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Abstract 

The use of wireless in buildings based on microwave radio technology has recently 

become a viable alternative to the traditional wired transmission media. Because of 

the portable nature of radio transceivers, the need for extensive cabling of buildings 

with either twisted pair, coaxial, or optical fibre cable is eliminated. This is 

particularly desirable where high user mobility occurs and existing wiring is not in 

place, or buildings are heritage in nature and extensive cabling is seen as intrusive. 

Economic analysis bas also shown that significant labour cost savings can result by 

using a radio system or a hybrid mix of cable and radio for personal communication. 

The use of wireless systems within buildings introduces a new physical radio wave 

propagation medium, namely the indoor radio propagation channel. This physical 

medium has significantly different characteristics to some of the other forms of radio 

channels where elevated antennas, longer propagation path distances, and often 

minimally obstructed paths between transmit and receive antenna are common. Radio 

waves transmitted over the indoor channel at microwave frequencies behave much 

like light rays, they are blocked, scattered, and reflected by objects in the 

environment. As a direct result of this several phenomena unique to this form of 

physical medium become apparent, and they must be accounted for in the design and 

modelling of the indoor radio propagation channel transmission perfonnance. In this 

thesis we analyse and characterise the indoor radio channel as a physical medium for 

data transmission. The research focuses on the influence of the radio physics aspects 

of an indoor microwave channel on the data transmission quality. We identify the 

associated statistical error performance for both time varying and temporally 

stationary indoor channels. Together with the theoretical analysis of the channel, a 

series of propagation measurements within buildings are completed to pennit 

empirical validation of the theoretical predictions of how the indoor microwave 



channel should perfonn. The measurements are perfonned in the frequency range 

2.3-2.5 GHz, which includes the 2.4-2.4835 GHz band allocated by spectrum 

management authorities for industrial scientific and medical radio use, (ISM band). 

As!- direct result of our measurements, statistics related to channel noise, fading, and 

impulse response for the indoor microwave channel are obtained. The relationship 

between data transmission error statistics and the aforementioned phenomena is 

quantified and statistically analysed for the indoor radio channel and phase shift keyed 

(PSK) modulation. The results obtained from this research provide input data for the 

development of a simulation model of an indoor wireless mobile channel. Our 

measurements identify microwave ovens as a channel noise source of sufficient 

magnitude to corrupt data transmission in the ISM band, and an in depth analysis of 

the affect of noise emissions from operational microwave ovens on PSK modulation 

is presented in this thesis. As a result of this analysis, the estimated data error rates are 

calculate:l. Channel fading measurements provide results that will be used as the input 

data for the design of antennas for use on the indoor microwave channel. We also 

show that a data rate of eight megabits/second is possible over the typical indoor radio 

channel, with no requirement for adaptive delay equalisation to counter multipath 

signal delay spread. 
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Chapter 1 

Introduction 

The rapidly growing trend towards integrated voice and data telecommunications in 

our very mobile society has created the need for personal communications systems 

that will operate reliably inside buildings as well as outdoors. Analysis of Indoor radio 

channel characteristics is important for the design and development of personal 

communications systems, and of particular interest is the frequency band of 

2.4-2.4835 GHz which is one of the unlicensed Industrial Scientific and Medical 

(ISM) bands. Both Direct Sequence Spread Spectrum {DSSS) and Frequency 

Hopping Spread Spectrum (FHSS) systems operate in the 2.4-2.4835 GHz ISM band, 

and this band is selected in preference to the 918-926 MHz and 5.725-5.850 GHz ISM 

bands because of its wide availability in many parts of the world. This band has more 

than 80 MHz of bandwidth available for the transmission of data, and is also more 

cost effective for system implementation [1) when compared with frequencies that are 

a few GH;; higher. The Institute of Electrical and Electronic Engineers (IEEE) 

standard IEEE 802.11 relates to the physical medium and the media access protocol 

(MAC) for DSSS, FHSS and diffused infra-red (DFrR) technologies using the ISM 

bands as the radio channel. The IEEE 802.11 standard supports the use of DSSS 

employing either binary phase shift keying (BPSK), or quaternary phase shift keying 

(QPSK) modulation for data rates of 1 and 2 megabits per second respectively. The 

suitability of this 2.4-2.4835 GHz ISM frequency band for the transmission of high 

speed data using BPSK and QPSK modulation as an integral part of networks such as 

Wireless Local Area Networks (WLANs) is the focus of this thesis. 

1 



CHAPTER I INTRODUCTION 

In order to design reliable indoor communication systems in this 2.4 GHz band the 

channels radio propagation characteristics must be known. Two of the key 

characteristics are additive channel noise and the fading performance over the 

channel. The first of these key characteristics (additive channel noise for the 2.4 GHz 

band) has not been evaluated with sufficient rigour as to determine the nature and 

effect of noise sources that are external to personal communications system itself on 

the bit error rate of the data transmitted over the indoor radio channel. The sources of 

noise external to the personal communications system can be attributed to four main 

areas, all of which are considered in this thesis. In particular the measurement and 

modelling of one of these areas which is termed "man-made noise" is stiH embryonic 

and "as more data are obtained, the models will progress to allow a more complete 

characterisation of the man made noise in a particular environment by measuring just 

a few parameters in that locale" [2]. In order to progress the modelling of noise in the 

2.4 GHz band being studied, a series of measurements have been completed at a 

selected range of locations. These measurements identify man-made noise generated 

by operational microwave ovens as a source of considerable C(lncem [3] [4] for this 

band, and an in depth evaluation of the impact of this form of channel noise on the 

received data bit error rate is one objective of this thesis. 

The second key characteristic is the fading performance over the indoor channel. 

There are two distinct types of fading; these being "flat fading" and "frequency 

selective fading". For the indoor channel flat fading occurs when a transmitted wave 

from a fixed base station antenna located within the channel scatters off many 

obstacles which are relatively close to the mobile unit receiving the wave. In this case 

a number of scattered rays arrive at the mobile unit from many directions with varying 

amplitude and phase. Because of the close proximity of the scattering objects tO the 

receive mobile, the overall delay of each scattered path is approximately equal and the 

delay spread is minimal. Dependent on the amplitude and phase of the rays the 

combined sum may add destructively or constructively to provide either cancellation 

or reinforcement of the total output signal at the receive antenna. Flat fade depth, 

number, and duration below a specific receive power level are a function of Doppler 

frequency which is in tum proportional to carrier frequency and motion within the 

channel. This motion can be a result of the movement of the mobile (or portable) unit 

2 



CHAPTER] INTRODUCTION 

itself, or as often the case the movement of people or inanimate objects dose to the 

receiving antenna of the portable unit. The fading perfonnance of the indoor radio 

channel at the 2.4 GHz frequency is statistically analysed from the data obtained from 

a controlled series of fading measurements performed for an indoor radio propagation 

channel where the Doppler shift is deliberately Introduced by the motion of varying 

numbers of people moving in similar manner in close proximity to the portable units 

receive antenna. 

The wide-band nature of the indoor radio propagation channel and the many reflective 

surfaces that may be encountered by the transmitted radio signal such as floor, roof, 

walls, furniture, and other inanimate objects, provide a static environment that creates 

multiple paths between the transmit and receive antenna. Introduce to this the 

temporal variations caused mainly by the motion of people within the indoor 

propagat!on channel, then a non-static resultant signal appears at the receive antenna 

output tenninals. The resultant non-static signal is a vector summation of radio signals 

that propagate over many paths. These signals undergo a time dispersion caused by 

the unequal path lengths traversed, and have their amplitude and phase fi.irther 

modified by the nature of any reflective surfaces encountered before they intercept the 

receive antenna, and therefore differ in amplitude and phase. The resultant frequency 

selective fading caused by this multipath time delay spread degrades digital 

communication channels by causing intersymbol interference (ISi) [SJ. The time 

dispersion for the indoor radio propagation channel is often characterised by impulse 

response measurements of the channel, and the computation of a numeric parameter 

from these measurements tenned the delay spread, o,, which is the power weighted 

root mean square (rms) width of the indoor channels impulse response. Impulse 

response measurements have been perfonned for many indoor propagation situations, 

including laboratories, offices, factories, lecture theatres, and others for both cluttered 

and uncluttered situations [6 - 30]. The size and construction materials employed for 

these measured indoor venues also varied widely. Omni-directional transmit and 

receive antennas such as dipoles or their equivalent monopoles of like radiation 

pattern and vertical (E field) polarisation have been used for the majority of reported 

impulse response measurements f6 - 10] (15) (18 - 21] (24) [28) [30]. This is a 

logical approach that has been taken iu view of the fact that most personal 

3 



CHAPTER] ]NTRODUCTION 

communications equipment in current use such as mobile telephones, cordless 

telephones, and WLAN portables, do indeed employ antennas with vertical 

polmisation for their transmit and receive antennae. It is widely accepted that when a, 

becomes an appreciable fraction of the data symbol duration then ISi results in an 

irreclucible error floor, where irreducible errors are defined as errors that occur at very 

high signal to noise ratio (SNR) [SJ. Modelling and simulation of the affect of ISi on 

bit error rate (BER) has provided curves and tables that show the expected 

relationship between a, and BER [2] [31 - 35]. The conclusions that can be drawn 

from these curves and tables is that for indoor radio system design a, must be kept as 

low as possible if high symbol rate transmission is required. However a 

comprehensive theoretical treatise on a, , IS[, and BER is still forthcoming, and a 

more precise prediction of digital system perfonnance awaits verification of a 

relationship between a, and the <ligital system error perfonnance [7]. 

In order to gain insight into the BER perfonnance of this 2.4-2.4835 GHz ISM 

frequency band a series of data gathering measurements relative to the indoor radio 

channel and for the frequency range of 2.3-2.5 GHz have been undertaken and 

statistically evaluated as a part of this thesis to enable predictions of the performance 

BER of the channel. The evaluation of measured data for channel noise and 

interference generated by operational microwave ovens is aa original contribution 

presented in this thesis. 

The statistics derived from the measured data of this thesis have been presented in 

conference papers [4] [36] [37), and as part of a book [38]. The obtained statistics 

have also been used as the input data for channel modelling aad simulation exercises 

[39). 

The content of the thesis addresses different aspects in the modelling and analysis of 

the physical channel as a medium for high speed dnta transmission. The thesis is 

organised as follows: 

In Chapter 3, we identiiy the phenomena that affect the BER for data transmissions 

over the indoor radio channel and their statistical relationship to BER for digital 

modulation. Mathematical equations are identified that are applicable to the 

4 



CHAPTER] INTRODUCTION 

computation of the statistics related to influence of noise and impulse response on 

average BER for digital modulation. 

Chapter 4 provides a detailed description of how additive channel noise is 

characterised. We discuss the measurement instrumentation and methodology 

employed to obtain data on the statistical nature of systematic noise which is noise 

inherent within our measurement systems and how to quantify this noise. We also 

describe the measurement of non-systematic noise which is noise that en!ers the 

transmission system via the receive antenna. The identification and characterisation of 

this fonn of noise is an important objective of this thesis. The results of our 

measurements are presented and statistically analysed. 

Chapter 5 characterises noise emitted from operational microwave ovens. The 

perfonnance of the magnetron and its influence on electromagnetic radiation emitted 

from the oven is analysed. The occurrence rate of noise bursts, the affect of load 

variation in the oven cavity, and magnetron frequency drift statistics are investigated. 

In Chapter 6 the characterisation of channel fading !s introduced. We identify the best 

statistical model for the most common fonn of indoor channel fading where the 

motion of people about the portable unit produces the fading phenomena. Data 

obtained from a series of measurements where the controlled motion of people about 

the receive antenna in an indoor situation are statistically evaluated, and numerical 

results calculated and compared with known mathematical probability distributions 

for best fit. 

Chapter 7 provides a detailed analysis of predicted BER for digital modulation. These 

predictions are based on statistics calculated from the measurement data. BER 

performance curves are preseatcd and discussed. 

Finally in Chapter 8 we summarise the work contained in this thesis and present our 

conclusions. 

In Appendix F we analyse the impulse response of the indoor venue where the fading 

measurements were undertaken. The multipath nns delay spread, o,, is calculated 

from measurements for various nominated antenna placements. Then the BER 
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performance for the same antenna placements is predicted from the analysis of the 

measurements obtained by the cyclic transmission of a high speed data sequence over 

the indoor channel. 
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Chapter2 

Literature Review 

[n this Chapter a review of published literature on the performance of the indoor radio 

propagation channel is presented, with panicular attention given to the frequency 

band of 2.3-2.5 GHz, the frequency band examined within this thesis. A variety of 

papers on channel fading and noise are reviewed. Toe review includes publi~hed 

literature on channel fading at frequencies other than the 2.3-2.5 GHz band as the 

foding mechanisms and their analysis are applicable to the indoor radio propagation 

channel at all frequencies. Noise measurement data and analysis however is restricted 

to the 2.3·2.5 Gfu band of interest. This is because of the significant differences that 

relate to noise sources and the effective power levels of the noise generated by these 

sources for different spectral bands. The literature of relevance is included as part of 

this thesis in Chapter 9 references and a summary of the findings taken from this 

literature is presented here for three broad measurement and analysis areas of 

"Temporal Fading", "Impulse Response", and "Noise". 

2.1 Temporal Fading 

Reference [50] provides statistical analysis of measured data for temporal variations 

of received signal at 1100 MHz for an indoor radio propagation channel. The 

measurements were carried out in an office environment with four 

transmitter I receiver separation distances of 5, 10, 20, an,J 30 metres. The effects of 

controlkd degrees of motion of people moving wi1hin the channel were evaluated. 

The measurement data was gathered for O, I, 2, 3, or 4 individuals walking around the 

"high" antenna only, around 1he "low" antenna only, and both antennas. A total of 
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192 one minute readings of CW envelope fading wavefonns with both the base 

station (high located) antenna and portable (low located) antenna stationary, and the 

effects of controlled degrees of motion by the Individuals were investigated. 

The analysis shows that temporal variations are more noticeable for motion around 

the pormblc antenna, as compared to motion around the base antenna. A study of the 

temporal fading wavefonn also indicated that changes in the received signal level and 

the dynamic range of fluctuations increased when the number of people around the 

portable antenna Increased from one to two, and from two to three. However the 

changes were less noticeable for an increase from three to four persons (a saturation 

phenomenon was observed for most cases). Reference [50] does not provide data on 

the height of the base or portable antennae, or the nature of the controlled motion such 

as velocity and path of the individuals moving within the channel during the 

measurements. It is not evident from [50] if the received signal is static when the 

motion of individuals is reduced to zero within the channel, although the comment is 

made that measurements were taken at night to "minimise all unplanned motion in the 

environment". Ma.limum fade depths of 25·30 dB relative to mean received power 

were measured. 

Reference [!OJ presents impulse response parameters as well as envelope fading data 

for two frequencies of 900 MHz and 1.75 GHz. The data for analysis is gathered at 

two indoor channel locations. The 'measurements were conducted during daytime on 

weekdays, with personnel moving throughout the buildings as usual. The primary 

purpose of the measurements was to compare 900 MHz and 1.75 GHz band 

propagation conditions and analyse fading distributions. For the 900 MHz 

measurements [10] concluded from data analysis that "fading distributions were found 

to be Rician in all cases, even though there was no line of sight between the 

transmitter and receiver. For mobile channels, Rayleigh fading would be expected 

under such conditions". For thirty different transmitter locations associated with the 

910 MHz measurements, the average fading range was 25 dB, the maximum was 

35 dB, and the minimum was 14 dB. Rici an theoretical distributions that best fit the 

experimental distributions corresponded to k values between -1 and -!6 dB. For the 

nine transmit locations used during the 1.75 GHz experiments the maximum range of 

envelope fading was 42 dB, the average was 35 dB, and the minimum was 22 dB. 
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Three of the computed envelope fading distributions were Rayleigh, the remainder 

being Rici an with k values between --6 to -8 dB. Reference (!OJ identifies "plenty of 

activity" around the transmit location for the portable unit (caused by people in 

motion) as a fading factor. Reference [10] also found that for transmit locations 

rcniote from activity "it was invariably found that at 1.75 GHz, the fading range was 

greater, and fading occurred at more frequent intervals than fading at 910 MHz". 

Reference [41 J provides an analysis of a range of measurement and modelling efforts 

on the indoor radio channel by many researchers. The author of (41) concludes that 

for a number of measurements channels are temporally stationary, or quasi stationary 

has either been observed or assumed in advance. Other experiments have shown thal 

the indoor channel is "quasistatic" or "wide-sense stationary", only if data is collected 

over short intervals of time. Extensive CW measurements around the I GHz 

frequency in five factory environments and also in office buildings have shown that 

even in the absence of a direct LOS path between transmitter and receiver, the 

temporal fading data show good fit to the Rici an distribution. Another work reporting 

measurements at 60 GHz, however, indicates that with no LOS path the CW envelope 

distribution is nearly Rayleigh. 

A measurement system for indoors narrow-band radio propagation at 1700 MHz is 

described in reference [55']. The measurements performed within a corridor and later a 

room identified the importance people obstructing the LOS path has on the received 

signal level. 

Reference [60] investigates the effects of radio wave polarisation in indoor radio 

propagation channels. It concludes from measurements using vertical, horizontal, and 

circular polarisation that "in practical systems where a strategy to reduce fade depth is 

required, there does not appear to be any advantage to circular polarisation in the 

narrow-band channel studied herein". Reference (60] further states that 

"measurements were halted when people were moving around. This was found !O be 

important, as movement in certain areas of reflection, even removed from the test 

location, could change the null's significantly". 
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Reference [74] reports the results of measurements and analysis of the indoor radio 

propagation channel at 20 GHz. It found that the effect of "people moving in the 

vicinity of the receiver had very different effect on the signal than at the transmitter in 

terms of fade duration and severity". A person moving close to the transmitter is 

capable of causing fades of up to 16 dB for the duration of the time that they heavily 

obstruct the receiving antenna aperture. Reference [74] found that when the person is 

at some point between the two antennas, the fades are typically much less severe 

(typically 6-10 dB), however more frequent. 

Reference [72] found "the effects of people on path loss, when compared to results for 

an empty room, is small. For LOS situations !he effect is negligible·•. Reference [72] 

also with respect to the presence of people detennines "no clear difference in 

behaviour was found for the three frequencies 2.4, 4.75, and 11.5 GHz". 

2.2 Conclusions from Temporal Fading Literature 

Review 

From the literature review it is evident that the presence of people within the indoor 

radio propagation channel significantly influence the signal level obtained at the 

receiver. The motion and number of people within the channel h~.s. been detennined as 

a factor worthy of considerable study, with some contradk!.l'Jn on the severity of 

temporal fading as caused by people within the indoor channel evident between 

reference [72] and [60], [74], and [50]. It can be concluded that further analysis is 

needed to advance knowledge on the fading influence the presence of people have on 

indoor radio propagation for the 2.3-2.5 GHz band. 

The influence of people within the channel can only be detennined by the evaluation 

of dntn gathered from a controlled set of measurements. Care must be taken in the 

selection of measurement venue to ensure that only the presence and motion of people 

within the channel affect results. Also there is a requirement to detennine if the results 

are venue specific, that is, only applicable for indoor propagation fading predictions at 

one venue and of little ~e!evancy at others. It has been generally accepted that for 

characterisation of indoor channel impulse response large data gathering exercises 
'--
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across a variety of venues is required to develop statistical models of indoor channel 

delay-spread for a range of venue sizes and types. This is intuitively supported as the 

distance traversed by multipath reflections within the indoor channel varies with the 

physical room dimensions of the various sized venues. There is however no research 

data evident within this literature review that identifies clear statistical variation 

between temporal fading data gathered in varying sized and types of indoor channel 

venues with people present, and or in motion. In particular of considerable interest is 

the influence of people moving about the portable or mobile tennina! with its antenna 

generally located at desk height or generally not exceeding the height of a person. 

Whereas the base station antenna for the indoor radio !ink is in most cases mounted 

clear of obstructions at a height exceeding the tallest person. This being typk:allr the 

case for wireless LANs as used in conference rooms, lecture theatres, classrooms and 

other commercial enterprise locations. It is therefore possible that the temporal fading 

may be primarily attributed to motion or activity in the vicinity of the mobile or 

portable tenninal antenna, and therefore a portable tenninal proximity phenomenon. 

This fading mechanism may, unlike delay-spread, be relatively independent of indoor 

channel venue size and type. 

In this thesis these possibilities will be evaluated and measurement data statistically 

analysed with the objective of advancing the understanding of indoor channel 

temporal fading perfonnance under conditions of motion by people within the 

channel. 

2.3 Impulse Response 

Many researchers have published literature detailing measured impulse response 

profiles and their associated statistical parameters such as rms delay spread. Reference 

(!OJ provides impulse response profiles for indoor propagation channels al 910 MHz 

and 1.75 GHz wit~in two buildings. Impulse responses, as e~pected, differed for both 

buildings with nns delay spreads being "slightly greater at 1.75 GHz for over 90 

percent of the transmit locations. The median nns delay spread being 28 ns for the 

1.7 GHz band, as compared to a median of 26 ns for the 900 MHz bend. In the other 
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building delay spreads in the 900 MHz band were marginally greater for 70 percent of 

the transmit locations". 

Reference [74] provides results of impulse response measurements for two different 

rooms and a corridor at 20 GHz frequency with transmit and receive antennae being 

directional horn type separated by distances of 4, 6, or 7 metres. A table presented in 

reference (74] gives experimental rms delay spread averaged for each combination of 

distance and location. The mean value of nns deluy spread varied very little ~etween 

all locations with a range of values between 15.8 and 17.1 ns. 

In reference (16] the results of extensive multipath propagation measurements at two 

office buildings are reported, a database of 12,000 impulse profiles was established 

for analysis, and results for nns delay spread are detenTiined. The range of rms delay 

spread is between 10 and 20 ns, and the average delay spread consistently increases 

when the transmit receive antenna separation is increased. 

Reference [15] analyses measurements of signal level and nns delay spread 

performed in a "large commercial metropolitan building" at 850 MHz, 1.9 GHz, 

4.0 GHz, and 5.8 GHz. Transmit and receive antennae were wide-band 

omnidirectional azimuthal un!ts. Measurement results for this large building showed 

the nns delay spread to be always !ess than 120 ns, and to be statistically equal at the 

four frequencies. 

Measurement analysis of nTIS delay spread in two modem office buildings is 

presented in reference [22]. Wide-band discone antennae are employed and results 

indicated that the rms delay spread is typically between 18 and 35 ns. The data for this 

analysis contained 12,000 measurements, 6,000 measurements for each building. 

Delay spread measurements within a single floor of a building for both LOS and paths 

between transmit and receive antennae obstructed by internal partitioning are 

presented in reference (20]. Results show lowest nns delay spread for LOS 

measurements being typica!ly less than 22 ns for 95 % of location measurements. 

Obstructed paths (with at least one wall between transmit and receive antennae) 

exhibited higher values of rms delay spread, typically Jess than 42 ns for 95 % of 

location measurements. 
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Reference [64J presents a graphical user interface program that uses a ray-tracing 

algorithm to predict the radio propagation in the indoor radio channel from the layout 

of the floor plan. The program allows the user to interactively specify the location of 

the walls in the floor plan, the type of material in the construction, and the location of 

tra,ismit and receive antennae. Eight rooms on the second floor of a building were 

used in the computer program modelling, and the results compored with measurement 

data gathered for each room in the 0.9 GHz to 1.1 GHz range. Results from model!ing 

were found to be relatively close to measurement results for each room. The rrns 

delay spread values from measurements ranging from 15.7 ns to 29.2 ns for the eight 

rooms. Reference [19) further models the impulse response from measurements for 

this same indoor radio propagation channel as modelled by [64] using different 

antennae locations. The experimental values obtained for rrns delay spread in [19) 

ranging between 19.11 ns to 46.92 ns. 

Reference [29] summarises in table fonn (from measured results) the median and 

moximum delay spreads for a variety of buildings. These include office buildings of 

brick and concrete construction, and factories with LOS and obstructed propagation 

paths. Median rms delay spreads are in the range 26 ns to 30 ns for office buildings, 

and 96 ns to 105 as for factories. 

A large data gathering and statistical modelling exercise of rms delay spread is 

presented in reference [77]. The extensive multipath propagation measurements were 

carried out at two office buildings. The database included 12,000 estimates of the 

channels impulse response. Transmit to receive antenno separations of 5, 10, 20, and 

30 metres were evaluated in the two buildings, with the 12,000 estimates being used 

to determine the statistical properties of rms delay spread. Values for nns delay spread 

were found to be typically between 10 and 50 ns, with the mean value in the 20 to 

30 ns range. The rms delay spread also showed a clear dependence on transmit 

receive antennae separation. for a threshold level of30 dB the mean nns delay spread 

increased from 16.9 to 35.1 ns for the first building, and from 17.5 to 26.6 as for the 

second building as antennae spacings increased from 5 to 30 metres. 

Results from propagation measurements conducted in an indoor office environment at 

2.4, 4.75, and 11.5 GHz is presented in reference [72]. The data were obtained in 
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small clusters of six measurements using a coherent wide-band measurement system. 

The receive antenna height was maintained at 1.5 metres for all measurements, the 

transmit antenna was set firstly at 1.5 metres then 3 metres to compare the effect on 

data of elevation at one end of the test link. Measurement results for three office 

rocims of equal size, a conference room of larger dimensions, a laboratory room, and a 

hallway are analysed. Results showed that in LOS channels the height of the transmit 

antenna "only slightly affects mean rms delay spread". However for obstructed direct 

path situations the lowering of transmit antenna height "yields an increase of both 

mean nns delay spread and the standard deviation of nns delay spread". Results for 

the conference room for LOS measurements with transmit antenna set at 3 metres and 

receive antenna at 1.5 metres show a rms delay spread value of 14.9 ns, which 

increased to 21.1 ns when the path between the transmit and receive antennae was 

obstructed by furniture. From analysis of all measurement data presented in [72) the 

rms delay spread was in the range 5.4 to 21.6 ns, and predicably related to room 

dimensions. 

Reference (52] provides a review on radio propagation into and within buildings. The 

review looks at eight classifications of buildings: 

Class 1: Residential houses in suburban areas. 

Class 2: Residential houses in urban areas. 

Class 3: Office buildings in suburban areas. 

Class 4: Office buildings in urban areas. 

Class 5: Factory buildings with heavy machinery. 

Class 6: Other factory buildings, sports halls, exhib!t!on centres. 

Class 7: Open environment, e.g. railway stations, airports, etc. 

Class 8: Underground, e.g. subways, underground streets, etc. 

For classifications 1, 3, 4, 5, and 6 typical and worst case values of rms delay spread 

derived from measurement data Is presented as follows: 
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Class 1: Typical rms delay spread (150 ns). Worst case rms delay spread (420 ns). 

Class 3: Typical rms delay spread (25-125 ns). Worst case rms delay sJiread 

{40-320 ns). 

Class 4: Typ1cal rrns delay spread (25-50 ns). Worst case rms delay spread (100 ns). 

Class 5: Typical rms delay spread (19-105 ns). Worst case nns delay spread 

(40-300 ns). 

Class 6: Typical rms delay spread (15-20 ns). Worst case rrns delay spread 

(40-146 ns). 

Reference [52] found no pnb!ished measured data for clas~ifications 2, 7, and 8 for 

typical and worst case rms delay spread. 

2.4 Conclusions from Impulse Response Literatu~e 

Review 

The measurement of impulse response for the indoor radio propagation channel by 

many researchers has provided data on rms delay spread for a variety of venues. 

Results are consistent and predictable in most cases when the dimensions of the 

measurement venue and the nature of the presence or absence of a LOS path between 

transmit and receive antennae is considered. Based on the nns delay spread value 

obtained for the venues several researchers have used this vn!ue as the prime input 

variable in the mathematical modelling of the BER probability for data transmitted 

over the link at various bit rates in the presence of delay spread. Reference [5] 

provides a treatise on the effects of time delay spread on BER for portable radio 

communication channels with digital modulation, and concludes that significant error 

rate only occurs when the time value of therms delay spread becomes an appreciable 

fraction of the data symbol duration. The resulting ISi caused by the delay spread 

causes an irreducible error floor, where irreducible errors are defined by [SJ as being 

errors that occur at very high receive signal to noise ratio. The relationship between 

BER and rms delay spread is further addressed in [2] [31-35]. An evaluation of the 
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nns delay spread (at the venue selected for fading measurements in the presence of 

people in motion about the receive antenna) is included as Appendix Fin this thesis to 

identify its value for completeness of BER evaluation in a fading channel. The area of 

delay spread has been adequately researched in other references, and is therefore not 

covered in detail within the main body of the this research. 

2.5 Noise 

For the detection of signals in additive noise in most applications of statistical 

decision theory Gaussian noise is often assumed since other distributional 

assumptions usually lead to mathematical difficulties. However in many practical 

instances the measured probability density function (pdf) of the additive disturbance 

exhibit much heavier rails than the Gaussian distribution. Noise of short time duration 

fits this category and is often categorised as impulsive. Although an impulse does not 

exist physically as !t must have zero width, there are mathematical functions that have 

all the properties of an impulse as the pulse width tends to zero, one being the sine 

function. The amplitude envelope can be represented by a sine function in the 

frequency domain, and as such the amplitude level of harmonics related to impulsive 

noise quickly reduces at higher frequency values. Impulsive noise spikes of relatively 

short time duration are often caused by short duration bursts of electromagiietic 

radiation emanating from such sources as lightning discharges, power line Insulator 

surface arcing, motor vehicle ignition systems contacts, relay contacts making and 

breaking electric current flow to circuits, and many others. Due to their impulsive 

nature the harmonics produced are therefore of greater intensity at lower frequencies 

in the radio bands employed for communications. However, as the sine function 

theoretically extends infinitely, then some noise of an impulsive nature is generally 

present in all bands, be it at extremely low levels at higher frequencies. The amplitude 

level, duration, and repetition rate of the impulsive noise affects the BER perfonnance 

over the channel. Noise both of an impulsive nature and of other non-impulsive fonns 

is ever present in all radio frequency bands (even galactic noise from the "Big Bang" 

can be measured if the measurement system has sufficient sensitivity). By allowing 

for receiver sensitivity and perfonnance and designing the indoor radio system to 

operate with a minimum receive carrier wave power level that is significantly higher 
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than any identified impulsive noise or other noise level received then the impact of the 

noise on BER perfonnance is neg!lgible. To this obj~ctive an acceptable level for 

measurement system sensitivity that is related to the measurement band of interest, its 

proposed uses, and receiver sensitivity has been selected by researchers seeking to 

idefltify noise in the band and its statistical nature. The selection of measurement 

system sensitivity therefore precludes the identification of all sources of noise below 

this threshold. 

Noise in the 2.3-2.5 GHz band of interest has been identified by measurement by 

several researchers. Impulsive noise being of short time duration and generally low in 

level was identified by reference [78J as being radiated from three sources: 

1. Aphotocopier. 

2. An elevator switch. 

3. A microwave oven. 

Impulsive noise can appear across a wide frequency band as the time width of the 

pulse tends to zero, and the measurement results in [78] show impulsive noise from 

the photocopier and elevator switch at frequencies around 918 MHz, 2.44 GHz, and 

4.0 GHz. The microwave oven noise wos only detected around 2.44 GHz and not at 

918 MHz or 4.0 GHz. The distances from the noise sources respectively were 

6.1 metres for the photocopier, 2.4 metres for the elevator switch, and 8.2 metres for 

the microwave oven. Typical peak amplitude probability distributions for impulsive 

noise are plotted from measurement data analysis in [78J, and show an approximate 

0.1 % probability that for the 2.44 GHz and 4.0 GHz bands the amplitude of the 

impulsive noise exceeds the thermal noise (Pmin = k To B) value by typically 32 dB. 

For the 918 MHz lower frequency band impulsive noise exceeded the (P,.r,, = k ToB) 

value by typically 50 dB at the 0.1 % probability value. Reference [78] also notes that 

"impulsive noise produced by the microwave oven, at a distance of 8.2 metres from 

the receiver at site E, exceeded k To B by 77 dB". Noise produced by an operating 

microwave oven (measured in the time domain) for the 2.44 GHz band is depicted in 

[78]. At 15 metres from the oven with a dry wall partition between oven and receive 

antenna the peak received power level at the antenna was typically-SS dBm. 
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Reference [75] analyses the emissions from operational microwave ovens and 

concludes that ovens emit "broadband noise that might interfere with digital mobile 

communications systems operated at frequencies within 1 to 3 GHz bands". Low level 

noise was a!so identified at 1.9 GHz when the microwave oven was operational. The 

level of this 1.9 GHz noise being approximately 60 dB below the peak noise values 

measured at the 2.47 GHz frequency. The 1.9 GHz noise is said to be related to the 

fast switching('" 30 kHz) of the power supply for ovens with switch mode supplies. 

The 1.9 GHz noise is not in the frequency band being evaluated within this thesis. The 

noise levels expressed as effective radiated power (ERP) with the microwave oven 

acting as an antenna, were for the 2.4 to 2.47 GHz band, estimated from 

measurements to be in the range 60 to llOdBpW. Reference [75] states that the 

maximum emission occurs at a frequency within the 2.45 GHz band, but that ovens 

radiate out-of-band emission across a wide range of frequencies. Furthermore, both 

the frequency and the level of this emission vary with the changes in the magnetron 

output characteristics, load characteristics, load variation caused by the turntable 

rotation, and the position on the turntable of the substances being heated within the 

oven cavity. It also states that a clear dependency on electromagnetic polarisation was 

not found for the microwave oven noise radiated. 

Reference [76] provides an evaluation of interference from domestic microwave 

ovens to 1.9 GHz digital radio transmission. BER curves are presented for a 

transmitted data sequence representing a pseudo-noise code at 384 kilobits/second 

rate. The modulation used being lt/4 shift QPSK, with carrier wave frequency set to 

1.90115 GHz. The receiver sensitivity was such that at a receiver input of 10.5 dBµV 

a BER error rate after demodulation (attributed to thermal systematic noise only) of 

1 x 10-i was measured. Two sets of BER results are presented, one set showing data 

for degradation to error rate when microwave ovens employing switched mode power 

supplies are operating, the other when ovens with conventional transformer type 

power supplies are operating. The electromagnetic noise from the operati,;nal ovens 

was electromagnetica!ly coupled by. means of a half wave dipole an(enna located 

1.26 metre from the operational oven~ under test. The output of the antenna was then 

connected into the receiver front end via an attenuator and RF hybrid. The other port 

of the hybrid was fed with the modulated carrier wave directly coupled from the 
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transmitter, also via an attenuator. Three microwave ovens employing switched mode 

power supplies were evaluated and also three ovens with the conV~!!tional transformer 

power supply. Results indicated that two of the switched mode type ovens 

significantly increased BER while operational, and a!so one of the conventional 

trallsformer type, but by a lesser amoun.t. One of the switched mode type ovens and 

two of the transformer type ovens had little influence on BER while operational. 

2.6 Conclusions from Noise Literature Review: 

Noise generated from operational microwave ovens is clearly a potential problem for 

radio transmission links operating in the 2.3-2.5 GHz frequency band, the band being 

examined within this thesis. Although some research has been completed there is little 

explanation as to the nature and severity the noise has on BER performance at 

particular carrier frequencies of operation. The noise in the 2.3-2.5 GHz frequency 

band has not been quantified dearly with respect to how it occurs, or how its intensity 

varies with time over the operational cycle of a microwave oven in proximity to a 

communications receiving antenna. A detailed analysis of this form of noise source 

and its influence on BER for received data is warranted, and this detailed analysis will 

be an original contribution to new research competed within this thesis. 

Other forms of noise within the 2.3-2.5 GHz band have been identified by researchers 

[78], in particular the impulsive type. To further investigate and identify noise sources 

in this band a measurement campaign will be completed and the results included in 

this thesis. The measurement system sensitivity is selected to enable the identification 

of noise signals that intercept the receive antenna at a penk power level of-123.8 dBm 

(Appendix A). This value is 33.8 dB lower than the typical minimum receive level 

sensitivity of -90 dBm (7.071 µV) in 50 ohms specified by most communications 

systems employed in this frequency band. At the -90 dBm (7.071 µV) receive level a 

BER due to systematic noise floor characteristics of t x 10·5 is typical. The selection 

of a measurement system sensitivity 33.8 dB lower than the systematic noise for 

minimum receive level provides a significant margin to allow identification of noise 

power levels that affect BER performance. Noise present at lower levels than the 

selected measurement sensitivity has minimal affect on average BER performance. 
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Chapter3 

The Indoor Radio Propagation Channel 

In this chapter we Introduce the characteristics of an indoor radio propagation channel 

and associated phenomenon that need to be identified and modelled In order to predict 

the performance of the channel for high speed data transmission. The statistics 

derived from measurement of the indoor channel phenomena are identified, ll!ld their 

relationship to the error performance of data transmitted over the channel is analysed 

for digital modulat!on. 

3.1 Models of the Indoor Radio Propagation 

Channel 

Models of the indoor radio propagation channel can be based on analytical and 

empirical studies. These models can be classified as either deterministic or statistical. 

Deterministic models such as those based on Maxwell's equation and ray tracing 

techniques require detailed knowledge of the physical indoor channel environment. 

Knowledge of the indoor environment geometric dimensions and the lyPe of 

construction materials used for walls, roof, floor, furniture, and other objects within 

the channel is essential for detenninistic models. Statistical models are based on 

measurements, and as such the phenomena associated with the indoor radio 

propagation channel are not theoretically derived but calculated from measured 

empirical data. Statistical models are developed from the practical approach of 

choosing sites where indoor radio data transmissions are likely to be used, and 

modelling the physical attributes of the propagation medium associated with these 
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sites as processes with certain distributions genera[[y derived from measurements. 

Statistical models therefore provide qualitative information about the indoor channel 

such as received signal fluctuations, and rates and duration of signal impairments. In 

this thesis a hybrid mi,:: of both the deterministic approach to modelling the indoor 

radio propagation channel and statistical modelling of measurement data are used to 

characterise the indoor radio channels perfo1mance for data transmission. 

3.1.1 Noise 

The receiving system of the indoor propagation channel has a receive antenna which 

is being illuminated by electromagnetic radiation from various sources. Radiations 

intercepting the receive antenna which are not part of the wanted transmitted signal 

can result in noise and interference, The amount of unwanted additive channel noise 

entering the receiver via the receiving antenna is dependent on frequency range, 

receive antenna gain, and bandwidth, The identification and characterisation of 

additive channel noise generated from noise sources in the 2.3·2.S GHz frequency 

range form an essential part of our measurement data gathered. 

3.1.1.1 Noise Sources 

When considering the indoor radio channel as a medium for high speed data 

transmission, the sources of noise that specifically affect the hit error rate 

performance of data transmitted over the channel must he identified and quantified. 

These noise sources are broadly divided into two groups as follows: 

(I) Transmission System Noise· This is defined as noise generated from 

within the data transmission or measurement system itself. This type of noise is an 

inherent part of al! transmission systems and includes thermal and shot noise 

generated within the system hardware. 

(2) Propagation Noise · This is no!se introduced to the data transmission 

or measurement system via the receive antenna which is not transmission system 

noise. The receiving antenna collects noise emissions from galactic, solar, and 
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terrestrial sources. Terrestrial sources include the sub-category tenned man-made 

noise generated from the operation of equipment such as microwave ovens, car 

ignition systems, electric trains, and other equipment that emits electromagnetic 

radiation during operation. 

3.1.1.2 Additive Channel Noise and BER for Digital 

Modulation 

In most digital radio systems modulation is achieved by modifying the transmitted 

radio carrier waves amplitude and/or phase as a function of the digital data 

information stream being tmnsmitted. The received signals amplitude and phase can 

then be represented as a discrete point in a two dimen~ional plane tenned the 

1-Q plane where I represents in-phase and Q represents quadrature which is 9rfl out of 

phase. By forcing the carrier to any of several predetermined positions in the I-Q 

plane, each of which represents a mapping for one or more bits of data, a data stream 

can be transmitted and consequently decoded at the receiver. The mapping of states at 

1he receiver at each symbol timing instant onto the 1-Q plane produces what Is 

referred to as a constellation diagram, In theory the constellation should be single 

points for any sequential data transmission, but in practical systems a dispersal or 

spread of the dots around each state occurs. This spreading is the result of 

transmission system impairments and noise. 

For digital modulation using coherent phase shift keying, noise is added to the 

modulated signal x(t) as it passes through the channel. This noise is sourced by the 

transmission system itself, or propagation derived as defined in Section3.l.l.l. Io 

modelling the channel, the transmit filter, transmission channel, and receive filter are 

linear and time invariant. Therefore the complex signal envelope, y(t), at the output of 

the receive filter may be written as [32]: 

y(t) = ~{t)*h(t) (3.1) 

(3.2) 
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where hT(t), hc(t), and hR(t) are the impulse responses of the transmit filter, the 

channel, and the receive filter respectively, and the symbol* denotes convolution. For 

the constellation diagram considering the 1-Q plane, ni(t) and nq(t) are the in phase 

and quadrature components of the additive noise at the receive filter output. For 

symmetrical filters, ni(t) and Dq(t) are independently and identically distributed 

Gaussian random variables with zero means. For constant noise amplitude and 

random phase, the loci of the noise power distribution function is a circle of radius n0 

centred on the tip of the ideal reference vector of Figure 1, where 

Q 

MAGNITUDE ERROR 

MEASURED 
SIGNAL 

~ 

~ 

~ 

~ ERROR VECTOR 
MAGNITUDE 

~ IDEAL REFERENCE 
SIGNAL 

PHASE ERROR (cp) 

Figure 1: Error Vector Values. 

(3.3) 

The EVM shown in Figure 1 is directly proportional to additive channel noise. In the 

absence of any other signal corruption the EVM is an indicator of the magnitude of 

total additive channel noise n0• The loci of n0 can be statistically modelled with the 

measurement system connected back to back to allow quantification of transmission 

system noise, and then with the propagation path inserted. For additive white 

Guassian noise (AWGN) the subtraction of transmission system noise from the noise 

measured with the propagation path included results in a statistical remainder 

representing the channel propagation noise. The upper bound for the probability of 

symbol error in an AWGN channel which has a noise spectral density equal to no can 

be obtained for any arbitrary constellation using the union bound. The union bound 
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[ 40] provides a representative estimate of the average probability of error for a 

particuJar moduJation signal, ps(r/SJ : 

p,(s /s,) s i o[ Fu: J (j ~ i) (3.4) 

where du is the Euclidean distance between the i and j signal points within the 

constellation, and Q(x) is the Q-function. When the constellation is symmetric the 

distance between all points is equal and ps(r/SJ is the same for all i. Equation (3.4) 

therefore provides the average symbol error probability for symmetric constellations. 

For binary phase shift keyed (BPSK) modulation, equal energy antipodal signalling is 

used. For antipodal signal vectors S1 and S2, with amplitudes : .jE;, , as shown in 

Figure 2, the Euclidean distance between constellation points is 2 .jE;, . Substitution 

of this into Equation (3.4) provides the average error probability for BPSK 

modulation as: 

P,,,,,K =Q~ (3.5) 

+JE: 

Figure 2: BPSK Modulation. 

The average error probability is therefore directly related to the EVM, and in Chapter 

4 we detail the measurement system and technique used to accurately quantify EVM. 

3.1.2 Impulse Response 

Radio waves propagating within buildings between transmit and receive antennas 

travel via many paths other than the direct or line of sight (LOS) path if it exists. The 

waves encounter surfaces such as walls, floor, ceiling and other objects such as 
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furniture and people. At these surfaces the amount of energy reflected from and 

transmitted through the material is a function of the materials physical constants (i.e. 

conductivity o, permittivity c, and permeabilityµ), as well as.frequency and the angle 

of incidence between the direction of wave propagation and the material surface. This 

multipath nature of the Indoor channel can be fully described by its time and space 

varying impulse response [41]. 

For the indoor radio channel, radio waves can be modelled as discrete paths resulting 

in a multipath model. The impulse response h(-c,r) of such o channel at range r 

between transmit and receive antennas is modelled as [7]: 

(3.6) 

where: 

't1 propagation delay of i'h path, 

E1 received electric field intensity ofi'h path, 

R1 reflection coefficient of i'h path, 

fc radio wave carrier frequency, 

6(t) dirac delta function, 

and the shortest path (generally LOS) between transmit and receive antennas is for 

i=O. 

The computation of the impulse response for any particular range requires a known 

value for E1 and R; , the electric fldd intensity and reflection coefficient, respectively, 

for the i'h multipath radio signal. For each path i, R1 may be representative of one or 

more reflections from one or more different surfaces, thus forming a final composite 

value for the reflection coefficient over the total path. Also, the total propagation 

delay of the i'h multipath ray is directly related to the distance the signal travels, and 

this may similarly involve one or more reflections before it intercepts the receive 

antenna. 

In order to calculate E1 and R;, the relationship between transmitted radio power PT 

and electric field intensity ET needs to be known, as well as the physical constants and 

25 



CllAPTER3 THE INDOOR RADIO PROPAGATION CHANNEL 

incident angle of the radio wave for R1 computation at the point or points of reflection. 

The following provides the background theory necessary for ca\culotion of E; and R1 

for substitution into the indoor radio channel's impulse response Equat.=on (3.6). 

Th; electromagnetic radio wave has a wave front that is approll'.imate!y planar at 

distances greater than the Far-Field distance [42] associated with the radiating 

antenna. Polarisation of electromagnetic plane waves is by adopted standard described 

by time variations of the electric field. 

For a plane wave travelling in the +Z direction, the electric field intensity variation in 

time and space is described by: 

E(t,z) m XE0cos(wt -f!z) [V/m) 

The associated magnetic field intensity is given by: 

- ,E, 
H(t,z) = Y--'-COS(wt-l3z) 

" 
[Nm] 

where: 

w = 21tf - angular frequency [rad/s], 

f frequency [Hz], 

13 phase constant (rad/m], 

)... wavelength [m], 

1'] = ff. - intrinsic impedance of the medium [ohms], 

& = &0&, - medium permittivity [F/m], 

µ= µ.,µ,- medium permeability [H/m]. 

(3.7) 

(3.8) 

Equation (3.8) for H(t,z) the magnetic field mirrors that for E(t,z) in Equation (3.7) 

the electric field with the exception that it is in they direction and scaled by lhe value 

of the intrinsic impedance 1'1· 

Therefore, it can be expressed by: 
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or generalised as co-ordinate independent in tile following fonn: 

1-
H(t,z) =-nxE(t,z) 

" 
where ; is tile unit vector in the radio waves propagation direction. 

For the free space, the intrinsic impedance t)o is given by: 

f 411:xlO·' 
Tl = = --- .. 120. .. J77ohms 0 10·• /3M 

(3.9) 

(3.10) 

(3.11) 

From Poynting's theorem the vector cross product of E and H at any point is a 

measure of the rate of energy flow per unit area at that point, or power P(t,z), 

expres.1ed as: 

P(t,z)., E(t,z)x H(t,z) [W/m1
] 

Substituting (3.7) and (3.8) for E(t,z) and H(t,z), respectively, yields 

E' 
P(t,z)=~os'(mt-~z) [W/m'J 

" -

(3.12) 

(3.13) 

The time average power density is given by the integral of p (t,z) divided by the 

period T = T, thus: 

11r , 

P,.v .. f J.f!cos'(wt-~z)dt ,, 
P 

_ 1 E~ AV __ _ 

2 " 
(3.14) 
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If the rms·values instead of peak amplitudes are used, the factor ofV, is not present. 

Hence, the nns power flow through any area S normal to the Z lll[is is expressed'as: 

[W] (3.15) 

The transmitted electric field intensity is therefore directly proportional to the square 

root of the transmitted nns power tlow through any area S normal to the Z axis, that 

is: 

(3.16) 

where K1 is a constant, Pr is the transmitted pow~r a11d: 

with S being the area nom1al to the Z axis. Similarly, the received electric field 

inten.sity is also directly proportional to the square root of the received power, 

therefore: 

ER =K,.,/p; (3,17) 

In the ideal case of free space transmission from an isotropic transmit antenna, the 

received power at range (r) is given by [2] as: 

(3.18) 

where: 

Pr, Pa • transmit and receive power levels, 

range or distance between transmit and receive antennas. 

From Equations (3.17) and (3.18), the received electric field intensity as a function of 

transmit1ed power and range is related by: 
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(3.19) 

Therefore, the received electric field intensity E1 for the i'~ signal path for an isotropic 

antenna as a function of range is expressed as: 

E-(r) = K1 .,JP; 
' 2J; (r +llt 1c) 

(3.20) 

where llt1 is the delay for the discrete paths i = 1.. .. n wilh respect to the direct or the 

shortest path length i = 0, which has a time delay equal to r/c seconds, and c Is the 

speed of light. Equation (3.20) can be used to calculate E1(r) for substitution into the 

impulse response Equation (3.6). 

The reflection coefficient for dielectric walls, floor, and roof is real at high 

frequencies [43]. For real R;, where the E field of the wa!l incident radio wave is 

perpendicular to the plane of incidence (the plane of incidence being defined as the 

plane co~taining the incident ray and the nonnal to the surface) the reflection 

coefficient [43] is given by: 

and for floor and ceiling with the same E field polarisation [43] is given by: 

where: 

R _ (tilt,)cos01"'-~(ei/e1)-sin101oe 

""""';ii,, - {Ei/E1)cosa,.,+~(e,/e1)-sini9'"' 

R reflection coefficient, 

(3.21) 

(3.22) 

01,0 angle between the incident radio wave and the nonnal to the surface, 

E1 permittivity constant of the first medium which is generally air, 

e2 permittivity constant of the second medium which is generally walls, 

ceiling, or floor. 
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Dependent on which discrete path i is being computed, and on the polarisation of the 

E field (either perpendicular or parallel to the plane of Incidence), either 

Equation (3.21) or Equation (3.22) can be used to calculate R1 for substitution into the 

impulse response Equation (3.6). 

The impulse response h(-c, r) for the indoor radio channel gives a measure of the 

severity of multipath propagation within the channel. The total time in which the 

channel impulse response is not equivalent to zero and the relative power distribution 

over this time has resulted in a numeric parameter tenoed the nos delay spread o, 

being defined as the power weighted nos width of the channel average impulse 

response [44]. This frequently measured parameter has been also linked with the 

channel BER perfonnance [5]. The nos delay spread o, is calculated from 

Equation (3.23) as follows: 

' 
o, • ff ~(t, ~ ,-tofE: ]1!E: )' (3.23) 

where lo is the arrival time of the first path (generally the LOS in a profile), and 't'm is 

the mean excess delay calculated from Equation (3.24): 

(3.24) 

The error rates for data transmission over a channel with delay spread are dependent 

on the nonnalised value of o, [44]. Normalised o, is defined as: 

d=~ 
T 

where Tis the transmitted data symbol period. 

(3.25) 
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3.1.2.1 

THE INDOOR RADIO PROPAGATION CHANNEL 

Impulse Response and BER for Digital 

Modulation 

At ,gigahertz frequencies the wavelength of the radio frequency signal is relntively 

small and the phase of the received signal can change significantly when motion is 

introduced into the channel. This motion can be caused by people moving about the 

Indoor environment, the movement of the transmit or receive antenna, or inanimate 

objects such as machinery. The result of this motion is a change to one or more of the 

discrete paths "I1 of the multipath Equation (3.6). Digital transmission over a wideband 

indoor channel suffers intersymbol interference (151) caused hy the time delay spread 

of these discrete paths "Ii which results in frequency selective fading. If the rms delay 

spread o,, computed in Equation (3.23), becomes an appreciable fraction of the 

symbol period then 151 results in the generation ofan irreducible error floor [35]. As a 

general rule for values of rms delay spread less than 0.1 the system can be considered 

as narrowband, and for values above 0.1 wideband characteristics begin to influence 

error performance. 

The normalisation of o, to symbol period T as shown In Equation (3.25) results in the 

dimensionless parameter d. A relation.ship between d and the average irreducible BER 

has been calculated for unfiltered digital modulation using computer simulation 

methods [5]. Figure 3 (from {5]) depicts the relationship between d and the average 

irreducible BER for a multipath channel simulation using a Gaussian delay profile. 

The resultant performance ranking of the unfiltered modulation for d normalised to 

the same symbol period is shown in Figure 3 as BPEK, QPSK, OQPSK and MSK. 
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Figure 3: The Influence of don BER for Unfiltered Modulation. 

A fairer comparison of modulation performance in the presence of delay spread is 

given by Figure 4 (from [5]), where ct ' is defined as follows: 

(3.26) 

with Or normalised to bit period Tb, 
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Figure 4: The Influence of ct' on BER for Unfiltered Modulation. 

The application of bit period instead of symbol period normalisation shows that MSK 

and "4-level modulation (QPSK, OQPSK) are more resistant to delay spread than 

BPSK modulation for constant information throughput" [5]. 

Simulations for higher level modulation such as 8-PSK (which has 3 bits/symbol) 

were performed at signal to noise ratio (SNR) approaching infinity, and the results 

indicated that its performance was not superior to that of QPSK. 

The results of the 8-PSK simulation (from [5]) are given in Figure 5. 
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Figure 5: The Influence of ct' on 8-PSK for Unfiltered Modulation. 

3.2 Summary 

In this chapter we have identified additive channel noise, channel fading, and channel 

impulse response as three phenomena that each exhibit a major influence on the BER 

performance of the indoor radio propagation channel. To allow us to identify total 

additive channel noise by measurements1 and then statistically characterise the 

measured noise, the noise can be separated into the two specific groups of 

tran mission system noise and propagation noise. The separation of the total additive 

channel noise into two groups allows us to identify and determine the impact of 

propagation noise introduced to our indoor radio data transmission system via the 

receiving antenna which by definition is not transmission system noise that is 

generated from within the system itself. To obtain the noise measurement data 

necessary for the development of BER models of the indoor radio propagation 

channel we have introduced the concept of error vector values and EVM. EVM is a 
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measurement parameter that is directly related to the received average BER 

probability of data transmitted using digital modulation methods over the indoor radio 

propagation channel. Toe use of EVM measurement techniques to characterise the 

sources of total additive channel noise by separating it into its two distinct 

colltrihutive components Of transmission system noise and propagation noise is 

described in Section3.1.1.1, and Section3.1.1.2. The described methodology 

provides the foundation on which a measurement system capable of the 

characterisation of additive channe_l_ noise is developed in Chapter 4. 

The multipath nature of the indoor radio propagation channel is also discussed in 

Section 3.1.2, and a mathematical multipath model is described where the impulse 

response of the channel is described by Equation (3.6). A single important statistic 

derived from the channel impulse response is the rms delay spread that has the units 

of time. The normalisation of the channel rms delay spread to the time duration of a 

data transmission symbol period T, or bit period Tb, defines two dimensionless 

statistics termed d and ct' respectively. Computer simui'ation methods are used to 

predict the effect d and d' have on average BER and examples of the results of 

simulations taken from [5] are shown in Figures 3, 4, aad 5. All curves depicted in 

these figures show an increasing probability of the average irreducible BER as either 

d or d' increases in absolute magnitude. An estimate of the impulse response of an 

indoor radio propagation channel can be obtained from a measurement system 

capable of gathering empirical measurement data for specific placements of transmit 

and receive antennae within the channel. From the data obtained from measurements 

statistical values ford and d' can be computed, and these values can then be used to 

estimate average inreducib!e BER from the computer simulation curves such as those 

presented in Figure 3, Figure 4, and Figure 5. The methodology applied to gather this 

data is demibed in Appendix F. 
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Chapter4 

Characterisation of Additive Channel 

Noise 

In SectionJ.1.1,1 the noise sources that influence the BER performance for high 

speed data transmission over the indoor radio channel were divided into two groups, 

namely transmission system noise and propagation noise. Transmission system no!se 

is generated within the transmission or measurement system itself and is related to the 

thermal agitation of electrons in amplifiers and other components. For any system the 

noise spectral density at a specified temperature is determined by the level of noise 

generated from the system hardware. The average level of this noise remains constant 

for any particular temperature and can be termed "systematic noise". In order to 

quantify the systematic noise present in our measurement system used to transmit 

high speed data over the indoor radio propagation channel, a series of back-to-back 

calibration tests were perfonned both before and after the completion of any data 

gathering measurement. Although our data transmission system is capable of the 

measurement of non-systematic propagation noise (Section 3.1.1.1), its lack of 

portabil!ty necessitated the use of a separate noise measurement system. The two 

systems are described in sections 4.1 and 4.2. 
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4.1 Systematic Noise Measurements and the Data 

Transmission System 

Figure 6 depicts the measurement instrumentation used for high speed data 

transmission and fading measurements over the indoor radio channel. The 

measurement and analysis of facling is separately addressed in Chapter 6 however the 

additional instrumentation necessary to gather our fading data also contributes in part 

to the overall systematic noise and as such must be included in system noise 

calibration measurements. All measurement equipment was accommodated on a 

movable steel trolley as shown in Figure 7. 
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Figure 6: Measurement instrumentation. 
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Figure 7: Measurement Equipment Accommodation. 

The Hewlett Packard HP89441A vector signal analyser (VSA) is the primary part of 

the measurement system. The VSA provides the necessary continuous wave (CW) 

transmitter and receiver functions for calibration of the measurement system and the 

series of measurements performed over the indoor radio propagation channel. The 

carrier frequency can be selected in the range from 0-2.65 GHz. The modulation 

analyser Marconi TF2300A, voltage controlled attenuator (VCATT) Aphex 

VCA1001, and the IBM PC with a sampler card record fading data for the indoor 

channel. Envelope detection of the baseband signal by the modulation analyser results 

in a control voltage that amplitude modulates a 100 Hz sinusoidal carrier. The 

amplitude modulation is achieved by the direct application of a de control voltage 

output from the modulation analyser to the input of the VCATT. This amplitude 

modulated 100 Hz carrier replicates the temporal variations (fading) of the 2.4 GHz 

CW between the transmit and receive antenna. It is then over-sampled at 11.025 kHz 

rate and stored on the PC hard disk for subsequent analysis. 

The VSA is used to transmit, receive, display, and store data gathered for statistical 

modelling of the indoor radio propagation channel. The VSA can transmit and receive 
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random darn sequences over a propagation channel using a variety of modulation 

formats and filtering options. These options include BPSK, QPSK, nnd 8-PSK 

modulation; and raised cosine (Nyquist), square root raised cosine, Gaussian, 

1ectangular, low pass, or user selectable filtering. Data symbol rates up to 

4 niegasymbols/second can be analysed by the VSA. Because the trnnsmit section and 
I 

receive section of the VSA are co-located, the need for carrier recovery from the 

transmitted signal is eliminated. This ensures a non-noisy phase estimate which is free 

from carrier fluctuations, and full coherent reception. The use of the spectrum analysis 

mode option of the VSA allows the received power spectrum of both noise and other 

signals including the frequency selective fading characteristics of wideband 

transmissions, to be viewed and stored to disk for further analysis. 

Three antenna models form part of the measurement instrumentation selected to 

gather the empirical data, and the technical specifications for these antennae are given 

in Appendix B. The antennas are mounted on non-metallic height adjustable stands, 

providing antenna height settings from 1·2.5 metres as depicted in Figure 7. For all 

measurements vertical polarisation is used for the antennas as it is the most common 

polarisation used by mobile portable communications systems that operate over 

indoor radio propagation channels. 

4.1.1 Quantification of Systematic Noise and 

Error Vector Magnitude for the Data 

Transmission System 

!n order to quantify systematic noise and the associated EVM within the data 

transmission system (Figure 6), a series of back-to-back measurements are performed. 

The antennas shown in Figure 7 are removed and the two antenna feeder cables 

directly connected together. Then the cyclic transmission of a random data sequence 

of length 600 symbols at the 4 megasymbol/second rate for a range of receiver 

average modulation power levels allow us to determine the value of both systematic 

noise and the EVM. This calibration procedure is completed for both BPSK and 

QPSK modulation. wi1h raised cosine filtering that has a roll-off factor of 0.5. 
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Figure 8 {top) typifies the measured statistics available pertaining to our system, and 

is for BPSK modulation in this case. The available data includes the· received eye 

diagram {top right quadrant), an idea! reference constellation (top left quadrant}, the 

measured constellation (bottom left quadrant), and EVM with its associated values 

(bottom right quadrant). Also shown in the bottom right quadrant is the · first 

80 symbols transmitted in our cyclic sequence, with the first symbol (symbol 

number O which is shown highlighted) being a Obit. This particular symbol is also the 

symbol centred on the diamond marker of the measured constellation. Figure 8 also 

depicts the associated received power spectrum for the transmitted BPSK sequence, 

and from measurement of its average modulated power we can produce the necessary 

system calibration curve that identifies the effect of hardware generated noise on 

EVM. Also, as part of our calibration process, the radio frequency CW is turned off 

and a noise spectrum that occupies the same spectral bandwidth as that of the BPSK 

or QPSK modulation is recorded. This value of averaged noise power is the 

systematic noise which can be nonnalised to a 1 Hz bandwidth. The additional noise 

introduced by the inclusion of the propagation path is the non-systematic noise. The 

statistical subtraction of the systematic noise from the overall measured noise, when 

the propagation path is included, provides a statistical remainder that is the non­

systematic noise, The application of this measurement methodology allows us to 

separate and quantify the noise introduced into the data tran5mission system by 

e)[ternal sources of electromagnetic radiation. These e)[temal sources are identified in 

the first instance by a separate noise measurement system, which is disCussed in 

Section 4.2. 

40 



CHAPTER4 CHARACTERISATION OF ADDITIVE CHANNEL NOISE 
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Figure 8: BPSKData Rate 4 Megasyrnbols/second (Raised Cosine Filtering a= 0.5). 

An example of the measurement of systematic noise for a 7 MHz bandwidth is given 

in Figure 9. This noise spectrum represents a statistical average taken over 
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100 samples, and as can be seen in the bottom left comer of this figure an average 

power of -96.003 dBm is computed for the 7 MHz measurement bandwidth centred 

on 2.4 GHz. The -119.15 dBm value shown at the top right of Figure 9 is the average 

noise power for 100 samples at the centre of the measurement bandwidth, 2.4 GHz for 

this example. 

TRACE A: Ch1 Spectruw 
R Mo.rker 

-116. S 
dBN 

logMag 

2 ~00 000 000 Hz -119, 1 5 dB1,1 

-12d15.s Power: -96.003 d w 1'1..___._~,_..,.~,__,,.,.,....._~--------=--~~=-=-=-=-
St art: 2.3965 GHz Stop: 2.qo35 GHz 

Figure 9: Systematic Noise Power (7 MHz bandwidth centred on 2.4 GHz). 

The results of our back-to-back system measurements enable two curves to be plotted 

for both BPSK and QPSK modulation. The curves are presented as Figure 10, where 

the ordinate represents the average received modulating signal power in dBm for the 

50 ohm real input impedance of the receiver, and the abscissa represents the rms value 

of the EVM expressed as a percentage. In Figure 10 the "solid" curve for BPSK and 

the "x-marks" for QPSK modulation have little variance, and represent the calibration 

datum for the systematic noise and the associated EVM attributed to the measurement 

system. The calibration datum provides a known system noise level base to permit the 

identification of non-systematic noise sources that enter the system via the receive 

antenna. If the received non-systematic noise is of sufficient power then an overall 

increase in EVM value above that caused by the inherent systematic noise level for a 
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specific value of received average modulating signal power (dBm) occurs. The use of 

this calibration datum is important as it allows the detection of noise that may be not 

detected by other noise measurement techniques due to its low level and random 

nature. EVM measurement methods allow the detection of subtle increases in noise 

levels to be identified because of the use of constellation diagrams with known 

statistics that form the base statistics before the deliberate introduction of the potential 

noise sources under evaluation into the shielded anechoic chamber or stable test room. 

Measurement data analysis lends support to this technique for identifying noise 

introduced to the system via the receive antenna from external origin. 
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Symbol rate 4 Megasymbols/Second (Raised Cosine Filtering a= 0.5). 
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4.2 Non-Systematic Noise Measurements 

Although the measurement instrumentation as shown in Figure 6 can acquire the 

necessary empirical data relevant to non-systematic (propagation) noise, it is not 

portable enough for use at many of the measurement venues investigated for possible 

noise sources. A portable spectrum analyser model HP8596E, RF feeder cable, and a 

selection of one of the three antennas mounted on one of the non-metallic stands, 

shown in Figure 7, is best suited for propagation noise measurements. This system is 

shown in Figure 11. The measured available noise power spectral density can be 

expressed as an effective noise temperature, and noise figure (NF) is defined for a 

reference temperature of 290 K [45]. This method has been adopted by the IEEE as 

part of its standard definition of noise figure [ 46], and the characterisation of noise 

sources usjng the concept of their effective noise temperature is adopted in our noise 

measurements. 

SPECTRUM ANALYSER 

HP8596E I A I 
Gr=1 J'-

Ta= Antenna Noise Temperature 
T1 = RF feeder Noise Temperature 
T, = Spectrum Analyser Noise Temperature 
T 5 = Overall System Noise Temperature 
G, = Receiver Gain of Spectrum Analyser 

T, 

Figure 11: Non-Systematic Noise Measurement System. 

A measurement system sensitivity of -123.8 dBm is calculated in Appendix A for the 

non-systematic noise measurement system fitted with a corner reflector antenna of 

15 dBi gain. This sensitivity is adequate for identifying noise sources that can 

significantly influence the BER performance of data transmissions over the indoor 

radio channel using digital modulation [38]. 
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4.2 Non-Systematic Noise Measurements 
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necessary empirical data relevant to non-systematic (propagation) noise, it is not 
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noise sources. A portable spectrum analyser model HP8596E, RF feeder cable, am! a 

selection of one of the three antennas mounted on one of the non-metallic stands, 

shown in Figure 7, is best suited for propagation noise measurements. This system is 
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expressed as an effective noise temperature, and noise figure (NF) is defined for a 

reference temperature of 290 K [45]. This method has been adopted by the IEEE as 

part of its standard definition of noise figure [46], and the characterisation of noise 

sources using the concept of their effective noise temperature is adopted in our noise 

measuremems. 
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Figure 11: Non-Systematic Noise Measurement System. 

A measurement system sensitivity of-123.8 dBm is calculated in Appendix A for the 

non-systematic noise measurement system fitted with a comer reflector antenna of 

15 dBi gain. TI1is sensitivity is adequate for identifying noise sources that can 

significantly influence the BER perfonnance of data transmissions over the indoor 

radio channel using digital modulation (38). 
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4.2.1 Measurement Method of Non·Systematic 

Noise 

There are many variables that can affect the me11Surement value obtained for any data 

gathering exercise of non-systematic noise. Some of these variables Include the 

measurement dependence on antenna polarisation, direction, directivity, and height, 

and long-tenn variations with time and location [2]. It therefore becomes necessary to 

completely specify the conditions under which measurements are made. Noise that is 

non-systematic can attributed to four main categories: 

1. Galactic noise: includes cosmic and solar noise. 

2. Noise due to absorptive losses: includes attenuation and !henna! noise generated 

as a result of atmospheric constituents. 

3. Atmospheric noise: includes electrical disturbances such as lightning and other 

natural electrical discharges within the atmosphere. 

4. Man-made noise: includes unwanted interference from other radio transmissions 

nnd incidental radiation from devices or equipment not designed or intended to 

emit electromagnetic energy. 

Galactic noise measurements are not possible due to the sensitivity restriction of our 

measurement system (-123.8 dBm), and indeed this form of noise which is observable 

in the approximate range of frequencies from 8 MHz to above one gigahertz virtually 

disappears at frequencies in excess of 1.5 GHz [47]. Because of its extremely low 

power level in our frequency band of study (2.3-2.5 GHz), there is no need to measure 

it. 

Noise due to absoiptive losses is caused by the attenuation of the transmitted radio 

wave as it passes through atmospheric constituents such as gases and water vapour, 

with rain and cloud being the most significant contributors to this fonn of noise. The 

indoor radio channel because of the inherently short radio paths (with zero rain or 

cloud influence) is minimally affected by noise due to absorptive losses, and the 
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power level attributed to this form of noise is proven to be below the sensitivity of our 

measurement system. It therefore is not considered as a significant factor in this study 

as it has been shown that noise power levels that are equal to or below the sensitivity 

level of the measurement system have negligible affect on BER for data transmissions 

over the indoor channel [4]. 

Atmospheric noise is collectively tenned static noise. This static noise "consists of 

impulses, and these non-sinusoidal waves have harmonics whose amplitude falls off 

with subsequent increase in the harmonic order'' [47]. The intensity of atmospheric 

noise at ground level and for frequencies above 1 GHz is like galactic noise extremely 

low, and as such has no significant effect on this study. 

Man-made noise, in general, far outstrips the noise created by any other source. Due 

to the very nature of the contributing sources including their location, numbers, 

frequency of emissions, power intensities etc, the variability of man-made noise 

makes the characterisation and analysis of this form of noise difficult. Models of man­

made noise are still embryonic [2], and the measurement methodology employed to 

gather data for statistical modelling almost always involves the measurement of noise 

power in a particular bandwidth over a fixed time period. The noise power can be 

averaged over the measurement bandwidth, and also peak values can be identified to 

determine the worst case noise values for the fixed measurement time period. Our 

non-systematic noise measurement system was capable of both peak and average peak 

power measurement, and data is presented in both forms in this thesis. 

4.2.2 Non-Systematic Noise Measurement Plan 

The measurement plan was based upon the collection and collation of non-systematic 

noise measurement data from various venues. The venues chosen are representative 

locations where portable radio communications systems may be used, and include the 

following: 

I. University and school lecture moms and halls. 

2. Offices of business. 
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3. Public use areas such as shopping malls and centres, bus and trnin stations, 

hotels, restaurants, food halls, sporting comple:ices, libraries, municipal 

buildings, parks, nnd roadways. 

4. Industrial units, factories, and manufacturing plants. 

Appendix C lists the specific venues where the measurement of non-systematic noise 

was undertaken. 

The aim of performing measurements at these locations was to not only to identify the 

contributing sources of non-systematic noise for the 2.3-2.5 GHz band under 

evaluation by way of classification according to location, but also to characterise the 

noise power levels present at the selected measurement sites. In order to ensure 

statistical validity of the measurement results a mathematical specification of the 

measurement parameters associated with the gathering of non-systematic noise data is 

required, and this specification is addressed in Section 4.2.3. Noise emission levels 

and the temporal variance of these emissions have been shown to be directly related to 

the portion of frequency spectrum being evaluated. Various sources of man·made 

radio noise have been identified by measurement, and particular interest is taken in 

ensuring that our measurements included the effects of any equipment present and 

operating at the measurement venues. Table 1 provides a useful guide of unintentional 

man-made radio noise sources, which were evaluated as part of this non-systematic 

noise measurement plan. 

Table 1: Man-made radio noise sources 

Man-Made Noise Sub-Categories 

Sources-General 

Category 

Automotive Sources Ignition circuitry, alternators, ge.nerutors 

and electric motors, buzzers, switches, 

regulators and horns 

Power Transport and Distribution lines1 transmission lines, AC 
~ 
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Generating Facilities transformer substations, DC rectifier 

stations, generator stations 

Industrial Equipment RF stabilised arc welders, electric 

discharge machines, induction heating 

equipment, RF soldering machines, 

dielectric welder and cutting machines, 

silicon controlled rectifiers, circuit 

breakers/switches, microwave heaters, 

general electronic.office machines, 

elevators 

Consumer Products Appliance motors, microwave ovens, 

fluorescent, sodium vapour, and mercury 

vapour lights, spurious emissions from 

citizen band am transmitters, electronic 

door openers, television receiver local 

oscillator radiation, personal computers 

Lighting Systems Neon, mercury, argon, and sodium vapour 

lights, fluorescent light fixtures 

Medical Equipment Diathermy 

Electric Trains and Buses Overhead power transmission lines and 

equipment, electric motors 

There are three categories of man-made equipment that are specifically desigm;d to 

emit radio waves as a standard pan of their operation: 

1. Radio transmitters. 

2. Restricted radiation devices. 

3. Industrial, Scientific and Medical equipment. 

Interference arising from out-of-band emissions from operational radio transmitters is 

one of the major wireless communication problems affecting the reception quality of 
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other services using the electromagnetic spectrum. According to [67), the noise class 

of greatest intensity consists of radio transmitters used in the broadcast services, in the 

aerospace, land, and maritime mobile-radio services, in fixed point communication 

services, for radio navigation and position detennination, for the transmission of 

standard time, standard frequencies, radio telemetry, and control signals, and in 

meteorological monitoring and observation. Spurious emissions from such 

transmissions is by deduction dependent on the number and types of transmitters that 

are operating and the frequency, intensity, and duration of the emissions. 

Consequently the nature of the noise resulting from out-of-band emissions from radio 

transmitters is most often unique to the site where noise measurement is undertaken, 

and varies widely between measurement venues. 

Restricted radiation devices are transmitters that radiate only moderate 

electromagnetic fields and are permitted to function without licensing requirement by 

the spectrum management authorities. The coverage area for these types of 

transmission is limited to small geographic locales, and some typical equipment in 

this radiation category include short range radio control transmitters, proximity-radio 

signposts, and motor vehicle location and auto-locking systems. Out-of-band 

emissions from restricted radiation devices are generally of lower intensity than those 

from operational radio transmitters, and like radio transmitters are typically unique to 

the venue where the noise measurements are taken. Transmitter devices in this group 

are prohibited from operating if they generate hannful interference to any licensed 

radio service. 

Industrial, scientific and medical equipment that depends 011 the radiation of 

electromagnetic waves has been allocated several portions of the radio spectrum 

termed the JSM bands. One of such bands is the allocated frequency range 

2.4-2.4835 GHz, which is part of the spectrum characterised for additive channel 

noise in this thesis. ISM equipment when operational is prohibited by law from 

adversely affecting the operation of other authorised users of the radio spectrum, and 

any out-of-band interference is therefore of concern. Our measurements at selected 

venues identified microwave ovens as noise sources of sufficient intensity as to 

warrant in depth analysis of their characteristics and effect on BER for data 

transmissions employing digital modulation within the 2.3-2.5 GHz frequency range 
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characterised in this thesis. The result of this analysis is provided in Chapter 5 and 

Chapter 7. 

4.2.3 Mathematical Specification of the 

Non-Systematic Noise Measurement System 

Parameters 

In order to validate the data gathered during :he measurement of non-systematic noise 

the following measurement parameters require specification: 

The desired measurement error limit (s), 

2. The measurement spectral "bin" bandwidth, and the associated start and stop 

frequen~ies for each bin (Hz), 

J. The bandwidth of the measurement filter (Bn, 

4. The time duration of the measurement, tenned the minimum sample record 

length (Tm), 

The relationship between!;, Br, and Tm is derived from the measurement estimate of 

the noise power spectral density function Ci, (f) taken over a minimum sample record 

length Tm, 

The power spectral density function describes the frequency composition in terms of 

the records mean square value. By filtering tne nofae time sample record with a sharp 

cut-off bandpass filter of bandwidth (Bt), and then calculating the average value of the 

squared filter output (V,'), an estimate value of the mean square value E[V;(f ,Br)] 

is obtained. This value will be an unbiased and consistent estimate of the !roe value as 

the averaging time (T) approaches infinity, therefore: 

-· 'I' , E[V;(f,B,J]=lim- x (t,f,B,)dt 
T-•T O 

(4.1) 

where x(t,f,B1) represents the filter output, and V,:(f,B1) is the mean square value of 

x(t) associated with a filter bandwidth Br centred on frequency (t). 
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The power spectral density G,(f) can be dd.ir:ed as [65]: 

G,(f) - lim V~(f,B,) .. Jim__!._ .J'x2(t,f,Br)dt 
•,-0 81 i:.~

0 
BT O 

(4.2) 

where B Is the total bandwidth of the frequency range of interest, and the 

measurement is perfonned by sliding the narrowband filter of bandwidth 81 over B. 

In tenns of G,(f) the mean square value of x(t) between any two frequency limits f1 

and fi is given by: 

,, 
\i;(fi,fi)'" JG,{f)df ,, (4.3) 

G,{f) is always a real valued non-negative function and its estimated value is 

detennined for twenty spectral bins each being 10 MHz wide to cover the frequency 

band from 2.3-2.5 GHz. The filter used in the measurements was set at 81 = 10 kHz 

bandwidth which is sufficiently small when compared to the bin size of IO MHz. The 

minimum sample record length Tm to achieve a desired error limit~ for a chosen 

resolution bandwidth Br is found from [65]: 

S""'[G,cr)J 1 
G,(f) = ~B1Tm 

(4,4) 

where: 

Si.. standard deviation. 

Therefore: 

(4.5) 

In measurements of non-systematic noise a desired error limit of 0,1 % was set, then 

from Equation (4.5) a minimum real time sample record length, Tm, of 100 seconds is 
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required. The record length chosen for all noise measurements was therefore selected 

as 2 minutes, this being the closest acceptable whole minute. 

4.3 Calibration of the Monopole Antenna for plane~ 

wave noise measurements 

When a receiving antenna is illuminated by an electromagnetic incident wave, the 

component of the electric field parallel to the monopole antenna has an amplitude 

(Eu) as defined in Equation (3.19). A relationship can now be derived between the 

value of ER and the voltage (Vt.) delivered to a load impedance (Zt.) connected to the 

antenna terminals. This relationship is achieved by the determination of a frequency 

<lcpendent factor appropriately termed the "antenna factor" (AF) which, as defined by 

the IEEE standard dictionary, "when properly applied to the voltage at the input 

terminals of the measuring instrument, yields the electric field strength in volts per 

metre and the magnetic field strength in amperes per metre". The antenna can be 

mol.lelled as an equivalent Thevenin voltage source to calculate the voltage magnitude 

V1. across the actual load impedance Zt, The theoretical expression for the antenna 

factor of a general receiving antenna is then: 

AF=.!..J l]it 11+_£!!.I 
f. GrRs ziJ (4.6) 

where G, is the gain of the receiving antenna relative to an isotropic antenna, and R, is 

it~ radiation resistance. For all our calibrated noise measurements a monopole antenna 

of one quarter wavelength at the measurement frequency was used. Because the 

monopole is resonant al only one frequency, a range of vertical radiators was required 

to cover the 2.3-2.5 GH;,; frequency band under evaluation. By ensuring that the 

antenna is resonant then Equation (-1.6) can be applied to compute the theoretical 

value of AF al any selected frequency. G, the ma:timum directive gain of the 

monopole receiving antenna relative to an isotropic antenna has been shown [43] to 

he 1.(1438 (2.1586 dB), with Z. = R, = 36.5 ohms at resonam.-e. For all our 

measurement systems Z1., the impedance as seen by the antenna, consisted of the 

drnracteristic impedance of the antenna coupling cable and the input impedance of the 
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measurement instrumentation connected as a termination on the end of this cable. 

Specifications and measurement has shown this combined tennination to be 50 ohms 

resis1ive, ZL is therefore 50 ohms. The substitution of G,:: 1.6438, 2,. = R,"' 36.5, 

ZL = 50, '1 = 120.t and ),. :: Q.3 / frequency (GHz) into Equation (4.6) and taking 

logilrithms yields: 

AF" 20log10(frequency(GHz)) + 28J8194 [dB] (4.7) 

Equation (4.7) results in an antenna factor of 35.78dB (61.56 numeric) for a 

frequency of 2.4 GHz which is at the centre of our measurement band of interest, 

35.42 dB (58.996 numeric) at 2.3 GHz, and 36.14 dB (64.126 numeric) at 2.5 GHz. 

This variation in AF must be accounted for when computing received electric field 

intensities from our noise measurement data. 

4.4 Non~Systematic Noise Measurement Procedure 

The venues selected for the measurement of noa-systematic noise are given in 

Section 4.2.2. The measurement procedure adopted at each venue was as follows·. 

I. Set up the non-systematic-noise measurement system as shown in Figure !l, 

lhen select and mount the omnidirectional co linear antenna model VOI0-2325 on one 

of the non-metallic stands as depicted in Figure 7. 

2. Using the measurement parameters determined in Section 4.2.3 s~t the 

spectrum analyser resolution bandwidth (RBW) 10 JO kHz, the RBW is equivalent to 

Br, Then perform twenty measurements each of 2 minute duration to meet the 

requirement of Tm, one measurement for each of twenly spectral bins of 10 MHz 

width to cover the frequency band 23-2.5 GHz. Enable the peak hold option of the 

spectrum analyser for each measurement. This allows 1he visual detection of noise 

levels that exceed the systematic noise during the 2 minute measurement period. Save 

all the measurement result5 to files within the spectrum analyser memory. 

3. If non-systematic noise is observed during the measurements performed in 2, 

then, by visual inspection of the spectrum analyser screen trace detennine if the nature 
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of the noise is impulsive, continuous, or a combination of both. Repeat the 

measurements and determine, again by visual inspection of results, if a similar 

measurement result is obtained. 

4. . If the measurement result of non-systematic noise observed in 3 is repeatable, 

then connect the directional comer reflector antenna model ORT 2415 in place of the 

omnidirectional colinear antenna model VOl0-2325, ensuring that the same vertical 

polarisation is maintained. Now perform a series of measurements each of 2 minute 

duration at intervals of 10 degrees azimuth separation. Analyse the results for each 

measurement and determine if a particular direction provides a higher level of noise 

power density. If so, then a spatia!ly separated set of readings can also be completed 

to assist in directional location of the noise source, with COrL~ideration also being 

given to multipath reflections. if the noise source exhibits uniform power 

directionality, then identifying it can require analysis over a significantly longer time 

period, such as diurnal measurements, to determine for example the existence of any 

cyclic pattern which may assist in location of the source should it be man-made. 

5. Once the source of non-systematic noise has been identified, a series of 

measurements are completed with the calibrated quarter wave monopole antenna 

{replacing the ORT 2415 comer reflector antenna). This antenna has an AF defined by 

Equation (4.7) in Section 4.3, and the application of the AF to the measurement data 

provides the received free space electric field intensity at the receive antenna location 

for the measurement. 

The live preceding steps were adopted in the first instance to ascertain the existence 

or otherwise of non-systematic noise within our frequency band of interest, namely, 

2.3-2.5 GHz. The analysis of measured data allowed the identification of noise 

sources which radiatc<l electromagnetic waves of sufficient power intensity at the 

receive antenna as to exceed the system measurement sensitivity after propagation 

path losses (Appendix A). The measurement data represent the peak noise value 

recorded for al! f1equcncies in our band of interest during the two minute recording 

perioll. The spectral display obtained by this measurement method can be termed a 

"penk signature", and it is representative of the highest amplitude reading obtained for 

each frequency in the ban<l during lhc two minute reading period. Figure 12 provides 
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an example of a spectrum analyser peak signature display obtained from a two minute 

recording of the random noise bursts emanating from an operational microwave oven. 

The measurement was performed using the colinear antenna at a distance of two 

metres from the oven. 
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Figure 12: Peak signature spectrum analyser display for a single 

operational microwave oven at 2 m range using omnidirectional colinear 

antenna. 

In addition to gathering the peak amplitude measured data values the use of the view 

function of the spectrum analyser provided sample data representative of any random 

noise bursts with time. A recording of 50 data samples for each 10 MHz bin (20 bins 

covering the 2.3-2.5 GHz frequency range) provided an estimate of "average peak 

noise power''. 

The estimate values of peak hold noise power and average peak noise power are 

presented in Sections 4.5 and Chapter 5. These estimate values were obtained from 

measurement data and they characterise the only identified noise sources in the 

2.3-2.5 GHz frequency range identified as above the system measurement sensitivity 

of-123.8 dBm. 
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4.5 Non-Systematic Noise Measurement Results 

The completion of the measurement plan {outlined in Section 4.2.2), and analysis of 

collected data resulted in the clear identification of three sources of non-systematic 

noise worthy of consideration when modelling the indoor radio propagation channel 

as a medium for high speed data transmission. The sources identified by measurement 

were all man-made, and as such are categorised in accordance with Section 4.2.2 as 

radio transmitters, restricted radiation devices, or industrial, scientific and meilica! 

equipment. The non-systematic noise sources that generate electromagnetic radiation 

in the 2.3-2.5 GHz frequency band being evaluated are identified as follows: 

1. Building Alarms radio frequency transmission signals. 

2. Pay Television rad!o frequency transmission signals. 

3. Electromagnetic radiation from Operational Microwave Ovens. 

In the following sections the results obtained from the analysis of measurement data 

are presented, and analysed. 

4.5.1 Non-Systematic Noise Sources 

4.5.1.1 Building Alarms 

These type of alarms are typically found in buildings, and fonn part of the building 

security system. The electromagnetic radiation associated with these building alarms 

fall in the restricted radiation device category given in Section 4.2.2. The alanns were 

identified at two measurement venues, the first being Wilson's Engraving works, and 

the second the Whitford City Shopping Centre (see Appendix C for venues). The 

physical location of the alarm unit, responsible ~or the emission of electromagnetic 

radiation in the measurement band of interest, was determined by the adherence to the 

measurement methodology ouclined In step (4) of Section 4.4. When the location of 

the alarm unit wus determined, then, a calibrated measurement was performed making 

use of the resonant monopole antenna as detailed in step (5) of Section 4.4. The peak 

signature spectrum analyser display for the building alarm unit located at Wilson's 
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Engraving Works is given as Figure 13. The peak signature measurement depicted as 

Figure 13 was obtained at a range of 1 m from the alarm unit, with the comer reflector 

antenna used as the measurement antenna. 

~~:29: 35 19 SEP 1995 
~WEW ALARM 11:~9:29 3~ AUG 1995 
AEF .~ dBm --AT 1~ dB 
PEAK 
LOG 
10 
dB/ · 

VA SB 
SC FC 

CORR 

ST ART 2 . ~f6f6., GHZ 

, 
\ 

. 

MKR 2.4535 GHz 
-36.54 dBm 

* 

<'> 

STOP 2.5f6{ariJ GHz 

Figure 13: Peak signature spectrum analyser display for a building alarm 

unit at 1 m range using comer reflector antenna. 

The maximum received power level for this measurement is shown in Figure 13 as 

-36.54 dBm at a frequency of 2.4535 GHz as shown by the marker (MKR) values 

located at the top of the figure, and positioned to the right hand side. The calibrated 

measurement using the resonant monopole antenna, as described in Section 4.3, was 

performed at 5 m range from the building alarm unit. This measurement resulted in a 

maximum received power level of -61.33 dBm. A similar calibrated measurement 

performed at Whitford City Shopping Centre at 5 m range provided an estimate of 

-62.87 dBm maximum receive power level, at a frequency of 2.4505 GHz. Both these 

signals fall within the 2.4-2.4835 GHz ISM band of interest, and are of sufficient 

intensity as to be of concern when co-location with other receivers such as WLANs 

operating within the same ISM band occurs. Due to the unlicensed nature of the 

2.4-2.4835 GHz ISM band, a measurement evaluation of any proposed site before 
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installation of a new system is recommended, as this can identify the existence or 

otherwise of electromagnetic radiation from building alarms. The operating frequency 

of any proposed new system can then be selected to minimise interference from the 

existing alarm/s. 

4.5.1.2 Pay Television 

Pay television has recently been introduced into Western Australia as a licensed 

commercial enterprise, its' prime objeCtive is the del!very of multiple television 

channels to paying customers. The channels are modulated onto separate radio 

frequency carrier waves, and transmitted over terrestriol radio links to the customer 

receivers, which are typically located within a 20 km radius of the transmission site. 

Electromagnetic radiation associated with Pay Television transmissioos is categorised 

in Section 4.2.2 as being sourced from radio transmitters. When consideration is given 

to these Pay Television transmissions as a rource of noise, then their significance is of 

little consequence unless these transmitters produce out-of-band spnrious emissions. 

As described in Section 4.2.2 this form of spurious emission interference from radio 

transmitters has been Identified as one of the major interfering noise sources that is 

likely to affect the reception quality of other services using the electromagnetic 

spectrum (67], and as such warrants due consideration. Figure 14 shows the peak 

signature measurement of a group of the Pny Television modulated carrier waves. The 

measurement was obtained at the South Perth River Foreshore venue, and the corner 

reflector antenna was used for the measurement. The Pay Television transmission site 

(Perth Centre Point Tower) is a direct line of sight distance of 2.1 km from the 

measurement venue, and the propagation path is unobstructed, being primarily over 

water. 
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Figure 14: Peak signature spectrum analyser display for Pay Television. 

For the Pay Television transmission signal shown "tagged" by the diamond shaped 

MKR in Figure 14 a maximum received power level of -47.56 dBm at a frequency 

2.3455 GHz is measured. A calibrated measurement performed at the same location 

with the resonant monopole antenna provided an estimate of -61.61 dBm maximum 

receive power level at a frequency of 2.3455 GHz. The frequencies identified by this 

measurement, shown as Figure 14 were verified with the spectrum management 

authorities as being licensed transmissions, and are not considered as spurious out-of­

band interference. However the existence of any spurious electromagnetic 

transmissions, which emanate from transmitters, can therefore be identified by 

performing measurements at any site where the installation of any new system 

operating in the 2.4-2.4835 GHz ISM is proposed, and then validating the spectral 

signature obtained by measurement against technical license specifications. Where an 

offending transmitter is identified as a licensed service, then collusion with the 

appropriate spectrum management authorities generally results in action to remove the 

interference. 
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4.5.1.3 Operational Microwave Ovens 

Electromognetic radiation that is sourced from operational microwave ovens has been 

identified at the majority of the measurement venues listed in Appendix C. The 

proliferation of both domestic and commercial microwave ovens has introduced a 

non-systematic noise source of significant magnitude as to seriously impact the 

transmission perfonnam:e of any service which is operational in the frequency band 

under evaluation In this thesis. The noise from operational microwave ovens !s 

categorised in accordance with Section 4.2.2 as Industrial, Scientific and Medical. 

Figure 12 is the spectrum analyser display of the peak signature of an operational 

microwave oven which was located within the staff common room at Edith Cowan 

University measurement venue. The analysis of this measurement trace indicates that 

the highest peak power level of electromagnetic radiation being generated from the 

microwave oven which is behaving as a noise source, is spectra!ly located between 

2.4-2.47 GHz. This frequency range is directly coincident with the 2.4-2.4835 GHz 

ISM band employed for the transmission of data using BPSK and QPSK modulation 

as an integral part of networks such as WLANs. 

4.6 Conclusions 

For the indoor radio propagation channel we have investigated and characterised 

additive channel noise present in the 2.3-2.5 GHz frequency band. The noise data was 

obtained from measurements performed at venues listed in Appendix C of this thesis. 

Although time precluded a more extensive mensurement program, the adherence to 

the method and measurement plan given in Sections 4.2.t and 4.2.2 respectively 

identified building alarms, pay TV, and operational microwave ovens as three 

potential non-systematic noise sources. Care was taken to measure the level of noise 

emitted from devices such as light switches, elevator door switches and associated 

contacts, photocopier machines, and computers at locations where these existed. 

Photocopiers and elevator door switches are identified as noise sources in the 

2.44 GHz band by [78]. The noise emitted by these devices was found to be below the 

measurement sensitivity of our system (·123.8 dBm). Operational personal computers 
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with their associated switched mode power supplies are known to emit 

electromagnetic radiotion in the 2.3-2.5 GHz band, but the noise was also found by 

measurement to be below the measurement system sensitivity of our system .. The 

sensitivity chosen for our noise investigations of -123.BdBm is 32.BdB more 

senSitive than the RCR standard receiver [76J and therefore allows the identification 

of noise levels that have sufficient Intensity to significantly influence BER 

performance of data transmissions for equipment op,erated over indoor radio paths. 

The measurement campaign identified noise emissions from operational microwave 

ovens at significant level to degrade the BER performance of indoor radio systems. 

The level of noise varied across the 2.3-2.5 GHz band when the oven was operational 

and was variable with time. Noise levels entering the receive antenna at 5 metre oven 

to antenna separation approached and in some cases exceed that of typical reference 

receiver !evels for indoor transmission systems. Microwave oven generated noise was 

found to be the only form of noise to warrant in depth evaluation of its Influence on 

BER performance for data transmitted over the indoor radio propagation channel. 

This fonn of noise is characterised in detail in Chapter 5 and its influence on BER 

analysed in Chapter 7. 
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Chapters 

Analysis of the Non-Systemic Noise 

Generated by Operational Microwave 

Ovens 

An operational microwave oven can be considered to act as a transmit antenna located 

at or near the origin of a spherical co-ordinate system as shown in Figure 15. 

x 

~ = r sin f3 cos ck 
y = r sin 8 sin q, 
z =r cos 8 

Figure 15: Spherical Co-ordinate System. 
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The shape of any radiation pattern can be considered to be independent of the 

measurement range (r) provided that r is chr,sen sufficiently lnrge relative to the 

wavelength of the transmitted electromagnetic radiation, and the largest dimension of 

the.antenna system. When this is true the magnitude of the electric field strength 

received at r is termed a "far field" value [42], and as such ER can be found from 

Equation (3,19). Because the value of power being transmitted from an operational 

microwave oven has been shown to be dependent on frequency, and therefore 

wavelength, then as determined by the measurement procedure of Section 4.4 a series 

of measurements were required for the twenty spectral bins each of 10 MHz width to 

cover the frequen..:y bancl 2.3-2.5 GHz, The measurements were performed at r = 5 m, 

and at increments of ii= 10 degrees in the x-y plane of the spherical co-ordinate 

system shOwn in Figure 15 (z = 0 for all measurements). The 5 m range is considered 

sufficient to meet the far field requirement, this range being approximately twenty 

times the typical maximum dimension of the microwave oven, where the oven is 

acting as the transmit antenna, and appro:idmately forty times the wavelength of the 

electromagnetic radiation that was identified to be emanating from operational ovens 

at or near many of the measurement venues. All measurements were performed using 

the calibrated resonant one quarter wavelength (1/4 A) monopole antenna (Appendix 

8). The measurements indicated that the average peak power level of the random 

noise bursts is uniform for all values of angle 0 and 0, at a constant ranger, for the co­

ordinate system of Figure 15. Additionally the measurement data showed no clear E· 

field polarisation dependency, which is in agreement with data of other research [75]. 

Vertical polarisation is selected for all measurement data gathered for analysis of 

microwave oven noise in this thesis. The average peak measured power of the random 

noise bursts delivered to the measurement instrumentation load impedance (Zt.) at 

r = 5 m for three different operational microwave oven models is plotted as the 

ordinate of Figure 20 in Section 5.1, with frequency as the abscissa. From Figure 12 a 

characteristic shape can be observed that typifies the electromagnetic radiation levels 

encountered during other research measurements [4] [76]. An explanation for the 

characteristic shape is proffered by the following qualitative description of the 

magnetron oscillator, which provides the source of electromagnetic radiation for all 

microwave ovens. 
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5.1 The Microwave Ovens Magnetron 

Most operational microwave oven magnetrons produce electromagnetic radiation at a 

nominal frequency of 2.45 GHz. The electromagnetic radiation is produced by the 

magnetron and coupled to the cooking cavity by the use of a waveguide. The CW 

frequency produced by the magnetron has a 50 % duty cycle which for ovens that ron 

off a 60 Hz mains power outlet results in a cadence of 8.33 millisecond on and 8.33 

millisecond off. For an oven ronning off a 50 Hz mains power outlet the cadence is 10 

milliseconds on and 10 mil!iseconds off. For the on period of the duty cycle one 

would expect the CW frequency to remain relatively stable, but measurements have 

shown that this is not the case. The variation in frequency is attributed to the 

behaviour of the magnetron itself when in two specific operational states. The first 

state can be defined as when the magnetron anode voltag.~ is suddenly varied to bring 

it into or out of a state of multi-cavity resonance, and the second state can be defined 

as that when the magnetron is operational in resonance with a constant anode vol_tage. 

The SWR as seen by the magnetron oscillator is dependent on the load that is 

presented by the waveguide feed and material occupying the cooking cavity. In 

particular the type nod volume of material in the cooking cavity and the rotation of 

that material on the ovens cooking turntable presents a constantly changing SWR to 

the magnetron osciHator. 

The microwave oven magnetron itself consists of a number of identical resonator 

cavities arrnnged in a circular pattern around a cylindrical cathode as shown in 

Figure 16. 
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Figure 16: Multi-cavity Magnetron. 

Also shown in Figure 16 (the reduced side view of the multi-cavity magnetron) a 

permanent magnet is employed to provide a strong magnetic field normal to the cross 

section. The electronics of the microwave oven provide a high positive voltage to the 

anode (VA) relative to the cathode during the on period of the oven duty cycle. A 

heating filament which is typically powered by a 3.3 volt supply heats the cathode to 

cause it to emit electrons which are accelerated towards the anode block by the 

presence of the high positive voltage present during the on period. The electron cloud 

is deflected by the influence of the magnetic field (Bo) produced by the permanent 

magnet. From electromagnetic fundamentals Bo produces a force -evr in the azimuth 

direction, which changes the electrons trajectory in the direction of this force. For the 

cathode radius (a) and anode radius (b) shown in Figure 16 the voltage potential 

(V(r)) at any radius r is given by: 

V(r) = V
0 

[ln(r/ a )]![ln(b/ a)] (5.1) 

At radius r the velocity of an electron is from electromagnetic fundamentals: 

v(r) = ~[2cv(r )] (5.2) 

Where C is defined as (elm) the electron charge (e) to mass (m) ratio es 1.76 x 1011 

coulombs I kg. 

Also electron velocity (v) = me r where me is defined as the angular velocity of the 

electron. 
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Circular motion of the ckc1ron will occur ~r mdius r about the cathode if the radial 

clectrk Field force on the electron given by - e F., = eV~ / (r In (b / a) J and the 

outward ccnllifugul force on the electron {m .;,,; arc in equilibrium with the inwardly 

facctc<l magnetic force such that: 

mv' 

' 
,v. 

+ ----;::r,;-;) -
r In~,~ 

e II Bo 

Substitution for I'= ai, r imo Equation (.5.J) and transposing yields: 

+ e v. 
(tJ, 111 r' ln (b/a) 

e (J), Bo 
m 

(.5.J) 

(5.4) 

Substitution for elm = C into Equation (5.4) and transposing to solve for the anode 

accelem1ing vollage v. then: 

(5.5) 

An anode voltage of this value allows the electrons to exhibit circular motion at 

angular frequency equal to w,, at a radius equal tor. 

A multkavity magnetron is a struc1ure that is periodic in the azimuth or <J, direction 

as shown on Figure 16, if there are N cavities the period in <J, is 2Jr/N. The presence of 

an electromagnetic Field that propagates in the <J, direction with a phase velocity equal 

to the electron velocity w,, r is explained by "Floquet's Theorem" on spatial 

harmonics whe1e each Field component can be expanded in the form: 

(5.6) 

The period fl = Ztr' N therefore: 
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( •) . " ( ) _,,,.,,., 
Ip r,.,, £... !1'11 r e (5.7) 

Because the structure closes on itself, v, (r, 21r) = v, (r, 0), and the only possible 

values of fJ tha1 make {J21requal a multiple of 21rare: 

m=0,:1:l,:1:2, ..... (5.8) 

With the value of fJ specified, a corresponding angular frequency IV is also specified 

for example tl.l.. for the m'h mode. Therefore when IV= 111,,, we obtain a value m for 

/J.,, and thus a typical field component will have the following form: 

( •) ,.,., '{, ( ) -,1,. ... vJ;,Jtv, 
If~ r,.,, e .. • ~.'!'.re · (5.9) 

The phase velocity in the azimuthal direction{¢) for the 1111
' spatial harmonic of the m'h 

resonant mode is: 

l'r·"'" '" 
w.' r,J,. r 

(5.10) 
fl •. m + 11 N 

at rndius r; that is, an~lar phase velocity is tv,,/ /J,,,, 

The usual mode employed by magnetron oscillators such as those used in microwave 

ovens is the ,T mode, where the phase change between adjacent cavities is 180°, or 1r 

rndiuns. Euch of the N cavities of the magnetron with its input gap behaves as a short­

circuited trnnsmission line of one·quarter wavelenglh, and therefore has a maximum 

electric field across the g3p, For the 1r mode the field is oppositely directed for 

adjacclll cavi1ics us shown in Figure 16. For the ,r mode, p., ¢ = 111 ¢ must equal Jr 

for a change in ¢ equal to one perio~ 21r IN . Therefore m = N / 2, and the phase 

\'clocily for the 11"' spatial harmonic hecomcs: 

Vr.•·•·: "' 
2cv.,·,: ,. 
N (1 + 211) 

(5.11) 
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For interaction to occur ut o particular radius r between the electron cloud accelerating 

1owards the am.Jdc and one of the spatial hunnonics the anode voltage v. must be such 

that: 

V (r) "'\lp,•NI! (5.12) 

or: 

2 {I) ,VJ: 

N(l+2N) 
(5.13) 

The necessary value for V0 to obtain synchronism between the alternating hannonic 

field and the electron cloud can be found from Equation 5.5. The relationship between 

Equmion 5.5 for the anode voltage V0 and Equation 5.13 for the angular frequency w., 

at radius r determines 1he magnetron oscillation frequency. For a fixed value of V0 , a 

magnetron of fixed dimensions u and b as shown in Figure 16 will exhibit at a 

nominal radius ran oscillation at angular frequency ~. Variation of value v. for the 

magnctrons in microwave ovens occurs at the beginning and end of the 10 

millisecond "on" period for 50 Hz mains powered ovens and the 8.33 millisecond 

"on" period for 60 Hz mains powered ovens, The derivation of the "on" "ofr' cadence 

is directly attributed to the method employed in the microwave oven to produce the 

magnetron anode voltage V0 relative to its cathode. In most microwave ovens use is 

made of a high voltage step up transformer 10 step the mains voltage (240V AC or 

I 15V AC) to approximately 2400V AC al the secondary ou1put. A voltage doubler 

half wave rectifier circuit is CtJnnectcd n! the output of the high voltage step up 

lrnnsformcr secondary winding to supply the "on" anode voltage v. pulses 10 the 

magnetron anode at a voltage value that rapidly rises from O volts to nppro.~imately 

positive 4000 volts on application. 4000 volls Is lhc averngc, the actunl voltage varies 

slightly between the three ovens evaluated, The resultant varintion in angular 

fm1ucney w., and the associated measured frequency!,, where/, = ,v,, I 2n; is plotted 

against the anode voltage range v. applied during the "on" pulse for three sample 

ovens tested on a magnetron performance diagram shown as Figure l 7. 
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Figure 17: Magnetron Performance Diagram 

O Whirlpool Magnetron 

Solid Mitsubishi Magnetron 

Toshiba Magnetron 

As shown by Figure 17 the three microwave oven magnetrons exhibit near identical 

change in frequency for changes to the magnetron anode voltage. At an anode voltage 

of approximately 800 volts the rate of frequency change significantly reduces and the 

magnetrons operating frequency of typically 2450 MHz is obtained increasing the 

anode voltage above 800 volts to 1800 volts results in only 15-25 MHz increase in 

frequency to 2465-2475 MHz. This upper cut-off frequency is exhibited in all field 

measurement evaluations of emissions from operational microwave ovens, and has 

been verified by the measurement plot of three magnetrons as a real upper limit to the 

frequency of operation. The upper cut-off frequency for the three microwave ovens is 

µlotted from field measurements as Figure 18. 
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Figure 18: Magnetron Upper Cut-Off Frequencies 

2.55 

The identification of the existence of measurable upper cut off frequencies led to 

further data gathering and analysis to see if lower cut off frequencies that could be 

verified by measurement existed. The measurements previously conducted [4] [76] 

revealed a gradual fall off in power level at frequency values below 2.46 GHz 

extending down to approximately 2.15 GHz. By extending the observation time for 

each measurement period from 2 minutes to 15 minutes a significant change of shape 

to the spectrum analysers peak hold plot was observed. The longer measurement 

period allowed identification of received power radiated by the operational 

microwave ovens at frequency values not evident in the plots for the 2-minute 

measurement period. The existence of a lower cut-off frequency for all three ovens 

evaluated is clearly identified by measurement~ with the results plotted from the 

measurement data as Figure 19. 
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Figure 19: Magnetron Lower Cut-Off Frequencies 

2.3 

The results were surprising, as field measurements had not shown a significant step 

fall in power level of approximately 30 dB at lower frequencies. This finding is 

attributed to the very short duration of the noise burst combined with the short 

observation period of the measurement, and the spectrum analyser used for the 

measurement analysis, which has a minimum sweep time of 20 milliseconds. The 

magnetron anode voltage Va applied during the "on" pulse rises from O volts to 800 

volts in a measured time of typically 0.45 milliseconds. From Figure 17 it can be seen 

that a rapid frequency change in the order of 2.15 GHz-2.45 GHz can occur during 

this 0.45 millisecond time period. A similar reverse frequency change occurs when 

the voltage doubler action turns the anode voltage off. For the shorter spectrum 

analyser peak hold observation time of 2 minutes (with its 20 milliseconds minimum 

sweep time) these short duration "on and off frequency chirps" are often missed and 

not displayed by the analyser. The longer observation time of 15 minutes allowed 

their detection, which explains the change in shape to the typical peak hold plot, and 

th.e consequent identification of the existence of a lower cut -off frequency for the 

magnetrons. 
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Figure 20 depicts the overall peak hold plots for the three operational microwave 

ovens evaluated by the longer 15 minute measurements. 
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Figure 20: Average peak measured power level of the random noise 

bursts from an operational microwave oven at range 5 metres (receive 

antenna:- resonant 1/4 A monopole). 

5.2 Average Peak Electric Field Intensity 

An accurate estimate of the received electric field intensity ER at the measurement 

antenna position can only be obtained by the correct application of AF correction, 

where AF is given by the relationship in Equation (4.7). Also, as stated in Section 4.3, 

AF is applied to the voltage at the input terminals of the measurement 

instrumentation. It is therefore necessary to convert the average peak power level 

values given as the ordinate of Figure 20, to voltage levels that are representative of 

the average peak voltage values across the input of the receive feeder cable. The 

receive feeder cable being defined as the cable that connects the receive antenna to the 

measurement instrumentation. By performing the necessary computations (Appendix 
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E), two arrays each with twenty elements are obtained, one array representing the AF 

value at centre frequency of the twenty measurement bins, and the other the average 

peak voltage values computed from the average peak power level measurements for 

the same frequencies. The average peak voltages (V 50) in the voltage array are 

calculated for a real value of ZL = 50 ohms as determined in Section 4.3. ER, 

expressed as an average peak electric field intensity, is then found from the product of 

the arrays: 

(5.14) 

Figure 21 depicts the average peak electric field intensity calculated from 

Equation (5.14) and the data obtained from measurements with the receive antenna at 

5 metre range. The average peak electric field intensity expressed as dBµ V /m, is 

depicted for the three ovens evaluated. 
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Figure 21: Average peak electric field intensity (ER) produced by an 

operational microwave oven at 5 metre range. 
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5.3 The Magnetrons Influence on the Shape of the 

Peak Hold Plot 

The upper and lower cut·off frequencies ond general shape of the peak hold plots 

were found by measurement to be independent of the load placed into the operational 

microwove oven cooking cavity, or oven turntable rotation. Evaluation of data 

collected under no load (empty oven) with turntable enabled or disabled, and also 

through a variety of loaded (oven occupied) turntable enabled or disabled conditions 

produced the same cut-off frequencies and general shape. The test loads consisted of 

three containers each of varying size containing O.S, 1.0, and 2.0 litres of water. For 

the three loads a measurable variation of 10 dB average fall in received power at the 

receive antenna for loaded measurements was observed at all frequencies depicted in 

Figure 20 when compared to measurements for unloaded operational ovens. This is 

attributed ta microwave energy dissipation by the lond, therefore reducing the amount 

of microwave energy available for production of RF currents in the ovens metallic 

external housing, and the level of RF oven leakage. The overall shape of the 

amplitude versus frequency peak hold plot was found to be the same regardless of 

oven cavity load, A reason for this amplitude versus frequency shape is given in the 

diagrnmmatical plots often used to show magnetron perfonnnncc, the typical 

magnetron perfonnance diagrams for our Whirlpool oven arc shown as Figures 22, 23 

and 24. The magnetron performance diagram of Figure 22 depicts the Average Anode 

Current as the abscissa which is planed against two measured ordinate parameters, 

these being, Peak Anode Voltage and Average Output Power (Pa) using the same 

scaling. Figure 23 plots the Average Output power as the ordinate against Frequency 

(!) shown as the abscissa, From Figure 22 it can be seen that as the Peak Anode 

Voltage applied to the magnetron is increased from 300 volts to 1820 volts then the 

Average Anode Current is increased from 20 mi!liamps to 122 millinmps. Over this 

voltage and associated current range the magnmon frequency changes from 

2147.7 MHz to 2475.6 MHz. This frequency change is in agreement with that plotted 

in Figure 17 for the same voltage and frequency ranges. 
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Figure 22: Magnetron Performance Diagram for Ya , Po , and Average 

Anode Current (Whirlpool Microwave Oven) 

Of particular interest is the change in Po of the magnetron and its relationship with 

operating frequency . Our measurements for the Whirlpool magnetron output power 

into the oven cavity are plotted in Figure 23. Measurements revealed that as the peak 

anode voltage was increased from zero volts to a 300v the first significant oscillation 

occurred at frequency 2147.7 MHz, the average anode current at this value was 20 

milliamps and the average measured output power Po was 50 watts. At a peak anode 

voltage of 1820 volts the maximum frequency of 2475.6 MHz was measured, and 

further increase in anode voltage caused no increase in operating frequency. Further 

increase in anode voltage did increase the average anode current and magnetron 

power output up to a maximum of 800 watts as depicted in Figure 24, with no 

additional increase in frequency. The 2475.6 MHz value being the magnetron upper 

cut-off frequency for the Whirlpool oven previously identified by measurement and 

plotted in Figure 18. The magnetron power frequency relationship is therefore one 

factor that influences the shape of the average peak electric field intensity measured at 

five-metre range as depicted in Figure 21. Because the magnetron output power 
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delivered to the cooking cavity of the oven varies with frequency as shown in Figure 

23, by deduction a lower magnetron output power at the lower frequencies produces 

lower average peak field intensities at the lower frequencies. The shape of Figure 21 

reflects this with the measured average peak field intensity increasing with frequency. 
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Figure 24: Magnetron Performance Diagram for Va , Po , and Average 

Anode Current (Whirlpool Microwave Oven) 

Another factor that is difficult to quantify is the gain frequency performance of the 

microwave oven when it is considered as a radiating antenna. As previously noted our 

measurements in the far field showed no clear E-field polarisation dependency for the 

microwave oven acting as a radiating antenna. It is postulated that the gain frequency 

performance of the microwave oven acting as an antenna is related to its dimensions 

and other structural factors that influence RF leakage. As with all antennae the gain is 

related to frequency and hence wavelength and resonance. With the significant 

frequency variation of the magnetron as measured and plotted in performance 

diagrams (Whirlpool oven shown in Figure 23) gain variation is also expected. 

Quantification of the gain/frequency characteristics for microwave ovens acting as 

antennae using statistical analysis of measurement data is a difficult exercise and 

predicably would vary considerably for ovens of different manufacture. The plots 

shown as Figures 20 and 21 represent the overall gain I frequency performance of the 

rnagnetrons and associated oven structures acting as antennae for three specific 
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models from three different oven manufacturers. Figures 20 and 21 clearly display the 

measured upper and lower cut-off frequencies as previously determined which are 

related to the magnetron. Also evident is the overall ga!n frequency shape, which is a 

result of both the magnetron power/frequency response and the performance of the 

oven structure itself acting as a radiating antenna. The results do not reveal a smooth 

curve of increasing received RF field strength level with increasing frequency, and the 

peaks and dips in the responses are related to the gain/frequency performance of the 

oven structures acting as antennae. Follow up measurements were performed at a later 

time to further substantiate the consistency of results, and the analysis of the data 

gathered from these measurements replicated the same statistical plots for all three 

ovens. 

5.4 The Influence of the Load Variance on Noise 

Characteristics 

Reference [75] notes !hat the noise characteristics of th~ electromagnetic radiation 

from an operational microwave oven vary with roughly the 12 second rotational 

period of the oven turntable. From our previous analysis of measurement data for 

operational ovens with the turntable firstly enabled and then disabled (for three 

different oven load conditions) we noted that both the upper and lower cut-off 

frequencies were unaltered. The nature of the loud and its rotational influence do not 

cause the frequency of operation of the magnetron to extend beyond the identified 

range bounded by the upper and lower cut-off frequencies. The qualitative description 

and equations developed in Section 5.1 reveal that the dimensions of the magnetron 

and the anode to cathode voltage applied govern the frequency of operation. The 

operational frequency is from this analysis predicted as stable if the anode to cathode 

voltage is maintained constant during the IO millisecond "on" period, and ls defined 

by manufacturers as the opemional frequency of the oven. However, the analysis of 

da1a gathered during measurements has shown that the rotation of the load within the 

microwave oven produces a variation to the standing wave rntio at the output of the 

magnetron, which results in a variation to the magnetron power output with frequency 

of operation. A plot of how the power output varies with frequency of operatlon under 
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various !oad conditions is provided by microwave oven manufactures and is termed a 

"Rieke" diagram. A Rieke diagram is essentially a Smith Chart with the VSWR 

circles drawn in, while the reactance circles are omitted. The change in operating 

frequency for a given change in standing wave ratio at the output of ihe magnetron is 

obtained from the Rieke diagram. Figure 25 is a Rieke diagram for the Whirlpool 

oven produced by measurement data for a range of VSWR values. From the Rieke 

diagram a "pushing'' and "pulling" of the nominal magnetron operational frequency 

can be seen for changes in VSWR with load impedance variation for a given output 

power. Frequency variation of up to 15 MHz is common when the VSWR varies due 

to turntable rotational affects on the electrical load as seen by the operational 

magnetron. The result is a second order of statistical variance for the frequency being 

radiated by operational microwave ovens. Measurement data has shown that the rate 

of frequency change is directly related to the rotational velocity of the turntable, and 

the range of the frequency change is related to the nature of load within the oven 

cavity. The largest frequency variation of :1:15 MHz with respect to nominal operating 

frequency was measured over a 12 second rotational period for no-load (oven cavity 

empty) conditions with the oven at full power. Measurements with test loads of no­

load, and a container filled with 2.0 litres of water provided data for detennining the 

frequency drift statistics for our three microwave ovens. The statistics for loaded 

operational ovens are depicted in Figures .26-28 and provide an estimate of the total 

time the operating frequency is lacated within any nominal 10 MHz bin expressed as 

a percentage value. The percentage value is computed from data gathered over a full 

12 second turntable rotation period and represents an average of 50 such periods. The 

data is for the 10 millisecond "on" pulse time period at stable anode voltage and 

maximum power. It is of note that the same container filled with 0.5 litres and I litre 

respectively, gave statistically the same results as for 2 litres, and that the maximum 

frequency variation with respect to the nominal operational frequency occurred for all 

load values inclusive of no-load. The statistics for operational ovens with no-load are 

presented in Figures 29-31. 
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Figure 26: Frequency Drift Statistics (Loaded Toshiba Microwave Oven). Centre 

frequencies of bin 14, 15, 16 & 17 being 2.435, 2.445, 2.455 & 2.465 GHz. 
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Figure 27: Frequency Drift Statistics (Loaded Mitsubishi Microwave Oven). Centre 
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Figure 28: Frequency Drift Statistics (Loaded Whirlpool Microwave Oven). Centre 
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Figure 29: Frequency Drift Statistics (Non-loaded Toshiba Microwave Oven). Centre 

frequencies of bin 14, 15, 16 & 17 being 2.435, 2.445, 2.455 & 2.465 GHz . 
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Figure 30: Frequency Drift Statistics (Non-loaded Mitsubishi Microwave Oven). 

Centre frequencies of bin 14, 15, 16, 17 & 18 being 2.435, 2.445, 2.455, 2.465 & 

2.475 GHz. 
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Figure 31: Frequency Drift Statistics (Non-loaded Whirlpool Microwave Oven). 

Centre frequencies of bin 14, 15, 16, 17 & 18 being 2.435, 2.445, 2.455 2.465 & 

2.475 GHz. 

5.5 Occurrence Rate of the Random Noise Bursts 

The BER for data transmissions over the indoor radio channel is not only dependent 

on the magnitude of any interfering non-systematic noise bursts, but also the 

occurrence rate of these noise bursts and their time duration. Reference [75] identified 

two groups of noise pulses one synchronised with the AC power line, and the other 

related to the switching frequency of switched mode power supplies sometimes 

employed where the transformer power supply type is not used. The noise in the 

1.9 GHz band of interest evaluated by [75] ''is related to the fast switching (5! 30 kHz) 

of the power supply". As the 1.9 GHz band is not investigated for noise sources 

within this thesis the noise phenomena attributed to the switched mode power supplies 

in some microwave ovens is not evaluated. It has been shown by measurement [75] 

that a period "of strong emissions of second harmonics coincide with that of the main 

oscillation". The harmonics were detected in the range of 4.75-4.94 GHz and were 

approximately 45 dB below the values for the main 2.4 GHz band. The 

4.75-4.95 GHz frequency band is not investigated in this thesis. 
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An estimate of the occurrence rate of the random noise bursts produced by an 

operational microwave oven in the 2.3-2.5 GHz frequency band has been obtained 

from measurements. The analysis of these measurements provided a count of the 

nuqiber of noise bursts that exceeded the measurement system sensitivity for each of 

our twenty measurement bins. The noise has been shown to be sinusoidal and have a 

frequency that varies with the magnetrons applied anode voltage, as depicted in 

Figure 17. The sudden change of magnetron anode voltage {DY to SOOY in 0.45 

milliseconds) with a resulting change to the magnetrons operational frequency of 

300 MHz over this 0.45 millisecond time period causes the measured electromagnetic 

noise radiated from the oven to appear impulsive in nature. A measurement 

bandwidth of 100 kHz as employed for measurement data gathered for analysis in 

reference [75] proved by analysis against measurement data gathered with larger 

resolution bandwidth to be sufficient as to not reduce the power !eve[ of the 

measurement values. This bandwidth was selected to allow for the shortest spectrum 

analyser sweep time of 20 milliseconds. To further verify the sinusoidal nature of the 

non-systematic noise bursts produced by operational microwave ovens, a series of 

measurements were completed with the measurement instrumentation depicted in 

Figure 6. The measurement laboratory shown as Figure 40 was selected as the indoor 

channel most suitable for gathering data of this fonn. Measurement analysis of radio 

waves propagating between the transmit and receive antennae located within this 

particular laboratory venue has quantified the variation of the received power local 

mean for the "temporally static'' situation at less than ±0.2 dB {Section 6.3). To 

achieve this temporally static situation the motion of people and any other animate or 

inanimate objects within the laboratory is kept at zero. The motion of objects such as 

people and motor vehicles located external to the laboratory had no measurable affect 

on the local mean receive power level for the temporally static situation. This is 

attributed to the fact that the laboratory is without windows, which generally offer low 

attenuation entry and exit points for radio waves, and is constructed primarily from 

materials that offer high attenuation to radio waves that propagate at gigahertz 

frequencies, thus reducing the affect of external temporal variations to an insignificant 

level. A tempornlly static measurement situation i& 'lf importance because any 

varintion in the value of the received avemge modulating signal power produces a 
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variation to the EVM as given in Figure 10. The primary purpose of checking that the 

EVM value corresponds to the expected value for the average modulat!ng signal 

power being received over the test link is to permit identification of non-systematic 

noi~e enter!ng the link by way of the receive antenna. This non-systematic noise may 

be identified by an increase in both peak and rms EVM value. The cyclic transmission 

of 600 symbols (1200 data bits for 2 bits/symbol) at a rate of 4 megasymbols/second 

using QPSK modulation (raised cosine filtering o: = 0.5) was selected for the 

measurements. This format was one that had previously been chosen to establish our 

calibration datum for the systematic noise and its associated EVM (Figure 10). The 

receive antenna for each measurement bin was again the calibrated resonant 1/4 J... 

monopole situated at a range of 5 metres from the operational microwave oven. Each 

of the calibration measurements was completed prior to gathering measurement 

statistics for data transmission in the presence of the non-systematic noise bursts 

produced by the operational microwave oven. The EVM measurements were 

performed as before for each of the twenty frequency bins. A carrier frequency equal 

to each bin centre was QPSK modulated by a 1200 bit cyclic pseudo-random data 

sequence, and then transmitted over the indoor radio channel. For each measurement 

time period the microwave oven was in continuous operation at full power. To further 

reduce measurement error the transmit power was set to provide a received average 

modulating signal power of --45 dBm in the absence noise from the microwave oven, 

with care taken to maintain the temporally static situation for the indoor channel. As 

can be seen from Figure 10 the selection of -45 dBm minimises the affect of small 

variations in received average modulating signal pcwer, and as a consequence 

maintains the average received signal to systematic noise power ratio, and the 

associated EVM relatively constant. Therefore the EVM value obtained by 

measurement for the static situation, and in the absence of noise bursts from the 

microwave oven, is simply the value attributed to the systematic noise (Section 4.1.1). 

A mensured rms value of 4.1048 % EVM was obtained for a received average 

modulating signal power of -45 dBm, and this value is considered as wholly caused 

by systematic noise generated within our measurement system itself. Of particular 

note is the value of the peak value of EVM (9.1065 %) as this is representative of the 

peak value of received noise. Figure 32 presents the data associated with the 
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systematic noise measurement, it also shows the display format provided by the 

measurement instrumentation and it is applicable to all our measurements. The format 

includes the received data constellation picture, eye pattern, error table, and spectrum. 
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Figure 32: Measurement of EVM for systematic noise (receive antenna:­

resonant 1/4 'A. monopole at range 5 metres from the microwave oven). 

Figure 33 presents the measurement data obtained in the presence of noise bursts from 

the Toshiba operational microwave oven for frequency bin number 15 

(2.44-2.45 GHz). It is representative of a series of measurements completed with the 

aim of characterising the nature and intensity of the noise. As can be seen from the 

data in Figure 33 the magnitude of the received power spectrum approximates that of 

the calibration datum of Figure 32 for the estimation of the systematic noise BVM 

value, however the value of EVM has now increased significantly to a rms value of 

16.583 %. The spread of decoded QPSK data points in the constellation is also seen to 

be relatively uniform for each quadrant, however a grouping of decoded symbol 

signal points into four clusters around the optimum decode point for each quadrant is 

evident. Also the degradation in eye pattern is evident as compared to the calibration 
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eye pattern shown in Figure 32. The random nature of the noise bursts is dependent on 

rate, duration, and intensity. For frequency bin number 15 as we have determined 

from the analysis of previous data both the rate and intensity are near maximum with 

the frequency drift statistics showing typically a 40 % occupancy of frequency bin 

number 15 during the magnetron "on" time period of 10 milliseconds. The peak value 

of the EVM has reached a value of 52.041 %, which is significantly higher than our 

peak EVM calibration datum of 9.1065 %. Peak EVM is a statistic used for the 

calculation of BER probability of data received with the presence of noise and or 

interference, it represents a measured value that is directly related to the erfc variable 

of Equation (7.5) in Chapter 7. 
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Figure 33: Measurement data obtained in the presence of noise bursts 

from the Toshiba operational microwave oven for frequency bin number 

15 (2.44-2.45 GHz, receive antenna :- resonant 1/4 'A. monopole at range 

5 metres from the microwave oven). 
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5.6 Sinusoidal Tone Interference 

The nature of the sinusoidal tone interference produced by an operational microwave 

ove;i has heen discussed in the preceding sections, from our analysis of measured data 

a detailed picture of why some frequency bins suffer greater interference than others 

has emerged. The magnetron performance diagram for the Whirlpool oven that is 

shown as Figure 23 is typical of the other ovens evaluated. It reveals that a magnetron 

output power of less than 100 watts is typical nt frequencies be!ow approximately 

2400 MHz ond that a significant increase does not occur in output power until 

frequencies above 2450 MHz are reached. Additionally the frequency drift statistics 

show that for the 10 millisecond "on" period of the magnetron there are no emissions 

in the measurement bins numbering 1 through to 13, or bins 19 and 20. These bins 

being affected only during the rapid incrense of magnetron anode voltage on power 

up, and decrease of the voltage on power down either side of the "on" pulse .. The 

nature of the interference is directly related to the nominal frequency and intensity of 

the sinusoidal tone. The transient sinusoidal interference during rapid anode voltage 

change occurs as stated in all bins. However bins 1-13, 19, and 20 for the three ovens 

evaluated ore not affected by the magnetron frequency drift that occurs with SWR 

variation during the 10 millisecond "on" pulse. Figures 34-36 depicts data for bius 4, 

8, and 11 respectively and the Toshiba operationnl microwave oven. These bins are 

only affected by the rapid change of frequency during magnetron power up and power 

down, and not by the frequency drift during the 10 millisecond on period. A 

progressive increase in both the rms and the peak EVM values can be clearly seen as 

the magnetron voltage, output power, and operational frequency increases with higher 

bin numbers. For bin numbers 4, 8, and 11 a study of the error table associated with 

the Figures 34-36 reveal that no data bits were received in error at the signal to noise 

ratio set for the measurement system for the 5 metre test distance from the operational 

microwave oven. This is expected os from Fignre 20 the average measured power 

level of random noise bursts at range 5 metres for the Toshiba oven are typically less 

than -45 dBm, our chosen average receive power level for system calibration. The 

power levels of the random noise bursts increase suddenly at frequencies 

corresponding to measurement bin number 12 (2.41-2.42 GHz) and are of significant 
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levels above this bin frequency range up to and including the upper magnetron cut-off 

frequency shown in Figure 18. The peak EVM value measured for bins 4, 8, and 11, 

were respectively, 12.676 %, 13.768 %, and 25.983 %. 
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•I 

/l;t !'-. 

• • 
• • 

Figure 34: Measurement data in the presence of noise bursts from the 

Toshiba operational microwave oven for frequency bin number 4 

(2.33-2.34 GHz, receive antenna resonant 1/4 11. monopole at range 

5 metres from the microwave oven). 
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Figure 35: Measurement data in the presence of noise bursts from the 

Toshiba operational microwave oven for frequency bin number 8 

(2.37-2.38 GHz, receive antenna resonant 1/4 A monopole at range 

5 metres from the microwave oven). 
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Figure 36: Measurement data in the presence of noise bursts from the 

Toshiba operational microwave oven for frequency bin number 11 

(2.40-2.41 GHz, receive antenna :- resonant 1/4"' monopole at range 

5 metres from the microwave oven). 

Sinusoidal tone interference can result in extremely high error rates for data 

transmitted and received over the test link. The interference can create circles, or 

dependent on the time duration of the interference partial circles in the received 

constellation. The sinusoidal interferer generates this circular shape due to the rotating 

vector of the interference signal~ which is frequency offset from the digital radio 

carrier frequency. This was observed for the frequency bin numbers 14-18 when the 

received power of the interference sinusoid (generated from the operational 

microwave oven) exceeded the average received power level for the data transmission 

test link. Figure 37 shows a measurement result for bin 16 with the Whirlpool 

microwave oven operating, and the same data sequence being transmitted as for 

Figures 34, 35, and 36. The interfering sinusoid causes all received data symbols to be 

decoded in the top left quadrant of the received constellation, therefore all received 

symbols are decoded as the two data bits 10. The received data bit stream is a 

sequence 101010101010 ... for the time duration that the interference frequency is 

91 



CHAPTERS ANALYSIS OF MTCROWA VE OVEN NOISE 

stable at tbis particular spectral position. As we have seen the magnetron has two 

factors affecting the time that an interfering frequency remains in any spectral 

position, one being the anode voltage variation applied to the magnetron, the other the 

frequency drift with varying SWR. Due to the rotating vector of the sinusoidal tone 

interferer the received data constellation often takes on a 'doughnut" shape as 

depicted in Figure 37. 
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Figure 37: Received data constellation in the presence of an interfering 

sinusoidal tone generated from a Whirlpool operational microwave oven 

for frequency bin number 16 (2.45-2.46 GHz, receive antenna :- resonant 

1/4 A monopole at range 5 metres from the microwave oven). 

Figure 38 provides another example of where the received data is concentrated into a 

cluster in the shape of a partial circle within the constellation with the symbol 00 

dominating the decoded result with 576 symbols each representing 00 data bits 

decoded. Additionally 24 symbols each representing 10 data bits were decoded. The 

interfering sinusoidal noise in this case occurred in measurement bin number 15 with 

the Mitsubishi oven operating. 
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Figure 38: Received data constellation in the presence of an interfering 

sinusoidal tone generated from a Mitsubishi operational microwave oven 

for frequency bin number 15 (2.44-2.45 GHz, receive antenna :- resonant 

1/4 A monopole at range 5 metres from the microwave oven). 

Figure 39 shows a measured consteJlation that in the presence of an interfering 

sinusoid takes the form of a complete circle, each symbol having approximately equal 

probability of occurrence, but not necessarily in their correct constellational positions. 

The measurement was for bin number 17 and the Mitsubishi oven operational. 
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Figure 39: Received data constellation in the presence of an interfering 

sinusoidal tone generated from a Mitsubishi operational microwave oven 

for frequency bin number 17 (2.46-2.47 GHz, receive antenna :- resonant 

1/4 ").., monopole at range 5 metres from the microwave oven). 

5. 7 Conclusions 

The noise generated in the 2.3-2.5 GHz band by operational microwave ovens can 

cause significant interference to communications systems intercepting this noise via 

their receiving antenna and degrade the BER performance of data transmitted over the 

link. The BER performance of such systems (including our measurement system) in 

the presence of noise generated by operational microwave ovens will vary. The BER 

has been shown to be dependent on the selection of carrier frequency for the 

communications system (level of noise and duration differs for our 20 bin numbers 

evaluated). The bandwidth occupied by the data transmitted over the system is 

therefore also significant, as is the received signal level of the carrier signal for the 

communications system, and the systems bit error rate floor characteristics. To further 
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estimate the BER perfonnance of communications systems in the presence of 

interference from operational microwave oven a series of experiments with our three 

microwave ovens and the test instrumentation shown In Figure 6 would advance the 

understanding in this area. To this end, the results of a completed set of experiments 

on the BER performance for data transmitted using QPSK digital modulation in the 

presence of microwave oven noise is presented in Chapter 7 of this thesis. 
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Characterisation of Channel Fading 

!n this Chapter, we present fading measurements for the indoor radio propagation 

channel in the 2.4 GHz-ISM band where the controlled motion of one or more people 

was deliberately introduced to the channel. The motion introduced is considered 

typical of that encountered when personal communications systems are used in an 

indoor situation. The measurements are conducted In a typical laboratory 

environment, and the type of motion introduced to the channel was restricted to thnt 

of people moving around the receive antenna. Cumulative distribution functions 

(CDF), level crossing rates (LCR), and average duration of fades (ADF) are the 

statistics extracted from the measurements, The analysis of these statistics is 

undertaken and the obtained fading distributions, LCR's, and AD F's will be presented 

and discussed. The measurement system used to gather the fading data is shown as 

Figure 6 in Chapter 4, and a brief reference to the hardware used to extract the fading 

data for the indoor channel is undertaken in Section 4.1 of Chapter 4, this wil! be 

described in greater detail in Section 6.1 of this chapter. 

6.1 Fading Measurement System 

Thr Marconi TF2300A modulation analyser, Aphex VCAIOOI voltage controlled 

auenuator (VCATf), and the personal computer (PC) fitted with a sampler card is 

used to record fading data for the indoor channel. The transmit and receive antennas 

used in all fading measurements are identical quarter wave omni·direct!onal 

monopole antennas constructed for the frequency range 2.3·2.5 GHz. The antennas 

were mounted on separate identical non-metallic pipes of adjustable height from 
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1.0 to 2.5 m. The transmit antenna was set to a height of 2.Sm, ond the receive 

antenna to a height of 1.2m for oil measurements. These height settiugs being chosen 

to best simulate a base station transmit antenna communicating with a portable unit. 

All measurement equipment is accommodated on n movable stee! trolley as shown in 

Figiire 7. The fnding data were obtained from the over-sampled 100 Hz amplitude 

modulated carrier by the use of software rectification to extract the positive half 

cycles. Then, a fifth order Butterworth low pass filter was applied to this rectified 

signal to remove all frequency components above 40 Hz. The cut-off frequency of 

40 Hz was selected to ensure that any 50 Hz AC power supply hum, and 100 Hz 

rectification hum generated within the measurement system itself was minimised. 

6.2 Building Topology 

!.!~n.surements were carried out at the Cooperative Research Centre for Broadband 

Telecommunications and Networking laboratory located at Curtin University of 

Technology, Perth, Australia. A plan view of the laboratory with the antenna positions 

used for the measurements is shown in Figure 40. 
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Figure 40: Plan view of the laboratory. 

The laboratory has two doorways, no windows, and is rectangular of size 7.8 m by 

9.95 m with a three metre ceiling. The ceiling is located 1.5 m below the concrete 

floor for the second storey of the four storey building. The laboratory has steel framed 

walls clad with plaster-glass, a dropped ceiling constructed with non-metallic acoustic 

tiles, and a carpeted concrete floor. This environment is one cluttered with test 

equipment on benches as shown in Figure 7. 
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6.3 Measurement Procedure 

To determine the influence of movement by people, motor vehicles, and other objects 

ext~rnn! to the laboratory, a series of measurements were performed where the motion 

in the laboratory was kept at zero. Analysis of these measurements showed the 

variation of the local mean to be less than ±0.2 dB. Therefore, the local mean can be 

considered as influenced only by the controlled motion deliberately introduced as part 

of our measurement procedure. 

Fading measurements were obtained for 10 different transmit antenna placeni.ents 

within the laboratory. For each placement and with no movement of people, the initial 

received signal level was set to -65 dBm. This receive level provided a signal to 

measurement system noise ratio of 35 dB, thus allowing fade depths of this order to 

be identified. 

The receive antenna location remained fixed for all measurements and the transmit 

antenna was moved to a different location within the laboratory for a series of fading 

measurements each of twenty second duration. During these measurement periods, a 

number of people moved in a similar manner about the receive antenna only, keeping 

within a two metre radius. The number of people in motion was varied from three 

through to six people for each particular transmit antenna plncement, and the average 

velocity estimated at 0.85 metres/second for each person in motion. 

6.4 Measurement Results 

From our set of measurements, four representative recordings will be considered in 

detail. Figures 41, 42, 43 and 44 display the short term envelope fading obtained for 

transmit antenna placements at positions C, J, D and F. 

For C, J, and D antenna placements, similar motion of three people about the receive 

antenna was maintained for the full record period. Although the distance between 

transmit and receive antenna is relatively large for transmit position C with respect to 

J, only once did the fading envelope fa][ below the -9dB [eve! (Flgure41). For 

placement J the fading envelope depth fell below -9 dB on seven occasions, with three 

99 



CHAPTER6 CHARACTERISATION OF CHANNEL FADING 

of these fades being even lower than -21 dB (Figure 42). The fading obtained for 

transmit antenna placement D is shown in Figure 43 with the fading envelope depth 

going below the -21 dB level twice during the record period. 

Figure 44 shows fading where six people moved about the receive antenna with the 

transmit antenna located at position F. The increased level of motion resulted in an 

increase in variance of fading amplitude about the mean. In addition, we observe 

frequent signal enhancements in the range of +5 dB to +9 dB, with the fading being 

more balanced about the mean. 

" 0 

5 

~ - 5 

~ - 10 
.... 
4> 
~-15 

"' .... t20 
·• 
"' -25 

- 3o~~2-~~~e-1~0-1~2 ~ 14- 1~6- 1~s ~20 
Time (seconds) 

.... • ~-15 · ; · .• . • · · · . · · · · • .• · · 
..:i 
.... l20 
<ll 

-25 

- 3o~~~~--e - 1~0 ~12_ 1_4_ 1~6 ~ 1e- 20 
Time (seconds) 

Figure 41: Fading for transmit position C, Figure 42: Fading for transmit position J, 

three people in motion. three people in motion. 
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6.5 Statistical Analysis 

The statistical analysis of the channel fading data produces estimates for parameters 

such as LCR's, AD F's, and Rician k-factors. These estimates of the parameter values 

forffi part of the data variables which are input to specific mathematical equation$ that 

determine important transmission link performance indicators, such as the average 

BER expectation for data transmitted over the indoor radio propagation channel. A 

statistical analysis of the four representative recordings for short term envelope fading 

which are depicted in Figures 41, 42, 43, and 44 respectively as received signal level 

plotted against time, is presented in Section 6.5.1, and Section 6.5.2. 

6.5.1 Amplitude Fading Distributions 

If between the transmit and receive antenna a line of sight path exists, the probability 

density function of the fast varying amplitude of the received instantaneous signal can 

be described by a Rici an distribution. Let A denote the direct waves peak amplitude, 

and o the standard deviation of the overall received signal envelope R, then the Ridan 

k-factor is given as [68): 

A' ke­
:>,, (6.1) 

The Rician cumulative distribution function {CDF) is dependent on the value ofk, and 

for k =: 0 it degenerates intl'.l that of a Rayleigh distribution. The Rician CDF is 

calculated as follows [68): 

(6.2) 

where: 

- ( •') • ("-J2iilm (R-1?.kl CRice(R)-exp -k-11:r' m~ ~ Im -
0
-
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and Im(.) is the modified mth order Bessel-function of the first kind. Although the 

computation of the Riclan CDF appears difficult because of the summation of an 

infinite number of tenns, in practice the summation of m = 50 terms was sufficient to 

reduce the remaining terms contribution to a negligible level. 

In calculating the empirical CDF, the measured data was classified Into a number of 

bins B according to the fonnu!a [65]: 

B .. l87(S-1)"' (6.3) 

where 5 is the number of data samples obtained for 20 second measurement period. 

Then, a set of hypotheses for the Rician CDF with k = 0 to 15 in OJ increments wen:: 

tested to match with the measured CDF where the power level is nonnalised about the 

root mean square (rms) value. We applied the Kolmogorov·Smimov goodness-of-fit 

technique for testing the relevance of match between measured and hypothesis CDF. 

The maximum deviation between measured and hypothesis CDF over the considered 

normalised amplitude range was then used to indicate the significance of the match. 

Appendix D provides a listing of the computer program used for Rician k-factor 

testing. Table 2 shows the obtained k-factors. Note that we also performed curve 

fitting for the case where the CD F's are normalised about the median. The obtained k­

factors are slightly higher but give the same ranking for the antenna placements 

shown in Table 2. 
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Table 2: Rician k·factor Laboratory Venue 

Placement k 

c 8.7 

J 2.0 

0 2.0 

F 1.3 

The CD F's for fading measuremenls at C, I, D and F are depicted in Figures 45, 46, 

47 and 48 respectively. Note that a Rayleigh CDF is depicted as well for comparison. 

The results indicate a dominant line-of-sight path for transmit antenna placement C 

(Figure 45) which has a k value of 8.7 for best fit. Placement J (Figure 46) exhibits a 

lower k value of 2.0 for similar motion of three people around the receive antenna. 

Placement D (Figure 47) also had a k value of 2.0. The fading data for transmit 

antenna placement F (Figure 48) provided the best fit for k"' 1.3, which is 

approaching the Rayleigh distribution. A reduction in the effect of the line-of-sight 

path caused by the increased motion ofsix people about the receive antenna is thought 

to be the main factor for the low k value for this measurement. This reasoning is 

supported by the measurement at F for three people in motion where a higher value of 

k"' 3.1 provided best fit. Although measured CO F's for placement C and F look 

similar at first sight, the different k values are mainly due to the CDF characteristic 

about the normalised O dB !eve!. In this region the probability that the power.level is 

less than the abscissa is in the rouge 10 % to 100 %. Therefore, the influence on the 

curve fit is more significant than that of the lower normalised power region, In the 

case of six people moving about the antenna, a match to a CDF other than the Rician 

distribution may be considered. 
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6.5.2 Fading Statistics 

The level crossing rate NL is defined as the expected rate at which the envelope 

crosses a specified signal level in the positive direction [66]. By counting all crossings 

N with a positive slope at a specified signal level L, and for a fading record of 

Tp seconds duration, the level crossing rate is given by: 
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(6.4) 

The average duration of fades i;: is defined in (66) as the sum of N fades at level L, of 

time duration t; for each individual fade, divided by N: 

(6.5) 

Note that the product of Equations (6.4) and (6.5) gives the CDF as follows: 

(6.6) 

where normalisation is about the mean of the received signal level. 

Tables 3, 4, 5 and 6, display the statistics for the fading envelopes shown in 

Figures 41, 42, 43 and 44 respectively. As far as the degree of motion as a fading 

controlling factor is concerned, the results indicate that the level crossing rates at level 

L = 0 dB increases with increased motion and simultaneously the levels at which 

crosses actually occur are scattered over a larger range. 
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Table 3: Statistics for Tx at C 

and three people 

1
L (sec) 

Table 5: Statistics for Tx at D 

and three people 

1
L (sec) 

CHARACTERI.SAT!ON OF CHANNEL FADING 

Table 4: Statistics for Tx at J 

and three people 

t L (sec) 

Table 6: Statistics for Tx at F 

and six people 

L NL (sec-1
) 

-
1

L (sec) 
(dB) 

9 0.101 9.894 
6 0.756 1.256 
3 2.269 0.331 
0 3.177 0.144 
-3 2.219 0.094 
-6 1.059 0.082 
-9 0.454 0.075 

-12 0.101 0.121 
- 15 0.101 0.022 · 
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For the situation of transmit antenna at placement J we obtained [eve! crossings down 

to -27 dB about the mean. As can be seen by the tabulated results, the average 

duration of these very deep fades are rather short. 

To 'compare the results obtained in the cluttered laboratory shown in Figure 40 with 

results extracted from a venue of larger dimensions, a further set of measurement data 

were obtained at a large vacant uncluttered office building. The building Is located at 

153 Rockingham Road Hamilton Hill, Perth, Australia, and is now used as an office 

for a new radio station. The construction material employed for the walls of this 

building is different to that of the laboratory, being double brick. The mater!als used 

for the floor and ceiling nre similar to that of the laboratory being non·metalic 

acoustic tiles for the roof, and a carpeted concrete floor. The office also has the same 

ceiling height as the laboratory of 3 m. At the time of measurement the office was 

unfurnished. Our preliminary measurements revealed that the local mean was not 

influenced by factors such as external vehicular or pedestrbn motion, this being 

primarily assisted by the fact that the office is located on the vacant first floor of the 

building. The office has two doorways, seven windows, and is rectangular of size 

18.4 m by 12.6 m. A plan view of the office is shown in Figure 49. 
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Figure 49: Plan view of the office 

The same measurement procedure was adopted as given in Section 6.3 and from our 

measurements four representative recordings are shown in Figures 50, 51, 52, and 53. 
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Figure 52: Fading for transmit position D, Figure 53: Fading for transmit position F, 

three people in motion. six people in motion. 

The data depicted in Figures 50, 51, 52, and 53 was gathered eighteen months after 

that shown as Figures 41, 42, 43, and 44. The computation of the Rician k-factor for 

the latter set of data (for the larger vacant office building) approximated the same 

overall k-factor range for similar motion of people around the receive antenna as was 

found for the smaller cluttered laboratory. Table 7 displays the results. 

109 



CHi\PTER6 CHi\RACTERJSi\TION OF CHIINNEL Fi\D/NG 

Table 7: Rici an k-factor Office Venue 

Placement k 

c 8.5 

J 2.5 

D 2.2 

F 1.5 

6.6 Conclusions,.. 

We investigated the fading characteristics of the indoor radio propagation channel at a 

frequency of 2.4 GHz at two different venues, one a cluttered laboratory, the other a 

uncluttered office of larger dimensions. The motion of people was found to be a 

significant factor affecting fading at both venues, and results were remarkably similar 

with respect to their fit to Rician distributions. For the laboratory venue k valu~s in 

the range 1.3 el k el 8.7 provided the best fit. A statistical annlysis of the recorded data 

was perfonned which results in level crossing rates and average duration of fades. 

From this analysis which is detailed in Tables 3, 4, 5, and 6, it can be seen that the 

ieve! crossing rates reduce as L the depth of the fade value relative to the mean value 

reduces, which is an intuitive result. A relationship between the computed Rician 

k-factors presented in Table 2, and level crossing rates L shown in Tables 3, 4, 5, and 

6, is also evident. Lower Rician k-factor values in the range from 1.3-2 were 

computed from measurement data for antenna placements J, D, and F respectively. 

Analysis of Tables 3, 4, 5, and 6, shows that the level crossing rates NL for any 

nominal value of L are much higher for antenna placements J, D, and F, than for 

antenna placement C which had a value fork of 8.7. The tables also show that the 

maximum measured fade depth recorded for antenna placements J, D, and F, of-27, 

-24, and -15 dB respi:ctively, are of much higher order than the maximum me~ured 

fade depth recorded for antenna placement C, which was -12 dB. The higher order of 

the fade depths and NL values implies n greater variation of the received signal 
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envelope with the effect of the more dominant direct wave being reduceri. There is 

therefore a movement towards the Rayleigh distribution as the magnitude of the 

Rici an k-factor reduces. The k·factor values computed from our measuren:,ent data are 

related to the degree of motion introduced in the laboratory, which has been shown to 

be -an important fading influencing factor. The second series of measurements 

performed eighteen months later in the office provided data that after analysis 

produced approximately the same range fork-factor as derived from data for the first 

series of measurements. In Chapter 7 of this thesis the k-factor statistics computed 

from our fading measurements are used to estimate the BER performance of the 

indoor radio propagation channel for BPSK and QPSK digital modulation. 
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Chapter 7 

Bit Error Rate Analysis 

In this Chapter we analyse and predict lhe BER for digital modulation. The 

modulation method considered is coherently detected QPSK with n raised cosine 

signalling pulse. The pulse is realised by a filter having the square root of a raised 

cosine spectrum of roll-off factor 0.5. This signalling wavefonn and its matched filter 

fonn an !SI-free pulse in the absence of delay spread [SJ. BER probabilities are 

computed for the indoor measurement channel for both Rician and Rayleigh fading 

using the fading data gathered and analysed in Chapter 6. The affect of non­

systematic noise generated from an operational microwave oven on BER is analysed 

and a set of curves computed and plotted from data gathered experimentally for a 

calibrated antenna measurement at 5 metre range from the oven. The affect of delay 

spread on BER is also discussed, and compared with data obtained from a computer 

simulation given in [5]. 

7 .1 Bit Error Rate and Digital Modulation 

In the absence of interference from non-systematic noise sources, received signal 

fading is the primary factor affecting the BER performance of the indoor radio 

propagation channel. By the selection of an indoor venue which offers a static 

measurement environment, and therefore provides a constant received sig,,,J level in 

the absence of motion, it has been possible to determine the affect of fading and 

interference on BER for the indoor radio channel with data transmission rates up to 

8 megabits/second. The upper limit of 8 megabits/second being for QPSK modulation 

at the 4 megasymbolsfsecond rate (2 bitsfsymbo!). 
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The nature of received signal fading for the indoor radio propagation channel can be 

separated into two main categories: 

1. Flat Fading. 

2. " Frequency Selective Fading. 

Both of these fading mechanism result in dynamic changes to the BER probability for 

the digital modulation employed to transmit data over the indoor radio channel. Our 

measurement data has shown tha• both fading mechanisms coexist for the indoor 

channel. By moving the position of either the transmit or receive antenna a small 

distance, typically less than 12.5 cm, which corresponds to >.. at the mid-band 

measurement frequency of 2.4 GHz, then fading that is predominantly either wide­

band flat fading or frequency selective fading was observed for the static channel. 

Examples of these fading mechanisms are shown for a coherently detected QPSK 

modulated received signal in Figures 54, 55, aii.d 56. In Figure 54 the received wide­

band signal has minimal fading and is relatively flat across the full frequency band, 

with the centre frequency of 2.4 GHz having a received power level of -65.886 dBm 

as shown at top right of the Figure. For Figure 55, a small movement of the receive 

antenna, with the static situation still being maintained within the laboratory, 

produced a fade that is in the main a flat fade where all received frequencies are 

significantly reduced in power across the whole band. It can be seen for the flat fade 

of Figure 55 that the reduction in power level received far the mid-band 2.4 GHz 

frequency is to a value of -98.12 dBm, a margin of 32.234 dB. This substantial fade is 

solely due to the vector addition of all multipath signals in the static laboratory, and 

the measurement was easily repeated by maintaining the same transmit and receive 

antenna placements. Similarly, a further small movement of the transmit antenna 

resulted in the received power spectrum shown as Figure 56. From Figure 56 it can be 

seen that there has been frequency selective fading, the lower frequencies in the band 

have suffered greater attenuation than the higher frequencies, and the asymmetry is 

evident. The mid-band power level at 2.4 OH;: has fallen to a value of-74.591 dBm, 

which is only 8.705 dB lower than its value for the minimally faded value of 

Figure 54. Only an extremely small change to the received power values can be 

attributed to the small variation in distance (or range) between the transmit and 
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receive antennae, as this distance approximated 6 metres (48 wavelengths mid-band), 

and as previously stated the movement of the transmit antenna was less than one 

wavelength mid-band. 
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Figure 54: Received wide-band coherently detected QPSK with minimal fading . 
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Figure 55: Received wide-band coherently detected QPSK with flat fading. 
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The motion of people or other objects within the channel is identified in Chapter 6 as 

providing the main cnuse for fading, also the physical size and type of construction 

rnaterinls used for the indoor venue affects multipath delay spread and the consequent 

frequency selective fading. The irreducible errors, defined as those that occur at ·very 

high SNR in a frequency selective channel, are primarily caused by the level of ISi 

which interferes with the received signal component at the receiver sampling instants. 

These errors can occur when (a) the main signal component path is cancelled by a 

delayed multipath signal, (b) ISi exists as a result of o non-zero value of d 

(Equation 3.25), or (c) the sampling time of the receiver is shifted as a result of delay 

spread. In our measurement system (Figure 6) the need for carrier recovery from the 

transmitted signal is not required to establish timing for receive bit sampling, (c) 

therefore does not contribute to BER in the analysis of our measurements. The 

increase in average BER probability attributed to (a), (b), and non-systematic noiSll 

interference from sources such as operational microwave ovens can be characterised 

from our measurement data presented in Chapter 6, Appendix F and Chapter 5 

respectively. 

7.2 Bit Error Rate with Fading and Interference 

The Q-function Q(x) in Equation (3.5) is frequently used in another form where it is 

related to erfc(x) as follows: 

erfc(x) = 2Q(l{..fi.) (7.1) 

Therefore: 

(7.2) 

by the substitution from Equation (3.5) for Q(x) into Equation (7.2), where: 

(7.3) 
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then: 

I ~pj· p<.BPIK = -e,;C ~ 
2 no 

(7.4) 

By the introduction of a fading variable (x) Equation (7.4) can be modified as 

follows: 

(75) 

If instead of a sample value of a random fading variable x in Equation (7.5) we have a 

constant value Co, then Equation (7.5) becomes: 

(7.6) 

In the absence of any fading or interference, that is Co= I, the BER is given as before 

by Equation (7.4) the well known equation for average bit error rate of a <;aherently 

demodulated BPSK signal. 

7.3 Bit Error Rate and Error Vector Magnitude 

The EVM is a measurement parameter that is expressed as a % rms value and a 

% peak value. It is often convenient to think of physical data in terms of a static or 

time invariant component, and a d)·namlc or fluctuating component [65J. We can 

describe the ~tatic component by its mean value, which is the average of a!! measured 

values. !n equation form the mean (X) !s given by: 

(7.7) 
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The dynamic, or fluctuating component (u!) may be described by a variance, it Is 

simply the mean square value about the mean value found from Equation (7.7), and it 

is given by: 

" , 
u'= Jim ,~,/-'c'c-_"l_ 

' N-<» N 
(7.8) 

The EVM is the square root of this variance value expressed as a percentage and its 

value when expressed numerically is directly related to the magnitude of the erfc 

variable of Equation (7.5), that is: 

(7.9) 

For the static situation with no received signal variation attributed to fading, 

Equation (7.6) applies, EVM % is directly related to the magnitude of the received 

signal power, and without the presence of interference such as noise from operational 

microwave ovens is representative of the systematic noise. The use of EVM as a 

calibration datum (Figure 10) permitted the identification of non-systematic noise 

entering via the antenna. By careful calibration of our test link for the static situation 

the value of EVM for received power level was checked to ensure that no external 

noise other than our noise which was deliberately introduced for the test 

measurements was present. An increase in particularly the% peak value of EVM was 

used to identify unwanted noise ingression that may affect our measurement data 

leading to invalid results. 

7.3.1 Microwave Oven Noise and Bit Error Rate 

BER performance statistics are derived from measured received data for QPSK 

modulation in the presence of random noise bursts from nn OJ):tational microwave 

oven at 5 metre range. The cyclic transmission of a random data sequence of 600 

symbols (1200 bits) in the presence of noise from the operational microwave ovens 

permitted experimental determination of BER for a range of received carrier levels. 
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The data sequence transmitted is presented in its received form without error as 

Figure 57. 
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576 10010100 10001101 11100011 01101110 11001110 11111-110 
sz.q 01001111 11001111 10111101 10101010 00011001 10010101 
672 00110011 11011110 00110001 11000010, l 1101101 111011 ti 
72.0 11000111 01110111 01011011 01 J 10000 10101110· 01101110 
766 10110011 I 1 '10100 01110000 11011101 00111111 01111010 
816 111110'1 11101101 011 lOIOO Ot 101111 11 t 10101 10001011 
864 Of001011 01111110 00100111 0101 001 11100110 00011101 
912 10010101 01110111 01011~1 01111010 11110111 10110111 
960 0100001 t 01100101 OOOll 1f l 01110101 0101011 f 00011001 

1008 00110100 01110111 00111101 10110000 00011100 11010001 
1058 01011101 11000111 I J 110011 11010100 11101101 01111001 
11M 01010101 1000111j 01111011 10011011 01010000 10001110 
1152 01000010 0011010 11000001 ·-01000001 10001101 11111101 

Figure 57: Received Test Bit Sequence for cyclically transmitted data 

with QPSK modulation in the absence of random noise bursts from an 

operational microwave oven at range 5 metres (receive antenna :­

resonant 1/4 "A monopole). 

Analysis of received data for the test bit sequence shown in Figure 57 when the noise 

bursts from an operational microwave oven are present provided the statistical input 

for the development of BER performance curves for a range of receive carrier levels. 

A received test bit sequence with errors caused by microwave oven noise interference 

is depicted as Figure 58. The Figure shows an increase in EVM % rms from 6.3780 % 

in Figure 57 to 58.375 % in Figure 58, and an increase in EVM % peak from 

20.335 % to 186.62 %. From analysis of the data received 516 errors occurred for the 

1200 bits transmitted. Note that the two bit QPSK symbol number 158 (which 

represents data 01) and is highlighted in the tables was transmitted without error, but 

many other symbols were not. 
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TRACE A: Ch1 QPSK SyMs/Errs · 
A 1'1arker 

Y-r11s 
M~9 Err : '41:318 Y-r11s 
Phcusa Err= 25.418 de9 

158.0000 1.0000 

50 
689 

Freq Err = -9.3907 kHz 
IQ OffHt = -~11.388 dB A11p Droop= 2.259 l'tdB/SYl'I 

0 11101011 01111111 00111011 01101001 01110111 11100101 
46 01101011 11110100 11110100 11001011 00001100 11001011 
96 11110100 00101100 t10T0010 Ol011101 0000011 t 01000011 

14''4 11110111 01000f 11 01001011 1f001111 10111111 00111101 
192 11101101 00100101 11111100 00111001 01110101 10110111 
z.qo 11000101 01110011 11001011 00100100 oot tot to 00110100 
288 10001001 00001110 00011110 0111111)0 01000110 11000001 
338 11000000 00111111 01010100 0001Tf10 01100100 10011000 
384' 110101t1 00001100 01110111 0001t111 01111010 11011001 
432 01000001 0001 I 100 10000001 01011011 01100011 01000000 
480 10010001 10100000 01110111 OOOJ 1001 10111100 00000000 
526 00101101 01000110 00000110 00000010 01011011 00000010 
576 01101011 01110011 00011101 10011101 001 tooot 01000011 
624 10111010 00110000 11100010 01010101 11100010 010010 0 
672 11001 T 10 00101001 Off01110 101 fOl 10 10011010 10001010 no 0001,m 10101100 1, 110, 10 1 ,000,, 1 0,001000 10000000 
768 00100 10 10111101 1 '100110 10111011 01101010 111t0010 
616 11100010 10¢00011 11101101 0,001010 00101101 00010110 
86'1 11110010 01101001 01001110 11010011 10111100 11011011 
912 000111 lt 11101111 01001111 01111011 10110111 10110111 
960 01000011 Ot 100101 001101t 1 01110101 11010111 0101101 I 

1008 00111100 01100111 10111100 10f10000 00011100 11010001 
1oss 01011100· 1 rooo111 11110011 00010100 10101101 01110001 
1104 00010001 10001101 01111101 10011111 01001010 011001' 1 
1152 01101011 00110000 11011000 00001000 11100100 01010100 

Figure 58: Received Test Bit Sequence for cyclically transmitted data 

with QPSK modulation in the presence of random noise bursts from an 

operational microwave oven at range 5 metres (receive antenna :­

resonant 1/4"' monopole). 

A series of measurements allowed data on BER to be gathered for carrier frequencies 

centred on each of the twenty frequency bins in the 2.3-2.5 GHz range. For each 

measurement the BER was averaged over the operating duration of the oven, which 

was selected as 3 minutes. As expected from Figures 26-28 the bins with the highest 

BER rates are bins 14-18 where the frequency of noise emissions from the operational 

microwave ovens exhibit the greatest time presence. Figure 59 displays data on BER 

performance for bins 14-17 when the loaded Toshiba oven was operational (note that 

from previous measurements for the Toshiba oven shown in Figure 26 that frequency 

drift does not affect bin 18). The curve for the BER rate performance of the 

measurement system as the received carrier level is varied is also depicted where the 

microwave oven is off and as such the system is only influenced by systematic noise. 

This curve is labelled "Microwave Oven Off' in each of the family of BER Figures 

shown following for the three ovens evaluated. 
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Figure 59: Measured BER performance of Received Test Bit Sequence 

for cyclically transmitted data with QPSK (Loaded Toshiba Oven receive 

antenna :- resonant 1/4 'A. monopole at range 5 metres). 

Figure 60 displays data on BER performance for bins 14-18 when the loaded 

Whirlpool oven was operational. Frequency drift does in this case affect the BER 

performance for bin 18. 
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Figure 60: Measured BER performance of Received Test Bit Sequence 

for cyclically transmitted data with QPSK (Loaded Whirlpool Oven 

receive antenna :- resonant 1/4 "A. monopole at range 5 metres). 

Figure 61 displays data on BER performance for bins 14-18 when the loaded 

Mitsubishi oven was operational. As for the Whirlpool oven frequency drift does in 

the case of the Mitsubishi oven affect the BER performance for bin 18. 
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Figure 61: Measured BER performance of Received Test Bit Sequence 

for cyclically transmitted data with QPSK (Loaded Mitsubishi Oven 

receive antenna:- resonant 1/4 11. monopole at range 5 metres). 

For measurements in frequency bins 1-13, 19, and 20 the three ovens (when 

operational) produced BER plots that approximated the plot for "Microwave Oven 

Off' in Figures 59, 60, and 61. A measurable increase in peak EVM was detected for 

these frequency bin numbers (Section 5.5). This was caused by the presence of the 

transient sinusoidal interference on magnetron power up and power down, however 

no errors were detected until the received carrier level was reduced to a values where 

thermal (systematic) noise which produced the "Microwave Oven Off' curves" is 

prevalent. 

7.3.2 Fading and Bit Error Rate 

If we now consider the effects of fading on BPSK and QPSK digital modulation for 

the indoor channel propagation path as caused by the motion of people within the 

channel, then the fading characterisation developed in Chapter 6 can be used to 

estimate average BER for received signal envelopes with Rician probability 
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distributions. By taking the approach of averaging the probability of error for a 

particular modulation in AWGN channels over the possible range of received signal 

levels caused by fading, then the error probability can be considered as a conditional 

error probability, where the condition !s that x In Equation (7.5) is fixed. The 

probability of error for slow fiat fading channels is found by averaging the error in 

AWGN channels over the fading probability density function (40]. The probability of 

error is then evaluated from: 

P,-JP,(X)p(X)dX (7.10) 

" 
Pe (X) is the error probability at a specific SNR equal to X, where X = :;,::2Eb1No, and p 

(X) is the probability density function of X as a result of channel fading. The fading 

variable X represents the received fading amplitude values with respect to Ei,/No 

which Is held constant. The Rician probability density function is well known, and 

using the same notation for the variables described in the CDF Equations (6,1), and 

(6.2) in Chapter 6, then it is given by: 

p(R)= : 2exp(-(~;/))r{~) forA:.0,hO (7.11) 

The Ridan distribution of Equation (7.11) can be transfonned (40] and expressed in 

tenns ofX a specific value of SNR (s~e Equation (7.10)) as: 

where: 

(X) l+k ( X(l+k)+kf) (t(l+k)kX) p =rexp - r lo r 

r - E, ;i --x 
No 

(7.12) 

(7.13) 

and r is defined as the average value of SNR. By setting the interference tenn 

(Ir= 0), and moving the fading variable (x) under the square root sign in 

Equation (7.5) it can be elpressed ns follows: 

124 



CHAPTER7 Brr ERROR RATE ANALYSIS 

(7.14) 

As previously defined, P, (X) is the error probability at a specific SNR equal to X, 

where X = -x,2 EiJNo, therefore the substitution can be made for X into Equation (7.14): 

(7.15) 

Equation (7.15) is the familiar BER probability calculation for BPSK and QPSK 

coherently detected digital modulation at a SNR specified by X. Substituting 

Equations (7.15) and (7.12) in Equation (7.10) gives: 

Solving the integration numerically provides the average probability of bit errors for 

BPSK and QPSK coherently detected modulation in a Rician slow flat fading channel. 

The numerical integration was performed using Matlab© and the results for average 

BER probability for a range of average EtJNo is presented in Figure 62. The curve 

representing k = 8.7 is truncated at an EtJNo value equal to 9 dB, this limit resulted 

from restricted computational value ranges in Matlab©. By setting k in 

Equation (7.16) equal to zero, where Rician degenerates to Rayleigh fading 

conditions, the comparison with simulation results shown for coherent PSK in a 

Rayleigh flat fading channel given in Figure 5.53 of reference (40] was made. An 

excellent correlation between the Lwo Rayleigh flat fading BER probability curves for 

PSK modulation is evident, with both simulations providing the same results and 

therefore lending support to the validity of Equation(7.16) and our Matlab© 

computations fork values other than zero. 
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Figure 62: Average bit error rate probability for coherently detected 

BPSK and QPSK modulation with received signal fading caused by the 

motion of people around the receive antenna. 

For k=O solid: plot from Equation (7.16) 

!::. : plot from Reference [ 40] 

In Figure 62 we present predictions of the average BER probability for our indoor 

radio propagation channel measurement venue where the motion of people is present 

as for the fading measurements of Chapter 6. The results presented here are 

representative of those expected for indoor channels where this kind of movement of 

people commonly occurs, and are therefore most useful from a channel modelling 

perspective. Figure 62 clearly shows that a significantly higher probability of error 

exists for Rician flat fading channels when compared with AWGN at the same Eb/No 

values. The BER probability curves corresponding to the Rician k values of 1.3, 2, 

and 8.7 as computed in Chapter 6 are shown, together with the Rayleigh (k = 0) and 

A WGN for BPSK and QPSK modulation over the flat fading indoor radio 

propagation channel. The results are for transmit antenna placements F, D, J and C of 

the measurement venue depicted in Figure 40. 
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7.4 Average Irreducible BER and Delay Spread 

With knowledge of the nns delay spread values calculated in Appendix F Table 8, the 

average irreducible BER can be estimated for transmit antenna placement F which 

exh1bited the largest value of nns delay spread. 

At the 4 megasymbol transmission rate used for all measurements the symbol period 

is 250 ns. The static rms delay spread (o,) computed in Appendix F for transmit 

antenna placement F at the me115urement venue was 16.4433 ns. Using these va!ues 

the nonnalised oh deno!ed by d, is computed from Equation (3.25) as 0.06577. 

Comparison of this value of d for raised cosine QPSK modulation of a= 0.5 as 

employed in the measurements with the curves shown in Figure 63 (takeri from [SJ), 

predicts an irreducible BER somewhere between 10·2 and Iff3, The analysis of the 

simulation used shows that these irreducible errors are those errors that occur if 

AWGN causes no errors. The simulation that produced Figure 63 Indicated that the 

signal at the sampling instant is always in a deep fade when irreducible errors occur, 

and for small delay spread values then envelope fading is the most important 

mechanism causing error bursts. 
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Figure 63: The irreducible error performance for raised cosine QPSK 

modulation with coherent detection. The parameter d is the rrns delay 

spread normalised by symbol period, and a is the roll-off factor of the 

raised cosine filter. The curves were obtained from the results of a 

computer simulation (5) that used a measured impulse response profile 

for an office building as an input to the simulation. 
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Chapters 

Conclusions 

Electromagnetic radiation generated from operational microwave ovens is identified 

as a cause of radio receiver noise !n the 2.3-2.S GHz frequency band. The impact of 

this received noise on the BER performance of the indoor radio channel for data 

transmission must be considered when designing indoor radio channels in this 

frequency band. An in depth analysis on the characteristics of this form of noise is 

presented in Chapter 5 of this thesis. The identification of the existence of upper and 

lower cut-off frequencies for oven magnetrons, frequency drift statistics of the 

magnetrons when operational, and the characterisation of the noise duration and 

Intensities emitted from operational microwave ovens is an original contribution of 

this thesis. The analysis of received data error rates over a test !ink in the presence 

microwave oven noise in concert with EVM values of the received data constellation 

permitted BER performance to be estimated for the test link. Measurement frequency 

bins 12 through to 18, which span the frequency range 2.41·2.480Hz, have the 

highest levels of noise presence caused by operational microwave ovens. Data 

gathered from measurements of the non-systematic noise generated from operational 

microwave ovens at 5 metre range using a resonant monopole 1/4)... antenna with a 

known antenna factor (AF) versus frequency relationship given by Equation (4.7) is 

presented in Section 5.2. From this data an estimate of the average peak electric field 

intensity (ER) in the far field can be obtained, and Figure 21 provides the estimate of 

average peak electric field intensity at the 5 metre measurement range. The equivalent 

average peak electric field intensity at the radiating source can be computed by using 

the propagation path analysis techniques and equations introduced In 

Chapter 3 of this thesis. By the transposition of Equation (3.19) the equivalent 
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transmit power PT from the operational microwave oven acting as an omnidirectional 

antenna can be calculated. This !s achieved by substitution of 5 metre5 for range (r), 

and the appropriate ER values from Figure 21 (after their conversion to volts/metre). 

for the twenty spectral measurement bins selected in Section 4.4, bin number 16 

representing the frequency range 2.45-2.46 GHz exhibits the highest level of 

emission, and at range 5 metres the average measured peak electric field intensity is 

114 dBµV{m or 0.50118 V/m. By the substitution of these values into Equation (3.19) 

then Pr is calculated as 209.323 mi1Uwatts/m2 (+23.208 dBm). For wavelengths of 

this order the operational microwave oven approximates an omnidirectional radiating 

antenna at measurement distances of 5 metres and greater. This worst case value of Pr 

can be considered a "Benchmark Value" when designing systems that operate In the 

frequency range of bin number 16. Similar benchmark values can be easily computed 

from our measurements for the 19 other measurement bins covering the 2.3-2.5 GHz 

range evaluated in this thesis. By the application of radio path design techniques, and 

the inclusion of appropriate building exit and entry losses at the propagation 

frequency for the proposed indoor channel, then an estimate of the worst case 

interlerlng noise levels expected from operational microwave ovens for any range can 

be computed. 

The impact of the interfering noise levels generated by operational microwave ovens 

on the received BER for data transmitted over Indoor radio transmission systems (for 

BPSK or QPSK digital modulation) ls discussed in Chapter? of this thesis. It is also 

evident from our characterisation of additive channel noise from operational 

microwave ovens in Chapter 5 that the worst degradation of BER performance occurs 

for frequency measurement b!n numbers 14-18 inclusive. These bins have the highest 

level of electromagnetic radiation for a significant part of the magnetrons "on-period" 

as given by the measured drift statistics presented in Section 5.4 of this thesis. The 

frequency span corresponding to measurement bin numbers 14-18 is 2.43-2.48 GHz. 

The selection of an operating frequency within this frequency span for an indoor radio 

channel will potentially e;-:pose the transmission system to interference from noise 

generated by operational microwave ovens, and therefore possible degradation of 

overall transmission system BER perfonnance. The selection of a carrier frequency 

and a bandwidth that avoids the 2.43-2.48 GHz frequency range such as the 
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2.40-2.43 GHz portion of the ISM band will minimise the Interference noise from 

operational microwave ovens. This selection will therefore provide beSt BER 

performance for indoor channels where oven noise is likely to be present. The 

proliferation of microwave ovens has Increased the probability of one or more 

operational ovens degmding BER performance, with ovens being found at most 

measurement venues evaluated for noise in our measurement campaign. It is therefore 

recommended that 2.40-2.43 GHz be used as first choice for ISM band indoor radio 

propagatioti channels to minimise interference from noise generated by operational 

microwave ovens. 

ln tbe presence of operational microwave ovens the BER performance for bins 1-13, 

19 and 20 approached the level of that attributed to systematic noise only,. and 

although an increase in % peak EVM (maximum 25.983 % for bin number 11) was 

measured there were no data errors recorded. Although the probability for error 

increased as indicated by increase in EVM values, the receive carrier !eve! had to be 

significantly reduced to a level where thermal syi;tematic noise was high enough to 

produce BER degradation when combined with the introduced microwave oven noise 

for bins 1-13, 19 and 20. 

In Chapter 6 of this thesis the received signal power variations caused by the motion 

of people around the receiving antenna of the indoor radio propagation channel was 

statistically characterised. This type of people activity within the physical channel 

itself is considered as the most typical occurrence that causes variance to the received 

signal power for indoor radio propagation systems [36], (37]. As a result of a series of 

propagation measurements at two selected indoor channel venues, data was gathered 

and statistically analysed to determine which was the most suitable fading distribution 

that best matched the measurement results. At both venues the variance in the 

received signal level was only influenced by the controlled motion of people around 

the receiving antenna, with no received signal level variance evident when the motion 

was not present. Rician flat fading was found as the most suitable distribution to fit 

our measured data for both venues. This finding is attributed to the geometry of the 

indoor channels used for the measurements which often had an unobstructed LOS 

path between transmit and receive antennae, along with many reflective paths off 

walls furniture people and other objects. For these conditions, where the reception of 
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a strong received signal over a direct LOS path exists simultaneously with many 

reflective multipath received signals, the fading distribution generally approximates a 

Rician one as the best fit. 

Ricion flat fading caused by the motion of people within the indoor radio propagation - /' 

channel increases the average BER probability markedly when coriipared with the 

predicted BER for BPSK and QPSK modulation in the presence of AWGN at the 

same SNR values. From the analysis of measurement data gathered at our venue w!th 

people In motion (Section 6.5.1), we observed that the indoor radio propagation 

channel exhibited Rician flat fading characteristics with k values being typically in the 

range l-2. The largest computed value of k for both venues was 8.7, and as depicted 

in Figure 62 the larger k value provided the best BER performance for the same SNR 

when compared with the lower k values. For the lower values of k there is a much 

higher probability of received bit errors, and for typical received Et/No ratios of 

l0-15 dB, from Figure 62 an average BER of one bit error for every one hundred bits 

transmitted over the indoor channel is predicted (10'2). A BER probability of this 

order is not acceptable where large volumes of data are transmitted at high speed: The 

errors were observed to occur in bursts during periods of deep signal fading, and are 

large in number. The mechanism of receiving a large numb.er of errOrs in bursts 

prevents the accurate restoration of the corrupted data by the application of error 

correction protocols, as too much data is received with consecutive errors. Tables 3-6 

of Chapter 6 present fading statistics, these statistics show that the measured ADFs 

that reduce thu SNR by 15 dB or more below the mean value, are within the range of 

0.022-0.147 seconds. Many indoor radio systems operate with a design fade margin 

from signal to noise of 15 dB, therefore fades of this depth, and with these average 

duration's, can effectively reduce the received SNR to O dB. At the 

4 megasymbol/second data symbol rate, and for ADFs of this time order, this equates 

to the reception of 88-588 kilobits of data for BPSK modulation, and 

176-1176 kilobits of data for QPSK modulation for time period of the fade. Burst 

errors were observed to occur in all transmitted data sequences at SNR vn!ues 

approaching O dB, therefore ~rror recovery was not possible when Rici an fading 

caused fade depths to exceed the typicai 15 dB design fade margins. The burst errors 

were not evident when motion of people was introduced to the channel after setting a 
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higher fade margin of 30 dB, thus lending support to the nccuracy of the measured 

depth of fades (L) presented in Chapter 6, where the maximum fade depth measured 

was 27 dBm below the mean received power level. 

Fin~lly as a result of our investigation into "Factors Affecting the BER Performance 

of the Indoor Radio Propagation Channel for the 2.3-2.S GHz Frequency Band" we 
conclude: -

Noise generated from operational microwave ovens and channel fading as a result of 

people in motion within the channel are the two main factors affecting BER 

perfonnance of the indoor radio propagation channel for the 2.3-2.5 GHz band. 

Although other sources of noise exist within this frequency band the receive level of 

interfering noise from these sources was found to be sufficiently low as to deem them 

of no conseqnence when considering BER performance over links with minimal 

design carrier receive levels. The BER performance for data transmission in the 

presence of noise from operational microwave ovens is analysed in depth within this 

thesis. 

The fading caused by people in motion within the channel is an important factor 

affecting the BER performance for the 2.3-2.5 GHz band and statistics obtained by 

measurement at two dissimilar sites under identical test conditions revealed highly 

correlated results. The BER predictions computed from measurement data· and 

presented ln this thesis can be used by other researchers as Input dnta for development 

of smart antenna systems to reduce fading depths and improve BER perfonnance. 

Extreme care has been taken in the calibration of all measurement equipment 

employed in the data acquisition to provide statistics for presentation within this 

thesis. fup~rimental physics often leads to knowledge in areas yet nnmapped in the 

theoretical sense, but care is essential to avoid experimental errors and consequently 

incorrect assumptions based on the mea~ured results being proffered. All due care has 

been taken in the extremely time consnming experimental work undertaken within 

this thesis, and the author is confident that the results of this work has advanced the 

knowledge in this area of physics. 
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Appendix A 

System Measurement Sensitivity for 

Non-Systematic Noise 

The noise figure NF for the spectrum analyser HP8596E can be found by obtaining 

the true noise at its input port simply by terminating the input resistively with 

50 ohms [62]. The input noise level (N) is then given by: 

N=kTB [W] (Al) 

where: 

k Boltzmann's constant 138 x 10·,.,, 

T Absolute temperature in degrees Kelvin, and, 

B Bandwidth in Hz. 

At reference temperature 290 K (which is a reasonable appro~imation of the source 

temperature of the 50 ohm resistive termination [63]) the input noise level ca_n be 

calculated for a 1 Hz bandwidth from (A.I) as: 

N=kTBaa-l74dBm 

The noise level displayed on the spectrum analyser represents the noise contribution 

of the resistive 50 ohm termination, as well as internal noise generated within the 

analyser itself. This displayed level of noise has a random distribution and is 

bandwidtb dependent. The power differential (0) that is measured in any RBW by the 

analyser relative to a I Hz bandwidth, can be calculated from the relationship: 
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Ai'PENDlXA Srsr'EM MEASUREMENT SENSrtiVlTI' FOR NON-SYSTEMATIC NOISE 

D=lOlog(RBW/1) [dB] (A.2) 

Allowing for the input noise N, the noise figure NF for the spectrum analyser can be 

detennined from: 

NF= (measured noise)-0- N (A.3) 

Substituting for the measured value of no!se of-110 dBm (for the HP8596E spectrum 

analyser with a 50 ohm resistive tennination on the input port, and the minimum 

RBW of 300 Hz) into Equations (A.2) and (A.3), then: 

NF = (llOdBm)-10 log(300/1)-(-174) = 39.23d8 

The spectrum analyser noise temperature (T,) can be calculated at reference 

temperature (taken as 290 K), from its NF (expressed numerically) as follows: 

T, "'(NF-1)290 [K] (A.4) 

T, - 2.428xto" [K] 

The overall system noise temperature (T,) is given by: 

T,-T,+T,+(LT,) (seeFigurell) (A.5) 

where Lis defined as the feeder line loss power ratio and is expressed as: 

L = foeder input power /foeder output power (A.6) 

The measured loss of the RF feeder cable u~ed for all noise measurements was 

1.2 dB. 

This insertion loss vn!ue trans lutes to a feeder line loss power ratio, L= 1.3182. 

The overall system noise out (Nouc) can be found from: 

N,., .. G,kB(T, +T, +(LT,)) [WJ (A.7) 
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APPENDIX A SYSTEM MEASUREMENT SENS/TlVlTf FOR NON-SYSTEMATIC NOISE 

The antenna is assumed to have no dissipative parts [63], its gain, unlike an amplifier, 

is thought of as a processing gain. The noise available at the antenna (T,), after the 

antenna processing gain, has no contributive noise that is itself generated by the 

antenna. 

The RF feeder noise temperature, Tr, can be calculated at reference temperature: 

T1 m (L-1)290., 93.2K (A.8) 

The System Measurement Sensitivity ls determined from (A.7) by calculation of the 

value of Nout with the antenna contribution Ta set equal to zero, and the RBW set to 

minimum at 300 Hz. This figure of Nout (T,:: 0) tells us the level a sinusoidal signal 

power at the antenna port must exceed before it can be resolved. 

Setting Ta equal to zero, and substituting for G,, k, T,, Ti, L, and B In Equation (A.7) 

gives: 

N .. ,(T, -0)--108.8dBm 

This value is the system measurement sensitivity and corresponds to the lowest level 

sinusoid that can be resolved by the overall measurement system as shown in 

Figure 11, for zero antenna gain. However, by use of the high gain comer refl\lctor 

antenna the overall measurement sensitivity is increased by 15 dB to ·123.8 dBm. 

The noise available at the antenna N,, can be calculated as: 

[WJ (A.9) 

The comer reflector antenna had the highest gain of the three antennas used in the 

noise measurements, with 15 dBi gain. This corresponds to a processing gain (G,) of 

31.62. The noise contribution for any given antenna temperature Ta, is found from 

Equation (A.9). The system measurement sensitivity of -123.8 dBm is adequate for 

the identification of noise sources that have sufficient intensity to significantly 

influence BER perfonnnnce of data transmissions over the indoor radio channel [38]. 
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AppendixB 

Specifications for Measurement 

Antennae 

Antenna Model: VOl0-2325 

Features: 

Omnidirectional. 

Vertical polarisation. 

Ground driven element for lightning protection. 

Fibreglass radome for weather protection. 

No assembly or tuning required. 

Lightweight design. 
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APPENDIXB SPEClFlCATlONS FOR MEASUREMENT ANTENNAE 

Specifications: 

Electricnl 

Frequency range 2.3·2.5 GHz 

Gain (mid-band) 10.2dBi 

Bandwidth for 15:1 VSWR 2.3·2.5 GHz 

Polarisation Vertical 

Maximum input power IOOwatts 

Lightning protection Direct ground 

Tenninat!on N-type socket 

Radiation pattern Refer diagram 

Mechanical 

Overall length I.Sm 

Diameter 0.048 m 

Weight 2.1 kg 

Support pipe material aluminium 

Radome material Fibreglass 

Effective wind area 0.62 m2 

Rated wind velocity 240 km/h 

Shipping weight 5kg 

Shipping volume 0.005 m3 

shipping dimensions 1.3 x 0.06 x 0.06 m 
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APPENDIXB SPECIFICATIONS FOR MEASUREMENT ANTENNAE 

Radiation Pattern for VOl0-2325 antenna: 

dBi 
0 

Vertical pattern ( side view) 

Antenna Model: DRT 2415 

Features: 

Horizontal pattern (top view) 

• Broadband antenna suitable for diplexed and multi-coupled systems. 

• High front to back ratio. 

• Low side lobe gain provides additional protection against interference. 

• Radome for weather protection. 

• Supplied dismantled to minimise transport cost. 

• Lightweight design. 
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APPENDIXB SPECIFICATIONS FOR MEASUREMENT ANTENNAE 

Specifications: 

Electrical 

Frequency range 2.3·2.5 GHz 

Gain 15.0 dBi 

Bandwidth ror 1.4:1 VSWR 2.3-2.5 GHz 

Polarisation Horizontal or Vertical 

Maximum input power lODwatts 

Lightning protection Direct ground 

Tennination N-type socket 

Radiation pattern Refer diagram 

Front-to-back ratio >25dB 

Crossed polarisation >25dB 

3 dB beam width E-plane 47 deg 

3 dB beam width H plane 55 deg 
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Al'l'EN/JIX B Sl'EC/FICATIONS FOR ME:ASU/IEMEI« ANTENNAE 

MeehanlcaJ 

Reflector height 0.25 m 

Reflector length O.J7m 

Reflector depth 0.25m 

Reflector material Aluminium 

Weight 1.5 kg 

Mounting hardware Designed fo, 25-42 mm 

diameter pipe 

Radome material ABS 

Effective wind area 0.14 m2 

Rated wind velocity 200 km/h 

Shipping weight 2kg 

Shipping volume 0.011 mJ 

shipping dimensions 0.3 >< 0.3 x 0.12 m 
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A.PPENDIXB SPECIFICATIONS FOR MEASUREMENT ANTENNAE 

Radiation Pattern for DRT 2415 antenna: 

dBi 

0 

H Plane (Vertical polarisation) 

E Plane (Horizontal polarisation) 

Antenna Model: Quarter-wave Monopole 

Features: 

• Omnidirectional. 

• Vertical polarisation. 

• Ground driven element for lightning protection. 

• Lightweight design. 
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APPEND/KB SPECIFICATIONS FOR MEASUREMENT ANTENNAE 

Specifications: 

Electrical 

Frequency range 2.3-2.5 GHz 

Gain ' 2.15 dBi 

Bandwidth for 1.5:l VSWR 2.33-2.47 GHz 

Polarisation Vertical 

Maximum input power lOOwatts 

Lightning protection Direct ground 

Tennination N-type socket 

Radiat!on pattern Refer diagram 

Mechanical 

Overall length 0.09m 

Diameter 125 mm 

Weight 0.75 kg 

Support pipe material PVC 

Radome material none 

Effective wind area 0.003 mi 

Rated wind velocity 310 kmfh 

Shipping weight l kg 

Shipping volume 0.0023 m3 

shipping 1imensions 0.15 x 0.15 x 0.10 m 
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APPENDIXB SPECIFICATIONS FOR MEASUREMENT ANTENNAE 

Radiatjon Patterns for Quarter-wave Monopole antenna: 

dBr 
180° 

Vertical pattern (side view) Horizontal pattern (top view) 
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AppendixC 

Non-Systematic Noise Measurement 

Venues 

Measurement Venues Zone 50 Australian 

Map Grid (AMG) 

Co-ordinates 

Edith Cowan Universjtl', Joondalull: D[ive, Joondalu!!. 38350XmE 

Lecture theatres, Library, Computing centre, Staff common 648630XmN 

room, PABX room, Administration main office, Student 

accommodation, Canteen and restaurant, Main car park, 

Joondalup Dr!ve (road edge). 

Curtin University OfTechnolQgv, Ha;tman Road, BentleJ. 39551XrnE 

Australian Telecommunications Research Institute building, 645820XmN 

Lecture theatres, Library, Campus radio station (6NR) Studios, 

Main canteen and tavern, Hayman Road (road edge). 

Richmon!;! Prima.y School, O§llome Road, East Fcemantle. 38370XmE 

Class rooms, Main office, Play ground, Canteen, Library, 645474XrnN 

Computer room, Sports oval, Osborne Road (road edge). 
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Measurement Venues Zone 50 AuslraUan 

Map Grid {AMGJ 

Co-ordinates 

Radi~ St~!ion 100 fm, ~anning H!ghwa)i'., J;;ast Fremantle. 38307XmE 

Main office, Studios, Master control room, Stand-by diesel 645421XmN 

and power room, Record library, Canning Highway (road 

edge). 

Radio Station lQO fm Transmitter Site, Pier Street, !;;ast 38J81XmE 
Fremantle. 645505XmN 

Transmitter hut, Base of the transmitting ma~t. Water 

Authority pumping station, Pier Street (road edge). 

Wilson's Engraving Works, Westchester Road, Malag~, 39400XmE 

Main engraving work area, Administration office, Car park, 647500XmN 

Westchester Road (road edge). 

Ielstm Perth. Head Office, Stirling Street, East Pert!J, J9257XmE 

Ground floor cafeteria, Ground floor gymnasium, Lift well, 646444XmN 

Library, Open office areas on the s•h and 6'h floors, Main car 

park, Stirling Street (road edge). 

Town of East Freman tie Works De!JQI, Allen Street, East J8370XmE 

Freman tie. 645J85XmN 

Workshop area, Car park, Foreman's office, Allen Street (road 

edge). 

Wanneroo Road, Balcatta. J8985XmE 

Wanneroo Road (road edge). 647126XmN 

South Pecth River Fore§hor:g, South Perth. J9200XmE 

Sir James Mitchell foreshore parkland. 646175XmN 
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Measurement Venues Zone SO Australlan 

Map Grid (AMG) 

Co-ordinates 

Edgel\later Train Station, Edgewater. 38424XmE 

Station main plntform. 648400XmN 

East Fremantle Football Club, Moss Street, East Fremant!e. 38360XmE 

Main office, Car park, Hotel bar, Functions room, oval, Press 645365XmN 

boxes, Moss Street (road edge). 

Whitford Citv ShO!l!ling Centre, Whitfords Avenue, Hill,10!~, 38158XmE 

Public shopping malls, Food hall, Car park, Goods delivery 648130XmN 

area, Security staff office area, Management offices, Whitfords 

Avenue (road edge). 

Telstra Mobile Tele!lhone Base station site, Ocean Reef Road, 38450XmE 

Woodvale. 648330XmN 

Base station hut and mast area. 
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AppendixD 

Computer program for Rician k-factor 

testing 

\Matlab 10 program for Kolmogorov-Smirnov testing measured and 

hypothesis COE' for a range of k. 

,iii,ii\%%%%%%%%%%%\\\%\\\\%%\%%%1%%\\~%·\\'\~\%\%% 

format long e 

load RECT4,M 

y_inmRECT4 (500: 109934, 2); 

• 
iu 5th Order Butterworth ruter 

[b, aJ abutter (5, 40/5512, 5); 

y_outmfilter (b, a, y_in); 

\H Median 

y_lin~lO," (y_out/10.); 

mmmedian ly_linl; 

m=>lO. • loglO (m); 

\H Norm 

mg?2.5•m-63; 

y-72. 5 •y _out-63; 

ymy-m; 

HI cor Measurement 

[n, x) =>hist (Y, 194); 

n=>n/(109934-500+1); 
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n•cumsumlnl1 

' 
%\% Flot Measurement 

plevel•x; 

cdfmn; 

plo'ttype•'+'; 

german•O; 

rayplot 1plevel, cdf, plot type, german) 

in hypothesis 

for k~O: 15 

' 
%%% CDr Rlcean; k -> shift_k 

clear I r F x_k median_k cdf_k 

steps•200; 

x_k•Un•pace l-30, 20, steps); 

for i~O: 50 

I(i+l,l:steps) 

r(i+l,1:stepsl 

'"' 
F • I. •r; 
SC• sum(F); 

besseli Ii, sqrt (2• kl •10," l><_k, /20111 

(sqrt(2'kl ,/10." (x_k./20)) ."1; 

cdf_k - 1-exp I- (k+lO," (x_k. /10) 121 l • •sc; 

median_k•lcdf_k-0.51,"21 

[Y, IJ ~min (median_kl; 

shift_k•x_k(II; 

x_k•x k-shift_k; 

plot type•' -- '; 

german•01 

rayplotlx_k,cdf_k,plottype,germanl 

set lgca, 'FontSi;:e', 10, 'fontname', 'roman' J 

' in cor Ricean; k -> delta_k 

clear r r F x_k medinn_k cdf_k 
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[r<1,caJ~sizelxJ: 

x_k-x+shift_k; 

for i-0:50 

I(i+l,1:ca) 

'Fli+l,1:caJ .,, 
sc~ sum(FI; 

besseli (i, sqrt 12•k) *10. A (x_k. /20)); 

I sqrt 12*kl • /10, A (x_k./201 J • Ai; 

cdf_k • 1-exp (- (k+lO. A (x_k. /101 /21 ) . *SC; 

median_k-(cdf_k-0.5).A2; 

(Y,I]•min(median k)1 

x_ k•l<_k-x_k I I); 

plottype• 'o'; 

german-o; 

rayplot lx_k, cdf_k,plottype, germanJ; 

set (gca, 'FontSize', 18, 'Fontname', 'roman'); 

(Y_k, r_k]-max (abs (cdf_k-cdf) J ; 

DI k+l l-lOO*Y_k; 

X(k+l)-x_k(I k); 

K(k+l)-k; 

•"' 
(Y_best, X_bestJ ~min (D); 

D _min-D(X_best); 

X_min•X (X_best); 

K_fac•l<IX_bestl; 

fid - fopen('hyp4.dat','w'I; 

fprintf(fid,'** Fitting for RECT4.M ••\n\n')I 

fprintf(fid,' D\t X\t K\n\n'); 

for k•0:15 

fprintf(fid,'%6.Jf\t %6.Jf\t %6.Jf\n', O(k+ll, X(kH), K(k+l)I; 

•"' 
fprintf (fid,' \n\nD_min %6.Jf\n\n', O_min); 
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fprintf(fid, 'X_min • !;6.3f\n\n',X_min)1 

fprintf(fid, 'K_fac • %6.3f\n\n',K_fac); 

status• fclosel'all')1 
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AppendixE 

Computer program for conversion of the 

Average Peak Power measurements to 

Average Peak Electric Field Intensity 

values 

%%%%%%%%%l%llllll%%%l%%%%%%%%%%%ll%%% 

%Matlab © program for converting an array of Average Feak Fower 

Measurements to an anay representing Average Feak Electric field 

Intensity. 

format long e 

load dBm.M 

o~dBm1 

' 
lll Convert a measured dBm power in 50 ohms to watts in 50 ohms 

X•D./101 

W•(lO. • (X)). • (1000." (-1) J; 

••~ Convert watts to voltage across 50 ohms 

161 



APPEND/XE COMPUTER PROGRAM CONVERSION ROUTINE 

U% Compute antenna factor for to,enty bin centre frequencies 

i":[2. 305:0.01:2. 495); 

A:("20. *loglO (<)) +2B .18191; 

' 
%U Calc:ulate the Average Peak Electric neld Intensity for each bin 

centre frequency in dBUv/m 

Er-(lO.A(A./201) .•V; 

uv~Er.*10000001 

c!BUvm20. •loglO (Uv); 

Uhe array for the variable c!BUv contains the Average Peak Electric 

Field Intensity values for each bin centre frequency. 
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AppendixF 

Characterisation of Channel Impulse 

Response 

In this Appendix an analysis of the indoor radio propagation channels impulse 

response for propagation frequencies in the 2.4 GHz-ISM band is undertaken. In 

Chapter 3 the basic equations for determining the electric field intensity E1 of all 

single propagation path signals as a function of distance or range (r) (which is termed 

E;(r)) was developed. The equations are further developed to include the directional 

characteristics of the transmit and receive antennas and the respective exit angles and 

incidence angles for each path. These equations provide the basis to a method of 

characterising the indoor radio propagation clmnnel in the time domain which is 

described in this appendix . For our characterisation the channel is kept static, and as 

such has zero motion of people, transmit antenna, or receive antenna, and therefore 

considered as time invariant. The supeiposition of all discrete paths E1 results in the 

total received field strength. The wideband impulse response measurements have been 

made using a vector network analyser and an associated scattering parameter 

(s-parameter) test set. The measurements were conducted within the laboratory used 

for the fading measurements. 

F .1 Impulse Response Measurement System 

Equation (3.6) provides the relationship between the channels impulse resp.onse 

h(-i:,r), and the received electric field intensity E; for each discrete path i contributing 

to the delay profile. This equation is valid from the theoretical perspective where 
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isotropic transmit and receive antennae arc an inherent part of modelling the impulse 

response. The u~c of real physical antennae introduces the additional consideration of 

the transmit and receive antenna patterns. The effect of a ri:al ijntenna pattern is 

equivalent ro weighting each path, i, by a value dependent on the 1ransmit and receive 

aspCcl angles of the reflector or scatterer as "viewed" initially by the transmit antenna 

and then finally by the receive an1enna. If a direct line of sight path exists, then again 

the transmit and receive antenna patterns will directly influence the received field 

int,msity E;. Equation (3.6) is therefore mcdified lo show antennae pattern dependence 

as follows: 

h(T,r) • t A.(«.,,Pa,)E,(r)c·1'·'r,,,R,b(t -T,)AT(a,.,,Pn) 

" 
(F.l) 

where: 

aa, azimuth angle of incidence at the receive antenna with respect to the last 

point of scalier, 

Pa, elevntion angle of incidence at the receive antenna with respect to the 

last point of scatter (or reflection), 

u,, 

R, 

,. 

A, 

A, 

azimuth angle of exit from the transmit antenna with respect to the first 

point of scatter {or reflection), 

elevation angle of exit fonn the transmit antenna with respect to the first 

point of scaucr (or reflection), 

reflection coefficient of lhe ith path, 

propaga1ion delay of the ith pnth, 

directional characteristic of the receive antenna, 

directional chmactcristic of the transmit antenna, 
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f, radio wave carrier frequency, 

S(t) dirac delta function, 

E,. received electric field intensity or the i'~ path. 

The impulse response obtained by channel measurement m(t) is further modified by 

the impulse response of the measurement system itselr s(t) which included connection 

cables and a receive amplifier to improve the signal to noise ratio of the system. This 

is accounted for in the analysis of measurements by the convolution of h(t,r) with 

the measurement system impulse response s(t): 

m(t) "h(t,r) •s(t) (F.2) 

The value of the instantaneous received power, (WR), is of main interest, and is 

plotted as the ordinate in all power delay profiles. The instantaneous received power 

is given by: 

w. (t) .. K,e(t)e · (t) (F.3) 

where • indicates complex conjugate, and the complex instantaneous electric field 

strength e(t) is: 

(F.4) 

K! is derived form the receive antenna's effective aperture (AK,r1) as follows [43]: 

where: 

>' 
A"'" •G•-4, 

AK,H receive antenna effective aperture, 

G" maximum gilin of receive antenna, 

(F.S) 
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A. wavelength of radio wave carrier. 

Using the relationship given in Equation (F.5) it can be shown that tbe effective 

aperture AR<11 is the ratio of the power available at the receive antennae terminals WR, 

to the power per unit area of the appropriately polarised incident wave P,1v [43]. That 

is: 

Substitution of P~v from Equation (3.14) gives: 

I E' A.' w.=-~G -
2 l] R4lt 

For free space condition from (3.11) 11 '"llo .. 120:t, then: 

where: 

W = E' G~),,,l .. E'K 
R 0 960/l, o 1 

K, = GaA.' 
• 960:t' 

(F.6) 

(F.7) 

(F.8) 

(F.9) 

WR(l) is a stochastic variable which is dependent on the statistical properties of the 

superposition of all single complex propagation path signals E1, A received power 

profile of WR(t) Is computed and displayed by the wide-band impulse response 

measumnent system shown as Figure 64. The Hewlett Packard HP8753C network 

analyser and the associated S·parameter test set 85047A provide data on the 

frequency domn!n response of the overall system. A Mini-Circuits ZFL-2000 RX 

amplifier is included to improve the receive signal to noise performance of the 

measurement system, and to inr.rease the dynamic measurement range. The RF TX 

cnblc, calibrated monopole transmit antenna, calibrated monopole receive antenna, RF 

RX cables, and RX amplifier behave ns a two port network. By selection of S­

pmameter S2l, the complex forward transmission coefficient frequency domain data 
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that includes both magnitude and phase is measured. By application of optional 

software installed in the HP8753C network analyser, the frequency domain data is 

Inverse Fourier Transformed (IFT) to time domain data equivalent to the variable m(t) 

given in Equation (F.2). As can be seen from this equation, m(t) is a convolution of 

the indoor radio channels impulse response h(t,r) and the measurement systems 

impulse response s(t). It therefore includes the affects of the monopole antennae, RF 

connective cables, and Mini-Circuits ZFL-2000 RX amplifier. 

HP 8753C 

NETWORK 
ANALYSER 

HP 85047A 

$-PARAMETER 
TEST SET 

MONOPOLE 
TRANSMIT 
ANTENNA 

Z7 

RF TX CABLE 

MONOPOLE 
RECEIVE 
ANTENNA 

MINI-CIRCUITS ZFL-2000 
RECEIVE AMPLIFIER 

Figure 64: Wide-band Impulse Response Measurement System. 

F .2 Building Topology 

As previously stated the laboratory is the same venue used to gather fading data, and 

its physical structure and dimensions are discussed in Section 6.2. A plan view of the 

laboratory with the antenna positions used for the impulse response measurements is 

shown in Figure 65. 
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Figure 65: Plan view of the laboratory. 

F.3 Measurement Procedure 

The measurement data obtained by the system in tbe frequency domain consists of 

both amplitude and phase information representative of m(f). This data is at equally 

spaced points in a selected frequency band of the frequency domain. The important 

measurement parameter is the frequency span, as it is this parameter that determines 

the achievable time resolution ('tREs) in the time domain after the IFT operation is 

performed. ,;RES is given by: 

1 
(F.10) 

'tRES = frequency span 

The relationship between the frequency span and the measurement time span is: 

. number of frequency points-1 
mea urement t1me span = -------=---~-=----­

frequency span 
(F.11) 
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For all our measurements we selected 801 frequency points, and a time span of 

135.48 ns (225.48 ns - 90 ns), this selection allows the frequency span to be 

computed from Equation (F.11) (after transposition) as follows: 

800-1 
frequency span - , - 5904.930617 

135.48x10· 
[MHz] 

Substituting this value of frequency span into Equation (F.10) results in a value for 

tRES of 0.16935 ns, which is the measurement resolution that can be achieved in the 

time domain. The frequency distance (Ar) between successive samples is simply the 

frequency span divided by 800. The value of Ar is used to determine the unambiguous 

range (RUNMm) of the measurement, where RuNAMB is defined as the range over 

which W~(t) can be unambiguously related to a particular transmitted pulse. Aliasing 

occurs for distances larger than RuN,\1,m as a result of under sampling in the frequency 

domain. RuNMtS is given by Equation (F.12) as: 

where: 

' RwnMD • Af 

c the speed of light [3xI08 metres/second]. 

(F.12) 

By substitution of Ar into Equation (F.12), then RuNMrn is calculated as 40.644 metres 

for all measurements. The probability of receiving reflected multipath signal 

components of significant magnitude after propagation over path lengths in excess of 

the RuNMm distance of 40.644 metres is considered negligible for a measurement 

venue possessing the dimensions shown in Figure 65. The affect of aliasing on the 

measurement data can therefore be excluded. An ai;cepted technique used in the 

analysis of data obtained from radio channel impulse response measurements is the 

division of the impulse response time axis into small time intervals called "bins". 

Each bin is assumed to contain either one multipath component or none at all, TaEs has 

been suggested as a reasonable bin size because two or more received multipath 

components arriving within a bin time frame cannot be resolved as distinct paths by 

the measurement system [26]. This technique is adopted for all our measurement 
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analysis, and the selection of bin sizes equal to TJu;s when calculating impulse 

response statistics is made. 

For all measured impulse response profiles, the excess time delay of the multipath 

CO[llponents arc referenced to the time delay of the first signal to arrive. This signal 

which intuitively arrives over the shortest path is defined as the path i = 0 in 

Equation (J.6), and for computation purposes it is given a normalised reference time 

of O seconds. The data representing the measured magnitude of the received impulse 

profile {Wn(t)) are also normalised to the magnitude of the firs, arrival path (i = 0). 

The selection of a threshold value for WR{t) below which the multipath received 

power level is no longer included in the summation calculations given in 

Equations (3.23) and (J.24) is important. Lowering the threshold value includes more 

multipath components at longer time delays thereby increasing the computed value of 

o,. Therefore the calculated value of o, is determined by the selection of a threshold 

value, and this threshold value must he chosen with the aim and objectives of the 

measurements in mind. The selection of a threshold value has been addressed by some 

researchers, and [70] suggests that the measurement system employed in gathering the 

impulse response data should experience similar path losses as the system proposed 

for use over the indoor radio channel. This approach is supported by logic, HS the 

reception of any multipath components which fall below a threshold value that is 

representative of large value for received signal to noise ratio, contribute little to the 

overall BER performance. Therefore the method of performing impulse response 

measurements where the maximum instantaneous receive power level of W~(t) for the 

impulse response measurements has been selected to approximate the typical receive 

power levels of commercially available radio data systems is adopted in our 

measurements. The threshold value for WR(t), below which the multipath received 

power level is no longer included in statistical calculations, is selected as 30 dB lower 

than the normalised value of the magnitude of the first arrival path (i = OJ in each 

impulse response measurement profile. The selection of this JO dB threshold meets 

the large value of received signal to noise criteria mentioned previously, and 

measurements have shown that any interfering multipath components with 

instantaneous power levels that are below this level, contribute little to the overall 

BER performance of data transmission Jinks. 
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To characterise the measurement system's impulse response s(t), a calibration impulse 

response measurement was performed in an open flat field with the transmit and 

receive antennae placed at 6 metres separation, each mounted at 2.5 metre height 

above ground level on the stands shown in Figure 7. Apart from the 6 metre direct 

path between the antennae, and a possible ground reflected path, the nearest reflective 

surface was 250 metres distant from the receive antenna. The multipath reflections 

from this or other more distant surfaces can therefore be easily identified by the 

analysis of the time versus amplitude relationship of the calibration measurement. An 

allowance of0.3 ns per metre for the propagation velocity of the wave, and the known 

distance to these distant reflecting surfaces, provided an estimation of the time 

position in the impulse response profile where the amplitude may be influenced by the 

multipath reflections produced from them. The affect of any multipath signal 

contributions with long time delays can therefore be identified, and not included in the 

calculation of delay spread parameters that are related only to the measurement 

system itself. The affect of the possible ground reflection on s(t) was tested by the 

completion of a further series of impulse measurements, where for each measurement 

a localised movement of one half wavelength of the receive antenna was made. This 

movement being initially toward, and then away from the transmit antenna, to vary 

the range between antennae from 6 metres to 5 metres, and then 5 metres to 7 metres. 

With each movement of 6.25 cm corresponding to a distance of one half wavelength 

for the mid-band frequency of 2.4 GHz, the receive antenna was moved through a 

total distance of 32 half wavelengths. Analysis of the impulse response data, after 

each movement of the receive antenna, showed the affect of the ground reflected path 

to he negligible, and as such the measurement system's impulse response, s(t), is 

characterised from the open field measured response and depicted as Figure 66. From 

Figure 66 it can be seen that for our 6 metre direct path the relative maximum value of 

instantaneous received power (W~(t)) is -80.837 dBm, and it occurs at a measurement 

time of 142.5 ns. In Figure 66 the abscissa time span is 90-+225.48 ns, therefore each 

of the ten horizontal divisions is equal to 13548 ns in width. The ordinate is a base 

ten logarithmic scale of 5 dB per division. 
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Figure 66: Impulse Response of the Measurement System. 

F.4 Measurement Results 

Impulse response measurements were performed for transmit antenna placements at 

positions C, J, D, and F shown in Figure 65. These placements being selected to 

match those where fading data were analysed in Chapter 6. The receive antenna was 

also placed at the same position as for the fading measurements, and the motion of 

people kept at zero. The impulse response data obtained is therefore for a static 

channel situation, and as discussed in Section 6.3 the motion of people, motor 

vehicles, and other objects external to the laboratory had no impact on the 

measurements. The impulse response plots are terminated where the average receive 

power level calculated over a sliding window for twenty consecutive time points, 

approaches a value of 30 dB below that of the shortest and hence first arrival path 

value (i = 0). The nominal value of 30 dB is the threshold level discussed and selected 

in F.3. For the transmit antenna placements C, J, D, and F it can be seen from the 

impulse response plots shown as Figures 67, 68, 69, and 70 respectively, that the time 

taken for the received power to fall below the 30 dB threshold value approximates 
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50 ns for all positions. At the speed of light this value corresponds to a propagation 

path length of 15 metres greater than that of the first signal to arrive over the shortest 

path, defined as the path i = 0. As 15 metres is significantly less than RuNAMB which 

was calculated as 40.644 metres in F.3, the selection of measurement parameters i 

supported. These impulse response figures also depict the measurement noise level, 

which are plotted as series of random values that precede the sudden increase in level 

to the value representing the arrival of the first resolvable signal over the shortest 

path. Analysis of the impulse responses noise level shows it to be below the average 

30 dB threshold value in all plots, and as such noise is not considered as a source of 

error in the statistical analysis undertaken in F.5. 
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F.5 Statistical Analysis 

The received power shown as the ordinate in Figures 67-70 is the stochastic ~ariable 

Wa(t). From Equation (F.8) it can be seen that the instantaneous value of Wa is equal 

to tlie product of the constant K2 and E/. Therefore by the conversion of all measured 

logarithmic values of WR to linear values, and then nonnalising them to the maximum 

linear value, an array of values representative of Ei2 is obtained. The substitution of 

this array and the related time data into Equations (3.24), and (3.23) pennits the 

computation of "tm and a, respectively. The va!ue of a, calculated from the overall 

measurement is not equal to the rms delay spread caused by the indoor radio channel 

alone, an allowance must be made for the system calibration value of delay spread. 

This value is determined from the open field measurement data obtained in Figure 66. 

It can be shown (71] that: 

(F.13) 

where: 

1~ indoor channel mean excess delay, 

l,..,,,...i - measurement mean excess delay, 

l,,,~"' system calibration mean oxcess delay. 

The relationship between the indoor channel nns delay spread, measured rms delay 

spread, and system calibration delay spread is given by: 

! 2 l 

0, ~ a"'"'""" -a,,..,m (F.14) 

therefore: 

' ' O,"" (J -(J 
~<>•mO ''""" 

(F.15) 

where: 

cr, - indoor channel rms delay spread, 
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cr,.,.,,..., • measurement nns delay spread, 

cr.,0 ,,. - system calibration delay spread. 

Table 8 shows the empirical values of,,. and o, for transmit antenna placements C, J, 

D, and F. The values were calculated from Equations (3.23), (3.24), (F.13), (F.14), 

and (F.15) respectively, from measured data using Matlab©. 

Table 8: Mean excess delay and nns delay spread 

Placement 'tm (ns) o, (ns) 

c 11.5699 9.8074 

J 7.8352 115436 

D 14.3883 11.0872 

F 12.2138 16.4433 

F.6 Conclusions 

Statistical analysis of the wideband impulse response for the four representative 

transmit antenna placements (C, J, D, and F), and the fixed receive antenna 

placement, pennitted the calculation of specific values f?r the static rms delay spread 

parameter. fl should be noted that the calculated values are specific to the antenna 

placements and for this particular room. The important choice of a venue that 

provided a static receive level in the absence of motion within the room allowed the 

values of delay spread to be obtained by the statistical analysis of repeat 

measurements for the same transmit and receive antenna placements. It is therefore 

possible to transmit high speed data over the indoor channel using the same antenna 

placements for which the delay spread statistics were obtained, and by maintaining 

our static environment, then to detennine if there is any perceptible increase in EVM 

for the received constellation that can be directly attributed to ISi caused by delay 

spread. By knowledge of the relationship between EVM and systemic noise for the 

data measurement system, as given in Figure 10, then by deduction the affect, if any, 
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of o, on EVM can be detennlned, with the proviso that its impact on the change to 

EVM magnitude falls within the measurement accuracy of the system. The values 

obtained for o, at 2.4 GHz are in ngreement with those obtained from measurements 

and analysis perfonned by other researchers [41], [72J, at venues of similar size and 

coiiipamble construction materials. The calculated values of o, for the 2.4 GHz 

frequency band in [72] fall within the range of 7.4-23.1 ns. In Chapter 7 we consider 

the affect of o, on BER. 
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