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Abstract: An intruder detection and discrimination sensor with improved optical 

design is developed using lasers of different wavelength to demonstrate the 

concept of discrimination over a distance of 6m. A distinctive feature of optics is 

used to provide additional transverse laser beam scanning. The sample objects 

used to demonstrate the concept of discrimination over a distance of 6m are leaf, 

bark, black fabric, PVC, wood and camouflage material. A camouflage material 

is chosen to illustrate the discrimination capability of the sensor. The sensor 

utilizes a five-wavelength laser combination module, which sequentially emits 

identically-polarized laser light beams along one optical path. A cylindrical 

quasi-optical cavity with improved optical design generates multiple laser light 

beams for each laser. The intensities of the reflected light beams from the 

different spots are detected using a high speed area scan image sensor. Object 

discrimination and detection is based on analyzing the Gaussian profile of 

reflected light at the different wavelengths. The discrimination between selected 

objects is accomplished by calculating four different slopes from the objects’ 

reflectance spectra at the wavelengths 473nm, 532nm, 635nm, 670nm and 

785nm. Furthermore, the camouflage material, which has complex patterns 

within a single sample, is also detected and discriminated over a 6m range by 

scanning the laser beam spots along the transverse direction. 

 

Keywords: Laser spectroscopy; Remote sensing; Object identification; Optical data 

processing. 

 

1. Introduction 

One of the major challenges facing military is to accurately identify and locate targets within a 

secured area. Since 1980’s, substantial efforts have been made to overcome this problem, and 

laser scanning technology has been considered as the best approach for identifying and locating 

targets in military applications [1]. 

The laser scanning system provides geometric results in terms of distance, position, attitude and 

co-ordinates. To obtain information from more than one point of an object, a scanning mechanism 

must be used to deflect the laser beam from the laser source, to the desired object surface. This 

deflection is usually in two or three dimensions opto-mechanically in conventional laser scanning. 

This type of laser scanners can be used for various types of applications such as airborne 



topographic mapping, surveying of buildings and plants, model generation for animation purposes 

[2]. Laser scanning has also been employed for satellite and missile tracking, target 

discrimination, surveillance and numerous other applications. Fault-tolerance and reliability have 

been the key factors that assess the performance of a solid intrusion detection system [3]. Tests 

conducted to determine the feasibility of using laser scanning for intrusion detection, have 

confirmed the capability of detecting humans at 25m range and vehicles at 80m range [4], 

respectively. These tests demonstrated large area coverage, the ability to determine the size of the 

intruder and a low false alarm rate [4].  

Multiwavelength laser scanning is an improvement from object detection to object identification 

and discrimination, where the objects and materials are discriminated by measuring their 

reflectance characteristics at specific wavelengths and matching them with their spectral 

reflectance curves. Multiwavelngth imaging method has been used to detect foreign material in 

cotton and the spectral region used was from 405nm to 940nm [5]. Multiwavelngth lasers were 

also used for micromachine-based cell counting and sorting system, which had the capability to 

detect different fluorescent dyes cells individually using lasers with different wavelengths [6]. 

Multiwavelength laser scanning is necessary to discriminate materials such as camouflage 

material which has numerous patterns embedded into its fabric. Holographic gratings cannot be 

implemented for multiple-wavelength laser scanning because different wavelengths will be 

diffracted along different angles. This makes the overlapping of collimated beams of different 

wavelengths difficult, and hence, object discrimination becomes impractical. With the recent 

advances in the development of high-speed sensors and high-speed data processors, the 

implementation of multi-wavelength laser scanners identification and discrimination for complex 

materials like camouflage material has now become feasible.  

This paper describes and demonstrates object discrimination through multiple wavelength laser 

sensor over a distance of 6 meters. The sensor architecture comprises a laser combination module, 

cylindrical quasi-optical cavity, collecting lens and the charged coupled device (CCD) imager. The 

most important feature about this particular sensor is the cylindrical quasi-optical cavity that 

generates multiple laser spots from a single laser source. The improved optical design of the sensor 

produces a 2D laser spot array in a concealed wide area, as illustrated in Figure 1. 

 

The sample objects considered to demonstrate the proof-of-concept for detection are leaf, wood, 

bark, PVC material and black fabric. These objects can be easily discriminated by a single laser 

spot, but a single laser spot is not enough to discriminate the camouflage material from other 

objects, because it has numerous patterns embedded in a single sample.  Hence, it is necessary to 

strike the camouflage material along the transverse direction with several beam spots (each spot 

sequentially illuminated with various wavelengths) in order to detect it. Through reflectance 

spectral measurements, a camouflage material exhibits slight change in spectral reflectance for 

some beams, whereas for a uniform object no change in spectral reflectance is measured for all 

beams. By projecting the laser spots along the transverse direction, the sensor was able to 

discriminate the camouflage material after processing the intensities of the reflected laser beams 

at different wavelengths. Experimental results demonstrate the ability of the sensor to 

discriminate the above-mentioned objects over a range of 6m. 

 

 

 



2. Methods and Materials 

 

2.1 Laser combination module 

The laser combination module is made of five lasers of different wavelengths, appropriately 

aligned using four free-space beam combiners. The lasers used in the experiments are 473nm 

laser: model MBL 473, 532nm: model MPL 532, these lasers are made by CNI Laser. The 635nm 

laser: model LDM 635, 670nm: model LDM 670 and 785nm: model LDM 785; these lasers are 

made by UVH Industries. The beam combiners used in the experiments are made by Edmund.  

 

The laser module produced five collimated and overlapped laser pulses of different wavelengths 

with similar polarization, which were turned on sequentially at any switching time using a custom-

made electronic driver, which can be operated automatically or in a manual mode. The diameter of 

each collimated laser beam was 4mm. The 635nm, 670nm and 785nm lasers had 6mW output 

power each, while the output power of both 473nm and 532nm lasers was 12mW. The optical 

beams of lasers 635nm, 670nm and 785nm were combined using the beam combiner 1 and 2, 

respectively. The other two lasers of wavelength 473nm and 532nm were combined with a beam 

combiner 3. Finally, the outputs from combiners 2 and 3 were combined with a beam combiner 4. 

 

 

The plane mirror 1 was placed at 45° with respect to the beam combiner 4, while the plane mirror 

2 was shifted slightly in such a way that the laser beams stroked the entrance window of the 

cylindrical quasi optical cavity at different positions. The combined (five) laser pulses were 

sequentially launched into the entrance window of the optical cavity which produced multiple 

laser beam spots, and by slightly shifting mirror 2 vertically without changing the angle of the 

mirror, the laser spots generated at the camouflage material were shifted in the transverse 

direction, as illustrated in Figure 2.   

 

2.2 Cylindrical quasi-optical cavity 

A cylindrical quasi-optical cavity, fabricated using BK-7 glass medium [7], was devised to 

produce multiple laser spots, as shown in Figure 3. 

 

The number of laser spots that the optical cavity can produce depends on the incident angle of the 

laser beam in the entrance window of the cavity. The rear side of the optical cavity was deposited 

with a high reflective coating (R2≥99%) while the front side had a partial transmission (T1≤13%, 

or R1=87%) coating.  

Figure 4 shows the principle of multiple beam reflections within the optical cavity. An injected 

laser beam of intensity P, undergoes multiple internal partial reflections according to the coating 

applied to either side, where P
`
 is the reflected power (approximately 4%) from the non-coated 

entrance window of the optical cavity.   

 

Given P and either the transmittance or reflective coating values, the outgoing power of each laser 

beam P1 – Pn and values of L, L', P' can be calculated through the iterative sequence of basic 

equations (1a-1d) as shown below. 

 

P 'n = Ln T2    (1a) 

                                               L'n = L(n-1) R1       (1b) 



Pn = L' (n-1) T1    (1c) 

Ln = L'n R2, n≥1   (1d) 

 

where P is the intensity of the injected laser beam, P' is the reflected power from the uncoated 

entrance window of the optical cavity (loss is approximately 4%), L is the laser power transmitted 

through the entrance window, L' is the laser power reflected off the transmittance coating back into 

the cavity and T is the coating transmittance value. 

 

 

An example illustrating the output optical power distribution through iterative sequence of basic 

equations (1a-1d) is shown in Figure 5. The 635nm laser from the laser combination module, with 

4mW of output optical power was launched at the entrance window of the optical cavity to 

generate multiple laser spots. Figure 5 also shows the measured output optical power distribution 

for 10 laser spots generated from a single laser source.  

 

The multiple laser spot generation leads to reduction in laser spot power levels. However, the 

power levels of all beam spots are high enough to attain a sufficiently high SNR, and hence 

adequate object discrimination. The incident angle of the beam depends on the incident angle of 

the injected laser onto the entrance window of the cavity. However, it has no impact on object 

detection, because the laser beam striking a particular spot of the object scatters along all 

directions and only a part of the scattered beam (that falls within the field of view, or solid angle, 

of the imager’s lens) is captured by the imager.  
 

 

2.3 Capturing reflectance 

A 0.5-inch interline transfer charged coupled device (CCD) imager was used to capture the 

intensity of reflected light from the sample illuminated by the cylindrical quasi optical cavity. The 

imager contains 768(H) × 494(V) pixels of size 8.4µm × 9.8µm. A C-mount TV lens of focal 

length ƒ = 12.5mm was used to collect the light scattered from the illuminated laser spots. The lens 

aperture was adjusted appropriately to avoid saturation of the imaged laser spot array.  
 

This particular imager exhibited high sensitivity over the wavelength range (470 – 785nm) as 

shown in Figure 6. Ten images were taken for each wavelength, and the images from the camera 

were digitized in 12-bit form using a Spiricon frame grabber circuit board. Then the images 

captured from the CCD were processed using MATLAB to find out the maximum peak intensity 

value. The estimated CCD acquisition time was 200µsec and the estimated overall acquisition time 

was 2msec. The acquisition was synchronized by sequentially switching ON and OFF the lasers, 

and capturing the intensities reflected off the various spots for each wavelength. 

 

2.4 Discrimination method 

The first step for object discrimination was to transform the captured information from the 

imagers 12-bit form into digital numbers, R(λn), where λn is the wavelength used to illuminate the 

object. This transformation was obtained by applying a Gaussian curve fitting and the function of 

the fitted curve is given in equation (2).                                           
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where a, b and σ are the maximum value, maximum position and standard deviation respectively. 

Once Gaussian curve was fitting with the measured intensities at different wavelengths, the 

algorithm produced the a value (peak) of Eq. (2) expressed in digital numbers for all wavelengths.  

The peak intensity values, a, were obtained for each beam by applying a non-normalized Gaussian 

curve fitted to the one-dimensional intensity profile of the imaged laser spot. The intensity profile 

is a row of pixels crossing the center of the laser spot, along the x-axis. The Gaussian curve was 

fitted to the intensity profile of the laser spot to obtain the peak intensity of the reflected laser 

beam, using the Matlab add-on toolbox named EzyFit. 

The next step in object discrimination was the analysis of the slope values of the reflectance 

spectra at the five laser wavelengths used in the sensor [8, 9]. Four slope values S1, S2, S3 and S4 

were defined as follows: 
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where λn is the wavelength of laser expressed in nanometers. Using the above equation (3), four 

different slope values were identified and the difference in slope values enabled the 

discrimination between various objects.  

Reflectance spectra for different materials were obtained by using USB 2000, visible spectrometer 

(400-850nm) made by Ocean Optics. The experimental setup for measuring the reflectance 

spectrum is shown in Figure. 7. 

The reflectance spectrum of a material can be used as a unique signature that identifies materials 

from each other. This is the basis for the multiwavelength remote sensing for object identification 

and discrimination. Each material was first characterized with USB 2000 spectrometers. 

 

3. Experimental results and Discussion  

3.1 Spectral object discrimination results 

Six different objects namely leaf, bark, wood, PVC, black fabric and camouflage material were 

used to demonstrate the concept of spectral object discrimination in the laboratory. The reflectance 

spectra of leaf, bark, wood, PVC and black fabric are shown in Figure. 8.  

 

The reflectance spectrum of the camouflage material is shown in Figure. 9. These reflectance 

spectra were obtained by using a visible spectrometer of spectral range 400-850nm. The sample 

objects were placed at 6m from the multiple wavelength sensor.  

Equations (2) and (3) were used to calculate the average slopes S1, S2, S3 and S4 for the various 

objects, which are shown in Figure 10. The results in Figure 10 clearly demonstrate that each 

object differs from others in at least one slope value, making it distinguishable. It can be noted that 

small errors were encountered during the slope measurements, mainly because of the dark current 

of the image sensor and, predominantly, the optical power fluctuations of the laser sources. 
 



The objects were placed at 6m from the optical cavity and illuminated with an array of laser 

beams emitted through the sensor. The reflected intensities from these objects were measured and 

processed. For each wavelength ten measurements were recorded with an interval of 30 seconds 

and the average slopes for all objects are shown in Figure 11.   

 

Slope S1 in Figure 11 shows that all the objects, except the black fabric, have negative non-

identical slope values. It can be noted that, the main requirement for object discrimination is that 

there should be a difference in at least any two slope values, and this criterion was clearly 

satisfied with all other sample objects. When mirror (2) was slightly shifted the laser spots shifted 

in the transverse direction resulting in the measured slopes shown in Figure 12.  

These experimental results shown in Fig. 11 and Fig. 12 validate the capability of the multiple 

wavelength sensor to discriminate between the various objects under investigation.  

 

The camouflage material, however, has complex patterns in comparison with the other objects 

discriminated in Figures 11 and 12. These patterns are embedded in a single sample, and when the 

laser beams were projected onto that material, the intensities of reflected laser beams were 

dependent upon the pattern whereon the beam was projected. Scanning of the beam spots was 

required in order to identify that material. The multiple wavelength sensor (Figure 1) had five 

different wavelengths, however the improved optical design shown in Figure 2 had the capability 

to emit multiple sets of parallel laser beams and this was a key characteristic necessary to 

discriminate materials of complex patterns within a single sample.  

 Figure 13 shows the average slope values S1, S2, S3 and S4   for the camouflage material patterns 

measured from the reflectance spectra captured by a spectrometer.  

 

Five different wavelengths were sequentially projected onto the camouflage material from the 

multiple-wavelength sensor. For a small shift in mirror 2 (shown in Figure 2), the projected laser 

spot array was shifted along the transverse direction, thus illuminating a different pattern. For 

every mirror shift, ten measurements were recorded for each wavelength to calculate the average 

reflectance of the camouflage material spots illuminated by the laser beams. Figure 14 shows the 

average slope values S1, S2, S3 and S4   for the camouflage material patterns measured by the 

multiple wavelength sensor at 6m in the laboratory. The measured slope values in Figure 14 were 

in good agreement with the slope values calculated from the measured reflectance spectra of the 

camouflage material patterns shown in the Figure 13. This clearly demonstrates that camouflage 

materials can be identified through transverse laser beam scanning. 

 

4. Conclusion and Future Work 

A novel five-wavelength laser scanner for intrusion detection and discrimination has been 

developed and demonstrated over a 6m range. Sample objects namely leaf, bark black fabric, 

PVC, wood and camouflage material placed at 6m from the sensor have successfully been 

identified and discriminated from one another by measuring four spectral reflectance slopes at the 

employed wavelengths.  

Camouflage material of complex patterns have been identified by shifting the laser spots along 

the transverse direction thus enabling the various camouflage patterns to be individually 

identified. Spectral analyses have confirmed that the laser wavelengths 473nm, 532nm, 635nm, 

670nm and 785nm are the most appropriate for object discrimination, and the calculated average 

slope values have confirmed that the selected sample object differs from others in at least one 

slope value, making them easily distinguishable.  



          

The future goal of this research is to successfully develop and improve the discrimination 

precision of a multiple wavelength sensor for a range exceeding 10m. This can be achieved 

through (i) increasing the imager’s resolution, (ii) extending the range of the imaging zoom lens, 

(iii) reducing the imager’s noise floor, (iv) improving the Gaussian beam fitting method, (v) 

developing an improved object identification algorithm and (vi) using additional lasers of different 

wavelengths, which leads to higher-resolution optical signatures for the target objects. 
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