
Edith Cowan University Edith Cowan University

Research Online Research Online

Theses: Doctorates and Masters Theses

1-1-2005

Exploring a technology-facilitated part-complete solution method Exploring a technology-facilitated part-complete solution method

for learning computer programming for learning computer programming

Stuart K. Garner
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses

 Part of the Education Commons

Recommended Citation Recommended Citation
Garner, S. K. (2005). Exploring a technology-facilitated part-complete solution method for learning
computer programming. https://ro.ecu.edu.au/theses/668

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses/668

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses?utm_source=ro.ecu.edu.au%2Ftheses%2F668&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/784?utm_source=ro.ecu.edu.au%2Ftheses%2F668&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses/668

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons
who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement. Where the reproduction of such material is

done without attribution of authorship, with false attribution of

authorship or the authorship is treated in a derogatory manner,

this may be a breach of the author’s moral rights contained in Part

IX of the Copyright Act 1968 (Cth).

 Courts have the power to impose a wide range of civil and criminal

sanctions for infringement of copyright, infringement of moral

rights and other offences under the Copyright Act 1968 (Cth).

Higher penalties may apply, and higher damages may be awarded,

for offences and infringements involving the conversion of material

into digital or electronic form.

Exploring a Technology-Facilitated

Part-Complete Solution Method for

Learning Computer Programming

Stuart Garner

BSc (Hons), MSc, MEd

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy, Edith Cowan University

Schou! of Communications and Multimedia

October 2005

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

Abstract

Leaming to program is now a requirement in many courses of study in such areas as computer

science, infonnation technology, infonnation systems, multimedia, engineering, and science.

However, research indicates that many students have great difficulties in learning to program

and this results in high failure rates and high levels of withdrawal from academic courses. It is

accepted that programming is an intrinsically difficult subject however the teaching and

learning methcds used in many programming courses have changed little over the years.

Tht' literature indicates the importance of reducing the cognitive load that students experience

when learning programming and that one method that has potential to do this uses part-complete

program solutions. This study sought to explore a technology supported part-complete solution

method (TSPCSM) for the le.,ming of computer programming. A teaching and learning

framework for programming was developed and a technology supported "COde Restucturing

Tool'1, CORT, was then designed around the learning framework and developed to support the

part-complete solution method and provide a suitable learning environment.

A quasi-experimental research design framework was utilised in the study which used both

qualitative and quantitative research methods. A series of programming problems was

developed for CORT and an experiment was undertaken with students who were studying

introductory programming. Experimental and control groups were utilised in the experiment

which took place over a 14 week semester at an Australian university

The data were analysed and they provided rich information concerning three research questions

relating to the part-complete solution method (PCSM) through CORT: how students engaged

with CORT; how CORT supported the learning process; and how CORT impacted upon their

learning outcomes.

Results from the study indicated that the PCSM within CORT imposed a low cognitive load on

students; provided high levels of cognitive support; strong scaffolding for learning; and students

engaged well with the system and generally used a thoughtful and considered strategy to solving

programming problems. No differences in learning achievement were found between the

experimental and control groups, however other findings indicated that the students who used

the PCSM within CORT required significantly less time and less help than the control group

ii

and the students who benefited most from the use of CORT appeared to have well developed

mental models of program execution.

More research is clearly needed to further explore the best ways to implement CORT so that

learning advantages can be gained.

iii

Declaration

I certify that this thesis does not, to the best ofmy knowledge and belief:

1. Incorporate without acknowledgment any material previously submitted for a degree or

diploma in any institution of higher education;

2. Contain any material previously published or written by another person except where due

reference is made in the text; and

3. Contain any defamatory material.

I also grant pennission for the Library at Edith Cowan University to make duplicate copies of

my thesis as required.

Signed:

i" October 2005

iv

Acknowledgements

I thank my supervisor. Professor Ron Oliver. Ron provided superb direction, support. and

encouragement throughout the research and kept me "on track" during the more dinicu[t

periods.

I also thank all of the students in ECU's School of Management Information Systems who

agreed to participutc in the research, thereby providing the necessary data for analysis.

And finally I wish to tlrnnk my wife, Renate, and my two sons, Torn and Sam, for supporting

me throughout this long period of research.

v

Table of Contents

Abstract ... ii

Declaration ... iv

Acknowledgements ... v

Table of Contents ... vi

Index of Tables ... xi

Index ofFib,ures ... xiv

Chapter 1 Introduction ... 1

1.1 Introduction and Problem .. l

1.2 Purpose of the Study .. 2

1.3 Significance of this Line oflnquiry ... 3

1.4 Structure of Thesis ... 4

Chapter 2 The Teaching and Learning of Programming 6

2.1 Introduction ... 6

2.2 Difficulties of Leaming to Program .. 6

2.2.1 General Problem·Solving Skills and Algorithm Design .. 8

2.2.2'Program Design and Event Driven Languages ... 8

2.2.3 Language Notation ... 9

2.2.4 Pragmatics of Programming ... 10

2.2.5 Cognitive Load on Students ... 10

2.2.6 Conclusions: Difficulties of Leaming to Program ... 11

2.3 Approaches to the Teaching and Leaming of Programming ... 11

2.3.1 Common Approaches to the Teaching and Leaming of Programming 11

2.3.2 Expert, Spiral and Reading Approaches to the Teaching :md Leaming of

Programming ... 12

2.3.3 Conclusions: Approaches to the Teaching and Leaming of Programming 13

2.4 Approaches Experimented with in the Teaching and Leaming of Programming 14

2.4.1 The Conceptual I Notional Machine ... 14

2.4.2 Intelligent Tutoring Systems .. 16

2.4.3 Experiential and Situated Approaches to the Teaching and Learning of Programming

...•..........•...•............ 17

2.4.4 Programming Plans .. 18

vi

2.4.5 The Use of Part-Complete Solutions in the Teaching and Leaming of Programming

... 19

2.4.6 Cloze Procedure and Program Comprehension .. 22

2.4. 7 Conclusions: Approaches Experimented with in the Teaching and Leaming of

Program.ming ... 24

2.5 Tools Used in the Teaching and Leaming of Programming ... 24

2.5.1 Program Visualisation Tools .. 24

2.5.2 Algorithm Design Tools ... 26

2.5.3 Conclusions: Tools Used in the Teaching and Learning of Programming 27

2.6 Program.ming Language .. 28

2.7 Chapter Summary .. 30

Chapter 3 Student Learning and a Teaching and Learning Framework for

Programming .. 32

3.1 Introduction ... 32

3.2 Mental Representation ... 32

3.3 Mental Representation and the Development of Expertise ... 35

3.4 Mental Processes ... 37

3.4.1 Infom1ation Processing ... 38

3.4.2 Cognition as Symbol Manipulation .. 39

3.4.3 Cognition as Knowledge Construction ... 39

3.4.4 Conclusions: Mental Processes .. 41

3.5 Cognitive Load Theory ... 41

3.5.l lntrinsic Cognitive Load ... 43

3.5.2 Extraneous Cognitive Load .. 43

3.5.3 Gem1ane Cognitive Load ... 43

3.5.4 Conclusions: Cognitive Load Theory ... 44

3.6 Problem Solving .. 44

3.6.1 Use of Worked Examples in Problem Solving ... 45

3.6.2 Scaffolding and Problem Solving ... 46

3.6.3 Conclusions: Problem Solving ... 47

3.7 Higher Order Thinking .. 48

3.8 Summary and Conclusions ... 49

3.9 A Proposed Learning Framework ... 51

3.10 A Teaching and Leaming Framework for Programming .. 52

3.10.1 Learning Activities ... 53

3.10.2 Learning Supports .. 54

vii

3.10.3 Leaming Resources .. 55

3.10.4 Summary of the Teaching and Leaming Framework for Programming 56

Chapter 4 Development of a Tool to Support the PCSM 58

4.1 Initial Design of the Tool to Support the PCSM : 58

4.1.1 Functional Requirements of CORT .. 58

4.1.2 Design issues .. 59

4.1.3 Interface Design ... 60

4.1.4 CORT Prototype Program .. 61,

4.1.5 CORT Prototype: Testing with Students .. 65

4.2 CORT Files .. 68

4.2.1 Creation of Part-Complete Solutions for CORT .. 69

4.3 Summary ... 71

Chapter 5 Research Design ... 72

5.1 Research Methodologies ... 72

5.2 Selection of a Research Methodology and Data Collection Methods 75

5.2.1 Epistemology .. 77

5.2.2 Theoretical Perspective .. 77

5.2.3 Methodology .. 77

5.2.4 Data Collection Methods .. 79

5.2.5 Overall Research Process for the Study ... 83

5.3 Research Questions ... 84

5.4 Research Design .. 84

5.4.1 Background .. 84

5.4.2 Subjects .. 85

5.4.3 Data Collection Plan .. 85

5.4.4 Student Consent to the Research .. 87

5.4.5 Initial Questionnaire: Computing Knowledge and Experience 87

5.4.6 Student Infonnation from University Record System .. 88

5.4.7 Programming Problems .. 88

5.4.8 Individual Problem Questionnaires .. 93

5.4.9 Observation .. 95

5.4.10 Interviews ... 95

5.4.11 End-Tests .. 96

5.5 Summary•..........................•................•..................................•.......................•............ 98

viii

Chapter 6 How Students Use CORT .. 100

6.1 lntroduction ... 100

6.2 CORT Usabi!ity ...•.......•.................................•......•............•... 100

6.2.1 Operation of the Problem Files ... 102

6.2.2 Manipulation of the Lines of Code ... 105

6.2.3 Editing the lines of code ... 11 l

6.3 Summary of Usability Elements .. 116

Chapter 7 How the CORT System Supports the Learning Process ..••••••• 118

7 .1 Introduction ... 118

7.2 Analysis of Student Solution Methods using CORT ... 118

7.2.1 Levels of Cognitive Strategy with the CORT System .. 119

7.2.2 Support Types Identified and Scaffolded by the CORT System 120

i.3 Analysis of Summary Data .. 149

7.3.1 Analysis of Data by Student ... 149

7.3.2 Analysis of Data by Problem Number .. 151

7.3.3 Analysis of Data by CORT Method ... 153

7.4 Summary of the CORT System's Support for the Learning Process 154

Chapter 8 Th'• Impact of the CORT System on Learning Outcomes •.••.... 156

8.1 Introduction ... 156

8.2 Data Collected for this Research Question .. 156

8.2.1 Recoding of Data .. 156

8.3 The Data Analysis Method .. 157

8.4 The Data Analysis ... 158

8.4.l Programming Achievement between Groups ... 158

8.4.2 Programming Achievement Differences among Sub-Groups 163

8.4.3 Time and Help Requirements between Groups .. 178

8.4.4 Time and Help Requirements' Differences among sub-groups 182

8.4.5 Summary of the Impact of the PCSM within the CORT System on Learning

Achievement .. · .. 183

Chapter 9 Summar)/ and Conclusions •••....••••••...••.•••.•.••••••....••••...••••••...••••• 186

9.1 Teaching and Leaming Framework for Programming .. 188

9.2 Research Design .. 189

9.3 Research Results .. 190

9.3.1 Research Question l ... 190

ix

9.3.2 Research Question 2 ... 190

9.3.3 Research Question 3 ... 192

9.4 Limitations of the Study .. 193

9.4. 1 Sample Size .. 194

9.4.2 Representativeness of the sample ... 194

9.4.3 Observer Bias ... 194

9.4.4 Sensitivity of the End-Tests .. 195

9.5 Recommendations for Future Research ... 195

9.5.1 Impact of the CORT system on the Time Needed to Learn 195

9.5.2 CORT Problem Type and the Support of Learning .. 196

9.5.3 Development of Mental Models of Program Execution ... 197

9.5.4 Use of the CORT System with Remote Learners ... 197

9.5.5 Impact of the CORT System on Motivation and Affective Domains 197

9.6 Conclusions ... 198

References .. 200

Appendix 1 Unit Outline: Software Development II 219

Appendix 2 Student Consent Form: CORT Group •....••••••..•.•••••....••••••...•••• 222

Appendix 3 Student Consent Form: Non-CORT Group ••....••.•••••.••••••.•..•••• 223

Appendix 4 Computing Knowledge and Experience Questlonnaire •.•••••• 224

Appendix 5 Individual Problem Questionnaires •••...•••••....•••••...•.•••••....•••••• 226

Appendix 6 Software Development II: Program Completion Test ..•.••••••.. 227

Appendix 7 Software Development II: Examination •••...••••••••...••••.....••••••.• 236

Appendbt 8 CORT Problems .. 244

x

Index of Tables

Table 2.1: Developmental Sequence of Programming Activities (Marchionini 1985, p.14) 13

Table 3.1: Proposed Learning Framework for Encouraging the Development of Appropriate

Schemata in Problem Solving Domains .. 51

Table 3.2: Elements ofa TSPCSM Environment to Support the Leaming of Programrning 52

Table 4.1: Functional Requirements of CORT .. 58

Table 4.2: Required Files for Each CORT Problem .. 68

Table 5.1: Common Types of Qualitative Research in Education (Merriam, 1998, p.12) 74

Table 5.2: Basic Elements of Research (Crotty, 1998, p.5) .. 76

Table 5.3: Data Collection Methods .. 86

Table 5.4: Data Collection Matrix ... 86

Table 5.5: Data Collection Schedule ... 86

Table 5.6: Initial Questionnaire: Computing Knowledge and Experience 87

Table 5.7: Weekly CORT Problem SulTllllary ... 91

Table 5.~: CORT Problem Questions, Response Choice, and Rationale 94

Table 5.9: Interview Questions and Rationale .. 95

Table 7.1: Student Observation Details ... 119

Table 7 .2: Classification of Levels of Cognitive Strategy ... 119

Table 7.3: CORT Support Types ... 120

Table 7.4: Classification of Levels of Scaffolding .. 121

Table 7.5; Supports and Levels of Cognitive Strategy and Scaffolrling for Problem 2 123

Table 7.6: Supports and Levels of Cognitive Strategy and Scaffolding for Problem 3 125

Table 7. 7: Supports and Levels of Cognitive Strategy and Scaffolding for Problem 4 126

Table 7.8: Supports and Levels of Cognitive Strategy and Scaffolding for Problem 5 128

Table 7.9; Supports and Levels of Cognitive Strategy and Scaffolding for Problem 6 129

Table 7.10: Supports and Levels of Cognitive Strategy and Scaffolding for Problem 7 131

Table 7.11: Supports and Levels of Cognitive Strategy and Scaffolding for Problem 8 132

Table 7.12: Supports and Levels of Cognitive Strategy and Scaffolding for Problem 9 134

Table 7.13: Supports and Levels of Cognitive Strategy and Scaffolding for Problem 10 135

Table 7.14: Supports and Levels of Cognitive Strategy_and Scaffolding for Problem 11 136

Table 7 .15: Supports and Levels of Cognitive Strategy and Scaffolding for Problem 12 137

Table 7 .16: Supports and Levels of Cognitive Strategy and Scaffolding for Problem 13 140

Table 7.17: Supports and Levels of Cognitive Strategy and Scaffolding for Problem 14 141

Table 7.18: Supports and Le,·els of Cognitive Strategy and Scaffolding for Problem 15 •....... 144

Table 7.19: Supports and Levels of Cognitive Strategy and Scaffolding for Problem 16 145

Table 7.20: Supports and Levels of Cognitive Strategy and Scaffolding for Problem 17•... 147

Table 7.21: Supports and Levels of Cognitive Strategy and Scaffolding for Problem 18 ..•..... 149

Table 7.22: Summary of Learning Supports, Levels of Cognitive Strategy and Levels of

Scaffolding for Each Student. .. 150

Table 7.23: Summary of Learning Supports, Levels of Cognitive Strategy and Levels of

Scaffolding for Each Problem ... 151

Table 7.24: Summary of Learning Supports, Levels of Cognitive Strategy and Levels of

Scaffolding for Each Problem- Sorted by CORT Method ... 153

Table 7 .25: Summary of Learning Supports, Levels of Cognitive Strategy and Levels of

Scaffolding for Each CORT Method ... 153

Table 8.1: Student Previous Achievement Levels ... 156

Table 8.2: Group Statistics for Student Group and Exam Part A .. 159

Table 8.3: T-Test: Student Group and Exam Part A ... 159

Table 8.4: Group Statistics for Student Group and Exam Part B .. 160

Table 8.5: T-Test: Student Group and Exam Part B .. 160

Table 8.6: Group Statistics for Student Group and Exam Total .. 161

Table 8.7: T-Test: Student Group and Exam Total ... 161

Table 8.8: Group Statistics for Student Group and Week 15 Programming Completion Test .. 162

Table 8.9: T-Test: Student Group and Week 15 Programming Completion Test 162

Table 8.10: Student Group and Previous Achievement Level: Basic Statistics 163

Table 8.11: Descriptive Statistics for Group, Previous Achievement and Exam Part A. 164

Table 8.12: Two-way ANOVA for Group, Previous Achievement and Exam Part A 164

Table 8.13: Descriptive Statistics for Group, Previous Achievement and Exam Part B 165

Table 8.14: Two-way ANOV A for Group, Previous Achievement and Exam Part B 165

Table 8.15: Descriptive Statistics for Group, Previous Achievement and Exam Total 166

Table 8.16: Two-way ANOVA for Group, Previous Achievement and Exam Total.. 166

Table 8.16: Descriptive Statistics for Group, Previous Achievement and Week 15 Programming

Completion Test .. 167

Table 8.17: Two-way ANOVA for Group, Previous Achievement and Week 15 Programming

Completion Test .. 168

Table 8.18: Descriptive Statistics for Group, Age and Exam A, Band Total 169

Table 8.19: Descriptive Statistics for Group, Age and Week 15 Programming Completion Test..

... 169

Table 8.20: Two-Way ANOV A Tests for Group, Age and Level of Achievement 169

Table 8.21: Descriptive Statistics for Group, Age and Exam Part A .. 170

Table 8.22: Descriptive Statistics for Group, Computer Literacy and Exam A, Band Total ... 172

xii

Table 8.23: Descriptive Statistics for Group, Computer Literacy and Week 15 Programming

Completion Test .. 172

Table 8.24: Two-Way ANOVA Tests for Group, Computer Literacy and Level of Achievement

... 172

Table 8.25: Descriptive Statistics for Group, Computer Literacy and Exam Part A. 173

Table 8.26: Descriptive Statistics for Group, Previous Progranuning Experieilce and Exam A, B

and Total ... 174

Table 8.27: Descriptive Statistics for Group, Previous Programming Experience and Week 15

Programming Completion Test... 175

Table 8.28: Two-Way ANOVA Tests for Group, Previous Programming Experience and Level

of Achievement ... 175

Table 8.29: Descriptive Statistics for Group, Previous Programming Experience and Exam Part

A ... 175

Table 8.30: Descriptive Statistics for Group, Previous Programming Experience and Exam Total

... 176

Table 8.31: Descriptive Statistics for Group, Gender and Exam A, Band Total... 177

Table 8.32: Descriptive Statistics for Group, Gender and Week 15 Programming Completion

Test ... 177

Table 8.33: Two-Way ANOVA Tests for Group, Gender and Level of Achievement.. 178

Table 8.34: Group Statistics for Student Group and Time Taken to Complete Problems 179

Table 8.35: T-Test: Student Group and Average Time Taken per Problem 179

Table 8.36: Group Statistics for Student Group and Help Required to Complete Problems .. ,, 181

Table 8.37: T-Test: Student Group and Average Help Required per Problem 181

Table 8.38: Statistical Tests for Student Group and Other Variables for Average Time Taken to

Complete Problems ... 183

Table 8.39: Statistical Tests for Student Group and Other Variables for Average help Required

1.0 Complete Problems ... 183

Tabfo 8.40: Significant Achievement Levels amongst Students for Exam Part A 184

Table 9.1: Overview of the Study .. 187

Table 9.2: Future Experiments into the hnpact of CORT Methods .. 196

xiii

Index of Figures

Figure 2.1: Progranuning Plan Example ... 7

Figure 3.1: Cognitive Architecture for the Domain of Programming ... 44

Figure 3.2: Elements of Higher Order Thinking (McLaughlin, 1997, p.34) 49

Figure 3.3: Instructional Design Framework (Oliver, 1999, p242) ... 53

Figure 3.4: Description of the Proposed Teaching and Leaming Framework 57

Figure 4.1: Parallel Window Interface .. 61

Figure 4.2: CORT Files ... 69

Figure 5.1: Four Basic Elements of Research (Crotty, 1998, p.4) .. 76

Figure 5.2: Overall Research Process for the Study .. 83

Figure 5.3: Example ofa CORT Problem ... 89

Figure 5.4: Example of a Non-CORT Problem ... 90

Figure 6.1: Initial CORT Interface .. 101

Figure 6.2: CORT Problem Statement .. 101

Figure 6.3: Visual BASIC Problem lnterface .. 103

Figure 6.4: Graph Showing the Utilisation of the "View Problem Interface" Function 104

Figure 6.5: Expansion of the Right-hand Code Window .. 106

Figure 6.6: Graph Showing the Utilisation of the "Expansion I Contraction11 Function 106

Figure 6.7: Toolbar Arrow Buttons ... 107

Figure 6.8: Code Windows After Initial File Load ... 108

Figure 6.9: Line of Code between Procedures .. 108

Figure 6.10: Procedures in Visual BASIC Editor ... 109

Figure 6.11: Line of Code Moved into Right-hand Window .. 109

Figure 6.12: Line of Code Moved Back into Left-hand Window .. 110

Figure 6.13: Graph Showing the Utilisation of the CORT Editor ... 112

Figure 6.14: CORT Editor Window .. 113

Figure 6.15: Visual BASIC Syntax Help .. 113

Figure 6.16: Position of Line After Addition to Right-hand Window 115

Figure 8.1: Profile Plots of Estimated Marginal Means of Exam Part A 170

Figure 8.2: Profile Plots of Estimated Marginal Means of Exam Part A 173

Figure 8.3: Profile Plots of Estimated Marginal Means of Exam Part A 176

Figure 8.4: Box plot of "Average time taken per problem" for CORT I Non-CORT Students 180

Figure 8.5: Box plot of "Average help required per problem n for CORT I Non-CORT Students .

... 182

xiv

Chapter 1
Introduction

1.1 Introduction and Problem
Learning to write computer programs is not easy (e.g., du Boulay, 1986; Scholtz &

Wiedenbeck, 1992) and this is reflected in the low levels of achievement experienced by many

students in first programming courses. For example, Perkins, Schwartz & Simmons (1988,

p.155) state that: "Students with a semester or more of instruction often display remarkable

naivete about the language that they have been studying and often prove unable to manage

dismayingly simple programming problems". Also, King, Feltham & Nucifora (1994, p.18)

state that: "Even after two years of study, many students had only a rudimentary understanding

of programming".

Jenkins (2002) suggests that the learning of programming is a perennial problem. Students

struggle as they try to master the subject and it is not uncommon for a student's first experience

of programming to be so negative and stressful that it leads to academic failure or withdrawal.

In a study into the teaching and learning of first year programming, it v."as found that the main

concerns were high failure rates, a low flow of students into higher degrees, and a perception of

a wide variation of teaching skills (Carbone et al, 2000).

In many ways, this problem has become even greater over the last few years as many more

students have enrolled into infonnation technology and computer science type courses as the

area ofICT (Infonnation and Communication Technology) has expanded. In the past, computer

programming was usually only studied by those considering becoming commercial

programmers. However today a wider variety of students might be expected to develop

programming code for such areas as macros within spreadsheets; multimedia applications;

interactive web pages. Such students may be on business or e~commerce courses and not

necessarily have the same aptitude to learn programming as the dedicated computer science

students. Roussev (2003, p.1353) indicates that "programming has become an indispensable part

of the IS component of the core curriculum at business schools".

Although the number and variety of students that attempt to learn to program has increased,

high failure rates are a major problem and much of the literature provides many examples of

new teaching approaches that have been used to try and overcome this problem (Bruce et al,

2004). A review of the literature on the teaching and learning of introductory programming

reveals that there has been little, if any, research on how students go about teaming to program

Chapter 1: Introduction Page 1

(Bruce & McMahon, 2002). The review also points out that there have been many examples of

iJU1ovative teaching practice implemented, but that these usually appear to have been developed

independently of any research into the students' experience oflearning pro!,'Tamming. In

practice, however, the ways in which teaching and learning t'lkes place in the domain of

programming have changed little and many students still find the learning of programming a

very difficult process.

Additionally, there has been a rapid movemen! to the use of more student centred and flexible

learning methods within the teaching and learning process (e.g., Nikolova & Collis, 1998). It

can be argued that the instructional design for programming courses should take notice of these

moves and possibly utilise some of these methods. Technological improvements have also been

significant over the last few years enabling the production of engaging courseware that can help

students studying in a flexible learning mode. Electronic scaffolds and supports can now be

produced relatively easily to help students in their learning processes when they are studying on

their own with limited access to a human tutor.

These issues and outcomes demonstrate that the teaching and learning of programming is still

problematic today and is an area where new possibilities exist.

1.2 Purpose of the Study
A variety of methods and tools have been used to try and improve the teaching and learning of

programming. Some have showed promise, however, many others remain to be successfully

used. One strategy with particular promise that could help address the problem is known as the

part-complete solution method (PCSM). Earlier studies demonstrated its potential (e.g., van

Merrienboer, 1990b) but its success was never realised due to the absence of suitable electronic

tools to support the process. With contemporary teclmology, many of these problems can now

be overcome. In a course that utilises the PCSM, students are given programming problems

together with part-complete solutions to those problems. For each problem, a student would

study the problem and attempt to complete the part-complete solution that they had been given.

Finally they would test the program to detennine its correctness.

The purpose of this study was to investigate the production of a software tool to support the

process of completing part-complete solutions to programming problems. It was believed that

such a tool might help reduce the cognitive load that students experience during the learning

process and reduce the need for students to be concerned about programming language syntax.

The tool was to be used in a variety of modes by students so that different types of part

complete exercises could be undertaken. The study was to investigate:

Chapter 1: Introduction Page2

• The theoretical underpinnings to guide the design and development of such a tool;

• The usability of the tool and particularly the usability factors that might impact on student

learning;

• How the tool would support and scaffold the process of learning programming;

• How the tool would impact on students' learning outcomes and achievements.

1.3 Significance of this Line of Inquiry
The study is significant as current practices in the teaching and learning of programming still

leave a lot to be desired (e.g., Winslow, 1996). And yet the learning of programming is more

important than ever and the complexities of many of the newer visual type languages have made

its learning even more difficult. It is more important as a wider range of students are finding it

necessary to learn programming. Examples include: finance and accounting students that have

to create complex macros within spreadsheets using a language such as Visual BASIC for

Applications; e-commerce students that have to produce complex web pages with embedded

programming code using JavaScript; multimedia students that have to develop systems in

languages such as Authorware; and of course computing and infonnation systems students who

have always had to learn to program in their courses using languages suoh as C, C++, Java and

Visual BASIC.

The complexity of a visual language such as Visual BASIC makes the process of learning even

more difficult than in the past. Students have always had to grapple with the syntax and

semantics of a language in addition to learning the fundamental control and data structures

together with basic programming algorithms. A language such as Visual BASIC compounds the

difficulties as students also need to learn about objects and their properties together with the

events that programming objects can respond to. It could be argued that a simpler, non visual

language, should be used within an introductory programming course. However, in practice this

is not possible as many courses of study at the tertiary level are already overcrowded with units

and such an introductory programming unit has to use a commercial language that is being used

in the marketplace.

The study is also of significance as it is important to investigate ways in which technology can

support students who are learning programming in modes other than the traditional campus

based mode. The move today is towards flexible learning where students may be studying away

from a campus with little opportunity for face to face meetings with their tutors. This often

Chapter 1: Introduction Page3

creates serious difficulties for students of programming and the technological improvements of

recent years may well provide support for such learners.

1.4 Structure of Thesis
This thesis reports the conduct of the study that was undertaken. It has been structured around 9

chapters that are illustrated in Figure 1.1.

Chapter 1
lntroducUon

.J.
Chapter 2 Chapter 3 Chapter4

Teaching and Student Leaming and Development of a
Leaming of a T & L Framework for Tool (CORT) lo

Programming Programming Support the PCSM

l

Chapter 5
Research Design

~
Chapler6

Chapter7 Chapter 8

How Students Use How the CORT The Impact of the

CORT
System supports the CORT System on

Leaming Process Leaming Outcomes

l

Chapter9
Summary &
Conclusions

Figure 1.1: Structure of Thesis

Chapter 2 provides a review of the literature into the teaching and learning of programming and

discusses: the difficulties that students have when learning to program; what constitutes

expertise in the domain of computer programming; approaches to the teaching and learning of

programming; approaches experimented with in the teaching and learning of progranuning; and

tools used and experimented with in the teaching and learning of programming. It provides

insights into the difficulties ofleaming to program and into some of the teaching and learning

methods that might be of use in a model or framework to support the teaching and learning of

programming.

Chapter 1: Introduction Page4

Chapter 3 provides a review into how students learn that is particularly useful for the domain of

programming. It looks at how expertise is developed; what is meant by knowledge; knowledge

organisation; mental models and schema theory; cognitive load theory; and scaffolding. The

literature is used to help inform the development of a conceptual framework of a system that

could be used by students to aid their learning of programming.

Chapter 4 describes the design and development of a COde Restructuring Tool (CORT) that

was based on the teaching and learning framework that had been developed. The prototype of

CORT and its subsequent testing with students are described, together with amendments that

were made in response to student feedback.

Chapter S describes the research design that was used to investigate the use of CORT. Research

methodologies in general are discussed together with the process by which the particular

methodology was chosen for this project. The research questions are described together with the

data collection methods that were used and the actual data gathering that took place.

Chapter 6 reports the findings from the usability sh1dy of CORT, with data on usability having

been gathered from a detailed review of students' use of CORT. The usability factors of CORT

which were found to be an issue for students are discussed together with the impact they had on

student learning. Ten usability issues that were identified as potential impediments to learning

are described. Finally, the apparent impact of these issues on the learning of the students is

outlined and suggestions for the improvement of CORT in order to reduce the impact are put

forward.

Chapter 7 describes an analysis of a qualitative inquiry that sought to investigate how the

PCSM within the CORT system supported and scaffolded the learning process. The inquiry was

carried out by observing students and particularly investigating the cognitive strategies that they

used when attempting to solve problems with the CORT system.

Chapter 8 describes a quantitative inquiry which explored the impact of the PCSM within the

CORT system on students' learning outcomes and achievements.

In Chapter 9, the study is sununarised, the limitations of the study are discussed, and further

areas of inquiry are proposed.

Chapter 1: Introduction Page 5

Chapter2
The Teaching and Learning of Programming

This chapter explores the difficulties that students have when learning to program; what

constitutes expertise in the domain of computer programming; approaches to the teaching and

learning of programming; approaches experimented with in the teaching and learning of

programming; and tools used and experimented with in the teaching and learning of

programming.

2.1 Introduction
Programming is a complex body of knowledge and is defined to be (Hyperdictionary, 2005;

WordReference.com, 2005):

"Creating a sequence of instructions to enable the computer to do something"

When programming, a student has to learn how to take a written description of a problem and

put it into steps that a computer can perfonn (Lisack, 1998). While doing this, the student must

recognise when the program needs to make a decision, and when the program requires a looping

structure to perform some steps multiple times. With the new eventwdriven programming

environments such as that provided for Visual BASIC .NET (Schneider, 2003), the complexity

of the design process is magnified for some students because they must now separate the user's

actions and decisions from the program's actions and decisions.

Because of its complexity, programming is a difficult subject for many students and developing

expertise can be a long and painful process.

2.2 Difficulties of Learning to Program
Programming is a complex process involving many steps (e.g., Winslow, 1996). The process

comprises:

• Studying a given problem statement I set of requirements and producing an algoritlun, often

in pseudo code, to solve that problem;

• Translating the algorithm into the programming code of a certain programming language;

and

Chapter 2: The Teaching and Learning of Programming Page 6

• Testing and amending the program until it meets the original set of requirements.

However, learning to program can be difficult and this presents great challenges to teachers to

produce curricula and to use resources, including texts and tools, that help students in their

learning process. Although learning to program is a key objective in most introductory

computing courses, many educators have concerns over whether their students learn the

necessary programming skills in those courses (McCracken et al, 2001). The challenge of

learning programming in introductory courses lies in simultaneously learning: general problem

solving skills; algorithm design; program design; a programming language in which to

implement algorithms as programs; and an environment to support the program design and

implementation (Fowler & Fowler, 1993), In addition, students need to learn testing and

debugging techniques to validate programs and to identify and fix problems that they may have

within their programs. Students are often exposed to concepts and topics that are completely

abstract with no way of drawing upon their real world experience to help understand what they

are being taught (Milne & Rowe, 2004).

The problem solving and program design skills that students attempt to gain include the

development of appropriate schemata. Such schemata are also known as plans or patterns and

are stereotypical sequence of statements, that expert programmers have knowledge of, to solve

certain categories of problem. Three examples of such plans are shown in Figure 2.1.

PROGRAM Example(lnput, Output):

VAR Sum, Count, Num: INTEGER:

Average : REAL:

BEGIN
~------,·• Count:= O:

PLAN 1
Counter
Variable
Plan

Sum:= o:
Read(Num): •-1------------~
WHILE Num <> 99999 DO •-1---;:::=====,i

BEGIN PLAN 2
Sum:= Sum+ Num; •:r-----1 Running Total

~----------,·• Count := Count + 1; Loop Plan
~ Read(Num);•·1----~=====:::..J

END:

END.

IF Count> 0 THEN

BEGIN

.

Average := Sum I Count; ,.__ PLAN 3
Wrlteln(Average) Skip Guard

ELSE •:t---------t.._P_la_n ___ ~
Wrlleln('No legal Inputs') <,I------~

Figure 2.1: Programming Plan Example

Chapter 2: The Teaching and Learning of Programming Page 7

The following describes some of the particular difficulties that students meet.

2.2.1 General Problem-Solving Skills and Algorithm Design
In any programming course, students have to solve problems, the problems then being

implemented in a programming language. This means that they have to acquire problem-solving

skills involving understanding a problem to determine what is required and devising a plan or a

sequence of steps for a solution (Milbrandt, 1995). 1bis is probably the most difficult aspect of

learning to program, and Rowe (1993, p.40) states that: "Many students who have an

understanding of the major language features are not able to compose programs which contain

groups of conunands working in concert the computer language is often the only topic

addressed in computer texts and courses."

Deek, McHugh & Hiltz (2000, p.25) support this view and state: 11The lack of basic problem

solving competence and thinking skills is a prominent problem with novice programmers."

"The real problems that novices have lie in putting the pieces together, composing and

coordinating components of a program" (Soloway, 1986, p.850). Also various studies have

concluded that novices lack adequate mental models of the domain of interest; use general

problem solving techniques rather than strategies dependent on the particular problem; tend to

approach their designs through control structures; and use a line-by-line, bottom up approach to

problem solutions (e.g., Winslow, 1996).

2.2.2 Program Design and Event Driven Languages
After students have attempted to solve a problem and designed an algorithm in, for example,

pseudo code, a program has to be designed to implement the algorithm. The amount of work to

do this depends to some extent on the degree of detail in the algorithm design. Students have to

make decisions on how to break the algorithm down into various components such as

procedures and functions and on the data structures that should be used. The particular

difficulties that students have in this area include the concepts of variables, procedures,

functions, and control structures (Rogalski & Samurcay, 1993).

These difficulties are compounded if a visual language, such as Visual BASIC, is to be used in

the teaching and learning process. 1bis is because the event driven nature of such languages

adds to the already high cognitive load of the subject. Lisack (1998, p.604) states: "With the

new event-driven environments, the complexity of the design process is magnified for some

students".

Chapter 2: The Teaching and Learning of Programming Page 8

Webb (1997, p.l) also supports this view and states:

"Whether Mac or PC, the operating system now used employs a graphical/mouse

interface with an underlying message passing system. Programs written on this

platfonn inevitably need to interface with the operating system which generally

requires the programmer to at least understand (if not be very familiar with) the

operation ofa message-passing (or event-driven) system. In addition, the

constmction of visf.!al components such as dialog boxes and data entry

components is a necessary part of the simplest program. Languages such as

Delphi, Visual Basic, Visual C++ all facilitate the GUI interface, but

increasingly these are now (in part, or 11ariations on) Object Oriented languages.

This in turn increases the complexity to the learning programmer, as an

understanding of the fundamentals of object-oriented-programming becomes a

requirement."

2.2.3 Language Notation
Students have to deal with the notation of the language being learnt including syntax and

semantics (e.g., du Boulay, 1986; Fowler & Fowler, 1993; Lisack, 1998). Lisack suggests that

learning a first computer language is much like learning a foreign language as there are new

words, grammar rules and punctuation to learn and it requires a lot of practice. However, unlike

learning a foreign language, programming requires greater attention to detail because each

programming statement must follow the grammar rules exactly in order to be executed by the

computer. Programming is precision intensive and 100% of the statements need to be correct for

a program to work (Perkins, Schwartz & Simmons, 1988).

It was observed in introductory courses, using the BASIC programming language, that students

had difficulties with certain statements (Martinez & Benko de Rotaeche, 1990) which included:

• Troubles using the instructions PRINT AT and PRINT TAB to place words or geometrical

figures in a definite location of the screen (selection between type or character coordinates).

• Misuse of the instructions PRINT and INPUT.

• Bad interpretation of the meaning of the part ELSE in the conditional instruction

IF .. ELSE .. ENDIF.

• Lack of comprehension of the use of cumulative variables.

Chapter 2: The Teaching and Learning of Programming Page 9

• Incorrect identification and handling of the variable that determines the stop condition for

loop construction.

• Confusion in connection with the instructions that should be inside a loop.

It was found that students quickly overcame their syntax errors but that these semantic type

errors were more difficult for students to correct.

2.2.4 Pragmatics of Programming
The pragmatics of programming need to be learnt by students (du Boulay, 1986), these being

the skills of specifying, developing, testing and debugging programs using the tools available.

Students have to learn how to utilise the program development environment including: how to

enter and edit lines of code; how to compile and run programs; how to use the debug facility;

and how to organise the files of their projects.

Recently the development environments have become increasingly sophisticated and complex.

An example is that used with the common teaching language of Microsoft Visual BASIC (e.g.,

Schneider, 2003) which is now much more difficult for students to use compared to the original

Visual BASIC environment of version one from 1991 (StartVBdotnet.com, 2005).

The process of debugging requires the programmer to diagnose and repair often obscure

difficulties in a program and this means that sophisticated problem-solving skills are needed

(Perkins, Schwartz & Simmons, 1988).

2.2.5 Cognitive Load on Students
The difficulties that students experience when learning programming are compounded as they

have to deal with all of the above issues at once. It is suggested that students have a sense of

information overload as well as a seemingly unstructured set of concepts to link together

(Hagan & Lowder, 1996). Others also support this point of view stating that learning to program

demands considerable cognitive resources and that should this load be excessive then any

l~arning will be inhibited (Sweller, 1988; Sweller & Chandler, 1991; Sweller, van Merrienboer

& Paas, 1998). The cognitive load has increased over recent years with the introduction of event

driven programming languages and ever more sophisticated program development

environments.

Such a cognitive load impacts upon novices' affective domains as many students feel unsure of

what they are doing and hold in doubt their ability to make the machine do what they want it to

Chapter 2: The Teaching and Learning of Programming Page 10

do (Perkins et al, 1986). This can then become a threat to students' self-esteem and standing

with peers and teachers.

2.2.6 Conclusions: Difficulties of Learning to Program
The range of difficulties that students experience when learning to program suggested that a

teaching and learning approach that placed a minimal cognitive load on students whilst

stimulating them to learn the "standard" plans that are the building blocks of common

algorithms was required.

2.3 Approaches to the Teaching and Learning of Programming
In the previous section, the multitude of problems facing novice programmers were discussed.

For many years teachers have explored ways to deal with this. In this section these methods are

explored and discussed with a view to determining an approach that might provide promise for

this study.

2.3.1 Common Approaches to the Teaching and Learning of
Programming

Probably the most common pedagogical approach to the teaching and learning of programming

that is still used in schools, colleges and universities today is that described by Linn & Dalbey

(1985). It is:

• Learn the syntax and semantics of one language feature at a time;

• Learn to combine the language feature with known design skills to develop programs to

solve problems (this expands the students' design skills and includes pattem<; and procedural

skills such as planning, testing and refonnulating); and

• Develop general problem solving skills.

This approach is also known as the syntactic approach (Tolhurst, 1993) with its focus on the

function of individual commands and their specific syntactic construction. The individual

commands are taught individually and each command's structure is explained together with how

they are commonly used. Students are then encouraged to combine various commands to solve

simple problems.

With respect to the above, good pedagogy requires the instructor to keep initial facts, models,

and rules simple and only expand and refine them as students gain experience (Winslow, 1996).

However, a perceived problem of this approach is that it does not encourage the development

Chapter 2: The Teaching and Learning of Programming Page 11

of appropriate programming schemata or plans. Winslow makes a very valid point when he

states: 110ne wonders, for example, about teaching sophisticated material to CSl (an

introductory progranuning course) students when study after study has shown that they do not

understand basic loops" (Winslow, 1996, p.21).

Many courses use this approach and try and deliver programming knowledge at too fast a pace

for many students. Many instructors do not fully understand how difficult the subject is for

many novices. Because a tutor has developed expertise themselves in programming, they often

do not understand how students can find the subject difficult. Historically, there has been a

shortage of infonnation technology personnel in industry and this has meant that educational

institutions have had difficnlty in recru~;,mg and retaining good staff. It has been suggested that

those involved in the teaching of programming need to reconsider their approach to teaching,

and that current theories on cognition may require the adoption of a more inductive, exploratory

and interactive approach (Clear, 1997).

2.3.2 Expert, Spiral and Reading Approaches to the Teaching and
Learning of Programming

van Merrienboer & Krammer (1987) distinguish three instructional design approaches to the

teaching and learning of programming: expert, spiral and reading. The expert approach

emphasises both algorithm and program design in a systematic top-down fashion and students

are given non-trivial problems throughout a course. Students are expected to apply stepwise

refinement to solving their problems and it is thought that this allows students to concentrate

more on the semantic content of algorithms as less attention is needed to track the actions of

lower level programming code. Critics of this method suggest that, because novices do not have

the schemata that experts possess, they therefore have great difficulty in knowing how to break

problem solutions down into small steps. This expert approach has similarities to problem based

learning (PBL) in which authentic problems drive the learning (Barg et al, 2000), however this

is not necessarily a very useful pedagogical approach as students do not necessarily know how

to problem solve (Fincher, 1999).

The spiral approach is the parallel acquisition of syntactic and semantic knowledge in a

sequence that stimulates student interest by the use of meaningful examples. It builds on and

reinforces previous knowledge and develops confidence through successful accomplishment of

increasingly difficult tasks. The approach is similar to that described by Linn and Dalbey (1985)

with its emphasis on stepwise incremental learning. At the beginning of a course, students

attempt very simple problems that emphasise syntactic and lower level semantic knowledge.

Problems then become progressively more difficult and require serious algorithm design.

Chapter 2: The Teaching and Leaming of Flrogramming Page 12

The reading approach emphasises the reading, comprehension, modification and amplification

of non-trivial, well-designed working programs and an introductory programming course using

this approach has four phases:

1. Students run and evaluate the strengths and weaknesses of working programs.

2. Students read and hand trace well structured working programs. Specific language features

are learned by the study of these concrete programs.

3. Students modify and amplify existing programs. They are therefore introduced to design

and coding.

4. Students generate programs on their own, developing design and structured coding skills.

The developmental approach is similar to the reading approach and was put forward by

Marchionini (1985). It concentrates on the development of general concepts important for

programming which are language independent, stressing those concepts rather than syntax;

providing relevant and motivational examples and activities; proceeding from the concrete to

the abstract depending on the age and learner experience; and using a sequence of increasingly

complex activities that build upon and extend previously learned examples. Marchionini

suggests a sequence of ten activities as shown in Table 2.1.

Table 2.1: Developmental Sequence of Programming Activities {Marchionini 1985, p.14)

Acl1v1t T e Exam le
1. Use Enter, run..! alter innuts
2. Study Read, describe the purpose, trace

execution, oredict outout
3. Como!ete Suoolv mlssinq statements
4. Modify Add formats for output, comments,

alter to nroduce related outouts
5. Extend Add features - related output, files,

aeneralise
6. Test Trv all cases. assume na'ive user role
7. Debua Correct loaic errors on-line and off-line
8. Design State problem, describe output, input

and procedures, draw flow diagrams,
draw screen display

9. Code from des!an Code a oiven alaorithm
10. Develop Deslqn and write a comnlele nroqram

2.3.3 Conclusions: Approaches to the Teaching and Learning of
Programming

The reading or developmental approach would appear to have potential in introductory

programming courses. It would not be expected, for example, that students should be able to

construct essays without having first read other essays and books. Similarly it is unreasonable to

Chapter 2: The Teaching and Learning of Programming Page 13

expect that students should be able to learn progranuning without first studying existing

programs. Most programming texts include worked examples for students to study. A variation

on the reading approach is the schema based approach discussed by Tolhurst (1993). In this, the

knowledge structures that represent the schemata of experts are explicitly presented to students

in the hope that they will learn them and use them in solving problems.

The r~ding approach and its variations do not appear to be frequently used in mainstream

programming education. The main reason is that it is difficult to motivate students to hand trace

existing code that solves a given programming problem. Unless there is some fonn of

assessment associated with this process, students tend to skip and gloss over it. However an

advantage ofusing such a method would be that students would not be concerned about syntax

and the cognitive load placed upon them would be low. For these reasons, the reading method

helped inform the approach that was developed in this study.

2.4 Approaches Experimented with in the Teaching and
Learning of Programming

Over the years many different approaches to the teaching and learning of programming have

been experimented with by researchers. The literature concerning a variety of these approaches

was reviewed to determine which might help inform the approach to be utilised in this study.

2.4.1 The Conceptual I Notional Machine
Pea (1986) researched the sort of conceptual problems that students have when programming

and it was concluded that many novices, when writing programs, use the analogy of conversing

with a human and this leads to three different classes of conceptual bug: parallelism,

intentionality, and egocentrism. Parallelism bugs are those where students believe that different

lines of code can be active at the same time. Intentionality bugs occur when students give

programs the status of an "intentional being" which has goals and knows or sees what will

happen elsewhere in itself. And finally, egocentrism bugs are fairly similar to intentionality

bugs, students believing that the computer can do what it has not been told to in the program.

For example, lines of code might be omitted because students have assumed that the computer

can "fill in", as a human might, what the student wishes the program to do.

The above demonstrates that in general, novices have difficulty understanding how a computer

executes the lines of code within a program. Because of these conceptual difficulties that

students have, several researchers have investigated the use of a conceptual or notional machine

to help students in their understanding.

Chapter 2: The Teaching and Learning of Programming Page 14

A notional machine is the idealised model of the computer implied by the constructs of the

language (du Boulay, O'Shea & Monk, 1981). It consists of a model of the execution of a

programming language from which the user attempts to determine how the language works and

thus builds their mental model of execution for the programming language they are learning

(Rajan, 1992).

Some experiments that were carried out showed that novices who made use of a notional

machine learned to program more effectively than those who did not (Mayer, 1981). The

notional machine that was used comprised a diagram, which made the basic operations of the

computer visible to the students, together with a textual description. Input was represented by a

ticket window at which data lined up. Output was represented as a message notepad with one

message written per line. Memory was represented as an erasable scoreboard in which there was

a natural destructive read-in and a non-destructive read-out. Executive control was represented

as a recipe or shopping list with a pointer arrow to indicate the line being executed. Mayer's

model was static, however better cognitive support is provided by dynamic models of riotional

machines that allow users to (Ramadhan, 2000):

• Observe how program statements are executed in an animated way; and

• See hidden and internal changes in some conceptual parts of the underlying computer, such

as memory space, and can relate program comprehension and debugging with the properties

of the machine they are interacting with.

A conceptual model comprising computer graphics and animation to illustrate to students how a

program was executed was used in a research project (Shih & Alessi, 1994). A warehouse

analogy was used to represent variables and a small icon of a computer could move along a path

and highlight each statement to be executed. A circular path with a gate was used to represent

loops and the conditions for continuing and exiting, and a speech balloon emanating from the

icon showed the evaluation of expressions. The study found that the practising of code

evaluation by tracing worked examples, with the help of conceptual models, promoted

conceptual understanding and facilitated the learning of evaluation skills and the transfer to

generation skills. It also found that the ability to solve transfer problems was highly correlated

with the quality of a student's mental model.

The research into notional machines and conceptual models suggests that the teaching of such a

conceptual model to students, or the use of an animated model, aids students in their learning of

programming. It does this by providing help in the students' construction of appropriate

schemata and I or mental models thereby overcoming inappropriate mental models that they

Chapter 2: The Teaching and Learning of Programming Page 15

may possess. Various tools have been built to animate programs, some specifically for teaching:

purposes and some as debugging aids, and these are discussed later in a section on programming

tools. It can be seen to be important to try and include an appropriate notional machine within

any teaching and learning support tool for progranuning.

2.4.2 Intelligent Tutoring Systems
Intelligent Tutoring systems utilise artificial intelligence techniques in an attempt to provide

more sophisticated support in the teaching and learning process (Deek & McHugh, 1998). Some

of these systems have been built specifically for the programming domain with the aim of

offering adaptive instruction to meet individual learner needs and being capable of the analysis

of student rer;ionses to detennine correctness. Some examples include:

• BIP (BASIC instructional program) (Barr, Beard & Atkinson, 1976) is a tutoring system for

learning BASIC.

• PROUST (Johnson & Soloway, 1985) is a tutoring system for Pascal programming. This

contains progranuning and pedagogical experts and comprises modules to detennine: the

location and content of bugs; what the students intend to do with their code; and to

detennine student misconceptions.

• ACT (Advanced Computer Tutoring) (Anderson et al, 1995) is a system that has been used

in the domains of mathematics and programming. It distinguishes between declarative

knowledge and procedural knowledge, the latter being represented by sets of production

rules. Such a tutor can generate and follow the multiple possible solutions a student might

attempt on any given problem and dynamically tailor instruction to each individual student

and probl!ml. It is claimed that the cognitive tutors observe student performance, identify

strengths and weaknesses, and provide individualised, just-in-time instruction while

students learn by doing. The ACT programming tutor supports the teaching of LISP and

Pro log.

Such intelligent tutoring systems have never been accepted in mainstream education and Deek

& McHugh (1998) suggested several shortcomings, including:

• Inadequate user interfaces;

• Large learning curves for the systems with the need for tutorial support to overcome the

operational difficulties;

Chapter 2: The Teaching and Learning of Programming Page 16

• Problems with knowledge bases that store "ideal" solutions to problems, these being

intrinsically incomplete; and

• Reliance on a limited number of teaching paradigms.

There has been one initiative in the domain of intelligent tutoring systems that is of interest to

this present study. An automated system for the planning and construction of progranuning

tasks for introductory programming called CASCO has been designed although it is not clear if

this has ever been implemented (van Merrienboer, Krammer & Maaswinkel, 1994). The

generated tasks were to be in the form of completion assignments comprising an incomplete

program; instructions to extend or change the program; explanations of new features that are

illustrated by parts of the incomplete program; and questions on the working and structure of the

program. The planning and construction of the completion assignments, as proposed in the

introduction, could be based on a model in terms of programming plans, student profile, and

problem database and could use a design that might be said to be in the "intelligent" tutoring

domain.

2.4.3 Experiential and Situated Approaches to the Teaching and Learning
of Programming

A distinction has been made between cognitive (meaningless) and experiential (significant)

learning (Rogers & Freiberg, 1994). The former corresponds to academic lmowledge such as

learning vocabulary or multiplication tables and the latter refers to applied knowledge such as

learning about engines in order to repair a car. The key to the distinction is that experiential

learning addresses the needs and wants of the learner. Rogers lists these qualities of experiential

learning: personal involvement, self-initiated, evaluated by learner, and pervasive effects on

learner (Rogers, 2004).

Such an experiential model was employed in the design of a beginning programming class

(Athey & Quick, 1997), and it required focus on a topic, action by the student to explore and

learn the topic, support by the teacher, feedback from the teacher and other students, and a

debriefing about what the student learned. Titis method appears to have had a mixed reaction

from students, some suggesting that they preferred more structure in their classes and that they

did not like the "trial and error" approach to learning new concepts. However students that had

programmed before preferred the less structured, more self-paced approach.

Another approach takes the view that learning, as it normally occurs, is "situated" and is a

function of the activity, context and culture in which it occurs (Lave & Wenger, 1990). It has

two principles (Lave, 2004):

Chapter 2: The Teaching and Learning of Programming Page 17

• Knowledge needs to be presented in an authentic context, i.e., settings and applications that

would nonnally involve that knowledge; and

• Learning requires social interaction and collaboration.

This idea of situated learning has been further developed to emphasise the idea of cognitive

apprenticeship which the focus is on authentic learning environments where the cognitive

demands in the learning are qualitatively the same as the cognitive demands of the environment

for which the instruction was preparatory (Duffy &_Cunningham, 1996). Such an apprenticeship

approach to the teaching and learning of programming is mentioned by Harvey (1992) who

suggests that it is suitable for students with a high aptitude for programming and who enjoy the

subject, and that they should be involved in solving serious problems in the same way that other

students might be involved in the publishing of student newspapers. There is little in the

literature to suggest however that this approach might be useful for low-ability students with

little motivation for the subject.

There has been some research into using a virtual apprenticeship model with students learning

programming (Chalk, 2002). A small set of on-line tools were used in a set of pilot studies by

students who were learning programming. Results from the studies provided limited support for

certain aspects of the apprenticeship model such as the use of shared tools and the usefulness of

group work to help develop a shared identity.

2.4.4 Programming Plans
Expert programmers have the necessary schemata to easily perfonn familiar programming tasks

and also to interpret unfamiliar situations in tenns of their generalised knowledge (van

Merrienboer & Paas, 1990). In the domain of programming these specific schemata are known

as probrramming plans and they are learned programming language templates, or stereotyped

sequences of computer instructions, that fonn a hierarchy of generalised knowledge. It should

not be expected, for example, that students who are only exposed to tasks oriented around

coding specific functions should gain an understanding of overall programming structure (Bruce

et al, 2004). Research has taken place to identify various plans (e.g., Soloway, 1985; 1986)

within programming languages and an example was shown earlier in Figure 2.1.

In the figure, three plans have been identified, these being: a running total loop plan; a counter

variable plan; and a skip guard plan. Such plans are second nature to experienced progranuners

and can be extracted and applied to other problems almost automatically. Such plans have been

categorised to be high-level, medium-level and low-level, examples being respectively: a

general input - process - output plan; a running total loop plan as in the figure; and a statement

Chapter 2: The Teaching and Learning of Programming Page 18

to print the value of a variable. It is suggested that, within the programming domain,

programming plans provide a hierarchy of increasingly context dependent strategies that may

guide a process of "templating" in the creation of solutions to posed problems (van Merrienboer

& Paas, 1990).

With respect to such plans, it has been suggested that the "disappointing reality" is that a 11self

discovery" approach to learning programming does not work, students not being able to

discover such plans themselves (Mayer, 1988). Mayer goes on to say that approaches that

include direct instruction are required and this was taken up by Tsai who conducted research

that included direct instruction of programming plans to students (Tsai, 1992). He found that

learning improved for what he tenned "low mindfulness students" as they were forced, through

specific and continuous guidance, to induce effort expenditure in the mindful abstraction of

such plans. However "high mindfulness students" were not as comfortable with this teaching

and learning method as they indicated that they Jost opportunities to invest mental effort by

themselves.

Plans become more difficult to identify in long programs as they may be delocalised and spread

throughout the programming code (Soloway et al, 1988). However, in the main, novices tend to

deal with short programs and so the learning of such plans is most probably appropriate under

such circumstances.

Research work has also been carried out with software design patterns (Clancy & Linn, 1999)

and they have similarities to plans, templates and programming schemata. A design pattern has

the following components: the pattern's name; its intent and applicability; its structure,

components and collaborations; the results and trade-offs of applying it; sample code; examples

of the patterns1 use; and related patterns. A similar comment to Mayer's is made that novices do

not infer patterns naturally.

The main implication that can be drawn from this research is that patterns or plans exist within

programs and that these need to be learned by students who are learning to program in order to

develop appropriate programming schemata. Self-discovery, by attempting to solve problems,

does not necessarily work and any successful teaching and learning method would appear to

need to promote the learning of plans.

2.4.5 The Use of Part-Complete Solutions in the Teaching and Learning of
Programming

A Jot of the work in the area of incomplete programming examples has been carried out by van

Merrienboer and his colleagues (e.g., van Menienboer, 1990a; van Menienboer, 1990b; van

Chapter 2: The Teaching and Learning of Programming Page 19

Menienboer & Paas, 1990; van Menienboer & De Croock, 1992; van Menienboer, Krammer &

Maaswinkel, 1994). They argue that the traditional approach to the teaching and learning of

programming is ineffective and that the "Reading" approach is a better one to follow. However,

they also suggest that presenting worked examples to students is not sufficient as the students

may not "abstract" the pro1,inunming plans from them. "Mindful" abstraction of plans is required

by the voluntary investment of effort and the question then arises as to how students can be

motivated to study the worked examples properly. In practice, students tend to rush through the

examples, even if they have been asked to trace them in a debugger, as they often believe that

they are only making progress in their learning when they are attempting to solve problems.

One suggestion that has been put fon.vard is that students should atmotate worked examples

with infonnation about what they do or what they illustrate (Lieberman, 1986). Another

suggestion is to use incomplete, well-structured and understandable program examples that

require students to generate the missing code or "complete" the examples. This latter approach

forces students to study the incomplete examples as it would not be possible for their

completion without a thorough understanding of the examples' workings. An important aspect is

that the incomplete examples are carefully designed as they have to contain enough "clues" in

the code to guide the students in their completion. It is suggested that this method facilitates

both automation, students having blueprints available for mapping to new problem situations,

and schemata acquisition as they are forced to mindfully abstract these from the incomplete

programs (van Merrienboer & Paas, 1990).

In one study, two groups of28 and 29 high-school students from grades 10 to 12 participated in

a ten lesson programming course using a subset of COMAL-SO (van Menienboer, 1990b). One

group, the "generation" group, followed a conventional approach to the learning of

programming that emphasised the design and coding of new programs. The other group, the

"completion" group, followed an approach that emphasised the modification and extension of

existing programs. It was found that the completion group was better than the generation group

in constructing new programs. It was found that the percentage of correctly coded lines was

greater and that looping structures were more often combined with correct variable initialisation

before a loop together with the correct use of counters and accumulators within the loop. It

would appear that the completion strategy had indeed resulted in superior schemata fonnation

for those students within that group. In addition, the completion group used superior comments

in connection with the scope and goals of the programs, indicating that they had developed

better high-level templates or schemata. It was noted in the study however that both groups

were equal in their ability to interpret programs and that this might indicate that students in the

completion group do not understand their acquired templates. It is then suggested that future

Chapter 2: The Teaching and Learning of Programming Page 20

completion strategies should include the annotation of the examples by students with details of

what they are supposed to do and details of the templates (plans) that are being used.

A side effect of the research was also noted. The drop-out rate from the completion group was

found to be lower than for the generation group, particularly for female students with low prior

knowledge. This is important as other studies have concluded that females are more anxious and

less confident than males with respect to computer skills (e.g., Staehr, Martin & Byrne, 2001;

Werner, Hanks & McDowell, 2004). van Merrienboer (1990b) suggested that the generation of

complete programs is perceived as a difficult and menacing task and that the use of the

completion strategy may help reduce the anxiety for some of the less confident students.

Another study was undertaken in which 40 undergraduates, undertaking a short course in turtle

graphics programming, were divided into completion and generation groups (van Merrienboer

& De Croock, 1992), both learning activities and learning outcomes being investigated. The

course was divided into four parts, each part having three modules. Each of the three modules

was presented as an incomplete solution to the completion group and the group had to complete

the solutions. The first two modules were presented as completed solutions to the generation

group and the third module required the group to construct a solution from scratch.

In the area of learning activities, it was found that the generation group often had difficulties in

finding or coding a solution to their programming problems as they had to undertake frequent

searches for useful information or examples. It was also found that the completion group took

far fewer notes about the programming conunands and their syntax than the generation group. It

was hypothesised that the reason was the incomplete programs provided to the completion

group contained a lot of this information.

With regard to learning outcomes, it was found that students in the completion group had

acquired better low and high-level programming templates and that the semantic correctness of

their constructed programs was superior to the generation group. As with the previous study,

there was no difference between the groups in their ability to comprehend programs, however

both groups' levels of comprehension was found to be high.

The "degree" of completion of the solutions is an important aspect within the completion

strategy and in some later work (van Merrienboer, Krammer & Maaswinkel, 1994) examples

are given of completion assignments that might be used early and later in a programming

course. In an early part of a course, an example may indeed be complete and include

explanations and a question on its inner workings. In the latter part of a course, an example may

be largely incomplete and include a question on its workings and an instructional task. Between

Chapter 2: The Teaching and Learning of Programming Page 21

these two extremes, examples will have varying degree of completeness and in all cases, the

incomplete examples are acting as scaffolds for the students. A similar strategy was used in a

study that investigated the effectiveness of fading within problem solving examples (Renk! et al,

2002). Problem solving and example study were combined as follows:

• A complete example was presented to students;

• An example was given to students such that one solution step was omitted; and

• More steps were omitted until just the problem to be solved was left, i.e. independent

problem solving.

It was found that this method produced reliable results with students on near-transfer items, i.e.

for similar problem types, but not on far-transfer items.

In swnmary, the research into the use of part-complete solutions and problem solving strongly

suggests that this method of teaching and learning has great merit. In the learning of

programming, the evidence suggests that the completion strategy is superior to the conventional

generation strategy. By using the completion strategy:

• Students are better able to construct programs and abstract appropriate programming plans

or schemata;

• There is a lower drop-out rate as students are not immediately faced with the daunting task

of having to construct programs; and

• It results in a reduced cognitive load for students.

2.4.6 Cloze Procedure and Program Comprehension
The "cloze" procedure is associated with the use of part-complete solutions. The term is derived

from "closure", a Gestalt psychology term referring to the human tendency to complete a

familiar but not quite finished pattern (Cook, Bregar & Foote, 1984). The cloze procedure was

first used to measure comprehension in English readability (Klare, 1974) and is still commonly

used for this pwpose (Instructional Strategies Online, 2001). However it has also been used in

the teaching and learning of programming as a way of measuring· student understanding of

programs (e.g., Hall & Zweben, 1986; Thomas & Zweben, 1986; K.aijiri, 1998). Such program

comprehension tests are constructed by replacing some of the "words" or tokens by blanks and

requiring students to fill in the blanks during a test. The use of the cloze procedure in testing

Chapter 2: The Teaching and Learning of Programming Page 22

was found to correlate well with conventional comprehension, question - answer, type quizzes.

It was also found to be much easier to create and administer (Cook, Bregar & Foote, 1984).

A number of researchers have experimented with the testing of program comprehension by

omitting complete lines of code from programs and requiring students to fill in those lines (e.g.,

Norcio, I980a; Norcio, 1980b; Norcio, 1981; Norcio, 1982; Ehrlich & Soloway, 1984). Norcia

found that students were more likely to supply correct statements if they had been omitted

within a logic segment rather than from the beginning of a segment. This is consistent with the

chunking hypothesis (Miller, 1956) that specifies that the first element ofa chunk provides the

key to the contents of the entire unit. Ehrlich & Soloway (1984) looked at the differences

between experts and novices in filling in missing lines of programming code within various

programming plans and, as expected., found that the experts filled in the lines correctly taking

into account the surrounding plan whereas novices had more difficulty.

In the various experiments in program comprehension using the cloze procedure, students had

to fill in the lines of code without being given a selection of lines to choose from. In some work

done in an area unrelated to programming, students were expected to create an essay using a file

of statements, only some of which were relevant to the topic (Edward, 1997). The students were

expected to copy and paste only the statements which they believed to be relevant and then to

link them with their own text. It was suggested that learners would consolidate their

understanding of the topics by having to actively evaluate all possible statements. The file of

statements was acting as a scaffold to student learning.

Although previous research shows that the cloze procedure has mainly been used in measuring

program comprehension, it appears that it could prove useful as a way of scaffolding student

learning of programming when utilised with part-complete programming solutions. An

incomplete solution to a programming problem could be given to a student together with a

choice of statements that might be used in the solution. The student would then have to study

the incomplete solution and the choice of statements and decide which statements to use and

where to put them. If a software tool were to be used then the mechanism for placing the

statements into the incomplete solution could be made to be very straightfonvard for the student

and eliminate typing errors and therefore also syntax errors. Such a process could provide strong

support for independent learning and encourage practice and rehearsal.

Chapter 2: lhe Teaching and Learning of Programming Page 23

2.4.7 Conclusions: Approaches Experimented with in the Teaching and
Leaming of Programming

Of the variety of methods into the teaching and learning of programming that researchers have

experimented with, three in particular appeared to be useful in helping infonn the approach

being considered for use.

Firstly the results of the work undertaken with programming plans suggested that students are

not able to discover plans on their own and that some form of direct instruction is required. It is

also suggested that such instruction should encourage effort expenditure by students.

Secondly the research into the use of part-complete solutions with novices supports a view that

this approach could encourage such effort expenditure, encourage the abstraction of

programming plans, and reduce the cognitive load on students.

Thirdly the research into the cloze procedure suggests that the use of part-complete solutions to

problems could be scaffolded by the provision of sets of missing statements that had been

removed from the solutions. Students could then be required to complete a solution to a problem

by choosing lines of code from the corresponding set of removed statements and inserting them

into the appropriate positions within the part-complete solution.

These three methods appeared to offer a way to provide support for an approach to be taken that

would utilise a part-complete solution method (PCSM) in the teaching and learning of

programming.

2.5 Tools Used in the Teaching and Learning of Programming
Having explored teaching strategies that might inform the PCSM, there are many possible ways

to implement them. There is a need to examine tools to determine if any might be of use in

informing the design of a tool for the PCSM. There have been many tools developed over the

years that have been aimed at improving the teaching and learning of programming and two

types that were of particular interest for this study were program visualisation tools and

algorithm design tools.

2.5.1 Program Visualisation Tools
Several tools have been built to help students visualise program execution and in the main they

are specific to particular programming languages. Program visualisations can be static or

dynamic. A static visualisation shows the structure of a program as a static image whereas a

dynamic visualisation allows a user to trace the flow of a program as it runs (Milne & Rowe,

2004). The dynamic visualisations are of interest to this study as they promote low-level models

Chapter 2; The Teaching and Learning of Programming Page24

of programming and reinforce a model of program execution by explicitly showing how the

execution of a statement affects the program state and environment in which the following

statement is executed (Smith & Webb, 1998). Such visualisations can be of benefit to novice

programmers as they help them develop understanding and mental models of how programs

execute.

Various dynamic visualisation tools have been built, the most sophisticated, such as the Jinsight

tool (De Pauw & Sevitsky, 1999), being aimed at experienced software developers rather than

novice programmers. Such tools have also been developed for novice programmers. These are

less sophisticated reflecting the difficulty of producing them and their non-commercial nature.

The BRADMAN visualisation tool (Smith & Webb, 1998, 1999, 2000) is a glass-box interpreter

that helps students in their learning of the 11C11 programming language. In addition to the features

of 11standard11 debuggers, it also contains a variables display; a verbal explanation of each

statement as it is executed; and more visible input I output facilities. In an evaluation, it was

found that a student group that had used BRADMAN perfonned significantly better than a

control ~oup at the manual interpretation of programs. Comments elicited from students were

mainly positive, an example being: "It helped me understand programs that I could not normally

understand" (Smith & Webb, 2000, p.29). Such a comment supports the view that visualisation

aids the creation of appropriate mental models.

VINCE (Rowe & Thorburn, 1999, 2000) is also a tool to help in the teaching and learning of

"C" programming. It has been written entirely in Java and is therefore accessible as an applet on

a Web page. It appears to possess similar features to BRADMAN including a memory map so

that variable contents can easily be inspected. In its evaluation, the use of VINCE did not

change the students' perceptions of their programming ability relative to those in a control

group, however their performance on a series of programming questions was better.

Jeliot 2000 is a program animation system intended for teaching Java to introductory computer

science students at high school. Its goal is to help novices understand basic concepts of

algorithms and programming like assignment, input I output and control flow, whose dynamic

aspects are not easily grasped, just by looking at the static representation of an algorithm in a

programming language (Levy, Ben-Ari & Uronen, 2003). An experiment with Jeliot showed

that animation provides a vocabulary and a concrete model that can improve the learning of

students who would otherwise have difficulty with abstract computer science concepts (Levy,

Ben-Ari & Uronen, 2000).

Chapter 2: The Teaching and Learning of Programming Page 25

The DISCOVER visualisation system differs from BRADMAN, VINCE and Jeliot as it

animates a specific pseudo code language rather than a common commercial programming

language. It supports a dynamic, graphical and concrete environment that allows users to relate

program understanding and debugging to the dynamic behaviour of both language and machine

(Ramadhan, 2000). In an experiment, results indicated that students who used the system had

better conceptual programming knowledge and a better mental model of program execution

than a control group.

Another tool that includes program animation is DMTIC, a Dynamic Interactive Visualisation

Tool in Teaching "C" (Chansilp & Oliver, 2002, 2004). This tool has a variety of characteristics

including: syllabus/lecture notes; computer structure; animated examples; "C" compiler; "C"

web-board; self-evaluation; FAQ pool; and "C" references & links. In an experiment, it was

found that the element used most frequently by students was lhe animation tool and that less

able students were assisted the most.

The visualisation tools that have been described support traditional procedural programming.

The understanding of memory management in object oriented programming is particularly

difficult for students (Milne & Rowe, 2002) and a three dimensional program visualisation tool

for novice "C++" programmers, OGRE (Object-oriented Graphical Environment), has been

built (Milne & Rowe, 2004). Fonnal and infonnal evaluations of OGRE indicated that it

provided strong for students by helping them build appropriate conceptual models. Students

commented that concepts became "more obvious" after an OGRE visualisation, or that they felt

they could understand topics "more quickly".

The research that has been reported with respect to program visualisation tools has all

demonstrated that low level animations of programming code can help students build their

mental models of program execution. This facility appeared to be a useful element to consider

in the design of a new system.

2.5.2 Algorithm Design Tools
Tools have been developed for novices that allow students to concentrate on the problem

solving aspects and design of algorithms and some of these tools are able to generate the

corresponding programming code (King, Feltham & Nucifora, 1994). Examples of such tools

include DELTA (Kermedy, 1996) and Breeze (Webb, 1997). Such programs allow students to

use a top-down design methodology to produce graphical representations of algoritluns without

having to be concerned about the syntax of a language. Processes can be described with natural

language and this allows students to provide a much freer and yet complete description of a

problem.

Chapter 2: The Teaching and Learning of Programming Page 26

More recently, a flowchart interpreter system, FLINT, has been built that allows students to

design algorithms by using flowcharts (Crews & Ziegler, 1998; Crews, Butterfield &

Blankenship, 2000a; Crews, Butterfield & Blankenship, 2000b; Crews, Butterfield &

Blankenship, 2002). The algorithms can then be animated revealing the logic flow and the

content of memory variables. FLINT is not a program visualisation tool, as that category of tool

animates programming code, but it is an algorithmic visualisation tool (Brusilovsky & Spring,

2004). FL1NT1s name has now been changed to 11Visua1n and is utilised in a popular mainstream

introductory progranuning textbook (Crews & Murphy, 2004). Results of experiments revealed

that beginning students made significantly fewer errors, had significantly more confidence in

their answers, and spent significantly less time detennining answers (Crews & Ziegler, 1998;

Crews, Butterfield & Blankenship, 2000b}.

Such algorithm design tools are generally used prior to the introduction of a progranuning

language to students. This is done in the Crews & Murphy textbook, the first few chapters being

dedicated to the "Visual" tool before Visual BASIC .NET is introduced. This can be

problematic for some students as Kennedy (Kennedy, 1996} points out that there are trade~offs

to be considered between the benefits gained by using such a tool against the time required to

learn to use that tool. Students can become very frustrated if a tool that is being used to help

them in their learning has a steep learning curve. This is especially true if they are then expected

to stop using that tool in the latter part of a course and then learn to use the development

environment of a particular programming language.

2.5.3 Conclusions: Tools Used in the Teaching and Learning of
Programming

The work done with the visualisation tools that has been discussed demonstrated that animation

and visualisation could help students construct appropriate schemata concerning program

solutions. Although it was not planned that any tool to be built in this study should directly

support such visualisation, the design of an overall system that would incorporate the PCSM

was influenced by the visualisation research. This was because it was believed that it was

important for students to be able to trace and animate their solutions in the integrated

development envirorunent of the programming language that would be used in the study.

Also, the findings by Kennedy (1996) indicated that tools to support the learning of

programming can often have steep learning curves and are therefore unacceptable to many

students. This suggested that the design of a tool to support the PCSM should be such that the

tool would be very simple to use and therefore impose a minimal addition to the cognitive load

that students in the study would experience in their learning of programming.

Chapter 2: The Teaching and Learning of Programming Page 27

2.6 Programming Language
The actual programming language and the development environment that are used in the

teaching of learning of programming l;an have a significant impact on the ease with which a

novice can learn programming. Some of these languages are described in this section.

There has always been a school of thought that it is better to use pseudo code as a first

"language". as this enables students to concentrate on solving problems without having to be

concerned about syntax (e.g., Shackelford, 1998; Robertson, 2003). However, although this

would appear to be pedagogically dedrable, Ourusoff (2003, p.685) states that:

" ... many have abandoned the goal as being impossible to achieve in practice.

Relying entirely on pseudo-code.for example, has significant drawbacks:

students lose interest if they don't see a program run, and unless one has a tool to

translate pseudo-code into executable code, the resulting paper designs are

error-prone and boring to students. Tims, most computer science programs have

abandoned a language-independent approach to teaching programming."

Another approach has been to utilise mini-languages, these being small and simple languages to

support novice programmers (e.g., Brusilovsky et al, 1994; Brusilovsky et al, 1997). Most of

these languages control an actor, usually a turtle or robot, acting in a microworld. Such an actor

can be physical, however usually a program model of a device is used. The mini-language is

used to control the actor and it includes a small set of conunands that the actor can perfonn, a

basic set of control structures, a mechanism to create sub-programs, and a set of value-returning

queries. Examples of such mini-languages include uKarel the Robot" (e.g., Pattis, 1995; Bergin

et al, 1996; Rodger, 2002), "RoboPascal" (Carey, 1996), and LOGO (Lowenthal, 1998). It can

be argued that using such languages can be very appropriate for school students as the

manipulation of the actor provides a degree of motivation, however at the tertiary level students

generally prefer to be using a "real" language that is used in the outside world. In a survey of

languages used in introductory programming courses in Australian Universities (De Raadt,

Watson & Toleman, 2002), there was no mention of such mini-languages being utilised.

Many universities and colleges use a first language that is also used in industry as it is perceived

by them, and by students, as helping students gain industry specific skills. However an industry

specific language is not necessarily one that is easy to learn by novices. For example, in the

1990s, many colleges replaced Pascal with "C" as a first programming language, and yet it is

thought to be a more difficult language to learn (Gilbert, 1996). Johnson (1995, p.99) suggested:

Chapter 2: The Teaching and Learning of Programming Page 28

"The position of "C" as the de facto industry standard is the very reason why it

should not be adopted as a student's first language. Consequently, students will

be biased against all future languages as impractical and lack the moti,•ation to

come to grips with computer languages as a means for the communication of

processes. One purpose of the first course in computer programming is to teach

problem solving. Introducing "C" into the first course conflicts with this purpose

because students end up solving the problems of"C" instead. The result is the

teaching of debugging before they have anything useful to debug. Misplaced

semicolons alone will.for many students, be the main experience they get.

Excessive detail obscures concepts. The complexity of"C" slows the student's

study of programming concepts. "C" should not be used as the first language in

university study."

De Raadt, Watson & Toleman (2002) found that "C1 was no longer the most popular

introductory programming language used in Australia and that the top two were Java and Visual

BASIC. ThirtyMfour percent of universities indicated that the most important reason for using a

certain language in an introductory programming courses was its industrial relevance and the

marketable skills that it gave students. It is interesting to note that a language's pedagogical

benefits was not the most important reason for language choice.

Such commercial languages have very sophisticated integrated development envirorunents

(IDEs), such as that of Visual Studio .Net (Tsay, 2004) which supports a variety of Microsoft

Languages including Visual BASIC .Net. Although such IDEs are too sophisticated for the

requirements of novices, they do provide sophisticated trace and debugging facilities which

allow users to step through programs line by line and to see the contents of variables and the

truth values of conditions. These facilities can be used to help students gain au understanding of

the notional machine thereby helping them develop their mental models. They are acting as a

form of program visualisation and animation. Others (eg., Gibbs, 2002) have experimented with

ttsing simpler commercial languages such as the scripting language, JavaScript, however the

disadvantage has been the absence of a good IDE with trace facilities.

In swnmary, introductory languages for students include pseudocode, mini languages, and

commercial languages. Universities generally use commercial languages as it is believed that

exposure to such languages make students more marketable in the work force. Most of these

languages are large with sophisticated IDEs that impose large cognitive loads on students.

However, these IDEs do have good program trace facilities that allow students to develop their

mental models.

Chapter 2: The Teaching and Learning of Programming Page 29

This study was concerned with the programming language to be used with novices, namely

Visual BASIC. Visual BASIC has a sophisticated IDE that allows programs to be traced and the

contents of variables to be visualised. Research on visualisation has shown the usefulness of

such features and helped support a view that a tool to support the PCSM would benefit if it were

part of an overall system that incorporated such visualisation features.

2.7 Chapter Summary
This chapter has reported a review of the literature concerning the difficulties that students face

when learning to program; the various approaches to the teaching and learning of programming;

some of the approaches experimented with in the teaching and learning of pro1,rramming; and

some of tools used and experimented with in the teaching and learning of programming.

The literature suggests that learning to program is difficult for many students and that many

courses have high failure rates and dissatisfied students. Of the various methods of teaching and

learning programming, strong support is provided for the "reading" approach to learning

programming with its emphasis on the study and modification of worked examples.

The research has suggested that the various plans or schemata for programs have to somehow be

abstracted from the various examples used with students. One way of helping students carry out

mindful abstraction is to provide them with only incomplete solutions to programs. In such

cases students' tasks are then to complete and I or modify those solutions. Such completion

exercises are related to the use of the cloze procedure with the difference being that the cloze

procedure has been used in the past to measure computer program comprehension whereas

completion exercises are used in the learning of programming.

In regard to tools, research reveals that there have been many attempts to create tools to help in

the learning of programming including program visualisation tools and algorithm design tools.

The programming language used in the learning process also appears to affect the student

learning experience as does the development environment of the language. Such envirorunents

are now much more sophisticated and helpful to students and, in many cases, can be used to step

through solutions thereby illustrating the program flow and allowing the easy inspection of the

contents of a program's variables. This helps develop a student's understanding of the notional

or conceptual machine that is necessary to develop a student's mental model.

The literature review in this chapter has provided insights into the difficulties ofleaming to

program and into teaching and learning methods that might be of use in a framework to support

the teaching and learning of progranuning. It has provided strong support for making use of the

part-complete solution method in the learning of programming. The cloze procedure would

Chapter 2: The Teaching and Leaming of Programming Page 30

appear to have potential and could be incorporated into a tool to support the PCSM, by

providing a set of possible lines of missing code from a part-complete solution.

Solutions that students would create by completing part-complete solutions would need to be

tested and the section on programming tools suggested it would be useful to have tracing and

visualisation as part of any system created. The literature also indicated that the design of such a

tool should ensure that it would be easy to use by students and not have a steep learning curve.

If this were not the case then the cognitive load imposed on students by the tool could interfere

adversely with learning.

The following chapter reviews some of the general literature in the field of learning which,

together with the insights from this chapter, could be used to provide a basis for the creation of a

teaching and learning framework for programming from which a tool to support progranuning

could be designed I fonnulated.

Chapter 2: The Teaching and Learning of Programming Page 31

Chapter 3
Student Learning and a Teaching and Learning

Framework for Programming

The previous chapter explored some of the existing research into the learning of programming

and provided some information to guide aspects of the work. This chapter describes an inquiry

into theories of teaching and learning appropriate to computer programming which could be

used to develop a framework to guide the development of a part-complete solution method that

could be used by students in their learning of programming.

3.1 Introduction
In the chapter, the following areas are discussed:

• Mental representation and the development of expertise;

• What is meant by knowledge;

• Knowledge organisation;

• Mental models and schema theory;

• Cognitive load theory; and

• Scaffolding.

3.2 Mental Representation
How we store infonnation in memory, represent it in our "mind's eye", or manipulate it through

the processes of reasoning have always seemed relevant to researchers in educational

technology (Winn & Snyder, 1996). An understanding of how novices and experts represent

knowledge is useful to inform the kinds of teaching and learning processes that might help

students build their knowledge of programming.

The concept of 11chunking" was introduced to describe how items that were to be remembered

would be collapsed into single chunks, the suggestion being that the limits of short-tenn

memory is around seven items (Miller, 1956). When more than seven items need to be learnt,

they are learnt in groups (chunks) to keep to the short-term memory limit, before each group is

Chapter 3: Student Learning and a Teaching & Learning Framework for Programming Page 32

stored in long-tenn memory. For example, the three letters "cow" would be considered three

discrete elements by a young child learning to read, whereas they would be considered one

chunk by a fluent reader.

The concept of storing knowledge within schemata is very similar to the use of cln.mks and the

tenn was used as far back as 1932 (Bartlett, 1932). He dealt with the reconstruction of

knowledge noting that learners recall the gist of information rather than verbatim information.

There are many descriptions of what a schema comprises. According to Paas & van

Merrienboer (1994, p.123): "Cognitive schemata can be conceptualised as cognitive structures

that enable problem solvers to recognise problems as belonging to particular categories

requiring particular operations to reach a solution".

In other words, schemata can provide analogies to help people when they encounter new

problem-solving situations. Within schema theory, declarative knowledge is encoded as an

organised structure that is referred to as a schema and learning is based on one's existing

schemata (Shih & Alessi, 1994) with new schemata being created or existing schemata being

modified and refined. The schemata can be thought of as nodes within a semantic network, the

nodes being linked together with varying degrees of strength.

Although there are many descriptions of what schemata are, most descriptions concur that a

schema has the following characteristics (Winn & Snyder, 1996):

1. It is an organised structure that exists in memory and, together with all other schemata,

contains the sum of a person's knowledge of the world (Paivio, 1974).

2. It exists at a higher level of abstraction than our immediate experience of the world.

3. It consists of concepts that are linked together by propositions.

4. It is dynamic and can change by general experience or through instruction.

5. It provides a context for interpreting new knowledge as well as a structure to hold it.

The memory representational ideas embodied in schemata have also been referred to as frames

(Minsky, 1975) and as scripts (Schank & Abelson, 1977), however they all appear to encompass

similar ideas.

Although schemata can be considered as a set of nodes linked together in a vast network, others

consider that their organisation is more complex with various levels of schemata being

organised hierarchically (e.g., van Merrienboer & Dijkstra, 1997; Sweller, van Merrienboer &

Chapter 3: Student Learning and a Teaching & Learning Framework for Programming Page 33

Paas, 1997). For example, young children construct schemata for letters so that they can then

classify the infinite number of shapes that can appear in handwriting. Higher order schemata can

then include those low level schemata when children learn words and then phrases etc. Phrases

can then be combined further, and an example of a very high level schema might be the

representation of a passage from a Shakespearian Play. Many readers would be able to finish the

sentence beginning with "To be or not to be" and the reason for that is the storage of that

schema in their long-term memory.

In learning programming, the schemata that novices need build are sets of stereotypical

programming plans such as those shown in Figure 2.1 of Chapter 2.

Another important area with respect to the mental representation of knowledge is that of mental

models, the literature dating back to Craik (1943). Titls construct emerged from research in the

field of human computer interaction and, like schemata, a mental model contains a person's

knowledge of the world. Some researchers believe that mental models and schemata are

synonymous, however, there are different conceptualisations of mental models. One suggestion

is that mental models consist of propositions, images, rules of procedures and statements as to

when and how they are used (Redish, 1994). Wilson and Rutherford (1989) conclude that

knowledge structures such as schemata are hypothesised to represent background knowledge

and that mental models would be the instantiation of such structures when they are used to plan

actions, explain and predict external events.

The term envisiorunent is often applied to the representation of both the objects and causal

relations in a mental model (Winn & Snyder, 1996). This is because visual metaphors are often

used in any discussion of mental models as, when a mental model is used, a representation of it

is seen in our "mind's eye". For example, envisioning an electrical circuit that contains an

electric bell helps someone understand it (De K.leer & Brown, 1981). A mental model can be

"run" like a film and watched in a person's "mind's eye", an exa.'llple being that of a skier

waiting at the start of a downhill "run11
• Such a skier can often be seen with their eyes closed

moving their body as they "run through" the course in their 11mind's eye", in effect numing

through their mental model.

Mental models are important in the domain of programming as it is important that learners

develop good models of the way in which a computer executes programs. A lot ofresearch has

been done in the area of conceptual models of computers that can help induce good mental

models within students (e.g., Mayer, 1975; Mayer, 1981; du Boulay, 1986; Milne & Rowe,

2004). Program and algorithm visualisations, such as those described in Chapter 2, help students

Chapter 3: Student Learning and a Teaching & Learning Framework for Programming Page 34

in their development of such models. It was perceived as important that the planned design of

the system to support the PCSM should include facilities to provide such help.

3.3 Mental Representation and the Development of Expertise
The knowledge that people have represented within schemata or mental models will change

over time. When a student is studying a particular domain of knowledge it is important that the

teaching and learning process is designed to help develop the schemata so that students move

towards becoming experts in that domain. It is of course unrealistic to expect that students will

have become experts after a particular course of work, however it would be expected that they

have moved from being a novice in that given domain to being somewhere between novice and

expert (Dreyfus & Dreyfus, 1986).

In order to help students "move along" the road to becoming a domain expert, it is necessary

that we, as teachers, understand the nature of expertise. It is suggested that there are five stages

that a person goes through in becoming an expert (Dreyfus & Dreyfus, 1986). These are:

novice; advanced begi1U1er; competent; proficient; and expert. When designing learning

opportunities for students it is therefore important to know in which of the stages students are

currently situated. The majority of students undertaking introductory programming courses are

firmly in the novice stage, however they of course come to such courses with different levels of

existing knowledge which means that they learn at different rates. Winn & Snyder (1996, p.125)

suggest: "lfwe try to teach the skills of the expert directly to novices, we shall surely fai1 11
• It

has to be recognised that the process of knowledge compilation and translation is a slow process

(Anderson, 1983). Research on expertise suggests that people construct increasingly more

accurate schemata as they gain more experience in a domain, experts being more likely to sort

problems on the basis of structural features rather than surface features (Quilici & Mayer,

1996).

As the schemata are improved within a domain, so too do they become internalised requiring

less conscious processing to activate them. In effect, the knowledge has become automatised

such that relevant schemata can be activated automatically. Research into chess playing (Chase

& Simon, 1973) showed that expert players recognise patterns of pieces on a board and

therefore require less in-depth analyses of situations than less expert players. Such chess experts

have a vast network ofrelevant schemata that they can activate automatically within a game.

The importance of automaticity is that it frees up cognitive resources that can then be used

within other parts of a problem. For example, in the domain of physics, a student who is

tackling a motion problem may be able to automatically retrieve a schemata for an equation of

Chapter 3: Student Learning and a Teaching & Learning Framework for Programming Page 35

motion such as "s=ut + Ylat2' thereby freeing up their cognitive resources for the problem in

question.

Looking at what is meant by expertise in programming is important as it has relevance to the

discussion on the teaching and learning approaches that might be used to encourage the

development of expertise. Expertise in programming has some extra dimensions to the five

dimensions of novice through to expert (Tolhurst, 1993) and the characteristics are:

• They categorise problems according to deep structures;

• They think of problems in terms of the programming constructs required to reach a solution;

• They possess a large knowledge base in their domain; and

• They remember groups of instructions that represent structural components in

programming.

In addition it has been found that (Chi, Glaser & Rees, 1982):

• Information remembered in a schema can activate higher level schemata;

• Experts' schemata contain additional procedural information;

• Experts' schemata contain much more explicit conditions of applicability to particular

principles underlying a problem; and

• For an expert, solving a problem becomes a case of categorising a problem into one or more

problem types and applying existing routines.

In contrast to experts, novices have the following characteristics (Tolhurst, 1993):

• They categorise programming problems according to surface structures;

• They tend to think of a solution to a problem in terms of the syntax of the language; and

• They recall single lines of code rather than groups or "chunks".

The above suggests that the pedagogy used in the teaching and learning of programming should

attempt to enable novices to acquire some of the characteristics of expert programmers although

it has to be recognised that it is a long process. Probably the best that can be hoped for is, that

after a semester's course in introductory programming, students will have moved from novice to

advanced beginner in the stages of expertise of Dreyfus & Dreyfus (1986). The "chain of

Chapter 3: Student Learning and a Teaching & Learning Framework for Programming Page 36

cognitive accomplishments" (Linn & Dalbey, 1985) offers a description of the changing

cognitive demands placed on students learning to program and comprises the following three

links:

• The acquisition of syntactic and semantic primitives;

• The design skills used to combine language features to solve programming problems; and

• The development of capabilities to autonomously generalise the problem solving skills

learned from one progranuning situation to another.

It would be hoped that an advanced beginner would have completed part of the second link and

gained the necessary knowledge to be able to solve certain programming problems. However

the types of problems that advanced beginners can solve are usually relatively straight forward

and similar to others that they might have studied as worked examples. Linn and Dalbey (1985)

suggest that the development of skills associated with the second link represents a major

motivational and conceptual turning point in the acquisition of programming knowledge.

Students have to incorporate "templates" of programming knowledge into their thinking and that

repeated and unresolved failures impede progress and may also reduce the motivation to

continue with programming.

Teachers need to use pedagogical methods that encourage the development of expertise in

programming so that students can move through the stages as quickly as possible, whilst

remaining motivated. within the time constraints of a course.

The literature has suggested that in order to develop expertise in programming, students need to

build mental representations of programming plans or templates. It was believed that the

planned PCSM system for this study could provide such support in an efficient manne~ because:

students would not need to generate programs from scratch; and students would have fewer

concerns about syntax because of the inclusion of sets of possible missing statements for each

part-complete solution

3.4 Mental Processes
The mental representations that we have stored as schemata are operated on by our mental

processes. Mental representation and processing are of course intertwined as seen earlier in the

discussion of the way in which mental models can be "run". However, for the purpose of this

discussion, the two have been separated. Three kinds of mental processes can be categorised as

information processing; symbol manipulation; and knowledge construction.

Chapter 3; Student Learning and a Teaching & Learning Framework for Programming Page 37

3.4.1 Information Processing
Infonnation processing models of cognition describe the stages that infonnation moves through

in a person's cognitive system and the processes that operate on that infonnation at each step.

The description is in computer like terms and assumes that a system processes infonnation

sequentially from the time of input to the time of storage in secondary or Jong-term memory (Di

Vesta, 1987). The mechanism consists of the sensory registers, the short-term or working

memory and the long-term memory. This model can be traced back to Atkinson and Shiffrin

(1968) who suggested that infonnation is registered by the senses and placed into a short-tenn

buffer. The infonnation then needs to be "rehearsed" with so that it is related to existing

knowledge and then has a chance of being moved to long-term storage. Rehearsal can be

thought of as practice and is something that is usually needed within learning.

The main problem with this model was the recognition that working memory capacity was

limited to around seven pieces of infonnation and the model was modified to take into account

the work on chunks (Miller, 1956), described earlier, and instructional design that attempts to

induce such "chunking" is now commonplace. Another modification to the model that took

place was to include the concept of schemata. It was recognised that the infonnation passed

from short-tenn to long-term memory was not a direct copy but a more abstract representation

of its meaning. This modification stemmed from the work of Bransford and Franks (1971).

Originally infonnation processing theory was considered to be data driven or bottom-up as

infonnation is firstly input to the sensory buffers. It has now matured to take into account that

the way in which infonnation is processed depends to a large part on what a person already

knows, i.e. has stored already in long-tenn memory, and so information is processed in part in a

top-down manner.

Many researchers distinguish between short-tenn and workin5 memory as the latter is perceived

as retaining infonnation for longer periods than the fonner. It is suggested that a model is

required that allows infonnation to be held and manipulated while it is being processed, and the

functions of working memory have been described as (Bower, 1975):

1. Providing the context for perception;

2. Serving a holding function for later retrieval;

3. Keeping a running account of immediately prior events that provide a reasonable context

for occurring events;

Chapter 3: Student Learning and a Teaching & Learning Framework for Programming Page 38

4. Observing deviations in naturally occurring events, or in games such as chess, so that

necessary adjustments can be made in the knowledge of procedural systems; and

5. Initiating and implementing plans for a given task within a given context.

3.4.2 Cognition as Syrr.bol Manipulation
Many cognitive scientists believe that information is processed as symbols (e.g., Larkin &

Simon, 1987). The idea is that humans mentally manipulate different types of symbols that are

representations of objects in the real world. In the area of problem solving, it is thought that

human reasoning takes place by applying rules to information that is encoded as a "production

system" (Larkin & Simon, 1987). Such systems are sets of "If .. Then1
' rules and they operate by

testing the conditions of the rules and then taking specific actions when conditions are true. An

example (Winn & Snyder, 1996, pl 17) is:

"Jjthe sum of an addition of a column of digits is greater than 10 then

Write down the right-hand digit

Carry the digits to the left of the right-hand digit to the next column 1
'

In this case, the symbols being manipulated are textual, however diagrams are often superior to

text for solving certain problems. For example it is much easier to find answers such as 11Js

Raymond, Lisa's second cousin?" by using a family tree diagram rather than a large set of

production rules. Production systems have been used in intelligent tutoring systems such as

Anderson's ACT"' that helps to teach LISP programming (Anderson, Farrell & Sauers, 1984).

3.4.3 Cognition as Knowledge Construction
During mental processing, people input information, process it by the mental manipulation of

symbols and then possibly store the laiowledge in long-term memory within schemata or

modify existing schemata. The way in which the information is manipulated or processed

depends upon our existing schemata, in other words on what we already know. We are therefore

constructing knowledge and the newly constructed knowledge may well be different for

different people as they all have different sets of existing schemata. This has led to

constructivist learning theory which has now gained the attention and respect that was

previously reserved for instructivist theories (e.g., Jonassen, 1991; Jonassen, 1994; Jonassen,

1995; Jonassen & Reeves, 1996; Ring & McMahon, 1997; Anderson, Simon & Rede, 2000).

"Constructivism is concerned with the process of how we construct meaning and

knowledge in the world as well as with the results of the constructive process.

Chapter 3: Student Learning and a Teaching & Learning Framework for Programming Page 39

How we construct knowledge depends on what we already f..?1ow, our previous

experiences, how we have organised those experiences into knowledge structures

such as schemata and mental models, and the beliefs that we use to interpret the

objects and events we encounter in the world" (Jonassen & Reeves, 1996, p.695).

The concept of constructivism is not new. For example the "perceptual cycle" suggests that

what we know directs how we seek infonnation; how we seek infonnation detennines what

infonnation we get; and how the infonnation we receive affects what we know (Neisser, 1976).

This also relates to the ideas of top-down and bottom-up processing of infonnation described

earlier. The constructivist learning theory places the learner at the centre of the knowledge

acquisition process, not the environment. An example of how this revolution has impinged on

higher education is the fact that educators now talk about "teaching and learning" rather than

just "teaching" as they did in the past.

Some researchers have reacted against constructivism and suggest that some knowledge and

skills have to be acquired and expressed in a unifonn manner (e.g., Merrill, 1992; Ben-Ari,

2001). Merrill talks of idiosyncratic knowledge that is constructed by people that often defies

expression to someone else, and he gives an example that idiosyncratic knowledge of how to fly

a plane could lead to disaster! However, it can probably be concluded that a middle ground is

necessary in many situations with environments provided to help students construct their own

knowledge but with guidance provided where necessary, for example in the form of scaffolding.

There are several stages that a person goes through in becoming an expert in any field, these

being novice; advanced beginner; competent; proficient; and expert (Dreyfus & Dreyfus,

1986). The stage that a student is in can affect how well they are able to construct knowledge

for themselves and it is claimed that learning by allowing students to construct knowledge only

works for "advanced knowledge" that assumes that the basics have been mastered (Spiro,

Jacobson & Coulson, 1992).

Learning programming in a constructivist environment can potentially be very effective as

students can attempt programming problems thereby building and reconstructing their relevant

schemata. However, care has to be taken with the instructional design. In a typical constructivist

learning environment, students are active learners participating and interacting with the

surrounding environment to create their own interpretations ofreality. Without good guidance,

student misconceptions of how programs are executed can cause problems later on in

programming courses. For example, research on novice programmers has indicated that students

can develop serious misconceptions of the underlying erasable nature of memory locations,

where input data comes from, the differences in the way string and numeric data is stored etc

(e.g., Bayman & Mayer, 1988; Pea, 1986). A lot of programming research that has looked at the

Chapter 3: Student Learning and a Teaching & Learning Framework for Programming Page 40

use of conceptual models I notional machines in the teaching of programming (e.g., du Boulay,

1986; Shih & Alessi, 1994) shows that in programming, especially with novices, there is a need

for an agreed model of how computers execute programs for progress to be made in the learning

of programming. Those students who have constructed a different model for themselves tend to

have problems until that model has been rectified. It has been suggested that the model of a

computer must be explicitly taught to programming novices and not left to haphazard

construction and not glossed over with "facile analogies" (Ben-Ari, 2001).

3.4.4 Conclusions: Mental Processes
The mental processing that talces place during learning can become problematic for students

when the domain of knowledge is particularly difficult and the instructional design is weak.

This is generally true for the teaching and learning of programming as it is accepted that

programming is a difficult subject and that often the instructional design has shortcomings. For

the proposed design of the PCSM system, it was recognised that the embedded instructional

design should impose a relatively low cognitive load on students. Cognitive load theory could

therefore provide more direction on how this could be achieved.

3.5 Cognitive Load Theory
Cognitive load theory (e.g., Sweller, van Merrienboer & Paas, 1998; Sweller, 1999; Soloman,

2004) builds on the infonnation processing model of mental processes described earlier and is

very relevant to the research in this thesis. Its emphasis is on the size of working memory with

its limitation of around seven chunks of material (Miller, 1956) and the idea that people can

only deal with around two or three elements simultaneously. The degree of interactivity

between the elements also affects the capacity of working memory.

Working memory is now thought to have part-independent processors (Baddeley, 1992)

including a "visual I spatial scratchpad" for dealing with visual materials and a "phonological

loop" for dealing with audio material. A central executive controls the above and working

memory can be increased by the use of both processors.

In the earlier discussion on infonnation processing, research into chess playing (Chase &

Simon, 1973) showed that the main difference between novices and experts was the fact that the

latter had thousands of board configurations, as many as 100000 (Simon & Gilmartin, 1973),

stored in long-tenn memory within schemata. The consequence is that, unlike less-skilled

players, experts do not have to spend as much time searching for good chess moves using their

limited working memory. Similarly, research into problem solving (Carroll, 1994) confinned

that, compared to novices, experts have knowledge of an enonnous number of problem states

Chapter 3: Student Learning and a Teaching & Learning Framework for Programming Page 41

and their associated moves. Such states are within long-term memory and such research

indicates that human problem solving comes from stored lmowledge and not from complex

reasoning within working memory. It is suggested th8.t humans are poor at complex reasoning

unless most of the necessary elements are already in long-tenn memory, working memory being

incapable of highly complex interactions using novel elements (Sweller, van Merrienboer &

Paas, 1998; Sweller, 1999). In the domain of programming, studies have shown that experts

remember algorithms or plans whereas novices remember lines of code. This means that

novices who are attempting a problem must engage in complex chains of reasoning using their

working memory. During this process it is likely that working memory will be overburdened,

the cognitive load being too great.

Ways in which cognitive load can be reduced for novice problem solvers are therefore very

important. In the schema theory of model representation, a schema can be anything that can be

treated as a single entity or element such as a mathematical fonnula or a particular programming

algorithm. Schemata have the function of storing knowledge and reducing the burden on

working memory.

Experts in a domain of knowledge can process information relevant to their domain

automatically, novices however having to process information consciously (Schneider &

Shiffrin, 1997; Tindall-Ford, Chandler & Sweller, 1997). An example of such automatic

processing is that of the expert driver who can drive their car without apparently thinking,

whereas a learner driver has to consciously think of several things at the same time such as

depressing the clutch and shifting to a new gear, observing the road ahead, moving the steering

wheel etc. Any instructional design for a domain has to therefore not only encourage the

construction of sophisticated schemata but also encourage the automatic processing of those

schemata. This is important because of the limited capacity of working memory that can only

deal with a few schemata at the same time. The ease with which information can be processed

in working memory is the main thrust of cognitive load theory. In programming, the

instructional design should encourage the construction of schemata concerning programming

plans together with the ability to automatically incorporate the relevant plans in solutions to

given programming problems.

Working memory may be affected by intrinsic cognitive load and extraneous cognitive load

(Sweller, 1994). In recent research, a further distinction is made with the inclusion of gennane

cognitive load (Sweller, Van Merrienboer & Paas, 1998).

Chapter 3: Student Leaming and a Teaching & Learning Framework for Programming Page 42

3.5.1 Intrinsic Cognitive Load
Intrinsic cognitive load is determined by the mental demands of the task (Chandler & Sweller,

1996). Some material has very low cognitive load and an example is the learning of the basic

vocabulary of a foreign language. Each element or schema is independent from the others with

no interactivity and subsequently the required mental processing, or intrinsic cognitive load, is

low. Tasks that have low element interactivity can be learnt serially rather than simultaneously.

Tasks with a high degree of element interactivity have a heavy intrinsic cognitive load and an

example is the learning of the grammar of a foreign language as all the words in phrases need to

be considered, that is processed, at once.

Programming is a domain with a high intrinsic cognitive load and this needs to be recognised in

any instructional design. The intrinsic cognitive load cannot be redµced, however good

instructional design can help reduce the extraneous cognitive load.

3.5.2 Extraneous Cognitive Load
Extraneous cognitive load is generated by the instructional format used in the teaching and

learning process and poor design leads to a high extraneous cognitive load. If a high extraneous

cognitive load is combined with a high intrinsic cognitive load then this can lead to working

memory overload. Titis is often what happens with novice programmers when the instructional

design is poor. For example, new programming topics such as loops might be introduced too

early in a course at a time when students had not grasped some of the basic concepts such as

variables, assignment statements, data types etc. Students might be expected to generate

solutions to difficult programming problems with little guidance from their tutor.

The important point is that when the intrinsic cognitive load of the material is high, then it is

incumbent on the instructional designer to think very carefully and ensure that the extraneous

cognitive load is as low as possible. A lot of research has been done in looking at ways of

reducing extraneous cognitive load (e.g., Chandler & Sweller, 1991; Sweller, 1994; Marcus,

Cooper & Sweller, 1996; Tindall-Ford, Chandler & Sweller, 1997; Kalyuga, Chandler &

Sweller, 1998). These include: integrating diagrams and text so as to reduce the 11split-attention11

effect; goal-free problem solving; and the use of worked examples in problem solving.

3.5.3 Germane Cognitive Load
More recently, the concept of germane cognitive load has been introduced into cognitive load

theory (Sweller, Van Merrienboer & Paas, 1998). It is thought that if the instructional design is

such that the extraneous cognitive load is kept to a minimum, then there may be some unused

working memory available. This could then be used by learners, with appropriate instructional

Chapter 3: Student Learning and a Teaching & Learning Framework for Programming Page 43

design, to engage in conscious processing that helps in the construction of schemata in the

particular domain of interest (Gerjets, Scbeiter & Catrambone, 2004). This conscious processing

is the gennane cognitive load An example is the use of part-complete solutions in the learning

of problem solving (e.g., van Merrienboer, 1990b; van Menienboer & De Croock, 1992; Paas,

1992; Atkinson, Renk! & Merrill, 2003).

3.5.4 Conclusions: Cognitive Load Theory
The studying of complete worked examples in programming by students can be seen as one way

of reducing the extraneous cognitive load. When students have to complete a part-complete

wor~ed example then they have to attempt to "mindfully abstract" the relevant schemata from

the example in order to understand it That is, they have to consciously process it and this

increases the germane cognitive load. Cognitive Load Theory provided support for the use of

the PCSM in this study and Figure 3.1 shows the relationship between the various cognitive

loads in the domain of programming.

Working Memory Long-term Memory

Contains schemata:

Intrinsic cognitive •Syntax
•Semantics

load: very high with •Programming plans many interacting (buildfng blocks of
elements Existing algorithms)

Programming
"

schemata
Task

' Extraneous
cognitive load:
must be kept as low
as possible by good
instructional design

New or
Germane cognitive modified
load: Instructional schemata
design should
encourage
schemata creation

Figure 3.1: Cognitive Architecture for the Domain of Programming

3.6 Problem Solving
Cognitive load theory indicates to us that it is important to reduce extraneous cognitive load and

this can be done by improving instructional design. To understand how this should be done in

the specific domain of programming, it is useful to review some of the research that has taken

place in problem-solving methods in other domains.

Chapter 3: Student Learning and a Teaching & Learning Framework for Programming Page 44

Polya, a famous mathematics educator, suggests four problem-solving steps (Polya, 1957):

understanding the problem; devising a plan; carrying out the plan; and looking back It is

suggested that devising a plan is a difficult step for learners as they lack any experience in

solving problems. Polya also suggests that analogy pervades all our thinking and that the key to

problem solving techniques is to try and make use of a related problem that you already know

about. A similar strategy states that if learners cannot solve a given problem then they should try

to solve an easier, related problem (Schoenfeld, 1985). That is, learners should look for known

solutions to related problems.

However, when students do not know a similar problem to the one that they are attempting then

they usually attempt to solve a problem by a "weak" method such as means-ends analysis (e.g.,

Sweller & Cooper, 1985; Sweller, 1988; Ward & Sweller, 1990; Sweller, 1994). A student using

such a strategy attempts to reduce differences between each problem state encountered and the

goal state by using the problem solving operators of the domain which, in the case of

mathematics and science are the rules of those two domains. Experts however can usually solve

problems using their existing schemata and automated rules. It is suggested that although

means-ends analysis is an efficient strategy for achieving a probleni goal, it actually interferes

with learning as schemata acquisition is hindered due to the heavy cognitive load being placed

on working memory. That is, the extraneous cognitive load is high with many interacting

elements having to be processed in working memory simultaneously including considering and

making decisions about the current problem state, the goal state, differences between states, and

problem solving operators that can be used to reduce such differences. It has been proposed that

alternatives to conventional problem solving can be more effective, these focussing attention on

problem states and their appropriate moves (Ward & Sweller, 1990). One such method is to use

worked examples with students. Ward and Sweller suggest that such a method facilitates

learning and subsequent problem solving to a greater extent than actually engaging oneself in

the solution process.

3.6.1 Use of Worked Examples in Problem Solving
Several researchers have experimented with the use of worked examples in place of

conventional instruction and found strong advantages. In the domain of algebra, it was proposed

that students would learn better by studying worked examples until they had "mastered11 them

rather than attempting to solve problems as soon as they had been presented with, or

familiarised themselves with, new material (Sweller & Cooper, 1985). In a research project

(Sweller & Cooper, 1985), students studied worked examples and teachers answered any

questions that the students had. Students then had to explain the goal of each problem together

with the steps involved in the solution and then complete similar problems until they could be

Chapter 3: Student Learning and a Teaching & Learning Framework for Programming Page 45

solved without errors. It was found that this method was less time-consuming than the

conventional practice-based model and that students made fewer errors in solving similar

problems than students who were exposed to the conventional practice-based model of

instruction. There was no significant difference between the "worked example" group and the
11conventional" problem solving group when they attempted to solve novel problems and it was

therefore concluded that learning was more efficient and yet no less effective when this worked

example method was used.

Research by Anderson, Fincham & Douglass (1997) also indicates that exposure to worked-out

examples is critical when learners are in the initial stages oflearning a new cognitive skill in

well structured domains such as computer programming.

Other researchers had similar findings. Zhu and Simon (1987) found that a three year

mathematics course could be completed in two years by emphasising worked examples. Ward

and Sweller (1990) found that under conventional classroom conditions, a heavy use of

appropriately structured worked examples facilitated subsequent problem solving in a variety of

areas in physics. They also found however that worked examples had to be carefully constructed

to avoid splitting student attention between diagrammatic and text materials. Similar findings

were made in the domain of geometry (Paas & Van Merrienboer, 1994) where it was found that

students learnt better if they studied worked examples rather than attempting problems

themselves and then looking at the problem solutions. The suggestion was made that if students

try and solve problems before studying the solutions, i.e. the worked examples, then they may

perform less well because they have included their failed solutions in their schemata.

The evidence from the literature provides support for the extensive use of worked examples in

the learning of problem solving and their use is an example of 11scaffolding" learners in their

endeavours to become competent problem solvers.

3.6.2 Scaffolding and Problem Solving
A scaffold is a temporary support for student learning that is available until the student can

perform independently of that support. The support can fade away as the internal capacity of a

student develops (Atkinson, Renk! & MerrilL 2003). Scaffolding is described as: 11
... controlling

those elements of the task that are initially beyond the learner's capability thus pennitting them

to concentrate upon and complete only those elements that are within their range of

competence" (Wood, Bruner & Ross, 1976, p.9). As students gradually gain control of the task,

they take over more of the responsibility and the scaffolding is gradually removed.

Chapter 3: Student Learning and a Teaching & Learning Framework for Programming Page 46

Scaffolding is coruiected with the theories developed by Vygotsky who stated that problem

solving tasks and other skills could be placed into three categories: those performed

independently by the student; those that cannot be performed even with help; and those that fall

in between, the tasks only being able to be performed with the help of others (Vygotsky, 1978).

This last type of task falls into what is known as the zone of proximal development (ZPD) and

is the area in which an individual's optimum learning can occur. Scaffolding can be provided in

the ZPD for students.

Good teachers have always provided scaffolding for students, however technology now

provides instructors with new opportunities to provide scaffolding and this is especially

important within flexible learning. For example, hypermedia can support the acquisition of new

vocabulary when words on a page are linked to separate pages with definitions and examples.

Another example of scaffolding is provided by Linn (1992, p.125) who describes a method of

programming instruction that involves scaffolds comprising of templates. Templates are

reusable abstractions of programming knowledge that students can use and study to help them

construct appropriate schemata. Each template describes the programming knowledge

associated with an action such as 11do something a certain number oftimes", or 11select from

alternatives". Lirui's templates have different representations of an action including

programming code, pseudocode, verbal descriptions, diagrams, and possibly dynamic

illustrations. Many such templates were created in her study to help scaffold ~tudent learning in

the domains of both pascal and LISP programming and they were linked together using

hypennedia.

3.6.3 Conclusions: Problem Solving
When the research describing learning supports is taken in its entirety, it supports the notion that

a technology supported PCSM could support problem solving by the provision of appropriate

scaffolds. The worked examples would in effect be the part-com:>lete solutions provided for

students. Scaffolding would be provided by the set of possible lines of code from which

appropriate lines could be selected for insertion into part-complete solutions. Levels of

scaffolding could be adjusted by:

• Reducing or increasing the number of lines of code removed from a solution;

• Including extra "distracter11 lines of code, that are incorrect but similar to the correct lines, in

the set oflines of code that a student might choose from to complete a solution;

• Requiring students to key-in certain lines of code from scratch; and

Chapter 3: Student Learning and a Teaching & Learning Framework for Programming Page 47

• lnfonning students of the positions in a solution from which lines of code were removed.

3. 7 Higher Order Thinking
The solving of problems requires the application of higher order thinking with students utilising

their cognitive skills to plan and structure a solution to a given problem and then to reflect on

that solution. Hopefully, any learning environment that students experience when learning to

solve problems in a given domain of knowledge would encourage higher order thinking.

Higher-order thinking essentially means thinking that talc es place in the higher-levels of the

hierarchy of cognitive processing and Bloom's Taxonomy is the most widely accepted

arrangement of this sort in education (Bloom, 1956). The taxonomy can be viewed as a

continuum of thinking skills starting with knowledge-level thinking and moving through to

evaluation-level of thinking. Bloom's taxonomy comprises: knowledge, comprehension,

application, analysis, synthesis, and evaluation. Thinking strategies may be conceived of as

problem solving approaches, decision making skills, conceptualising, classifying and

interrelating categories (Glaser, 1984).

Leaming environments designed to foster problem solving are based on a view that learners

need mastery of various categories of skills (McLaughlin, 1997), such as

• Flexible acquisition of a domain specific knowledge base;

• Heuristic methods (i.e., techniques for problem identification and analysis); and

• Metacognitive skills (i.e., knowledge of ones own cognitive strategies, self-monitoring and

regulation).

There has been a debate as to whether it is possible to teach general thinking skills as a set of

generic skills or whether thinking is more often context free (Nickerson, Perkins & Smith,

1985). Nickerson et al suggest that the evidence points to thinking being more often context

bound rather than context free and that "packaged" thinking skills programs are not the best way

to foster higher order thinking. This is also supported by McLaughlin (1997) who believes that

higher order thinking necessarily involves procedural knowledge (knowing how) and

declarative knowledge (knowing that). She suggests that declarative knowledge must be

available for consideration and that procedural knowledge are the cognitive strategies applied to

planning, perfonning and evaluating the task in question. Also, metacognitive processes enable

students to control and monitor their own perfonnance. Her model is shown in Figure 3.2.

Chapter 3: Student Learning and a Teaching & Learning Framework for Programming Page 48

Procedural
Knowledge

Higher
Order
Thinking

Metacognltlve
Processing

Declarative
Knowledge

Figure 3.2: Elements of Higher Order Thinking (Mcloughlin, 1997, p.34)

In the context of solving programming type problems, the declarative knowledge is the syntax

and semantics of the language and the procedural knowledge is the knowledge of how to solve a

given problem. The metacognitive processing is then the reflection by a student on the solution

that they have created. However, thinking is hard work (French & Rhoder, 1992) and strategies

to encourage higher order thinking should focus attention, minimise anxiety, and maintain

motivation (Jones et al, 1987). The proposed system to support the PCSM would appear to

encourage higher order thinking by:

• Its use of the part~complete solution method which both reduces cognitive load, thereby

minimising anxiety, and focuses attention on solutions; and

• Its maintenance of student motivation as solutions are created more quickly with a

consequential reduction in times that feedback is received on the correctness of solutions.

3.8 Summary and Conclusions
The review of the literature has revealed a number of important elements germane to this study.

It has been revealed that in learning it is necessary for learners to develop their cognitive

schemata and mental models and that experienced problem solvers have numerous patterns

stored which they can then use to apply to new problems and situations (Chase & Simon, 1973).

Also, in order to help build their cognitive schemata, it has been seen that learners have to

mentally process their mental representations or cognitive schemata. This can be done using a

model such as "information processing" (Di Vesta, 1987) which describes the stages that

information goes through in a person's cognitive system. Constructivism suggests that the

Chapter 3: Student Learning and a Teaching & Learning Framework for Programming Page 49

construction of knowledge by learners is dependent upon their existing schemata or what they

already know. For example in the domain of programming some learners may already have well

developed schemata in mathematical problem solving that will help them in their construction

of programming knowledge. This indicates that learning should be student centred with students

being able to progress at their own pace (Jonassen, 1995).

Cognitive load theory (e.g., Soloman, 2004) suggests that in problem solving domains, it is

necessary to keep the extraneous cognitive load to a minimum as the domain itself has a very

high intrinsic cognitive load. It has been shown that it is possible to have some germane

cognitive load imposed on learners thereby ensuring that they have to actively engage with the

material that they are studying. One method of doing this is to utilise learning materials that

require learners to have to complete solutions to part-complete solutions that they have been

given. Such part-complete solutions can vary in their degree of completeness and such materials

act as scaffolds to support student centred learning so that learners are then within Vygotsky's

zone of proximal development (Vygotsky, 1978).

The acquisition of problem solving skills was also seen to be an example of higher order

thinking (Bloom, 1956) and there is evidence to support the notion that such thinking is context

bound involving both declarative and procedural knowledge with learners applying

metacognitive processes to control and monitor their own perfonnance (Nickerson, Perkins &

Smith, 1985). In the context of solving programming type problems, the declarative knowledge

is the syntax and semantics of the language and the procedural knowledge is the knowledge of

how to solve a given problem. The metacognitive processing is then the reflection by a student

on the solution that they have created.

Specifically with respect to programming, it has been shown that there are various teaching and

learning methods in existence including expert, spiral, reading (van Merrienboer & Krammer,

1987); syntactic and developmental (Marchionini, 1985); and schema based (Tolhurst, 1993).

Of these, the method that appeared to match best with cognitive load theory is the reading

method utilising part-complete solutions to programming problems.

There was also support in the literature for developing the mental models of learners with

respect to the notional or virtual machine (Shih & Alessi, 1994). Some of that research showed

that novices who made use of a notional machine learned to program more effectively than

those who did not (Mayer, 1981). Conclusions reached showed that the use of an animated

model aids students in their learning of programming. SU.ch a model provides help in the

students' construction of appropriate schemata and I or mental models thereby overcoming

inappropriate mental models that they may possess.

Chapter 3: Student Learning and a Teaching & Learning Framework for Programming Page 50

3.9 A Proposed Learning Framework
From the literature review, it was possible to propose a framework of learning attributes that

could provide support for learning in problem solving domains of know ledge such as

programming. The set of attributes and their rationale are shown in Table 3.1.

Table 3.1: Proposed Learning Framework for Encouraging the Development of
Appropriate Schemata In Problem Solving Domains

Learrung Attnbuto Rationale for Attribute
1. Support for student centred Different learners gain expertise in problem solving at different

teaming. rates and It is therefore Important that the leamlng environment
supports Independence (e.g., Vygotsky, 1978; Jonassen, 1995;
Jonassen, 1996).

2. Support for the creation of The learning environment should support the creation and
appropriate schemata and amendment of appropriate schemata that pertain to problem
mental models. solving and also support the mental processing that needs to take

place during this process (e.g., Paas & Van Merrienboer, 1994;
Winn & Snyder, 1996).

3. Support for the reduction of The leamlng environment would need to reduce the extraneous
extraneous cognitive load. cognitive load as problem solving domains tend to have high

Intrinsic cognitive loads {e.g., Kalyuga, Chandler & Sweller, 1998;
Tindall-Ford, Chandler & Sweller, 1997).

4. Support for the Increase of To promote problem solving skills, cognitive load theory suggests
germane cognitive load. that a learning environment should encourage learners to

mlndfully abstract appropriate problem solving patterns (e.g.,
Paas, 1992; Sweller, Van Merrlenboer& Paas, 1998).

5. Support for the promotion of The development of problem solving skills In a specific domain of
reflection and higher order knowledge requires support for higher order thinking with learners
thinking. being encouraged to reflect on their solutions to given problems

(e.g., G!aser, 1984; Mcloughlin, 1997).

The literature had suggested that a technology supported part-complete solution method

(TSPCSM) would be appropriate in the development of a learning environment for the domain

of programming as it would be able to support most of the learning attributes of the learning

framework Table 3.2 shows how environmental elements needed for learning computer

programming might be incorporated into a fonn ofTSPCSM.

Chapter 3: Student Learning and a Teaching & Learning Framework for Programming Page 51

Table 3.2: Elements of a TSPCSM Environment to Support the Learning of Programming

Erw1ronmental Element Support from the TSPCSM
1. Support for student centred The completion method supports active

leamJng. learning with students having to engage
with learning materials.

2. Encouragement of the Provision of appropriate programming
development of appropriate schemata In the form of stereotypical
schemata and mental models. programming plans.

3. Reduction of extraneous Visually slmple interface.
cognitive load. Provision of appropriate examples and

exercises.

4. Manlpulation of germane Removal of lines of code from complete
cognitive load. programs varies the germane cognitive

load on learners.

5. Promotion of reflection and Reduction of the amount of lower order
higher order thinking. thinking that is required and

encouragement of more higher order
thinking as students reflect on their
solutions.

At this stage of the study a teaching and learning framework for programming that included

these environmental elements was developed and is described in the next section.

3.10 A Teaching and Learning Framework for Programming
The design of the proposed .teaching and learning framework was influenced by an instructional

design framework put forward by Oliver (1999). Oliver's framework is heavily influenced by

his belief that constructivism best describes how learning takes place and the framework

pennits the critical constituent elements of technology based learning to be described. It

comprises three critical elements: course or unit content; learning activities; and learner

supports as shown in Figure 3.3.

The teaching and learning framework for programming was to be supported by technology and

include sets of learner activities and supports. For these reasons Oliver's instructional design

framework appeared appropriate to use.

Chapter 3: Student Learning and a Teaching & Learning Framework for Programming Page 52

Leaming
Resources

Leaming
Activities

Leaming
Supports

Figure 3.3: Instructional Design Framework (Oliver, 1999, p242)

The overall design of the teaching and learning framework for programming is described in the

following sections with reference to this instructional design framework's three elements:

learning activities, learning supports, and learning resources.

3.10.1 Learning Activities
Learning activities play a fundamental role in detennining learning outcomes (Wild & Quinn,

1997). The activities detennine how learners will engage with the various materials and need to

provide meaningful contexts for learning.

The main fonn of activities that were selected comprise a set of programming problems and

their part-complete solutions that need to be completed by a learner. It was proposed that for

each activity, students wouki be provided with a programming problem and a part-complete

solution. The completion ofa part-complete solution by students would involve:

• Selecting appropriate lines of code from a set of possible lines and placing them in the

"correct11 locations within the corresponding part-complete solution;

and I or

• Keying-in appropriate lines of code.

After "completing" a program, that program would be tested in the programming environment

of the particular language being used which, in the case of this research, would be Visual

BASIC (VB). Feedback to students would be provided by the VB environment. The program

may work as expected or the VB debug tools might have to be used so that students could try

and detennine the causes of any errors. Such errors would be corrected by amending the

solution and this would be done by: replacing some of the lines of code that had been used to

Chapter 3: Student Learning and a Teaching & Learning Framework for Programming Page 53

complete the program with different lines of code; and I or moving lines of code within the

program; and I or amending lines of code that had been keyed in.

3.10.2 Learning Supports
Learning supports describe the guides and feedback provided to learners that are responsive and

sensitive to learner individual needs (Mcloughlin & Oliver, 1998). In "traditional" settings

supports have often been provided by actively involved teachers (Laurillard, 1993) whereas in

technology based learning environments, supports are often technology based "scaffolds" to

help learners during their knowledge construction process (Roehler & Cantlon, 1996). In

programming, an example of such a support is the facility that some programming editors have

to help complete lines of progranuning code for the user as they are keyed-in. The best forms of

supports are scaffolds that provide help at the point of need but which fade as the learner

progresses.

In the proposed teaching and learning framework, some learning activities act as learning

supports and so the boundary between activities and supports is somewhat blurred. Several

learning supports were proposed, some of which were designed to be directly supported by the

TSPCSM.

The first support would be provided by the set of possible lines of code that is given to a learner

to be used in the completion of a part-complete program. It was recognised that the level of this

support could be varied by providing one of the following methods:

Method 1. All of the lines of code that are missing from the program are provided as options.

Method 2. All of the lines of code that are missing from the program, together with some extra

lines of code that are not needed to complete the program, are provided. These extra lines act as

"distracters".

Method 3. Some of the lines of code that are missing from the program might be provided,

however some other missing lines must be keyed-in by the learner.

The important variable that affects which of the above methods might be used for a given

problem would be the degree of difficulty of that problem. For example, if a problem was

relatively simple then method 2 might be used, whereas method 1 might be used with a more

difficult problem. Fading would not be straight forward as the programming problems in the

latter part of a programming course are usually more difficult than earlier ones and it might

therefore still be necessary to use method I supports for some of the problems. It was proposed

Chapter 3: Student Learning and a Teaching & Learning Framework for Programming Page 54

that a mechanism would be provided to allow the easy manipulation of the missing lines of code

from a part-complete solution.

The second support would be a facility to easily move missing lines of code into a part

complete solution and then to manipulate lines within that solution. Such a support has not be..-:n

available in previous work with respect to the completion method and yet this is seen as

important in helping reduce extraneous cognitive load.

The third support would be the provision, for each programming problem, of a screen image of

the problem interface. The interface would be the output "fomi11 or window that is displayed to a

user of a program when it is executed and includes the various objects such as buttons and text

boxes. The screen image would also be annotated with the internal names of the objects (i.e. the

object names that are used within the programming code) thereby reducing the split-attention

effect (e.g., Chandler & Sweller, 1991). This particular support might also be considered a

learning resource, the boundary between supports and resources being blurred for some entities.

The fourth support would be the environment of the programming language itself. Many such

modem programming environments, or integrated development environments, provide

sophisticated facilities to help programmers debug their programs. These include the tracing, or

step by step execution, of code and the ability to display the contents of variables. The language

that would be used in this research was Microsoft's Visual BASIC which has excellent

debugging facilities that can be used by novices in their learning of programming.

Other supports that would be provided include the "conventional" ones such as the provision of

a tutor, other students, and a textbook. When campus based students require help in solving a

programming problem, they might directly seek such help from their tutor or fellow students.

With a flexible, technology based course that support would most likely be provided by email.

Learners also look to their conventional textbook which, in addition to providing content, can

also be considered to provide support.

3.10.3 Learning Resources
Learning Resources can be thought of as the materials which are provided to help students

construct their knowledge and meaning with respect to a domain of knowledge. Traditionally

these resources have been available in the fonn of books and lecture notes and the move to

flexible technology based systems has led to a lot of content being made available

electronically. It has been estimated that many such systems are too content-oriented with 90%

of planning and development being in content creation (Dehaney & Reeves, 1999).

Chapter 3: Student Learning and a Teaching & Learning Framework for Programming Page 55

The emphasis of this current research was the exploration of the completion method of

programming and it was decided that the content would be provided by the existing

programming textbook (Schneider, 2000) and the lecture notes of the lecturer. It was recognised

that on-line content and resources would be very useful to learners and was something that

might be explored in the future. Typical content for programming courses includes descriptions

of language syntax; data and control structures; descriptions of algorithms; descriptions of how

to solve certain categories of problem; and example programs.

3.10.4 Summary of the Teaching and Learning Framework for
Programming

The various components of the proposed framework were developed from the elements

identified for a TSPCSM environment shown in Table 3.2 and from the illStructional design

framework proposed by Oliver (1999). Figure 3.4 summarises the structure of the proposed

framework and also those features that would be supported by a technological tool. In the

proposed framework, some of the elements overlap so that, for example, some resources might

be considered supports.

Chapter 3: Student Learning and a Teaching & Learning Framework for Programming Page 56

Leaming framework for Elements of a teehnology

encouraging appropriate supported part-complete Ollver's lnstrucUonal solu~on method (TSPCSM) schemata development In to support the learning of Design Framework
problem solving domains programming

I
t

Teaching and Learning Framework for Programming

Learning
Resources

Learning
Supports

Debugger. Tutor.
Other students.

Textbook

View problem
interface

Facility to copy program
to VB environment

Facility lo move lines of
code.

Sets of missing lines of
o,de.

Program
completion
exercises

Test programs.

Learning
Activities

Note: Shaded
background Indicates
direct support rrom a
TSPCSMtool

Figure 3.4: Description of the Proposed Teaching and Learning Framework

With these design principles in mind the next phases of the study were planned and these

included strategies to:

• Design and develop a learning system that would implement the framework, a key

component being a technology supported tool to support the PCSM;

• Test the usability of the system with students; and

• Empirically test the system with students to detennine its support for learning and its effect

on learning outcomes.

Chapter 4 describes the design and development of the teclmology supported tool to support the

PCSM.

Chapter 3: Student Learning and a Teaching & Learning Framework for Programming Page 57

Chapter4
Development of a Tool to Support the PCSM

The previous chapter proposed a teaching and learning framework for programming together

with high level design specifications for a tool to support novices using the part-complete

solution method to learn programming. This chapter describes: the development of a prototype

of the tool; the trials of the prototype that took place with students; and the amendments that

were made to the prototype in response to student feedback.

4.1 Initial Design of the Tool to Support the PCSM
The support tool for novice programmers that was to be designed was given the name CORT,

this being an acronym taken from COde Restructuring Tool. CORT was designed to provide

learning activities to students in the fonn of part-complete progranuning problems and a nwnber

of learning supports to help scaffold their learning.

4.1.1 Functional Requirements of CORT
The learning supports and activities to be provided by CORT are shown in Figure 3.4 of

Chapter 3 and the specific functional requirements that were planned for CORT, together with

their rationale, are listed in Table 4.1.

Table4.1: Functional Requirements of CORT

Requirement Rationale for Requirement

1. A mechanism for Jeamers to view and print Problem statements need to be presented to
out a programming problem statement. students and a Print facility will enable them to

work awav from the comouler.
2. A mechanism for learners to view and print This requirement is fundamental to the PCSM

out a part-complete solution to a problem that CORT supports. Providing a facility to print
together with a set of possible lines of code the lines of code will permit students to work
that mioht be used to com1 late that ,..,,,..ram. awav from the comouter.

3. A mechanism for learners to view an Image This learning resource was Identified In the
of the Visual BASIC (VB} form that is to be teaching and leamlng framework of Figure 3.4.
used in the solution to a problem. This image
should have the various objects such as
buttons, textboxes and picture boxes
annotated with their internal names that are
used within the nrnnram.

4. A mechanism for learners to be able to easlly This requirement is fundamental to the PCSM
move a line of code from the set of possible that CORT supports.
lfnes Into any poslllon within the part-
com[late solution.

5. A mechanism for learners to be able to easily This requirement will permit students to move
move complete lines of code up and down lines of code into different positions within a part-
w!lhln the part-complete solution. complete solution should they determine that

certain lines have been nositloned incorrectlv.

Chapter 4: Development of a Tool to Support the PCSM Page 56

Requirement Rationale for Requirement
6. A mechanism for learners to be able to easily Indentation and alignment of lines of code within

indent and outdent lines of code within a control structures are important in computer
part-complete solution. programs {e.g., Baecker, DiGiano & Marcus,

1997; Miara et al, 1983) as an aid to program
comorehenslbilitv.

7. A mechanism for learners to be able to insert "White space" Is often used in computer
blank lines before or after existing lines of programs to aid readability and a mechanism is
code In a oart-comolete solution. needed to insert blank lines.

8. A mechanism for learners to be able to A mechanism Is needed to remove blank lines
remove blank lines of code from a part- should they have been inserted incorrectly.
complete solution.

9, A mechanism for learners to be able to This requirement Is fundamental to the PCSM. Jf
remove a line of code from a part-complete a distracter line of code is incorrectly Inserted Into
soluUon. a part-complete solution then a faclllty Is needed

to remove it. Such distracter lines are needed for
the Method 2 learnlng support of the Teaching
and Leaming framework that was described in
Cha[lter 3.

10. A mechanism for learners to be able to The Method 3 learning support requires students
invoke a text editor so that a part-complete to add their own lines of code to a part-complete
solution can be edited thereby allowing Jines soluUon and hence a mechanism to facilitate this
of code to be keved-ln. Is needed.

11. A mechanism for learners to be able to copy This requirement Is one of the learner supports of
a part-complete or completed solution and the Teaching and Leaming framework described
paste ii Into a programming environment In Chapter 3.
such as that provided with VB.

12. A mechanism for learners to be able to copy This requirement is needed in order that
the code within a programming environment programming code can be amended within
and paste it back Into CORT. CORT after having been tested and possibly

changed within the Visual BASIC development
environment.

4.1.2 Design issues
The design of the user interface of CORT took into consideration three issues that are

fundamental to interface design: development, usability, and acceptance (Marcus, 1992).

In the first area, development, the design and production tools that were available needed to be

determined together with the support that they would give for rapid prototyping. As CORT was

to have some quite complex functionality, it was decided that a progranuning language would

be required in its development in order to build the necessary features. Prototypes were to be

produced and the Visual BASIC (VB) progranuning language was chosen as it is one of the best

available to support such prototyping. VB can only be used to produce programs for Personal

Computer (PC) environments however, given that the students in the research would be learning

the VB language which itself only runs on PCs, this was not seen as a constraint.

In the second area, usability, it is suggested that two important issues are legibility and the

ability to convey a clear conceptual model (Marcus, 1992). The need for an interface to create a

coherent mental model in the mind of the user of the functions and structure of a computer

product or system are perceived as important (Ring, 1996). Ring expands on this to state that a

primary goal in interface design is to create an interface that facilitates the mapping of the

Chapter 4: Development of a Tool to Support the PCSM Page 59

interface designer's model onto the user's model and that the quality of the interaction depends

upon the mental model that the user has constructed of the system. To this end, a checklist was

useful during the design of the CORT interface (Marcus, 1992):

• Easily grasped metaphor and idea or image that captures the essence of the system;

• Appropriate organisation of data, functions, tools, roles, and people in a task-oriented

cognitive model;

• Efficient navigation schema in the cognitive model, that is, the action relationships that

enable reading and writing of these data, functions, tools, roles, and people;

• Quality appearance characteristics (the size, shape, colour, orientation, location, etc.) of

each visual element on the screen; and

• Effective interaction sequencing (the logical protocols for the visual elements) and their

relation to hardware input/output devices.

The third design area to be considered was user acceptance. Any program or system that has

been developed has to be accepted by its users. Commercial software usually goes through a set

of acceptance tests (Schneidennan, 1998) such as:

• Time for users to learn specific functions;

• Speed of task perfonnance;

• Rate of errors by users;

• User retention of commands over time; and

• Subjective user satisfaction.

An acceptance testing phase was planned that could adequately deal with all of these elements

in a manner which recognised the intended use of the product.

4.1.3 Interface Design
The most important functional requirements of the set of requirements that was developed for

CORT were those to support the completion method of learning to program. An interface design

for CORT was inspired by the common use within certain programs of two parallel windows

containing lists of items. In such programs, users can move items quickly and easily between

Chapter 4: Development of a Tool to Support the PCSM Page 60

the two windows thereby adjusting the contents of the lists. An example of such an interface

taken from an email program is shown in Figure 4.1.

/,j,..., G1oup Hf3

' Ayeillble member;:

SlAAT
Stemp.Pa~!
Stewa-Lliz
StoneJ,'.M
Stone)'.S
S ummeis.Laurie
Uncover

We,ne. Nigel
Weme.Nigel
Wa11enJohn
Wheatland.Le,~
Wheatley.Nole
Whiddelt.Richafd
1,,:1~ ..

•

.J

..:J
r, ~._, eidemlll adcten book eriries

r Add to Fav1de1 bt

r ~Ill" use Bfnd Send

Figure 4.1: Parallel Window Interface

GrotCJmembers:

New II ·- I
[!fl!BIR I °"'. I

With reference to Figure 4.1, to move an item to the right-hand window, the item in the left

hand window is highlighted and then the button with the right-hand arrow is clicked. The item is

then removed from the left-hand window and appears in the right-hand window. Items can also

be moved back from the right-hand window to the left-hand window.

With this style of interface in mind, it was thought that such a mechanism could be used in the

CORT interface. An initial interface design was produced such the right-hand window would

contain the part-complete solution to a programming problem and the left-hand window would

contain programming statements that might be used to complete the program. Programming

statements could then easily be moved to and from the program in the right-hand window. It

was thought that this met one of the main criteria suggested by Marcus (1992) in connection

with intetface design, i.e. that an easily grasped metaphor or idea should be used. Many

computer users are now used to building and amending lists by utilising two parallel windows.

The idea is used in several programs, in addition to the above, including the Microsoft Office

suite in which toolbars can be customised using such a mechanism.

4.1.4 CORT Prototype Program
An initial prototype of the CORT program (version 1) was created to try and meet the planned

functional requirements. Version 1 was built by the researcher using Microsoft Visual Basic

Version 6 as this is a powerful Windows programming language that lends itself to the easy

Chapter 4: Development of a Tool to Support the PCSM Page 61

creation of Windows interfaces. It was also decided to use an evolutionary prototyping in

conjunction with evolutionary design, with the prototype being used in the final system and not

having to be thrown away (Hawryszkiewycz, 2001). The initial version of CORT took

approximately 100 hours to build and debug and comprised over 1400 lines of code.

The descriptions below provide a discussion of the first version of CORT from the learner's

viewpoint.

4.1.4.1 CORT Prototype: Learner's Standpoint

1. Starting CORT
A learner runs the CORT program
and two empty parallel windows
are displayed. S/he then clicks on

the~ button and an open
dialogue appears allowing the
learner to browse and select a
text file with the file extension
•txr.

This file contains a part.complete
solution and possible l!nes of
code for that solution.

2. Loading a CORT activity
After opening the appropriate file,
the right-hand window is loaded
with the part..c;omplete solution to
a problem and the left·hand
window with lines that can be
used to complete the solution.

These windows can be expanded
and contracted horizontally so as
to view the complete lines by

clicking the corresponding .E.J
button.

Mlllllllfti@l§I Ii ifhdllffllt

MIIIIIIIM !iii ii I iiffiliiNtiffltil\1MWH ["---~· Q:ltJlal:tltlarl ~ c,,_b,ol_..,·,..i,._, --

... ,._,.,,. .. """'' °""'""' .. '"-........ , ""'" u '"
'"'"' 11, ,,-...,, °""""''· .,, .. m,
'"'"' 11, .. _,...,, °""'""''• '"'"'""
... , 1 .. , •• ,. ••• '''"'"'' • '
,.., """ • 1 .. , - ""'"''' • ' Opoo "otlT•,,,1,.,,,.u,• ro, lopuc .. I

0,,•• "'"''""'""·'" ro, '"'"' .. •i oc .,.. .. , """'" -, "' ,. ,, , .•... , '""' " ., '"

. ----·-----

Chapter 4: Development of a Tool to Support the PCSM

,IRM

,IRM

_S&l,.,.<iu . ', -................................. '

"'' .. " ,.., -iu ... 1aur.,.u,_c11a110.' . -....... _. .. , ..
.... a..,·- ···".' .·,:;

Page 62

3. Viewing the problem
description

A learner may have been given a
hard copy of the problem
description but can also view that

description by clicklng them
button. From here the learner can
select Fiie > Print lo print the
problem description. The window
Is closed by clicking the Return
button.

4. Viewing the problem
Interface

:
A learner can click on the ~
button to view the problem
interface. This is a screen image
showing the expected output
"form" for the problem that the
learner Is attempting. This Image
is annotated with the Internal VB
object names.

In this example there is a picture
box, plcDJsplay, and a command
button, cmdCalculateProfit.

5. Moving code between
windows

A line of code can be moved from
the left to the right by: highlighting
the line in the Jett-hand window;
highlighting the line in the right
hand window after which the line
from the left Is to be placed; and

clicking the~ button.

Several lines of code can be
highlighted In the left-hand
window and moved In one
operation. Lines can also be
moved back into the left-hand
window.

Mfl'iiMC1ti i , 1 11ttHiF3ttt\1 Hllil"HMI [.. ,,....,=)),le,,,-·~"'
211!!:-' -·- ·-·' -····-· ·-· •• •• ,....,,,,,.....,.,, --........... n..-1o, .. ,_.,,,,,, •••• ; ~· ~·
""

.... ~ ...
··~ ··~ ,.

'"

MJ11i11e1,H1 1 1e1motettt1t:ne:n
l" CW•~,.. ·- »,,e,. ~'I· ~·······-··->
.r-•Pltf'.17?'.,,

""' ite :: : .,,, __ :::
"'" ,::: '"'" ,::· ... "";:;
Lot "" •,::: ""'" ., ... """"': :: ,, ::::::::: ..

L_ ___ _

-

NIIIIIMN!Biiif iii t ffiht/llllHIM@ffllilff§hl flO ___ li*

QtriLC!l'JltJRlt!Jliilt.! __ _ ... """'-
C!OH II

.... "-'""'" .. '"'"'"' ,.,oc u, "'""-· 0'""'"'· '""""
'"'"' U, itcdl-=, """"""'• '"'°"""'
"" '"'" • '"'"""' . '""'"°'I ' ' L« O,Ofl' • iHloP<leo - ,o .. P<!o•J ' , .,..J>,,f
O,,•• •o1\T,«<l0•10•·"'" ro, '°"" il I .:l!:::.J
"'"" "'Tu""""'''·'" ••• '"'"' "''"'""·'"nt , ,.,.,, '" •, ro, /1-,I
ptooup1ov,P<10< "Ton) '"'" " "• '" .YJ

,jpj•j

·=··--.. ----................................. ,,
... ""I• pNf«• , i -................................. ,; ', -·• ... :_; ·,;,;
'"'""'" """ -.,,.,., ... ,, • .,, cuo~n ..

Chapter 4: Development of a Tool to Support the PCSM Page 63

6. Rearranging I manipulating
llnes

Lines of code can be rearranged
in the right-hand window by
moving them up or down. lines
can also be indented or
outdented.

Blank lines can be inserted before
or after an existing line of code
and blank lines can be deleted.

7. Adding extra lines of code
Lines of code can be keyed-in by
learners using a sJmple text
editor. This can be Invoked by

clicking on the 1™ button. After
editing the program, the editor Is
closed by clicking the Return
button and the changes are
reflected In the original right-hand
window.

8. Opening Visual BASIC
When a learner Is ready to test
their solutlon, they can click on
the :!l!J button and the code from
the right-hand window is pasted
Into the Windows Clipboard. They
then run VB and open a file that
contains the VB output "form" but
does not contain any code.

This figure shows an example VB
"form" with an empty "code"
window.

@ .. il1CP1tf4::a, -1111e11em• t l'lltt1t1
(I,,,.,, """''"~""'.,.,,

11:1·1~1ttl•l.!!>I.J!L "-... ~ """ . , .. , ... ,,. , . '
°"'" """"\"""·"' '" '"'"' ., n

·-------'

M"'lllh1iffifth1C:111C::Ut®'CIUt:H
!.. ,,, 1,1>1'.-r. ..._, ~"

e-J~J@l:Jltl11! OOlilll -· . u,"
~ ,
r- ,. """"

"'"'"" ''""°''
><1vo<o ,.., ...s.,1<olotoo<0«<_<uo•n , ... """"'"'

1,Jel•I

--.. ---.·:·::"'•'"!','"'· ~ ; -··lo ... u.. . . ' ' ·,· -.::·;-··::::·.'.''.'t,".'"'.'"._"'.''.'''·' :· i
""::'::~ "':.,";:'.:"~""::Cl_ 't:
. ·--.. _,.,,,._,,,_ ... _,
· ""' ---:,,so10.,, b<oc,oc, ~-•• ... !

:o,,. '·~,;.,.; •• 11,1 .. ,, ... r.;; ~;.,,.\;
' "· -·--· "''"'" ,.., ,~ ... 1 .. ,,..,,,, ..)•! ·-·, :.,- "

.,.,:

,.. "-- .. "" .. ' s, , •• ,, """''
..... - .. •••• , s, ' " ' .,,, •• ,.,1,-. .. 11, ,. '"' '''"' As "

'"" II, ,,...,...,, '""'''"'· '"'''""'· "-"'''"
"" '"''" • 1 .. , - "'"' •• -.. ... ,.

..
'"'" "· .. - '"""'°"• ·-"""" .
c1 ... "

l!:'J

NMll'WIMIMM ,IRM
!!lo.I• i,o,,~ --- l!loo.""" - .. lodo_.!dd-.. - """---- -----~·--·-·--.,'
:itz1·1:i-'t'lr#liil, r:·f',.N. 1

··, "·, ".:.Wlli''<:IW~·-'<!.ll

~
: ~ i:l
Ara
,:: _J

0 •

... ,.,.,, ,.....,_
"'"acc-cccoc"''\~ -·~· his 'Ferm' olready

'st,; sc •lelfll•r c!cn
ct /11Ml \cl oreBle ~

Chapter 4: Development of a Tool to Support the PCSM Page 64

9. Pasting the code Into VB
A learner now pastes the contents
of the Windows Clipboard into
VB's empty code window by

clicking the JB button. The
program can then be run and I or
traced in VB.

After testing a program In VB, a
learner can if necessary switch
back to CORT and amend the
solution, recopy the code and
repaste 11 into VB. This Is an
Iterative process that is carried
out until the program works to the
learner's satisfaction.

10. Copying code back Into
CORT

Learners may have changed code
within the VB environment. The
VB code can then be copied to
the c!Jpboard within VB and
pasted back into CORT so that
the code in the two environments
ls synchronised.

. ''""'"'''·""" lickheretopn\11 '
ode from Cliphoard

right-hand window

ode in this window
s replaced with that

Iha Cli board

4.1.5 CORT Prototype: Testing with Students

•I

• --............ - --·····--------·-·-··,
... •• , •• JI<'
_ !"'" "''""" . . >-.
"''"'" """ """"a1001a..,,,.,u.c1 .. •u -............. .,,... . ',,

..... ,.__ ... """'""· ... <!',, '
' ' . .' . ' •,,1,oc .. u,,. •. ,,.. ror i.,,

.... ""'" • Joalol'<lco" ..,.,,, ... I

...... JI, .. -. _ .. , ••• .. w ..
... • (........ <O - _, , '
e1 .. ,n . ,

J_·::-· , ••• , -- ~'. ~_,:, i
., "''' ', ,/ •. '\., .,, <J . _____ ,, _____ -·-----~--"

IEJ"'"""'-;;;;;~.;! ... ! ii l!;I", 1~11
.. _. ----- -- _. --- I

After the development of the first version of CORT, a trial was set up with students in order to

gain some initial feedback on its usability, particularly with respect to the interface, and to

remove any errors that still existed within the program. The trial was undertaken by fifteen

students who were studying a second year introductory programming unit using Visual BASIC

within an undergraduate Infonnation Systems course at an Australian university. The students

were a mixture of Australian and International students with basic computer literacy but little or

no programming experience. Each student had the use of a computer workstation within a

computer laboratory and each workstation had both Visual BASIC and CORT Version 1

installed.

The trial lasted for a period of 3 hours. In the first 30 minutes, the researcher walked the

students through the solving of a simple problem using CORT. During the next 2 hours and 15

minutes, the students were asked to attempt 4 CORT problems. In this period, the researcher

observed all of the students for varying amounts of time and discussed a variety of issues with

Chapter 4: Development of a Tool to Support the PCSM Page 65

them that they might have been experiencing. During the last 15 minutes of the trial, an open

discussion took place between the researcher and the students in order to determine any further

issues that might not have emerged during the period of observation.

Data from observations and discussions were analysed and four main problems emerged with

respect to CORT usage. Solutions were then identified and changes made to CORT as follows.

Problem 1
Students often did not reaUse that
the problem descriptions cr·ild be
printed out.

Solution
The facility to print out the
problem descriptions was made
more explicit by making the line
menu description clearer.

Problem2
Some students suggested that
the two parallel windows were
rather narrow and that more of
the lines of code could be seen
without having to expand a
window.

Solution
The buttons that allow students to
move lines between windows
were placed on the moveable
toolbar, thereby increasing the
width of the windows.

MrlhlOdi1Mdttit:tli'11tlHtii Nlifft Milt! H·',"@:t'!I I I ilQ1NLIHIM,iei •I
[~' ~·--· :er-. _. ;.,.
P:l1.::11@111thrl_mliill(
............................ _. ·Colola,...F"'""

"'""'' w-<•11 ,,..,

<oll ""'
<oll °"'
'"" "'" , ... "'"
'"" °"'

Q'"•"••llllllll Una menu

"'P"'~" ... ''"'"" eseriplion .. .,..,,...,,,,, ... 0.,.,,.,,,n,,,.,.,...,,..,... ... ,....,,,..,...,,.,, m rD'led ,

I ,,,,.,.,..,.~""
l !'<' ..
J '''°".,"'"""'"""',..w;,,.,,u,,"""

••rt""""'-"""·1u-""'""" .. ,...,..,,,w., .. ,..,
............. - , .• n1,-.

" "'·"'"'"""''""'""~ ,, .. , , ... ,,, .. ~ ,
"""'""""""'°"'""'"''°..,.~'""-.,O"F'_ ,.,,,.,,~,_,,.,,a,_ ~··---!'!~·~·~··•,.. .. ,,.,,=- .!!

......

. '
"

M\IIHOttOlffitt'tttt•11µ,,01•ilfC!•llilttt1if iW·· IM9t*tffi't®1*•111IMM,iei •i
~· ~'"'""" r;«~" ~*
P:l~l§liltl•l .ml.ii.JRI
,,_,...,,,..... .c.1, .. ,..._.. -----.

,, "•. '""' '""'"' ·-""' ""'' '""""'' '""''"' '"" "'""'"""' . ., , . .,., ,..... '''""'"'"""' , .. .
'"" ""''"'"""'"'"" '"" °"'''""'"""'"' '"" °"''"'"'""'""'' 1 , ,.u "'""'"'""""' cccc;,;c.~ , .. -,,,.,,..,.._,u«t1
0•1J 0,t,Ut?olfl'1oo .. lO«OW>t0oloocol 'D a, Hoo lo, VO!HTTo U 3'001•

''"""'""'''"" ,., ,., , , ,.., ,,. • v,,. ,,, .. ,,.,-,.
1.o, .. , • v,u, .. v.i ... o,,. ,..,,.
,.., •• , .. ,.. • v.,,. .. v,i.,:rw,.1 .. ,,

..... '"'
,..,, •• oc,o , ""'"'°"" ""

Chapter 4: Development of a Tool to Support the PCSM Page 66

Problem 3
Some students suggested too few
lines of code could be viewed In a
window.

Solutfon
A faclllty to change the font type
and size was Included.

Problem4
Some students had Indicated that
the facility to expand and contract
a window by clicking on a button
was slow and cumbersome.

Solutlon
The facility to expand and
contract the windows was
changed so that II could be
Invoked by double clicking within
the appropriate window.

'ii-~!-! .. !.-!!!l~~~~-~-!~!~l!!'!'!!'!'"··~-jiij-ij-~-!!iii''~'''~·l!I·~· ··~··~·~ .. ~-·~· 1!11!1~ 1;;;"'"' "=:::::::.~:1::::oi ... ,, ::.::.::~.: :~r:;::·.;.~:::·'"'°' '""
'' Fcntean be '"'" ·••••••••••••••••••••••••••••••
;:: hanged in "'" """"" ""'""
" Preference,• " <U••II
'" £... ~ ",-.. , .. ,..,"',.

I""'"""" p;o;:;.-- r,,-!:;..J ~ ""''"' ""'""""' "'-•·-••-\'c'F:,. . p.a -""'.J •- ..J '"' " J v,1, .. , t1,1 ... ,,

!,....,._«.do ""'"" " -., .. <) -~=-··' :: ., ,..., , '
G... ~ .:.)111~ i -.. '"""'' -I ___ .. __ _ . '"""'"'

[- ,.
j~ .:I ~:::::::::!!:!;

~::.!.':!r"~...:!'-"'" w, ~::~.:."::~!::;' -==-==='-~~~~~
-~-~~~-~·:__ _____ ,!::-_··------·- ·--. . _-:!_

8'11iilh·1fffll ' i·IEIA'it'i'••liiR"l1ilttcfi!tt:Rii·1HW' 1•11•m1V•liflf:M lalal
·!" Doi-• .-., '"'"'' ""'
.eJwl~ltL•[.gJJ¥1•1 -· 1 ,_..,,.,_ -·--·-·-------·-----------

'T>!o ,,., '
'" ... """""'
°''"' ''""",..._.,.,.!I , .. -......... ,..,,.,..., """'""'"'"" .. ,,..,,,, , ,.
'"'"" , • ..,, ••• ,, , ,, ... 1 ... """""'' . "'""'"""'""'_., ... ,

..... "'' ,
u, .,,,,,_,, • "°""'"'"' ... ' • voi .. 0no • .. , .. ,..,

'""''"

he right-hand wlndcw
ubeenNpanded.lt
an b• retumed tc i1$

k>rlgln1I size by doubla
UcUng In the wlndcw Of

llekln here

,,, , ... , ~·r.:.;;··· -·· --
hl1 buttcn. lhatexp111di f!.J •H••1•1-1-1r.1111..,1g.1 :i.ij
ccnln!cts Iha laft-h1rn:I ,..,..;,,- ________________ ,
ndcw, hn bean ,,,,..,1

lsabled whilst lhe ,,,...,,
gnl-hand wlndcw Is

1~Mdtd ~
----··---- .. __ ,____ ------·. -------- . _.,:....;...)

Other changes were made to the original CORT prototype to take into account a raft of other

forms of student feedback:

• The problem description window was changed to display automatically after a CORT part·

complete solution file is loaded. This enabled students to immediately view the problem

statement without having to invoke the facility from a menu item.

• A menu item that allowed the printing out of the contents of the two windows was added to

enable students to work on the initial development of a problem solution away from the

computer.

• The facilities to view information about a problem were also made available within the line

menu in addition to the toolbar buttons of the CORT prototype. This ensured that all of the

facilities that were available from buttons were also available from the textual line menu,

thereby enabling students to invoke facilities in two different ways.

Chapter 4: Development of a Tool to Support the PCSM ?age 67

• The two parallel windows were made to automatically resize when the main fonn is resized

within Microsoft Windows. This enabled students to resize the main CORT window and

still view the code in both pnrallel windows.

• A "Save As .. " facility as well as a "Save" facility was added, thereby enabling a CORT file

to be saved with a different name.

Other changes to the prototype that were made took into account some observations by the

researcher:

• The file extension of the main CORT file corresponding to a CORT parHomplete solution

was changed to "pcs", this being an acronym for "part-complete solution". This file

originally had the file extension "txt11 in the prototype and this caused some confusion for

students as some of the programming problems utilised text files for input and these too had

file extensions of "txt".

• The automatic alphabetical sorting of the lines of code in the left-hand window was

removed. Such lines of code are selected and used by students to complete a part-complete

solution in the right-hand window. For some CORT problems, it was believed that it would

be useful to group sets of similar lines of code together in the left-hand window, and the

automatic sorting oflines had not pennitted this facility. For example, a "correct11 line of

code to be used in a solution could be grouped with other similar, yet incorrect lines of

code, thereby requiring students to study the lines and select the one they believed to be

correct.

4.2 CORT Files
The changes made to the CORT prototype resulted in CORT Version 2. At the same time the

files structures were finalised. Each CORT problem was built with a set of files and these are

shown in Table 4.2.

Table 4.2: Required Files for Each CORT Problem

File Type File Extension File contents
Rich Text file prt, Description of the problem to be solved.

Text file pcs The part-complete solution together with the possible missing
lines

Graphical Image gif Annotated screen shot of the VB Interface for the problem
solution

Text files frm and vbp The VB files for the problem solution without the necessaiy
lines of code.

Chapter 4: Development of a Tool to Support the PCSM Page 68

For example, consid~.CORT problem given the number 00010. The required files for this

question are Shown in Figure 4.2. The main names of each file are identical however the file

extensions are different. By keeping the main filenames the same, CORT "knows" which files

should be accessed after the initial part complete solution, 00010.pcs, has been opened within

CORT by a learner.

Figure 4.2: CORT Flies

ti-00010.frm

~00010.gif
l.!!)00010.pcs

[!100010.prb

~00010.vbp

4.2.1 Creation of Part-Complete Solutions for CORT
CORT was intended to be utilised with students who were learning programming with Visual

BASIC. Titls required the researcher to be able to create programming problems and part

complete solutions to those problems in Visual BASIC. The procedures for creating a CORT

problem are as follows, the example being for a problem that is numbered 00110.

1. Creation of a problem I
activity

A programming problem is
devised and keyed-into MS Word.
This ls then saved as a rich text
file and given the file extension
".prb".

>:_"·• ''! ·:•·· ·' .: "· '."."'..' ~-·:~ '\''
Quoollon 00011a '1====•

Fil& saved as a
You oon pnnl olt tho !Iii• l~h t&l<I fll• will, ms Print d,..11, ollhl, problrm .t.o ..

Mal« w, of CORTt.o, ' n~m& ohould oCCf,Utth, b,lanco rll<rillr" y,or, fer>.,,
.,..ti,ldopos,tof!.lOO 0110. rb y,r.:m4l'"P"""""""'dthomtero!lm1Mtll~d
yoar,sl 2W,

Tho prol"'l'\st.culd do lhe !ollO'IIU!I<
D«\ore a11...;,bJo, mD,m ou\Oioo,I<

A=";71 U., •aloe 500 lolh< ,on,bl, .. 1,n"
lnor•.,• lh•olll'!abl• b~"'" by• ~ of ,ts .. iue 1nor.,,. u,.,,n1blo b~""'' by• W, of LIS ,alu,
1"'"'"'• lh.,on,ble b~"'" by l 2l\li of!I! •aloe
Olq>JI u,, final balonco m , picture box

Hole
Tho <rterfaoe ,.,, b< ""''db> ,,to:t•"• Prebleml View Prcblem !ntorfm frcrntlle l,ne m<nU J

•

t!ot •ti lines of code from the i.fl-hand ,ide need t• be uoed. • :,
Tom ar, q...,t,on, IN!youh.,, lo,,,.,,.,. conetr!Llnglhe pn,\>lem and th<•• ear, be mw,d by
,; / •"-»-••n-,n ... ••-•""••••~•"-••- '--:•• , ... --,

Chapter 4: Development of a Tool lo Support the PCSM Page 69

2. Solution put Into CORT
The problem Is solved in VB and
the solution Is saved with the
name 00110Solutlon.vbp. The
code is then copied and pasted
Into the right-hand CORT window

by cl!cking the tt.J button.
The VB code is then deleted from
the VB program and saved as
00110.vbp.

3. Adding extra lines of code
The CORT editor is now invoked
and extra, incorrect lines, are
added if necessary. The
requirement to do this depends
upon the CORT method being
utilised.

4. Removal of lines of code
from the solution

Certain lines together with the
Incorrect Jines are moved to the
left-hand window by highlighting

A.I
them and clicking-""-'· The CORT
file Is now saved with the name
00110.pcs.

M1111'U•'l!it f · ,·IF§ltt5httW

><w•,e """ .-.... , .. oo.<ltUO
...., <oleo!•" , .. "'' o., ... , "'•" .., ,
"""'"" , , ""'"""' ... , , ... ,....,. . ,., ..
•• , b'Ol , • "''"""" • ,

l'!lxl

orrect solution
as been pasted

nto tne right-~end
,, ,,., , , .. ,,.,.,. .. ,., .. ,, ,~

~~~---~-------.....:..ll~ .. ;..., ___ . _________ --" 

. 1 .. p.-. .. w,..,, ....... """ 
t>lwleltt.!n:l•U~ll"' !!I --... ~ ............. _.. ,'""'"'"""""" 

°"'"" '''""" 
"'"°" ""'"" 
....... , .. ~ .... , ..... _, .... 11 

..., c""""" ,., ""' "''"" "'= """'"'' .. .,..,,. 
""' .. , ...... """" --------,,=~==~ 
"°'"""' · "'" Exln,, ITTtorrecl .. , ....... ,_ ...... ::''';-;'·:"~·----ii,i;;;~,i::J .. ,, .. , ... ,. ... , '·'" in&s added .. ,.,., ......... ,. ... , .. ,. . '·"" 
'""""' • ,.,,.., • ,., .. ,. • a.om 

'"""'"'''"" ..... , .. , .... '" ,., .. , .... ,, ..... ,.,.,,, ... ,, .. , .. , .... " ,., ........... 
'"' .... 

------r--·--

• 

- - -------·-. -·'·-·--------~~~----' 

83"1f11QIIMAftlit:§lf4 
"· lt·F ,@fl 

!~ 1,,, • ...,.. 1•,-, ....... ~ .. 
J<l•lml:tltl•L~I, l•I - .... _ ...... i--------·,r;ai,,O,------------, 
'"' """"'' .. ''"'" Olm ool..o, " ,,., .. 

oo1, .. , • '"''"" • """""' • o.,,. .. , .............. "·"" 
>>001' I• ·'""' •r,M! o,,,.,. " 1•, '''"""' 

UneshlVI! been 
ovedtctlie 

eft·hlllldWind 

.,, .... '"" -,,.,,,, .. ,_cu.,11 -''''"'"' , ....... , ...... 
•• ,...., •• ,00 
•• , ....... ,,,,e, ••• ,..., ... o .... 
•• , .... • ""''"" + """""" • 0,05'5 

, .. , ... 
his ha• ncwb•~oma 
plll·COmpl&te 
olulion 

Chapter 4: Development of a Tool to Support the PCSM Page 70 



5. Creation of VB "Form" 
Interface 

The output "form" that is within 
the VB file 00110.vbp is copied 
using an image copying program 
and pasted into a graphics editing 
program such as Pain!Shop Pro. 

The VB objects are then 
annotated with their VB internal 
names. This file is saved as a 
"gir file and given the name 
00110.glf. 

4.3 Summary 

h• '" ,_ ...,. ,;.,, .. , ..... lh'•" ,,.,.,· "''·'~ .•• 

Ellcilliill•t, I·' 111o1111J 3ill7~!/i(iit ~ 
gJri cl'?l;.. I .,l.tl§'llillll"IY,l">IIJ /fol . 

i 
[;a 
•· •· •· 

.Ill!. 

Following the development and testing of the functional requirements for CORT Version 2, the 

tool was utilised in a study that sought to explore: 

• TheuseofCORTbystudents; 

• The support for learning provided by the PCSM within CORT; and 

• The impact of the PCSM within CORT on learning outcomes. 

The detailed research design is described in the following chapter. 

Chapter 4: Development of a Tool to Support the PCSM Page 71 



Chapter 5 
Research Design 

This chapter discusses the design of the research that investigated: the use of CORT by students; 

the ways in which a technology supported part-complete solution method supported the learning 

process; and the impact that CORT and part-complete solutions had on learning outcomes. It 

begins by discussing research methodologies in general and the process by which a particular 

methodology was chosen for this project. It then describes the research questions, the data 

collection methods that were used, and the actual data gathering that took place. 

5.1 Research Methodologies 
Research is a systematic investigation to find answers to a problem (Burns, 1994) and 

philosophers of science and methodologists have been engaged in a long-standing 

epistemological debate how best to conduct research (Patton, 1990). According to Patton, this 

debate has centred on the relative value of two fundamentally different and competing inquiry 

paradigms. The first paradigm is logical-positivism which uses quantitative and experimental 

methods to test hypothetical-deductive generalisations. The second and competing paradigm is 

phenomenological inquiry which uses qualitative and naturalistic approaches to inductively and 

holistically understand human experience in context-specific settings. Its purpose is to develop 

an understanding of individuals and events in their natural state, taking into account the relevant 

context (Borg & Gall, 1989). 

In the past educational research generally followed the first paradigm above of traditional 

objective scientific method, however there has been a strong move towards the second paradigm 

of a more qualitative and subjective approach since the 1960s. 

The main strengths of quantitative research methods are thought to lie in precision and control: 

precision through quantitative and reliable measurement; and control through the sampling and 

design (Bums, 1994). Also, hypotheses are tested through a deductive approach and the data 

collected can be subjected to statistical analysis. However, Bums also points out some of the 

limitations of quantitative research including: the deni&iration of human individuality and the 

ability to think; and that quantification can become an end in itself rather than a humane 

endeavour seeking to explore the human condition. 

Chapter 5: Research Design Page 72 



According to Cohen and Manion (1994) other criticisms levelled at positivist social science that 

uses quantitative methods include: 

• It presents a misleading picture of the human being in that it is conservative and ignores 

important qualities; 

• It fails to take account of our unique ability to interpret our experiences and represent them 

to ourselves; and 

• Findings of positivistic social science are often said to be so banal and trivial that they are 

of little consequence to those for whom they are intended. 

In contrast to quantitative research, qualitative research stresses the validity of multiple meaning 

structures and holistic analysis. It is based upon a recognition of the importance of the 

subjective, experiential "lifeworld11 of human beings. Qualitative research can be considered 

particularly relevant as there can be little meaning, impact or quality in an event isolated from 

the context in which it is found (Eisner, 1979). One of the main advantages of this approach is 

that it makes possible distinctive insights into the field under investigation. However, some of 

the limitations of the qualitative research method pointed out by Bums (1994) include: the 

problem of adequ~te validity and reliability because of its subjective nature; and the time 

required for data collection, analysis and interpretation. 

Bogdan and Bilden (1992) describe several characteristics of qualitative research that are 

particularly useful for this research study. These are that qualitative research: has the natural 

setting as the direct source of data and the researcher is the key instrument; is descriptive; is 

concerned with process rather than simply outcomes or products; tends to use inductive data 

analysis; and is concerned with "meaning". 

Writers in the domain of qualitative research display a variety of perspectives. For example 

Tesch (1990) lists forty-five approaches to qualitative research and Patton (1990) suggests ten 

approaches. Merriam (1998) describes five types of qualitative research commonly found in 

education, these being the basic or qualitative study, ethnography, phenomenology, grounded 

theory, and case study. Merriam suggests that although these types can be distinguished from 

each other, they all share the essential characteristics of qualitative research: 

• The goal of eliciting understanding and meaning; 

• The researcher as primary instrument of data collection and analysis; 

• The use of fieldwork; 

Chapter 5: Research Design Page 73 



• An inductive orientation to analysis; and 

• Findings that are richly descriptive. 

Merriam's common types of qualitative research in education are sunnnarised in Table 5.1. 

Table 5.1: Common Types of Qualitative Research in Education (Merriam, 1998, p.12} 

T pe Characteristics Example 
Basic or Generic • Includes description, interpretation, Meaning-making in transformational 

and understanding; learning. 
• Identifies recurrent patterns In the 

form of themes or categories; 
• Mav delineate a crocess . 

Ethnography • Focuses on society and culture; A study of twenty successful Hispanic 

• Uncovers and describes beliefs, high school students {Cordeiro and 
values, and attitudes that structure Carspecken, 1993). 
behaviour of a Qrouo. 

Phenomenology • Is concerned with essence or basic The role of intultion in reflective practice 
structure of a phenomenon; (Mott, 1994). 

• Uses data that are the participant's Practices Inhibiting school effectiveness 
and the investigator's first hand (Aviram, 1993). 
exnerience of the nhenomenon. 

Grounded Theory • Is designed to inductively build a A framework for describing 
substantive theory regarding some developmental change among older 
aspect of practice; adults (Fisher, 1993). 

• Is "arounded" in the real world, 
Case Study • ls intensive, holistic description and A comparative case study of power 

analysis of a single unit or bounded relat!onshlps in two graduate classrooms 
system; (Tisdell, 1993). 

• Can be combined with any of the 
above ""'es. 

The main aims of the inquiry were to investigate: 

1. The use of CORT by students. 

2. The ways in which the part-complete solution method (PCSM) within the CORT system 

supports the learning process. 

3. The impact that the PCSM within the CORT system has on learning outcomes. 

From the previous discussion, it was detennined that a qualitative approach would be best suited 

for exploring 1 and 2 above as it was unclear how CORT would be used by students and how a 

technology supported part-complete solution method might support learning. A quantitative 

approach was deemed appropriate for exploring question 3 as it was only concerned with 

learning outcomes. The validity and reliability of the findings in answering research questions 1 

and 2 could also be supported by the collection of appropriate quantitative data. The use of 

complimentary quantitative and qualitative methodologies is supported by several writers ( e.g., 

Chapter 5: Research Design Page 74 



Reichardt and Cook, 1979; Mercurio, 1979; Miles and Huberman, 1994), however it should be 

recognised that the main research thrust of this project was to be qualitative. 

5.2 Selection of a Research Methodology and Data Collection 
Methods 

While a qualitative methodology appeared to be the best fit for the needs of this research, the 

term "qualitative" is very general and there are many qualitative methodologies to choose from. 

Crotty (1998, p.1) makes the following important observation: 

"Research students and fledgling researchers-and, yes, even more seasoned 

campaigners-often express bewilderment at the array of methodologies and 

methods laid out before their gaze. These methodologies and methods are not 

usually laid out in a highly organised fashion and may appear more as a maze 

than as pathways to orderly research, There is much talk of their philosophical 

underpinnings, but how the methodologies and methods relate to more 

theoretical elements is often left unclear." 

Crotty (1998) suggests that in any research project, the methodologies and methods that will be 

employed need to be chosen together with the justification of that choice. This leads to four 

specific questions that need to be considered with respect to a research project: 

• What methods should be used? 

• What methodology governs the choice and use of methods? 

• What theoretical perspective lies behind the methodology in question? 

• What epistemology informs this theoretical perspective? 

Crotty argues that these four elements are basic to any research process. Together they govern 

the choice of: 

• Methods: the techniques or procedures used to gather and analyse data related to some 

research question or hypothesis. 

• Methodology: the strategy, plan of action, process or design lying behind the choice and use 

of particular methods and linking the choice and use of methods to the desired outcomes. 

• Theoretical perspective: the philosophical stance infonning the methodology and thus 

providing a context for the process and grounding its logic and criteria. 

Chapter 5: Research Design Page 75 



• Epistemology: the theory of knowledge embedded in the theoretical perspective and thereby 

in the methodology. 

These four basic elements are interlinked and infonn one another as shown in Figure 5.1. 

Epistemology Theoretical Methodology Methods 
Perspective 

Figure 5.1: Four Basic Elements of Research (Crotty, 1998, p.4) 

A representative sample of the four elements is shown ir. Table 5.2. Crotty further argues that 

the lists shown are by no means exhaustive. 

Table 5.2: Basic Elements of Research (Crotty, 1998, p.5) 

Epistemology Theoretical - 1 Methodology Data Collection 
perspective Methods 

• Objectlvlsm 

• Constructivism 

• Subjectivism (and 
their variants) 

• Positivism (and post
Posttivism) 

• lnterpretivism 

• Symbolic 
interactlonlsm 

• Phenomenology 

• Hermeneutics 

• Critical inquiry 

• Feminism 

• Postmodemism 

• etc. 

• Experimental 
research 

• Survey research 

• Ethnography 

• Phenomenological 
research 

• Grounded theory 

• Heuristic Inquiry 
., Action research 

• Discourse analysis 

• Feminist standpoint 
research 

• etc. 

• Sampling 
Measurement and 
scaling 

• Questionnaire 

• Observation 

• Participant 
• Non-participant 

• Interview 

• Focus group 

• Life history 

• Narrative 

• Visual ethnographic 
methods 

• Statistical analysis 

• Data reduction 

• Theme Identification 

• Comparative analysis 

• Cognitive mapping 

• lnte1pretative methods 

• Document analysis 

• Content analysls 

• Conversation analysis 

• etc. 

The application of these four research elements to the current study yielded the following 

analyses and decisions. 

Chapter 5: Research Design Page 76 



5.2.1 Epistemology 
One particular view of cognition that emerged from the literature review was that of 

constructivism (e.g., Jonassen 1991, 1994, 1995; Jonassen and Reeves, 1996; Ring and 

McMahon, 1997). Constructivism is the theory that guided this research as newly constructed 

knowledge may well be different for different people as they all have different sets of existing 

schemata and how people construct or amend schemata is dependent upon their existing 

schemata and mental models. The literature suggests that a framework of learning for a complex 

problem solving domain, such as programming, should help students construct appropriate 

mental models and also encourage the building of appropriate domain schemata. Hence the 

epistemology chosen for this research project was that of knowledge construction. 

5.2.2 Theoretical Perspective 
While there are many theoretical perspectives, the appropriate perspective appeared to be 

interpretivism-phenomenology. In interpretivism, understanding the meaning of a process or 

experience constitutes the knowledge to be gained from an inductive, theory-generating mode of 

inquiry (Merriam, 1998). Phenomenological inquiry focuses on the question: "What is the 

structure and essence of experience of this phenomenon for these people?" (Patton, 1990, p.69) 

where the phenomenon for example might be an emotion, a job, or a program. 

Phenomenologists believe that it is important to know what people experience and how they 

experience the world. In this research project, the phenomena include students using the CORT 

program itself, and students attempting different types programming completion problems. 

Patton suggests that a phenomenological perspective can mean either or both of the following: 

1. A focus on what people experience and how they interpret the world. This could be done by 

interviewing without the researcher actually experiencing the phenomenon. 

2. A methodological mandate to actually experience the phenomenon being investigated. This 

would imply the use of participant observation. 

The use of an interpretivism-phenomenology theoretical perspective appeared to provide the 

most appropriate Jens for the planned inquiry. 

5.2.3 Methodology 
There are many methodologies available for an interpretivism-phenomenology theoretical 

perspective and several are listed in Table 5.2. The main intention of this research project was to 

investigate how students use CORT and part-complete solutions when learning progranuning. It 

was thought that observation and participation by the researcher had potential as a major 

Chapter 5: Research Design Page 77 



method of collecting data and that an action research methodology might be suitable for the 

study. 

Action research is defined by Bums (1990, p.252) to be: "The application of fact-finding to 

practical problem solving in a social situation with a view to improving the quality of action 

within it, involving the operation of researchers, practitioners and laymen." 

Whyte (I 989) indicates that action research explicitly and purposefully becomes part of the 

change process by engaging people in a program in studying their own problems in order to 

solve those problems. Zuber-Skerritt (1992, p.14) presents a useful working definition of action 

research which includes the following: 

"If yours is a situation in which 

• people reflect and improve (or develop) their own work and their own 

situations 

• by tightly interlinking their reflection and action 

• and also making their experience public not only to other participants but also 

to other persons interested in and concerned about the work and the situation 

(i.e. their (public) theories and practices of the work and the situation) 

and if yours is a situation in which there is increasingly 

• participation (in problem-posing and in answering questions) in decision 

making 

• learning progressively by doing and by making mistakes in a "self- reflectiw 

spiral" of planning, acting, observing, reflecting, replanning, etc. 

then yours is a situation in which action research is occurring". 

The above working definition suggested that an appropriate methodology for this research 

project was action research, with students attempting to reflect and improve upon their 

knowledge of programming and also to make that knowledge public to the researcher acting as a 

participant-observer. The researcher was the practitioner exploring his practice of helping 

students learn programming. 

A quasi-experimental design framework was planned for use within the action research 

methodology, The design was deemed to be quasi-experimental as it was not possible to achieve 

Chapter 5: Research Design Page 78 



"randomisation" of exposures which is essential if true experimentation is to take place (Cohen 

and Manion, 1994). Best and Kahn (1998, p.175) state in connection with such designs, that 

"because random assignment to experimental and control treatments has not been applied, the 

equivalence of groups cannot be assured". In a quasi-experimental design, it is possible to have 

control over the "who and to whom of measurement" but have little control over the "when and 

to whom of exposure". Such a design is perceived as a compromise (Kerlinger, 1970) and this is 

often the situation in education as the complete random selection of subjects is often very 

difficult. Since equivalence among students within the groups could not be guaranteed, a quasi

experimental design appeared the best alternative. 

As the research involved students, it appeared appropriate that the action research methodology 

should make use of several case studies. A case study is defined as an intensive, holistic 

description and analysis of a single entity, phenomenon, or social unit (Merriam, 1998). 

According to Patton (1990), a case can be a person, an event, a program, an organisation, a time 

period, a critical incident, or a community. In the context of the current research, the cases 

involved people (students) using CORT over certain time periods of time. 

Since a principal aim of this study was to explore if CORT could enhance learning outcomes, a 

quantitative element was planned for the study. This was to enable the achievements of a 

control group to be tested against those of an experimental group to detennine if any significant 

differences could be attnbuted to the use of CORT. 

5.2.4 Data Collection Methods 
Several data collection methods were considered for use within the chosen quasi-experimental 

action research methodology. In order to help improve internal validity, it was planned that the 

research study would use a variety of methods and also make use of some quantitative 

teclmiques. 

The problem of internal validity concerns whether researchers actually observe or measure what 

they think they are observing or measuring (Bums, 1994). For example, participant observation 

is considered to have high internal validity as it is conducted in natural settings that reflect the 

reality of the life experiences of participants. 

A common way to improve the internal validity of a study is triangulation. It is defined as nthe 

use of two or more methods of data collection in the study of some aspect of human behaviour" 

(Cohen and Manion, 1994, p.233). Patton (1990, p.187) has a more general definition as he 

states that "it is a combination of methodologies that are used in the study of some phenomena 

or programs so as to strengthen a study design". 

Chapter 5: Research Design Page 79 



The following discusses the various methods that were considered for use in the study. 

5.2.4.1 Observation 
This is a basic ethnographic approach that involves the observation, organisation and 

interpretation of data. One of the advantages of this method is that it makes it possible to record 

behaviour as it occurs (Burns, 1994). Bums suggests that there are four possible research 

stances for the person who is participating in a research study: the complete participant, the 

participant-as-observer, the observer-as-participant, and the complete observer. 

The advantages of observation include (National Science Foundation, 1993, 1997): 

• They provide direct infonnation about behaviour of individuals and groups; 

• They pennit a researcher to enter into and understand situation/context; 

• They provide good opportunities for identifying unanticipated outcomes; and 

• They exist in a natural, unstructured, and flexible setting. 

However, disadvantages include (National Science Foundation, 1993, 1997): 

• They are expensive and time consuming; 

• Observers may need to be content experts; and 

• The behaviour of participants may be affected. 

The research stance of participant-as-observer appeared to have potential as a major data 

collection method in this study. An aim of the research was to detennine CORT's usability and 

its support for student learning, and observation of students using CORT seemed to be an 

appropriate method to use. It was thought that the method might enable the researcher to 

understand the variety of ways different students use CORT and to probe students when certain 

unanticipated actions were observed. 

5.2.4.2 Interviews 
This method is a major tool in qualitative research (Bums, 1994) and provides a way of 

providing corroboration of data from alternative sources (Eisner, 1991 ). Accounts derived from 

interviews can be studied for themes and this data reported as narrative containing direct 

quotations (Bums, 1994). Three types of question can be asked in interviews: closed items, 

open-ended items, and scale items. 

Chapter 5: Research Design Page 80 



The advantages of interviews include (National Science Foundation, 1993, 1997): 

• They usually yield rich data, details and new insights; 

• They pennit face-to-face contact with respondents; 

• They provide an opportunity to explore topics in depth; 

• They enable the interviewer to experience the affective as well as cognitive aspects of 

responses; and 

• They allow the interviewer to explain or help clarify questions, increasing the likelihood of 

useful responses. 

However, disadvantages include (National Science Foundation, 1993, 1997): 

• They are expensive and time-consuming; 

• An interviewee may distort infonnation through recall error, selective perceptions, or a 

desire to please an interviewer; and 

• Flexibility can result in inconsistencies across interviews. 

It was thought that the use of interviews in this study could enable the clarification of certain 

issues that might emerge during observations of students using CORT. 

5.2.4.3 Questionnaires 
The simplest and cheapest method of surveying a group is to use a questionnaire. The 

questionnaire, like the interview, is another descriptive survey method, surveys being the most 

common data collection method within educational research (Bums, 1990). According to the 

National Science Foundation (1993), not only are questionnaires useful for obtaining 

information about the opinions and attitudes of participants in a study, but they are also useful 

for the collection of descriptive data, for example personal and background characteristics (race, 

gender, socio-economic status) of participants. 

The advantages of questionnaires include (National Science Foundation, 1993; Burns 1990): 

• They enable data to be gathered from the whole population of participants thereby helping 

to validate the data collected by observation and interviews; 

• They are inexpensive; and 

Chapter 5: Research Design Page 81 



• They can be completed anonymously. 

However, disadvantages include (National Science Foundation, 1993; Bums 1990): 

• Unlike interviews, further probing questions cannot be asked dependent on responses given 

to previous questions; and 

• There is no control for misunderstood questions, missing dnta, or untruthful responses. 

In this inquiry, it was thought that questionnaires might provide a way of collecting student 

background data and data concerning how they utilised CORT when different problems were 

attempted. 

5.2.4.4 Document Studies 

Documents are an important source of data in many areas of investigation and include records, 

reports, printed forms, etc. A document can be defined as "any written or recorded material that 

was not prepared specifically in response to a request of the inquirer11 (Lincoln and Guba 1985, 

p.277). 

The advantages of document studies include (National Science Foundation, 1997): 

• They are available locally and are inexpensive; 

• They are grnunded in the setting and language in which they occur; 

• They are useful for determining value, interest, positions, political climate, public, attitudes, 

historical trends or sequences; and 

• They are unobtrusive. 

However, disadvantages include (National Science Foundation, 1997): 

• They may be incomplete; 

• They may be inaccurate and of questionable authenticity; and 

• The analysis may be time consuming. 

In this inquiry, it was thought that document studies had potential to be used in gathering data 

concerning students' previous achievement levels. 

Chapter 5: Research Design Page 82 



5.2.4.5 Performance Assessment 

The most common form of performance assessment is the test in which an individual's 

knowledge, depth of understanding, or skill is measured (Borg, Gall and Gall, 1993). Most tests 

are either nomHeferenced (measuring how a given student performed compared to a previously 

tested population) or criterion-referenced (measuring if a student had mastered specific 

instructional objectives and thus acquired specific knowledge and skills) (National Science 

Foundation, 1993). 

The advantages of performance assessment include (Borg, Gall and Gall, 1993); 

• They are inexpensive and easy to administer; 

• They are easy to use and often require less time than some other methods; 

• The whole population can be tested; and 

• They provide "hard" data. 

However, disadvantages include (Borg, Gall and Gall, 1993): 

• Because they are timed, a slow worker is disadvantaged; and 

• If as student is ill or tired, they may perform below their capacity. 

One of the aims of this inquiiy was to investigate the impact of the CORT system on student 

learning outcomes and the use of student performance asses::ment seemed to be an appropriate 

method to collect such data. 

5.2.5 Overall Research Process for the Study 
Applying the four basic elements of research of Crotty (1998) to this inquiry suggested that the 

overall research process should be that shown in Figure 5.2. 

Eplstemology: knowledge Theoretical perspective: 
construction lnterpretivism-phenomenology 

I 
'I' 

Methodology: quasi- Data Collection Methods: 
observation, interviews, experimental action research with 
questionnaires, document case studies studies, performance assessment 

Figure 5.2: Overall Research Process for the Study 

Chapter 5: Research Design Page 83 



5.3 Research Questions 
The wording of the research questions detennines the focus and scope of the study. Morse 

(1998) suggests that as qualitative research is often tenuous, especially in the early stages, the 

research questions should be as broad as possible so that the study is not prematurely delimited. 

By making the research questions explicit, a researcher is helped to channel their energy in the 

"right" directions and to focus their data collection (Miles and Hubennan, 1994). 

The aims of the research were to determine the ways in which students made use of CORT and 

to what extent student learning is supported when using the technology supported part

completion method of learning to program. To achieve this, the study sought to explore the 

following questions: 

1. How did students use CORT? 

2. How did the PCSM within CORT support the learning process? 

3. What impact did the use of the PCSM within CORT have on learning outcomes? 

5.4 Research Design 

5.4.1 Background 
The investigation was planned to take place over a period of one semester at a university, a 

semester being 14 teaching weeks. The unit that the students were to take was an introductory 

programming unit for students within a school of Management Information Systems. Students 

are expected to gain fundamental programming knowledge in this unit including the three basic 

control structures, built-in functions, user-defined functions, event and general procedures, text 

file processing, and array processing. An example of an outline for this unit is included in 

Appendix 1. 

The traditional way of delivering this unit is to have a two hour lecture, in which basic 

knowledge is introduced to the students together with methods of solving standard problems, 

and to have a one hour computer laboratory. In a laboratory, students are given programming 

problems to attempt to solve using Visual BASIC. If a student requires help then they usually 

ask fellow students or their tutor. 

The students had to enrol in one of four computer laboratories. Two of the laboratories were to 

use the CORT program and the other two laboratories were to have "conventional" 

Chapter 5: Research Design Page 84 



programming exercises without CORT. In order to reduce possible bias, at the time of 

enrolment, the students did not know whether they would be in the CORT or non-CORT group. 

5.4.2 Subjects 
The students who were the subject of the research comprised 16 females and 33 males, this 

being a typical composition for this unit of study. There were 21 younger students whose ages 

were less than 21, and 28 older students. 26 of the students had moderate computing experience 

and the remaining 20 had extensive computing experience. 

The CORT (experimental) group had 5 females and 19 males while the non-CORT (control) 

group had 11 females and 14 males. The CORT group had 12 younger and 12 older students, 

whereas the non-CORT 1,rroup had 9 younger and 16 older students. 

The uneven division of numbers between the different groups was due to the students selecting 

computer laboratories according to times that were convenient to them f,nd not being directed to 

specific laboratories by the researcher. The students were given an opportunity to change 

groups, however all chose to remain in their initial 1,rroups. 

5.4.3 Data Collection Plan 
A data collection matrix has been used to summarise the methods of data collection; data 

required; and the ways in which the data were to be analysed, for each of the research questions. 

The data collection methods thal were used and the data collection matrix are shown in Tables 

5.3 and 5.4 respectively. There were several data collec\ion methods used, some data being used 

to triangulate other data rather than to prove particular points. 

Chapter 5: Research Design Page 85 



Table 5,3: Data Collection Methods 

a Observation d Document study: University record system 

b Interviews of students ' End-tests 

c Questionnaires 

Table 5.4: Data Collection Matrix 

Research Question Method Data Required Analysis 
. 

1. How students use a,b. c List of usage statistics. Mapping of usage 
CORT. Descriptions of patterns. 

preferences concerning Identification of trends 
CORT. in the preferred ways of 
Examples of student using CORT. 
perceptions of the level Identification of trends 
of difficulty of using in the levels of difficulty 
CORT. of using CORT. 
Interview data. 

2. How does a a, b,c List of support types Exploration of change 
technology enabled provided by CORT. In types of assistance 
part-completion List of levels of support and levels provided by 
method support the provided by CORT. CORT over time. 
leamlng process. 

List of cognitive Influence of CORT on 
strategies used by student cognitive 
students. strategies. 

Interview data. Identification of trends, 

3. What Impact did the c,d, e Data from university Statistical analysis to 
use of CORT and record system. determine if there are 
part-complete Initial questionnaire on any significant 
solutions have on computing knowledge differences between the 
learning outcomes. and experience. test results. 

Post tests and formal 
assessment. 

AU of the data were collected over a period of one semester and the data collection schedule is 

shown in Table 5.5. 

Table 5.5: Data Collection Schedule 

lnlUal 
questlo- Document study of Student Interviews 
nnaire student records 

I Week 1 , I 3 
No. I 4 , I 6 I , I 8 I 9 I 10 1 11 12-14 15 

~onsen 
Observation of students within laboratories. EOd 

1o~, SoluUons to programming problems. tests 
Student problem questionnaires. 

Chapter 5: Research Design Page 86 



5.4.4 Student Consent to the Research 
As part of the university research ethics policy it was necessary to have the research accepted by 

the university ethic's committee and to obtain approval from every student in the study. It was 

necessary to create two different student consent fonns, one for a CORT group and one for a 

non-CORT group. The fonns are shown in Appendices 2 and 3 respectively. 

5.4.5 Initial Questionnaire: Computing Knowledge and Experience 
It was important that certain background details of the students should be gathered so that any 

comparisons that were to be made between students could take their background into account. 

These details were planned to be gathered in the fonn of a "computing knowledge and 

experience" questionnaire and this can be found in Appendix 4 and the questions and their 

rationale are shown in Table 5.6. 

Table 5.6: Initial Questionnaire: Computing Knowledge and Experience 

Question Rationale 

Question 1 Differences in learning programming 
What is your Gender? using a technology supported part 

• Male 
complete solution method may emerge 
between males and females. 

• Female 
Question 2 Differences in learning programming 
Which of the following age ranges are you in? using a technology supported part 

• 20 years or under 
complete solution method may emerge 

• 21 years to 30 years 
for differe,1t age ranges. 

• 31 years to 40 years 
• 41 \/ears or over 
Question 3 This question was asked as it was 
How would you rate your current computing expertise? (Tick possible that computing expertise may 

one box only) be a factor that affects the ease with 
which students learn the CORT 

• Llmlted:you have not used computers very much at program . 
home, school or university. 

• Moderate: eg. you use computers for emall, Web 
browsing, word processing etc. You have a limited 
knowledge of Windows. 

• Extensive: eg. you use computers for email, Web 
browsing, word processi~. spreadsheeting, database 
(eg "Access"). You can change a program's preferences 
or options. You have a good knowledge of Windows 
with the ability to create folders, zip files, use the Control 
Panel etc 

Comments: 

Chapter 5: Research Design Page 87 



Question 4 
What is your previous computer programming experience? 

(Tick one box only) 

• None 
• Limited: eg. You have done a programming course al 

school, you have taught yourself to program, you have 
used and amended scripts for the Web. 

• Moderate: eg. You have done a formal programming 
course, you have written some large computer 
programs. 

Comments: 
Question 5 
What is your science and maths knowledge? (Tick one box 

only) 

1. Limited: eg. you have no passes In science and maths 
at TEE. 

2. Moderate: eg. you have at least one pass at TEE in a 
science subject such as physics or chemistry (not 
biology) and I or at least one pass In a TEE maths 
subject. 

3. Extensive: for example you consider yourself good at 
science and maths and have achieved high scores in 
two or more TEE science (do not include b!ology) and 
maths subjects 

Comments: 

This question was asked as it was 
possible that students who are not 
novice programmers may well have 
different teaming experiences to 
novices when CORT is utilised. 

In this question, TEE refers to the 
tertiary entrance examination that is 
taken by students within Western 
Australia. 
This question was asked as It was 
thought that mathematical knowledge 
may be a factor In a student's learning 
of programming. 

5.4.6 Student Information from University Record System 
In order to obtain useful data concerning student background and past performance, a docwnent 

study was proposed of the university's student record system. Student records are stored 

electronically within an Oracle database and contain data concerning the average marks in units 

of study to date together with students' previous semester's average marks. 

5.4.7 Programming Problems 
Programming problems were carefully designed in order to cover the objectives of the unit 

syllabus. They were different for the CORT and non-CORT groups as it was important for the 

integrity of the research that there was no collusion between any of the students in the different 

groups. However, although each week's problems were different for the groups, they were of a 

similar nature and degree of difficulty to try and ensure that students would have the same 

learning opportunities and that comparisons could be made in the performances of the groups. 

The programming problems were to be given to the student groups over a period of ten weeks. 

It was planned that there would usually be two problems assigned each week and that students 

would be expected to finish them in their own time if they could not be completed in the 

laboratory. In an attempt to ensure that students would try hard to complete the assigned work, 

Chapter 5: Research Design Page 88 



it was decided that the students would be required to hand-in their solutions on disk in week 12 

of the unit and the work assessed. 

The files that would be required for each CORT problem were to be placed on a disk drive on a 

local server and the CORT students would be required to copy them to their floppy disks nt the 

beginning of each computer laboratory session. The required files are shown in Figure 4.. in 

Chapter 4. 

For each problem, it was planned that the problem description would be available from within 

CORT in electronic fonnat :i.nd that it would also given be to students in the fonn of a hardcopy. 

After reading a problem description, students would view the part-complete solution within 

CORT as described in Chapter 4, and attempt to complete the program and test their solution 

within Visual BASIC. 

The students in the non-CORT group were to be given floppy disks at the beginning of the 

semester that contained all of the programming problems in electronic fonnat. Hardcopies of the 

problems were also to be given to the students and it was planned that students would save their 

solutions to disk. 

5.4. 7.1 An Example of a CORT Problem 

The problem shown in Figure 5.3 concerned string processing. 

A program is required that obtains, via a lextbox, a telephone number. Examples of numbers 
that might be entered are: 

08 9275 5623 
09 7612 4296 

The numbers are always of the same structure but may have leading or trailing spaces entered 
too. The program should output, on separate Hnes, the three parts of the number, Eg: 

Note 

STD Code: 08 
Exchange: 9275 
Number: 5623 

• Not all lines of code from the left-hand side need to be used. 
• You will need to key-in a line to determine the "last part" of the number. 
• There are questions that you have to answer concerning the problem and these can be 

viewed by selecting Problem I View Questions about the Problem from the line menu. 

Figure 5.3: Example of a CORT Problem 

This is an ex.ample of a method 3 type CORT problem, the three possible methods of using 

CORT having been described in chapter 3. A method 3 type problem may have some lines of 

Chapter 5: Research Design Page 89 



code available in the left hand window of CORT, other lines having to be keyed-in by the 

student. 

5.4.7.2 An Example of a Non-CORT Problem 
The similar problem to the above that was designed for the non-CORT students was an 

amended version of a textbook question (Schneider, 2003) and is shown in Figure 5.4. 

Write a program to.generate a rent "receipt". The program should request the person's name, 
amount received, and the current dc1te in three different text boxes and output a receipt to a 
picture box. Example input data might be: 

Jane Smith 
645.50 
04/08/01 

The format of the receipt can be determined from the following which Is the receipt for the 
example data: 

Received from Jane the sum of $645.50 
Year: 01 

Figure 5.4: Example of a Non-CORT Problem 

The output from the solution to the non-CORT problem does not contain enough data to be a 

"real" receipt and the reason for this was to try and ensure the problem required similar 

functionality in its solution to that of the CORT question. 

5.4. 7 .3 Weekly CORT Problem Summary 

A summary of the week1y CORT problems that were designed is shown in Table 5.7. The table 

shows the problem structur-.!s; the CORT method that was utilised; the number of lines in the 

part-complete solution; the number of lines removed from the original solution; the nwnber of 

extra lines added to act as distracters; and the number of Jines that had to be keyed-in. 

Comments are also included that explain the reasons for the particular CORT method used. 

Similar problems to the CORT problems were developed for the non-CORT students. These 

were taken from the unit textbook or were created by the researcher. The CORT method details 

are shown again to help the reader understand the table; 

Method 1, All of the lines of code that are missing from the program are provided as options. 

Method 2. All of the lines of code that are missing from the program, together with some extra 

lines of code that are not needed to complete the program, are provided. These extra lines act as 

"distracters". 

Chapter 5: Research Design Page 90 



Method 3. Some of the lines of code that are missing from the program might be provided, 

however some other missing lines must be keyed-in by the learner. 

Table 5.7: Weekly CORT Problem Summary 

' ' ' Q g " ~ ~ 

" ' • 0 ' • E t D >a • " 
.§ 

~ .ro '5 D c § s D 

-~] 
E-D £ •• ~ ' ' z ' • " ' e • " D ~· ' e ' 6, " • § ' z ~ E • • • ' • u • 

" e ~ ' n ~ D 0 e 0 E • " ~ " E D e e 0 E E " ~ 
D D D D D D D 

~ ~ u z u. z~ z ~ z u 

Change a screen 6 3 There was only one 
object's properties problem ln the first 
dynam!cally laboratory session. Method 

2 was used as the problem 
was very slmple and a 
similar one was planned to 
be discussed with the 
students. 

3 3 Simple process and 4 13 0 0 Several new concepts 
output. All variables were to be Introduced to 
numeric, students and CORT 

method 1 was therefore 
lanned. 

3 4 Simple process and 2 4 5 4 0 The problem type was 
output. All variables similar to that of 2. The 
numeric. The scaffoldlng was reduced by 
processing was using method 2. 
slightly more difficult 
than in robtem 3. 

4 5 Simple Input, numeric 2 9 6 11 0 Screen input and output 
processing and formatting were to be 
output. introduced. Many distracter 

lines were added for these 
two areas. 

4 6 Slmple Input from a 6 10 0 0 Input from text files was 
text file, process and planned to be Introduced 
output and students usually 

experience difficulty wilh 
this topic. Method 1 was 
therefore used. 

5 7 Use of integer 2 22 13 6 0 The order of the lines ln the 
arithmetic functions to final program Is crucial for 
determine the notes success in this problem. 
and coins for a wage The distracters used 
acket. Incorrect lnte er functions. 

5 8 Use of simple string 3 11 17 5 1 This was the first problem 
handling functions. in which method 3 was 

used, students having to 
key-in a line of code. This 
method was used as the 
problem was straight 
forward. 

Chapter 5: Research Design Page 91 



g 0 0 . 
s 

5 
u > 

rn o~ • 0 
E x x 0 0 " u "'5 0 • _§ .2 0 "o E e 

0 c e rn 
~ • 0 • e a z - 0 E 0 0 

E ~ • 0 • ~ x •· _§ 0 z E • . ]? 0 0 0 0 
0 0 ~ 0 _§ 0 0 e 0 E r· " o o 0 0 ~ E E ;;; 'E 

0 D e 0 0 0 0 0 0 

" 0: 0 zR· ~ 0 z 0 z u z 0 

9 Use of general 18 16 0 0 This used method 2 as 
procedures with students have great 
parameters. difficulty with procedures. 

The task was also difficult 
as there were four 
procedures In the part-
complete solution.and the 
students had to determine 
which lines should be 
moved into which 
rocedures. 

6 10 User defined 2 17 8 2 0 User-defined functions is a 
functions. difficult topic, Method 2 

was used as the number of 
lines removed from the 
solution was relatively 
small and only 2 distracters 
were used, 

7 11 "IF" statements. 11 6 0 0 Method 1 was used 
because a new control 
structure had been 
introduced and the solution 
required a nested "IF" 
statemenl 

7 12 "CASE" statement. 3 17 14 0 10 Method 3 was used 
because the lines to be 
keyed-In were very similar 
as they were part of the 
"CASE" statement. The 
number of lines to be 
keyed-In was relatively 
large and so no dlstracters 
were used. 

8 13 "WHILE" loops. 24 9 0 0 Method 1 was used as this 
is a difficult topic. Also, for 
the first time It was planned 
that the students had to 
add an object to the 
interface and change Its 
properties, this adding to 
the co nitive load. 

8 14 This problem also 3 14 13 4 4 Method 3 was used as 
used a "WHILE" loop students had already used 
and input data from a "WHILE" loops in problem 
text file. 13 and Input from text files 

was to have been covered 
In week 4. Students were 
also required to add an 
ob'ect to the interface. 

9 15 Array Processing. 3 15 9 2 Although array processing 
The solution required is difficult, method 3 was 
data to be loaded used. The cognitive load 
from a text file into a was kept low as only one 
one-dimensional line had to be keyed-In and 
array and then output there were only two 
in columns. dlstracters. 

Chapter 5: Research Design Page 92 



§ 
0 0 

D 
Q ;.. a 0 0 0 " 0 

§ t Q > 0 0 ~ 
D " 0 0 " c 

2 E 0 

~ sl E 0 r e " -g " " z c 

" c 

' 0 0 
0 :,. .,,·2 0 ~ • .§ c z E E 0 0 0 '6 0 0 0 ,. 
~ 

0 0 r c- _§ 0 ~ 0 § n n ~ :.: D-0 o·E E 0 e e 0 " 6 0 0 0 0 
~ ~ ~ u z .8 Z~; z D z u 

I 
Array Processing. 17 0 0 Method 1 was used as this 
This was a more was a difficult problem. 
difficult array 
processing problem 
than 16. 

10 17 Array Processing: 2 64 17 2 0 The solution required a 
sorting and large number of lines of 
searching. code, this being 81. 

Method 2 as opposed to 
method 3 was therefore 
used to reduce the 
cognltlve load. The missing 
lines were from two 
specific procedures and It 
was planned to inform 
students which set of 
possible lines to use for 
which rocedure. 

11 18 Text file processing. 3 41 14 9 9 Although this problem was 
A text file had to be complex, method 3 was 
created by the used as the lines that had 
program from data to be keyedMin were for one 
entered via an Input particular procedure and 
form. The program were similar to one of the 
thon processed the other procedures In the 
newly created to program. 
produce two new As with problem 17, there 
files. were also missing llnes 

from two specific 
procedures and It was 
planned to inform students 
which set of possible lines 
to use for which rocedure. 

5.4.8 Individual Problem Questionnaires 
It was planned to collect data from students concerning the problems that they attempted and to 

this end a short questiorumire was designed. It was planned that a questionnaire would be 

completed electronically for every problem that was attempted. The planned questions for the 

CORT students and the rationale for their choice are shown in Table 5.8 and the original 

questionnaire is shown in Appendix 5. 

Chapter 5: Research Design Page 93 



Table 5.8: CORT Problem Questions, Response Choice, and Rationale 

Question and Response Choice Rationale 

Question 1 It was thought that responses to this question help determine 
Approximately how long d!d it take to lfthere were any differences In time required by different 
complete the problem? groups to achieve certain learning outcomes. 

Possible Responses 
This was to be used for research question 3. 

• less than 15 minutes 
• 16 to 20 minutes 
• 21 to 25 minutes 
• 26 to 30 minutes 
• 31 to 35 minutes 
• 36 to 40 minutes 
• 41 to 45 minutes 
• more than 45 minutes 

Question 2 CORT and the part-complete solution method are used to 
Whal help I resources did you use in help support student learning, thereby reducing extrinsic 
solving the problem? cognitive load, whilst applying a certain amount of germane 

cognitive load. These 2 questions were designed to 
Possible Responses detennlne the type of help and to estimate the amount of 
• none help that students required in addition to that provided by 
• tutor CORT. 

• fellow student 
• Schnelder textbook It was planned to use the data to try and determine If there 

• other: please give delal!s __ were any differences In the type and amount of help required 
by different groups to achieve certain leamlng outcomes. 
This was to be used for research question 3. 

Question 3 
How much help did you use In solving 
the problem? 

Posslble Responses 
• none 
• little 
• moderate 
• extensive 

Question 4 This was used for research question 1 which aimed to 
What features of CORT did you use? detenn!ne how students used CORT. 

Possible Responses 
• view problem description 
• view problem Interface 
• changed font in preferences 
• expand - reduce left-hand window 
• expand - reduce right-hand 

window 
• insert blank line before 
• insert blank line after 
• remove blank line(s) 
• CORT code editor 

The problem questionnaire for the non-CORT students was the same as that of the CORT 

students with the exception that the fourth question was omitted. It was hoped that useful 

. 

Chapter 5: Research Design Page 94 



comparative data concerning time taken and help required would be obtained by having 

identical questions in the questionnaires. 

5.4.9 Observation 
It was planned that this would be a major data collection method in the inquiry providing data 

for both research questions 1 and 2. It was planned to use the "participant-as-observer11 approach 

with details of observations recorded onto microcassette tapes. It was hoped that during the 

observations, patterns and trends in the usage of CORT and the part-complete solution method 

would emerge together with evidence of reflection and higher order thinking. The researcher 

would act as the observer and would prompt students to try and make their thinking explicit 

when certain courses of action were undertaken. 

It was also planned that two students would be observed throughout the semester in which the 

inquiry would take place enabling longitudinal data to be captured, and six further students 

would be observed for shorter periods of time. 

5.4.10 Interviews 
The purpose of the planned interviews was to gather further data concerning CORT and the 

part-complete solution method that might not have emerged during the periods of observation. 

The questions that were planned to be asked and the rationale for their choice are shown in 

Table 5.9. All the students that were to be observed were to be interviewed together with several 

other CORT students. Responses to the interview questions were to be recorded on interview 

pro-fonnas. 

Table 5.9: Interview Questions and Rationale 

lnterv1~w Question • Rationale 

Question 1 
Have you In the main moved lines to 
the right-hand side in a thoughtful 
manner or did you use trial and error. 
Has your strategy changed for different 
problems? 

Chapter 5: Research Design 

This was used for research question 2. The aim of the part
complete solution method Is that students will have to think in 
completing the solutions to problems. However ii was 
thought that some students might Just use a trial and error 
approach to solving a problem. 

Page 95 



Interview Question Ratrona/e 

Question 2 
When testing a program in Visual This was used for research question 2 and concerned the 
BASIC, what did you do if the program learning supports provided to students when testing and 
did not work? refining code. It was hoped that this would help gather data 
Fo\1owup: concerning: 

\, 

• Where did you get help from? • How well CORT helped students debug a problem. 
Book I student I tutor. • How well Visual BASIC helped students debug a 

• Would you like to see instant help problem • 
on lines of code, possibly by e- • What the other sources of help that were used by 
movies? students to help them debug programs. 

• lf you used Debug In Visual 
BASIC, did this help In your 
understanding? 

Question 3 
Does CORT provide too little or too This was used for research question 2 and was aimed at 
much help? {le what Is the perceived gathering data concerning the amount of scaffolding provided 
degree of scaffolding) in the way of part-complete solutions. Of particular Interest 
Follow up: was how much the method (of the three possible CORT 

• How did CORT help: with easy I methods) of the part-complete problem helped students and 
difficult problems; with problems In also how the method should be varied as the course 
the earlier/ latter parts of the unit progressed through the semester. 

Question 4 
Which method of CORT problem helps This was used for research question 2 and concerned 
your understanding most? learner reflection and higher order thinking. lt was thought 
• Method 1: all llnes provided • that the method of the CORT problem that students believed 

• Method 2: too many lines provided helped them most in their understanding would have caused 
them to think and reflect to the greatest extent during the 

• Method 3: too few lines provided problem solving process and yet still r,rovlde enough 
(and you need to type some in) scaffolding for them to solve a problem. 

Question 5 
What do you Ilka I disllke about the This was used for research question 1 and concerned 
CORT environment? How could CORT teamer preferences 1n the CORT environment. 
be lmnroved? 
Question 6 
How easy I difficult do you find CORT? This was used for research question 1 and concerned the 

perceived level of difficulty of using CORT. 

5.4.11 End-Tests 
Research question 3 concerned the impact of CORT on learning outcomes and ends tests were 

created in order to collect appropriate data. Two tests were created, the first was a program 

completion test that required students to complete part-complete programs, and the second was 

a "conventional" final exam for the unit. 

5.4.11.1 Program Completion Test 

A semester comprises 14 "face-to-face" teaching weeks and the program completion test was 

planned to be administered to students in week 15. The test, which can be seen in Appendix 6, 

had 8 program completion questions and an ex:unple of the type of question used is: 

Chapter 5: Research Design Page 96 



The Problem 
A program is required that requests a whole number of inches and converts it to feet and inches. Note that 12 
inches equals I fool There are several lines missing from the program and possible lines of code are given to 
you, You do not have to use all the possible lines to complete the solution. 

You are required to write out the letters of the lines of the existing code and the numbers of the missing lines 
in the correct order. 

Part-co111Plete Program 

Option Explicit 
Private Sub cmdConvert_Click() 

Dim inches As Single, feet as Single 

A, picDisplay.Print "Number of feet="; feet 
B. picDisplay.Print "Number of inches="; inches 

End Sub 

Possible lines of code 

1. Let feet= inches \ 12 
2. Let feet= inches Mod 12 
3. Let inches inches \ 12 ,. Let inches inches Mod 12 
5. Let inches Val(txtinches,Text) 

The type of question created for this test was similar to the type of problem that the CORT 

students would have attempted during the semester in the computer laboratories. An aim of this 

test was to determine if the CORT students would perfonn better at such code reading and 

completion tests than the non-CORT students who would have undertaken their learning of 

programming in a "conventional" manner. 

5.4.11.2 Final Exam for the Unit 
This final exam can be seen in Appendix 7 and it comprised two sections, A and B. Section A 

had 10 compulsory short questions, each of which was worth two marks. These questions were 

designed to test student understanding of existing programming code. An example of a Section 

A question is: 

The Problem 
What will be the output of the following program when the command button is clicked? 

Private Sub cmdI>isplay Click() 
Dim num As Integer -
num "' 10 
Call DisplayMult(num) 
num"" 5 
Call DisplayMult(num) 
num _. 2 
Call DisplayMult{num) 

End Sub 

Private Sub DisplayMult(num As ~nteger) 

Chapter 5: Research Design Page 97 



If nurn <= 3 Then 
picOutput.Print 3 + nwn; 

Else 
If nurn > 7 Then 

picOutput.Print 7 * nurn; 
End If 

End If 
End Sub 

Section B had two long questions, only one of which had to be attempted by the students and 

which was worth 20 marks. The questions were designed to test the students' ability to develop 

or generate a program. An example of one of the questions follows: 

The Problem 
A file called "marks.txt" contains names and test marks for students. Names can appear more than once, A 
program is required that accepts a name as input, via a tcxtbox, and outputs the average of the marks for that 
student and that student's highest mark. 

The name entered should not be sensitive to the case of the letters. For example, if the text file contained the 
following and the name entered was "brenda", then an average of 40 would be output together with the highest 
mark of 63. 

"Alf", 56 
"Brenda", 63 
"Gladys", 45 
"BRENDA", 34 
"Adnams", 44 
"brenDA", 23 

If the name does not appear in the file then a message "Name not in file" should be output. 

Note that an array is not required. 

For the above: 

(a) Create a task I object I event (TOE) chart. 
(b) Draw an interface sketch naming all objects. 
(c) Write detailed pseudo code or Visual BASIC code, including details ofvariables and their types. 
(d) Draw up a test table showing the input data, expected output and the reasons for each lest. Make sure that 

the tests that you suggest would thoroughly test the program. 

5.5 Summary 
Titis chapter has discussed research methodologies and contrasting quantitative and qualitative 

techniques. It emerged from this discussion that the main methodology to be used in this 

research study would be qualitative. 

The basic elements of research as outlined by Crotty (1998) helped infonn the overall research 

process for the study. The process chosen was a quasi-experimental action research 

methodology using case studie::;. 

The specific research questions for the study were specified together with the proposed 

instruments to be used in data collection. There were several instruments in order to ensure 

internal validity of the study. 

Chapter 5: Research Design Page 98 



The analysis of the data collected is described in the next three chapters, each chapter discussing 

outcomes and findings in relation to each of the 3 research questions. 

Chapter 5: Research Design Page 99 



Chapter 6 
How Students Use CORT 

6.1 Introduction 
This chapter discusses aspects of the usability of CORT, with data on usability gathered from a 

detailed review of students' use of CORT as part of the main study. The students in the study 

were learning programming via the part-complete solution method and in order to determine 

how CORT influenced learning, it was necessary to determine if the way the CORT software 

was designed and developed hindered the students in any way. The chapter describes the 

usability factors of CORT which were found to be an issue for students and the impact they had 

on student learning. The chapter also explores the ways in which these issues were, or were not, 

overcome and the amount of time it took students to learn the functiotlal features of CORT and 

to become comfortable and fluent in its use. 

This chapter describes and discusses ten usability issues that were identified as ;,otential 

impediments to learning. It discusses the apparent impact of these issues on the learning of the 

students and provides suggestions for the improvement of CORT in order to reduce the impact 

of these issues. 

6.2 CORT Usability 
CORT was designed with the aim of being simple and intuitive to use. In all instances where 

students were observed using CORT, they appeared to develop familiarity with the application 

reasonably quickly. A prototype had been designed and tested (described in chapter 4) and this 

had led to some small revisions and amendments to the prototype. This revised prototype was 

then utilised with students in this second stage of the study. 

In the second stage of the study, CORT was used over a period of 10 weeks during the semester, 

beginning in week number 2 and finishing in week number 11. Each week, students were given 

a hardcopy describing one or two programming problems to solve. They then executed the 

CORT program from the usual Windows Start button and the CORT interface would appear 

with two empty windows as shown in Figure 6.1. 

Chapter 6: How Students Use CORT Page 100 



Figure 6.1: Initial CORT Interface 

Students then opened a CORT file with the file extension ".pcs", which is short for part

complete solution, and the right-hand window was populated with a part-complete solution and 

the left-hand window was populated with possible lines of code to complete the solution. The 

problem statement was initially displayed to the students in a window that is smaller than and 

overlays the windows of the part-complete solution as shown in Figure 6.2. Students were then 

required to solve the programming problem presented by moving lines of code until the desired 

algorithm was completed. 

. ' 

,~ ................ _ ..... ., ............................ ~ ... 
~••••~""""'""""""""•'""",.. ... ,,......._,w•• .. ••--•n,....., ......... ,_, ....... o., ................ ~ .......................... .... ......... -.-.. -
""' ............. , .... _ ...... _ ........ , ___ ,,. ..... _""'_ .............. -.... • ,,.,,...,,.,.,.,, ...... ~ ....... -,.,,,w.t ............ -.... ,.. ...... _,__ ............................... _ ..,..._, ___ .. _._ ........ _ 
.......... _.,.. ................ .. 

Figure 6.2: CORT Problem Statement 

Observations of the students throughout the study revealed a number of usability factors that 

were seen to hinder some students as they worked to solve the part complete solution. Across 

the period of the main sntdy, these usability factors appeared to be of three main forms: 

• Operation of the problem files; 

• Manipulation of the lines of code; and 

Chapter 6: How Students Use CORT Page 101 



• Editing the lines of code. 

The following sections describe the problems students were observed to face in each of these 

areas and discuss the impact these problems appeared to have on the successful completion of 

the part complete solutions themselves. 

6.2.1 Operation of the Problem Files 
There were four different types of difficulty observed among some of the learners in relation to 

the operation and application of the files associated with CORT. Some students were observed 

in initial stages of their use to have difficulty opening the part complete solution files. Several 

were observed to have difficulty viewing problem statements and in the same vein, a small 

number of students were observed to have trouble initially viewing problem interfaces. Later in 

the unit, a majority of students were seen to have some difficulties in viewing the contents of 

data files that were being utilised in file-handling problems. 

6.2.1.1 Opening a CORT Part-complete Solution File 

Initial observations revealed several students having difficulty opening a ".pcs" file so as to 

populate the two windows with a part-complete solution and possible lines of code to complete 

the solution. The students indicated that they nonnally opened Windows' files from within 

Windows Explorer by double clicking on a file name so that the program associated with that 

particular file type would execute and then automatically load the file. This mechanism had not 

been built into CORT. The problem vanished quickly as students learned the correct procedures. 

The difficulty was on1y observed in the first week and after that time students were able to open 

the files without hesitation. The findings suggested the need for such a file association to be 

built into CORT. The small number of students who experienced the problem and the speed 

with which the problem was overcome indicated that this issue did not negatively influence the 

use of CORT in any major way. 

6.2.1.2 Viewing a Problem Statement 
The learning environment was designed with the intention that students would read each 

problem statement from the hardcopy that was given to them at the beginning of each laboratory 

session. However in the major study it was clear that most students preferred to read the 

problem statement on the screen. When questioned these students indicated that they were very 

used to reading text on screen and to them it was preferable. Some students also indicated that 

they often misplaced hard copies. However the CORT design did not allow the two windows 

with the programming code statements to be viewable at the same time as the window with the 

problem statement. This was seen to be a difficulty for those students wishing to read the 

Chapter 6: How Students Use CORT Page 102 



problems on the screen. When interviewed these students indicated that all three windows 

should be available simultaneously. In the study the students adapted quickly to having to use 

the hardcopy form for problems and this limitation of the program was noted. In terms of 

impeding learning, this problem appeared to have minimal impact. Students adapted quickly to 

the conditions and this aspect of usability was judged to have only minimal impact, and was 

seen as a minor irritation. 

6.2.1.3 Viewing a Visual BASIC Program's Interface 
After viewing and reading a problem statement a student would close the front 0 View Problem" 

window. It was thought that students would then view the problem interface, as shown in Figure 

6.3, to help them in their understanding of what the required output from the completed program 

should look like. This function is invoked by either selecting: 

Problem > View Problem Interface 

--1 from the line menu or clicking on the-~ icon. 

fiil" ,f'P~ AA,+.• . .-: 

' CHI <31:0:I"' l!l..ii.11. ,._ .... _,,,_,,_ 
;::::::::=:::::::::tt.::"':",,~ ''"''"' 

'"""·r.!!~=---i "" .. , 
I"''" I .,.._ f~ ..... ,........... -

....... , I ....... 1..i;;.;L 

. 

Figure 6.3: Visual BASIC Problem Interface 

However data collected indicated that many students did not use this function in the early weeks 

of the semester and three students did not use the function at all. This can be seen by the data in 

Figure 6.4 which was collected from the individual problem questionnaires. It shows the 

number of students who viewed the problem interface against the CORT problem number. The 

graph shows that the number of students who viewed the problem interface grew steadily as the 

course progressed and experience was gained. Towards the end of the course usage appeared to 

stay steady. 

Chapter 6: How Students Use CORT Page 103 



v1 ... Problom lntorf••• 

0 0 ,o 1' 11 1' 1' ·~ 11 ,1 ,, 

CORT P, ....... """'"'' 

Figure 6.4: Graph Showing the Utilisation of the "View Problem Interface" Function 

An example of this function's usefulness for learning is shown by a question that a student asked 

the researcher in connection with question 13 in week 8. He asked the researcher if the output 

from his program solution was correct. The researcher suggested to the student that he should 

view the problem interface that showed the expected output and, after doing this, the student 

commented that this function of CORT was very useful to his understanding of the problem 

requirements and also as a way of giving him feedback to the correctness of his solution. He 

stated that he wished that he had known about it earlier in the semester. 

Those students who did use the function on a regular basis commented on its usefulness and 

they particularly liked the fact that the object names were shown on the interfaces. An example 

ofan object name is cmdMakeRed in Figure 6.3. 

The overall impression of this limitation in the main study was that student lack of knowledge 

concerning this function was evident only in the early weeks. It was seen to have a minor effect 

on some students' use of CORT as the function provided a way of clarifying the problem 

description and also giving feedback as to the correctness of a student solution. The students 

quickly learned the feature and for the large part of the study were able to use it when required. 

6.2.1.4 Display of text files 
A majority of students were observed having difficulties viewing the contents of text (data) files 

which were utilised with certain problems in the latter part of the unit. For example, in problem 

14 which was given in week 8, a text file was provided for students. This was stored within a 

folder together with all the other files required for that particular problem. The list of these other 

files is shown in Figure 4.2 of chapter 4. All the other files in the folder are utilised by being 

Chapter 6: How Students Use CORT Page 104 



either loaded from within CORT or from within Visual BASIC. However there was no simple 

mechanism available within CORT to display the contents of such a text file and this concerned 

several students who did not know how to display the contents of such files from within 

Windows. 

Overall the difficulty that students were observed to have when viewing text files was minor 

and quickly overcome. It was perceived to be a small problem that did not affect or impede 

learning, however a future improvement to CORT would be to have a built-in system to view 

such files. 

6.2.1.5 Summary 
In overall terms, there was only a small number of students who were observed to experience 

problems with the file aspects of the CORT program described above. In the main, the problems 

were due to a lack of experience with the program and its features. In all instances, the students 

who were seen to experience difficulties with the interface overcame the problems within the 

first few weeks of the course and proceeded to use CORT unimpeded by the problems. The 

small number of problems and their speed of solution suggested that these limitations were 

minimal and not likely ~o contribute in any negative way to the learning supports offered by 

CORT. 

6.2.2 Manipulation of the Lines of Code 
There were three different types of difficulty observed among some of the learners in relation to 

the manipulation of lines of programming code in the two code windows. At times, some 

students were observed to have difficulties viewing lines of code that were longer than one of 

the window's widths. Some had trouble in the movement oflines of code between the code 

windows, and finally there were students who had problems moving lines into position in the 

right-hand window. 

6.2.2.1 Expansion I Contraction of the Line Manipulation Windows 
The left and right-hand windows were of such a width that longer lines of code could not be 

fully viewed on the screen as they are truncated on the right. There is no sideways scroll facility 

in CORT and in order to view such lines, the windows would be expanded in width as shown in 

Figure 6.5. 

Chapter 6: How Students Use CORT Page 105 



''""" ....... .,,.,, .. ""'"'' '"""'""'"'"1'1\l'"''""""li>,d,.,,i1'111 "' , w., <••• """"'''''"" 'N' , ... w"'"'' ..... ""'' "' j!)O NOi '""'''J'IOO r-Jl'i,ll<J 
... ...._. ___ _ 

............. -~--
Q:lrl el :tl~ .mutll.l p.·1:11-s, .. :,.,'1. rn1 -... --........ ~.. -............. ""'"""""'"' 

,, •.. ~ .. •,,•.•.•m:"":¥•.'• .. • .. •.• .... _ .... •.•:.•• .. •. , ••• •.• •. •.• .. •.• .. • ............ .,, I.~.~-~--~-~ .. ~-~ .. ~ .. ~-"''""":"!!!!!!!!!!!!!!!!!!!~~" , ........................................ ''""' ·-· "'" ""' ... , .. ti.•-· .... . 
Ir" , .. , ...... • I 1, ,._,, __ , • 1 01• ""' ..._.-,, to ,., " '"" 

!;;•,;.;,:,~ :"~.:::.":"':;, ·r:.,~'"'"' ::: Click here lo ,, :::: ::.!:;,'~';,;"~',,..,, 
l:!,.':;" .. "1

' ""'"" •" ,..,, ;;: expand the "''' !::: ::".!.:.~:'.:"':,:: 
'"'" , .. ,,.... ... right-hand , .......................... . 
I::;.~ · .,._,,,, ": wlndow ~;;-~:' 1"'""'' '"" _,,.,.,.,"' .. " 

The right-hand window 
has been expanded and 
the button to expand 
the left-hand window 
has been disabled ,.,._,w · ,..,.... i :':1'::,::;!;!!1! .. ""' 

I
:=:::':,:":-::!;.~' :::: ···-········-··· ·--+-,"•'"'" ...................... '.-.. -.-.... _---------
......... ......... • ...... '"" ......... _, ... ,, '" ....... _,, .... _,.,, .. 1 , ......... , ........ u." ... "'""'- .. "". ' ........... _ ...... .. 
l
, ... uu • l! • ,..,.... ''" , .. """"''' •< t '"'" I '"' too ""'""" o< , .. "'''' 
........ ,,,,,,,,,,,,,,, ............. , '"' • •• '"'"" I ,,. • " "" .. ' 

1:;::~::.:~.!:!l"::~'i'-;:'."1 -~ .-,.·.· • ~j~·1,10"1 c/' , :: :":.,;;l";:j'A,1 1,.. .......... .:t:.J ~ l!::.I ~.. .':.I ' •• .:t:.J ~ 
I••• ......... . : - """'" - --·· -
'" o •,,, I 1u """hH'"" • t!Cu,Ot.eo, .. ohH I '" ""'""- • ""'''"'""'"""-·"""' 

Figure 6.5: Expansion of the Right-hand Code Window 

Figure 6.6 is a graph which shows the nwnber of students throughout the study who used the 

expansion and contraction of the line manipulation windows. The graph reveals low levels of 

usage in early weeks leading to much higher levels of usage as the course progressed. The usage 

figures in the graph support the observations made that indicate that many students did not 

recognise that this facility existed early in the unit. They were observed to move lines into the 

part-complete solution even though some lines could not be fully read. 

E•p1n1lon I Conlr1cUon ol Lino M1nlpul1Uon Windows 

" . 
ti Expand/ conuact LH Window 
• E,~and / conuact RH Wlndaw 

. 

" 

,__ 

I 

' ~ 

m 
' • ' • ' • 10 11 12 1~ 14 15 16 17 18 

Problom Numbors 

Figure 6.6: Graph Showing the Utilisation of the "Expansion I Contraction" Function 

When students did discover this function then they used it frequently. However, the expansion 

of a code window did appear to unsettle some students. For example, one student made the 

conunent that he felt uncomfortable about a window disappearing completely off the screen 

Chapter 6: How Students Use CORT Page 106 



when one of the EJ buttons was clicked. He suggested that it would be preferable to have a 

, ·,facility such that a vertical bar between the windows could be dragged to the left or right 

thereby increasing the width of one window whilst decreasing the width of the other. Such 

vertical "splitter bars" are common in many Windows programs. 

Although the viewing of longer lines of code was an initial problem with CORT, most students 

soon became familiar and comfortable with the viewing functions and it appeared that there 

was no lasting detrimental affect on learning as a consequence of this shortcoming. However the 

use of a standard Windows "splitter bar" is seen as a preferable mechanism and this would 

appear to be a sound improvement which could be made to the CORT system. 

6.2.2.2 Moving Lines of Code between Windows 
The ease with which lines of code can be moved between the code windows is fundamental to 

the usability of CORT. Students were initially observed to have some difficulty in knowing 

which left and right arrow button to use in order to move lines between the windows. Figure 6. 7 

shows part of CORT's toolbar and the larger left and right buttons were the ones to use for this 

function, the smaller buttons having the function of indenting I outdenting the highlighted 

line(s) in the right-hand window. Students also indicated that it would have been useful to be 

able to drag and drop lines between the windows. 

Buttons lo move 
lines of code 
between window 

Figure 6.7: Toolbar Arrow Buttons 

' 

Buttons to Indent I 
outdent lines of 
code Jn right-hand 
window 

~~--

EJ 1•1•:•1•: 

Many students were observed to be unsure where a line would be inserted in the right-hand 

window when it was moved from the left. CORT inserts a highlighted line from the left directly 

below the highlighted line on the right. However, when a CORT file is initially loaded, the 

highlighted lines are the first ones in the two windows as shown in Figure 6.8. Often students 

were observed to select a line from the left to move to the right, click on the large right-hand 

arrow on the toolbar and this would result in that line being placed after the first line in the 

right-hand window. They would then move the line into what they thought was the correct 

position by utilising the up and down arrow buttons. 

Chapter 6: How Students Use CORT Page 107 



E.lo Prctlom ~ 

t:i.llille!l•llt,l"'l rol;; !!I.I 
-- Poub'e m ol ood• llw oan be used .. 

First lines In the 
windows are 
lnlUaHy highlighted 

uuu,.., th" -tol101Jinq in ClDdSortODl!o:u;k c Option Iltpiicit 
o,,u,,u,Hu••••••*'•*'•••••••••••••• :Rem Dcclar" N"""'" array 
For P""'"Nw,, • 1 To :fNUll'lberO:fN"""'" - 1 l)iffl tN"l'll"5ll To 15) b 3trinq 
For i • 1 To mumb .. r0%Nwne5 - pa55Nw,, Rem D"clare llo:u;ks array 

Figure 6.8: Code Windows After Initial File Load 

It was also observed that some students were unsure of how a line of code could be inserted into 

the position before the first Ji_.,_e in the right-hand window. This had to be done by inserting the 

line into position 2 and then moving it to the top with the up arrow button. 

Several lines could be highlighted in the left-hand window and then moved to the right in one 

process, however most students were unaware of this. 

The fact that lines could be placed anywhere in the part-complete program in the right-hand 

window caused unanticipated errors with programs that had more than one procedure. This was 

because students would sometimes move lines into the right-hand window and place them 

outside of the existing procedure structures, as shown in the example of Figure 6.9. When such 

a program was eventually tested in the Visual BASIC development environment, an error 

message would be output. 

rCode for your program-------------· ----------------·1 

'This program outputs "tillles" tahles 

Option Explicit 

Private Sub cmdClear_Click() 
'Clear the picture hox and the text 
'into the txtTahleNum text hox 

End Sub 

Private Sub cmdGo_Click() 
'Tbis is the main procedure 

Dim TahleNum As Integer 

'Obtain and validate the Table number 

This line hes been 
moved between 2 
procedures 

If IsNumeric(txtTahleNum.Text) Then 'I~ it numeric? 

cw 

Let Tal:JleNum = Val(tXtTahleNum,Text) 'Change to a numb, 

Figure 6.9: Line of Code between Procedures 

Chapter 6: How Students Use CORT Page 108 



This type of error does not usually appear when students develop programs directly in Visual 

BASIC as the intelligent editor automatically places dividing lines between procedures as 

shown in Figure 6.10. 

/cmdCompute 

Private Sub cmdCompute_ClickO 
Dim x As Single, y As Single, s As Single 
'Display the sum of hvo numbers! 
Call GetNumbers(x, y) 
Call Calcula!eSum(x, y, s) 

3 1C11,k 

Horizontal line Is 
placed between 
the procedures In 
the VB editor 

Call DisplayResult(x, y, s) 
End Sub / 
Private Sub CalculateSum(num1 As Single, num2 As Single, sum As Single) 

'Add the values of num1 and num2 
'and assign the value to sum 
sum= num1 + num2 

End Sub 
Private Sub DisplayResult(num1 As Single, num2 As Single, sum As Single) 

'Display a sentence giving the two numbers and their sum 

Figure 6.10: Procedures in Visual BASIC Editor 

There is a facility within CORT, available from buttons on the moveable toolbar, to allow users 

to insert blank lines into a part-complete solution, however it was observed that most students 

were initially unaware of this. 

It was also observed that students were Wlcomfortable with the fact that lines moved back from 

the right-hand window to the left-hand window were placed at the bottom of the existing lines. 

For example, a student may have moved a line from the left-hand window into a certain position 

in the right-hand window as shown in Figure 6.11 . 

., COOi Ud, "'"''"'"""' rooJ ~, ll'hll"-"" '"'" ""' UI [""' ""' ""' "II ': ti II<" ....... _.,,_.._,.. 
p.111:11a',tlP.l1R·' ~I 

is-;;;;,~s·a-;;;;;"a•a•a-=~~" a==•s-s-a"ac------1 ,,-""'a~a•a-,a;•a·a•a-=~= a==·a-c-a•cc_. ____ _ 
.................................... """"' ""'·" .................................... O,,t>•• l•ph<« 
"'" "" '"""'" '"_....,.,,,., • - •••••••••••••••••••·-···-- "'" ,., l<llon .. <• .......,.,..,.,,_, ... ••••••••••••••••••••••••••••• 
•"""'"'"""'"'""""'""''' ><1 .. ,0 ,.., ...,...,,,,.., <""" "'"'"""'"""""'."''"".'" ,., .. ., l<b ........,..,.,. cuo•II 

li·!··~·il"~··~ .. ~· ~· ~"-!!i!'"~··~ .. ~-~ .. ~· j!"!'' I ..... - ... - ,.. ... ,.. ... ........... ,.......... ... .... "~ ,,_.,._ ..... , .. 
'"' "' ... "'""",.. "'"" -P4lii YHNWA#iii MF¥ ,,. "'"'""'""''"' "'"'' .... ........ .,..., ... ,.,. '" .... """ .,, ........ _ ............ . ..... "'· ""' "'-· ............ . .. , ......... "" .,... I"""'., 

·""' .. '" "-·"'- ..... -..... '" ''"'-·"" .. . ... , .. ,. ........ "'"' . .. ., ........... ""'-·'"' ... ............ , .. . . ........................... . ... .............. .. ......... ,. 
"""'·<,;--~---a 

1::·.:::~:·"" .. . 
'""''"' ... - -· ,. •-lf"'t!'··"' 1:: .• ::;:::::::-: •.....•••..•....•..• ' ...... - .......... ... .......... Student ... •• ... end ... , ..... decides to "'' -move this 

.... ... place It ......... ' ......... line . ... after this ......... line ,,,. ...... ... 
.... ........ < ·11,, ... ,. ,., '""' 
O,,Oo ,.,,>oto < "IO>oO.t>t" '°' ""' .. ""' "" lCPIU 

"''"' 

"-""'" ........ -• • 
.. ...... '""'"" .. .-...... ,,. .., ... '"' ............. -· ... ................................. . ... .. """' ...... , '-······-········-····-·-· 
"""' '"''" The line Is • .. , ........ -, ........... <1,010 ... ....... , =:: ::::::: now In place -......... . ' .............. ,. ...... ,. '" ""''' 

. ................ . ......... ,_, ... , ............ . . ......... .- ...... .. ...... -. ........... ,. 
Figure 6.11: Line of Code Moved into Right-hand Window 

The student may then have a change of mind and decide to return the line back to the left-hand 

window. This would be done by clicking the large left-hand arrow key and the result would be 

as shown in Figure 6.12 resulting in the original line being placed at the bottom of the lines in 

the left-hand window. 

Chapter 6: How Students Use CORT Page 109 



·"""'"""""'""""'"''<'"'""-'"'"""""'too"'"' ..... '"' '.:'1'61Jcl 
... --- .... o-1~1a1111tl!F-J .nv.i .......... ~ .............. 
:::;;·:;:·::::::::;·::·~;..;;;;:·: 1:::-::.~:'.!!~!: .....•.•... ______ ~ 
'""'"'"""'"""'"""""'"'"""; .,, .. ,, '"' -'"""'"'' <hc>II ., .......... ' ., .......... '" .. ~ '"' ...... -.. '"' .. ... ............. .,...,,. ""' "· ...... ,.,,_, ......... 
"''" " '0" .. ,. ·- ......... 
Loe mlf-·'-" • •• '" ...... ..._ -.. -..... '" ............... . '" .. -....... """"'""' . NilMiii#ISMtlil&iWM 

" The student decides to 
.. , move the line back and 
:::: thlnks that It will go back 
:::: before this line (where It 
""" came from) •• .,., ,.,.,,,, • .,,,.,.,.,. " """' I 

....... _ ........... .. 
,.,. .................... .. 
• 
,. •= -'""'"'".cu,tn .... ... ... ... .. .. .. ._ ............... '"' .. -... -.. '"''" .. -............. . 

:::::.:~.!::!::!"::,!:.=~'.!!:, I .......... u.,, . v,,,. ....... ,, .... '"·'"" . .,...., ..... ,• •.. ... '"""" .... --........ .. ................................ 
'"" fl, ., .. ,,,._, """'" ... " •c,.,, , .. '"'"'"" .,., '" ,., <...... . .. ., .. ... .... -.... , -.. --········-··-··----·· "' """'•Ttot • •• ....... ''*' ca<IC<O•te<U,._CUekH 

"'"-·"" '""" "'" '"" ,,, .. 
"'""''·'" •ni, .. ,-, , .. , _, .. ,, .. "' ""'-·'"''""" ............ _ ....... . .................................... ... "-"""'' ........ . .. ...... """""" '"-'""'""• "................................. 00 "'"' - 1ot(1l .. ...... .,..., ...... 
::: !::::::: : ~'::: However the line Is moved to 
.......... ,. • .,,., the bottom of the lines in the 
::: ::::::;: : ::~:; left-hand window 
::: :;;:;::!: ::::;.cL.,, r. •• ,c.,.,.s,=-=··= ... = .. c .. c .• , •• , .. : .. c .. c .. =. .... _ .. 
..... "· """''"'-· .......... .. ..... , ... _. .. , .. , .... _« ... <! ""• "' ....... "'-· ...... ,..... . .... ,., '"'"' ....... '" " . 
""' " "'" " "'" " 

. .,..,. ... -..... "'""·"' .... .... """"''"- .. ""'"" . ... """"'""'" ........ 
Figure 6.12: Line of Code Moved Back Into Left·hand Window 

Several students also suggested that it would be useful for the lines that had been moved into the 

right-hand window to be highlighted in some way so that they were easy to identify. They 

indicated that his would help them in the reselection of those lines in order to move them back 

to the left-hand window if necessary. 

A further suggestion was that there should be a separate window which would act as a "waste 

bin" for discarding the extra "distracter" lines that were included, but not required for the correct 

solution, in CORT method 2 or 3 type problems. Students indicated that this would help them 

concentrate on what they believed were the correct lines of code to be included in the solution. 

The movement of lines of code between the code windows could be considered as the most 

important function of CORT as this is the mechanism for directly building the solution to a 

given problem. It is therefore not surprising that it was observed that the mechanism raised 

several usability issues with students. It is recognised that the mechanism could be improved 

upon, however overall, students appeared to quickly become familiar with the mechanism 

suggesting that it had little negative impact on their learning. 

6.2.2.3 Moving and Manipulating Lines within the Right-hand Window 
After lines of code had been moved into the right-hand window, students were required to move 

them up or down into positions that they considered to be correct. This is done by clicking on 

the up and down arrow buttons on the toolbar with a line moving by one position for each 

mouse click. It was observed that students often found this tedious in situations where a line had 

to be moved a long way up or down in the right-hand window. When interviewed, some 

students indicated that they had a "work-around" for such situations and that they would move 

a line back to the left-hand window and then move it directly into the correct location in the 

right-hand window. Most students suggested that it would be better to be able to "drag and 

drop" a line into the correct position rather than use the up and down arrows. 

Chapter 6: How Students Use CORT Page110 



It was also observed that a majority of students did not realise that more than one line could be 

highlighted in the right-hand window and that the block oflines could then be moved into 

position using the up and down arrow keys. 

The overall impression concerning the line manipulation function for the right-hand window 

was that, although students fowid the mechanism rather slow and tiresome, it did not hinder 

them from being able to move the necessary lines of code into position relatively quickly. It had 

been observed that students used this function intuitively from the beginning of the study 

although most did not talce advantage of the ability to move blocks of code lines up and down 

within the right-hand window. 

6.2.2.4 Summary 
The manipulation of the lines of programming code between the two code windows and within 

the right-hand window of the part-complete solution is fundamental to the use of CORT. 

Overall the students quickly overcame the minor usablity problems and were able to rapidly 

move and position lines of code into and within the right-hand code window. The observations 

revealed that the problems did not affect to any great degree the student support for learning 

provided by this aspect ofCORT1s functionality. 

6.2.3 Editing the lines of code 

6.2.3.1 The CORT Editor 
Some of the CORT problems were of the "method 3" type in which it was necessary for 

students to key-in some lines of code that were missing from the part-complete solution. and a 

text editor was provided for this purpose. The first such problem was given to students in week 

4 and it was problem nuril.ber 8 in the study. The other problems that required the use of the 

editor were 12, 14, 15 and 18. Figure 6.13 is a graph which shows the number of students who 

utilised the CORT editor for each problem number. The graph indicates that the initial usage of 

the editor for the first mode 3 problem, which was problem number 8, was relatively low. 

However the usage of the editor was high for the other mode 3 problems. This data supports the 

observations that several students did not initially know that the CORT editor existed and 

therefore added the necessary lines directly in the Visual BASIC editor. However after learning 

of the existence of the CORT editor, the majority of students used it extensively with the later 

problems. An anomaly in the data is revealed for problem number 17. The graph indicates that 

10 students made use of the editor for this problem even though use of the editor was not 

required as it was a mode 2 type of problem. However this particular problem was fowid to be 

Chapter 6: How Students Use CORT Page 111 



particularly difficult by some students and many therefore resorted to changing lines of code in 

the editor. 

LIH of CORT Editor 

" .. 
' . 

i j " . l I .,, . 

I .. 
' • 
I ' ' . •( l 1 1 • " . t i ' • ·• ' ' ' '.~ 1 I ,;"'' 

~ • ~ , 
i z 

4 ' ' ' ' • :? ' M 
' .; TI _, 

·~ ~ 

' ' ., :1 

• l ;f 

' • • ' • .. " " " " " .. " '" Problem Numbors 

Figure 6.13: Graph Showing the Utilisation of the CORT Editor 

The functions of the CORT editor included a facility to copy and paste lines of code using the 

nonnal [CTRL + C] and [CTRL + V] key combinations however it was observed that several 

students did not know about this feature. 

When invoked, the editor is displayed in a relatively small window as shown in Figure 6.14. 

Some students when interviewed indicated that they disliked the fact that when the window size 

was increased, the area in which the text is displayed remained at the original size and did not 

increase proportionally. 

Chapter 6: How Students Use CORT Page 112 



ldllCMo , 

t1oo I>IPUC1t 

Arm ••••••••••••••••••••••••••••• frlvatt Sllb Cll<U<l<tTolilt_Cl1CXII 
Dim otll<ltotN..., 1• atrlo~ 
Dllll nU<lentll•d: 1, S111',Jlt 

•Gtt dot& u.,,. uxt l>oxu 
Ltt n\1dentN..,. • txtNOllle, Tex; 

Lot nudent~orX • Vol(uUorX.THtl ~ 

•output the.....,., ond -•X to th• HI, 

'Cleat the tnt.l>oxto and 8tt tlul foow, to tlle txt.N"""' t>ltl>O>I 
Ind a111> 
Rom ••••••••••••••••••••••••••••• 

Figure 6.14: CORT Editor Window 

This area remains the 
same size when the 
window Is Increased in 
size 

Students who had knowledge of the existence of the CORT editor and yet still preferred to use 

the Visual BASIC editor gave the following reasons during interviews: 

1. Horizontal lines are displayed between procedures in the Visual BASIC editor. Students 

had stated that they sometimes felt overwhelmed when the same program was viewed in 

the CORT editor. 

2. The Visual BASIC editor makes use of colour which helps understanding. Keywords 

are shown in blue, comments are shown in green, and lines with syntax errors are shown 

in red. 

3. The Visual BASIC editor gives syntax help in various situations. For example, if the 

picturebox object name picResult is keyed-in then a list of possible methods is listed as 

shown in Figure 6.15. 

Call DisplayResult(x. y, s) 
picResult~ 

End Subrt1'"~-,,-,---1~,_ __ 
rf1 Appearnnee 

P . t 5rf1Au10F1edraw um1 A nva e rf1 Autasae 
'Add th11i' eackColor d num 
'and as!di' eo,derStyle m 
sum = 19 causesValldabon " 

End Sub 

Figure 6.15: Visual BASIC Syntax Help 

However some students did suggest that such a list of possibilities could be quite long 

and actually cause confusion. 

Chapter 6: How Students Use CORT Page 113 



A problem that was observed for some students who used the Visual BASIC editor rather than 

the CORT editor was that, if they did not copy the code that they had amended in Visual BASIC 

back into CORT, then the code in CORT ended up being different to that in Visual BASIC. 

The observations and interviews provided ample evidence to suggest that students tended to find 

the editor functions of CORT easy to use. However some of the basic editing features such as 

copy and paste were not intuitive for students and could be improved upon. Figure 6.13 

indicates that despite its limitations, most students made good use of the editor with the 

problems that it was required for and there was no evidence to suggest any difficulties 

experienced by students which impacted negatively on this aspect ofleamer support. 

6.2.3.2 Copying and Pasting Code lo Visual BASIC 
Students were required to copy code from the right-hand window in CORT to the Windows 

Clipboard and then paste the code into the Visual BASIC code window of the integrated 

development environment (IDE) for testing purposes. It was only necessary for students to 

either click on the l.~i'. button or select the appropriate command from the line menu in CORT 

in order to copy the code. However it was observed that many students would highlight all of 

the lines in the right-hand window of CORT before selecting the copy function. This was 

probably because this is the way lines are copied in most other Windows programs. 

A problem did arise in the pasting of the Clipboard contents into the Visual BASIC code 

window. In the early part of the semester, most students copied the lines from the code window 

of CORT into the Clipboard before invoking the Visual BASIC development environment. 

From within Visual BASIC th~ students would load the appropriate Visual BASIC files for the 

problem that they were attempting, these files containing the Visual BASIC interface for that 

particular problem. It was found that the opening of the Visual BASIC development 

environment had the effect of clearing the Windows Clipboard and so the students had to go 

back to CORT and reselect the "Copy to Clipboard" function. 

It was also observed that some students had not read the instructions properly in the early part of 

the study and did not realise that it was necessary to load the Visual BASIC files that contained 

the Visual BASIC problem interface for each CORT problem they were attempting. They 

therefore created the Visual BASIC interface themselves in a new Visual BASIC project and 

pasted the lines of code into the code window. This often resulted in unanticipated errors as the 

interfaces that they created would often contain objects with names that did not match the object 

names in the program code. Hence the programs would not run and would often output obscure 

error messages. 

Chapter 6: How Students Use CORT Page 114 



Overall, although the mechanism for copying the code from CORT to Visual BASIC was not 

seamless, the majority of students quickly became familiar and comfortable with it. The 

mechanism provided a minor annoyance to some students, however no lasting negative impacts 

on learning were observed or reported. 

6.2.3.3 Code Indentation 

Good programmers understand the importance of aligning lines of code correctly within 

progranuning control structures and yet this is an area that many novices struggle with. Buttons 

have been provided within CORT, as shown previously in Figure 6.7, to allow a line of code 

that has been moved into the right-hand code window to be aligned correctly with respect to the 

control structure in which it has been placed. Most editors of integrated development 

environments such as that of Visual BASIC automatically align a line of code that is being 

keyed-in with the line immediately above it. However, when a line of code in CORT is moved 

to the right-hand window it is positioned as shown in Figure 6.16. 

Private Sub cmdGo_Click() 
Rem Letter Costs 

Dim letterileight As Single, costOfPostage As Single 

Rem Obtain input 
Let letterileight • Val(txtLetterUeight.Text) 

If letterlJeight <• 0 Or letterlil'eight > 900 Then 

~ ··:~ 
End If 

End Sub 

late , output postage cost 

The Urie moved lrito the 
wiridow has beeri left· 
aligried 

Figure 6.16: Position of Line After Addition to Right-hand Window 

It was observed that the majority of students in the early weeks of the study did not indent and 

align these lines of code that they had moved and this caused them some difficulty in initially 

understanding and identifying the control structures that were within their programs. However, 

most students soon recognised the usefulness of code alignment and made extensive use of the 

indent I outdent facility. The impression was that all students found the indent I outdent facility 

very easy to use and that it was a useful support. 

6.2.3.4 Summary 
In overall terms, the editing of lines of code in CORT and the copying of code to Visual BASIC 

for testing purposes caused initial problems with a small number of students. The CORT editor 

Chapter 6: How Students Use CORT Page 115 



was purposely created to be as simple as possible so that not too great a cognitive load would be 

imposed upon students and to this end it appeared to meet this specification. Whilst recognising 

that improvements to the editor and the copy I paste mechanism of lines of code to Visual 

BASIC are desirable, the observations and interviews that took place suggested that there was 

little detrimental affect on student learning. 

6.3 Summary of Usability Elements 
The overall impressions gained from the usability study was that that the majority of students 

quickly became comfortable with the basic functionality of CORT and that it met the original 

requirements of providing a sound tedmological support for students in their learning of 

programming via the part-complete solution method. The usability study identified three main 

areas where CORT was seen to provide some initial problems for some users in tenns of utility 

and functionality. These were: 

• Operation of the problem files; 

• Manipulation of the lines of code; and 

• Editing the lines of code. 

In all cases, the actual impediments these difficulties posed for learning tended to be minimal 

with students quickly overcoming difficulties through their experiences and continued use. The 

majority of the problems were seen to disappear within the first few weeks of the course and 

where the interface problems lingered, successful workarounds were found by all students. 

The small learning curve of CORT suggested that the extraneous cognitive load imposed upon 

students by CORT's usability was quite minimal, leaving students with more unused working 

memory available to concentrate on solving the part-complete problems. 

From the usability study, the following changes emerged as means by which the usability of 

CORT could be improved upon in future versions: 

• Associating the CORT part-complete solution file extension of 11pcs" with the CORT 

program so that the CORT program automatically opens when such a "pcs" file is double

clicked on within Windows Explorer. 

• Allowing a CORT problem statement window to be open at the same time as the CORT line 

manipulation windows. 

Chapter 6: How Students Use CORT Page 116 



• Changing the current expansion I contraction mechanism of the line manipulation windows 

by providing a vertical "slider" between the windows. Such a slider is used in many 

Windows' interfaces and can be moved left or right by the mouse in order to increase or 

decrease the width of the windows. 

• Pennitting the dragging and dropping of lines of code between the windows (the large left 

and right arrow buttons would be removed). 

• Disallowing the placement of lines of code between procedures in the right hand window. 

• Having a menu appear in the right-hand window (when the mouse is right-clicked) to allow 

blank lines to be inserted. 

• Having the lines that have been moved to the right hand window appear in a different colour 

to others (in order to distinguish them from the original lines of code in the part-complete 

solution). 

• Allowing lines to be moved back to the left hand window and to be placed in their original 

positions. 

• Having a "waste bin" window into which lines that were thought not to be required could be 

placed. 

• Improving the functionality of the CORT editor to: 

• Place horizontal lines between procedures; 

• Use colour for keywords in a similar way to the Visual BASIC editor; and 

• Give some basic syntactical help when keywords are entered without the complexity of 

the Visual BASIC editor. 

• Providing a mechanism to automatically indent and align lines of code in the right hand 

code window of CORT. 

• Providing a function within CORT to display a text file that might be needed for a problem 

• Improving the mechanism by which a Visual BASIC file is loaded and the CORT code is 

copied into Visual BASIC. This mechanism should be seamless to the user. 

Chapter 6: How Students Use CORT Page117 



Chapter 7 
How the CORT System Supports the Learning Process 

7 .1 Introduction 
This chapter is an analysis of the research data with respect to the second research question 

which sought to investigate how the part·complete solution method (PCSM) within the CORT 

system supported the learning process. This was done in a qualitative way by observing students 

and particularly investigating the cognitive strategies that they used when attempting to solve 

problems with the CORT system. 

Investigating student cognitive strategies and student engagement with learning materials, or in 

this case the CORT system, is a sound strategy to detennine how well those materials support 

the learning process. Not all materials do provide support. For example, Sweller, van 

Merrienboer & Paas (1998) found in an experiment that some students did not adequately 

engage with their learning materials and were therefore not able to make the most effective use 

of those materials. This suggests that those students did not gain adequate support from the 

materials with which they had been attempting to engage with. 

When students engage well with learning materials in a learning environment, then higher order 

thinking is encouraged and it is more likely that they will construct relevant knowledge in the 

domain that they are attempting to learn (Oliver & Herrington, 2001). 

7.2 Analysis of Student Solution Methods using CORT 
In this investigation into CORT's support for the learning process, a total of eight students in the 

CORT group were observed whilst they attempted programming. The students were observed in 

the following way. The same two students were observed during nine computer laboratories, 

and each of three pairs of students was observed for three computer laboratories. The students 

were not necessarily observed during all of their problem solving attempts. This was because a 

student might have been absent or, in weeks when there were two problems to attempt, a student 

may have spent all of the laboratory time on the first problem. Table 7 .1 shows: the students; the 

weeks in which they observed; and the problem numbers that they were observed attempting. 

Student names have been omitted in order to ensure anonymity and full details of the research 

design have been described previously in Chapter 5. 

Chapter 7: How the CORT System Supports the Leaming Process Page 118 



Table 7 .1: Student Observation Details 

Student Week Numbers of laborator Problem Nun:ibers Observed 
Student A 2-5,7-11 2-7,11,17,18 
Student B 2-5, 7-11 2-8, 11-18 
Student C 2-4 2-4 
Student D 2-4 2-5 
Student E 5, 7 8 7, 9, 10 13 
Student F 5, 7. 8 78,1113 
Student G 9-11 15, 17 
Student H 9-11 15, 17, 18 

7.2.1 Levels of Cognitive Strategy with the CORT System 
The fonns ofleamer cognitive strategy were tabulated and levels were identified from the fonns 

of student activities observed. This determination of levels provided a discrete set for analyses 

and inquiry. 

From the observations of student activities that took place by the researcher, five distinct levels 

of cognitive strategy were identified with respect to CORT. These ranged from the lowest level 

of cognitive strategy where a student demonstrated no planning and randomly moved lines from 

the left hand window into a part-complete solution, through to the highest level where a student 

demonstrated thorough planning and testing of a problem solution. These levels were classified 

by the researcher and are described in Table 7 .2. 

Table 7.2: Classification of Levels of Cognitive Strategy 

level of Cognitive Solution Method , , 
· Strategy, 

1 Unplanned and random. For example a student: 
• Does not read through the part-complete solution . 
• Chooses a line of code at random from the set of lines ln the left-hand window 

and then moves It to a random position in the right-hand winUow. 
• Tests their code In an unplanned and random manner . 
• Does not trace code in the Visual BASIC debu•"•er . 

2 A low level of consideration In their approach. For example a student: 
• Part!ally reads a part-complete solution . 
• Chooses a line at random and then moves the line with some thought to a 

position in the right-hand window. 
• Identifies a subset of lines in the left-hand window, chooses a line to move 

from that subset and moves It to a random position In the right-hand window. 
• Demonstrates little planning in their testing . 
• Does not trace code in the Visual BASIC debu""er . 

3 Some levels of consideration in their approach. For example a student: 
• Thoroughly reads a part-complete solution • 
• Identifies a subset of lines In the left-hand window and then chooses a line to 

move from that subset. 
• Moves the line with some thought to a position in the right-hand window . 

However this is done at a micro level such that they move the line to be 
adjacent to lines which look similar, e.g. the llne 

n = 1 
is in the right hand window and therefore they move 

n=n+1 
to be close to this line 

• Tests and traces their arooram several times . 

Chapter 7: How the CORT System Supports the Leaming Process Page119 



Level of Cognrt1ve Solution Method · · 
Strategy ' 

4 

5 

High levels of consideration and some evidence of strategy. For example a 
student: 
• Thoroughly reads and studies a part-complete solution. 
• Carefully selects lines of code. 
• Carefully and thoughtfully places the lines Into the part-complete solution. 
• If a part-complete solution has more than one procedure, they work on one 

procedure at a time In the right hand window. 
• Shows some evidence of testing the part-complete solution In a strategic 

manner, mak!na extensive use of the Visual BASIC debU""er. 
Deliberate approach. For example a student: 
• Thoroughly reads and studies a part-complete so!utlon and the lines of code 

In the left-hand window. 
• Demonstrates Initial planning. 
• Carefully selects lines of code and thoughtfully places the lines Into the part

complete solution. 
• If a part-complete solution has more than one procedure, they work on one 

procedure at the time in the right hand window. They might thoroughly test 
that procedure that they have completed the code for before they work on 
completing the code for other procedures. 

• Tests the part-complete solution at appropriate points to check their 
h"~otheses about the lines and the wav the pronram should behave. 

7.2.2 Support Types Identified and Scaffolded by the CORT System 
The students were observed to use CORT in a number of different ways in response to the 

difficulties they experienced while attempting the programming problems. The use of CORT 

helped scaffold the students to various degrees and this section describes a classification of 

support types and an explanation of how estimates were made of the scaffolding provided by 

CORT. The types of support provided by CORT were categorised as syntactical, semantic, 

structural, and algoritlunic. These categories are standard forms within programming 

environments (e.g., Soloway, 1986; Winslow, 1996). Examples of the types are shown in Table 

7.3. 

Table 7.3: CORT Support Types 

Support Type Exam le 
Syntax A choice of two lines is available: 

let txtName.ForeColor = vb Red 
let txtName.ForeColor = Red 

A student Initially chooses the second line which Is syntactically incorrect and uses 
CORT to ldentifv the error. 

Semantic A choice of two Jines is available to place a string literal into a variable. 
Let personName = "Bill" 
Let personName = Bill 

A student Initially chooses the second line which is semantically incorrect and uses 
CORT to ldentifv the error. 

Structural Example 1: 
A student places variable declarations statements (DIM statements) in incorrect 
positions and uses CORT to identify the errors. 
Example 2: 
A student initially places llnes of code in between (outside of) procedures and uses 
CORT to idenlifv the errors. 

Chapter 7: How the CORT System Supports the Learning Process Page 120 



Support Typo Examp!e 
Algorithmic In solving an algorithm to determine the average of a set of numbers, a line of 

code Is placed In the wrong position. For example: 
DoWhi!e NotEOF(1) 

Input #1, number 
Let total = total + number 

Loop 
Let count= count+ 1 
Let average = total I count 

In the above, the Incrementing of the variable count should be within the loop. The 
CORT s stem hel s the student ldenti the error. 

In addition to detennining the types of support that the CORT system provided for students for 

the problems that they attempted, it was important to detennine the degree of assistance that 

CORT offered. Table 7.4 shows this classification of the scaffolding levels provided by CORT 

and their meanings. 

Table 7 .4: Classlflcatlon of Levels of Scaffolding 

Scaffold in Level Mearnn 
1 The CORT system provided little help In solving the problem, but did help Identify 

the errors. 
2 The CORT svstem orovlded some heln In solvlna the oroblem. 
3 The CORT svstem provided a lot of help ln solvlnn the nroblem. 

The following section describes the programming problems that were attempted by the students 

and, for each problem, discusses how the CORT system was used by the students in their 

problem solution. The CORT method that was used is also indicated. A sununary of the 

problems was shown in Table 5.7 of Chapter 5 and the three methods were described in Chapter 

3. The CORT methods are: 

• Method 1. All of the lines of code that are missing from the program are provided as 

options. 

• Method 2. All of the lines of code that are missing from the program, together with some 

extra Jines of code that are not needed to complete the program, are provided. These extra 

lines act as "distracters". 

• Method 3. Some of the lines of code that are missing from the program might be provided, 

however some other missing lines must be keyed-in by the learner. 

To ensure reliability in the coding of student behaviours, each of the problems was coded by the 

researcher and an experienced colleague. Consistency was checked by comparing the coding 

Chapter 7: How the CORT System Supports the Learning Process Page 121 



schemas and results. A consistency of over 90% was achieved indicating high levels of 

reliability in this approach. 

Appendix 8 contains: the detailed descriptions of the problems; the part-complete solutions and 

missing lines; and the problem solutions. 

Problem 2 

Problem Description 

Titis was the first problem attempted by the students and was very simple. It was very similar to 

problem l which had been solved by the tutor for the students at the beginning of the computer 

laboratory as a way of demonstrating the CORT system. Because of this similarity, it was 

thought that using CORT method 1 would make the solution too simple, and therefore method 2 

was used. There were 3 missing lines from the part-complete solution and 6 lines were given in 

the left-hand window, 3 being distracter Jines. The missing lines were from three separate yet 

simple procedures. 

Problem Solution 

Students B and C brought the necessary lines across to the correct positions in the part-complete 

solution on their first attempt. They both carefully studied the part complete solution and the 

lines in the left-hand window before doing this. Because the problem was relatively trivial, they 

did not test the solution until all three lines had been placed into position. For these reasons their 

cognitive strategy and scaffolding levels were identified as 5 and 3 respectively. 

Student A quickly brought the code into the part-complete solution and generated one simple 

syntax error. He soon found and corrected the error when he attempted to execute the program 

in the CORT system, indicative of a type 4 cognitive strategy. CORT provided a high level of 

scaffolding indicative of type 3. 

Although there were 3 event procedures in the right-hand window, each of which required one 

line from the left-hand window, student D moved 3 lines of code into the first event procedure 

which demonstrated a misunderstanding of a structural type. She recognised that her solution 

was wrong but was unsure how to correct the program and asked the tutor for help. She was 

unsure of event procedures although this problem was similar to problem 1 which the tutor had 

gone through with all the students. The CORT system had therefore provided low level 

structural support to the student as the incorrect output from the program indicated that an error 

was present She also made the same syntax error as student A and when she ran the program 

Chapter 7: How the CORT System Supports the Learning Process Page 122 



she recognised the problem and replaced the line of code with the correct line from within 

CORT. She had been engaged with the system at a fairly low level which suggested a cognitive 

strategy of type 2. The system had provided her with some support, however it did not help 

overcome the structural difficulty which was characteristic of type 2 scaffolding. 

Table 7.5 swnmarises the types of supports, the levels of cognitive strategy, and the scaffolding 

provided for the students who were observed attempting problem 2. 

Table 7 .5: Supports and Levels of Cognitive Strategy and Scaffolding for Problem 2 

Student Syntqx Semantic Structural Algor1lhm1c Cogmtive Scaffofdmg 
Identifier Support Support Support Support Strategy Provided 
A ' 4 3 
B 5 3 
c 5 3 
D ' ' 2 2 

Problem3 

Problem Description 

This problem was the first problem that required the student to declare and use variables; carry 

out some·simple arithmetic processing; and to output values to a Visual BASIC fonn which acts 

as a program's interface to a user. There was no input of values from text boxes on the fonn, 

values being assigned to variables directly in the program. Because several new concepts had 

been introduced, CORT method 1 was utilised with all the lines of code in the left hand window 

being required in the solution to the problem. 

Problem Solution 

Student B printed off the part complete solution and lines from the left hand window, studied 

the code very carefully, and then moved the lines from the left hand window directly into their 

correct positions. Testing then indicated that the solution was correct. CORT had scaffolded him 

at a high level, identified as type 3, He was very engaged with the system and it provided him 

with the necessary supports to solve the problem. His cognitive strategy was characteristic of 

type 5. 

Students C and D had structural problems with respect to positioning of the "Dim" statements 

(statements that declare the variables to be used in the program). They both moved statements 

that were assigning data to variables ("Let" statements) to positions in the program that were 

before the "Dim" statements. This seemed to indicate that the students did not understand the 

purpose of the "Dim" statements. Indeed student D stated that the "Dim" statements did not 

Chapter 7: How the CORT System Supports the Learning Process Page 123 



seem to "do" anything and this suggests that the students lacked an understanding of the 

difference between declarative and procedural programming statements. The CORT system 

helped the students recognise the problem as the error messages that were generated in Visual 

BASIC, when the programs were tested, indicated that the variables in the data assignment 

statements were unknown. This helped the students reposition the "Dim" statements. 

Student C also had a problem with respect to the statement that clears the output (the "Cls" 

statement) in the output area (a "picture" box) of a form. This statement should have been 

positioned before the output statement, however she had the statements the other way round. 

This resulted in the output from the program being immediately cleared and it therefore 

appeared that there was no output whatsoever from the program. She corrected it by testing 

within Visual BASIC. The cognitive strategy employed by student C showed levels of 

consideration of type 3 whereas student D showed a higher level of consideration identified to 

be type 4. CORT provided high levels of scaffolding support for both students C and D 

indicative of type 3. 

Student A tested his program with 6 lines of code still being in the left-hand window. When 

asked the reason for this, he stated that his strategy was to bring lines of code that he understood 

into the solution thereby creating an incomplete solution. He then tested this incomplete 

solution in Visual BASIC to "see what happened" in the belief that error messages and I or 

output would help him work out where the lines that were still in the left-hand window should 

go. The statements that he had omitted were the 5 "Dim" statements and the "Cls" statement. 

This strategy worked for him as the error messages that were output made him realise the need 

for the "Dim" statements and that they were needed before the "Let" statements. He then 

brought those statements into the correct position in his solution. He had the same problem as 

student C with respect to the positioning of the "Cls". However, because he had tested the 

program without the "Cls" statement and observed "correct" output, he worked out what the 

purpose of the "Cls" statement was and moved it to its correct position. He showed some levels 

of consideration in his cognitive strategy characteristic of type 3. CORT provided the necessary 

scaffolding for him to be successful and it was indicative of type 3. 

The errors associated with the incorrect positioning of the "Dim" and "Cls" statements came 

about because their semantics were not understood. Titls then led to structural errors in the 

programs. In all cases the testing of the programs in the CORT system alerted students to their 

errors and, by experimenting with the lines of code, the students gained an understanding of the 

purpose of the statements. Table 7.6 shows the types of supports, the levels of cognitive 

strategy, and the scaffolding provided for the students who were observed attempting problem 

3. 

Chapter 7: How the CORT System Supports the Learning Process Page 124 



Table 7.6: Supports and Levels of Cognitive Strategy and Scaffolding for Problem 3 

S1udent Synta.>e Semantic Structural Algorithmic Cognitive Sc.iffolding 
ldent1f1er s" ,rt Sup Ort s" ,rt Support Strategy Provided 
A ., ., 5 3 
B 5 3 
c ., ., 3 3 
0 ,/ ,/ 4 3 

Problem 4 

Problem Description 

Titis problem was similar to problem 3 as it required the student to declare and use variables; 

carry out some simple aritlunetic processing; and to output values. Again, there was no 

requirement to input values from text boxes on the screen required as values were assigned to 

variables directly in the program. This problem did have an extra degree of difficulty as it had 

requirements within it such as; 

Increase the variable balance by 4.5% of its value 

Because the problem was similar in nature to problem 3, CORT method 2 was utilised with only 

some of the lines of code in the left hand window being required in the solution to the problem. 

Problem Solution 

As with problem 3, student B studied the requirements and part complete solution carefully 

together with the lines of code in the left hand window. He then moved across the necessary 

lines into their correct positions and tested the program. He demonstrated a high level of 

cognitive strategy and the CORT system had provided the necessary support to help him solve 

the problem. Titis took about 30 minutes. For these reasons, the cognitive strategy and 

scaffolding levels were coded 5 and 3 respectively. 

Students A, C and D all chose the following incorrect line of code for the output of the contents 

of the variable balance: 

picDisplay, Print "Final balance is $ 11
; "balance" 

This was a semantic error indicating a lack of understanding of the difference between a 

variable and a string literal. Through testing, they all recognised that the output from the 

program was incorrect and they then went back into CORT in order to choose the correct line of 

code. 

Chapter 7: How the CORT System Supports the Learning Process Page 125 



Students A and C both had the same algorithmic error as they both chose an incorrect ser.p!- .. ,, 

assignment ("Let") statements for their solutions and did so quickly with little thought. They did 

place the incorrect set of assignment statements into the correct position in the part comp I eh: 

solution. They both recognised that the program output was incorrect and then replaced the lines , 

of code with the 11correctu set after reconsideration of the set oflines in the left-hand window. 

Student D had a structural error as she placed an assignment statement at the top of the program, 

outside of the event procedure. The CORT system alerted her to the error and she moved the 

line to the correct position. She did spend some time deliberating over which set of assignment 

statements should be used and asked the tutor about the meaning of statements such as: 

balance~ balance+ balance* 0.0525 

She then moved the correct assignment statements into position and her program was correct. 

The scaffolding levels for students A and C were type 3 as the students solved the problem by 

just using CORT. Student D demonstrated level 2 for scaffolding as she required some help 

from the tutor, CORT not providing all the help that she required. 

Student D demonstrated a high level of consideration for her cognitive strategy, characteristic of 

level 4, as she only had two minor errors and had carefully thought about the problem. Students 

A and C had had some difficulties in detennining how to solve the algorithm, demonstrating 

some levels of consideration in their approach which was indicative of a cognitive strategy of 

type 3. 

Table 7.7: Supports and Levels of Cognitive Strategy and Scaffolding for Problem 4 

Student . Syntax Semantic Structural Algorithmic Cognitrve Scaffolding 
Identifier s, ort s, ort s, Ort s, ort Strategy Provided 
A • • 3 3 
B s 3 
c • • 3 3 
D • • 4 2 

Problem 5 

Problem Description 

This was the first problem that required data input through text boxes that were on a Visual 

Basic fonn. Some simple arithmetic processing was also required together with data output to 

the fonn. CORT method 2 was utilised as the new concepts that were introduced were not 

thought by the researcher to be too cognitively demanding. 

Chapter 7: How the CORT System Supports the Learning Process Page 126 



Problem Solution 

Student C was absent from the computer laboratory in which this problem was attempted. 

Student A was thoughtful in his approach to this problem, solved it relatively quickly, but did 

have some semantic difficulties. 

He chose the incorrect set of data input statements, the correct statements making use of the 

"Val" function which converts string data, as input through a text box, into numeric data. The 

run time error messages that were output in Visual BASIC alerted him to the problem and he 

then chose the correct statements. 

He also placed the "Cls" statement in the wrong position resulting in the clearing of the output. 

He had made the same error in problem 3 and so he quickly recognised the error and moved the 

line to its correct position. 

CORT had provided a high level of scaffolding for him, indicat_i_ye of type 3. He did show high 

levels of consideration in his cognitive strategy, with the exceptioll Of his choice of data input 

statements, characteristic of type 4. 

Student B had the same difficulty with the 11Cls11 statement as student A and corrected it after 

checking the output. He appeared to rush this problem, resulting in choosing the incorrect 

output statements, the output being displayed on two lines instead of three. He experimented 

with the other possible lines of code and corrected the problem. The numeric result from his 

program was also incorrect indicating an algorithmic error. The CORT system supported him in 

removing the error as he experimented with the other lines until the output was correct. 

CORT had provided a high level of scaffolding for student B, characteristic of type 3. His 

cognitive strategy showed some levels of consideration, less than student A, and indicative of 

type 3. 

Student D did not use CORT in a particularly thoughtful way when she attempted this problem. 

She too chose incorrect input statements like student A and she also chose the incorrect output 

statements. She did fix these with CORT's help but by using a trial and error approach. 

She also had problems with the names of objects that were on the Visual BASIC fonn and 

which were also in the programming code. She made use of the CORT editor to add data 

declaration (11Dim 11
) statements for the object names. Error messages concerning this structural 

error were then output in Visual BASIC alerting her to the problem and this helped her 

Chapter 7: How the CORT System Supports the Learning Process Page 127 



recognise the difference between objects and variables. She then removed the superfluous 

statements. 

The cognitive strategy that she employed showed a lack of thought in solving this problem. The 

strategy was unplanned and indicative of type 1. CORT however again provided strong support 

and the scaffolding level was characteristic of type 3. 

Table 7.8: Supports and Levels of Cognitive Strategy and Scaffolding for Problem 5 

Student Syntax Semantic Structural -Algorithmic Cognitive Scaffold mg 
ldent1f1er ' Support Support Support Support Strategy Provided 
A ,/ 4 3 
B ,/ ,/ 3 3 
D ,/ ,/ 1 3 

Problem 6 

Problem Description 

This problem was the first problem that required data input from a sequential text file. There 

were two records within the text file and to solve the problem it was necessary to: input the first 

record; carry out some simple processing; output the results; and then repeat the input - process 

- output for the second record. A loop was not required as loops had not yet been introduced. 

As most students initially find file handling conceptually difficult, CORT method 1 was used. 

Problem Solution 

Only students A and B attempted this problem during the computer laboratory. Student C was 

absent and student D had spent all of the computer laboratory time on the previous problem. 

Student B was again a very deliberate in his approach to the solving of this problem. He moved 

all the lines into place correctly and had just one difficulty which was with the line: 

Print teamName; "has "; points; "points" 

He thought that the line must be wrong because the name of the variable and string literal were 

the same, however testing in that the CORT system showed that it was indeed correct. He had 

demonstrated a higher level of cognitive strategy in his approach characteristic of type 5. CORT 

provided him with strong scaffolding of type 3. 

Student A had a similar difficulty with the above line of code. He was less deliberate in his 

approach to solving this problem and had several errors along the way. He bad had difficulties 

Chapter 7: How the CORT System Supports the Learning Process Page 128 



with "Dim" statements in problem 3 and they also caused him difficulties in this problem. He 

placed a corresponding "Dim" statement before every line of code that used the variable within 

that "Dim" statement and used the CORT editor to create extra "Dim" statements. This resulted 

in an attempt to declare program variables more than once within the program. Error messages 

were output when the program was run in Visual BASIC and he then deleted these extra "Dim" 

statements. 

He also had difficulties with the input - process - output structuring of the program. He firstly 

had the output statements before the input statements which he corrected after he viewed the 

output from Visual BASIC. He then had the two input statements together, followed by the two 

processing statements, and finally the two output statements. This resulted in the VP.lues within 

the input variables being overwritten by those from the second record before processing had 

taken place. The two outputs were identical and after some experimentation and retesting, the 

program worked correctly. 

Student A had demonstrated only a low level of consideration that suggested a cognitive 

strategy of type 2. Again, CORT had provided the necessary scaffolding indicative of type 3. 

Table 7.9: Supports and Levels of Cognitive Strategy and Scaffolding for Problem 6 

Student Syntax Semantic Structural Algorithmic Cognitive Scaffolding 
Identifier Support Support Support Support Strategy Provided 
A 2 3 
B ,/ 5 3 

Problem 7 

PrOblem Description 

Th.is problem required input via text boxes; processing of the data; and outputting of results to a 

form. Its solution required the use of: integer arithmetic operators, that had been introduced 

during the lecture; and of a relatively large number of assignment statements. CORT method 2 

was used as it was thought that the solution might be too straightforward with students 

expending little mental processing, should CORT method 1 be used. 

Problem Solution 

Th.is problem was attempted in week 5 and in addition to observing students A and B, 

observations of students E and F were made in place of C and D. 

Chapter 7: How the CORT System Supports the Learning Process Page 129 



Integer operators had only been covered briefly in that week's lecture and all of the students had 

semantic difficulties with the lines of code that included them. Two examples of the statements 

required were: 

Let numberOflOODollarNotes wage\ 100 
Let leftover= wage Mod 100 

The integer division operator "\" is the equivalent to "DIV" in many other programming 

languages and "Mod" is used to detennine the remainder in an integer division. 

Student Bread the relevant section of the textbook to gain a more thorough understanding of 

the operators whereas the other three students attempted to detennine the operators' meanings 

by experimentation with the CORT system. 

All of the students found it demanding to detennine the order of the thirteen assignments 

statements that were required for the algorithm that determined the breakdown of a monetary 

payment into $100, $50, $20 dollar notes etc. Students B was very strategic in his approach to 

the problem as he began by bringing just two of the lines of code into the right-hand window 

and then testing the code to view the output. He then gradually introduced more lines of code, 

tested the code, and then amended it as necessary until the output was correct. 

Students A and F had a similar approach to that of student B, however they moved lines into the 

right-hand window with little deliberation and then tested the code to "see what happened". 

They both eventually got the correct answer but took longer than student B. 

Student E had difficulties as she had begun by bringing the following lines of code into the 

right-hand window: 

Let nurnberOflOODollarNotes =wage\ 100 
Let nurnberOfSODollarNotes =leftover\ 50 

In the above, the value in the variable leftover was zero, however she did not know how t() use 

the Visual BASIC "debug" system to trace through the code and recognise this fact. The 

researcher had to intervene and help her in this aspect of the CORT system. She then corrected 

these initial Jines, but then had difficulties ordering the lines of code correctly and this appeared 

to reveal a lack of understanding of the underlying conceptual or notional machine. CORT had 

not provided support for the algorithmic difficulties that she had. 

For this problem, student B had demonstrated the highest level of cognitive strategy 

characteristic of type 5. Students A and F showed a lower level of cognitive strategy indicative 

of type 3. Student E's approach was unplaru1ed and random and her cognitive strategy was 

Chapter 7: How the CORT System Supports the Learning Process Page 130 



identified as type 1. CORT had provided strong type 3 scaffolding for students A, Band F. 

Student E required help from the tutor which suggested that her scaffolding was type 2. 

Table 7.10: Supports and Levels of Cognitive Strategy and Scaffolding for Problem 7 

Student Syqtax . Semantic Structural Algonthm1c Cognitive Scaffolding 
Identifier Support Support Support Support Strateg Provided 
A 3 3 
B , , 5 3 
E , 2 2 
F , , 3 3 

Problem 8 

Problem Description 

This problem again required input via text boxes; processing of the data; and outputting of 

results to a fonn. Its solution required the use of some simple string processing that had been 

introduced in the lecture. Because it was thought that the cognitive load would not be too great, 

CORT method 3 was used such that there were extra lines in the left-hand window and it being 

necessary for the students to key-in 1 line using the CORT editor. 

Problem Solution 

Only students Band F attempted this problem in the laboratory as the other two students had 

spent all of their time on the previous problem. 

Both students had difficulties with the syntax and semantics of the line of code that had to be 

keyed-in. The previous two lines in the solution were: 

Let firstPart = Left(telNumber, 2) 
Let middlePart = Mid(telNumber, 4, 4) 

and the line that had to be keyed-in was: 

Let lastPart = Right(telNumber, 4) 

Student B had an extra parameter in the statement as he had matched the syntax of the 11Mid" 

function rather than the 11Left" fwlction. The Visual BASIC editor alerted him to the problem 

and he was able to correct it Student F keyed in: 

Let lastPart = Last(telNumber, 4, 4) 

She had chosen to use a non-existent function "Last" as she had thought that the last few 

characters of telNumber were required. She too had an extra parameter in the code. The CORT 

Chapter 7: How the CORT System Supports the Learning Process Page 131 



system did not help her determine that the function 11Left" was required and she had to find this 

infonnation from the textbook. 

Although the students had received syntax error messages for the above, their errors stemmed 

from their lack of understanding of the semantics of the various string handling statements. 

Student Falso chose incorrect lines of code such that a telephone number, which should have 

been stored as a string, was stored as an integer. The CORT system output an arithmetic 

overflow error which was only of limited use in helping her recognise the actual problem with 

her code. She did replace 2 lines of code that were causing problems with the correct lines as 

they were the only alternatives. The program then worked correctly and her semantic error was 

solved. 

Student B had shown a high level of consideration and some evidence of strategy in his 

approach and this was indicativeof type 4. Student F demonstrated some consideration in her 

approach to the problem suggesting a cognitive strategy of 3. CORT provided strong type 3 

support for student B, however it had not helped student F identify the correct string function 

required and her scaffolding demonstrated type 2 characteristics. 

Table 7.11: Supports and Levels of Cognitive Strategy and Scaffolding for Problem 8 

Student Syntax Semantic Structural Algorithmic Cognitive Scaffolding 
Identifier Support ' Support Support " Support Stratc,gy , Provided 
B 4 3 
F ,/ ,/ 3 2 

Problem 9 

Problem Description 

This problem again required input via text boxes; processing ofihe data; and outputting to a 

fonn. The numeric output had to be done three times with different numbers of decimal places 

and this had to be achieved by "calling" three different general procedures. CORT method 2 was 

utilised and each correct "call" statement had two associated distracter lines. It was hoped that 

the choosing of incorrect statements, for example with the wrong number of parameters, would 

help students gain an understanding of the underlying mechanisms that take place. 

Problem Solution 

The researcher was absent in week 6 when problems 9 and 10 were attempted. However, 

student E was also absent in week 6 and she decided to undertake the work that she had missed 

Chapter 7: How the CORT System Supports the Learning Process Page 132 



and to attempt problems 9 and 10 in week 7. Hence student E was the only student observed for 

problems 9 and 10. 

The new concept of calling general procedures caused this student some conceptual difficulties 

and, probably because of her lack of understanding of the underlying mechanism, she used 

CORT in a rather haphazard way when she attempted to solve this problem. 

There were several structural difficulties including: 

• Having "Call" statements within the actual procedure that was to be called. For example: 

Private Sub OutputToTwoPlaces(balance As Single) 
Call OutputToTwoPlaces(accountBalance) 

End Sub 

She indicated that she had placed the "Call" statement in this position because the names 

"OutputToTwoPlaces" matched. 

• Placing "Call" statements to output results within the correct procedure but before the 

necessary processing had been done. 

• Placing "call11 statements outside of all procedures, for example just after 11End Sub". 

• Choosing an incorrect "Call" statement. For example, she incorrectly chose: 

Call OutputToTwoPlaces 

when she should have chosen: 

Call OutputToTwoPlaces(accountBalance) 

• Having the output "Print" statements within the main procedure rather than the general 

procedures that were being "Called". 

The CORT system provided some limited help for the student with some of the above 

difficulties. Some of the error messages provided by Visual BASJC helped her. For example: 

"Only comments may appear after End Sub ... " 

However other error messages were less helpful. For example, when an incorrect "Call" 

statement was chosen, Visual BASIC gave an error message of: 

"Compile Error, argument not optional" 

and the student did not understand what this meant. 

Chapter 7: How the CORT System Supports the Learning Process Page 133 



With the benefit of hindsight, this problem would have been better to use CORT method 1 such 

that there were no distracter lines. The CORT system did enable the student to eventually solve 

this problem but the researcher suspects that she still had not grasped the underlying 

mechanisms that were taldng place during program execution. Her cognitive strategy 

demonstrated only a low level of consideration of type 2. CORT provided her with moderate 

type 2 scaffolding. 

Problem 10 

Problem Description 

Titis problem again required input via text boxes; processing of the data; and outputting to a 

fonn. The processing required the use of two user-defined functions. Because only a small 

number oflines were required to complete the solution, it was decided to use CORT method 2. 

Problem Solution 

As with problem 9, only student E was observed attempting this problem. User defined 

functions have some similarity to general procedures, which had been used within problem 9, 

however the way in which they are "called" is different. She again had structural difficulties 

which demonstrated a lack of understanding of the underlying mechanism. Because of this, her 

approach was similar to that of problem 9. Her mistakes included: 

• Placing the output statements in the functions instead of the main procedure. 

• Placing the statement to clear the output, "Cls11
, straight after the output statement. This had 

caused problems for other students who had been observed when attempting problems 3 and 

5. 

• Placing the assignment statements that carried out the processing in the main procedure 

instead of the functions. 

• Placing the assignment statements, that carried out the processing, outside of the main 

procedure and the function definitions. 

Chapter 7: How the CORT System Supports the Learning Process Page 134 



As with problem 9, the above positioning of statements, followed by testing in the Visual 

BASIC environment, eventually resulted in student E creating a correct solution. Some of the 

error messages that were output were helpful, such as: 

"variable not defined for the variable miles'' 

"Only comments may appear after End Sub ... " 

Also, the viewing of incorrect output, and the subsequent tracing of her partial programs helped 

her gain understanding and correct the code. 

Her cognitive strategy for this problem was observed to be greater than for problem 9 with some 

levels of consideration but she still moved some lines in a random manner. Her approach was 

characteristic of type 3. CORT did provide her with all the necessary scaffolding to solve the 

problem and was identified as type 3. 

Problem 11 

Problem Description 

This problem again required input via text boxes; processing of the data; and outputting to a 

form. The processing required the use of the selection control structure in the form of"lf' 

statements. The cognitive load was kept relatively low by only having one main procedure in 

the program, calls to general procedure and functions not being required. As students initially 

often find the selection control structure difficult, CORT method 1 was used. 

Problem Solution 

Students A, B and F were observed attempting this problem, student F having arrived 35 

minutes late for the one hour laboratory. 

Student F was careful and deliberate in her approach to solving this problem and she moved the 

necessary lines into position without error. This was indicative of type 5 cognitive strategy. 

CORT provided her with the necessary supports and the scaffolding was therefore identified as 

type 3. 

Chapter 7: How the CORT System Supports the Learning Process Page 135 



Students A and B both had difficulties with the necessary logic. The problem required the input 

of a nwnberthat represented a nwnber of hours that an employee had worked during a week. 

The aim of the program was then to determine the employee wage amount, the rates being 

different for up to 35 hours; over 35 hours and up to 45 hours; and over 45 hours. Both students 

manipulated the statements in the logical "If' statements, testing and tracing their programs at 

various points in Visual BASIC. They both finally obtained the correct solution however had 

done so without careful initial thought but by a controlled trial and testing method. The fact that 

they did get the correct solution suggests that in this instance, the CORT system had provided 

good scaffolding for the detennination of the algorithm. 

Student B stated that the words "End Ir' that appeared in 11Ir' statements caused him confusion. 

An example would be: 

If hoursWorked > 45 Then 
[processing . , . J 

End If 

The "End Ir1 line was one of the required lines that was in the leftwhand window. He indicated 

that he thought that there should be a condition after it, as conditions nonnally followed the 

word 11Ir1
• Titis was a semantic problem that CORT overcame as the line of code had to be used 

in the algorithm and so he knew that it must have been correct. 

Both students A and B had demonstrated some levels of consideration in their thinking which 

suggested a type 3 cognitive strategy. CORT had provided them with the necessary type 3 

scaffolding. 

Table 7 .14: Supports and Levels of Cognitive Strategy and Scaffolding for Problem 11 

Student Syntax Semantic Structural Algorithmic Cognitive Scaffolding 
lden!lf1er Support Support Support Support Strategy Provided 
A ' 3 3 
B ' ' 3 3 
F 5 3 

I Problem 12 

Problem Description 

This problem required input via text boxes; processing of the data; and outputting of results to a 

fonn. It had three event procedures and a user defined function. The aim of the program was to 

input the weight of a letter and then to calculate the cost of postage to the United States. The 

solution required the use of the "Select Case" control structure to detennine the postage cost and 

this control structure had been introduced in that week's lecture. 

Chapter 7: How the CORT System Supports the Learning Process Page 136 



Because the "Select Case" statement had a number oflines of code that were very similar, it was 

decided to use CORT method 3 for this problem. The students were infonned that there were 

missing lines from the "Select Case" statement, however all of the lines in the left~hand window 

had to be used. 

Problem Solution 

OnJy student B was ot-~erved attempting this problem as students A and F had spent all of the 

laboratory time on the previous problem and, as stated earlier, student E had attempted the 

problems that she had missed when she was absent from the previous week's laboratory session. 

Student B had two main difficulties with the program. The first one was algorithmic, the main 

procedure having an "If' statement that validated the input data. He had the logic incorrect as 

the function to detennine the postage cost was onJy being "calledn when the data was invalid, 

rather than the other way around. He corrected this logic after tracing the code in Visual 

BASIC, however he indicated that he had thought that the "nonnal'' processing for valid data 

should have had to go in the "Ir' part and the processing for "invalid11 data in the "Else11 part, 

and yet this program had the logic the other way around. This seemed to reveal semantic 

misunderstanding of the "Ir' statement that was clarified by the CORT system. 

The second difficulty that he had was with the syntax of the "Select Caseu statement. The lines 

of code that had to be keyed in were: 

Case O To 20 
Let PostageCost = 1.4 

Case 21 To 50 
[Etc] 

He started by guessing the syntax for the statement and received error messages from Visual 

BASIC. The CORT system did not help him with the syntax and he had to go to the textbook 

resource to find the details. He then r;ompleted the program. 

He was observed to have employed a high level of consideration and some strategy in his 

approach which was characteristic of type 4 cognitive strategy. CORT provided him with some 

help but not with the syntax of the "Select Case" statement and this suggested type 2 

scaffolding. 

Chapter 7: How the CORT System Supports the Learning Process Page 137 



I Problem 13 

Problem Description 

This was the first problem that required the use of a repetition control structure in the form of a 

"While" loop. The solution required: the input and validation of a number; and the processing 

and output of a multiplication table within the loop. It had a main event procedure and a general 

procedure in which the processing and output took place. There were three other procedures in 

the program, each of which was very simple and which required just one line of code. Also, this 

was the first problem in which the students had to add a button object to the Visual BASIC 

interface, the complete interfaces having been provided in the previous problems. It was thought 

that the cognitive load on the students would be relatively high in this problem and so it was 

decided to us CORT method 1. 

Problem Solution 

Student A was absent from the laboratory session and so only students B, E and F were 

observed. 

All three students had difficulties understanding a new function, "lsNumeric", that had been 

introduced. The CORT system did not help them and they had to either ask the tutor or find out 

information about the function from the textbook. Students E and F placed some lines of code 

outside of procedures and the error messages from Visual BASIC alerted them to the mistake. 

The requirement to add a button object to the Visual BASIC fonn only caused student Ea 

problem. Although such a process might not be considered programming in its truest sense, the 

ability to add such objects and change their properties is now part of software development. The 

CORT system provides no help concerning how to do this and, because CORT had included 

complete interfaces for all of the problems prior to this one, it might be considered that the 

scaffolding had been too great in this area for previous problems. 

As expected, all three students had difficulty with the loop that was needed in the solution. The 

final structure of the loop was to be as follows: 

Let C = 1 
Do While C <= 12 

Loop 

picDisplay.Print C; " x "; TableNum; " 
LetC=C+l 

"; c * TableNum 

and the two statements that had to be moved from the left-hand window into the loop were the 

third and fourth in the above, the other three lines already being in the right-hand window. 

Chapter 7: How the CORT System Supports the Learning Process Page 138 



Students B and E both initially had the statement that increments the counter, "Let C = C + l ", 
before the start of the loop. The testing in Visual BASIC resulted in an endless loop. Tracing of 

the code in Visual BASIC helped both overcome this difficulty. However, student B not only 

moved "Let C = C + 1" into the loop, but also "Let C = I II resulting in another endless loop. 

Again tracing helped him correct this problem, however he then had the two statements that 

were correctly within the loop, the wrong way around resulting in incorrect output. Again, the 

trace mechanism helped him correct the problem. 

It appears that for all three students, the CORT system helped them arrive at the correct loop 

structure for this problem. Also, along the way the students made a variety of mistakes that most 

likely helped their understanding of how the underlying loop structure works. At one point in 

the problem solving process, student B stated that he thought the beginning of the loop was at 

the statement "Let C = 1 ". When he had completed the problem, he indicated that he now had a 

deeper understanding and knew that the loop started at the "Do While" statement. 

Student B also had an algorithmic error in connection with a nested "lf1 statement that was used 

in the validation of the data input. The following shows the structure of the statements that were 

initially in the right·hand window and it was only necessary for students to bring across two 

statements, each of which was an output error message: 

If [condition 1) Then 
[processing] 

Else 

End If 

If [condition 2] Then 
[processing] 

Else 

End If 

Student B brought across the line of code that would output the error message corresponding to 

[condition 1] to the position after the first "Else" and the line of code that would output the error 

message corresponding to [condition 2] to the position after the second "Else". He therefore had 

the error messages the wrong way round and when asked about their positions he stated that he 

thought that their order should be the same as the order of the conditions. Again, by using the 

tracing mechanism within the CORT system he was able to correct the problem. 

The observations of the students suggested that student F approached the problem solution in 

the most strategic manner, had only made one small semantic error, and had used CORT in a 

careful and deliberate way to solve the algorithm involving the loop. This indicated a cognitive 

strategy of type 5. Student E demonstrated some consideration in her approach but was less 

careful in her testing. Her cognitive strategy was characteristic of type 4. Student B also showed 

Chapter 7: How the CORT System Supports the Learning Process Page 139 



consideration, had some strategy, but also made use of trial and error in various parts of the 

solution. This was indicative of type 4 cognitive strategy. The scaffolding level provided by 

CORT was high for both students Band F and was identified as type 3. It was identified as type 

2 for student E because of CORT's lack of support for adding a button object to a form. 

Table 7.16: Supports and Levels of Cognitive Strategy and Scaffolding for Problem 13 

Student Syntax Semantic Structural Algorithmic Cognitive Scaffolding 
lrJent1f1er Support Support Support Support Strategy , Provided 
B ; ; 3 3 
E ; ; ; 4 2 
F ; ; ; 5 3 

I Problem 14 

Problem Description 

This problem also required the use of a "While" loop with data being input from a sequential 

text file. The first record in the file had to be input before the loop, and all of the other records 

had to be input within the loop, the processing of each record being straight forward. The output 

statement was to be after the loop had finished 

As the "While" statement had been used in the previous problem using CORT method 1, it was 

decided that CORT method 3 should be used. Hence, not all of the lines of code from the left

hand window were required and one line of code had to be keyed-in. 

Problem Solution 

Only student B was observed attempting this problem. Student A was absent and students E 

and F had arrived iate for the laboratory session and spent the available time on the previous 

problem. 

The CORT system provided Student B with structural support and support to determine the 

required algorithm. It also helped him recognise a syntax problem but it did not help him correct 

it. The structural difficulty concerned the choice of data input statement that was needed to 

obtain the first record. Titis record contained a person's name followed by their bank balance, 

and two data input statements were provided in the left-hand window, one of which was a 

distracter. The statements were: 

Input #1, personName, initialBalance 
Input #1, initialBalance, personName 

Chapter 7: How the CORT System Supports the Learning Process Page 140 



He did not study the structure of the data in detail and chose the wrong 0 input" statement. 

However he recognised this when he ran the program and looked at the structure of the data in 

the file, something that he had not done earlier. 
" 

He also had difficulties with the algorithm which was supposed to use the above "Input" 

statement before a loop which was to input and process a series of transactions that were in the 

data file. Initially he placed the above "Input" statement within the loop causing the program to 

crash with an error message of 11input past end of file". This forced him to then use Visual 

BASIC to trace through the code and to examine the contents of the key variables, thereby 

alerting him to the problem. He corrected the position of the "Input" statement. 

The output statement had to be keyed-in and he had some difficulties with the necessary syntax 

even though he had viewed many lines of code with that syntax in previous problems. This 

seemed to indicate that although he could view and understand the syntax of such a line of code, 

he could not reproduce easily it. He went back and viewed the code of the previous problem in 

order to fmd the required syntax and then keyed-in the line correctly. 

Student B had shown a high level of consideration in his approach with some evidence of 

strategy. This was characteristic of a type 4 cognitive strategy. CORT provided level 2 type 

scaffolding as it did not help him with all of the necessary syntax. 

I Problem 15 

Problem Description 

This was an array processing problem, arrays having been introduced during that week's lecture. 

The requirements of the program were to load a one-dimensional numeric array of eight 

numbers from a text file; and output the array's contents such that: 

• The first column contained the original eight numbers; 

• The second column contained the eight numbers in reverse order; and 

• The third column contained the sum of the corresponding numbers in columns 1 and 2. 

Chapter 7: How the CORT System Supports the Learning Process Page 141 



' 

Although array processing is difficult for most students, CORT method 3 was used with the 

cognitive load being kept relatively low by requiring only one line of code to be keyed-in and 

by only having two distracter lines in the left-hand window. The processing required was split 

between two procedures: an event procedure that executed at the start of the program 

(Fonn_Load); and an event procedure that executed when a button was clicked. 

Problem Solution 

Two different students, G and H, were observed in the laboratory in which this problem was 

attempted. Student B was also observed and student A was absent. 

This problem contained a loop in both of the main procedures and this caused the students some 

difficulties. Student H brought most of the lines of code into the first procedure in the part

complete solution and he stated the reason for doing this was that he liked to try and solve the 

procedures in the order in which they appeared in the right-hand window. Student G used a 

similar method whereas Student B was observed to carefully read the problem statement, scroll 

deliberately through part-complete solution, and then move lines into the second of the main 

procedures. He indicated that be bad started with this procedure as the problem indicated that 

the first requirement of the program was to load data into the arrays and this was the procedure 

J that carried out this processing. He also however placed lines into this procedure that should 

have been in the other procedure. 

Having lines of code in the "wrong" procedure usually caused error messages that indicated that 

variables bad not been declared. This helped the students realise that they had made a mistake, 

All three students had the structural error of placing the array declaration in a procedure rather 

than at the top of the program, at the "fonn level", such that the array would be available to all 

the procedures. The error messages caused the students to experiment and place the data 

declaration statement into other procedures, however there was always an error message output 

and they all finally realised that the statement should have been at the top of the program. 

The loading of the array with data required a 11While" loop and all three students brought across 

lines from the left-hand window as follows, the loop structure being incorrect: 

Loop 

Do While [condition] 

The error message from Visual BASIC caused them all to transpose the statements. They also 

had some difficulties with the algorithm to load the data into the array. These difficulties were 

similar to those experienced by student B in problem 13 and included: having the loop cowiter 

Chapter 7: How the CORT System Supports the Learning Process Page 142 



initialisation statement within the loop causing an endless loop; and having the statement to 

increment the loop cowiter outside of the loop. Student B quickly corrected his code and this 

was probably because of his experiences with problem 13. Students G and H used the Visi.ial 

BASIC debug and trace mechanism to help them and took longer to correct their programs. 

Students G and H had difficulties of a semantic nature with the code to input data from the text 

file into an array element. The correct line was: 

Input #1, fNumbers(index) 

where !Numbers is the array name and index is a nwnber coresponding to the index value. The 

following distracter was also in the left-hand window: 

Input #1, index(fNumbers) 

During their code manipulation and testing, they both chose the distracter line at some point 

which indicated that they did not understand the underlying meaning of the statement. The error 

message from Visual BASIC infonned them that the distracter was incorrect and seemed to 

make them think more deeply about the meaning of the correct line. They did however ask their 

tutor for help about this. 

Students Band H also tried to make use of the statement: 

Input #1, fNwnbers(index) 

in the wrong context. The problem required the data in the array to be output in the output area 

of the Visual BASIC fonn. This should have been done with a Visual BASIC 11Print11 statement, 

however the students used the 11Input11 statement. On questioning, they stated that in order to 

output the required data, they wanted to "input data from the array" . This semantic 

misunderstanding was not easy for them to correct independently as the Visual BASIC error 

message of 11bad file number11 was very obscure and came about as a result of the incorrect line 

of code being in the wrong procedure. 

The statement to output the data from the array caused syntactical difficulties for student H. The 

"Print" statement had to be keyed-in and although CORT alerted him to the syntax problem that 

he had, it did not help him correct it. He fowid the required syntax from the textbook. 

Overall, student B had approached the problem solution in quite a considered way and it was 

indicative of type 4 cognitive strategy. Students G and H were less thoughtful but did show 

some consideration in their approach, and consequently their cognitive strategy was identified to 

be type 3. The scaffolding was high and identified to be level 3 for student B. CORT provided 

support for students G and H in several areas but not with respect to their semantic difficulty 

Chapter 7: How the CORT System Supports the Learning Process Page 143 



concerning the programming code to input data into an array element. Their scaffolding was 

characteristic of type 2. 

Table 7.18: Supports and Levels of Cognitive Strategy and Scaffolding for Problem 15 

Student Syntax Semantic Structural Algorithmic Cognitive Scaffolding 
ldent1f1er Support Support Support Support Strategy , Provided 
B ,/ ,/ ,/ 4 3 
G ,/ ,/ ,/ 3 2 
H ,/ ,/ ,/ ,/ 3 2 

I Problem 16 

Problem Description 

This was again a problem that utilised arrays. There were two main event procedures in the 

program which did the following: 

• When a button was clicked. a value would be obtained from a text box and placed in the 

next location in an array, an error message being output if the array was full. 

• When a second button was clicked, the average of the numbers entered would be output to a 

fom1. 

It was thought to be a relatively difficult problem, and so CORT method 1 was used. 

Problem Solution 

Students G and H did not have time to attempt this problem in the laboratory, student A was 

absent, and only student B was observed. 

Although student B approached the problem solution in quite a considered way, he had one 

main difficulty with the algorithm for obtaining and placing the numeric values into the array. A 

loop was not needed in the procedure as the repetition was caused by a user continuously keying 

in a value and then clicking on the button on the form. However he brought the loop statement, 

that should have been placed in the procedure to determine the average of the numbers, into the 

procedure to place values into the array. He then got bogged down for a while and experimented 

with some other lines. The CORT system did eventually help him overcome the error as the 

loop variable was flagged as not being defined. He did need some limited help from his tutor. 

However this student's experience did suggest that CORT could be improved by associating sets 

of missing lines of code and distracters with certain procedures in the part-complete solu_tion. 

Chapter 7: How the CORT System Supports the Learning Process Page 144 



After he had overcome the above error, he had little difficulty finishing the problem correctly. 

Because he had approached the problem with some consideration his cognitive strategy was 

idenlified to be type 3. He was not fully supported by CORT in this problem, help having been 

required from his tutor, and the scaffolding was therefore identified as type 2. 

I Problem 17 

Problem Description 

This was a difficult problem as it involved the loading of data from a text file into two. parallel 

one-dimensional arrays, the use of a bubble sort on the data, and the use of a sequential search 

of the arrays. In order to reduce the cognitive load on the students, lines of code were removed 

from just two of the six procedures that made up the solution. The purpose of these two 

procedures was to sort the arrays and to search for an item in the arrays. Also, the lines that 

were removed and their associated distracter lines, were grouped in the left-band window of 

CORT with textual infonnation that infonned the students which procedure they "belonged11 to. 

Because of this cognitive load reduction, CORT method 2 was used. 

Problem Solution 

Students A, B, G and H attempted this problem. 

Student A studied similar programming code in the textbook for sorting and searching 

algorithms. He then moved lines of code into the part-complete solution using the code in the 

textbook as a template to help him, and the program worked correctly when tested. During this 

process he asked the researcher what the meaning of the following statement was: 

Letn=n+l 

This seemed to indicate a semantic misunderstanding and that he still had difficulties with the 

underlying conceptual machine and may well have solved this problem with little understanding 

of how the algorithms worked. 

Student B attempted the 11Sort11 procedure first. He said that knowing which group of lines in the 

left-hand window were associated with the sort procedure helped him greatly and he only made 

one error during the building of the algorithm. The error was in the swapping of the adjacent 

Chapter 7: How the CORT System Supports the Learning Process Page 145 



contents of two array elements and the tracing and testing within the CORT system helped him 

overcome this. He indicated that having made this mistake helped him understand this 

mechanism. 

Students G and H spent all of their laboratory time working on the search algorithm ~d they, 

together with student B, had some similar difficulties with this. The correct algorithm was: 

Letn=O 
Let foundFlag = "no" 
Do While foundFlag = "no" And n < fNumberOfNames 

Let n = n + 1 

Loop 

If searchName = UCase(fNames(n)) Then 
Let foundFlag = "yes" 

End If 

and the students had to move the second and fourth lines into the above from the left·hand 

window. They all tested the part·complete code without the line: 

Let n = n + 1 

and this gave a "subscript out of range" error. They all then realised that the variable "n" had to 

have a value greater than zero and they moved the above line to just after: 

Letn"'O 

which seemed to indicate that they were attempting to solve the immediate error without 

thinking of the bigger picture of the algorithm. The resultant algorithm was an endless loop and 

tracing the code in Visual BASIC alerted them to this, enabling them to correct the error. Along 

the way, student B also brought the distracter line of: 

Letn=n+2 

into the loop and again the CORT system helped him overcome this error. He then used the 

CORT editor to change the line to "Let n = n + 1" although it was a CORT method 2 type 

problem. The student stated that although the moving of the distracter line into the loop had 

been a mistake, it had helped his understanding. 

The three students all indicated that they were unsure of the semantics of the assignment 

statements relating to the use of "foundFlag" and this did not surprise the researcher as the 

concept of flags is generally a difficult one for novices. Students B and H both initially chose 

the distracter line of: 

Let foundFlag = "yes" 

rather than the correct line of 

Chapter 7: How the CORT System Supports the Learning Process Page 146 



Let foundFlag"" "no" 

The resulting program trace revealed to them that the loop did not execute and they then 

corrected the code. They both indicated that they believed that they now had a better 

understanding of the concept of flags. 

Student A had used a very careful, deliberate and strategic approach to this problem indicating a 

cognitive strategy of 5. The other three students, B, G and H, had showed some level of 

consideration in their approach indicative of type 3. CORT did provide all the necessary support 

for all of the students to solve the problem and was characteristic of level 3 scaffolding. 

Table 7.20: Supports and Levels of Cognitive Strategy and Scaffolding for Problem 17 

Student ' Syntax Semantic Structural Algorithmic Cognitive Scaffolding 
hJent1f1er Support Support Support Support Strategy Provided 
A 5 3 
B ,/ 3 3 
G ,/ 3 3 
H ,/ 3 3 

I Problem 18 

Problem Description 

This was a text file processing problem in which: 

• Student test results could be added via a Visual BASIC fonn to a sequential text file; 

• The file could be displayed; 

• The file could be processed to produce two new text files with information on those 

students who obtained low and high marks; and 

• The two new text files could have their data displayed. 

There were five procedures in the part-complete solution and there were two groups of lines of 

code in the left-hand window that were associated with two of the procedures. Distracter lines 

were included in these groups. There was also infomlation in CORT as to which group of lines 

belonged to which procedure. 

It was necessary for all the lines of code to be keyed-in for the procedure that produced the file 

of students who obtained low marks. Although CORT method 3 was being used with what was 

a relatively difficult problem, this was thought to be appropriate as: 

Chapter 7: How the CORT System Supports the Leaming Process Page 147 



• The procedures in which the missing lines belonged had been indicated. 

• The lines that had to be keyed-in were of the same structure as the procedure that produced 

the file of students who obtained high marks. 

Problem Solution 

Student G was absent and students A, B and H were observed attempting this problem. 

Students A and H had similar syntax errors when they brought across two lines of code that 

were supposed to clear two text boxes and yet were syntactically incorrect. The error message 

that was output was rather obscure and it was only after the students bad moved the lines into 

various positions in the part-complete solution, and the error messages did not disappear, that 

they recognised the syntax errors. The CORT system had only provided limited scaffolding in 

this area. 

All of the students had semantic difficulties with the lines of code that were required to open the 

files at various points in the program. Each line of code that was needed to open a file had two 

associated distract er lines in the left-hand window. This was because sequential files can be 

opened in three different modes: for Input; for Output; and for Append. 

All of the students believed that opening a file for input meant that it was then possible to input 

data into that file, and vice versa when a file was opened for output. This is opposite to the 

actual meanings of the statements. Because of this misunderstanding, the students brought the 

wrong file open statements into the part-complete solution and this resulted in a variety of error 

messages being output by Visual BASIC. The students did eventually correct the programs to 

include the correct file open statements. This was done by a process of trying the different file 

open statements in the solution and testing the code to see the result. Student B did this very 

carefully and deliberately, however students A and H did not put as much thought into this. 

Student H had a semantic and structural difficulty. The semantic problem concerned the input 

from the text boxes. He placed a file open statement before the "Let" statements which placed 

data from the text boxes on the fonn into variables. He reasoned that he was inputting data and 

so he should open a file. This was incorrect and the CORT support provided error messages 

when he attempted to run the program. The student's structural issue was placing the statement 

to output data to a sequential text file before the statement that opened that file. Again, an error 

message from Visual BASIC alerted him to the mistake. 

Chapter 7: How the CORT System Supports the Learning Process Page 148 



In solving this problem, student B had employed some strategy in his approach with a high level 

of consideration and his cognitive strategy was identified to be 4. Student A had demonstrated 

some level of consideration however his approach to choosing the file handling statements had 

been less thoughtful and his cognitive strategy was characteristic of level 3. Student H had only 

employed a low level of consideration characteristic of type 2 which resulted in his syntactical, 

semantic and structural difficulties. CORT provided student B full type 3 scaffolding to help 

him solve the problem. The limited syntactical help provided to students A and H indicated that 

the scaffolding provided by CORT was only at level 2. 

Table 7 .21: Supports and Levels of Cognitive Strategy and Scaffolding for Problem 18 

Student Syntax Semantic Structural Algorithmic Cognitive Scaffolding 
Identifier Support Support Support Support Strate!)y Provided 
A , , 3 2 
B , 4 3 
H ' , , 2 2 

7.3 Analysis of Summary Data 
Each problem that was attempted by students using the CORT system has been described, 

together with an analysis of the supports and scaffolding that the system provided and of the 

levels of cognitive strategy that students practised. The data has been summarised in a series of 

tables. This section presents those tables and discusses the trends that emerged from the data 

7 .3.1 Analysis of Data by Student 
Table 7.22 shows a summary of the learning support data for each of the eight students that 

were observed and includes the support types, levels of cognitive strategy and levels of 

scaffolding. 

Chapter 7: How the CORT System Supports the Learning Process Page 149 



Table 7.22: Summary of Learning Supports, Levels of Cognitive Strategy and Levels of 
Scaffolding for Each Student 

E 4 3 43 3 43 14 2.5 2.8 2 2.3 

F 4 14 3 43 1 14 2 29 4 4.0 3 2.8 

G 2 25 25 2 50 3 3.0 2.5 2.5 

H 3 2 25 2 25 2 25 2 25 3 2.7 2 2.3 

Total No. of 8 28 16 20 
Support Instances 

Overall % Support 11 39 22 28 

!Averages 

CORT scaffolded with an overall average of 2.6 (range 1 - 3) demonstrating that it provided 

considerable help for students. CORT supported a level of cognitive strategy of 3.3 (range 1 -

5). This revealed that students were generally engaged with CORT and that they nearly always 

applied some consideration in their approaches to the tasks that they attempted. 

The overall levels ofCORT's four support types were 11 %, 39%, 22%, and 28% for syntax, 

semantics, structure and algorithms respectively. It was expected that CORT would provide a 

low level of support for syntax errors as methods 1 and 2 do not require students to key in lines 

of code. Because of this, the possibilities of students being confronted with syntax problems is 

relatively low for the CORT system. The majority of difficulties that the students had, and for 

which CORT provided support, were semantic. The probable reason for this is that most 

students attempted problems within CORT, made little use of the textbook, and made use of 

CORT to scaffold them with respect to any semantic difficulties that they were confronted with. 

If they had not used CORT to try and solve their problems then they would have been forced to 

use other resources, such as the textbook, in order to determine the meaning of various 

programming statements. By using the CORT system, students were usually able to determine 

the meaning and semantics of statements by experimentation and consideration of the feedback 

that the CORT system provided them with. The levels of success achieved by students through 

their use of CORT confirmed the support CORT provided. 

Chapter 7: How the CORT System Supports the Learning Process Page 150 



CORT also provided high levels of support for structural and algorithmic difficulties that 

students encountered. This is an important finding as there are generally few supports for these 

two areas when students learn to program using traditional techniques. 

7 .3.2 Analysis of Data by Problem Number 
A summary of the data tabulated by problem number is shown in Table 7.23. 

Table 7.23: Summary of Learning Supports, Levels of Cognitive Strategy and Levels of 
Scaffolding for Each Problem 

2 4 2 2 66.7 1 33.3 3 

3 4 1 3 50.0 3 50.0 .3 3 

4 4 2 3 50.0 16.7 2 3. 2. 

3 3 60.0 20. 3 

6 2 66.7 3 . 3. 3. .0 

7 2 4 2. 3.3 3 2.8 

8 6. 3 . 3.5 3.5 2.5 2.5 

9 2 100.0 2 2.0 2 2.0 

10 1 2 50.0 50.0 3 3.0 3 3.0 

11 3 1 33.3 2 66.7 3 3.7 3 3.0 

12 1 3 1 100.0 4 4.0 2 2.0 

13 3 1 3 37.5 2 25.0 3 37.5 4 4.0 3 2.7 

3 33.3 1 33.3 33.3 4 4.0 2 2.0 

10.0 3 30.0 3 30.0 30.0 3 3.3 .3 

1 00.0 3 3.0 .0 

3 00.0 3 3. 3 3.0 

18 3 3 2 3 0.0 16.7 3 3.0 2 2.3 

The table shows the support types and the levels of cognitive support and scaffolding for each 

of the seventeen problems that were attempted by the students during the research experiment. 

Two patterns clearly emerge from the data. The first concerns the instances of semantic support 

provided by the CORT system as shown in columns 6 and 7. In the first nine problems, problem 

numbers 2 - 10, there were seventeen instances of semantic support for the total of twenty-five 

student observations that took place. In the eight remaining problems, problem numbers 11 - 18, 

there were only seven instances of semantic support for the total of sixteen student observations 

that took place. These results indicate that most semantic help took place earlier in the course 

when students were attempting to acquire much of the necessary semantic knowledge of various 

programming statements. By the latter part of the course, most students had constructed much 

of this semantic knowledge and required less help from the system. 

Chapter 7: How the CORT System Supports the Learning Process Page 151 



The second finding concerns the instances ofalgorithmic support provided by the CORT 

system. In the first nine problems, problem numbers 2 - 10, there were six instances of 

algorithmic support for the total of twenty-five student observations that took place. In the eight 

remaining problems, problem numbers 11 - 18, there were fourteen instances of algoritlunic 

support for the total of sixteen student observations that took place. These results indicate that 

most algorithmic help took place in the latter part of the course as the problems became 

progressively more difficult. 

These two findings suggest that the CORT system provided most support for semantic 

difficulties early in the course and most support for algorithmic difficulties in the latter part of 

the course. It could therefore be argued that the design of the 17 problems is fairly sound. The 

progressive increase in difficulty of the problems has ensured that most students have been 

supported early on in their learning of programming language semantics at a time when the 

algorithmic difficulties that they faced were relatively low. Later in the course there were more 

difficult CORT problems and students faced many more algorithmic difficulties. However they 

were well supported by CORT. It seems that students no longer had to be as concerned with 

semantic difficulties. The cognitive load had been kept low in the early part of the course by 

ensuring the problem solutions had relatively simple algorithms. As the course progressed, less 

semantic support was necessary and it had been possible to increase the level of difficulty of the 

algorithms that were required for solutions, whilst keeping the cognitive load steady and not 

overloading students. 

Table 7.24 contains the same data as that of Table 7.23, however the rows have been sorted by 

the "CORT Method" column which is the third column. Some properties of the data that seem to 

emerge from this table included the relatively large number of syntax supports that CORT had 

provided in method 3 type problems. 

Chapter 7: How the CORT System Supports the Learning Process Page 152 



Table 7 .24: Summary of Learning Supports, Levels of Cognitive Strategy and Levels of 
Scaffolding for Each Problem - Sorted by CORT Method 

3 4 3 50.0 3 50.0 4.5 4.3 3 3.0 

2 66.7 33. 3.5 3.5 3 3.0 

11 3 1 33.3 2 66.7 3 3.7 3 3.0 

13 3 3 3 . 2 25.0 3 37.5 4 4.0 3 2.7 

16 100.0 3 3.0 2 2.0 

2 4 2 2 66.7 33.3 4.5 4.0 3 2.8 

4 4 2 3 50.0 16.7 2 33.3 3.5 3.8 3 2.8 

5 3 2 3 60.0 20.0 20.0 3 2.8 3 3.0 

7 4 2 4 57.1 3 42.9 3 3.3 3 2.8 

9 2 100.0 2 2.0 2 2.0 

10 2 50.0 50.0 3 3.0 3 3.0 

17 4 2 3 100.0 3 3.5 3 3.0 

8 2 3 2 66.7 33.3 3.5 3.5 2.5 2.5 

12 3 100.0 4 4.0 2 2.0 

14 3 33.3 33.3 33.3 4 4.0 2 2.0 

15 3 3 10.0 3 30.0 3 30.0 3 30.0 3 3.3 2 2.3 

18 3 3 2 33.3 3 50.0 16.7 3 3.0 2 2.3 

Because the number of student observations varied between the three CORT methods, the data 

from Table 7 .24 has been summarised in Table 7 .25 in order to extract more meaning from the 

data. 

7 .3.3 Analysis of Data by CORT Method 
In Table 7.25, the ratios of support instances to the number of student observations have been 

determined for each support type within each CORT method. Also, the overall average of levels 

of cognitive support and of levels of scaffolding have been determined. 

Table 7.25: Summary of Learning Supports, Levels of Cognitive Strategy and Levels of 
Scaffolding for Each CORT Method 

Lvl Cog Lvl 
No of Sludent Support Scaffolding 

Cort Method Observat1011s Ratio of support 111sta11ces No Student Observat1011s (average) (average) 

Syntax Semantic Structural Algorrthmrc 

1 13 0.00 0.69 0.46 0.46 3.7 2.7 

2 21 0.10 0.52 0.24 0.43 3.2 2.8 

3 15 0.40 0.47 0.33 0.33 3.6 2.2 

The data reveals several interesting findings. Firstly, CORT has not supported syntax errors 

when CORT method 1 was used. This is not surprising as such errors cannot be made in method 

1 type problems. CORT does however provide good syntax support for method 3 type problems 

Chapter 7: How the CORT System Supports the Learning Process Page 153 



when students have to key in some lines of code. The data also reveals that there is less 

algorithmic support for the higher CORT methods, the ratios of support instances to the number 

of student observations being 0.46, 0.43, and 0.33 respectively for CORT methods 1, 2 and 3. 

This seems to indicate that it is easier for students to determine an algorithm to solve a problem 

when all the required lines are available and there are no distracter lines. It is most difficult for 

students to determine a required algorithm when they have to key in lines and then CORT 

provides less support for them. 

The table also shows that the levels of cognitive support were fairly even and strong across all 

three CORT methods. However, that level of scaffolding provided by CORT was lowest for 

method 3 type problems. Again, this was probably to be expected as the lines of code together 

with distracter lines provide strong scaffolding in methods 1 and 2. However method 3 type 

problems do not provide students with all the necessary line of code. 

7 .4 Summary of the CORT System's Support for the Learning 
Process 

This chapter has reported on the observations that were made of students as they engaged with 

the part-complete solution process through the CORT system during the semester in which the 

research experiment took place. The results demonstrated the following outcomes: 

• The system provided strong scaffolding for student learning. 

• Students engaged well with the system and generally used a thoughtful and considered 

cognitive strategy. 

• The highest level of support was for student semantic difficulties although there was also 

strong support for algorithmic and structural difficulties. 

• The system support for semantic difficulties was higher in the early stages of the course. 

• The system support for algorithmic difficulties was higher in the latter stages of the course. 

• Students mainly had syntax difficulties with method 3 type problems when they had to key 

in lines of code. The system did provide support, if only by indicating that a difficulty 

existed. 

• The system provides better algorithmic support for method 1 and 2 type problems than with 

method 3 type problems. 

Chapter 7: How the CORT System Supports the Learning Process Page 154 



• The level of scaffolding provided by the system was lowest for method 3 problems. 

The data suggest that the part-complete methods used in the CORT system have a strong 

influence on the supports and scaffolding levels that are provided. It is probably not unexpected 

that students receive lower levels of scaffolding when they have to key in lines of code 

themselves to complete a solution rather than choose lines of code that have been provided to 

them. Care is therefore necessary in the design of a set of problems for an introductory 

programming course so that the scaffolding is reduced gradually in order to try and keep the 

cognitive load that students experience fairly constant. 

Chapter 7: How the CORT System Supports the Learning Process Page 155 



Chapters 
The Impact of the CORT System on Learning Outcomes 

8.1 Introduction 
This chapter provides a description of a quantitative inquiry which explored the impact of the 

part-complete solution method (PCSM) within the CORT system on students' learning outcomes 

and achievements. It concerns: the data that were collected for this research; the data analysis 

method used; and the detailed analysis of the data. 

8.2 Data Collected for this Research Question 
Chapter 5 discussed the research design and the data collection that was undertaken for this 

research project. The data that were used to explore this third research question were as follows: 

• Data concerning gender, age, previous achievement level, computer literacy level, and 

previous programming experience, collected from the initial questionnaire . 

• The average time that students took to complete the set of problems and the average amount 

of help that students required, obtained from the problem questionnaires that students filled 

out for each problem that they attempted. 

• Data concerning student learning outcomes, obtained from a test that was taken during the 

last week of the semester, and from a final examination. The examination was in two parts, 

the first part tested the students' ability to read and comprehend existing programming code, 

and the second part tested the students' ability to generate code having been given a problem 

specification. 

8.2.1 Recoding of Data 
There was some limited recoding of data. The "previous achievement level" corresponded to 

student course averages, this data having been taken from student records. The levels were 

recorded as percentages. In order to ensure three equivalent sized groups, the data were recoded, 

the cut-off points being shown in Table 8.1. 

Table 8.1: Student Previous Achievement Levels 

Chapter 8: The Impact of the CORT System on Learning Outcomes Page 156 



8.3 The Data Analysis Method 
The data analysis tool, SPSS (Morgan & Griego, 1998) was used to help with the statistical 

analysis of the data. SPSS is a well known statistical package that is widely used in quantitative 

research. 

The data were analysed in this research to determine if there were any significant differences in 

learning outcomes between the CORT and non-CORT students, and also whether students from 

these two student groups differed significantly in the times that they took to complete problems 

and in the amount of help that they required. The student group (CORT or non-CORT) was an 

independent variable in the study and further analysis was also undertaken to detennine if other 

independent variables, such as gender, significantly interacted with student group with respect 

to learning outcomes, and time and help required to complete problems. 

The six dependent variables used in the analysis were: 

• Exam Part A (reading and comprehension of existing programming code) which was taken 

by students at the end of the course; 

• Exam Part B (generation of programming code to solve a problem) which was taken by 

students at the end of the course; 

• Exam Total (Exam Part A+ Exam Part B); 

• Week 15 Programming Completion Test which was taken by students near the end of the 

course; 

• Averuge time taken per problem for the set of problems that the students undertook during 

the semester; and 

• Average help required per problem for the set of problems that the students undertook 

during the semester. 

The main independent variable was student group. Within student group, data were collected 

across various groups or independent variables: previous achievement level, age, computer 

literacy level, previous programming experience, and gender. These variables have been 

previously shown as influences on programming achievement ( e.g., van Menienboer, I 990b) 

and were identified in this study to aid in the analysis. 

Chapter 8: The Impact of the CORT System on Learning Outcomes Pag·e 157 



An initial set of analyses was undertaken to explore the effect that the independent variable, 

student group, had on each of the six dependent variables. This set of analyses could be 

classified as basic difference tests (Morgan & Griego, 1998) in which t-tests or one-way 

ANOVA tests are used for the data analysis. Such tests are used to detennine if there is a 

significant difference between the means of the dependent variable for the groups within the 

independent variable. As the student group was comprised of two possible values, CORT or 

non-CORT, t-tests could be used for the six analyses. One-way ANOVA tests are used when the 

independent variable has three or more possible values. 

The second set of analyses concerned the significance of the interaction of student group with 

each of the five other independent variables, with respect to the value of each dependent 

variable. For example, "Did gender and student group interact significantly with respect to 

student perfonnance in exam part A (reading and understanding programming code)?". As there 

were five other independent variables and six dependent variables, thirty such analyses were 

carried out. Each of the analyses was categorised as a complex difference question, such 

questions involving more than one independent variable (Morgan & Griego, 1998). A factorial 

ANOV A associational statistic is appropriate under such situations, and more specifically a two

way ANOV A was utilised as each question involved two independent variables . 

.i 
6.4 The Data Analysis 

8.4.1 Programming Achievement between Groups 
Four t-tests were carried out to determine if there were any significant differences between 

CORT and non-CORT students for each of the four dependent variables which concerned 

programming achievement: Exam Part A; Exam Part B; Exam Total; and Week 15 

Programming Completion Test. The first test is described in some detail in order that the reader 

might gain an understanding of the way in which the statistics are interpreted. 

8.4.1.1 Differences in Exam Part A Achievement among CORT and Non-CORT 
Students 

Exam Part A was a test of the students' ability to read, trace and understand programming code. 

CORT supports the ''Reading" method ofleaming programming (van Merrienboer & Kranuner, 

1987) and this analysis was important to detennine if the CORT group achieved higher marks 

than their non-CORT compatriots in a test of such knowledge. The maximum mark was 20. The 

Mest was carried out using SPSS and the group statistics that were output are shown in Table 

8.2. 

Chapter 8: The Impact of the CORT System on Learning Outcomes Page 158 



Table 8.2: Group Statistics for Student Group and Exam Part A 

GroupiCORT Sid. Error 
/Nc,n.CORTI ' Mean Sid. Daoiotlon """ , ..... mPBIIA ' " 10.5!! 4.149 .847 
Non·CORT " 10.88 3.655 .731 

The table shows that 24 CORT students and 25 non-CORT students took the exam and that their 

mean marks were 10.58 and 10.88 respectively. The standard deviations of 4.15 and 3.66 

suggested a similar spread of marks between the groups. 

Table 8.3 shows the results of the t-test for Exam Part A 

Table 8.3: T-Test: Student Gm.11p and Exam Part A 

Le-one's Te,1 for 
E"usll o!Var1•"oo• Most fa, E"u•II"' o! Means 

95% Corllldonoo 
Interval o!lho 

Mom Std. Error Olfferer1co 

' "" ' • SI• Malled OOloronoe Ollle,onco ,_, 
" ' Eleam Pa~A <.qua vOMancos 

·"' ••• •.266 " . m ... 1.116 ·2.541 ,.~ u1umt<I 
E~ual var1ances 

•.265 ~.m .792 ..• 1.119 -2.549 1.956 "°11'5'"'10d 

This table indicates the results for two statistical tests. The first is the Levene test, that tests the 

assumption that the variances of the two groups, CORT and non-CORT, are equal. IfLevene's F 

value is not statistically significant, then equal variances are assumed. In this particular case, the 

significance is 0.549 and, as this is greater than 0.05 (p > 0.05), equal variances are assumed. 

Because of this, the "Equal variances assumed" outcome is utilised in analysing the Mest. 

In this instance t = -0.27, with 47 degrees of freedom. The significance is 0.791. The result of 

the t-test 

t(47) = -0.27, p >0.05 

revealed a non-significant difference between CORT and non-CORT students in their ability to 

read, trace and understand programming code. 

8.4.1.2 Differences in Exam Part B Achievement among CORT and Non-CORT 
Students 

Exam Part B, was a test of the students' ability to generate programming code in response to a 

problem statement. Generation of programming code is a much more difficult task than reading 

code (Linn & Dalbey, 1985) and CORT does not directly support it. In the weekly computer 

laboratories, non-CORT students had been required to generate all of their programs whilst the 

CORT students only had to complete part-complete solutions. The non-CORT students might 

therefore have had a learning advantage with respect to code generation. 

Chapter 8: The Impact of the CORT System on Learning Outcomes Page 159 



The maximum possible mark for Exam Part B was 20 and Table 8.4 shows that there were 24 

CORT students and 25 non-CORT students who took the exam and that their mean marks were 

11.63 and 11.36 respectively. The standard deviations of3.54 and 3.28 were again quite similar 

showing a consistent spread. 

Table 8.4: Group Statistics for Student Group and Exam Part B 

Group{CORT Std. Error 
/Non.CORTI ' Mean Sid. Deviallon Mean 

Exam Part B CuRT ,. 11.63 3.536 ·'" Noo-CORT " 11.36 3.277 ,655 

Table 8.5 shows the results of the t-test for Exam Part B. 

Table 8.5: T-Test: Student Group and Exam Part B 

L .. one'sTos11or 
E uall ofVar1•nc•• I-lest for E~•all"' or Means 

95% CortfldonC<I 
in\orvol of lhe 

Mean Std. Error Oifforonce 

' Slo. ' • Slo. 12,talled\ Dllforen"" ~a. ren<:e ·-· Uooer 
m .-art~ "qLJal vanat,c:es .oo, .M, ·'" " .787 ·" .on ·1.893 2.21!3 

•Hum ltd 
Equal va~"'1oes 

·'" 46.360 .787 ·" .975 ·1.697 "" f'IO!H0'"'10d 

Levene's F value was not significant, and equal variances could be assumed. The result of the t

test 

t(47) = 0.27, p >0.05 

revealed a non-significant difference between CORT and non-CORT students in their ability to 

generate programming code in response to a problem statement. 

This finding indicates CORT had provided strong support for program generation and the 

CORT students' achievement levels were as good as those of the non-CORT students. 

8.4.1.3 Differences in Final Exam Achievement among CORT and Non-CORT 
Students 

Exam Total, was the sum of parts A and B of the exam. It therefore tested both the students' 

ability to read and understand programming code and to generate prograrruning code in 

response to a problem statement. Although analyses of the differences between the CORT and 

nonwCORT groups were undertaken for the two separate parts of the exam, an analysis was 

carried out to determine ifthere were differences in overall programming ability. 

Chapter 8: The Impact of the CORT System on Learning Outcomes Page 160 



Table 8.6 shows that the mean marks achieved for CORT and non-CORT were 22.21 and 22.28 

respectively. The maximum possible mark was 40. The standard deviations were 5.95 and 6.00 

respectively. 

Table 8.6: Group Statistics for Student Group and Exam Total 

Group (CORT Std. Error 
/Non-CORTI " Moan Std. DeviaHon Mean 

Exam Total --· T " 22.21 5.949 1.214 
Non-CORT " 22.28 6.004 1.201 

Table 8.7 shows the results of the t-test for Exam Total. 

Table 8.7: T-Test: Student Group and Exam Total 

Lovene',Te,tfor 
Enualltv of Variance, Host for E ual~ of Mean• 

95% Confidence 
lnt.rval of 111! 

Mean Std. Enor ;; .•• ~,once 

' " . ' "' SI, 'Nailed' Difference Difference Lower u"""' 
I ..,am lotal E~ual •••••~as 

.000 .984 -.042 " .967 "" 1.709 ·3.508 3.364 
"'"""''d 
Eq..al ••rlances 

•.042 46.950 .967 •.07 1.708 ·3.507 "~ no(as,umed 

Levene's F value was not significant and equal variances could be assumed. The result of the t

test 

1(47) = -0.042, p >0.05 

revealed a non-significant difference between CORT and non-CORT students ability to read, 

trace, understand programming code and to generate programming code in response to a 

problem statement. Given that no significant difference was found between the two groups in 

the constituent parts of the test, this result was not unexpected. 

8.4.1.4 Differences in Week 15 Programming Completion Test Achievement 
among CORT and Non-CORT Students 

A Completion Test was given in Week 15 which was the last week of the semester. The test was 

designed to test students' ability to complete part-complete programs when given a set of 

possible lines of code that could be utilised. The CORT group had used the completion method 

throughout the semester when attempting their set of problems, whereas the non-CORT group 

had generated all of their programs "from scratch 11. Because of this, it was thought that CORT 

students might have an advantage on such a "completion" test. 

Table 8.8 indicates that only 25 students were present for the test, 11 CORT and 14 non-CORT. 

The means for the two groups were 57 .55% and 50.50% respectively. The standard deviations 

Chapter 8: The Impact of the CORT System on Learning Out~omes Page 161 



for the two groups differed slightly at 21.59 and 24.57 respectively showing a greater spread of 

marks for the non-CORT group. 

Table 8.8: Group Statistics for Student Group and Week 15 Programming Completion 
Test 

Group(CORT Sto.Error 
/Non.CORT\ ' Moan Sid. Oo.iatlon Meon 

Week 16 rogramml~ " 57.5455 21.56872 6.50924 
Completion To,1 Non-CORT " 00.0000 24.56937 6.56644 

Table 8.9 shows the results of the t-test for the Week 15 Programming Completion Test. 

Table 8.9: T-Test: Student Group and Week 15 Programming Completion Test 

Levone'a Tosi for 
Effl•oll'" <>IVorlonoas Mes( for Eauallt. of Means 

95% Conficlanoe 
lnWrval oflhe 

""" Sto.Error Difference 

' 
,,. • • S'". Nalle<I' Dlffore•ce Dlfforonc:e Lower Uaner 

w .. -15Tell Equolvatlanees ,. .595 .,ro " .4e1 7.1)4S5 9.39601 -12.391es 26.46259 assume< 
Equol variances .m 22.659 '" 7.0455 9.24599 ·12.09729 26.18620 notassumed 

Levene•s F value was not significant and equal variances could be assumed. The result of the t

test 

1(23) = 0.75, p>0.05 

revealed a non-significant difference between CORT and non-CORT students in their 

perfonnance in a programming completion test 

The fact that the difference between the two groups was not significant was unexpected. 

Because of CORT's direct support for program completion it had been thought that the CORT 

group might perfonn significantly better than the non-CORT group. Despite a difference in the 

observed means of 7, the means were found not to be significantly different. This may have 

been caused by several factors such as small groups or a lack of sensitivity in the test 

instrument. 

8.4.1.5 Summary of Programming Achievement between Groups 
The four tests that were carried out revealed that there was not a significant difference in 

learning achievement between the CORT and non-CORT student groups. However the CORT 

students appeared to spend less time than the non-CORT students on the programming tasks and 

this may have limited the opportunities for the use of CORT to provide a learning advantage. 

Also, CORT may have only provided advantages to certain sub-groups of students. Both these 

possibilities are explored in later sections of this chapter. 

Chapter 8: The Impact of the CORT System on Learning Outcomes Page 162 



8.4.2 Programming Achievement Differences among Sub-Groups 
Analyses were also carried out to determine ifthere were any significant interactions between 

student group, CORT and non~CORT, and each of the other five independent variables or sub· 

groups: previous achievement level, age, computer literacy level, previous programming 

experience, and gender with respect to student achievement. Two.way ANOV A statistics were 

produced for each of the four dependent variables associated with student achievement: Exam 

Part A, Exam Part B, Exam Total, and Week 15 Programming Completion Test. The first tests 

are described in some detail in order that the reader might gain an understanding of the way in 

which the statistics are interpreted. 

8.4.2.1 Previous Achievement Level 

The CORT system has been designed to reduce cognitive load and provide scaffolding and 

learning supports for students. These two aspects have been associated with improved 

programming perfonnance (e.g., Sweller, 1988) and analyses were undertaken of the interaction 

between the students' previous achievement, which was obtained from their course averages, 

and the student group (CORT or non-CORT), with respect to their student achievement in the 

final exam and Week 15 Programming Completion Test. 

lnteractiun between Group and Previous Achievement Level for Exam Part A 

The level of interaction between student group and previous achievement level was detennined 

for Exam Part A, the students' ability to read and understand programming code. 

Table 8.10 shows the numbers associated with the student group and previous achievement 

level. It indicates that 49 students took the exam and that there were 15, 21 and 13 students with 

corresponding previous achievement levels of "low 11, "medium", and ''high". 

Table 8.1 O: Student Group and Previous Achievement Level: Basic Statistics 

Value Labal ' roup (CORT ' CORT " /Non.CORT) , Non.CORT " Pravicus ' , .. " achievement , Medium " laval 
' "'' " 

Table 8.11 shows the descriptive statistics for this analysis. The data shows that for both CORT 

and non-CORT students, the marks were higher for those with greater levels of previous 

achievement. The standard deviations show a relatively larger spread of marks for the CORT, 

low previous achievers. 

Chapter 8: The Impact of the CORT System on Learning Outcomes Page 163 



Table 8.11: Descriptive Statistics for Group, Previous Achievement and Exam Part A 

Deoendont Variable, Exam Part A 
Grou• f'rev. Achievement Moan Std. Davialkln ' CORT - 9.50 5.732 ' Medium 10.00 ''" ' High 12.57 3.599 ' Tollll ,OM 4.149 " Non-CORT - 9.14 4.140 ' Medium 10.50 "'' " High 13.67 2.653 • 

Tollll 10.BS 3.655 " Total ,~ 9.33 4.880 " Medium 10.29 2.849 " High 13.08 3.121 " Tolal 10.73 3.866 " -

The results of the two-way ANOVA test that was undertaken to explore results in Exam Part A 

across achievement is shown in Table 8.12. 

Table 8.12: Two-way ANOVA for Group, Previous Achievement and Exam Part A 

De••ndent Variable: E,am Part A 

ll'l)e Ill Sum Partial Ela 
Source ofSouaras " Moan Souare ' " Souared 
COOUCIOd Medel 110.646' ' 22.129 1.568 .190 ·'" lnlercapl 5536.389 ' 55lB.389 39.2.402 .000 .901 

GROUP 1.986 ' 1.986 .141 .709 .003 
ACHIEVEM 108.128 , 64.064 3.830 .029 .151 
GROUP• ACHIEVEM 3.753 , t.876 .133 .876 .oo, 
Error 600.905 " 14.114 
Tola! 6364.000 .. 
Cooocied Tolal 717.551 .. 

a. R Squared n .154 (Adju•l•d R Squared n .056) 

The row "ACHIEVEM" reveals that, irrespective of student group, students with higher 

previous achievement levels scored significantly higher in Exam Part A The result is: 

F(2,43)=3.83, P<0.05 

The relevant data concerning the level of interaction between student group and previous 

achievement level with respect to Exam part A is in the row "GROUP * ACIDEVEM. The 

result of the two-way ANOV A test: 

F(2,43) = 0.133, p>0.05 

reveals a non-significant interaction between CORT and non-CORT students in Exam Part A. 

1bis means that although the figures in Table 8.11 show that low achievers scored higher than 

non-CORT low achievers, and non-CORT medium and high achievers scored higher than their 

CORT counterparts, these differences are not significant. 

Chapter 8: The Impact of the CORT System on Learning Outcomes Page 164 



Interaction between Group and Previous Achievement Level for Exam Part B 
The level of interaction between student group and previous achievement level was determined 

for Exam Part B, the students' ability to generate programming code in response to a problem 

statement. As in the previous analysis, it was thought that weaker CORT students might 

perfonn better than weaker non-CORT students. The descriptive statistics are shown in Table 

8.13. 

Table 8.13: Descriptive Statistics for Group, Previous Achievement and Exam Part 8 

De""ndenl Variable: Exam PM B 

O=• Prev. Achle11ement Mean Sid. Oe,iatlon " """ - 12.63 3.739 ' Medium 9.67 3.202 ' High 13.00 , .... ' Total 11.62 3.536 " Non-CORT = 10.86 3.848 ' Medium 11.00 2.412 " High 12.67 4.274 ' Tclal 11.36 3.277 ~ 

Tclal , .. 11.80 3.764 " Medium 10.43 2.785 " High 12.85 3A60 " Total 11A9 3.373 " 

The results of the two-way ANOVA test that was undertaken to explore results in Exam Part B 

across achievement is shown in Table 8.14. 

Table 8.14: Two-way ANOVA for Group, Previous Achievement and Exam Part B 

Oeoendenl Variable: Exam Part B 
Type Ill Sum ParlJal Eta 

Source olSoua,es a, MeanSouAra ' "" Scua,ed 
... orree1ea MOCle 70.179' ' 14.036 t.268 '"' .128 
lnten:apt 6315.160 ' 6315.180 570.409 .000 .,~ 
GROUP .,. ' ,784 .069 .794 .002 
ACHIEVEM 51.635 ' 25.817 2.332 .109 '" GROUP• ACHIEVEM 21.114 ' 10,557 ••• ,., .. , ,~, 476.065 .. 11.07\ 
Total 7015.0QO " Corrected Total 546.245 " •. R S<iuared = .12B (AdJUStad R SQuared • .027) 

Unlike the previous ANOV A test for Exam Part A, there was no significant result that indicated 

that students, irrespective of group, with higher previous achievement levels did better in Exam 

Part B. The result is: 

F(2,43)=2.332, p>0.05 

The results of the interaction between group and previous achievement 

F(2,43)=0.954, p>0.05 

Chapter 8: The Impact of the CORT System on Learning Outcomes Page 165 



reveals a non-significant interaction between group and previous achievement level in Exam 

Part B which is their ability to generate programming code in response to a problem statement. 

Interaction between Group and Previous Achievement Level for Exam Total 

Exam Total was the sum of parts A and B of the exam and it tested both the students' ability to 

read and understand programming code and to generate programming code in response to a 

problem statement. As in the previous analyses, it was thought that weaker CORT students 

might perfonn better than weaker non-CORT students. 

Table 8.15 shows the descriptive statistics for this analysis. The trend in the figures is similar to 

those for Exam Part B, stud er s with higher levels of previous achievement perfonning better in 

the exam with the exception oflow and medium previous achievers in the CORT group. 

Table 8.15: Descriptive Statistics for Group, Previous Achievement and Exam Total 

De=ndent Variable, Exem Total ,~, Pr,,v. Achle.,.,ment Meao Std. Devla~oo " CORT ,- 22.13 7.259 • 
Medium 19.67 3.571 • 
High 25.57 5.655 1 
Total 22.21 5.949 " Nao.CORT ,~ 20.00 6.758 1 
Medium ,, ... 4.633 " High 26.33 6.218 • 
TD1a1 22.28 '·"" " ,~, 
"" 21.13 6.8115 " Medium 20.76 U46 " High 25.92 5.760 " Tolal 22.24 5.914 " 

The results of the two-way ANOVA test that was undertaken to explore results in Exam Total 

across achievement is shown in Table 8.16. 

TableS.16: Two-way ANOVA for Group, Previous Achievement and Exam Total 

De"en<lentVariable: Eicam Total 
T)'P& 111 Sum Parlilll Eta 

Sourca ofS"uaras • MeaoS"u""' ' " . S"uartd 
1=rrecllldMDclBI 278222" • ... 1.708 .153 .186 

lnlorcept 23710.821 ' 23710.821 727.625 .000 .,~ 
GROUP .397 ' .397 .012 .913 "" ACHIEVEM 252.297 ' 126.149 "n ..,, .m 
GROUP• ACHIE:VEM 36.C3!! ' 16.019 .,~ "' .025 

""' 1400.639 " 32.576 ,~, 25926.COO " Corrtcted Total 1679.061 " a. R Squated • .166 CAdjllS!ad R Squarvd • .069) 

The results of the interaction between group and previous achievement: 

F(2,43)=0.553, p>0.05 

Chapter 8: The Impact of the CORT System on Learning Outcomes Page 166 



reveals a non-significant interaction between CORT and non-CORT students in Exam Total 

which is their ability to read, trace, understand programming code and to generate programming 

code in response to a problem statement. 

Interaction between Group and Previous Achievement Level for Week 15 
Programming Completion Test 
The Week 15 Programming Completion Test directly tested the students' ability to complete 

part-complete programs. Again it was thought that weaker CORT students may perfonn better 

on this test than their non-CORT counterparts because of the learner supports that CORT had 

provided. 

Table 8.16 shows the descriptive statistics for this analysis. Only 25 students took the test, 11 

being from the CORT group and 14 being from the non-CORT group. The statistics indicate 

that for all three categories of achievement, the CORT students perfonned better than the non

CORT students. The mean marks were 46.33% and 42.00% for the CORT and non-CORT low 

previous achievers respectively. The spread of marks for the two groups was large at 23. 71 and 

39.60 respectively. 

Table 8.16: Descriptive Statistics for Group, Previous Achievement and Week 15 
Programming Completion Test 

Deceodent Variable: W&ek 15 Proorammln~ Comcle1ion Test 
Grouo Prl!Y. Achievement Mean Std. Deviallon N 
CORT Lew 46.3333 23,71357 3 

Medium 51.0000 13.52775 3 
High 68.2000 22.89541 5 
Total 57.5455 21.saa12 11 

Non,CORT Low 42.0000 39.59798 2 
Medium 48,0000 22,31591 8 
High 59.7500 27.42718 4 
Total 50.5000 24.56937 14 

Total Low 44.6000 26.05379 5 
Medium 48.8182 19,67647 11 
High 64.444-4 23,74927 9 
Total 53.6000 23.10664 25 

The results of the two-way ANO VA test that was undertaken to explore results in the Week 15 

Programming Completion Test across achievement are shown in Table 8.17. 

Chapter 8: The Impact of the CORT System on Learning Outcomes Page 167 



Table 8.17: Two-way AN OVA for Group, Previous Achievement and Week 15 
Programming Completion Test 

Da"endent Variable: Week 15 Pro ,ammino Comol e6on Tes1 

Typ,,IIISum Partial E1" 
Sou,ee of Souares ' MeanSouare ' "" Souared 
""~&Cted Model 1915.7SJ' ' Ja3,1s1 .668 .,~ .,~ 
lnlercept 57073.826 ' 57073.B26 99.503 .000 .B40 
GROUP 1U032 ' 143.032 .249 .623 .013 
ACHIEVEM 1525.096 ' 762.54a 1.329 ,.. .123 
GROUP• ACHIEVEM 34.593 ' 17.296 .030 .970 .003 

"'"' 10898.217 " 573,590 
Total 84631!.DOO ~ 

co~&Ct&d Tolal 12814.000 " •· RSqua,ed ~ .150 (Adjusted RSqua,ed ~ -.074) 

The results of the interaction between group and previous achievement: 

F(2, 19)-0.030, p>0.05 

reveals a non-significant interaction between the perfonnance of CORT and non-CORT 

students in the Week 15 Programming Completion Test. 

Discussion Concerning CORT and Students' Previous Achievement Levels 
CORT was designed to provide supports and scaffolds for students who are learning to program. 

Previous research (e.g., Chansilp & Oliver, 2002, 2004) found no advantage in overall 

programming perfonnance when using a technology enabled system, but significant advantages 

for low achievers. It was intended that CORT would particularly benefit the less able student 

and in the case of this research, such a student was one who had a relatively low previous 

achievement. However, the four ANO VA tests revealed that there was no significant interaction 

between the student group and student previous achievement levels with respect to student 

programming achievement tests. In all four tests, the descriptive statistics indicated that the 

CORT low achievers' marks were higher than their non-CORT counterparts. These differences 

were not large and the non-significant results might be due to the small number of students 

involved. The student numbers were 8 and 7 for the CO~T and Non-CORT low achievers for 

Exam Parts A, Band for Exam Total. The student numbers were just 3 and 2 respectively for 

the Week 15 Programming Completion Test 

8.4.2.2 Student Age 
Anecdotal evidence suggests that more mature students often find learning to program more 

difficult than younger students. They may for example have less basic computer literacy 

knowledge and also be more anxious about progranuning. They are more likely to get frustrated 

when they cannot generate a working program to solve a problem. It was thought that mature 

students might benefit from CORT's learning supports. Younger students were defined as being 

20 and under, whereas mature students were defined as being over 20. 

Chapter 8: The Impact of the CORT System on Learning Outcomes Page 168 



Four ANOVA tests were again undertaken to examine the interaction between student group 

and student age with respect to achievement. The nwnbers within the different categories are 

shown in Table 8.18 for Exam Part A, Band Exam Total, and in Table 8.19 for the Week 15 

Programming Completion Test. The student numbers were relatively evenly distributed for the 

final exam. This was not the situation for the Programming Completion Test with only two 

students being in the young CORT category. 

Table 8.18: Descriptive Statistics for Group, Age and Exam A, Band Total 

Groun '"' N 
CORT 20 or under 12 

21 or over 12 
Total 24 

Non-CORT 20 or under 9 
21 or over 16 
Total 25 

Total 20 or under 21 
21 or over 28 
Total 49 

Table 8.19: Descriptive Statistics for Group, Age and Week 15 Programming Completion 
Test 

Groun '"' N 
20 or under 2 
21 or over 9 
Total 11 
20 or under 6 
21 or over 8 
Total 14 
20 or under 8 
21 or over 17 
Total 25 

The results of the four, two-way ANOV A tests used to detennine the significance of the 

interaction between student group and student age for student achievement are shown in Table 

8.20. 

Table 8.20: Two-Way ANOVA Tests for Group, Age and Level of Achievement 
. • . 

Exam Part A Ff1.45J: 5.807, o<0.05 , 
Exam Part B F(1,45 :0.014, o>0.05 
Exam Total ft1,45 :2.456, n>0.05 
Week 15 Programming CompleUon F(1,21)=0.392, p>0.05 
Test 

Chapter 8: The Impact of the CORT System on Learning Outcomes Page 169 



The only significant interaction between student group and age was for Exam Part A which 

tested a students' ability to read and understand programming code. Table 8.21 shows the 

descriptive statistics for this analysis. It indicates that the mean mark for Exam Part A was 9.00 

and 12.22 for the CORT and non-CORT younger students respectively. The spread of marks 

was greater for the CORT students. However the mean mark was 12.17 and 10.l 3 respectively 

for the CORT and non-CORT mature students. Their marks were consistently spread. 

Table 8.21: Descriptive Statistics for Group, Age and Exam Part A 

DeMndent Variable: Exam Pa~ A 
Grou~ '"' Mean Std. Devia11on " co, 20orunder 9.00 3.766 " 21 or over 12.17 4.041 " Total 10.58 4.149 " Non.CORT 20 or under 12.22 1.856 9 

21 or over 10.13 4.225 16 
Total 10.ea 3.655 " ,w, 20 or under 10.38 3.442 " 21 or over 11.00 4.199 " To!al 10.73 3.866 " 

The ANOVA result is shown graphically in the profile plots of Figure 8.1. 

Estimated Marginal Means of Exam Part A 
"~------------~ 

" 
~ 11 _,,,--:-

i ,/ 
110 / 
IC" ,/' 

~ / 
al 9 , .. 

1 

./ 

/ 
.,,..,,/' 

Age 

!l 20 orun~or 

~ '+-------------~ Ll 21 O<OYOJ 

Non-CORT CORT 

Group {CORT I Non-CORT) 

Figure 8.1: Profile Plots of Estimated Marginal Means of Exam Part A 

This significant result shows that mature students who used CORT perfonned better than those 

who did not use CORT for Exam Part A. This part of the exam tested a student's ability to 

carefully read and trace programming code and those who achieve at higher levels would most 

probably have a well developed mental model of the way in which programs execute. It is 

unclear if CORT helped mature students develop such mental models or if they already had 

appropriate models. In lhe latter case, it could be suggested that mental models are better 

developed by not using CORT as students tend to experimenl more during lhe generation of 

Chapter 8: The Impact of the CORT System on Learning Outcomes Page 170 



programs "from scratch". This would explain why younger students who did not use CORT 

achieved better than their CORT counterparts. 

The question arises why the other three ANOV A tests did not show a significant interaction 

between student group and age. Firstly, Exam Part B tests the generation of code "from scratch" 

and CORT does not provide direct support for this. Secondly, the differences between the two 

groups' Exam Part A results must not have been so significant to cause a significant difference 

between the Exam totals. Finally, although the Week 15 Programming Completion Test also 

directly tested the reading of programming code like Exam Part A, the numbers who undertook 

the test were small and this may have influenced the outcome of the ANOVA test. 

8.4.2.3 Computer Literacy Level 
Students who learn programming often have poorly developed mental models of the conceptual 

machine and also have misconceptions of various language constructs in programming (Bayman 

& Mayer, 1983). For example, they might have difficulty in: knowing where data comes from 

when input; how data is stored in memory; and the mechanism of assigrunent statements. 

Generally, people with higher levels of computer literacy have better developed mental models 

of the mechanisms of computers. 

CORT provides learning supports and scaffolding to students however it is uncertain if it helps 

develop their mental models. Hence the question to be explored is whether students with lower 

levels of computer literacy perfonn better with or without CORT. Again, four ANOVA tests 

were undertaken to explore the interaction between student group and student computer literacy 

level for student achievement. The computer literacy level was specified as moderate or 

extensive. There were no students in the "limited" and "no computer literacy" categories. 

The numbers within the different categories are shown in Table 8.22 for Exam Part A, B and 

Exam Total, and in Table 8.23 for the Week 15 Programming Completion Test. Both tables 

show that there were more students with "moderate" literacy than with "extensive" literacy. 

There were only two students with extensive computer literacy in the non-CORT group for the 

Week 15 Programming Completion Test. 

Chapter 8: The Impact of the CORT System on Learning Outcomes Page 171 



Table 8.22: Descriptive Statistics for Group, Computer Literacy and Exam A, Band Total 

Group (CORT I Non· I Computer Literacy 
CORTI Level N 
CORT Moderate 9 

Extensive 12 

Total 21 
Non·CORT Moderate 18 

Extensive 7 

Total 25 
Total Moderate 27 

Extensive 19 
Tota! 46 

Table 8.23: Descriptive Statistics for Group, Computer Literacy and Week 15 
Programming Completion Test 

Group (CORT I Non· I Computer L!teracy 
CORTI Level N 
CORT Moderate 3 

Extensive 5 
Total 8 

Non·CORT Moderate 12 
Extensive 2 
Total 14 

Total Moderate 15 

Extensive 7 
Total 22 

The results of the four, two-way ANOV A tests used to detennine the significance of the 

interaction between student group and student computer literacy for student achievement are 

shown in Table 8.24. 

Table 8.24: Two-Way ANOVA Tests for Group, Computer Literacy and Level of 
Achievement 

Exam Part A 
Exam Part B 
Exam Total 
Weak 15 Programming Completion 
Test 

•• 
F 1.42 =0.042. <0.05 
F 1.42 =0.062, >0.05 
F 1.42 =2.603, >0.05 
F(1,18)=0.082, p>0.05 

The only significant interaction between student group and Computer Literacy was for Exam 

Part A which tested a students' ability to read and understand programming code. Table 8.25 

shows the descriptive statistics for this analysis. It indicates that the mean mark for Exam Part A 

was 8.44 and 11.56 respectively for the CORT and non-CORT students who had moderate 

computer literacy. The mean marks were 11.33 and 9.14 respectively for the CORT and non

CORT students who had extensive computer literacy. The spread of marks was relatively even 

for all four combinations of group and literacy. 

Chapter 8: The Impact of the CORT System on Learning Outcomes Page 172 



Table 8.25: Descriptive Statistics for Group, Computer Literacy and Exam Part A 

D VriblE P e""nden1 II a ec ,am '"' Grouo Comouter Uteracv Level Mean Std. Deviation ' CORT Moderate '" 3.972 ' E.tensive 11.33 3.846 " Tolal 10.10 4.073 " Non-CORT Moderate 11.56 '·"' " Extensive 9.14 3.237 ' Total 10.aa 3.655 " Total Moderate 10.52 3.984 " Extensive 10.53 3.702 " Total 10.52 3.828 .. 
Th.is significant result suggests that students with moderate levels of computer literacy who did 

not use CORT have perfonned. better on Exam Part A than those who did use CORT. The 

opposite is true for those students who had extensive computer literacy and this is shown 

graphically in the profile plot of Figure 8.2. 

Estimated Marginal Means of Exam Part A 
12.0~------------~ 

11.5 

'· 
11.0 

10.5 

j 
...: 10.0 .. 
. !: 9.5 

"' ro /, 
:i: 9.0 , Computer Literacy 
~ / I 8.5 /, 

O 
Moderate 

:Yl 8.0+----------------s 
O Experienced 

Non·CORT CORT 

Group (CORT I Non-CORT) 

Figure 8.2: Profile Plots of Estimated Marginal Means of Exam Part A 

Exam part A measures a student's ability to read, trace and understand programming code and 

this requires students to possess a sound mental model of a program's execution process. The 

results suggest that students with moderate levels of computer literacy have gained better mental 

models by learning in the "conventional11 manner without the aid of CORT. A possible reason is 

that CORT reduces a student's capacity to experiment with code and to make mistakes, such 

activities perhaps being necessary in mental model construction. 

Chapter 8: The Impact of the CORT System on Learning Outcomes Page 173 



Students with extensive computer literacy performed better with the aid of CORT. This could be 

because such students already had well developed mental models or were able to create such 

models relatively quickly. Then, the use of CORT provided them with the necessary learning 

supports to achieve at a high level. 

A conclusion that might be drawn for this result is that students who have lower levels of 

computer literacy need to construct knowledge and relevant mental models about the conceptual 

machine before they use CORT to help them learn programming. 

8.4.2.4 Previous Programming Experience 
In an introductory programming unit like that in which this research has been carried out, it 

would usually be expected that students would have little previous programming experience. 

However some students may have gained limited familiarity with programming by, for 

example, the viewing and amendment of simple scripts on the Internet. Similarly to students 

who have extensive computer literacy, it would be expected that those students who have some 

previous programming knowledge may have better developed mental models than those with no 

previous knowledge. Students in the study were classified as having "none" or 11limited11 

previous programming experience. In the original questionnaire that students completed at the 

beginning of the unit, there had been a category of "moderate" programming experience. 

However no students indicated that they were in this category. 

The numbers within the different categories of programming experience are shown in Table 

8.26 for Exam Part A, Band Exam Total, and in Table 8.27 for the Week 15 Programming 

Completion Test. The numbers were distributed fairly evenly for the exams, however this was 

not the case for the Week 15 Programming Completion Test where fewer students were present. 

In this test, there were IO and 4 non-CORT students with no and limited previous programming 

experience respectively. 

Table 8.26: Descriptive Statistics for Group, Previous Programming Experience and 
Exam A, Band Total 

Group (CORT I Non- I Previous Programming 
CORTf Exoerience N 
CORT None 11 

Limited 10 
Total 21 

Non-CORT None 14 

Limited 11 
Total 25 

Total None 25 
Limited 21 
Total 46 

Chapter 8: The Impact of the CORT System on Learning Outcomes Page 174 



Table 8.27: Descriptive Statistics for Group, Previous Programming Experience and 
Week 15 Programming Completion Test 

Group (CORT I Non- 1 Previous Programming 
CORT\. Exoerlence N . 
CORT None 4 

Limited 4 
Total 8 

Non-CORT None 10 
Limited 4 
Total 14 

Total None 14 

Limited 8 
Total 22 

The results of the four, two-way ANOVA tests used to determine the significance of the 

interaction between student group and previous programming experience for student 

achievement are shown in Table 8.28. 

Table 8.28: Two-Way ANOVA Tests for Group, Previous Programming Experience and 
Level of Achievement 

.. . . • • 
Exam Part A F 1,421=7.180, n<0.05 , 
Exam Part 8 F 1,421=1.148, n>0.05 
Exam Total F 1,421=5.774, n<0.05 , 
Week 15 Programming Completion F(1,18)=3.065, p>0.05 
Test 

Two of the tests indicated that there were significant interactions between student group and 

previous progranuning experience for both Exam Part A and Exam Total. Tables 8.29 and 8.30 

show the descriptive statistics for these analyses. 

Table 8.29: Descriptive Statistics for Group, Previous Programming Experience and 
Exam Part A 

Decendenl Variable: Exam Par1 A 

Grow, Prov. Proo. E•fterlenca Mean Std. Deviation N 
CORT None 8.55 4.204 " Llmlled 11.80 3.327 " Total 10.10 4.073 " Non-CORT None 12.00 3.138 " Limited Q,45 3.908 " Total 10.88 3.655 " Total None 10.48 3.970 " Llmit&d 10.57 3.749 " Total 10.52 3.828 46 

Chapter 8: The Impact of the CORT System on Learning Outcomes Page 175 



Table 8.30: Descriptive Statistics for Group, Previous Programming Experience and 
Exam Total 

DaoendentVariabla: Exam Total 
Groun Prev Pron, E~n. Mean Std. Devla11on N 
CORT None 19.36 4.717 " Limited 23.30 5.519 10 

Total 21.24 5.375 " Non-CORT None 24.00 5.477 14 
Limited 20.09 6.172 " Total 22.2a 6.004 25 

Total None 21.96 5.571 25 

'"""' 21.62 5.954 21 
Total 21.80 5.687 .. 

These significant results are similar to those obtained for the student group and computer 

literacy. That is, non-CORT students without any previous programming experience performed 

better than CORT students without any previous programming experience in Exam Part A. The 

respective marks were 12.00 and 8.55. CORT students with limited previous programming 

experience performed better than their non-CORT counterparts, the marks being 11.80 and 9.45 

respectively. This is shown graphically in the profile plot of Figure 8.3. 

Estimated Marginal Means of Exam Part A 
13~-------------~ 

12 

• 11 

m 

" 
/ 

"O 9 /" I V" 

/' 

,/' 

/' 

,/'/ 

-:-< .... 
/ ' 

' ',. 
'Prev. Prog. Exp. 

CJ None 

& 6+---------------< o,= 
Non·CORT CORT 

Group (CORT I Non-CORT) 

Figure 8.3: Profile Plots of Estimated Marginal Means of Exam Part A 

These significant differences were greater than for computer literacy, and this is why there was 

also a significant difference for Exam Total with respect to previous programming experience, 

even though no significant difference had emerged for Exam Part B. 

The results are similar to those in computer literacy and suggest that students with no previous 

programming experience may need to construct knowledge and relevant mental models about 

Chapter 8: The Impact of the CORT System on Learning Outcomes Page 176 



the conceptual machine before they use CORT to help them learn programming. Those students 

who already have some programming knowledge appeared to achieve better with the aid of 

CORT as these students probably have better developed mental models and can then use 

CORT's learning supports to help them build relevant programming plans and schemata. 

8.4.2.5 Gender 
Research has shown that female students who have learnt to program using the completion 

method experienced less anxiety and lower drop~out rates than those learning using the more 

traditional "generation" method (van Merrienboer, 1990b). This suggests that females may be 

more comfortable using CORT as it directly supports the completion method and that this may 

impact on their perfonnance. 

As previously, four ANOVA tests were undertaken to explore the interaction between student 

group and gender for student achievement. The nwnbers within the different categories are 

shown in Table 8.31 for Exam Part A, Band Exam Total, and in Table 8.32 for the Week 15 

Programming Completion Test. 

Table 8.31: Descriptive Statistics for Group, Gender and Exam A, Band Total 

Group (CORT I Non· I 
CORTI Gender N 
CORT Male 18 

Female 6 
Total 24 

Non-CORT Male 14 
Female 11 

Total 25 

Total Male 32 
Female 17 
Total " 

Table 8.32: Descriptive Statistics for Group, Gender and Week 15 Programming 
Completion Test 

Group (CORT I Non· 1 
CORT\. Gender N 
CORT Male 9 

Female 2 
Total 11 

Non-CORT Male 6 
Female 8 

Total 14 
Total Male 15 

Female 10 
Total 25 

Chapter 8: The Impact of the CORT System on Learning Outcomes Page 177 



The results of the four, two-way ANOVA tests used to determine the significance of the 

interaction between student group and gender for student achievement are shown in Table 8.33. 

Table 8.33: Two-Way ANOVA Tests for Group, Gender and Level of Achievement 
. . . . • . 

Exam Part A F 1.451=0.012. n>0.05 
Exam Part B F 1,451=0.953, n>0.05 
Exam Total F 1.45 =0.404, n>0.05 
Week 15 Programming CompleUon F(1.21)=0.022, p>0.05 
Test 

The tests indicated that there was no significant difference between the males and females 

within the CORT and non-CORT groups. Female students in the CORT group may be more 

comfortable and less anxious than their non-CORT counterparts, however this has not been 

reflected in improved performance. An investigation into how CORT impacts on the affective 

domain of females could be an area of future investigation. 

8.4.3 Time and Help Requirements between Groups 
Two other important factors in programming outcomes and learning are the time taken by 

students to complete their weekly programming problems, and the amount of help that students 

required. A series oftests was used to explore whether the use of CORT revealed significant 

differences in these factors. It would be a strength of CORT if it could be shown to reduce time 

and I or help requirements. 

8.4.3.1 Differences in Time Taken to Complete Programming Problems between 
CORT and Non-CORT Students 

As part of their learning process, students were asked to estimate and record the time that they 

took to complete each programming problem. This was done as they attempted the computer 

laboratories during the semester. The data were recorded in their individual proble.•n 

questionnaires. It has been suggested (van Merrienboer & De Croock, 1992) that students who 

have to generate code spend a lot of time searching for relevant worked examples. Because of 

this, it was thought that there could be a difference between the times taken by students to 

generate programs and the times taken to complete part-complete programs. The non-CORT 

group had to generate all their programs whereas the CORT group had to complete part

complete programs. The data collected enabled the testing of this proposition. 

The "Average time taken per problem", was the average time that students took to complete 

each of the eighteen programming problems during the semester. Table 8.34 shows that data 

Chapter 8: The Impact of the CORT System on Learning Outcomes Page 178 



were collected for 21 CORT students and 23 non-CORT and that their mean average times were 

25.1 and 33.4 minutes respectively. This indicates that the non-CORT group took an average of 

8 minutes longer to complete each of their programming problems. 

Table 8.34: Group Statistics for Student Group and Time Taken to Complete Problems 

Group ICORT Std. Error 
I Non.CORT\ " Moan Std. Devlollon Mean 

Average bme '°" " 25.14 U57 1.o:i.11 
lakon per p"'blem Non.CORT " 33.43 9.199 1.918 

The data were then further analysed and Table 8.35 shows the results of the t-test for the 

students groups1 times to complete programming problems. 

Table 8.35: T-Test: Student Group and Average Time Taken per Problem 

Lo\fllno'• r .. 11or 
E••oll olVoOonco• Mesi fo< E~·al'"o/Meon• 

95\1. Confidonco 
lmervolollhe 

"'" st~.srror D~oror.co 

' •• ' • 5"'. '2·1alledl o-.inco Dlffetonce l.,...e, ,--, 
1werageume ~Q01lvonances 

4.393 .. , ·3.701 " oo, ·B.29 2.240 ·12.813 ·3.771 i,konporproblom """-EQ01lvll1onces 
·3.802 n~ oo, ·8.29 2.181 ·12.726 ·3.858 ooi, ... ., .. 

In this case, Levene's F value was significant (p<0.05) and equal variances could not be 

assumed. The result of the t-test 

t(JJ.6) = -3.80, p<0.05 

revealed a significant difference between CORT and non-CORT students with respect to the 

average time taken per problem. The differences are shown graphically in the box plot of Figure 

8.4. The box plot also gives a visual indication of the larger spread of times for the non-CORT 

group, the standard deviation being almost twice that of the CORT group. The boxes represent 

the middle 50% of cases, that is between the 25th and 75th percentiles. The horizontal line inside 

the box represents the median. The horizontal lines that are not within a box are known as 

whiskers and represent the expected range of times. The small circle represents an "outlier" or 

extreme value. 

Chapter 8: The Impact of the CORT System on Learning Outcomes Page 179 



.,, 
2 , 
l 
E 

:1l e 
~ • ~ 

e • ~ • • E 
~ 

• ~ e • 
~ 

" 

" 
40 

"' 
,0 

10 

•• " CORT 

Group (CORT I Non-CORT) 

" Non-CORT 

Figure 8.4: Box plot of "Average time taken per problem" for CORT I Non-CORT Students 

The significant difference between the means of the two groups is perceived as very important 

especially when the previous analyses are taken into account. The previous analyses revealed no 

significant difference between the end-test performance of the CORT and non-CORT students. 

However the CORT students had taken only 76% of the time that the non-CORT students had 

taken. On average, the CORT students had each taken a total of 144 minutes less time to 

complete all of their problems during the class activities. 

The results suggest that there may well have been significant differences in achievement 

between the two groups if the CORT students had spent as much time practising their 

programming skills as their non~CORT counterparts. Another conclusion that can be drawn is, 

that by using CORT, students can reduce the time required to achieve competence in 

programming. 

8.4.3.2 Differences in Help Required to Complete Programming Problems 
among CORT and Non-CORT Students 

Students were asked to estimate the amount of help that they required in the completion of each 

programming problem. Students could obtain help from other students, the tutor, or the 

textbook, and they recorded the data concerning this in their individual problem questionnaires. 

It has been demonstrated in previous research that students who have to generate code from 

"scratch" to solve a problem will require more help and, for example, use textbooks and other 

resources to find programming code that has been used to solve a similar problem to the one 

that they are attempting (van Merrienboer & De Croock, 1992). The use of CORT could 

Chapter 8: The Impact of the CORT System on Learning Outcomes Page 180 



possibly reduce the reliance on help from a tutor and the need to search various rt$ources when 

attempting to solve programming problems. This is because CORT provides teaming supports 

via its part-complete solution approach. 

The "Average help required per problem", was the average help that students required to 

complete each of the eighteen programming problems during the semester. The data were 

collected via the individual problem questionnaires that the students completed for each 

problem that they attempted. The help values were coded in the range I to 4. The codes 

corresponded to: no help; little help; moderate help; and extensive help respectively. Students 

estimated the help needed for each of the 18 problems and these values were then averaged. 

Table 8.36 shows that data were collected from 21 CORT students and 23 non-CORT students. 

The mean average help required was found to be 2.25 and 2. 70 respectively on the l to 4 scale. 

Table 8.36: Group Statistics for Student Group and Help Required to Complete Problems 

Group(CORT Sid. Error 
I Non.CORT• ' ~·" Sid Do\SO~on ~·" A,eragehelp CORT " 2,2524 .41427 .09040 

roqulrod per pn:,blom Non-CORT " 2.7043 .53127 ,11078 

The data were then further analysed and Table 8.37 shows results of the I-test for the student 

groups' help requirements to complete programming problems. 

Table 8.37: T-Test: Student Group and Average Help Required per Problem 

Lll'lerta'• Te1llot 
Eouail or Vanonce• Mo,1 lo, E ual~ of~•••• 

~,., ConMonco 
lnto,volo!lllo 

~eon SI<! Em>r 0•""'""'" 
' 

,_ 
' • S"' 2,10,lod D1Horttne:e C.He,enco Lo,,,,. ' A,orago holp Equ!llvon= 

1.131 '" ·J 125 " ~ •.4520 14461 ,.., I • 1&012 roquirod p,er problem ....... d 

Equal"""""""' .J \61 41.038 oo, ·4520 14298 -14072 • 16321 no1 .. ,um<t<I 

Levene's F value was found to be not significant in this case and equal variances were not 

assumed. The result of the t-test 

t(42) = -3.13, p<0.05 

revealed a significant difference between CORT and non-CORT students with respect to thr: 

average amount of help required per problem. The differences are shown graphically in the box 

plot of Figure 8.5. Titis indicates a greater spread of help requirements for the non-CORT 

group. 

Chapter 8: The Impact of the CORT System on Learning Outcomes Page 181 



,.,~----------------~ 

,.5 

8: 

~~ 2.5 ! . 
[ 2.0 

% 
~ 

• 1.5 
~ 

" ~ 1.0 
•• 

8: 

" CORT 

Group (CORT I Non-CORT) 

c,o, 

"" 
" Non-CORT 

Figure 8.5: .J::lox plot of "Average help required per problem "for CORT I Non-CORT 
Students 

The ratio scale of 1 to 4 that the students had used to estimate the help that they had required 

corresponded to none, little, moderate, and extensive. The box plot of Figure 8.5 reveals that 

most CORT students needed little help whereas the majority of non-CORT students required 

moderate help. Students also indicated the type of help that they needed for each problem. They 

obtained most help from their textbooks however a substantial amount was also obtained from 

their tutor. Tb.is finding .has implications for the ability for students to learn programming 

independently. Often students have difficulties learning programming when they reach points, 

when solving a problem, that they cannot go beyond until they have had some help from a tutor 

(e.g., Garner, 2002). The fact that CORT students required significantly less help could be 

attributed to the high level of support that it provides. One implication of this would be that 

students using CORT would be able to learn programming more independently than non-CORT 

students and this would be especially beneficial for distance learning students. 

The results reveal that CORT students sought less help than non-CORT students in their 

programming tasks. Titls suggests CORT could be a useful tool for supporting students needing 

to study programming independently or remotely. 

8.4.4 Time and Help Requirements' Differences among sub-groups 
The earlier t-tests had revealed that CORT students took significantly less time and required 

significantly less help than non-CORT Students to complete the programming problems that 

they had been assigned. It was considered a possibility that within the CORT group, certain 

students, such as those with higher levels of computer literacy or some previous programming 

"Chapter 8: The Impact of the CORT System on Learning Outcomes Page 182 

.. 



experience, might complete their tasks significantly faster and I or with Jess help, than those 

with for example, lower levels of computer literacy or without any programming experience. 

Analyses were therefore carried out to detennine if there were any significant interactions 

between student group and each of the other five independent variables: previous achievement 

level, age, computer literacy level, previous programming experience, and gender with respect 

to the time and help requirements of students. Tables 8.38 and 8.39 show the results of the two

way ANOVA tests that were undertaken. 

Table 8.38: Statistical Tests for Student Group and Other Variables for Average Time 
Taken to Complete Problems 

F 2.38 =0.151. >0.05 
F 1.40 =0.580, >0.05 

F 1.40 =0.022. >O.'J5 -~---~ 

Table 8.39: Statistical Tests for Student Group and Other Varlables for Average help 
Required to Complete Problems 

• • . - • 
Groun + Previous achievement level F{2,381=0.013. o>0.05 
Groun + Ane F 1,401=0.101. n>0.05 
Groun + Comnuter literacv level F 1,37i=0.252. n>0.05 
Group + Previous programmlng F(1.37)=0.001, p>0.05 
exoerience 
Grouo + Gender R1.401=0.473. o>0.05 

The results indicate that the five independent variables that were tested did not significantly 

interact with the student group for both the time taken and the help required to complete the 

assigned programming problems. 

8.4.5 Summary of the Impact of the PCSM within the CORT System on 
Learning Achievement 

The results of the data analyses provide mixed outcomes concerning the impact of the PCSM 

within CORT on student learning. No significant difference was found in the relative 

achievement of students in the CORT and non-CORT groups in tests of programming 

achievement, while the results showed significant advantages for the CORT students in tenns of 

time saving and levels of tutor help required. The results suggest that the system can help 

students to complete programming tasks more quickly and can provide higher levels of support, 

both factors providing advantage for novice programmers. 

Chapter 8: The Impact of the CORT System on Learning Outcomes Page183 



Although there was no significant difference between the CORT and non .. CORT students in any 

of the achievement measures, differences did emerge between certain student sub-groups with 

respect to Exam Part A and these are summarised in Table 8.40. 

Table 8.40: Significant Achievement Levels amongst Students for Exam Part A 

Age Youn er 
Mature ' ' 

Computer literacy Moderate ' ' 
Extensive ' ' 

Prev. Prog, Experience None ' ' 
little ' ' 

The table entries reveal a similar pattern amongst the categories. That is that the students who 

used the CORT system that achieved at a lower level were either younger, only moderately 

computer literate, or without any previous programming experience. Exam Part A was a 

measure of the students' ability to read and comprehend computer programs. The common 

factor among the categories may be that such students do not have a satisfactory and well 

defined mental model of the way in which computers execute programs and they therefore have 

greater difficulty comprehending code. 

Research has shown that students with ill-developed mental models can be supported in the 

learning of programming by helping them visualise the execution process of the programs ( e.g., 

Smith & Webb, 2000). The non-CORT students who learnt programming in a "conventional" 

manner had to spend a lot ohime experimenting as they attempted to generate their programs. 

This may well have helped them develop appropriate mental models. However, students who 

used the CORT system were able to complete their programs relatively quickly and with less 

experimentation. This might not have helped students in ·. 1eir mental model development. 

Those students who already had well developed mental models did benefit from using the 

CORT system. Students who were either mature, with high levels of computer literacy, or with 

some previous programming experience, perfonned better than their non-CORT counterparts. 

The time that the CORT students required to complete all of the programming tasks was 

approximately three quarters of that of the non-CORT students. Significant differences in 

achievement may well have been demonstrated if the CORT students had spent the extra time 

that they had, practising further programming problems. 

The CORT students were found to require little help when using the system whereas the non

CORT students required moderate help. Whilst this does not impact directly on achievement 

Chapter 8: The Impact of the CORT System on Learning Outcomes Page 184 



levels, it may affect the achievement levels of students who do not have easy access to sources 

of help. It is well known (e.g., Gamer, 2002) that distance learning students of programming 

have difficulties when they reach a point in solving a programming problem, such that they 

cannot proceed further until they obtain help from a tutor. If such help is not readily available, 

ci~ the time taken for a tutor to respond to a query is long, then student achievement may-be 

reduced. The PCSM within CORT provides help and learning supports to students so that the 

extra help that students need is relatively low. Distance learning students may therefore benefit 

if they were to use the system in an introductory programming unit. 

The fact that the system did not provide learning advantages was not an expected outcome of 

the study. It is possible that there could have been differences observed in achievement under 

different conditions. Factors that may have contributed include: 

• A lack of sensitivity in the various exams and instruments to the learning supported by the 

system; 

• Insufficient use of the system among the students for the treatment to make a difference; 

and 

• Too small a sample size for differences to emerge. 

Chapter 8: The Impact of the CORT System on Learning Outcomes Page 185 



Chapter 9 
Summary and Conclusions 

This chapter gives an overview of the research conducted; a summary of the findings; the 

limitations of the study; and recommendations for future research. 

The study sought to explore a technology supported part-complete solution method (TSPCSM) 

for the learning of computer programming. The literature concerning student learning and 

particularly the teaching and learning of computer programming was reviewed and used to 

inform the development of a teaching and learning framework for programming that included 

learning resources, supports and activities. A teclmology supported tool, CORT, was then 

designed around the learning framework and developed to support the part-complete solution 

method and provide a suitable learning environment. 

A quasi-experimental research design framework was utilised in the study which used both 

qualitative and quantitative research methods. A series of programming problems was 

developed for the CORT system and an experiment was undertaken with students who were 

studying introductory programming in a school of Management Infom1ation Systems at an 

Australian university. The data were analysed and they provided rich infonnation concerning 

how students engaged with the CORT system; how the PCSM within CORT supported the 

learning process; and how the PCSM within CORT impacted upon their learning outcomes. 

An overview of the study is shown in Table 9.1. 

Chapter 9: Summary and Conclusions Page 186 



Table 9.1: Overview of the Study 

Chapter Title Oescnpt1c;n 
1 Introduction Significance and purpose of the thesis. 

2 The Teaching and A review of the literature concerning the teaching and learning of 
Leaming of computer programming, including: 
programming 

• The difficulties of learning to program including general problem 
solving skllts: program design; language notation: the pragmatics 
of programming: and the cognitive load experienced by novice 

• 
programmers: 
The approaches to the teaching and leam'ing of programrr ; 
Including the expert, spiral and reading approaches; 

• Approaches to teaching and learning that have been 
experimented with including the conceptual I notional m"'~ ·1ine; 
intelligent tutoring systems; experiential and situated approaches; 
programming plans; the use of part-complete solutions; and the 
cloze procedure: and 

• Tools used In the teaching and learning of programming including 
program visualisation tools: and algorithm design tools. 

3 Student Leaming A review of the literature concerning student I earning that considered: 
and a Teaching and 
Leaming • Mental representation and how information is stored in memory; 
Framework for • Development of expertise and the differences between novices 
programming and experts In a domain of knowledge; 

• Mental processes and particularly Information processing and 
knowledge construction; 

• Cognitive load theory and the three types of cognitive load that 
Impact on learning: intrinsic, extraneous and germane: 

• Problem solving and the use of worked examples; 
• Scaffolding and problem solving; 
• Higher order thinking and Its application to the learning of 

programming. 

The literature reviewed informed the development of a teaching and 
learning framework for the learning of programming. 

4 Development of a Using the teaching and learning framework developed In chapter 3, 
Tool to Support the the tool (CORT) to support the PCSM was developed. An initial 
Part-Complete prototype was tested with students and the feedback informed the ,, 
Solution Method creation of a second version to be used in the full study. 
(PCSM) . 

5 Research Design A research methodology was selected that made extensive use of 
qualitative techniques and that was complemented with quantitative 
techniques. The research questions were developed together wilh the 
detailed design and data collection methods. The methodology 
Included the use of quesllonnahts, observaOOn, interviews. and end 
tests. A data collection schedule was also finalised for the main study. 

6 How Students Use The first research question was considered: •How students use 
CORT CORT". Results from this usability study indicated that:: 

• The majority of students quickly became comfortable with the 
basic functionallty of CORT; 

• Any difficulties that arose in the use of CORT were minlmal and 
students quickly overcome them; 

• CORT had a small learning curve and the extraneous cognitive 
load imposed upon students by CORT's usability was minimal; 

• Potential changes to CORT were Identified in order that the 
usablllty of CORT could be improved upon in a future version. 

Chapter 9: Summary and Conclusions Page 187 



Cha ter 'ritle Oescri t1on 
7 How the CORT The second research question was considered: "How did the PCSM 

System supports within CORT support the learning process?". Results Indicated that 
the Leaming 
Process • The system provided strong scaffoldlng for student leam!ng; and 

• Students engaged well with the system and generally used a 
thoughtful and considered cognitive strategy. 

The different types and levels of support that the system provided 
were also identified together with types of difficulties that students 
experienced when using the 3 different CORT methods. 

8 The Impact of the The third research question was considered: "What impact did the use 
CORT System on of the PCSM within CORT have on leam!ng outcomes?~. 
Leaming Outcomes 

The data collected from end-tests were analysed and the results 
Indicated that there was no significant difference In the relative 
achievement of students ln CORT and non-CORT student groups. 
However, ii was found that the CORT system helped students to 
complete programming tasks more quickly and also that II provided 
higher levels of support than that received by the non-CORT group, 

Differences also emerged between certain sub-groups of student wllh 
respect to their performance in "reading" and understanding existing 
programming code. 

9 Summary and A summary of the thesis Including: an overview of the research 
Conclusions conductod; a summary of the findings: limitations of the study; and 

recommendations for further research. 

9.1 Teaching and Learning Framework for Programming 
The main purpose of the study was to test the COde Restructuring Tool, CORT, that was 

developed to provide technology support for the part-complete solution method (PCSM) for 

learning programming as part of an encompassing teaching and learning framework. 

The design of the framework was infonned by research into the teaching and learning of 

programming and student learning in general: 

• 

• 

In problem solving it is necessary for learners to develop their cognitive schemata and 

mental models. 
( 

To help build cognitive schemata, learners have to mentally process their mental 

representations or cognitive schemata. 

• Constructivism suggests that the construction of knowledge by learners is dependent upon 

their existing schemata and therefore learning should be student centred with students being 

able to progress at their own pace. 

Chapter 9: Summary and Conclusions Page 188 



• Cognitive load theory suggests that in problem solving domains, it is necessary to keep the 

extraneous cognitive load to a minimwn as the domain itself has a very high intrinsic 

cognitive load. It is then possible to have some germane cognitive load imposed on learners 

to ensure that they actively engage with the material that they are studying. 

• In the context of computer programming, one way of applying gennane cognitive load is to 

utilise learning materials that require learners to complete solutions to part-complete 

programs that they have been given. Such part-complete programs can vary in their degree 

of completeness and such materials act as scaffolds to support student centred learning. This 

teaching and learning method is based upon the "Reading" method of learning progranuning 

which has the best "match" to cognitive load theory. 

From the literature review, a framework of learning attributes that could provide support for 

learning in problem solving domains of knowledge such as programming was proposed. 

Elements of a technology supported PCSM environment to support those learning attributes 

were then identified and finally the teaching and learning framework for programming was 

designed to provide an overall environment for learning. 

CORT was developed to provide the technology support for the PCSM. Its design was 

influenced by other computer programs that provide functionality permitting items to be easily 

moved between two parallel windows. An initial prototype was developed which was tested 

with a small group of students. The feedback that was received was then used to inform the 

development of a second version which was then used in the full experiment. 

9.2 Research Design 
Research methodologies were investigated and an overall process finalised for the study. The 

process was based on an epistemology of knowledge construction; a theoretical perspective of 

intetpretivism-phenomenology; and a methodology of quasi-experimental action research with 

case studies, 

Tirree research questions were posed to explore the use of CORT and the teaching and learning 

framework with students who were learning introductory programming: 

1. How did students use CORT? 

2. How did the PCSM within CORT support the learning process? 

3. What impact did the use of the PCSM within CORT have on learning outcomes? 

Chapter 9: Summary and Conclusions Page 189 



Research instruments were developed together with a set of part·complete programming 

problems. Experimental and control groups were utilised in the experiment which took place 

over a 14 week semCSter at an Australian university. Data were collected via observation, 

interviews, questionnaires, document studies, and end·tests. 

9.3 Research Results 
The data collected were analysed for each of the 3 research questions. 

9.3.1 Research Question 1 
The first research question concerned how students used CORT. In order to detennine how 

CORT influenced learning, it was necessary to detennine if the way the CORT software was 

designed and developed hindered the students in any way. 

The major data collection method that was used to explore this question was observation. 

Several students were observed over a 10 week period and 10 usabiljty issues were identified. 

These issues were of 3 main types: 

• Operation of the problem files; 

• Manipulation of the lines of code; and 

• Editing the lines of code. 

The impediments these difficulties posed for learning tended to be minimal with students 

quickly overcoming difficulties through their experiences and continued use of CORT. Most of 

the difficulties disappeared early in the course. There were some minor interface issues with 

CORT however successful workarounds were found by all students. 

It clearly emerged that CORT had a small learning curve and imposed a low extraneous 

cognitive load on students. This was seen to be an important finding as a necessary feature of 

the PCSM is to keep the extraneous cognitive load that students experience as low as possible. 

However, as with most initial versions of software, the usability of CORT could be improved 

and several potential changes emerged from the data analysis. 

9.3.2 Research Question 2 
The second research question sought to investigate how the PCSM within the CORT system 

supported the learning process. Data were mainly collected by the observation of students who 

were attempting CORT problems. Additional data were obtained from interviews and 

Chapter 9: Summary and Conclusions Page 190 



questionnaires and used to provide triangulation for certain aspects of the data analysis. Of 

particular interest in this research question were: 

• The cognitive strategies that students used when attempting to solve problems with the 

CORT system; 

• The types of support provided by CORT; and 

• The scaffolding provided by CORT. 

Five levels of cognitive strategy were identified ranging from unplanned and random through to 

a deliberate approach where a student would demonstrate a high level of planning and strategy. 

Four different support types were identified: syntax; semantic; structural; and algorithmic. 

Three levels of scaffolding provided by CORT were identified: provision of little help; 

provision of some help; and provision of a lot of help. 

Students were observed attempting each of the 17 problems that had been developed for the 

experiment and the support types, cognitive strategy, and scaffolding provided were recorded. 

The data were then summarised and analysed in 3 different ways: by student observed; by 

CORT problem nu.'llber; and by CORT method utilised. 

The data .analysis revealed that the CORT system scaffolded with an overall average of 2.6 

(range 1 - 3) and supported a level of cognitive strategy of 3.3 (range 1 - 5). This demonstrated 

that system had provided considerable help for students and that students were generally 

engaged with the system during their learIL.ng. Also, the data revealed that most students 

applied some consideration in their approaches to the problems that they attempted. With 

respect to the 4 support types, the data indicated that the highest level of support was for 

semantic difficulties. However there were also high levels of support for structural and 

algorithmic difficulties. 

When the data were analysed by problem number, it was found that most semantic help took 

place earlier in the course, when students were attempting to acquire much of the necessary 

semantic knowledge of various programming statements, and that most algorithmic help took 

place in the latter part of the course, when the problems became progressively more difficult. 

This result suggested that the design of the set of 17 problems was acceptable as students were 

able to obtain the semantic support that was necessary in the earlier part of the course, and then 

obtain algorithmic support as the CORT problems increased in their degree of difficulty. 

Chapter 9: Summary and Conclusions Page 191 



Several interesting findings emerged when the data were analysed by CORT method. Each 

problem that students attempted utilised a particular CORT method, ranging from 1 to 3, which 

respectively: required all the lines of code from the left-hand window; required only some of the 

lines of code from the left-hand window; and required some or all of the lines of code from the 

left-hand window and some extra lines of code to be keyed in. 

The data revealed that the levels of cognitive support were fairly even and strong across all 

three CORT methods, and that the level of scaffolding provided by the system was lowest for 

method 3 type problems. The latter was not surprising as high levels of scaffolding are provided 

for method 1 and 2 type problems in the form of the missing lines for a problem solution being 

available in the left-hand window of CORT. With method 3 type problems, such support is not 

available. The level of algorithmic support was particularly low for method 3 type problems. 

This result has implications for the CORT methods that should be used when students are being 

encouraged to develop their knowledge concerning some of the fundamental algorithms of 

programming. 

9.3.3 Research Question 3 
The third research question sought to investigate the impact that the use of the PCSM within 

CORT had on learning outcomes. Quantitative data were collected from end-tests that were 

undertaken by both the CORT and non-CORT groups. The results of the data analyses provided 

mixed outcomes concerning the impact of the CORT system on student learning. No significant 

difference was found in the relative achievement of students in the CORT and non-CORT 

groups in tests of programming achievement. However the data analyses concerning other 

factors did provide interesting results. 

Data concerning the time taken to complete problems were analysed to determine how this 

factor was related to learning outcomes. The results indicated that the students who used CORT 

took significantly less time to complete the set of problems. Similar findings occurred in a 

previous study that compared 2 student groups that were learning algebraic problem solving 

(Sweller & Cooper, 1985). One group studied worked examples whilst the other was exposed to 

"conventional" instruction. End-tests were administered and it was found that learning was more 

efficient with respect to time, and yet no less effective, when the worked example method was 

used. Hence with respect to CORT, a conclusion that might be drawn is that if students who 

used the CORT system to learn programming were to spend as much time as students using a 

traditional teaching and learning method, then they may well achieve a higher level of expertise. 

Data concerning the help that was required were also analysed to detennine how this factor was 

related to learning outcomes. It was found that the students who used the CORT system 

Chapter 9: Summary and Conclusions Page 192 



required significantly less help than the non-CORT students. This suggests that the use of the 

system could be of benefit to distance learning students who have less access to their tutors and 

therefore require stronger supports from other learning resources. 

The data were also analysed for sub-groups of students and some significant differences 

emerged concerning the ability to read and understand programming code. It was found that the 

students who used the CORT system who were less able to read and understand existing 

programming code compared to the equivalent non-CORT students were either younger, only 

moderately computer literate, or without any previous programming experience. 

A possible explanation for this result is that these particular students may not have developed 

their mental models of the way in which computers execute programs to the same degree as the 

other students. These sub-groups of student most probably had ill-defined mental models of 

program execution when they started the programming course. It may be that generating 

programs from 11scratch11 helps these categories of student develop their mental models as they 

spend more time experimenting and debugging their code. With the CORT system, it has been 

shown that students reach correct solutions more quickly and this may mean that they have not 

had the opportunity to greatly improve their mental models of program execution. 
' 

However contrasting results emerged between the sub-groups as it was found that students who 

used the CORT system that were either mature, with high levels of computer literacy, or with 

some previous programming experience, performed better than their non-CORT counterparts. 

These students may already had well developed mental models of program execution when they 

started the course and the results suggest that the PCSM within CORT has provided strong 

support to such students. A number of questions emerged and are suggested in a later section as 

possible areas for further study. 

9.4 Limitations of the Study 
"Limitations are those conditions beyond the control of the researcher that may place 

restrictions on the conclusions of the study and their application to other situations" (Best & 

Khan, 1998, p.37). Some of the limitations thai were identified in this study include: 

• Sample size; 

• Representativeness of the sample; 

• Possible Observer Bias; and 

• Sensitivity of the end-tests. 

Chapter 9: Summary and Conclusions Page 193 



9.4.1 Sample Size 
A possible limitation of the study is the number of subjects that were involved in the research. 

According to Charles (1988) a sample should comprise at leat 30 subjects. Although the total 

number of students in the study was 49, some of the numbers in the sub-groups were below 30. 

A greater sample size may have provided a level of data to demonstrate the achievement gains 

being sought. However Bums (1994, p. 73) makes the point that 11although for a given design an 

increase in sample size increases accuracy, it will not eliminate or reduce any bias in the 

selection procedure". Hence the sample size is less important than representativeness of a 

sample. 

9.4.2 Representativeness of the sample 
"Selection bias1

~ is bias that occurs when "intact" classes are used as experimental and control 

groups. An example is: 11Because of scheduling arrangements, an English class meeting during 

the fourth period may consist of particularly able students who are scheduled at that period 

because they are also enrolled in an advanced mathematics class" (Best and Kahn, 1998, p.166). 

In this study, there were 4 computer laboratories and I lecture. Anecdotal evidence suggests that 

the more organised students enrol into units of study as soon as unit enrolment is opened, and 

that those students select computer laboratOry' times as close to the lecture time as possible. This 

may have occurred in this research thereby introducing selection bias. 

Because of this possibility of bias, a quasi-experimental design framework was used in the 

study. Such designs are often used in Education and in such a design, it has been suggested that: 

"without some evidence of the equivalence of the groups in intelligence, maturity, readiness and 

other factors at the beginning of the experimental period, conclusions should be cautiously 

interpreted" Best and Kahn (1998, p.176). 

9.4.3 Observer Bias 
"When researchers are sole observers, they unconsciously tend to see what they expect to see 

and to overlook those incidents that do not fit their theory. Their own values, feelings, and 

attitudes, based upon past experience, may distort their observations" (Best and Kahn, 1998, 

p.295). In this study, the researcher designed and built CORT, and also acted as the participant

observer. Whilst every care was taken both in the design and implementation of the research 

project through the use of multiple data sources and exploratory processes, the subjectivity that 

comes from human activity and personal belief systems catU1ot be totally removed from a 

research process like this. 

Chapter 9: Summary and Conclusions Page 194 



9.4.4 Sensitivity of the End-Tests 
Programming is a complex and multi-faceted discipline and learning outcomes can be measured 

in many ways. The outcomes of learning programming will be manifest in a variety of ways 

including programming knowledge, skills and ~ttitudes. In_ this study, achievement was 

measured using an end-of-semester pen and paper examination of 2 hours and 30 minutes 

duration. Whilst it provides a useful means for comparing achievement across a class group, it 

could not be considered the best method of determining the actual scope and extent of the 

learning that has taken place. The lack of sensitivity in the instrwnent to all aspects of 

programming learning may have limited its ability to accurately reveal learning outcomes, 

especially some of those influenced by the CORT system. A more sensitive instrument may 

have yielded different results for some students. 

9.5 Recommendations for Future Research 
The research conducted in this study confirmed the possibility of utilising a technology 

supported partMcomplete solution method, in the form of the CORT system, with students in 

introductory programming classes. The study investigated only one major aspect of learning 

outcome, i.e. student achievement in tests. Other outcomes that seem worthy of investigation 

are: 

• The impact of the use of the CORT system on the time needed to learn; 

• The type of partMcomplete CORT problem that is best able to support learning; and 

• The impact of the development of students' mental models prior to the use of the CORT 

system. 

Other possible future research might include: 

• The use of the CORT system with remote learners; 

• The impact of the CORT system on motivation and the affective domains of students. 

9.5.1 Impact of the CORT sysjem on the Time Needed to Learn 
The study revealed that the CORT students achieved at the same level as the non-CORT 

students. However the CORT students took significantly less time on their tasks and problems. 

It was suggested that if the CORT students had spent the same amount of time solving part

corriplete programming problems with CORT as the non-CORT students spent solving 

Chapter 9: Summary and Conclusions Page 195 



progranuning problems in a nconventional" ma1U1er, then the CORT students may have 

achieved at a higher level. A possible future research question is: 

Is there a significant difference in programming achievement between CORT and 

non-CORT students who have spent equal amounts of time learning introductory 

programming? 

9.5.2 CORT Problem Type and the Support of Learning 
Three CORT methods were used in the study and the amount of support and scaffolding 

afforded by the methods varied. It would be useful to determine which CORT method is 

preferable for different problem types. Also, the effect of adjusting the following within 

methods would be of interest: 

• The number of lines removed from a programming solution; 

• The number of distracter lines used in method 2 problems; and 

• The number of lines that need to be keyed-in for method 3 type problems. 

The re.search could be undertaken by using 2 CORT student groups and varying the meth~s 

and adjusting the missing lines. The groups would undertake the same set of programming 

problems in an experiment and possible experiments are shown in Table 9.2. 

Table 9.2: Future Experiments into the Impact of CORT Methods 

CORT Group A CORT Group B 
Exnerlment 1 Uses Method 1 Uses Method 2 
Exnerlment 2 Uses Method 1 Uses Method 3 
EXlleriment 3 Uses Method 2 Uses Method 3 
Experiment 4 Uses Method 1 Uses Method 1. More lines are 

removed from the solutions compared 
to Grouo A 

Experiment 5 Uses Method 2 Uses Method 2 The same lines of 
code are removed from the soluUons 
compared to Group A, however more 
distracter lines are Included 

Experiment 6 Uses Method 3 Uses Method 3, however more lines 
are removed from the soluUons 
comoared to Grouo A 

For example, a possible future research question for Experiment l might be: 

Is there a significant difference in programming achievement between a CORT 

group using Method I type part-complete problems and a CORT group using 

Method 2 type part-complete problems in an introductory programming course? 

Chapter 9: Summary and Conclusions Page 196 



9.5.3 Development of Mental Models of Program Execution 
Results from the study indicated that younger students, and students that were moderately 

computer literate or without any previous programming experience, did not perform as well 

using the CORT system as the equivalent non-CORT students. It was suggested that these 

students might not have well developed mental models of program execution, This proposition 

could be formally tested by having two CORT groups, one of which was initially exposed to 

learning resources and tasks that would be aimed at helping them develop their mental models 

of program execution. Then, both groups could undertake the same set of part-complete 

progranuning tasks using CORT and finally learning outcomes could be measured to determine 

if there were any differences. A possible future research question is: 

ls there a significant difference in programming achievement between: a CORT 

group that has initially been given tasks to encourage the development of the 

students' mental models of program execution: and a second CORT control group, 

in introductory programming? 

9.5.4 Use of the CORT System with Remote Learners 
Results from the research indicated that the students who used the CORT system required less 

help than non-CORT students. This suggests that remote students, who have less access to tutor 

support and feedback than on-campus students may benefit from the CORT system. This could 

be tested by dividing a class of remote learners who were learning programming into two 

groups, one of which used the CORT system whilst the other used a conventional teaching and 

learning method. Data concerning the amount of help that the students requested from their 

tutors could then be collected and analysed. A possible research question is: 

ls there a significant difference in the amount of help required between CORT and 

non-CORT students who are learning introductory programming and are remote 

learners? 

9.5.5 Impact of the CORT System on Motivation and Affective Domains 
Two of the main aims of the PCSM within CORT are to reduce the overall cognitive load that 

students experience when learning to program and to encourage higher order thinking. Reducing 

the cognitive load may have the effect of reducing the repeated and unresolved failures that 

impede progress and of lowering the motivation of students to continue with programming 

(Linn and Dalbey, 1985). The encouragement of higher order thinking can focus attention, 

minimise anxiety, and maintain motivation (Jones et al, 1987). Further research into the impact 

Chapter 9: Summary and Conclusions Page 197 



that the use of the CORT system may have on student motivation and on the affective domain of 

students would appear to be of interest. A possible research question is: 

How does the w.-e of the CORT system impact the motivation and the affective 

domain of students who are learning to program? 

9.6 Conclusions 
This study set out to explore the efficacy and utility of the use of a technology supported part

complete solution method (TSPCSM) for the learning of introductory computer programming. 

A teaching and learning framework that encompassed the PCSM was developed and the CORT 

system was built to provide the technological support. The aim was to keep the cognitive load 

that students experienced during their learning of programming lower than that experienced in 

conventional instruction. This was done hy keeping the extrinsic cognitive load low. However 

the set of part-complete programming tasks that students undertook was designed so that 

students were put under gennane cognitive load thereby encouraging them to apply higher order 

thinking. 

Results from the study indicated that the CORT system had a small learning curve and imposed 

a low cognitive load on students. The system provided high levels of cognitive support across 

all 3 CORT methods; strong scaffolding for learning: and students engaged well with the 

system, generally using a thoughtful and considered strategy. Although no differences in 

learning outcomes were found between the CORT group and the non-CORT control t,'Toup, two 

key findings were that the students who used the CORT system required significantly less time 

and less help than the control group. This suggests that: differences in learning outcomes 

between CORT and non-CORT students might occur if equal amounts of time were spent 

attempting programming problems; and students using the CORT system may be able to work 

more autonomously than non-CORT students. Both of these suggestions could be the subject of 

further research. Also, the students who benefited most from the system appeared to have well 

developed mental models of program execution and it would seem that any instructional design 

should try and ensure the construction of such mental models before a PCSM is used. 

The study found the CORT system to be supportive of learning and, while it did not 

demonstrate achievement gains, it did demonstrate efficiency of learning. More research is 

clearly needed to further explore the best ways to implement part-complete solutions so that 

learning advantages can be gained. 

Finally, the aim of this study was to make a change to the method of teaching and learning of 

programming and to test that change in order to determine jf it has potential for future practice. 

Chapter 9: Summary and Conclusions Page 196 



To this end, it has hopefully been successful and contributed to knowledge in this important 

discipline. 

Chapter 9: Summary and Conclusions Page 199 



References 

Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University 

Press. 

Anderson, J. R., Corbett, A. T., Koedinger, K. & Pelletier, R. (1995). Cognitive tutors: Lessons 

learned. The Journal of Learning Sciences, 4, 167-207. 

Anderson, J. R., Farrell, R. & Sauers, R. (1984). Leaming to program in LISP. Cognitive 

Science, 8, 87-129. 

Anderson, J. R., Fincham, J.M. & Douglass, S. (1997). The role of examples and rules in the 

acquisition of a cognitive skill. Journal of Experimental Psychology: Learning, Memory 

and Cognition, 23, 932-945. 

Anderson, J, R., Simon, H. A & Reder, L. M. (2000). Applications and misapplications of 

cognitive psychology to mathematics education. Texas Educational Review, Summer 

2000. 

Athey, S. & Quick, D. (1997). Using the experiential learning model with graduate students in 

a first programming class. Paper presented at the Information Resources Management 

Association international conference 1997. 

Atkinson, R., Renkl, A. & Merrill, M. (2003). Transitioning from studying examples to solving 

problems: Effects of self-explanation prompts and fading worked-out steps. Journal of 

Educational Psychology, 95(4), 774-783. 

Atkinson, R. L. & Shiffrin, R. M. (1968). Hwnan memory: A proposed system and its control 

processes. In J. T. Spence (Ed.), The psychology of learning and motivation: Advances in 

research and theory (Vol. 2). N.Y.: Academic. 

A viram, 0. (1993). Appearance and reality in a stressful educational setting: Practices inhibiting 

school effectiveness in an Israeli boarding school. Qualitative Studies in Education, 6(1), 

33-48. 

Baddeley, A. (1992). Working memory. Science, 255, 556-559. 

References Page 200 



Baecker, R., DiGiano, C. & Marcus, A. (1997). Software visualization for debugging. 

Association for Computing Machinery: Communications of tire ACM, 40(4), 44-54. 

Barg, M., Fekete, A, Greening, T., Hollands, 0., Kay, J., Kingston, J. H. & Crawford, K. 

(2000). Problem-based learning for foundation computer science courses. Computer 

Science Education, 10(2), 109-128. 

Barr, A., Beard, M. & Atkinson, R. C. ( 1976). The computer as a tutorial laboratory: The 

Stanford BIP project. international Journal of Man-Machine Studies, 8, 567-596. 

Bartlett, F. C. (1932). Remembering. Cambridge: Cambridge University Press. 

Bayman, P. & Mayer, R. E. (1983). A diagnosis of beginning programmers' misconceptions of 

basic programming statements. Communications of the ACM, 26(9), 677-679. 

Bayman, P. & Mayer, R. E. (1988). Using conceptual models to teach basic computer 

programming. Journal of Educational Psychology, 80(3), 291-298. 

Ben-Ari, M. (2001). Constructivism in computer science education. Journal of Computers in 

Mathematics & Science Teaching, 20(1), 45-73, 

Bergin, J., Stehlik, M., Roberts, J. & Pattis, R. (1996). Karel++: A gentle introduction to the art 

of object-oriented programming.: New York, Wiley, 

Best, J. W. & Kahn, J. V. (1998). Research in education (8th ed.). Allyn and Bacon. 

Bloom, B. S. (1956). Taxonomy of educational objectives: Handbook 1. The cognitive domain. 

N.Y.: David McKay. 

Bogdan, R. & Bilden, S. (1992). Qualitative research for education: An introduction to theory 

and methods (3rd ed.). Boston: Allyn and Bacon. 

Borg, W.R. & Gall, M. D. (1989). Educational research: An introduction (5th ed.). N. Y.: 

Longman. 

Borg, W.R., Gall, J.P. & Gall, M. D. (1993). Applying educational research: A practical 

guide ( 3 ed.). N. Y.: Longman. 

Bower, G. H. (1975). Cognitive psychology: An introduction. In W. K. Estes (Ed.), Handbook 

of learning and cognitive processes: Introduction to concepts and issues (Vol. 1). N.Y: 

Erlbaum. 

References Page 201 



Bransford, J. D. & Franks, J. J. (1971). The abstraction oflinguistic ideas. Cognitive 

Psychology, 2, 331-350. 

Bruce, C. & McMahon, C. (2002). Contemporary developments in teaching and learning 

introductory programming: Towards a research proposal. QUT. Retrieved 17 Feb 2005, 

from http://sky.fit.gut.edu.au/-bruce/pub/papersff &L Report PB edited 3 Dec.pdf. 

Bruce, C., Buckingham, L., Hynd, J., McMahon, C., Roggenkamp, M. & Stoodley, I. (2004). 

Ways of experiencing the act of learning to program: A phenomenographic study of 

introductory programming students at university. Journal of lnfonnation Technology 

Education, 3, 143-160. 

Brusilovsky, P., Calabrese, E., Hvorecky, J., Kouchnirenko, A. & Miller, P. (1997). Mini

languages: A way to learn progranuning principles. Education and Information 

Teclmologies(2), 65-83. 

Brusilovsky, P., Kouchnirenko, A., Miller, P. & Tomek, I. (1994). Teaching programming to 

novices: A review of approaches and tools. Paper presented at the Ed-Media 94, 

Vancouver, British Columbia, Canada. 

Brusilovsky, P. & Spring, M. (2004). Adaptive, engaging, and explanatory 11isualization in a C 

programming course. Paper presented at the Ed-Media 2004, Lugano, Switzerland. 

Burns, R. B. (1990). lntroduction to research methods in education. Melbourne: Longman 

Cheshire. 

Bums, R. B. (1994). lntroduction to research methods (2nd ed.). Longman. 

Carbone, A., Hurst, J., Mitchell, I. & Gunstone, D. (2000). Principles for designing 

programming exercises to minimise poor learning behaviours in students. Paper 

presented at the Fourth Australasian Computing Education Conference, Melbourne, 

Australia. 

Carey, D. (1996). Teaching algorithms and programming concepts using an object-oriented 

language, Paper presented at the Australian Conference in Computer Education 96, 

Brisbane, Australia. 

Carroll, W. (1994). Using worked examples as an instructional support in the algebra classroom. 

Journal of Educational Computing Psychology, 86, 360-367. 

References Page 202 



Chalk, P. (2002). Community of practice: learning the craft of programming. Paper presented at 

the LTSN-ICS One day conference on the teaching of programming. 

Chandler, P. & Sweller, J. (1991). Cognitive load theory and the fonnat of instruction. 

Cognition and Instruction, 8, 293-332. 

Chandler, P. & Sweller, J. (1996). Cognitive load while learning to use a computer program. 

Applied Cognitive Psychology, JO, 151-170. 

Chansilp, K. & Oliver, R. (2002). Using multimedia to develop students' programming 

concepts. Paper presented at the EDU-COM 2002, Khon-Kaen, Thailand. 

Chansilp, K. & Oliver, R. (2004). Students' responses to the use of a multimedia tool for 

learning computer programming. Paper presented at the Ed-Media 2004, Lugano, 

Switzerland. 

Charles, C. M. (1988). Introduction to educational research. N.Y.: Longman. 

Chase, W. G. & Simon, H. A. (1973). The mind's eye in chess. In W. G. Chase (Ed.), Visual 

Information Processing. New York: Academic. 

Chi, M. T. H., Glaser, R. & Rees, E. (1982). Expertise in problem solving. In R. Sternberg 

(Ed.), Advances in the psychology of human intelligence. Hillsdale, N.J.: Lawrence 

Erlbaum. 

Clancy, M. J. & Linn, M. C. (1999). Patterns and pedagogy. SIGCSE Bulletin, 31(1), 33-42. 

Clear, T. (1997). The nature of cognition and action. ACM SIGCSE Bulletin, 29( 4), 25-29. 

Cohen, L. & Manion, L. (1994). Research methods in education ( 4th ed.). N. Y.: Routhledge. 

Cook, C., Bregar, W. & Foote, D. (1984). A preliminary investigation of the use of the cloze 

procedure as a measure of program understanding. Information Processing & 

Management, 20(1-2), 199-208. 

Cordeiro, E. B. & Carspecken, P. F. (1993). How a minority of the minority succeed: a case 

study of twenty Hispanic achievers. Qualitative Studies in Education, 6(4), 277-290. 

Craik, K. (1943). The nature of explanation. Cambridge: Cambridge University Press. 

Crews, T. & Murphy, C. (2004). Programming right from the start with Visual BASIC .NET. 

Pearson. 

References Page 203 



Crews, T., Butterfield, J. & Blankenship, R. (2000a). FLINT-A general purpose graphical 

CASE tool. Paper presented at the ooictl-Business 2000 international conference, 

Shreveport, USA. 

Crews, T., Butterfield, J. & Blankenship, R. (2000b). The utility of flowcharts for novice 

programmers. Paperpresented at the ooictl-Business 2000 international conference, 

Shreveport, USA. 

Crews, T., Butterfield. J. & Blankenship, R. (2002). Right from the start: Leveling (then raising) 

the playing.field. Paper presented at the ISECON 2002, San Antonio. 

Crews, T. & Ziegler, U. (1998). The flowchart interpreter for introductory programming 

courses. Paper presented at the 1998 Frontiers in Education Conference, Tempe, Arizona. 

Crotty, M. (1998). The foundations of social research: Meaning and perspective in the research 

process. St. Leonards, NSW: Allen & Unwin. 

De Kleer, J. & Brown, J. S. (1981). Mental models of physical mechanisms and their 

acquisition. In J. R. Anderson (Ed.), Cognitive skill and their acquisition. Hillsdale, N. J.: 

Erlbaum. 

De Pauw, W. & Sevitsky, G. (1999). Visualising reference patterns for solving memory leaks in 

Java. Paper presented at the ECOOP 99, Lisbon, Portugal. 

De Raadt, M., Watson, R. & Toleman, M. (2002). Language trends in introductory, 

programming courses. Paper presented at the Informing Science 2002, University 

College Cork. Ireland. 

Deek, F. & McHugh, J. (1998). A review and analysis of tools for learning programming. Paper 

presented at the Ed-Media 98, Freiburg, Germany. 

Deek, F. P., McHugh, J. A. & Hiltz, S. R. (2000). Methodology and technology for learning 

programming. The Journal of Systems & Infonnation Technology, 4(1 ), 25-37. 

Dehaney, J. & Reeves, T. (1999). Instructional and social dimensions ofclass web pages. 

Journal of Computing in Higher Education, I 0(2), 19-41. 

Di Vesta, F. J. (1987). The cognitive movement and education. In J. A. Glover & R. Ronnings 

(Eds.), Historical foundations of educational psychology (pp. 203-233). N.Y.: Plenum 

Press. 

References Page 204 



Dreyfus, H. L. & Dreyfus, S. E. (1986). Mind over machine. N.Y.: Free Press. 

du Boulay, B. (1986). Some difficulties in learning to program. Journal of Educational 

Computing Research, 2(1), 57-73. 

du Boulay, B., O'Shea, T. & Monk. J. (1981). The black box inside the white box: Presenting 

computing concepts to novices. International Journal of Man-Machine Studies, 14, 237-

249. 

Duffy, T. M. & Cunningham, D. J. (1996). Constructivism: Implications for the design and 

delivery of instruction. In D. H. Jonassen (Ed.), Handbook of research on educational 

communications and technology (pp. 170-198). N.Y.: Macmillan. 

Edward, N. (1997). Development of a cost effective computer assisted learning (CAL) package 

to facilitate conceptual understanding. Paper presented at the CAL97, University of 

Exeter, UK. 

Ehrlich, K. & Soloway, E. (1984). An empirical investigation of the tacit plan knowledge in 

programming. In J. Thomas & M. L. Schneider (Eds.), Human Factors in Computer 

Systems (pp. 113-133). Norwood, N.J.: Ablex. 

Eisner, E.W. (1979). Recent developments in educational research affecting art education. Art 

Education, 32, 12-15. 

Eisner, E.W. (1991). The enlightened eye: Qualitative inquiry and the enhancement of 

educational practice. H.Y.: Macmillan. 

Fincher, S. (1999). What are we doing when we teach programming? Paper presented at the 

29th Annual Frontiers in Education Conference: Designing the future of science and 

engineering education, San Juan, Puerto Rico. 

Fisher, J.C. (1993). A framework for describing developmental change among older adults. 

Adult Education Quarterly, 43(2), 76-89. 

French, J. N. & Rhoder, C. (1992). Teaching thinking skills: Theory and practice. N.Y.: Garland 

Publishing. 

Fowler, W. A. L. & Fowler, R.H. (1993). A hypertext approach to Computer Science education 

unifying programming principles. Journal of Multimedia and Hypennedia, 2(4), 433-441. 

References Page 205 



Gamer, S. K. (2002). COLORS.for programming: A system to support the learning of 

programming. Paper presented at the Informing Science 2002, University College Cork, 

Ireland. 

Gerjets, P ., Scheiter, K. & Catrambone, R. (2004). Designing instructional examples to reduce 

intrinsic cognitive load: Molar versus modular presentation of solution procedures. 

Instructional Science, 32, 33-58. 

Gibbs, D. C. (2002). An interactive introductory programming environment using a scripting 

language. Paper presented at the Ed-Media 2002, Denver, Collarado. 

Gilbert, R. F. & Forouzan, B. A (1996). Comparison of student success in pascal and C 

language curriculums. Special Interest Group Computer Science Education, 252-255. 

Glaser, R. (1984). Education and thinking: The role of knowledge. American Psychologist(39), 

93-104. 

Hagan, D. & Lowder, J. (1996). Use of the World Wide Web in introductory computer 

programming. Paper presented at the ASCILITE 96, Adelaide, South Australia. 

Hall, W. E. & Zweben, S. H. (1986). The cloze procedure and software comprehensibility 

measurement. I£££ Transactions on Software Engineering, May 1986, 608-623. 

Harvey, B. (1992). Apprentice computer programmers. Australian Educational Computing, 

5(1), 11-13. 

Hawryszkiewycz, I. T. (2001). Systems analysis and design: Prentice Hall. 

Hyperdictionary. (2005). Retrieved 4 Feb 2005, from 

http://www.hyperdictionary.com/search.aspx?define=computer+programming. 

Instructional Strategies Online (2001 ). Cloze procedure. Retrieved 11 Jan 2005, from 

http://www.saskschools.ca/curr content/techclass/instr/strats/cloze/index.htm1. 

Jenkins, T. (2002). On the cruelty of really teaching programming. Paper presented at the 2nd 

LTSN-ICS one day conference on the teaching of programming, University of 

Wolverhampton, UK. 

Johnson, L. F. (1995). C in the first course considered hannful. Association for Computing 

Machinery. Communications of the ACM, 38(5), 99-102. 

References Page 206 



Johnson, W. L. & Soloway, E. (1985). PROUST: An automatic debugger for pascal programs. 

Byte, 10(4), 179-190. 

Jonassen, D. H. (1991 ). Objectivism versus constructivism: Do we need a new philosophical 

paradigm? Educational Technology Research and Development, 39(3), 5-14. 

Jonassen, D. H. (1994). Thinking technology: Towards a constructivist design model. 

Educational Technology, April 1994, 34-37. 

Jonassen, D. H. (1995). Constructivism: Implications for the design and delivery of instroction.: 

N.Y.: Scholastic. 

Jonassen, D. H. & Reeves, T. C. (1996). Learning with technology: Using computers as 

cognitive tools. In D. H. Jonassen (Ed.), Handbook of research on educational 

communications and technology (pp. 693-719). N.Y.: Macmillan. 

Jones, B. F., Palinscar, A. S., Ogle, D.S. & Carr, E.G. (1987). Strategic teaching and learning: 

Cognitive instruction in the content areas. Alexandria, VA: Association for Supervision 

and Curriculum Development. 

Kaijiri, K. (1998). Program diagnosis system using the World Wide Web. Retrieved 23 Oct 

2003, from http://softeng-www.cs.shinshu-u.ac. jp/-kaijiri/M yHome/Resources/jckbse98-

~-
Kalyuga, S., Chandler, P. & Sweller, J, (1998). Levels of expertise and instructional design. 

Human Factors, 40, 1-17. 

Kennedy, R. (1996). Why bother learning the language.just learn to program algorithmically. 

Paper presented at the Australian Computers in Education Conference 96, Canberra, 

Australia. 

Kerlinger, F. N. (1969). Foundations of behavioral research. N.Y.: Holt, Rinehart & Winston. 

King, J., Feltham, J. & Nucifora, D. (1994). Novice programming in high schools: Teacher 

perceptions and new directions. Australian Educational Computing, (Sep 1994), 17-23. 

Klare, G. R. (1974). Assessing readability. Reading Research Quarterly(lO), 63-102. 

Larkin, J. H. & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. 

Cognitive Science, 11, 65-99. 

References Page 207 



Laurillard, D. (1993). Rethinl..ing university teaching: Aframeworkfor the effective use of 

educational technology. London Routledge. 

Lave, J. (2004). Situated Learning. Retrieved 9 Sep 2004, from 

http://tip.psychology.org/lave.html, 

Lave, J. & Wenger, E. (1990). Situated learning: Legitimate peripheral participation. 

Cambridge, UK: Cambridge University Press. 

Levy, R., Ben-Ari, M. & Uronen, P. (2000). An extended experiment with Jeliot 2000. Paper 

presented at the Program Visualization Workshop, Porvoo, Finland. 

Levy, R., Ben-Ari, M. & Uronen, P. (2003). The Jeliot 2000 program animation system. 

Computers and Education, 40(1 ), 1-15. 

Liebennan, H. (1986). An example based environment for beginning programmers. 

Instructional Science, 14(3), 277-292. 

Lincoln, Y. S. & Guba, E.G. (1985). Naturalistic inquiry. Beverly Hills, CA: Sage 

Publications. 

Linn, M. C. (1992). How can hypermedia tools help teach programming? Learning and 

Instruction, 2, 119-139. 

Linn, M. & Dalbey, J. (1985). Cognitive consequences of programming instruction. Educational 

Psychologist, 20(4), 191-206. 

Lisack, S. K. (1998). Helping students succeed in a first programming course: A way to correct 

background deficiencies. Paper presented at the International Association for Computer 

Infonnation Systems Conference, Cancun, Mexico, 

Lowenthal, F. & Marcourt, C. (1998). Cognitive strategies observed during problem solving 

with LOGO. Journal of Computer Assisted Learning, 14(1 ), 130-139. 

Marchionini, G. (1985). Teaching programming: A developmental approach. The Computing 

Teacher, May, 12-15. 

Marcus, A. (1992). Graphic design for electronic documents and user interfaces. N.Y.: ACM 

Press. 

References Page 208 



Marcus, N., Cooper, M. & Sweller, J. (1996). Understand instructions. Journal of Educational 

Psychology, 88, 49-63. 

Martinez, J. M. & Benko de Rotaeche, A. (1990). Pedagogical, psychological and sociological 

aspects concerning the introduction of computer programming in a public secondary 

school in Venezuela. Paper presented at the Fifth World Conference on Computers in 

Education, Sydney, Australia. 

Mayer, R. E. (1975). Different problem-solving competencies established in learning computer 

programming with and without meaningful modes. Journal of Educational Psychology, 

67(6), 725-734. 

Mayer, R. E. (1981). The psychology of how novices learn computer programming. Computing 

Surveys, 13, 121-141. 

Mayer, R. E. (1988). Introduction to research on teaching and learning computer programming. 

In R. E. Mayer (Ed.), Teaching and learning computer programming: Multiple research 

perspective (pp. 1-12). NJ.: Erlbaum. 

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y., Laxer, C., 

Thomas, L., Utting, I. & Wilusz, T. (2001). A m11/ti-national, multiinstitutional study of 

assessment of programming skills of first-year CS students. Paper presented at the 

ITiCSE 2001, Canterbury, UK. 

McLaughlin, C. (1997). Investigating conditions/or higher order thinking in telematics 

environments. Unpublished PhD Thesis, Edith Cowan University, Perth. 

McLaughlin, C. & Oliver, R. (1998). Scaffolding higher order thinking in a telelearning 

environment. Paper presented at the Ed-Media 98, Virginia. 

. 

Mercurio, J. A. (1979). Conununity involvement in cooperative decision making: Some lessons 

learned. Educational Evaluation and Policy Analysis, 6, 37-46. 

Merriam, S. B. (1998). Qualitative research and case study applications in education. San 

Francisco: Jossey-Bass. 

Merrill, M. D. (1992). Constructivism and instructional design. In T. Duffy & D. Jonassen 

(Eds.), Constructivism and the technology of instruction: A conversation. Hillsdale, N.J.: 

Erlbaum. 

References Page 209 



Miara, R. J., Musselman, J., Navarro, J. & Slmeidennan, B. (1983). Program indentation and 

comprehensibility. Communications of the ACM, 26(10), 861-867. 

Milbrandt, G. (1995). Using problem solving to teach a programming language. Learning and 

Leading with Technology, 23(2), 27-31. 

Miles, M. B. & Huberman, A. M. (1994). Qualitative data analysts: An expanded sourcebook 

(2nd ed.). Thousand Oakes, CA.: SAGE Publications, Inc. 

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our 

capacity to process infonnation. Psychological Review(63), 81-97. 

Milne, I. & Rowe, G. (2002). Difficulties in learning and teaching programming. Education and 

lnfonnation Technologies, 7(1), 55-66. 

Milne, I. & Rowe, G. (2004). OGRE: Three-dimensional program visualization for novice 

programmers. Education and Information Technologies, 9(3), 219-237. 

fyiinsky, M. (1975). A framework for representing knowledge. In P.H. Winston (Ed.), The 

psychology of computer vision. N.Y.: McGraw-Hill. 

Morgan, G. & Griego, 0. (1998). Easy use and interpretation of SP SS for Windows. 

Morse, J.M. (1998). Designing funded qualitative research. In N. K. Denzin & Y. S. Lincoln 

(Eds.), Strategies of qualitative inquiry. Thousand Oaks, California: Sage Publications. 

Mott, V. W. (1994). The role of intuition in the reflective practice of adult education. Paper 

presented at the Thirty-fifth annual adult education research conference, University of 

Tennessee, Knoxville. 

National Science Foundation (1993). User friendly handbook for project evaluation. Retrieved 

21 May 2003, from http://www.ehr.nsf.gov/ehr/red/eval/handbook/handbook.htm. 

National Science Foundation (1997). User friendly handbook for mixed method evaluations. 

Retrieved 21 May 2003, from http://www.ehr.nsf.gov/ehr/rec/pubs/nsf97-

153/pdf/mm eval.pdf. 

Neisser, U. (1976). Cognition and reality. San Francisco, CA: Freeman. 

Nickerson, R. S., Perkins, D. N. & Smith. E. E. (1985). The teaching of thinking skills. N. J.: 

Lawrence Erlbaum. 

References Page 210 



Nikolova, I. & Collis, B. (1998). Flexible learning and design of instruction. British Journal of 

Educational Technology, 29, 59-72. 

Norcio, A. F. (1980a). Human memory processes for comprehending computer programs. Paper 

presented at the Cybernetics and Society, Cambridge, Massachusetts. 

Norcio, A. F. (l 980b). Comprehension aids for computer programs. Paper presented at the 

American Psychological Association arumal meeting, Montreal. 

Norcia, A. F. (1981). Chunking and understanding computer programs. Paper presented at the 

Human-Machine Systems Symposium, Boston, USA. 

Norcio, A. F. (1982). Indentation, documentation and programmer comprehension. Paper 

presented at the Human Factors in Computer Systems, Gaithersburg, Maryland. 

Oliver, R. (1999). Exploring strategies for on-line teaching and learning. Distance Education, 

20(2), 240-254. 

Oliver, R. & Herrington, J. (2001). Teaching and learning online.: Centre for Research in 

Information Technology and Communications. 

Ourusoff, N. (2003). Using Jackson Stroctured Programming (JSP) and Jackson Workbench to 

teach program design. Paper presented at the Infonning Science 2003, Pori, Finland. 

Paas, F. (I 992). Training strategies for attaining transfer of problem-solving skill in statistics: A 

cognitive load approach. Journal of Educational Psychology, 84, 429-434. 

Paas, F. & van Merrienboer, J. J. G. (1994). Variability of worked examples and transfer of 

geometrical problem-solving skills: A cognitive-load approach. Journal of Educational 

Psychology, 86, 122-133. 

Paivio, A. (1974). Language and knowledge of the world. Educational Researcher, 3(9), 5-12. 

Pattis, R. E. (1995). A gentle introduction to the art of programming (2nd ed.): New Yer!-, 

Wiley. 

Patton, M. Q. (1990). Qualitative evaluation and research methods (2nd ed.). Newbury Park, 

CA.: Sage Publications. 

Pea, R. D. (1986). Language independent conceptual bugs in novice programming. Journal of 

Educational Computing Research(2), 25-36. 

References Page 211 



Perkins, D. N., Hancock, C., Hobbs, R., Martin, F. & Simmons, R. (1986). Conditions of 

Leaming in Novice Programmers. Journal of Educational Computing Research, 2(1 ), 37-

56. 

Perkins, D. N., Schwartz, S. & Simmons, R. (1988). Instructional strategies for the problems of 

novice programmers. In R. E. Mayer (Ed.), Teaching and learning computer 

programming: Multiple research perspective (pp. 153-178): Hillsdale, NJ.: Erlbaum. 

Polya, G. (1957). How to solve it: A new aspect of mathematical method (2nd ed.). N.Y.: 

Doubleday. 

Quilici, J. L. & Mao.yer, R. E. (1996). Role of examples in how students learn to categorize 

statistics word problems. Journal of Educational Psychology, 88, 144-161. 

Rajan, T. (1992). Principles for the design of dynamic tracing environments for novice 

programmers. In M. Eisenstadt & M. Keane & T. Rajan (Eds,), Novice programming 

environments: Explorations in human-computer interaction and artificial Intelligence. 

London: Lawrence Erlbaum. 

Ramadhan, H. A. (2000j. Programming by discovery. Journal of Computer Assisted 

Learning(16), 83-93. 

Redish, E. F. (1994). The implications of cognitive studies for teaching physics. The American 

Journal of Physics, 62(6), 796-803. 

Reichardt, C. S. & Cook, T. D. (1979). Beyond qualitative versus quantitative methods. In T. D. 

Cook & C. S. Reichardt (Eds.), Qualitative and quantitative methods in evaluation 

research. Beverly Hills, CA: Sage. 

Renkl, A., Atkinson, R., Maier, U. & Staley, R. (2002). From example study to problem 

solving: Smooth transitions help learning. Journal of Experimental Education, 70, 293-

315. 

Roehler, L. R. & Cantlon, D. J. (1996). Scaffolding: A poweiful tool in social constmctivist 

classrooms. Retrieved 15 Sep 2004, from 

http://www.educ.msu.edu/units/literacy/paperlr2.htm. 

Ring, G. (1996). lnte,face design considerations/or educational multimedia. Paper presented at 

the Third Interactive Multimedia Symposium, Perth, Western Australia. 

References Page 212 



Ring, G. & McMahon, M. (1997). Web instruction: Searching/or a theoretical basis. Paper 

presented at the International Conference in Computers in Education 97, Kuc bing, 

Malaysia. 

Robertson, L. (2003). Simple Program Design. Thomson. 

Rodger, S. (2002). lntroducingcomputer science through animation and virtual worlds. Paper 

presented at the 33rd SIGCSE Technical Symposium on Computer Science Education. 

Rogalski, J. & Samurcay, R. (1993). Task analysis and cognitive model as a framework to 

analyse environments for learning programming. In E. Lemut, B. duBoulay & G. Dettori 

(Eds.), Cognitive models and intelligent environments for learning programming. Berlin: 

Springer-Verlag. 

Rogers, C.R. (2004). Experiential Learning. Retrieved 22 Oct 2004, from 

http://tip,psychology.org/rogers.html. 

Rogers, C.R. & Freiberg, H.J. (1994). Freedom to learn. Prentice Hall. 

Roussev, B. (2003). Teaching introduction to programming as part of the is component of the 

business. Paper presented at the lnfonning Science 2003, Pori, Finland. 

Rowe, H. (1993). Leaming with personal computers. Victoria, Australia: Australian Council for 

Educational Research. 

Rowe, G. & Thorburn, G. (1999). Evaluation of VINCE - a too/for teaching introductory 

programming. Paper presented at the 7th Annual Conference on the Teaching of 

Computing, University of Ulster, Northern Ireland. 

Rowe, G. & Thorburn, G. (2000). VINCE - an on-line tool for teaching introductory 

programming. British Journal of Education Technology, 31(4), 359-370. 

Schank, R. C. & Abelson, R. P. (1977). Scripts, plans, goals and understanding. Hillsdale, NJ.: 

Erlbaum. 

Schneider, D. (2000). An introduction to programming in Visual BASIC 6 (4th ed.). Prentice 

Hall. 

Schneider, D. (2003). An introduction to programming in Visual BASIC .NET(Sth ed.). Prentice 

Hall. 

References Page 213 



Schneider, W. & Shiffrin, R. (1977). Controlled and automatic human infonnation processing: 

Detection, search and attention. Psychological Review, 84, 1-66. 

Schneiderman, B. (1998). Designing the user interface (3rd ed.). Addison Wesley. 

Schoenfeld, A. H. (1985). Mathematical problem solving. San Diego, CA: Academic Press. 

Scholtz, J. & Wiedenbeck, S. (1992). The role of planning in learning a new progranuning 

language. International Journal of Man-Machine Studies, 3 7, 191-214. 

Shackelford, R. (1998). Introduction to computing and algorithms. Addison-Wesley. 

Shih, Y. F. & Alessi, S. M. (1994). Mental models and transfer of learning in computer 

programming. Journal of Research on Computing in Education, 26(2), 154-175. 

Simon, H. & Gilmartin, K. (1973). A simulation of memory for chess positions. Cognitive 

Psychology, 5, 29-46. 

Smith, P.A. & Webb, G. l (1998). Oven,iew q.f a low-level program ,•isualisation too/for 

novice C programmers. Paper presented at the International Conference on Computers in 

Education 98, Beijing, China. 

Smith, P.A. & Webb, G. I. (1999). Evaluation of low-level program visualisation.for teaching 

nm1ice C programmers. Paper presented at the International Conference on Computers in 

Education 99, Tokyo, Japan. 

Smith, P.A. & Webb, G. l (2000). The efficacy of a low-level program visualisation tool for 

teaching programming concepts to novice C programmers. Journal of Educational 

Computing Research, 2(2), 187-215. 

Soloman, H. (2004). Cognitive load theory. Retrieved 4 Feb 2005, from 

http://tip.psychology.org/sweller.html. 

Soloway, E. ( 1985). From problems to programs via plans: The content and structure of 

knowledge for introductory LISP programming. Journal of Educational Computing 

Research, J, 157-172. 

Soloway, E. (1986). Leaming to program= Learning to construct mechanisms and explanations. 

Communications of the ACM, 29(9), 850-858. 

References Page 214 



Soloway, E., Spohrer, J. & Littman, D. (1988). E wrnm pluribus: Generating alternative designs. 

In R. E. Mayer (Ed.), Teaching and learning computer programming: Multiple research 

perspective (pp. 137-152): Hillsdale, NJ: Erlbaum. 

Spiro, R. J., Jacobson, M. J. & Coulson, R. L. (1992). Cognitive flexibility, constructivism and 

hypertext: Random access instruction for advanced knowledge acquisition in ill

structured domains. In T. D..iffy & D. Jonassen (Eds.), Constructivism and the technology 

of instruction: A Conversation. Hillsdale, N.J.: Erlbaum. 

Staehr, L., Martin, M. & Byrne, G. (2001). Computer attitudes and computing career 

perceptions of first year computing students. Paper presented at the lnfonning Science 

2001, Kracow University of Economics, Krakow, Poland. 

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive 

Science, 12, 257-285. 

Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. Learning 

and instruction, 4, 295w312. 

Sweller, J. (1999). Instructional design in technical areas. Australian Council for Educational 

Research. 

Sweller, J. & Chandler, P. (1991). Evidence for cognitive load theory. Cognition and 

Instruction, 8, 351-362. 

Sweller, J. & Cooper, G. A. (1985). The use of worked examples as a substitute for problem 

solving in learning algebra. Cognition and Instruction, 2(1), 59-89. 

Sweller, J., van Merrienboer, J. J. G. & Paas, F. (1998). Cognitive architecture and instructional 

design. Educational Psychology Review, JO, 251-296. 

StartVBdotnet.com. (2005). Retrieved 7 Feb 2005, from 

http://www.startvbdotnet.comfdotnet/vb.aspx. 

Tesch, R. (1990). Qualitative research: Analysis types and software tools. London: Falmer 

Press. 

Tindall-Ford, S., Chandler, P. & Sweller, J. (1997). When two sensory modes are better than 

one. Journal of Experimental Psychology: Applied, 3, 257-287. 

References Page 215 



Tisdell, E. J. (1993). Interlocking systems of power, privilege, and oppression in adult higher 

education classes. Adult Education Quarterly, 43(4), 203-226. 

Thomas, M. & Zweben, S. H. (1986). The effects of program-dependent andprogram

independent deletions on software cloze tests. Paper presented at the Empirical Studies of 

Programmers, Washington, DC. 

Tolhurst, D. (1993). Implications of the studies of experts and novices of computer 

programming. Australian Educational Computing, B(July 1993). 

Tsai, S. E. (1992). Development of schema knowledge in the classroom: Effects upon problem 

representation and problem solution of programming. Paper presented at the Annual 

conference of the American Educational Association, San Francisco, California, USA. 

Tsay, J. (2004). Visual BASIC .NET programming. Prentice Hall. 

van Merrienboer, J. J. G. (1990a). Instructional strategies for teaching computer programming: 

Interactions with the cognitive style reflection-impulsivity. Journal of Research on 

Computing in Education, 23(1), 45-53. 

van Merrienboer, J. J. G. (1990b). Strategies for programming instruction in high school: 

Program completion vs. program generation. Journal of Educational Computing 

Research, 6(3), 265-285. 

van Merrienboer, J. J. G. & De Croock, M. B. M. (1992). Strategies for computer-based 

programming instruction: Program completion versus program generation. Journal of 

Educational Computing Research. 8(3), 365-394. 

van Merrienboer, J. J. G. & Dijkstra, S. (1997). The four-component instructional design model 

for training complex cognitive skills. In R. D. Tennyson & F. Schott (Eds.), Instructional 

design: Theory and research (Vol. J). Lawrence Erlbaum. 

van Merrienboer, J. J. G. & Krammer, H. (1987). Instructional strategies and tactics for the 

design of introductory coinputer programming courses in high school. Instructional 

Science, 16(3), 251-285. 

van Merrienboer, J. J. G., Krammer, H.P. M. & Maaswinkel, R. M. (1994). Automating the 

planning and construction of programming assignments for teaching introductory 

computer programming. In R. D. Tennyson (Ed.), Automating instructional design, 

development, and delivery (pp. 61-77). Springer Verlag. 

References Page 216 



van Merrienboer, J. J. G. & Paas, F. (1990). Automation and schema acquisition in learning 

elementary computer programming. Computers in Human Behavior(6), 273-289. 

Vygotsky, L. (1978). Mind in society: The development of higher psychological processes. 

Cambridge, MA: Harvard University Press. 

Ward, M. & Sweller, J. (1990). Structuring effective worked examples. Cognition and 

Instrnction, 7, 1-39. 

Webb, C. J. (1997). The human processes in introductory computer programming. Paper 

presented at the National Computer Studies Teachers1 Conference, QUT, Queensland. 

Werner, L., Hanks, B. & McDowell, C. (2004). Female computer science students who pair 

program persist. Retrieved 18 Jan, 2005, from 

bttp://www.cse.ucsc.edu/-charlie/pubs/jeric2004.pdf. 

Whyte, W. F. (1989). Action research for the twenty-first century: Participation, reflection and 

practice. American Behavioral Scientist, 32(5). 

Wild, M. & Quinn, C. (1997). Implications of educational theory for the design of instructional 

multimedia. British Journal of Educational Technology, 29(1), 73-82. 

Wilson, R. J. & Rutherford, A. (1989). Mental models: Theory and application in human 

factors. Human Factors, 31(6), 617-634 . 
• 

Winn, W. & Snyder, D. (1996). Cognitive perspectives in psychology. In D. H. Jonassen (Ed.), 

Handbook of research on educational communications and technology (pp. 112-142). 

N.Y.: Macmillan. 

Winslow, L. (1996). Programming pedagogy - A psychological overview. SIGCSE Bulletin, 

28(3). 

Wood, D., Bruner, J. & Ross, G. (1976). The role of tutoring and problem solving. Journal of 

Child Psychology and Psychiatry, 17, 89-100. 

WorclReference.com. (2005). Retrieved 4 Feb 2005, from 

http://www.wordreference,com/definition/computer programming. 

Zhu, X. & Simon, H. A (1987). Learning mathematics from examples and by doing. Cognition 

and lnstrnction, 4, 137-166. 

References Page 217 



ZuberMSkerritt, 0. (1992). Action research in higher education: Examples and reflections. 

London: Kogan Page. 

References Page 218 



Appendix 1 
Unit Outline: Software Development II 

Description 

'This unit introduces students to the fundamental concepts which are needed to develop 

software. These concepts include problem solving techniques and tools, data and file structures 

and program development steps. 

Objectives 

• Demonstrate a knowledge of data types and structures; 

• Explain what is meant by "event driven11 progranuning; 

• Draw Interface sketches of Windows Style Programs for problems of simple to medium 
complexity; 

• Create "Object I Property I Settings tables for problems of simple to medium complexity; 

• Use the features of an event driven programming environment; 

• Implement solutions in an event driven programming language for problems of simple to 
medium complexity ; and 

• Design test data to test programs. 

Unit Content 

There are 12 modules in this unit. 

Module Num. Topic Chapter 
(Schneld) 

1 Introduction to Visual BASIC; Program Development Llfecycle; 1, 2, 3 
Programming Tools; Visual BASIC Objects and Events 

2 Numbers and String; Input I Output and the design objects; Design 3 
methods for event driven programming 

3 Input from sequenlla! text files 3 

4 Built-In numeric and string functions; Modularisation of programs and the 3,4 
use of general procedures 

5 General procedures and the use of parameters; User-defined functions 4 

Appendix 1: Unit Outline for Software Development II Page219 



and their use In programming 
Informal feedback on work done to date (on assignment 1) 

6 The decision control structure Including the If and Select Case 5 
statements. 

7 The repetition control structure and the design of deterministic and non 6 
deterministic loops. 

8 One dimensional array processing: creating I accessing; using Hand·ln 7 
assignment 1 

9 One dimensional array processing: searching and sorting 7 

10 Sequenlfal file processing including creatlng, searching for items, deleting 8 
Items 

11 Additional Controls and Objects 9 

12 Review and Past Exam Paper 

Hand-In assignment 2 

Teaching And Learning Processes 

Each week will include: 

• A one hour lecture/seminar. This will introduce the major points of each topic and 
include discussions of a variety of programming problems. 

• A two hour laboratory session in which solutions to problems will be implemented in 
the event-driven progranuning language Visual BASIC. Details of these sessions will 
be placed on Blackboard. 

Assessment 

ssignment 1: 15% sslgnment 2: 30% Flnal Exam: 55% 

To be successful in the unit: 

• a minimum mark of 50% must be gained on each of the three components of the 
assessment. You must therefore pass the final exam. 

• the overall percentage mark must be 50% or more 

A penalty of 5% per day of the total mark gained in an assigrunent is imposed for late 

submissions of assignments. 

Appendix 1: Unit Outline for Software Development JI Page 220 



Resources 

• Schneider, David I., (2000) An Introduction to Programming Using Visual BASIC, 
Prentice Hall. (Required) 

Appendix 1: Unit Outline for Software Development II Page 221 



Appendix 2 
Student Consent Form: CORT Group 

Software Development Research 

Dear Software Development Student 

This semester we are conducting some research that utilises a new software tool called CORT within the 
software development unit. The research will investigate the potential benefits that CORT offers to 
students' learning of computer programming and will explore strategies to ma•'.imise its learning 
potential. The research will include the following data collection methods: 

• Observation 

• Student interviews 

• Student Questionnaires 

• Personaljouma\ completion 

• Student exercises 

• Student end tests 

Participation in the research is voluntary and all results will be confidential and held securely, It will be 
mainly carried out in the ''nonnal" computer laboratories that you attend. The interviews will require 
approximately 30 minutes of your personal time. 

Participation in the research will not influence or effect your grades. 

Any questions concerning the project can be directed to Stuart Garner of the School ofMIS 

• Tel: 9273 8267 

• Email: s.garner@ecu.edu.au 

If you have any concerns about the project or would like to talk to an independent person, you may 
contact Professor Ron Oliver (9370 6372). 

Consent Form for Project: "Exploring the potential of using technology with a part-complete solution 
method in the learning ofprogramming" 

Name ........................................................ . Student Number ....................... . 

I have read the infonnation above and any questions that I have asked have been answered to my 
satisfaction. 

I ag•ee to participate in this activity, realising that I may withdraw at any time. 

I agree to the research data gathered from me for this study being published providing my 
confidentiality is maintained. 

Participant signature: .................. , ............................. Date: ... , ............................ .. 

Appendix 2: Student Consent Form - CORT Group Page 222 



Appendix3 
Student Consent Form: Non-CORT Group 

Software Development Research 

Dear Software Development Student 

This semester we are conducting some research into the teaching and learning of computer programming. 
You are in one of the "control" groups and in this research we will be asking you to fill in a simple 
questionnaire. 

Participation in the research is voluntary and all results will be confidential and held securely. 

Participation in the research will not influence or effect your grades, 

Any questions concerning the project can be directed to Stuart Gamer of the School ofMIS 

• Tel: 9273 8267 

• Email: s.gamer@ecu.edu.au 

If you have any concerns about the project or would like to talk to an independent person, you may 
contact Professor Ron Oliver (9370 6372). 

Consent Form for Project: "Exploring the potential of using technology with a part-complete solution 
method in the learning of programming" 

Name ........................................................ . Student Number ....................... . 

I have read the information above aIJ.d any questions that I have asked have been answered to my 
satisfaction. 

I agree to participate in this activity. 

I agree to the research data gathered from me for this study being published providing my 
confidentiality is maintained. 

Participant signature: ...... , ........................... , .. , ....... , .. Date: ....... , ........ , ................ . 

Appendix 3: Student Consent Form - Non-CORT Group Page 223 



Appendix4 
Computing Knowledge and Experience Questionnaire 

Please tick the appropriate box ~ response to the following questions. Please add comments if 
necessary. 

I, What is your Gender? 

D Male 
D Female 

2. Which of the following age ranges are you in? 

D 20 years or under 
D 21 years+ 30 years 
D 31 years + 40 years 

D 41 years or over 

3. How would you rate your current computing expertise? (Tick one box only) 

D Limited: you have not used computers very much at home, school or university. 
D Moderate: eg. you use computers for email, Web browsing, word processing etc. You 

have a limited knowledge of Windows. 
D Extensive: eg. you use computers for email, Web browsing, word processing, 

spreadsheeting, database (eg "Access"), You can change a program's preferences or 
options, You have a good knowledge of Windows with the ability to create folders, zip 
files, use the Control Panel etc • 

Comments: 

4. What is your previous computer programming experience? (Tick one box only) 

D None 

D Limited: eg. You have done a programming course at school, you have taught yourself 
to program, you have used and amended scripts for the Web. 

D Moderate: eg. You have done a formal programming course, you have written some 
large computer programs. 

Comments: 

Appendix 4: Computing Knowledge & Experience Questionnaire Page224 



5. What is your science and maths knowledge? (Tick one box only) 

O Limited: eg. you have no passes in science and maths at TEE. 

O Moderate: eg. you have at least one pass at TEE in a science subject such as physics or 
chemistry (not biology) and I or at least one pass in a TEE maths subject. 

D Extensive: for example you consider yourself good at science and maths and have 
achieved high scores in two or more TEE science (do not include biology) and maths 
subjects 

Comments: 

Appendix 4: Computing Knowledge & Experience Questionnaire Page 225 



Appendix 5 
Individual Problem Questionnaires 

Please click in the appropriate boxes below: 

1. Approximately how long did it take to complete the problem? 

O LESS THAN 15 MINUTES 
0 16 TO 20 MINUTES 
0 21 TO 25 MINUTES 
0 26 TO 30 MINUTES 
0 31 TO 35 MINUTES 
0 36 TO 40 MINUTES 
0 41 T045MINUTES 
O MORE THAN 45 MINUTES 

2. What help I resources did you use in solving the problem? (can put a "x" in more than one 
box) 

0NONE 
D TUTOR 
D FELLOW STUDENT 
O SCHNEIDER TEXTBOOK 
O OTHER: please type details here ~ 

3. How much help did you use in solving the problem? 

D NONE 
O LITTLE 
O MODERATE 
O EXTENSIVE 

4. What features of CORT did you use? (put a "x" in the appropriate boxes) 

O VIEW PROBLEM DESCRIPTION 
O VIEW PROBLEM INTERFACE 
O CHANGED FONT IN PREFERENCES 
O EXPAND-REDUCE LEFT-HAND WINDOW 
O EXPAND -REDUCE RIGHT-HAND WINDOW 
O INSERT BLANK LINE BEFORE 
D INSERT BLANK LINE AFTER 
O REMOVE BLANK LINE(S) 
O CORT CODE EDITOR 

Appendix 5: Individual Problem OuestiOnnaires Page 226 



Appendix 6 
Software Development II: Program Completion Test 

Example Only 
These questions 1 to 8 require you to complete computer programs with lines of code that are given 
to you. 

The following is an example only to show you how to write out your answers. 

The Problem 

The following program requests a whole number of inches and converts it to feet and in"ches. Note 
that 12 inches equals I foot. There are several lines missing from the program and possible lines of 
code are given to you. You do not have to use all the possible lines to complete the solution. 

Possible lines of code 

1. Let feet - inches \ 12 
2. Let feet = inches Mod 12 
3. Let inches inches \ 12 
4. Let inches inches Mod 12 
5. Let inches Val(txtinches.Text) 

I Part-complete Program 

Option Explicit 
Private Sub CI11dConvert Click() 

Dim inches As Single; feet as Single 

A. picDisplay.Print "Number of feet = "; feet 
B. picDisplay. Print "Nwnber of inches = "; inches 

End Sub 

Write out the letters of the lines of the existing code and the numbers of the missing lines in the 
correct order. 

Now suppose that you think that the code for the solution is: 

Option Explicit 
Private Sub cm.dConvert Click() 

Dim inches As Single:- feet as Single 

Let inches= Val(txtinches.Text) 
Let feet= inches \ 12 
Let inches= inches Mod 12 
picDisplay. Print "Number of feet = "; feet 
picDisplay.Print "Number of inches="; inches 

End Sub 

Then you would write down as your answer: 

5,1,4, A,B 

Appendix 6: Software Development II - Program Completion Test Page 227 



1. The following program inputs an initial bank balance from a textbox. It then calculates the new 
balance after one year assuming that the interest rate is 6%. There are several lines missing from the 
program and possible lines of code are given to you. You do not have to use all the possible lines to 
complete the solution. 

Possible llnes of code 

1. Let balance - 0.06 * balance 
2. Let balance 6 * balance 
3. Let balance balance+ 0.06 * balance 
4. Let balance balance+ 6 * balanc~ 
5. Let finalBalance =balance+ 0.06 * balance 
6. Let finalBalance =balance+ 6 * balance 
7. Let balance= Val(txtBalance.Text} 

Part~complete Program 

Option Explicit 
Private Sub cmdNewBalance_Click() 

Dim balance As Single 

A. picDisplay. Print "Final balance is $ "; balance 
End Sub 

Write out the letters of the lines of the existing code and the numbers of the missing lines in the 
correct order. 

Appendix 6: Software Development II - Program Completion Test Page 228 



2. The following prograin inputs and processes data from a data (text) file. The file, called games.bet, 
contains the following data: 

"Chelsea", 3, 4, 7 
"Manchester United", 

14, O, O 

The data indicates for example that the Chelsea won 3 games, lost 4 games, and drew 7 games. 
Points are awarded as follows: 3 points for a win, 1 point for a draw, 0 points for a loss. The 
program should process data from the file and output the total points for each team. There are 
several lines missing from the program and possible lines of code are given to you. You do not have 
to use all the possible lines to complete the solution. 

Possible lines of code 

1. Input il, teamName, gamesWon, gamesLost, gamesDrawn 
2. Let points gamesWon * 3 + gamesDrawn + gamesLost 
3. Let points gamesWon * 3 + gamesDrawn + gamesLost 
4. Let points~ gamesWon * 3 + gamesDrawn 
5. Let points gamesWon * 3 + gamesDrawn 
6. picDisplay.Print teamName; " has "; points; 11 points" 
7. picDisplay.Print teamName; "has "; points; "points" 

Part-complete Program 

Option Explicit 
Private Sub cmdDisplayPoints Click() 

Dim teamName As String -
Dim gamesWon As Integer, gamesLost As Integer 
Dim gamesDrawn As Integer 
Dim points As Integer 

A. Open "A:\games.txt" For Input As -Ill 
8. picDisplay.Cls 
C. Input #1, teamName, gamesWon, gamesLost, gamesDrawn 
D. Close -Ill 

End Sub 

Write out the letters of the lines of the existing code and the numbers of the missing lines in the 
correct order. 

Appendix 6: Software Development II - Program Completion Test Page 229 



3. The following program inputs, from a textbox, a date ofbirth. Assume that the input is always 8 
characters in the fonnat 

dd/mm/yy 
For example, the 3rd November 2001 would be entered as: 

03/11/01 
The program should output, on separate lines, the three parts of the date. For example, the output for 
the above date that was entered would be: 

Day: 03 
Month: 11 
Year: 01 

There are several lines missing from the program and possible lines of code are given to you. You 
do not have to use all the possible lines to complete the solution. 

J Possible lines of code 

1. Let dayPart - Left(dateOfBirth, 21 
2. Let dayPart = Mid(dateOfBirth, 21 
3. Let dayPart = Right(dateOfBirth, 21 

'. Let monthPart . Mid(dateOfBirth, 2, 4 I 
5. Let monthPart = Mid(dateOfBirth, '' 21 
6. Let monthPart = Mid(dateOfBirth, 3, 21 
7. Let monthPart = Mid(dateOfBirth, 2, 31 
8. Let yearPart = Left{dateOfBirth, 21 
9. Let yearPart = Mid(dateOfBirth, 21 
10. Let yearPart = Right(dateOfBirth, 21 
11. Let dateOfBirth . txtDateOfBirth.Text 
12. Let dateOfBirth = Val(txtDateOfBirth.Text) 

Part-complete Program 

Option Explicit 
Private Sub cmdOUtputBirthDetails Click() 

Dim dateOfBirth As String -
Dim dayPart As String 
Dim monthPart As String 
Dim yearPart As String 

A. picDisplay. Print "Date of birth details" 
B. picDisplay.Print 
C. picDisplay. Print "Day "; day Part 
D. picDisplay. Print "Month "; monthPart 
E. picDisplay. Print "Year: "; yearPart 

End Sub 

Write out the letters of the lines of the existing code anU' the numbers of the missing lines in the 
correct order. 

Appendix 6: Software Development II - Program Completion Test Page 230 



4. The following program calculates and outputs the population densities of Hawaii and Alaska in 
America. There are several lines missing from cmdDisplay_ Click in the program and possible 
lines of code are given to you. You do not have to use all the possible lines to complete the solution. 

[ Possible lines of code (missing from cmdDlsplay Click) 

1. Call CalculateDensity(l184000, "Hawaii", 6471) 
2. Call CalculateDensity{607000, "Alaska", 591000) 
3. Call CalculateDensity{"Hawaii", 1184000, 6471) 
4. Call CalculateDensity("Alaska", 607000, 591000) 
5. CalJ. CalculateDensity 
6. Call CalculateDensity 
7, Let density CalculateDensity("Hawaii", 1184000, 6471) 
8. Let density"' CalculateDensity("Alaska", 607000, 591000) 

I Part-complete Program 

Option Explicit 
Private Sub cmdDisplay Click() 

A. picDisplay.Cls -
End Sub 

Private Sub CalculateDensity(state As String, pop As Single, 
area As Single) 

Dim rawoensity As Single, density As Single 
Rem The density (number of people per square mile) 
Rem will be displayed rounded to a whole number 
Let rawDensity = pop I area 
Let density= Round{rawDensity) 
picDisplay.Print "The density of "; state; " is"; density; 
picDisplay, Print "people per square mile," 

End Sub 

Write out the letters of the lines of the existing code and the numbers of the missing lines in the 
correct order. 

Appendix 6: Software Development ll - Program Completion Test Page 231 



5, The following program inputs from textboxes the income and expenses for a company. It displays 
the message "No profit or loss" if the income and expenses are equal. If they are not equal, it 
displays the profit or loss. 

There are several lines missing from the program and possible lines of code are given to you. You 
do not have to use all the possible lines to complete the solution. 

Possible llnes of code 

1. Else 
2. End If 
3. Let profit income - expenses 
4. Let loss= expenses - income 
5. If expenses< income Then 
6. picDisplay.Print "No profit or loss" 
7. picDisplay. Print "Profit is ",· FormatCurrency (profit) 
B. picDisplay. Print "Loss is "; Format Currency (loss) 

Part-complete Program 

Option Explicit 
Private Sub cm.dShow Click() 

Dim expenses As single, income As Single 
Dim profit As Single, loss As Single 

A, Let expenses= Val(txtExpenses.Text) 
B, Let income= Val(txtincome.Text) 
C. picDisplay.Cls 
D. If expenses= income Then 
E. Else 
F. End If 

End Sub 

Write out the letters of the lines of the existing code and the numbers of the missing lines in the 
correct order. 

Appendix 6: Software Development 11- Program Completion Test Page 232 



6. The following program inputs from a textbox the balance in a company's bank account. A.~suming 
that the account has 4% annual interest paid into it, the program should output how many years it 
will take for the balance to become more than $80000. 

There are several lines missing from the program and possible lines of code are given to you. You 
do not have to use all the possible lines to complete the solution. 

I Possible lines of code 

1. Loop 
2. Do While balance< 80000 
3, Do While balance<= 80000 
4, Do While balance> 80000 
5. Do While balance>= 80000 
6. Let balance= balance+ 0.04 * balance 
7. Let numYears numYears + 1 
B. Let numYears = O 

I Part-complete Program 

Option Explicit 
Private Sub cmdYears Click() 

Dim balance As Sin'gle, numYears As Integer 

A. Let balance= Val(txtBalance.Text) 
B. picDisplay.Cls 
C, picDisplay.Print "In"; numYears; "years balance will be over 

$80000" 
End Sub 

Write out the letters of the lines of the existing code and the numbers of the missing lines in the 
correct order. 

Appendix 6: Software Development ll w Program Completion Test Page 233 



7. The following program inputs 6 names contained in the file names.txt into an array. This is done in 
the Form_Load event procedure. Then, when a button is clicked, the program displays two 
columns, the first column containing the original 6 names and the second column contains the 6 
names in reverse order. Example output would be: 

Original Reverse 
Order Order 

Brenda Sue 
Mike Chris 
Heather Tony 
Tony Heather 
Chris Mike 
Sue Brenda 

There are several lines missing from the program and possible lines of code are given to you. You 
do not have to use all the possible lines to complete the solution. 

Possible lines of code 

The 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 

following are possible lines for cmdDisplayColumns Click() 
picDisplay.Print fNames(index), £Names(6 - index) -
picDisplay.Print fNames(index), fNames(6 + index) 
picDisplay.Print fNames(index), fNames(7 - index) 
picDisplay.Print fNames(index), £Names(?+ index) 
picDisplay.Print fNames(index), fNames(index - 6) 
picDisplay.Print fNames(index), fNames(index + 6) 
picDisplay.Print fNames(index), fNames(index - 7) 
picDisplay.Print fNames(index), fNames(index + 7) 
Next index 
Next £Names 
For index 
For index 

1 To 6 
1 To £Names 

The following are possible lines for Form_Load() 
13. Input #1, fNumbers(index) 
14. Let index index+ 1 
15. Let index= 1 
16. Loop 
17. Do While Not EOF(l) 
18. Do While EOF{l) 

Part~complete Program 

Option Explicit 
Dim fNames{l To 6) As Single 
Private Sub cmdDisplayColumns Click() 

Dim index As Integer -

A. picDisplay. Print "Original", "Reverse" 
B. picDisplay.Print "Order", "Order" 
c. picDisplay.Print 

End Sub 

Private Sub Form Load() 
Dim index As Iii'teger 

D. Open "A:\names.txt" For Input As #1 
E. Close #1 

End Sub 

Write out the letters of the lines of the existing code and the numbers of the missing lines in the 
correct order. 

Appendix 6: Software Development ll - Program Completion Test Page 234 



8. Suppose the sequential text file, customers.txt, contains customer banking data. Example data is: 

"Harrison T", 23679.56 
"Mason P", 677.90 
"Peters K", 899.77 
"Roberts L", 23.12 
etc 

In the above, the first record indicates that Harrison T has $23679,56 in their bank account. 

The number of records in the file is unknown. The following program creates two new sequential 
text files called fees.txt and nofees.txt. It copies all records from customers.txt into fees.txt where 
the amount of money in the account is less than $1000 and it copies the rest of the records into 
nofees.txt. 

There are several lines missing from the program and possible lines of code are given to you. You 
do not have to use all the possible lines to complete the solution. 

Possible lines of code 

1, Open "A:\fees.txt" For Input #3 
2. Open "A:\fees.txt" For Output As #2 
3. Open "A:\nofees.txt" For Input As #3 
4. Open "A:\nofees.txt" For Output As #3 
5. If customerBalance < 1000 Then 
6. If customerBalance <= 1000 Then 
7. Else 
8. End If 
9. Input ffl, customerName, customerBalance 
10. Write ff2, customerName, customerBalance 
11. Write #3, customerName, customerBalance 
12. Close #2 
13. Close #3 

Part·complete Program 

Option Explicit 
Private Sub cmdCraatefiles Click() 

Dim customerName As Striri'g 
Dim customerBalance As Single 

A. Open "A:\customers.txt" For Input As #1 
B. Do While Not EOF(l) 
C. Loop 
o. Close #1 

End Sub 

Write out the letters ofti1.e lines of the existing code and the numbers of the missing lines in the 
correct order. 

Appendix 6: Software Development 11 - Program Completion Test Page 235 



Appendix 7 
Software Development II: Examination 

READING TIME: 

WORKING TIME: 

TOTAL TIME: 

ATTEMPT: 

General Instructions: 

5 minutes 

2 hours 30minutes 

2 hours 35 minutes 

All questions in section A and one question from 
section B. 

1 Students are not pennitted to write on the examination paper or in the 
answer booklet during reading time. 

2 This is a closed book examination. Text books/reference books/notes are 
not pennitted. Please write all your answers in the answer booklet. 

Section A is worth 20 marks. 

Section B is worth 20 marks. 

Total Marks: 40 

Appendix 7: Software Development II: Examination Page 236 



Section A. Answer all questions. Each questio;1 is worth 2 marks. 

I. Which of the following expressions will yield the string "John Smith", where noml = "John Brown" 
and nom2 "'"Janet Smith"? 

(A) Mid(noml, I, 4) & Mid(nom2, 7, 5) 
(B) Left(noml, 4) & Right(nom2, 5) 
(C) Left(noml, 5) & Rigbt(nom2, 5) 
(D) None ofthe above. 

2. What will be the output of the following program when the command button is clicked? 

Private Sub cm.cl.Button Click() 
Dim varl As Integer~ var2 As Integer, var3 As Integer, num As 

Integer 
varl = 2 
var2 = 4 
var3 = 6 
Call Add(num) 
picDisplay.Cls 
picDisplay.Print num 

End Sub 

Private Sub Add(num As Integer) 
Dim varl As Integer, var2 As Integer, var~ As Integer 
num = varl + var2 + var3 ;? 

End Sub 

(A) 0 
(B) 12 
(C) 6 
(D) None of the above 

Appendix 7: Software Development ll: Examination Page 237 



3. Consider the following event procedure that calls a user.defined function named Cube, which 
returns the cube ofa number. 

Private Sub cmdButton Click() 
Dim num As Single, 'result As Single 
num = Val ( InputBox ( "Enter a number to cube:") ) 
result= Cube{num) 
picDisplay.Print "The cube of"; num; "is"; result 

End Sub 

Which of the following is a correct Function definition for Cube? 

·1. Private Function Cube(var As Single) As Single 
Cube = var " 3 

End Function 

2. Private Function Cube(num As Single) As Single 
Cube = num " 3 

End Function 

(A) 1 onJy 
(B) 2 only 
{C) Both I and 2 
(D) Neither 1 nor 2 

4, What will be the output of the following program when the conunand button is clicked? 

Private Sub cmdDisplay Click() 
Dim num As Integer -
num = 10 
Call DisplayMult(num) 
num = 5 
Call DisplayMult{num) 
num = 2 
Call DisplayMult(num) 

End Sub 

Private Sub DisplayMult(num As Integer) 
If num <= 3 Then 

picOutput.Print 3 * num; 
Else 

If num > 7 Then 
picOutput.Print 7 * num; 

End If 
End If 

End Sub 

(A) 70 14 
(B) 30614 
(C) 70 6 
(D) No output 

Appendix 7: Software Development II: Examination Page 238 



5. What is wrong with the following Do While loop? 

index = 1 
Do While index<> 10 

picDisplay.Print "Hello" 
index= index+ 2 

Loop 

(A) It should have been written with a Do Until loop. 
(B) It is an infinite loop. 
(C) The test variable should not be changed within the loop itself. 
(D) nothing 

6. What will be the output of the following program when the command button is clicked? 

Private Sub cmdButton Click{) 
Dim sum as Single, num as Single 
Open "DATA. TXT" For Input As #1 
Do While Not EOF(l) 

Input #1, num 
sum= sum+ num 

Loop 
Close #1 
picDisplay.Print "The sum of all data is "; sum 

End Sub 

Contents ofDATA.TXT: 12, 9, 32 

(A) 12, 9, 32 
(B) 63 
(C) a runtime error 
(D) Nothing 

7. What will be the output of the following program when the command button is clicked? 

Private Sub cmdButton Click() 
Dim vowel As String-
Open "DATA. TXT" For Input As #1 
Do While EOF ( 1) 

Input #1 1 vowel 
picDisplay.Print vowel; 

Loop 
Close #1 
picDisplay. Print " 1 and sometimes y" 

End Sub 

Contents ofDATA.TXT: "a", "e", "J", "o", "u" 

(A) , and sometimes y 
(B) a, and sometimes y 
(C) aeiou, and sometimes y 
(D) aeiou 

Appendix 7: Software Development II: Examination Page 239 



8. What is the output of the following program segment? 

Dim numbers(l To 4) As Single, h As Single, i As Integer, k As 
Integer 

h = 0 
Open "DATA. TXT" For Input As #1 
Fori=1To4 

Input #1, numbers(i) 
Next i 
Close #1 
Fork=lto4 

h = h + numbers(k) 
Next k 
picDisplay.Cls 
picDisplay.Print h 

Contents of DAT A. TXT: 2, 4, 2, 3 

(A) II 
(B) 2 
(C) 7 
(D) 4 
(E) None of the above 

9. What is wrong with the following program segment? 

Dim nom As String, number As String 
Open "PHONEDIR" For Input As #2 
Input #2, nom, number 
Do While Not EOF(2) 

If nom = "Jim" Then 
picDisplay.Print "Jim's number is"; number 

End If 
Input #2, nom, number 

Loop 
Close #2 

(A) The file should have been opened as #1. 
(B) If Jim's name and number are the last entries in the file, they will not be processed by the If 

statement. 
(C) "number" should be a numeric variable. 
(D) The Do While statement should read Do While EOF(2). 
(E) There is nothing wrong with the program segment. 

Appendix 7: Software Development II; Examination Page 240 



10. What is the problem (if any) with the following Select Case block which is intended to determine 
the price of a movie depending on the patron's age? 

Private Sub cmdButton Click(} 
age = Val (InputBox (Tr'Enter your age:")) 
Select Case age 

Case Is>= 65 'Senior citizen 
price = 4. 50 

Case Is >= 5 'Regular price 
price = 6. 00 

Case Is>= O 'Child (no charge with parents) 
price "" O 

Case Else 
picDisplay. Print "Entry error" 

End Select 
End Sub 

(A) Everyone will get in free at the child rate. 
(B) The output will always be "Entry error." 
(C) The Case Is statements have had syntax. 
(D) There is nothing wrong. 

Appendix 7: Software Development II: Examination Page 241 



Section B - Answer ONE question only. This section is worth 20 
marks. 

Question 1 
A file called "marks.txt" contains names and test marks for students. Names can appear more than 
once. A program is required that accepts a name as input, via a textbox, and outputs the average of 
the marks for that student and that student's highest mark. 

The name entered should not be sensitive to the case of the letters. For example, if the text file 
contained the following and the name entered was "brenda", then an average of 40 would be output 
together with the highest mark of 63. 

"Alf", 56 
"Brenda", 63 
"Gladys", 45 
"BRENDA", 34 
"Adnams", 44 
"brenDA", 23 

If the name does not appear in the file then a message "Name not in file" should be output. 

Note that an array is not required. 

For the above: 

{a) Create a task I object I event (TOE) chart. 
{b) Draw an interface sketch naming all objects. 
(c) Write detailed pseudo code or Visual BASIC code, including details of variables and their 

types. 
(d) Draw up a test table showing the input data, expected output and the reasons for each test. 

Make sure that the tests that you suggest would thoroughly test the program. 
[20 marks] 

Appendix 7: Software Development ll: Examination Page 242 



Question 2 
A program is required which keeps track of the time taken to run 100 metre races at an athletics 
meeting. There are three races and 15 runners. Each runner will run all three races. The program 
accepts each runner's name and run-times for the three races as input via textboxes. The names are 
placed in a one-dimensional array and the average time of each runner's three races is placed in 
another one-dimensional array. 

The program should be able to output 

• all the runner names and average times in a picture box 

• the name of the runner with the lowest average time. 

For the above: 

(a) Create a task I object I event (TOE) chart. 
(b) Draw an interface sketch naming all objects. 
(c) Write detailed pseudo code or Visual BASIC code, including details of variables and their 

types. 
(d) Draw up a test table showing the input data, expected output and the reasons for each test. 

Make sure that the tests that you suggest would thoroughly test the program. 
[20 marks] 

End of Exam 

Appendix 7: Software Development II: Examination Page 243 



Appendix 8 
CORT Problems 

Problem 2 CORT Method 2 (some lines needed) 

Problem Description 

Make use of CORT to complete this program. The program should allow a user to type in their 

name in a textbox. There should be 3 conunand buttons. One should change the text to red, the 

second should make the text bold, and the third should underline the text. 

Possible Lines of Code and Part-complete Solution 

Let txtName.FontBold = True 
Let txtName.FontBold = False 
Let txtName.FontUnderline = True 
Let txtName.FontUnder = True 
Let txtName.ForeColor = vbRed 
Let txtName.ForeColor = Red 

Correct Solution 

Private Sub cmdMakeBo!d_Click{) 
Let txtName.FontBold = True 

End Sub 

Private Sub cmdMakeRed_Cllck() 
Let txtName.ForeCo!or:: vbRed 

End Sub 

Private Sub cmdMakeUnderllne_Cllck() 
Let txtName.FontUnderline = True 

End Sub · 

Appendix 8: CORT Problems 

Private Sub cmdMakeBold_Cllck{) 

End Sub 

Private Sub cmdMakeRed_Cllck() 

End Sub 

Private Sub cmdMakeUnderllne_Click() 

End Sub 

Page 244 



Problem 3: CORT Method 1 (all lines needed) 

Problem Description 

Make use of CORT to complete this program that should output the total cost of3 items bought 

at a shop after a 25% discount 

The program should do the following: 

• Declare all variables in Dim statements. 
• Assign the value 26.15 to the variable firstltem. 
• Assign the value 29.95 to the variable secondltem .. 
• Assign the value 32.85 to the variable thirdltem .. 
• Add up the values and place the result in the variable total Cost. 
• Calculate the discount and place this in the variable discountAmount. 
• Calculate the final cost and place this in finalCost. 
• Output the final cost 

Possible Lines of Code and Part-complete Solutioo 

Possible lines ,; Part Complete Solution 

plcDlsplay.Print "Final Cost is"; finalCost Option Expllclt 
Let finalCost = totalCost - discoun\Amount 
Let discountAmount = 0.25 • totalCost Private Sub cmdDlsplayCost_Click() 
Let totalCost = firstltem + secondltem + thirdltem 
Dim secondltem As Single Dim firstltem As Single 
Dim thlrdltem As Single 
Let firstltem = 26.15 
Let secondltem = 29.95 End Sub 
Let thlrdltem = 32.85 
plcDlsplay.Cls 
Dim totalCost As Single 
Dim dlscoun\Amount As Single 
Dim flnalCost As Sin le 

Correct Solutioo 

Option Explicit 

Private Sub cmdDlsplayCost_Cllck() 
Dim firstltem As Single 
Dim secondltem As Single 
Dim thirdltem As Single 
Dim total Cost As Slngle 
Dim discountAmount As Single 
Dim finalCostAs Single 

Letfirstltem =26.15 
Let second Item = 29.95 
Let thlrdltem"' 32.85 
Let total Cost= firstltem + second Item+ third Item 
Let discountAmount = 0.25 • total Cost 
Lei finalCost = totalCost- dlscountAmount 

plcOlsplay.C!s 

Appendix 8: CORT Problems Page 245 



I plcDisplay.Prinl 'Fina\ Cost is "; flnalCost 
End Sub 

Problem 4: CORT Method 2 (some lines needed) 

Make use of CORT to complete this program that should output the balance after three years for 

a an initial deposit of $500. The interest in the first 2 years in 4.5% per annum and the interest 

in the third year is 5.25%. 

The program should do the following: 

• Declare all variables in Dim statements. 
• Assign the value 500 to the variable balance 
• Increase the variable balance by 4.5% of its value. 
• Increase the variable balance by 4.5% of its value. 
• Increase the variable balance by 5.25% of its value. 
• Output the final balance in a picture box 

Possible Lines of Code and Part-complete Solution 

Possible lines Part Complete Solution " • 

picDisplay.Print "Final balance Is$"; "balance" 
picDisplay.Print "Fina! balance is$"; balance 
balance= balance + balance• 0.045 
balance= balance+ balance• 0.045 
balance = balance* 0.045 
balance = 500 
balance = balance + balance• 0.0525 
balance = balance • 0.045 
balance= balance • 0.0525 

Correct Solution 

Option Explicit 

Private Sub cmdNewBalance_Click() 
Rem calculate the new balance 
Olm balance As Single 

balance= 500 
balance= balance+ balance • 0.045 
balance= balance+ balance• 0.045 
balance= balance+ balance• 0.0525 

plcOlsplay.Prinl "Final balance Is$"; balance 
End Sub 

Appendix 8: CORT Problems 

Option Explicit 

Private Sub cmdNewBalance_Click() 
Rem Calculate the new balance 
Dim balance As Single 

End Sub 

Page 246 



Problem 5: CORT Method 2 (some lines needed) 

Problem Description 

Make use of CORT to complete this program. The program should input a person's name, credit 

card type (Visa, Bankcard or Mastercard), outstanding balance, and annual interest rate (eg, 

15%). The program should then calculate the monthly interest payment on that balance. The 

output should be something like: 

Monthly interest payment for John Howard 
is $53 for Visa card with an outstanding 
balance of $4240 

Possible Lio es of Code and Part-complete Solution 

Possible Lines Part Comp/et~ So!ut1on 

Let balance= Val(txtsalance.Texl) 
Let balance= txtBalance.Text 
Let lnteres\Rate = Val(txllnterestRate.Text) 
Let lnterestRate = txtlnterestRate.Text 
Rem calculate the interest payment 

Option Explicll 

Private Sub cmdMonthlylnterest_Click(l 

Rem Calculate the monthly interest Let lnterestPayment = lnterestRate / 100 •balance/ 12 
Let lnteres!Payment"' lnteres!Rate 1100 • balance 
Let lnteres!Payment = interestRate / 100 •balance• 12 
plcOlsplay.Print "Monthly Interest payment for": 
personName 

Dim personName As String, CCtype As String 
Dim balance As Slngle, lnterestRate As Single 
Dim lnlerestPayment As Single 

plcOlsplay.Print "Monthly Interest payment for"; 
person Name: 
plcOlsplay.Print 'Monthly Interest payment for", 
person Name 
plcDlsplay.Ptlnt "Is$': lnteres!Payment;" for": CCtype; • 
card with an outstanding" 
plcDlsptay.Print "Is$"; !nterestPayment: 'for"; CCtype;" 
card with an outstanding"; 
plcDisplay.Prlnt "is$", lnterestPayment, •for", CCtype, • 
card with an outstanding" 
picDisplay.Ptlnt "balance of$"; balance 
plcDlsplay.Prlnt 'balance of$"; balance: 

icD!s la .Print "balance of$", balance 

Correct Solution 

OpUon Explicit 

Private Sub cmdMonthlylnterest_C!ick() 

Rem Calculate the monthly interest 
Dim personName As String, CCtype As String 
Dim balance As Single, lnteres\Rate As Single 
Olm lnterestPayment As Single 

Rem Place al! the Input data Into variables 
Let personName"' txtPersonName.Text 
Let CCtype "'txtCardType.Text 

Rem output the result 
plcDisplay.Cls 

End Sub 

Rem Place all the Input data from the textboxes Into variables 
Let personName = txtPersonName.Text 
Let CCtype = txtCardT ype. Text 
Let balance= Val(txtBalance.Text) 
Let Interest Rate= Va~txtlnteres\Rate. Text) 

Rem Calculate the interest payment 
Let lnteres!Payment = lnterestRate / 100 • balance 112 

Appendix 6: CORT Problems Page 247 

-----



Rem output the result 
picDlsplay.Cls 
picDisplay.Prinl "Monthly interest payment for•: person Name 
plcDisplay.Print "Is$"; lnterestPayment: •for"; CCtype:" card with an outstanding" 
p!cOisplay.Print "balance of$"; balance 

End Sub 

Problem 6: CORT Method 1 (all lines needed) 

Problem Description 

Make use of CORT to complete this program that inputs and processes data from a data (text) 

file. The file, called soccer.txt contains the following data: 

"Duncraig Dribblers", I 0, 4, 2 
"Churchlands Layabouts", 4, 3, 7 

The data indicates for example that the Duncraig Dribblers won 10 games, lost 4 games, and 
drew 2 games. Points are awarded as follows: 3 points for a win, 1 point for a draw, 0 points for 
a loss. 

The program should input that data from the file and then output the total points for each team. 
Note that there is a deliberate mistake somewhere in the program. 

Possible Lines of Code and Part-complete Solution 

Possible Lines Part Complete Solution 
' , 

Close #1 
plcDlsplay.Cls 
Dim games Drawn As Integer 
Dim points As Integer 
Input #1, team Name, games Won, gamesLosl, 
gamesOrawn 
Input #1, teamName, gamesWon, gamesLost, 
gamesOrawn 
plcOlsplay.Print team Name: "has"; paints: • points" 
p1c01splay.Print team Name;" has"; paints: "points• 
points= gamesWon • 3 + games Drawn 
points::: gamesWon • 3 + gamesOrawn 

Correct Solution 

Option Explicit 

Private Sub cmdDisplayPo!nts_Cllck() 
Rem This program displays the points obtained by 2 
Rem soccer teams 

Olm team Name As String 
Dim gamesWon As Integer, games Lost As Integer 
D!m gamesDrawn As Integer 

Appendix 8: CORT Problems 

Option Expliclt 

Private Sub cmdDJsp1ayPoints_Click() 
Rem This program displays the points obtained 

by2 
Rem soccer teams 

Dim teamName As String 
Dim gamesWon As Integer, gamesLost As 

Integer 

Open "A:\00130\soccer.txt" For Input As #1 

End Sub 

Page 248 



Dim points As Integer 

Open "A:100130\soccer.txt" For Input As #1 

picDlsplay.Cls 
Input #1, teamName, games Won. gamesLost, gamesDrawn 
points= games Won• 3 + games Drawn 
plcDisplay.Prlnt team Name:" has": points;• points" 
Input #1, team Name, gamesWon, games Lost, games Drawn 
points= games Won • 3 + gamesDrawn 
plcDlsplay.Prlnt teamName: •has"; points: "points" 
Close #1 

End Sub 

Problem 1: CORT Method 2 (some lines needed) 

Problem Description 

A program is required that obtains, via a text box, an amount of money that is to be paid as a 

wage to a worker. The amount is a whole number of dollars. The number of $100, $50, $20, 

$10, $5 notes and $2, $1 coins that should be given to the worker should be output in a picture 

box. For example, if the wage were $278 then the following would be output: 

Number of$ 100 notes: 2 
Number of$ 50 notes: 1 
Number of$ 20 notes: 1 
Number of$ 10 notes: 0 
Number of$ 5 notes: 1 
Number of$ 2 coins: 1 
Number of$ 1 coins: 1 

Possible Lines of Code and Part-complete Solution 

Possible Lines Part Complete Solution 

Let numberOf1DollarCoins = leftover 
Let leftOver=wage Mod 100 
Let numberOf100DollarNotes = wage I 100 
Let numberOf100DollarNotes = wage Mod 100 
Let leftover= leftOver Mod 50 
Let number0150DollarNotes =leftover\ 50 
Let numberOf50DollarNotes = leftover Mod 50 
Let leftover = leftover Mod 20 
Let numberOl20Dol!arNotes =leftover\ 20 
Let numberOf20DollarNotes = leftover Mod 20 
Let leftover= leftover Mod 10 
Let number0f1 ODollarNotes = leftover \ 1 O 
lei numberOf10DollarNotes = leftOVer Mod 10 
let leftover= leftover Mod 5 
let numberOISDollarNotes = leftover\ 5 
Let numberOISDollarNotes = leftOver Mod 5 
Let leftOver = leftover Mod 2 
Let numberOf2DollarColns =leftover\ 2 
Let numberOf2DollarCoins: leftover Mod 2 

Appendix 8: CORT Problems 

'===================================== 
============ 
'This program obtains a wage from a user and 
outputs the 
'number and value of notes and coins that should 
be placed 
'in the pay packet 
'===================================== 
============ 
Option Explicit 

Private Sub cmdPayDetails_Click() 
'Declare the variables requred 
Dim number0f1 OODollarNotes As Integer 
Dim numberOf50DollarNotes As Integer 
Dim number0f20DollarNotes As Integer 
Dim number0f10Do!larNotes As Integer 
Dim numberOf5DollarNotes As Integer 
Dim numberOf2.DollarCoins As Integer 
Dim numberOf1DollarColns As lnte er 

Page 249 



Possible Lines Pait Complete Solution 
/ 

Correct Solution 

Option Expticlt 

Private Sub cmdPayDetalls_Click() 
'Declare the variables requred 
Dim number011000ollarNotes As Integer 
Dim numberOl50DollarNotes As Integer 
Dim numberOf20DollarNotes As Integer 
Dim numberOf100ollarNotes As Integer 
Olm number015DollarNotes As Integer 
Dim number0f20ollarCoins As Integer 
Dim numberOftoollarColns As Integer 

Dim wage As Integer, leftover As Integer 

'Obtain the wage 
Let wage= Val(lxtWage.Text) 

'Determine the number of notes and coins needed 
Let number01100DollarNotes =wage\ 100 
Let leftOver = wage Mod 100 
Let number0!500ollarNotes = leftover\ so 
Let leftOver = leftQver Mod 50 
Let number0120DollarNotes = leftQver \ 20 
Let leftover= leltOver Mod 20 
Let number0110DollarNotes = leftOver\ 10 
Let leftover = leftQver Mod 10 
Let numberOISDollarN:>tes =leftover\ 5 
Let leftOver = leftover Mod 5 
Let numberOf2DollarCoins =leftover\ 2 
Let leftover= leftover Mod 2 
Let numberOf1DollarColns = leftover 

'Output the results 
plcOisplay.Cls 
plcOlsplay. Print "Wages Report" 
picOlsplay.Prlnl •---------------• 

Appendix 6: CORT Problems 

Dim wage As Integer, leftover As Integer 

'Obtain the wage 
Let wage= Val(txtWage.Text) 

'Determine the number of notes and coins 
needed 

'Output the results 
plcDisplay.Cls 
plcDisplay.Print "Wages Report" 
picDisplay.Print "----------------" 
p!cDlsplay.Print "Number of$ 100 notes: ": 

number0f1 OODollarNotes 
picDlsplay.Print "Number of$ 50 notes: "; 

numberOf50DollarNotes 
plcDlsplay.Print "Number of$ 20 notes:"; 

numberOf20DollarNotes 
plcDisplay.Print "Number of $10 notes:"; 

numberOf10DollarNotes 
picDJsplay.Print "Number of$ 5 notes: "; 

numberOf5Do11arNotes 
plcDisp!ay.Print "Number of$ 2 coins: "; 

number0f2DollarColns 
plcDlsplay.Print "Number of$ 1 coins: "; 

numberOf1DollarCoins 
End Sub 

Page 250 



plcDisplay.Print "Number of$ 100 notes: "; numberOf100DollarNotes 
picDJsplay.Prlnt "Number of$ 50 notes:•; number0!50DollarNotes 
plcDlsplay.Print 'Number of$ 20 notes: "; numberOl20DollarNotes 
p\cOisplay.Print "Number of$ 10 notes: "; number0f10DollarNotes 
plcDisplay.Print "Number of$ 5 notes:"; numberOISDollarNotes 
plcDlsplay.Prinl "Number of$ 2 coins: ": numberOf2DollarColns 
plcDJsplay.Print 'Number of$ 1 coins:"; numberOl1DoUarColns 

End Sub 

Problem 8: CORT Method 3 (some lines needed, one line to key-in) 

Problem Description 

A program is required that obtains, via a textbox, a telephone number. Examples of numbers 

that might be entered are: 

08 9275 5623 
09 76124296 

The numbers are always of the same structure but may have leading or trailing spaces entered 

too. The program should output, on separate lines, the three parts of the number, Eg: 

SID Code: 08 
Exchange: 9275 
Number: 5623 

Possible Lines of Code and Part-complete Solution 

Possible Lines ' Part C1Jmplete Solution 
' . 

Dim telNumber As String 
Dim te\Number As Integer 
Let telNumber = txtTelNumber.Text 
Let telNumber = va!(tdTelNumber.Texl) 
let tel Number= Trim(telNumber) 
Let txtTelNumber.Text = Trim(telNumber) 
Let firs\Part = Left(telNumber, 2) 
Let firslPart = Lefl(telNumber, 4) 
Let middlePart = MJd(telNumber. 4, 4) 
Let mlddlePart = Mld{telNumber, 2, 4) 
let mlddlePart = Mld(telNumber, 4, 2) 

Appendix 8: CORT Problems 

Option Explicit 
Private Sub cmdOutputNumber_Click{) 

Dim firstPart As String 
Dlm middlePart As String 
Dim lastPart As String 

'Obtain the telephone number 

'Trim leading and trailing spaces 

'Obtain first part 

'Obtain .mldd!e part 

'Obtain last part 

'Output the details 
picDlsplay.Prlnt "Telephone Number Details~ 
icDis la .Print 

Page 251 



Possible Lines ' Part Complete Solution 

picDisplay.Print "STD Code:"; firstPart 
picDisplay.Print "Exchange:"; middlePart 
picDisplay.Print "Number:"; lastPart 

Correct Solution 

Option Explicit 
Private Sub cmdOutputNumber_Cllck() 

Dim telNumber kl, String 
Dim firstPart kl, String 
Dim middle Part As String 
Olm lastPart kl, String 

'Obtain the teleptxine number 
let telNumber = txtTelNumber.Text 

Trim leading and trailing spaces 
Let telNumber = Trim(telNumber) 

'Obtain first part 
let firstPart = left(telNumber, 2) 

'Obtain middle part 
Let mlddlePart = Mid(telNumber, 4, 4) 

'Obtain last part 
let lastPart = Right(telNumber, 4) 

'Output the details 
plcDlsplay.Print 'Telephone Number Details" 
picDJsplay.Print 
picDisplay.Print "STD Code:"; firstPart 
plcOlsplay.Print "Exchange:"; mlddlePart 
picDisplay.Print "Number:"; laslPart 

End Sub 

End Sub 

Problem 9: CORT Method 2 (some lines needed) 

Problem Description 

A program is required that obtains an account balance and the values of two transactions. The 

program should output the new balance in a picture box in three ways: 

I. To two decimal places 
2. To three decimal paces 
3. To four decimal places, right justified in a 15 space column. 

Possible Lines of Code and Part-complete Solution 

Possible Lines Part Complete Solution . . . . ' 

'============================== Call OutputToTwoPlaces(newBalance) 
Call Outpu!T oTwoPlaces(accountBalance) 
Gall Out utToTwoPlaces 

'This progri:im determines a new balance after 2 

Appendix 8: CORT Problems Page 252 



Possrble LintfS Part Complete So!utio~ 

Cati OutputToThreePlaces(newBalance) 
Cati OutputToThreePlaces{accountBalance) 
Call OutputToThreePlaces 
Call OutputToFourPlaces(newBalance) 
Call OutputToFourPlaces(accountBalance) 
Call OutputToFourPlaces 
picDisplay.Print Forma\Currency(balance, 2) 
plcOlsplay.Print Forma\Currency(balance, 3) 
End Sub 
Private Sub OutputToFourPlaces(balance As Single) 
plcDisplay.Prlnt Format(Forma!Currency(balance. 4). 
"@@@@@@@@@@@@@@@") 
plcDisplay.Prlnt Format(Forrna!Currency(balance, 4), ................. ) 
plcDlsplay.Print Forrnat(Forrna!Currency(balance, 4), 
• ----------=====") 

Correct Solution 

'================;;============ 
'This program detennlnes a new balance after 2 
'transactions have been applled 
'=====================a:::::::: 
OpUon Explicit 

Private Sub cmdNewBalance_Click() 
Dim valueOne As Single, valueTwo As Single 

" 
'transactions have been applied 
'.============================== 
Option Explicit 

Private Sub cmdNewBalance_ Click() 
Dim valueOne As Single, valueTwa As Single 
Dim accauntBalance As Single, newBalance As 

Single 

'Obtain the Input 
Let accauntBalance = 

Val(txtAccauntBalance.Text) 
Let valueOne = Val{txtValueOne.Text) 
Let value Two= Val(txtValueTwo.Text) 

'Wark out new balance 
Let newBalance = accountBalance - valueOne -

valueTwa 

'Output the new balance 
plcDisplay.FantName = "courier new" 
picDisplay.Cls • 
plcDisp!ay.Print" 1" 
plcDisplay.Print "123456789012345" 
plcDispJay.Prlnt 

End Sub 

Private Sub OutputToTwoPlaces(balance As 
Single) 

End Sub 

Private Sub OutputToThreePlaces(balance As 
Single) 

End Sub 

Dim accoun!Balance As Slngle, newBalance As Single 

'Obtain the Input 
Let accountBalance = Val(txtAccountBalance.Text) 
Let valueone = Val(txtValueOne.Text) 
Let value Two= Val(txtValueTwo.Text) 

'Wark out new balance 
Lei newBalance = accoun!Balance - valueOne. value Two 

'Output the new balance 
plcDisp!ay.FontName = "courier new' 
plcDlsp!ay.Cls 
plcDisp!ay.Print" 1' 

Appendix 8: CORT Problems Page 253 



plcDisplay.Print "123456789012345" 
plcOlsplay.Print 
Call OutputToTwoPlaces(newSalance) 
Call OutputToThreePlaces(newBalance) 
Call OutputToFourPlaces(newBalance) 

End Sub 

Private Sub OutputToTwoPlaces(balance As Single) 
picDisplay.Print FormatCurrency(balance, 2) 

End Sub 

Private Sub OulputToThreePlaces(balance As Single) 
plcDlsp\ay.Print FormatCurrency(balance, 3) 

End Sub 

Private Sub OutputToFourP!aces(balance As Single) 
plcDisplay.Print Format(FormatCurrency(balance, 4), "@@@@@@@@@@@@@@@") 

End Sub 

Problem 10: CORT Method 2 (some lines needed) 

Problem Description 

A program is required that will convert nautical miles to kilometres. The conversion is different 

and depends on whether international nautical miles or UK/US nautical miles are being 

converted. Two user-defined function procedures should be used to carry out the required 

conversions. Note that: 

1 nautical mile (international)= l.852Km 
1 nautical mile (UK/US)= I .8531 SKm 

A user should key-in the number of nautical miles within a text box, click on a relevant button, 

and the equivalent number of kilometres should be output in a picture box to 4 decimal places. 

Possible Lines of Code and Part-complete Solution 

Possible Lines Part Complete Solu:t1on 

picOisplay.Prinl numNautlcallntemallonalMiles: 
"International nautical miles converts to• 
plcOisplay.Cls 
plcOlsplay.Print FormatNumber(numKilometres, 4);" 
Kilometres" 
p1c0isplay.Prinl numNaullcalUKUSMlles; "UK I US 
nautical miles converts to" 
plcOlsplay.Print FormatNumber(numKi!ometres, 4): • 
Kilometres" 
Let numKilometres = 
lnlMilesToKMs(numNauticallntematlonalMiles) 
Let UKUSM1lesToKMs = mlles • 1.82 
Let UKUSMllesToKMs =mlles" 1.85318 
Lei ln!MilesToKMs"' miles• 1.852 
Let lnlMilesToKMs ='miles• 1.85318 

Appendix 8: CORT Problems 

. ============================= 
'This program converts from Nautical miles to 
'Kilometres 
'============================== 
Option Explicit 

Private Sub cmdConvertFromlntemalional_Click() 
Dim numNauticallntemationalMiles As Single 
Dim numKilometres As Single 

'Obtain the number of mlles 
Let numNauticallntemationa1Miles = 

Val(txtNauticalMiles. Text) 

'Do the conversion usin the function 

Page 254 



Possrble Lines Part Complete So!vtion 

Correct Solution 

'============================== 
'This program converts from NauUcal miles to 
'Kiiometres 
·-============================= 
OpUon Explicit 

Pn'vate Sub cmdConvertFromlntematlonal_Cllck() 
Dim numNautlcallnternatlonalMlles As Single 
Dim numKilometres As Single 

'Obtain the number of miles 

'Output the result 
picDlsplay.Cls 

End Sub 

Private Sub cmdConvertFromUKUS_Cllck() 
Dim numNauticalUKUSMiles As Single 
Olm numKilometres As Single 

'Obtain the number of miles 
Let numNauticalUKUSMiles = 

Val(txtNauticalMl!es.Text) 

'Do the conversion using the function 
Lei numKilometres = 

UKUSMilesToKMs(numNaullcalUKUSMiles) 

'Output the result 

End Sub 

Private Function lntMilesToKMs{miles As Single) 
As Single 

En_d Function 

Private Function UKUSMUesToKMs{mlles As 
Single) As Single 

End Function 

Let numNauticallntemationalMlles: Val(tx!NautlcalMiles.Ted) 

'Do the conversion using the function 
Let numKilometres = lnlMilesToKMs(numNautlcallnternatlonalMiles) 

'Output the result 
picOlsplay.Cls 
picOisplay.Prlnl numNautlcallntemationalMlles; "International nautical miles converts to" 
plcO!splay.Print FormatNumber(numKllometres, 4);" Kilometres" 

End Sub 

Private Sub cmdConvertFromUKUS_Click() 
Olm numNauticalUKUSMiles As S!ngte 
Olm numKllometres As Slngle 

Appendix 8: CORT Problems Page 255 



'Obtain the number of miles 
Lei numNauticalUKUSMiles = Val(tx\NauUcaJMlles.Te:d) 

'Do the conversion using the function 
Let numKilometres = UKUSMllesToKMs(numNauticalUKUSMlles) 

'Output the result 
plcDisplay.Cls 
picDisplay.Print numNautlcalUKUSMlles; "UK/ US nautical mlles converts lo" 
plcDisplay.Prinl FormatNumber(numKilometres. 4): 'Kiiometres" 

End Sub 

Pn'vate Function lntMllesToKMs(m1les As Single) As Single 
Let ln!MilesToKMs =miles' 1.852 

End Function 

Private Function UKUSMilesToKMs(mlles As Single) As Single 
LetUKUSMilesToKMs =miles• 1.65318 

End Function 

Problem 11: CORT Method 2 (some lines needed) 

Problem Description 

A program is required that will calculate the weekly pay for a shop worker. The basic pay rate is 

$12 per hour. A worker receives this basic pay rate for the first 35 hours worked. The rate for 

the next ten hours (ie up to 45 hours) is "time and a hair' which is $18 per hour. The rate for any 

hours worked above 45 hours for a week is "double time" which is $24 per hour. 

The total hours worked for a week should be entered into a text box and the program should 

then output the amount of pay. 

Possible Lines of Code and Part-complete Solution 

Possible Lines ~art Complete Solution fJ 

Let weekly Pay= 35 • 12 + 10 • 18 + (hoursWorked. 45) 
• 24 
Let weeklyPay = 35 • 12 + (hours Worked· 35) • 18 
Let weeklyPay = hoursWorked • 12 
If hoursWorked > 35 Then 
Else 
End If 

Appendix 8: CORT Problems 

'============================== 
'This program calculates weekly pay 
'============================== 
Option Expllcit 

Private Sub cmdCalculatePay_Click() 
Dim hoursWorked As Single 
Dim weeklyPay As Single 

'Obtain the number of hours 
Let hoursWorked = Val(txtHoursWorked.Text) 

If hoursWorked > 45 Then 

Else 

End If 

'Output the pay 
icDis la .Cls 

Page 256 



Possible Lines Part Complete Solution 

picOisplay.Print "Weekly pay is"; 
FormatCurrency{week\yPay, 2) 
End Sub 

Private Function UKUSMilesToKMs(mlles As 
Single) As Single 

Correct Solution 

'============================== 
'This program calculates weekly pay 
' ================:.."'--:========== 
Option Explicit 

Private Sub cmdcalculatePay_Cllck() 
Dim hoursWork.ed As Single 
Dim weeklyPay As Single 

'Obtain the number of hours 
Let hoursWorked = Vat(txthoursWorked.Text) 

If hours Worked > 45 Then 

End Function 

Let week\yPay = 35 • 12 + 10 • 18 + (hoursWork.ed • 45) • 24 
Else 
If hours Worked > 35 Then 
Let weeklyPay = 35 • 12 + (hours Worked • 35) • 18 

Else 
Let weekly Pay= hoursWorked • 12 

End If 
End If 

'Output the pay 
plcDlsplay.Cls 
p!cDisplay.Print "Weekly pay is"; FormatCurrency(weeklyPay, 2) 

End Sub 

Problem 12: CORT Method 3 (all lines needed, some lines to key-in) 

Problem Description 

Write a program which has a user defmed function procedure to determine the cost of posting a 

letter, of "large letter size", from Australia to the USA by air mail. The function should accept 

the weight of the letter in granunes, and return the cost in dollars according to the following 

table. Test the function by obtaining various letter weights from a textbox and then outputting 

the postage cost. Use a Select Case statement in the function. 

Weight Step 

Up to 20g 
Over 20g up to 50g 
Over 50g up to 125g 
Over 125g up to 250g 

Appendix 8: CORT Problems 

Cost in dollars 

1.40 
1.50 
2.50 
4.70 

Page 257 



Over 250g up to 500g 9.00 

If the weight entered is greater than 500g then an error message should be output. 

Possible Lines of Code and Part-complete Solution 

Possible Lines, Part Complete Solution 

plcDlsplay.Cls 
MsgBox "Error In postage cost" 
plcDisplay.Print "Postage cost ls: "; 
Fom1atCurrency(costOfPostage) 
Let costOfPostage = PostageCost(letterWelght) 

Correct Solution 

Option Explicit 

Private Sub cmdClearOutput_Cllck() 
picOisplay.Cls 

End Sub 

Private Sub cmdGo_Cllck() 
Rem Letter Costs 

Olm JelterWeight As S!ngle, costOfPostage As Single 

Appendix 8; CORT Problems 

Option Expl!cit 

Private Sub cmdClearOutpuLClick{) 

End Sub 

Private Sub cmdGo_Click{) 
Rem Letter Costs 

Dim letterWe!ght As Single, costOfPostage As 
Single 

Rem Obtain Input 
Let letterWeight = Val(txtLetterWeight.Text) 

If letterWeight <= 0 Or letterWelght > 500 Then 

Else 
'Calculate & output postage cost 

End lf 
End Sub 

Private Sub cmdQuit_Click{) 
End 

End Sub 

Private Funcllon PostageCost(letterWeight As 
Single) As Single 
'Thls function calculates postage cost. 

Select Case letterWeight 

End Select 

End Function 

Page 258 



Rem Obtain Input 
Let letterWeight = Val(lx\LetterWelghL Text) 

If letterWeight <= 0 Or JetterWeight > 500 Then 
MsgBox "Error In postage cost' 

Else 
·ca1cu1ate & output postage cost 
Let costOfPostage = PostageCost(letterWelght) 
p!cDlsplay.Print 'Postage cost ls: ": FonnatCurrency(costOfPostage) 

End If 
End Sub 

Private Sub andQult_Cllck() 
Ead 

End Sub 

Private Function PostageCosl(letterWeighl As Single) As S\ng!e 
'This function calculates postage cost 

Select Case letterWelght 
Case OTo 20 

Let PostageCost = 1.4 
Case21 To 50 
Let Postage Cost= 1.5 

Case 51 To 125 
Let PostageCost = 2.5 

Case 126 To 250 
Let PostageCost = 4.7 

Case 251 To 500 
Let PostageCosl = 9 

End Select 

End Function 

Problem 13: CORT Method 1 (all lines needed) 

Problem Description 

Write a program which accepts a number between 2 and 20 and then outputs the times table 

corresponding to that number. The number entered should be validated., Firstly check that a 

number has been entered (use the IsNumeric function) and then, if it is a number, check that the 

number is in the correct range. 

When the program is run, the focus should initially be set to (ie: the cursor is within) the 

txtTableNum textbox. This can be done in the fonn activate event procedure. 

A Do While loop should be used to output the table. 

Possible Lines of Code and Part-complete Solution 

Possible Lmes Part Complete Solullon 

MsgBox 'Number Is not In range" 
MsgBox "A valid number was not entered" 
Ead 
LetC=C+1 

Appendix 8: CORT Problems 

'=============================== 
'This program outputs "times" tables 
'=============================== 
O tion Ex licit 

Page 259 



Possible Lmes Part Complete Solution ' 

txtTableNum.Text = "" 
txtTableNum.Se!Focus 
txtTableNum.SetFocus 
picOisplay.Cls 
plcOisplay.Print C:" x "; TableNum;" = "; C • TableNum 

Correct Solution 

'==~=========================== 
'This program outputs "Umes" tables 
'=============================== 
Option Expllclt 

Appendix B: CORT Problems 

Private Sub cmdClear_Click{) 
'Clear the picture box and the text box and place 

the cursor 
'into the txtT ableNum text box 

End Sub 

Private Sub cmdGo_Click{) 
'This is the main procedure 

Dim TableNum As Integer 

'Obtain and valldate the Table number 

If lsNumeric{txtTableNum.Text) Then 'Is it 
numeric? 

Let TableNum = Val(txtTableNum.Text) 
'Change to a number 

lfTableNum >= 2 And TableNum <= 20 Then 
'Is it In range? 

Can OutputTable(TableNum) 'Output the table 
Else 

End lf 
Else 

End If 
End Sub 

Private Sub cmdQuiLCllck{) 
'Quit the program 

End Sub 

Private Sub Form_Activate{) 
'Place the cursor in the text box 

End Sub 

Private Sub OutputTable(TableNum As Integer) 
'output the times table 

Dim C As Integer 

LetC=1 
Do While C <= 12 

Loop 

End Sub 

Page 260 



Private Sub cmdClear_Cllck() 
'Clear the picture box and the text box and place the cursor 
'Into the txtTableNum text box 
picDisplay.Cls 
txtTableNum.Text ='"' 
txtTableNum.SetFocus 

End Sub 

Private Sub cmdGo_Click() 
'This Is the main procedure 

Dim TableNum As Integer 

'Obtain and validate the Table number 

If !sNumeric(txtTableNum.Text) Then 'Is it numeric? 
Let TabteNum = Val(txtTableNum.Text) 'Change to a number 
If TableNum >= 2 And TableNum <= 20 Then 'Is It In range? 
Call OutputTable(TableNum) 'Output the table 

Else 
MsgBox "Number Is not In range" 

End If 
Else 

MsgBox "A valid number was not entered" 
End If 

End Sub 

Private Sub cmdQult_Cllck() 
'Quit the program 
Eod 

End Sub 

Private Sub Form_Actlvate() 
'Place the cursor In the text box 
txtTableNum.SetFocus 

End Sub 

Private Sub OutputTable(TableNum As Integer) 
'output the times table 

Dim C As Integer 

LetC:a1 
Do Whtie C <= 12 
plcD!splay.Print C;" x ": TableNum: •"' ": C • TableNum 
LetC=C+1 

Loop 

End Sub 

Problem 14: CORT Method 1 (all lines needed) 

Problem Descriptioo 

Write a program which obtains a person's name and initial bank balance from a text file. It 

should then obtain from the file a series of transaction values which are either positive (credits) 

or negative (debits). These should be added to the initial bank balance to give a final bank 

balance. 

The program should output the person1s name, initial bank balance and final bank balance, and 

the nwnber of transactions processed. A text file exists called transactions.txt and contains the 

following: 

Appendix 6: CORT Problems Page 261 



"Gladys Mablethorpe", 1045.22 
150.00 
-940.00 
-567.87 
43.22 
99.95 
-67.32 

In the above, Gladys Mablethorpe has an initial balance of $1045.22 and her transactions are: 

$150 deposited, $940 withdrawn etc. 

The program has a textbox into which the full path and filename (transactions.txt) are entered. 

The initial value of the text property of this textbox has already been set. 

Possible Lines of Code and PartMcomplete Solution 

Possible Lines , Part Complete Solution · 

plcDlsplay.Cls 
Olm numberOITransaclions As Integer 
Open txtFlleName.Text For Input As #1 
Open transactlons.txt For Input l>-s #1 
Input #1, personName, lnllialBalance 
Input #1, lnlUalBalance, personName 
Input #1, transacUonValue 
Let finalBalance = lnlUalBalance 
Let lnitlalBalance = finalBalance 
Let finalBalance = finalBalance + transactionValue 
Let finalBalance:: finalBalance - transacUonValue 

' 

Let numberOFTransactions = numberOFTransactlons + 1 
Ead 

Correct Solution 

Appendix 8: CORT Problems 

Option Explicit 

Private Sub cmdQuil_Cllck{) 
'Quit the program 

End Sub 

Private Sub cmdClearOutput_Click{) 

End Sub 

Private Sub cmdGo_C!ick() 
Rem Bank Balance 

Dim personName As String 
Dim inltlalBalance As Currency, finalBalance As 

Currency 
Dim transactlonValue As Currency 

Rem Initialise the number of transactions 
Let numberOfTransactlons = O 

Rem Get the name and old balance 

Rem Gel all the transactions 
Do Whlle Not EOF(1) 

Loop 
Close #1 

Rem Output the details 

End Sub 

Page 262 



Option Explicit 

Private Sub cmdQult_C\lck() 
'Quit the program 
Ead 

End Sub 

Private Sub cmdClearOutput_Cllck() 
plcDlsplay.Cls 

End Sub 

Private Sub cmdGo Click() 
Rem Bank Balance' 

Olm personName As String 
Olm lnlllalBalance As Currency, final Balance As Currency 
Dim transacUonVa!ue As Currency 
Dim numberOfTransacijons As Integer 

Open txtFileName.Text For Input As #1 

Rem lnillallse the number of transactions 
Let numberOfTransactlons: 0 

Rem Get the name and old balance 
Input #1, personName, Initial Balance 

Let flnalBalance = lnlUalBalance 

Rem Get all the transactions 
Do While Not EOF(1) 
Input #1, transactlonValue 
Let fin al Balance= finalBa\ance + transaction Value 
Let numberOfTransactlons = numberOfTransacUons + 1 

Loop 
Close#1 

Rem Output the details 
plcOisp!ay.Prlnt "Banking Details:"; personName 
plcOisplay.Prinl "Old balance:": FormatCurrency(!nlUalBalance) 
plcDlsplay.Print "New balance:"; Formatcurrency(flnalBalance) 
picOlsplay.Print "Number of transactions: "; numberOfTransactlons 

End Sub 

Problem 15: CORT Method 3 (all lines needed, some lines to key-in) 

Problem Description 

Write a program which inputs 8 numbers contained in the file numbers.txt into an array. This 

should be done in the Form_ Load event procedure. 

Then, when a button is clicked, the program should display three columns, the first column 

containing the original 8 numbers, the second column containing the 8 numbers in reverse 

order, and the third column containing the sum of the corresponding Ilumbers in columns 1 and 

2. 

PossibltLines of Code and Part-complete Solution 

Possible Lines Part Complete Solutiorl , 

Appendix 8: CORT Problems Page 263 



Possible lines Part Complete Solution 

Dim fNumbers(1 To 8) As Single 
Do Whtie NotEOF(1) 
Do Whlle EOF(1) 
Loop 
Let Index= Index+ 1 
Input #1, fNumbers(lndex) 
Input #1, lndex(!Numbers) 
picDlsplay.Print 
plcDisplay.Prlnt 'Order", "Order" 
p!cDlsplay.Prlnt "Original", "Reverse", "Sum• 

Option Explicit 

'Declare the array at the form level 

Private Sub cmdDisplayColumns_Cllck() 
'Display the 3 columns 
Dim Index As Integer 

'Output a heading 

For Index= 1 To 8 

Next Index 
End Sub 

Private Sub cmdQuit_Cllck() 
'Quit the program 
End 

End Sub 

Private Sub Form Load() 
'Load the array from the data file 
Dim Index As Integer 

Open "A:\00230\numbers.txl" For Input As #1 
Lei Index= 1 

Correct Solution 

Option Explicit 

'Declare the array at the form level 
Olm fNumbers(1 To 8) As Single 

Private Sub cmdO!splayColumns_Cllck() 
'Display the 3 columns 
Dim Index As Integer 

'Output a heading 
plcDisp1ay.Prlnl "Original', 'Reverse", "Sum" 
plcDisplay.Prlnt "Order", 'Order" 
picDisplay.Print 

For index= 1 To 8 

Close #1 
End Sub 

plcOisplay.Prlnt fNumbers(lndex), fNumbers(9 - Index), fNumbers(lndex) + fNumbers(9 • Index) 
Next Index 

End Sub 

Private Sub cmdQuft_C!lck() 
'Quit the program 
Ead 

End Sub 

Private Sub Form_Load() 
'Load the array from the data file 
Dim Index As Integer 

'Open "A:\00230\numbers.txr For Input As #1 
Open App.Path & '\numbers.txt" For Input As #1 

Let Index= 1 

Appendix 8: CORT Problems Page 264 



Do Wh\le Not EOF(1) 
Input #1, fNumbers(lndex) 
Let Index= !ndex + 1 

Loop 

Close #1 
End Sub 

Problem 16: CORT Method 1 (all lines needed) 

Problem Description 

Write a program that places daily temperatures into an array. A temperature should be keyed

into a textbox and then placed in the next location in an array when a button is clicked. Hence, 

when the program is run, the first temperature entered will be placed.into array location one, the 

second temperature into array location two etc. 

There should be a second button on the form. When this button is clicked, the average 

temperature should be output. Note: 

• The array should have 10 locations. Hence up to 10 temperatures can be entered. 
• When placing a temperature in the array, check that the array is not full. If it is full, then 

output a message. 
• Clear the textbox after the temperature has been placed into the array and place the cursor 

into the textbox. 
• The array will need to be declared at the form level. 
• The counter used to keep track of the number of temperatures entered also needs to be 

declared at the form level. 

Possible Lines of Code and Part-complete Solution 

Possible Lines Part Complete Solution 

Dim fTemperatures(1 To 10) As Single 
Olm fNumberorremperatures As Single 
Nex!C 
For C = 1 To fNumberOfTemperatures 
Let fNumberOrremperatures = INumberOITemperatures 
• 1 
Lei fTemperatures(fNumberOfTemperatures) = 
Val(IXttemperature.Texl) 
Let sumOfTemperatures = sumorremperatures + 
rremperatures(C) 
Let txttemperature.Text = "" 
Let fNumberOrr emperatures = o 
txttemperature.SetFocus 
MsgBox "Sorry, you already have 10 temperatures" 

Appendix 8: CORT Problems 

Option Explicit 

Private Sub cmdAverage_Cllck() 
'Calculate the average temperature 
Dim C As Integer 
Dim sumOffemperatures 
Dim averageTemperature As Single 

Let average Temperature= sumOffemperatures 
I fNumberOffemperatures 

'Output the result 
picDisplay.Cls 
picDisplay.Print "Average temperature is"; 

averageTemperature;" Celsius" 
picDJsplay.Print "Number of temperatures 

entered="; fNumberOffemperatures 
End Sub 

Page 265 



;Possible Lines Part Complete Solution , 

Private Sub cmdGettemperature_Click() 
'Place the temperature entered into the array 

unless the array is full 
lf fNumberOfT emperatures < 10 Then 

Else 

End lf 
End Sub 

Private Sub Form_load() 
'Initialise the number of temperatures to zero 

End Sub 

Correct Solution 

Option Explicit 

Dim ITemperalures(1 To 10) As Single 
Dim fNumberOfTemperatures As Single 

Private Sub cmdAverage_Clicl<() 
'Calculate the average temperature 
Dim C As Integer 
Olm sumOfTemperatures 
Dim average Temperature As Single 

For C = 1 To fNumberOITemperatures 
Let sumOfTemperatures = sumOfTemperatures + fTemperatures(C) 

Nex!C 

lei averageTemperature = sumOfTemperatures I fNumberOfTemperatures 

'Output the result 
picDisplay.Cls 
picD!splay.Print "Average temperature is"; averageTemperature; "Celslus" 
picDisplay.Prinl "Number of temperatures entered = "; fNumberOfTemperatures 

End Sub 

Private Sub cmdGettemperalure_Cllck() 
'Place the temperature entered Into the array unless the array Is full 
lf fNumberOITemperatures < 10 Then 
Let fNumberOfTemperatures = !NumberOfTemperatures + 1 
Let fTemperatures(fNumberOITemperatures) = Val(txttemperature.Text) 
Let txttemperature.Text = "" 
txttemperature.SetFocus 

Else 
MsgBox "Sorry, you already have 10 temperatures" 

End If 
End Sub 

Private Sub Form_Load() 
'Initialise the number of temperatures to zero 
Let fNumberOfTemperatures = 0 

End Sub 

Problem 17: CORT Method 2 (some lines needed) 

Problem Description 

Appendix 8: CORT Problems Page 266 



Write a program which declares (using Dim statements) two parallel arrays of student names 

and their marks called fNames() and iMarks() at the form level. Note that the brackets after 

fNames and iMarks simply indicate that they are arrays and the "f' prefix indicates that the 

arrays are at the fonn level. 

The arrays can hold up to 15 names and marks and these should be obtained from a text file 

called res11lts.txt. This should be done in the Form Load event procedure. It is important that no 

more than 15 names and marks are placed in the arrays otherwise a "subscript out of range" 

message will be output. The names and marks are in no particular order. 

The program should be able to do the following when appropriate buttons are clicked: 

• Output the names and marks to a picture box. 
• S~rt the arrays into name order and redisplay the output. 
• Sort the arrays into mark order and redisplay the output. 
• Search the array of names for a name that has been entered into a textbox and output the 

corresponding mark or an error message if the name is not present. 
• Lines of code are only missing from cmdSortOnMark_Click and cmdSearch_Click. 
• The lines in the left-hand window have been separated such that the first set of lines is for 

the event procedure cmdSortOnMark _ Click and the second set is for the event procedure 
cmdSearch Click. 

Possible Lines of Code and Part-complete Solution 

Possible Lmes • Part Complete Solution 

............................................ 
""Use the following In cmdSortOnMark_Cllck ............................................ 
For passNum"' 1 To fNumberO!Names • 1 
For i "' 1 To fNumberOINames. passNum 
If !Marks(I) > fMarils(J + 1) Then 
If IMarks(i) < fMarils{I + 1) Then 
End lf 
Next passNum 
Nexll 
tempName,: fNames(I) 
fNames{I)"' tempName 
fNames(I) = INames(i + 1) 
fNames(i + 1) = tempName 
tempMark = IMarks(i) 
fMarks(i) = !Marks(I + 1) 
IMarks(I + 1)" tempMark ............................................ 
""Use the following in cmdSearch_Cllck"" ............................................ 
Let foundFlag = "no" 
let loundFlag = "yes" 
Letn=n+1 
Letn=n+2 
picDlsplay.Prinl "Name does not exist" 

Appendix 8: CORT Problems 

Rem =::==== Form Level Area ::===== 
Option Explicit 
Rem Declare Names array 
Dim fNames(1 To 15) As String 
Rem Declare Marks array 
Dim fMarks(1 To 15) As Single 
Rem Keep a track of the number of names 
Dim fNumberOfNames As Integer 
Rem =::=e:===::::======================:::: 
Private Sub cmdOutputAIIDetails_C!ick() 

Rem This outputs the contents of the 2 arrays 
Call OutputDetails 

End Sub 
Rem::=====::::::================::::====== 
Private Sub cmdSearch_C!lck() 

Dim searchName As String 
Rem the subscript of the array 
Dim n As Integer 
Rem Flag to indicate if found 
Dim foundFlag As String 

Rem Obtain the search name 
Let searchName = UCase(txtsearchName.Text) 

plcDisplay.Cls 
Letn=O 

Do While foundFla :: "no" And n < 

Page 267 



Pos:;ible lines Part Complete Solution 

Appendix 8: CORT Problems 

fNumberOfNames 
If searchName = UCase(fNames(n)) Then 
let foundFlag = "yes" 

End lf 
Loop 

If found Flag= "yes" Then 
picDisplay.Print "Mark Is"; fMarks{n} 

Else 

End If 

End Sub 
Rem================================= 
Private Sub cmdSortOnMark_Click() 

Rem This sorts the arrays into name order and 
then outputs the detalls 

Dim passNum As Integer 
Dim i As Integer 
Dim tempName As String 
Dim tempMark As Single 

Rem Now display the details again 
Call OutputDetalls 

End Sub 
Rem ================================= 
Private Sub cmdSortOnName_Click() 

Rem This sorts tlie arrays Into name order and 
then outputs the details 

Dim passNum As Integer 
Dim i As Integer 
Dim tempName As Siring 
Dim tempMark As Single 

For passNum = 1 To fNumberOfNames-1 
Fori = 1 To fNumberO!Names - passNum 
If fNames(i) > fNames(i + 1) Then 

Rem swap names 
tempName = fNames(I) 
fNames(I) = fNames(I + 1) 
fNames(i + 1) = tempName 
Rem Swap marks 
tempMark = fMarks(i) 
fMarks{I) = fMarks{i + 1) 
fMarks(l + 1) = tempMark 

End lf 
Next I 

Next passNum 

Rem Now display the detaUs again 
Call Outpu!Details 

End Sub 
Rem ================================= 
Private Sub Form_load() 
Rem Obtain the data from the file Tute9-

10ata.txt 

Open "A:\00250\results.txt" For Input As #1 
let fNumberOfNames = 0 

Do While Not EOF(1) And fNumberOfNames < 
15 

Page 268 



Possible Lmes Part Complete Solution 

Correct Solution 

Option Explicit 
Rem Declare Names array 
Dim 1Names(1 To 15)As Siring 
Rem Declare Marks array 
Dim 1Marks(1 To 15) As Single 
Rem Keep a track of the number of names 
Dim fNumberOINames As Integer 

Private Sub cmdOutputAIIDetalls_Ciick() 
Rem This outputs the contents of the 2 arrays 
Call Outpu\Detalls 

End Sub 

Private Sub cmdSearch Click() 
Dim searchName As Siring 
Rem the subscript of the array 
Dim n As Integer 
Rem Flag to lndlcate if found 
Dim foundFlag As String 

Rem Obtain the search name 
Let searchName = UCase(tx\SearchName.Text) 

picDisplay.Cls 
Let foundFlag = "no" 
Letn=O 

Do While foundFlag = "no" And n < INumberOINames 
Letn=n+1 
If searchName = UCase(fNames(n)) Then 
Let found Flag = ''yes" 

End If 
Loop 

lffoundFlag = "yes" Then 
picDisplay.Print "Mark Is"; !Marks(n) 

Else 
plcDisplay.Print "Name does not extst" 

End If 

End Sub 

Private Sub cmdSortOnMark_Cllck() 

Let fNumberOfNames = fNumberDfNames + 1 
Input #1, fNames(fNumberOfNames), 

fMarks({NumberOfNames) 
Loop 

Close #1 
End Sub 
Rem ================================= 
Private Sub OutputDetaUs() 

Rem This outputs the contents of the arrays 
Dim index As Integer 

plcDisplay.Cls 
For index= 1 To fNumberOfNames 
picDlsplay.Print fNames{!ndex), fMarks(index) 

Next Index 
End Sub 
Rem ================================= 

Rem This sorts the arrays into name order and then outputs the detalls 

Dim passNum As Integer 

Appendix 8: CORT Problems Page 269 



Dim i As Integer 
Dim tempName As String 
Dim tempMark As Single 

For passNum = 1 To fNumberOfNames - 1 
For!= 1 To fNumberOfNames - passNum 
If fMarks(i) > fMarks(I + 1) Then 
Rem swap names 
temp Name= fNames(i) 
fNames{i) = fNames(i + 1) 
INames(l + 1) = tempName 
Rem Swap marks 
tempMark = fMarks(i} 
fMarks(I) = fMarks(I + 1) 
fMarks(i + 1) = tempMark 

End If 
Next i 

Next passNum 

Rem Now display the deta!ls again 
Call Outputoetalls 

End Sub 

Private Sub cmdSortOnName_Ctick() 
Rem This sorts the arrays Into name order and \hen outputs the details 

Dim passNum As Integer 
Dim J As Integer 
Dim tempName As String 
Dim tempMark As Single 

For passNum = 1 To fNumberOINames - 1 
For i: 1 To INumberOINames - passNum 
lffNames(i) > fNames(I + 1) Then 

Rem swap names 
tempName = INames(I) 
fNames(I) = INames(i + 1) 
INames(i + 1) = tempName 
Rem Swap marks 
tempMark = fMarks(I) 
fMarks(I) = fMarks(i + 1) 
fMarks(! + 1) = tempMark 

End If 
Next i 

Next passNum 

Rem Now display the details again 
Call OutputDetalls 

End Sub 

Private Sub Forrn_Load() 
Rem Obtain the data from the file Tute9-1 Data.txt 

Open "A:100250\resu\ts.txt" For Input As #1 
Lei fNumberOfNames = 0 

Do While Not EOF{1)And fNumberOfNames < 15 
Let fNumberOINames = IJ\umberOfNames + 1 
Input #1, fNames(INumberOfNames), IMarks(fNumberOINames) 

Loop 

Close #1 
End Sub 

Private Sub Oulpu!Detalls() 
Rem This outputs \he contents of the arrays 
Dim index As Integer 

plcDisplay.Cls 
For Index= 1 To fNumberO!Names 
plcDisplay.Print INames(lndex), fMarks(lndex) 

Next Index 
End Sub 

Appendix 8: CORT Problems Page 270 



Problem 18: CORT'Method 3 (all lines needed, some lines to key-in) 

Problem Description 

Write a program to do the following: 

• Allow users to enter student names and marks into textboxes, click on a button, and add to a 
text file called marks.txt. The file does not necessarily exist. 

• On clicking a button, two new files should be created called low.txt and high.txt. These 
should contain details of students who obtained marks less than 50, and 50 or over 
respectively. 

• On clicking appropriate buttons, the contents of the various files should be displayed in a 
picture box. 

Examples of the expected file contents are: 

marks.txt 
11Mason, M.", 29 
"Brainbox, C.11

, 100 
"Fossey, T.11

, 50 
"Roy, G.", 49 
etc 

low.txt 
"Mason, M.", 29 
nRoy, G.", 49 

high.txt 
"Brain box, C. U, 100 
"Fossey, T.", 50 

Possible Lines of Code and Part-complete Solution 

Possible Lines Part Complete Solution 
I 

............................................ 
"Use the following in cmdAddToFile_Click ............................................ 
Open App.Path & "lmarks.txt" For Append As #1 
Open App.Path & '\marks.txt' For Output As #1 
Open App.Path & 'lmarks.txt" For Input As #1 
Write #1, studentName, studentMark 
Close#1 
Let tx!Name.Text = "" 
Let txtMark.Text ="" 
txtName.Cls 
tx!Mark.Cls 
txtName.SetFocus ............................................ 
"Use the following in cmdCreateFlles_Cllck ............................................ 
Open App.Path & "lmarks.txt" For Output As #1 
Open App.Path & '\marks.bet" For Input As #1 
Open App.Path & "llow.txr For Append As #2 
Open App.Path & "\low.txr For Output As #2 
O enA .Path&"\low.txl"For1n utAs#2 

Appendix 8: CORT Problems 

Option Explicit 
Rem============================= 
Private Sub cmdAddToFile_Click() 

Dim studentName As Strirg 
Dim studentMark As Single 

'Get data from text boxes 
Let studentName = txtName.Text 
Let studentMark = Val(txtMark.Text) 

'Output lhe name and mark to the file 

'Clear the textboxes and set the focus to the 
txtName textbox 
End Sub 
Rem============================= 
Private Sub cmdCreatefiles Click() 
'Create the two files -

Page 271 



Possible Lines . Part 9ompJete SoJutmn 
I • , 

Open App.Path & ·~hlgh.txl' For Append As #3 
Open App.Path & "\high.txt' For Output As #3 
Open App.Path & '~high.Ix\" For Input As #3 
Write #3, studentName, studentMark 
Write #2, studentName, studentMark 
Close#1 
Close#2 
Close#3 

Correct Solution 

Option Explicit 

Private Sub cmdAddToFJle_Cllck() 
Dim studentName As String 
Dim studentMark As Single 

'Get data from text boxes 
Let studentName = txtName.Text 
Let studentMark = Val(tx!Mark.Text) 

'Output the name and mark lo the file 

Appendix 8: CORT Problems 

'This assumes that marks.txt exists 
Dim studentName As String 
Dim studentMark As Single 

Do While Not EOF(1) 
Input #1, studentName, studentMark 
If studentMark < 50 Then 
Else 
End If 

Loop 

End Sub 
Rem ============================= 
Private Sub cmdDisplayHigh_Click() 
'Display sudent details for 50 or more marks 
'This assumes that high.txt exists 
Dim studentName As String 
Dim studentMark As Single 

Open App.Path & "\high.txt'' For Input As #1 
picDisp!ay.Cls 
Do While Not EOF(1) 
Input #1, studentName, studentMark 
picDisp!ay.Print studentName, studentMark 

loop 
Close #1 

End Sub 
Rem ============================= 
Private Sub cmdDisplaylow_Click() 
'Display sudent details for less than 50 marks 
'This assumes that low.txt exists 

End Sub 
Rem ============================= 
Private Sub cmdD!splayMarks_Click() 
'Display all names and marks 
Dim studentName As String 
Dim studentMark As Single 

Open App.Path & "\marks.txt" For Input As #1 
pJcDJsplay.Cls 
Do While Not EOF(1) 
Input #1, studentName, studentMark 
picD!splay.Print studentName, studentMark 

Loop 
Close #1 

End Sub 
Rem ============================= 

Page 272 



Open App.Path & "\marks.txt" For Append As #1 
Write #1, studentName, studentMark 
Close#1 

'Clear the textboxes and set the focus to the IX!Name textbox 
Lei lx!Name.Text = "" 
Let lx!Mark.Text,,"" 
txtName.SetFocus 

End Sub 

Private Sub cmdCrealefiles_Cllck() 
'Create the two files 
'This assumes that marks.Ix! exists 
Dim studen!Name As String 
Dim studentMark As Single 

Open App.Path & "\marks.IX!' For Input As #1 
Open App.Path & "\low.Ix!' For Output As #2 
Open App.Path & "\hlgh.lxl" For Output As #3 

Do While NotEOF(1) 
\nput #1, studentName, student Mark 
If studentMark < 50 Then 
Write #2, studentName, studen\Mark 

Else 
Wrlle#3, studen!Name, studentMark 

End If 
Loop 
Close#1 
Close#2 
Close #3 

End Sub 

Private Sub cmdDlsplayH!gh_Click() 
'Display sudent detalls for 50 or more marks 
'This assumes U,at high.bet exists 
Dim studen!Name As String 
Dim studentMark As Single 

Open App.Patt, & '\high.IX\" For Input As #1 
plcDlsplay.Cls 
Do While Not EOF{1) 
lnput #1, studentName, studen\Mark 
plcDlsplay.Prlnt student Name, sludentMark 

Loop 
Close#1 

End Sub 

Private Sub cmdDlsplayLow_cllck() 
'Display sudent detalls for less than 50 marks 
'This assumes that low.txt exists 
Dim studentName As String 
Dlm studentMark As Single 

Open App.Path & "\low.Ix!" For Input As #1 
plcDlsptay.C!s 
Do While Not EOF(1) 
Input #1, studentName, studentMark 
picOlsplay.Prlnt studentName, sludentMark 

Loop 
Close#1 

End Sub 

Private Sub cmdDlsplayMarks_Cllck() 
'Display an names and marks 
Dim studentName As String 
Dim studen!Mark As Stngle 

Open App.Path & "\marks.IX!" For Input As #1 
plcDlsplay.C!s 
Do While NotEOF(1) 
Input #1, studentName, studen!Mark 
plcDlsplay.Print studentName, sluden!Mark 

Loop 

Appendix 8: CORT Problems Page 273 



I Close #1 
End Sub 

Appendix 8: CORT Problems Page 274 


	Exploring a technology-facilitated part-complete solution method for learning computer programming
	Recommended Citation


