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Abstract—Over the years, we have seen an increase in the use of 
RBF neural networks for the task of face recognition. However, 
the use of second order algorithms as the learning algorithm for 
all the adjustable parameters in such networks are rare due to 
the high computational complexity of the calculation of the 
Jacobian and Hessian matrix. Hence, in this paper, we propose a 
modular structural training architecture to adapt the Levenberg-
Marquardt based RBF neural network for the application of face 
recognition. In addition to the proposal of the modular structural 
training architecture, we have also investigated the use of 
different front-end processors to reduce the dimension size of the 
feature vectors prior to its application to the LM-based RBF 
neural network. The investigative study was done on three 
standard face databases; ORL, Yale and AR databases. 

Keywords- modular structure, RBF neural networks, 
Levenberg-Marquardt algorithm, face recognition 

I.  INTRODUCTION  
The use of radial basis function (RBF) neural network for 

face recognition has been widely explored over the past decade 
with promising results [1-8]. Most of these works are 
motivated by the findings of the work by Joo et.al in [2] that 
study the use and adaptation of the RBF neural network for the 
small sample high dimensional problem of face recognition.  
The authors  in [2] used Principal Component Analysis 
(PCA)[9] and Fisher Linear Discriminant (FLD) [10] to reduce 
the dimension of the face images and extract the discriminant 
features. Subsequently, the patterns are classified using an RBF 
neural network learned using a hybrid algorithm; Linear Least 
Squares (LLS) and Gradient Descent (GD). LLS is used to 
learn the weights of the network while GD is used to learn the 
adjustable parameters; width and centers, of the RBF units. To-
date, the method of structure determination employed by these 
authors is still widely practiced in the RBF design of some of 
the recently developed face recognition systems [1, 3, 6-8]. For 
example, the work by [7], uses the structure determination 
method by [2], with regularized orthogonal least square 
(ROLS) to create an RBF neural network with incremental 
learning capabilities for the task of face recognition. On the 
other hand, the work by [1, 3, 6, 8] uses different feature 

extraction/pre-processing techniques prior to applying the data 
to the RBF neural network designed using the same concept 
specified in [2].  

Compared to first order algorithms, second order 
algorithms are advantageous as they are much faster [11, 12] 
and can be an effective solution for problems with up to 
hundreds of parameters [13]. Thus, instead of using two 
separate algorithms e.g. LLS for weights and GD for width and 
centers, the second-order algorithm can be theoretically used to 
learn all the adjustable parameters in the RBF neural network. 
This is evident in the recent work by [11, 14] which uses 
different improved methods of computation to determine the 
Jacobian matrices in the Levenberg-Marquardt (LM) algorithm 
and subsequently use the improved LM algorithm to determine 
all the adjustable parameters in a single feed-forward neural 
network. Although the above-mentioned approaches were 
tested to be effective on the two commonly used benchmark 
tests; function approximation and two-spiral classification, the 
application of such methods to high dimensional multi-class 
learning has not been explored. To the best of the authors’ 
knowledge, it is noted that the use LM algorithm for the 
learning of the RBF neural networks designed for the task of 
face recognition is scarce. This could be due to the fact that the 
high computational complexity incurred by the learning 
algorithm itself eventually far outweighs any advantages 
offered by the algorithm resulting in most researchers opting 
for a less computationally demanding algorithm. 

In this paper, the modified LM algorithm to update all the 
adjustable parameters in the RBF neural network is first 
presented. This is followed by the proposal of the modular 
dynamic LM-based RBF neural network, which is based on the 
network construction method presented in [11]. Then, the 
proposed modular dynamic LM-based RBF (MD-RBF) is 
coupled with several front-end processing methods to 
determine which method complements the performance of the 
proposed MD-RBF neural network. The contribution of this 
paper is two-fold; 1) the proposal of the MD-RBF neural 
network for high dimensional multi-class learning and 2) 
performance analysis of a combination of different front-end 
processing methods with the MD-RBF neural network .  
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Figure1.  Architecture of RBF neural network 
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The structure of the paper is as follows: In Section 2, a brief 
review of the RBF neural network architecture is presented. 
This is followed by the presentation of the use of LM algorithm 
to update all the adjustable parameters for RBF neural 
networks. In Section 4, a brief analysis of the issues faced by 
high dimensional multi-class learning for LM-based RBF 
neural network is presented. A description of the proposed 
modular structural training architecture to adapt the LM-based 
RBF neural network for high dimensional multi-class learning 
is presented in Section 5. Section 6 describes the general 
method of application of the proposed MD-RBF neural 
network for face recognition. The simulation results obtained 
are presented and discussed in Section 7. Finally, the paper is 
concluded in Section 8. 

II. RBF NEURAL NETWORK ARCHITECTURE 
 

The RBF neural network consists of three layers; input layer, 
hidden layer and output layer. Fig. 1 shows the architecture of 
a typical RBF neural network with N inputs, M RBF units and 
S outputs. The data set is denoted by XP where P denotes the 
total number of patterns. The output of the RBF network with 
Gaussian function can be calculated as follows: 
 

( ) 0
1

, wWXYZ
NM

m
smpmps +=∑∑

=

 (1) 

 

( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−=

m

mp
pm

CX
XY

σ

2

exp  (2) 

 
where Wm, s denote the weights between the M-th RBF unit 
and S-th output, w0 the bias, Cm the center and mσ the width. 

Note that •  represents the Euclidean norm. 

III. MODIFIED LM ALGORITHM FOR RBF NEURAL 
NETWORK 

The update rule of the LM algorithm commonly used to 
update the weights of artificial neural networks is provided in 
(3) [12]. 
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where J is the Jacobian matrix, I is the identity matrix, µ is the 
learning rate and e is the error vector containing the output 
errors for each input vector used on training the network. In 
the case of updating the weights, the Jacobian matrix is 
calculated based on the first-order partial derivatives of the 
network error with respect to the weights. The Jacobian matrix 
in such cases for P number of patterns, S number of outputs 
and NW total number of weights results in a Jacobian matrix 
of size (P×S) × NW  and is mathematically represented as: 
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To modify the update rule in (3) to update all the parameters, 
we incorporate the centers and width into the update rule by 
concatenating all the parameters into a single vector, R, and 
substituting it into the original equation. The formation of 
vector R can be represented by (5) [11]. 
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Where Rt+1 represents the updated parameters, J represents the 
Jacobian matrix, μ  the learning parameter and PSe the error 
vector defined in (8). For the original algorithm, since the 
update rule is used for solely determining the weights, hence 
the Jacobian matrix is formed by differentiating the error with 
respect to weights, refer to (4). In the current case, since the 
centers and width are incorporated into the update rule, the 
Jacobian matrix is formed by differentiating the error with 

respect to weights,
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respectively and concatenating the results together . 
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where ePS is the error vector and dPS is the desired output at 
network output S for training pattern P. The calculation of the 
Jacobian elements can be calculated using the differential 
chain rule which results in (9)-(11).  
 

With the addition of the differential of the center and width 
to the original Jacobian matrix, the size of the new Jacobian 
matrix is now larger. The size of the new Jacobian matrix is 

represented by (12), where P represents the number of 
patterns, S the number of outputs, M the number of neurons 
and N the number of inputs. To remove the need of storing the 
entire Jacobian matrix during each update, the concept of 
calculating the Hessian matrix and gradient in [15] is used 
whereby only the rows of the new Jacobian matrix needs to be 
calculated and stored. The Hessian matrix, Q, is then formed 
by summing the result of multiplication between the Jacobian 
rows, j, with its transposed, jT; refer to (13). On the other hand, 
the gradient, g, is obtained by summing and multiplying the 
Jacobian row with the error vector, ePS, refer to (14).  
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IV. LM ALGORITHM FOR HIGH DIMENSIONAL MULTI-
CLASS LEARNING 

For each iteration in the LM algorithm, the inversion of the 
Hessian matrix, H, is required. This becomes a problem for 
high dimensional multi-class learning using LM-based RBF 
neural networks because with the use of the LM algorithm to 
update all the adjustable parameters, the formulation of the 
Hessian matrix is now dependent on the size of the inputs and 
outputs. Denoting the number of inputs as NI, total number of 
outputs as NO and the number of neurons as M; the size of the 
Hessian matrix can be represented as follows. 
 
Size (Η) = (ΝΙ + 1 + ΝΟ) ⋅ Μ   (15) 
 
Hence, for the high dimensional multi-class learning problem, 
NI and NO which depends on the size of feature vector and 
number of classes to be classified respectively, will inevitably 
increase resulting in the inversion of a larger matrix during 
each update of the learning process. To reduce the 
computational complexity related to the inversion of the 
Hessian matrix during each iteration, steps can be taken to 
reduce both the size of feature vectors and the number of 
outputs. The latter is a much trickier problem because unlike 
the size of the feature vector which can easily be reduced 
through the use of pre-processing or dimension reduction 
techniques, the number of classes to be classified cannot be 
arbitrarily reduced just to reduce the number of outputs. In this 
paper, we propose the use of a modular training structure to 
mitigate the problem of reducing the number of outputs used 
by the network structure. The proposed modular structural 
training architecture is presented in the following section. 



 
Figure 3. General block diagram of a face recognition expert using the 

proposed MD-RBF neural network 
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Figure 2.  MD-RBF network architecture 
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V. PROPOSED MODULAR DYNAMIC RBF NEURAL 
NETWORK (MD-RBF) 

The architecture of the proposed modular training structure 
for the dynamic LM-based RBF neural network (MD-RBF) is 
depicted in Fig. 2. The structure of the proposed MD-RBF 
neural network is similar to that of the conventional RBF 
neural network shown in Fig. 1 except that the training of each 
class is done in modules resulting in the classification of only 
one class at a time.  Then, the individual outputs of each 
module are concatenated together to form the final output of 
the MD-RBF neural network, Zout.  

Thus, for the training of an arbitrary number of classes, the 
number of inputs for each RBF module is equals to that of the 
number of features (i.e. the dimension of the input space) but 
each module only has one output and the total number of 
modules in the network is equals to the total number of classes 
to be classified. For example, denoting the input data as XPN 
for P number of patterns and N number of inputs, the 
classification of C classes using MD-RBF neural network will 
require C number of modules. The output of the C-th module, 
ZPC, is given as follows: 
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Zout = [ZP1 | ZP2 | ZP3 … ZPC ]   (18) 

 
where M the total number of neurons, WM the weights between 
the M-th neuron and the single output, w0 the bias, CM the center 
and Mσ the width. Note that •  represents the Euclidean 

norm. The growth process of the dynamic RBF neural network 
presented in [11] is used for the network construction in each 
RBF module while the learning algorithm presented in Section 

III is used for the training of each of the RBF module. The 
details of the growth process of the network will not be 
described in this paper. Through the use of the proposed 
modular structural training, the size of the Hessian to be 
inverted during each iteration for each RBF module will now 
be only dependent on the size of the feature vectors, which 
subsequently translates to the number of inputs required 
(NI), refer to equation (19). 
 
Size (H) = (NI + 2) × M    (19) 

VI. APPLICATION TO FACE RECOGNITION 
The use of a modular structure is able to reduce the size of 

the Hessian matrix and hence the overall computation of the 
training of such LM-based RBF networks to be independent 

of the number of outputs. Nonetheless, the computation of the 
Hessian matrix of the modular dynamic RBF neural network is 
still dependent on the size of feature vectors (number of inputs). 
This aspect can be resolved by the application of dimension 
reduction methods or feature selection techniques to ensure that 
only the most significant features are applied to the MD-RBF 
neural network for classification. The general block diagram of a 
face recognition expert using the proposed MD-RBF neural 
network as a classifier is depicted in Fig. 3. 

 

The front-end processor block set can be replaced with any 
feature extractor or pre-processing techniques.  

VII. RESULTS AND DISCUSSION 
In this section, the use of multiband curvelet technique [16], 

PCA+LDA[2], deep features[17] and block-based pre-
processing [18] as the front-end processor is investigated to 
determine the type of front-end processor that complements the 
performance of the proposed MD-RBF neural network. The 
recognition performance for each of the face recognition expert 
using the different type of front-end processor and the feature 
vector dimension is used as the measurement index. Our 
investigative study is done on three standard face databases 
namely the ORL database, Yale database and AR database.  

The Yale database consists 15 individuals where for each 
individual, 11 images containing varying illumination, facial 
expressions and glasses were taken. The illumination variation 
contained in the Yale database is limited to either from the left, 
from the right or centre. From these 11 face images, three 
images with neutral expression and even lighting were used for 
training while the remaining images were for testing.  



The ORL database contains a set of face images of males 
and females taken between April 1992 and April 1994 at 
Olivetti Research Laboratory in Cambridge, UK. There are a 
total of ten different images of 40 subjects in the database. 
These images contain facial expression variations and 
perspective variations. In our experiments, five images were 
randomly selected for training and the remaining five images 
were used for testing.  

The AR database consists of face images of 126 people 
taken in two sessions on two different days. For each subject, 
the frontal view faces featuring different facial expressions, 
mild illumination effect and occlusions were taken. The same 
pictures were taken in both sessions. However, in our 
experiments, a subset of 100 people (50 males and 50 females) 
out of the entire database was used. For the evaluation of 
expression variation using this database, two images 
showcasing neutral expression for each subject were used for 
training whereas three images with varying facial expressions 
were used for testing. On the other hand, for the evaluation of 
illumination variation using this database, three images with 
even illumination per subject were used for training whereas 
four images with varying illumination were used for testing. In 
the following text, the test set that contains expression variation 
is denoted as AR-Expression whereas the test set that contains 
illumination variation is denoted as AR-Illumination.  

All the images used in the simulation were scaled to 32×32 
pixels before training. A summary of the total number of 
subjects, number of training images and number of testing 
images that were used for each database in the following 
experiments is tabulated in Table I. For the simulation of the 
face expert system using deep features, the layer sizes of the 
deep belief networks were set to: (8×8)-60-60-60-(no. of 
subjects). The weighted sum fusion rule is used to fuse the 
individual results of all blocks in both the block-based MD-
RBF face expert and deep features face expert. The 
performance evaluation of the proposed face experts on all 
three databases are shown in Table II. A comparison of the 
feature sizes of the different front-end processor is tabulated in 
Table III.  

 
TABLE I: Summary of database settings used in the experiments 

Database AR 
Expression 

AR 
Illumination Yale ORL 

Number of subjects 100 100 15 40 
Number of training 

images 200 200 45 200 

Number of testing 
images 300 400 120 200 

 
TABLE II: Recognition performance (%) for each of the front-end processor 

with the proposed MD-RBF neural network 

Database 
Front-End 
Processor Yale ORL  AR_Expression AR_Illumination 

Deep features 96.7 94.0 87.0 86.8 

Block-based 99.2 94.5 97.0 92.3 
Multiband 
Curvelet 94.2 94.0 91.3 90.8 

PCA+LDA 93.3 96.5 88.0 84.5 

 
TABLE III: Comparison of dimensions of feature vector for different front-

end processors 

Front-End Processor Feature Vector 
Dimension 

Deep features 60 

Block-based 64 

Multiband Curvelet 562+420 

PCA+LDA no. of subjects-1 

 

From the results obtained in Table II, the front-end 
processor using the block-based technique yields the best 
performance for all three databases except for the ORL 
database. This could be due to the fact that the ORL database 
contains slight pose variations which are not present in the 
other two databases. In addition to the superior performance 
exhibited by the block-based MD-RBF face expert, by 
dividing the face images into smaller block prior to training, 
the feature size input to the proposed MD-RBF neural network 
is greatly reduced compared to the multiband curvelet 
technique and PCA+LDA with the latter’s feature size highly 
dependent on the size of total subjects, refer to Table III. This 
can be disadvantageous when the number of subjects to be 
trained is large e.g. large-scale population recognition, as the 
size of the features will increase exponentially and this will 
affect the performance and the training duration of the 
proposed MD-RBF neural network.  

 

VIII. CONCULSIONS 
In this paper, we have presented a modular structural 

training architecture to adapt the LM-based RBF neural 
network, to the application of face recognition. This results in 
the proposal of the MD-RBF neural network which uses the 
growth process presented by [11] to create a compact neural 
network in each of the RBF modules. For the application of 
face recognition, the computational complexity of the LM-
based RBF neural network training is further reduced through 
the use of front-end processors to extract and reduce the 
dimension of the feature vectors to be applied to the MD-RBF 
neural network. Thus, we have investigated the use of 
different pre-processing and dimension reduction methods in 
this paper. Our simulation results shows that the front-end 
processor using block-based processing yields the best 
recognition performance majority of the test sets and has the 
second smallest feature vector dimension compared to the 
other front-end processors. 
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