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ABSTRACT

In this thesis we consider the following problem: Suppose that a farmer wishes to
determine the best course of action to maximise returns from his / her land which has
undergone some form of degradation. In order to rehabilitate the land, the farmer may
have to change to a different farming practice for some time until the previous practice
becomes profitable again. Switching from cropping to rehabilitation or from
rehabilitation to cropping incurs costs, From an economical point of view, the
question then arises: When is the optimal time to switch from cropping- to
rehabilitation and when is it optimal to switch back to cropping again in order to
maximise profit? In this thesis, we give a mathematical formulation of the farmer’s
problem and derive necessary conditions for optimality using the calculus of
variations. We then apply our model to the specilic case of a rotation between wheat
farming and oil mallee plantation. We determine optimal switching times for two
scenarios - break even and current performance levels- and explore the effects of the

rates of change of the water level and the discount rate on the optimal switching timcs.
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. CHAPTERI

~ INTRODUCTION

In this chapter we introduce the problem we will study and discuss hackground

aterial relevant to the mathematical description.

1.1 INTRODUCTION

The situation we wish to model may be described as follows: Suppose that a
farmer wishes to determine the best course of action to maximise returns from his
/ her land and at the same time try to rehabilitate land. The land is assumed to
have been under agricultural exploitation for some time and the soil quality has
undergone degradation of some form, such as a depletion of nutrients, a rise in
acidity or salinity or possibly soi' compaction. The reduction in soil quality leads
to a decline in the yearly yield and hence in the profit. Unless some action is
taken, farming the land will eventually become unprofitable and the farmer may
have to give up farming it completely. There are a number of courses of action
that can be taken. In the case of depletion of nutrients, addition of fertiliser may
counteract the decline in yield. In the case of increased acidity, an addition of lime

might be beneficial. This scenario has been studied by Hertzler and Tiernecy




(1995). In the case of an increase in salinity, these measures will not work. Here a
reversal necessitates the land to be allowed to lie fallow or the planting of deep-
rooted perennial trees. While this is regarded an environmentally sound solution,
the question arises as to how to make the approach economically viable. There
must be some incentive for the farmer to invest money for rehabilitating his / her
land. The land should also give some benefit during the rehabilitation period, and
the cash tlow should be encouraging enough for the farmer to make his / her
decision (Barbier, 1990).

The problem of salinity is of particular concern in Western Australia, where
clearing of the native bush for cropping has destroyed the balance of the
ecosystem. Dryland agriculture reduces the water consumption allowing in the
soil a build up of saline water which in turn leads to a mobilisation of stored salt
and so to waterlogging and increased salinity (Bartle et al, 1996). One proposal to
reverse this type of degradation is that of planting salt water resistant plants or
trees in order to lower thc water level. In tiis setting, the following questions
arise: Firstly, when should the switch from cropping to rehabilitation occur.
Secondly, given that the switch from cropping to rehabilitation has taken place, is

it profitable to switch back to cropping and if so, when is the optimal time?

These are the questions for which we shall try to determine an answer.



1.2 PROBLEM SPECIFICATION

1.2.1 Background

Problems involving the optimisation of some performance index incorporating a
switching time have been discussed amongst others by Hoel (1977) and Dasgupta
et al (1982). In both papers, the setting concerned natural resource management
where the substitution for an exhaustible resource in future or the introduction of
new technology included some uncertainty factor. However, in both papers, the
time at which a switch needed to occur was an exogenous variable and so not a
decision variable of the associated optimisation problem. A similar problem had

already been considered by Nickell (1977) in the case of an investment decision.

Tomiyama (1985) considered the case where the switching time was a decision

variable. The performance index to be maximised can be written as :

J= JLl(r.x,u)dt+J‘lq(t,x.u)dt (1.1)

fo 1

where f; can be either finite or infinite, ¢ is the switching time, « is a control

variable, x is the state vector defined by :

~'{f,(t,x.u) on[ty,zg) (12)

e foexa)  on(tye,]

where :



X(ty) = Xo31, : fixed
x(t,): free (1.3)

Here L; and L: are two possible profit functions; f; and f: are the rates of
change of the state variable associated with stages 1 and 2. L;, L3, f; and f, are

assumed at least continuously diffierentiable in x, i and ¢,

Tomiyama used techniques from control theory to find the necessary conditions

for maximising (1.1), subjectto (1.2) and (1.3).

Tomiyama and Rossana (1989) ¢xpanded the formulation to allow the profit
function of the second integrand to explicitly depend on the switching time.
None of these authors included a cost for making the switch in their
formulation. The switching cost was first considered by Amit (1986) in the
setting of the exploitation of a petroleum reservoir. In his formulation, the
question was when to optimally switch from primary to secondary recovery.

Here the problem was to maximise :

jF(z.x.tl)dt+IG(t,x,u)dt- O, x(t,).u(e,))

to 4

subject to

[ fxa) sty
g(t.x,u) 4 <t<t,

where



tosx(ty) = X, : fixed
tx(t )ity x(t,): free

where x and u# are n-dimensional and m-dimensional vector valued functions

respectively. Amit used techniques from the calculus of variations to solve his

problem.

Kamien and Schwartz (1991), in addition, described the case of jumps in the

state variable.

The above problems arec multistage optimisation problems. Each stage consists
of a performance index together with conditions on state variables. Therefore

these problems may also be regarded as dynamic programming problems.

Babad (1995) recast the formulation of the multistage optimisation problem in
the language of multiprocess theory. This approach allows for the weakening
of conditions on the functions describing the n-stage process. His approach

will not be pursued here.

Multistage optimisation problems associated with farming practices were
introduced by Hertzler in 1990. He formulated a model which can be applied to
up to n farming practices. Assuming that the steady state is reachable, he

introduced the discrete choice model:



b
Jo= zMaxJ.e-a(l-ln)“i(Xn z,)de +e e g (X,)
i t
subject to
Xf =gf(X:9z|') ; i=0,l,...,n~1; liStSfM

and

X, islixed.

Here m; and g, are the annual profit and the rate of change of the land resource
at stage i; z is a continuous control variable; § is the discount rate. Hertzler and
Tierney (1995) applied this model to determine the optimal management of soil
acidity by liming. Their model and our model differ in the following aspects.
First, the cost for switching {rom one farming practice to another was ignored.
This means that the objective functiori of the problem is concave. This is no
longer the case in our model. Second, it was also assumed that the system is in

steady state. This assumption is unrealistic in our case.

In the paper presented to the 41" Annual Conference for the Australian
Agricultural and Resource Economics Society, Gold Coast, Queensland,
Schilizzi and Mueller formulated an n-stage problem where costs incurred with
the switches were included. The generalised formula then was applied to three
stages which was called C-R-C ( Cropping — Rehabilitation — Cropping ). The

fonnula was expressed as follows:



f102

J= max{i Tlfll(t, x(2).u(t)lde + sz[t.x(t).u(t)]dt

L Bin

SR ESS {CYWDNI(ZTND) EX R (. (D N7 (29091}

subject to

e x(8).u(r fort, <t<ty,,
(1) _{g *Buo)] OFfu *+1 and & =0,1..n

2 [t x()u(@) forty,, St<ty,,
where

xX(ts) = xois fixed and ta.s, X(t2k41), 12142, X(t2042) are free.

We will consider a special case of this model in this thesis.

1.2.2 Problem Specification

Solving the farmer’s problem in full generality requires finding the optimal

solution of a multistage optimal control problem in which each type of

cultivation is one stage. The time at which the farmer decides to change from

one type of cultivation to another is called the switching time. The general

problem consists of n stages and n-1 switching times. In this thesis, the problem

will be considered as a three-stage problem which may be summarised by the

following mathematical description:



Maximise

J= jD(r,x(r),zl(t))dt + JF(t.t, x(0)u (8)de + JG(:,:2 wx(@)u(dt

f 1

= cD] (t1 sX(tl ),lt(ll )) - (Dz (tz -x(tz)su(tl )) (14)

Subject to :

dt.x(@).u(®) 1, <t<y,
x;'=1 Fl.x(),u() Hstr<ty (1.5)
gtx(t)u()) nst<t

where

- to,x(to)=xoarefixed,and t;, x( t; ), t2, x( 82 ), t3, X( t; ) are free. (1.6)
- D, F, G are profit functions associated with stage 1,2, 3 respectively.

- w is acontrol variable.

- xis the state variable ( soil quality or water level ).

- 1y, t2are switching points.

- ®@,, d, areswitching cost functions.

Our task is to give expressions for D, F, G, x’, ®y, ®: and to find the optimal
switching times from cropping to planting and from planting back to cropping, #

and > to maximise profit, givenD, F, G and x



1.3 DATA

Data that may be of use in the modeling of this problem have been collected by
Schilizzi and White (1997). However, because of the poor representation of the
data, they can only be used as suggestions for chvosing reasonable parameters

and making asswnptions for the research.

In this thesis, we make use of the data from Bartle et al (1996) to decide the
switching cost from cropping to planting mallee trees, the density of trees planted,
the weight of leaves we harvest yearly (to choose suitable parameters for the tree

growth function) and the revenue obtained by selling one ton of leaves.

We use the data from the Department of Agriculture, Western Australia (1988) to
decide the average rate which ground water lowers and the shape of the function

for the depth of the water table in time.

The rate of increase of water table under cropping is also based on data from the
Department of Agriculture (1990-1996). All other parameters which we need to

decide are chosen by reasonable guessing.



1.4 STRUCTURE OF THE DISSERTATION

Apart from the introductory chapter, this report contains six more chapters. In
Chapter 2, we will derive the necessary conditions for maximising the general
three-phase optimal control problem using the theory of the calculus of variations.
In Chapter 3, we will formulate a specific model for three-phase farming
Chapter 4 contains the calculations for the necessary condition for the specific
model {from chapter 3. Chapter S describes the Excel workbook which we use to
implement the model irom chapter 3, the necessary conditions {from Chapter 4
and the parameters essential for the implementation, based on the data. These
parameters will be used for the analysis in Chapter 6. In Chapter 6, we will
investigate the impacts of the discount rate and the change of the water table on
the optimal solution. We also compare the result we obtain by solving the model
using the necessary conditions {rom Chapter 4 with the results we obtain by

using the Solver tool, without the necessary conditions.

10



- CHAPTER2

DERIVATION OF NECESSARY CONDHTIONS |

In this chapter, we will derive the necessary conditions for maximising problem
(1.4) subject to (1.5) and (1.6) from chapter 1. The derivation of the necessary
conditions for the three-phase optimal control problem will be based on the
derivation of the necessary conditions lor optimality for the two-phase
optimisation problem given by Amit (1986). The techniques which will be used

are the techniques of the calculus of variations.

An optimal control problem in its simplest forn consists of an objective function
(6 be maximised / minimised together with a first order differential equation
describing the evolution of the system. When the specific problem is an
economics problem, the objective function is often called the performance index.
The performance index depends on two classes of variables, both of which are
functions of time. They are state variables and control variables. In this setting, it
is not necessary that the number of state variables and the number of control
variables are the same, A state varable is ruled by a first order differential
equation; a control variable affects the objective function both explicitly and

implicitly. The problem we consider in this thesis is of the form:

11



Maximise

J= JD(t.x, (8)eeesn (2)stty (2)s-omt, (2))dt + fF(t.t, X ()seen X (0)010) ()t (D))t +

Gt 3, O (O, st )l = D, (2, (1o )bty (1 Dt 21)

=D, (1,3, (8)seesx, (22)stty (83 Dren st (22 )

(2.1)
Subject to:
d; (6,2, (6)senes X, ()58, (2)5e- 000, (2)) t, St<
x5 = it x (@) v x ()10 ()sestt, (2)) h<t<t 22)
8 (8t Xy (Dseees X, (1) o1y (et (1)) 1, <1<t '
where:

to.x;(ty) are fixed and 1, x, (#,),2,., %, (¢, )25 . x, (t,) are free.

We define the vector-valued functions x: R --» R"and u: R --» R™ by:
x(t) =(x,(2),....x,(t)) e R"
u(t) = (u,(t),-..ou,,(2)) € R™

Here x is the state vector and u is the control vector of the problem.

Similarly, we abbreviate:

d(t.x(2)u(t)) = (d (t,x()u(®))...d, (2, x(2),u(t)))
F@x@),ue)) = (f, (e, x(@).u(t)),.. £, (t.x(), u(t)))
glt.x(2) u(r)) = (g, (¢, x(1), u(t)),.., g, (£, x(2),u(r)))

and assume d, £, g to be continuously differentiable in ¢, x, u.

12



Let Ac= ua@.... A () (k = 1, 2, 3) be the continuously differentiable Lagrange
multiplier functions associated with the state variables. As constraint (2.2)
depends on ¢ in the interval [z, 5] , the Lagrange multipliers have to be functions
in 1. They are also refierred to as the costate variables and represent the marginal
value of the associated state variable at the time ¢ (see Kamien and Schwartz,

1991). We define the Hamiltonian functions /;, H-, H;:

H =D+YAd,=D+Ad 1,St<y,

i=l

Hy=F+YA,fi=F+Af 1 Stst,
i=l

H =G+Y X, =G+Xhg 1,s1st,
i=l

For simplicity, we assume that there is one state variable x and one control
variable u. Thus the problem may be rewritten as maximise (1.4), subject to (1.5)

and (1.6)

We will modify the proof by Amit (1986) to derive necessary conditions for
optimality in our problem. Our proof and his proof differ in two aspects. Firstly,
we have to determine optimality conditions for two switching times and secondly,
there is an explicit dependence of the integrands on the switching times. As we
will see below, this affiects the optimality conditions for the switching time
through the addition of terms involving the derivation of the Hamiltonians with

respect to the switching time.
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Theorem

The necessary conditions for maximising (1.4), subject to (1.5) and (1.6) are:

| aHIt
A= dx

. _ _OH,
A= o

1 —_— aH;
As= ox
..a_ff;-. =

ou
-.aiz‘.. =

ou

ou

G'(t,) + A, () g (2,) =0

LSr<y

hEt<t,

1, St<t

t, St<t

t<t<t,

ty <t<t

d .
l,(t()+%=lz(t, )

od .
%un+3f=amg

A3(t3) =0

9 _,
ou

9 o
ou

Y]

)

(3)

(4)

)

(6)

)

(8)

9)

(10)

4))

(12)
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If r, <t <t, <ty,then we must have (13.1.a) and (13.2.a):

? a .
D*+A,(r,‘)a’*+} g’ dt = F*+Az(t,'*)f*+a§i‘
1

h

”

; toH, . D,
F b f 2+ S dr=G ey () + 5

If t, =1 <t, <t,,then we must have (13.1.h) and (13.2.b):

o S 0H, N oD,
| D*+2 (1, )d*+jaT'dt$ F*+A.(1, )f*+a_zl
4 |

aH; + a(p‘l
= G *+ 2 p—
a, dt A (13)g >

F*+2,(5) f *+[

If 1, <t =1, <t;, then we must have (13.1.c) and (13.2.c):

D*+2,(7)d *+jaa%dt 2F*+A, (1)) f *+ a;:‘

1

Fradunf *+I%73“ =G*+A;(17)g*+ ag::

If ¢, <1, <t, =t, then we must have (13.1.d) and (13.2.d):

D*+2, (t()d**jaa%d’ =Frd, (t?)f**az(:l
{

L

=

F*42, () f *+j%fj—3dt2(}*+/lj(r;)g *+az3

2

If ¢, <t =t, =t,, then we musthave (13.1.e) and (13.2.e):

» -

‘ by
D*+A,(1))d *+I-a]j—2dt 2F*+A, () f* +a—§i-‘-
|

h

(13.1.a)

(13.2.a)

(13.1.b)

(13.2.b)

(13.1.c)

(13.2.c)

(13.1.d)

(13.2.d)

(13.1.e)
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F*+A, () f *+rj%%;—dr26*+%(r;)g*+ag? (13.2.¢)
If t,=t=t,<t;, then we must have (13.1.f) and (13.2.f):
D*+&(r{)d*+}%{:—;drSF*+/lz ) f "‘+i§:i (13.1.6)
R %h
F*+/’LZ(};)f*+i][aafi; a:;:'rsG”‘+A,(t;')g"'+a§::2 (13.2.1)
If 1, ;tI <t, = t3., then we must have (13.1.g) and (13.2.g):
D*+/’l,,(tf)d*+;?[%l—§drsF*+)Lz(tf)f*+%q—:i (13.1.g)
F*+A,(5) f *J%m 2G*+4,(1;)8 *+% (13.2.g)

where D*, F*, G*, d* f*g* are values of the corresponding D, F, G, d, f, g

evaluated at the optimal ¢, x, and u.

PROOF

In this proof, we will calculate the first variation of J, and derive the necessity

conditions from it. For brevity, the time dependence of functions 4, x and « will

not be shown. We denote by

u* : the optimal control function on {#, ¢; ], with the corresponding switching
times ¢;, t2.

x* : the state variable.
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J* : the maximum profit achieved corresponding to the optimal swiiching

points.
ot; . small changes (positive or negative) (i =1, 2,3 ) in ¢, t2 and t3.
Let J be the profit attained for x, u and switching times ¢ + &, t, +3t,,

t, +0ty, then:

L+, 141, ty+bey
J=J*= [Dexadt+ [Fe +8t,xadt+ [Gt, + 8t xu)de
A :|+6r| 1,481,

=D, (1, + 6, x(t, +8t).ult, +61,)) — @, (1, + 8, x(t, + t,),ult, +1,))

~{[ DUtx*a¥)de + [ FQetx* u)dt + [ GOt ty o u¥)de = @ (1 x* (2 )t * (1))

fo Y !

=@, (ty, x*(ty).u *(22))}

(2.3)
We now rewrite the above integrals as follows:

1461 L+

jD(r x,u)de = jD(r xa)de+ [ D(,xu)dt
1,48t 4481 t+80,

[Ftxude -IF(: b8, x)de— [F(et, +8n,xu0)de+ [Fbt, +8, xau)dt
1,401, 4 4 f
15468t 148, 15+8

jG(t x u)dt—fG(t ty + Oty x, u)dt — jG(r t, + 6ty x,u)dt+ jG(t t,+0,,xu)dt
1,401 1 4 1

Then (2.3) can be written as:

4+ 4+64 12481y
J-J*= [D(t,xu)dr~ jF(: t,+6t,,xu)dt+ jF(z ¢+ Ot x.u)dt

f115‘z £3481y :

- IG(:: + &,,x,u)dt + IG(: t, +8,,x,u)dt

17



+ I[D(t,x,u)+i\1d(t,x,u) = Ax'=D(t,x*,u*) ~ A, d(t,x*,u*) + A x* 1dt

)

+ I[F(t’tl +6t1:x,u)+a'2f(t: h +6t]a x’u) _;szl

n

- F(tltla x*7u*) _A2f(t’ t]’x*su*)-l-a'zx*l]dt

+ I[G(t,tz +8t5,3,u)+ Ay 98,8, + 61y, X, 1)

h

= A x'=G(t,t,, x*u*)— A g(e,t, , x* u*) + A x*)de

~ D, (1) + 0ty 50t + 01, 1ty + 81, ) =B o (1, + 8, x(25 +6t, )t +88,))

+®1(t1,x*(tl),u*(tl))+¢’g(t2,x*(t2 ),u*(tg )

We denote by #; the difference between x and x* in the interval [#i., #1:
h, =x—x*=h'= x'-x* LhSt<t
hy =x—-x*=h'=x'-x* <t<y,
hy = x~x*= h,'= x'—x* t,S1<ty

Using integration by parts, we have:

"J‘Ahl dt = —Al &y h (t,)'*'J(X —x*)A.l 'dt
— [ Aoyl = A6y 1) + Ao (6 g (1) + [ (= 20y

-Iﬁ-,h;'dt = —A:(t;)’h (fs)'*‘ls(t;)h; (l‘z)"‘Jl(x_X*)As'dt

n

18
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In (2.8), we have used b, (z5) = x(t,) = x*(z,) = 0,as x(t, ) =x " (t,) = x,

The numbers 4, (¢7) and 4,(¢/") are given by

A7) =limA (1) and A4,(z)) =limA,(¢)
Similarly

A(t;)=1limA ()  and 4,(t;) = limA,(r)

-5 1=ty

With (2.5)-(2.9), (2.4) becomes:

n+3 7+ 1,480
J-s*= [Daxu)d— [Fe +8,xa0dt+ [Ftt, +8, xa)dt
n fl Iy
ty+81, t3e8ty
- IG({J;)' +&qulu)dl+ IG(I,I: +&3|x|u)d{

4] 4

+ J[D(r,x,u) +A,d(t,xu) +A," x —~ D(t,x*u*) — Ad(t. x* ,u®) — A, x *dt

)

+ J‘[F(t,tl + 0t xu) + A F (et + 8, xu)+ A x
— F(t,t,,x* 10%) = A, f (2,0, 0% 0*) + A" x*]de

+ f[G(t, ty + 0y, x,u) + Ay 8(t,t, + Oty xs1t) + Ay x

2

— G(t,ty, x*u*) = Ay f (8,2, % 0*) + A" x*]dt
= AR () = Ap () Ry {8,) + A, (1] DRy (1))

= A3 (ty)hy (83) + A5 (e; Dy (22)
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~ @, (1, + ¢, x(t, + Ot)),ule, +6,))
-, (2, +0t,.x(t, + Ot,).u(t, +0t,))

+¢l(t! 'X*(tl ).u*(tl ))+d)2(f2a1*(12).u*(tz )

(2.11)

Assuming 61, &tz , 6ts x - x* and u - u*to be close to 0, we may make the

following approximations:

1+8&,
ID(t.x.u)dt = D(t,, x* (8,)u * (1,))0t, = D*(1,)dr,

h

46
IF(t.tl,x,u)dt = F(ty, x* (0, * (1, )8t = F * (1, )6,

h

1,461y

IF(t.tl.x.u)dt = Fty, 1, x* (1) u* (2,))8t, = F *(2,)51,

1,48,
jG(x,t, XL u)dt = G(ty, x*(8),u*(t,))0t, =G *(1,)d1,

2

G+
[ Gty w)de = Gty by x* (83 ) * (03 )81, = G * (1,368

1

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

We now approximate D, F, G, d,fand g by the linear part of Taylor expansions

aboutt, t;, 15, x* u* Then

J[D(t.x.u) + Ad(t.x,u) + A" x— Dt x*u*) =Ad (2. x* u* =4 'x*)]dt

o

~ [ [D(x0) +D, (2,x**)(x= x%)+ D, (b, *u*) (= e*)

to

+ A, d (e x*ou*) + Ad (6, x* u*)(x — x*) + Ad, (8, x* u*)(u—u*)
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+xA =D, x*u*) = Ad (e, x*,u*) - x* A '1dt
- f{[D: +Ad; + 4 +[D, + Ad,J6u}dr

Similarly:

_r[F(t,tl +6t,x,u) + A, f (22, + 8t xu) + Ay x

h

= F(t,t,.x*u%) = A, f (6,1, x*u*) —- A, x*|dt

= JULES 2 £+ 2, Wy 4L+ £15u+LF + Ay f,50,

J[G(t,tz +8t,, 1)+ A (2,1, + 8ty x,u) + Asx

L

=Gty x*u%) = Ay, g(t, 8y, x*u*) — A, 'x*]dt
= [10G] +Ag} + MWy +1G; + Aogilbu+(G,, + Ag;, 161, Y

and

—[D, (¢, + 6, x(t, +68),ut, +88,)) - D (t,, x*(t,)u* (t))]
=-[D] bx, +®, 51, +D; bu,)

"[‘Dz(tz +5(2,x(t2 +5[2 )a“(tz + &2))_(1)2 (t'-"x*(t"’)’u *(tl))]
:—[(D;X(sz +¢;,5f1 ’HD;“&I:]

where we have used the following abbreviations:
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Ou=u-u*
Ox, =x(t, +6t,) —x*(t,)
512 = x(¢; *'6t2)-X*(t2)

6“] =u(t1 +6!] )_u*(t])
Su, =u(t, +0t,)~u*(t,)

From (2.12) to (2.21), (2.11) can be rewritten s:

J_J* =D*(t1 )6{; _F*(tl)atl +F *(tz)&z _G*(tz)atz +G*(t3)5t3

+JHD:+lﬂ;+lﬂm4{D:+Zﬁﬂﬁwdt

+ j{[F: + s+ N1y +IF, + Ao, Bu +[F:: +lzf:,.]531 Jdt

n

+ UG, + Ay g7+ Ay +1G + Mgl 10u +(G;, + hyg;, 181,

—[®},0x, + D, 8, + O 8, 1 [P, 5x, + D3, 61, + D, 0u,]
=A@k (1) = Ay (12)hay (8,) + A, (1R, (1)

— A5 (8)h3 (£5) + A, (), (1) (2.22)

We next calculate approximations for &x;, dx» and éx; approximations for fis(z1)

and hz(tz).

Let ¢ +0t, be the termination time, x(f, +6¢,) be the value of the state at
t, +6t, and x*(;) be the value of the optimal state at ¢,.

Then
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Ox, = x(t, +6t,) = x*(t,) = Ox, +x*(¢t,) = x(t, +6t,)
= x(t,)+x'(t,)dt,
=x(t,) +x*'(t,)6t,

where we have replaced x'(r;) by x*(z,) as their values are approximately equal.
Then we find

Ox, — x*¥ (401, = x(t) )~ x* (¢ ) =1, (1)
and so

b (1) =6x —d* ()0, (2.23)
where we have used

d*(t,) = x¥()
Let ¢+04¢; be the initial time for phase 2, x(t;+0¢;) be the value of the state at
t+0t;, and x*(1;) be the value of the state at ¢, then with

&y =% (1 )0 = x(e))—x* (1) = 1, (1)

we have:
hy (1)) = 0y — f*(17)8t, (224)
Similarly
hy(ty) = 8x, — f *(12)8, (2.25)
hy(t,) = 8x, = 8 *(£7)0t, (2.26)
hy(ty) = Ox, — g *(1,)0t, 227)

Substituting (2.23)-(2.27) into (2.22), we have:

J=J*=D*(t,)0t, — F*(1,)0t; + F *(t,)0t, —G*(t,)0t, + G *(t,)dt,
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+ J{[DI +Ad; + A0 +(D; +Nd, 18ubdt

h

+j{[F,‘ + Ay fr + My +[F, +4, £, 16u+(F, +24,f, 10 )dt

+ UG + Al + A5 ) +(Go + Ay82 Yo+ G, + Ay g, 160, Mt

~[®] &x, + D, 6, + D, Su, ] -[D; Ok, + D), 6, +®; 6u,]
— A7 )8, = d *(1,)81) — A, (5 WBx, — f *(15)6¢,)
+ 4, )(0x, — £ (),

~ A5 (83 )(Ox; ~ g * (25)0;) + 4, (£3)(Ox, — g *(£3)01,)

Rearranging (2.28) and collecting terms yields

oJ ={[D*+4, (¢))d*] = [F *+A, (1)) f*] - Dy, + I?Tzdz}&,
1

4

+{[F*+4, ;) f*1-(G*+M(2;)8*] - D, + j'aaidt}&2

+[G*(2;) + A5 (t,)g*16t,
AU = A () — @), 180 +[A (17— A, (¢5) — @}, 16x,
= A, (t,)0x; — D, Ou, —®; bu,

“oH' T oH
1[79;'-+ &]hldﬁ {(7“‘—)&«#

fo

(2.28)



%( oH,; + oH,
| (—a—x%- +4 Jh,dr +j(7u-)5udr (2.29)

We will use (2.29) to extract the necessary conditions to maximise (1.4), subject

to (1.5) and (1.6). If we choose:

oH,

1.'="§=—[Dx+/%d,] 1elty,t,) 2.30)
.'=-a%"-=—[ﬂ+&fxl telt,t,) (2.31)
A'=%H’-=—IGX +Ag.] telt,.ts) (2.32)

then (2.29) simplifies to

J == j (D) +Ad, 16udt *‘J‘[F; + A, £ 1udt + (G} + 2,8, 10uds

I L1 e}

. 30H,
+{[D*+}h(t1—)d*]‘[F*"'Az(tr)f*]_(Du +I‘a_t‘dt]5’|
1

. 9H,
F{IF* 42, FHI-[G*+A, (g~ @5, + | <, dndn
iy ov2

+G*(t;)+ 2'3 (2, )8*]523
HA, ) =4, =D, Bx + (A () - A5 ) - D, 1x,

= A, (t;)8x, - @}, 0u, ~ D}, 0u, (2.33)
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It is possible forthe increments 6t,, &t2, 8t3, 6x1, Oxz, Su; and du; to be equal to

0, thus the requirement of optimality leads to:

D, +Ad. =0 1, <t<y, (2.34)
E +A,f =0 L <r<t, (2.35)
G.+Mg,=0 1, St<t, (2.36)

Therefore we obtain

au;

-dt}o
3 dt}ot,

31 = ([D*+A())d*1=LF *+ A, (1) f*1-;, + |

)

i3 *

. d
P42 11-(6% 4o 18] =) + [ STk

2

+[G *(t;) + A (13)8*16t,

+A, () = A () — @1, 1k, +{A7) - A7) - 03,1,

— A, (t,)0x, — P, Su, - D, Su, (2.37)
If &x,.dx,,6,, Ox,,0t, , 8u,,Ou, are both independent and free, then an optimal

soludon must satisfy:

M)+ @ = A,() (238)
A, (t1)+ D5, = A,(t7) (2.39)
A,(t,)=0 (2.40)
@) =0 (2.41)
;, =0 (242)
G* ;) +Ay(13)8 *(13) =0 (2.43)
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Finally, (2.37) becomes:

8F ={ID*+, () Jd*I~(F *+A,(0) X1 -, + f%dr}ar,
H;

2

HIF*+4,(t) f*1-[G*+A(t])g*]- <D2,+J driét, (2.44)

Ifry <t <t, <1y, &, and or,are free, and they can be positive or negative, J-J*
is non-positive if:

2 dt [F*+A4, () f*1+ @, (2.45.2)
1

D+, 1+ |

4

oH, dt =[G *+A, (15 ) g*1+ D3, (2.45.b)

[F*+2,(t5 )f*]+j

If t, =1 <t, <t,, &t,is non-negative and dr, is free (positive or negative), J-J* is

non-positive if:

-

%9
[D*+4, (tf)d*]+j f -

5 Th

]+, (2.45.c)

[F*42, (1) f1+ j -——dr [G*+2,(17)g%1+ 5, (2.45.4)
If % <t =t,<t;, &, is non-positive and 6, is free, J-J* is non-positive if:

[D*+4, (17)d*]+ jlafT’dt 2 [F*+2, (] ) f*]+ @;, (2.45.e)
1

4

[F*+A,(t; )f*]+_[ dt =[G *+A45(t; )g*1+ D), (2.45.f)

2
If t,<#<t,=t,8,is free (positive or negative ) and 6t, is non-positive, J-J*

is non-positive if:
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[D*+4, (17)d* ]+ fa; L= [F*+4, (67 ) F*1+ D, (2.45.8)

[ 1
[F*+A,(t]) f’"]+J'aH3 dt 2[G*+A,(t; ) g*]+ D, (2.45.h)

If % <t =t,=1t;, &, and d,are non-positive, J-/* is non-positive if:

D+, )+ [

f 1

-dt Z[F*+4, () f*¥]+®, (2.45.i)

[F*+3, 7)1+ j 5 d 2G4 (1)g ) @ (245.)
If t,=1 =1 <t, O and &,are non-negative, J-J* is non-positive if:

[D*+A, (1] Yd*]+ I%H—Z dt S[F*+2, (8] ) f*]+ D, (2.45.k)

1

oH;

[F*+A,(t; f*]+_[ dr<[G*+2, () g* 1+ @}, (2.45.])

If ¢ =t <t,=1,, Otis non-negative and ot,is non-positive, J-J* is non-

positive if:
N S 0H, . .
[D*+4, (£7)d*] + j’sz >[F*+A, (6 ) f*]+ D), (2.45m)
5 {
[F *+A, (53 f*]+j O, > <(G7 g+ O, (2.45.0)

This concludes the derivation of necessary conditions for an optimal solution of

(1.4) subject to (1.5) and (1.6).
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In our problem we have one state variable per stage: this is the depth of the
water level, and the control variable is the density of the trees grown in the

second phase.
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In this chapter, we will simplify our general model for the purposes of testing and
for the development of a spreadsheet. Specifically, we will assume that the only
control variable is the density of the trees grown in the second phase. For the first
and third phase the problem is uncontrolled. This means that the types of crop to
be grown in the cropping phases are predetermined. This will lead to a lack of
necessity constraints. Therefore, we will need to make more assumptions in the

next chapter in order to be able to solve the problem.

We will make further simplifying assumptions concerning the topography of the
land and the behaviour of the water level with time during cropping and

rehabilitation phases.

The specific assumptions will be described in section 3.1. In section 3.2, we will

state the simplified model, and the specific settings for the variables will be given

in section 3.3.
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3.1 ASSUMPTIONS

We will assume that the land to which the model applies is flat and homogeneous
in composition. The saline water level is site-specific. We will regard the water
depth to be positive in the direction from the surface to the centre of the earth.
We assume that the rate of change o f the water level is dependent on the depth of
the water level. In cropping phases, the water level will be raised close to the
surface, this is reversed in the rehabilitation phase, where trees decrease the water

level.

We will further assume that the rate of decrease of the depth of saline ground
water is be directly proportional to the density of the trees. However, there is an
upper bound for the number of trees that can be planted per hectare. We will
assume that tree density is constant and it must be a positive whole number. That

is, the density is a discrete variable and not dependent on time.

3.2 FORMULATION

3.2.1 Water Level

We will assume that in the cropping phases, the rate of change of the water level

with respect to time can be described by an exponential decay inodel. This model
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has been chosen in preference to a logistic model to take into account the
assumption that the water level has already started to rise. We assume that the
land has been used for cropping for some time span already. During the
rehabilitation phase, the function describing the water level obeys a logistic

model. We therefore have the state variable ruled by:

d(t.x(t))=—0x 0<r<t,
x'=|f(x(t)u)= ﬁxu[l—ﬁj Lst<t, (3.1)
m
g, x(t) =-n t,St<t,

Here, m denotes the maximum depth of the ground water to which the water
level can be lowered, while @ and yare intrinsic rates for the increase of the water
level with time, f§ is the intrinsic rate {or the decrease of the water level by one
tree during the rehabilitation phase (see Schilizzi and Mueller, 1997). The
function u is the tree density function. It denotes the number of trees planted in
phase 2 and u4 S Dyr, Where Dy, is the maximum number of trees planted per

hectare. Here u is a confrol variable for phase 2.

Wemaysolve (3.1) to obtain

le™ 0<e <y,
Ba
k,me
x=1 — LEr<t (3.2)
[+ k,eﬁ“' ' 2
ke™ LSt<t,

where k;, k2 and k3 are constants.
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If we require the continuity of the water level at the switching times ¢; and #;, then

we get from the conditions:
x(0) = x(1)
x(ty) = x(t;)
x(0) = x,

the following values forthe constants k;, k2 and ks.

k, = x, i
= kle"ﬁwI
ky=—5
_ kyme™ P
k3 - futy
k™ +1

A graph depicting the behaviour of the water level in time is given in figure 3.1.

Water Level during Phase 1, Phase2 and Phase 3

0 bt e e
T = ~2 22 28§88 s 3B 82T L 2B
o
2
E
5,3..
=N
1]
o
4.
54
-6l

Years

Figure 3.1: Depth of the saline water level for the case when t; = 12, t2 = 30

and t; = 50. For readability, the graph is drawn with the positive direction from
the centre to the surfiace of the earth.
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3.2.2 Profit Functions

We assume that in phase 1 and phase 3, wheat is grown and that trees are planted
in phase 2 for rehabilitation. The annual profit calculated in today’s value is given
by:
Yearly profit = (Selling price * Yield — Cost) * Discount factor.

The yearly yield is directly proportional to the maximum yield when there is no
salinity; directly proportional to the average depth of ground water in that year;
and inversely proportional to the maximum depth of water level. The requirement
of direct proportionality of the yield to the depth of the ground water can be
explained by the fact that ground water contains salt. When the ground water
rises near the surface of the earth, salt will accumulate close to the roots of the
crops. This will result in a reduction of the yield.

Yield _Maxxx
m

Yield =

The inverse proporttonality of the yield to the maximum depth of the water level
will guarantee that the yield will be a maximum when x is equal to m. This leads
to the following yield function in phase 1:

_ Yy xx
m

Y

where m is the maximum depth of water table, Yo is the maximum yield (tons /
per hectare) when there is no salinity. The profit function D for cropping in phase

1 then is given by:
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Yo X x

D(t,x)=(p, XY, —¢)=(p, % —¢)xe™" (3.3)

where p; is the price of the crops per ton and c; is the yearly cropping cost, which
is assumed to be constant, for phase 1, and r is the discount rate. Similarly, the
profit function for phase 3 is:

Y, Xx

n

—cy)Xe”

G, x)=(p;x (3.4)

where p; is the price of the crops per ton, c; is the yearly cropping cost, which is
also constant, in phase 3, and Yy; is the maximum yield (tons / hectare) when

there is no salinity.

We will assume that in phase 2, trees are planted which will contribute to profit
via the sales of oil extracted from the leaves. The yield function in this phase is the
function describing the tree growth. We assume that trees grow fast in early years
and that the tree growth slows down with time. Thus the equation of the tree

growth is exponential and is described as:
T=IL(1-¢7'")

where L is the maximum canopy mass (tons / tree) which can be harvested when
the density is less than D, and [ is the growth rate of a tree. (See Schilizzi and
Mueller, 1997). Here the tree growth rate does not explicitly depend on water

level. The profit function for phase 2 is:

F(t) =R, xuxL(l-e™™)xe™ (3.5)
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where R; is the revenue obtained by selling oil extracted from one ton of leaves

after subtracting the cost and « is the density of trees per hectare.

Tree Growth

Canopy Mass

Figure 3.2: The growth of canopy mass of a tree.

It is obvious that D, F and G are all continuously differentiable in all

arguments.

3.2.3 Fonmnulation of the Switching Costs

The cost for switching from phase 1 to phase 2 consists of the fixed cost per
hectare and the cost for planting young trees and caring for them during their

initial growth stages. The fixed cost is an establishment cost such as the cost for
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preparing the land or for fencing. The equation for the switching cost from phase
1 to phase 2 is:

D, (t,u) = (Sw, +c, Xu)xe™" (3.6)
where Sw; denotes the fixed cost, ¢z is the cost for buying and planting a tree and

u is the density of trees per hectare. Here Sw; and czare assumed to be constants.

For switching back to cropping, we will assume that the only cost involved is that
for clearing the land. This cost may be offset by the sale of the wood resulting
from the clearing. Thus

@, (1) = (Sw,)xe™” 3.7

where the establishment cost. Sw; may be both negative or positive.

Having formulated the specific model, we will find the necessary conditions for

solving ¢;, ¢, ¢3, and u based on the necessary conditions we obtained in chapter

2.
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Tm NE‘ CESSAR?]___ ONDM@NS E.R -.’E-.-HE'____

SPECH‘KC MODEL

In this chapter, we will find the necessary conditions for solving the specific
model which we formulated in chapter 3. Apart (rom the conditions obtained
from chapter 2, it is necessary to make some further assumptions for our
particular problem. Firstly, because of the setting proposed in the introductory
chapter, our particular model must have at least two phascs: the first cropping
phase and the rehabilitation phase. Secondly, as the first and third phases are
uncontrolled, there will nol be cnough constraints for obtaining a unique solution
as some necessary conditions {rom chapter 2 cannot be used. The additional
assumptions will allow us to narrow our search for the optimal solution and they

will be stated and interpreted in sections 4.1 and 4.2

4.1 ASSUMPTIONS

4.1.1 For our particular model, we will assume that the first cropping phase

exists, ie., the farmer must be cropping and considering the possibility to switch

from cropping to rehabilitation to reverse the degradation. This leads to the
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requirement that the first switching time ¢y be positive. We will assume that the
length of the cultivation we consider for three phases cannot last longer than 100

years, ie. &3 < 100.

4.1.2 We will make the assumption that an unprofitable farming practice will

be abandoned. This can be included by requiring the yearly net profit to be non-

negative.

42 THE NECESSARY CONDITIONS FOR THE

SPECIFIC MODEL

In order to find the necessary conditions for solving the specific model, we first
will forming the Hamiltonian functions associated with phase 1, phase 2 and phase

3.

For 0 <t < ¢, , the Hamiltonian for phase 1 is given by

DYy x

H, =D+ﬂqd=("m——c1]><e'"—-aﬂqx 4.1)

For ¢, <t<t,, we have:

Hy=F+Af=RuL(l~e"“")e™" + ﬁ;{.zux[l—l) (4.2)
i

For t, <t < t;,the Hamiltonian is given by
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}
Hy,=G+Ag %-c,)xe"'%,x 43)

Conditions (1), (2) and (3) of the general case in chapter 2 give the following

conditions for A;, Az As;

/"q'"' -, P:Yme 4.4)

A=~ afz —ﬂ%u(——lj 4.5)
x m

13 /11 PsYose (4.6)

m
Equations (4.4) and (4.6) are first order inhomogeneous linear differential
equations and (4.5) is a homogeneous linear differential equation. Solving (44),

(4.5) and (4.6), we have:

PlYole.rr P
=0 4.7
A (1) m(r+a)+wle (4.7)
A, (1) = w, (k,eP +1)* ™™ (4.8)
PiYne " ”
A@)= m(r+7 )+w3e (4.9)

where w;, w, and ws are constants. Since phases 1 and phase 3 are uncontrolled,
conditions (4) and (6) do not apply, and as the control u in phase 2 does not

depend on ¢, condition (5) is not valid either.

From condition (7), we have:

G(t:) + As(ts) 8(t3) = 0 (4.10)
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and therefore
Asfts) = - G(ts) / 8(t3) (4.11)
We use (4.11) as a boundary condition for solving for ws. Substituting ¢ = #; into

(4.9), we have:

= psYpse™ 1ty
A (ty) h—m(r+’y) + we (4.12)

From (4.13) and (4.14):

_ l:_ G(z;) _ P¥oe™ :le—m
YL s mr+y)

_ Y™™ e ¥pentrens (4.13)
™ 3 m(r+7) '

where

kyme VTP

As there is no control in phase 1 and 3, conditions (8) and (10) are no longer
valid. Condition (9) gives:

A1) =2,() (4.14)
We next determine the explicit form for conditions 13.1 and 13.2. The left hand

side of condition 13.1 is given by:

D@ )+ A, )d( ) + jaHz

dt 4.15
) 3 (4.15)

where

Y, ke™ "
D(rl—) — [pl 01 le __cl }" 1
n
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and
d(ty) =-Ok,e™
Unfortunately, we cannot calculate A4,(t7) because there is not enough

information! Hence, it is not useful to calculate the other elements in condition

13.1. We determine the left hand side of condition 13.2 by:
- oo PeH,
F(;)+ A () @)+ | =t (4.18)
[ 2

where

Fit7)=Ryu JE,(] - g Hirh) Yo

and

. nifity k ufly
YROSYICOEY N (N )( Bl me Il ke J

kgfuﬁf: +1 kgeuﬂr: +1

where the value of A,(r;) is determined by (4.14).

The integral IaaH3 dt is calculated as follows:
fy t2
H,=G+Ag

- (PsYoskae-ﬂ

—¢y |7 =Yhkse™ X
m

Payose_ﬂ + Payoakae_ﬁ’ — G P3Y03€~”’ RIEN
mir+7) m]/k;,e‘”’ m(r +7v)

—(r+rkt A ~(r47)t
=._p3}6_3k3e__,__r____c e ___”\3[73};03_ () .p3m3k3e )
m 3 m(r+¥) m(r+7v)
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Y.k.e ™ —
_ps 03;;% Tt':smem (4.19)

Differentiating (4. 19) with respect to ¢, we have:

3 ) [Mgle_(””’ - Wile ™™ _ py¥se™ + p¥ine T Jafcz

ot, m m(r+7) m mir+vy) o
where
k me(?"*ﬁu)rz
ky == T+, o q
kye 141
SO

ks lym(y + BudeHn
A, (ke 1)

Hence
]% aH3 dt = ks (7+ﬁ,‘)e(r+ﬂum f Ps ¥ [ —(r+r), —e'(r+r)u]
. on (™™= + 17 | my +1)
1) N S Yo T
ﬁ[ 4ty _ o=ty )rz]__}?}_&’;____(rs ~1,)
pamje-(”ﬂfs
IR L LR SR 2
mir+7) (t; =) (420

Finally, the right hand side of condition 13.2 is given as follows:

+ + + a(p
G(t;) +A;(t))g(e5) + 3t2

Y.k =¥
=(p3 °3m3“-’ — €3 }hﬁz + A5 (8 Yeye ™ = rSwpe™™ (4.21)

Where A,(t;) is determined by substituting ¢; into (4.9).
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In addition, we have the following constraints from the assumptions 4.1.1 and
4.1.2:
From the assumption 4.1.1, we have

H>0 (4.22)
The assumption 4.1.2 gives:

D(,)=0 and G(t;)20

Youxee ™ Youkye ™
So we have —M-—“——-——cl 20 and 23—91—3—“-(:3 20
mnt m

or equivalently

ns—lm[ an J (4.23)

@ Yo%

and

1 ¢y
t, < ——1 ' 4.24
? Y H[Payasksj ( )

Having obtained the formulae for d, f, g, D, F, G, ®; and @ together with the
necessary conditions for the specific model, we will find the switching times ¢, t2;
the terminal time #; and the density of trees by implementing them in an Excel
workbook. The benefit of this is that we can investigate the impacts of the rate of
change of the water level and the discount rate on the optimal solution, i.e., the
optimal switching times #; and ¢ and the total profit. Unfortunately, we could not

find condition 13.1 for lack of necessity constraints. Therefore we will use (4.23)
and (4.24) as additional constraints in order to solve the problem. However, we

are not able to define a unique #, ie. # will be free. Depending upon on values of
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chosen «, we will obtain different optimal solutions for ¢;, #;, and t5 . The optimal
settings for u, t;, t2and ¢; can then be determined by checking for which value of

u the maximum profit occurs.
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5.1 INTRODUCTION

In this chapter we describe the implementation of the formulae for the water level,
yield functions, tree growth function, yearly profit for each phase, switching cost
and total profit in an Excel workbook. The necessary conditions are also entered

for finding the optimal solution.

5.2 IMPLEMENTATION

Apart from charts showing the evolution of the water depth and total income, the
workbook consists of three main worksheets. The three worksheets are
Parameters, Formulation and Optimisation. If the differential equations
describing the water level need to be solved numerically, additional worksheets

need to be added.
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The worksheet Parameters is used to enter all parameters related to the problem.

They are:

Pricel (py):

Price2 (or Revenue2) (R;):

Price3 (m):

Costl (c;):

SwCost1(Sw,):

Cost2 (cy):

SwCost2 (Sw3):

Cost3 (c3):

Discount_Rate(r ):

Alpha(o.):

Beta (B):

Gamma(y):

Price of crops planted in phase 1, dollars/ton.
Revenue obtained by selling leaves after
subtracting harvest cost, dollars/ton.

Price of crops planted in phase 3, dollars/ton.
Cropping cost per hectare per year in phase 1,
dollars/ha.

Fixed cost per hectare for switching from
phase 1 to phase2, dollars/ha.

Planting cost per tree in phase2, dollars/ tree.
Fixed cost per hectare for switching from
phase 1 to phase 2, dollars/ha.

Cropping cost per hectare per year in phase 3,
dollars/ha.

Farmer Discount rate.

Intrinsic rate of increase of water level in
phasel.

Intrinsic rate of decrease of water level thanks
to planting trees in phase 2.

Intrinsic rate of increase of water in phase 3.

4



m(m):

Y_01

Y_03:

L_Bar(L):

1(1):

Den (u ):

X1_0(x):

K1, K2,K3:

Maximum water depth that trees can lower.
Maximum crops yield in phase 1 when the
water table is at the maximum depth.
Maximum crops yield in phase 3 when the
water table is at the maximum depth.
Maximum canopy mass given by one tree per
year, tons.

Growth rate of tree leaves.

Density of trees per hectare, the control
variable for phase 2.

Maximum number of trees grown per hectare.
Initial depth of water level at the beginning of
phase 1, metres.

The constants of the equations of water depth

when solving the differential equation.
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PARAMETERS

Name Cell Referred Unit
Pricel 800 Dollars/ton
Price:2 (Revenua?2) 20 Dollars/ton
Priced 800 Dollars/ton
Cost1 200 Nollars/ha
SwCost1 1000 Vollars
Cost2 0.5 Dollars/tree
SwCost2 80 Dollars
Cost3 200 Dollars/ha
Discount Rate 0.1

Alpha 0.03 m/iyear
Beta 0.001 m/tyaar
Gamme 0.03 m/year

m 6 m

Y_01 1.5 ton/ha
Y_03 1.5 ton/ha
L_bar 0.05

[ 0.08

Dmax 160
lu 120 trees/ha
X1_0 4 metre

K1 4.000000

K2 0.003321

K3 16.672979

Comment

Price of crop planted in phase 1

Revenue obtained by growing treas in phase 2
Price of crop planted in phase 3

Cropping cost for phase 1

Fixed cost for switching from phase 1 to phase 2
Cost planting 1 tree/plant in phase 2

Fixed cast for switching from phase 2 to phase 3
Cropping cast for phass 3

Farmer discount rate

Intrinsic rate of change of water level in phase 1
Intrinsic rate of change of water level in phase 2
Intrinsic rate of change of water level in phase 3
Maximum water depth under tree stand

Max crop yisld with no salinity for phase 1

Max crop yleld with no salinity for phase 3
Maximum canopy mass haversted per tree
growth rate of tree

Maximum number of trees per hectare

Density of tree Ma

initial depth of saline water { the first phase )

The Parameters worksheet.
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The worksheet Formulation is used for calculating water depth, profit for three

phases, switching costs, yearly profit and cumulative profit. It consists of 18

columns containing formulae for the particular model to be optimised.

Column A:

Column B:

Columns C- E:

Column F:

Column G:

Column H:
Column I:

Column J:

Column K:

Column L;

Column M:

Column N:

Column O:

ColumnP:
Column Q:

Column R:

Time in years.

Discount rate in year t.

Water level in phasel, phase 2, phase 3 of the
model.

Expected yield in phase 1.

Revenue in year ¢ for phase 1, before discount.
Netrevenue in year ¢ for phase 1.

Expected tree growth in year ¢ for phase 2.
Revenue obtained from harvesting leaves in
year ¢, in phase 2, before discount.

Net revenue in year ¢ in phase 2.

Expected yield in phase 3.

Revenue in year ¢ for phase 3, before discount.
Netrevenue in year ¢ for phase 3.

Switching cost from phase 1 to phase 2.
Switching cost from phase 2 to phase 3.

Yearly profit.

Cumulative profit for the model.
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Time Discount Water Level Water Level WaterLevel

Phasel
t

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
11.00
12.00
13.00
14.00
15.00
16.00
17.00
18.00
19.00
20.00
21.00
22.00
23.00
24,00
25.00
26.00
27.00
28.00
29.00

1.0000
0.9139
0.8353
0.7634
0.6977
0.6376
0.5827
0.5326
0.4868
0.4449
0.4066
0.3716
0.3396
0.3104
0.2837
0.2592
0.2369
0.2165
0.1979
0.1809
0.1653
0.15M
0.1381
0.1262
0.1183
0.1054
0.0963
0.0880
0.0805
0.073S

1.0000
X

4.0000
3.8432
3.6925
3.5477
3.4086
3.2749
3.1465
3.0231
2.9046
2.7907
26813
2.5761
24751
2.3781
2.2848
2.1952
2.1092
2,0265
1.9470
1.8707
1.7973
1.7268
1.6591
1.5941
1.5316
1.4715
1.4138
1.3584
1.3051
1.2539

2.0000
X(t)

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
2.6813
3.0401
3.3977
3.7442
4.0708
4.3706
4,6395
4.8753
5.0785
5.2505
5.3943
5.5131
5.6102
5.6891
5.7527
5.8037
58445
5.8770
5.9028
5.9233

3.0000
X(t)

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
5.9028
5.6714

Yield 1

Y1(t)

1.6667
1.6013
1.5385
1.4782
1.4202
1.3646
1.3110
1.2596
1.2102
1.1628
1.1172
1.0734
1.0313
0.9909
0.9520
0.9147
0.8788
0.8444
0.8113
0.7794
0.7489
0.7195
0.6913
0.6642
0.6382
0.6131
0.5891
0.5660
0.5438
0.5225

Revenue 1
“Price* Yield1"
".Costi"

1166.6667
1101.3157
1038.5272
978.2007
920.2396
864.5513
811.0464
759.6396
710.2484
662.7939
617.2001
573.3940
531.3057
490.8676
452.0151
414.6861
378.8207
344,3617
311.2538
279.4440
248.8816
219.5175
191.3049
164.1984
138.1548
113.1324
89.0911
65.9925
43.7997
22.4770

Apart of the Formulation worksheet.
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The third worksheet is the Optimisation worksheet. It is used to perform the
optimisation. This worksheet contains the first optimal switching time, Timel,
from phase 1 to phase 2, the second switching time, Time2, from phase 2 to phase
3; the terminal time, Time3, the density of trees per hectare D. The above
variables then are rounded to give OpTimel, OpTime2, OpTime3 and

respectively. The time constraints such as:

0<t <t (¢.1)
h<t <t (5.2)
t, <100 (5.3)

are entered directly into Solver tool box. The necessary condition 13.2 and the
additional constraints (4.23) and (4.24) are used to find the optimal solution. As
we could not caiculate condition 13.1, its value is not entered into the
spreadsheet. The maximum profit is displayed in the last row of the optimal part
of the Optimisation worksheet. Apart from the fact that condition 13.1 cannot be
used and constraints (423) and (4.24) are inequality expressions, our objective
function is not strictly concave. Therefore a solution which satisfies all of the
constraints and condition may not be the optimal solution. It only one possible
candidates of the optimum (see the explanation in chapter 7). So in order
determine the optimal switching times, we may have to solve our problem more
than one time and select the solution which gives the best profit. As we limit the
length of the three phases in no more than 100 years, if we cannot find #;, ¢; and #3
such that the left and right hand sides of condition 13.2 are equal, then there will

not be a switch back from rehabilitation to cropping.
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Optimisation Switching Time t1, t2 and Profit

Parameters :

TimeO 0
Timet 32
Time2 48
Time3 72
Den 120
u 120
OpTimet 32
OpTime2 48
OpTime3 72
Cond 13.1.1 0
Cond 13.1.2 0
Cond 13.2.1 3
Cond 13.2.2 3
Cons. (4.23) 35
Cons. (4.24) 80
Max Profit = 4036.0

Comments :

Initial time

Switching time 1

Switching time2

Terminal time

Tree density ( smaller than 160 )
Tree density ( rounded )
Switching t1 ( rounded )
Switching 2 ( rounded )

Optimal terminal time ( rounded )
Left side cond 13.1

Rightside cond 13.1

Left side cond 13.2

Right side cond 13.2

The Optimisation worksheet..
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5.3 PARAMETERS FOR THE SPECIFIC MODEL

In this section, we determine the parameters that we defined in the previous
section in order to solve for a concrete solution. The values of these parameters
are based on the data collected by Schilizzi and White (1997). As mentioned in
the introductory chapter, because of the poor presentation of the data, we just use

them as suggestions for reasonable choices of our parameters.

5.3.1 The Intrinsic Rate of Chan

We assume that wheat is grown in phase 1 and phase 3. Research by Vincent-
Llewellyn (1985) indicates that the rate with which the water level rises during
cropping wheat is 47mm for an annual rainfall of 162mm and 139mm for an
annual rainfall of 258 mm, respectively. Based on that information, the intrinsic
rates @ and yin phase 1 and phase 3 can be assumed to lie between 0.02 and
0.0S. This will make the rate with which the water level rises lie between 0.04m
and 0.14m per year. Figure 5.1 depicts the ground water level after 18 years

cropping wheat associated with ¢ =y= 002 and o =v=0.05.
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Water Level Under Wheat Cropping

0 =ttt ————————t————————
2 34567 8 91011121314 15 16 17 18 19

Depth (m)

Years

Figure 5.1: The depth of ground water under cropping with a = 0.02 and 0.05.

We assume that mallee trees are planted in phase 2. We do not have data
indicating how mallce trees change the depth of the water table, but research
carried out at Alex Campbell Plantation (unpublished data, see Schilizzi and
White (1997), Tag SA2) indicates that under bluegums, the ground water drops
in average of 0.4m per year. There is no information about tree density. Research
by Engel and Negus (1988), shows that a density of 80 trees per hectare planted
near Narrogin from 1981 to 1986 lowered the water level from about 1.2m to
2.2m below the surface. The rate was higher for higher density. For a density of
160 trees per hectare, the water level was lowered from 12m to about 2.6m
below the surface. The experiment is valid only on sand. Therefore, based on the
above information, the rate of decrease of the water level is considered to be

between 0.2m to 0.4m per year. Hence the associated f3 to be chosen will vary
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between 0.0010 and 0.0025. Figure 5.2 depicts the ground water level under

bluegums after five years of planting when 8= 0.0010 and 8=0.0025.

Ground Water under Bluegums

B =0.0010

B = 0.0025

Years

Figure 5.2: The depth of ground water under bluegums planting when f =
0.0010 and 0.0025

5.3.2 Other Parameters

Thediscount rater:  In this thesis, we will investigate the impact of the
discount rate on the optimal switching time, therefore
we assume r will be between 001 and 0.1.

Prax: The maximum tree density per hectare is assumed to be
equal to 160 trees / ha.

) The initial depth of the water level in this thesis is 4m.

Yo: and Yos Assuming that wheat is grown in the first and the third
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p: and pa:

¢; and c;

Swi:

SWZ:

G

phase, in WA because of the poor quality of the land,
the maximum yield of wheat per hectare is about 1.5
tonnes.

Prices of crop in phase 1 and phase 3 are assumed to
be constant and equal to $800 / tonne.

Cropping costs in phase 1 and phase 3 are assumed to
be constant and equal to $200/ ha.

The maximum depth of the water table is assume to be
6m.

Fixed cost for switching from phase 1 to phase 2 is
$1000/ ha.

Fixed cost for switching from phase 2 to phase 3 is $80
/ ha.

Planting cost is $0.50 / tree.

Growth rate of tree biomass is 0.08

In order to determine the revenue of selling one tonne of leaves (R:), the

maximum canopy mass ( L) given by a tree per year and the control «, we refer to

the data given by Bartle et al (1996). Mallee trees were planted together with

wheat and occupied 10% of the land in two rows with the length of 100m and

width of 10m. In general, two rows with length of 1km and width of 10m is

considered one hectare of trees. The yield, cost and profit obtained by the

planting are listed in table 5.1.
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‘Parameters - | Breakeven . | Asswnedlevel of performance . . -
Leaf Yield 11.5 tonnes /ha / yr | 2.5 tonnes/km/ yr or 5tonnes/ha/ vr
Oil content 53kg / tonne 40kg / tonne of leaf (freshweight)
Harvest / $34 / tonne $60 / tonne of leaf
extraction cost
Establishment no break even $500 / km hedge or $1000/ha
cost
Oil price $2.65 kg $2/kg

Table 5.1: Break even productien levels for oil mallee, Bartle ¢tal(1996).

Approximately, if the distance between two trees in a row is 15m, the density of

trees per hectare is 120 trees. Hence, we assumc the following values for

maximum canopy mass ( L ) and the revenues (R2):

Scenario 2

Scenario 1 .

Parameters | Break even . | Assumed level of erformance-

i 0.1 tonne / tree. This will give 0.05 tonne / tree. This will give
approximately 12 tonnes of leaves | approximately 5 tonnes of leaves
per ha per year. per ha per year

R; $106 / tonne $20 / tonne

Table 5.2: Values of the maximum canopy mass per tree L and the revenue
obtained from one tonne of leaves R for the two scenario.

In the analysis in chapter 6, we will make use the above parameters and will look

at the impacts of the rate of change of the water level and the discount rate on the

optimal switching times for these (wo scenarios.
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In this chapter, we solve the particular model formulated in chapter 3 using the
necessary conditions and constraints from chapter 4 and the parameters defined
in chapter S. We will explore the impact of the discount rate on the optimal
switching times for given rate of change of the water level We will also
investigate how the rate of change of the water level influences the optimisation

for some given discount rate.

6.1 THE IMPACT OF THE DISCOUNT RATE ON

THE SWITCHING TIMES AND OPTIMAL

PROFIT.

In this section we look at the effect of the farmer discount rate on the switching
times and on the optimum profit. To do so, we keep the intrinsic rates of change
for the water level in the three phases fixed and allow the discount rate to vary
from 0.01 to 0.1. We give solutions for the two scenarios summarised in table
5.1. Recall that scenario 1 concerns the break even case and scenario 2 gives

figures at which an oil mallee production would operate currently. The results for
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the two scenarios are listed in tables 6.1 and 6.2. Here the intrinsic rates of

change of the water level are = 0.02, £=0.0010 and y= 0.02.

0.02 | 0.0010 [ 0.02 0.01 1 100 100 64428
0.02 | 0.0010 [ 0.02 0.02 1 100 100 40721
0.02 | 0.0010 | 0.02 0.03 1 100 100 27342
0.02 | 0.0010 | 0.02 0.04 1 100 100 19347
0.02 | 0.0010 | 0.02 0.05 1 100 100 14299
0.02 | 0.0010 | 0.02 0.06 1 100 100 10948
0.02 | 0.0010 | 0.02 0.07 2 100 100 8624
0.02 [ 0.0010 [ 0.02 0.08 5 100 100 7057
0.02 | 0.0010 | 0.02 0.09 9 100 100 6018
0.02 | 0.0010 | 0.02 0.10 12 100 100 5310

Table 6.1:_Optimal solutions for scenario 1 when r varies from 0.01 to 0.1 with
a=y=0.02 and = 0.0010.

For scenario 1, there is no switch back to cropping within the assumed time span
of 100 years. However, it is clear that the higher the discount rate is, the
longer duration of the first phase will be. It means, when the discount rate
increases, ¢, also increases. The impact of the discount rate on the optimal profit
is obvious. When the rate goes up, the total profit goes down. Figure 6.1
depicts the difference of the optimal solution when r = 0.01 and r = 0.1 for

scenario 1.
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Optimal Solutions when o= y=0.02, § =0.0010

Profit ($)

Years

Figure 6.1: Optimal switching times and the corresponding profit for scenario 1.
Forr=0.01:ti=1t2=1t3=100; forr = 0.1: t;= 12, t2 = t: = 100.

Table 6.2 lists the optimal switching times and the corresponding profit for
scenario 2 obtained by using the necessary conditions from chapter 5 (normnal
font) and the optimal solutions obtained using the SOL VER tool in Excel by trial
and error (in italics). The differences of the solutions by the two methods will be
explained in the next chapter. We can see that the optimal solutions obtained by
both methods are consistent in tcrms of how the discount rate affects the
switching times and the maximum profit. For r £ 0.03, the duration of the third
phase goes beyond our limit of 100 years so the solutions corresponding to those
values of r are not analysed. For r = 0.04, it is obvious that the higher the
discount rate is the longer the first phase becomes and the shorter the
second and third phases are (see table 6.2.a). Figure 6.2 depicts the optimal

solutions when r =0.04 and r =0.1 for scenario 2.
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Necessary Conditions Soh:er Only

0.02 { 00010 [0.02]0.01] 22 | 54 | 100{ 22582| 22 | 47 | 100 | 23128

0.02 | 00010 | 002|002 | 22 | 45 | 100| 15804 | 22 | 43 | 100 |  isss0
| 0.02 | 0.0010 |0.02 003} 23 [ 41 100! 118741 23 | 40 | 100 | 11877
[0.02 | 00010 [0.02 004 ] 25 | 40 [100] 9542 25 | 40 | 100 | o502
| 0.02 | 00010 J0.02{0.05] 27 | 40 | 100 8070 | 27 | 40 | 100 8070
| 0.02 | 00010 |002)o006] 20 | a1 l100]l 7011 29 | 41 | 100 7073
[ 0.02 [ 00010 |0.02 |007] 34 | 46 l100] 6362] 3¢ | 46 | 1001 6362
[ 0.02 | 00010 | 0.02 |008| 37 | 48 | 100 |  s804{ 37 | 48 | 100 | 58041
| 0.02 | 00010 {0.02]009] 55 | 65 | 100 | s358) 55 | 65 [ 100 ] 53581
| 0.02 | 00010 J0.02{0.00] 64 | 73 [100 | 4973 ! 64 | 73 {100 | 4973

Table 6.2: Optimal solutions for scenario 2 when r varies from 0.01 to 0.1 and
a = y= 002 and B = 0.0010.

Profit ($)

Optima! Solution When a=y=10.02, = 0.0010

r=0.04

r=0.10

Figure 6.2: Optimal switching times and the corresponding profit for scenario 2.
r=004:t,=24,t2=39%r=01:t:1=64,1n=73.
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Necessary Conditions Solver Only
0.02 | 0.0010 | 0.01
| 002 | 0.0010 |002) 2 | 23 55 22 21 57
| 02 | o00010 foos| 23 | 13 59 23 17 60
{002 | 00010 Joos| 25 | 15 | 60 25 /5 60
002 {00010 Joos] 27 | 13 | o 27 13 60
| 002 | 0.0010 Joos| 29 | 12 | s9 29 12 59
Joo2 | 00010 Joo7) 3¢ | 12 | 54 34 12 54
loo2 |oocie Joos] 37 | u | s2 | T
| 002 | 00010 009 ss | 10 | 35 | ss 10 35
002 | 00010 Joao]l 6 1 o | 27 | 44 9 27

Table 6.2.a: Duration of phases 1, 2 and 3 obtained by 2 methods.

6.2 THE IMPACT OF THE RATE OF CHANGE OF
THE WATER LEVEL ON THE SWITCHING

TIMES AND THE OPTIMAL PROFIT

In this section, we will investigate the impact of the rate of change of the water
icvel on the switching times and the corresponding maximum profit. We first
consider how the rate with which the ground water rises in phase 1 and phase 3
affects the optimal solutions. We then consider the impact of the rate of decrease

of the water depth in phase 2 on the switching times and profit.
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6.2.1 The Impact of the Intrinsic Rate of Change of the Water

Level in Phase 1 and Phase 3 on the Problem

As mentioned in section 5.3.1, the rate with which the water table rises in

cropping phases lies between 0.04m and 0.14m per year and the values of the

intrinsic rates @ and 7 associated with these values lie between 0.02 and 0.05.

This variation is caused by the differences of annual rainfall and soil type. In this

part, we investigate the effect of the change of @ and ywhile the discount rate (r)

and the rate with which the water level decreases ( ) in phase 2 are fixed.

We consider the break even scenario with Sequal to 0.0010 and let ¢ and y vary

from 0.02 to 00S. In order to see the pattern clearly, we investigate the optimal

solutions for r = 0.08 to r =0.1 listed in tables 6.3, 6.4 and 6.5. (The solutions

corresponding to other values of r are tabulated in Appendix A).

ey i | profi
0.02 5 100 100 7057
0.03 4 100 100 7013
0.04 3 100 100 6991
005 | 3 | 100 100 6972
Table 6.3: Optimal solutions when 3= 0.0010 and r = 0.08.




, Y. : £y . t3: ofit.” .
0.02 9 100 100 6018
0.03 6 100 100 5913
0.04 5 100 100 5852
0.05 4 100 100 5816

Table 64:  Optimal solutions when 8 = 0.0010 and r = 0.09.

0.02 12 100 100 5310
0.03 | 8 | 100 100 5145
004 | 6 | 100 | 100 | 5047
0.05 | 6 | 100 I 100 | 4976

Table 6.5: Optimal solutions when 3=0.0010 and r =0.1.

As can be seen in these tables, an increase in the rate with which the water
table rises in the cropping phases leads to a shortening of the first cropping
phase and an increase in the duration of the rehabilitation phase. Figure 6.3
depicts the optimal switching time ¢; and the maximum profit when a = y vary

from 0.02 to 0.05 and r = 0.1.
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Cumulative Profit, § =0.0010,r =0.1

o=r=0.02 ~. -~

= a=y=0.04

o=y=0.05

Profit (§)
n (]
g 3

g

o

Figure 6.3: Optimal solutions for scenario 1, with r = 0.1, B = 0.0010; ¢ and Y
change from 0.02 to 0.05.

Since th‘ere is no switch back to cropping in this case, we cannot obtain any
further conclusion about the duration of phase 3 for this scenario. For scenario 2,
the situation is different. As we will see below, there is a switch back from
rehabilitation to cropping. To be consistent with the previous analysis, we will
consider the case where fis equal to 0.0010 and & and 7 vary from 0.02 to 0.05.
We also investigate the optimal solutions for r = 0,08 to r = 0.1 listed in tables

6.6, 6.7 and 6.8. (The solutions correspondimg to other values of r can be seen in

Appendix B).

0.02 37 48 11 100 52 $5804

003 | 31 | 45 | 14 | 79 | 34 $5115
004 | 26 | 42 | 16 | 75 | 33 $4559
005 ] 21 |} 38 | 17 | 59 | 21 $4100

Table 6.6. Optimal solutions when $=0.0010 and r = 008.
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0.02 55 65 10 100 35 $5358

'I‘ |
} 0.03 33 | 46 | 13 75 29 $4760
| 0.04 29 | 44 | 15 72 28 $4275
| 0.05 2 | 38 | 16 59 21 $3862

Table 6.7:  Optimal solutions when 3= 0.0010 and r = 0.09.

T mon PP B
o L ahase2 [ ; RO
0.02 64 | 13 9 100 27 $4973
0.03 38 | 51 13 72 21 $4463
0.04 32 | 48 16 68 20 $4036
005 | 29 | 39 19 58 19 $3655

Table 6.8: Optimal solutions when 3=0.0010 and r = 0.1.

The optimal solutions for this scenario listed in tables 6.6, 6.7 and 6.8 indicate
that an increase in the intrinsic rate of change of the water level in phase 1

(ar) and phase 3 (7) will decrease the duration of the cropping in phases and

increase the duration of the rehabilitation phase.

Table 6.9: The average profit per year when r = 0.08, 0.09 and 0.1.
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As we can see from table 6.9, even though an increase of rate with which the
water depth rises decreases the total profit, there is no pattern for the average
profit. Figure 6.4 depicts the impacts of the rate of change of the water depth in
phase 1 and phase 3 on the optimal solution. When @ and ¥ increase, the total

profit drops and the terminal time decreases.

Cumuiative Profit, B = 0.0010, r =0.08.

6000 a=x=0.02

a=y=0.05

Profit {$}

Figure 6.4: Total profit and the optimal switching times for scenario 2 change
when o and Yincrease from 0.02 to 0.05 withr = 0.008. o= v= 002, t;= 37, t;
=48, a0 =y=0.02, 4y =31, t2=45 a=yY=004, =206, =42, x=7Y=
005, ty=21, t2= 38.
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6.2.2 The Impacts of the Rate of Change of the Water Level in

Phase 2 on the Optimisation

In this part, we explore how the intrinsic rate of change of the water level in the
rehabilitation phase affects the optimal solution. As explained in 5.3.1, the
intrinsic rate in phase 2 () varies from 0.0010 to 0.0025. We now investigate
how these values influence the switching times and the total profit. In order to do
so, we fix the value of o and ¥ to 0.02 and let 3 change. Tables 6.10 to 6.19
show the optimal solutions for scenario 2 with different values for the discount
rate. The optimal solutions for the break even scenario are the same for all values

of f3 therefore they are not useful for analysis.

uration

00010 22 | 47 25 100 53 $23128
00020] 22 | 38 | 17 100 62 $25223
00025 15 | 28 | 13 100 72 $25274

Table 6.10: Optimal solutions for scenario 2 when @ = y= 0.02 and 8 changes
from 0.0010 to 0.0025 with r = 0.01.

00010 22 | 45 23 | 100 | 55 | $15850

"I
100020 23 | 36 | 13 | 100 | 64 | $17545
J0.0025] 15 | 26 | ) | 100 | 74 | $18004

Table 6.11: Optimal solutions for scenario 2 when &= Y= 0.02 and [ changes
Jrom 0.0010 t0 0.0025 with r = 0.02.
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0.0010

23

41

100

$11877

0.0020

24

36

100

$13094

0.0025

16

25

100

$13367

Table 6.12: Optimal solutions for scenario2 when ot= y= 0.02 and B changes
from 0.0010 to 0.0025 with r = 0.03.

Daration of |

‘Duration of

phased | -

 Profit -

0.0010

25

40

15

100

60

$9542

| 0.0020 |

25

36

11

100

64

$10361

10.0025 |

16

|

24

8

100

76

$10833

Table 6.13: Optimal solutions when o= y= 0.02 and B changes from 0.0010 to
0.0025 with r = 0.04.

|

3'_D|iraﬁ9n_. of |

| phase2 |l

 Durationof

0.0010

27

40

13

100

60

$8070

| 0.0020 |

26

36

10

100

64

$8598

| 0.0025 |

17

24

7

100

76

$8944

Table 6.14: Optimal solutions for scenario 2 when 0= y= 0.02 and 3 changes
from 0.0010 to 0.0025 with r = 0.05.

0.0010

29

41

12

100

$7073

0.0020

27

36

9 | 100

$7378

0.0025

17

24

7 | 100 |

76

$7629

Table 6.15: Optimal solutions for scenario 2 when ot = y= 0.02 and [ changes
from 0.0010 to 0.0025 with r = 0.06.
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00020] 27 | 35 | 8 100 | 65

LR
— — ——

0.0010 | 34 | 46 12 100 sa | $6362
|
l

00025 18 | 24 | 6 100 | 76

Table 6.16: Optimal solutions for scenario 2 when o.= Y= 0.02 and B changes
from 0.0010 to 0.0025 withr = 0.07.

SR TR CHE "R EOE e Durauonof -ty | Duration of | " Eg'r_pﬁ‘t_;_f_l_,;
_. R | S K nhase?« phase3 [ N
0.0010 ] 37 43 11 100 52 $5804
0.0020 | 27 35 8 100 65 $5896

0.0025 | 18 23 5 100 77 $5965

Table 6.17: Optimal solutions for scenario 2 when o= y= 0.02 and B changes
Jrom 0.0010 to 0.0025 with r = 0.08.

._ B ' '_ti'__':" |t -_l)n;rai_tiori of t3 ': __Dni_'aﬁbiibf_ Profit __
0.0010 | 55 65 10 100 35 $5358

0.0020 | 27 35 8 100 65 $5384

0.0025 | 18 23 5 100 77 $5413

Table 6.18: Optimal solutions for scenario 2 when a = y= 0.02 and B changes
from 0.0010 to 0.0025 with r = 0.09.

b Durahonof g

=5k bhased T Al L
73 9 100 27 $4973

0.0010 I 64

| 0.0020] 28 35 7 [ 100 65 $4978

| 0.00251 19 24 5 | 100 76 $4977

Table 6.19: Optimal solutions for scenario 2 when =y = 0.02 and B changes
Jfrom 0.0010 ta 0.0025 with r = 0.10
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From tables 6.10 to 6.19, we can conclude that an increase in the intrinsic rate of

change of the water depth will:

© decrease the duration of the first cropping phase.
® decrease the duration of the rehabilitation phase.
® increase the duration of the third cropping phase.

® increase the total profit.
Figure 6.5 depicts the impacts of the increase of 3 in phase 3, when r =0.06 and

aand y=0.02.

Cumulative Profit, o =y =0.02, r = 0.06

/ / =0.0025
/ﬁ—

f=0,0010

é— B=0.0020

Profit ()
&
g

91 +
97
103 ¢

Figure 6.5: Optimal solutions of the specific model for scenario 2 with o = y =
0.02 and [ changes from 0.0010 to 0.0025 when r = 0.06. Before the first
switching time occurs, the cumulative profit is the same for all values of B. After
that, when P increases the total profit also increases.
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7.1 SUMMARY

From chapter 3 to chapter 6, we formulated a particular model for farming
practice under land degradation and solved it for two scenarios determined by the
performance level for a mallee plantation. In the case of the break even scenario,
most solutions indicate that planting trees is more profitable than cropping. When
the discount rate is relatively small (r < 0.06), the first switching time is 1, and we
do not switch back to cropping for any values of 7, &, 8 and 7. As we assume
that the land has been used for cropping and ¢ has to be positive, the result
indicates that the first and third phases should be omitted and that we should
switch to rehabilitation immediately. Unless for some other reasons apart from the
income, land in that situation should only be used for planting trees. In the
scenario corresponding to the current perforrnance level, we have two switches
for the cultivation: cropping - rehabilitation - cropping, and the optimal solutions
under this scenario obey the following pattern:

When the farmer discount rate increases:

e The duration of the first cropping phase increases.
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e The duration of the rehabilitation phase and the third phase decreases.

© Thetotal profit decreases.

When the rates with which the water level rises in phase 1 and phase 3 increase:
o The duration of the cropping phases decreases.

@ The duration of the rehabilitation phase increases.

e Thetotal profit decreases.

o The terminal time decreases.

When the intrinsic rate of change of the water level in phase 2 increases:

© The duration of phase 1 and phase 2 decreases.

© The duration of phase 3 and the cumulative profit increase.

In section 6.1, we noted that the solutions obtained by using the SOLVER tool
only and by applying the necessary conditions were not consisient for some cases.
As the cumulative profit obtained by the SOLVER tool was higher than that
obtained by using the necessary conditions, those solutions are the true optima
and the solutions obtained by the necessary conditions were not optimal solutions

for those cases. This can be explained by two reasons:

1) In the derivation of the necessary conditions in chapter 2, we assumed #3 to be
free. Therefore, 6t; in equation (2.27) is also free. In chapter 4, we used this
result to find the boundary value for solving the differential cquation to determine

Ast). This value then was used to calculate the left and right hand sides of
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condition (13.2). When we limit our terminal time to up to 100 years, for some
values of r, the terminal time ¢; becomes fixed; dt; in equation (2.29) is no longer
frec. Hence the boundary value we used to determine As(z) is no longer valid.
This means that condition (132) does not apply. Consequently, the solutions are

not valid either.

The purpose of this thesis is to explore the impacts of the intrinsic rate of change
of the water level and the farmer discount rate on the optimal switching times, so
we let t; be free. However, when we have concrete values of the rate of change
and the farmer discount rate, it is possible that we modify our assumptions to find

the necessary conditions in the case where ¢; is fixed.

2) The necessary conditions {found in chapter 2 are also sufficient if the graph of
the objective function is strictly concave (convex) for the case of maximisation
(minimisation). In our case, due to the switching costs, the profit function is not
strictly concave. Therefore the solutions we obtained by applying the necessary
conditions are sometimes not the optimal ones but only the possible candidates
(see figure 7.1). We may sometimes obtain many solutions satisfying (13.1) and

(13.2), and we have to choose the best one.

One may wonder, so why we need the necessary conditions while we can solve
our special problem using the SOLVER tool? The answer is that the SOLVER

tool in Excel only gives local optima. In order to obtain the global optimum, we
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have to try many initial combinations of t;, ¢, and 5. The necessary conditions will

limit our search for those values of ¢, t; and ts which satisfy (13.2).

Cumulative Profit, o = y=0.02, B = 0.0010, r =0.06

8000.00 T
7000.00
6000.00 -

101

Figure 7.1: The graph of the cumulative profit is not strictly concave, therefore
the necessary conditions are not suffficient.

7.2 FURTHER RESEARCH

The specific model in this thesis is formulated based on the assumptions that the
land is flat; soil is homogenous; the type of crop is predefined; the prices of crop,
the cropping costs and the farmer discount rate are constants. These assumptions
lead to a model which is oversimplified. A more general model should take into

account the spatial variability of the land; the soil concentration or the variation of
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the discount rate. It would also meet the prices as stochastic variables. As the
type of crop is predefined, we do not have any control for phase 1 and phase 3.
The only control variable in the model - the tree density in phase 2 - is also a
constant during the rehabilitation. In reality, one should consider a model which
has some control in the first and third phases such as the type of crop for
cropping phases. In the rehabilitation phase, one possible control is the kind of
trees which makes the cultivation more profitable or we can let the density of
trees be a function in time in stead of constant. The problem we model is cyclic:
cropping - rehabilitation - cropping. In practice, it may be more beneficial to grow
crop and to plant trees together. This will allow farmers to crop and to conserve
their land at the same time. This approach will ensure avoiding the shortage of
food which may lead to famine crisis in some countries where only industrial trees
are planted. In conclusion, phase farming under land degradation / rehabilitation is

a fanstastic issue to be explored.

77



REFERENCES

Amit, R. (1986), Petroleum Reservoir Exploitation: Switching from Primary to
Secondary Recovery. Operation Research, 34: 534-548.

Babad, H. R. (1995), An Infinite-Horizon Multistage Dynamic Optimization
Problem. J. Optimization Theory and Applications, 86: 529-552.

Babier, E. B. (1990), The Farm-Level Economics of Soil Conservation: The
Uplands of Java. Land Economics, 86:199-211.

Bartle et al (1996), Can Trees Reverse Land Degradation? Department of
Conservation and Land Management, Australia.

Borg, et al (1987), Stream and Gruundwater Response to Logging and
Subsequent Regeneration in the Southern Jarrah Forest of South Western
Australia : Result [rom Four Catchments. Technical Report 16, Western
Australia Water Authority.

Bunce, A. C. (1942), Economics of Soil Conservation. Iowa State College
Press, Ames, Iowa.

Burt O. R. (1981), Farm Level Economics of Soil Conservation in the Palouse
Area of the Northwest. Amer. J Agric. Economics, 63 : 81-92.

Chavas, J. et al (1985), Modelling Dynamic Agricultural Production Response:
The Case of Swine Production.” Amer. J. Agric. Economics, 65: 636-646.
Clark, C. W. (1976), Mathematical Bioeconomics: The Optimal Management
of Renewable Resources. Wiley-Interscience, New York.

Dasgupta et al. (1982), Invention and Innovation under Alternative Market
Structures: The Case of Natural Resources. Review of Economic Studies, 49:
567-582.

El-Nazer, T. and McCarl, B.A (1986), The Choice of Crop Rotation : A
Modelling Approach and Case Study. Amer. J. Agric. Economics, 68: 126 —
136.

18



Engel, R. and Negus, T. (1988). Controlling Saltland with Trees. Farm Note
No 46/88. Western Australian Department of Agriculture.
Greenwood et al (1992) , Water Management through Increase Water Use by

Lupin Crops. Journal of Hydrology, 134: 1-11.
Hertzler, G. (1990), Dynamically Optimal Adoption of Farming Practices

which Degrade or Renew t : Land. Agricultural Economics, School of
Agriculture, UWA, WA.

Hertzler, G. and Tierney, W. (1995). Dynamically Optimal Management of
Topsoil and Subsoil Acidity. Agricultural and Resource economics, UWA,
WA.

Hoel M. (1977), Resource Extraction when a Future Substitute Has an
Uncertain Cost. Review of Economic Studies, 45. 637-44.

Kamien, M. I, and Schwartz, N. L. (1991) Dynamic Optimization : The
Calculus of Variations and Optimal Control in Economics and Management.
North-Holland, New York.

Karp, L. et al (1986). Cycles in Agricultural Production : The Case of
Aquaculture. Amer. J. Agric. Economics, 68: 553-561.

Maccini, L. S. (1973), Delivery Lags and the Demand for Investment. Review
of Economic Study, 40: 269-281.

McConnell, K. E. (1983), An Economic Model of Soil Conservation. Amer, J,
Agric. Economics, 65 : 81-89.

Miranowski, J. A. (1984), Impact of Productivity Loss on Crop production and
Management in a Dynamic Economic Model. Amer. J. Agric. Econ. 66: 62-74.
Nickell, S. J. (1977), Uncertainty and Lags in the Investment Decisions of
Firms. Review of Economic Studies, 44, 249-263.

Nulsen, R.A and Baxter, I. N. Water Use by Some Crops and Pastures in the
Suntan Agricultural Areas of Western Australia. Division of Resource
Management Technical Report 32, Department of Agricultural Western

Australia.

79



Vincent-Llewellyn, P. (1985), A Multi Criteria Analysis of Salinity Control in
the Wellington Catchment in South Western Australi. Thesis MSc (NRM),
University of Western Australia, Department of Soil Science and Plant.

Robson, A. 1. (1981) , Sufficiency of the Potryagin Conditions for Optimal
Control when the Time Horizon is Free. J. Econ. Theory, 24: 437-445.
Schilizzi, S. G. M and White, G. (1997) , Dryland Salinity. Department of
Agricultural Economics, UWA. Discussion Paper No. xx/97.

Schilizzi, S. G. M and Mueller U. (1997), Shifting Cultivation on the Farm?
Degrading Farm Practices and Optimal Long Term Land Rehabilitation. Paper
Presented to the 41" Annual Conference for the Australian Agricultural &

Resource Economics Society, Gold Coast, Queensland, Avstralia.

Schofield et al. (1990), Groundwater Response to Reforestation in the Darling
Range of Western Australia. Journal of Hydrology, 119: 179-220 .

Seierstad, A. (1984), Sufficient Conditions in Free Final Time Optimal Control
Problems. A Comment. J. Econ. Theory, 32:367-370.

Tomiyama, K. (1985), Two-stage Optimal Control Problems and Optimality
Conditions. J. Economic Dynamics and Control, 9:317-337.

Tomiyama, K. and Rossana, R. J. (1989), Two-Stage Optimal Control
Problems with an Explicit Switch Point Dependence. J. Economic Dynamics
and Control, 13: 319-337.

Walker, D. J., and Young D. L. (1986), The Effect of Technical Progress on
Erosion Damage and Economic Incentives for Soil Conservation. Land

Economics, 62: 83-93.

80



APPENDIX A

The Solutions for the Optimal Switching Times and Profit when the

Yield and Revenue of Mallee Oil is of Break Even Scenario.

00010 [ 002 | 001 |I20 1 100 100 64428
00010 | 0.02 | 002 |120 1 100 100 40721
00010 | 0.02 | 003 |120 1 100 100 27342
00010 | 002 | 004 |[120 1 100 100 19347
00010 | 002 | 005 |120 1 100 100 14299
00010 | 002 | 006 |120 1 100 100 10948
00010 | 002 | 007 |120 2 100 100 8624
00010 | 002 | 008 |120 5 100 100 7057
00010 | 002 | 009 |20 9 100 100 6018
100010 J 002 } 010 120 | 12 100 100 5310

Table A.1: Solutions for break even scenario when r varies from 0.01 to 0.1, with
o.=vy=0.02 and = 0.0010.

S50 B
003 | 00010 | 003 | 001 |I20 1 100 100 64428
003 ] 00010 | 003 | 002 [120 1 100 100 40721
003 | 00010 | 003 | 003 |20 1 100 100 27342
003 | 00010 | 003 | 004 {120 1 100 100 19347
003 | 00010 | 003 | 005 {i20 1 100 100 14299
003 | 00010 | 003 | 006 |i20 1 100 100 10948
003 | 00010 | 003 | 007 |i20 1 100 100 8623
003 |o0o0010| 003 | 008 |20 4 100 100 7013
003 ] 0.0010 | 003 | 009 |20 6 100 100 5913

i 003 00010 ] 003 | 010 [i20 8 100 100 5145

Table A.2: Solutions for break even scenario when r varies from 0.01 to 0.1,

with o = y=0.03 and 3 =0.0010.
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0 ; Thi Px“ffﬁﬁ
004 [ 00010 | 004 | 0.01 {120 1 100 | 100 64428
004 | 00010 | 004 | 002 |i20 1 100 | 100 40721
004 | 00010 | 004 | 003 |20 1 100 | 100 27342

| 004 | 00010 | 004 | 004 |120 1 100 100 19347
| 004 | 00010 | 004 | 005 |120 1 100|100 14299
I 004 jo.0010] 004 | 006 }120 1 100 | 100 10948
| 004 [o00010 | 004 | 007 |20 1 100 | 100 8623
| 004 00010 ] 004 | 008 120 3 100 | 100 6991
| 004 | 00010 | 004 | 009 |20 5 100 00 | sgs2
| 004 | 00010 004 | 010 l120 6 100 | 100 | s047]

Table A.3: Solutions for break even scenario whenr varies from 0.01 to 0.1, with
o. = y=0.04 and p = 0.0010.

0.05 0.0010 0.05 0.01 120 1 100 100 64228
0.05 0.0010 0.05 002 |120 1 100 100 40721
0.05 0.0010 0.05 0.03 120 1 100 100 273421
0.05 0.0010 0.05 004 |120 1 100 100 19347
0.05 0.0010 0.05 0.05 120 1 100 100 14299
0.05 0.0010 0.05 0.06 |120 1 100 100 10948
0.05 0.0010 0.05 0.07 120 1 100 100 8623
0.05 0.0010 0.05 0.08 120 3 100 100 6972
0.05 0.0010 0.05 0.09 120 4 100 100 5816
0.05 0.0010 0.05 0.10 120 6 100 100 4976

Table A.4: Solutions for break even scenario when r varies from 0.01 t0 0.1,

with a.= v=0.05 and 3 = 0.0010.
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Fioe : ofit
0.02 ¢.0020 0.02 0.0t |120 1 100 100 64428
0.02 0.0020 0.02 0.02 1120 1 100 100 40721
0.02 0.0020 0.02 0.03 |20 1 100 100 27342
0.02 0.0020 0.02 0.04 {120 1 100 100 19347
0.02 0.0020 0.02 005 |i20 I 100 100 14299
0.02 0.0020 0.02 006 120 I 100 100 10948
0.02 0.0020 0.02 0.07 |120 2 100 100 8624
0.02 0.0020 0.02 0.08 120 5 100 100 7057

| 002 | 00620 | 002 | 009 |i20 9 100|100 6018
0.02 0.0020 0.02 0.10 [120 12 93 100 5310

Table A.S: Solutions for break even scenario when r varies from 0.01 t0 0.1,

with o =vy=0.02 and 3 =0.0020.

002 | 00025 | 002 | 001 [120 1 100 | 100 64428
002 100025 | 002 | 002 |120 1 100 | 100 40721
002 | 00025 | 002 | 003 |120 1 100 | 100 27342
0.02 | 00025 { 002 | 004 |120 1 100 | 100 19347
002 | 00025 | 002 | 005 |20 i 100 | 100 14299
002 | 00025 | 002 | 006 |120 1 100 | 100 10948
| 002 | 00025 | 002 | 007 |20 2 00 | 100 8624
| 002 | 00025 | 002 | o008 |20 5 100 | 100 7057
| 002 | 00025 | 002 | 009 |20 9 100 100 6018
| 002 ] ooo2s | 002 | 010 |20 12 100 | 100 5310

Table A.6: Solutions for break even scenario when r varies from 0.01 to 0.1,

with o0 =y=0.02 and 8 = 0.0025.
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APPENDIX B

The Solutions for the Optimal Switching Times and Profit when the
Yield and Revenue of Mallee Oil is of Current Performance Level

Scenario.

fit

0.02 | 00010 | 002 {001 {720 { 21 | 54 {100l 22582 | 22 | 47 L 400 | 23128
002 | 00010 | 0.02 | 002 {120 | 22 | 45 | 100 | 15804 | 22 | 43 | 100| 15850
0.02 | 00010 | 0.02 | 003 [ 120 | 23 | 41 {100 | 11874 23 | 40 | 100| 11877
002 | 0.0010 | 0.02 { 004 | 120 { 25 | 40 | 100 9542 | 25 | 40 | 100 9542
002 | 00010 | 0,02 ] 0.05{ 120 | 27 | 40 | 100 8070 | 27 | 40 { s00 8070
0.02 | 0.0010 | 0.02 { 0,06 } 120 | 29 | 41 | 100 7013 | 29 | 41 {100 7073
002 {00010 } 002 | 0.07 ] 720 | 34 | 46 | 100 6362 | 34 | 46 \ 100 6362
002 | 0.0010 | 0.02 | 0.08 | 120 | 37 | 48 | 100 s804 | 37 | 48 | 100 5804
0.02 {00010 [0.02 [ 009 1720 | 55 | 65 | 100 | 53581 55 | 65 {100| 5358
1002 |0.0010 | 0.02 {01020 | 64 | 73 | 100 4973 | 64 | 73 | 100 4973

Table B.1; Solutions for current perfornance scenario when r varies from 0.01 to
0.1, with oo.=y=0.02 and = 0.0010.

{s3 rofitl:| il . ;
0.03 1 0.0010 | 003 | 001l 220 | 22 61 100 18496 | 22 | 34 | 100 18763
0.03 | 0.0010 [ 0.03 | 002 720 | 24 | 52 | 100 12975 | 24 | 50 | 100 12986
0.03 | 0.0010 ( 0.03 [ 0.03 [ 120 | 25 48 | 100 9872 | 25 48 | 100 9872
0.03 1 0.0010 | 6.03 | 004 | 120 | 26 | 46 | 100 8053 |_26 46 | 100 8053
0.03 | 0.0010 | 0.03 | 0.05( 220 | 27 | 45 | 100 6904 | 27 | 45 | 100 6904
0.03 ] 0.0010 {003 (006120 | 28 | 44 | 90 6122 | 28 | 44 | 90 6122
0.03 | 0.0010 | 0.03 ( 007 | 120 | 29 | 44 83 5553|129 | 44 | 83 5553
0.03 | 0.0010 | 0.03 | 0.08 | 120 | 3i 45 79 S115 | 3! 45 79 5115
0.03 10.0010 (0.03 10.09| 120 | 33 | 46 | 75 4760 | 33 | 46 | 75 4760
©0.03 00010 {0.03{0.10 /420 | 38 | 51 | 72 4463 | 38 | 51 [ 72 4463

Table B.2: Solutions for current performance scenario when r varies from 0.01 to
0.1, with o.="=10.03 and § =0.0010.
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0.04 | 0.0010 ] 0.04 | 0.01 ] 120 | 21 | 69 | 100 15527 | 21 | 60 | 100 15791
0.04 | 0.0010 | 0.04 [ 002] 220 | 21 | 52 | 95 10992 [ 27 | 52 | 95 10992
0.04 | 00010 | 0.04 | 0.03| /20 | 22 | 48 | 90 8457 | 22 | 48 | 90 8457
0.04 | 0.0010 | 0.04 | 0.04 | 120 | 23 | 46 | 85 6964 | 23 | 46 | 85 6964
0.04 } 0.0010 J0.04 | 005 /20 | 24 | 44 | 83 6018 | 24 | 44 | 83 601F 3
0.04 ! 00010 /004 {006 /20 | 24 | 43 | 82 5382 ) 24 | 43 | 8 5382
0.04 | 0.0010 ; 0.04 [ 007 | 120 | 25 | 42 ! 78 9161 25 [ 2| 78 216
0.04 | 0.0010 | 0.04 | 008 | 120 | 26 | 42 | 75 4559 [ 26 | 42 | 75 4559
0.04 | 0.0010 [0.04 [ 009 ] 120 { 29 | 45 | 72 42751 29 | 45 | 72 4275
0.04 { 0.0010 ) 0.04 | 0.10 } /120 § 32 | 48 | 68 4036 | 32 | 48 | 68 4036

Table B.3: Solutions for current performance scenario when r varies from 0.01 to

0.1, with o =y = 0.04 and p = 0.0010.

AT P i _ ORI2:
0.05] 0.0010 | 0.05| 0,01 f720 | 5 | 65| 100| 11729| 17 | 66 | 100| 13692
0.05 | 00010 | 0.05| 002|120 | 18 | 51 | 84 9575 | 18 | 47 | &2 9549
0.05 | 00010 | 0.05| 003|120 | 18 | 45 | 80 7452 16 | 41 | 74 7463
0.05 | 00010 | 0.05] 0.04 | 120 | 18 | 41 | 72 6184 18 | 41 | 72 6184 |
0.05 | 00010 | 0.05] 0.05 | 120 ] 19 | 40 | 70 s;62| 17 | 37 | 67 5366 |
0.05 | 0.0010 | 0.05| 0.06 {120 | 19 | 38 | 68 4806 | 19 | 38 | 68 4806
0.05 | 0.0010 | 0.05 | 007|120 | 20 | 38 | &7 4404 | 20 | 38 | 67 4404
0.05 | 0.0010 { 0.05 | 0.08 f 120 | 21 | 38 | 61 4100 | 21 | 38 | 64 4100 |
0.05 | 0.0010 J 0.05| 009} 120 | 22 | 38 | 59 3862 | 22 | 38 | 59 3862 |
0.05] 00010 | 0.05| 010 | 220 | 30 | 48 | 68 3673 | 30 | 48 | 68 3673 |

Table B.4: Solutions for current perf ormance scenario when r varies from 0.01 to

0.1, with o =y = 0.05 and p = 0.0010.
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iR e r? L R e Pronids
22 38 | 100 25223 | 22 38 | 100 25223
23 36 | 100 175457 23 36 1| 100 17545
24 36 | 100 13094 | 24 36 | 100 13094
25 36 | 100 10361 | 25 36 t 100 10361

26 | 36 | 100 8598 [ 26 { 36 | 100 8598
27 | 36 | 100 7398 [ 27 | 36 | 100 7398
27 ] 35 | 100 6539 | 27 | 35 | 100 6339
27 1 35 1100 589 | 27 | 35 | 100 2896
27 135 {100 5384 | 27 4 35 | 100 3394
28 | 35 1100 4978 | 28 | 35 {100 4978

Table B.S: Solutions for current performance scenario when r varies from 0.01 to
0.1, with o.=v=0.02 and 3 = 0.0020.

e e
0.02 1 0.0025 1 0.02 1001 | /20 { 15 [ 29 | 100 25254 15
0.02 | 0.0025 | 002 {002 | /20 | 15 | 26 | 100 18004 | 15
0.02 |1 0.0025 (002 {0.03 | /20 | 16 | 25 | 100 13637 | 16

0.02 [ 0.0025 [0.02 10.04 1720 | 16 | 24 | 100 10833 | 16

0.02 § 0.0025 |0.02 [ 0.05 ] 720 | 17 | 24 | 100 8944 | 17
0.02 | 0.0025 10.02 1006 | 720 | 17 | 24 ] 100 7629 | 17
0.02 | 0.0025 | 002 | 007 | 120 | 18 | 24 | 100 6681 | 18
0.02 {0.0025 |0.02 | 0.08 | 720 | 18 | 23 | 100 5965 1 18
] 0.02 ] 0.0025 J0.02 } 0.09 | 720 | 18 | 23 | 100 5413 | 18
J0.02 | 0.0025 f0.02 | 0.10 | 120 | 19 24 | 100 4977 | 19

Table B.6: Solutions for current perfonnance scenario wiienr varies from 0.01 to
0.1, with oo = y=0.02 and = 0.0025.
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APPENDIX C

The Excel Spreadsheet for Implementing and Solving the Specific

Model

The PARAMETER Worksheet.

PARAMETERS

Name Cell Referred Unit
Price1 800 Dollars/ton
Prica2 (Revanue2) 20 Dollars/ton
Priced 800 Dollars/ton
Cost1 200 Dollars/ha
SwCost1 1000 Dollars
Cost2 05 Dollars/tree
SwCost2 a0 Dollars
Cost3 200 Dollarstha
Discount Rate 0.08

Alpha 0.02 m/year
Beta 0.001 m/year
Gamma 0.02 m/year

m 6 m

Y_ o1 1.5 ton/ha
Y_03 1.5 ton/ha

L bar 0.05

| 0.08

Dmax 160

u 120 trees’ha
X1 0 4 metre

K1 4.000000

K_2 0.005502

K.3 9,963793

Comment

Price of crop plantedin phase 1

Revenue obtained by growing trees in phase 2
Price of crop planted in phase 3

Cropping cost for phase 1

Fixed cost for switching from phase 1 tophase 2
Cost planting 1 tree/plant in phase 2

Fixed cost for switching from phase 2 to phase 3
Cropping cost for phase 3

Farmerdiscount rate

Intrinsic rate of change of water level in phase 1
Intrinsic rate of change of water level in phase 2
Intinsic rate ol change of water!evel in phase 3
Maximum water depth under tree stand

Max crop yield with no salinity for phase 1

Max crop yield with no salinity for phase 3
Maximum canopy mass haversted per tree
growth rate of tree

Maximum number of trees per hectare

Density of tree /ha

initial depth of saline water ( the first phase)
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The OPTIMISATION Worksheet

Parameters :
Time0
Time1
Time2
Time3

Den

u

OpTimet
OpTime2
OpTime3
Cond 13.1.1
Cond 13.1.2
Cond 13.2.1
Cond 13.2.2
Cons. (4.23)
Cons. (4.24)
Max Profit =

37
48
100
120
120
37
48
100

o o

69
115
5804

Optimisation Switching Time t1, t2 and Profit

Comments :

Initial time

Switching time 1

Switching time2

Terminal time

Tree density ( smaller than 160 )
Tree density ( rounded )
Switching t1 ( rounded )
Switching t2 ( rounded )

Optimal terminal time ( rounded )
Left side cond 13.1

Right side cond 13.1

Left side cond 13.2

Right side cond 13.2
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The FORMULATION Worksheet

Time
Phase
t

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9,00
10.00
11.00
12.00
13.00
14.00
15.00
16.00
17.00
18.00
19.00
20.00
21.00
22.00
23.00
24.00
25.00
26.00
27.00
28.00
29.00
30.00
31.00
32.00
33.00
34.00
35.00
36.00
37.00
38.00
39.00
40.00
41.00
42,00
43.00
44,00
45.00
46.00
47.00
48.00
49,00

Discount Water Level

1.0000
0.9231
0.8521
0.7866
0.7261
0.6703
0.6188
0.5712
0.5273
0.4868
0.4493
0.4148
0.3829
0.3535
0.3263
0.3012
0.2780
0.2567
0.2369
0.2187
0.2019
0.1864
0.1720
0.1588
0.1466
0.1353
0.1249
0.11583
0.1065
0.0983
0.0907
0.0837
0.0773
0.0714
0.0659
0.0608
0.0561
0.0518
0.0478
0.0442
0.0408
0.0376
0.0347
0.0321
0.0296
0.0273
0.0252
0.0233
0.0215
0.0198

1
X(®)

4.0000
3.9208
3.8432
3.767
3.6925
3.6193
3.5477
34774
3.4086
3.341
3.2749
3.2101
3.1465
3.0842
3.0231
2.9633
2.9046
2.847
2.7907
2.7354
2.6813
2.6282
2.5761
2.5251
24751
2.4261
2.3781
2.3310
2.2848
2.2396
2.1952
2.1518
21092
2.0674
2,0265
1.9863
1.9470
1.9085
1.8707
1.8336
1.7973
1.7617
1.7268
1,6926
1.6591
1.6263
1.5941
15625
1.5316
1.5012

Water Level Water Leve] Yield 1

2

X(t)

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.9085
2,0679
22334
2.4041
2.5789
2.7566
2.9361
3.1160
3.2951
3.4721
3.6458
3.8151
3.9789

3
X(t)

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0030
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
3.8151
3.7395

“Price * Yleld1]

Y1(1)

1.0000
0.9802
0.9608
0.9418
0.9231
0.9048
0.8669
0.8694
0.8521
0.8353
0.8187
0.8025
0.7866
0.771
0.7558
0.7408
0.7261
0.7118
0.6977
0.6839
0.6703
0.6570
0.6440
0.6313
0.6188
0.6065
0.5945
0.5827
0.5712
0.5599
0.5488
0.5379
0.5273
0.5169
0.5066
0.4966
0.4868
04771
04677
0.4584
0.4493
0.4404
0.4317
0.4232
0.4148
0.4066
0.3985
0.3906
0.3829
0.3753

Revenue 1

"-Cost1"

600.0000
584.1589
568.6316
§563.4116
538.4931
523.8699
509.5363
495.4866
481.7150
468.2162
454.9846
442.0150
429,3023
416.8413
404.6270
392.6546
380.9192
369.4163
358.1411
347.0891
336.2560
325.6375
315.2291
305.0269
295.0267
285.2245
275.6164
266,1986
256.9673
247.9187
239.0493
230.3556
221.8339
2134811
205.2936
197.2682
189.4018
181.6911
174.1331
166.7248
159.4632
152,3453
145.3684
138.5297
131.8263
125.2557
118.8152
112.5023
106.3143
100.2489




50.00
51.00
52.00
53.00
54.00
55.00
56.00
57.00
58.00
59.00
60.00
61.00
62.00
63.00
64.00
65.00
66.00
67.00
68.00
69.00
70.00
71.00
72.00
73.00
74.00
75.00
76.00
77.00
78.00
79.00
80.00
81.00
82.00
83.00
84,00
85.00
66.00
87.00
88.00
89.00
90.00
91.00
92.00
93.00
94.00
95.00
96.00
97.00
98.00
99.00
100,00
101.00
102.00

0.0183
0.0169
0.0156
0.0144
0.0133
0.0123
0.0113
0.0105
0.0097
0.0089
0.0082
0.0076
0.0070
0.0065
0.0060
0.0055
0.0051
0.0047
0.0043
0.0040
0.0037
0.0034
0.0032
0.0029
0.0027
0.0025
0.0023
0.0021
0.0019
0.0018
0.0017
0.0015
0.0014
0.0013
0.0012
0.00M
0.0010
0.0009
0.0009
0.0008
0.0007
0.0007
0,0006
0.0006
0.0005
0.0005
0.0005
0.0004
0.0004
0.0004
0.0003
0.0003
0.0003

1.4715
14424
1.4138
1.3858
10584
1.3315
1.3051
12793
1.2539
12291
1.2048
1.1809
1.1575
1.1346
1.1121
1.0901
1.0685
10474
10266
1.0063
0.9864
0.9669
0.9477
0.9289
0.9106
0.8925
0.8748
0.8575
0.8405
0.8239
0.8076
0.7916
0.7759
0.7606
0.7455
0.7307
0.7163
0.7021
0.6882
0.6746
0.6612
0.6481
0.6353
0.6227
0.6104
0.5983
0.5864
0.5748
05634
0.5523
0.5413
0.5306
0.5201

90

4.1365
4.2870
4.4301
4.5651
4.6920
4.8106
4.9209
5.0231
5.1173
5.2039
5.2831
5.3555
5.4213
5.481
5.5352
5.5842
5.6283
5.6680
5.7037
5.7357
5.7644
5.7901
5.8131
5.8337
5.8520
5.8684
5.8830
5.8960
5.9076
5.9179
5.9270
5.9352
5.0425
5.9489
5.9546
59597
5.9643
5.9683
5.9719
59750
5.9778
5.9803
5.9826
5.9845
5.9863
5.9878
5.9892
5.9904
5.9915
5.9925
5.9933
5.9941
5.9947

3.6655
3.5929
3.5217
3.4520
3.3837
3.3167
3.2510
3.1866
3.1235
3.0617
3.0010
2.9416
2.8834
28263
2.7703
2.7155
2.6617
2.6090
25573
2,5067
2.4570
2.4084
2.3607
2.3140
2.2681
2.2232
2.1792
2.1360
2.0938
20523
2.0117
1.9718
1.9328
1.6945
1.6570
1.8202
1.7842
1.7468
1.7142
1.6803
1.6470
1.6144
1.5824
1.5511
1.5204
1.4903
1.4608
1.4318
1.4035
1.3757
1.3485
1.3218
1.2956

0.3679
0.3606
0.3535
0.3465
0.3396
0.3329
0.3263
0.3198
0.3135
0.3073
0.3012
0.2952
0.2894
0.2837
0.2780
0.2725
0.2671
0.2618
0.2567
0.2516
0.2466
0.2417
0.2369
0.2322
0.2276
0.2231
0.2187
0.2144
0.2101
0.2060
0.2019
0.1979
0.1940
0.1901
0.1864
0.1827
0.1791
0.1755
0.1720
0.1686
0.1653
0.1620
0.1588
0.1557
0.1526
0.1496
0.1466
0.1437
0.1409
0.1381
0.1353
0.1327
0.1300

94,3036
88.4760
82.7637
77.1646
71.6764
66.2969
61.0238
55.8552
50.7889
45.8230
40.9554
36.1841
31,5074
26.9232
22.4298
18.0254
13.7082
9.4765
5.3286
1.2628
-2.7224
-6.6288
-10.4578
-14.2110
-17.8898
-21.4959
-25.0305
-28.4951
-31.8911
-35.2199
-38.4828
-41.6810
-44.8160
-47.8888
-50.9008
-53.8532
-56.7471
-59.5837
-62.3641
-65.0895
-67.7609
-70.3794
-72.9461
-75.4619
-77.9279
-80.3451
-82.7144
-85.0368
-67.3133
-69.5446
-91.7318
-93.8756
-95.9770




Net Pro

fit 1

Revenuet*Discount

D(t)

600.0000
539.2467
484.5558
435.3290
391.0262
351.1605
315.2926
283.0264
254,0047
227.9053
204.4378
183.3403
164.3768
147.3345
132.0216
118.2653
105.9098
94.8147
84.8536
75.9125
67.8889
60,6903
54.2336
48.4436
43.2530
38.6009
34.4328
30.6994
27.3563
24.3639
21.6861
19.2907
17.1488
15.2343
13.5237
11.9959
10.6320
9.4150
8.3296
7.3621
6.5001
5.7325
5.0494
4.4419
3.9020
34225
29969
2.6195
2.2851
1.9890

Tree Growth

T(t)

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.4613
0.8871
1.2802
1.6431
1.9781
2.2873
25727
2.8362
3.0795
3.3040
3.5113
3.7026

Reve

nue2

Profit 2

Tree Revenue Revenue2* Discount

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
9.2260
17.7427
25,6047
32.8621
39.5616
45.7460
51.4549
56.7249
61.5897
66.0805
70.2261
74.0529

F(t)

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.4413
0.7835
1.0437
1.2365
1.3742
1.4668
1.5230
1.5499
1.55635
1.5386
1.5094
1.4693

Yield 3

Y3(t)

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.9538
0.9349
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1.7272
1.4959
1.2917
1.1118
0.9533
0.8139
0.6916
0.5844
0.4905
0.4085
0.3371
0.2749
0.2210
0.1743
0.1340
0.0994
0.0698
0.0445
0.0231
0.005t%
-0.0101
-0.0226
-0.0330
-0.0413
-0.0480
-0.0533
-0.0573
-0.0602
-0.0622
-0.0634
-0.0639
-0.0639
-0.0635
-0.0626
-0.0614
-0.0600
-0.0583
-0.0566
-0.0546
-0.0526
-0.0506
-0.0485
-0.0464
-0.0443
-0.0422
-0.0402
-0.0382
-0.0363
-0.0344
-0.0325
-0.0308
-0.0291
-0.0274

3.8793
40423
4,1928
43318
4.4600
45784
46877
4.7886
4.8818
49677
50471
5.1204
5.1880
5.2504
5.3080
5.3612
5.4104
5.4557
5.4975
5.6362
5.5718
5.6048
5.6351
56632
5.6891
5.7130
5.7351
5.7554
57742
57916
5.8076
5.8224
5.8361
5.8487
5.8603
5.8710
5.8810
5.8901
5.8986
5.9064
5.9136
59202
59263
5.9320
59372
59421
5.9465
5.9506
59544
5.9579
59612
5.9641
5.9669

77.5854

80.8464

83.8567

86,6355

89.2007

91.5687

93.7546

95.7724

97.6351

99.3546
100.9419
102.4072
103.7598
105.0084
106.1610
107.2250
108.2072
109.1138
109.9508
110.7234
111.4366
112.0950
112.7028
113.2638
113.7817
114.2598
114.7011
1151085
115.4846
115.8318
116.1522
116.4481
116.7212
116.9732
117.2060
117.4208
117.6191
117.8021
117.9711
18,1271
118.27 11
118.4040
118.5267
118.6400
118.7446
118.8411
118.9302
119.0124
119.0884
119.1584
119.2232
119.2829
119.3380

1.4210
1.3669
1.3088
1.2482
1.1864
1.1242
1.0626
1.0020
0.9429
0.8858
0.8307
0.7780
0.7277
0.6798
0.6344
0.5915
0.5510
0.5129
0.4771
0.4435
0.4121
0.3826
0.3551
0.3295
0.3055
0.2832
0.2625
0.2431
0.2252
0.2085
0.1930
0.1786
0.1653
0.1529
0.1414
0.1308
0.1209
0.1118
0.1034
0.0955
0.0883
0.0816
0.0754
0.0697
0.0644
0.0595
0.0549
0.0508
0.0469
0.0433
0.0400
0.0369
0.0341

0.9164
0.8982
0.8804
0.8630
0.8459
0.8292
0.8127
0.7967
0.7809
0.7654
0.7503
0.7354
0.7208
0.7066
0.6926
0.6789
0.6654
0.6522
0.6393
0.6267
0.6143
0.6021
0.5902
0.5785
0.5670
0.5558
0.5448
0.5340
0.5234
0.5131
0.5029
0.4930
0.4832
0.4736
0.4642
0.4551
0.4460
0.4372
0.4286
0.4201
0.4118
0.4036
0.3956
0.3878
0.3801
0.3726
0.3652
0.3580
0.3509
0.3439
0.3371
0.3304
0.3239
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Revenue 3 Net Profit 3 Switching  Switching Yearly Total

"Price * Yleld3" Revenue3*Discount  Costt Cost2 Profit Profit J
“.Cost3" G(t)
0.0000 0.0000 0.0000 0.0000 600.0000 600.00
0.0000 0.0000 0.0000 0.0000 539.2467 1139.25
0.0000 0.0000 0.0000 0.0000 484.5558 1623.80
0.0000 0.0000 0.0000 0.0000 435,3290 2059.13
0.0000 0.0000 0.0000 0.0000 391.0262 2450.16
0.0000 0.0000 0.0000 0.0000 351.1605 2801.32
0.0000 0.0000 0.0000 0.0000 315.2926 3116.61
0.0000 0.0000 0.0000 0.0000 283.0264 3399.64
0.0000 0.0000 0.0000 0.0000 254.0047 3653.64
0,0000 0.0000 0.0000 0.0000 227.9053 3881.55
0.0000 0.0000 0.0000 0.0000 204.4378 4085.99
0.0000 0.0000 0.0000 0.0000 183.3403 4269.33
0.0000 0.0000 0.0000 0.0000 164.3768 4433.7¢C
0.0000 0.0000 0.0000 0.0000 147.3345 4581.04
0.0000 0.0000 0.0000 0.0000 132.0216 4713,06
0.0000 0.0000 0.0000 0.0000 118.2653 4831.32
0.0000 0.0000 0.0000 0.0000 105.9098 4937.23
0.0000 0.0000 0.0000 0.0000 94,8147 5032,05
0.0000 0.0000 0.0000 0.0000 84.8536 5116.90
0.0000 0.0000 0.0000 0.0000 75.9125 5192.81
0.0000 0.0000 0.0000 0.0000 67.8889 5260.70
0.0000 0.0000 0.0000 0.0000 60.6903 5321.39
0.0000 0.0000 0.0000 0.0000 54,2336 5375.63
0.0000 0.0000 0.0000 0.0000 48.4436 5424.07
0.0000 0.0000 0.0000 0.0000 43.2530 5467.32
0.0000 0.0000 0.0000 0.0000 38.6009 5505.92
0.0000 0.0000 0.0000 0.0000 34.4328 5540.36
0.0000 0.0000 0.0000 0.0000 30.6994 5571.06
0.0000 0.0069 0.0000 0.0000 27.3563 5598.41
0.0000 0.0000 0.0000 0.0000 24.3639 5622.78
0.0000 0.0000 0.0000 0.0000 21.6861 5644.46
0.0000 0.0000 0.0000 0.0000 19.2907 5663.75
0.0000 0.0000 0.0000 0.0000 17.1488 5680.90
0.0000 0.0000 0.0000 0.0000 15.2343 5696.14
0.0000 0.0000 0.0000 0.0000 13,5237 5709.66
0.0000 0.0000 0.0000 0.0000 11.9959 5721.66
0.0000 0.0000 0.0000 0.0000 10.6320 5732,29
0,0000 0.0000 £4.9281 0.0000 -54.9281 5677.36
0.0000 0.0000 0.0000 0.0000 0.4413 5677.80
0.0000 0.0000 0.0000 0.0000 0.7835 5678.58
0.0000 0.0000 0.0000 0.0000 1,0437 5679.63
0.0000 0.0000 0.0000 0.0000 1.2365 5680.87
0.0000 0.0000 0.0000 0.0000 13742 5682.24
0.0000 0.0000 0.0000 0.0000 1.4668 5683.71
0.0000 0.0000 0.0000 0.0000 1.5230 5685.23
0.0000 0.0000 0.0000 0.0000 1.5499 5686.78
0.0000 0.0000 0.0000 0.0000 1.5535 5688.33
0.0000 0.0000 0.0000 0.0000 1.5386 5689.87
563.0131 12.1012 0.0000 1.7195 10.3817 5700.25
547.9044 10.8710 0.0000 0.0000 10.8710 5711.12
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533.0949
518.5786
504.3498
490.4028
476.7319
463.3317
450.1968
437.3221
4247023
412.3323
400.2073
388,3224
376.6729
365.2540
354.0612
343.0901
332.3362
321.7952
311.4630
301.3353
291.4082
281.6777
272.1398
262.7908
253.6269
2446445
235.8400
227.2098
218.7505
210.4586
202.3310
194.3643
186.5554
178.9011
171.3983
164.0442
156.8356
149.7698
142.8439
136.0551
129.4008
122.8782
116.4848
110.2180
104.0752

98.0541

92.1523

86.3673

80.6968

75.1387

69.6905

64.3503

59.1158

9.7640
8.767s
7.8717
7.0655
6.3405
5.6885
5,1023
45753
4.1016
3.6760
3.2936
2.9501
2.6416
2.3646
2.1159
1.8927
1.6924
1.5127
1.3516
1.2071
1.0776
0.9615
0.8575
0.7644
0.6810
0.6064
0.5396
0.4799
0.4265
0.3788
0.3362
0.2981
0.2641
0.2338
0.2068
0.1827
0.1612
0.1421
0.1251
0.1100
0.0966
0.0847
0.0741
0.0647
0.0564
0.0491
0.0426
0.0368
0.0318
0.0273
0.0234
0.0199
0.0169

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

9.7640
8.7679
7.8717
7.0655
6.3405
5.6885
5.1023
4.5753
4.1016
3.6760
3.2936
2.9501
2.6416
2.3646
2.1159
1.8927
1.6924
1.56127
1.3516
1.2071
1.0776
0.9615
0.8575
0.7644
0.6810
0.6064
0.5396
0.4799
0.4265
0.3788
0.3362
0.2981
0.2641
0.2338
0.2068
0.1827
0.1612
0.1421
0.1251
0.1100
0.0966
0.0847
0.0741
0.0647
0.0564
0.0491
0.0426
0.0368
0.0318
0.0273
0.0000
0.0000
0.0000

5720.89
5729,66
5737.53
5744.59
5750.93
5756.62
5761.72
5766.30
5770.40
5774.08
5777.37
5780.32
5782.96
5785.33
5787.44
5789.34
5791.03
5792.54
5793.89
5795.10
5796.18
5797.14
5798.00
5798.76
5799.44
5800.05
5800.59
5801.07
5801.49
5801.87
5802.21
5802.51
5802.77
5803.01
5803.21
5803.39
5803.56
5803.70
5803.82
5803.93
5804.03
5804 .11
5804,19
5804.25
5804.31
5804.36
5804.40
5804.44
5804.47
5804.50
5804.50
5804.50
5804.50
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Formulae Entered in the FORMULATION Worksheet
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Time Discount
Phase

0 =EXP(-DisRate*A7)

1 =EXP(-DisRate*A8)

2 =EXP(-DisRate*A9)

3 =EXP(-DisRate*A10)
4 =EXP(-DisRate*A11)
5 =EXP(-DisRate*A12)
6 =EXP(-DisRate*A13)
7 =EXP(-DisRate*A14)
8 =EXP(-DisRate*A15)
9 =EXP(-DisRate*A16)
10 =EXP(-DisRate*A17)
11 =EXP(-DisRate*A18)
12 =EXP(-DisRate*A19)
13 =EXP(-DisRate* A20)
14 =EXP(-DisRate*A21)
15 =EXP(-DisRate*A22)
16 =EXP(-DisRate*A23)
17 =EXP(-DisRate*A24)
18 =EXP(-DisRate*A25)
19 =EXP(-DisRate*A26)
20 =EXP(-DisRate*A27)
21 =EXP(-DisRate*A28)
22 =EXP(-DisRate*A29)
23 =EXP(-DisRate*A30)
24 =EXP(-DisRate*A31)
25 =EXP(-DisRate*A32)
26 =EXP(-DisRate*A33)
27 =EXP(-DisRate*A34)
28 =EXP(-DisRate*A35)
29 =EXP(-DisRate*A36)
30 =EXP(-DisRate*A37)
3 =EXP(-DisRate*A38)
32 =EXP(-DisRate*A39)
33 =EXP(-DisRate*A40)
34 =EXP(-DisRate*A41)
35 =EXP(-DisRate*A42)
36 =EXP(-DisRate*A43)
37 =EXP(-DisRate*A44)
38 =EXP(-DisRate*A45)
39 =EXP(-DisRate*A46)
40 =EXP(-DisRate*A47)
41 =EXP(-DisRate*A48)
42 =EXP(-DisRate*A49)
43 =EXP(-DisRate*A50)

Water Level

X(t)

=K_1"EXP(-Alpha*A7)

=K_1'EXP(-Alpha*A8)

=K_1"EXP(-Alpha*A9)

=K_1"EXP(-Alpha*A10)
=K_1'"EXP(-Alpha*A11)
=K_1"EXP(-Alpha*A12)
=K_1"EXP(-Alpha*A13)
=K_1"EXP(-Alpha*A14)
=K_1"EXP(-Alpha*A15)
=K_1"EXP(-Alpha*A16)
=K_1"EXP(-Alpha*A17)
=K_1"EXP(-Alpha*A18)
=K_1"EXP(-Alpha*A19)
=K_1"EXP(-Alpha*A20)
=K_1"EXP(-Alpha*A21)
=K_1"EXP(-Alpha*A22)
=K_1*EXP(-Alpha*A23)
=K_1*EXP(-Alpha*A24)
=K_1*EXP(-Alpha*A25)
=K_1"EXP(-Alpha*A26)
=K_1*EXP(-Alpha*A27)
=K_1"EXP(-Alpha*A28)
=K_1"EXP(-Alpha*A29)
=K_1"EXP(-Alpha*A30)
=K_1*EXP(-Alpha*A31)
=K_1*EXP(-Alpha*A32)
=K_1"EXP(-Alpha*A33)
=K_1*EXP(-Alpha*A34)
=K_1"EXP(-Alpha*A35)
=K_1"EXP(-Alpha*A36)
=K_1"EXP(-Alpha*A37)
=K_1*EXP(-Alpha*A38)
=K_1"EXP(-Alpha*A39)
=K_1"EXP(-Alpha"A40)
=K_1"EXP(-Alpha*A41)
=K_1"EXP(-Alpha*A42)
=K_1*EXP(-Alpha*A43)
=K_1*EXP(-Alpha*A44)
=K_1*"EXP(-Alpha*A45)
=K_1*EXP(-Alpha*A46)
=K_1"EXP(-Alpha*A47)
=K_1"EXP (-Alpha*A48)
=K 1"EXP(-Alpha*A49)
=K 1*EXP(-Alpha"AS50)
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Water Lavel

X(1)

=IF(A7>=0pTime1,K_2*'m*EXP(Beta*u*A7)/(1+ K 2°'EXP(Beta‘u*A7)),0)
=IF(A8>=0pTime1, K 2*m*EXP(Beta‘u*AB8)/(1+K_2"EXP(Beta*u*A8)),0)
=IF(A9>=0OpTime1,K_2'm*EXP(Beta*u*A9)/(1+K_2'EXP(Beta*u*A9)),0)
=IF(A10>=0pTimel, K 2*m*EXP(Beta*u*A10)/(1+K_2"EXP(Beta*u*A10)),0)
=IF(A11>=0pTime1,K_2"m*EXP(Beta*u*A11)/(1+K_2*'EXP(Beta‘u*A11)),0)
=IF(A12>=0pTime1,K_2'm*EXP(Beta‘u*A12)/(1+K_2'EXP(Beta*u*A12)),0)
=IF(A13>=0OpTime1 K_2"m*'EXP(Beta*u*A13)/(1+K_2*'EXP(Beta*u*A13)),0)
=IF(A14>=0pTime1 K_2*'m*EXP(Beta‘u*A14)/(1+K_2'EXP(Beta*u*A14)),0)
=IF(A15>=0pTime1 K_2"m*'EXP(Beta*u*A15)/(1+K_2*'EXP(Beta*u*A15)),0)
=IF(A16>=0pTime1,K_2'm*'EXP(Beta‘u*A16)/(1+K_2'EXP(Beta*u*A16)),0)
=IF(A17>=0pTime1, K 2*n*EXP(Beta*u*A17)/(1+K_2*'EXP(Beta*u*A17)),0)
=IF(A18>=0pTimel K_2'm*EXP(Beta*u*A18)/(1+K_2*EXP(Beta*u*A18)),0)
=IF(A19>=0pTime1 K_2'm*EXP(Beta*u*A19)/(1+K_2*EXP(Beta*u*A19)),0)
=IF(A20>=0pTime1,K_2*m*EXP(Beta*u*A20)/(1+K_2*EXP(Beta*u*A20)),0)
=IF(A21>=0pTime1,K_2*'m*EXP(Beta*u*A21)/(1+K_2'EXP(Beta*u*A21)),0)
=IF(A22>=0pTime1,K_2'm*'EXP(Beta*u*A22)/(1+K_2'EXP(Beta‘u*A22)),0)
=IF(A23>=0pTime1,K_2'm*EXP(Beta*u*A23)/(1+K_2'EXP (Beta*u*A23)),0)
=IF(A24>=0pTime1,K_2*'m*EXP(Beta*u*A24)/(1+K_2*'EXP(Beta‘u*A24)),0)
=IF(A25>=0pTime1,K_2*m*EXP(Beta*u*A25)/(1+K_2*EXP(Beta*u*A25)),0)
=IF(A26>=0pTime1,K_2'm*EXP(Beta‘u*A26)/(1+K_2*EXP(Beta*u*A26)),0)
=IF(A27>=0pTime1,K_2'm*EXP(Beta‘u' A27)/(1+K_2*EXP(Beta*u*A27)),0)
=IF(A28>=0pTime1 K_2'm*EXP(Beta*u*A28)/(1+K_2'EXP(Beta*u*A28)),0)
=IF(A29>=0pTime1,K_2'm*EXP(Beta*u*A29)/(1+K_2'EXP(Beta*u*A29)),0)
=IF(A30>=0pTime1,K_2*'m*EXP(Beta*u*A30)/(1+K_2*EXP(Beta*u*A30)),0)
=IF(A31>=0pTime1,K_2'm*'EXP(Beta‘u*A31)/(1+K_2'EXP(Beta*u*A31)),0)
=IF(A32>=0pTime1,K_2'm*EXP(Beta*u*A32)/(1+K_2'EXP(Beta*u*A32)),0)
=IF(A33>=0pTime1,K_2'm*EXP(Beta*u*A33)/(1+K_2'EXP(Beta*u*A33)),0)
=IF(A34>=0pTime1,K_2'm*EXP(Beta*u”A34)/(1+K_2"EXP(Beta*u*A34)),0
=IF(A35>=0pTime1,K_2*'m*EXP(Beta*u*A35)/(1+K_2'EXP(Beta*u*A35)),0
=IF(A36>=0pTime1,K_2'm‘EXP(Beta*u*A36)/(1+K_2'EXP(Beta‘u*A36)),0
=IF(A37>=0pTime1,K_2'm*EXP(Beta*u*A37)/(1+K_2*'EXP(Beta‘u*A37)),0
2|F(A38>=0pTime1,K_2'm*EXP(Beta*u*A38)/(1+K_2*EXP(Beta*u*A38)),0
=|F(A39>=0pTime1,K_2'm*EXP(Beta*u*A39)/(1+K_2'EXP (Beta*u*A39)),0
=IF(A40>=0pTime1,K_2'm*EXP(Beta*u*A40)/(1+K_2'EXP(Beta*u*A40)),0
=IF(A41>=0OpTime1,K_2*'m*EXP(Beta‘u*A41)/(1+K_2'EXP(Beta‘u*A41)),0
=IF(A42>=0pTime1,K_2'm*EXP(Beta*u*A42)/(1+K_2*EXP(Beta*u*A42)),0
=IF(A43>=0pTime1,K_2'm*EXP(Beta‘u*A43)/(1+K_2'EXP(Beta‘u*A43)),0
=IF(A44>=0pTime1 K_2'm*EXP(Beta*u*A44)/(1+K_2'EXP(Beta*u*A44)),0
=IF(A45>=0pTime1,K_2'm"EXP(Beta*u”A45)/(1+K_2*'EXP(Beta‘u*A45)),0
=IF(A46>=0pTime1,K_2'm*EXP(Beta*u*A46)/(1+K_2"EXP(Beta*u’A46)

=|F(A47>=0pTime1,K_2'm*EXP(Beta*u*A47)/(1+K_2'EXP(Beta‘u*A47)),
=IF(A48>=0pTime1,K_2'm*EXP(Beta*u*A48)/(1+K_2'EXP(Beta*u*A48)),
=IF(A49>=0pTime1,K_2*'m*'EXP(Beta*u*A49)/(1+K_2'EXP(Beta*u*A49)),
=IF(A50>=0pTime1,K_2'm*EXF(Beta*u*A50)/(1+K_2'EXP (Beta*u*A50)),
=IF(A51>=0pTime1,K_2*'m*EXP(Beta‘u*A51)/(1+K_2'EXP(Beta*u*A51)),

)

)
)
)
)
)
)
)
)
)
)
.0)
)
)
)
)
)
;
=IF(A52>=OpTime1,K_2'm*EXP(Beta*u*A52)/(1+K_2'EXP(Beta‘u*A52)),0)

)
)
)
)
)
)
)
),
),
)
)
),
)
)
)
)
)
)

0
0
0
0
0
0
0
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Water Level

X(t)

=|F(A7>=0OpTime2,K_3'EXP(-Gamma*A7),0)

=[F(AB>=0OpTime2,K_3*EXP(-Gamma*A8),0)

=|F{A9>=0pTime2,K_3'EXP(-Gamma" A9),0)

=IF(A10>=0OpTime2,K_3"EXP(-Gamma®A10),0)
=IF(A11>=0pTime2,K_3*'EXP(-Gamma*A11),0)
=IF(A12>=0pTime2,K_3°EXP({-Gamma*A12),0)
=IF(A13>=0pTime2,K_3'EXP(-Gamma*A13),0)
=iF(A14>=0OpTime2,K_3'EXP(-Gamma®A14),0)
=IF{A15>=0pTime2,K_3'EXP{Gamma®A15),0)
=IF(A16>=0pTime2,K_3'EXP(Gamma*‘A16),0)
=IF(A17>=0pTime2,K _3"EXP(-Gamma*A17),0)
=IF(A18>=0OpTime 2,K 3*EXP{(-Gamma*A18),0)
=IF(A19>=0pTime2,K_3'EXP({-Gamma‘A19),0)
=IF{A20>=0pTime2,K_3'EXP{-Gamma®A20),0)
=IF{A21>=0pTime2,K_3*EXP(-Gamma*A21),0)
=IF(A22>=0pTime2,K_3*EXP(-Gamma®A22),0)
=IF(A23>=0pTime2,K_3'EXP{Gamma*A23),0)
=IF(A24>=0pTime2 K_3'EXP{-Gamma*A24),0)
=IF{A25>=0OpTime2,K_3'EXP(-Gamma* A25),0)
=|IF(A26>=0pTime2,K_3*'EXP(-Gamma* A26),0)
=IF{A27>=0pTime2,K_3'EXP(-Gamma*A27),0)
=IF(A28>=0pTime2,K3*EXP(-Gamma*A28),0)
=IF(A29>=0pTime2,K_3'EXP(-Gamma®A29),0)
=IF{A30>=0OpTime2, K 3*EXP(-Gammu*A30),0)
=IF(A31>=0OpTime2 K_3'EXP(-Gamma®A31),0)
=IF(A32>=0pTime2,K_3'EXP(-Gamma*“A32),0)
=IF(A33>=0pTime2,K_3'‘EXP(Gamma*A33),0)
=IF(A34>=0pTime2,K_3'EXP(Gamma*A34),0)
=[F(A35>=0pTime2,K_3'EXP(Gamma*“A35),0)
=IF{A36>=0pTime2,K _3*EXP(-Gamma®A36),0)
=IF{A37>=0pTime2,K _3'EXP{-Gamma*A37),0)
=Il'(A38>=0pTime2K_3*EXP(-Gamma*A38),0)
=|IF(A39>=0pTime2,K_3*EXP(-Gamma*A39),0)
=IF(A40>=0pTime2,K_3'EXP(Gamma*A40),0)
=IF(A41>=0pTime2 K 3*EXP(-Gamma®A41),0)
=IF{A42>=0pTime2,K _3*EXP{-Gamma*A42),0)
=IF(A43>=0pTime2,K_3'EXP{-Gamma*‘A43),0)
=IF(A44>=0pTime2,K_3*EXP(-Gamma*A44),0)
=IF(A45>=0pTime2,K_3*EXP(-Gamma*A45),0)
=IF(A46>=0OpTime 2,K 3*"EXP(-Gamma®A46),0)
=IF(A47>=0pTime2,K_3'EXP(Gamma*A47),0)
=IF(A48>=0pTime2 K 3J'EXP(-Gamma*A48),0)
=IF(A49>=0pTime2,K_3"EXP({-Gamma*“A49),0)
=|F(A50>=0OpTime2 K_3'EXP(-Gamma*A50),0)
=|F(A51>=0pTime2,K_3*EXP(-Gamma®A51),0)
-IF(A52>=OpTime2,K 3*EXP(-Gamma®A52),0)

Yield 1

Yi(t)

=Y.01°C7/m

=Y_.01°C8/m

=Y_01°C9/m

=Y_01*C10/m
=Y.01*'C11/m
=Y 01'C12/m
=Y.01'C13/m
=Y.01°C14/m
=Y_01‘C15/m
=Y_01*C16/m
=Y_01"C17/m
=Y_01'C18/m
=Y_01'C19/m
=Y_01"C20/m
=Y_01'C21/m
=Y_01'C22/m
=Y_01"C23/m
=Y_01'C24/m
=Y_01*C25/m
=Y. 01*C26/m
=Y_01"C27/m
=Y_01'C28/m
=Y_01'C29/m
=Y_01'C30/m
=Y 01°"C31/m
=Y_01'C32/m
::Y_O 1'C33/m
=Y_01°C34/m
=Y_01'C35/m
=Y_01'C36/m
=Y_01'C37/m
=Y 01C38/m
=Y_01*C39/m
=Y_01'C40/m
=Y_01'C41/m
=Y_01'C42/m
=Y 01"C43/m
=Y 01*C44/m
=Y 01'C45/m
=Y_01'C46/m
=Y 01*C47/m
=Y_01'C48/m
=Y_01'C49/m
=Y_01*C50/m
=Y 01°C51/m
=Y 01'C52/m

Revenue 1
“Price * Yield1"
"-Cost1"

=F7*Price1-Cost1

=F8°Price1-Cost1

=F9°*Price1-Cost1

=F10*Price1-Cost1
=F11*Price1-Cost1
=F12*Price1-Cost1
=F13*Price1-Cost1
=F14°*Price1-Cost1
=F15°Price1-Cost1
=F16*Price1-Cost1
=F17'Price1-Cost1
=F18°Price1-Cost1
=F19*Price1-Cost1
=F20*Price1-Cost1
=F21*Price1-Cost1
=F22*Price1-Cost1
=F23*Price1-Cost1
=F24*Price1-Cost1
=F25*Price1-Cost1
=F26'Price1-Cost1
=F27*Price1-Cost1
=F28'Price1-Cost1
=F29*Pricel-Costt
=F30*Prica1-Cost1
=F31*Price1-Cost1
=F32'Price1-Cost1
=F33“Price1-Cost1
=F34‘Price1-Cost1
=F35*Price1-Cost1
=F36°Price 1-Cost1
=F37*Price1-Cost1
=F38*Price1-Cost1
=F39*Price1-Cost1
=F40°*Price1-Cost1
=F41°Pricet-Cost1
=F42*Pre1-Cost1
=F43*Price1-Cost1
=F44*Price1-Cost1
=F45*Price1-Cost1
=F46°Price1-Cost1
=F47'Price1-Cost1
=F48°Prce1-Costl
=F49°Price1-Cost1
=F50*Price1-Cost1
=F51*Price1-Cost1
=F52°*Price 1-Cost1

98




Net Protit 1

Revenue1*Discount

=G7°B7

=G8'B8

=G9°B9

=G10°B10
=G11"B11
=G12*'B12
=G13'B13
=G14'B14
=G15'B15
=G16"B16
=G17*B17
=G18"B18
=G19'B19
=G20*B20
=G21*B21
=G22'B22
=G23'B23
=G24'B24
=G25'B25
=(G26'B26
=G27'B27
=(G28'B28
=G29'B29
=G30°B30
=G31"B31
=G32'B32
=G33'B33
=G34'B34
=G35°B35
=G36°B36
=G37°B37
=G38'B38
=G39°B39
=G40°B40
=G41"B41
=G42'B42
=G43'B43
=G44°’B44
=G45'B45
=G46°B46
=G47°B47
=(G48'B48
=G49'B49
=G50"B50
=G51"B51
=(G52'B52

D(t)

Tree Growth

T(t)

=IF(A7>=OpTime1, L_bar*u*(1-EXP(-I(A7-OpTime1))).0)

=IF(A8>=OpTime1,L_bar*u*(1-EXP(-*(A8-OpTime1))),0)

=IF(A9>=OpTime1,L_bar*u*(1-EXP(-I(A9-OpTime1))),0)

=IF(A10>=OpTime1,L_bar‘u*(1-EXP(-(A10-OpTime1))),0)
=IF(A11>=OpTime1,L_bar*u*(1-EXP(-I*(A11-OpTime1))),0)
=IF(A12>=OpTime1 L _bar'u*(1-EXP(-I'(A12-OpTime1))).0)
=IF(A13>=0pTime1 L_baru*(1-EXP(-I(A13-OpTime1))),0)
=IF(A14>=OpTime1,L_bar*u*(1-EXP(-I*(A14-OpTime1))),0)
=IF(A15>=OpTime1L_baru*(1-EXP(-I'(A15-OpTime1))),0)
=IF(A16>=0pTime1 L_bar'u*(1-EXP(-I'(A16-OpTime1))),0)
=IF(A17>=OpTime1 L_bar*u*(1-EXP(-I*(A17-OpTime1))),0)
=IF(A18>=0OpTime1.L_bar*u*(1-EXP(-I'(A18-OpTime1))),0)
=IF(A19>=OpTime1, L bar*u*(1-EXP(-*(A19-OpTime?1))),0)
=IF(A20>=OpTime1 L_bar'u* (1-EXP(-*(A20-OpTime1))),0)
=IF(A21>=OpTime1,_bar*u*(1-EXP(-I"(A21-OpTime1))),0)
=IF(A22>=OpTime1,L_bar*u*(1-EXP(-I*(A22-OpTime1))).0)
=IF(A23>=OpTime1 L_bar*u*(1-EXP(-I"(A23-OpTime1))),0)
=IF(A24>=0pTime1,L_bar*u*(1-EXP(-I*(A24-OpTime1))),0)
=IF(A25>=0pTime1, L bar*u*(1-EXP(-I*(A25-OpTime1))).0)
=IF(A26>=OpTime1, L bar*u*(1-EXP(-I*(A26-OpTime1))),0)
=IF(A27>=0pTime1 L _bar*u*(1-EXP(-"(A27-OpTime1))),0)
=IF(A28>=OpTime1 L_bar*u*(1-EXP(-I'(A28-OpTime1))),0)
=IF (A29>=OpTime1,L_bar'u*(1-EXP(-*(A29-OpTime1))),0)
=IF(A30>=OpTime1 L_bar*u*(1-EXP(-I'(A30-OpT ime1))),0)
=IF(A31>=0pTime1,L_bar*u*(1-EXP(-'(A31-OpTime1))),0)
=IF(A32>=OpTime1,L_bar*u*(1-EXP(-I*(A32-OpTime1))),0)
=IF(A33>=0pTime1, L_bar*'u*(1-EXP(-"(A33-OpTime1))),0)
=IF(A34>=OpTime1, L bar*u*(1-EXP(-"(A34-OpTime1))).0)
=IF(A35>=0pTime1,L_bar*u*(1-EXP(-I*(A35-OpTime1))),0)
=IF(A36>=0OpTime1 L_bar*u*(1-EXP(-*'(A36-OpTime1))),0)
=IF(A37>=0pTime1,L_bar'u*(1-EXP(-*(A37-OpTime))),0)
=IF(A38>=OpTime1,L_bar*u*(1-EXP(-"(A38-OpTime1))),0)
=IF(A39>=OpTime1,L_bar*u*(1-EXP(-*(A39-OpTime1))),0)
=IF(A40>=OpTime1 L_bar*u*(1-EXP(-"(A40-OpTime1))),0)
=IF(A41>=0pTime1,L_bar*u*(1-EXP(-I'(A41-OgTime1))),0)
=IF(A42>=0pTime1, L bar*u*(1-EXP(-I"(A42-OpTime1))),0)
=IF(A43>=OpTime1 L_bar*u*(1-EXP(-I"(A43-OpTime1))),0)
=IF(A44>=OpTimet L_bar*u*(1-EXP(-I"(A44-OpTime1))).0)
=IF(A45>=OpTime1 L_bar*u*(1-EXP(-'(A45-OpTime1))),0)
=IF(A46>=0OpTime1,L_bar*u*(1-EXP(-I*(A46-OpTime1))),0)
=IF(A47>=OpTime1 L _baru*(1-EXP(-I'(A47-OpT1ime1))).0)
=IF(A48>=OpTimet, L bar*u*(1-EXP(-"(A48-OpTime1))).0)
=IF(A49>=OpTime1,L_bar*u*(1-EXP(-I"(A49-OpTime1))),0)
=IF (A50>=0pTime1, L_bar*u*(1-EXP(-I'(A50-OpTime1))).0)
=IF(A51>=OpTime1,L_bar*u*(1-EXP(-*(A51-OpTime1))),0)
=IF(A52>=OpTime1,L_bar*u*(1-EXP(-I(A52-OpTime1))),0)
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=IF(A10>=0pTIme1,l110*Price2,0) =J10*B10
=IF(A11>=0pTime1,l11*Price2,0) =J11*B11
=IF(A12>=0OpTime1,[12*Price2,0) =J12°B12
=JF(A13>=0pTime1,I13*Price2,0) =J13'B13
=IF(A14>=0pTime1,114'Price2,0) =J14'B14
=IF(A15>=0pTIme1,115*Price2,0) =J15*B15
=IF(A16>=0pTime1,116*Price2,0) =J16'B16
=IF(A17>=0pTime1,l17*Price2,0) =J17°B17
={F(A18>=0pTime1,/18°Price2,0) =J18°B18
=IF(A19>=0pTime1,119*Price2,0) =J19'B19
=IF(A20>=0pTime1,120*Price2,0) =J20*B20
=IF(A21>=0pTime1,/121*Price2,0) =J21*B21
=IF(A22>=0pTime1,22*Price2,0) =J22°'B22
=IF{A23>=0pTime1,123*Price2,0) =J23'B23
=IF(A24>=0pTime1,124*Price2,0) =J24°B24
=IF(A25>=0pTime1,125*Price2,0) =J25'B25
=IF(A26>=0pTime1,126*Price2,0) =J26'B26
=!IF(A27>=0pTime1,27°Price2,0) =J27'B27
=IF(A28>=0pTime1,|28*Price2,0) =J28°'B28
=IF(A29>=0pTime1,129*Price2,0) =J29'B29
=IF(A30>=0pTime1,I130*Price2,0) =J30°B30
=IF(A31>=0pTIme1,31*Price2,0) =J31'B31
=IF{A32>=0pTime1,i32*Price2,0) =J32'B32
=IF(A33>=0pTIme1,33*Price2,0) =J33'B33
=|F(A34>=0OpTIime1,134*Price2,0) =J34'B34
=|F(A35>=0pTime1,l135*Price2,0) =J35°B35
=IF(A36>=0pTime1,I136*Price2,0) =J36°B36
=IF(A37>=0pTime1,[37*Price2,0) =J37'837
=IF(A38>=0pTime1,138*Price2,0) =J38*538
IF(A39>=0pTime1,139*Price2,0) =J39°B39
=IF(A40>=0pTime1,140°Price2,0) =J40'B40
=IF(A41>=0pTime1,141*Price2,0) =.}J41'B41
=IF{A42>=0pTime1,142'Price2,0) =J42°'B42
=|IF(A43>=0pTIme1,143'Price2,0) =J43'B43
=IF(A44>=0pTime1,144* Price2,0) =J44*B44
=IF(A45>=0pTime1,145°Price2,0) =J45*'B45
=IF(A46>=0pTime1,146'Price2,0) =J46'B46
=|IF(A47>=0pTime1,147*Price2,0) =J47'B47
=IF(A48>=0pTIlme1,48°Price2,0) =J48'B48
LIF(A49>=0pTime1,149*Price2,0) =J49°B49
=IF(A50>=0pTIme1,I50*Price2,0) =J50°B50
=IF(AS51>=0pTime1,I51*Price2,0) =J51*B51
EIF(A52>-0OpTime1,152*Price2,0) =J52°B52

evenue2 * Discou

Revenue2 Profit 2
Tree Revenue
F(t)
=IF(A7>=0pTime1,I7"Price2,0) =J7'B7
=IF(A8>=0OpTime1,I8*Price2,0) =J8°B8
=IF(A9>=0pTIme1,19*Price2,0) =J9°B9

Yield 3

Ya)

=IF(A7>=0pTIme2,Y_03'E7/m,0)

=|F(A8>=OpTIme2,Y_03"E8/m,0)

={F(A9>=0OpTIme2,Y_03*E9/m,0)

=IF(A10>=0pTime2,Y_03*E10/m,0)
=IF(A11>=0pTime2,Y_03*E11/m,0)
=IF(A12>=C)pTIime2,Y_03'E12/m,0)
=lF{A13>=0pTime2,Y_03'E13/m,0)
=IF(A14>=OpTime2,Y_03*E14/m,0)
=IF(A155>=0OpTime2,Y_03*E15/m,0)
=IF(A16>=0pTime2,Y_03'E16/m,0)
=IF(A17>=0pTime2,Y.03*E17/m,0)
=lF(A18>=OpTime2,Y_03'E18/m,0)
=|IF(A19>=OpTime2,Y_03*E19/m,0)
=IF(A20>=OpTIime2,Y_03'E20/m,0)
=IF(A21>=0pTim42,Y_03*E21/m,0)
=IF(A22>=0pTime2,Y_03'E22/m,0)
=IF(A23>=0OpTime2,Y_03'E23/m,0)
=IF(A24>=0pTime2,Y_03"'E24/m,0)
={F(A25>=0pTime2,Y_03'E25/m,0)
=|IF(A26>=0pTime2,Y_03" £26/m,0)
=IF(A27>=0pTIme2,Y_03'E27/m,0}
=IF(A28>=0pTime2,Y_03*E28/m,0)
=IF(A29>=0pTime2,Y _03'E29/m,0)
=]F{A30>=0OpTIme2,Y_03' £30/m,0)
=IF(A31>=0OpTime2,Y_03*£31/m,0)
=|F(A32>=0OpTime2,Y _03 E32/m,0)
=IF(A33>=OpTime2,Y_03 E33/m,0)
=IF(A34>=0pTime2,Y _03'E34/m,0)
=lF{A35>=0pTime2,Y_03"E35/m,0)
=IF(A36>=0pTime2,Y_03'E36/m,0)
=IF(A37>=0OpTime2,Y_ _03'E37/m,0)
=IF(A38>=0pTime2,Y_03*E38/m,0)
=IF(A39>=0pTime2,Y_03*E39/m,0)
=|F(A40>=0pTime2,Y 03 E40/m,0)
=IF(A41>=0pTime2,Y_03"'E41/m,0)
=IF(A42>=0OpTime2,Y_03'E42/m,0)
=IF(A43>=OpTime2,Y_03'E43/m,0)
=IF(A44>=0pTime2,Y_03'E44/m,0)
=lIF{A45>=0pTIme2,Y_03*E45/m,0)
=IF(A46>=0pTime2,Y_03*E46/m,0)
=|IF(A47>=0pTime2,Y .03'E47/m,0)
=IF(A48>=0pTime2,Y_03" E48/m,0)
=IF(A49>=OpTIme2,Y .03'E49/m,0)
=IF{A50>=0pTime2, Y _03'ES0/m,0)
=IF(A51>=0pTime2,Y_03*E51/m,0)
=IF(A52>=0pTime2,Y 03*E52/m,0)
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Revenue 2
“Price * Yield3"
“-Cost3"

=IF(A7>=0pTime2,L7*Price3-Cost3,0)

=IF(A8>=0pTime2,L8'Price3-Cost3,0)

=IF(A9>=0pTime2,L9*Price3-Cost3,0)

=IF(A10>=0pTime2,L10'Price3-Cost3,0)
=IF(A11>=0pTime2,L11*Price3-Cost3,0)
=|IF(A12>=0OpTime2,L12*Price3-Cost3,0)
=IF(A13>=0pTime2,L13*Price3-Cost3,0)
=IF(A14>=0pTime?2,L14" Price3-Cost3,0)
=IF(A15>=0pTime2,L15*Price3-Cost3,0)
=IF(A16>=0pTime2,L16*Price3-Cost3,0)
=IF(A17>=0pTime2,L17*Price3-Cost3,0)
=IF(A18>=0pTime?2,L18*Price3-Cost3,0)
=IF(A19>=0pTime2,L19*Price3-Cost3,0)
=IF(A20>=0pTime2,L20*Price3-Cost3,0)
=IF(A21>=0pTime2,L21*Price3-Cost3,0)
=IF(A22>=0pTime2,L22*Price3-Cost3,0)
=IF(A23>=0pTime2,L23*Price3-Cost3,0)
=IF(A24>=0pTime2,L24"*Price3-Cost3,0)
=IF(A25>=0pTime2,L25'Price3-Cost3,0)
=IF(A26>=0pTime2,L26"Price3-Cost3,0)
=IF(A27>=0pTime2,L27*Price3-Cost3,0)
=IF(A28>=0pTime2,L28*Price3-Cost3,0)
=IF(A29>=0pTime2,L29*Price3-Cost3,0)
=IF(A30>=0pTime2,L30*Price3-Cost3,0)
=IF(A31>=0pTime2,L31*Price3-Cost3,0)
=IF(A32>=0pTime2,L32*Price3-Cost3,0)
=|F(A33>=0pTime2,L33*Price3-Cost3,0)
=IF(A34>=0pTime2,L34*Price3-Cosi3,0)
=IF(A35>=0pTime?2,L35*Price3-Cost3,0)
=IF(A36>=0OpTime2,L36"Price3-Cost3,0)
=IF(A37>=0pTime2,L37*Price3-Cost3,0)
=IF(A38>=0pTime2,L38*Price3-Cost3,0)
=|F(A39>=0pTime2,L39*Price3-Cost3,0)
=IF(A40>=0pTime2,L40*Price3-Cost3,0)
=IF(A41>=0pTime2,L41*Price3-Cost3,0)
=IF(A42>=0pTime2,L42*Price3-Cost3,0)
=IF(A43>=0pTime2,L43*Price3-Cost3,0)
=IF(A44>=0pTime2,L44"Price3-Cost3,0)
=IF(A45>=0pTime2,L45'Price3-Cost3,0)
=IF(A46>=0OpTime2,L46"Price3-Cost3,0)
=IF(A47>=0pTime?2,L47*Price3-Cost3,0)
=IF(A48>=0pTime?2,L48*Price3-Cost3,0)
=|F(A49>=0pTime2,L49*Price3-Cost3,0)
=IF(A50>=0pTime2,L50*Price3-Cost3,0)
=|F(A51>=0pTime2,L51*Price3-Cost3,0)
=IF(A52>=0OpTime2,L52*Price3-Cost3,0)

Net Profit 3
Revenue3*Discount
G(t)

=M7'B7

=M8*B8

=M9°*B9

=M10"B10
=M11"B11
=M12*B12
=M13*B13
=M14'B14
=M15*B15
=M16'B16
=M17'B17
=M18'B18
=M19*B19
=M20'B20
=M21'B21
=M22'B22
=M23'B23
=M24'B24
=M25°B25
=M26*B26
=M27*B27
=M28'B28
=M29'B29
=M30*B30
=M31'B31
=M32'B32
=M33*'B33
=M34'B34
=M35*'B35
=M36'B36
=M37'B37
=M38'B38
=M39*B39
=M40°'B40
=M41'B41
=M42'B42
=M43'B43
=M44'B44
=M45*B45
=M46°'B4€
=M47'B47
=M48°'B48
=M49°'B49
=M50*B50
=M51'B51
=M52'B52
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Switching
Cost1

=IF(A7=OpTime1,(SwCost1 +Cost2*u)*EXP(-DisRate*OpTime1),0)
=IF(A8=0OpTime1,(SwCost1+Cost2*u)*EXP(-DisRate*OpTime1),0)
=|F(A9=OpTime1,(SwCost1+Cost2*u)*EXP(-DisRate*OpTime1),0)
=IF(A10=OpTime1,(SwCost{1+Cost2"u)*EXP(-DisRate*OpTime1),0)
=|F(A11=OpTime1,(SwCost1+Cost2*u)*EXP(-DisRate*OpTime1),0)
=IF(A12=OpTime1,(SwCost1+Cost2*u)*EXP(-DisRate*OpTime1),0)
=IF(A13=0OpTime1,(SwCost1+Cost2*u)*EXP(-DisRate*OpTime1),0)
=IF(A14=0OpTime1,(SwCost1+Cost2*u)*EXP(-DisRate*OpTime1),0)
=IF(A15=0pTime1,(SwCost1+Cost2*u)*EXP(-DisRate*OpTime1),0)
=IF(A16=OpTime1,(SwCost1+Cost2*u)*EXP(-DisRate*OpTime1),0)
=IF(A17=OpTime1,(SwCost1+Cost2*u)*EXP(-DisRate*OpTime1),0)
=IF(A18=OpTime1 (SwCost1+Cost2*u)*EXP(-DisRate*OpTime1),0)
=|F(A19=OpTime1,(SwCost1+Cost2*u)*EXP(-DisRate*OpTime1),0)
=IF(A20=OpTime1,(SwCost1+C ost2*u)*EXP(-DisRate*OpTime1) 0)
=IF(A21=OpTime1,(SwCost1+Cost2*u)*EXP(-DisRate*OpTime1),0)
=IF(A22=OpTime1 (SwCost1 +C ost2*u)*EXP(-DisRate*OpTime1),0)
=|F(A23=OpTime1,(SwCost1+C.ost2*u)*EXP(-DisRate*OpTime1),0)
=IF(A24=OpTime?1,(SwCost1+(;0st2*u) *EXP(-DisRate*OpTime1),0)
=lF(A25=0OpTime1,(SwCost1+Cost2*u)*EXP(-DisRate*OpTime1),0)
=IF(A26=0OpTime1,(SwCostt+Cost2*u)*EXP(-DisRate*OpTime1),0)
=IF(A27=OpTime1,(SwCost1+Cost2*u)*EXP(-DisRate*OpTime1),0)
=|F(A28=OpTime1 (SwCost1+Cost2*u)*EXP(-DisRate*OpTime1),0)
=IF(A29=0OpTime1,(SwCost1+Cost2*u)*EXP(-DisRate*OpTime1),0)
=IF(A30=OpTime1,(SwCost1+Cost2*u)*EXP(-DisRate*OpTime1),
=IF(A31=0pTime1,(SwCost1+Cost2*u)*EXP(-DisRate*OpTime1),
=IF(A32=0OpTime1,(SwCost+Cost2*u)*EXP(-DisRate*OpTime1),0
=IF(A33=0OpTime1,(SwCost1+Cost2*u)*EXP(-DisRate*OpTime1),
=IF(A34=0OpTime1,(SwCost1+Cost2*u)*EXP(-DisRate*OpTime1),0)
=IF(A35=0OpTime1 (SwCost1+Cost2*u)*EXP(-DisRate*OpTime1),0
=]F(A36=OpTime1,(SwCost1+Cost2*u)*EXP(-DisRate*OpTime1),0
=lF(A37=0OpTime1,(SwCost1+Cost2*u)*EXP(-DisRate*OpTime1),
=IF(A38=OpTime1,(SwCost1+Cost2*u)*EXP(-DisRate*OpTime1),0)
=|F(A39=OpTime1,(SwCost1+Cost2*u)*EXP(-DisRate*OpTime1
=IF(A40=OpTime1,(SwCost1+Cost2*u)*EXP(-DisRate*OpTime1
=IF(A41=0pTime1,(SwCost1+Cost2*u)*EXP(-DisRate*OpTime1
=|F(A42=OpTime1,(SwCost1+Cost2*u)*EXP(-DisRate*OpTime1
=IF(A43=OpTime1 (SwCost1+Cost2*u)*EXP(-DisRate*OpTime1
=|F(A44=OpTime1,(SwCost1+Cost2*u)*EXP(-DisRate*OpTime1
=IF(A45=OpTime1,(SwCost1+Cost2*u)*EXP(-DisRate*OpTime1

0)
0)
)
0)
)
)
)
)

0
0
0)
0
0)
.0)
0)

0)

N

(=]

)
=IF(A46=OpTime1,(SwCost1+Cost2*u)*EXP(-DisRate*OpTime1),0)
=IF(A47=OpTime1,(SwCost1+Cost2*u)*EXP(-DisRate*OpTime1),0)
=|F(A48=OpTime1,(SwCost1+Cost2*u)*EXP(-DisRate*OpTime1),0)
=IF(A49=OpTime1,(SwCost1+Cost2*u)*EXP(-DisRate*OpTime1),0)
=IF(A50=0OpTime1,(SwCost1+Cost2*u)*EXP(-DisRate*OpTime1),0)
=|F(A51=0OpTime1,(SwCost1+Cost2*u)*EXP(-DisRate*OpTime1),0)
=IF(A52=OpTime1,(SwCost1+Cost2*u)*EXP(-DisRate*OpTime1),0)

102



Switching
Cost2

=IF(A7=OpTime2,SwCustZ *EXP(-DisRate*OpTime2),0)

=IF(AB=OpTime2,SwCost2*EXP(-DisRate*Op Time2),0)

=|F(A9=OpTime2,SwCost2*EXP(-DisRate*OpTime2),0)

=IF(A10=0OpTime2,SwCost2*EXP(-DisRate*OpTime2),0)
=IF(A11=0OpTime2,SwCost2*EXP(-DisRate*OpTime2),0)
=IF(A12=0OpTime2,SwCost2*'EXP(-DisRate*OpTime2),0)
=IF(A13=OpTime2,SwCost2*EXP(-DisRate*OpTime2),0)
=IF(A14=0OpTime2,SwCost2*EXP(-DisRate*OpTime2),0)
=IF(A15=0OpTime2,SwCost2*'EXP(-DisRate*OpTime2),0)
=IF(A16=OpTime2,SwCost2*EXP(-DisRate*OpTime2),0)
=IF(A17=OpTime2,SwCost2*EXP(-DisRate*OpTime2),0)
=IF(A18=OpTime2, SwCost2*EXP(-DisRate*OpTime2),0)
=IF(A19=0OpTime2,SwCost2*EXP(-DisRate*OpTime2),0)
=IF(A20=OpTime2,SwCosi2*"EXP(-DisRate*OpTime2),0)
=IF(A21=OpTime2,SwCost2*"EXP(-DisRate*OpTime2),0)
=IF(A22=OpTime2,SwCost2*EXP(-DisRate'Op Time2),0)
=IF(A23=OpTime2,SwCost2'EXP(-DisRate*OpTime?2),0)
=|F(A24=OpTime2,SwCost2*EXP(-DisRate*OpTime?2),0)
=IF(A25=OpTime2,SwCost2*EXP(-DisRate*OpTime2),0)
=IF(A26=OpTime2,SwCost2*'EXP(-DisRate*OpTime2),0)
=|F(A27=OpTime2,SwCost2*EXP(-DisRate*OpTime2),0)
=IF(A28=0OpTime2,SwCost2*"EXP(-DisRate*OpTime2),0)
=IF(A29=OpTime2,SwCost2*'EXP(-DisRate*OpTime2),0)
=|F(A30=OpTime2,SwCost2*EXP(-DisRate*OpTime?2),0)
=IF(A31=OpTime2,SwCost2*EXP(-DisRate*OpTime2),0)
=IF(A32=OpTime2,SwCost2*EXP(-DisRate*OpTime2),0)
=|F(A33=0OpTime2,SwCost2*EXP(-DisRate*OpTime2),0)
=|F (A34=OpTime2,SwCost2“EXP(-DisRate*OpTime2),0)
=IF(A35=OpTime2,SwCost2* EXP(-DisRate*OpTime?2),0)
=IF(A36=OpTime2,SwCost2*EXP(-DisRate*OpTime2),0)
=|F(A37=OpTime2,SwCost2*"EXP(-DisRate*OpTime?2),0)
=IF(A38=0OpTime2,SwCost2*'£XP(-DisRate*OpTime?2),0)
=IF(A39=OpTime2,SwCost2*EXP(-DisRate*OpTime2),0)
=IF(A40=OpTime2,SwCost2*EXP(-DisRate*OpTime2),0)
=|F (A41=OpTime2 ,SwCost2*EXP(-DisRate*OpTime2),0
=IF(A42=OpTime2,SwCost2*EXP(-DisRate*OpTime2),
=IF(A43=0OpTime2,SwCost2*EXP(-DisRate*OpTime2),
=|F(A44=CpTime2,SwCost2*EXP(-DisRate*OpTime2),
=IF(A45=0OpTime2,SwCost2*EXP(-DisRate*OpTime2),
=IF(A46=OpTime2,SwCost2*EXP(-DisRate*OpTime2),
=|IF(A47=OpTime2,SwCost2*"EXP(-DisRate*OpTime?2),
=IF(A48=CpTime2,SwCost2“EXP(-DisRate*OpTime2),
=IF(A49=OpTime2,SwCost2*EXP(-DisRate*OpTime2),0
=|F(A50=OpTime2,SwCost2*EXP(-DisRate*OpTime2),0)
=IF(A51=0OpTime2,SwCost2*EXP(-DisRate*OpTime2),0)

)
0)
0)
0)
0)
0)
0)
0)
)

=IF(A52=OpTime2,SwCost2'EXP(-DisRate*OpTime2),0)
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Yearly
Profit

=IF(A7<OpTime1,H7,IF(A7<OpTime2,K7,IF(A7<OpTime3,N7,0)))-07-P7

=IF(A8<OpTime1,H8,IF(AB<OpTime2,KB,IF (AB<OpTime3,N8,0)))-08-P8

=IF(A9<OpTime1,H9,IF(A9<OpTime2,<9,IF{A9<OpTime3,N9,0)))-09-P9

=IF{A10<OpTime1,H10,IF{A10<OpTime 2,K10,IF(A10.:0pTime3,N10,0)))-010-P10
=IF(A11<OpTime1,H11,IF(A11<OpTime2,K11,IF(A11<OpTime3,N11,0)))-011-P11
=IF(A12<OpTime1 H12,|F(A12<OpTime2,K12,IF(A12<OpTime3,N12,0)))-012-P12
=IF(A13<OpTime1,H13,IF(A13<OpTime2,K13,IF(A13<0OpTime3,N13,0)))-013-P13
=IF(A14<OpTime1,H14,IF(A14<OpTime2,K14,F(A14<OpTime3,N14,0)))-O14-P14
=lF(A15<OpTime1 H15,IF(A15<0pTime2,K15,IF(A15<0pTime3,N15,0)))-015-P15
=IF{A16<OpTime1,H16,IF{A16<OpTime2,K16,[F(A16<OpTime3,N16,0)))-O16-P16
=IF(A17<OpTime1,H17,IF(A17<OpTime2,K17 |F(A17<OpTime3,N17,0)))-017-P17
=IF(A18<OpTimet,H18,IF(A18<OpTime2,K18,IF(A18 <OpTime3,N18,0)))-O18-P18
=IF(A19<OpTime1,H19,/IF(A19<OpTime2,K19,IF(A19<OpTime3,N19,0)))-019-P19
=IF(A20<OpTime1,H20,IF(A20<OpTime2,K20,IF(A20<OpTime3,N20,0)))-020-F20
=IF{A21<OpTime1,H21,IF(A21<OpTime2,K21,F(A21<OpTime3,N21,0)))-021-P 21
=IF(A22<OpTime1,H22IF(A22<OpTime2,K22,[F(A22<OpTime3,N22,0)))-022-P22
=IF(A23<OpTime1,H23,IF(A23<OpTime2,K23,IF{A23<0pTime3,N23,0)))-023-P23
=IF(A24<OpTime1,H24,IF(A24<OpTime2,K24,|F(A24<0OpTime3,N24,0)))-024-P24
=iF(A25<OpTime1,H25,[F(A25<0OpTime2,K25,IF(A25<0OpTime3,N25,0)))-025-P25
=IF(A26<OpTime1,H26,IF(A26<OpTimez2,K26,IF(A26<OpTime3,N26,0)))-026-F 26
=IF(A27<OpTime1,H27,IF{A27<OpTime2,K27 JF(A27<OpTime3,N27,0)))-027-P27
=IF(A28<OnTime1,H28,IF(A28<OpTime2,KK28,IF(A28<OpTimea3,N28,0)))-028-P 28
=IF(A29<OpTime1,H29,IF(A29<OpTime2,K29,IF{A29<OpTime3,N29,0)}))-029-P29
=IF(A30<OpTime1,H30,IF(A30<OpTime2,K30,IF(A30<0pTime3,N30,0)))-030-P30
=IF(A31<OpTima1,H31,IF(A31<OpTime2,K31,IF(A31<0pTime3,N31,0)))-031-P31
=IF(A32<OpTime1,H32,IF(A32<OpTime2,K32,IF(A32<0pTime3,N32,0)))-032-P32
=|F(A33<OpTime1,H33,IF(A33<OpTime2,K33,I1F(A33<0pTime3,N33,0)))-033-P33
=IF(A34<OpTime1,H34,IF{A34<OpTime2,K34,IF(A34<OpTime3,N34,0)))-034-P34
=IF(A35<OpTime1,H35,IF(A35<OpTime2,K35,IF(A35<0pTime3,N35,0)))-035-P35
=IF(A36<OpTime1,H36,IF(A36<OpTime2,K36,IF(A36<OpTime3,N36,0)))-O36-P36
=|F(A37<OpTime1,H37,IF(A37<OpTime2,K37,|IF(A37<0pTime3,N37,0)))-037-P37
=IF(A38<OpTime1,H38,IF(A38<OpTime2,K38,IF(A38<OpTime3,N38,0)))-038-P38
=IF(A39<OpTime1,H39,IF(A39<OpTime2,K39,IF(A39<0OpTime3,N39,0)))-039-P39
=IF(A40<OpTime1,H40,IF(A40<OpTime2,K40,IF (A40<OpTime3,N40,0)))-040-P40
=IF(A41<OpTime1,H41 IF(A41<OpTime2,K41 iF(A41<OpTime3,N41,0)))-041-P 41
=IF(A42<OpTime1,H42,IF(A42<OpTime2,K42,IF{A42<OpTimed,N42,0)))-042-P42
=IF(A43<OpTime1,H43,IF(A43<OpTimez,K43,IF(A43<0OpTime3,N43,0)))-043-P43
=IF(A44<OpTime1,H44,IF(A44<OpTime2,K44,IF(A44<OpTime3.N44,0)))-044-P44
=IF(A45<OpTime1,H45,IF(A45<OpTime2,K45,IF(A45<0pTime3,N45,0)))-045-P45
=IF(A46<OpTime1,H46,IF(A46<OpTime2,K46,|IF(A46<OpTime3,N46,0)))-046-P46
=lF(A47<OpTime1,H47 IF(A47<OpTime2,K47 IF(A47<OpTime3,N47,0)))-047-P47
=IF(A48<OpTime1,H48,IF(A48<OpTime2 K48,IF{A48<OpTime3,N48,0)))-048-P48
=IF(A49<OpTime1,H49,IF(A49<OpTime2,K49,IF{A49<OpTime3,N49,0)))-049-P19
=IF(AS0<OpTime1,H50,IF(AS()<OpTime2,K50,IF{(AS0<OpTime3,N50,0)))-050-P50
=IF(A51<OpTime1,H51,IF(A51<OpTime2,K51,IF(A51<OpTime3,N51,0)))-051-P51
=IF(A52<OpTime1,H52,IF(A52<OpTime2,K52,IF(A52<OpTime3,N52,0)))-052-P52

Total
Profit J

=Q7+R6
=Q8+R7
=Q9+R8
=Q10+R9
=Q11+R10
=Q12+R11
=Q13+R12
=Q14+R13
=Q15+R14
=Q16+R15
=Q17+R16
=Q18+R17
=Q19+R18
=Q20+R19
=Q21+R20
=Q22+R21
=Q23+R22
=024+R23
=Q25+R24
=Q26+R25
=027+R26
=Q28+R27
=Q29+R28
=Q30+R29
=Q31+R30
=Q32+R31
=033+R32
=Q34+R33
=Q35+R34
=Q36+R35
=Q37+R36
=Q38+R37
=039+R38
=Q40+R39
=Q41+R40
=Q42+R41
=Q43+R42
=Q44+R43
=Q45+R44
=Q46+R45
=Q47+R46
=Q48+R47
=Q49+R48
=Q50+R49
=Q51+R50
=Q52+R51
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