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Unidirectionally optical coupling from
free space into silicon waveguide with

wide flat-top angular efficiency

Kun Li,1 Guangyuan Li,1,∗ Feng Xiao,2 Fan Lu,1 Zhonghua Wang,1

and Anshi Xu1

1State Key Laboratory of Advanced Optical Communication Systems and Networks, School of
Electronics Engineering and Computer Science, Peking University, Beijing, 100871, China
2WA Center of Excellence for MicroPhotonic System, Electron Science Research Institute,

Edith Cowan University, Joondalup, WA, 6027, Australia
∗gyli 2008@hotmail.com

Abstract: A grating coupling scheme from free-space light into silicon
waveguide with a remarkable property of wide flat-top angular efficiency is
proposed and theoretically investigated. The coupling structure is composed
of two cascaded gratings with a proper distance between their peak angular
efficiencies. A quantitative semi-analytical theory based on coupled-mode
models is developed for performance prediction and validated with the
fully vectorial aperiodic Fourier modal method (a-FMM). With the theory,
wide flat-top angular response is achieved and the conditions are pointed
out. Proof-of-principle demonstrations show that the -1 dB angular width, a
figure of merit to evaluate the flat-top performance, is broadened to almost
3 to 4 times, and meanwhile the -3 dB angular width, i.e., angular-full-
width-half-maximum (AFWHM), is widened to nearly more than twice,
compared with the reference gratings composed of the same number of
periodic defects. We believe this work will find applications in biological or
chemical sensing and novel optical devices.

© 2012 Optical Society of America

OCIS codes: (050.1950) Diffraction gratings; (130.3120) Integrated optics devices.
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1. Introduction

In photonic integrated circuits (PICs), an important issue in engineering-related optical devices
is to efficiently couple freely-propagating light into waveguides and to control the direction in
which they are incoupled. Grating-assisted couplers present a feasible and efficient approach,
since they represent an enabling technology with high integration density and relatively low
loss [1, 2]. With the advantage of high coupling efficiency, no need for a cleaved facet, and
opening a way for wafer-scale testing, various grating couplers have been theoretically analyzed
and experimentally demonstrated during the last decade [3–8]. Currently, most works were fo-
cused on improving the coupling efficiency for a specific designed angle such as θ = 0◦ [7]
or θ = 10◦ [8]. They suffer from a very tight angular tolerance with angular-full-width-half-
maximum (AFWHM) usually being 3◦ [9] or 4◦ [10]. In other words, the coupling efficiency
decreases rapidly if θ deviates from the designed angle. As a result, strict alignment is a nec-
essary requirement. Yet in some applications such as imaging or detecting mixed green algae
slide [11], whole-slide digital pathology diagnosis [12], rare-cell detection and analysis in large
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area micro-fluidic devices [13], and wide-field fluorescent imaging [14], the ability to collect
wide-angle targets is highly desirable. Specially, in biological or chemical sensing [15,16], the
light scattered by the analytes may normally or obliquely impinge upon detectors, and inci-
dence is generally unpredictable. In this case, it is favorable for the waveguide or fiber which
is used to collect scattered light into detectors or spectrometers to have a broad angular re-
sponse, alleviating the alignment and resulting in real-time sensing. In other words, alleviating
angular tolerance and realizing wide flat-top angular response is a crucial issue. To the best of
our knowledge, however, little work has hitherto addressed the issue of broadening the angular
efficiency for coupling free-space light into waveguide, except the work to increase the angular
tolerance of grating filter making use of bi-atom grating [17] and multilayer waveguides [18].

Before we address this challenge, let us retrospect the angular resolution of a diffraction
limited system, i.e. the Rayleigh criterion [19], as illustrated in Fig. 1. When two objects are
separated by a small angle, the diffraction patterns overlap as shown in Fig. 1(a). It is able
to resolve the two objects as long as the central peaks in the two diffraction patterns don’t
overlap as illustrated in Fig. 1(c). The minimum resolvable detail is when one central peak falls
below the first minimum of the other diffraction pattern as shown in Fig. 1(b). If the plots are
for angular coupling efficiency, it is clear that the case of Fig. 1(b) with a proper separation
between angular peaks will lead to wide flat-top response and wide AFWHM.

As a proof of concept, in this paper we propose a unidirectional coupling scheme of wide flat-
top angular efficiency by cascading two gratings that are of proper distance between their peak
angular efficiencies, as illustrated in Fig. 2(a). A quantitative theory based on coupled-mode
models will be developed for the performance prediction of the proposed structure. Based on the
semi-analytical theory, the conditions for realizing wide flat-top angular response are pointed
out. The theory will also be validated by comparing with computational results using the fully
vectorial aperiodic Fourier modal method (a-FMM) [20]. The performance, the conditions, and
the cost will be analyzed and discussed. Finally, the conclusions will be summarized.

Fig. 1. The overlapping diffraction patterns: (a) light waves from two objects are unre-
solved; (b) Rayleigh criterion; (c) light waves from two objects are resolved.

2. Quantitative semi-analytical theory

Figure 2(a) illustrates the schematic of proposed unidirectional coupling structure. The grating
coupling structure is based on a silicon-on-insulator (SOI) wafer, consisting of a 240 nm silicon
waveguide layer and a 900 nm buried oxide layer on a silicon substrate. First, following the
deposition of a blanket SiO2 hard mask, the silicon overlay is locally defined by epitaxial sili-
con growth [2] to obtain 250nm silicon overlay thickness in the grating region. The taper and
the photonic wire are then defined using e-beam lithography [21] and etched 240 nm deep by
inductively coupled plasma (ICP). After that, one may use the gray-scale electron-beam lithog-
raphy [22] followed by ICP etching [23] to produce triangular pattern of the grating. In practice,
the triangular pattern are approximated by 20-step staircases. As the design and fabrication of
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the taper and photonic wire has a well-rounded study [8, 9, 24], here we focus on the design
of the grating, which can be fabricated using state-of-the-art techniques just as stated above, to
achieve wide flat-top angular efficiency.

Considering that the single-mode waveguides are commonly used for the coupling of light
according to previous works [8, 9, 24], the parameters of the waveguide should be properly
chosen firstly to make sure single-mode operation for TM polarization. Throughout this pa-
per, the calculations are performed with λ = 1550 nm, ts = 240 nm, tc = 900 nm, ns = 3.518
(Si), nc = 1.46 (SiO2). In this case, the optical waveguide only support the fundamental TM
mode. Note that it is clear that there are so many parameters that pure simulations using finite
difference time domain (FDTD) method or finite element method (FEM) suffer from high nu-
merical cost and aimless parameters scan. To circumvent these problems, here we develop a
quantitative theory based on coupled-mode model to provide parameters optimization with a
clear picture of physics. We emphasize that although TM polarized plane wave is used as the
example throughout the paper, the concept and the theory also work for TE polarization.

Fig. 2. (a) Schematic of the proposed grating coupler. (b) Schematic of the global model,
which treats each array of grating as a ‘black box’. The first (or the second) ‘black box’ is
composed of N1 (or N2) periodic defects with period p1 (or p2). The defects in both ‘black
boxes’ are of constant height hr and width wr. The structural distance between two ‘black
boxes’ is d. (c,d) show the main elementary scattering processes for the ‘black box’ of
Nm defects, i.e., the excitation coefficients β±

Nm
, reflection coefficients r±Nm

and transmission
coefficient tNm under illumination of plane wave (c) and waveguide modes (d). (e) schematic
of the nested model of an isolated ‘black box’. (f,g) show the scattering coefficients of a
single defect under illumination of plane wave (f) and waveguide mode (g). The vertical
blue-dashed lines in (b,e) indicate the zero phase of the incident plane wave.

In the case of single-mode operation, a semi-analytical theory is developted in form of two
nested models: a global model that treats the protuberance arrays as two ‘black boxes’ exciting,
reflecting and transmitting waveguide modes (WMs), and focuses on the ‘box-to-box’ distance
d, as illustrated in Figs. 2(b)-2(d); and a nested model on the excitation, reflectance and trans-
mittance coefficients of WMs by the ‘black boxes’, as shown in Figs. 2(e)-2(g). The nested
theoretical models bridge the scattering coefficients of the finite-size protuberances to those of
a single one, resulting in a great reduction of the computational cost.
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The global model is shown in Fig. 2(b), where B1 (or B2) and A1 (or A2) are the respective
complex amplitudes of magnetic field Hy of the backward- and forward-going WMs away from
the first (or the second) ‘black box’. The main elementary scattering processes involved in the
proposed model are shown in Figs. 2(c) and 2(d): β+

Nm
and β−

Nm
are the excitation coefficients

of forward- and backward-going WMs by the ‘black box’ with Nm defects under the plane
wave illumination, respectively; r+Nm

and r−Nm
are the reflectance coefficients of forward- and

backward-going WMs, respectively; tNm is the transmittance coefficient. The coupled-mode
equations lead to:

B1 = β−
N1

+ tN1uB2 + r+N1
uA0 (1a)

A1 = β+
N1

+ r−N1
uB2 + tN1uA0 (1b)

B2 = wβ−
N2

+ r+N2
uA1 (1c)

A2 = wβ+
N2

+ tN2uA1 (1d)

where w = exp[ik0(p1N1− p1+wr +d)sinθ ] is the phase shift introduced by the incident plane
wave. This is because the zero phase is assumed to be at the leftmost side of the first ‘black box’
for the calculation of β±

N1
(x= z= 0); whereas it is at the leftmost side of the second ‘black box’

for the calculation of β±
N2

(x= p1N1− p1+wr+d,z= 0). d is the structural distance between the
two ‘black boxes’. u= exp(ik0neffd) with neff being the complex effective refractive index of the
waveguide mode. Note that tNm = t+Nm

= t−Nm
according to the principle of optical reversibility.

We emphasize the propagation losses of the WMs have been embodied via complex neff. To
calculate the WMs excitation coefficients, β+

N1N2
= A2, β−

N1N2
= B1, one sets A0 = 0; whereas

to calculate the WMs reflectance and transmittance coefficients, rN1N2 = B1/(uA0) and tN1N2 =
A2/uA0, one sets β±

N1
= 0 and β±

N2
= 0. Then the WMs excitation, reflection and transmission

coefficients of the cascaded ‘black boxes’ are obtained after a series of algebraic operation:

β+
N1N2

= wβ+
N2

+ tN2u
r−N1

uwβ−
N2

+β+
N1

1− r−N1
r+N2

u2
, (2a)

β−
N1N2

= β−
N1

+ tN1u
wβ−

N2
+ r+N2

uβ+
N1

1− r−N1
r+N2

u2
, (2b)

rN1N2 = r+N1
+ r+N2

t2
N1

u2

1− r−N1
r+N2

u2
, (2c)

tN1N2 =
tN1tN2u

1− r−N1
r+N2

u2
, (2d)

where β+
N1N2

is dominated by wβ+
N2

in Eq. (2a) as |tN2 | is usually small when |β+
N2
| is optimized.

Similarly, β−
N1

dominates in β−
N1N2

in Eq. (2b).
Because the second ‘black box’ is designed to unidirectionally couple free-space light into

the desired waveguide direction and suppress coupling in the opposite direction (i.e., |β−
N2
| �

|β+
N2
|), it is reasonable to ignore the term wβ−

N2
ur−N1

utN2 . Moreover, the multiple reflections

between the two ‘black boxes’ r−N1
r+N2

u2 are negligible because |r−N1
r+N2

u2| � 1. Then Eq. (2a)
is simplified into

β+
N1N2

≈ tN2uβ+
N1

+wβ+
N2

(3)

The physical interpretations of Eq. (3) is intuitively meaningful as illustrated in Fig. 3. It
means the interference between the forward-going WMs by the transmission of the excitation
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Fig. 3. Physical interpretations of Eq. (3).

of the first ‘black box’ tN2uβ+
N1

(blue arrow) and by the excitation of the second ‘black box’
wβ+

N2
(green arrow). This recalls the above-mentioned concept to realize wide flat-top angular

response as shown in Fig. 1(b). In Eq. (3), tN2 and u play key roles of phase modulation of
β+

N1
. If β+

N1
and β+

N2
are first designed properly with comparable incoupling coefficients and

suitable angular interval between peak incoupling coefficients, it is possible to obtain wide flat-
top angular response for β+

N1N2
provided the structural distance between the two ‘black boxes’

is given by
arg(tN2)+ k0Re(neff)d ≈ 2mπ (4)

where the functions ‘arg’ and ‘Re’ refer to the argument and the real part, respectively, and m
is an integer.

Now let us consider the excitation, reflectance and transmittance coefficients of WMs by
the ‘black box’, which may be consist of N aperiodic defects with arbitrary distances dj( j =
1, ...,N − 1) as shown in Fig. 2(e). Following our pervious work [25, 26], the corresponding
coefficients of an isolated ‘black box’ of N defects are given by:

β+
N =

wN−1(β+
1 + t1r−N−1u2

N−1β−
1 )

1− t1uN−1w−1
N−1

, (5a)

rN = r+N−1 + r+1
t2
N−1u2

N−1

1− r+1 r−N−1u2
N−1

, (5b)

tN =
t1tN−1uN−1

1− r+1 r−N−1u2
N−1

. (5c)

Where uN−1 = exp(ik0neffdN−1), wN−1 = exp[ik0(Nwr−wr+∑N−1
1 d j)sinθ ]. In some cases, the

equations will be reduced into simplified forms. For example, for periodic symmetric defects,
u j = u, wj = wj, and r j = r−j = r+j for j = 1, · · · ,N − 1, |r+1 r−N−1u2

N−1| � 1, Eq. (5) is then
reduced into

β+
N =

wN−1(β+
1 + t1rN−1u2β−

1 )

1− t1uw1−N , (6a)

rN = rN−1 + r1t
2
N−1u2, (6b)

tN = t1tN−1u. (6c)

We emphasize that the nested model is versatile for a general grating composed of periodic or
aperiodic defects, where the defect may be of various geometries and refractive index profiles,
as their influences have been embodied via β±

1 , r±1 and t1.
For simplicity, hereafter we restrict ourselves to periodic defects, i.e., d1 = ... = dN−1 =

p−wr. β+
N , rN and tN can be calculated recursively starting from β±

1 , r±1 and t1, thus the geom-
etry optimization for N periodic defects is reduced into that for a single one. The constructive
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interference condition of β+
N is obtained from Eq. (5a):

arg(t1)+ k0Re(neff)p− k0n0 psinθ = 2mπ (7)

We refer to Eq. (7) as the generalized grating equation. Compared with the conventional grating
equation, the generalized one is versatile for a general grating composed of various defects.
Specially, for gratings composed of high-index dielectric protuberances, the additional term
arg(t1) is quite important since it may be relatively large in this case.

3. Results and discussions

In this section, the grating coupling scheme to achieve wide flat-top response by properly cas-
cading two gratings is validated with proof-of-principle demonstrations. The semi-analytical
theory is quantitatively validated using exhaustive calculations with various grating parameters
by comparing with simulations using the a-FMM. With the theory, wide flat-top angular ef-
ficiency is achieved and the conditions and versatility for various shaped defects are pointed
out.

The incident plane wave is normalized such that its Poynting vector is unitary [20]. Under this
normalized condition, the incoupling cross section |β+

N |2 means the power flow carried by the
forward-going WMs, and the coupling efficiency η+

N = |β+
N |2/D with D being the grating cross

section represents the ratio of the forward-going WMs power flux to the incident power flux
that launches into the gratings. To evaluate the performance of wide flat-top angular coupling
efficiency, we adopt -1 dB angular width Φ and -3 dB angular width Θ as the figures of merit
(FoMs), which are defined as the angular range between two specified angle cut-off points that
are -1 dB and -3 dB below the peak angular efficiency, respectively. Specifically, Φ is used to
evaluate flat-top angular response while Θ is AFWHM.

Figure 4 compares coupling efficiency η+
N1+N2

of the reference grating with N1 +N2 defects
of period p1 (blue-solid line) or p2 (black-solid line) in (b,e,h,k) with the model predictions
(green-dashed line with circles) and the a-FMM data (red-solid line) on the above-mentioned
η+

N1N2
of the cascaded gratings. As shown in Fig. 4, by properly cascading two isolated gratings

(a,d,g,j), flat-top angular response of η+
N1N2

is realized and the AFWHM is broadened in (c,f,i,l):
Φ is broadened to almost 3 to 4 times and meanwhile Θ is widened to nearly more than twice
compared with the reference ones (b,e,h,k). The angular coupling efficiency peaks up to values
of 0.28, 0.36, 0.33, 0.31 average for (b,e,h,k) and 0.16, 0.18, 0.15, 0.14 for (c,f,i,l), respectively.
More specifically, compared with the reference grating, Φ of the cascaded grating are broad-
ened to almost 3 to 4 times at an acceptable cost of decreasing the peak coupling efficiency only
by nearly half. It is also clearly shown that when the cascaded gratings are optimized for other
different incidence angles ([d,e,f],[g,h,i]) or of a higher number of defects (j,k,l), the grating
coupling scheme is still valid. Moreover, since the incoupling cross section |β+

N1N2
|2 is domi-

nated by |β+
N2
|2, as we have stated previously, the second angular peak position (black-dashed

line) of η+
N1N2

(c,f,i,l) remains almost consistent with that of η+
N2

(a,d,g,j) as expected, whereas
for the first angular peak with regard to η+

N1
, there is an offset introduced by tN2 .

Figure 5 illustrates the importance of the conditions for wide-flat top angular efficiency, i.e.,
the two ‘black boxes’ should be of proper structural distance d (a,b), comparable incoupling
cross sections (c,d) and suitable angular interval (e,f). There will be no wide flat-top angular
coupling efficiency if d deviates from the model prediction given by Eq. (4) (a,b), peak values
of incoupling cross sections are not comparable (c,d), or the angular interval between the peaks
of η+

N1
and η+

N2
is too small (e,f) or too large (not shown).

Moreover, the accuracy of the theory has been quantitatively validated by comparing with a-
FMM calculations, as shown in Figs. 4 and 5. We emphasize that the theory, which incorporates
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Fig. 4. Comparisons among coupling efficiency of the isolated grating η+
N with N1 or N2

defects (top row), the reference grating η+
N1+N2

with N1 +N2 defects of period p1 (or p2)

(middle row), and the cascaded gratings η+
N1N2

with N1 defects of period p1, N2 defects
of period p2, and ‘box-to-box’ structural distance d (bottom row) by model predictions
(green-dashed lines with circles) and a-FMM computational data (red-solid lines). The
vertical black-dashed lines indicate the peak angular positions. The calculation of the four
columns from left to right by a-FMM are performed for: hr = 250 nm, wr = 520 nm, (a,b,c)
p1 = 567 nm, N1 = 8, p2 = 675 nm, N2 = 4, and d = 240 nm; (d,e,f) p1 = 617 nm, N1 = 7,
p2 = 740 nm, N2 = 6, and d = 1150 nm; (g,h,i) p1 = 675 nm, N1 = 7, p2 = 811 nm, N2 = 6,
and d = 1195 nm. (j,k,l) p1 = 567 nm, N1 = 14, p2 = 675 nm, N2 = 6, and d = 720 nm; Φ
is broadened from 6◦ or 5◦ to 20◦ (b,c), from 7◦ or 5◦ to 15◦ (e,f), from 5◦ or 6◦ to 16◦
(h,i), and from 5◦ or 4◦ to 24◦ (k,l), respectively; Θ is widened from 12◦ or 10◦ to 27◦
(b,c), from 11◦ or 10◦ to 20◦ (e,f), from 9◦ or 10◦ to 20◦ (h,i), and from 10◦ or 7◦ to 29◦
(h,i), respectively.

interlinks among the key parameters with clear physical pictures, is very efficient and flexible.
One only needs to scan β±

1 , r±1 and t1 of a single defect instead of β±
N , r±N and tN of N defects as

functions of wr and hr. β±
N , r±N and tN for various grating numbers or periods are then obtained

with the nested models at negligible computational cost. This cost reduction is especially re-
markable when one needs to increase N to improve the performance. More importantly, there
are no restrictions on the defect’s geometry and refractive index profile in the theoretical model.
Apart from the above mentioned triangular shaped defect, the proposed method is also versatile
for a deep etched (Fig. 6) or fully etched (not shown) rectangular grating. As clearly seen from
Figs. 6(a)-6(d), the scattering coefficients of each ‘black-box’ composed of periodic rectangu-
lar grooves is able to be predicted with a high accuracy, in both amplitudes and phases. As a
result, a flat-top angular efficiency is also achieved using the theoretical model: Φ is broadened
to 3-4 times and meanwhile Θ is widened to more than 3 times compared with the reference
one (e) as depicted in Figs. 6(e)-6(f). We should note that as the theoretical model is developed
for single-mode waveguide, it is only suitable for the case of single-mode operation.

#166982 - $15.00 USD Received 18 Apr 2012; revised 20 Jul 2012; accepted 22 Jul 2012; published 30 Jul 2012
(C) 2012 OSA 13 August 2012 / Vol. 20,  No. 17 / OPTICS EXPRESS  18552



Fig. 5. Influential elements on wide-flat top angular efficiency: (a,b) structural distance,
(c,d) peak incoupling cross sections, and (e,f) the interval between angular peaks. The
vertical black-dashed lines indicate the peak angular positions. The calculation of the three
columns from left to right by a-FMM are performed respectively for: hr = 250 nm, wr =
520 nm, (a,b) p1 = 567 nm, p2 = 675 nm, N1 = 8, N2 = 4, and d = 490 nm; (c,d) p1 =
617 nm, p2 = 740 nm, N1 = 6, N2 = 8, and d = 905 nm; (e,f) p1 = 567 nm, p2 = 617 nm,
N1 = 9, N2 = 6, and d = 495 nm, respectively.

(a)

(b)

(c)

(d)

(e)

(b)

(e)

(f)

Fig. 6. The calculations are performed for deeply etched rectangular grating with groove
depth hr = 100 nm and width wr = 150 nm. (a-d) depict the comparison of the model pre-
dictions (blue-dashed line with circles) and the a-FMM computational data (red line) for
10 periodic grooves on (a) |r10|2, (b) arg(r10), (c) |t10|2, and (d) arg(t10) as functions of the
period p. (e,f) show the comparison between the reference rectangular grating η+

N1+N2
with

N1 +N2 defects of period p1 or p2 (e), and the cascaded rectangular grating η+
N1N2

with N1
defects of period p1, N2 defects of period p2, and ‘box-to-box’ structural distance d (f).
p1 = 809 nm, p2 = 1057 nm, N1 = 6, N2 = 4, and d = 630 nm.
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4. Conclusions

In conclusion, we have proposed and investigated a grating coupling scheme from free-space
light into silicon waveguide with a remarkable property of wide flat-top angular efficiency. A
semi-analytical theory in form of two nested coupled-mode models has been developed for
performance prediction and parameters optimization. Comparisons of the model predictions
with a-FMM calculations have shown that all the salient feature is quantitatively captured by
the model. The theoretical model is versatile for a general grating composed of periodic or
aperiodic defects, where the defect may be of various geometries and refractive index profiles.
With the theory, the conditions for wide flat-top angular response have been pointed out, i.e.,
the cascaded gratings should be of proper structural distance, comparable peak incoupling cross
sections and suitable angular interval. Proof-of-principle demonstrations have shown that: com-
pared with the reference gratings composed of the same number of periodic defects, the -1 dB
angular width Φ, a figure of merit to evaluate the flat-top performance, is broadened to almost
3 to 4 times; and meanwhile the -3 dB angular width Θ, i.e., angular-full-width-half-maximum
(AFWHM), is widened to nearly more than twice, at an acceptable cost of decreasing angular
coupling efficiency only by half. We believe that this work may be of great interest for use in
novel optical devices and biological or chemical sensing.
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