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ABSTRACT 

Pax genes encode a family of transcription factors that have long been recognised as obligate 

contributors to embryonic development of the CNS, with evidence obtained from various 

animal models illustrating phylogenetically conserved functions. Within the CNS, Pax genes 

play substantial roles in cellular and regional specification, proliferation, progenitor cell 

maintenance, anti-apoptosis and neural differentiation. This comprehensive review details the 

critical functions of those Pax genes involved in pre- and post-natal CNS development, 

provides possible molecular mechanisms by which Pax genes contribute to proliferation and 

differentiation of neuronal cells, and explains observed changes in Pax gene expression in 

response to neurotrauma in the mature animal.  

 

Knowledge of the ability of individual Pax genes to specify precise lineages within the CNS 

is beneficial for cell replacement strategies, particularly in the production of “designer” cells 

for the treatment of neurodegenerative disorders. The manipulation of stem or committed 

cells so that they express definitive Pax genes may indeed assist in the pursuit of the holy 

grail of regenerative medicine – that of CNS cell replacement therapies leading to functional 

repair. We explain here, however, that only the sophisticated and precise use of Pax genes 

will lead to a successful outcome. 

KEYWORDS 

Brain; CNS repair; Pax genes; spinal cord; stem cell therapy; neuroregeneration 
 
 
ABBREVIATIONS 
 
bHLH, basic helix-loop-helix: cdk, cyclin-dependent kinases: CNS, central nervous system: 
GABA, gamma-aminobutyric acid: N-CAM, neural cellular adhesion molecule: Ng-CAM, 
neuron-glia cellular adhesion molecule: PSA-NCAM, polysialylated neural cellular adhesion 
molecule; SGZ, subgranular zone:  SVZ, subventricular zone: TERT, Telomerase Reverse 
Transcriptase.  
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1.  INTRODUCTION 

Central nervous system (CNS) repair remains an elusive target for biomedical research, due 

to the poor regenerative capacity and as yet intractable complexity of the CNS. Stem cell 

transplantation offers great promise for repair subsequent to neurodegenerative diseases, 

neurotrauma or maldevelopment.  Treatment with replacement cells, however, will require in-

depth knowledge of the genes/factors that control precursor cell development towards a fully 

functional, differentiated neural cell of a specific CNS region. Manipulation may be required 
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to direct cells along the appropriate neural lineage for replacement of lost or damaged cells 

for a specific CNS target region.  The capacity of developmental genes to “prime” stem cells 

or modify their developmental pathways prior to transplantation is a tool currently being 

investigated by several laboratories worldwide (Berninger et al., 2007; Cao et al., 2005; 

Denham et al., 2010; Heins et al., 2002; Kayama et al., 2009; Pera and Tam, 2010; Thomas 

et al., 2009).  As requisite orchestrators of CNS development, controlling cell specification 

from very early stages, Pax genes are likely candidates to augment cell transplantation 

therapies. 

2. PAX GENES – DEVELOPMENT AND DIVERSITY 

Pax genes encode multiple homologous Pax proteins which have all arisen from a single 

ancestral gene by gene duplication and mutation during evolution.  Pax gene groups are 

defined by sequence homology, and more specifically by the presence, absence or 

modification of highly conserved structural domains in their encoded proteins (Balczarek et 

al., 1997; Hadrys et al., 2005; Vorobyov and Horst, 2006) (Figure 1).  Subsequent species 

splitting and further gene duplication and modification within each group have resulted in 

nine vertebrate Pax genes (Balczarek et al., 1997; Dahl et al., 1997; Kay and Ziman, 1999; 

Treisman et al., 1991; Walther and Gruss, 1991; Walther et al., 1991; Ward et al., 1994). Pax 

proteins are defined by the presence of a highly conserved N-terminal paired domain and a C-

terminal transactivation domain, and may contain a conserved octapeptide encoding region 

and a full or partial homeodomain (Figure 2).  Each Pax gene, in response to 

spatiotemporally varied environmental cues, produces alternate transcripts which encode 

alternate isoforms with distinct DNA binding specificities (Callaerts et al., 1997; Kay and 

Ziman, 1999; Vogan and Gros, 1997; Wang et al., 2007; Wang et al., 2006; Ziman et al., 

1997; Ziman and Kay, 1998; Ziman et al., 2001b) and alternate transactivation functions 

(Vogan and Gros, 1997; Vogan et al., 1996; Walther and Gruss, 1991). 
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Figure 1.   Diagram depicting the evolution of Pax genes – Pax genes are thought to have 

arisen from a single Pax ancestral gene which, through multiple gene duplications and 

domain modification, resulted in four homologous Pax genes all containing highly conserved 

paired DNA binding domains and may or may not include conserved octapeptide and 

variable homeodomain structures.  Subsequent species splitting and gene duplication within 

groups have produced the nine currently identified vertebrate Pax genes (Adapted from 

Balczarek et al., 1997; Hadrys et al., 2005; Vorobyov and Horst, 2006). 
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Figure 2.  Schematic of the structure of Pax Genes – Pax genes are defined by the presence 

of a paired box, which encodes a DNA binding domain containing 128 amino acids, and all 

contain a C-terminal transactivation domain.  Pax gene subgroups are further differentiated 

based on the presence or absence of other structural regions, including a conserved 

octapeptide encoding region, and a partial or full DNA-binding homeodomain (60 amino 

acids). Further Pax gene diversity is achieved by encoding alternate N- and C-terminal 

isoforms with different DNA binding specificities and alternate microRNA regulation.  

Differential target gene selection is also varied by individual or combined use of DNA 

binding domains, together with spatial and temporal autoregulation, and participation of 

requisite co-factors. 
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Diversity of Pax gene function can be achieved using these isoforms by several mechanisms; 

individual or combined use of paired- or homeodomains for DNA binding site selection 

(Apuzzo and Gros, 2007; Underhill and Gros, 1997); microRNA regulation of 3’ alternate 

gene transcripts (Chen et al., 2010; Crist et al., 2009; Dey et al., 2011); alternate protein-

protein interactions (Charytonowicz et al., 2011); alternate DNA binding and transactivation 

in the presence of spatiotemporally varied co-factors (as detailed in section 5.2);  spatial and 

temporal autoregulation (Grindley et al., 1995; Plaza et al., 1999) (Figure 2).  

 

3. OVERVIEW OF PAX GENES IN CNS DEVELOPMENT  

The Pax gene family displays dynamic spatiotemporal expression patterns and, together with 

other factors, act to co-ordinate regional CNS development, specifying neural subtypes and 

controlling their migration and differentiation. Expression studies and mutant models provide 

insight into their multiple developmental roles (Kawakami et al., 1997; Lun and Brand, 1998; 

Mansouri et al., 1996; Matsunaga et al., 2000; Nomura et al., 1998; Pfeffer et al., 1998; 

Schwarz et al., 1999; Thompson et al., 2007; Thompson et al., 2008).  Notably, expression is 

not limited to embryogenesis; postnatal and adult expression is commonly observed (Hack et 

al., 2005; Kawakami et al., 1997; Kohwi et al., 2005; Kukekov et al., 1999; Maekawa et al., 

2005; Nacher et al., 2005; Nakatomi et al., 2002; Shin et al., 2003; Thomas et al., 2007; 

Thompson et al., 2007).  In this review, details of the substantive roles of Pax genes 

(specifically Pax2, 3, 5, 6, 7 and 8•

                                                           
• Pax1 and Pax9 participate in vertebral column, bone, teeth, anterior digestive tract and 

thymus development (

) in CNS development are considered, from cell 

Gerber et al., 2002; Neubuser et al., 1995; Peters et al., 1998; Wallin et 

al., 1996) and Pax4 is expressed in the pancreas (Brun et al., 2004; Collombat et al., 2009), 
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specification and regionalisation at early stages (Ericson et al., 1997; Kawakami et al., 1997; 

Matsunaga et al., 2001; Nomura et al., 1998; Schwarz et al., 1999; Stoykova and Gruss, 

1994) to proliferation, migration and differentiation at later stages (Burrill et al., 1997; Chan-

Ling et al., 2009; Conway et al., 2000; Kohwi et al., 2005; Maekawa et al., 2005; Marquardt 

et al., 2001; Talamillo et al., 2003). Throughout development, Pax gene expression holds 

subsets of cells in an anti-apoptotic, progenitor state until environmental stimuli dictate 

progression to proliferation or differentiation (Berger et al., 2007; Kohwi et al., 2005; 

Maekawa et al., 2005; Nacher et al., 2005; Underwood et al., 2007; Yang et al., 2008).  The 

Pax family are therefore crucial in orchestrating and chaperoning maturing cells throughout 

multiple stages of CNS development and maturation. 

 

4. PAX GENES TO ENHANCE CNS CELL REPLACEMENT THERAPY AND 

REPAIR 

The ability to transplant replacement cells into the CNS to effect functional repair will 

ultimately depend upon knowledge of factors that direct embryonic stem cells along 

proliferation and neural differentiation processes to achieve formation and integration into 

tissue architecture and circuitry.  Conditioning stem cells in vitro for cell replacement may 

require an accurate recapitulation of the neural milieu (Baizabal and Covarrubias, 2009), a 

difficult task considering the panoply of genes involved in regional CNS development and 

their highly dynamic spatiotemporal expression patterns.  The accurate use of transcription 

factor combinations and concentrations to recapitulate cellular subtype specification would be 

extremely difficult to achieve in vitro.  Therefore, a key gene at the top of a differential 

                                                                                                                                                                                     
and whilst they do not participate in CNS development, they direct stem or progenitor cell 

specification within organs/tissues in which they are expressed. 
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hierarchy, such as the Pax genes, may well provide a solution to this problem.  Furthermore, 

repair strategies for pathogenic or traumatic brain/spinal cord injury, or endogenous 

degeneration due to stroke/ischaemia, maldevelopment or neurodegeneration, will vary in the 

requirement of multiple cell types.  This may be due to primary insult and secondary 

sequelae, or the requirement of restricted cell types for definitive cell replacement.  The 

application of developmental Pax genes to produce a specific cell type or direct desired 

differentiation pathways may be beneficial for transplant therapies that require definitive 

cellular replacement. Examples include the Pax6-driven trans-differentiation of retinal 

pigmented epithelia into neuroretina for visual restoration (Arresta et al., 2005; Azuma et al., 

2005), hair follicle stem cells into corneal epithelial-like cells for corneal repair (Yang et al., 

2009) and reprogramming of postnatal astroglia to a neuronal lineage (Berninger et al., 2007; 

Heins et al., 2002).  Directed manipulation of a stem cell lineage appears to be an important 

step in cell transplantation protocols to reduce the possibility of host- or donor-derived 

tumour formation in the recipient (Amariglio et al., 2009; Erdo et al., 2003; Reubinoff et al., 

2001; Thomson et al., 1998).  A further consideration is how neuroinflammatory mechanisms 

operating within the regenerating tissue environment affect cell survival and maturation after 

transplant (reviewed in Jain, 2009; Park et al., 2009).  Taken together, these factors will 

affect the cell type and/or genetic manipulations required for successful therapeutic strategies.  

Whilst the exploitation of Pax transcription factors, or indeed that of any pivotal transcription 

factor, has great potential for regenerative purposes, complex and often dosage-dependent 

functions will require sophisticated and carefully considered use to ensure a successful 

outcome.    In this paper our aim was to evaluate the capacity of Pax genes to enhance CNS 

cell replacement therapy and repair. To achieve this aim we first reviewed their 

developmental and regenerative capabilities and then assessed their demonstrated efficacy in 

cell lineage manipulation experiments drawing from in vivo and in vitro investigations.  The 



10 

 

results presented below detail Pax gene function in initial regionalisation of the CNS, 

precursor cell specification and expansion, proliferation, migration, maintenance, and 

subsequent differentiation, and their capacity to withstand a post-insult environment.  We 

also suggest mechanisms by which Pax genes may concomitantly regulate proliferation, stem 

cell maintenance and differentiation along specific cell lines.  We took these results, together 

with those of recent stem cell replacement experiments, to formulate a considered opinion 

about the potential use of Pax genes for stem cell manipulation for CNS cell replacement 

therapies. 

 

5. PAX GENES IN REGIONALISATION OF THE CNS 

Pax gene expression occurs at the earliest stages of neural development, during gastrulation 

and neural plate formation.  During neurulation, anteroposterior and dorsoventral signalling 

centres pattern the CNS, culminating in distinct gene expression domains that cause regional 

subdivision (Lumsden and Krumlauf, 1996; Redies and Puelles, 2001).  Pax genes are key 

mediators of this process, differentially responding to signalling molecules (Crossley et al., 

1996; Ericson et al., 1996; Ericson et al., 1997; Fedtsova et al., 2008; Fogel et al., 2008; 

Joyner, 1996; Liem et al., 1995; Monsoro-Burq et al., 1996) thus contributing to cell type 

specification and brain regionalisation (Burrill et al., 1997; Kawakami et al., 1997; Nomura 

et al., 1998; Schwarz et al., 1999; Soukkarieh et al., 2007).   Graded Pax expression results 

from the spatial proximity of the Pax-expressing cells to the signalling centres and, as will be 

discussed later, differential Pax levels contribute to cellular diversity, a mechanism 

commonly used during development to produce cell type variation. 
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5.1 Dorsoventral Patterning of the CNS 

Pax3 and Pax7 are expressed at the dorsal edges of the early neural plate preceding neural 

tube closure (Basch et al., 2006; Otto et al., 2006), where they dorsalise cells along the entire 

neural tube.  Cells of the dorsal neural tube form sensory neurons and interneurons (Goulding 

et al., 1991; Jostes et al., 1991), as well as neural crest cells, all of which require Pax3/7 

(Auerbach, 1954; Bang et al., 1997; Basch et al., 2006; Goulding et al., 1991; Otto et al., 

2006).   Pax6 expression occurs along the entire mid-ventral region of the developing neural 

tube, generating motor neurons and interneurons (Goulding et al., 1993). Pax2 expression 

within the neural tube occurs at the intermediate dorsoventral boundary of the 

rhombencephalon and spinal cord (Nornes et al., 1990), producing hindbrain and spinal cord 

interneurons  (Burrill et al., 1997; Ponti et al., 2008).  

 

5.2 Anteroposterior Patterning of the CNS 

Highly specific Pax-directed anterior-posterior patterning during regionalisation of the 

developing CNS has been demonstrated by expression and transgenic studies for multiple 

Pax genes (Kawakami et al., 1997; Matsunaga et al., 2000, 2001; Nomura et al., 1998; 

Schwarz et al., 1999; Stoykova and Gruss, 1994).  Initially, differential Pax6 and Pax2 

expression subdivides the neural tube into three primary anteroposterior domains 

(prosencephalon, mesencephalon and rhombencephalon) (Matsunaga et al., 2000; Nornes et 

al., 1990; Schwarz et al., 1999).  Subsequent to this, and as detailed in Table 1, the repressive 

relationship between Pax genes, or between Pax and other genes, participates in  

determination of polarity, boundary formation and progenitor cell specification from 

ventricular zones (VZ) within these regions to form brain nuclei and associated structures. 

The ability of Pax genes to mutually repress expression of alternate group Pax genes leads to 

zones of exclusivity for each Pax gene or group of Pax genes (Table 1).  Pax proteins may 
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also cooperate with other transcription factors (eg opposing gradients of Pax6 and Emx2 or  

Pax6 and Dlx2 in cerebral cortex, and Pax6 and Olig2 in olfactory bulb/Pax6 with cVax and 

Tbx5 in retina) to achieve specification of cellular subtypes, boundary formation and 

arealisation (Bishop et al., 2000; Brill et al., 2008; Hack et al., 2005; Hamasaki et al., 2004; 

Leconte et al., 2004; Muzio and Mallamaci, 2003). 

 

Complex Pax activity is highly co-ordinated to achieve differential regulatory mechanisms at 

different times and in different locations. For instance, the co-operative and redundant 

activity of Pax6 and Pax2 specifies retinal pigmented epithelia at early optic vesicle stages 

(Baumer et al., 2003) whilst they are mutually repressive at later optic cup stages (Baumer et 

al., 2002; Schwarz et al., 2000).  Correspondingly, mutual co-ordinated repression between 

Pax6 and Pax2/5/8 regulates development of spinal cord interneurons (Bel-Vialar et al., 

2007; Burrill et al., 1997; Pillai et al., 2007).  Moreover, Pax3 and Pax7 co-ordinate 

neurogenesis within the midbrain, evidenced by altered Pax3 expression in Pax7-/- mutant 

mice (Thompson et al., 2008), and Pax7 upregulation in Pax3 hypomorphic mice (Zhou et 

al., 2008).  Thus, synchronous and highly co-ordinated Pax expression is critical for 

stipulating early patterning processes during CNS development.  
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Table 1.  Differential Pax expression during anteroposterior patterning. 

 

 

 

 

 

 

 

 

Region Pax 
Gene 

Expression and Potential Function References 

Forebrain 
 

 
Pax2 

 

Forebrain/midbrain boundary (with En-1) 
(opposes Pax) 

(Matsunaga et al., 2000; 
Schwarz et al., 1999) 

Specification of precursor cells of the 
forebrain, eye field, otic vesicle 

(Fotaki et al., 2008; Nornes et 
al., 1990; Torres et al., 1996) 

Pax6 
 

Forebrain/midbrain boundary formation 
(opposes Pax2) 

(Matsunaga et al., 2000; 
Schwarz et al., 1999) 

Specification of cortical progenitors, and 
cortical arealisation (opposes Emx2) 

(Bishop et al., 2000; Gotz et 
al., 1998) 

Specification of neural plate cells of the eye 
field/dorsoventral patterning of the retina 

(Leconte et al., 2004; Zaghloul 
and Moody, 2007) 

Pax7 Specification of hypothalamic progenitor cells (Ohyama et al., 2008) 

 
Midbrain 

Pax 
2/5/8 

Midbrain/hindbrain boundary formation and 
polarisation regulated by the isthmic organiser 

(Brand et al., 1996; Lun and 
Brand, 1998; Pfeffer et al., 
1998; Picker et al., 1999; 
Rowitch and McMahon, 1995) 

Pax6 
Expressed in ventral embryonic midbrain and 
adult dorsolateral substantia nigra reticularis  (Stoykova and Gruss, 1994) 

Pax 
3 

Specification of the dorsal mesencephalon and 
is restricted to undifferentiated mesencephalic 
cells after boundary formation 

(Matsunaga et al., 2001; 
Stoykova and Gruss, 1994; 
Thompson et al., 2008) 

Pax7 

Specification of the dorsal mesencephalon, and 
is expressed in undifferentiated and 
differentiated (neuronal) mesencephalic cells 
after boundary formation  

(Kawakami et al., 1997; 
Matsunaga et al., 2001; 
Nomura et al., 1998; Stoykova 
and Gruss, 1994; Thompson et 
al., 2007; Thompson et al., 
2008) 

Polarisation of the dorsal mesencephalon (Thomas et al., 2007; 
Thompson et al., 2007) 
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The critical importance of Pax genes in regionalisation and cellular specification is 

exemplified by mutant animal models, where absence of Pax transcription factors results in 

patterning abnormalities and loss of cells and structures (Table 2). 

 

Moreover, conditional mutant models (knockout/reduced/overexpression) have allowed an 

intricate dissection of Pax function at variable stages of development, without initial ablation 

of structures, lack of initial proliferation or lethality issues.  It is evident  that analyses of  

such valuable animal models will permit a deeper understanding of the temporospatial 

influence of Pax genes during various stages of development (Manuel et al., 2007; Marquardt 

et al., 2001; Pinon et al., 2008; Tuoc et al., 2009), and they demonstrate the requisite nature 

of Pax genes in correct cellular specification and patterning.  

 

Hindbrain 

Pax 
 

2/5/8 

Participates in midbrain/hindbrain boundary 
formation 

(Brand et al., 1996; Lun and 
Brand, 1998; Pfeffer et al., 
1998; Picker et al., 1999; 
Rowitch and McMahon, 1995) 

Specification and differentiation of  
GABAergic interneurons  (Maricich and Herrup, 1999) 

Pax6 

Expressed in mouse ventricular zone and 
external germinative layer. Controls 
differentiation and proliferation of motor 
neurons and ventral interneurons from ventral 
progenitors 

(Ericson et al., 1997; Stoykova 
and Gruss, 1994) 

Pax3 
Specifies rhombomeric caudal neural crest 
cells  Expressed in ventricular zone of mouse 
hindbrain  

(Goulding et al., 1991; 
Mansouri et al., 1996; 
Stoykova and Gruss, 1994) 

Pax7 

Specifies rhombomeric caudal neural crest 
cells.  Expressed around  Purkinje cells 
(cerebellum) – may relate to maintenance of 
normal physiology 

(Mansouri et al., 1996; Shin et 
al., 2003; Stoykova and Gruss, 
1994) 

Spinal 
Cord 

Pax2 
Specification and maintenance of GABAergic 
cells of dorsal horn interneurons (inhibiting 
Pax6) 

(Bel-Vialar et al., 2007; Burrill 
et al., 1997; Pillai et al., 2007) 

Pax6 
Development of spinal interneurons (inhibiting 
Pax2/5/8) 

(Bel-Vialar et al., 2007; Burrill 
et al., 1997; Pillai et al., 2007) 
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Table 2. Patterning and structural abnormalities in Pax mutant animal models. 

Pax 
Gene 

Patterning and structural abnormalities References 

Pax2 Loss of the isthmus; failure to close the midbrain neural tube, 
abnormalities of the midbrain/hindbrain region 

(Brand et al., 1996; 
Torres et al., 1996) 

Visual defects; alteration to the optic nerve projection and 
formation of the retina/optic nerve boundary; agenesis of the optic 
chiasm and failure to close the optic fissure 

(Torres et al., 1996) 

Auditory defects; abnormal epithelial morphogenesis producing 
defects of the cochlear and spiral ganglion of the inner ear 

(Christophorou et al., 
2010; Torres et al., 
1996) 

Pax5 Midbrain defects; reduction of the inferior colliculus 
(Urbanek et al., 1994) 

Hindbrain defects; altered foliation of the anterior cerebellum 
Pax6 Cortical defects; Thalamocortical and corticofugal axonal 

pathfinding errors in Pax6 null mutants; no evidence in Pax6 
conditional knockout/overexpression models  
Cortical layering abnormalities and premature differentiation of 
late-born cortical progenitors; ventralisation of dorsal 
telencephalic progenitors in Pax6 null mice with subsequent 
ectopic GABA interneuron formation 

(Jones et al., 2002; 
Kawano et al., 1999; 
Kroll and O'Leary, 
2005; Manuel et al., 
2007; Pinon et al., 
2008; Pratt et al., 2000; 
Pratt et al., 2002; Tuoc 
et al., 2009) 

Visual defects; Microphthalmia (Pax6 over-/under-expression) or 
anophthalmia (absence of Pax6); dorsalisation of the retina (Pax6 
overexpression), ventralisation of the retina (absence of Pax6) 

(Baumer et al., 2002;  
Hill et al., 1991; Hogan 
et al., 1986; Leconte et 
al., 2004; Manuel et 
al., 2007) 

Craniofacial defects; Required for differentiation of nasal 
placodes;  Pax6 null mice exhibit an imperforate snout 

(Hill et al., 1991;  
Hogan et al., 1986) 

Pax2/ 
Pax6# 

Visual defects; Transdifferentiation of retinal pigmented 
epithelium into neuroretina (Baumer et al., 2003) 

Pax3 Neural tube defects; Open neural folds, neural tube irregularities 
and exencephaly  (Embryonic lethal) (Auerbach, 1954) 

Neural crest defects; Cardiac defect - conotruncal defect due to 
reduction in migratory cardiac neural crest cells (Conway et al., 2000) 

Pax7 Midbrain defects; Failure to maintain a subpopulation of dorsal 
mesencephalic neurons 

(Thompson et al., 
2008) 

Craniofacial defects; Absence of nasal capsule and reduction in 
maxilla and tubules of nasal serous glands due to aberrant neural 
crest cell specification 

(Mansouri et al., 1996) 

Pax3/ 
Pax7# 

Neural tube and spinal cord defects; extensive 
exencephaly/spina bifida/ventralisation of dorsal spinal cord 
interneurons  (Embryonic lethal) 

(Mansouri and Gruss, 
1998) 

 



16 

 

6. PAX GENES IN PROGENITOR CELL EXPANSION AND MAINTENANCE  

After brain regionalisation, the contribution of Pax genes to the intricate balance between cell 

proliferation, progenitor cell maintenance and differentiation (and therefore in CNS growth 

and development) has been demonstrated by substantial research.  

 

For instance, Pax6 controls progenitor pool expansion, often in a dosage-dependent manner, 

in developing regions such as the optic vesicle (Duparc et al., 2007), the cerebral cortex 

(Berger et al., 2007; Estivill-Torrus et al., 2002; Sansom et al., 2009; Tuoc et al., 2009)  and 

the postnatal hippocampus (Maekawa et al., 2005; Nacher et al., 2005).  Within the eye field 

Pax6 similarly promotes proliferation of retinal stem cells, expanding the proliferative pool 

from early optic vesicle stages and throughout multiple stages of retinogenesis (Xenopus) 

(Zaghloul and Moody, 2007).  Reduced Pax6 levels lead to reduced proliferation and/or 

precocious differentiation of neurogenic precursors in the eye (Duparc et al., 2007; Philips et 

al., 2005),  cerebral cortex (Tuoc et al., 2009)  developing spinal cord (Bel-Vialar et al., 

2007), and reduced proliferation in the postnatal hippocampus (Maekawa et al., 2005). In 

contrast, overexpression of Pax6 reduces proliferation of late-born cortical progenitors, 

demonstrating the differential dosage sensitivity of this cellular subpopulation (Tuoc et al., 

2009).  These results demonstrate that Pax6 levels mediate the critical spatiotemporal 

orchestration of progenitor cell proliferation and differentiation to produce precise CNS 

regions. 

 

Likewise, Pax3 is also necessary for progenitor expansion and for maintenance of the 

undifferentiated phenotype.  Premature neurogenesis is observed at E10.0 in the lumbar 

neural tube of Pax3-/- mice and in the neural tube explant cultures from these mice (Nakazaki 

et al., 2008); moreover, Pax3 expression within the developing superior colliculus (dorsal 
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mesencephalon) is restricted to undifferentiated neural precursor cells and disappears once 

the cells differentiate (Thompson et al., 2008).  In cultured mouse neuroblastoma cells, 

downregulation of Pax3 by antisense RNA leads to differentiation of cells into mature 

neurons (Reeves et al., 1999).   Similarly, neural crest cell development provides an exquisite 

example of the capacity of Pax3 to regulate progenitor cell expansion and maintenance of an 

undifferentiated phenotype.  Pax3-expressing neural crest cells initially arise in the dorsal 

neural tube. Once committed by a number of transcription factors, including Pax3, along 

Schwann as well as melanocytic or cardiac lineages, the cells proliferate and migrate as 

undifferentiated cells to populate the peripheral nervous system (Schwann cells) (Kioussi et 

al., 1995), skin (melanocytes) (Bang et al., 1997; Blake and Ziman, 2005; Goulding et al., 

1991; Hornyak et al., 2001), and heart (cardiac) (Conway et al., 2000).  Pax3 is expressed 

throughout their specification, migration and differentiation. In fact neural crest cell-derived 

precursors require Pax3; in Pax3-/- mice these cells undergo normal migratory and survival 

functions but have reduced progenitor expansion resulting in developmental defects (Conway 

et al., 2000).   Pax7 also specifies a subpopulation of mouse cephalic neural crest cells that 

migrate to the craniofacial region (Mansouri et al., 1996) and eventually give rise to a wide 

variety of olfactory epithelial cell types (Murdoch et al., 2010).  Similarly, Pax7-/- mutant 

mice exhibit craniofacial abnormalities (Mansouri et al., 1996).   Interestingly, whilst Pax3 

expression occurs in both premigratory and migrating neural crest cells, Pax7 expression is 

restricted to migrating neural crest cells (Betters et al., 2010), indicating divergence during 

early (premigratory) functions. 

 

One mechanism by which Pax proteins control progenitor expansion and maintenance 

involves their regulation of distinct downstream targets, for example cell cycle regulators.  

Pax3 activates progenitor expansion within the neural tube and forebrain by activating Hes1, 
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which represses p21cip, a cell cycle regulator known to promote quiescence of neural 

progenitor proliferation (Kippin et al., 2005; Nakazaki et al., 2008).  Moreover, Hes1/Hes3 

compound mutant mice phenocopy Pax2/Pax5 mutant mice (absence of midbrain and 

anterior hindbrain structures), with premature termination of Pax2/5/8 expression, and loss of 

isthmic organiser activity, due to an inability to maintain isthmic ventricular cells.  This lack 

of progenitor maintenance results in premature neuronal differentiation, a common feature of 

downregulated Pax expression. This result together with other studies suggests a regulatory 

relationship between Hes1/3 and Pax2/5/8 genes to bring about a delay in the neurogenesis of 

isthmic cells, thereby maintaining isthmic organiser activity (Hirata et al., 2001).   

 

Notably, the ability of Pax transcription factors to bind to cell cycle regulators, thus 

controlling proliferation versus differentiation, is also demonstrated by direct binding of Pax6 

to genes involved in stem cell self-renewal (eg Hmga2), cell cycle progression and 

proliferation (e.g. Pten and cyclin-dependent kinases (Cdk4)), neuronal cell cycle inhibition 

(Hes5/6), and neuronal differentiation (Ngn2) (Sansom et al., 2009; Scardigli et al., 2003).  

These results identify some of the mechanisms and downstream targets whereby Pax genes 

regulate the switch from cell proliferation to differentiation.  

 

7. PAX GENES IN CELLULAR MIGRATION 

A key feature of organogenesis is the orchestrated temporospatial migration of cells, which 

appears to be of pivotal importance for conditional specification of correct cellular  

subclasses.  Pax genes contribute extensively to cellular migration, as shown in Table 3.  
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Table 3: Examples of Pax–expressant neural migratory cells 

Pax Gene Migrating population/tissue References 

Pax2 

Expressed in precursor and immature astrocytic 
cells migrating within the retina, and in 
migrating interneurons of the postnatal 
cerebellum and ventral spinal cord 

(Burrill et al., 1997; Chan-Ling 
et al., 2009; Ponti et al., 2008) 

Pax6 

Expressed in migrating neuronal precursors, 
neurons and interneurons within the developing 
cerebrum and medulla oblongata, and adult 
cerebellum  

(Caric et al., 1997; Horie et al., 
2003; Jimenez et al., 2002; Mo 
and Zecevic, 2008; Ponti et al., 
2008; Talamillo et al., 2003) 

Expressed in migrating neuroblasts within adult 
neurogenic regions of the dentate gyrus of the 
hippocampus and rostral migratory stream to the 
olfactory bulb 

(Hack et al., 2005; Kohwi et al., 
2005; Maekawa et al., 2005; 
Nacher et al., 2005) 

Adult rat spinal cord after trauma (Yamamoto et al., 2001) 

Pax3 
Neural crest cells migrate to cephalic 
mesenchyme, skin, peripheral nervous system 
and heart  

(Betters et al., 2010; Conway et 
al., 2000; Goulding et al., 1991; 
Hornyak et al., 2001; Kioussi et 
al., 1995) 

Pax7 

Neural crest cells migrate to craniofacial 
regions, and neuroblasts migrate within the 
midbrain to form the laminated structure of the 
superior colliculus  

(Betters et al., 2010; Mansouri 
et al., 1996; Murdoch et al., 
2010) 

For instance, Pax3-expressing neural crest cells migrate extensively throughout the body and 

Pax-3 deficiency results in altered migration or reduced cells at the target destination 

(Hornyak et al., 2001; Nakazaki et al., 2008).   Pax6 is also required for correct cellular 

migration in some cell populations, and Pax6-deficiency can result in altered migration of 

neuroblasts in the developing mouse cerebral cortex (Jimenez et al., 2002; Talamillo et al., 

2003) and in the medullary cerebellum (Horie et al., 2003).  A reduction of cells at the target 

destination, however, may not always be due to a migratory deficit, but rather a failure to 

adequately expand the progenitor pool.  Moreover, expression during migration does not 

necessarily infer causality in this process; it may be that Pax gene expression is required for 
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maintaining progenitor status during migration to provide cells for proliferation at new 

organs/tissue. 

Evidence of a role for Pax proteins in influencing migratory capacity can be discerned from 

their interactions (direct or indirect) with genes such as cellular adhesion molecules, and this 

feature is also differentially affected by alternate isoforms acting on  distinct downstream 

targets (Wang et al., 2008; Wang et al., 2007; Zhang et al., 2010).  Pax paired box DNA 

binding sites have been discovered in the promoters of several neural cell adhesion molecules 

(neural cell adhesion molecule (N-CAM), neuron-glia cell adhesion molecule (Ng-CAM) and 

L1).  Transfection experiments in a variety of cell lines show that these sites are regulated by 

Pax1, Pax3, Pax6 and Pax8 (Edelman and Jones, 1998); Pax6 has also been shown to regulate 

expression of L1 in vivo (Meech et al., 1999) and L1 expression is abnormal in Pax6-/- mice 

(Caric et al., 1997).  Maekawa et al (2005) also demonstrated colocalised expression of Pax6 

and polysialylated N-CAM (PSA-NCAM) in cells of the postnatal rat dentate gyrus. 

Furthermore, Wang et al (2008) detected upregulated Met and Muc18 (mRNA and protein) in 

melanocytes transfected with the Pax3c isoform.  Pax3 also regulates c-Met during muscle 

precursor migration (Epstein et al., 1996; Mayanil et al., 2001), and increased polysialylation 

of N-CAM due to Pax3 overexpression is observed in a medulloblastoma cell line (Mayanil 

et al., 2000).   

   

Discernment of the cell-autonomous and non-autonomous contribution of Pax genes to 

migratory capacity has been achieved through transplantation of Pax-deficient cells into a 

normal host environment, and vice versa (Kohwi et al., 2005; Osumi-Yamashita et al., 1997).  

Unambiguous identification of a Pax role in non-cell-autonomous migration comes from 

studies where midbrain-derived neural crest cells (which do not express Pax6) do not migrate 
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appropriately to the eye (Kanakubo et al., 2006) and craniofacial region (Osumi-Yamashita et 

al., 1997) in Pax6-deficient rats.  Transplantation of midbrain-derived neural crest cells from 

wildtype rats into the Pax6-deficient environment does not rescue migration, indicating that 

the fault occurs due to an incorrectly specified migratory pathway and not due to deficits in 

the migrating cell (Osumi-Yamashita et al., 1997).  In support of this, Pax6-/- late born 

cortical precursor cells transplanted into a wildtype environment showed similar migratory 

capacity to wildtype cells, indicating that Pax6 does not bestow a cell-autonomous migratory 

capacity to the cell in this instance (Caric et al., 1997). 

 

Pax genes also contribute to migratory processes within a developing tissue, such as in axon 

guidance (Jones et al., 2002; Kanakubo et al., 2006; Kawano et al., 1999; Osumi-Yamashita 

et al., 1997; Pratt et al., 2002).  During cortical development, progenitors from the SVZ 

migrate to their appropriate destination, using PSA-NCAM and robo2 as guidance molecules.  

Pax6 mutant mice exhibit qualitative changes to PSA-NCAM+ tracts within the intermediate 

zone, disrupted (delayed and downregulated) expression of robo2 and subsequent migratory 

deficits (Jimenez et al., 2002). Moreover, Pax6-expressing cells of the foetal rat medulla 

oblongata associate with the neural cell adhesion molecule TAG1, and migrate along TAG1-

expressing axons.  In this region of Pax6-/- rats, TAG1 expression is delayed and a 

subpopulation of these cells migrate aberrantly (Horie et al., 2003).  Within the rostral 

migratory stream, Pax6-positive neuroblasts migrate tangentially toward the olfactory bulb, 

whereby migration halts, neuroblasts detach and then migrate radially to the olfactory bulb.  

Tenascin-R is an extracellular matrix molecule which fosters neuroblast detachment and 

radial migration; tenascin-R-deficient mice exhibit altered migration of olfactory neuroblasts 

(Saghatelyan et al., 2004). Biochemical evidence of a direct relationship between Tenascin-R 

and Pax proteins during migration, however, has not been demonstrated to date.  
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Pax2 regulation of the cellular adhesion molecules N-CAM and N-cadherin, although more 

related to morphogenesis than migration, is also elegantly demonstrated in investigation of 

chick otic development; morpholino knockdown of Pax2 results in absence of the above 

named molecules, whilst Pax2 overexpression results in their upregulation, and ectopic Pax2 

induces their expression (Christophorou et al., 2010).  

 

This review of Pax endowment of migratory capacity, whilst not exhaustive in nature, 

indicates a complex contribution of Pax genes towards directed migration of cells in both 

embryonic and postnatal environments.  This feature may be manipulated to deliver cells to 

an appropriate destination, or to block migration of transplanted cells.  

 

8. PAX GENES IN CELL FATE SPECIFICATION 

After CNS regionalisation, Pax expression becomes increasingly restricted as cellular 

specification proceeds. In fact a recognised feature of Pax genes is their ability to act as a 

functional switch between progenitor maintenance and differentiation. For example, as eye 

development progresses, Pax6 functions to switch neuroepithelial cells of the mouse optic 

vesicle from proliferation towards differentiation.  At this stage (E9.5), Pax6 negatively 

regulates proliferation by repressing regulators of cell cycle progression (eg p21cip1, p27kip1, 

p57Kip2) thus switching the focus towards progression and differentiation of the developing 

eye structure (Duparc et al., 2007).  Accordingly, Pax6-/- mice at this time exhibit 

overproliferation of optic vesicle precursor cells (Duparc et al., 2007).   

 

At later stages of eye development (E13.5), conditional gene targeting of Pax6 demonstrated 

its ability to activate neuronal-specific genes such as Math5, Mash1 and Ngn2 at appropriate 

times, culminating in precise specification of multiple neuronal subtypes (Marquardt et al., 
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2001).  Accordingly, increasing or decreasing Pax6 expression during early Xenopus eye 

field development increases or decreases retinal stem cell proliferation, respectively, and 

changes the differentiation profile of the retinal subtypes.  However, the effect of altered 

Pax6 levels on proliferation is weakened in the mature retina, reflecting a functional switch 

from proliferation in early stages towards differentiation at later stages (Zaghloul and Moody, 

2007).  These results also implicate the involvement of distinct co-factors (both upstream and 

downstream) in the cellular response to Pax regulation. 

     

This capacity of Pax6 to invoke a temporally-sensitive switch from proliferation to 

differentiation within the retina parallels Pax6 function elsewhere in the CNS.  During 

cerebrocortical development, the absence of Pax6 in conditional knockout mice results in 

overproliferation of early precursors and premature cell cycle exit (Estivill-Torrus et al., 

2002) with depletion of the progenitor pool available for late neurogenesis (Tuoc et al., 

2009).  Conversely, overexpression of Pax6 reduces proliferation of late cortical progenitors 

in a cell-autonomous and auto-regulated manner (Manuel et al., 2007).  Furthermore,  Pax6-

deficient embryonic stem cells transplanted into the dorsal telencephalon of the developing 

chick give rise to misspecified progenitors that generate GABAergic rather than 

glutamatergic neurons (Nikoletopoulou et al., 2007).   

 

Similarly, in adult neurogenesis, altered levels of Pax6 in the rat hippocampus cause 

precocious progression of  early progenitor cells  to late stages (Maekawa et al., 2005) or 

precocious differentiation into neuronal subclasses.  This feature also exists within the 

developing spinal cord, where variable Pax6 levels are responsible for different functional 

outcomes; initially Pax6 promotes proliferation, then an increase in Pax6 within the cells of 

the ventricular zone invokes a switch determining cell cycle exit and cessation of 
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proliferation.  Conversely, low levels of Pax6 favour maintenance of the progenitor state. In 

the developing spinal cord of Pax6-/- mice, loss of Pax6 leads to premature differentiation of 

neural precursor cells (Bel-Vialar et al., 2007) and similarly causes precocious 

oligodendrogenesis and astrogenesis (Sugimori et al., 2007).  Under these circumstances, 

inappropriate neurons/glia may be formed due to differentiation in an incorrect environment 

and/or at the incorrect time (Hack et al., 2005; Kohwi et al., 2005; Philips et al., 2005; 

Sugimori et al., 2007), or there may be cell loss secondary to disrupting either the intricate 

balance between proliferation and differentiation (Kohwi et al., 2005), or the relationship 

between the differentiating cell and its environment.  An example of the latter occurs when 

precocious neurons formed in the rudimentary optic vesicle in Pax6-/- mice fail to persist 

(Philips et al., 2005), indicating the pivotal relationship between the cell, the 

microenvironment, and the correct timing of differentiation. 

 

Another illustrative example is the directed differentiation within the SVZ/olfactory bulb 

system whereby Pax6 expression is maintained in a subset of adult SVZ progenitors which 

migrate to the olfactory bulb, where Pax6 is downregulated and progenitors differentiate, 

producing the appropriate neuronal subclass.  Although Pax6-/- progenitors transplanted into 

the SVZ of adult wildtype mice produce progenitor cells capable of correct migration, they 

undergo precocious differentiation and fail to generate particular subsets of neurons (Kohwi 

et al., 2005).   Interestingly, Pax6 is not required for generation of dopaminergic 

periglomerular neurons during development (Mastick and Andrews, 2001), in contrast to its 

requisite role during their formation in adult neurogenesis (Brill et al., 2008), providing 

another example of  a highly complex cellular control based upon  temporal variance.  

 



25 

 

So, differential regulation of/by Pax6 provides the capacity for progenitor proliferation, 

maintenance, cell cycle progression and neurogenesis driven by variable Pax6 protein levels 

(Berger et al., 2007; Manuel et al., 2007; Sansom et al., 2009; Tuoc et al., 2009).  This 

capacity may also be affected by isoform variants, as the canonical (full-length) Pax6 protein 

regulates cell fate and proliferation, whilst the Pax6(5a) variant (binding of the PAI of the 

paired domain is abolished) regulates cell proliferation only during mouse CNS development 

(Haubst et al., 2004), indicating distinct downstream targets for these functions.  Similarly, 

the full-length Pax6 protein is present in the sub-ependymal zone and olfactory bulb, whereas 

the PD-less isoform (paired-less; lacks entire paired domain) is only present in the olfactory 

bulb, where it complexes with the full-length Pax6 protein to regulate neuronal survival via 

homeodomain-mediated DNA binding of crystallin-αA (Ninkovic et al., 2010).  Thus a 

complex spatial and temporal Pax6 isoform profile is required during development for correct 

specification of neuronal subtypes. 

 

The temporally-driven command of progenitor maintenance versus differentiation is also a 

recognised feature of other Pax proteins.  Pax3, for example, at early stages maintains the 

undifferentiated phenotype of neural crest cells, but at later stages Pax3 binds directly to cis-

regulatory elements in the promoter of Ngn2 and thus may initiate differentiation of the 

neuronal lineage in the neural tube (Nakazaki et al., 2008).  Within the ophthalmic trigeminal 

placode, Pax3 activation is required for neuronal differentiation to occur; however, 

misexpression of Pax3 in head ectoderm results in upregulation of proneural genes (eg Ngn2) 

without neuronal differentiation occurring, indicating a tissue-specific regulation for Pax3 in 

neuronal differentiation (Dude et al., 2009).  This tissue-specific regulation is mediated 

perhaps by spatially restricted co-factors and/or by alternate isoforms (Charytonowicz et al., 
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2011; Lamey et al., 2004; Vogan and Gros, 1997; Ziman et al., 1997; Ziman and Kay, 1998; 

Ziman et al., 2001b).  

 

To add further complexity, co-ordinated expression of multiple Pax genes may be required 

for correct development and definitive cell determination, such as the co-operative expression 

of Pax6 and Pax2 during CNS boundary formation.  Another classic example of this co-

ordinated expression occurs within the developing eye.  At early optic vesicle stages, the co-

ordinated and redundant activity of Pax6 and Pax2 specifies the retinal pigmented epithelia 

(Baumer et al., 2003).  Divergent expression patterns at slightly later stages of optic cup 

morphogenesis determine the interface  between the retina (Pax6-positive) and optic nerve 

(Pax2-positive), delineated by mutual Pax6/Pax2 repression, thought to be achieved via the 

late retinal α-enhancer in the promoter of Pax6, which is repressed by Pax2 (Baumer et al., 

2002; Schwarz et al., 2000).  This mutual repression results in spatially and functionally 

distinct populations of cells (Schwarz et al., 2000) - Pax6-positive retinal precursor cells 

(Marquardt et al., 2001) and Pax2-positive optic nerve astrocytes.  Experimental inhibition of 

Pax2 in embryonic mouse optic nerve explants causes upregulation of ectopic Pax6 

expression and ectopic neuronal differentiation (Soukkarieh et al., 2007).  Similarly, within 

the developing spinal cord Pax2 maintains Lhx1/Lhx5 and Pax5/8 expression in dorsal horn 

interneurons for correct neuronal specification (Pillai et al., 2007). Within the ventral spinal 

cord, Pax2 expression is initiated as cells become postmitotic and migrate laterally to the 

mantle zone. Preceding this, Pax6 is required to initially specify these neural precursors prior 

to postmitotic emergence of neurons and does so by regulating expression of Pax2 and other 

neuronal genes.  Therefore, co-ordinated Pax6 and Pax2 expression co-operate to correctly 

specify ventral interneuron identity (Burrill et al., 1997).   
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Taken together, Pax genes maintain the undifferentiated cellular phenotype, and they 

participate in the timely decision to exit the cell cycle, and thus regulate differentiation to 

appropriate cell types based upon spatiotemporally permissive conditions, and, in some cases, 

co-operation between Pax family members and/or other co-factors.  Identifying the 

mechanism underpinning the change in Pax function from proliferation to maintenance of the 

progenitor status to differentiation is a key challenge in deciphering Pax function from a 

regenerative perspective.   It is likely to involve spatially regulated co-factors, as well as 

spatially regulated expression of alternate Pax isoforms, particularly those that involve 

modification of the C-terminus (Blake and Ziman, 2005; Charytonowicz et al., 2011; Wang 

et al., 2008; Wang et al., 2007; Wang et al., 2006) or regulation of the C-terminus by 

microRNAs (Chen et al., 2010; Crist et al., 2009; Dey et al., 2011).  These alternate isoforms 

may function differentially by regulating different downstream target genes (Charytonowicz 

et al., 2011; Vogan and Gros, 1997; Wang et al., 2007; Ziman et al., 1997; Ziman and Kay, 

1998; Ziman et al., 2001a; Ziman et al., 2001b).    Thus, Pax genes are critical factors 

involved in progressing the spectrum of development from initial progenitor expansion and 

maintenance to correct neural differentiation (Bel-Vialar et al., 2007; Berger et al., 2007; 

Estivill-Torrus et al., 2002; Lang et al., 2005; Nakazaki et al., 2008; Sansom et al., 2009; 

Sugimori et al., 2007).  Collectively, these results also highlight an important feature of Pax 

genes - their ability to act as multipotent, spatiotemporally-programmed switches which are 

sensitive to environmental cues (Gerber et al., 2002). It will be challenging to recapitulate 

this feature in the quest for “designer” cells for replacement purposes, and success will 

essentially rely on deciphering the genetic/epigenetic environmental factors involved in 

discriminating Pax function at different temporal and spatial levels of development. 

 

 



28 

 

9. POSTNATAL EXPRESSION PATTERNS OF PAX GENES 

In addition to their well-accepted role in embryogenesis, the expression of Pax genes in adult 

regions is significant (Table 4), being required for maintenance of a progenitor cell phenotype 

(such as Pax6 in adult neurogenesis) or for maintenance of plasticity in mature neurons in 

response to environmental stimuli (Gerber et al., 2002). Conversely, the absence of Pax6 in 

postnatal astrocytes reduces their neurogenic potential (Heins et al., 2002).   Additionally, 

Pax6 regulates survival of dopaminergic periglomerular neurons by inhibiting programmed 

cell death in these mature olfactory neurons (Ninkovic et al., 2010). 

 

Table 4: Postnatal expression patterns of Pax genes 

 
 
 
 

Pax 
Gene Adult animal cells showing Pax expression References 

Pax2 

GABAergic cerebellar interneurons (rabbit) (Ponti et al., 2008) 

Nuclei of the midbrain, pons/medulla and cerebellum 
(mouse) 

(Stoykova and Gruss, 1994) 

Pax6 

Retinal cells, telencephalon, diencephalon, ventral 
mesencephalon, cerebellum and pons/medulla 
(various mammalian species) 

(Nacher et al., 2005; Stanescu 
et al., 2007; Stoykova and 
Gruss, 1994) 

Neural progenitor cells of the SVZ/rostral migratory 
stream/olfactory bulb, the subgranular zone of the 
dentate gyrus of the hippocampus and the adult 
piriform complex 

(Guo et al., 2010; Hack et al., 
2005; Kohwi et al., 2005; 
Maekawa et al., 2005; Nacher 
et al., 2005; Yamamoto et al., 
2001) 

Pax3 Bergmann glia and cells surrounding Purkinje cells 
of the cerebellum (mouse) 

(Stoykova and Gruss, 1994) 

Pax7 
Superior colliculus, specific nuclei of the 
pons/medulla and thalamus; cerebellar Bergmann 
glia (rat, mouse and chick) 

(Shin et al., 2003; Stoykova 
and Gruss, 1994; Thomas et 
al., 2007; Thompson et al., 
2007; Thompson et al., 2008) 
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10. PAX EXPRESSION SUBSEQUENT TO NEUROTRAUMA 

One important aspect of neuroscience research is the quest for factors that influence the 

capacity for a cell to survive neurotrauma or neurodegeneration and/or the subsequent 

neuroinflammatory processes that ensue, and such discoveries will have a major impact on 

CNS cell therapy interventions.  Whilst there is paucity of information regarding Pax genes 

in this regard, several studies have demonstrated the capacity for Pax genes to respond to 

neurotrauma and for cells expressing Pax to tolerate the post-insult environment.   

 

Tonchev et al have demonstrated the capacity for newly-born Pax6-expressing neural 

progenitors to survive long term in both the subgranular zone (SGZ) of the hippocampal 

dentate gyrus (Tonchev and Yamashima, 2006) and the anterior SVZ (Tonchev et al., 2006) 

after experimentally-induced transient global cerebral ischemia in primates, reinforcing that 

Pax6-expressing progenitors originating from the germinal zones are protected by Pax6 

expression.  Similarly, Pax-expressing cells withstand injury in various tissues; Pax6- and 

Pax7-expressing cells remain within the injured adult rat spinal cord (Yamamoto et al., 

2001), whereas Pax6 expression is upregulated in postnatal olfactory epithelium (Guo et al., 

2010) and re-expressed within retinal cells, including Müller glia (Bernardos et al., 2007; 

Fischer and Reh, 2001; Hitchcock et al., 1996; Karl et al., 2008) after lesion.   

 

Similarly, Pax7 is re-expressed in adult rat superior collicular neurons after optic nerve 

transection (Thomas et al., 2007); this may reflect an effect of reduced input.  Moreover, 

increased numbers of Pax7-expressing cells were detected caudally after lesion to the rostral-

medial superior colliculus, and expression remained elevated over a four week period 

(Thomas et al., 2009).  Taken together, these results indicate the capacity for Pax-expressant 

cells to survive environmental influences occurring post-insult.  It is likely that survival 
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capacity may be differentially affected by distinct modes of injury.  More work will be 

required to definitively assess the capacity of Pax genes to protect cells after trauma or in 

degenerating or inflammatory environments.  Such knowledge will assist in delivering a 

functional, mature cell able to survive the transplanted environment after trauma or 

degeneration.  

11. CURRENT STEM CELL THERAPY STRATEGIES FOR CNS REPAIR AND 

PAX GENES – GETTING IT RIGHT 

Stem cell research is a dynamic area of investigation which harbours great promise for 

alleviation of neurological conditions.  To date, transplant therapies have shown some 

success in patients and animal models of spinal cord injury (Amoh et al., 2008; Hu et al., 

2010), stroke (Borlongan et al., 1998; Hodges et al., 1996; Sorensen et al., 1996), 

Parkinson’s disease (Falkenstein et al., 2009; Kordower et al., 1995; Thompson et al., 2009), 

Huntington’s disease (Capetian et al., 2009; Deckel et al., 1983; Freeman et al., 2000) and 

retinal disorders (Radtke et al., 2008; Radtke et al., 2004).  When used in these scenarios 

transplanted cells can survive (Hu et al., 2010), migrate (Bjugstad et al., 2008; Wernig et al., 

2004), integrate (Bjugstad et al., 2008; Borlongan et al., 1998; Sorensen et al., 1996) and 

produce some functional benefits (Deckel et al., 1983; Isacson et al., 1984; Pritzel et al., 

1986; Wictorin et al., 1990).   The use of fetal tissue transplants initially provided some 

promising results in patients with Parkinson’s disease (Kordower et al., 1995) and 

Huntington’s disease (Bachoud-Levi et al., 2000; Gaura et al., 2004) but has been 

unfavourably impacted by treatment side effects such as dyskinesias in Parkinson’s disease 

(Freed et al., 2001; Greene et al., 1999), and disease-like states occurring within the grafted 

cells, causing eventual graft degeneration in Huntington’s disease (Cicchetti et al., 2009) and, 

to a lesser extent, in Parkinson’s disease (Kordower et al., 2008a; Kordower et al., 2008b; Li 

et al., 2008).  
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It is evident that developmental genes involved in key cellular processes such as 

specification, proliferation, migration, differentiation and survival will be important 

mediators in directing stem cell therapy for CNS repair.  As such, Pax genes are prime 

candidates for enhancement of future replacement strategies (Figure 3).  

  

 

Figure 3.  Schematic of Pax function and downstream targets during CNS development, 

including cellular specification and regionalisation (a), progenitor expansion (b), neural cell 

migration (c), maintenance of the undifferentiated phenotype (d), differentiation, and 

maintenance of differentiated cells by cell survival and anti-apoptotic mechanisms (e). Listed 

target genes apply to one or more listed Pax proteins.  Throughout these processes, Pax 

functions are concentration-dependent.  

 

Due to very early neural expression and their capacity for neuronal specification, Pax genes 

may be powerful tools in directing differentiation pathways along desired routes, particularly 
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when manipulation of alternate isoforms or co-factors can be used to specify desired 

subtypes.  In addition, Pax genes can specify progenitors that differentiate into radial glia, 

projection neurons, interneurons, astrocytes, oligodendrocytes and schwann cells (Chan-Ling 

et al., 2009; Kioussi et al., 1995; Mo and Zecevic, 2008; Pillai et al., 2007; Sugimori et al., 

2007), and this may prove beneficial when use of heterogeneous populations may maximise 

repair and regeneration strategies. Furthermore, the ability to maintain a stem/progenitor cell 

phenotype and promote cellular survival provides a sound rationale for harnessing Pax genes 

for future stem cell therapies. These results also highlight the critical need for further work to 

reveal the identity and nature of other co-factors (eg epigenetic factors, upstream or 

downstream targets) that participate with Pax genes during these crucial developmental 

processes, and the functional peculiarity of isoforms to identify how, essentially, one 

transcription factor can multi-task and direct such diverse functional outcomes.  More 

research detailing the capacity of Pax genes to supplement current repair strategies is likely to 

be beneficial.  

 

Further considerations for future success of transplantation therapies will include the site of 

transplantation, the type of cell chosen and the transplant environment.  The striatum has 

previously been chosen as the site of foetal graft transplantation in Parkinson’s disease, 

however functional recovery is incomplete in human (Lindvall and Hagell, 2000) and animal 

models (Annett et al., 1994; Winkler et al., 2000) and is thought due to ectopic placement of 

the grafts in an unfavourable microenvironment or lack of afferent input to grafted cells 

(Gaillard et al., 2009; Thompson et al., 2009).  However, new research has indicated that 

foetal ventral mesencephalic cells transplanted into the 6-OHDA-lesioned adult mouse 

substantia nigra can integrate and restore the nigrostriatal pathway (Gaillard et al., 2009; 

Thompson et al., 2009) and this is enhanced with addition of appropriate neurotrophic 
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support (Thompson et al., 2009).    Moreover, whilst foetal ventral mesencephalic cells 

transplanted into the substantia nigra produce dopaminergic cells capable of projecting to the 

striatum and restoring the nigrostriatal pathway, dopaminergic cells from the embryonic 

olfactory bulb do not (Gaillard et al., 2009), indicating that intrinsic qualities of the cell 

impact its transplant capability and therefore matching transplanted cells with their 

environment may significantly influence transplant success.   

 

Similarly, embryonic stem cells matured within tissue explants, allowing extrinsic signals 

within the tissue to direct maturation, appears favourable for the production of neural stem 

cells with the potential to recapitulate the dopaminergic development programme within the 

ventral mesencephalon.  However, neuralization of these cells within explants produces more 

mature cells with a high neurogenic potential but low capacity to respond to environmental 

cues for site-specific differentiation, indicating that with progressive cellular maturation 

comes restricted plasticity (Baizabal and Covarrubias, 2009).  This agrees with previous 

findings determining that in early stages of mesencephalic development, cells have a greater 

capacity to respond to extrinsic signals, and early progressive maturation is driven more by 

extrinsic (non-cell autonomous), rather than intrinsic (cell autonomous) cues.  As cell 

maturation progresses, however, cells become more reliant on intrinsic qualities for 

specialisation of function (Li et al., 2005).  Nevertheless, such use of an “instructive niche” 

may circumvent the need for modulating culture conditions to suit different spatiotemporal 

requirements (Baizabal and Covarrubias, 2009), as the plethora of contributing factors that 

must precisely intersect for correct cellular specification, as demonstrated in this review, is a 

daunting prospect.  Taking these considerations into account, this protocol may provide an 

avenue to correctly ascribe Pax gene expression to improve transplant outcome when the 
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transplant environment (eg adult or post-traumatic) demonstrates poor efficacy to instruct the 

immature cell along a differentiation pathway.   

Sadly, there has been scarcity in the recent literature detailing Pax gene use in manipulation 

of stem/progenitor cells for transplant therapies. Perhaps the complexity of the task has 

proved too intimidating. It is obvious from the research cited in this paper that Pax gene 

levels, alternate isoforms, co-factors and co-operation with paralogues (or other Pax genes)  

are required for correct structural and cellular determination. To mimic this level of precision 

within stem or progenitor cells before or after transplantation is a challenging task but 

appears plausible if the Pax master switch is provided in the right context.  The ultimate 

question here is whether it is possible, using individual Pax genes, to recapitulate these 

processes and produce specific neurons from stem/progenitor cells within an in vitro 

situation. Given that Pax gene dosage is a critically sensitive variable in defining cell 

outcome, and the requirement for definitive upstream regulators of Pax genes (dynamic from 

a temporospatial perspective), it is tempting to speculate that use of a suitable “instructive 

niche” to generate and foster appropriate Pax expression levels prior to transplantation may 

provide a powerful mechanism to produce cells for neuro-restorative purposes.  Further 

research in this area should provide exciting results. 

 

Some success has been achieved where the capacity of Pax genes to specify neurons in 

embryonic or adult multipotent stem cells and enhance their proliferation and survival has 

been trialled for both endogenous and exogenous sources.  In particular, Pax6 has received 

noteworthy interest due to the capacity for cortical neurogenesis (Berger et al., 2007; Estivill-

Torrus et al., 2002; Sansom et al., 2009) and specification of dopaminergic neurons (Kohwi 

et al., 2005) for neurodegenerative diseases such as Parkinson’s disease. Recent experiments 

demonstrate that Pax6 expression in embryonic stem cells directs neuroectoderm progression 
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toward a radial glial fate (neuronal precursors) (Suter et al., 2009). Moreover, use of Pax6-

positive or Pax6-negative embryonic stem cells cultured in appropriate conditions prior to 

transplantation can give rise to glutamatergic or GABAergic cortical cells, respectively 

(Nikoletopoulou et al., 2007).   

 

Whilst progression of neural stem cells in vitro toward a neuronal fate historically has been 

poor, Pax6 overexpression in neurosphere cultures has been shown to direct neuronogenesis 

in almost all neurosphere-derived cells in vitro (Hack et al., 2004).  Similarly, when Pax6 

protein was delivered into E12 rat ventral mesencephalic neurosphere cultures, the neuronal 

progenitors increasingly adopted a dopaminergic fate (Spitere et al., 2008).   In a transplant 

scenario, Kallur et al (2008) achieved increased generation of neuronal cells after 

transplanting Pax6-overexpressing human striatal neural stem cells into neonatal rat striatum.  

 

It appears, however, that definitive cell lineage determination may be more specifically 

achieved by alternate isoforms.  Pax7 isoforms can direct distinct lineages as suggested by 

varied expression patterns during development; myogenic-derived Pax7b induces neuronal 

differentiation in P19 embryonal carcinoma cells (Ziman et al., 1997; Ziman et al., 2001b).  

Likewise, Pax6-5a isoform induces neuronal differentiation in murine embryonic stem cells 

in vitro, in contrast to the canonical Pax6 isoform, and it does so by regulating expression of 

bHLHb2 and Oct3/4 (Shimizu et al., 2009). Autoregulatory functions of Pax6 isoforms also 

stabilise relative levels of isoforms to achieve the desired outcome (Pinson et al., 2005; 

Pinson et al., 2006).  These results collectively highlight the capacity for Pax genes to specify 

desired lineages for stem cell therapies, however knowledge of correct co-factors will be 

required.  

 



36 

 

As the use of human embryonic stem cells or foetal tissue for neuroregeneration is 

contentious due to ethical considerations and availability of tissue, identifying suitable cell 

types to circumvent this issue is crucial.  Adult stem cells are potential candidates that have 

the added feature of autology, eliminating immunological rejection of the transplant.   Adult 

stem cells may be harvested from an affected individual, re-specified (using Pax genes, for 

example) to produce the cell type of interest and transplanted back at the affected site.  

However, preparing cells in this manner for neurorepair will require fundamental knowledge 

of the key factors required to produce a “designer” cell of interest.  For instance, bone 

marrow-derived adult human mesenchymal stem cells exhibit a predisposition for neural 

differentiation and express Pax6 in vitro under the appropriate conditions (Blondheim et al., 

2006) and hence achieve some functional repair when transplanted into various rat models of 

brain and spinal cord injury (Chen et al., 2001; Chopp et al., 2000; Li et al., 2001; Lu et al., 

2001; Mahmood et al., 2001).   

 

In order to achieve functional improvements after transplantation, the chosen cell type should 

be compatible with the host brain region and must be capable of integrating into circuitry 

regulated by the host brain environment (Isacson, 2003). Achieving an optimum match 

between cell and target site may require manipulation of the cell and/or the environment, and 

may be augmented by the use of factors such as neurotrophins (Choi et al., 2010; Thompson 

et al., 2009; Yang et al., 2010).  In support of this, mesencephalic neuroepithelial stem cells 

grafted into damaged rat striata show increased survival and differentiation tendencies 

compared to grafts into intact striata, indicating the powerful influence of the environment on 

the cell (Mine et al., 2009).   
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Interestingly, a variety of stem cell types have been used to repair the retina, albeit with 

differing levels of success. Ciliary retinal stem cells from the adult human eye (Pax6-

positive) have shown some success in integrating and differentiating into photoreceptors and 

retinal pigmented epithelia post-transplant in postnatal NOD/SCID mice and embryonic chick 

retinae (Coles et al., 2004), whereas some studies have shown that neural stem cells fail to 

fully differentiate into retinal phenotypes (reviewed in Baker and Brown, 2009), highlighting 

differences in transplant response which may be due to the potency of the cells chosen and 

their more closely-matched compatibility with the environment.  A recent study assessed the 

capacity for Pax7 to enhance CNS repair by matching the transcription profile of donor cells 

to that of the host tissue. Pax7-expressing neural progenitor cells taken from embryonic rat 

dorsal mesencephalon were grafted within the adult rat dorsal mesencephalon (Pax7-positive) 

or ventral mesencephalon (Pax7-negative), and whilst overall graft survival did not vary, the 

number of resultant astrocytes was reduced when Pax7-expressing cells were grafted into a 

non-Pax7-expressing region (Thomas et al., 2009).   These experiments also highlight the 

capacity of Pax-expressant cells to withstand inflammation and trauma (Edwards et al., 

1986a; Finlay et al., 1982), possibly due to transcriptional regulation of survival factors 

(reviewed in Medic and Ziman, 2009; Ninkovic et al., 2010; White and Ziman, 2008) - an 

important feature that will significantly assist in neuroregenerative strategies.  

 

It is apparent then that successful cell replacement requires knowledge of the appropriate cell 

type and maturation stage (Denham et al., 2010).  Pre-differentiation of cells in vitro into the 

appropriate cell type/s and maturation stage prior to transplantation has been attempted with 

variable success (Baizabal and Covarrubias, 2009; Le Belle et al., 2004; Park et al., 2009), 

possibly due to other factors inhibiting the in vivo uptake, integration and survival of mature 

transplanted cells within the injured environment.  Another possible source of cells for 
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transplantation is via the targeted de-differentiation of mature cells, such as the use of 

pigment cells de-differentiated in culture conditions to produce neural crest-derived ancestor 

cells (Real et al., 2006). Correspondingly, forced expression of Pax6 in postnatal cortical 

astroglia can instruct neurogenesis (Berninger et al., 2007; Heins et al., 2002), and under 

appropriate culture conditions, Pax6 transfection into mouse embryonic stem cells results in 

cell-fate adaptation to corneal epithelial-like cells (Ueno et al., 2007).  Similarly, Pax6 can 

affect adult multipotent stem cell lineage specification; Pax6 upregulation results in trans-

differentiation of hair follicle stem cells into corneal epithelial-like cells in conditioned media 

(Yang et al., 2009) or retinal pigmented epithelia into neuroretina in chick and Xenopus 

embryos (Arresta et al., 2005; Azuma et al., 2005).  

 

Environmental factors subsequent to inflammation and injury also significantly influence 

neuroregenerative therapies.  In Huntington’s disease, inherent immunological functions may 

cause degeneration of striatal grafted cells, which show differential survival rates in the 

caudate compared to the putamen (Cicchetti et al., 2009).  Similarly, in Parkinson’s disease 

Lewy bodies may eventually form in grafted cells (Kordower et al., 2008a; Kordower et al., 

2008b; Li et al., 2008).  However, whilst neuroinflammatory processes have generally been 

considered a negative component of CNS repair, evidence is emerging that chemokines and 

cytokines of the early immune response, involved in attracting inflammatory cells, also attract 

stem cells to the area of injury (Imitola et al., 2004; Newman et al., 2005).  Therefore, injury-

induced factors may positively affect transplant success, as demonstrated by the capacity of 

retinal stem cells to incorporate into the lesioned rat retina (Chacko et al., 2003), and likewise 

the migration of neural stem cells to infarcted areas due to mediators of the inflammatory 

response (Imitola et al., 2004).  Furthermore, the inability of pre-differentiated neurons and 

the capacity of stem cells to migrate to injury sites indicates a certain level of plasticity is 
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required for correct migration to pathological sites, or that differentiated cells respond 

differently to migration/survival cues (Park et al., 2009), and this will impact the maturity 

level of cells chosen or definitive Pax isoform selected for different applications, as cell 

migration after transplant is not always a desirable characteristic.   

 

Therefore, the use of transcription factors to “prime” cells by matching the genetic profile of 

transplanted cells to the damaged environment may optimise transplant success (Kallur et al., 

2008; Thomas et al., 2009).  Moreover, conditions that manipulate this dictated gene 

expression and the cell type chosen to exploit it, as well as the ability to manipulate the 

environment for graft uptake, will depend upon the nature of the condition being assessed.  

Thus to successfully manipulate cells to survive, integrate and mature to produce significant 

functional restoration to circuitry and information processing after in vitro conditioning 

requires investigation specific for each condition (Baizabal and Covarrubias, 2009; 

Srivastava et al., 2008).  Additionally, the appropriate use of stem cell survival factors 

(including Pax) to assist with transplant survival (Pluchino et al., 2010; Sieber-Blum, 2010) 

may be utilised to improve graft outcomes. 

 

12. FURTHER CONSIDERATIONS  

Whilst it is clear that Pax transcription factors possess many promising features that offer 

substantial promise for CNS regenerative strategies, their anti-apoptotic and oncogenic 

potential, as detailed below, will require further consideration when utilising Pax genes for 

neuroregenerative purposes. 

 

Correct embryo formation is also critically achieved by regulating apoptosis to create the 

optimal number of cells and/or architecture of the developing tissue, particularly in the CNS.  
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Pax genes mediate cell survival by inhibiting apoptosis in many regions of the body to direct 

organogenesis or for maintenance of normal homeostatic mechanisms.  In Pax2-/- mice, optic 

stalk cells degenerate (Schwarz et al., 2000), and Pax2+/- mice exhibit renal-coloboma 

syndrome.  When a Pax5 minigene is inserted into the Pax2 locus, most functionality is 

restored due to redundancy, however symptoms similar to Pax2+/- remain in the kidney and 

eye. Whilst cell proliferation is normal, there is increased apoptosis (Bouchard et al., 2000), 

revealing a dosage-dependent, anti-apoptotic role for Pax2.  Within the mouse kidney, Pax2 

protects against osmotic-induced apoptosis (Cai et al., 2005) by indirectly regulating the anti-

apoptotic gene bcl-2 via the transcription factor WT1 (Bouchard et al., 2000), similar to the 

indirect regulation of bcl-XL by Pax5 during B-lymphopoiesis (Nutt et al., 1998).  Direct 

modulation of bcl-2 (homologue ced-9) by Pax2/5/8 genes has been demonstrated in 

C.elegans (Park et al., 2006).  Moreover, Pax2/5/8 expression is inversely correlated with 

expression of the tumour suppressor gene p53 in astrocytoma and directly inhibits activity of 

the p53 promoter in vitro (Stuart et al., 1995a; Stuart et al., 1995b).  Pax8 also activates the 

anti-apoptotic TERT (Telomerase Reverse Transcriptase) gene in glioma cell lines, 

implicating it in glioma cell survival (Chen et al., 2008).  

 

An anti-apoptotic role for Pax3 is demonstrated by Pax3 inhibition secondary to maternal 

diabetes (Phelan et al., 1997), whereby neuroepithelial cells undergo apoptosis via p53-

dependent mechanisms (Pani et al., 2002), explaining neural tube defects induced in diabetic 

pregnancy.  This was demonstrated by the rescue of anti-apoptotic function in Pax3-/- mice 

with p53 loss-of-function (Pani et al., 2002), and by the observation that Pax3 inhibits p53 

activity in vitro by  modulating its transcriptional activity and by promoting degradation of 

the p53 protein (Underwood et al., 2007).  
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Evidence for an anti-apoptotic function of Pax6 was recently demonstrated whereby Pax6 

regulated survival of dopaminergic OB neurons during adult neurogenesis via direct 

regulation of crystallin-αA, which prevents activation of the caspase cascade and thus 

inhibits programmed cell death (Ninkovic et al., 2010). Pax6 also negatively regulates 

expression of the neurotrophic receptor p75NTR (Nikoletopoulou et al., 2007), demonstrated 

to cause neuronal death when overexpressed (Majdan et al., 1997; Plachta et al., 2007).  

Therefore, Pax6 mutant mice exhibit premature neuronal differentiation accompanied by 

rapid cell death of mis-specified neurons (Nikoletopoulou et al., 2007).   

  

Thus it appears that Pax genes couple early stages of neural development 

(specification/maintenance) to later stages (differentiation/maintenance) by providing anti-

apoptotic mechanisms throughout these processes, and this may also be differentially 

achieved using alternate isoforms and their subsequent ability to discriminate distinct 

downstream targets  (Wang et al., 2007; Wang et al., 2006; Zhang et al., 2010).  Indeed, 

investigation of Pax3 isoforms stably transfected into mouse melanocytes in vitro has 

demonstrated differing isoform-specific effects on cell function, which is achieved by 

differential regulation of distinct downstream targets, including genes involved in 

proliferation and survival (Rac1), differentiation (Dhh), transcriptional repression of Pax3 

(Msx1) and migration/transformation (Met, Muc18)  (Wang et al., 2007; Wang et al., 2006). 

Whilst this feature is advantageous in the context of normal developmental processes, it may 

have deleterious consequences from an oncogenic perspective in putative regeneration 

strategies.  

 

Whilst not a focus of this review, a discussion of Pax gene function in cell replacement 

therapy would not be complete without due regard to their oncogenic potential (refer Wang et 
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al., 2008 for comprehensive review), due to the risk of instigating tumourigenesis when using 

non-terminally differentiated cells (Heine et al., 2004; Johnson et al., 2008).  Pax genes are 

implicated in a wide variety of cancers, presumably due to regulation of proliferation, cell 

cycle arrest, migration and cell survival, and it has been proposed that different Pax groups or 

different Pax isoforms may pose a greater cancer risk due to structural and functional 

variation (Robson et al., 2006; Wang et al., 2008; Wang et al., 2007; Wang et al., 2006). 

   

Pax8 is overexpressed in glioma (Tong et al., 2008), and Pax3 and Pax7 are expressed in a 

variety of neuroectodermal tumours (Gershon et al., 2005).  However, whilst Pax5 

deregulation and overexpression have been reported in medulloblastoma (Kozmik et al., 

1995) and expression noted in astrocytoma (Stuart et al., 1995b), manipulation forcing 

overexpression in an effort to induce brain tumour formation from mouse neuroectoderm was 

unsuccessful (Steinbach et al., 2001), suggesting caution when inferring causality from 

expression patterns.  Conversely, the association of Pax5 with haematopoietic cancers such as 

B-Cell lymphoma (Busslinger et al., 1996) and acute lymphoblastic leukaemia (Nebral et al., 

2007), together with small cell-lung cancer (Kanteti et al., 2009) suggests tissue-specific 

oncogenic capabilities (Steinbach et al., 2001).  Knockdown of Pax2 (ovarian/bladder) or 

Pax3 (melanoma) in cancer cell lines (Muratovska et al., 2003), and Pax3 and Pax7 in 

alveolar rhabdomyosarcoma cells (Bernasconi et al., 1996), results in rapidly induced 

apoptosis, with a demonstrated anti-apoptotic pathway being the negative association 

between Pax genes and p53 (Stuart et al., 1995a; Underwood et al., 2007).  Collectively, 

these data suggest that Pax genes may bestow a cell survival mechanism on cancer cells, 

protecting them from normal elimination processes. This risk may, however, be reduced with 

careful choice of the appropriate Pax isoform.  

 



43 

 

13. CONCLUSION 

As demonstrated in this review, Pax genes participate in almost all facets of CNS 

development, from the earliest to mature stages.  Whilst their function in mature, 

differentiated adult cells still proves enigmatic, there is a wealth of evidence identifying 

complex and important roles for Pax genes in orchestrating and co-ordinating multiple 

aspects of neural maturation. 

 

Initially, Pax genes dictate correct organogenesis by ensuring sufficient progenitor cells for 

organ development.  This will impact stem cell therapies by ensuring initial expansion of 

cells if culture conditions can recapitulate this in vitro.  Secondly, the capacity for Pax genes 

to maintain the undifferentiated status of the cell until directed to switch towards 

differentiation allows for a variable, spatiotemporal-driven specification capable of producing 

different mature cell types within a changing developmental niche.  This demonstrates their 

aptitude as multipotent switches, instructing cells along differential pathways depending on 

the cell history and its spatial placement (Torres et al., 1996), providing credence for the 

previously suggested paradigm of Pax function; the capacity to couple extrinsic 

(environmental) and intrinsic (cellular) signals by rendering the Pax-expressant cell 

responsive to spatiotemporal environmental cues (Blake et al., 2008).  This feature affords a 

powerful tool for stem cell therapy, provided the appropriate Pax expression can be partnered 

with a correctly instructed and permissive environment.  

 

The challenge in harnessing Pax genes for stem cell therapy will not only lie in matching Pax 

and environment, but also in producing a cell with a correct complement of Pax dosage, 

including relative isoform levels, that is compatible with the environment at that point in time 

and place to achieve the desired outcome.  The Pax family of genes display crucial, dosage-
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dependent mechanisms for many functions (Hill et al., 1991; Kanakubo et al., 2006; 

Maekawa et al., 2005; Thompson et al., 2008; Zhou et al., 2008), and overexpression has 

been implicated in tumourigenesis.  For this reason, it is questionable whether transfection 

techniques can correctly assign Pax expression to a cell from a dosage perspective, and it 

may be more efficacious to use the “instructive niche” concept (Baizabal and Covarrubias, 

2009) utilising the appropriate environment for onset of Pax expression.   

 

Importantly, the ability of Pax genes to specify multiple cell lineages may have significant 

applications for therapeutic interventions requiring multiple cellular phenotypes.  It will be 

crucial to understand which Pax isoforms and downstream targets facilitate cell fate choice as 

this can be exploited to direct differentiation to desired populations as required.  Furthermore, 

the perceived capacity for Pax genes to respond to injury or stress suggests that either Pax 

genes may recapitulate the embryonic state for regenerative purposes, or highlights their roles 

as pro-survival/anti-apoptotic mediators.  It is clear that neuroinflammatory processes 

themselves greatly influence remedial therapy, and stem cell therapies must be able to 

withstand these processes.  It will therefore be necessary to identify what (if any) 

regeneration signals Pax genes respond to in the CNS and how these Pax-expressant cells 

interact with a damaged or regenerating environment.  This will provide further insight into 

the applicability of Pax genes for CNS repair. 
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