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Abstract—In objective-based data farming, decision variables
of the Red Team are evolved using evolutionary algorithms such
that a series of rigorous Red Team strategies can be generated to
assess the Blue Team’s operational tactics. Typically, less than 10
decision variables (out of 1000+) are selected by subject matter
experts (SMEs) based on their past experience and intuition.
While this approach can significantly improve the computing
efficiency of the data farming process, it limits the chance of
discovering “surprises” and moreover, data farming may be used
only to verify SMEs’ assumptions. A straightforward solution is
simply to evolve all Red Team parameters without any SME
involvement. This modification significantly increases the search
space and therefore we refer to it as high-dimensional objective-
based data farming (HD-OBDF). The potential benefits of HD-
OBDF include: possible better performance and information
about more important decision variables. In this paper, several
state-of-the-art multi-objective evolutionary algorithms are ap-
plied in HD-OBDF to assess their suitability in terms of con-
vergence speed and Pareto efficiency. Following that, we propose
two approaches to identify dominant/key evolvable parameters
in HD-OBDF - decision variable coverage and diversity spread.

I. I NTRODUCTION

Data farming is an iterative experimental process which
relies on the repeated execution of stochastic simulation mod-
els to expose major portions of the problem landscape [4].
One critical aspect of data farming is that it can generate a
wide range of possible outcomes. For instance, a simulation
model with only 5 parameters each of which taking on one
of 100 values, can produce1010 combinations. Typically, the
data farming process starts with a trial and error selectionof
evolvable parameters in which subject matter experts (SMEs),
modelers, analysts and decision-makers screen the parameters
and identify important ones. Then, using High Throughput
Computing (HTC) facilities, numerous simulation executions
are conducted. Finally, the analyses are conducted by human
experts which may be assisted by computer tools to gain
insights into outliers, nonlinearities and intangibles. The inher-
ent steps of this iterative process are repeated until sufficient
insights to a problem are gained.

Objective-based data farming (OBDF) is a variant of data
farming. In OBDF, decision variables are evolved using evo-
lutionary algorithms (EAs) such that a series of rigorous Red
Team strategies can be generated to assess the Blue Team’s op-
erational tactics. The strategies that perform exceedingly well

Fig. 1. Schematic representation of computational red teaming.

against Blue’s operational tactics are retained. These retained
strategies can provide SMEs with alternative views regarding
the various vulnerabilities in the Blue’s operational tactics
(Fig. 1). Complex Agent System Evolver (CASE), inspired
by Automated Red Teaming (ART) [5] is an evolutionary
and modular framework to automate the process of OBDF.
It was constructed in a modular manner to accommodate with
ease the user’s specific requirements (e.g., use of different
simulation engines or evolutionary algorithms). In CASE, the
modelling and analysis steps of data farming can be carried
out dynamically such that the manually intensive involvement
of SMEs can be relieved.

However, CASE also relies on the domain knowledge of
SMEs to select evolvable parameters based on their past expe-
rience and intuitions. These parameters often focus on certain
aspects of the scenarios, with less than 10 parameters se-
lected (whereas a simple Map Aware Non-Uniform Automata
(MANA) model [10] may contain 1000+ parameters). This
limits the chance of discovering “surprises” and moreover,
data farming may be used only to verify SME assumptions.
A straightforward solution to this issue is to simply evolve
all Red Team parameters using EAs without any SME in-
volvement. This modification significantly increases the search
space and therefore we refer to it as high-dimension objective
based data farming (HD-OBDF). The potential benefits of HD-
OBDF include: 1. Possible better performance: By evolving a
larger set of decision variables, more sophisticated Red Team



attacking strategies can be explored. Decision variables which
appear to be uncorrelated may derive surprisingly effective
tactics and even obtain better performance. 2. Information
about more important decision variables: By investigatingthe
spread of the decision variables, more important decision
variables can be identified and further experiments can be
carried out to exploit the effects of these key factors.

In this paper, to assess the suitability of different multi-
objective evolutionary algorithms (MOEAs), several state-of-
the-art MOEAs are applied in HD-OBDF using an anchorage
protection scenario simulation model. These MOEAs include
Strength Pareto Evolutionary Algorithm 2 (SPEA2) [17], Non-
dominated Sorting Genetic Algorithm II (NSGAII) [8], Hyper-
volume Estimation Algorithm for MO Optimization (HYPE)
[2] and Multi-objective Differential Evolution (MODE). In
addition, the strategies, obtained using normal OBDF and HD-
OBDF, are compared and the issue of local optima and early
convergence in HD-OBDF are discussed as well. Following
that, two parameter filter approaches are discussed to identify
dominant evolvable parameters in HD-OBDF.

The remainder of the paper is structured as follows: An
overview of related work is first provided in Section II. Then,
Section III describes the CASE framework, followed by a brief
introduction on multi-objective evolutionary algorithms. The
experiments comparing MOEAs in HD-OBDF and discussion
on different parameter filter approaches are documented in
Section IV. Finally, Section V concludes with a summary of
the paper.

II. RELATED WORK

In the domain of objective-based data farming, exam-
ple systems include: Irreducible Semi-Autonomous Adaptive
Combat (ISAAC) [9], Automated Red Teaming [13], Warfare
Intelligent System for Dynamics Optimization of Mission
(WISDOM) [15] and Automated Red Teaming developed by
DSO National Laboratories, Singapore (DSO-ART) [5].

1) ISAAC: Ilachinski [9] adopted a simple genetic algo-
rithm using a single point crossover, mutation, elitist and
truncation selection operator to identify and evolve the Red
Team’s behavioral parameters.

2) WISDOM: Yang et al. [15] first utilize a (1+1) Evolution
Strategy (ES) and rely on the use of the linear combination of
objectives approach to tackle the multi-objective optimization
problems. Later, WISDOM was extended with NSGAII to
improve the evolutionary dynamics as well as the range of
best solutions. Their studies showed that objective-baseddata
farming could provide better understanding of warfare.

3) DSO-ART:Automated Red Teaming (ART) is an auto-
mated process that augments Manual Red Teaming (MRT),
which is a technique frequently used by the Military Opera-
tional Analysis community to uncover vulnerabilities in opera-
tional tactics. ART makes use of multi-objective evolutionary
algorithms such as SPEA2 and NSGAII to effectively find
a set of non-dominated solutions from a large search space.
ART has been applied on several military based scenarios.
Choo et al. [5] demonstrated the capability of ART using an

urban operations scenario which involves the defense of an
urban area controlled by the Red Team. Their work showed
that ART was able to discover solutions which were useful
for analysts to refine and design their strategies and thereby
ensuring robustness of plans and higher mission success rates.
Another work on ART was performed by Sim et al. [12] on a
maritime defence scenario. The maritime scenario involvesthe
defence of a coastline by three Blue ships against attacks from
five Red ships. Experimental results showed that ART was able
to generate tactics that were unintuitive to the authors when
performing MRT. Wong et al. [14] extended the work by Sim
et al. by evaluating ART’s effectiveness using an anchorage
protection scenario. Similarly, their findings showed thatART
is a useful tool for complementing the Manual Red Teaming
effort by providing useful and non-intuitive tactics.

However, as mentioned earlier, these experiments focused
on certain aspects of the scenarios with less than 10 evolvable
parameters selected. For instance, in Yang et al. [15], ten
different decision variables representing the characteristics of
personalities are evolved for the Red Team in six different
scenarios. In Choo et al. [5], the study focuses on how intangi-
bles could lead Red to break Blue with 8 evolvable parameters
(e.g., Red Squad Aggressiveness and Red Squad Cohesion).
Sim et al. [12] evolved 5 decision variables to exploit the Red
Team’s behaviour (e.g., Aggressiveness and Cohesiveness).
This evolvable parameter selection approach can significantly
improve the computing efficiency of the OBDF process. But it
limits the chance of discovering “surprises” and moreover,data
farming may be used only to verify SMEs’ assumptions. In
this paper, HD-OBDF is explored using the CASE framework.
A flowchart and the features of the CASE framework are
presented in the next section.

III. T HE CASE FRAMEWORK

Fig. 2. Flowchart of CASE Framework.

To automate the process of OBDF, Complex Adaptive
Systems Evolver (CASE) was constructed. CASE was inspired
by the Automated Red Teaming (ART) [5] framework. In
CASE, the modeling and analysis steps of data farming can be
carried out dynamically based on EAs such that the manually
intensive involvement of SMEs can be relieved. The three main
components of CASE are distinguished as follows:



TABLE I
L IST OF EVALUATED MULTI -OBJECTIVE EVOLUTIONARY ALGORITHMS.

Algorithm Ref.
Non-dominated Sorting Genetic Algorithm II (NSGAII) [8]
Strength Pareto Evolutionary Algorithm 2 (SPEA2) [17]
Hypervolume Estimation Algo. for MO Optimization (HYPE) [2]
Multi-objective Differential Evolution (MODE) ∗

1

A. The model generator

This component takes as inputs a base simulation model
specified in the eXtended Markup Language (XML) and a set
of model specification text files. According to these inputs,
novel XML simulation models are generated and sent to the
simulation engine for evaluation.

B. The simulation engine

The set of XML simulation models is received and executed
by the stochastic simulation engine. Each simulation model
is replicated a number of times to account for statistical
fluctuations. A set of result files detailing the outcomes of
the simulations (in the form of numerical values for instance)
are generated. These measurements are used to evaluate the
generated models, i.e., these figures are the fitness (or cost)
values utilized by the EA.

C. The multi-objective evolutionary algorithm

EAs are stochastic population-based search techniques in-
spired by real phenomena occurring in nature. EAs simulate
natural evolution through the variation (i.e., chromosomal
recombinations and gene mutations) of genetic material and
selection of fittest (from a phenotypic viewpoint) candidate
solutions. A wide variety of EAs has been developed and they
differ from each other on the specification and implementa-
tion of common properties: problem representation, variation
and selection of candidate solutions. In contrast with single
objective EAs (using linear combination techniques such as
the weighted sum of objectives), Pareto-based multi-objective
EAs (MOEAs) address explicitly multiple (and potentially
conflicting) objectives. Table I lists the MOEAs (which are
representative of the state of the art in the area) evaluatedin
this comparative study.

The key algorithmic differences between these algorithms
depend in the specification of the selection schemes which
determine the most promising candidate solutions to be con-
served/evolved during the search. Several computational tech-
niques exist to select the most “promising” candidate solutions
whilst considering the above conflicting objectives: NSGAII
and MODE utilize the “crowding distance” (i.e., an estimation
of the density) of the solution points. HYPE employs the
hypervolume of the solution space dominated by the Pareto set
approximation (these algorithms employ differing implemen-
tations to approximate the hypervolume indicator value). The
variation (e.g., recombination and mutation) of solutionsfor
NSGAII, SPEA2 and HYPE are conducted using the simulated
binary crossover (SBX) operator [6] whereas MODE utilizes
weighted difference vectors. The PISA [3] implementationsof

TABLE II
MANA SETTINGS FORRED AND BLUE FORCES IN MARITIME

ANCHORAGE PROTECTION SCENARIO.

Unit Qty. Speed Detection
range

Weapon
range

Weapon hit
probability

Inner-Blue
patrol

3 16
knots

6 nm 2 nm 80%

Outer-Blue
patrol

4 16
knots

6 nm 2 nm 50%

Green ves-
sels

20 N/A N/A N/A N/A

Red forces
5 16

knots
2 nm 2 nm (Blue) 5% (Blue)

1 nm (Green) 100% (Green)

the above algorithms are utilized to assist this research except
for MODE1, which was implemented by the authors).

In CASE, the set of simulation results and associated model
specification files are received by the MOEAs, which, in
turn, process the results and produce a new “generation” of
model specification files. The generation of these new model
specifications is driven by the user-specified (multi)objectives
(e.g., maximize Blue casualties and minimize Red casualties).
The algorithm iteratively generates models which would in-
crementally, through the evolutionary search, best exhibit the
desired outcome behavior. The model specification files are
sent back to the model generator; this completes the search
iteration. The above components are depicted in Figure 2
which presents the flowchart of a CASE experiment.

IV. EXPERIMENTS

In this section, a maritime anchorage protection scenario is
examined. Previous OBDF using this scenario conducted in
[12], [14] evolved less than 10 decision parameters with pa-
rameter space pre-defined by SMEs. In this study, the MOEAs
evolve a much wider range of the Red Team parameters. In
the first case study, CASE evolves waypoint positions (33
parameters) and personality weightings for the Red Team (27
parameters). Hence, a total of 60 evolvable parameters are
chosen. In the second case study, for each Red vessel, the
number of intermediate waypoints (up to five) is evolved. This
results in a total of 80 evolvable parameters with an even larger
search space. Firstly, four MOEAs (NSGAII, SPEA2, HYPE
and MODE) are applied in these two case studies to assess
their performance in HD-OBDF. Secondly, two parameter filter
approaches (decision variables coverage and diversity spread)
are discussed to identify dominant evolvable parameters in
HD-OBDF.

A. Maritime Anchorage Protection Scenario

In this scenario, a Blue Team (composed of 7 vessels)
conducts patrols to protect an anchorage (in which 20 Green

1MODE is partially based on a DE variant proposed in [1]. MODE
introduces an external archive to promote the effect of elitism. Moreover,
unlike other multi-objective differential evolution algorithms where the indi-
vidual solution sets are selected to generate offspring solution sets from the
current population, MODE selects them from the archive (containing the best
candidate solutions found so far).



TABLE III
EVOLVABLE RED PARAMETERS IN MARITIME ANCHORAGE PROTECTION

SCENARIO.

Red property Abbreviation Min Max
Way Point Position
Team 1 initial position (x,y) RedHX, RedHY (0,0) (399,39)
Team 2 initial position (x,y) RedHX, RedHY (0,160) (399,199)
Intermediate waypoints (x,y) RedMX, RedMY (0,40) (399,159)
Team 1 final position (x,y) RedFX, RedFY (0,160) (399,199)
Team 2 final position (x,y) RedFX, RedFY (0,0) (399,39)

Personality Weightings

RedAggression -100 100
RedCohesiveness -100 100
RedDetermination -100 100
AliveNeutrals -100 100
AliveEnemy -100 100
EasyTerrain -100 100
Centre -100 100
etc -100 100

commercial vessels are anchored) against threats. Red forces
(5 vessels) attempt to break Blue’s defense strategy and
inflict damage to anchored vessels. The aim of the study is
to discover Red’s strategies that are able to breach Blue’s
defensive tactic. Figure 3 depicts the scenario which was
modeled using the agent based simulation platform MANA.
The Blue patrolling strategy is composed of two layers: an
outer (with respect to the anchorage area, 30 by 10 nm) and
inner patrol. The outer patrol consists of four smaller but
faster boats. They provide the first layer of defense whereas
the larger and heavily armored ships inside the anchorage are
the second defensive layer. Table II summarizes the model
properties.

Fig. 3. MANA model of the maritime anchorage protection scenario. (A):
Three of the Red vessels (squad 1) are set up to initiate theirattack from the
north while the remaining two attack (squad 2) from the south.The initial
positions of Blue vessels are fixed. In contrast, the 20 Greencommercial
vessels’ initial positions are randomly generated within the anchorage area at
each MANA execution. (B): Example Red trajectories.

In CASE, each candidate solution is represented by a vector
of real values defining the different evolvable Red behavioral
parameters. The home and final positions together with the
intermediate waypoint define the trajectory of each distinct
Red vessel. Three of the Red craft (Team 1) were set up
to initiate their attack from the north while the remaining
two attack (Team 2) from the south. This allows Red to
perform multi-directional attack on the anchorage. In addition,
the final positions of the Red craft are constrained to the
opposite region (with respect to the initial area) to simulate

TABLE IV
SUMMARY OF SIMULATION PROPERTIES.

Case study Number of dimensions Search space size
1 60 8.62× 10133

2 80 2.07× 10187

escapes from the anchorage following successful attacks.
Personality weightings contain several personality properties
(e.g., attraction or repulsion to enemies, enemy threat, ideal
enemy, friends, neutrals, concealment) which can be varied
between -100 and 100. The weighting value corresponds to
the degree of attraction or repulsion. Previous studies [5],
[12], [14] focus on the Red Team’s attacking behaviors (e.g.,
Aggressiveness, Cohesiveness, Attrition and Determination)
and set other behavior parameters (e.g., Easy Going, Cover,
Alternative Waypoint, Neutrals and Unknowns) to be a neutral
value of zero. In the maritime anchorage protection scenario,
there are 27 personality weighting parameters available for the
Red team and only 7 are listed in Table III. Two case studies
are devised based on this model. The first case study tries
to exploit the Red team’s personality properties by evolving
all Red team personality weighting parameters. In the second
case study, more waypoints are added to evolve more complex
attacking trajectories. The number of dimensions (evolvable
parameters) and search space size for each case study are
summarized in Table IV.

1) Case study one:All Red Team personality weightings
are subject to evolution without any domain knowledge. This
results in a total of 60 evolvable parameters selected for an
extremely large search space.

2) Case study two:For each Red vessel, the number of
intermediate waypoints (up to five) is evolved. This enables
the evaluation of more complex trajectories. To promote the
emergence of more advanced Red trajectories (involving more
than a single intermediate waypoint), the anchorage area is
expanded (doubled) and simulation time limit increased (from
250 to 1200 discrete time steps). This results in a total of 80
evolvable parameters with an even larger search space.

B. MOEAs evaluation in HD-OBDF

Four MOEAs (NSGAII, SPEA2, HYPE and MODE) are
applied in these two case studies to assess their performance
in HD-OBDF. The default and most commonly-used parameter
settings (as reported in the literature [11], [5]) for these
algorithms are employed in the experiments as shown in
Table V. Two Measures of Effectiveness (MOEs) were used
to evaluate a given solution. The two MOEs are:

∙ Mean Red Casualty (Minimize)
∙ Mean Green Alive (Minimize)

Each algorithm was configured to perform a maximum of
10,000 evaluations on the scenario. The MOEs obtained for
each solution is the mean value computed from the end state
of 30 replications of the simulation in MANA.



TABLE V
THE SETTINGS FOR THEMOEAS.

Settings NSGAII SPEA2 HYPE MODE
Population Size 100 100 100 100

Number of Generations 100 100 100 100
Crossover rate 0.9 0.9 0.9 N/A

Crossover index 20 20 20 N/A
Mutation rate 0.1 0.1 0.1 N/A

Mutation index 20 20 20 N/A
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Fig. 4. The MOEAs’ hypervolume dynamics over 100 generations in case
study one.

There are two goals in multi-objective optimization (MOP),
convergence and diversity. The hypervolume indicator consid-
ers both by measuring the volume of the dominated portion of
the objective space [18]. As it possesses the highly desirable
feature of strict Pareto compliance, hypervolume has been of
exceptional interest in recent MOP studies. For the hyper-
volume indicator, if the Pareto set A dominates the Pareto
set B, the hypervolume of A should be higher than that of
B. In our study, the Weighted Hypervolume Indicator (WHI)
package developed by Zitzler et al. [16] is utilized to compare
the MOEs generated by MOEAs over 100 generations. To
make the output consistent with the other indicator tools,
WHI outputs negative hypervolume so a lower indicator value
corresponds to a better approximation set. The MOEAs’
hypervolume dynamics over 100 generations are presented
in Figures 4 and 5. In terms of the final generation Pareto
performance, we can observe that for case study one, HYPE
achieves the best performance (NSGAII: -42.44505, SPEA2:
-41.76637, HYPE: -44.42332, MODE: -41.72772) whereas
in case study two, SPEA2 (-44.07501) outperforms all other
MOEAs (NSGAII: -41.66205, HYPE: -40.20002, MODE: -
43.01387). In terms of convergence speed, in both case studies
one and two, HYPE converges much faster than the other
MOEAs. As we can observe, before generation 40, there is
a clear advantage of HYPE and by using the decision space
diversity running performance metric [7], we find that the
decision variables of HYPE converge and stabilise at around
generation 40 whereas other MOEAs reach convergence much
later.
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Fig. 5. The MOEAs’ hypervolume dynamics over 100 generations in case
study two.

Fig. 6. Surprising attacking strategies obtained in HD-OBDF in which the
Red team does not follow attacking trajectory.

Furthermore, for HD-OBDF, many surprising attacking
strategies and behaviours are observed in the final generation
population. Previous OBDF experiments using the anchorage
model always derive high positive waypoint personality value
which effectively enforces the Red team to follow the gen-
erated attacking trajectories. In HD-OBDF, negative waypoint
personality value is observed which simply means that the
Red team avoids the waypoint. With the combination of high
attraction to the central area and other personality settings,
a surprising behaviour is obtained as demonstrated in Figure
6. And unexpectedly, the Red Team manages to kill half of
the green vessels without a single red causality. This type
of strange yet efficient attacking behaviour has never been
observed in normal OBDF.



C. Parameter filter approaches

As mentioned earlier, selecting more decision variables
to evolve cannot guarantee that better performance in HD-
OBDF can be achieved. In this section, we investigate two
parameter filter approaches to identify the key factors to
evolve in OBDF for case study one. Since HYPE can always
converge relatively faster than other MOEAs, we examine the
solution set generated by HYPE at generation 20 and extract
dominant/key decision variables based on their spread and
these further selected decision variables are evolved fromthe
beginning again using NSGAII which is the most commonly
used benchmark MOEA.

1) Decision variables coverage:In this approach, we inves-
tigate the coverage of the decision variables. The coverageis
basically the spread of decision variables over the valid range.
It is calculated through dividing the range of the decision
variable in the population by the valid range of that particular
decision variable, (max-min)/range. In our study, 15 decision
variables with high coverage are selected to run the experiment
again. To compare the effect of converged decision variables,
we also chose 15 decision variables from the bottom which
are converged in the early generation to repeat the experiment
of case study one. All other non-evolvable decision variables
are set to a neutral value of zero. These decision variables
are shown in Table VI and their hypervolume performance
is displayed in Figure 7. Intuitively, decision variables which
are irrelevant to the objective values should behave randomly
throughout the evolutionary optimization process and hence,
achieve a wider spread. Yet, the simulation results are exactly
opposite as shown in Figure 7. The decision variables which
converge relatively early are not key/dominant factors. The
two sets of decision variables have a huge difference in terms
of hypervolume (wide spread: -29.35675, narrow spread: -
22.42101). Finally, both wide and narrow spread decision
variables (30 decision variables) are subject to evolution
using NSGAII again and a hypervolume value of -40.7704
is obtained. This Pareto-performance is slightly worse than
the hypervolume (NSGAII: -42.44505) achieved by evolving
60 decision variables.

2) Diversity Approach: In the diversity approach, instead
of simply looking at the coverage, we try to explore the
decision variables’ diversity spread. The diversity performance
is derived as follows:

Given the minimal and maximal boundary values, the hy-
perplane is thus divided into a number of grid cells (population
size divided by the number of objectives). The diversity
performance metric is based on whether each cell contains
a solution point or not. The best diversity performance is
achieved if all cells contain at least a solution point. The steps
to calculate the diversity are as follows.

∙ Step 1: Calculate diversity array.
The number of integer variables in the diversity array is
equal to the number of cells in the hyperplane. Each vari-
able in the diversity array corresponds to one particular

TABLE VI
WIDE AND NARROW SPREAD DECISION VARIABLES.

Wide spread variables Narrow spread variables

Variables min max Variables min max
Red5HX 0 399 Red Determination 20 100
Red3MX1 0 399 inorgfriends -100 100
Red1MY1 40 159 inorgunknowns -100 100
inorgthreat3 -100 100 Red4FY 0 39
enideal -100 100 orgotherfriend -100 100
Red1FX 0 399 nextwaypoint -100 100
aliveEnemy -100 100 Red5MY1 40 159
Red4HX 0 399 easyterrain -100 100
injuredfriends -100 100 Red2HX 0 399
orgsquadfriend -100 100 Red4MY1 40 159
enthreat1high -100 100 Red3MY1 40 159
Red2HY 0 39 Red2MX1 0 399
centre -100 100 Red3FX 0 399
Red5FX 0 399 Red1HY 0 39
Red4HY 160 199 aliveFriends -100 100
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Fig. 7. Hypervolume performance of case study one using wide and narrow
spread decision variables.

cell i. The valueℎ(i) of the itℎ elements is derived using
Equation 1.

ℎ(i) =

{

1 , if cell i contains a representative point

0 ,otherwise
(1)

∙ Step 2: Assign a value, m() to each cell i depending on
its neighboring cells’ℎ() values in the diversity array.
The value of theitℎ cell is calculated as shown in Table
VII.
For example let us consider the grid patternsp1=010 (i.e.,
ℎ(i − 1) = 0, ℎ(i) = 1 and ℎ(i + 1) = 0 and p2=101.
According to Table VII, we obtain m(p1) = m(p2) = 0.75
which represents a good periodic spread pattern. Whereas
if we considerp3=110, we obtain m(p3)= 0.67 meaning
that p3 covers a smaller spread.

∙ Step 3: For each dimension in the decision and objective
space, calculate the diversity measuredm by averaging
them() values.

dm =

∑number of grids
i

m(ℎ(i− 1), ℎ(i), ℎ(i+ 1))

Number of Grids
(2)



TABLE VII
MAPPING TABLE TO ASSIGN A VALUE TOm(). (ADAPTED FROM [7])

ℎ(i− 1) ℎ(i) ℎ(i+ 1) m(ℎ(i− 1), ℎ(i), ℎ(i+ 1) )
0 0 0 0.00
0 0 1 0.50
1 0 0 0.50
0 1 1 0.67
1 1 0 0.67
0 1 0 0.75
1 0 1 0.75
1 1 1 1.00

To illustrate the procedure to calculate the diversity
measure, an example is presented in Figure 8.

Fig. 8. Example of computing the diversity metric

In this example, a two-dimension (f1 and f2) diversity
measure is examined. The solution points are marked as
points. Suppose the population size is 10, we divide the
range of f1 and f2 values into 10/2 = 5 grids. Then,
for each grid, the value ofℎ() is calculated based on
whether the grid contains a representative solution point
or not. Then, the value ofm() and the diversity measures
are calculated based on a sliding window containing
three consecutive grids. Theℎ() values of the imaginary
boundary grids are always 1 as shown in the shaded grids.
Firstly, thef2 = 0 plane is used as the reference plane.

dm(f1) =
0.67 + 0.50 + 0.50 + 0.67 + 1

5
= 0.668

Then, thef1 = 0 plane is selected as the reference plane.

dm(f2) =
1 + 1 + 0.67 + 0.75 + 0.67

5
= 0.818

So clearly decision variablef2 has a better diversity
spread than decision variablef1.

Based on the diversity metric described above, the decision
variables at generation 20 are ranked. The top and bottom 15
decision variables are chosen to run further experiments using
case study one as listed in Table VIII. All other non-evolvable
decision variables are set to a neutral value of zero. Their
hypervolume dynamics over 100 generation are presented in
Figure 9. As shown, the evolution using low diversity decision

TABLE VIII
HIGH AND LOW DIVERSITY DECISION VARIABLES.

High diversity variables Low diversity variables

Variables min max Variables min max
Red4MX1 0 399 cover -100 100
orgknowns -100 100 Red2HY 0 39
injuredfriends -100 100 Red5MY1 40 159
Red1MX1 0 399 inorgfriends -100 100
Red1HY 0 39 Red3FX 0 399
Red4HX 0 399 Red5MX1 0 399
concealment -100 100 Red1HX 0 399
Red5FY 0 39 nextwaypoint -100 100
Red2MX1 0 399 enideal -100 100
Red4MY1 40 159 Red2HX 0 399
inorgthreat2 -100 100 Red5HY 160 199
Red Cohesiveness -100 100 aliveneutrals -100 100
Red3MX1 0 399 Red4FX 0 399
Red1FY 160 199 orgneutrals -100 100
Red4HY 160 199 aliveEnemy -100 100

variables has a much better initial performance than the one
with high diversity; however, as the evolution progresses,the
evolutionary process using high diversity decision variables
produces better hypervolume performance (low diversity: -
33.56768, high diversity: -36.13803). But this time, the dif-
ference between the two is not as obvious as the one in the
decision coverage approach. Then, we combine both high and
low diversity decision variables and form a new set of 30
decision variables. By evolving these 30 decision variables,
the experiment is repeated. As demonstrated in Figure 10,
the set of experiments evolve fewer (30) decision variables,
yet achieves better results (Diversity approach (30 variables):
-42.81468, NSGAII (60 variables):-42.44505, Variable cover-
age (30 variables): -40.77040).

Hence, it seems that the diversity of decision variables
is a more promising approach to identify dominant decision
variables. The high diversity decision variables can facilitate
exploration of the search space whereas the low diversity
decision variables can exploit the Pareto front and further
improve the quality of the solution sets. In addition, our
intuitive guess that irrelevant decision variables shouldbehave
randomly whereas key/dominant one should converge early is
disproved in HD-OBDF.

V. CONCLUSION

In this paper, the first preliminary work on high-dimensional
data farming is explored. Firstly, to assess the suitability of
different MOEAs, several state of the art MOEAs (NSGAII,
SPEA2, HYPE and MODE) are applied in HD-OBDF using an
anchorage protection scenario simulation model. In terms of fi-
nal generation Pareto performance, we can observe that HYPE
performs the best in case study one whereas in case study two,
SPEA2 outperforms all other MOEAs. In terms of convergence
speed, in both case studies one and two, HYPE converges
much faster than other MOEAs. This feature is significantly
desirable for very complex stochastic models which require
long time to run and multiple replications to consolidate the
data. By evolving a larger set of decision variables, more
complex attacking strategies and behaviour can be explored
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Fig. 9. Hypervolume performance of case study one using high and low
diversity spread decision variables.
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Fig. 10. Hypervolume performance of case study one using complete and
selected decision variables.

and decision variables which appear to be uncorrelated may
derive surprisingly effective tactics and even obtain better
performance. Secondly, by investigating the spread of the
decision variables, more important decision variables canbe
identified. Intuitively, decision variables which are irrelevant
to the objective values should behave randomly throughout the
evolutionary optimization process and hence, achieve a wider
spread. Yet, the simulation results show the exact opposite.
Both evolutions of wide spread and high diversity decision
variables obtain much better performance than the experiments
evolving the early converged decision variables. Two parame-
ter filter approaches are presented in this work. Based on our
preliminary experiments, the diversity spread approach isquite
promising. The high diversity decision variables can facilitate
exploration of the search space whereas the low diversity
decision variables can exploit the Pareto front and further
improve the quality of the solution sets. By selecting both
high diversity and low diversity decision variables, it manages
to achieve better hypervolume performance than evolving a
complete set of decision variables.
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