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Abstract Summary 

We report a preliminary study of gamma radiation effects on the 

current generation of optical fibre Bragg grating sensors, and the 

effects of relaxation after gamma irradiation, as a function of dose. 

Keywords- fibre Bragg gratings (FBGs), gamma irradiation, 

sensors. 

I. INTRODUCTION 

Optical fibre sensing systems have been used as sensors for 
temperature, strain, pressure and other important measurement 
systems. In the past decade, there has been increased interest in 
extending the application of these sensors to ionizing radiation 
environments, including their use in monitoring various 
parameters in space environments (low dose rate and level) and 
hazardous nuclear areas (high dose rate and levels) [1]. There 
has even been some development in the area of using these 
types of sensing systems (and in particular, the damage caused 
to the fibres) for ionizing radiation dosimetry [2]. 

Results obtained to-date indicate that gamma irradiation 
causes attenuation degradation in various optical fibre types, 
through the generation of defects such as color centers [1-3], 
causing refractive index changes in the fibre. Studies so far 
have limited the determination of the effects of gamma 
radiation on the optical properties of fibres to the visible 
wavelength range of 400 nm to 700 nm. It has also been found 
that the specific type of fibre (for example, fibres made with 
different dopant types) have different responses to ionizing 
radiation [3]. 

The FBG is a fundamental building block of any optical 
fibre-based sensing system [4]. Recently, a number of studies 
have examined the changes in the Bragg wavelength of FBGs 
under gamma irradiation [4,5,6]. These studies have reported 
conflicting results, and the mechanism responsible for the 
proposed shift in the Bragg wavelength is still unknown. 

Previous work [3] examined the influence of fibre 
composition and the effect this has on the Bragg wavelength 
under irradiation. Irradiation dose rates of 0.90Gy/s up to a 
dose of 100kGy were used, which is compatible to our 
accumulated dose of about 86kGy. The highest Bragg 
wavelength shift (BWS) recorded was 160pm for Ge-doped 
fibres, and the lowest BWS was 50pm with Ge-free fibre. 
Gamma-induced attenuation loss was also examined [6] in Ge-
doped fibres and pure silca core fibres, when exposed at a dose 
rate of 720Gy/hr up to a total dose of 100kGy. The optical loss 
of all fibres was in the range 0.04-0.06dB/m at 100kGy. 

In this study, we performed a preliminary study of gamma 
radiation effects on a selection of optical fibres and FBGs. This 
study was needed to examine the feasibility of performing 
these types of measurements on different samples using the 
facilities at ANSTO, and to determine the most appropriate 
procedures to complete our proposed study. The three day 
project generated some interesting data, which demonstrated 
some interesting, although not totally conclusive, results on the 
effects of gamma radiation on our sample set. Our eventual aim 
is to investigate the use of FBG sensors as gamma dosimeters 
for high dose applications. 

II. FIBRE BRAGG GRATINGS 

A. General Theory of FBGs 

Fibre Bragg gratings (FBGs) are passive devices utilized 

extensively in optical fiber communications and sensing. A 

FBG is a short section of optical fibre that is manufactured to 

reflect a particular wavelength of light and to transmit all other 

wavelengths. This is achieved by having a periodic variation 

to the refractive index in the core of the optical fibre, as shown 

in Fig. 1.  Since some light will be reflected at a change in 

refractive index, a specific wavelength will be reflected, while 

all others will be transmitted. Hence, the FBG acts as an 

optical filter, reflecting a narrow wavelength range, centred 

about a peak wavelength. This wavelength, known as the 

Bragg wavelength ( B), is given by [7] 

,2n
B

 (1)  

where n is the average refractive index of the grating (average 

of n2 and n3 in Fig. 1), and  is the grating period (as shown in 

Fig. 1). 

Any measurand that has the ability to affect either the 

refractive index or the grating period will result in a change in 

the Bragg wavelength. This allows FBGs to be used in sensing 

applications. For example, if there is a change in the length of 

the FBG due to strain, the spacing between the dielectric 

mirrors changes, so the wavelength that the FBG reflects 

changes. In this instance, the change in length will decrease 

the optical density of the fibre, which would decrease the 

refractive index. 

 



 

Figure 1.  FBG structure and operation. 

B. Gamma Irradiation of FBGs 

When FBGs have been exposed to gamma irradiation, a 

Bragg wavelength shift (BWS) occurs. A recent study 

examined the relationship between the total dose and BWS up 

to a dose of 100kGy [8]. Results indicate that the BWS and 

FBGs sensitivity increase as the radiation dose increases with 

FBGs of varying Bragg wavelengths (820nm, 1285nm and 

1516nm). The BWS was about 40-50pm for a total dose of 

100kGy for all FBG wavelengths. 

The effect of the variation in fabricating methods of FBGs 

has shown that fibres with medium to high germanium (Ge) 

content (10-21mol%) and loaded with hydrogen result in a 

high BWS (approximately 160pm  after a dose of 100kGy) 

[3]. Fibres without Ge resulted in a 50pm BWS. 

Further study has revealed the influence of hydrogen 

loading pressure on the radiation sensitivity of FBGs. The 

Bragg wavelength as a function of dose rate was measured, 

with FBGs that were made after loading the fibre at various 

pressures of 100, 200 and 300bar [9]. When increased to 

300bar, the radiation sensitivity increased by 14% compared 

to the 100 and 200bar. The BWS for a dose of 100kGy was in 

the range 130-150pm for 100-300bar hydrogen. 

Hence, there is a range of structural, compositional and 

manufacturing parameters that influence the FBGs sensitivity 

and wavelength shift. There is a need to study the properties of 

FBG sensors, and their manufacturing methods and fibre 

types, under the influence of ionising radiation. 

III. EXPERIMENTAL METHOD 

In this study, we measured the transmission characteristics 

of optical fibres and incorporated FBGs as a function of the 

accumulated gamma dose over a three day period. All 

measurements were performed at approximately 22
o
C. 

A. Gamma Irradiation 

Gamma irradiation was performed using a wet storage 

cobalt-60 irradiation facility at ANSTO. FBGs were irradiated 

for various times at dose rates of 50-64 Gy/minute to 

accumulated doses of between 1 and 100 kGy. For example, 

for Sample 3 was subjected to consecutive irradiation times of 

1, 5, 30, 30, 240, 600 and 600 minutes. After each irradiation 

period, the samples were removed from the gamma irradiation 

facility, and optical measurements performed. The samples 

were then returned for further irradiation. Unfortunately, the 

time between when the sample was removed and then 

subsequently returned to the irradiator was random due to the 

short and rushed timetable involved. 

Dose rates were determined using Fricke [10] and Ceric 

Cerous [11] dosimeters. These dosimeters were calibrated in a 

cobalt-60 radiation field, in which the dose rate was 

determined from reference dosimeter measurements made 

under similar conditions. The overall expanded uncertainty 

(k=2) [12] associated with an individual dosimeter reading 

included both the uncertainty of calibration of the batch of 

dosimeters and the uncertainty due to variation within the 

batch, and was calculated to be 2.0% (Fricke) and 3.5% (Ceric 

Cerous). 

B. FBG Samples 

The FBG samples were purchased from Photronix 

Technologies (Malaysia). FBGs were manufactured in 

standard SMF-28 and SMF-28e optical fibres, with no H2 

loading. They have a reflectivity of 80-98% and a 3dB spectral 

width of 0.2 to 1.0nm. All gratings were used without 

coatings. 

C. Optical Measurements 

Optical measurements were performed in the wavelength 

range from 1520 nm to 1600 nm using a superluminescent 

laser diode (DenseLight DL-BZ1-SC5403A) and an optical 

spectrum analyzer (Agilent 86142A). The transmittance 

spectrum was measured, and used to determine the shift in the 

Bragg wavelength as a function of absorbed dose, and as a 

function of relaxation time post-irradiation. 

D. Relaxation Effects 

At the completion of the irradiation studies, a relaxation 

experiment was performed. After final removal from the 

gamma irradiation cell, the Bragg wavelength of the FBG was 

determined as a function of relaxation time, and compared to 

the initial (base) Bragg wavelength. 

IV. RESULTS AND DISCUSSION 

The results of two basic experiments are reported in this 

section: the transmittance of an FBG (Sample 3) as a function 

of accumulated gamma dose, and relaxation of Sample 1 post-

irradiation. 

A. FBG Bragg Wavelength Shift vs Dose 

In general, our results show an increase in the Bragg 
wavelength with dose, although this effect did not saturate as 
observed in previous work, as the accumulated dose of < 
86kGy was too low. Fig. 2 shows the transmittance curves 
versus light wavelength as a function of gamma dose. The data 
has been normalized to a baseline of 0 dB for comparison. 



Fig. 3 shows the Bragg wavelength shift (BWS) as a 
function of accumulated gamma dose (in kGy) obtained from 
the data shown in Fig. 2 for sample 3. To obtain the BWS, we 
need to determine the transmittance minimum of reach curve in 
Fig. 2. This was obtained by first smoothing the data using a 4-
point smoothing algorithm, normalizing each curve to 0 dB, 
and then implementing a search algorithm to find the minimum 
transmitted optical power. The uncertainty in each Bragg 
wavelength was estimated to be 5 pm based on a combination 
of the resolution of the OSA and the uncertainty in determining 
position of the minimum for each curve. 

The results for low dose (< 3 kGy) seem inconsistent, and 
there are negative shifts in the Bragg wavelength compared to 
the pre-irradiation value. This small negative BWS could be 
due to two possible sources: temperature sensitivity during the 
optical measurements, and the limited resolution and 
repeatability of the OSA. Since these values are of the same 
magnitude as the resolution and repeatability of the OSA, then 
these will be affected by “noise” related issues. 

Temperature cross-sensitivity is a major issue in the 
application of FBGs to the measurement of parameters other 
than temperature. Typical temperature sensitivity coefficients 
for FBGs are of the order of 10pm/

o
C at 1300nm [13], 

depending on fibre type. Therefore, there may be an 
expectation that, after removal from the irradiation apparatus, 
the fibre may not cool down to room temperature in the time 
before the optical measurements were performed, if the gamma 
irradiation caused the temperature of the fibre to increase. 
Previous work indicates that a maximum temperature rise of 
0.5

o
C occurs in FBGs subjected to 100kGy gamma irradiation 

[6], so the uncertainty in the BWS due to temperature would be 
6pm at most for a 1550nm FBG if the fibre temperature 
remained 0.5

o
C above room temperature. The wavelength 

resolution of the OSA was 10pm, so the total BWS uncertainty 
was about 12pm, which allows for any uncertainty in the BWS 
measurement. 

The remaining data points (for dose > 3kGy) are reasonably 
consistent, except for the data point at 51.6kGy, where the 
BWS appears to have decreased compared to the other data 
points. This occurred since, after removal from the gamma 
irradiator, the optical measurements were not performed for at 
least 12 hours, so that this data point is affected by the 
relaxation of the Bragg wavelength post-irradiation. Hence, we 
have re-plotted a restricted data set showing the BWS versus 
Accumulated Dose in Fig. 4. This data set indicates a 
logarithmic dependence of the BWS on gamma dose for 
accumulated dose in the range of about 3 to 87 kGy. This 
behaviour is consistent with previously observed results [3,9]. 

B. FBG Relaxation After Removal of Gamma Source 

Fig. 5 shows the effect of post-irradiation relaxation for 
sample 1 after a total irradiated dose of 100.8kGy (accumulated 
30 hours at 56Gy/minute). That is, the effect of removal of the 
radiation source and the subsequent relaxation of the shifted 
Bragg wavelength back towards the pre-irradiation (base) 
value. The initial Bragg wavelength was 1540.787nm. Post-
irradiation, the Bragg wavelength relaxed to 1540.866nm after 
9 hours and 1540.840nm after 13 hours. 

 

Figure 2.  Transmittance spectra versus wavelength of FBG Sample 3, as a 

function of accumulated gamma dose (in Gy). All curves are normalised to a 

transmitted optical power of 0 dB. 

 

Figure 3.  Plot of complete data set of the Bragg wavelength shift as a 

function of accumulated dose (in kGy) for FBG Sample 3. 

 
Figure 4.  Plot of modified data set of the Bragg wavelength shift as a 

function of accumulated dose (in kGy) for FBG Sample 3. 

 

 

 

 

 



 

 
Figure 5.  Bragg wavelength shift after removal from irradiation source, for 

Sample 1. The base curve corresponds to the pre-irradiation FBG properties. 

V. FUTURE WORK 

Unfortunately, the limited nature of the previous study 

does not allow us to report a definitive quantitative behavior 

and subsequent explanation of gamma radiation-optical fibre-

FBG interaction. Future measurements are planned that will 

eliminate some of the uncertainty occurring in the current 

results. This will involve (i) performing optical measurements 

in-situ (which will increase the uncertainty in the dose 

measurements, but considerably reduce any uncertainty in the 

optical measurements), (ii) quantification of the relaxation 

phenomenon, (iii) explicit quantification of the BWS for 

different types of fibre-FBG combinations, and (iv) 

examination of the affect of temperature cross-sensitivity 

(which will be an issue for in-situ optical measurements) on 

the performance of FBGs as potential gamma dosimeters. We 

also intend to automate the optical measurements, to allow us 

to obtain continuous measurements of the BWS as a function 

of accumulated dose. 

VI. CONCLUSION 

We have made some interesting observations in this 

preliminary study of gamma irradiation effects in SMF FBG 

sensors, especially the relaxation behaviour in Fig. 5, which 

needs further examination and quantification.  However, the 

results do show important trends that indicate that FBGs may 

be useful as gamma dosimeters, especially for high 

accumulated doses (of the order of 100’s of kGy). The Bragg 

wavelength shift followed a logarithmic dependence on 

gamma absolute dose, and a significant relaxation in the Bragg 

shift was observed post-irradiation. This experiment has also 

given us the opportunity to explore the capabilities of the 

ANSTO irradiation facility, and we intend to use this 

information to modify future experiments to obtain greater 

efficiency and reduced experimental time. 

ACKNOWLEDGMENTS 

The authors would like to thank the staff at ANSTO for 
their technical assistance throughout. This work was supported 
by an AINSE research grant (ALNGRA1035). The Optical 

Spectrum Analyzer was provided on loan by Dr Peter Reece of 
the Optoelectronics Laboratory, School of Physics, The 
University of New South Wales, Australia. 

REFERENCES 

[1] Lu X. Bao, N. Kulkarni, and K. Brown, “Gamma ray induced visible 

light absorption in P-doped silica fibers at low dose levels,” Radiation 
Measurements, vol. 30, no. 6, pp. 725-733, 2009. 

[2] D. Sporea and A. Sporea, “Radiation effects in sapphire optical fibres,” 

Physica Status Solidi C, vol. 4, pp. 1356-1359, 2007. 
[3] H. Henschel, S. K. Hoeffgen, K. Krebber, J. Kuhnhenn, and U.  

Weinand, “ Influence of fiber composition and grating fabrication on the 

radaiation sensitivity of fiber Bragg gratings”, IEEE Transactions on 
Nuclear Science, vol. 55, no. 4, pp. 2235-2242, August 2008. 

[4] A. Fernandez Fernandez, B. Pritchard, F. Berghmans, and M. Decreton, 

“Dose-rate dependencies in gamma-irradiated fiber Bragg grating 
filters,” IEEE Trans. Nuclear Science, vol. 49, no. 6, pp. 2874-2878, 

December 2002. 

[5] A. Fernandez-Fernandez, A. Gusarov, B. Pritchard, M. Decreton, F. 
Berghmans, P. Megret, & A. Delchambre, “Long-term radiation effects 

on fibre Bragg grating temperature sensors in a low flux nuclear 
reactor,” Meas. Sci. Technol., vol. 15, no. 8, pp. 1506-1511, 2004. 

[6] K. Krebber, H. Henschel, and U. Weinand, “Fibre Bragg gratings as 

high dose radiation sensors,” Measurement Science and Technology, 
vol. 17, pp. 1095-1102, 2006. 

[7] G. Wild & S. Hinckley, “Acousto-ultrasonic optical fiber sensors: 

Overview and state-of-the-art,” IEEE Sensors Journal, vol 8., no. 7, pp. 
1184-1193, July 2008. 

[8] H. Henschel, S. K. Hoeffgen, J. Kuhnhenn, and U. Weinand, “ Influence 

of manufacturing parameters and temperature sensitivity of fibre Bragg 
gratings,” IEEE Transactions on Nuclear Science, vol.57, no.4, pp. 

2029-2034, August 2010. 

[9] J. Troska, J. Btten, K. Gill, and F. Vasey, “ Radiation effects in 
commercial off-the shelf single mode optical fibres,” Proc. SPIE, vol. 

3440, pp. 112-119, “Photonics for Space Environments VI”, San Diego, 

22 July 1998. 
[10] American Society for Testing and Materials (ASTM) International, 

“Standard practice for using the Fricke reference-standard dosimetry 

system. E1026-04,” in Annual Book of ASTM Standards, Vol. 12.02, 
2004. 

[11] American Society for Testing and Materials (ASTM) International, 

“Standard practice for use of a Ceric-Cerous sulfate dosimetry system. 
ISO/ASTM 51205,” in Annual Book of ASTM Standards, Vol. 12.02, 

2009. 

[12] International Organization for Standardization, “Uncertainty of 
measurement – Part 3: Guide to the expression of uncertainty in 

measurement,” ISO/IEC Guide 98-3, 2008. 

[13] Lin Zhang, W. Zhang, I. Bennion, “In-fiber grating optics sensors,” 
Chapter 4 in Fiber Optic Sensors, Francis T . S . Yu and Shizhuo Yin 
(ed), CRC Press 2002. 

 


	Gamma Irradiation in Fibre Bragg Gratings
	Paper Title (use style: paper title)

