular neuron can produce. 

Jankowski & Duch have investigated the role of activation functions in neural 

network performance, and have used a number of transfer characteristic, such as 

bicentric and extended conic functions that can produce complex decision 

boundaries, thus allowing the number of adaptive units in the network to be reduced 

(Duch & Jankowski, 2001; Jankowski, 1999; Jankowski & Duch, 2001). Neurons 

with these activation ftmctions have been used in ontogenic and heterogenou neural 

networks. The GSN neuron is able to produce similar transfer characteristics with 

the added advantage that it require only 2N+4 parameters per neuron instead of 3N 

or 4N parameters as given by Jankowski & Duch. 
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Fig. 7.3: Input-output transfer characteristics of a 2-input generalised shunting 

neuron obtained with the same f and g functions, but different w and c 

weight vectors. 
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7.2.3 The GFNN Architecture 

The GFNN is a multilayer feedforward neural network architecture consisting of one 

or more layers of generalised shunting neurons. In the tests perfonned here, the 

output layer may consist of generalised, sigmoidal or linear neurons. Neurons in each 

layer receive inputs only from the preceding layer, calculate their outputs according 

to (7.3), and transmit the resulting signals to the next layer, see Fig. 7.4. The GFNN 

architecture as defined does not have any restrictions on the number of neurons per 

layer or number of layers. The only effect the problem definition has on the network 

structure is on the number of output neurons, which corresponds to the number of 

outputs required by the problem. 

It should be noted that GFNNs may also contain shunting or perceptron-type 

neurons in their bidden layers, as they are special cases of the Generalised Shunting 

Neuron. In other words the GFNN is a hybtid architecture combining shunting-type 

and perceptron-type neurons. In this chapter on1y the two simplest GFNN structures 

are considered. The first is a single layer of one or more generalised shunting 

neurons, the simplest of which is a single GSN. The second snuchtre consists of one 

bidden-layer, containing one or more GSNs and an output layer of linear or sigmoid 

neurons. These two network structures are denoted by the prefix 'G' for the single 

layer network, and by ' GP' for the 2-layer network, followed by the size of the 

layers. The letters indicate the type of neuron in each layer 'G' for GSN, and 'P' for 

perceptron-type neurons. For example, G 9-1 denotes a single GSN neuron with 9 

inputs, whereas GP 8-2-1 denotes a two-layer network with 8 inputs, 2 GSN neurons 

in the hidden layer, and one output neuron. The ability of the GSN to produce 

complex decision boundaries means that these simple struchires are capable of 

handling most problems as shall be shown experimentally in the following section. 

Inputs 

Generalised 
Shunting 
Neurons 

Bias (excitatory 
and inhibitory) 

Ou put 
Neurons 

(Perceptrons) Outputs 

t----+ Y, 

___ + Excitatory and 
Inhibitory synapses 

Excitatory synapse 
only 

Fig. 7.4: The Generalised Feedforward Neural Network architecture. 
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7.3 Benchmark Test Results and AnaJysis 

The GFNNs were tested and compared to SIANNs on the same set of benchmarks 

problems used in the previous chapters and the obtained results are presented in this 

section. For each benchmark problem two types of GFNNs were tested. The first is a 

single layer of GSNs, with the number of neurons equal to the number of outputs 

required. For most of the problems this means a single GS neuron, with the exception 

of the Multi-class problem that has 3 GSNs. The second GFNN structure tested is the 

simplest two-layer GFNN structure - a GP n-2-1 structure (2 GSNs and a perceptron 

output), or in the case of the Multi-class problem a GP 2-2-3. Examples of these 

network structures are shown in Fig. 7.5. 

Tbese GFNN structures were trained and tested and their performance compared 

to the standard' SIANN. As in the previous chapters, 50 networks were generated 

for each structure, and these were trained using the Gradient Descent with 

momentum and adaptive learning rate (GDX) and the Levenberg-Marquardt (LM) 

algorithms. The multi-layer GFNNs and SIANNs were also trained using the Direct 

Solution-GDX (DS-GDX) algorithm. The single-layer GSN networks could not be 

trained using the DS-GDX algorithm as the algorithm requires an output layer of 

linear or sigmoid neurons to work. The initialisation and training parameters used are 

the same as described in Chapter 4. 

The GSN nemons were tested with various combinations of activation functions 

in the numerator and denominator. Linear (lin), hyperbolic tangent sigmoid (tnh), 

logarithmic sigmoid (lgs) and exponential (exp) activation functions were used for 

the numerator. The constraint on the shunting term given in (7 .3) requires the 

denominator activation function to have a lower bound. Therefore the linear 

activation function could not be used in the denominator. The output perceptron 

neurons used had linear, logarithmic sigmoid or hyperbolic tangent activation 

functions. The results of the 'best performing' activation function combinations are 

shown in the following sections. The full set of mean error values, for all possible 

combinations of activation functions is given in Tables B.32 to B.36 in Appendix B. 

lnpuls 

'·- ....... __ Generalised 
Shunting 
Neuron Outpul Inputs 

General1Sed 
Shunting 
Neurons 

a) G 3-1 GFNN b) GP 3-2-1 GFNN 

Oupul 
Neuron 

(Perceptron) Output 

Y, 

-- - + E><OIDIOry 91'0 
lnhlt>l()(}' 

---- E•Cller0<y a,~y 

Fig. 7.5: Examples of GFNN structures: (a) G 3-1 network and (b) GP 3-2-1 network 

143 



A GENEMl/SED FEiiiDFORWARDNEU/1,!l NETWORK ARCHITECTURE 

7,3,1 Wisconsin Breast C1mcer dataset results 

The results obtained using a single GSN ((; 9-1), n GP 9-2-1 OFNN and the 

'standard' 9-9-1 SIANN trained on the Wisconsin Breast Cancer problem are 

presented in Table 7.1 and Fig. 7.6. As in previous chapters, the graphs are broken 

into two sections: the top part shows the mean and median test error percentages for 

the best performing activation function combination for the given network strocture 

and training algorithm, and the second part shows the corresponding menu training 

times. Note that the median is often zero, and hence it is not visible on tb!l graph. 

The G 9-1 network, consisting of a single generalised shunting neuron, trained 

using the GDX algorithm, had the lowest averag!l error (0.16%) with 84% of 

networks (neurons) able to achieve perfect classification, i.e. 0% error. This simple 

structure was also the second fastest to train, next to the SIANN trained with DS

GDX. The single neurons trained using the LM algorithm did not work that well, 

with an average error of 0.44% and 'only' 22% of them achieving perfect 

classification. 

The GP 9-2-1 GFNN trained with GDX did not do as well as tl1e single neuron. It 
had the second best avcrng!l error, but also the second longest training time. The GP 

9-2-l OFNN trained with LM had one of the highest mean error rates (0.49%), but 

still had almost half the networks achieving perfect classification. It could also be 

trained fast, more than twice as fast as a SIANN trained with LM. When trained with 

DS-GDX, the GP 9-2-1 GFNN did better than the corresponding SIANN networks; 

the average error rate was cut by almost half, and two thirds of the networks 

achieved perfect classification (compared to 36% for the SJANNs). However the 

average training time was twice as long despite the fact that tl1c GFNN network had 

less than halfthe number of weights to train compared to SIANN. 

Overall the OFNNs did better than the SIANNs when trained using GDX and DS

G DX algorithms. With the LM algorithm, the accuracy was not as good for the 

GFNNs, but there were significant reductions in training times. In reality, the average 

error rates achieved were not vastly different, with all achieving 99.5% accuracy or 

higher. The most impressive result was the fact that a single generalised shunting 

neuron could achieve the best performance of all, having the lowest mean error, with 

84% of trials nchi!lving perfect classification (100% accuracy). 
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Table 7.1 Best results for Wisconsin Breast Cancer dataset using GFNN s 

Network Training Activation Performance Avg Epochs Test Error CPU 

Structure A Igor. functions (% of runs) time 

Shunting Out 7 0% 20% All 7 0% Best Mean 95% Med. 
(s) 

Nu Den goal err < runs goal Error (%) (%) Cl (%) 

Single GDX Lin Lgs 0 84 100 134 * 141 0 0. 16 ± 0. ll 0.00 7.0 
GSN 9-1 LM Lin Lgs 0 22 100 56 * 54 0 0.44 ± O.Q7 0.56 9.4 

(22 
weights) 

GFNN GDX Lin Exp Tnl1 0 70 100 279 * 304 0 0.19 ±0.09 0.00 22.6 
GP 9-2-1 LM Exp Exp Tnh 0 48 100 57 * 57 0 0.49 ±0.16 0.56 15.7 

(47 
* 0.28 0.00 13.4 weights) DSGDX Lgs Exp Lin 0 62 100 162 145 0 ±0.13 

SIANN GDX Lgs Lgs 0 66 100 161 * 160 0 0.20 ±0.08 0.00 10.3 
9-9-1 LM Lgs Tn11 0 74 100 18 1 * 119 0 0.20 ± 0. 10 0.00 34.8 
(I 18 

* 0.54 0.56 6.4 weights) DSGDX Tnh Lgs 0 36 100 96 100 0 ± 0.14 
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Fig. 7.6: Mean and median test e1Tor and mean training time for the Wisconsin 

Breast Cancer dataset using GFNNs. 
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7,3,2 Pima Indian, Diabetes dataset results 

The results obtained for this dataset, using a single GSN (G 8-1), a GP 8-2-1 GFNN 

and the 'standard' 8-8-l SlANN, are shown in Table 7.2 and Fig. 7.7. The figure 

here shows the lowest error achieved by a single network for each case, in addition to 

the mean and median test !lrror, since the 'best case' error is not zero for this 

problem. 

Both the G 8-1 and the GP 8-2-l GFNNs trained with GDX were able to achieve 

better results than the SIANN trained with the same algorithm, with a mean error of 

20.6% as opposed to 21.0% for SIANNs and more than double the number of 

networks having error below 20%. 

The 8-2-1 GFNN trained with DS-GDX was able to achieve a mean error rate 

below 20%, with 56% of networks achieving rates be!ow 20%. However, this was 

not as good as the SIANN trained with DS-GDX, and the training time required was 

also double that ofSIANNs. 

The accuracy achieved by both the single GSN and the 8-2-1 GFNN when trained 

with LM was 'average', with the exception of one GFNN that achieved the lowest 

'best case' error of 16.15%. The big difference lies in the average training time for 

the LM algorithm across the different types of network. The 8-2-1 GFNN trained 

with LM took approximately half the time to train compared to SIANN, and the 

single GSN training time was less than a quarter of the SIANN training time. In fact, 

the GSN trained with LM was the fastest combination of all and took an average of 

only 22 epochs. As with th!l Enlianced SJANNs, there is a clear trend linking the 

training time for the LM algorithm with the number of weights in the network. Here 

again the single generalised shunting neuron was able to achieve accuracy rates 

comparable to larger networks, with the advantage of faster training times. 

7.3.3 Results for the 3-blt Parity problem 

The results for the parity problem, presented in Table 7.3 and Fig. 7.8, arc for a 

single GSN, a GP 3-2-1 GFNN and a 'standard' 3-3-1 SIANN. It should be noted 

that most cases of the median error rate is zero, and so is the mean in one cas!l; 

hence, these arc not visible on the graph. 

Looking at the average error rates, the 3-2-1 GFNN trained with LM was 

undoubtedly the best, achieving 'perfect' results - 100% correct for all networks. 

The training time for this combination was also the best of all, twice as fast as 

S!ANNs trained with LM. The same 3-2-1 GFNN networks trained with GDX and 

DS-GDX did not achieve such good results, with average errors in tl1e region of 

2.5%, but still maMgcd to get 80% and 90% of networks achieving perfect 

classification respectively. 
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Table 7 2 Best results for Pima Indians Diabetes dataset usino GFNNs .,.., 
Network Training Activation Perfonnance Avg Epochs Test Error CPU 

Structw-e A Igor. functions (% of runs) time 

Shunting Out 7 0% 20% All 7 0% Best Mean 95% Med. 
(s) 

Nu Den goal err < runs goal Error (%) (%) CI (%) 

Single GDX Tab Exp 0 0 38 173 * * 18.23 20.58 ±0.26 20.83 9.7 
GSN 8-1 LM Tnh Lgs 0 0 34 22 * * 18.75 20.56 ± 0.27 20.31 5.2 
(20 wt.) 

GFNN GDX Toh Tnh Toh 0 0 34 175 * * 18.23 20.58 ±0.34 20.57 15.7 
GP 8-2-1 LM Exp Lgs Lgs 0 0 42 58 * * 16.15 20.36 ± 0.33 20.31 17,8 

(43 
weights) DSGDX Lin Lgs Lin 0 0 56 150 * * 17.71 19.94 ±0.27 19.79 13.5 

SlANN GDX Toh Lgs 0 0 14 195 * * 17.71 21.03 ±0.29 21.35 13.2 
8-8-1 LM Lgs Tnh 0 0 58 182 * * 17.71 19.88 ±0.32 19.79 38.9 
(97 

weights) DSG DX Lgs Lgs 0 0 68 94 * * 18.75 19.82 ±0.29 19.79 6.4 

Pima Indians Diabetes 
I, 

GFNN: GP 8·2·1 

St,,Mard SIANN: '8-8·1 

11 

•• 

GOX LM GOX lM OSGOX GOX LM OSGOX 
Algori thm 

Fig. 7.7: Best, mean and median test error and mean training time for the Diabetes 

dataset using OFNNs. 
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Table 7.3 Best results for 3-bit Parity dataset using GFNNs 

Network Trafning Activation Performance Avg Epochs Test E1Tor CPU 

Structure A Igor. functions (% of runs) time 

Shunting Out 7 0% 20% All 7 0% Best Mean 95% Med. 
(s) 

Nu Den goal err < runs goal Error (%) (%) Cl (%) 

Single GDX Lin Toh 0 40 48 1000 .. 1000 0.00 16.00 ±4.26 25.00 5.5 
GSN 3-1 LM Exp Lgs 64 66 72 
(10 wt.) 

343 153 178 0.00 11.00 ± 5.03 0.00 4.5 

GFNN GDX Lin Exp Lgs 80 80 100 454 318 318 0.00 2.50 ± 1.40 0.00 3.2 
GP 3-2-1 LM Lin Lgs Lin 98 100 100 30 22 30 0.00 0.00 ±0.00 0.00 0.8 

(23 
DSGDX 344 weights) Lin Lgs Lin 76 90 92 467 408 0.00 2.75 ± 2.45 0.00 3.2 

STANN GDX Tnh Lgs 94 94 96 352 311 311 0.00 1.25 ± 1.44 0.00 2.3 
3-3- 1 LM Exp Lin 96 96 100 84 46 46 0.00 0.50 ±0.69 0.00 1.7 
(22 

weights) DSGDX Tnh Lin 94 94 100 169 116 116 0.00 0.75 ± 0.83 0.00 1.3 

3-blt Parity 

Singlo GS nouron: ,3.1 

GFNN: GP 3·2·1 Stond>rd SIANN: l-3·1 
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Fig. 7.8: Mean and median test error and mean training time for 3-bit parity dataset 

using GFNNs 
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The performance of the single generalised shunting neuron doesn't look good, 

with average error rates above 10% and no real advantage in training time. It should 

be noted, however, that that a single neuron is still able to solve correctly the 3-bit 

parity problem, in 40% and 66% of the cases when trained with the GDX and LM 

algorithms, respectively, This is quite an achievement when compared to a single 

perceptron neuron, which cannot solve problems that are not linearly separable. 

Overall, the GFNNs were able to perfonn as well as SIANNs with a simpler 

structure, with the added advantage of savings in training time for the LM algorithm. 

For this problem, having simpler structures does not always mean less synaptic 

weights because of the small number of inputs. The GP 3-2-1 GFNN has 3 neurons 

and 23 weights compared to the STANN with 4 neurons but only 22 weights. The 

comple1:ity of the GSN in tenns of number of weights, in this case, offsets the 

savings in terms ofnumber of neurons. 

7,3,4 Results for the Artificial Multi-class problem 

The test for this problem was designed as a wlnner-take-all type output with 3 

possible outcomes. Therefore a single neuron could not be used, as 3 separate outputs 

are required. Instead, a single layer of 3 generalised shunting neurons with 2 inputs 

(G 2-3 GFNN) was used. Table 7.4 and Fig. 7.9 show the results for the G 2-3 

GFNN, the GP 2-2-3 GFNN and the 'standard' 2-2-3 SIANN. 

With both the GDX and LM algorithms, the classification results for the 2-2-3 

GFNN are similar to those of SIANN (with marginally higher error), but training 

times are about 30% shorter. The 2-2-3 GFNN trained with the DS-GDX algorithm, 

achieved a reduction in both mean error rate and training time, compared to SIANN. 

The average error rate achieved by the single layer of GSNs was between 6.5% 

and 7%, which is higher than the 5.5% to 6% achieved by the 2-2-3 GFNN and the 

SIANN. The training time required, on the other hand, was significantly lower. The 

single-layer GFNN can be trained with LM twice as fast as the 2-2-3 GFNN and 3 

times as fast the SIANN with the same algorithm. For this problem, it should be 

noted that both the GFNN atructures have almost the same number of weights (24 

and 25), which is more than the SJANN structure (19 weights). Despite the fact they 

have more weights to train, the GFNNs con be trained foster as they require less 

epochs to achieve the target. 

Overall, the trend is the same as with the other benchmarks. The GFNNs achieved 

comparable results in tcnns of accuracy but with shorter training times. Looking at 

the training times for each algorithm, there is a clear trend of increasing training 

times, as one goes from the G 2-3, to the GP 2-2-3 GFNN nnd finally to the SIANN. 

This is most pronounced for the LM algorithm. An example of the decision boundary 

fonned by the GFNN is shown in Fig. 7.!0. 
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Table 7.4 Best results for Multi-Class dataset using GFNNs 

Network Training Activation Perfonnance Avg Epochs Test Error CPU 

Strncture A Igor. functions (% of runs) time 

Shunting Out 7 0% 20% All 7 0% Best Mean 95% Med. 
(s) 

Nu Den goal err < rnns goal Error (%) (%) CJ (%) 

GFNN GDX Lgs Exp 0 0 100 173 * * 4.67 6.81 ± 0.43 6.67 9.0 
G 2-3 

(24 wt.) 
LM Lin Exp 0 0 98 58 * * 5.33 6.65 ± 1.19 6.00 28.1 

GFNN GDX Lin Lgs Lgs 0 0 100 180 * * 4.00 5.61 ±0.17 5.33 13.2 
GP 2-2-3 LM Lin Lgs Toh 0 0 100 99 * * 4.00 5.79 ± 0.17 6.00 65.4 

(25 
weights) DSGDX Lgs Exp Lgs 0 0 100 110 * * 4.67 7.21 ± 0.77 6.00 8.5 

STANN GDX Exp Lgs 0 0 100 377 * * 4.00 5.47 ± 0.16 5.33 19.4 
2-2-3 LM Exp Lgs 0 0 JOO 228 * * 4.00 5.69 ± 0.26 5.33 103 .0 
(19 

weights) DSGDX Exp Lin 0 0 90 206 * * 5.33 9.39 ±2.24 6.67 10.9 

Multi Class ,. -

j Sln11le layor GFNN: G 2·3 

,o I GFNN: GP 2·2~ Slllndud SIANN: 2·2-3 

GOX LM GDX LM DSG OX GDX LM DSG OX 
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Fig. 7.9: Best, mean, median test error and mean training time for Multi-class dataset 

using GFNNs. 
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Fig. 7.10: Decision boundary formed by a GFNN for the Multi-class problem. 

7.3.5 Sunspot Time Series results 

The results for the single GSN (G 10-1), the 10-2-1 GFNN and the 'standard' 10-10-

1 SIANN trained on tbe Sunspots problem are shown in Table 7.5 and Fig. 7.11. The 

figure illustrates the best, mean and median of the test Average Relative Variance 

(ARV), defined in Eq. (4.30) as well as mean training time. 

The mean test ARV of the 10-2-1 GFNN is better than that of the standard 

SIANN, for both the GDX and the LM algorithms. With the LM algorithm, the 

GFNN achieved the lowest mean test ARV overall . 

The single GS neuron trained with LM did not achieve the same level of accuracy 

as the other types trained with the same algorithm but was faster to train. The single 

neuron achieved better accuracy when trained using GDX getting the best result 

using GDX. Furthennore, this was the second fastest combination to train, with only 

the 10-2-1 GFNN trained with DS-GDX being faster. 

Once again the GFNNs, in particular the single generalised shunting neuron have 

demonstrated their ability to achieve results comparable to other more complex 

networks, with the advantages of simpler structures and, in many cases, reduced 

training times. 
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Table 7.5 

Network Training 

Strnct. 
A Igor. 

Single GDX 
GSN LM 
10-1 

(24 wt.) 

GFNN GDX 
GP LM 

10-2-1 
(51 wt.) DSG DX 

ST ANN GDX 
10-10-1 LM 

(141 
weights) DSGDX 

Best results for Sunspots dataset using GFNNs 

E . 
E 
;:: .. 
-= c 
1! .. 
i 

Act-fns Performance 
(% of runs) 

Shunting Out "7 all 80% 

Nu Den gl in tol 
tol 

Lin Lgs 0 0 100 

Exp Tnh 0 10 100 

Lin Lgs Lin 0 6 100 

Lin Lgs Lin 0 8 100 

Lin Lgs Lin 0 0 100 

Tnh Lin 0 14 98 

Lgs Lin 0 8 100 

Lgs Lin 0 40 100 

()l$ 

ti 
I 

SIIIQIO GS neuron: 10-1 

12 

Avg Test MSE Test ARV 
Epochs 

Best Median Best Median Mean 

159 0.0088 0.0099 0.105 0.119 0.120 

64 0.0071 0.0107 0.085 0.129 0.140 

146 0.0095 0.0122 0. 113 0.147 0.146 

61 0.0065 0.0083 0.078 0.100 0.100 

106 0.0083 0.0095 0.118 0.135 0.138 

147 0.0085 0.0134 0.102 0.161 0.174 

54 0.0075 0.0093 0.090 0.111 0.112 

161 0.0077 0.0097 0.096 0.121 0.119 

Sunspots 

gJ,I~ • 

GFNN: GP 10·2-1 Standard SIANN: 11).10-1 

Algortthm 

CPU 
time 

95% CI 

± 0.002 5.5 

± 0.019 7.3 

±0.004 8.0 

±0.004 10.9 

± 0.004 4.4 

± 0.020 6.8 

± 0.003 9.8 

±0.002 7.6 

Fig. 7 .11: Best, mean and median test error and mean training time for Sunspots data 

11sing GFNNs. 
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7,3,6 The 'Optimal' Lower-Bound of s 

As discussed in Chapter 4, the denominatorofthe shunting neuron (or shunting tenn) 

s, given in (7.2), is constrained to be positive definite so as to avoid II divide by zero 

condition. By definition, the GSN contains the same shunting tenn, with the same 

constraints. During the training oftlie GFNNs, as with SIANNs, a lower limit for the 

s term, s11m, is set. The limit s1;m correspondingly detennines the lower bound for the 

purnmeter a during training, depending on the lower bound of the denominator 

activation function. 

Previously in Chapter 4, it has been shown that changing the value of Slim used 

during training affects the stability and duration of training for SIANNs, as well as 

the accuracy of the trained network. Tests were conducted on SIANNS using II 

number of combinations of problems, training algorithms, network structures and 

activation functions. The value of Slim during training was varied over a range of 

values (from 0.01 to 2.0) for each of these cases aod the performance in terms of 

accuracy and training times were noted. This was an attempt to find a limit va]ne that 

worked best over a range of problems, t'llining algorithms and networks. It was 

concluded that a limit value between 0.5 and 1.0 would be 'best' for SIANNs, and 

subsequently s1;m was set to 1.0 as u 'standard' across nil the benchmarks tests 

conducted so far. 

The same limit of Slim = 1.0 was used in the GFNN experiments, to maintain 

consistency across the different network structures. This limit value, however, may 

not be the 'best' value for GFNNs since they have their own transfer characteristics. 

One method of finding such an 'optimal' vnlnc for s1;m, within the practical 

constraints of time and resources, would be to conduct similar tests as were done in 

Chapter 4, for the GFNNs. 

Experiments were ca11ied out on the Wisconsin Breast Cancer, Pima Indians 

Diabetes, 3-bit Parity, and Multi-Class problems, using both GDX and LM 

algorithms. The GFNN structures used were the same as in the previous sections. For 

each combination of benchmark problem, training algorithm and network structure, 

the best performing activation function combination was used. For each network 

structure and benchmark problem, the same SO initialised networks used previously 

were trained. Each network training case was repented with the lower limit SJ Im set to 

the values O.Ol, 0.02, 0.05, 0.1, 0.2, 0.5, l.O and 2.0. 

The results obtained, as Slim is changed, are shown in Figs. 7, l 2 to 7 .15. Details of 

results are given in Tables B.37 to B.40, presented in Appendix B. The results show 

that there is minimal variation in the performance, in terms of both classification 

accuracy and training time. There is II consistent and significant effect on the results 

only when s1;m becomes greater than I. The results show a drop in performance, 

marked by nn increase in the e11or rate and sometimes also an increase in training 
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time in the cases that are affected. The pattern that emerges is that only the GDX 

trained networks appear to be affected by changing Slim· All the networks trained with 

LM have remarkably constant performance across the range of values of Slim tested. 

For the Breast Cancer and Diabetes problems, the networks trained using GDX 

show an increase in the error rate for siim greater than 1. The two single-layer GSN 

networks, G 3-1 trained on the 3-bit parity problem and G 2-3 trained on the Multi

Class problem, are the only networks that buck this trend. Their performances vary 

significantly as the value of SJim is varied; actually improving as SJim increases. 

Effllcl of s1orn : Wlsconm Btaast Cancer 

0 . I 

10' 10 111 

25 

• • 
~ 20 

1 <,< 
.!. 15 

------
• .., 
r 1 

s , 

0 
10 · 10 ' 10 . ..,, 

Fig. 7.12: Mean enor and training time for Breast Cancer dataset using GFNNs with 

vanous Slim· 
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EIJoct ol s 11m : Pima Indians 013b9tes 
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Fig. 7.13: Mean error and training time for Diabetes dataset using GFNNs with 

vanous SJim· 
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Fig. 7.14: Mean error and training time for 3-bit Parity problem using GFNNs with 

vanous Slim· 
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Fig. 7.15: Mean error and training time for Multi-Class problem using GFNNs with 

vanous Slim · 

These results would indicate that the value of s1im used during training of GFNNs 

does not affect the results as much as it does SIANNs. Setting s1im to a value of 1 or 

less (but more than 0, by definition), would not affect results in most cases. Taking 

into consideration the exceptions mentioned above, this would make s 1im = 1.0 a 

used in the benchmarks tests, the 'optimal' setting. 
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7.4 Discussion 

The results of the benchmark tests conducted, when taken as a whole, show that !lie 

simple GFNN structures tested are able to achieve similar or better results than the 

larger SIANN structures in terms of accuracy. There is also a consistent pattern of 

faster training times when comparing results for the same training algorithm. This 

saving is most apparent when using the LM algorithm. 

The GFNN structures tested were the simplest possible structures: either a single 

generalised shunting neuron (G n-1) or a hidden layer of two GS neurons with a 

perceptron output (GP n-2-l). The only exception is the Multi-Class problem that 

requires multiple outputs; for this the single GSN was replaced by a single layer of 

GS neurons, and in the other case the output perceptron replaced by a layer of 

perccptrons. These small structures generally resulted in less synaptic weights, 

provided the number of inputs is greater than 2. This was one of the motivating 

factors in enhancing the SIANN structure that ultimately led to the formulation of the 

GFNN. For large problems, it was reasoned that smaller structures would lead to 

saving in terms of memory requirements and computational complexity, hence a 

reduction in training time. This has been borne out by the results obtained. It should 

be noted that this reduction in synaptic weights becomes more prominent as the 

number of inputs to the network increases. For problems that have a small number of 

inputs, the complexity and number of weights in a single GS neuron tends to offset 

the gains obtained by reducing the number of neurons. 

The 'complexity' of the generalised shunting neuron, however, is what gives it its 
power. lt has enabled a single Generalised shunting neuron to be used to solve four 

out of the five benchmark problems considered in this chapter- the exception being 

the Multi-class problem that requires three outputs. Out of these, three are real world 

problems. The fact that a single neuron could achieve 100% correct classification for 

the Wisconsin Breast Cancer nnd 3-bit Parity problems is a noteworthy point. 

Another advantage ofGFNNs is that it can reduce the time taken to find the 'best' 

network structure for the problem. A network that is too small may not be able to 

'solve' the problem, whereas too large a network will result in overfitting. With the 

GFNNs, the search starts with just a single neuron, and it appears that the size of the 

network required will normally be small, thereby reducing the number of network 

structures that need to be tested. This search for an optimal structure is a hidden time 

and effort - a cost that does not show up on training time results. 

The results obtained when attempting to find the optimal value for the lower 

bound of the shunting term, s11m, show that the limit hardly has any impact on the 

results, particularly if it is kept at or below l. This means that the shunting term (or 

denominator) would not be going below the limit value of one, in most cases. 

Looking at this from another perspective, the effect of the shunting term, which is 
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controlled by the inhibitory synapses, would therefore be to reduce the magnitude of 

the output of the numerator that is driven by the excitatory synapses. This is 

intuitively appealing, as the function of inhibition is to lower the output of the neuron 

ornetwork, and the opposite for excitation. This would not be the case if the shunting 

t~nn were to go below ooe, as it then would be amplifying the output of the 

numerator. Put simply, the GSNs operate such that the excitatory and inhibitory 

inputs affect the output in the expected manner. 

While the results presented here show good perfonnance by the GFNNs, 

Arulampalam and Bouzcrdoum have obtained somewhat better results using some 

different initialisation and training conditions (Arulampalam & Bouzerdoum, 2003a, 

2003b). The first difference is that the value of S1im used was 0.1, instead of LO. 

Secondly, the network initial weights were generated using a nonnal distribution, 

instead ofa unifonn distribution. 

With these alternate conditions, the single generalised shunting neuron (G 9-1) 

trained with GDX and LM algorithms on the Breast Cancer was able to achieved 

94% and 90%, respectively, of networks having 0% error. This is an improvement on 

the 84% and 22% achieved ush1g the standard conditions used in this thesis. For the 

3-bit Parity problem, the single shunting neuron was able to get 94% of neurons 

achieving 0% error when trained with LM, compared to 66% with standard 

conditions. The mean error also dropped from 11.0% to 1.5%. It has been shown that 

the value of SJim hEIS minimal impact on GFNNs, particularly when trained with LM. 

This would indicate that this perfonnancc improvement is due to the initialisation 

scheme. The improvements arc problem dependent, however, as the results for the 

Diabetes problem were worse using these alternate conditions. 

An alternative method tried out was not to use the bias tenn, b, in the numerator, 

by setting b to O and not varying it during training. A single shunting neuron trained 

with GDX in this manner was able to achieve 'perfect' results on the Wisconsin 

Breast Cancer dataset - all 50 'networks' achieving 100% correct classification. 

These results reinforce the conclusion that GFNNs are a powerful class of networks, 

able to achieve good classification results, even with a single neuron. 

7.5 Conclusion 

In this chapter we have presented the motivation behind the development of the 

Generalised Feedforword Neural Network (GFNN) nrchitecture, initiated by the need 

to overcome some of the limitations ofSIANNs. The development of the Generalised 

Feedforward Neural Network (GFNN) architecture and structure of its bask bttilding 

block, the Generalised Shunting Neuron (GSN) model, have been presented. 
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The Generalised Shunting Neuron model presented here includes both the 

shunting inhibitory neuron and the perceptron neuron as special cases. The ability of 

the GSN depends on the combination of numerator and denominator activation 

functions used. It has been shown that a particular combination of activation 

functions can produce various types of transfer characteristics by simply varying the 

synaptic weights. 

Details of experimental results obtained using GFNNs on benchmarks problems 

have been presented. Investigations were also canied out to detennine the 'best' 

lower bound for the shunting tenn, Slim· The results obtained show that the GFNNs 

rn:e able to achieve comparable or better results than S[ANNs for the benchmarks 

problems, using smaller, simpler network structures. There is also generally a Saving 

in tenns of training time, especially when using the LM algorithm. The most striking 

fact was that a single neuron could actually be used as a viable 'network' for these 

problems. 

The Generalised Shunting Neuron is capable of producing complex decision 

boundaries, and hence it is able to solve some real word classification and regression 

problems. This is exemplified by the perfect solutions of the 3-bit parity and Breast 

Cancer problems using a single GSN. Furthennore, using the GSN avoids the 

problem of having to c\rnose an arbitrary subset of excitatory inputs, a problem faced 

when reducing the size of SIANN structure. This was one of the prime motivating 

factors in the development ofthe GSN model. 

In conclusion, GFNNs show the ability to fonn the basis of a class of powerful 

new classifiers. Further investigations needed to compare their performance with 

other types of networks, particularly on more complex problems. The next step 

would therefore be to compare the perfonnanee of GFNNs to thnt of MLPs and 

SIANNs for n variety of problems. 
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Chapter 8 

Extended Benchmark Tests 

8.1 Introduction 

In the previous chapters, the perfonnances of 'standard' SfANNs, 'enhanced' 

SJANNs and GFNNs were compared on a set of benchmarks problems. This 

comparison between various shun1ing inhibition based networks begs the question 
"How do shun1ing inhibition based networks compare with other types of networks?" 
In this chapter, lhe issue is addressed by comparing the shunting inhibition-based 
nccworks with what is arguably the most commonly used artificial neural network for 
these 1ypcs of problems, the Multilayer Pcrceptron (MLP). Moll.!over, whenever 
possible, comparisons are also made with other results presented in the liternture. 

T11c GFNN architecture contains MLPs as a subset. TI1c code uscli for the 

simulations has been written in II manner that allows the same code to be used for 
gcncm1ing 11nd I raining SIANNs, GFNNs and MLPs, For each of the live benchmark 
rrob!cms used in previous chapters, MLI' structures with similar number of weights 
as the GFNN s!ructurcs were generated, tmined mid tested. The objective was to 
invcstignlc dHTcrcnccs due to the types of network 11rchi1ccrures; therefore, the same 
co<lc was u~cd for iuitialisalion and training, with n!I rammctcrs being the same. An 
additional benchmark noblcm has been considered, namely the Thyroid dis~asc 
classification rrobkm, .. , order to provide an insight into the c11r11bilitics of shunting 
nclwork5 with larger problems, 
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It should be noted that the MATLAB code developed so far for training SIANNs, 

GFNNs and MLP has not been optimised for speed of execution. Code optimisa!ion 

would havCl significant impact on the time taken to train the networks. In order to 

provide a reference for comparison with other experimental results, 'MATLAB 

Toolbox MLPs' (MT·MLPs), generated and trained using the MATLAB Neural 

Network Toolbox, have also been trained on the same set of benchmark problems. 

These 'MT-MLPs' differ from the earlier MLPs, which we hereafter refer to as G

MLPs, only in the method of initialisation and the Clfficiency of the training 

algorithms, including the method of representing and storing infonnation in memory. 

The next section presents the results obtained by training MLPs on the benchmark 

problems and compares them to earlier results obtained using GFNNs and SIANNs, 

as well as making comparisons with other published results. The third section 

presents a comparison of the MLP results obtained using G-MLPs with those 

obtnined using the MATLAB Neural Network Toolbox code. A discussion is 

presented in Section 8.4, followed by lhc conclusion in Section 8.5. 

8.2 Test Results and Comparison 

The next five sub-sections present results of MLPs trained and tested on the five 

benchmark problems used in the previous chapters and compares them to results 

obtained with SJANNs and GFNNs. For each benchmark problem, one of the two 

GFNN networks presented in Chapter 7 was chosen for comparison with an MLP 

having similar number of weights. As in the previous chapters, 50 networks were 

generated, and these were trained using GDX (Gradient Descent with momentum 

and adaptive learning rate) and LM (Levenbcrg-Marquardt) algorithms. Additionally, 

both the GFNN and MLP were trained on the QNN variant that achieved the best 

perfonnance using SlANNs for the particular benchmark problem. The DS-GDX 

algorithm was not compared, ns it can't be used for single layer networks. The 

initialisation 1md training parameters used arc the same as described in Clmptcr 4. 

As mentioned in the introduction, the MLPs were generated, initialised, trained 

nnd tested using the snme MATLAB code used to train SIANNs and GFNNs. The 

objective is to VOi)' only the type of neuron used, so thnt a fair comparison can be 

mnde on the relntive effectiveness of the two architectures. This is also the reason 

why the tested MLP structure was not one with the same number of neurons as the 

GFNN structure, but instead one tha! had similar number of synaptic weights. This 

would give the MLP network the same 'capacity' to lenm ns the GFNN network, 

making the comparison foirer. It would also make the sizes of the gradient vectors 

and Hcssinn mn1riccs comparable, making the time comparisons fairer as well. The 

results for the 'S!andard' SIANNs are prescn!cd for comparison. 
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An additional 'real world' problem, the Thyroid disease classification problem, 

has been added to the set of benchmark tests to compare the different network types. 

Appropriate GFNN, SIANN and MLP networks were trained and tested on this 

problem. The description of this dataset and the test results are presented in 

Subsection 8.2.6. 

Comparisons with results for the benchmark tests from the literature have also 

been canied out where available and appropriate. 

8,2,I Wisconsin Breiut Cancer Dataset 

The results obtained using a 9-2·1 MLP, a single generalised shunting neuron (GSN) 

and the 'standard' 9-9-1 SIANN, trained on the Wisconsin Breast Cancer problem, 

are presented in Table 8.1 and Fig. 8.1. As in previous chapters, the figure contains 

two graphs: the top graph shows the mean and median test error rates for the best 

perfonning activation function combination, and the bottom graph illustrates the 

corresponding mean training times. Note that the median test error is often zero, ond 

hence is not visible on the graph. 

The 9-2-1 MLP network trained using the GDX algorithm had the lowest average 

error (0.08%) with 86% of networks able to achieve perfect classification, i.e., 0.00% 

error. This network structure was also the second fastest In train, next to the GFNN 

trained with GDX. The MLP trained using the LM algorithm, on the other hand, had 

the highest error rate, with a mean error of 0.51%. When trained with the QNNJ 

algorithm, the MLP achieved an 'average' error of0.24%. 

The MLP took marginally longer to troin than the GFNN for both the GDX and 

LM algorithms. The GFNN was the slowest to train with QNN. The mean trnining 

times for the LM and GDX algorithms aro quite similar, with the exception of the 

SIANN trained with LM. 

Overall, the first-order GDX algorithm surprisingly produced the best set of 

results, both in tenns of accuracy and speed of training. The LM algorithm had the 

highest average error mies, except for the SlANN architecture. The MLP results 

were the extremes - the best of the best (GDX), worst of the wnrnt (LM), and middle 

with the QNN algorithm! 

Herc it has to be highlighted once again that, in reality, the average error rates 

achieved were not very different. All cases achieved error rates of less than 0.5%, in 

other words, mean accuracy of 99.5% or belt er, nnd over half the networks achieved 

perfect classificntion. 
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Table 8.1 Results for Wisconsin Breast Cancer dataset using MLP GFNNs and 

SIANNs 

Network Training Activation Performance Avg Epochs Test Error Mean 

Structure A Igor. functions (% of runs) time 

Shunting Out 7 20% All 7 0% Best 95% 
to 

0% Mean Med. train 
Nu Den goal err < runs goal Error (%) (%) CI (%) (s) 

MLP GDX Lgs Lin 0 86 100 158 * 159 0.00 0.08 ± 0.05 0.00 8.6 
9-2-1 LM Lgs Tnh 0 44 [00 57 * 56 0.00 0.51 ± 0.15 0.56 9.9 
(23 

weights) QNN3 Lgs Tnh 0 70 100 80 * 67 0.00 0.24 ± 0.12 0.00 13.2 

Single GDX Lin Lgs 0 84 100 134 * 141 0.00 0. 16 ±0. 11 0.00 7.0 
GSN 9-1 LM Lin Lgs 0 22 100 56 • 54 0.00 0.44 ± 0.07 0.56 9.4 

(22 
weights) QNN3 Lin Lgs 0 68 100 194 * 204 0.00 0. 19 ± 0.08 0.00 30.9 

SIANN GDX Lgs Lgs 0 66 100 161 .. 160 0.00 0.20 ± 0.08 0.00 10.3 
9-9-1 LM Lgs Tnh 0 74 100 181 .. 119 0.00 0.20 ± 0.10 0.00 34.8 
(118 

weights) QNN3 Tnh Lgs 0 56 100 78 • 70 0.00 0.33 ± 0.12 0.00 17.4 

Wisconsin Breast Cancer 
n, 

[:·";J 
Trained u&lng GO)( Trained u&lng LM Tr• lnod u•in_g QNN 
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Fig. 8.1: Mean and median test error and mean training time for the Wisconsin 

Breast Cancer dataset using MLPs, GFNNs and SIANNs. 
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To get an idea of what these benchmark test results mean in the broader context of 

pattern classification, comparisons have to be made with other results published in 

the literature. The results obtained by Preehelt, with the Probenl set of benchmark 

problems (Prccbelt, 1994), provide a good reference for comparison for a number of 

reasons. Firstly, the results arc well documented witb good descriptions of the 

datasets, architectures and training parameters, as this study attempts to set the 

standard for benchmark testing and reporting. Secondly, the Probenl set contains 

three out of the six datasets used here, namely the Wisconsin Breast Cancer, Pima 

Indians Diabetes and Thyroid datasets. The third reason is that the guidelines and 

'standards' laid out by Prechelt have been followed fairly closely in lhe benchmark 

tests carried out in this investigation, which allows meaningful comparisons to be 

made. Finally, the Probenl datasets and the results given by Prechelt arc referenced 

fairly frequently, fonuing a common reference point for comparison. 

Prechelt divides the datasets into training, validation and test sets using 1he same 

50%-25%-25% proportion ns used here, but he has three versions of each dataset, 

where the only difference is the ordering of the samples, resulting in different 

partitioning of the data. The networks were trained using the RPROP algorithm, a 

fast backpropngation variant that operates in batch mode (Ricdmiller & Braun, 

1993). He presents results for a number of different architectures: purely linear 

networks; selected multi-layer structures with sigmoid neurons for finding the 'best 

pcrfonning' structure; and 'pivot architectures' with and without shortcut 

connections (relates to the best perfonning network structures, sec (Prcchelt, 1994} 

for details}. The most appropriate structure for comparison would be the 'pivot 

architecture' networks without shortcut connections. Resulls for this structure trained 

on all three partitions will be used for comparison, a!ong with selected results from 

other sources using different types of classifiers. 

Prcchelt used 'pivot architectures' of 9-4-2-2, 9-8-4-2 and 9-16-8-2, with no 

shortcut connections, for the three different data partitions of the Breast Cancer 

problem (labelled Cancer/, Canccr2 and CrmcerJ). The networks used arc MLPs 

with sigmoid neurons in the two hidden layers and linear output neurons, with one 

output for each class, 1md have 56, 126 and 314 weights, respectively (no shortcuts). 

TI1ese networks achieved mean test error rates of 1.32%, 3.47% and 2.60%, 

respectively. These results arc presented in Table 8.2, along with results from a 

variety of cln~sificrs such as MLl's evolved using evolutionary programming 

(EPNel)(Yao & Liu, 1997), k-Ncnrcst Neighbour classifiers (kNN} (Jankowski, 

2003), Support Vector Machines (Sl'M)(Shin & Cho, 2003}, lest feature classifiers 

(Lashkia & Alcshin, 2001), fu1.1.y neural networks (Mccsad & Yen, 2001), cascade 

neural networks created using cons1ructivc nlgori1hms - wilh pruning (CNNDA -
Cnse I) and without pruning (CNNDA - C<l•c If) (ls!mn ct ul., 2000) nnd neurnl 

network commiuccs (Cr1mmill<'C) (Verikns ct al., 2002). 
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Table 8.2 shows the results from the other literature, with mean error rates ranging 
from 1.16% to 6.70%. It is fairly obvious that GFNNs and SIANNS, with mean error 
rates between 0.16% ond 0.44%, outperform these other classifiers by a significant 
margin. Who! makes it more notable is the fact that the shunting network results have 
been obtained with very small structures, including a single neuron GFNN. 

Tab!e 8.2 Comparison of mean test error for Wisconsin Breast Cancer d~tnset with 
resnlts from other literature. 

lns1a<1<0 Source Meo~;.<;,• 
Error% 

lml:ln<o Source McaoTo,t 
Error 'II' 

GFNN-GDX Ch,", 718 0.16 Canoorl Prnbonl l.ll 

GFNN-LM Ch,- 718 0.44 Conoorl Prnbonl "' GFNN-"NNl Ch,- 718 0,19 Ctu1«rl Probcnl ,.oo 
SIANN·GDX Cho•. 418 0.20 EPNcl '"' l.l8 
SIANN·LM °"'"·418 0.20 ~, Jookowslci 2.9S 
SIANN-"NN) Ch,-.4/8 0.)) S,M Shin '" MLP-GDX Cho·. 8 0.08 Testfealllre Lllski, 4.00 

MLP-LM Cho•. 8 O.SI '" " Moo,ad 1.15 
MLP-nNNl Ch,·, 8 0.24 CNNDA - ai,c l 1,1,m l.27 

CNNDA-Cn,oll lslom l.16 

Commiltoc - All Vo,iku 3.10 
Commi1tec - 2 Features Vcrihs 2.JS 

8,2,l Pima Indians Diabetes Dataset 

Tiie results obtained for the Diabetes dataset, using nn 8-2-1 MLP, 11 single 
generalised shunting neuron (G 8-J) nnd the 'standard' S!ANN (8·8·1), are presented 
in Table 8.3 and Fig. 8.2. Since the 'best case' error is not zero for this problem, here 
Fig. 8.2 shows the lowest error rate achieved by II single network in ench case, in 
nddition to the mc~n and median test error rates. 

The MLP was nblc to achieve a mean error rate between 20.45% nnd 20.75%, 
which is comparable to the results obtained using the GFNN. Compured on the basis 
of !mining algorithm, the MLr achieved the best result for the GDX algorithm, 
followed by the GFNN and SIANN, whcrc11s for tbc LM nnd QNN 11lgorithms the 
order was reversed, with SJANN doing best and MLP worst. Tiie SlANN was the 
only network structure here able to achieve average error rates below 20%, (19.88% 
with LM and 19.80% with QNN3 algorithm). An error rate below 20.0% is 
~onsidcrcd very good for the Diabetes dat11set, ns most test results tend co be above 
th!s level (Michie ct al., 1994; Prccheh, 1994). It should be noted chat the GP 8-2-1 
GFNN trained wi1h DS-GDX wos able to nchicvc 19.94%, see Tublc 7.2. The best 
average error ofoll was with a SIANN trnincd using the first-order GDM algorithm -
n remarkable 19.05% (sec Table 4.3). 
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Table 8.3 Results for Pima Indians Diabetes dataset using MLP, GFNNs and 

SIANNs 

Network 

Structure 

MLP 
8-2-1 

(21 wt.) 

Single 
GSN 8-1 
(20 wt.) 

SlANN 
8-8-1 
(97 

weights) 

Training Activation Performance Avg Epochs Test Error 

Algor. functions (% of runs) 

Shunting Out 7 0% 20% All 7 0% Best Mean 95% 

Nu Den goal err < runs goal Error (%) (%) CI 

GDX 

LM 

QNN3 

GDX 

LM 

QNN3 

GDX 

LM 

QNN3 

Tnh Tnh 0 

Lgs Tnh 0 

Lgs Lin 0 

Toh Exp 0 

Tnh Lgs 0 

Tnh Lgs 0 

Tnh Lgs 0 

Lgs Tnh 0 

Exp Tnh 0 

» 

ffllntd usli,g GOX 

,1 

.. !) • 

I 

" 

.. 

9J ---

45 

... 
~"I) 

~ .. 
{ 25 

1! .. 

0 30 188 * 
0 26 58 * 
0 34 144 * 
0 38 173 * 
0 34 22 * 
0 46 94 * 
0 14 195 * 
0 58 182 * 
0 60 182 * 

Pima lndlans Diabetes 

Tr•tn•d using UJI 

1i 20<--------------
:i 

IS 

MlP GFNN SIANN MlP OFNN SIANN 
Nttwork Type 

* 18.75 20.45 ± 0.22 

* 18. 75 20.75 ± 0.31 

* 18.23 20.48 ±0.28 

* 18.23 20.58 ± 0.26 

* 18.75 20.56 ±0.27 

* 18.23 20.05 ±0.24 

* 17.71 21.03 ±0.29 

* 17.71 19.88 ± 0.32 

* 17.7[ 19.80 ± 0.27 

Tra Md using CNN 

MLP GFNN SIANN 

Mean 
time 

Med. 
to 

train 
(%) (s) 

20.31 I I.I 

20.83 10.8 

20.31 26.2 

20.83 9.7 

20.31 5.2 

20.31 17.0 

21.35 13 .2 

19.79 38.9 

19.79 44.6 

Fig. 8.2: Best, mean and median test error and mean training time for the Diabetes 

dataset using MLPs, GFNNs and SIANNs. 

165 



EXI'EN/JW BENCIIM,iHK r= 

The SIANN has the advantage of more synaptic weights, 97 versus 21 and 20 

weights for the MLP and GFNN structures, respectively, hence providing it with a 

larger 'learning capacity'. On the other hand, the increased network size has the 

disadvantage of more complex computation, as reflected by the longest training 

times for SIANNs, particularly for the second-order LM and QNN algorithms. One 

notable fact is that the single GSN was the fastest to train for all three algorithms. 

Furthcnnore, it achieved better results than the MLP when trained using the second

order algorithms, LM and QNN. For the first-order GDX algorithm, the MLP 

achieved the best average error rate, but its best case error is still worse than that of 

the single GSN. Finally, it should be point out that the lowest error achieved by a 

single GFNN was 16.15%, a GP 8-2-1 network trained using LM, while the best 

single network overall was the standard 8-8-1 SIANN trained using the QNN6 

algorithm which achieved an outstanding 15.63% (see Tables 7.2 and 5.6 
respectively). 

Table 8.4 presents the mean test error rates from the MLPs, GFNNs and SIANNs 

obtained here for comparison with results published in the literature. The Probenl 

benchmark tests conducted by Prechclt have three different partitions (labelled 

diabetes/, diaberesl and diabetes 3) (Prechelt, 1994). The diaberes/ and diabrres3 

partitions end up having ns their 'pivot architecture' a single hidden-layer network 

(8-32-2, with 354 weights), while di,1be1esl has a two hidden-layer network (8-16-8-

2, with 298 weights), all with no shortcut weights. Compare this to the GSN used, 

which has 20 weights, and even the 'full' SIANN with 97 weights. The mean test 

error of the Probe11J networks, with sigmoid hidden layer neurons and linear output 

neurons and trained using the RPROP algorithm, arc presented in Table 8.4. 

The Sia/log project tests a variety of statistical, machine learning and neural 

network methods on twenty classification problems, one of which is the Diabetes 

problem; details of the various classification methods used can be found in {Michie 

ct al., !994). The results achieved by these clas,ification methods on the Diabetes 
problem are presented on the right hand side of Table 8.4. 

Other results presented in Table 8.4 include fecdforwnrd networks constructed 

using a number ofmclhods: evolutionary programming (EPNcl) (Yao & Liu, 1997}; 

cascade correlation-based construction with weight pruning {Thivierge ct al., 2003); 

correlation neural network design nlgoritl11n with pruning (CNNDA - Crue /) and 

without pruning (CNNDA - Case JI) (Islam ct al., 2000). The other compared 

classifiers nre a Functional Link Network with Gaussian functions trained using 

Gcnclic Leaming (GlFLN) (Dhumircddy & Chen, 2003), support vec1or machines 

(SVM) (Shin & Cho, 2003), and ncum! network committees where the members are 

trained on nil features (Ca111mi11,·c -All) or, nltcmativcly, committee members are 

tmir.cd on selected features (Cammi/lee - lfi•r1/11res) (Vcrikas ct al., 2002). 
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The GFNN, SIANN and MLP network results presented here range from 19.1% to 

21.0% error, which are better than all the results reported in Stat/ag and Proben/, 
and most of the others as well. The only instances from other sources with mean 

error rates below 21% are CNN DA Case II, GLFLN and Cammi/lee - 2/eamres. The 

CNNDA Case JI is the on!y instance with an average error below 20%; it has an 

average error rate (l 9.9%), whirh is comparable to that of SIANN trained with LM 

(19.88%) and QNN3 (19.80%), but not as good as the S!ANN trnined with QNN9 

(19.57%) and GDM (!9.05%). This means that the results achieved by the shunting 

inhibition based networks arc better than most of the other surveyed classification 

methods, including many that use networks that are for larger in terms of number of 

neurons and weights. 

Table 8.4 Comparison of mean test error for Pima Indians Diabetes dataset with 

results from other literature 

ln,1an,o ··~ Mo•~;;,.~t rnsionoo ··~ MoonTo,t 
Error % li1Tor<%\ ... 

GFNN-GDX Cha-.1/8 20.6 Lo•di,o Slatl"" ll.l 

GFNN·LM Ch,-.118 20.6 OIPOL92 Slatl-- '" GFNN-nNNJ Chan,7/8 20.l Di•ction Smlo 22.J 
S!IINN·GDX Chan.4/8 21.0 SMART St>tlo "' S!IINN·LM Cha-418 19.9 m St>tlo 24.l 

StilNN-nNNJ Ch,·.418 19.8 ITrulo Stiulo 24.S 

MLP·GDX Chan.8 20.S o,ok•ro• SlilllD 24.8 

MLP-LM Chan,8 20.8 C11S s1111Toe 25.0 

MLP-"NNl Ch,- 8 20.5 CART SIOllo 25.S 

GFNN GP 8-2-1 - DS·GDX Ch," 7 19.9 c11snE S1111to 2H 

Sli\NN-nNN9 Chan.S 19.6 u,di..: s1a,10, 26.1 

SIIINN·GDM =~' 19.1 Noi,·oBa·· S1atlo- 26.2 

Diobotosl Prob<nl 24.1 C4.~ S1atl- 27.0 

Diobms2 Prob<nl 26.4 lodCART s .. 110• 27.1 

Oi,botosl Probcnl 22.6 Do•lfeO Sl:ltl"" 27.1 

EPN<1 ,,, 22.4 "" Stodo- 27.2 

Ca,cado Com,l,iion Thivior•o 21.l Kohonon Stotlon 27.l 

CNNDII-Ca,el 111,m 22.l AC' St1tlo• 17.6 

CNNDII-Ca,oll l.t,m 19.9 Nc1<!0 51111!0• 21.9 

GLFLN Dh"mifNd" 20.l m S1>1lo• 2U 

SVM Shin 29.9 i\LLOC80 Slallo• 10.1 

Commiuco-1111 Verik" 21.7 l,NN Slatlo• l2.4 

Comrninco - 2 Feoture1 Verik11 l0.8 
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8.2.3 The 3-bit Parity Problem 

The results for the parity problem, presented in Table 8.5 and Fig. 8.3, are obtained 
with a 3-3-1 MLP, a GP 3-2-1 GFNN and the 3-3-l 'standard' SIANN. It should be 
noted that in all cases the median error rate is zero, and so is the mean in two cases; 
these are, therefore, not visible on the graph. 

The 3-3-1 MLP trained with LM was able to achieve 'perfect' results - 100% 
correct for all networks - just like the GFNN network, but in a shorter time. The 
MLP achieved the best result obtained using the GDX algorithm, with a mean error 
rate of only 0.5%. However when trained using QNN, the MLP did not perfonn as 
well, with the second highest overall error rate of 3.0%. Overall, the MLP always 
outperfonned the SIANN in tenns of accuracy, but had mixed results compared to 
the GFNN. The MLP was, however, the fastest to train for all the three algorithms 
tested. 

T11is is a fairly simple problem for the neural networks, with all the network types 
achieving !00% correct classification with more than three quarters of the trained 
networks. In this case, the simplicity of the MLP neuron structure has resulted in 
foster training times while still achieving similar accuracy compared to the other 
network types. 

Comparison with other literature has not been mmle for this problem for a couple 
of reasons. Firstly, most of the literature where parity-type problems have been used 
refer to the simple XOR, or 2-hit parity, problem, while others jump to the more 
complex 5-bit or higher parity cnses. Secondly, even in cases where the 3-bit parity 
problem has been used, the results are generally not in a fonn that allows nny 
meaningful comparisons to be made. For example, some results are in the fonn of the 
number of epochs or number of operations required to achieve n particular error goal, 
and in most cases the error goal is different to that used in the tests perfonned in this 
work. 

8,2,4 Artinclal Mulll-class Problem 

Since this problem hns two input features and three classes, all trained networks had 
two inputs and three output neurons: the GFNN was a 2·2-3 structure, with two 
GSNs in 1he hidden layer and three pcrccptron-typc output neurons; the MLP wns a 
2-4·3 structure, with four hidden neurons; and the 'standard' SlANN had a 2-2-3 
structure. Among these neuron network structures, the MLP hns the most synaptic 
weights with 27, the SlANN has the least number of weights for once with 19, and 
lhc GFNN has 25 weights. 
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Table 8.5 Best results for 3-bit Parity dataset using MLP, GFNNs and SIANNs 

Network Training Activation Perfonnance Avg Epochs Test Error Mean 

Structure A Igor. functions (% of runs) time 

7 
to 

Shunting Out 7 0% 20% All 0% Best Mean 95% Med. train 
Nu Den goal err < runs goal Error {%) (%) Cl {%) (s) 

GMLP GDX Lgs Lgs 96 96 100 224 192 192 0.00 0.50 ±0.69 0.00 1.0 
3-3-1 LM Lgs Lin 100 100 100 11 11 11 0.00 0.00 ±0.00 0.00 0.2 

(16wt.) 
QNN3 Lgs Lgs 78 78 98 333 145 145 0.00 3.00 ± 1.65 0.00 5.4 

GFNN GDX Lin Exp Lgs 80 80 100 454 318 318 0.00 2.50 ± 1.40 0.00 3.2 
GP 3-2-1 LM Lin Lgs Lin 98 100 100 30 22 30 0.00 0.00 ± 0.00 0.00 0.8 

(23 
weights) QNN3 Exp Tnh Lin 84 84 100 283 160 160 0.00 2.00 ± 1.28 0.00 7.6 

SIANN GDX Tnh Lgs 94 94 96 352 311 311 0.00 1.25 ± 1.44 0.00 2.3 
3-3-1 LM Exp Lin 96 96 100 84 46 46 0.00 0.50 ±0.69 0.00 1.7 
(22 

weights) QNN3 Lgs Lgs 72 80 88 436 216 295 0.00 4.75 ± 3.04 0.00 9.4 

3-blt Parity 

10 
Trained using GDX Tt1lnod using LM Tfllned using ONN 

1 

:: J.---------------•---------------

MLP GFNN SIANN MLP GFNN SIANN MLP GfNN SIANN 

N•twork Type 

Fig. 8.3: Mean and median test error and mean training time for 3-bit parity dataset 

using MLPs, GFNNs and SIANNs. 
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Table 8.6 Results for Multi-Class dataset using MLP, GFNNs and SIANNs 

Network 

Strucrure 

MLP 
2-4-3 
(27 

weights) 

GFNN 
GP 2-2-3 

(25 
weights) 

SIANN 
2-2-3 
(19 

weights) 

Training Activation Performance 

A Igor. functions (% of runs) 

Shunting Out 7 0% 20% 

Nu Den goal err < 

GDX Lgs Lgs 0 0 100 

LM Tnh Tnb 0 0 JOO 

QNN6 Lgs Lgs 0 0 100 

GDX Lin Lgs Lgs 0 0 JOO 

LM Lin Lgs Tnb 0 0 100 

QNN6 Lin Tnh Lgs 0 0 100 

GDX Exp Lgs 0 0 100 

LM Exp Lgs 0 0 100 

QNN6 Exp Lgs 0 0 100 

70 

Trolned u1lng GOX 

bO 

140 

100 

! ff) .. .. 
c 

Avg Epochs 

All 7 0% 
runs goal Error 

225 * * 
67 * * 

I 19 * .. 
180 * * 
99 * * 

232 * * 
377 * * 
228 * * 
158 * .. 

Mufti Class 

! ro ~-~~~~~~~~~~ 
li . 
lE 

MLP GF NN S\MIN MLP GFNN SWIN 
Network Typa 

Test Error 

Best Mean 95% Med. 
(%) (%) CI (%) 

4.00 5.37 ± 0.22 5.33 

4.00 5.83 ± 0.16 6.00 

4.00 5.43 ±0.22 5.33 

4.00 5.61 ± 0.17 5.33 

4.00 5.79 ± 0.17 6.00 

4.00 5.76 ±0.24 6.00 

4.00 5.47 ± 0.16 5.33 

4.00 5.69 ±0.26 5.33 

4.00 5.72 ± 0.21 5.33 

MLP GfNN SIANN 

Mean 
time 

to 
train 
(s) 

11.5 

29.9 

39.5 

13.2 

65.4 

116.5 

19.4 

103 .0 

55.4 

Fig. 8.4: Best, mean, median test error and mean training time for Multi-class data 

using MLPs, GFNNs and SIANNs. 
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MUlt•-cia~ decision boundary by a 2-4·3 MLP ttelntd with LM 

8 \ 

6 

Cla!!is 2 

4 
Clas 3 

2 

0 

·2 

-~ 

·6 

-8 

·15 -10 0 5 10 15 

Fig. 8.5 : Decision boundary for the Multi-class problem formed by an MLP. 

Table 8.6 and Fig. 8.4 present the results obtained by training these network 

structures with the GDX, LM and QNN6 algorithms. The MLP achieved mean error 

rates comparable to those of the GFNN and SIANN between 5.37% and 5.83%. For 

any given algorithm the largest difference in mean error rates was only 0.33%, with 

the MLP achieving the lowest error rates with the GDX and QNN algorithms and the 

highest with LM. The lowest error rate achieved by a single network in all cases was 

4.00%, and the median was between 5.33% and 6.00% across the board. Essentially, 

this means that there is no significant difference between the accuracy of the three 

architectures: MLPs, GFNNs and SIANNs. 

On the other hand, there are large variations in the time taken to train these 

networks as can be seen from the bottom graph in Fig. 8.4. The GDX algorithm is 

approximately three to five times faster than the LM and QNN algorithms, and in all 

cases the MLP was the fastest to train. The SIANN took significantly longer to train 

using the GDX and LM algorithms, despite being the smallest network in this case, 

as it required a greater number of epochs to train. The QNN6 algorithm, however, 

was able to train the SIANN almost twice as fast as LM and it was twice as fast as 

when it trained the GFNN. Thi is the only anomaly in the otherwise regular pattern 

in the time graph. This could possibly be due to the fact that the QNN algorithm is 

able to factor in the constraint on the decay parameter, a, for SIANNs while working 

out the optimum weight update. 

For this problem, the main difference in the results achieved is in the training 

time. The MLP has the simplest neuron structure, and hence it is the simplest to train 

giving it the edge in performance. There are no results in other literature available for 

comparison for this artificially generated dataset. It should be noted that the 
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Expanded 2-3-3 SIANN trained with GDX achieved the best reported mean eiror of 
5.00%, and the best individual network pcrfomrnncc of 3.33% was achieved by the 
same network trained with the LM and DSGDX algorithms (sec Table 6.4). The 
decision boundary fonned by an MLP is shown in Fig. 8.5. 

8.2.S Sunspot Time Series 

A 10-4-l MLP structure, which has 49 synaptic weights, was trained on the Sunspots 
problem and compared to the GP 10-2-1 GFNN, having 51 weights, and the 10-10-1 
standard SIANN, having 141 weights. The results are presented in Table 8.7 and Fig. 
8.6. Figure E.6 illustrates the best-case, mean and median Average Relative Variance 
(ARV), Eq. (4.30), as well as the mean training time (bottom graph). 

The 10-2-1 GFNN achieved the best mean test ARV for each of the three 
algorithms used, while the MLP had the worst test ARV for the LM and QNN 
algorithms and second best for GDX. The difference between the mean test ARV of 
the MLP and GFNN ranges from approximately 10% (when trained wilh GDX) to 
50% (when trained with QNN). This shows that the GFNN is able to perfonn 
significantly better compared to the MLP, despite the fact that the MLP has similar 
number of weights and more neurons. The test ARV achieved by the standard 
SIANN was also helter than that of the MLP when trained with the LM and QNN 
algorithms, but worse when using the GDX nlgorithm. In terms of training time, !he 
MLP trained the fastest with GDX and LM, SIANN next and GFNN the slowest; 
with the QNN algorithm, GFNN trained the fastest and SIANN the slowest. 

Comparing the performances of the training algorithms, the GDX had the worst 
accuracy, with QNN best, slightly better than LM. The training time trend was the 
other way around, with GDX fastest, LM slightly slower and QNN taking 2 to 6 
times longer. TI1is is to be expected, as the 'price' for the improved accuracy is the 
longer training time - the 'no free lunch' concept. The amount of ndditionnl time 
required by the QNN algorithm for the marginal improvement in nccuracy, however, 
mnkes it seem 'expensive', though that is a subjective conclusion. 

Overnl! the GFNN trainc<l with QNN wns the most accurate, both in terms oftest 
ARV and test MSE. The GFNN trained with LM wos only sligh1!y less accurate, but 
trained fn less than half the time. Tho GP 10-2-1 GFNN clearly outperformed lhe 
MLP in terms of accuracy. Referring back to Chapter 7, we see that a single 
generalised shunting neuron, with half tho number of weights, is nble to match the 
perfonnanee of the MLP network. 1110 single GSN achieved mean lest ARV of0.120 
nnd 0.140 with the GOX nnd LM algorithms, respectively. The best pcrfonning 
neuron has 11 test ARV of only 0.085 (see Tobie 7,S). This reinforces the fact tlmt 
GFJ\'Ns are able to achieve good results with extremely simple structures. 
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Table 8.7 Results for Sunspots dataset using MLP, GFNNs and SIANNs 

Network Training Act-tns Performance Avg TestMSE Test ARV Mean 

Struct. 
A Igor, (% of runs) Epoc time to 

Shunlin!l. Out 7 all in 80% hs Bet Median Best Median Mean 95%CT train 

Nu Den gl to) to) (s) 

MLP GDX Tnh Lin 0 14 98 151 0.0094 0.0129 0.113 0.155 0.162 ± 0.024 5.8 
10-4-1 LM Lgs Lin 0 22 JOO 57 0.0079 0.0113 0.095 0.136 0.138 ±0.006 7.0 

(49 wt.) 
QNN6 Tnh 0.0115 0.085 0.138 0.139 25.3 Lin 0 24 100 279 0.0071 ± 0.007 

GFNN GDX Lin Lgs Lin 0 6 100 146 0.0095 0.0122 0.113 0.147 0.146 ±0.004 8,0 
GP LM Lin Lgs Lin 0 8 100 

I 0-2-1 
61 0.0065 0.0083 O.D78 0.100 0.100 ±0.004 10.9 

(5 I wt.) QNN6 Lin Lgs Lgs 0 48 100 170 0.0063 0.0076 O.D75 0.091 0.092 ± 0.003 23.4 

STANN GDX Tnh Lin 0 14 98 147 0.0085 0.0134 0.102 0.161 0.174 ± 0.020 6.8 
I 0-10-l LM Lgs Lin 0 8 JOO 54 0.0075 0.0093 0.090 0.111 0.112 ± 0.003 9.8 

(141 
QNN6 Lgs Lgs 0 80 JOO 337 0.0054 0.0077 0.065 0.093 0.100 ± 0.009 45.8 weights) 

Sunspots 

Trlln<J<I using GDX 

Tr~fnod Usif10 LM Trained tnlng ONN 

l ll 

00. 

&) ,------ ................................ ------· 

IS !-----------------

MlP GFNN SIANN MlP GfNN SIANN MtP GFNN SWIN 

Network TVP• 

Fig. 8.6: Best mean and median test ARV and mean training time for Sunspots data 

using MLPs, GFNNs and SIANNs. 
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The experiments on the sunspots time series prediction problem reported in the 
literature have been carried out using various parameters and measures. For example, 

some use a different number of inputs to what has been used here (Lawrence ct al., 

1996; Natlaly ct al., l 997; Park ct al., 1996; Weigcnd et al., 1990). Some do not use 

a complete set of consecutive previous time samples as inputs, but instcod use a 

selected subset of non-consecutive samples points, based on previous analysis of the 

data (Natlaly ct al., 1997). This nmkes any comparison questionoble as the networks 

are being given different infonnation on which to make the prediction. 

Tlie task is made even more difficult by the fact that the pcrfonnance measures 

differ, unlike for classification tasks where the test error rate or success rate is used 

in most cases. For time-series prediction, criteria other than the test ARV me often 

used, such as 1he mean squared error (MSE) (Park ct al., 1996). However, the MSE is 

not a normalised parameter; thus, differences in scaling prior to training can render 

this measurement meaningless. 

Bearing these constraints in mind, some results using !est ARV as the 

performance measure arc presented here for comparison purposes. The GFNNs and 

SIANNs achieved meon test AR Vs in the rnnge 0.092 to 0.174, with best case ns low 

us 0.065. In {Nikolaev & Iba, 2003), polynomial fccdforword neural networks 

{PFNNs) were trained with 10 inputs, the same number as used to train the S!ANNs 

and GFNNs, and with the same range of points for training, validation and testing. 

The geocralization or test ARV reported by them ranged from 0.077 to 0.442, which 

is comparable to the results obtained here. It should noted that the better perfonning 

networks in (Nikolacv & Iba, 2003) all had th<'ir 'optimum' structure detem1ined by 

genetic programming. 

In (Natlaly ct al., 1997), 12 inputs were fed into a 12·4·1 MLP structure. The 

networks were then enlarged with feedback loops from the hidden layer to the input 

layer to fom1 a recurrent neural network structure. These recurrent networks were 

tested singly and us ensembles. The best results reported were test AR Vs of0.073 for 

u single network and 0.070 for n network ensemble. The same type of networks 

trnined using a subset of six non-consecutive points results in test ARV of0.070 and 

0.067, respectively. Weigand and his colleagues use u standard 12·8·1 MLP, with 

weight decay to address the issue of possible overfitting, nnd achieved a best case 

test ARV of0.086 (reported in (Natlnly et al., 1997)). Nowlan and Hinton impose a 

mixture ofGaussians prior on the weights, which they called "Soll Weight Sharing", 

to get a test ARV of0.072 {reported in (Nntlaly et nl., 1997)). 

The general conclusion is that shunting inhibitory networks nre nble to achieve 

performance levels comparnblc to the other results reported here, with the best 

shunting network achieving the lowest test ARV of0.065. 
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8.2,6 Thyroid Disuse Dataset 

In order to provide an insight into the capabilities of shunting networks with larger 

problems, an additional benchmark test has nlso been included in this chapter. The 

thyroid problem chosen has more than seven thousand samples with 21 input 

parameters nnd three output classes. The thyroid dataset was chosen as it is a "hard 

practical classification task" that could provide n good test for the algorithms and 

networks being evnlun1cd (Schiffmann ct al., l 992a). 

8.1.6.J Dc.fcriptitm 0/1/,c Thyr,1id datasct 

The Thyroid disease dataset is another real-world medical diagnosis da111se1 obtained 

from the UC] Machine Leaming Repository {Blake & Merz, 1998). The rcpositoiy 

hits n number of dutasc1s pertaining to the Thyroid disease and the dataset chosen is 

the "ANN" version, deemed the most amenable to artificial neural networks. It is in a 

fonn that can be used for neural networks without need for pre-processing and !ms 

been used fairly commonly in the literature (Abe ct uL, l 999; Jankowski, 2003; 

Koshiba & Abe, 2003; Prechclt, 1994; Schiffmann ct al., 1992a, l992b, 1993; 

Tsujinishi & Abe, 2003; Yuo & Liu, 1997). The thyroid dataset hus 21 attributes, of 

which 15 arc binary and 6 continuous real-valued inputs, and three output classes. 

The problem is to dctenninc the patient's thyroid function based on the input 

attributes, with the three output classes being normal, hyper-functional, nnd 

subnormul. The class probabilities for the test set are 92.6%, 5.1% and 2.3% 

respectively. The nonnal patients make up the vast majority of cases, therefore a 

good clussifier needs to have success rate much higher than 92.6% (Schiffmann et 

al., l 992a), Le., an error rate significantly lower than 7.4%. 

The dataset is divided into a tmining set containing 3772 samples, and test datu 

with 3428 samples. While the whole training set was used to train the networks, the 

test data was divided in two subsets: one half used as a vulidntion set for curly 

stopping of training, and the other half used os a test set. This is in line with the 50%-

25%-25% division of the dataset used for the other problems. 

8.2.6.2 Rc.mltsfor tlte Tl,yroid problem 

The TI1yroid problem results presented in Table 8.8 and Fig. 8.7 arc for one SIANN, 

one GFNN and an MLP network that were trained with GDX, LM and QNN6 

algorithms. The GFNN structure consists of two generalised shunting neurons and 

three sigmoid output neurons (GP 2!-2-3). We should note that the chosen GFNN 

structure is small, compared to most structures that have been reported in the 

literature ns 'optimum'. The MLP structure used was n single hidden-layer 21-4-3 

MLP, selected because it has almost the same number of weights as \he GFNN 

network, 103 compnn'd to IOI for the GFNN. The SIANN structure used was the 
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'standard' one, with the number of shunting neurons in the hidden layer being equal 

to the number of input attributes, i.e., a 21-21-3 structure with a total of 570 weights. 

The results presented in Table 8.8 and Fig. 8.7 show that all three types of 

networks trained with the first-order GDX algorithm have mean error rates of around 

6%, wilh the best result achieved by a single network of 5.60%. This result is not 

practically useful as the 'default' error rate is 7.4%. However, the results arc much 

better for networks trained wi!h the LM and QNN algorithms. 

When trained with the LM algorilhm, the MLr achieved a mean error rate of 

1.72%, the lowest mean error ra1e obtained here; the best single MLr network 

achieved an error ra1c of 1.17%. The GFNN performance was not as good, with a 

mean test error of 3.34% and best error rate of 1.98%. The LM-traincd S!ANN 

overall perfonnance was poor, with a mean error of 5.40%, but the best case 

perfonnnnce was an acceptable 2.16%. 

The MLrs trained with the QNN6 algorithm did not perform as well as the LM

traincd ones, having a mean test error rate of only 2.18% and best error rate of 

1.69%. The GFNN perfonnancc was only slightly worse with a mean error rate of 

2.62%, but belier than when trained with LM. The best single QNN-traincd GFNN 

network achieved a good 1.81% error rate, better than the best SIANN network with 

1.87%. The SIANNs trained with QNN hud a better mean error rate though, 2.19%, 

almost the same us that of the MLrs. 

An overall comparison of accuracy by algorithm would have QNN better than 

LM, with GDX the worst by far. This is not surprising as both LM and QNN arc 

sccond·or<lcr algorithms while GDX i~ first order. From a network 'type' 

perspective, there is a marked difference when trained with LM: MLP best, GFNN 

next and S!ANN worst. The results nre close for ull three types trained using the 

GDX and QNN algorithms, with SIANN slightly worse than the other two for GDX, 

and GFNN slightly worse for QNN. 

The trend for mean !mining time is that MLP is fastest, GFNN next and SIANN 

takes the longest to train. The GDX algorithm was the fastest, an order of magnitude 

faster in most cases, as it is the simplest algorithm. This is negated by the foci that it 

is unable to produce any useful results with this dataset. The variation in training 

time across the different types of network was only about 10% with GDX. The LM 

algorilhm took much longer than GDX, as expected, and the QNN even longer in 

most cases. MLPs took more than three times longer to train with LM compared to 

GDX, and more than twice as long again with QNN. The GFNNs took 2 to 3 times 

longer to train tlrnn MLPs for these second order algorithms. The SIANNs took the 

longest to train by for, more than 3 times longer to train than the GFNNs with QNN, 

nnd almost 8 times longer than GFNNs with the LM algorithm. 
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Table 8.8 Results for the Thyroid disease classification dataset using MLPs 

GFNNs and SIANNs 

Network Training Activation Perfom1anee Avg Epochs Test Error Mean 

Structure Algor. functions (% of runs) CPU 
Shunting Out 7 0% 20% All 7 0% Best Mean 95% Med. time (s) 

Nu Den goal err < runs goal Error (%) (%) CI (%) 

MLP ODX Tnh Lgs 0 0 100 419 * * 5.60 5.96 ± 0.04 6.01 254.0 
21-4-3 LM Lgs Lgs 0 0 100 119 * * l.l7 1.72 ± 0.08 1.69 882.2 
(103 

QNN6 0 100 384 * * 1.69 2.18 2.16 2162.6 weights) Lgs Lgs 0 ±0.06 

OFNN GDX Lin Lgs Lgs 0 0 100 348 * * 5.83 6.00 ± 0.02 6.01 275.4 
OP LM Lin Tnh Tnh 0 0 100 

21-2-3 
300 * * L.98 3.34 ± 0.27 3.73 2799.7 

(101 QNN6 Lin Tnh Lgs 0 0 100 582 * * l.81 2.62 ± 0.33 2.33 4585.9 

weights) 

SIANN GDX Exp Lgs 0 0 100 373 * * 5.66 6.32 ± 0.15 6.01 292.5 
21-21-3 LM Exp Lgs 0 0 100 703 * * 2.16 5.40 ± 0.30 5.83 36403.2 

(570 
QNN6 Tnh Lin 0 0 100 559 * * 1.87 2.19 2.16 15844.3 weights) ± 0.06 

IQ 
Thyroid 

Tr, nod using GDJ< Tra ntd u1lng LM 

Tr>lntd u•lng CNN 

lDll -1------

Hl Xl'.l - ··-·--·-

MLP GFNN SIANN MLP GFNN SIANN MLP GFNN SIANN 

Networl<· Type 

Fig. 8.7: Best, mean and median test error and mean training time for Thyroid dataset 

using MLPs, GFNNs and SIANNs. 
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Overall, the LM-traincd MLP was best with the lowest error rate, and the shortest 

training time umong the 'useful' networks. The SJANN with LM on the other hand 

was the worst, with high error rate and the longest training time by far. 

Table 8.9 presents the mean test error rate from the MLPs, GFNNs nnd SIANNs 

obtained here, nlong with results from other literature for comparison. Tiic 

documentation for this dataset, provided by the UC] Repository, refers to work by 

Schiffmann ct al., where the thyroid dataset has been used to evaluate the 

performance of tile baekpropngalion algorithm and a number of improvements 10 it 

(Schiffmann ct al., !992a, !993), as well as evaluating 'optimal' MLP structures 

determined by genetic algorithms (Schiffmann ct al., 1992b). They use a fully 

interconnec1ed 21-10-3 MJ.P, trained by a number of different algorithms. The mean 

test error rates achieved, given in (Schiffmann ct al., l 99~). arc presented in the right 

hand side ofTnble 8.9. 

As with the previous benchmark problems, the Prvbcnl dataset has three different 

partitions (fobclkd lhyroidl, 1/iyroidl and 1/Jyroid 3) {Prcchc!t, 1994). The thyroid! 
and th)•roidJ partitions have as their 'pivot architecture' a 21-16-8-3 two-hidden

luyer network, with SIS weights, and the tl\1•roidJ partition a 2 l-8-4-3 structure, with 

227 weights, with no shortcuts. These networks arc made up of sigmoid hidden layer 

neurons and linear output neurons, ond were trained using the RPROP algorithm, as 

previously. The mean test error rates achieved nrc presented in Table 8.9. 

Other results presented include feedforward networks constructed using 

evolutionary programming {t:PNe1) {Yao & Liu, 1997); support vector machines 

using LI und L2 SVMs (Koshiba & Abe, 2003) and fuu:y least squares SVMs 

(Tsujinishi & Abe, 2003), and k nearest neighbour (kNN) and wcigh1cd kNN (WkN!\~ 

methods (Junkowski, 2003). 

As can be seen from table, the mean test error rmm other results rnngcs from 

l.44% to 7.29%. The mean test error rates obtuined here range from \. 72% to 6.32%. 

From that perspective, the results obtained here nre comparable, falling within the 

spread of previously reported results. There are also a number Df points to tnkc into 

consideration when making the compmisons. 

Firstly, Schiffmann ct al. found that they could not train any useful MLP networks 

for this problem using bntch mode updates. Bo1h instances where batch mode wus 

used resulted in test error rates above 7% (refer Table 8.9), in other words the trained 

networks were useless, as this is the default error for the dutasct. This is not just due 

to the complexity of the problem, but also because of the extremely uneven 

distribution of c!nsses in the dataset. For the other instances, they used onlinc 

training, which updates the weights after each exemplar is presented. 
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Table 8.9 Comparison of mean test error for Thyroid dataset wi!h other results 

from literature 

ln'1anoo Source MconTc,;1 ln,t:uwo Source Moan T<!I 
Error'"·' Error'%' 

GFNN-GDX 0.00 B,oknn,n Schiffmann 2.42 

GFNN • LM J.34 B,cknn,o I hatch n,od,l S,h;trm,nn 7.IS 

GFNN-QNN 2.62 B,ckpn,p (b.ldo mo<lc} + Ea,on Schiffmann 7.29 
,nd Olim 

SlANN-GDX 6.32 lboknn,n + D,ul«n and Mood·· Schiffmann 2.IO 

SIANN-LM SAO I. Schmidhuhc, Schiffmann 2.77 

SlANN-nNN 2.\9 R. SalomD!l Schiffmann S.N6 

MLP·GDX S.% Chan and fall,i,k Schiffmonn S.83 

MLP-LM l.7l Pol•k·Ribicro + line soan:h Schiffrt>:1nn S.83 
MLP-nNN 2.1g Con·. •radicnl + lino ,oan:h Schiffnunn 6.16 

Th'ruidl Pmbonl 2.l~ Sil,-a and Almeida Schiffmonn us 
Th 'ruid2 Pmbcn1 (.91 SuncrSAB Schiffnunn I.SK 

Thvroidl Probcn1 2.27 O.lta-0,r-Ddta Schiffnunn 1.61 

m•Not ,. 2.ll RPROP Schiffmann 1.9~ 

LI SVM Ko,hiba 1.SI I Ouic1'n,on Schiffmann l.7S 

L2SVM Ko,hiba 2.65 Ca,oado cotn:IOlion 10 uniu Schiffmann us 
Fun:v LS-S\'M T,u·;ni,hl 2.4l Cmado cnm:lotion 20 unit, Schiffmann 1.52 

\:NN l,nl.ow,1'i l.70 

WkNN Jankuw,ki l.44 

The results obtained here, on the olher hnnd, are all using batch mode updates. 

The GDX algorithm is compurnhlc to the ba1ch-mode Backprop algorithms and its 

results nrc around 6% error, a little better thnn that achieved by Schiffmann, but just 

1U1 useless. The LM and QNN algorithms however achieved much better results 

dcspile using hutch mode updates, just ns Prechclt did wilh his butch-mode RPRDP 

algorithm in the Probcnl tests. 

The other puinl to nu1c is that in most cases the network structures used in the 

!ileruturc were much larger than the MLP and GFNN structures used here. Only, lhe 

SIANN structure is of comparable size to the others. Despite their size, the GFNN 

(lOl weights) and MLP (103 weights) networks were able to achieve comparable 

results to the much [urger networks. Our 21·4·3 MLP trained with lhc LM algorithm 

achieved u mean error rate below 2%. Schiffmann cl ul managed to get a number of 

instances where the error was under 2%, but using a much forger, fully 

interconnected 21·10·3 MLP. Only two of the other reported instances managed to 

reach this level of uccuracy, Prechclt rcpo11cd 1.91% with the Probcnl tliyroid2 
dataset using n 21·16·8-3 two-hidden-layer network nnd Jankowski achieved l .44% 

with a weighted k-neurcst neighbour classifier with k = 3 and 3-fold cross-vnlidntion. 

T11c third point is the maximum number of training epochs. Schiffmann trained 

the networks for n maximum of 5000 epochs, Prechelt set the mn~imum at 3000 

epochs, while here it was set to JOOO epochs for consistency with all the other 
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benchmark problems. In ull three investigations, a validation set was used for early 

stopping. Even though early stopping was used, a number of runs trained for 1he 

maximum number of epochs, particubrly for !he GDX and QNN algorithm. 

However, it is debatable whether increasing the maximum number of epochs would 

actually result in an improvement in perfonnance. 

These three points indicate areas that can be investigated in the future, particularly 

for thi~ problem; that ;s, training these networks using on-line mode trnining, using 

larger structures, and training fur u greater number of epochs. 

!n the final analysis, what has been demonstrated is that the networks under 

investigation here were able to achieve results comparable 10 the previously reported 

results by other investigators, and, in the case of GFNNs and MLPs, they were able 

to do this wilh much simpler network structures. 

8.3 Performance Comparison with MATLAB Toolbox MLPs 

8.J,l Benchmark tests using MT·MLPs 

The results shown in the previous sections were obtained using the sam_~ .~ATLAB 

code for GFNNs, SIANNs and MLPs. The code was written to take advantage of the 

fact that SIANNs nnd MLPs arc subsets of GFNNs. The majority of the code and 

data structures used arc generic, with relevant sections of code branching out to ca!cr 

for the differences in neuron type. While the code has been based loosely on the 

standard MATLAB Neural Network Toolbox code, it has 'evolved' as the research 

progressed, with emphasis on achieving results rather than speed of execution. The 

code has not been optimised for memory or computational efficiency, and therefore 

the time taken to train the networks would probably be much longer than it should. 

In this section, the performance of the 'Generalised' MLPs, or G-Mll's, used in 

the previous section is compared to that of MLPs using the MATLAB Neural 

Netwok toolbox code, dubbed "MATLAB Toolbox MLPs" or MT-MlPs. The 

purpose oflhis comparison is to quantify the 'inefficiency' of the 'generalised' code, 

at least appro:dnmtcly, so that valid comparisons of the training time could be made 

with other results in the literature. Additionally, the comparisons would give an idea 

of differences in performance between the G-MLPs and the 'off-the-shclr MT· 

MLPs. 

For each of the benchmnrk tests, the snme MLP network structures used 

previously were generated and trained using the default MATLAB data structures 

and code. The networks were trained using the MATLAB Toolbox implementation 

of the GDX and LM algorithms. All the training parameters were kept the same, the 

only difference being the weight initialisation scheme. The MT-MLPs were 
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initialised using MATLAB's default weight initialisation scheme, the Nguyen

Widrow initialisation scheme {Demuth & Beale, 1992; Nguyen & Widrow, 1990), 

instead of the scaled uniform weight distribution scheme described in Section 4.5.2. 

The mean test error and test ARV for the six benchmarks tests are presented in 

Tables 8.41 to B.46 in Appendix B. The results obtained showed definite difference 

in performance between the G-MLPs and the MT-MLPs, with the G-MLPs generally 

achieving better performance. The difference in accuracy can be attributed to one or 

two possible sources: the difference in initialisation schemes and the dilTcrence in the 

implementations of the training algorithms. ln order to remove the differences due to 

initialisation from the equation, tests were conducted with MT-MLPs with initial 

weights set to ex<1ct!)' the same weights as the G-MLPs. The MT-MLPs had their 

initial wcigh!s copied across from the 0-MLPs, and activation functions set the same 

as the best perfonning G-MLPs for each algorithm. 

Tables 8.10 nod 8. l 1 present the results obtained using these three sets of MLPs 

and Figs. 8.8 to 8. 13 show n comparison of the mean, median and minimum error 

and mean training times. The results for the standard structures, initialisation and 

training algorithms, as given in Chapter 4, arc denoted as G-MLP. Tiie standard 

MATLAB Neural Network Toolbox networks and training algorithms arc denoted 

MT-MLP, with two sets of results based on initialisation scheme. The MT-MLPs 

initialised with the defoult Nguyen-Widrow initialisation scheme arc labelled 'NW

init' while those with initial weights copied across from the 0-MLPs arc labelled 

'GF-init'. The GF-init MT-MLP results arc for the same activation function 

combination as the corresponding 0-MLP, so that differences in results can only be 

due to differences in the implementation of the algorithms. 

Comparison of the results for the Wisconsin Breast Cancer dataset shows that the 

NW-init MT-MLPs hd a higher error rate than the G-MLPs for both trnining 

algorithms, though the actual difference between the means is less than 0.3%. The 

NW-init MT-MLPs had 54% and 28% of networks achieving perfect cl~ssilication 

wi:h the GDX and LM algorithms, respectively-compared to 86% and 44% for the 

0-MLPs. The GF initialised MT-MLPs results indicate that the reasons for these 

differences arc not the same for bo!h training algorithms. When trained with GDX, 

there is hardly any difference in accuracy between the G-MLPs and the GF-init MT

MLPs, indicating that the initialisation scheme is the cause for the difference in 

pcrfonnance. The LM-tmined networks, on the other hand, have both MT-MLPs 

producing similar results and G-MLPs with better accuracy. This would indicate that 

the difference in results between G-MLPs and MT-MLPs in Ibis case is not due to 

the initial weights, but due to differences in the implementation of the algorithm. 
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Table 8.10 Comparison of G-MLPs and MT-MLPs trained on (a) Breast Cancer 

(b) Diabetes, (c) 3-bit Parity, (d) Multi-class and (e) Thyroid datasets. 

Network Train Activation Performance Avg Epochs Test Error Mean 

Structure Algor. functions (% of runs) train 

Hidden Out 7 0% 20% Al l 7 0% Best Mean 95% Med. time 

goal err < runs goal Err (%) (%) CI (%) (s) 

a) Wisconsin Breast Cancer 

G-MLP GDX Lgs Lin 0 86 100 158 * 159 0.00 0.08 ± 0.05 0.00 8.6 

LM Lgs Tnh 0 44 JOO 57 * 56 0.00 0.51 ± 0.15 0.56 9.9 

MT-MLP GDX Lgs Lin 0 88 100 191 * 192 0.00 0.07 ± 0.05 0.00 2.2 
(GF-init) LM Lgs Tnh 0 28 100 60 * 58 0.00 0.75 ± 0.18 0.56 l.4 

MT-MLP GDX Lgs Lin 0 54 100 232 * 255 0.00 0.37 ±0.14 0.00 2.8 
(NW-init) LM Lgs Lin 0 28 100 63 * 61 0.00 0.72 ± 0.22 0.56 l.4 

b) Pima Indians Diabetes 
G-MLP GDX Tnh Tnh 0 0 30 188 * * 18.75 20.45 ± 0.22 20.31 11.1 

LM Lgs Tnh 0 0 26 58 * * 18.75 20.75 ± 0.31 20.83 10.8 

MT-MLP GDX Tnh Toh 0 0 16 188 * * 19.79 20.95 ± 0.64 20.57 2.3 
(GF-init) LM Lgs Tnh 0 0 34 61 * * 17.71 20.88 ±0.52 20.83 1.3 

MT-MLP GDX Tnh Lgs 0 0 12 191 ... * 19.27 21.48 ± 0.88 20.83 2.4 
(NW-ioit) LM Lgs Lin 0 0 30 61 * ... 18.23 21.1 I ± 0.4 1 21.35 1.3 

c) 3-bit Parity 

G-MLP GDX Lgs Lgs 96 96 100 224 192 192 0.00 0.50 ± 0.69 0.00 1.0 

LM Lgs Lin 100 100 100 11 11 I 1 0.00 0.00 ± 0.00 0.00 0.2 

MT-MLP GDX Lgs Lgs 96 96 100 266 235 235 0.00 0.50 ±0.69 0.00 2.1 
(GF-init) LM Lgs Lio 96 96 98 28 12 12 0.00 1.50 ± 2.49 0.00 0.4 

MT-MLP GDX Lgs Lgs 70 72 94 500 286 306 0.00 4.25 ± 2.05 0.00 4.1 
(NW-init) LM Lgs Lgs 92 92 96 27 22 22 0.00 2.00 ± 2.25 0.00 0.4 

d) MuJti-Class 
G-MLP GDX Lgs Lgs 0 0 JOO 225 * • 4.00 5.37 ±0.22 5.33 11.5 

LM Tnh Tnh 0 0 JOO 67 * • 4.00 5.83 ± 0.16 6.00 29.9 

MT-MLP GDX Lgs Lgs 0 0 100 278 * • 4.00 6.01 ± 0.21 6.00 3.5 
(GF-init) LM Tnh Tnh 0 0 100 94 * • 6.00 12.84 ± 5.04 7.33 2.5 

MT-MLP GDX Lgs Lgs 0 0 100 294 * * 3.33 5.53 ± 0.27 5.33 4.0 
(NW-init) LM Lgs Lin 0 0 100 81 * * 5.33 5.99 ±0.14 6.00 2.4 

e) Thyroid 

G-MLP GDX Lgs Lgs 0 0 100 419 * * 5.60 5.96 ±0.04 6.01 254.0 

LM Lgs Lgs 0 0 100 ll 9 * * 1.17 l.72 ±0.08 1.69 882.2 

MT-MLP GDX Lgs Lgs 0 0 JOO 457 * ... 5.83 6.04 ±0.02 6.07 20.9 
(GF-init) LM Lgs Lgs 0 0 100 102 * * 1.23 1.97 ±0.24 1.87 180.1 

MT-MLP GDX Lgs Lin 0 0 100 396 * ... 5.89 6.59 ± 0.17 6.65 18.4 
(NW-init) LM Lgs Lin 0 0 100 189 ... * 1.8 l 2.49 ±0.18 2,28 185.8 
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Fig. 8.8: Comparison of mean and median error and mean training time for the 

Breast Cancer dataset using 'generalised' and MATLAB Neural Network 

Toolbox MLPs. 

The big difference in perfonnance lies in the training time. The MT-MLPs 

actually needed more epochs to train, but were still 3 times faster in actual execution 

time for the GDX and 7 times faster for the LM algorithm. This means that the 

MATLAB Toolbox code has been optimised to a point where it can train the 

networks in a fraction of the time. The MATLAB Toolbox MLP implementation is 

in the order of 4 to 8 times faster than the GFNN implementation, taking into account 

the additional epochs. 

The results for the Diabetes dataset show similar trends with the NW-init MT-MLPs 

having higher mean and median error rates for botb algorithms· the average error 

rates for both algorithms were more than 21 %, compared to under 21 % for the G-
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MLPs. The actual difference between means is about 1.0% for the GDX algorithm 

and less than 0.4% for the LM algorithm. The GF-init MT-MLP performance, in this 

case, was in between the other two types of MLP for both training algorithms. This 

indicates that the difference in performance is partly due to implementation 

differences. The number of epochs to train was most the same, the maximum 

difference being only 3 epochs in each case, but the MATLAB code was more than 4 

times faster for the GDX algorithm and more than 8 times faster for LM. 

Pima lndlaos Diabetes 
2l 

Tra ine(I USlf19 GOX Tra1no<1 u51ng LM 

12 -------

G-MLP MT-MLP , GF lntt MT·MLP, NWlni1 G-MLP MT-MLP, GF r,1l MT·MLP. riW 1rnl 

Nttwork Type 

Fig. 8.9: Comparison of best, mean and median error and mean training time for the 

Diabetes dataset using 'generalised' and MATLAB Neural Network 

Toolbox MLPs. 
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Fig. 8.10: Comparison of mean and median error and mean training time for 3-bit 

Parity using 'generalised' and MATLAB Neural Network Toolbox MLPs. 

The NW-init MT-MLP accuracy for the 3-bitparity problem was a lot worse, with 

mean enor rates of 4.2% and 2.0% with GDX and LM respectively, compared to the 

G-MLP with 0.5% for GDX and perfect (0.0% error) results with the LM algorithm. 

The NW-init MT-MLP trained on GDX only had about 70% of networks achieving 

all correct classification, compared to more than 90% for all other cases . The GF-init 

MT-MLP trained with GDX had the same results as the G-MLP except for taking 

about 20% more epochs. When trained with LM, on the other hand, the GF-init MT

MLP perfonnance was in between the others two. Again the initialisation seems to 

have a bigger effect with the GDX algorithm. The Parity problem is the only one 

where the G-MLPs were faster to train than the MT-MLPs twice as fast for LM and 

up to 4 times faster for GDX. After factoring in the greater number of epochs 

required, the training speed was almost equal for the LM algorithm, but the GDX 

was still twice as fast as the MATLAB Toolbox implementation. 
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Fig. 8.11: Comparison of best, mean and median error and mean training time for the 

Multi-Class problem using G-MLPs and MT-MLPs. 

For the Multi-Class problem, the NW-init MT-MLPs had error rates exactly 

0.16% higher than the G-MLPs for each of the training algorithms, and took 20% to 

30% more epochs to train. The GF-init MT-MLPs bad higher error rates than both 

the other types of MLP for this case. When trained with LM, the GF-init MT-MLP 

had an error rate more than double the other two. The most probable explanation is 

that this is due to the activation function. Looking at the overall results in Appendix 

B, it can be observed that the MATLAB implementation does poorly when the 

output activation is the hyperbolic tangent function. It is especially bad when trained 

with LM, the trend observed across all the benchmark tests. However, it is not clear 

why thi is so. In terms of training time, the trend is similar to most of the other tests . 

The MT-MLPs are about 3 times faster to train using the GDX algorithm and 12 

times faster using the LM algorithm in terms of actual computation time, despite 

requiring more epochs. 
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Fig. 8.12: Comparison of best, mean and median en-or and mean training time for the 

Thyroid problem using G-MLPs and MT-MLPs. 

The results on the Thyroid dataset show the same trends as most of the earlier 

classification problems. The mean error rates of the NW-init MT-MLPs were slightly 

higher than that of the G-MLPs with a difference in mean error rates of 0.65% and 

0.77% for GDX and LM, respectively. The GF-init MLP error rate was within 0.1% 

of the G-MLP when trained with GDX. When trained with LM, it achieved error 

rates midway between the other two. The G-MLPs took more than 12 times longer to 

train with GDX, and more than 4 times longer with LM. 

The Sunspots time-series prediction results show the mean test ARV achieved by 

all three types of MLPs, when trained with GDX, to be almost exactly the same. 

When trained with LM, the 'usual' trend is observed with G-MLP being best and the 

NW-init MT-MLP worst, and the GF-init MT-MLP in between. The NW-init MT

MLPs ' required almost 3 times as many epochs as the G-MLPs when trained with 

the GDX algorithm, but still took about 15% less time. When trained with the LM 
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algorithm, the number of epochs required was almost the same for all three types but 

the MT-MLPs were more than 5 times faster. 

Table 8.11 

Network Train· 

Struct. 
iog 

Algor· 
ithm 

G-MLP GDX 
LM 

MT-MLP GDX 
(GF-init) LM 

MT-MLP GDX 
(NW-init) LM 

Comparison of G-MLPs and MT-MLPs trained on Sunspots dataset. 
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Lin 
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~ all 80% hs Best Median 
gl io Loi 

to! 

0 14 98 151 0.0094 0.0129 

0 22 100 57 0.0079 0.0113 

0 0 100 255 0.0087 0.0112 

0 6 100 60 0.0091 0.0138 

0 6 100 434 0.0091 0.0109 

0 8 100 59 0.0114 0.0161 

Sunspots 

Trained u•lng GO)( 

MT-MU,, GF lrul MT,MLP, rNJ in1I G-MLP 

Ne""orl< lVP• 

Test ARV Mean 
time 

Best Median Mean 95%CI to 
train 
(s) 

0.113 0.155 0.162 ± 0.024 5.8 

0.095 0.136 0.138 ± 0.006 7.0 

0.123 0.160 0.158 ± 0.005 2.8 

0.129 0.196 0.200 ± 0.012 1.2 

0.130 0.155 0.163 ± 0.008 4.9 

0.162 0.229 0.231 ± 0.012 1.3 
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Fig. 8.13: Comparison of best, mean and median test ARV and mean training time 

for Sunspots prediction problem using G-MLPs and MT-MLPs. 
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8.3.2 Analysis oremdeney cest results 

The overall trend was that the NW-init MT-MLPs generally had lower accuracy than 

the G-MLPs. This is reinforced by the results obtained across all the different 

activation functions. Looking at the Tables 8.41 to 8.46 in Appendix B, it can be 

seen that the avernge error across all the activation functions is always lower for the 

G-MLPs, with the exception of GDX with the Sunpots problem. The results for the 

GF-init MT-MLPs indicate that. the difference in accuracy, for networks trained 

using the GDX algorithm, is mainly due to the initialisation scheme. For the LM

trained networks, on the other hand,: only about half of the difference can be 

attributed to initialisation, the Othc"r ha.If arising from implementation of the 

algorithms. These results, though problem-dependent, can be viewed as an 

endorsement of the scaled uniform weight distribution initialisation scheme used 

with G-MLPs (GF-init). This, however, is only an interesting aside. 

The main focus of these comparisons is the differences in 'efficiency' of 

implementations, where the results arc more clear-cut. In terms of computation time, 

MT-MLPs often required more epochs but were still foster to train, with the 

exception of the J-bit Parity problem. When factoring in the difference in the number 

of epochs trained, it would appear that the MATLAB Toolbox implementation of the 

GDX algorithm is about 3 (o 4 times foster than the implementation used in our 

experiments, while the LM algoriLhm implementation is between 5 and 16 times 

faster. The difference in the speed of the algorithms can be attributed to two factors. 

Firstly, the 'generalised' implementation is a generic implementation that is written 

to handle not only MLPs, but also SIANNs and GFNNs. More importantly, the 

actual code for these algorithms has not been optimised for execution perfonnancc. 

For a more detailed analysis, Table 8.12 presents the average training time per 

epoch for the various benchmarks tests, obtained by dividing the mean training time 

by the average number of epochs for each case. The ratio of this average for the 

GFNN and MATLAB Toolbox implementation of each algorithm gives an idea of 

the difference in speed. 

For the GDX algorithm, the training time per epoch rntio between the G-MLP and 

MT-MLPs is relatively similar, ranging from 3.5 to 4.9, except for the 3-bit Parity 

where the ratio is much lower at 0.59 and the Thyroid problem with a much higher 

ratio of more than 13. One possible reason for this is the number of training samples 

used for each problem, with the Parity having only 8 samples, Thyroid having 3772 

and the rest between 220 and 384. The relationship between the average training time 

per epoch and the number of samples is almost linear for G-MLPs. The only 

exception being tht Purity problem, where the number of samples is very small. In 

this case, the time taken for 'overhead' activities, that could nonnal!y be ignored as 

negligible compared to the actual training time, would come into play. 
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Table 8.12 Comparison of average training time per epoch for G-MLPs and MT

MLPs for a!\ datasets 

Dcnohn111tk No.of Vol· ,,. Aveni•• Tminin limo ore och ,,, ,., Train· ldal- ,, 
"' CM 

ing ion OUl• 
MT-MLP Ratio Rotio Sam lo, """ 

G-MLP G·MLP MT-MLP 

Brca>t Con,cr "" '" ' 0.0S5 0.012 4.72 0.174 0.02] , .. 
Diabocos '"' '" ' O.OS9 0.012 4.86 O.lk6 0.02! 8.71 

l·hit Poritv " 
,, ' D.OOS 0.008 0.59 0.020 O.O!S l.l7 

Mulli·Clnss ,. '" ' O.OSI 0.013 4.0i 0.446 0.027 16.RI 

Sun,-IS m '" ' O.oJS O.oll l.SS 0.122 0.020 6.10 

Th ,old 3772 '" ' ··~ 0.046 13.26 7.413 1.766 4.20 

MEAN j,/8 7.48 

The larger the number of training samples, the larger the rutio, indicating that the 

MATLAB Toolbox implementation is ab!e to process large numbers of samples 
more efficiently. The average time per epoch docs not vary that much for the 

MATLAB implementation ofGDX, with the longest time about 6 times longer than 
the shortest. The GFNN implementation, on the other hand, has the longest, more 

than IOO times longer then the shortest. The MATLAB code has been optimised for 
large array computation, thereby making the training time per epoch much less 

sensitive to the size of the training set. 

The trend for the LM algorithm is similar to the GDX algorithm. The Parity 

problem has a ratio of l.37, indicating that the GFNN implementation is only slightly 
less efficient than the MATLAB Toolbox implementation for the small number of 

samples. TI1e 'mcdium'-sized datasets have ratios in the region of 6.1 to 8.8. except 
for the Multi-class problem, which has a ratio of 16.8. This is most likely due to the 

use of three outputs neurons in this problem, which increases the size of the Hessian 
matrix used in the LM algorithm, and hence increasing the computation time. The 

average training time per epoch for the GFNN implementation is in fact proportional 
to the product of the sample size and the number of outputs. The exception is again 

the Parity problem because the sample size is extremely small. 

The increased Hessian size affects both implementations of the LM algorithm, but 

the MATLAB Toolbox is not impacted as much. The only anomaly is thyroid 

problem, with a ratio of only 4.2. For all the other problems, the average time per 
epoch for the MATLAB Toolbox implementation is between 0.015 to 0.030 seconds, 

but this jumps to l.77 seconds for the thyroid problem. The GFNN implementation 
of the algorithm shows its sensitivity to such factors as dataset size and number of 

outputs, ranging from 0.02 to 7.41 se1:onds. 

On average, the MATLAB Toolbox is around 5 times faster than the GFNN 
implementation for the GDX algorithm, and more than 7 times faster for the LM 

algorithm. 
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While on the topic of efficiency, the QNN algorithm and its variants have not 

been optimised for speed either. Unfortunately, there is no implementation of the 

QNN algorithm in the MATLAB Toolbox to compare with! There will definitely be 

room for fine tuning and improving the efficiency of the code, as it is based on the 

same structures and principles as the implementations of the GDX and LM 

algorithms for GFNNs. 

The implementation of the QNN algorithm for 'pure' MLP networks can in fact 

be improved quite simply by using the fact that the weights of an MLP are 

unconstrained. Removing all constraints simplifies the 'recurrent network' equation 

considerably. TI1is simplification has been implemented successfully, and details of 

the changes to the equations along with some benchmark results can be found in 

(Arulampalam & Bouzcrdoum, 200\b, 2002b). This unconstrained version has not 

been used in these tests, however. The same generic code that can handle MLJ>s, 

SIANNs and GFNNs has been used so that it is clear that the differences in results 

arc due to the different network structures and not due to changes to the algorithm. 

8.4 Discussion 

In order to link the various results obtained in this chapter, the genera! trends across 

all the benchmark tests arc now discussed. This will provide on overview of the 

relative merits of the networks and algorithms used. 

8.4.1 Trends In Training Algorithm Performante 

In tenns of accuracy, the QNN algorithm variants were able to train the various 

network types In achieve good accuracy, particularly with the SIANNs and GFNNs 

that have constraints on some weights. An interesting point to note is that the QNN 

algorithm appears to come out best for the 'harder' problems, such as the Diabetes, 

Sunspots and Thyroid datasets. The best results for the GFNNs and SIANNs trained 

on these three problems were achieved with the QNN algorithm, as wcl! as the best 

overall results for the Diabetes nod Sunspots problems. This is probably due to the 

fact that the QNN algorithm is able to incorporate the constraint on the decay 

parameter a while working out the 'oplimal' weight update. The other algorithms 

update the weights, then impose the constraint nn the parameter. This may result in a 

sub-optima! weight update if the constraint changes the weights. 

The only disadvantage of the QNN algorithm is the long training time required, 

hence the need to improve the efficiency of this algorithm. Additionally, it should be 

remembered tho! the QNN variants used were selected based on tests on SIANNs 
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only. This could have skewed the choice of variants, and possibly even their 
formulation, in favour ofSIANNs. 

The second-order LM algorithm results in good accuracy as expected, coming out 
as the best by for in some problems, such ns the 3-bit Parity problem. In most cases, 
thll LM worked best with the MLPs, and resulted in slightly higher error rates 
compared to the QNN algorithm for thCl SIANNs and GFNNs. However, thll LM 
algoritltm was generally much foster than the QNN, with a couple of exceptions. It 
has lived up to its reputation of being one of thll most powerful neural network 
algorithms, but the disadvantage of the LM algorithm has always been the 
requirement to calculate and invert the Hessian matrix. The resultant memory and 
computation requirements tend to offset the fact that the LM algorithm generally 
requires fewer epochs to train the networks compared to other algorithms. As 
discussed in Section 8.3, the problem becomes more apparent as the number of 
samples in the training set and the number of outputs increase. As can be seen from 
Table 8.12, the MATLAB implementation of the LM algorithm also gets affected by 
these increases, but not as badly as the GFNN implementation since the MATLAB 
code is more efficient. 

The GDX algorithm, being a first-order algorithm, is generally the fastest 
algorithm in terms of actual computation time because of the relative simplicity of 
the algorithm. This simplicity, however, means that the GDX algorithm generally 
docs not perform as well as the second-order algorithms in terms of the pcrfonnance 
of the trained networks, particularly for the so-culled 'harder' problems. 

8,4,2 Trends In Network Performonce 

This brings us to the topic of accuracy of various types of networks over the 
benchmnrk problems. Overall, the results obtained here compare well with results 
reported in the literature. What is noteworthy is thnt these results were obtained using 
much smaller networks in most cases. The GFNN structures used have only one, or a 
maximum of two, generalised shunting neurons plus one or three linear or sigmoid 
output neurons, depending on the number of outputs required. In some cases, such as 
the Breast Cancer ond Diabetes problems, a single GS neuron has been used as the 
'network'. Amazingly, this single-neuron network was able to achieve 100% correct 
classification for the Breast Cancer problem fo1· the majority of the test runs. Even 
the MLP structures used here were smaller than in thll majority of those reported in 
the literature; the MLP structures were chnsen to have approximately the same 
number ofweights as the GFNN networks to which they were being compared. 

The 'best' network type tends to vary from problem to problem. The best overage 
nnd individual network perfonnance for the Diabetes problem was obtained by 
SIANN. For the Parity and Sunspots problems, on the other hand, the GFNN had the 
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best mean error, though the SJANN had the best individual network perfonnance for 
Sunspots. For the other three problems, namely the Breast Cancer, Multi-class and 
Thyroid problems, the MLP produced the best results. While this is not the 
resounding endorsement of the shunting inhibition-based networks hoped for, it is 
not altogether surprising, indicating why MLPs have been the most popular type of 
neural network used for these kinds ofprob!ems over the last couple ofdceadcs. 

It should be noted that the three types of artificial neural networks compared hero 
arc not rea!ly three different types of networks, but all actually fall within the 
umbrella of GFNNs. As presented in Chapter 7, the generalised shunting neuron 
(GSN) has the 'plain' static shunting neuron and perceptron-type sigmoid and linear 
neurons as special cases, therefore SIANNs and MLPs are just subsets of GFNNs. 
From this point of view, GFNNs were the best pcrfonning networks in all cases! 

8.5 Conclusion 

The performance of SIANNs, GFNNs and MLPs, tested across a number of 
benchmark problems, has been evaluated and compared. The perfonnance of the 
training algorithms developed for them, has also been invcstiga!cd, including 
comparisons of efficiency of code with commercially available implementations. The 
results obtained here have also been compared to work done by other researchers, 
putting this work in perspective of the general body ofknowledge in this area. 

The results arc promising. The shunting inhibition networks arc ab!e to perfonn 
well with very small network structures. The GFNN networks used in the benchmark 
tests had only one or two GSNs, plus an output layer of linear or sigmoid neurons 
where needed. Two of the six benchmark tests used only a single GS neuron, the 
simplest possible network structure. The overall results are comparable to or better 
1han other reported results. This is despite the fact that, in most cases, the networks 

used in the other literature are much larger. 

From a training algorithm perspective, the first-order GDX algorithm has proven 
to be a fast and effective training algorithm, though sometimes not able 10 achieve 
the desired accuracy levels with the more complex problems. The second-order LM 
algorithm was able to achieve better accuracy, though taking longer due to its 
relative complexity. The QNN algorithm was also able to achieve good results, quite 
often even better than LM, but nt the cost of longer training time. 

Comparisons with the MATLAB Toolbox code show that the training algorithms 
implemented for GFNNs could be optimised to improve efficiency nnd reduce 
computation time. These tests also showed that the initialisation scheme used with 
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the GFNNs tends to produce better results than the MATLAB default initialisation 
scheme. 

The question posed nt the beginning of this chapter, "How do shunting inhibition 
based networks compare with other types of networks?", can now be answered. The 
answer is that shunting inhibitory networks compare well. They are capable of 
achieving accuracy levels comparable to or better thnn other types of networks, and 
they are able to do so with simple structures. 
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Chapter 9 

Conclusion 

9.1 The Journey of Discovery 

This chapter brings together the various threads of the research conducted thus for. 
We can think of the work presented here as a '.journey of discovery', one result 

\cading into the next exploration, with detours along the way to investigate some 
interesting prospects. The structure of this thesis reflects this journey, fanning the 
'travelogue'. A 'map' of thls journey is provided in Fig. 9.1, showing the path 
travelled and the 'discoveries' made. 

The starting point was the investigation of SIANNs, motivated by the ability of 
shunting neurons to produce non-linear decision boundaries. The objective was to 
create shunting inhibition-based feedforward ncurnl networks that could be trained 
for classification and regression. Applying SIANNs to problems of this kind required 
training algorithms to be developed. A number of different types of training 
algorithms have been developed, from the basic gradient descent to hybrid and novel 
algorithms. An interesting detour has been the development ofa novel algorithm: the 
Quadmtic Neural Network (QNN) algorithm; it uses a recurrence equation to 
simulate a recurrent neural network perfonning bound-constmined quadratic 
optimisMion. 

SIANNs have been successfully applied to a number of problems, but the standard 
SIANN network structure is restricted in terms of size of the layers. This sometimes 
results iu structures that arc too small, or inordinately large, for the particular 
problem at hand. Consequently, enhancements have been made to allow the network 
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size to be expanded or reduced as required. Problems faced when reducing the 

SIANN layer size highlighted one major deficiency: since the shunting neuron is 

allowed only one excitatory input, it is not clear what subset of inputs can be used as 

excitatory inputs. The solution was to create a shunting neuron model that allows 

multiple excitatory, as well as inhibitory, inputs, resulting in the Generalised 

Shunting Neuron model. This then led to the creation of the Generalised Feedforward 

Neural Network (GFNN) architecture. 

In order to prove the worth of the neural networks developed, SIANNs GFNNs 

and MLPs have been tested across a number of benchmark problems, and their 

performance evaluated and compared, including comparisons with results reported 

by other authors in the literature. 

Now that the end of this particular journey has been reached, it is time to 

reminisce, savour the highlights, and look to the journeys ahead. The next section is a 

summary of the results that fonn the highlights and link the various strands of the 

work done so far. The final section discusses future research directions that have 

emerged from the research presented here. 

Fig. 9.1: A map of the 'Journey ofDiscovery' 

196 



COIICWSION 

9.2 Summary of Research Outcomes 

The initial thrust of this research was to inl'estigate the suitability of shunting 

inhibition-based feedfotward networks, particularly SIANNS, for classification and 

non·linear regression tasks. The aim was to create powerful, trainable networks, with 

non-linear decision surfaces. The contribution of this thesis can be divided into two 

main parts: 
a) Development of training algorithms for SIANNs. 

b) Enhancement of the SIANN architecture to improve pcrfonnance. 

9,2,1 Development or training algorithms 

The training algorithm part of the research has resulted in the development and 

implementation of a number of algorithms for shunting inhibitory networks. The 

algorithms can be divided into five main types, with a number of variants for each: 

a) Gradient descent (4 variants). The Gradient Descent with adaptive learning 

rate and momentum (GDX) has been the main variant used as it has the 

best performance among the gradient descent algorithms. 

b) Leven berg-Marquardt (LM) (3 variants) 

c) Direct Solution-GDX hybrid (DS-GDX) 

d) Random Optimisation Method (ROM) stochastic algorithm (2 variants) 

e) Novel algorithms based on Quadratic Neural Network (QNN) (9 variants). 

The 'bonus' in this pllrl was the development of the novel QNN algorithm and its 
variants. This algorithm is able to produce good results, particularly with the 

shunting networks that require certain parameters to be constrained while training. 

Overall, the ROM algorithm was the only one that didn't meet expectations. It 

was fast to ron, but the trained networks were not able to achieve the desired levels 

of accuracy. All the other algorithms were able to yie!d good results overall, and 

some excellent results in particular tests. 

9,2,2 E:nhancing the SIANN architecture 

SIANNs have been shown to be a viable class of neural network, with results 

obtained comparable to other types of networks. SlANNs were even able to produce 

the best results in some of the final benchmark tests. The original SIANN structure, 

however, had the size of its layers detennined by the number of inputs and outputs of 

the problem. The enhanced structure, described in Chapter 6, enabled greater 

f]lll(ibility in the size of\ayers. Adding extra shunting neurons for problems that had 

a small number of inputs generally resulted in improved accuracy. Problems with 
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large number of inputs tend to end up with inordinately large SIANN structures. 

However, reducing the number of shunting layer neurons normally resulted in 

reduced accuracy, as only a subset of the inputs could be used as excitatory inputs. 

This is due to the restiiction imposed on the shunting neuron model used, allowing it 

to have only a single excitatory input. 

Addressing this restriction resulted in the creation of the Generalised Shunting 

Neuron (GSN) model. A GSN can have multiple, weighted excitatory and inhibitory 

inputs, with a transfer function for each type of input. It has been shown that a GSN 

can produce various types of transfer characteristjcs by simply varying the synaptic 

weights. The GSN has the static shunting neuron and perceptron-type sigmoid and 

linear neurons as special cases, where certain weights have been removed or fixed to 

constant values. This has been a key 'discovery' of this work. It has led to the 

definition of the Generalised Feedforward Neural Network (GFNN) architecture. 

The broad definition of the GFNN architecture encompasses a variety of 

structures, including SIANNs, MLPs, and 'plain' GFNNs as investigated in this 

work. The term 'plain' GFNNs has been used for the networks with a single layer of 

generalised shunting neurons ( denoted G) and networks with a hidden layer of GSNs 

and an output layer of perceptron-type neurons (denoted GP). 

Fig. 9.2 illustrates the point diagrammatically. It shows MLPs, SIANNs and 

'plain' GFNNs as subsets within the GFNN architecture, with points to highlight the 

differences between the three. It also has a brief description of the types of networks 

that are outside these three subsets, but still fall within the broad definition of 

GFNNs. 

GFNN Architecture 

SIANNs 

One or more !eyers of 
llhunttng neurons 

• weighltd shuntmg 
onh,bltory inputs 

• <a s111gle unweighted 
excitatory input 

An output layer ol slgrno d 
or 1lnear neurons 

One or more 1ayer& of 
generaliled shunhng 
neurons 

• weighted e~c,tatory and 
1nh1bltory ,npuls 

• two achvabon lunchons 
An ovtpvt layer of Sigmoid 
or U11e<ar neurons (GP) 
or none (G} 

GFNNs ~ structures not tested 

MLPs 

Two or more layer& of 

sigmoid or linear 
neurons 

(a) Mixtures or layer.1 • of GSN&. Shunting neutons 
and peroeptron• • not eovered 11, other oategortes 

(b) Layel'$ with mtX of neurons 
(c) Networks with taye,. NOT fully connected 
(d) Networks w,th shortcut connections 

Fig. 9.2: The GFNN architecture superset with SIANN and MLP sub ets. 
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!l,2,3 Overview of Results 

SIANN and 'plain' GFNN ~has been The performance of MLP, 

evaluated across a number of benchmark problems. The results have been compared 

to each other, as wel! as with results using a wide variety of network types and 

algorithms obtained from the literature. 

''The proof of the pudding is in the eating" goes the saying. The proof of this work 

is in the application to various problems and the results obtaine~. And the proof 

appears quite positive, for the shunting inhibitory networks were able to achieve 

good results across a variety of problems. The networks using the generalised 

shunting neuron had the added advantage of being able to perform well with very 

small network structures. The GFNN networks used in the benchmark tests all had a 

maximum of two generalised shunting neurons, some only om:, plus an output layer 

of linear or sigmoid neurons, where needed. A single-neuron was able to achieve 

100% correct classification for the Breast Cancer and 3-bit Parity problems for the 

majority of the test runs. In the final comparison tests, a single GS neuron has been 

used as the 'network' for the Breast Cancer and Diabetes problems. This is the 

ultimate in structural simplicity. The overall results obtained compare well with other 

reported results, in many cases better than those achieved by much more complex 

networks. 

The initial hypothesis was that shunting inhibition allows neurons to produce non

linear decision boundaries, therefore shunting inhibition-based foedforward neural 

networks can form a new class of powerful networks for classification and 

regression. From the c:vidence presented in this thesis, it can be concluded that this 

hypothesis ho!ds true. 

9.3 Future Research Directions 

This section discusses possibilities for future directions arising from the work 

presented in this thesis. A number of research issues pertaining to the work presented 

remain unexplored: 

a) Work CElll be done on comparing lnilialisarion schemes for the GFNNs. 

b) On-line /raining algorithms can be developed, which will be particularly 

useful for large datasets with unbalanced population distributions like the 

Thyroid problem. 

c) The efficiency of the code used to implement the GFNN stmctures and 

training algorithms can be improved significantly. 
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Another area of promising future investigation is tho network structure. From Fig. 

9.2, it can be seen that the network 'types' investigated here are distinct subsets of 

the broader definition of a 'Generalised Fcedforward Neural Network'. Tho grey 

areas in-between, both literally and figuratively, represent the largely unexplored 

area ofGFNN structures not tested here. It includes several categories of networks: 

n) Networks contafoing mixtures of layers of neurons (GSN, standard 

shunting neuron, perceptron) not previously tested. For example, 

networks with both GSN and static shunting neuron layers, or with 

perceptron layers in between shunting layers. 

b) Networks with botcrogeneous layers. Layers can contain more than one 

type of neuron, unlike current implementations where it is assumed that a 

layer contains only one type of neuron. 

c) Neiworks with layers not fu!ly connected. Some of the inter-layer 

synaptic weights are removed (fixed at 0), as would happen when using 

pruning algorithms. 

d) Networks with shortcut connections, where there are synaptic. connections 

between non-adjacent layers. Current implementations assume 

connections only exist between adjacent !ayers. 

The categories listed above are not mutually exclusive, but are listed to give a 

clear picture of the variety of possibilities that can be explored in future work. At the 

time of writing, the current implementation of GFNNs and their training algorithms 

is only able to handle networks of type (a). 

In the work presented here, the training of networks has been based on adjusting 

the weights of a fixed neural network structure. In a partial attempt to find 'good' 

structures, a few structures have been trained, with various combinations of 

activation functions. As mentioned in Chapter 2, investigating heuristic methods of 

architecture selection is an active area of research, with researchers combining 

constructive and pruning algorithms, or using evolutionary computation, which 

includes genetic algorithms and evolutionary programming. 

TI1e research done here has been able to 'broaden the horizons' of shunting 

inhibition-based neural networks. The expanded framework offered by the GFNN 

structure would allow for many more possibilities in the dynamic modification of 

network structures, resulting in networks of the types listed above. A. single 

generalised shunting neuron has been shown to be a viable 'network' in solving 

problems, thereby providing a good starting point. Alternatively, it is possible to start 

from a purely excitatory 'MLP·type' network, then go to a shunting inhibition-based 

network, or back, seamlessly, as GFNNs have both excitatory and inhibitory 

synapses. 

. '.;' 
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COIICWSJON 

The scope of constructive and pruning algorithms and other 'evolutionaty'·type 
algorithms that aim to find an optima! neural network structure now literally have a 
whole new dimension opened up. Employing such methods would lead to a myriad 
of possibilities in terms of network structures that could be used for classification and 
regression problems. 
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Appendix A 

Derivation of Training Equations for SIANNs 

A.I Introduction 

The backpropagation algorithm requires the partial derivatives of the objective 

(error) function with respect to each of the trainable parameters (synaptic weights) 
being updated to calculate the gradient. This appendix shows the derivation of the 

partial differential equations and error sensitivity functions used in the gradient· 

based training algorithms, as presented in Chapter 4. The next section recaps the 
SIANN equations and parameter definitions, followed by tbu definition of the error 
function. The final section presents the actual derivation of the training equations. 

A.2 SIANN Equations and Parameters 

The 'standard' SIANN is a feedforward neural network with a hidden layer of 

shunting neurons and an output layer of linear or sigmoid neurons. For the sake of 
clarity, the equations describing the operation of the SIANN, defined in Chapter 3, 
ore presented again in Eqs. (4.6) to (4.8) below. 

The output ofthe/h shunting neuron, x1, is given by 

11 +h1 
(9.4) 
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where Ji is the/h input; a1 is the 'decay term'; b1 is the bias; CJ! is the synaptic weight 
connecting the j'h neuron to the i'h input; C.,1) is the bias for the shunting activation 
function connected ton fixed 'input', lo= l; and/is a non-decreasing activation 
function. 

The output of the kth output neuron is given by 

Y1 =g(fw"x1 ) (9.5) , .. 
where g is the output layer activation function; w~ is the connection weight from/h 
shunting neuron to the k'h output neuron and ww is the bias of the output neuron 
connected to a fixed 'input',xo= I. 

The denominator in (4.6) is defined as the shunting tenn for thejth neuron, s1 

SJ "'UJ + 1(fcj,Jll ..• (9.6) 

This shunting term is constrained to be always positive, achieved by imposing a 

lower bound on the parameter a; during the initialization and training phases. 

The parameters to be trained in a standard SIANN, therefore, arc the weights and 
biases of the output neurons (w11), the decay and bias tenns of the shunting neurons 
(a1 and h1) and the inl1ibitory weights of the input signals and shunting bias (cj!). The 
following sections derive the training equations for these parameters. 

A.3 Error Function 

The gradient-based training algorithms developed are based on the standard 
backpropagation algorithm. The network is trained with training pairs (I(q), d(q)) 
where l(q)is the input vector and d(q) is the corresponding desired target value. 
(Note: Since the network may have multiple output neurons, d(q)is a vector). The 
difference between the desired and actual output of the network is the error, given by 

e(q) = y(q)- d(q) (9.7) 

where y(q)is output vector for input l(q). 

The training algorithm seeks to minimise the objective function, which is the sum 
of squares of the error term: 

E = Y,re(q)' e(q) (9.8) 

To get avoid having to consider the summation, consider the simple case where 
the parameter updates are performed on a pattern-by-pattern basis. The objective 

function can then be given by E = fie(q( e(q) (Haykin, 1999, ppl44-147). 
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A.4 Training Equations 

This section gives the nctual derivation of the partial differential equations and error 
sensitivity functions used in the gradient-based trnining algorithms. These equations 
were presented in Chapter 4, as equations (4.9) to {4.14), corresponding to the boxed 
equations below. The change made to any parameter is alwnys in the direction of the 
negative gradient, in order to minimise the objective function. For the activation 
function bias tenns, w.o and c!'l, the corresponding 'inputs', xo ,o,1 /0, are assumed 
fixed at I. 

A,4,1 Equation for weight of the ll'h output neuron, wi1 and error sensilivlty 

fundlon,6.,.. 

The update to the weight, t.w11, is proportional to the gradient aFJmiv 

DJ!Tercntiating (9.8) with respect to W*J, and using (9.7), (4.7) and (3.13), 

~= ...!§..._ Bei(q) ay, .5.... 
Ow,1 Be, (q) ay, av, aw11 

(Chain Rule) 

=c,(q). l .g'(v1 ) x1 

(9.9) 

where 

(9.10) 

The tenn Oatis defined as the error sensitivity function for the k'" output. 

A,4,2 The error sensitivity function for thejth shunting neuron, 61, 

The change in the objective function E with respect to the output of each individual 

shunting neuron XJ, BEffJ:9 is given by 

aE = f ...!§..._. ae1 (q). ay, . av. 
ax1 ,.1 ae,(q) ay, av, ax1 

= i;e,(q).l.g'(v1 ).wlJ 
••• 

8E • -=L0,1.wiJ 
ax1 •·• 
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(9.11) 

where we define 

(9.12) 

The tenn 61 is the backpropagated error sensitivity function for the jth shunting 
neuron. 

A.4.3 Equation for the decay parameter ofthe/h shunting neuron, a1 

The same procedure used in !he derivation of 8El8w1J is applied for the gradient 

fJEffJry. Differentiating (4.6) with respect to a1, we get 

ax,,, -{I1 +b1 ) 

'", [•,+t(~>,.i.JJ' 
(9.13) 

The denominator in (9.13) contains the shunting tenn for the1)h neuron, SJ, as given 
in (4.8), therefore 

ox,,, -Vi +b1J 

& 1 s/ 
or alternatively, substituting (4.6) and (4.8) into (9.13), we get 

ax,,, -x, 
aa1 s, 

Using the Chain rule and equations (9.12) and (9.14/9.15), 

BE BE OX1 
aa, "ox1 oa1 

-V1+b,) 
=81 , ,, 
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A.4.4 Equation for the bias parameter of the)'~ ,hunting neuron, b1 

The same procedure is applied for the gradient OE!Ob1. Differentiating (4.6) with 

respect to b1, we get 

Using the Chain rule and equations (9.12) and (9.17), 

OE OE ax1 

ab
1 

=ax,· ab
1 

OE 01 .·.-·-

(9.17) 

(9.18) 

A.4.5 Equation for the connection weight between Input / 1 and the/1 shunllng 

neuron, c11 

The same procedure used in the derivation of OE!Oa; is applied for the gradient 

OE!ac,1. 

Let 

"' 
where/is the activation function of the neuron. 

The output of the shunting neuron,x1, can then be re-written as 

Ji +bJ 
X1=---

0; + P1 

Differentiating (9.21) with re.ipect to CJ/ using the Chain rule, we get 

ax, ax, Op1 fN1 --·---acj, Op1 av1 ac1, 
11 +bl , =-r /f(v1)l, 

L"J + P1 
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Using the Chain rule and eqs (9,\2) and (9.22), 

~= OE iJx1 
&:1, &1 &:1, 

-x 
=01- 1 f'(v1)11 ,, 
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B.l Experimental Results for Chapter 4 

This section presents tables containing the details of the experimental results 

obtained in Chapter 4, 'Development ofTraining Algorithms'. 

8.1.1 Mean Error Results 

This sub-section presents the mean test error (or test ARV) for all combinations of 

activation functions and training algorithms obtained using SIANNs, for each of the 

benchmark tests. The average for eacb activation function combination (row) and 

training algorithm (co!umn) are also presented. 

Table 8.1 Mean test classification error for 3-bit Parity dataset using 3-3-1 SIANNs 

Aotiv,,tion Training Algorithm, 
Fundion, Avoragc 

Shunt °"' 
COM CDX '" LMAM OLMAM DSODX ROM ROM2 

'"" Lin 27.SO 24.7S 8.00 9.00 10.SO O.JS 29.SO :!otOO 16.15 

'"" " 28.75 1.25 6.7S 7.00 l0.7S 6.lS IS.SO 10.SO 10.84 

'"" '"" 22.SO 2.00 8.25 9.00 9.JS 43.15 2l.2S 22.lS 17.41 

'" "" 53.00 49.75 0.50 21.75 10.25 "" 40.50 4l.2S 17.88 ,_ 
'"" 49.50 29.00 ,.oo 2!.75 3.25 49.7l 22.25 21.25 24.12 

'"' '"" 51.25 48.25 5.75 30.00 7.75 4S.7l 19.00 38.00 JJ.22 

''" Lin 38.00 38.00 0.50 4.25 I.SO "" JO.SO J0.25 Jll.06 

''" '"" 48.50 1.2s ,.oo 4.50 J.2S 28.25 12.25 11.00 IJ.88 

''" 'M 38.00 3.2S ,.oo 8.7S 4.00 45.75 23.JS 23.JS 18.78 

Avern•o J9,67 2/,94 J,97 12.89 6.78 25.0J 211.17 24.92 

TableB.2 Mean test classification error for Breast Cancer dataset using 9-9-l 

SIANN 

Aoti,ation Training Algorithm, 
Function, A"ragc 

Shum ""' "" oox '" LMAM OLMAM OSGDX '"" ROM2 

'"" "" 0.5l O.l6 0.71 1.18 0.15 0.66 S.71 !.Sl l.9J 

'"" '' O.l6 0.60 1.22 1.29 0.86 0.54 1.40 I.S4 "" '"" '"" 1.69 0.82 0.85 1.14 0,98 2.69 J.ll l.Sl "' '. Lin 0,79 0.98 OM 0.76 0.49 O.JJ S.IS S.15 1.89 

" ''" "" 0.20 0.66 !.24 0.61 0.69 l.l8 I.JO "' " Tnh 1.ll 0.84 0.20 0.76 O.l7 l.28 l.11 l.18 l.6J 

"' "" 0.52 0.2~ 0.88 1.95 '" 0.98 6.29 S.15 1.U 

"" '"" 0.43 0.45 1.21 1.63 0.76 "' 1.46 l.!S ,.oo 

"" '"" 1.2) 0.54 0.79 1,86 1.36 '" 2,10 J.63 /.92 

Avm•• 0.8Q Q . .56 0.71 I.JI "' 1.48 J.J9 J.JJ 
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Table B.3 Mean test classification error for Diabetes dataset using 8-8-l SIANNs 

Aotivacion Troining Algori1hm:s 
Funciions Averag• 

Shunt '"' 
COM '" CM LMAM OLMAM DSGDX ,OM ""' 

Tnh Lin 20.03 22.14 21.30 2255 21.34 20.23 26.62 27.68 22.74 

'"" c,, 22,01 21.03 20,96 21.96 21.10 20.17 22,81 2183 11.61 

'"" "" 19.70 21.16 21.09 21.65 20.52 40.64 27,76 26.81 14.92 

C·, Lin 19.48 22.27 20,61 20,98 20.96 20.02 26.52 26.01 22./1 
c,, c, .. 25.80 21.09 20.88 21.06 20.7) 19.82 21.50 21.69 21.57 

c" '"a 19.0S 22.03 19.88 20.22 20.34 41.24 25.71 24.35 24./0 

Exo Lin 19.47 22,07 20.60 24.39 22.41 20.20 29.62 28.83 2).45 

Ex• C•• 27.20 21.76 20.58 21.40 21.00 20.27 22.67 22.05 22./2 

Ex• '"a 19.28 21.IS 20.31 22.37 20.56 39.72 26.09 27.17 24.58 
Avera, 2U4 21.6J 20.69 21.84 21.00 26.92 25.48 25.18 

Table B.4 Mean test classification error for Multi-class dataset using 2-2-3 SIANN 

Aclivation Training Algorilhm:s 
Function, Mmgo 

Shunt '"' 
COM '" CM LMAM OLMAM DSGDX ,OM ROM2 

Toa Lin 32.48 23.79 9.60 10.91 12.84 23.67 407 43.03 2J.IJ 

Toa c,, 6,72 6.0S 7.4S 6,76 9.9] 33.59 10.47 !1.83 11.60 

Toa '"" 29,Sl 21.0S 9,12 10.08 !8.ll 32.20 42.07 41.29 25.4] 

Ces Lin 33.08 32.25 16.SS JS.OJ 17.88 23.57 46.08 42.S9 2838 
C·, C·, 8.ll 7.0S 6.83 6.IS S.81 32.65 IJ.93 12.99 11.69 
c,, '"" 33.23 32.76 17.80 lS.27 21.37 31.00 41.33 39.27 29.00 

''" "" I0.23 ID.SJ 6.42 7.87 6.31 9.39 43.79 44.95 17,44 

Exo Ces S.73 S.47 5.69 6.13 6.79 24,91 7.49 8.33 8.82 

''" "" 11.80 9,84 9,27 7.39 7.29 19.80 JS.25 38.76 17.4j 

Avera c /R.99 /6.H 9.86 9.SI II.BJ 25.64 )1.70 )/.45 

Table B.5 Mean test ARV for Sunspots dataset using 10-10-1 SIANNs 

Ao1ivo1ion TroiningAlgorilhm• 
Flmolions Average 

Sh"nl '"' 
COM '" CM LMAM IOLMAM DSGDX ,OM ROM2 

Tnh Lin 0.161 0,174 0.111 0.1401 0.128 0.130 l.22l 0.877 O.J71 

'"" C·· l.008 0.987 0.143 O.lSI 0.132 0.190 o.m 0.3l4 0.4/Q 

'"" '"" 0.226 0.20! 0.129 0.147 0.129 0.137 0.790 0.742 O,J/J 

c .. Lin 0.223 0.188 0.112 0.125 0.117 0.119 0.614 0.670 0.211 ,. 
"' l.007 1.006 0.!43 O.IS2 o.no 0.194 0,286 0.271 O.J99 

C•• '"a 0.274 0.212 0.126 0.135 0.122 O.lll 0.622 0.551 0.271 

Ex• Lin 0.274 0.191 0,134 O,lfi7 0.143 0.135 0.773 0.912 O.J4l 

Exn c. l.009 1.008 0.!46 0,150 0.176 0.195 0.324 O.l61 o.m 

"" '"" 0.314 0.213 0.133 0.151 0.134 0.13~ 0.762 0.743 0313 

Avcroe• 0.500 D.464 O,JJ) 0./46 0./35 0.152 0.6M 0.607 
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B,1,2 Rankings of E:cperlmental Results 

This sub-section presents the Kmskal-Wallis rnnkings of the mean test errors for all 
combinations of activation functions and training algorithms using SIANNs, for each 
of th!l benchmark tests. Tables B.6 to B.10 contain the ranking of the means 
presented in the corresponding table in sub-section B.1.1. The sum of rankings for 

each activation function combination (row) and training algorithm (column) is also 

presented, along with a relative ranking of the functions and training algorithms 

based on this total. Table B. l l presents the sum of all ranks over the five different 
benchmark tests. Table B.12 ranks the sums presented in Table B.11 from l to 72, 

and is used to calculate the overall h statistic, as well as the 'overall' ranking. 

Table B6 Rankings for 3-bit Parity dataset results using SIANNs 

Aclivalion Tr:iining Algorithms 
fllnclfons Toto! ~· 

Shum '"' 
COM co, CM C"-'M OLMAM OSODX <OM ROM2 

'"" Lin " " " ns 31.5 ' " .. "' • 
'"' 

c,, 
" 

,., " " " '" " 31.5 "' ' 
'"'' '"' " 

,., " 27.S " 62.S " " 178.5 • 
Cu Lin " 69.S '' 38.S ,. JS.S " 62.S JJO.J • 
c. " .. " ' 38.S " 69.S " " m ' c. '"' " " " " " .. , .. 57.S "' • 
"' Lin 57.S Si.J ' ' " 

,., ,., " " 2J7.J ' 
"' c. " J.S· ,., 

" " " " " m ' 
"" '"' 57.5 " " " lS.S "·' 44.J "·' 276.J ' 

Tolnl "' JUJ 116.S "' /9J.5 "' 415.5 ,w 

~"' • ' ' ' ' • ' • 
Table B 7 Rankings for Breast Cancer dataset results using SJANNs 

Aclivotion Training Al_gorilhms 
fllnolion, Tollll ~· 

Shunt °"' 
COM '°' CM C""M OLMAM DSODX <OM '°"' 

'"' Lin " ' " " " 19.S .. .. 259.S ' 
'"' '. ' " " 44.S " " " " 157.S ' 
""' '"' " 

,. 
" '" " " " 

., 
"' • 

'" Lin 2R.5 " • " " " " 70.S "' • 
'"' '. ' '' 19.S " " " " " "' ' 
'" '"' " " 

,., " ' " .. " 196.5 • 
fan Lin " ' " " 44.S " n 70.S "' ' ,,, '" • .. '" " " " " " m ' 
''" '"' " " 28.S " " " " " 376.S • 

Tot,! 2/J.J /48,5 117.S 383.J 247.S J/Z.S "' m ·~ ' ' ' • • ' ' • 
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Table B.8 Rankings for Diabetes dataset results using SIANNs 

Aotivallon Tralning Algorilhm, 
Funolinn, Total Ronk 

Shunt '"' 
COM '" CM ''"M OLM AM DSGDX ,OM ROM2 

'"" Lin ' " " " " " " " "' ' 
'"" C•• " " 24.S ., 

" " " " 286.S • 
'"" '"" ' " 30.S " " " " " 316.S ' c .. Lin ' .. " " 24.5 • " " 151.5 ' 
C•, C•• " lO.S " " " ' " " 246.5 • 
C•, '"" ' " ' " " " " " '" ' •• Lin ' " '" " '" " " " "' • 
•• C·, " " " " " " " " ,oo ' •• •M ' " " " " '" " " "' • 

To!lll ''" m.5 '" "' 242.5 "' "' "' Ronk • ' ' ' ' • • ' 
Table B 9 Rankings for Multi-class data.set results using SIANNs 

Aotiv,llon Tl'lininc Algorilhms 
Funclioo, To!lll ''"' Shunt '" 

O,M "' CM ""'M OLMAM DSGDX SOM ROM2 

'"" Lin " " " " " .. '" " "' ' 
'"" c .. " ' " " " " '" " '" ' 
'"" '"' " " " " " " " " m • 
C•, Lin " " '" " " " " " "' • 
C•, C•• '" " " ' ' " " " "' ' c .. '"" " " " " " " " " m ' ... Lin " " ' " • " " " "' • •• C•• ' ' ' ' " '" " " "' • .. '"" " " " " " " " " ''" ' 

Totol "' "' "' '" "' "' "' "' Rank ' ' ' ' ' ' • ' 
Table B.10 Rankings for Sunspots dataset results using SIANNs 

Activation . Tl'lining Algorithms 
Fun,tioo, Total ~·· Shunt '" 

COM "' CM LMAM OLMAM DSGDX ,OM ROM2 

'"' Lin " " 12.S " ' 10.S " M "' ' 
'"' Co 69.S '" " 29.S " " " " "' " 
'"' '"" " " 

,., 
" 

,., 
" " .. m • 

C•• Li, " " ' ' ' ' '" '" "' ' c. Cs, '" " " " 10.S " " " 314.5 ' 
C•• '"" 41,5 " ' " ' 12.S " " "' ' 
" Lin 47.S '" 16.S " " " " " "' ' ,, c .. " @.S " '" " " " " '374.5 ' ... '"" .. " " 29.S '" " " '" "' ' 

Tola\ 474.5 Wl.J /JJ.J "' 121.S "' "' '" ""' ' ' ' ' ' ' ·, ' 
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Table B 11 Sum ofrnnk.s across ali five benchmarks datasets 
Activation Training Algorithm, 
Function, Tola\ ... 

Shun! '"' 
COM co, CM LMAM ow= DSGDX SOM RDM2 • 

'"' Lin "' '"' .118.,'i ]7].< lll.5 .. "' "' /49J., ' 
'"' ,- ins 121J m:s '" -m '" "' 224.5 /J02 ' 
'"' '"' , .. 159.5 118 • )159.j: ·,. b·.,. 265.S '"' "' 1628 " , .. 'Lin 206.5 1243.S 72.S 'l:ii.5.· ·• IJJ!l.t:·. ,96.5 "' "' 1496 • , .. L•s ' "' '" .... ,.,· .. ·: .. · 48.S 

. 
' 61.5 191.S "' '"' 1291 ' , .. 

'"' 225.S .. , 74.S' "" "' '" '"' 291.S 1619.J 0 

&· Lin '" 115.S "' '"' '" 97.5 "' 328.S 1474.J ' 
"" ,., 

"' "' 96.5 '" "' '" '"' '"' 1275.J ' &- '"' l!U.S ,,. 92.5 176.J '" 259.S 285.S 296.5 ma ' Towl 1712 "" 864.J 1412.S /019 1578.S 2496.J 2474 
IWnk • • ' ' ' ' " ' 

Table B 12 Rankings for Overall perfonnnnce across al! datasets 
Ac1ivation Training Algorithm, 
Funo!ion, Towl .... 

Shunt '"' 
COM co, CM LMAM OLMAM DSGDX SOM so~ 

'"' Lin " 41.S '" " " ' '" " 292.S • 
'"' 

, .. 
'" " " " " " " " '" ' 

'"' '"' " JJ.J " 33.S " .. .. • "' " ,., Lin " " ' " " 
,., 68.5 68.S 286.S • , .. , .. "' " ' '" ' .. S0.5 " 261.S ' , .. 

'"' " " ' '" " '" " "' "" " fan Lin " '" ' "' " " " " 291.S ' fan , .. so.s '" ... " 13.S '" 48.J 48.J 251.J" ' E,- '"' " '" • " ll.S " " M JOI.J ' Tot,! J94,S ,,. 79.S "" "' J/0.J SSH "' .... • • ' ' ' • " ' 

> ,;. 
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8.2 Experimental Results for Chapter 5 

This section presents tables containing the details of the e:itperimental results 

obtained in Chapter 5, 'The Quadratic Neural Network Algorithm'. 

8.2,1 Mean Error Results 

This sub-section presents details of experimental results obtained. Tables B.13 to 

B.17 show the mean test error for all combinations of activation functions and 

training algorithms, for each of the benclunark tests, using SIANNs trained ou QNN 

algorithm variants. The avernge for each activation function combination (row) and 

training algorithm (column) are also presented. Tables B.18 and B.19 show results 

obtained wheu varying the step-size, d, for the standard QNN algorithm. 

Table B.13 Mean test classification error for Breast Cancer dataset using SIANNs 

trained with QNN algorithm variants 

Activation Training Algorithms 
Fw,e1ion, Morago 

Shunt '"' '"' '"'' '"'' 
,,,.. 

'"'' QNN·C2 "' CM 

"" Lin 0.46 0.54 ••• 0.56 050 OAS 0.36 0.71 O.JJ 

'"" , .. 
"" O.ll 0.31 Ml 0.41 0.29 0.60 1.22 0.4~ 

'"" '"" "' "' 4.08 3.7) "' "' 0.82 0.85 , .. 
'"' "" 0.55 o.ro 0,86 0.55 O.l4 O.S4 0.98 0.44 0.61 

"' '"' 0.40 "" 0.24 O.l6 O.l2 O.JS 0.20 0.66 O.J6 ,., 
'"" 0.47 o.so 0.18 0.62 0.70 0.46 0.84 0.20 0.57 

"" Lin 0.66 o.e O.Sl o.e 0.56 0.66 0.29 0.88 MO 

"" '"' 0.26 O.l5 0.27 "'" 0.40 O.Jl 0.45 l.21 0.48 

"" '"" ,.oo 1.86 2.ll 1.86 0.82 l.06 O.S4 0.79 I.J2 

Avcrae< 0.9J 0.97 I.II I.OJ 0.8J 0.96 0.56 0.77 

Table B.!4 Menn test classification error for Diabetes dataset using SIANNs 

trained with QNN algorithm variants 

Aoiivoilon Tminins Algorllhm, 
FUI1C1ions Avorase 

Shunt '"' ''" '"'' '"'' QNN6 '"'' QNN-C2 "' '" 
'"" "" 20.72 20.71 20,10 2!.24 20.SI 2054 22.14 21.lO 20.91 

'"" 
,., l0,6S 20.56 2l.48 20.80 20.69 20.67 21.0l 20.96 21.11 

'"" "" 20.08 20,01 20.IS 20.66 20.17 20.IR 21.16 21.09 20.44 , .. Lin 20.09 20.lO 19.96 20.lS 20.!I 20.16 22.27 20.61 10.48 , .. ,., 20.74 20.73 25,21 20.66 20.61 20.60 21.09 20.88 21.J} 

'"' '"" 19.88 19.95 19.91 20.0l 19.57 19.69 22.0J 19.88 20.I} 

fua "" 20,79 20.62 20.08 20.88 20.59 20.79 22.07 20.60 20.80 

fuo "' 20.69 20.77 23.68 21.09 20.S4 20.79 21.76 20.58 21.24 

fa~ '"'' 19.92 19.80 20.ll 20.22 19.96 20.0S 21.15 20.Jl 20.21 

Avon•• )0,40 20.38 2U} W.66 20.JI 20.J9 21.6] 20.69 
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Table B.15 Mc:an test classification error for 3-bit Parity dataset using SJANNs 

trained with QNN algorithm variants 

Aclivalion Training Algorithm, 
F!ll1clions Avoragc 

Shunt om ,~ ,~, ,~, ,~· ,~, Q~-0 GOX OM 

'"" Lin I I.SO 9.SO 31.00 21.25 10.25 11.75 24.75 ,.oo "00 

'"" O•• 8.50 9.00 36.75 Z0.25 12.SO 10.25 \.25 6.15 13.16 

'"" '"" 10.00 12.50 JJ.00 19.00 JO.SO 10.25 2.00 8.25 13.19 

O··· Lin S.00 6.00 47.00 28.50 6,00 4.25 ~9.75 0.50 18.]8 

O•• o•, S.25 4.75 47.00 3050 S.15 ,,, 29.00 1.00 15.84 

0•• '"" 7.2S 6.SO 46.SO J0,25 8.75 10,25 48.25 5.75 20.44 

~" Lin 9.00 7.75 36.50 15.75 6.15 9.50 38.00 0.50 1SA7 ,, O·· 9.25 8.00 32.00 20.00 7.00 9.25 1.25 2.00 11.09 ,, 
'"" 9.00 9.SO JJ.75 15.75 ,,, 9.00 3.25 3.00 11.47 

Avero•o 8.31 8./7 ]8.11 22.36 8.44 8,67 21.94 J.97 

Table B.16 Mean test elassification error for Multi-class dataset using SIANNs 

trained with QNN algorithm variants 

Activotion Training Algorithm, 
Fune1kms Average 

Shunt Om ,~ ,~, QNN5 ,~· "'"' QNN·C2 "' OM 

''" Lin B.87 B.l6 23.55 8.79 B.85 8.72 23.79 ,.oo 12.J7 

Tnh O•, 6.\1 6.BJ 8.03 6.24 6.88 6.80 6.05 7.45 6.80 

'fob '"" 8.96 8.80 25.95 9.41 10.61! B.60 21.05 9.12 12.82 

o·, Lin 9.57 9.33 JO.BB 19.29 11.85 10.32 32.25 \6.55 17.51 

O•• O•• 6,60 6.51 7.05 6.28 6.71 6.49 7.05 6.83 6.69 

O•, Tnh 1 l.57 ll.17 32.09 16.21 12.32 "" 32.76 17.80 17.92 

Exn Lin 7.40 ,.oo 14.57 7.05 7.a9 "' 10.53 6.42 8.54 

Ex· O·· 6.05 s:19 7.87 5.72 '·" 5.83 5.47 S.G9 6.0] 

Ex• '"" 7.0l .., Ll.29 ,.oo 6.73 6.91 '·" 9.27 8.:i? 

Avera•c 8.02 7.81 18.36 9.JJ 8.64 7.84 16.53 9.86 

Table B.17 Mean test ARV for Sunspots dataset using SIANNs trained with QNN 

algorithm variants 

Aolivotion Training Algorilhm, 
fllnctions Avcrogc 

Shunt om Q>N '"'' """ ,~. ,~, QNN·C2 oox CM 

'"" "" 0.132 0.133 0.202 0,124 0.133 0.(34 0.174 0.131 0,/45 

'"" 
,., o.m 0.136 0.506 0.116 O.ll5 O.!JB 0.987 0.143 0.287 

'"" '"" 0,144 0.147 0.269 0.136 0.149 0.144 0.201 0.129 0.165 

" Lin 0,13l 0.131 0.315 0.105 0.134 0.131 0.188 0,112 0.156 

O••• 0' 0.127 0.126 0.604 0.100 O.!Jl 0.127 !.006 0.143 0.2% 

,-. '"" 0.149 0,148 0.)36 0.134 0.149 0.147 0.212 0.126 0./75 

&• Lin 0.134 0.135 0.)17 0,127 0.135 0.134 0.191 0.134 0.161 

Ex" 0•• 0.145 0.144 0.589 0.150 0.139 0.14l 1.008 0,146 0.308 

E,n '"' 0.148 0.\48 0.120 0.138 0.147 0.147 0.213 0.133 0.174 

Avera•• O,IJ9 O.IJ9 0.]84 0.126 0.119 0.118 0.464 0,111 
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Table B,18 Results for QNN algorithm with different dvalues applied to Wisconsin 

Breast Cancer data.let 

Oiscret• Acli•otion Porformonoe Avg Epochs TmEm,r """ •lt!>-•izc,d functions %ofnms' Train 

'" • 0% '"" A" • "" BcSI 95%Cl Modion 
lime 

°"' Moan ,,, 
goal '" < "" .. , ""'" (%) ''% (%) 

o.oi "" '"' " " '" '" • JOO 0.00 0.6l ±0.16 0.S6 14.4 

0,02 Exp '"' " " '" " 
. 

"' 0.00 ... ±0.18 0.56 12.7 

0.05 ,,. 
'"' " '" '" " 

. '" 0.00 0.70 ±0.22 0.56 '" ,., ,,. 
'"' " " '" 00 . 

'" 0.00 0.54 ±0.18 0.56 15.S 

"·' ''" 
,,, 

" " '" '" 
. " 0.00 0,26 ±0.13 0.00 15.7 

o.s '" '"' " " '" " • " 0,00 0.28 ±0.11 0.00 16.J ,., ~xp '"' " JO '" .. • "' 0.00 0.29 ±0.12 0.00 19.6 

'" ''" '"' " " • " 
. 

" 6.78 S2.0I ±8.n 64.69 12.1 

Table B.19 Results for QNN algorithm with different dvalues applied Pima Indians 

Diabetes dataset 

Discrete Activation Performance Avg Epochs Test Error Mean 
51op-slzc,d funotions '%ofnin•' Tmin' 

'" ,. • 0% '"" "' • 0% '"' Me,n 9So/,CI Median 
tim• 

goal '" < ""' goal ""'" {%) ''% (%) 
(•( 

O.Ql '"' '"" " " " m . . 17.71 21.05 ±0.4] 20.83 100.S 

O.Q2 ,,, 
'"' " " " "' • • 18.23 20.73 ±0.JS 20.BJ S2.B 

o.os ,,, 
'"" " 0 " "' • • 17.71 20.82 ±0.JS 20.83 35.9 

"' '"' '"" " 0 " "' • . 18.75 20.22 ±0.24 20.31 65.0 

"' 
,,, 

'"" " 0 " "' • . 17.71 19.BB ±0.24 19.79 75.8 

o.s "' '"" 0 " " m . . 18.23 19.79 ±0.34 19.27 86.6 , .. '"' '"" " " " "' 
. . 17.71 19.41 ±0.JS 19.27 119.7 

'" '" '"" " " " ' • • JJ.33 41.37 ±2.91 36.46 ,.o 
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B.2.2 Rankings of Experimental Results 

This subsection presents the Kroska\-Wallis rankings of the mean test errors for all 
combinations of activation functions aod training algorithms, for each of the 
benchmark tests using SIANNs trained on QNN algorithm variants. Tables B.20 to 
B.24 contain the ranking of the means presented in the corresponding table in B.2.1. 
The sum of rankings for each activation function combination (row) and training 
algorithm (column) is also preseuted, along with a relative ranking of the functions 
and training algorithms based on this total. Table B.25 presents the sum of all ranks 
over the five different benchmark tests. Table B.26 ranks the sums presented in Table 
B.25 from I to 72, and is used to calculate the overall h statistic, as well as the 
'overall' ranking. 

Table B.20 Rankings for Breast Cancer dataset results using QNN algorithm 
AcliVRlion Troining Algorithm, 
Function, Tolill .. , 

Shunt '"' Q,W Q>NO Q,W; Q>N, Q>N> QNN,C2 "' w 
,., Lin 26,S " .. " 29.5 24.5 " " 163.J • 
'"" 

, .. 
" " '' 21.s 21.S ,., 40.S " /87,S ' ,., 

'"" " '" " " " " SJ.S " $26,S • 
J,o, Lin 35.S 40.S " JS.S !2.S " " " '" ' 
'"' '"' 19.S '" ' " '" 14.S " " "' ' ,., 

'"'' " 29.S " " .. 26.S ;; ,., 181.S ; ,, Lin " 43.S " 4J,S " " '' " 314.S ' ,, 
'"' • 14.S ' " 19.S ,., 24.5 " "' ' 

" '"" M 62.S " 62.S SJ.S " " " 4S8.S • . 
To!al 3/0.S "' 338.5 "' 30&.S 193.5 290.5 "" .. , • ' ' ' ' ' • • 

Table 8.21 Rankings for Diabetes dataset results using QNN algorithm 
Activation Toiiniag Algori~,ms 
F"n,lioo, Tolill Ronk 

Shum o, Q>N Q,WO Q,W; '"'' Q>N, Q,W.C, "' CM 

'"" Lin .. " " " " 29.S .. M 360.j ' 
'"' 

,., 
" " '" " 4J.S " " " 391.S ' 

'"' '"' 14.S " " 40.S " ll ., 
" "' • 

'"' Lin " " 
,., 

" " '" .. l6.S "' ' ,., 
'' .. " n '"' 36.S 34.S " .. , "' • 

'' To> '' • ' " 
, ' " ,., 

'"' • ... Lin " " !4.S 54.S " " " 34.S 343.S ' Ex• " 4J.S .. " " 29.l " " " ,oo ' Ex• Tnh ' ' " " 
,., 

" " " 166.S ' 
fotat 269.S m '"' J72.J "" "' '" '" '"' • ' ' ' • ' • ' 
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Table B.22 Rankings for 3-bit Patitv dataset results using QNN algorithm 
Activation Trala,lng Algorithms 
Functions Toi,! ~"' 

Shunt °"' '"' '"'' '"'' '"'' '"'' QNN-C2 "' CM 

'"' Lin " " " " 42.S " " zs.s "' • 
'"' C•, 28.S 32.S .. " 4U 42.S ,., zo.s "' ' 
'"' '"' .. 48.S " " " 42.$ ·<J,< " 124.S ' c .. Lin " 11.S 69.S " 11.S " 

,. ,., 
"' ' c•, C·• " " 69.S '" lS.S '" • i8 ' "' ' C•• '"' " " .. " '" 

,. " -~- '.,71 IS.S "' • 
" "" 32.S " 

., s~.s lO.S " . · '67 ,., ,w ' Exo c .. 3S.S zs.s " " " !.S.{ ,' ,., ,., 244.S ' ,, 
'"' ns " " s.- .s 28.S' ns • • '" • 

Tolal "' "' , .. "' 270, JGI.J 348.5 '"' Ronk ' ' • ' ' ' ' ' 
Table B.23 Rankings for Multi-ciass dataset results using QNN algorithm 

Activotion . Troinlns Alsorilh""' 
Functions Totnl '""' Shunt '"' QW, '"'' QNNS' '"'' '"'' QNN-CZ '"' CM 

'"' "" " " .. " " " " " "' ' 
'"' Los • 20.S " '" " " 

,., " "' ' 
'"' Tnh " .. .. .. " " " .. "' ' C·, Lin .. " " " " " " " "" • 
c .. C•• " " " " " " " 20.S 149.S ' c .. '"' " " '" " " 

., 
" " "' • 

"" "" '" 24.5 " " .. " " " 272.S ' 
"" , ... 

'' • " ' '' '' ' ' 61.S • 
"" '"' " " '" 24.S '" " " " 260.S ' 

Total 278.S "' ... 288.5 306.J 267.J 415.S 329.S 

Ronk ' • • ' ' ' ' ' 
Table B.24 Rankings for Sunspots dataset results using QNN algorithm 

Activation Troining Atgorilhms 
Fune1lon, Toiol Ronk 

Shuat '"' QW, '"'' "'" QW,O QW,, QNN·C2 "' CM 

'"' Lin " " " ' " ZJ.S " " 206.5 ' Tnh '" " 30.S " ' " " '" " JOl.5 ' Tab Tnh .. 4S.S " 30.S " .. .. " "' ' 
'"' Lin " " " ' "' " " ' /9/.S ' ,,, 

'"' • ,., .. ' " • " " 220.S ' 
'" '"' " .. .. "' " 4S.S '" '' JS4.S ' ,,. Lin 23.S " M • " "' " 23.5 256.J ' Esn ,,. 

" .. .. M " " " " "' • 
"" '"' .. .. " " 45.5 45.S " '" "' • 

To1al 281.S m.s "' '" "" "" "" "' ,..,, 
' • • , ' ' ' ' 
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Table B.25 Sum of ranks across all five benchmarks datasets using QNN algorithm 
Ac1ivation Train in~ Algorilhm, 
Function, Total ~,, 

Shunt '"' ONN ONN> O'"' ONNO ONN• QNN.Cl '" CM 

"' u, 115.S ''" 
,., ,oo '" 162.S '" 202.S 1$80.5 • ,,, c .. !26.S l2B 246.5 142.S 163.S ,., 179.S 205.S /JJJ.S ' ,,, "' 206.S "' '" "' "' 209.S ,., 

'" /8JB • 
C•• Lin l3U '" , .. 185.S 128.S '" m '" UJ7.5 • 
c .. Ce, 106.S " 241.S 129.S " "' 217.S ,., /129 • 
c .. "' 163.S 160.S "' 197.S '" 163.S "' " /JJI ' ~- Lin '"' "" 233.S 185.S m.s 191.S 250.S 129.S 1486 • , .. c,, m.s "' "' '"' 111.S 137.S ,., 14l.S 1271 ' , .. ,,, 178.S 16:i.S ,w 19l.5 '" "' "' ... 15/H • 

Total /405 /J61.S ]J00.5 /68j 1397 /j97,j 1188.5 NOO 

Ronk • • • • ' ' ' • 
Table B.26 Rankings for Overall performance across all datasets results using QNN 

algorithm 
Aoliv•lion Toiinins Algorilhm• 
Funclioru Total Rank 

Shunt Out QNN 0'"' 0'"' 0'"' ONNO QNN·Cl '" CM 

Tnh Lin " " " .. " " 
., 

" "' • 
Tnh c .. • ' ., 

" " '" " '" "' ' 
'"' "' " S4.S '" " 58.S " "' .. "' • 
Coo Lin " '" .. 41.S '" " n • 241,S • 
"" "" ' ' .. 12.S • • " " /69.5 • 
C·• "' " " " 

., ., 
" " ' 

,,, • 
E•• Lin " " " 41.S " • " 12.S ,oo ' E,n Ces " " '"' " • " " " 119.5 ' 
''" '"' " " 00 " 

,. 
" 54.S " J2Z.5 ' 

Tola! "' 218.S 515.5 J67.S 215.5 '" 520.5 138.5 

Rank ' ' " • ' • ' • 
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8.3 Experimental Resulls for Chapter 6 

This section presents the details of the C)[perimental results obtained in Chapter 6, 
'Further Development of Shunting lnhibitoiy Artificial Neural Networks'. The mean 
test error for each of the benchmark tests, obtained using Enhanced SJANNs, for all 
combinations of activation functions and training algorithms, is presented in Tables 
B.27 to 8.3 !. The average for each activation function combination (row) and 
training algorithm (column) arc also presented. 

Table 8.27 Mean test classification error for Wisconsin Breast Cancer dataset using 
Enhanced SIANNs 

Aclivotion Trainin• Al•ori1hms / Struotun, 
Funolions 

RO<luood 9-t-1 Ex ,ndod9-t-2-l Stondord 9-9-1 "' 
'" Om co, CM OSGDX co, CM DSG DX 00, CM D!\GDX 

'"" Lin 0.15 0.76 O.S2 0.90 0.69 0.63 0.36 0.71 0.66 O.M 

''" c 0.88 0.90 LOS l.14 1.2! 1.1 0 0.60 l.22 0.54 0.96 

''" '"" 0.86 0.35 5.81 l.08 0.71 5.92 0.82 0.85 2.69 2.12 

c•, u, 0.98 0.52 0.47 Lil 0.58 0.62 0.98 0,44 0,7J 0.71 

C·, c 0.94 0.84 0.58 I.SJ 0.77 l.22 0.20 0.66 0.69 0.83 

"' '"" L22 0.50 6.70 2.15 0.29 9.22 0.84 0.20 '" 2.71 

" Lin 0.55 0.23 0.26 0.51 0.31 0.47 0.29 0.88 0.98 0.50 

" c .. 0.81 0.79 0.84 2.27 0.90 0,96 0.45 '"' 0.54 0.97 ,, 
''" 0.70 0.61 7.62 l.Ol 0.41 12.44 0.54 0.79 3.25 3.04 

Avcmgc 0.85 o.61 2.65 I.JO 0.65 J.62 0.56 0.77 1.48 

Table B.28 Menn test classification error for Pima Indians Diabetes dataset using 
Enhanced SIANNs 

Aclivo1ion Trninin~AI orithmo/Slruclurc 
1'1,notion, 

Rcduoed 8-3·1 Ex .,,a,a s.3.2.1 Slondard s.a.1 '"' 
'" o", '" ~, DSGDX co, CM DSGDX '°' CM OSGDX 

"" Lin 21.77 21.30 20,89 22,26 21.36 20.59 22.14 21.30 20.23 2/.32 

''" C·, 21.01 20.64 21.23 22.86 21.14 21.SO 21.03 20,96 20.17 21.17 

''" Toh 20.96 20.53 43.48 21.55 20.81 45.66 21.16 21.09 40.64 28.4J 

c .. "' 22.84 21.22 20.96 23.57 21.15 20,58 22.27 20.61 20.02 21.47 

c .. Ce, 22.05 20.76 2l.l3 25.55 20.67 21.54 21.09 20.88 19.82 21.50 

c .. "" 21.94 20.35 41.96 22.47 20,76 45.31 22.03 19.88 41.24 28.44 ,. Lin 21.78 21.24 20.62 25.56 20.95 20.72 22.07 20.60 20,20 21.53 ,, c,, 21.38 20.52 21.23 27.61 20.90 21.46 21.76 20.58 20.27 21.75 

" ''" 21.34 20.18 42.26 25.95 20.43 44.34 21.15 20.31 39,72 28.41 

Average 21.67 20.75 28.20 24.15 20.91 29.08 21.61 20.69 26.92 
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Table 8,29 Mean test error for 3·bit Parity dataset using Enhanced SIANNs 

Acliva!ion Trainin· Al orilhm, I Suucture 
Functioos 

Rodu"d J-2-1 fan•ndod 341 St,ndud J.J,l Avg. 

'" ""' "" '" DSGDX "' '" DSGDX GOX CM DSGDX 

'"" Lin 19.25 19.75 !I.SO 17.00 ,.oo 0.00 24.75 8.00 0.75 11.44 

'"" , .. 12.50 17.75 30.00 0.50 LOO 3.75 1.25 6.75 6.25 8.86 

'"" '"" 8.50 23.75 49.00 0.15 3.50 35.25 2.00 8.25 43.25 /9.16 

Coo Lin 50.00 9.15 14.25 40.00 0.00 0.00 49.75 0.50 4.00 /8.69 ,., , .. 39.50 10.25 49.25 21.25 0.25 l.50 29.00 l.00 49.75 21.42 

c .. '"" 49.50 8.75 so.oo 26.50 4.50 28.50 48.25 5.15 45.75 29.72 

"" Lin 43.SO IS.SO 19.00 42.25 0.25 0.00 38.00 0.50 l.50 17.83 

" c 12.50 17.00 41.25 0.50 0.25 2.75 1.25 2.00 28.25 11.75 

" '"" 13.75 11.75 49.75 l.15 0.00 40.00 3.25 3.00 45.15 18.78 

AV<n,go 27.67 14.92 j4,89 16.72 1.31 12.42 21.94 3.97 25.03 

Table B.30 Mean test error for Multi-Class dataset using Enhanced SIANNs 

Ac1iva1ion Trainin Al lll1tl=I S!racture 
Fune1ion, 

Reduced l· 1-3 Ex •ndcd2,J,J Sl"'1dml 2,l,J 
Avg. 

'" ""' "' CM DSG DX @X CM DSG DX "' CM DSGDX 

'"" Lin 34.64 34.99 34.67 7.45 6.64 8.39 23.79 9.60 23.67 20.43 

'"" ' 8.21 7.13 34.67 S.51 9.69 7.80 6.05 1.45 33.59 11.34 

'"" '"" 34.96 35.4 J 34.67 6.32 ,,, 9.24 21.05 9.12 32.20 21.0J 

' Lin 34.33 34.93 34.67 ll.04 6.11 5.96 32.25 16.SS 23.57 Zl.16 

'" c' 6.71 7.77 34.67 S.64 7.72 9.09 7.05 6.83 32.65 13./3 

'' '"" 34.51 35.24 34.67 9.49 S.60 9.53 32.76 17.80 Jl.00 2HO 

" Lin 34.36 JS.36 34.67 5.52 5.79 5.51 JO.SJ 6.42 9.39 16.40 ,, 
' 5.89 6.69 34.67 5.39 6.24 6.51 5.47 5.69 24.91 11.n ,,. 
'"" 35.27 35.93 3S.33 5.00 8.15 6.56 9.84 9.27 19.80 18.35 

Average 25.43 25.94 34.74 6.82 6.92 7.61 16.53 9.86 25.64 

Table B 3 ! Mean test ARV for Sunspot dataset using Enhanced SIANNs 

,\,;tivolion Troinin• Al 0M1hms I S1ru,turc 
Fune1ions 

Reduced 10·5·1 Ex ,ndccl 10·5·2·1 S1andord 10,IO-I 
Avg. 

'" ""' "' CM DSG DX "' CM DSG DX cox CM osaox 

'"" Lin 0.220 0.134 O.l2J 0.536 0.132 0,148 0.161 O.ll9 0.126 0./89 

'"" ' l.030 0.256 1.380 1.020 0.160 1.340 0.970 O.ll9 l.JIO 0,845 ,. 
'"" 0.213 0.195 0.151 0.515 0.137 0.223 O.l85 0.117 0.133 0.108 , .. Lin 0.306 0.147 0.124 0.858 0.127 0.144 0.169 0.108 0.121 0.214 

c' " !.020 O.l67 l.JSO l.020 0.133 l.340 0.976 0.!16 l.330 0.828 

" '"" 0.317 0.127 0.153 0.888 0.147 0.322 0.200 0.116 0.129 0.267 ,,. 
"" 0.271 0.142 0.133 1.000 0.134 O.lll 0.!75 O.IJS O.lll 0.250 

E,o '"' 1.020 0.161 1.350 J.020 0.155 l.350 0.992 0.140 1.350 0.838 

E,n '"" 0.303 0.132 0.147 1.030 0,134 0.2ll 0.194 0.133 O.IJJ 0.2M 

Avcr:,gc 0.511 0./62 0.546 0.876 0.140 0.579 0.44? 0./15 0.529 
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8.4 Experimental Results for Chapter 7 

This section presents the expcrimcmtal results obtained in Chapter 7, 'A Generalised 
Fcedforward Neural Network Architecture'. For each benchmnrk test, the mean test 
error, obtnined using GFNNs, for alt combinations of activation functions and 
training algorithms are presented in Tables B.32 to B.36. Tables B.37 to B.40 give 
the detniled results for the various values ofs1;m with the different benchmarks tests. 

Table B.32 Mean test error for Wisconsin Breast Cancer dataset usin- GFNNs. 

Aoliv•tion 
Troinin AJ-arilhm, I Slruolurc 

Fune1ian, 09·1 GP9·2·1 Avg. 

Output Nono Lincor Lag ,igrnald {Lg,) Tan •ill!11oid (Tllh) 

OSN oo, CM '°' CM DS- '°' CM DS· '°' CM DS-

N~ °'" '°' '°' '°' 
Lin c 0,16 0.44 0.37 0.46 0.34 "'' 0.75 0.7J 0.82 0.62 4,61 0.81 

C•• c 0.5J 0.54 I.SO 2.25 0.82 5.67 J.55 1.29 1.91 J.51 7,67 ].66 ,. C•, 0.35 l.36 0.96 0.89 1.06 1.19 l.06 0.63 0.29 0.58 J.15 1.05 

•• c .. 4.61 0.66 2.18 0.58 0.61 0.87 I.OJ 3.11 0,)8 0.79 18.0S ].99 

Lin '"" 0.47 0.47 0.40 0.49 0.46 1.08 1.28 0.86 0.81 1.12 4.JS 1.01 

C•• '"" I.OS 1.14 1.41 1.41 0.53 l.60 3.47 l.01 l.Sl 2.09 10.SS ],J6 

"" '"" o.ro 1.25 0.36 0.73 0.62 l.98 J.21 0.86 0.46 I.OJ 2.15 1.08 

•• '"" 3.RO 0.55 l.68 0.60 Ml 0.73 l.6l 3.20 0.38 0.66 14.SO ].58 

Lin •• 0.50 0.58 0.31 0.87 O.J6 O.l7 1.12 0.88 0.19 0,77 2.93 0.81 

C•• ,, 0.15 1.82 0.61 LSI 0.28 4.15 1.05 1.16 0.7! 1.49 8.29 J.9J 

'"" 
,, 0.56 0.73 0.75 0.4S 0.68 0.96 1.15 0.79 0.27 0.70 2.40 0.86 

•• ,, 3.0l 0.66 a.92 0,56 0.45 0.85 ,,, 3.lS 0.59 0.49 lS.62 2.51 

Avorooo }.3] 0.85 0.95 0.90 0.51 1.66 1.55 1.47 0.69 I.JS 1.91 

Table B.33 Mean test error for Pima Indians Diabetes dataset usin° GFNNs 

Aotivnllon 
Trainin" Al 0 orilhnLol Structure 

Function, Ci8·1 GP8·2·1 Avg. 

OUtpUl Nono Linear Log sigmoid (Lg,) Tan sigmoid (Tnh) 

OSN '°' CM cox CM OS- '" CM DS· '°' CM D3· 

>om "'" '" ODX '" 
Lin C•• 21.43 23.20 22,01 21.53 19.94 21.04 20,82 24.05 22.53 20.68 42.73 2J.6j 

c .. , .. 20.70 23.JO 29.12 22.8] 21.26 J0.87 23.70 27.17 30.23 22.41 44.0J 26.93 

'"" Co, 20.76 20.56 21.05 20.61 20.21 21.45 21.JS 26.78 20.66 20.47 43.68 2JA] 

"" C·· 23.25 21.SO 2l.S3 21.20 21.05 21.08 20.36 26.95 22.75 20.88 46.99 24.SO 

Lin '"" 22.05 22.31 22.05 21.72 20.60 20.99 20.89 25.18 21.93 2!.07 41.59 2J.67 

Ces '"" 21.55 23.76 23.36 21.51 21.27 26.54 23.40 27.65 23.l2 21.59 45.28 2$39 

'"" '"" 20.83 2Ul 20.79 21.32 20.0S 20.69 21.82 27.83 20.58 21.06 43.26 2161 ... '"" 23.ll 21.52 2l.29 21.66 20.95 20,85 20.86 27.42 22.72 20.51 47.52 24.58 

"" .. 22.IS 22.46 21.70 21.40 20.54 21.2J 21.ll 26.05 21.27 20.72 42.17 ]HJ 

c .. •• 21.0l 21.92 26.78 21.JS 20.73 27.6li 20.94 26,SJ 27.&4 20.52 4l.66 25.J9 

'"" 
,, 20.58 21.45 20.79 21.24 20.00 21.49 21.98 26,89 20.67 20.55 4l.12 )J,52 

''" 
,, 22.81 21.49 23.15 21.16 21.02 21.06 20.85 26.27 22.47 21.11 45.92 24,JO 

A>ero c ]J.69 11.08 2J.J9 Jl.47 20.M 21.9/ 21.SJ 26.59 23.08 10.96 44.16 
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Table B.34 Mean test classification error for 3-bit Parity dataset using GFNNs 

Ao1iv01ion Trainin• Al•orithms / S1racture 
Function, Ol·I GP3-2·1 Avg. 

Output None Lino,r Los ,igmoid (Lgs) T1111,igmoid(Tnh) 

"" "' CM ""' CM OS· "' CM ,s. "' CM ,s. 

N= ~" cm cc, "' 
Lin Co, 16.00 ll.2S SO.Oil o.oo 2,75 22.50 s.so 41.75 JO.SO ,.oo 48.75 21.09 

'. c .. !9.25 14.25 15.15 22.25 16.75 20.00 26.25 27.25 22.50 22.00 45.00 24.66 ,. C·· 31.25 •• 28.25 29.25 21.25 24.75 27.00 22.00 25.50 2).50 46.25 27.9J 

fu• c .. 15.75 11.0U 39.00 l.00 6.1S 7.15 7.15 15.25 ll.50 s.so 44.SO IJ.61 

Lin '"" 16.00 17.50 4l.50 0.75 4.00 J.75 10.00 12.25 4.75 3.15 47.25 14.86 

" '"" 26.50 16.75 14,25 20.25 5.lO 20.00 25.00 12.SO ll.75 ll.SO M.00 20./8 

'"" '"" 34.75 25.25 12.50 21.25 6.25 12.50 26.25 22.00 8.SO 25.00 43.00 21.57 

lli" '"" 26.00 17,75 24.50 0.00 3.50 5.25 8.SO 13,75 5.SO S.25 42.50 IJ.86 

Lin '" 22.25 16.00 46,25 0.50 3.25 2.50 2,75 21.75 2.75 2.25 45.25 IJ.OJ 

'"' Exn 29.25 26,SO 3B.SO 14,75 6.25 6.15 !7.SO 21.50 8.25 16.00 45.00 20.9J 

'"" •• 32.50 34.00 18.00 19.50 7.75 7.00 17.00 17.25 9.75 19.75 4S.50 20.7J 

'"" .. 15.00 13.50 38.00 ,.oo 7.75 8.00 3.50 16.25 12.25 1.75 M.00 14.64 
Aver., e 2J,7/ 19.JS 32.38 11.01 7.6J ll.7J u.n 2(1.29 IJ.29 12.60 45.1111 

Table 8.35 Mean test classification error for Multi-Class dataset using GFNNs 

Ao1ivo1jon 
Troinino Aloorithms I Siracture 

Funcuon, 02-J GP2·2·3 Avg, 

OUll"'t None Line,r Log ,igmoid (Lg,) T,n,igmol~(Tnh) 

cs, @X CM "' CM "' "' CM ,s. "' CM ,s. 

N"' ''" "' "' "' 
"" c 11,95 7.11 36.73 S.83 9.61 5,61 5.91 1J.8S 11.71 ,.w 16.44 11.81 

C•• c 9,57 12.95 ,OM 1S.2l 14.47 18.36 19.85 16.52 17.20 21,95 18.19 16.1~ 

'"" c JI.OS 12.37 23.08 1 l.3l 17.JI 13.19 14.72 8.67 22.16 17.91 22.85 17.70 

Exo L 6l.JS l7.S6 66.17 8.76 65.87 16.24 11.76 47.45 15.27 MS 46.85 JJ.S2 

Lin '"" 7.56 8.SJ 49.l5 5.92 8.76 6.52 6.61 8.69 8.21 6.61 15.69 11.01 

" '"" 7.29 12.59 12.45 12.92 II.SJ 6.8l 14,92 IS.47 11.32 18.49 14.99 12.62 ,. '"" 19.67 10.88 11.01 13.19 14.9) 7.99 11.27 11.00 12.l7 18.57 2l.4l 14.0J 

fu• '"" 62.61 16.20 65.Sl 10.21 6S.9l 17.24 9.27 47.87 19.ll •• 44.88 JJ.46 

Lin fu 7.69 6.65 11.71 6,2l 8.37 6.47 S.92 8.28 11.17 7,19 10.21 8.17 

'. ~ 6,81 8.89 7.71 9.7l 8.25 5.95 l 1.32 7.21 6.11 11.08 12.3l 8.67 ,. ,. 1.95 7.25 10.29 7.11 10.79 6.27 7.48 9.61 9.29 8.79 16.61 9.22 ~- '" 61.51 13.11 64.ll 7.09 64.tl 32.15 7.17 47,20 41.48 6.ll S0.59 J6.0/ 

Avera= 24.81 11.17 JJ.S9 9.41 24.99 11.90 10.69 20./S IS.47 11.74 24.26 
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Table B.36 Mean test ARV for Sunspot dataset using GFNNs 

Aotivalion Traloino Al orilhms I Struolure 

F"'1ction, 0 10.1 GP lo.2·1 "• 
Output None Linear Log sigmoid (Lg,) Ton ,igmoid (Toh) 

'" cox CM cox CM DS· co, CM DS- co, CM OS-

""" De, ODX ODX on, 
Lin Ce, 0.120 0.158 0.146 0.100 0.138 1.010 o.m 0.220 o.m 0.106 o.m 0.220 

C•• C•, 0.827 0,253 0.987 0.257 0.204 l.020 0.316 0,439 0.982 0.280 0.277 O.SJ/ 

'"' c., O.S44 1.430 0.306 o.m 0.158 1.010 0.249 0.317 0.3S7 0.212 o.m OA48 ,, Ce, 0.367 0.145 o.m 0.121 0.163 0.830 0.161 0.264 0.226 0.125 O.lil 0.159 

Lin '"" 0.141 0.144 0.173 0.106 0.148 0.921 0.127 0.229 0.166 0.137 0.164 0.12.J 

c-, "' 0.604 0.322 O.!ro!J 0.173 0.173 0.999 0.2!14 0.486 0.799 0.207 0.239 0.467 

'"' "' 0.298 0.229 0.248 0.138 0.165 1.020 0.201 0.300 0.253 0.157 0.186 0.190 

E,n '"' 0.316 0.140 0.256 0.139 0.173 0.811 0.168 0.290 0.233 0.110 0.185 0.258 

Lin & O.lH o.m 0.162 0.138 0.153 1.010 0,161 o.m 0.(76 0.119 0.167 0.244 

C•, & 0.506 0.201 o.908 0.201 0,182 1.020 0.167 O.JBS 0,9JJ 0,192 0.225 0.447 

'"' 
,, 0.164 0.162 0.366 0.148 0.171 I.OlO 0.193 0.320 0.433 0.166 0.204 O.J04 

''" ''" 0.271 0.151 0.271 o.m 0.167 0.844 0.162 0.270 0.226 0.127 0.168 0.154 

/lvorae• 0.357 0.196 0.4/1 0,/jJ 0.166 0,960 O,J9J O,J/.J 0.411 0,/65 0./93 

Table B.37 Results for Breast Cancer dntaset using GFNNs with variouss1im 
Network al Linlg, G I Linlg, GP2-1 LlnExp.Tnh GP2·1 E,pE•p·Tnh 

Trained "•ino GDX Trained 11Sin• LM Tralood "'in GDX Traino.! usinll LM 

•limit Mean Em>r "" Mo,n "" Mean "" Moon "" '" Time Isl Errorf%1 Time Isl farnr/%1 Timol•I Em>r/%1 Time Isl 

0.01 0.16 6.96 0.44 9.39 0.19 22.60 0.49 l'-69 

0.02 0.16 6.96 ••• 9.45 0.19 22.62 0.49 IS.69 

o.os 0.16 6.96 ••• ••• 0.19 22.6) 0.49 IS.69 

o., 0.16 6,96 ••• •• 0,19 22.61 0.49 IS.70 

o., 0.16 6.96 ••• '" 0.19 22.62 0.49 lS.69 

•• 0,16 6.96 ••• 9.42 0.19 22.64 0.49 lS.70 , .. 0.16 6.96 0.44 9.41 0.19 22.6l 0.49 lS.69 

,.o 0.20 6.71 ••• 9.43 0.27 21.30 0.49 lS.70 

Table B 38 Results for Diabetes dataset using GFNNs with various S1im 

Network G 1 Tohl:,cp G I TohLg, GP2-1 TnhTnh·Tnh GP 2-11:,cpl.gS·Lg, 
Traino.! 11Sin• GDX Tminod usioe LM Traino.! 11Sino GDX TminodusiTioLM 

slimil Moan Error "" Moon "" M•• "" Moan "" " T;m,r,, Error<%\ Timolo\ Error%\ Time I,\ Error I%\ Time Isl 

0.01 2D.S8 9,71 20.56 5.2S 20.6S IS.JO 20.36 l7.8l 

0.02 20.SB 9,73 20.56 5.26 20.65 IS.JO 20.36 17.82 

0.05 2D.S8 9.73 20.S6 5.14 20.67 15.18 20.36 17.Bl ,., 20.58 9.73 20.!6 S.14 20.~ lS.26 20.36 17.Bl 

"' 20.58 9.72 20.!6 5.24 20.66 IS.JS 20.36 17.Bl 

••• 20.SS 9,73 20.56 S.26 20.60 IS.44 20.36 17.Bl 

,.o 20.SB 9.73 20.56 S.21 20.S8 IS.67 20.36 17.82 

,.o 20.78 9.46 20.56 5.19 21.98 22.40 20.36 17.81 
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Table B.39 Results for 3-bit Parity using GFNNs with various Slim 

Nelwllrk GJ-l LinToh O J-l Exptg, GP 3-2-1 UnEl<p-Lgs OPl-2-l LinLgs-Lin 
Tninedusin ODX Trained u,in• LM Tmined u,in• GDX Tralnedusln LM 

slimil Mc,nl1m,r "" Mom "" Mean "" """ "" '%> TimoM Errorf%l Timo(sl Er,or 1% Tim•'•' ,~, Time , 
O,OI 2~:,s S.56 11.00 4.50 2.75 ,.w 0.00 0.80 

0.02 25.25 5.56 11.00 4.50 2.75 H7 0.00 0.79 

o.os 25.00 5.56 11.00 4.50 2.75 , .. o.oo 0.79 

o., 25.15 S.S6 11.00 4.SO 2.75 '" 0,00 0,79 

o, 25.25 S.56 11.00 4.50 2.50 3.34 0.00 0.79 

o, 17.00 S.56 11.00 4.SO 3.50 3.17 0.00 0.79 

,o 16.00 5.56 11.00 4.50 2.SO 3.14 0.00 0.79 

,o !l.50 S.S9 11.00 4.48 2.25 3.94 0.00 0.79 

Table B.40 Results for Multi-Class problem using GFNNs with various Elim 

Ncl'llork G2-J Lg,El<p a 2-3 Unlli<p OP2-2·3 LinLg,-Lg, GP2·2·3 UnLi;s-Toh 
Trainodu,in GDX Trained u,in• LM Trolncd win· GDX Tuinedusln LM 

slimlt Moon Em>r "" Mcon "" Mean "" M•• ''" '" Timor,1 Em>r"'·' Timef,l Em>r""1 Timers\ Crrorr%' Tim•'• 
0.01 8.16 8.15 li.6S 28.!0 S.88 14.26 5.79 65.40 

o.m 8.16 8.15 6.65 28.10 S.85 !J.97 5.19 6S.40 

0.05 8.16 8.20 6.65 28.10 S.87 13.49 5.19 6S.40 

o, 7.96 9.10 6.65 28,10 S.77 14.80 S.79 6S.40 .. , 7.92 8.95 6.65 28.10 S.72 lS.47 S.79 65.40 .. , 7.92 8.65 6.65 28.10 S.61 14.60 S.19 65,40 , .. 6.81 0.00 6.65 28.10 S.61 lJ,20 5.19 65.40 , .. 6.27 9.SO 6.6S 28.10 S.61 16.63 S.19 65.40 
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8.5 Experimental Results for ~hapter 8 

This section presents the experimental resf!lts obtained in Chapter 8, 'A Generalised 
Feedforward Neural Network•Architecture': For each b~nchmark test, the mean test 
error, obtained using MLPs, for all combinations of activation functions and trairiing 
algorithms are presented.ill Tables B.41 to 8.46. The average for each activation 
function combination (row) and training alg~rlthm (column) are also shown. 

Table B 41 Mean test classification error for Breast Cancer dataset using MLPs 

Acli>a!ion Funollons 
Network ""' I Trainin• Al•orichms 
G-MLP MT· MLP, NW inil Avorago 

Hiddon Output GD.I: CM Q>m cox CM 

C•, Lin ••• 0.61 0.36 0.37 0.72 0.4] 

'"" Lin ••• D.GO 0.24 0.73 0.72 0.48 

c-, C·· 0.33 0.17 0.9S 0.46 0.92 0.69 

'"" C•• 0.56 1.07 l.14 0.86 '" /,00 

c .. , '"" 0.12 0.51 "·" l.74 ~.9S j,J/ 

'"" '"" O.l2 o.n 0.51 l.28 Jl.02 6.Jl 

Avoraoe "" 0.71 O.S? 0.91 9.78 
. 

Table B 42 Mean test classification error for Diabetes dataset using MLPs 
N,nvork /Trainln Al 0 "rilhms 

Aolivolion Function• 
MT-MLP NWinlt Average G-MLP 

Hi<ldon OU!j>Ul @X CM Q>m '" CM 

C·· Lin 22.85 21.38 20.48 22.45 22.45 11.91 

'"" Lin 21.42 21.42 20.95 25.14 25.14 11.81 

C•• c .. • 25.32 21.70 21.57 21.66 21.66 11.JB 

'"" c-, 20.88 21.71 21.l5 21.48 21.48 11.42 

C·· '"" 22.14 20.75 21.35 21.68 21.68 11.52 

'"" '"" 20.45 21.09 20.77 29.24 29.24 24.16 

Avcm c 11.18 2U4 21.11 13.61 2HI 

Table B 43 Mean test classifi~ation error for 3-bit Parity dataset using MLPs , 

Network"" o / Tminln Al·orilhm, 
Acllvation Fi,notion, 

G-MLP MT-MLP, NW init Avcros, 

Hidden Ou1put '" CM Q>m '" CM 

c .. "" ,.oo 0.00 l.00 6.25 l.50 2,9j 

'"" Un 2.SO 1.2S 10.25 13.75 4.25 6.40 , .. c,, o.so 0.00 7.75 4.25 2.00 2.90 

'"" c .. ,.oo 1.25 13.75 11.75 6.75 7.W 

c .. '"" 0.50 1.00 700 4.75 ll.50 5.35 

• Toh '"" 2.00 J,50 11.25 11.25 19.00 9.40 

Avera• 1.58 1.17 8.8J . w 8.17 
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Table B.44 Mean test classification error for Multi-Class dataset using MLPs 

Network /Tm;n;n, Al orithm, 
Acljvo,;on Function, 

G·MLP MT-MLP,NWlnil Asetag< 

Hidden OUtpul cox CM QW, cox CM 

c' Lin '"' 5.95 S.73 •M 5.99 5.97 

To> Lin S.77 ,.% ,.w 6.4] 6.12 ,oo 
c' c' S.J7 6.52 S.4] 5.SJ 12.24 7.01 

'"' " S.48 6.56 , .. 10.39 7.37 ·1.10 

c' 'M S.85 12.64 7.36 30.21 28.80 IH7 
To> "' 5.16 '" , .• 22.65 IJ.59 10.70 

Avera"• 5.65 7.50 '"' 15.04 IJ.61 

Table B.45 Mean test classification error.for Thyroid dataset using MLPs ,_. 
/Troinin Al orilhms 

Aclivallon "('unctions 
G·MLP MT·MLP NWinh Average 

Hidden OU1pu1 cox CM QW, °'' CM 

c' Lin 6.15 "' '·" 6.59 2.49 4./0 

'"' u, 6.47 "' , .. " 2.69 4.11 

" c .. 5.97 ,.n 2.18 6.59 7.89 4.87 

'"' c' 5.96 '" l.68 13.85 7.45 6.55 

c' To> 7,17 ,ru ,.n 21.14 40.66 14.64 

To> To> 6.25 2.07 2.47 28.36 29.17 /J.66 

Averaoo 6,J6 ,.ru '·" /5.JJ /?,57 

Table B 46 Mean test ARV for Sunspot dataset using MLPs ,_. 
/Tuinin Al orilhm, 

Ac1;vo1;on Function, 
G·MLP MT-MLP NWinit Average 

Hidden OUtpul cox CM QW, °'' CM 

" Lin 0.363 0.138 0.164 0.163 0.234 0.111 

'"' Lin 0.162 0.144 0.139 0.222 0.326 0.199 

c' c' l.023 0.157 o:m 0.181 0.231 O.J62 

To> " 0.496 0.151 0.420 O.l9S 0.235 0.299 

c' "' 0.406 0.139 O.IBJ 0.186 1.124 0.408 

To> "' 0.177 0,142 0.157 0.214 1.243 O.J87 

Avcra•c O.OJ Q./47 ll21J 0.]0ll 0.612 



Bibliography 

Abe, S., Thawonmas, R., & Kayama, M. (1999). A Fuzzy Classifier with ellipsoidal 
regions for diagnosis problems. JEEE Transactirms on Sys/ems, Man and 
Cybernetics: Part C: Applicarion and Reviews, 19(l), 140-149. 

Ampazis, N., & Pernntonis, S. J., 2000. Levcnbcrg-Marquadt Algorithm with 

Adaptive Momentum for the Efficient Training of Feedfoward Networks, in 
Proc. /11/em. Joi/II Can/ on Ne11ral Networks (JJCNN 2000), pp. 126-131. 

Ampazis, N., & Pernntonis, S. J. (2002). Two Highly Efficient Second-Order 

Algotithms for Training Fccdfoward Networks. IEEE Trans. on Neural 

Networks, 13(5), 1064-1074. 

Arulampalam, G., & Bouzerdoum, A. (2000). Training Shunting Inhibitory Artificial 
Neural Networks as Cfassifiers. Neural Network World, 10(3), 333-350. 

Arulampalam, G., & Bouzerdoum, A., 2001a. Application of Shunting Inhibitory 

Artificial N~ural Networks to Medical Diagnosis, in Proc. 7th Australian and 
New Zealand Intelligent !iiformat/011 Sys rems Conference (ANZllS 2001), pp. 

89-94. 

Arulampalam, G., & Bouzerdoum, A. (200lb). Novel Training Algorithm Based on 

Quadratic Optimisation Using Neural Networks. In J. Mira & A. Prieto 
(Eds.), DirJ./nspircd Applicorions of Conneclio11ism (Vol. I, pp. 410-417). 

Berlin: Springer-Verlag. 

Arulampalam, G., & Bouzerdoum, A., 2002a. Expanding the Structure of Shunting 

Inhibitory Anificinl Neural Network Clnssifiers, in Proc. Jntem. Joint Conj 

011 Ne11ral Network.I (JJCNN '02), pp. 2855-2860. 

Arulampalom, G., & Bouzerdoum, A. (2002b). Recurrent Neural Network-based 
Quadratic: Optimisotion Training Algorithm for Fcedforward Neural 

Networks. /nternalio11al Journal of Computers, Systems and Signals (JJCSS), 

3(2),65-75. 

Arulampolam, G., & Bouzerdoum, A. (200311). A Generalized fccdforward Neural 
Network architecture for classification and regression. Neural Networks, 16, 

561-568. 



BIBLJOG/l,IPHY 

Arulampalam, G., & Bouzerdoum, A., 2003b. A Generalized Feedfoward Neural 

Network Clnssifier, in Proc. intern. Joint Conj an Neural Network<i (JJCNN 

2003), pp. 1429-1434. 

Arulnmpalnm, G., Ramakonar, V., Bouzerdoum, A., & Habibi, D., 1999. 
Classification of Digital Modulation Schemes using Neural Networks, in 
Proc. 5th Jn/ernational Symposium on Signal Processing and ils 

Applications, pp. 649-652. 

Back, T. (1997). Evolutionary Computation: Comments on the History and Current 
State. JEEE Trans. rm Eva/mionary Computation, /(I), 3-17. 

Bammon, F., & Biegler-Konig, F. (1992). On a class of efficient learning algorithms 

for neural networks. Neural Networb, 5, 139-144. 

Bannann, F., & Biegler-Konig, F. (1993). A learning algorithm for multilayered 
neural networks based on linear least squares problems. Ne11rol Networks, 6, 

127-131. 

Bnttiti, R. (1989). Accelerated bnckpropagation learning: Two optimization methods. 

Comp/ex Systems, 3,331-342. 

Battiti, R. (1992). First- and Second-Order Methods for Leaming: Between Steepest 

Descent and Newton's Method. Neural Computation, 4(2), 141-166. 

Beare, R., & Bouzerdoum, A. (1999). Biologically inspired local motion detector 

architccture.J. Opt. Soc. Am. A, 16(9), 2059-2068. 

Becker, S. (1991). Unsupervised !earning procedures for neural networks. 

International Journal of Neural Systems, 2, 17-33. 

Becker, S., & Hinton, G. E. (1992). A self-organising neural network that discovers 

surfaces in random-dot stcrcograms. Nature, 355(161-163). 

Bhumireddy, C., & Chen, C. L. P., 2003. Genetic learning of functional link 

networks, in Proc. Intern. Joint Conj 011 Neural Netwark<i (JJCNN 2003), pp. 

432-437. 

Blake, C. L., & Mera, C. J, ([998). UC! Repository of machine learning databases, 
from http:l/www.ics.uci.edu/-mleam/MLrepository.html 

Boroushaki, M., Ghofrani, M. B., Lucas, C., & Yazdanpanah, M. J. (2003). 
ldentification and control of a nuclear reactor core (VVER) using rccummt 
neural networks and fuzzy systems. Nuclear Science, JEEE Transactions on, 

50(1), 159-174. 

Bouzerdoum, A. (1992). Convergence of symmetric shunting competitive neural 
networks. In D. Green & T. Bossomaicr (Eds.), Complex Systems: From 
Biology to Comp11la1ion (pp. 301-312). Amsterdam; !OS Press. 

230 



Bt8l!OG/IAPHY 

Bouzerdoum, A. (1993). The elementary movement detection mechanism in insect 

vision. Phil. Trans. R. Soc. lond, B-339, 375-384. 

Bouzerdoum, A., 1999. A new class of high-order neural networks with nonlinear 

decision boundaries, in Proc. Jnr. Conference on Neural Information 

Proces)'/1/g (ICONIP '99), pp. 1004-1009. 

Bouzerdoum, A., 2000. Classification and function approximation using feed

forwnrd shunting inhibitory artificial neural networks, in Proc. Intern. Joint 

Con/ 011 Neural Networks (IJCNN 2000), pp. 613-618. 

Bouzerdoum, A., & Pattison, T. R., 1993a. Constrained Quadratic Optimisation 

using Neural Networks, in Proc. 4th ACNN, pp. 10-13. 

Bouzerdoum, A., & Pattison, T. R. (1993b). Neural Network for Quadratic 

Optimization with Bound Constraints. IEEE Transactions on Neural 
Networks, 4(2), 293-304. 

Bouzerdoum, A., & Pinter, R. B., 1989. Image motion processing in biological and 

computer vision systems, in Proc. Proc. of SPIE, pp. 1229-1240. 

Bouzerdoum, A., & Pinter, R. B. (1992). Nonlinear lateral inhibition applied to 

motion detection in the fly visual system. In R. B. Pinter & B. Na bet (Eds.), 

Nonlinear Vision {pp. 423-450). Boca Raton: CRC Press. 

Bouzcrdoum, A., & Pinter, R. B. (1993). Shunting Inhibitory Cellular Neural 

Networks: Derivation and Stability Analysis. IEEE Transaclions on Circuits 
a11d Systems I: F1111dame11tal Theory a11d Applications, 40(3), 215 - 221. 

Bowen, J.E., & Bowen, W. E., 1990. Neural nets vs. expert systems: predicting in 

the financial field, in Proc. Artificial lntel/ige11ce for Applications, 1990., 

Sixth Conference on, pp. 72-77 vol.71. 

Carpenter, G. A., & Grossberg, S. {!987). A massively parallel architecture for a 

self-organising neural pattern recognition machine. Computer Vision, 
Grophfrs, and Image Processing, 37, 54-l 15. 

Carpenter, G. A., & Grossberg, S. (1988). The ART of Adaptive Pattern Recognition 

by a Self-Organising Neural Network. IEEE Computer, 21(3). 

Cheung, H. N., Bouzerdoum, A., & Newland, W., 1999. Properties of Shunting 

Inhibitory Cellular Neural Networks for Colour Image Enhancement, in Proc. 

6th Int. Coll/ on Neural Info. Proce.<isillg (ICONIP '99), pp. 1219-1223. 

Chong, E. K. P., & Zuk, S. H. (1996). An lntrod11c1/on to Optimization. New York: 

Wilcy-Interscience. 

2Jl 



8/Dl/OUIIAPHY 

Connor, J. T., Martin, R. D., & Atlas, L. E. (1994). Recurrent Neural Networks and 
Robust Time Series Prediction. IEEE Trans. on Neural Networks, 5(2), 240-
254. 

Cover, T. M. (1965). Geometrical and statistical properties of systems of linear 
inequalities with applications in pattern reccgnition. IEEE Transactions on 
Electronic Computers, 14, 326·334. 

Cugnon, P., & team, S. (2003). Online catalogue/or rhe sunspot index, 2003, from 
http:f/sidc.oma.be/html/sunspot.html 

Darling, R. B., & Dietze, W. T. (19513). Implementation of multiplicative lateral 

inhibition in a GaAs sensory neural network photodetector array. IEEE J. 

Quantum Electronics, 29(2), 645-654. 

Demuth, H., & Beale, M. (1992). Neural Network Toolbox User's Guide (Version 3 ,, 
ed.): The MathWorks Inc. 

Di Martino, M., Fanelli, S., & Protasi, M., 1993. An efficient algorithm for the 
binary classification of patterns using MLP networks, in Proc. 2nd IEEE int. 
Con/ 011 Neural Networks, pp. 936 · 943. 

Di Martino, M., Fanelli, S., & Protasi, M. (1996). Exploring and Comparing the Best 

"Direct Methods" for the Efficient Training of MLP-Networks. IEEE 
Transactions 011 Neural Networks, 7(6), 1497-1502. 

Dickhaus, H., 2001. Wavelet neural networks for clinical diagnosis, in Proc. 
Engineering in Medicine ond Biology Society, 2001. Proceedings of the 23rd 

A11m1al lnternotional Conference of the IEEE, pp. 4095 vol.4094. 

Duch, W., & Jankowski, N., 2001. Transfer functions: hidden possibilities for better 
neural networks, in Proc. 9th European Sympos/,im on Artificial Neural 
Networks (ESANN), pp. 81-94. 

Duda, P. 0., & Hart, P. E. (1973). Patlern Clossification a11d Scene Analysis. New 
York: Wiley. 

Duda, P. 0., Hart, P. E., & Stork, D. G. (2001). Pat/em Cl ossification (2nd ed.). New 
York: Wiley. 

Er, M. 1., Wu, S., Lu, J., & Toh, H. L. (2002). Face recognition with radial basis 
function (REF) neural networks. Neural Nerworks, IEEE Transactions 0,1, 

13(3), 697-710. 

Erdogmus, D., K.E. Hild, !., & Principe, J. C. (2003). Online Entropy Manipulation: 
S•,,dmstic Jnfonnation Gradient. JEEE Signal Processing Lellers, 10(8), 242· 
2<,5. 

232 



BJBIJOG/UPHY 

Erdogmus, D., & Principe, 1. C., 2000. Comparison of Entropy and Mean Square 

Error Criteria in Adaptive System Training Using Higher Order Statistics, in 

Proc. Independent Companent Analysis 2000. 

Erdogmus, D., & Principe, J. C., 200!. Entropy minimization algorithm for 

multilayer perceptrons, in Proc. International Joint Conference 011 Neural 

Networks (JJCNN 2001), pp. 3003-3008. 

Erdogmus, D., & Principe, J. C. (2002). Generalized Infonnation Potential Criterion 

for Adaptive System Training. IEEE Trons. on Neural Networks, 13(5), 

1035-1043. 

Faber, D. S., & Korn, H. (1982). Transmission at a Central Inhibitory Synapse. I. 
Magnitude of unitary postsynaptic conductance change and kinetics of 

channel activation. Journal of Neurophysiology, 48(3), 654-678. 

Fahlman, S. E., & Lebiere, C. (1990). The Cascade-Correlar/011 Leaming 

Architecture (No. CMU-CS-90-100). Pittsburgh, PA.: School of Computer 

Science, Carnegie Mellon University. 

Fiesler, E., 1994. Comparative Bibliography ofOntogenic Neural Networks, in Proc. 
International Conference an Artificial Neural Networks (!CANN 94), pp. 793-

796. 

Fischler, M.A., & Firschein, 0. (1987). Intelligence: The Eye, the Brain, and the 

Computer. Reading, MA: Addison-Wesley. 

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. 

Annals of Eugenics, 7, 179-188. 

Fogel, D. B. (191}2). Evolving artificial intelligence. Unpublished Ph.D., Univ. of 

California, SEltl Diego, CA. 

Fogel, L. J., Owens, A. J., & Walsh, M. J. (1%6). Artificial lntel/ige11ce Through 
Simulated Evobirion. New York: Wiley. 

Franzini, M.A., 1987. Speech Recognition with Back Propagation", in Proc. IEEE 
Ninrh Annual Conference 011 E1ig/11eeri11g in Medicine and Biology, pp. 

1702-1703. 

Fukushima, K., Miyake, S., & Ito, T. (1983). Neocognitron: A neural network model 

for a mechanism of visual pattern recognition. IEEE Trans. Systems, Man & 

Cybernetics, 13, 826-834. 

Funahashi, K. (11}89). On the approximate realization of continuous mappings by 

neural networks. Neural Netivorks, 2, 183-192. 

Furman, G. G. (1965). Comparison of models for subtractive and shunting ]atera\

inhibition in receptor-neuron fields. Kybernelik, 2, 257-274. 

233 



8/BLJOGRAPIIY 

Garcia-Pedrajas, N., Hervas-Martinez, C., & Munoz-Perez, J. (2003). COVNET: A 

Cooperative Coevolutiomuy Model for Evolving Artificial Neural Networks. 

IEEE Trans. on Neuro/ Networks, /4(3), 575-596. 

Gershenfeld, N. A., & Weigend, A. S. (1993). The Future of Time Series: Leaming 

and Understanding. In A. S. Weigend & N. A. Gershenfeld (Eds.), Time 
Series Prediction: Forecas1/11g the fi1ture and underslanding the past. 

Reading, Mass.: Addison-Wesley. 

Gerstner, W., & Kistler, W. M. (2002). Spiking Neuron Models: Single Neurons, 

Populations, Plasticity: Cambridge University Press. 

Giles, C. L., Lawrence, S., & Tsoi, A. C., 1997. Rule inference for financial 

prediction using recurrent neural networks, in Proc. Comp11ta1ional 

Intelligence for Financial Engineering (CIFEr), 1997., Proceedings of the 

IEEEIIAFE 1997, pp. 253-259. 

Grossberg, S. (1973). Contour enhancement, short term memory, and constancies iu 

reverberating neural networks. Studies in Applied Mafhemarics, 52(3), 213-

257. 

Grossberg, S. (1976). Adaptive Pattern Classification and Universal Recoding: I. 
Parallel Development and Coding of Neural Feature Detectors. Biol. 

Cybernetics, 23, 121-134. 

Grossberg, S. (Ed.). (1988). Neural Ne/lvorks and Na111ral Intelligence. Cambridge, 

Mass.: MIT Press. 

Gunn, S. (1998). Support Vector Madiines for Classification and Regression (No. 

Technical ReportIS!S-1-98): Image Speech & Intelligent Systems Group, 

University of Southampton. 

Hagan, M. T., & Menhaj, M. B. (1994}. Training Feedforward Networks with the 

Marquadt Algorithm. IEEE Transactions on Ne11ral Networks, 5(6), 989 • 

993. 

Hanumantharnya, U., Leis, J., & Hancock, N., 1999. Quantitative Odour Modelling 

using Electronic Nose Information, in Proc. 5th lnternariona/ Sympasir1m on 
Signal Processing and its App/ica1io11s, pp. 163-166. 

Hnssibi, B., & Stork, D. G. (1993). Second Order Derivatives for Network Pruning: 

Optimal Brain Surgeon. In S. J. Hanson, 1. D. Cowan & C. L. Giles (Eds.), 

Advances in Neural /11formalian Processing Systems (Vol. 5, pp. 164-171). 

San Mateo, CA: Morgan Kaufmann. 

234 



BIDLJOG/W'HY 

Hathaway, R., & Bezdek, J. C. (2001). Fuzzy c-Means Clustering of Incomplete 
Data. IEEE Trans. on Systems, Man and Cybernelics, Part B: Cybernetics, 

31(5), 735-744. 

Haykin, S. (1999). Neural Network,;: A Comprehensive F01111dation (2nd ed.). New 

York: Prentice-Hall. 

Hebb, D. 0. (1949). The Organization of Behaviour: A Neuroplycha/ogical Theory. 

New York: Wiley. 

Henery, R. J. (1994). Classification. In D. Michie, D. J. Spiegelhalter & C. C. Taylor 
(Eds.), Machine Leaming, Neural and Statistical Classification. London, 

U.K.: Ellis Horwood. 

Hinton, G. E., & Sejnowski, T. J., 1983. Optimal Perceptual Inference, in Proc. IEEE 

Conj. on Computer Vision and Pallern Recognilion, pp. 448-453. 

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer fecdforward neural 

networks arc universal approximators. Neural NeMorks, 2, 359-366. 

Hsin, H.-C., Li, C.-C., Sun, M., & Sclabassi, R. J. (1992). An Adaptive Training 

Algorithm for Back-Propagation Neural Networks. 1049 - 1052. 

lslam, M. M., Shahjalrnn, M., & Murase, K., 2000. An Algorithm for Automatic 

Design of Two Hidden Layered Artificial Neural Networks, in Proc. Intern. 
Joint Conj. 011 Neural Networks (JJCNN 2000), pp. 467 - 472. 

]slam, M. M., Yao, X., & Murase, K. (2003). A Constructive Algorithm for Training 
Neural Network Ensembles. IEEE Trans. 011 Neural Networks, 14(4), 820-

834. 

Jacobs, R. A., & Jordan, M. I. (1991). A competitive modular conncctionist 
architecture. In R. P. Lippmann, J. E. Moody & D. S. Touretzky (Eds.), 
Advanccs in Neriral Inforlllation Pr.Jcessing Systems 3 (pp. 767-773). San 

Mateo, CA: Morgan Kauffman. 

Jankowski, N. (1999). Flexible transfer fi111ct/o11s with antogenic neural networks. 

Torun, Poland: Computntional Intelligence Lab, DCM NCU. 

Jankowski, N., 2003. Discrete feature weighting & selection algorithm, in Proc. 
Intern. Joint Co11f. 011 Neural Networks (IJCNN 2003), pp. 636-641. 

Jankowski, N., & Duch, W., 2001. Optimal transfer function neural networks, in 
Proc. 9th Europeon Symposir1m on Artificial Neurol Networks (ESANN), pp. 

101-106. 

Jenssen, R., K.E. Hild, I., Erdogmus, D., Principe, J. C., & Eltoft, T., 2003. 
Clustering using Renyi's Entropy, in Proc. In/em. Joint Conj. on Neural 

Network,; (/JCNN 2003), pp. 523-528. 

235 



Johansson, E. M., Dow!o, F. U., & Goodman, D. M. (1992). Bockpropagation 

Leaming for Multilayer Feed-forward Neural Networks Using the Conjugate 
Gradient Mcthod. lnternationai Journal of Neural Systems, 2(4), 291-301. 

Johnson, R. A., & Bhattacharya, G. K. (1996). Star/sties: principles and methods 

(3rd ed.). New York: John Wiley & Sons. 

Karampiperis, P., Manouselis, N., & Trafalis, T. B., 2002. Architecture selection for 
neural networks, in Proc. Intern. Joint Con/ on Neurol Nerworks (!JCNN 

20(}2),pp.1115-!119. 

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. 

Bioiagica/ Cybernetics, 43, 59-69. 

Kohonen, T. (1988). SelfOrga11iwlio11 and Associative Memory (3rd ed.). New 

York: Springer-Verlag. 

Kordylewski, H., Graupe, D., & Liu, K. (2001). A novel large-memory neural 
network as an aid in medical diagnosis applications. Jnformotion Technalogy 

in Biomedicine, IEEE Tra11sactio11s on, 5(3), 202-209. 

Koshiba, Y., & Abe, S., 2003. Comparison of LI and L2 Support Vector Machines, 

in Proc. Intern. Joint Con/ rm Neural Networks (JJCNN 2003), pp. 2054· 

2059. 

Lashkia, V., & Aleshin, S. (2001). Test Feature Classifiers: Performance (ltld 
Applications. IEEE Transactions on Systemi;, Man and Cybernetics: Part B: 

Cybernetics, 31(4), 643-650. 

Lawrence, S., Tsoi, A. C., & Back, A. D., 1996. Function approximation with neural 
networks and local methods: bias, variance and smoothness, in Proc. 

Australian Conj on Neural Nerworks (ACNN '96), pp. 16-21. 

LeCun, Y., Denker, J., Solla, S., Howard, R. E., & Jackel, L. D. (1990). Optimal 
Brain Damage. In D. S. Touretzky (Ed.), Advances in Neural Information 

Processing Systems II (pp. 598-605). San Mateo, CA: Morgan Kauffman. 

Lee, H. K. H., 2000. A Framework for Nonparametric Regression Using Neural 

Networks, in Prac. Pacific Rim international Conference on Artiftcial 

lnte/1/gence, pp. 617-626. 

Lee, Y., Oh, S., & Kim, M., 1991. The effect of initial weights on premature 
saturation in back-propagation learning, in Proc. Jntemational Joint 

Cm!ference on Neural Networks, pp. 765-770. 

Lettvin, J. Y. (1962). Form-F11nc//011 Re/a/inns in Neurons (Res. Quart. Prog. 

Report): MIT. 

236 



BIIIUOGRAPHY 

Leung, F. H. F., Lam, H. K., Ling, S. H., & K.S., T. P. (2003). Tuning of the 

Structure and Parameters of a Neural Network Using an Improved Genetic 

Algorithm. IEEE Trims. 011 Neural Networks, /4(1), 79-88. 

Linsker, R. (1988). Self-organization in a perceptual network. Computer, 21, 105-

117. 

Madyastha, R. K., & Aazhang, 8. (1994). An Algorithm for Training Multilayer 

Perceptrons for Data Classification and Function Interpolation. IEEE 

Transactions on Circuits and Systems-1:Fzmdamental Theories and 

Appllcatioru, 41(12), 866-875. 

Magoulas, G. D., Vrahatis, M. N., & Androulakis, G. S. (1999). Improving the 

Convergence of the Backpropagation Algorithm Using Leaming Rate 

Adaptation Methods. Neural Comp11tarion, 11(7), 1769-1796. 

McConaghy, T., Leung, H., Bosse, E., & Varadan, V. (2003). Classification of audio 

rudar signals using radial basis function neural networks. Instrumentation and 

Mea~wrement, lEEE Transacliom on, 52(6), 1771-1779. 

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in 

nervous activity. Bulletin of Mathematical Biophysics, 5, I 15-133. 

Meesnd, P., & Yen, G. G., 2001. A Hybrid Intelligent System for medical diagnosis, 

in Proc. lnlern. Joint Conf on Neural Networks (lJCNN 2001), pp. 2558-

2563. 

Michie, D., Spiegelhalter, D. J., & Taylor, C. C. (Eds.). (!994). Machine Learning, 

Neural and Statistical Classification. London, U.K.: Ellis Horwood. 

Minsky, M. L., & Paper!, S. A. (1969). Perceptrons. Cambridge MA: MIT Press. 

Mitchell, T. M. (1997). Machine Learning. New York: McGraw-Hill. 

Moini, A., Bouzerdoum, A., & Eshraginn, K., 1997. A current mode implementation 

of Shunting Inhibition, in Proc. International Symposfom on Circuits and 

Systems, pp. 557-560. 

Morejon, R. A., & Principe, J. C. (2004). Advanced Search Algorithms for 

Infonnation-Theoretic Leaming With Keruel-Based Estimators. /EE£ Trans. 

011 Neural Networks, 15(4), 874-884. 

Musicant, D. R., & Feinberg, A. (2004). Active Set Support Vector Regression. 

IEEE Trans. on Neural Networks, 15(2), 268-275. 

Na, M. G., Shin, S. H., Lee, S. M., Jung, D. W., Kim, S. P., Jeong, J. H., et nl. 

(2004). Prediction ofmnjor transient scenarios for severe accidents of nuclear 

power plants. Nuclear Science, lEEE Traruactions on, 5/(2), 313-321. 

237 



BIBUOUIUPHr 

Nab~t, B. (1992). Electronic hardware for vision mode.Hing. In R. B. Pinter & B. 

Nabet (Eds.), Nonlinear VJ.1/011 (pp. 463-474). Boca Raton: CRC Press. 

Nafta!y, U., Intrator, N., & Hom, D. (1997). Optimal Ensemble Averaging of Neural 

Networks. Network: Comput. Neural Sys/., 8(3), 283-296. 

Nguyen, D., & Widrow, B., 1990. Improving the4eaming speed of 2-layer neural 

networks by choosing initial values of the adaptive weights, in Proc. Ill/em. 

Jaillt Conj 011 Neriral Networks, pp. 21-26. 

Nicholls, J. 0., Martin, A. R., & Wallace, B. 0. (!992.). From Neuron to Brain: A 

Cellr,lar Approach lo the Function af the Nervous System (3rd ed.). 

Sunderland, Massachussetts: Sinauer Associates Inc. 

Nikolaev, N. Y., & Iba, H. (2003). Leaming polynomial feedforward neural 

networks by genetic programming and backpropagation. IEEE Trans. on 

Neural Networks, /4(2), 337-350. 

Nilson, C. D., Darling, R. B., & Pinter, R. B. (1994). Shunting neural network 

phutodetector arrays in analog CMOS. IEEE J. Sa/id Stale Electronics, 

29{!0), 1291-1296. 

Nilsson, N. J. (1990). The Mathematical Formdatians of Learning Machines. San 

Mateo, CA: Morgan Kaufmann Publishers. 

Park, Y. R., Murray, T. J., & Chen, C. (1996). Predicting sun spots using a layered 

perceptron neural network. IEEE Trans. on Neural Networks, 7(2), 501-505. 

Pinter, R. B. (1983). Product term nonlinear lateral inhibition enhances visual 

selectivity for small objects or edges. J. Theor. Bia/., /00, 525-531. 

Pinter, R. B. (1984). Adaptation of receptive field organization by multiplicative 

lateral inhibition. J. Theor. Bia/., 110, 435-444. 

Pinter, R. B. (1985). Adaptation of spatial modulation transfer function via nonlinear 

lateral inhibition. Biological Cybernetics, 51, 285-291. 

Pontecorvo, C., & Bouzerdoum, A., 1995. Edge detection using a ce!lular neural 

network, ln Proc. 3rd Conference on Digital Image Computing Techniques 

and Applications (DICT'95), pp. 637-642. 

Pontecorvo, C., & Bouzerdoum, A., 1997. Edge detection in mu!tip!icative noise 

using the shunting inhibitory cellular neural network, in Proc. Engineering 

Applicatia11s of Neural Networks (EANN'97), pp. 281-285. 

Ponti!, M., & Verri, A. (1998). Properties of Support Vector Machines. Neural 

Camp11tatlan, 10, 955-974. 

238 



/JI/IIJOG/IAPHY 

Powell, M. J. D. (1977). Restart procedures for conjugate gradient method. 

Mathematica/ Programming, 12, 241-254. 

Powell, M. J. D. (1987). Radial basis functions for multivariable interpolation : a 

review. In J.C. Mason & M. G. Cox (Eds.), Algorilhmsfor Approxima//on of 

Functions and Data (pp. 143-167). Oxford: Clarendon Press. 

Prechelt, L. (1994). PROBEN I -A Set of Neural Network Benchmark Problems and 
Benchmarking Rules (No. Tech. Rep. 21/94). Karlsruhe, Gennany: Fakultat 

fur Infonnatik, Universitat Karlsruhe. 

Principe, J.C., Oja, E., Xu, L., Cichocki, A., & Erdogmus, D. (2004). Guest Editorial 

: Special Issue on lnfonnation Theoretic Learning. IEEE Trans. on Neural 

Ne/works, 15(4), 789. 

Pulleyblank, W. (2004). How to build a supercomputer. IEE Review, 50(1), 48-52. 

Reed, R. (1993). Pruning Algorithms -A Survey. IEEE Tram. on Neural Networks, 

4, 740-747. 

Renyi, A. (1970). Prabobility Theory. Amsterdam: North-Holland. 

Richard, M. D., & Lippmann, R. P. (1991). Ncurnl network classifiers estimate 

Bayesian a posteriori probabilities. Neural Computation, 3, 461-483. 

Riedmiller, M., & Braun, H., 1993. A direct adaptive method for faster 

backpropagation learning: the RPROP algorithm, in Prac. IEEE lnlemolional 

Co11fere11ce 011 Neural Networks, pp. 586 - 591. 

Ripley, B. D. (1996). Pollern Recagnitio11 and Neural Networks. Cambridge: 

Cambridge University Press. 

Rivals, I., & Personnaz, I.. (2003). Neural-Network Construction and Selection in 

Nonlinear Modeling. IEEE Trons. on Neural Network!, 14(4), 804-819. 

Rosenblatt, F. (1958). The Perceptron: A probabilistic model for infonnation storage 

and organization in the brain. Psychological Review, 65, 386-408. 

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations 

by back-propagating errors. Nature(323), 533-536. 

Rutkowski, L. (2004). Generalized Regression Neural Networks in Time-Varying 

Environment. IEEE Trans. 011 Neural Ne/Works, /5(3), 576-596. 

Schalkoff, R. J. (1997). Artificial Neural Networks. New York: McGraw-Hill. 

Schiffmann, W., loost, M., & Werner, R. (J992a). Optimization of the 
Backpropagalio11 Algorithm for Training Multilayer Perceptrans. Koblenz, 

Gennany: University ofKoblcnz. 

239 



B/8/JOG/UfHY 

Schiffmann, W., Joost, M., & Werner, R. (1992b). Synthesis and Performance 

Analysis of Multilayer Neural Network Architectures. Koblenz, Germany: 

University ofKob\en:i:. 

Schiffmann, W., Joos!, M., & Werner, R., 1993. Comparison of optimized 

backpropagation algorithms, in Proc. European Symposium 011 Artificial 

Neural Networks, ESANN '93, pp. 97-104. 

Scholkopf, B., Sung, K.-K., Burges, C. J.C., Girosi, F., Niyogi, P., Poggio, T., et al. 

(1997). Comparing Support Vector Machines with Gaussian Kernels to 

Radial Basis Function Classifiers. IEEE Trans. 011 Signal Processing, 45(1 l), 

2758-2765. 

Shannon, C. E. (1948}. A mathematical theory of communication. Bell System 

Technical Journal, 27, pp 379-423, 623-656. 

Sherrah, J. (1998}. Automatic Feature Extraction far Pal/em Recagnilion. 

Unpublished PhD, University of Adelaide, Adelaide. 

Shin, H., & Cho, S., 2003. How many neighbours to consider in pattern pre-selection 

for Support Vector classifiers?, in Proc. Intern. Joint Can/ an Ne11ral 

Networks (IJCNN 2003), pp. 565-570. 

Shynk, J. J. (1990). Performance surfaces of a single-layer p,erceptron. IEEE 

Transactions on Neural Networks, I, 268-274. 

Sbynk, J. J., & Bershad, N. J. (!991). Steady-state analysis of a single-layer 

perceptroo based on a system identification model with bias tenns. IEEE 

Transac1io11s on Circuits and Systems, 38, 1030-1042. 

Shynk, J. J., & Bershad, N. J., 1992. Stationary points and perfonnance surfaces ofa 

perceptron learning model for a nonstationary data model, in Proc. 

International Joint Canfererence an Neural Networks, pp. 133-139. 

Smiejn, F. J. (199!). Hyperplane 'spin' dynamics, network plasticity and 

backpropagation learning. St Augustin, Gennany: GMO. 

Solis, F. J., & Wets, J. B. (1981). Minimization by random search techniques. 

Mathematics of Operations Research, 9, 19-30. 

Specht, D. F. (1991). A General Regression Neural Network. IEEE Trans. on Neural 

Nerworlrs, 2(6}, 568-576. 

Stevens, C. F. (1994). The Neuron. In M. M. Gupta & D. H. Rao (Eds.), Neura

Control Systems: Theary & Applications (pp. 101-l l 1}: IEEE Press. 

Sutton, R. S., Barto, A. G., & Williams, R. J., 1991. Reinforcement Leaming is 

Direct Adaptive Optimal Control, in Proc. 1991 American Camrol 

Conference, pp. 2143-2146. 

240 



8/8/JOGIIAPHf 

Suykens, J. A. K., & Vandewalle, J. (1999). Training Multilayer Perceptron 

Classifiers Based on Modified Support Vector Method. IEEE Trans. on 

Neural Networks, /0{4), 907-911. 

Thimm, G., & Fiesler, E. (1997). High-Order and Multilayer Perceptron 

Initialization. IEEE Trans. on Neural Networks, 8(2), 349-359. 

Thivierge, J. P., Rivest, F., & Shultz, T. R., 2003. A dual-phase technique for 

pruning constructive networks, in Proc. Intern. Joint Conf on Neural 
Ne/Works (IJCNN 2003), pp. 559-564. 

Tivive, F. H. C., & Bouzerdoum, A., 2003. A new class of convo\utional neural 

networks (SICoNNcts) and their application of face detection, in Proc. 

Neural Networks, 2003. Proceedings of the International Joint Conference 
on, pp. 2157-2162 vol.2153. 

Tsai, H.-L., & Lee, S.-J. (2004). Entropy-Based Generation of Supervised Neural 

Networks for Classification of Structured Patterns. IEEE Trans. an Ner1ral 

Networks, /5(2), 283-297. 

Tsujinishi, D., & Abe, S., 2003. Fuzzy least squares Support Vector Machines, in 

Proc. Intern. Joint Conf on Neural Networks (IJCNN 2003), pp. 1599-1604. 

van der Smagt, P. P. (1994). Minimisation Methods for Training Feedforward Neural 

Networks. Neural Networks, 7(1), 1-11. 

Vapnik, V. N. (1998). Statislica/ Learning Theory. New York: Wiley-lntcrscience. 

Vapnik, V. N., & Chervoncnkis, A. Y. (1971). On the uniform convergence of 

relative frequencies of events to their probabilities. Theoretical Probability 

and fls Applications, 17, 264-280. 

Verikas, A., Baeauskiene, M., & Malmqvist, K., 2002. Selecting features for neural 

network committees, in Proc. Intern. Join/ Conf on Neural Netwa,rks (IJCNN 

'02), pp. 215-220. 

Venna, B. (1997). Fast Training of Multilayer Perccptrons. IEEE Trans. an Neural 

Networks, 8(6), 1314-1320. 

Walpole, R. E., Myers, R.H., & Myers, S. L. (1998). Probability and Stalisticsfar 
Engineers and Scientists (6th ed.). New Jersey: Prentice Hall. 

Waschulzik, T., Braner, W., Castedel\o, T., & Henery, B., 2000. Quality Assured 

Efficient Engineering of Feedforwnrd Neural Networks with Supervised 

Leami,1g (QUEEN) Evaluated with "Pima Indians Diabetes Database", in 

Proc. Intern. Joint Ccmf. on Neural Networks (IJCNN 2000), pp. 97-102. 

Wasserman, P. D. (1989). Neural Computing: Theory and Practice. New York: Van 

Nostrand Reinhold. 

241 



BIBLl(}rJRAPHY 

Weigend, A, S., Huberman, B. A., & Rumelhart. D. E. (1990). Predicting the future: 

A connectionist approach. lnremalional Journal of Neural Systems, 1(3), 

193-209. 

Widrow, B. (1962). Generalization ond information storage ·in networks of adaline 

'neurons'. In M. C. Yovitts, G. T. 1ocobi & G. D. Goldstein (Eds.), Self

Organiz/ng Syslems (pp. 435-461). Washington DC: Sparta. 

Widrow, B., & Hoff, M. E. (1960). Adoptive switching circuits. IRE WESCON 
Canvention Record, 96-!04. 

Wolpert, S., & Mlcheli-Tzanakou, E. (1993). Silicon models of lateral inhibition. 

IEEE Trans. an Neural Netwarks, 4(6), 955-961'. 

Yoo, X., & Liu, Y. (1997). A New Evolutionary_ System for Evolving Artificial 

Neural Networks. IEEE Trans. on Neural Networks, 8(3), 694-713. 

Zhang, G. P. (2000). Neural Networks for Classification: A Survey. IEEE 
Transactions on Systems, Man and Cybernefics: Part C: Application and 
Reviews, 30(4), 451-462. 

242 


	A generalised feedforward neural network architecture and its applications to classification and regression
	Recommended Citation


