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ABSTRACT 

A large-scale, manipulative experiment was conducted to examine the extent and rate of recovery 

of meadows of the temperate Australian seagrass, Amphibolis griffithii to different light-reduction 

scenarios typical of dredging operations, and to identify potential indicators of recovery from 

light reduction stress. Shade cloth was used to mimic different intensities, durations and start 

times of light reduction, and then was removed to assess the recovery. The meadow could 

recover from 3 months of light stress (5-18% ambient) following 10 months re-exposure to 

ambient light, even when up to 72% of leaf biomass was lost, much faster recovery rates than has 

previously been observed for large seagrasses. However, when the meadow had been shaded for 

6-9 months and more than 82% of leaf biomass was lost, no recovery was detected up to 23 

months after the light stress had ceased, consistent with other studies. Five potential indicators of 

recovery were recommended.  
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INTRODUCTION 

Dredging can impact coastal marine habitats through direct (e.g. physical removal, spoil 

dumping) and indirect means (e.g. toxicant release, sedimentation, light reduction), with direct 

impacts generally easier to predict. Over the past decade, management of dredging has improved 

significantly, largely through improved ability to predict the spatial extent and intensity of turbid 

plumes (Je et al., 2007; Lepland et al., 2009; Wu et al., 2007) but also through a greater 

understanding on the potential impacts on marine biota (Cooper et al., 2008; Cruz-Motta and 

Collins, 2004; Koslow et al., 2001; Simonini et al., 2005; Skilleter et al., 2006; Ware et al., 2009). 

However, for some globally important benthic habitats, such as seagrass meadows, the 

susceptibility to environmental changes caused by dredging is not well understood (Erftemeijer 

and Robin Lewis III, 2006). Further, while the ability to predict habitat loss is improving, the 

capacity to predict the loss of ecological function associated with less severe (i.e. sub-lethal) 

dredging impacts remains poor for many ecosystems, but is of significant concern for full 

assessment of environmental impacts and in developing mitigation programmes. 

 

Seagrass meadows are a dominant component of most coastal ecosystems and provide important 

ecosystem services such as primary production, nutrient cycling, sediment stabilization, food and 

habitat for other organisms and trophic transfers to adjacent habitats (Hemminga and Duarte, 

2000). Globally, these ecosystem services have been valued at approximated US$19 000 ha-­‐1 yr-­‐1 

(Costanza et al., 1997). Despite these recognized values, the area of seagrass is reducing world-

wide at an alarming and increasing rate (Waycott et al., 2009). Dredging is one of the mechanisms 

responsible for seagrass loss, directly through physical removal or smothering or indirectly 

through the creation of turbid plumes which reduce light reaching the benthos (Cabaco et al., 

2008; Erftemeijer and Robin Lewis III, 2006; Orth et al., 2006; Waycott et al., 2009). Dredging-

related seagrass losses have occurred at scales of km2 (Orth et al., 2006) and it has been estimated 

that up to 21 000 ha of seagrass meadow has been lost world-wide in the past 50 years, most 
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likely an underestimate (Erftemeijer and Robin Lewis III, 2006). In at least half of these cases 

seagrass loss was associated with dredging (Erftemeijer and Robin Lewis III, 2006). 

 

It is clear that globally dredging impacts highly valued seagrass meadows, leading to losses of 

seagrass habitat, that is, lethal or acute impacts. However, of equal importance to many impact 

assessments are the sub-lethal effects of dredging, and these are poorly understood. The sub-

lethal effects of dredging include the loss of ecosystem function associated with reduced primary 

productivity or altered habitat structure, which affect the provision of food and habitat for other 

organisms. A key concern in assessing the impact of dredging on seagrass ecosystems is the 

length of time these ecosystem functions are compromised, that is, how long does it take for the 

ecosystem to recover. Recovery from dredging related stressors, defined as a return to pre-

disturbance or undisturbed conditions (Elliott et al., 2007) has been demonstrated (Biber et al., 

2009; Collier et al., 2009; Gonzalez-Correa et al., 2005; Hammerstrom et al., 2007), and the rate of 

recovery depends on a variety of factors (see Pickett and White, 1985) such as the size and 

severity of the impact (Fonseca et al., 2004) and the seagrass species. Recovery can take years and, 

in some instances, has been predicted to take centuries (Walker et al., 2006). 

 

Biological indicators are regularly used in other habitats exposed to dredging (Bayer et al., 2008) 

but they have only recently been developed for a few seagrass species (Collier et al., 2007; Collier 

et al., 2009; Lavery et al., 2009). To assess biological responses to stress, monitoring of seagrass 

meadows often involves measures of cover, biomass or shoot density, which indicate change to 

the habitat once losses have occurred. Early warning indicators of stress would be useful to detect 

impact and recovery in the habitat before mortality occurs, that is, sub-lethal indicators. These 

early warning indicators are based on the premise that plants respond to stress along a predicted 

cause-effect pathway where physiological adjustments (e.g. photosynthetic rate, growth rate) 

precede morphological adjustments (e.g. leaf loss) and, finally, mortality (Waycott et al., 2005).  

 

Recent research (Lavery et al., 2009) simulated light reduction scenarios (5-19% of ambient light) 

typical of dredging operations on Amphibolis griffithii seagrass meadow. The response to light-
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reduction was dependent on the interactive effects of the duration, intensity and time that light 

reductions were imposed. Short durations (3 months) significantly impacted seagrass meadows 

(up to 72% loss of leaf biomass) but the severity of the impact depended on the time of year, and 

the intensity of light reduction. With longer durations of light reduction (6-9 months) the severity 

of the impact increased (82-100% loss of leaf biomass), and the response at different times of year 

was more consistent. These insights improved the capacity to manage dredging-related impacts 

in terms of improved predictive capacity and identification of potential early warning indicators 

of stress. However, it did not improve our understanding of the capacity of the ecosystem to 

recover from impact and, therefore, the period of time in which ecosystem services are 

compromised.  

 

This study will build on the work of Lavery et al. (2009), which assessed the impacts of light 

reduction. This paper provides new information on the magnitude and speed of recovery of an 

Amphibolis griffithii seagrass meadow from a variety of dredging-related light reduction impacts. 

It uses the treatments created from the previous experiment (Lavery et al., 2009) to assess the 

timescales of recovery, where recovery is defined as a return to control conditions. The second 

aim is to characterize the process of recovery of Amphibolis griffithii seagrass, which will aid in 

identifying potential early indicators of seagrass recovery that could be applied in recovery 

monitoring programmes. 

 

METHODS 

Experimental design 

The effect of three factors, the intensity, duration and timing of reduced light (photosynthetic 

photon flux density:PPFD) was experimentally tested in an extensive (> 6 ha) meadow of the 

seagrass Amphibolis griffithii, in 4.5 m water at Jurien Bay, Western Australian (30° 18’ 34’’ S, 115° 

00’ 26’’ E; WGS84 datum) between March 2005 and July 2006 (Lavery et al., 2009). In the present 

study, the plots established by Lavery et al. (2009) were re-sampled, and a new data-set collected 

to assess seagrass recovery from the combination of these light reduction treatments.  
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The levels of each factor are described in Lavery et al (2009) but in brief are as follows: intensity – 

Control (i.e. ambient PPFD), Moderate (13-19% of ambient) and High (5-11% of ambient); 

duration (3, 6, 9 months); and timing (Autumn, commencing in March; or Spring, commencing in 

September). The levels of intensity and the duration were selected to cover the upper range of 

light reduction encountered during large, commercial dredging operations in the region (e.g. 

Geraldton Port Authority, unpubl. data). The timing was selected to assess if the impact and 

recovery from the light reduction was consistent at different times of the year. 

In the initial experiment performed to test the effect of light reduction (Lavery et al., 2009), five 

replicate plots of each treatment (4.5 m x 3 m with an effective sampling area of 3 m x 1.5 m 

(Mackey et al., 2007)) were established in a fully orthogonal design (n = 120: 2 start times x 4 

durations x 3 intensities x 5 replicates), as described in Lavery et al. (2009). At the end of each 

duration, (3, 6 or 9 mo.) the plots allocated to that duration treatment were sampled and the 

shade cloth used to reduce the light was removed. This sampling time was subsequently referred 

to as Recovery duration 0. To generate data for the current study the plots were then re-sampled 

at a later date to assess the recovery of the seagrass meadow using two approaches. First, for the 

3-month duration plots, samples were collected 3 and 10 months after the shade cloths were 

removed. Consequently, for these plots the recovery period for the Autumn treatments was over 

winter, summer and autumn (June 2005 – April 2006) and for the Spring treatments summer, 

autumn, winter and spring (December 2005 – November 2006, Figure 1). The 6- and 9-month 

duration plots were heavily impacted at the end of shading (Lavery et al., 2009) and no leaves 

were observed in these plots three months after the shade cloth was removed. Consequently, the 

period of time before re-sampling these plots was extended, to August 2007, such that the 

Autumn 6-month plots had 23 months of recovery, Autumn 9-month plots - 21 months, Spring 6-

month plots - 17 months and Spring 9-month plots - 15 months of recovery (Figure 1). 

Study species 

Amphibolis griffithii seagrass is endemic to temperate western and southern Australian coastlines 

(Ducker et al., 1977), and has a similar morphology to the more widespread seagrass genus 

Thalassodendron. It forms continuous monospecific meadows as well as mixed species, patchy 
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meadows (Holmes et al., 2007) in sandy and rocky substrates (Carruthers et al., 2007; Ducker et 

al., 1977). Aspects of A. griffithii’s morphology and growth characteristics are important to 

understand in the context of predicting recovery from impact. Amphibolis is placed towards the 

centre of the seagrass functional form model (Walker et al., 1999). This clonal plant is composed 

of underground roots and rhizomes with a vertical, branching stem that holds terminal leaf 

clusters (Cambridge, 1999). There are generally 2-5 leaves per cluster and 6-20 clusters per 

vertical stem (Cambridge, 1999; Ducker et al., 1977). Stems are long lived, generally 2-3 years (den 

Hartog, 1970) whilst leaves are much shorter lived, generally 90 days (Marba and Walker, 1999). 

The plastochrone interval of vertical stems (short shoots or branches of a stem) is 277 days, 

horizontal rhizome 509 days and leaves 32 days (Marba and Walker, 1999). Upright stems are 

produced every 4-6 horizontal rhizome internodes and branches are produced every 3-17 vertical 

stem internodes (Coupland, 1997).  

The complex canopy structure of A. griffithii meadows provides an ideal environment for algal 

and faunal epiphytes to colonise (Ducker et al., 1977). Consequently, there is a higher biomass 

and diversity of algae and fauna living on A. griffithii compared to other seagrass species 

(Borowitzka et al., 1990; Edgar, 1990; Gartner et al., 2010), including a unique assemblage of fish 

characterised by different species and larger fish than those found in other large seagrass, such as 

Posidonia (Hyndes et al., 2003). Greater predation rates have also been observed in A. griffithii 

meadows compared to Posidonia meadows (Vanderklift et al., 2007). 

Light and water temperature 

Light (PPFD) reaching the top of the seagrass canopy in one plot from each treatment was 

measured using ‘Odyssey Dataflow’ submersible incident light sensors, with an automated wiper 

unit cleaning the sensor every 15 minutes (Carruthers et al., 2001). Instantaneous PPFD (µmol m-2 

s-1) integrated over a 1 min period was measured every 10 - 15 minutes, throughout the entire 

experiment. All light loggers were calibrated against a standard light source. During the recovery 

period light at the top of the canopy was only measured in control plots and a complete set was 

not obtained for all of the Spring recovery periods. Light data was summarised as average total 

daily irradiance (mol m-2 d-1) and the hours above saturating irradiance (Hsat) where, the 
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saturating light intensity for photosynthesis was set at 55 µmol m-2 s-1 (Masini and Manning, 

1997). Water temperature data were sourced from Department of Environment and Conservation 

Western Australia (unpublished data), from a regular monitoring site in 5 m depth at 30° 27’ S 

and 115° 03’ E (WSG84). 

Variables measured 

For the plots that had been shaded for 3 months, samples were collected and variables measured 

as described in Lavery et al (2009), and for plots that had been shaded for 6 and 9 months, a sub-

set of variables were measured (biomass (g DW m-2) of leaf, stem and algal epiphytes, and canopy 

height (80th percentile)). Above-ground samples for biomass, density and morphology variables 

were pooled from five randomly selected 10 x10 cm units taken from within a 50 x 50 cm quadrat 

(i.e. sample area of 0.05 m2) located randomly within the effective sampling area of each plot. The 

number of clusters and leaves in each sample were counted to estimate cluster and leaf density 

(m-2). A cluster was defined as a group of leaves separated from the next cluster by visible stem. 

A leaf was counted if it had emerged from the sheath. One stem was randomly selected from 

each sample to take additional measures of leaf length and width (oldest leaf in cluster) and 

internode length (five most recently produced internodes). Stem height of all stems was also 

measured. The number of leaves per cluster was counted for the entire sample, then separated 

into leaves and stems and all algal epiphytes removed. Each component was dried separately at 

60°C for 24 h before weighing. Canopy heights were calculated from the stem height data in the 

sample.  

Leaf growth for the 1-2 week period prior to biomass sampling was estimated by tagging all leaf 

clusters (~ 30) on 6 stems using the leaf punch method of (Short and Duarte, 2001). Depending on 

the stems randomly selected, this yielded 10-30 tagged leaf clusters per plot.  Leaf extension was 

calculated as the sum of all leaves that grew in a cluster. Leaf growth measures were only 

measured during the recovery period after 3 months, not after 10 months. 

Six stems with associated below-ground rhizome material were collected separately from within 

each plot. Leaves were sampled from the mid-canopy, 20-40 cm above the sediment surface.  

Samples of living leaf and rhizome were scraped free of epiphytes, dried and ground in a mill 



Recovery of seagrass from light reduction 

  8 

grinder. Samples were analysed for carbon (% DW), nitrogen (% DW)  δ13C and δ15N using a mass 

spectrometer (ANCA-NT Europa Scientific, Crewe, UK) interfaced with a 20–20 isotope ratio 

mass spectrometer (Europa Scientific, Crewe, UK). Isotope signatures were determined by 

comparison with laboratory reference material previously calibrated against IAEA or NIST 

standard reference materials with a precision of <0.1‰. Soluble sugars (% DW) and starch (% 

DW) were analysed by colorimetric determination (420 nm) with an amylase pre-digest to 

convert the starch to glucose (Yemm and Willis, 1954). 

Statistical analyses 

Although the original impact experiment had a fully orthogonal design (Lavery et al., 2009), 

analysis of the recovery data was not, as the sampling involved repeated measures of the same 

plots. A repeated measures ANOVA was used to test for any effect of the recovery period on 

seagrass variables in the different shading treatments (different intensities, recovery periods and 

start-times of shading). All analyses were performed using Statistica® v7. Repeated measures 

ANOVA was used as the treatment plots were re-sampled and were not considered independent. 

Each duration was analysed separately as the time of the recovery period varied between the 3, 6 

and 9 month treatments. Within each duration, each start time was analysed separately. Data 

were tested for normality using the Kolmogorov-Smironov goodness of fit test (Zar, 1999) and 

heterogeneity using Cochran’s Test (Cochran, 1951) and transformed if necessary. Fishers LSD 

post-hoc tests were carried out if there were significant factors or interactions in the repeated-

measures ANOVA. 

RESULTS 

Water temperature and light were lower during the Autumn 3-month recovery period compared 

to both the Spring 3-month recovery period and the Autumn 10-month recovery period (Table 1). 

No light data was available for the Spring 10-month recovery period, however, the average 

temperature was intermediate compared to the other treatments (Table 1).  

Recovery from 3-month light reduction treatments 

Leaf biomass and density recovered (i.e. were not significantly different to controls) after 10 

months re-exposure to ambient light (Figure 2), but not after 3 months, reflected in a significant 
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Recovery Period x Intensity interaction term (Table 2). Of particular interest was the response of 

the Spring treatments: the moderately shaded plots were not significantly different to the controls 

at the end of the light reduction period but after three months re-exposure to ambient light had 

declined, to be significantly lower than controls (Figure 2, Table 2). In contrast, the highly shaded 

treatment was lower than the controls after the shading period and showed an increase in leaf 

biomass and density after three months re-exposure to ambient light. 

 Cluster density in the Spring treatment showed a similar response to leaf biomass and density 

from the same time period (Figure 2, Table 2), but in the Autumn treatments the cluster density in 

the High treatment did not recover after 10 months re-exposure to ambient light, i.e. it was 

significantly lower than the control (Figure 2, Table 2). Stem biomass was not significantly 

impacted following light reduction in the Autumn treatments and all treatments had similar 

biomass during the recovery period (Figure 2, Table 2). However, in the Spring treatments, stem 

biomass in the high intensity plots was significantly lower than the controls or moderately 

shaded plots after 3 months of shading but had recovered to control conditions by three months 

re-exposure to ambient light (Table 2, Figure 2), reflected in the significant interaction terms 

(Table 2).  

The response of algal epiphyte biomass to re-exposure to ambient light varied depending on the 

time that light reduction started (Table 2). In the Autumn treatments there was a significant 

interaction between intensity and recovery period: initial differences in biomass between the 

treatments and the controls were absent after 10 months due to a combination of increased 

biomass in the treatments and decline in biomass of the controls (Table 2, Figure 2). Contrasting 

this, in the Spring treatments there was no effect of light reduction treatment on algal epiphyte 

biomass, though biomass did tend to increase similarly in all three treatments over the recovery 

period.  

Morphological and growth variables recovered faster than the biomass and density parameters. 

For the number of leaves per cluster and leaf extension there was a significant interaction 

between intensity and recovery period for both the Autumn and Spring samples (Table 2, Figure 

3). After three months re-exposure to ambient light the number of leaves per cluster had returned 
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to control conditions in both time periods (Figure 3). The response of leaf extension rate varied 

depending on the time that the light reduction started (Table 2, Figure 3). In the Autumn 

treatments leaf extension rates were significantly higher than controls after 3 months re-exposure 

to ambient light, whilst in the Spring treatments leaf extension rates had not returned to control 

conditions, though they had increased. No data was collected from the recovery period of ten 

months. In all cases where leaf extension was observed, that growth occurred in all clusters after 

three months re-exposure to ambient light (Figure 3). Other morphological parameters such as 

leaf length, leaf width, stem internode length and canopy height were not significantly impacted 

by light reduction treatments and showed no difference to controls over the recovery period. 

The physiological variables showed a variety of patterns with re-exposure to ambient light and 

were generally inconsistent between the two times, Autumn and Spring (Figure 4 and 5, Table 2). 

There was a significant interaction between intensity and recovery period for rhizome sugars in 

both the Autumn and Spring treatments (Figure 4, Table 2): at both times rhizome sugars were 

significantly reduced after three months of light reduction but recovered after three months 

exposure to ambient light. Rhizome starch also showed a significant interaction, but only in the 

Spring treatment where elevated concentrations dropped to control conditions after three months 

re-exposure to ambient light. There was no impact of shading on rhizome starch in the Autumn 

treatment or during the recovery period. Leaf soluble sugars also showed a significant interaction 

between intensity and recovery period that varied depending on the time: in the Autumn 

treatments, there was no significant effect of intensity at the end of the three month shading 

period, nor after three months re-exposure to ambient light, but after ten months re-exposure the 

moderate treatment had higher soluble sugars than the control and high treatment; in contrast, 

the Spring treatment recovered to control conditions within three months of re-exposure. There 

was no significant treatment effect on leaf starch in the Spring treatment, however, there was a 

significant interaction in the Autumn treatment. After three months light reduction there was no 

impact of intensity on leaf starch, but by three months the moderate intensity treatment was 

significantly lower than the control and after ten months re-exposure to ambient light both the 

moderate and high intensity treatments were significantly higher than the control (Table 2, Figure 

3). 
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Leaf ∂15N showed a significant interaction between intensity and recovery period (Table 2, Figure 

5), whereby values were significantly lower in the moderate and high treatments after three 

months of light reduction, but recovered to control conditions after three months re-exposure to 

ambient light. There was no significant treatment effect for rhizome ∂15N (Table 2, Figure 5). Leaf 

and rhizome nitrogen and leaf carbon had a significant interaction between intensity and 

recovery period but only in the Spring treatment. Elevated nitrogen levels and reduced carbon 

levels returned to control conditions after three months re-exposure to ambient light (Figure 5, 

Table 2). There was no impact or interaction of light reduction treatments on rhizome carbon and 

leaf and rhizome ∂13C (Table 2). 

Recovery from 6 & 9-month PPFD reduction treatments 

For plots shaded for six and nine months, there was no recovery of seagrass leaf and stem 

biomass or canopy height up to 23 months after the light reduction stress was removed and the 

meadow was re-exposed to ambient light (Table 2, Figure 6 and 7). In plots that had been shaded 

for 6 months starting in Autumn, leaf and stem biomass and canopy height declined further over 

the 23 months following removal of light reduction. The remaining stems were about half the 

height of those in the Control plots, around 30 cm high, and were new stem recruits or remnants 

of older stems. There were no further significant declines in algal epiphyte biomass (Table 2, 

Figure 6).  

When shaded for 6 months starting in Spring, there were, again, further declines in stem biomass 

and canopy height, but not in leaf biomass (Table 2, Figure 6). Algal epiphyte biomass recovered 

to control levels 17 months after the light reduction impact but only in the moderate treatment; 

there was no change in the high treatment (Table 2, Figure 6). 

In the plots shaded for nine months starting in Autumn and re-exposed to ambient light for 21 

months, the pattern of change was similar to the Autumn six months impact treatments, with 

further declines in leaf and stem biomass and canopy height and no change in algal epiphyte 

biomass (Table 2, Figure 7). The Spring nine-month plots had a similar response to the Autumn 

nine-month plots, except there was a slight increase in the leaf biomass of the moderate 
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treatments, 15 months after the light reduction impact was removed, so that they were at an 

intermediate level between the control and high treatment (Table 2, Figure 7).  

DISCUSSION 

 

Approval for dredging activities in the marine environment in Australia requires predictions on 

the spatial and temporal extent of the physico-chemical change it will produce as well as the 

potential impact on the biota. Once approval is granted, monitoring is undertaken to assess these 

predictions and, at times, recovery (Bayer et al., 2008; Erftemeijer and Robin Lewis III, 2006). This 

study provides important new information to improve impact prediction for light reducing 

activities. It also provides information relevant to choosing potential indicators for recovery 

monitoring of Amphibolis griffithii seagrass throughout temperate Australia, though the concepts 

for benthic primary producer habitats are relevant world-wide. 

Timescales of recovery 

If light reduction to 5-18% of ambient light persists for a maximum of three months there is a 

significant impact to the Amphibolis seagrass habitat (up to 72% loss leaf biomass)(Lavery et al., 

2009), but recovery of above-ground biomass can occur within the following 10 months. This has 

been demonstrated at two times of year, suggesting that recovery from that level of impact is not 

dependent on time of year. The recovery from three months of light reduction is faster than has 

previously been reported for larger seagrass species. Generally, recovery in these species takes 

years, decades or has been predicted to take centuries (Boese et al., 2009; Bryars and Neverauskas, 

2004; Collier et al., 2009; Gonzalez-Correa et al., 2005; Hammerstrom et al., 2007; Neckles et al., 

2005). Interestingly, this relatively fast recovery occurred despite up to 72% loss of leaf biomass, 

highlighting the fast leaf production rates of Amphibolis compared to other large seagrasses 

(Marba and Walker, 1999), and high recovery potential if actively growing clusters (up to 42%) 

remain on the stem from which new leaves can form. However, it should be noted that below-

ground material, a significant component of these rhizomatous plants (~ 50% relative to the 

above-ground biomass (Lavery et al., 2009)) was not taken into account in assessing recovery. Di 

Carlo and Kenworthy (2008) found a general trend in larger seagrass species of faster 

aboveground than belowground recovery. So this recovery rate should be treated in the context 
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that it may be an underestimate of the entire seagrass components. It is also important to note 

that in these experiments the treatment plots were surrounded by healthy seagrass meadow, 

which could act as a source of recruitments of both stems and seedlings. Under typical light-

reduction arising from dredging or eutrophication, the spatial scale of impact will be larger and 

this source of recruitment would be more distant, suggesting less potential for recovery than 

observed here. 

	
  

Longer durations of light stress (6-9 months at 6-19% of ambient light) resulted in 82-100% loss of 

leaf biomass, and no recovery was detected in the 15- 23 months following removal of the light 

reduction stress. Consequently there is likely to be a threshold time between 3 and 6 months, 

regardless of light intensity. The experiment was concluded at this time so actual recovery times 

are not available for these longer duration dredging scenarios. This lack of recovery was 

comparable to other seagrass studies where recovery was shown or predicted to be slow 

(Gonzalez-Correa et al., 2005; Kendrick et al., 2000) or not detected (Kirkman, 1985; Walker et al., 

2006). A. griffithii subjected to more severe stress had no or few surviving leaf clusters, thus 

recovery was mostly dependent on recruitment via production of new stems from existing 

rhizome or establishment of seedlings. Stem recruitment was observed but these stems did not 

persist. A. griffithii stores carbohydrate reserves in its rhizome which are known to decline during 

periods of shading (Lavery et al., 2009). It is likely that such reductions occurred here reducing 

carbohydrate reserves below the level required to support the actively growing new stems until 

they could develop sufficient photosynthetic tissue to be self-supporting. Seedlings were also 

observed but did not persist. There is little information on the survival rates of A. griffithii 

seedlings so it is not possible to comment on whether this lack of survival was unusual.  

Recovery following severe impact will be slower than that following moderate impact as it 

depends on stem recruitment, which is slower than leaf production (Marba and Walker, 1999) 

(i.e. the plastochrone interval for stems is 259 days vs. 32 for leaves (Marba and Walker, 1999)) 

and seedlings are only produced for a few months during a year (Walker et al., 2001). 

Consequently, management of dredging or other light-reduction impacts should avoid stressing 

the seagrass to the point that recovery is required through recruitment of new stems or seedlings. 
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We are unable to conclude whether these meadows will eventually recover, though we cannot 

discount that possibility. If recovery does occur, it will be slow and, consequently the loss of 

ecological function would occur over a longer timescale.  

Process of recovery 

The pathway of recovery in the plants that had been shaded for 3 months, commenced with an 

increase in the major carbohydrate stores (sugars in the rhizome and leaves) back to control 

conditions and a return to an average of three leaves cluster-1 within three months of re-exposure 

to ambient light. This indicates that the plants were actively increasing leaves to maximise their 

ability to capture light, and the product of this, carbohydrates were accumulating in the plant. In 

all cases, leaves within leaf clusters grew but the rate varied depending on the time of year. The 

variability in the growth rate response indicates that the rate of recovery of some ecological 

functions will depend on the time of year that impacts occur and cease. In this case, plants shaded 

over autumn and recovering over winter achieved leaf extension rates comparable to controls 

within 3 months, while those shaded over spring and recovering during summer did not reach 

control growth rates. This reflects differences in the rate of growth of control plants rather than 

differences in the growth rate of the plants subjected to shading. That is, irrespective of time of 

year that plants were shaded, they demonstrated a similar capacity to recover from shading but 

because plants recovering over summer are compared to controls at a time when higher 

temperature and PPFD allow high control growth rates, they failed to equal those rates and 

consequently were deemed to have not recovered. This clearly has implications for the 

assessment of recovery in management programmes depending on how recovery is defined 

The δ15N of leaves returned to control values within 3 months of re-exposure to ambient light. 

Lavery et al (2009) proposed that the change in δ15N with light reduction were due to changes in 

the allocation of nitrogen between light harvesting pigments (depleted in 15N relative to bulk 15N 

of cells) and electron carriers and Calvin cycle enzymes (enriched in 15N relative to bulk 15N of 

cells) (Evans, 1989; Evans and Poorter, 2001; Werner and Schmidt, 2002). The elevation in δ15N on 

the return to ambient light levels is consistent with the plants investing the nitrogen resources in 

electron carriers and Calvin cycle enzymes rather than light harvesting pigments. This further 
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supports the earlier suggestion (Lavery et al., 2009) that δ15N may be a useful indicator of altered 

light availability that will respond earlier than the morphological changes that mangers are often 

seeking to avoid.  

Leaf biomass and density of the meadow were the next features of the meadow to recover, 

however, the trajectory of recovery varied depending on time of year and type of light reduction 

treatment. There was an increase in leaf biomass and density in the first three months when 

conditions were more conducive for growth, water temperatures were higher and light was 

higher. For example in plots where the light stress was removed in winter, there was no 

significant change in leaf biomass and density three months into the recovery period (June-Oct, 

19°C, 6-16 mol m-2 d-1), but in the plots where the light stress was removed in summer, the leaf 

biomass and density in the high intensity treatments only, started to recover over the first three 

months (Dec-March, 19-21°C, 42-49 mol m-2 d-1). This trajectory of recovery observed in the first 

three months over summer and autumn may reflect the environmental conditions at the time of 

the recovery period but also the internal growth patterns of the plants. Yet, our data do not show 

faster growth rates of recovering plants at different times of year. Although control growth rates 

as measured by the leaf extension were higher in autumn (1.4 ± 0.02 mm cluster-1 d-1) compared to 

spring (0.8 ± 0.04 mm cluster-1 d-1), there was no difference in the growth rate of recovering plants 

at different times of year growth (1 mm cluster-1 d-1, Figure 2). There may have been differences in 

growth earlier on in the recovery period, only the last two weeks were measured in this study, 

and leaf production rates are known to be higher in summer than winter (Carruthers, 1999; 

Walker and Cambridge, 1995) potentially accounting for more leaf production and increases in 

leaf density at this time. These points highlight again how single indicators of recovery may be 

misleading and that a combination of morphological and physiological indicators may provide a 

better appreciation of the state of the seagrass at different times of year. 

 

One of the most surprising results was the decline in leaf biomass of one treatment following 

removal of shading despite showing no significant difference from the controls at the end of the 

3-month shading period. This highlights the potential variability in response once a light 
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reduction stress has been removed. Other light reduction studies have also observed this (Malta 

et al., 2006), though the mechanism for this reduction is not clear. A possible explanation is that 

the sudden increase in light following removal of shading (7.4 to 41.6 mol m-2 d-1, Table 1) may 

cause photo-oxidative damage to previously dark-adapted plant tissue. Irrespective of the 

mechanism, the result, and its observation in other studies, indicates that recovery from shading 

should not be presumed following the removal of shading, even if plants have shown no 

morphological response during the shading period. Impacts may occur following the removal of 

stress and this needs to be factored into the predications of, and monitoring for impacts. 

The algal epiphyte biomass was not impacted in the treatments shaded at the end of winter. This 

contradicts the general theory that algae responds faster to light reduction than seagrasses. But in 

the plots shaded at the end of summer there was recovery after three months in the moderate 

treatment, and 10 months in the high intensity treatment. In this scenario algal biomass recovered 

faster than seagrass leaf biomass, but only in the moderately shaded plots. Within Amphibolis 

seagrass meadows the amount of algal epiphytes is generally greater than other large seagrass 

species, and highly variable seasonally and over small spatial scales (10’s of meters) (Lavery and 

Vanderklift, 2002). Therefore within this species algal biomass may not be a reliable indicator of 

impact to and recovery from light stress. 

MANAGEMENT IMPLICATIONS 

 

There are three main management outcomes from this research. Firstly, an improved capacity for 

predicting impacts of light reduction in Amphibolis seagrass meadows. We know that recovery 

can occur within a year, following light reduction for durations of up to 3 months, with relatively 

high amounts of light reduction (82-95%). This recovery is facilitated by rapid leaf production, 

and such short timescales have rarely been reported for large seagrass. To ensure that this speed 

of recovery occurs actively growing clusters, at least 42% relative to control numbers must remain 

on the vertical stem. 

It is important to note that this study has examined the recovery of the seagrass Amphibolis 

griffithii from light reduction stress, where this stress was imposed to mimic the duration and 
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intensity of turbid plumes generated from dredging operations. It has not incorporated the 

potential stress associated with sedimentation from turbid plumes. It is likely that impacts 

observed in this study would be more severe with the added stress of sedimentation, and as a 

consequence recovery would be longer. 

Longer durations of light reduction (6-9 months) at similar intensities (82-95%) result in much 

longer timescales of recovery, definitely greater than 2 years. Observations on the recovery of 

seagrasses from a dredging operation support these experimental findings that recovery will take 

longer than 2 years. Before this study began, a real-life dredging operation created a turbid plume 

~ 70 km along the coast, and 1-2 km out to sea for around 9 months (Mulligan, 2005). There were 

extensive declines in Amphibolis seagrass cover (72-100%) up to 5 km away from the dredging 

operation (CSIRO, 2007). Around four sites containing Amphibolis were monitored for three years 

after the dredging operation was completed. There was some recovery at all of these sites after 

three years (33-68% relative to pre-dredging conditions) but the meadows had not retuned to the 

cover that was present before the dredging operation began (CSIRO, 2007). 

Secondly, despite no observable effects on leaf biomass detected at the end light reduction phase, 

there can be subsequent declines during the recovery phase. Therefore, it is imperative to monitor 

the biological components of the ecosystem once the stress is removed to ascertain if there have 

been any biological impacts.  

Thirdly, there are five potential indicators of recovery in the meadow. These have been selected 

based on their sensitivity such as speed of response and consistency at different times of the year 

and with different intensities of stress. They are suitable for a scenario where recovery is expected 

within a year, but may not be appropriated in situations where there has been a more severe 

disturbance and the majority of the leaf biomass has been lost. The potential indicators presented 

here are a subset of the sub-lethal light stress indicators identified by Lavery et al (2009). Three 

potential indicators responded after 3 months re-exposure to ambient light, rhizome sugars, 

average leaves cluster-1 and the δ15N signal of leaves. The remaining two potential recovery 

indicators are leaf biomass and density, which indicate a condition further along the recovery 

pathway. 



Recovery of seagrass from light reduction 

  18 

 

ACKNOWLEDGEM ENTS 

We thank: R Masini for his assistance in initiating this research and the fruitful discussions along 

the way; A Tennyson and P Quintana for their help with the research; the numerous volunteers 

who helped with field-work. This research was funded by the Western Australian Government’s 

Strategic Research Fund for the Marine Environment, the Geraldton Port Authority and 

Department of Environment and Conservation. 

REFERENCES 

Bayer, E., Barnes, R.A., Rees, H.L., 2008. The regulatory framework for marine dredging 
indicators and their operational efficiency within the UK: a possible model for other nations? Ices 
Journal of Marine Science 65, 1402-1406. 
Biber, P.D., Kenworth, W.J., Paerl, H.W., 2009. Experimental analysis of the response and 
recovery of Zostera marina (L.) and Halodule wrightii (Ascher.) to repeated light-limitation stress. 
Journal of Experimental Marine Biology and Ecology 369, 110-117. 
Boese, B.L., Kaldy, J.E., Clinton, P.J., Eldridge, P.M., Folger, C.L., 2009. Recolonization of 
intertidal Zostera marina L. (eelgrass) following experimental shoot removal. Journal of 
Experimental Marine Biology and Ecology 374, 69-77. 
Borowitzka, M.A., Lethbridge, R.C., Charlton, L., 1990. Species richness, spatial-distribution and 
colonization pattern of algal and invertebrate epiphytes on the seagrass Amphibolis griffithii. 
Marine Ecology-Progress Series 64, 281-291. 
Bryars, S., Neverauskas, V., 2004. Natural recolonisation of seagrasses at a disused sewage sludge 
outfall. Aquatic Botany 80, 283-289. 
Cabaco, S., Santos, R., Duarte, C.M., 2008. The impact of sediment burial and erosion on 
seagrasses: A review. Estuarine Coastal and Shelf Science 79, 354-366. 
Cambridge, M., 1999. Growth strategies of Rottnest Island seagrasses, in: Walker, D.I., F.E., W. 
(Eds.), The seagrass flora and fauna of Rottnest Island, Western Australia. Western Australian 
Museum, Perth, pp. 1-24. 
Carruthers, T.J.B., 1999. Within canopy growth strategies of the two seagrass species Amphibolis 
griffithii (J. Black) den Hartog and Amphibolis antarctica (Labillardiere) Sonder & Ascherson ex 
Ascherson, in: Walker, D.I., Wells, F.E. (Eds.), The Seagrass Flora and Fauna of Rottnest Island, 
Western Australia. Western Australian Museum, Perth, pp. 41-50. 
Carruthers, T.J.B., Longstaff, B.J., Dennison, W.C., Abal, E.G., Aioi, K., 2001. Measurement of light 
penetration in relation to seagrass, in: Short, F., Coles, R. (Eds.), Global Seagrass Research 
Methods. Elsevier, Amsterdam, pp. 369-392. 



Recovery of seagrass from light reduction 

  19 

Carruthers, T.J.B., Dennison, W.C., Kendrick, G.A., Waycott, M., Walker, D.I., Cambridge, M.L., 
2007. Seagrasses of south-west Australia: A conceptual synthesis of the world's most diverse and 
extensive seagrass meadows. Journal Of Experimental Marine Biology And Ecology 350, 21-45. 
Cochran, W.G., 1951. Testing a linear relation among variances. Biometrics 7, 17-32. 
Collier, C.J., Lavery, P.S., Masini, R.J., Ralph, P.J., 2007. Morphological, growth and meadow 
characteristics of the seagrass Posidonia sinuosa along a depth-related gradient of light availability. 
Marine Ecology-Progress Series 337, 103-115. 
Collier, C.J., Lavery, P.S., Ralph, P.J., Masini, R.J., 2009. Shade-induced response and recovery of 
the seagrass Posidonia sinuosa. Journal of Experimental Marine Biology and Ecology 370, 89-103. 
Cooper, K.M., Frojan, C., Defew, E., Curtis, M., Fleddum, A., Brooks, L., Paterson, D.M., 2008. 
Assessment of ecosystem function following marine aggregate dredging. Journal of Experimental 
Marine Biology and Ecology 366, 82-91. 
Costanza, R., dArge, R., deGroot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., 
ONeill, R., Paruelo, J., Raskin, R., Sutton, P., vandenBelt, M., 1997. The value of the world's 
ecosystem services and natural capital. Nature 387, 253-260. 
Coupland, G., 1997. Rhizome and shoot structure, growth and response to sediment burial in 
Amphibolis griffithii (Black) den Hartog, Department of Botany. University of Western Australia, 
Perth, p. 62. 
Cruz-Motta, J., Collins, J., 2004. Impacts of dredged material disposal on a tropical soft-bottom 
benthic assemblage. Marine Pollution Bulletin 48, 270-280. 
CSIRO, 2007. Post-dredging recovery of seagrasses in the Geraldton Region. Year 3 Report. 
CSIRO, Perth, p. 77. 
den Hartog, C., 1970. Sea-grasses of the world. North Holland Publishing Company, Amsterdam. 
Di Carlo, G., Kenworthy, W.J., 2008. Evaluation of aboveground and belowground biomass 
recovery in physically disturbed seagrass beds. Oecologia 158, 285-298. 
Ducker, S.C., Foord, N.J., Knox, R.B., 1977. Biology Of Australian seagrasses - genus Amphibolis C 
Agardh (Cymodoceaceae). Australian Journal Of Botany 25, 67-95. 
Edgar, G.J., 1990. The influence of plant structure on the species richness, biomass and secondary 
production of macrofaunal assemblages associated with Western Australian seagrass beds. 
Journal of Experimental Marine Biology And Ecology 137, 215-240. 
Elliott, M., Burdon, D., Hemingway, K.L., Apitz, S.E., 2007. Estuarine, coastal and marine 
ecosystem restoration: Confusing management and science - A revision of concepts. Estuarine 
Coastal and Shelf Science 74, 349-366. 
Erftemeijer, P.L.A., Robin Lewis III, R.R., 2006. Environmental impacts of dredging on seagrasses: 
A review. Marine Pollution Bulletin 52, 1553-1572. 
Evans, J.R., 1989. Partitioning of nitrogen between and within leaves grown under different 
irradiances. Australian Journal of Plant Physiology 16, 533-548. 



Recovery of seagrass from light reduction 

  20 

Evans, J.R., Poorter, H., 2001. Photosynthetic acclimation of plants to growth irradiance: the 
relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. 
Plant Cell And Environment 24, 755-767. 
Fonseca, M.S., Whitfield, P.E., Kenworthy, W.J., Colby, D.R., Julius, B.E., 2004. Use of two 
spatially explicit models to determine the effect of injury geometry on natural resource recovery. 
Aquatic Conservation-Marine and Freshwater Ecosystems 14, 281-298. 
Gartner, A., Lavery, P., McMahon, K., Brearley, A., Barwick, H., 2010. Light reductions drive 
faunal changes in Amphibolis griffithii seagrass habitat. Marine Ecology Progress Series 201, 87-
100. 
Gonzalez-Correa, J.M., Bayle, J.T., Sanchez-Lizasa, J.L., Valle, C., Sanchez-Jerez, P., Ruiz, J.M., 
2005. Recovery of deep Posidonia oceanica meadows degraded by trawling. Journal of 
Experimental Marine Biology and Ecology 320, 65-76. 
Hammerstrom, K.K., Kenworthy, W.J., Whitfield, P.E., Merell, M.F., 2007. Response and recovery 
dynamics of seagrasses Thalassia testudinum and Syringodium filiforme and macroalgae in 
experimental motor vessel disturbances. Marine Ecology-Progress Series 345, 83-92. 
Hemminga, M.A., Duarte, C.M., 2000. Seagrass ecology. Cambridge University Press, Cambridge. 
Holmes, K.W., Van Niel, K.P., Kendrick, G.A., Radford, B., 2007. Probabilistic large-area mapping 
of seagrass species distributions. Aquatic Conservation: Marine and Freshwater Ecosystems 17, 
385-407. 
Hyndes, G.A., Kendrick, A.J., MacArthur, L.D., Stewart, E., 2003. Differences in the species- and 
size-composition of fish assemblages in three distinct seagrass habitats with differing plant and 
meadow structure. Marine Biology 142, 1195-1206. 
Je, C.H., Hayes, D.F., Kim, K.S., 2007. Simulation of resuspended sediments resulting from 
dredging operations by a numerical flocculent transport model. Chemosphere 70, 187-195. 
Kendrick, G.A., Hegge, B.J., Wyllie, A., Davidson, A., Lord, D.A., 2000. Changes in seagrass cover 
on Success and Parmelia Banks, Western Australia between 1965 and 1995. Estuarine Coastal and 
Shelf Science 50, 341-353. 
Kirkman, H., 1985. Community structure in seagrasses in southern Western Australia. Aquatic 
Botany 21, 363-375. 
Koslow, J., Gowlett-Holmes, K., Lowry, J., O'Hara, T., Poore, G., Williams, A., 2001. Seamount 
benthic macrofauna off southern Tasmania: community structure and impacts of trawling. 
Marine Ecology Progress Series 213, 111-125. 
Lavery, P.S., Vanderklift, M.A., 2002. A comparison of spatial and temporal patterns in epiphytic 
macroalgal assemblages of the seagrasses Amphibolis griffithii and Posidonia coriacea. Mar. Ecol.-
Prog. Ser. 236, 99-112. 
Lavery, P., McMahon, K., Mulligan, M., Tennyson, A., 2009. Interactive effects of timing, intensity 
and duration of light reduction on Amphibolis griffithii Marine Ecology Progress Series 394, 21-33. 



Recovery of seagrass from light reduction 

  21 

Lepland, A., Boe, R., Totland, O., 2009. Monitoring the volume and lateral spread of disposed 
sediments by acoustic methods, Oslo Harbor, Norway. Journal of Environmental Management 
90, 3589-3598. 
Mackey, P., Collier, C., Lavery, P., 2007. Effects of experimental reduction of light availability on 
the seagrass Amphibolis griffithii. Mar. Ecol.-Prog. Ser. 342, 117-126. 
Malta, E.J., Brun, F.G., Vergara, J.J., Hernandez, I., Perez-Llorens, J.L., 2006. Recovery of 
Cymodocea nodosa (Ucria) Ascherson photosynthesis after a four-month dark period. Scientia 
Marina 70, 413-422. 
Marba, N., Walker, D.I., 1999. Growth, flowering, and population dynamics of temperate Western 
Australian seagrasses. Marine Ecology-Progress Series 184, 105-118. 
Masini, R.J., Manning, C.R., 1997. The photosynthetic responses to irradiance and temperature of 
four meadow-forming seagrasses. Aquatic Botany 58, 21-36. 
Mulligan, M., 2005. Case study: Geraldton Port Enhancement Project. Geraldton Port Authority, 
Geraldton, p. 35. 
Neckles, H.A., Short, F.T., Barker, S., Kopp, B.S., 2005. Disturbance of eelgrass Zostera marina by 
commercial mussel Mytilus edulis harvesting in Maine: dragging impacts and habitat recovery. 
Marine Ecology-Progress Series 285, 57-73. 
Orth, R.J., Carruthers, T.J.B., Dennison, W.C., Duarte, C.M., Fourqurean, J.W., Heck, K.L.J., 
Hughes, A.R., Kendrick, G.A., Kenworthy, W.J., Olyarnik, S., Short, F.T., Waycott, M., Williams, 
S.L., 2006. A global crisis for seagrass ecosystems. Bioscience 56, 987-996. 
Pickett, S.T.A., White, P.S., 1985. The ecology of natural disturbance and patch dynamics. 
Academic Press, Orlando. 
Short, F.T., Duarte, C.M., 2001. Methods for the measurement of seagrass growth and production, 
in: Short, F.T., Duarte, C.M. (Eds.), Global seagrass research methods. Elsevier Science BV, 
Amsterdam, p. 155–182. 
Simonini, R., Ansaloni, I., Cavallini, F., Graziosi, F., Lotti, M., N'Siala, G., Mauri, M., Montanari, 
G., Preti, M., Prevedelli, D., 2005. Effects of long-term dumping of harbor-dredged material on 
macrozoobenthos at four disposal sites along the Emilia-Romagna coast (Northern Adriatic Sea, 
Italy). Marine Pollution Bulletin 50, 1595-1605. 
Skilleter, G., Pryor, A., Miller, S., Cameron, B., 2006. Detecting the effects of physical disturbance 
on benthic assemblages in a subtropical estuary: A Beyond BACI approach. Journal of 
Experimental Marine Biology and Ecology 338, 271-287. 
Vanderklift, M.A., How, J.R., Wernberg, T., MacArthur, L.D., Heck, K.L., Valentine, J.F., 2007. 
Proximity to reef influences density of small predatory fishes, while type of seagrass influences 
intensity of their predation on crabs. Marine Ecology Progress Series 340, 235-243. 
Walker, D.I., Cambridge, M.L., 1995. An experimental assessment of the temperature responses of 
2 sympatric seagrasses, Amphibolis-antarctica and Amphibolis- griffithii, in relation to their 
biogeography. Hydrobiologia 302, 63-70. 



Recovery of seagrass from light reduction 

  22 

Walker, D.I., Dennison, B., Edgar, G., 1999. Status of Australian seagrass research and knowledge, 
in: Butler, A., Jernakoff, P. (Eds.), Seagrass in Australia: strategic review and development of an R 
& D plan. CSIRO Publishing, Collingwood, pp. 1-24. 
Walker, D.I., Olesen, B., Phillips, R.C., 2001. Reproduction and phenology in seagrasses, in: Short, 
F., Coles, R. (Eds.), Global seagrass research methods. Elsevier, Amsterdam, pp. 59-78. 
Walker, D.I., Kendrick, G., McComb, A., 2006. Decline and recovery of seagrass ecosytems - the 
dynamics of change, in: Larkum, A., Orth, R.J., Duarte, C.M. (Eds.), Seagrasses: Biology, Ecology 
and Conservation. Springer, Dordredcht, pp. 551-565. 
Ware, S.J., Rees, H.L., Boyd, S.E., Birchenhough, S.N., 2009. Performance of selected indicators in 
evaluating the consequences of dredged material relocation and marine aggregate extraction. 
Ecological Indicators 9, 704-718. 
Waycott, M., Longstaff, B.J., Mellors, J., 2005. Seagrass population dynamics and water quality in 
the Great Barrier Reef region: a review and future research directions. Marine Pollution Bulletin 
51, 343-350. 
Waycott, M., Duarte, C.M., Carruthers, T.J.B., Orth, R.J., Dennison, W.C., Olyarnik, S., 
Kenworthy, W.J., Short, F.T., Williams, S.L., 2009. Accelerating loss of seagrasses across the globe 
threatens coastal ecosystems. Proceedings of the National Academy of Sciences in press. 
Werner, R.A., Schmidt, H.L., 2002. The in vivo nitrogen isotope discrimination among organic 
plant compounds. Phytochemistry 61, 465-484. 
Wu, G.F., de Leeuw, J., Skidmore, A.K., Prins, H.H.T., Liu, Y.L., 2007. Concurrent monitoring of 
vessels and water turbidity enhances the strength of evidence in remotely sensed dredging 
impact assessment. Water Research 41, 3271-3280. 
Yemm, E.W., Willis, A.J., 1954. The estimation of carbohydrates in plant extracts by anthrone. 
Journal of Biochemistry 57, 508-514. 
Zar, J.H., 1999. Biostatistical analysis, Fourth ed. Prentice Hall International, New Jersey. 
 

LEGENDS 

Table 1: Water temperature and light in the different recovery treatments. 
 

Table 2: Results of statistical analysis to determine the effect of intensity over the recovery period 

on the 3-, 6- and 9-month light reduction treatments for A. griffithii seagrass meadow biomass, 

density, morphology and physiology variables. *** = p < 0.001, ** = p < 0.01 & > 0.001, * = p < 0.05 

& > 0.01. 
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Figure 1: Schematic diagram of the timing of treatments for different start-times and durations in 

the impact phase (grey) and recovery phase (white bars). Samples were collected at the time 

associated with the end of each bar, i.e. 3 times in the 3-month durations and 2 times in the 6- and 

9-month durations. In the 3-month treatments there were 2 recovery duration sampling events, at 

3 (3R) and 10 (10R) months.  

Figure 2: Biomass (g DW m-2) and density (m-2) of A. griffithii and biomass (g DW m-2) of algal 

epiphytes following recovery from 3-months of PPFD reduction treatments with Timing: 

Autumn, Spring and Intensity: Control, Moderate, High factors. Letters indicate significant 

differences between PPFD reduction treatments (Intensity) at a particular Time and Recovery 

period. Average with standard error bars. 

Figure 3: Morphology and growth measures of A. griffithii following recovery from 3-months of 

PPFD reduction treatments with Timing: Autumn, Spring and Intensity: Control, Moderate, High 

factors. Letters indicate significant differences between PPFD reduction treatments (Intensity) at a 

particular Time and Recovery period. Average with standard error bars. nd indicates no data for 

that duration. 

Figure 4: Carbohydrate content (% DW) of A. griffithii following recovery from 3-months of PPFD 

reduction treatments with Timing: Autumn, Spring and Intensity: Control, Moderate, High 

factors. Letters indicate significant differences between PPFD reduction treatments (Intensity) at a 

particular Time and Recovery period. Average with standard error bars. 

Figure 5: Nutrient content (% DW) and nitrogen stable isotope values of A. griffithii plant parts 

following recovery from 3-months of PPFD reduction treatments with Timing: Autumn, Spring 

and Intensity: Control, Moderate, High factors. Letters indicate significant differences between 

PPFD reduction treatments (Intensity) at a particular Timing and Recovery period. Average with 

standard error bars. 

Figure 6: Biomass (g DW m-2), density and morphology of A. griffithii following recovery from 6-

months of PPFD reduction treatments with Timing: Autumn, Spring and Intensity: Control, 
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Moderate, High factors. The length of the Recovery period varies with treatment. Average with 

standard error bars. 

Figure 7: Biomass (g DW m-2), density and morphology of A. griffithii following recovery from 9-

months of PPFD reduction treatments with Timing: Autumn, Spring and Intensity: Control, 

Moderate, High factors. The length of the Recovery period varies with treatment. Average with 

standard error bars. 
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TABLES 

Table 1 
 
 Water 

temp. 
(ºC) 

Avg. total 
daily 
irradiance 
(mol m-2 d-1) 

Avg. 
HSAT 

(hrs) 

 Water 
tp. 
(ºC) 

Avg. total 
daily 
irradiance 
(mol m-2 d-1) 

Avg.  
HSAT 

(hrs) 

Autumn    Spring    
3-month 21.7 (19-22)   3-month 18.7(18-19)   
Control  19.0 9.52 Control  41.6 12.20 
Moderate  3.1 4.31 Moderate  7.4 7.13 
High  0.9 1.17 High  4.7 3.18 
Recovery 3 18.4 (18-19)  16.1 9.48 Recovery 3 20.5 (19-22) 41.1 12.15 
Recovery 10 20 (18-21)  41.2 12.1 Recovery 10 19.1 (18-20) nd nd 
6-month 20 (18-22)   6-month 19.9(18-22)   
Control  16.6 9.34 Control  41.3 12.13 
Moderate  2.8 3.62 Moderate  5.8 7.14 
High  1.0 1.53 High  3.5 3.27 
9-month 19.6 (18-22)   9-month 19.8 (18-22)   
Control  25.4 10.09 Control  32.2 11.36 
Moderate  4.8 4.90 Moderate  4.3 6.37 
High  2.4 2.12 High  2.7 2.84 
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Table 2:  

 Autumn Spring  Autumn Spring  Autumn Spring  Autumn Spring 
 df F p df F p  df F p df F p  df F p df F p  df F p df F p 
3-month duration treatments       
 Leaf Biomass Ln (g DW m-2)  Stem biomass (g DW m-2)  Algal epiphyte biomass Sqrt,(g DW m-2)  Leaf density Ln (m-2) 
Intensity (I) 2 15.3 *** 2 6.63 *  2 2.49 0.12 2 4.66 *  2 2.24 0.15 2 3.49 0.06  2 16.9 *** 2 8.02 ** 
Recovery (R) 2 6.32 ** 2 10.2 **  2 3.85 * 2 10.7 ***  2 21.4 *** 2 15.4 ***  2 5.38 * 2 9.65 ** 
R x I 4 3.48 * 4 8.14 ***  4 1.83 0.16 4 4.45 **  4 5.61 ** 4 0.6 0.67  4 2.60 0.06 4 5.24 ** 
 Cluster density (m-2)  Average leaves per cluster  80th percentile canopy height (cm)  Average leaf length (mm) 
Intensity (I) 2 12.6 ** 2 6.76 *  2 6.32 * 2 4.8 *  2 2.25 0.15 2 0.39 0.68  2 6.24 ** 2 2.57 0.12 
Recovery (R) 2 2.09 0.14 2 23.0 ***  2 56.4 *** 2 126 ***  2 3.20 0.06 2 12.7 ***  2 25.6 *** 2 0.77 0.47 
R x I 4 1.53 0.22 4 5.44 **  4 9.72 *** 4 6.30 **  4 0.25 0.91 4 2.28 0.09  4 2.46 0.07 4 1.15 0.36 
 Average leaf width (mm)  Average internode length (mm)  Leaf extension (mm cluster-1 day-1)  Rhizome sugars (% DW) 
Intensity (I) 2 1.49 0.26 2 0.49 0.62  2 2.55 0.12 2 0.12 0.89  2 10.1 ** 2 29.8 ***  2 6.33 * 2 1.15 0.35 
Recovery (R) 2 9.22 ** 2 1.45 0.26  2 2.13 0.14 2 3.98 *  1 146 *** 1 109 ***  2 51.3 *** 2 9.75 ** 
R x I 4 5.74 ** 4 1.43 0.25  4 2.51 0.07 4 1.64 0.20  2 44.6 *** 2 5.10 *  4 3.49 * 4 3.09 * 
 Rhizome starch (% DW)  Leaf sugars (% DW)  Leaf starch (% DW)  Leaf nitrogen (% DW) 
Intensity (I) 2 0.11 0.89 2 1.26 0.32  2 4.10 * 2 20.0 ***  2 6.66 * 2 1.53 0.26  2 1.12 0.36 2 18.4 *** 
Recovery (R) 2 48.5 *** 2 7.90 **  2 131 *** 2 8.18 **  2 24.2 *** 2 7.81 **  2 73.3 *** 2 6.51 ** 
R x I 4 0.65 0.63 4 4.93 **  4 5.60 ** 4 18.5 ***  4 10.9 *** 4 2.59 0.06  4 0.94 0.46 4 15.5 *** 
 Rhizome nitrogen (% DW)  Leaf ∂15N  Rhizome ∂15N  Leaf carbon (% DW) 
Intensity (I) 2 0.84 0.45 2 1.57 0.25  2 2.85 0.10 2 3.49 0.06  2 5.53 * 2 0.26 0.77  2 0.77 0.48 2 0.42 0.66 
Recovery (R) 2 49.9 *** 2 8.60 **  2 23.1 *** 2 0.75 0.48  2 1.43 0.26 2 13.0 ***  2 1.72 0.20 2 12.5 *** 
R x I 4 1.17 0.35 4 8.32 ***  4 5.31 * 4 6.03 **  4 2.25 0.09 4 1.92 0.14  4 1.80 0.16 4 3.16 * 
 Rhizome carbon (% DW)  Leaf ∂13C  Rhizome ∂13C        
Intensity (I) 2 1.40 0.28 2 0.59 0.57  2 1.26 0.32 2 0.36 0.70  2 0.37 0.70 2 0.52 0.61        
Recovery (R) 2 7.26 ** 2 13.4 ***  2 11.1 *** 2 3.95 *  2 2.47 0.11 2 0.17 0.84        
R x I 4 1.88 0.15 4 0.50 0.74  4 0.94 0.46 4 0.79 0.54  4 0.74 0.57 4 2.30 0.09        
6-month duration treatments                      
 Leaf Biomass Ln (g DW m-2)  Stem biomass Ln (g DW m-2)  Algal epiphyte biomass Ln (gDW m-2)  80th percentile canopy height (cm) 
Intensity (I) 2 121 ** 2 194 ***  2 48.8 ** 2 19.3 ***  2 87.0 ** 2 29.5 ***  2 59.0 *** 2 37.5 *** 
Recovery (R) 1 86.5 ** 1 3.40 0.09  1 106 ** 1 36.6 ***  1 2.73 0.12 1 4.69 0.05  1 81.7 *** 1 116 *** 
R x I 2 5.30 0.02 2 3.80 0.05  2 21.7 ** 2 0.74 0.50  2 1.05 0.38 2 6.49 *  2 9.28 ** 2 30.4 *** 
9-month duration treatments                      
 Leaf Biomass Ln (g DW m-2)  Stem biomass Ln (g DW m-2)  Algal epiphyte biomass Ln (gDW m-2)  80th percentile canopy height (cm) 
Intensity (I) 2 249 ** 2 38.5 ***  2 47.1 *** 2 19.8 ***  2 40.8 *** 2 12.7 **  2 19.6 *** 2 53.1 *** 
Recovery (R) 1 0.50 0.49 1 1.11 0.31  1 117 *** 1 60.4 ***  1 2.14 0.17 1 0.71 0.42  1 72.8 *** 1 130 *** 
R x I 2 9.80 * 2 7.55 *  2 24.5 *** 2 5.78 *  2 2.86 0.10 2 1.4 0.28  2 9.68 *** 2 25.9 *** 
Sqrt – Square root transformed, Ln – Natural log transformed 
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